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Abstract 

Vibration power flow analysis (PFA) approach has been widely used as a tool for 

investigating the dynamic behaviour of coupled structures and complex systems. There 

have been numerous PFA studies on linear systems; however, limited research has been 

reported on the power flow behaviour of nonlinear systems, especially on the nonlinear 

non-smooth systems. This research attempts to address the issue by seeking a deeper 

understanding of the effects of smooth and non-smooth nonlinearities on vibration 

transmission and power flow in nonlinear dynamical systems, and for an improved 

design of nonlinear isolation structures to obtain better vibration mitigation performance 

based on the findings from PFA.   

The vibration transmission characteristics of non-smooth impact oscillators with 

linear constraint and different types of geometrically nonlinear motion constraints are 

firstly investigated. It is shown that the inclusion of nonlinear motion constraint can lead 

to a higher proportion of the input power dissipated at the interface compared to that of 

the linear constraint. The nonlinear constraints can be designed to tailor the level of 

force transmission and vibration power flow near the peak frequencies. The use of force 

transmissibility and time-averaged power flow as measures of the vibration 

transmission level may result in different evaluation outcomes. Nonlinear constraint can 

lead to bifurcations as well as super-harmonic and sub-harmonic response components. 

Secondly, the vibration mitigation performance of a nonlinear isolation system with a 

geometrically nonlinear element based on linkage mechanism is studied. It is found that 

the addition of the nonlinear element to a linear isolator can enlarge the effective 

isolation frequency range and bring about softening effect on the system. The curves of 

frequency response, force transmissibility and power transmission are shifted to the 

low-frequency range and the peaks of the curves can bend to the low frequencies with 

possibly reduced peak values. Thirdly, the dynamic behaviour of the non-smooth 

friction oscillators is explored from the vibration energy perspective. It is shown that 

the discontinuous dry friction nonlinearity can lead to a significant increase in the force 

transmissibility, energy transfer and energy dissipation at high frequencies, while there 

are slight reductions in the peak values of these indices. The findings from this study 

contribute to an enhanced understanding of vibration transmission and power flow 

characteristics within both smooth and non-smooth nonlinear dynamical systems and 

assist dynamic design of engineering systems for better performance. 

Keywords: non-smooth systems; vibration transmission; nonlinear vibration isolation; 

force transmissibility; vibration power flow; geometric nonlinearity 
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Chapter 1                                              

Introduction 

1.1. Engineering background 

Nonlinearity is an inherent property of dynamical systems which can originate 

from structural design, material properties, manufacturing tolerance, external 

disturbance, etc. It might be valid to make linear approximations for some simple and 

uniform structures, such as rods, beams and plates, under the assumption of ideal 

boundary conditions, small strains, small displacement, small rotations, etc. The linear 

analytical solutions for the system response can then be easily computed at low cost by 

classical mechanics. However, in the practical design of high-performance dynamical 

systems with a more complexed structure, nonlinearities should not be neglected. 

Nonlinear analysis is of importance to understand the dynamic behaviour of the system 

and provide a more accurate estimation on system operation than the linear approach.  

There are three major types of nonlinearity: geometric nonlinearity, material 

nonlinearity and contact nonlinearity (Peksen, 2018). Geometric nonlinearity usually 

refers to the nonlinearity in kinematic quantities such as nonlinear force-displacement 

relation. It arises when the system geometry undergoes considerable changes including 

large deformation, deflection or rotation. This kind of nonlinearity can be also obtained 

by mechanisms, such as linkages and cam-follower mechanisms. Although the strain-

displacement or force-displacement relation may be linear for the unassembled moving 

component of the mechanism, the integrated structure can exhibit a nonlinear 

relationship between the restoring / damping force and the response. Material 

nonlinearity exists when there is a nonlinear constitutive relation of a component, i.e. a 

nonlinear stress-strain relationship for the material. A typical example is the metal 

material which exhibits material nonlinearity at high strains. Contact nonlinearity 

(namely boundary nonlinearity) refers to the nonlinear effect of contact interaction 

between two or multiple components, which introduces abrupt changes to the stiffness 

of the sub-structure or the assembly. The friction effect from the rough contact surface 

is also taken as contact nonlinearity. Those systems with discontinuous or non-

differentiable force, or displacement characteristics can be classified as nonlinear non-

smooth systems (Popp, 2000).   

The non-smoothness in the dynamical systems can be generated by physical effects 

such as impacts, intermittent contact, backlash, friction or combinations of these effects 
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(Popp, 1998). Nonlinear phenomena widely exist in many mechanical engineering 

applications, such as the percussion of the drilling rigs, the intermittent contact between 

the roller and race in the roller bearings, frictional chatter in the tooling machinery and 

meshing gears. The nonlinear effects caused by the non-smoothness can have a strong 

influence on the system performance and should not be neglected in the dynamic design. 

Non-smooth dynamical systems have received great attention in the past decades. The 

impact oscillator and Coulomb friction oscillator have been widely accepted as 

representative models of the non-smooth dynamical systems with intermittent contact 

or friction, respectively (Ing et al., 2010; Popp, 1998). Those refined models can 

precisely reflect the non-smooth force and motion characteristics, which helps gain 

insights of complexities of the nonlinear dynamic behaviour in the non-smooth systems. 

Therefore, to achieve a better design of non-smooth engineering systems, it is of 

importance to have an in-depth understanding of the nonlinear dynamic behaviour of 

the impact oscillators and friction oscillators. 

Vibration transmission is one of the key factors bearing upon the dynamic 

performance of engineering systems. Excessive vibration transmission in engineering 

structures can be harmful to human health and comfort (Lee et al., 2007; Le and Ahn, 

2013), precision of sensitive instruments (Palomares et al., 2018), reliability and lifetime 

of the powertrain (Rao, 2011) and safety of structural constructions (Ibrahim, 2008). To 

control the undesired vibration transmitted from the vibrating source to the receiving 

structure, active or passive vibration isolators are commonly inserted onto the vibration 

transmission path (Rivin, 2004). Compared with active isolators, passive isolators do 

not need power supply or controller, and have simpler structure (Carrella et al., 2007).  

For the improvement of the isolation performance under low-frequency excitations, 

appropriate nonlinear element can be introduced into the passive isolation system 

(Palomares et al., 2018). The linearized natural frequency of a nonlinear isolator can be 

substantially reduced to an ultra-low value or even zero, and the effective vibration 

isolation frequency band is widened (Liu and Yu, 2018; Yang et al., 2013). One kind of 

such elements is characterized by a negative stiffness mechanism (NSM). Nonlinear 

elements created by linkage mechanisms can also be employed in vibration isolators to 

create geometry nonlinearities (Carrella et al., 2009; Sun et al., 2014). 

 For some engineering applications such as tooling machinery and drilling systems, 

a moderate level of vibration transmission to the workpiece is desirable for higher 

efficiency of operations (Wiercigroch and Krivtsov, 2001; Liao et al., 2018). However, 

these engineering systems belong to the nonlinear non-smooth dynamical systems and 

may even comprise different types of nonlinearities mentioned before. Therefore, a 
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straightforward analysis approach should be developed and employed to understand the 

vibration transmission mechanism for the typical nonlinear non-smooth dynamical 

systems, such as impact oscillators and Coulomb friction oscillators. The findings will 

benefit the dynamic design of the system for required performance.  

The quantification of vibration transmission between two sub-structures can 

provide essential information to reveal the mechanism of vibration transmission. 

Traditional assessment of vibration transmission within engineering systems usually 

uses individual measures of displacement, velocity and force, which are not sufficient 

for determining the pathway of vibration transmission (Zheng et al., 2016; Sun et al., 

2020). Power flow analysis (PFA) solves this problem by evaluating energy 

transmission and distribution in the vibration system. The PFA indices consider the 

combined effects of force and velocity amplitudes as well as their relative phase angle 

in a single concept, providing an insight of vibration energy transmission between sub-

systems and energy dissipation by sub-structures within an integrated dynamic system 

(Goyder and White, 1980a, 1980b, 1980c).  

The first ideas related to PFA were proposed by Lyon and Maidanik (1962). 

Goyder and White (1980a, 1980b, 1980c) first introduced the fundamental expressions 

of PFA and used power flow to quantify vibration transmission in mono- or bi-

dimensional structures. In the past decades, PFA has been widely adopted and 

developed for investigating energy flow characteristics within different coupled 

structures and complex engineering systems. Findings by the PFA approach were used 

to improve the dynamic performance of linear systems by tailoring power transmission 

on the vibration transmission path. Many applications of PFA in vibration control were 

reported, by minimizing the vibrational power transmission from the vibration source 

to the receiving structure. Some examples can be found in the research of vibration 

isolators (Wei et al., 2016; Sun et al., 2015; Alberdi-Muniain et al., 2012; Liu et al., 

2010; Collette and Preumont, 2010; Choi et al., 2009) and vibration absorbers (Chen 

and Wang, 2014; Vakakis et al., 2008). Moreover, since the change in structure 

properties can affect vibration transmission and lead to differences in power flow 

behaviour, PFA can also be used for non-destructive detection of defects (Zhu et al., 

2006; Guyomar et al., 2011; Wong et al., 2009) by comparing the data of power flow 

between the referenced healthy structure and the defective structure. In addition, PFA 

has been developed for noise reduction in the transportation system (Wang et al., 2020, 

Acri et al., 2019; Liu and Yuan et al., 2017; Liu and Leng et al., 2018), such as vehicles. 

As the vibrational energy from the powertrain and bumpy road transmits to the cabin 

and radiate in the form of structure-borne sound (Lee, 2000), PFA can be used to 
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identify the power transmission path and assist vibration suppression or mitigation 

design of the structure to improve passenger ride quality. 

1.2. Current state of research 

There have been many works reported on the dynamic analysis of non-smooth 

impact oscillators with a single linear or rigid constraint. Such systems have been shown 

to exhibit distinct nonlinear dynamic phenomena. Nordmark (1991) considered a 

periodically forced SDOF impact oscillator with a rigid constraint on the one side and 

found a special type of bifurcation when a stable periodic orbit comes to grazing impact. 

Luo et al. (2018) analytically studied the dynamics of a forced two-degree-of-freedom 

(2DOF) impact oscillator with an end-stop and found the occurrence of sticking and 

non-sticking phases due to the plastic impact. Wiercigroch et al. (2020) designed an 

impact oscillator rig with an electromagnetic exciter. Various periodic orbits, co-

existence of attractors, multi-stability and chaotic behaviour observed in engineering 

systems were validated. Some research has focused on the study of impact oscillators 

with multiple linear constraints which have many practical applications, such as energy 

harvesters (Lai et al., 2018), and showed new dynamic behaviour compared to that of 

the impact oscillators with a single constraint. Ing et al. (2006) experimentally and 

mathematically examined the near-grazing bifurcation scenarios of a SDOF impact 

oscillator with two-sided linear-spring constraints. It was found that the presence of two 

linear-spring constraints may stabilise the additional periodic orbits. However, limited 

studies have been carried out on the dynamics of impact oscillators with a nonlinear 

main system or a nonlinear constraint, or multiple nonlinear constraints. Even fewer 

works have been reported on the vibration transmission, especially on the quantification 

of vibration energy transfer and dissipation within such systems.  

The past research on the non-smooth Coulomb friction oscillators was mainly 

focusing on dynamic behaviour. Feeny (1992) applied a qualitative technique to 

describe the dynamics of a forced multi-valued Coulomb friction oscillator. van de 

Vrande et al. (1999) investigated the dynamic motion of both SDOF and 2DOF friction 

oscillator models by using smooth functions of friction force and found the unstable 

solutions branches and an extra stable solution branch. Luo and Gegg (2006) developed 

the force criteria for stick and non-stick motions in forced friction oscillators based on 

local theory of non-smooth dynamical systems. Pascal (2014) examined a 2DOF 

linearly coupled oscillator with one of the masses sliding on a rough surface and the 

friction force is characterized by Coulomb friction law. Several kinds of periodic orbits 

including one or more stops per cycles were observed. Few previous studies have 
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considered the force transmission and energy dissipation in SDOF friction oscillator 

systems. Marino et al. (2019) examined displacement transmissibility of a SDOF 

Coulomb friction oscillator under joined base-wall excitation. Lopez et al. (2004, 2009) 

experimentally validated the accuracy of using the Coulomb friction model to predict 

the energy dissipation in the SDOF friction oscillator. However, the investigations on 

energy transmission and dissipation in the coupled 2DOF friction oscillators are still 

rare.  

Since the earliest discussions of its fundamental concepts discussed by Goyder and 

White (1980a, 1980b, 1980c), PFA has been developed in the past decades to embody 

different approaches, the dynamic stiffness method (Langley, 1989), the receptance 

method (Clarkson, 1991), the mobility method (Cusshieri, 1990), the travelling wave 

method (Langley, 1992), the power flow based finite-element approach (Nefske and 

Sung, 2000), the PFA approach based on continuum dynamics (Xing and Price, 1999), 

the energy flow progressive approach (Xiong et al., 2001) and the power flow mode 

theory (Xiong et al., 2005a), to study energy transmission in various linear dynamic 

structures and vibration control systems. In recent research, advances were made in the 

PFA theory to deal with linear systems having complex structures or boundary 

conditions. Xiong et al. (2003) proposed generalized mathematical formulations of PFA 

for a multiple channel structure-control system. The theoretical model was capable of 

assessing the dynamic behaviour and effectiveness of vibration control of a complex 

integrated system comprising a number of substructures and work well with different 

dynamic systems. Later, Kwon et al. (2011) presented a power flow boundary element 

method to solve the multi-domain problem. Besides, Park and Hong (2007a, 2007b) 

provided a hybrid analytical method which combined PFA and statistical energy 

analysis (SEA) to estimate the vibrational and acoustic responses of systems with low 

system damping.  

The PFA method has been applied to investigate various linear systems, including 

coupled structures (Seo et al., 2003; Wang et al., 2002a; Wang et al., 2004; Chen and 

Liu, 2019), phononic structures (Al ba’ba’a and Nouh, 2017), acoustic black hole beams 

(Wang et al., 2019a), cracked functionally graded beams (Zhu and Ke et al., 2020) and 

laminated composite plates with different inerter-based suppression configurations (Zhu 

and Yang et al., 2020). Power flow indices were also used as a performance indicator 

of active vibration control system (Howard et al., 2000; Liu et al., 2010), hybrid 

vibration control system (Xiong et al., 2003; Kandasamy et al., 2016), semi-active 

isolation system (Sun et al., 2015; Collette and Preumont, 2010) and passive linear 

vibration control system (Choi et al., 2009; Dong et al., 2008).  
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There has been an increasing shift in focus to PFA of nonlinear dynamical systems.  

Royston and Singh (1996, 1997) applied power flow scheme to assess and enhance the 

performance of the nonlinear mounting system. Xiong et al. (2005b) studied the 

dynamic characteristics and power flow behaviour of a nonlinear interactive system 

under wave excitation. It was observed that there exist non-uniqueness and instability 

on the power transmission path at critical frequencies. Vakakis et al. (2008) studied the 

targeted energy transfer phenomena in dynamical systems from the primary vibrating 

structure to the attached passive nonlinear energy sink. Alberdi-Muniain et al. (2012) 

evaluated the vibration mitigation performance of a nonlinear magneto-sensitive 

vibration isolation system by experimentally quantifying the energy flow. Yang and 

Xiong et al. (2014, 2015) investigated the power flow behaviour of a Duffing oscillator 

and the performance of nonlinear vibration absorbers. The PFA approach was also 

implemented to evaluate the vibration mitigation performance of nonlinear isolators 

(Yang et al., 2013, 2016, 2019). Moreover, the power flow between the interactive 

oscillators with a nonlinear coupling interface (Yang et al., 2018, Shi et al., 2019a), with 

a bilinear coupling interface (Shi et al., 2019b) or with a linear constraint or a nonlinear 

motion constraint (Dai et al., 2020, 2021) were explored for the evaluation of vibration 

transmission. While much PFA research has been conducted on the nonlinear dynamical 

systems, there is still lack of knowledge on the power flow behaviour in the typical 

nonlinear non-smooth dynamical systems, i.e. impact oscillator and Coulomb friction 

oscillator.   

1.3. Motivations of the research 

In the past research of non-smooth impact oscillators, the motion constraint was 

usually assumed to be rigid or linear. However, based on the classical contact mechanics, 

the compliant contact dynamics models may involve nonlinear contact force model 

when considering elastic deformation of the interface material (Gilardi and Sharf , 2002). 

Ajibose et al. (2010) compared numerically the influence of different nonlinear contact 

force models on the global and local dynamics of the drifting impact oscillators and 

found that the global dynamics may depend on the contact force model applied.  Hence 

the dynamics and vibration transmission behaviour of impact oscillators with nonlinear 

constraints remains to be investigated so as to predict the dynamic performance of non-

smooth engineering systems more accurately. 

In the previous research, substantial progress has been made in the power flow 

behaviour of linear and nonlinear vibrating systems. However, research on the power 

flow characteristics in different representative nonlinear non-smooth dynamical systems, 
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such as impact oscillators and friction oscillators, is limited and waits to be promoted. 

For typical dynamical systems with non-smoothness, a strong nonlinear influence may 

be confronted during the operation, leading to complicated nonlinear phenomena. For 

example, in the dynamic modelling of the drilling system or metal cutting lathes, the 

intermittent collision between the rig and workpiece causes discontinuous stiffness, 

damping nonlinearities and friction nonlinearities (Dou et al., 2020). A non-smooth 

relationship between stiffness / damping and displacement as well as a non-smooth 

relationship between friction force and velocity are needed for accurate estimation of 

vibration response. For these nonlinear dynamical systems, the existent linear models 

fail to provide a precise prediction on the dynamic behaviour. The traditional 

approaches and the PFA methods need to be combined to investigate the vibration 

transmission mechanism in these nonlinear dynamical systems.  

On the other hand, the integration of a nonlinear element created by linkage 

mechanisms into the vibration control system can lead to enhanced vibration mitigation 

performance. Different types of linkage mechanisms, such as Watt’s linkage (Ibrahim, 

2008), Scott-Russel linkage (Winterflood et al., 1996, 1999), torsion crank linkage 

(Winterflood et al., 1998) and Roberts linkage (Garoi et al., 2003, Bosseti et al., 2014) 

have been used to create geometric nonlinearities so as to enhance vibration isolation 

performance for ultra-low-frequency vibrations. Recently, an isolation platform with a 

Scissor-Like Structure (SLS) created by geometrically nonlinear linkage mechanism 

and a linear spring was proposed by Sun et al. (2014, 2016). It was demonstrated that 

the SLS isolation system can have a good isolation performance. However, many 

previous investigations on the performance of nonlinear vibration isolators with NSMs 

or linkage mechanisms have been based on SDOF models, in which the isolators are 

installed on a rigid and massless foundation (Yang and Xiong et al., 2014; Yang and 

Harne et al., 2014). In engineering structures such as ships, buildings and aircrafts, the 

foundation structures on which machineries are mounted via vibration isolators are 

flexible and the flexibility can have large effects on the level of vibration transmission 

and the performance of vibration isolators (Sciulli and Inman, 2018; Xiong et al., 2005b). 

The use of a rigid base assumption to measure the effectiveness of vibration isolators 

can yield inaccurate predictions. Hence it is necessary to examine the effects of the 

flexibility of the base structure on the performance of nonlinear isolators. 

Furthermore, for performance evaluation of vibration attenuation systems, the 

force/displacement transmissibility was usually used as the performance index (Wang 

and Jing et al., 2019, Jing et al., 2019a). There is very limited research investigating the 

energy flow characteristics of systems with nonlinear vibration isolators created by 
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linkage mechanisms. It is of interest to develop PFA to quantify vibration transmission 

of nonlinear isolation systems for a deeper understanding of the vibration transmission 

mechanism of such systems from the energy perspective. More importantly, the findings 

of PFA will benefit the dynamic design of the isolation system and guarantee better 

vibration mitigation.  

1.4. Aims and objectives 

The main aim of this research is to develop and employ the PFA method to 

investigate the dynamic behaviour of nonlinear smooth and non-smooth dynamical 

systems, covering vibration power transmission and energy dissipation. The effects of 

different types of non-smooth nonlinearities on the vibration transmission and power 

flow of the systems are investigated. Moreover, the research also intends to develop a 

novel passive nonlinear vibration isolation system based on the developed PFA method.  

In order to realize these goals, the research objectives are set as follows 

⚫ To develop and apply vibration transmission analysis and the PFA method for 

nonlinear smooth and non-smooth dynamical systems; 

⚫ To study typical nonlinear dynamical systems, such as the impact oscillator with a 

single constraint or multiple nonlinear motion constraints and Coulomb friction 

oscillator, from the perspective of energy transfer;  

⚫ To examine effects of different contact nonlinearities on vibration transmission and 

power flow behaviour in a single-degree-of-freedom (SDOF)  and a two-degree-

of-freedom (2DOF)  coupled dynamical systems; 

⚫ To investigate the performance of a nonlinear isolation system with a tuneable 

geometrical nonlinear stiffness mechanism based on power flow variables for 

improving the effectiveness of vibration mitigation; 

⚫ To explore complex nonlinear phenomena such as super-harmonic response 

components, bifurcations and quasi-periodic responses associated with the steady-

state response of nonlinear systems; 

1.5. Thesis outline 

This thesis falls into 8 chapters, with Chapter 1 serving as an introduction.  

In Chapter 2, an overview of the vibration transmission analysis approaches is 

presented. Also presented is a demonstration of the traditional vibration transmission 

evaluation approach as well as the PFA approach by using linear models. The energy 

transmission analysis methods for linear systems and nonlinear systems are classified, 
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and a brief review of the PFA methods in different dynamical systems is made. The 

research gap in the PFA of nonlinear dynamical systems is identified.   

Chapter 3 gives the fundamental concepts, general definitions and expressions of 

vibration transmission including power flow formulations. The time-domain numerical 

integration method, the frequency-domain harmonic balance (HB) approximation 

approach along with the alternating frequency/time domain (AFT) scheme and 

numerical continuations used for determination of the steady-state response and 

vibration transmission quantities of nonlinear dynamical systems in this thesis are 

provided. An example of the vibration transmission study for a coupled Duffing 

oscillator system by using the approaches discussed in Chapter 3 is given for 

demonstration. 

Chapter 4 discusses the vibration transmission and power flow behaviour of SDOF 

or 2DOF impact oscillators comprising linear or quasi-zero-stiffness (QZS) nonlinear 

constraints. It investigates and compares the effects of stiffness and damping properties 

of the constraints on the dynamic response and vibration transmission of the nonlinear 

systems. The force transmissibility and time-averaged power flow variables are 

obtained by analytical and semi-analytical HB approximations and numerical 

integrations to quantify vibration transmission in the systems.  

Chapter 5 studies the dynamic behaviour and vibration transmission of impact 

oscillators with geometrical nonlinear constraints. A nonlinear motion constraint with 

geometric stiffness nonlinearity is proposed, which is created by a linear spring 

embedded in a diamond-shaped linkage mechanism (DSLM). The harmonic balance 

method with alternating frequency/time domain scheme (HB-AFT) and numerical 

integrations are both employed to determine the steady-state response of the systems. 

The force transmissibility and time-averaged power flows are used as indices to quantify 

and evaluate vibration transmission and dissipation in the impact oscillator systems with 

multiple setups of the proposed constraints. 

Chapter 6 explores the vibration power flow and force / displacement 

transmissibility characteristics of the proposed nonlinear isolation system with a 

geometrically nonlinear element created by DSLM. The steady-state response of the 

system subjected to force or motion excitations is obtained by HB-AFT with numerical 

continuations and compared with the results by using numerical integrations. The force 

/ displacement transmissibility and power flow indices are employed to assess the 

vibration isolation performance of the nonlinear isolator. 
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In Chapter 7, the dynamic behaviour, vibration transmission and energy flow 

characteristics of a SDOF friction oscillator and a 2DOF coupled friction oscillator with 

a nonlinear dry-friction element at the interface are examined. The Karnopp friction 

model and a smooth Coulomb friction model are used to estimate the dry-friction force. 

The steady-state response of the system is determined by HB-AFT approach with 

numerical continuations and time-marching method. The level of vibration transmission 

and energy dissipation within the systems are evaluated by force transmissibility and 

power flow variables. 

The last Chapter 8 presents conclusions including principal contributions and main 

findings. Design guidance on the engineering systems is provided based on the findings 

of this research and some interesting research areas are suggested for future 

investigation.
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Chapter 2                                     

Literature review 
 

To reveal the vibration transmission mechanism in the dynamical system, it is of 

importance to develop methods for quantifying vibration transmission. In this chapter, 

the established evaluation methods for the vibration transmission are briefly reviewed, 

and different approaches developed for the energy transmission in the linear or 

nonlinear dynamical systems are classified and reviewed. The research gap in typical 

nonlinear dynamical systems in terms of vibration transmission and energy flow are 

discussed.  

2.1. Overview of the evaluation methods on vibration transmission  

The concept of transmissibility has been widely employed in the past research for 

quantifying vibration transmission from the vibration source to the receiving structure 

and used as an indicator of the isolation performance for the vibration isolation systems 

(Fahy and Gardonio, 2007). The transmissibility is defined as the dimensionless ratio of 

the steady-state response amplitude of the system to the input excitation amplitude 

(Weaver et al., 1990; Morse et al., 1948). It describes the ability of a system to either 

enhance or attenuate the input vibration. The transmissibility ratio can be in 

displacement, velocity, acceleration and force. Some researchers also used receptance 

magnitude defined as the displacement per unit harmonic excitation force to assess the 

level of vibration transmission (Ghandchi Tehrani et al., 2013).  

There have been many works on vibration transmission analysis using vibration 

transmissibility. Yan et al. (2010) considered a base-excited active vibration isolation 

system consisting of a distributed parameter isolator. The velocity transmissibility, i.e., 

the velocity ratio between the receiving mass and the exciting base, was used for 

evaluation of the isolator. Elliott et al. (2004) also used velocity transmissibility from 

the base to the main system mass to assess the performance of the active isolator. 

Alujevic  ́et al. (2011) investigated an active vibration isolation system using blended 

velocity feedback. The velocity feedback loop transmissibility function, i.e. the ratio of 

the output velocity and the input excitation force, was used as the index of isolation 

performance of the system. For the motion-excited system, displacement 

transmissibility was usually employed. Wu and Tang (2020)  used the displacement 

transmissibility to examine the effectiveness of vibration isolation for a base-excited 
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geometrically nonlinear isolation system. Sun et al. (2018) investigated a nonlinear 

isolation structure under base motion excitation by using displacement transmissibility 

as a performance indicator. Force transmissibility was also widely employed in the 

examination of vibration transmission in SDOF and multiple degree-of-freedom 

(MDOF) systems (Zhang et al., 2020; Huang et al., 2014; Liu and Yu, 2020; Tang and 

Brennan, 2013). The following case study of a linear 2DOF isolation system is presented 

for illustrating the basic formulations of the force transmissibility.  

Figure 2.1 shows a 2DOF linear vibration isolation system comprising a movable 

SDOF base of a mass 𝑚1, a linear spring with stiffness 𝑘1, a viscous damper with 

damping 𝑐1. The machine with mass 𝑚2 is mounted on the SDOF base via a linear  

spring 𝑘2 and a linear damper 𝑐2. A harmonic excitation force with amplitude of 𝑓0 and 

time dependence 𝑒𝑖𝜔𝑡  is applied on the machine mass 𝑚2 . The vibration isolation 

performance can be assessed by examining the force transmission from the machine to 

the base. The force transmissibility 𝑇𝑅B to the base structure can be defined as the ratio 

of the maximum magnitude of the transmitted force via the linear isolator to that of input 

force amplitude: 

𝑇𝑅B =
max( |𝑓tB|)

𝑓0
,                                             (2.1) 

where 𝑓tB  is the transmitted force to the base structure with 𝑓tB = 𝑘2(𝑥2 − 𝑥1) +

𝑐2(𝑥̇2 − 𝑥̇1).  
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Figure 2.1. Schematic of the 2DOF linear isolation system.  

Based on the classical mechanics, the steady-state response of the system can be 

obtained by solving the equation of motion of the system, which can be substituted into 
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Eq. (2.1) to determine the force transmissibility. Fig. 2.2 shows the force transmissibility 

𝑇𝑅B to the base structure by setting the system parameters as 𝑚1 = 𝑚2 = 1, 𝑘1 = 𝑘2 =

1, 𝑐1 = 𝑐2 = 0.02 and 𝑓0 = 0.01. It is shown that the force transmissibility plot can 

provide the information of unity isolation frequency band, i.e. the force transmissibility 

value is smaller than unity. The stiffness and damping properties of the system can be 

adjusted to achieve a broader band of the unity isolation frequency range.  

 

Figure 2.2. The force transmissibility 𝑇𝑅B to the base structure. 

It should be pointed out that the transmissibility only takes the amplitude value of 

the force, velocity or displacement into account. It may be insufficient to quantify the 

vibration transmission without considering the phase angle of the response. Moreover, 

the vibration transmission information from the energy perspective is neglected. The 

vibration power flow considers the combined influence of force and velocity amplitudes 

as well as their relative phase angle into a single quantity and can be used as a uniform 

measure for a straightforward evaluation of power transmission between the different 

components within a structure (Goyder and White, 1980a).  

Here a simple case study of a SDOF oscillator mounted on a flexible foundation is 

used for illustrating the basic concepts and formulations of PFA. Fig. 2.3 shows a single-

stage isolation system of a machine 𝑚1 installed on a flexible foundation via a linear 

spring isolator with stiffness coefficient 𝑘1. The machine is subjected to a harmonic 

force with amplitude of 𝑓0  and frequency of 𝜔 . The point mobility of the flexible 

foundation is denoted by 𝛽, where the mobility defined as the ratio of complex harmonic 

velocity to the complex harmonic force. 

Based on the theory of PFA (Goyder and White, 1980a),  the power flow is the rate 

of work done, which can be written as the product of force and velocity at a time point 
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𝑡. For the current system, the instantaneous power flow 𝑝t to the foundation can be 

expressed as: 

𝑝t = 𝑓t𝑣̃t ,                                                      (2.2)  

where 𝑓t  is the instantaneous transmitted force to the foundation and 𝑣̃t  is the 

instantaneous velocity of the foundation. Here the 𝑓t  and 𝑣̃t  are in complex form 

expressed as 𝑓t = 𝐹̃𝑒
i𝜔𝑡  and 𝑣̃t = 𝑉̃𝑒

i𝜔𝑡 , respectively, in which the 𝐹̃  and 𝑉̃ are the 

complex variables. 

Since the PFA theory considers the real power as the primary quantity (Xing and 

Price, 1999). The real instantaneous transmitted power 𝑃t can be obtained as 

𝑃t = ℜ{𝑓t}ℜ{𝑣̃t} ,                                               (2.3) 

where ℜ represents the operation of taking real part. 

 The time-averaged power flow is of interest in terms of vibration transmission 

analysis. Here the corresponding power flow averaged over a time span 𝑡p is 

𝑃̅t =
1

𝑡p
∫ ℜ{𝑓t}ℜ{𝑣̃t}
𝑡p
0

d𝑡  .                                     (2.4)  

 

Figure 2.3. A SDOF force-excited oscillator on a flexible foundation (Goyder and White, 

1980c). 

By a manipulation of Eq. (2.4) according to the established work (Goyder and 

White, 1980c), we have 

𝑃̅t = ℜ{𝐹̃𝑉̃
∗}/2 = ℜ{𝐹̃∗𝑉̃}/2 = (ℜ{𝐹̃}ℜ{𝑉̃} + Im{𝐹̃}Im{𝑉̃})/2 = |𝐹̃|

2
ℜ{𝛽}/2.  

                                     (2.5) 

Equation (2.5) shows that the time-averaged power flow combines the velocity, force 

and their phase angle into a single quantity, which may provide more information of 

m1

.

k1

f0 e
iωt 

Flexible foundation



Chapter 2  Literature review 

15 

 

vibration transmission than the force transmissibility from energy transmission 

perspective.  

2.2. Review of energy transmission analysis 

In this subsection, the developed analysis approaches for energy transmission in 

the dynamical systems are reviewed. 

2.2.1. Statistical energy analysis approach 

For the systems containing a number of overlapping modes particularly in the high-

frequency range, the length scale of vibrations may reach that of structural defects and 

lead to a divergence of the frequency response for many nominally identical systems 

(Hawes et al., 2019). The finite element analysis (FEA) may not be able to capture this 

behaviour at high frequencies, while the statistical methods are more suitable for 

modelling such systems. The statistical energy analysis (SEA) approach was developed 

for predicting the statistical behaviour of the dynamical systems with uncertain 

parameters, where the energy is considered as the primary variable (Antonio, 1984). 

The SEA splits the integrated system into subsystems with similar properties and each 

subsystem is excited by random, stationary, distributed forces (Mace, 2005). The 

vibrational state of the system is described by the total time-averaged vibration energy 

of each subsystem based on energy conservation (Fahy et al., 1994).  

The fundamental study of SEA was firstly presented by Lyon and Maidanik (1962). 

The power flow between two linearly coupled oscillators under independent and random 

excitation was investigated. It was found that the power flow is proportional to the 

difference between the average modal energy between two oscillators. An equivalent 

power flow circuit between modes was developed and demonstrated the application to 

two interacting multimodal systems. Later research conducted by Lyon (1975) and 

Ungar (1967) demonstrated the extensive applications of SEA in dynamical systems 

with more complicated structures. A wave approach (Langley, 1992) and a mobility 

approach (Manning, 1994) based on SEA were developed and showed an enhancement 

compared to the conventional SEA. In recent years, the hybrid finite element-SEA (FE-

SEA) modelling method was proposed for structural-acoustic systems and vibration 

systems in a mid-frequency range (Ma et al., 2016; Yin et al., 2017; Gao et al., 2018; 

Zheng et al., 2019; Liu and Thompson et al., 2020). 

The SEA approach has been accepted to be effective for high-frequency vibration 

problems. However, the deficiencies of SEA limit its applications (Fahy et al., 1994). 

The SEA method cannot provide the information of spatial distributions of dynamic 
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response variables of each subsystem. Moreover, for the narrowband or tonal excitation 

vibration problems, SEA approach can be employed only if the statistical data for the 

energy response functions of the subsystems had been obtained (Fahy et al., 1994). In 

addition, since the SEA approach is inherently probabilistic, the results of parametric 

sensitivity studies may not be fully trusted. Nevertheless, some assumptions made in 

SEA, such as low damping and weak coupling, also confine its applications in practice 

(Hawes et al., 2019). In contrast, there are no such limitations on the excitation 

frequency range and coupling conditions when using the PFA approach. The power flow 

indices consider the change of vibration energy. They can describe the power 

transmission between sub-structures as well as energy dissipation in each component of 

the system, and hence provide a measure of vibration transmission within an integrated 

system. 

2.2.2. Analytical PFA approaches 

In the past decades, there are a number of analytical power flow approaches 

developed for the vibration investigation of linear dynamical systems. Those methods 

include a dynamic stiffness method (Langley, 1989), a receptance approach (Clarkson, 

1991), a mobility method (Cuschieri, 1990), a travelling wave method (Langley, 1992), 

a power flow based finite-element approach (Mace and Shorter, 2000), a substructure 

approach (Wang et al., 2002a, 2002b ), a PFA approach based on continuum dynamics 

(Xing and Price, 1999), an energy flow progressive approach (Xiong et al., 2001) and a 

power flow mode theory (Xiong et al., 2005a). This subsection presents a brief review 

of those approaches. 

 The dynamic stiffness method was firstly proposed by Langley (1989) to examine 

the vibration behaviour of a row of aircrafts panels under plane acoustic wave excitation 

or random excitation. The basic idea of the dynamic stiffness method is to derive the 

relationship between the displacements and forces at the edge of the substructure, the 

dynamic stiffness matrix for each substructure can be deduced, which can then be 

assembled to a complete system based on the FEA method. The dynamic behaviour of 

the system can then be obtained, and the mean stored energy and power flow within the 

system can be analysed. The same author (Langley, 1990) also applied the same 

approach to examine the power flow behaviour of the beams and frameworks. Wu et al. 

(2018) further developed the dynamic stiffness method to investigate the power input 

and transmission in built-up structures. The in-plane and out-of-plane vibrations of the 

plates were considered in the dynamic stiffness matrix and their effects on the power 

flow were examined. 
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For the receptance approach, the two ends of two structures to be jointed can be 

described by the end receptance functions which are derived from the normal mode 

method. The response velocity can then be expressed as the function of end receptance 

as well as the end moment, such that the expressions of average power flow can be 

derived (Clarkson, 1991). This approach is suitable for revealing the power flow 

behaviour across the beam-beam joint or plate-plate junction. Farag and Pan (1996) 

employed the receptance approach to investigate the power transmission in the joint 

boundaries of in-plane beams structures. Beshara and Keane (1998) used receptance 

approach to study the vibrational power flows in a dissipative joint between two 

rectangular plates. The receptance approach and dynamic stiffness method share some 

similarities. However, the receptance approach uses coupling forces for the degree of 

freedom (DOF) at joint, while the displacements are used at joint in the dynamic 

stiffness method (Beshara and Keane, 1998).  

The travelling wave method is based on the wave propagation theory that the global 

frequency domain model of the dynamics of the system network is assembled from 

models of local component behaviour, wave propagation along members and scattering 

behaviour of junctions (Miller and von Flotow, 1989). The wave behaviour of a 

structure member is determined by the superposition of each travelling wave mode, and 

the wave set transmission characteristics can be obtained from a transmission matrix. 

Based on those variables, the power flow through the members and junctions can be 

extracted. In previous studies, the travelling wave method has been used to examine the 

power flow transmission behaviour in structural members (Miller and von Flotow, 

1989), a plate structure (Langley, 1992), frame structures (Beale and Accorsi, 1995), 

beam structures (Horner and White, 1991; Walsh and White, 2000), bolted junctions 

between a plate and a stiffening rib (Bosmans and Nightingale, 2001) and built-up 

structures involving two- and three-dimensional subsystems (Wester and Mace 2005a, 

2005b, 2005c). Tang et al. (2017) employed the travelling wave method to investigate 

the relationship between power flow behaviour and damage characteristics of a one-

dimensional Euler-Bernoulli cracked beam.  

Xing and Price (1999) developed a PFA approach based on the governing equations 

of continuum mechanics. By introducing the concept of an energy-flow density vector 

as well as defining the energy-flow line, the energy-flow potential and the equipotential 

surface, the energy flow and energy exchange behaviour within the continuum can be 

described. The applicability of the approach was validated by investigating two simple 

oscillators and non-sequential multiple systems. Xiong et al. (2003) established 

analytical solutions of a generalized structure-control system from the viewpoint of 
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continuum mechanics. The energy flow density vector was also applied in the modelling 

of power transmission or exchange within a continuum. 

In the mobility approach, the mobility function is used in the power flow method. 

The basic process of the approach is to model the global system by a group of coupled 

subsystems where the forces and moments are introduced at the joints. Then the input 

and transfer structural mobility functions can be used to derive the expressions of power 

flow input to the subsystems and between subsystems, respectively. The mobility 

approach has been employed in the investigation of power flow characteristics of 

different types of structures, such as finite and infinite beam (Pinnington and White, 

1981), coupled plate structures (Cuschieri, 1990), coupled cylinder shells (Ming et al., 

1999) and a simultaneously excited structure by force and moment (Moohouse, 2002). 

Li and Wu (2013) employed the power flow based mobility approach to understand the 

generation mechanism of the dominant frequencies in the vibrations of rail bridges 

under the excitations of moving trains. To overcome the difficulties of applying 

conventional mobility method to complex coupled structures, Xiong et al. (2001) further 

developed the mobility method by proposing generalized mobility/impedance matrices 

for three-dimensional structures. Moreover, two progressive approaches were presented 

for the prediction of force, velocity response vector and power flows within the complex 

coupled systems. This mobility-based power flow progressive approach has been 

combined with a high-order sandwich theory to examine the power transmission for a 

sandwich configured flexible raft vibration isolation system (Choi et al. 2009).  

In power flow mode theory proposed by Ji et al. (2003), the force sources are 

transformed to arrays of force distributions, and the eigenvalues, as well as eigenvectors 

of the real part of the mobility matrix for the receiver are involved in the transformation. 

Each force in the force arrays has an independent contribution to the vibrational power 

transmission and also has a corresponding independent power mode. The main 

advantage of this approach is that the expressions of upper and lower bounds and the 

mean value of the transmitted power can be obtained straightforwardly. Moreover, both 

force and moment excitations can be considered in the analysis. However, the 

information of the system’s mobility related to the system’s physical properties is 

needed in the approach to obtain the eigen-properties. In the later studies, Xiong et al. 

(2005a) developed a damping-based power flow mode theory. The power flow 

behaviour of the dynamical systems can be determined by the characteristic-damping 

factor and power flow response vector. The power flow response vector was derived by 

decomposing the generalized coordinate of the velocity vector in the power flow space. 

It was demonstrated the power flow control approaches can be obtained based on the 
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power flow mode theory. The energy flow dissipations levels and patterns can be 

controlled by adjusting the damping distributions. The power flow mode theory has 

been applied to investigate the structural vibration transmission between components of 

assembled structures at low frequencies (Weisser et al. 2015). 

2.2.3. FEA and Substructure approach 

For complex systems, such as non-uniform structures with special boundary 

conditions, it may be difficult to obtain the power flow behaviour by the analytical PFA 

approaches reviewed in the previous content of this subsection. The power flow based 

finite element (FE) approaches are suitable to deal with those complex systems by 

solving partial differential equations numerically. In practice, discretization is 

performed on the targeted complex system in the space dimensions and can obtain an 

assembly of small parts (i.e., elements) which are connected to one another. The 

governing equation of each element can then be constructed and assembled to a system 

equation that describes the global behaviour of the system. Nefske and Sung (1989) 

showed that the power flow formulations is adaptable into the form of FEA by adjusting 

the properties of a standard FE model. The power flow based FE model can then be 

solved by MSC/NASTRAN code. Hambric (1990) developed the power flow 

formulations and numerical method for NASTRAN program. The contribution by axial 

and torsional motion to the power flow was considered. The same author (Hambric, 

1994) compared the results of structure-borne flexural power in a straight beam 

predicted by the FEA approach to the experimentally measured results. It was shown a 

good estimation accuracy of FEA on the direction and spectral trends of beam flexural 

power. Wohlever and Bernhard (1992) improved power flow based FE approach by 

proposing a coupling scheme for the connection of rod and beam models. A more 

realistic built-up structure can be obtained for PFA analysis based on standard FE code. 

Mace and Shorter (2000) presented computationally efficient methods of FEA for the 

modelling of the energy flow. A global FEA method and an alternative local FEA 

method using component-mode synthesis were established. A case study on the energy 

flow of a system consisting of three, edge-coupled, rectangular plates was conducted 

with the use of FEA method. McDaniel et al. (2001) put forward a stability analysis 

approach for brake systems by analysing the power flow behaviour between pad and 

rotor. It was indicated that the proposed simple model can be extended to the high-

fidelity FE models and can provide guidance on the post-processing of the FE models. 

The FEA approach has been applied in the investigation of power flow behaviour in a 

T-beam (Szwerc et al., 2000), stiffened plates and shell structures (Xu et al., 2004; Zhu 
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et al., 2011), a vibrating rectangular plate with a crack (Lee et al., 2006) and the human 

head (Chang et al., 2018).  

While the power flow based FEA approach can be applied for complex systems, 

the computational cost will increase exponentially when the model size is becoming 

larger and the frequency is higher. One possible solution to this problem is to use the 

substructure approach. The fundamental idea of the substructure approach is to divide 

the whole system into a number of subsystems and perform FEA on each substructure. 

The approximated solution for the dynamics of the system can be determined by 

synthesizing the describing data of the dynamic behaviour of each substructure obtained 

from FEA (Xing et al., 1996). The power flow characteristics through the coupling 

interface of the substructures can then be calculated based on the response solution and 

external or internal coupling force. Wang et al. (2002a, 2002b, 2004) used the 

substructure approach with a free-free interface condition to examine the power flow 

behaviour in an indeterminate rod system, in L-shaped plates and in a coupled plate-

cylindrical shell system.  Feng et al. (2009) studied the vibration transmission paths of 

a coupled beam-cylindrical shell system by quantifying the total injected and 

transmitted power based on the substructure approach. Zhu and Yang et al. (2020) also 

used the substructure approach to investigate the vibration transmission and power flow 

behaviour in the laminated composite plates with inerter-based suppression 

configurations.  

It should be pointed out that the majority of the power flow-based FE models are 

based on the linear assumption that the global stiffness matrix of the structure is constant. 

In real engineering problems, the nonlinearities are inherent in the local subsystems and 

should be considered in the dynamic analysis as discussed in Chapter 1. However, due 

to the complexity in the modelling of different nonlinearities, nonlinear FE models are 

more difficult to set up compared to the linear model. Moreover, because of a large 

number of elements, the calculation efficiency of such method in the analysis of 

dynamical systems with complex nonlinearity is relatively low due to the sophisticated 

constitutive laws as well as the incremental-iterative process in the solution procedure. 

Furthermore, it will generate a larger quantity and wider range of results which may be 

hard to interpret (Plumbridge et al., 2007). Therefore, to fully understand the energy 

flow in nonlinear systems, it is sensible to firstly carry out PFA in discretised systems 

governed by ordinary differential equations. The insights of power flow in the nonlinear 

subsystems can be obtained in a fast and accurate way. Building on from the current 

project, continuous systems, which needs FE discretisation, can be further explored in 

future studies. 
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2.2.4. PFA in nonlinear systems 

In recent years, PFA of the nonlinear dynamical systems has drawn an increasing 

concern. Royston and Singh (1996, 1997) employed PFA approach to evaluate the 

effects of the nonlinear interactions in the passive component of the nonlinear mounting 

system on the vibrational power flow. It was shown that the level of power transmission 

is highly depending on the nonlinear path. Xiong et al. (2005b) studied the interactive 

power flow behaviour of a coupled equipment-nonlinear isolator-flexible foundation 

system under sea wave excitation. The nonlinear isolator was characterized by a general 

pth power nonlinear damping model and qth power nonlinear stiffness. It was found that 

the input power spectrum is sensitive to the damping and stiffness nonlinearity near the 

resonance frequency. Jump-phenomenon and multiple power flow transmission paths 

were observed in the vicinity of the peak frequencies of the transmitted power. 

Guidelines for the design of vibration mitigation system in maritime engineering 

applications were provided based on the findings from PFA. Vakakis et al. (2008) 

investigated the targeted energy transfer behaviour from the vibrating source to the 

attached passive nonlinear energy sink in dynamical systems. It was found that the 

nonlinear energy sink can be designed to effectively modify the dynamics of the main 

system to which it is attached. Xiong and Cao (2011) investigated the power 

transmission and energy dissipation characteristics of a nonlinear coupling system with 

irrational nonlinear stiffness. Yang and Xiong et al. (2014) performed nonlinear PFA 

on a Duffing oscillator. Compared to the linear systems, significant differences can be 

found in the power flow behaviour when the nonlinearities are considered. The same 

authors also employed PFA approach to assess the vibration isolation performance of 

the nonlinear isolation system with negative stiffness mechanism (Yang et al., 2013), a 

nonlinear isolator mounted on a nonlinear base (Yang et al., 2016) and nonlinear 

isolators with nonlinear inertance mechanism (Yang et al., 2019). The effectiveness of 

nonlinear vibration absorbers (Yang et al. 2015) was also investigated based on PFA.  

It is found from those studies that the involvement of the nonlinearities in the 

vibration control system can help reduce the vibration power transmission and therefore 

can assist the vibration suppression. In the recent research of vibration control systems, 

the nonlinear vibration isolators based on geometrically nonlinear linkage mechanisms 

have aroused extensive attention because of its good performance. Different types of 

vibration isolators created by linkage mechanisms have been proposed (Bosseti et al., 

2014; Sun et al. 2016). Moreover, the potential of integrating such isolators into 

engineering applications, such as heavy-duty jackhammers (Jing et al., 2019b), has been 

explored. However, in the evaluation of such linkage-based vibration isolators, the 
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energy transmission and distribution behaviour have been neglected. For the further 

development of the linkage-based vibration isolation system, PFA can be employed in 

the design as a powerful tool.  

Although there have been increasing number of studies conducted on the PFA of 

nonlinear dynamical systems, the main focus of these established PFA research 

mentioned above is on the nonlinear smooth systems. The PFA research on the non-

smooth dynamical systems is very limited. As illustrated in Chapter 1, the nonlinear 

non-smooth systems are widely existing in mechanical engineering applications. 

Various types of non-smoothness in the dynamical systems can bring about different 

nonlinear influence on dynamic behaviour (Gilardi and Sharf , 2002). Shi et al. (2019) 

investigated energy flow behaviour of a nonlinear coupled oscillating system with a 

non-smooth bilinear stiffness and damping element. The bilinear stiffness element can 

be used to model the non-smoothness in the flange-bolts coupling structure having 

larger compressional stiffness than the tensional stiffness (piecewise linear 

characteristic). It was shown that the non-smooth bilinear stiffness at the coupling 

interface has significant effects on the power transmission between coupled systems. 

Until now, the effects of typical non-smoothness in the engineering systems, such as 

intermittent elastic contact and dry friction effect, on the vibration transmission and 

power flow behaviour of the system are still unknown. To understand the vibration 

transmission mechanism in the nonlinear non-smooth engineering applications. 

Fundamental vibration transmission analysis and PFA on the representative nonlinear 

non-smooth dynamical systems, i.e. impact oscillator and Coulomb friction oscillator, 

are necessary. Guidance for an enhanced dynamic design of engineering systems can be 

obtained based on findings from PFA.  
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Chapter 3                                     

Methodologies 
 

In this chapter, the methods for evaluating vibration transmission of the nonlinear 

dynamical system are illustrated. General formulations for vibration transmission 

analysis are presented firstly. The numerical integration method and harmonic balance 

approximations with alternating frequency/time domain (AFT) scheme and numerical 

continuations are discussed for determining the response and vibration transmission 

behaviour of the nonlinear dynamical systems investigated in this research. An example 

of a coupled nonlinear Duffing oscillator system is given for illustrating the use of 

vibration transmission analysis methods introduced in this chapter.    

3.1. General vibration transmission formulations 

For a general 𝑄-DOF nonlinear vibration system subjected to a harmonic excitation 

force, the general equation of motion for the whole system can be written in a matrix 

form as 

[𝑴]{𝒙̈} + [𝑪]{𝒙̇} + [𝑲]{𝒙} + {𝒇𝐧}   = {𝒇𝐞𝐱(𝑡)},                      (3.1) 

where {𝒙} , {𝒙̇}  and {𝒙̈}  denote the displacement, velocity and acceleration vectors, 

respectively, and {𝒙} = {𝑥1, 𝑥2, … , 𝑥𝑄}T , {𝒙̇} = {𝑥̇1, 𝑥̇2, … , 𝑥̇𝑄}T  and 

{𝒙̈} = {𝑥̈1, 𝑥̈2, … , 𝑥̈𝑄}T, [𝑴], [𝑪] and [𝑲] are the corresponding mass, damping 

and stiffness matrices, respectively, {𝒇𝐧} represents the nonlinear force vector arising 

from the nonlinearities in the system with {𝒇𝐧} = {𝑓n1, 𝑓n2, … , 𝑓n𝑄}T  while  

{𝒇𝐞𝐱(𝑡)} = {… , 𝑓0𝑒
iω𝑡, …}T is the external excitation force applied to the 𝑗-th DOF 

(1 ≤  𝑗 ≤ 𝑄) of the system, where 𝑓0 and 𝜔 are the forcing amplitude and frequency, 

respectively, and 𝑡 is the time. 

3.1.1. Force transmissibility formulations 

The transmitted force 𝑓T from 𝑗-th DOF to (𝑗 + 1)-th DOF can be obtained by 

calculating the total interactive force at the interface between 𝑗-th DOF to (𝑗 + 1)-th 

DOF. The force transmissibility from the 𝑗-th DOF to (𝑗 + 1)-th DOF can then be 

derived as the ratio of the maximum transmitted force at the interface between those 

two DOFs to the amplitude of the excitation force applied on the 𝑗-th DOF: 
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𝑇𝑅 =
max( |𝑓T|)

𝑓0
 .                                               (3.2) 

3.1.2. Power flow formulations 

By multiplying Eq. (3.1) by the transpose of velocity vector {𝑥̇}T , the power 

balance equation can be obtained: 

{𝒙̇}T[𝑴]{𝒙̈} + {𝒙̇}T[𝑪]{𝒙̇} + {𝒙̇}T[𝑲]{𝒙} + {𝒙̇}T{𝒇𝐧(𝑡)} = {𝒙̇}
T{𝒇𝐞𝐱(𝑡)},    (3.3) 

and the terms in this equation can be written in the form of energy: 

𝐾̇ + 𝑝d + 𝑈̇ + 𝑝n = 𝑝in,                                        (3.4) 

where 𝐾̇ = {𝒙̇}T[𝑴]{𝒙̈} is the change rate of the kinetic energy, 𝑝d = {𝒙̇}
T[𝑪]{𝒙̇} is the 

instantaneous power dissipation by the system damping, 𝑈̇ = {𝒙̇}T[𝑲]{𝒙} is the change 

rate of the potential energy stored in the system, 𝑝n = {𝒙̇}
T{𝒇𝐧(𝑡)}  is the total rate of 

work done by all nonlinear forces arising from the nonlinearities in the system and 𝑝in =

{𝒙̇}T{𝒇𝐞𝐱(𝑡)} is the instantaneous input power by the external excitation forces. 

Equation. (3.4) can be integrated and then averaged over a time span 𝜏p from a 

starting time 𝜏0 in the steady-state motion, then we can obtain the time-averaged power 

flow equation as: 

 
1

𝜏p
∫ (𝐾̇
𝜏0+𝜏p
𝜏0

+ 𝑝d + 𝑈̇ + 𝑝n)d𝑡 =
1

𝜏p
∫ 𝑝ind𝑡
𝜏0+𝜏p
𝜏0

.                  (3.5) 

According to the energy conservation, over one cycle of the periodic oscillation, 

the time-averaged input power into the system should be fully dissipated by the system 

damping and the dissipative element of the nonlinearities, such as friction force, 

therefore we have   

𝑃̅d + 𝑃̅dn = 𝑃̅in  ,                                            (3.6) 

where 𝑃̅d and 𝑃̅dn are the time-averaged dissipated power by the system damping and 

the dissipative nonlinear element, respectively, and 𝑃̅in =
1

𝜏p
∫ 𝑝ind𝑡
𝜏0+𝜏p
𝜏0

 is the time-

averaged input power by the external forces. The general expressions of 𝑃̅d,  𝑃̅dn and 

𝑃̅in are presented as below:  

𝑃̅d =
1

𝜏p
∫ 𝑝dd𝑡
𝜏0+𝜏p
𝜏0

=
1

𝜏p
∫ {𝒙̇}T[𝑪]{𝒙̇}d𝑡
𝜏0+𝜏p
𝜏0

,                      (3.7a) 

𝑃̅dn =
1

𝜏p
∫ 𝑝dnd𝑡
𝜏0+𝜏p
𝜏0

=
1

𝜏p
∫ {𝒙̇}T{𝒇𝐝𝐧(𝑡)}d𝑡
𝜏0+𝜏p
𝜏0

,                   (3.7b) 
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𝑃̅in =
1

𝜏p
∫ 𝑝ind𝑡
𝜏0+𝜏p
𝜏0

=
1

𝜏p
∫ {𝒙̇}T{𝒇𝐞𝐱(𝑡)}d𝑡
𝜏0+𝜏p
𝜏0

,                   (3.7c) 

where {𝒇𝐝𝐧(𝑡)} denotes the dissipative force vectors generated by the nonlinear element 

in the system. Eq. (3.7) shows that the time-averaged power flow characteristics of the 

system can be obtained after the determination of the steady-state response of the system, 

i.e. the governing equation Eq. (3.1) of the system should be solved. In this research, 

the harmonic balance approximation approach and the numerical integration approach 

are employed to solve the equations of motion of the system model. The numerical 

integration approach is also applied for the quasi-periodic and chaotic motion analysis. 

In the following content of this chapter, the basic idea of those two approaches for 

solving the equations of motion is briefly illustrated.  

3.2. Numerical integration methods 

Numerical integration methods are the standard time-domain methods for solving 

the ordinary differential equations. The basic procedure of these methods is the 

evolution of the dependent variables in discrete time steps starting from pre-defined 

initial values. The value of the dependent variable at each time step is determined by 

the one at the last time step. In this research, a widely accepted numerical integration 

method, the Runge-Kutta (RK) method, is employed for finding the solution of the 

dynamic response of the nonlinear governing equations.   

3.2.1. Fourth-order Runge-Kutta method 

The RK methods integrate the ordinary differential equations by taking a trial step 

at the midpoint of an interval (Lambert, 1991). They are based on more terms of a Taylor 

expansion than the Euler methods (Gerald and Green, 2003). In the methods of the RK 

family, the 4th order Runge-Kutta (RK4) is the most commonly used method. For 

illustration purpose, a differential equation is specified as: 

d𝑦

d𝑡
= 𝑓(𝑡, 𝑦),                                                 (3.8) 

where the initial value of the equation is set as 𝑦(𝑡0) = 𝑦(0).  

In the RK4 method, the increment between the current point of (𝑡𝑎 , 𝑦𝑎) to the 

point of (𝑡𝑎+1, 𝑦𝑎+1) in the next time step is determined by the weighted average of 

four estimated coefficients of 𝐾1, 𝐾2, 𝐾3 and 𝐾4, 

𝑦𝑎+1 = 𝑦𝑎 +
1

6
(𝐾1 + 2(𝐾2 + 𝐾3) + 𝐾4) + 𝑂(ℎ

5),                     (3.9) 
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where 

𝐾1 = ℎ𝑓(𝑡𝑎 , 𝑦𝑎),                                          (3.10a) 

𝐾2 = ℎ𝑓(𝑡𝑎 + ℎ/2, 𝑦𝑎 + 𝐾1/2),                            (3.10b) 

𝐾3 = ℎ𝑓(𝑡𝑎 + ℎ/2, 𝑦𝑎 + 𝐾2/2),                            (3.10c) 

𝐾4 = ℎ𝑓(𝑡𝑎 + ℎ/2, 𝑦𝑎 + 𝐾3),                             (3.10d) 

ℎ is the step size and 𝑂(ℎ5) is the local error term.  

3.2.2. Adaptive Runge-Kutta method 

To improve the computational efficiency without losing the accuracy of the result, 

an optimum step size in the RK method can be considered to reduce the total computing 

time while ensuring that the estimated error in each step is below the pre-defined value. 

The adaptive Dormand-Prince (RKDP) method (Dormand and Prince, 1980) has been 

developed to adjust the step size during the integration. 

The RKDP method is based on RK methods. In the procedure of the RKDP method, 

a fourth-order and a fifth-order approximations (with different orders of errors) from 

the point of (𝑡𝑎, 𝑦𝑎) to the next point of (𝑡𝑎+1, 𝑦𝑎+1) are calculated. The results of 

𝑦𝑎+1 obtained by those two different estimations are then compared. If there is a good 

agreement between the two results of  𝑦𝑎+1, the approximation result can be accepted. 

In this case, the step size is increased if the agreement between two results is more than 

demanded. In contrast, if the agreement did not meet the accuracy requirement, the 

approximation for this time step should be repeated with a reduced step size. In practice, 

seven coefficients of 𝐾1, 𝐾2, 𝐾3, 𝐾4, 𝐾5, 𝐾6 and 𝐾7 are used in the RKDP method at 

each time step. The fourth-order and fifth-order of approximations are expressed as 

𝑦𝑎+1 = 𝑦𝑎 +
35

384
𝐾1 +

500

1113
 𝐾3 +

125

192
𝐾4 −

2187

6784
𝐾5 +

11

84
𝐾6,           (3.11a) 

𝑦𝑎+1 = 𝑦𝑎 +
5179

57600
𝐾1 +

7571

16695
 𝐾3 +

393

640
𝐾4 −

92097

339200
𝐾5 +

187

2100
𝐾6 +

1

40
𝐾7, (3.11b) 

respectively, where  

𝐾1 = ℎ𝑓(𝑡𝑎 , 𝑦𝑎),                                            (3.12a) 

𝐾2 = ℎ𝑓(𝑡𝑎 +
1

5
ℎ, 𝑦𝑎 +

1

5
𝐾1),                                 (3.12b) 

𝐾3 = ℎ𝑓(𝑡𝑎 +
3

10
ℎ, 𝑦𝑎 +

3

40
𝐾1 +

9

40
𝐾2),                        (3.12c) 
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𝐾4 = ℎ𝑓(𝑡𝑎 +
4

5
ℎ, 𝑦𝑎 +

44

45
𝐾1 −

56

15
𝐾2 +

32

9
𝐾3),                  (3.12d) 

𝐾5 = ℎ𝑓(𝑡𝑎 +
8

9
ℎ, 𝑦𝑎 +

19372

6561
𝐾1 −

25360

2187
𝐾2 +

64448

6561
𝐾3 −

212

729
𝐾4),    (3.12e) 

𝐾6 = ℎ𝑓(𝑡𝑎 + ℎ, 𝑦𝑎 +
9017

3168
𝐾1 −

355

33
𝐾2 −

46732

5247
𝐾3 +

49

176
𝐾4 −

5103

18656
𝐾5), (3.12f) 

𝐾7 = ℎ𝑓(𝑡𝑎 + ℎ, 𝑦𝑎 +
35

384
𝐾1 +

500

1113
𝐾3 +

125

192
𝐾4 −

2187

6784
𝐾5 +

11

84
𝐾6). (3.12g) 

There are some other widely used adaptive-step-size methods in the RK family, 

such as the Runge-Kutta-Fehlberg (RKF45) method. The RKF45 method is similar to 

the RKDP method. The one of the main differences between RKF45 method and RKDP 

method is that the RKF45 takes the result of the 4th order approximation to determine to 

the solution of 𝑦𝑎+1, and the 5th order approximation is used for error estimation. While 

the RKDP method uses the result of the 5th order method for the update of 𝑦𝑎+1 and 

uses the 4th order method for comparison. Another main difference is that the RKF45 

method is a 6-stage method while the RKDP is a 7-stage method (Gerald, 2004). 

Compared to the RKF45 method, the RKDP method can provide a better accuracy per 

unit work. In this research, the nonlinear differential equations are solved by the RKDP 

method based ODE45 solver in the MATLAB software. 

3.3. Harmonic balance approximations 

3.3.1. Harmonic balance method 

Harmonic balance (HB) method is a widely used frequency-domain method for 

approximating the response of linear or nonlinear dynamical systems. The idea of this 

method is assuming that the response and the nonlinear terms of the governing equations 

can be represented by a Fourier series, i.e. harmonic terms. Those harmonic terms can 

be substituted into the governing equations, and the corresponding terms with the same 

order can then be balanced to yield a group of algebraic equations. The solutions to the 

algebraic equations give a periodic approximation on the steady-state response of the 

dynamical systems.  

For a 𝑄-DOF dynamical system, the general governing equation of the system has 

been presented as Eq. (3.1), the time history of the steady-state displacement response 

for the 𝑗-th (𝑗 = 1, 2…𝑁) coordinate can be approximated by a truncated Fourier series 

with the fundamental frequency the same to the external exciting frequency 𝜔 , 

expressed as  
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𝑥𝑗(𝑡) = 𝑥(𝑗,0) + ∑ (𝑥(𝑗,2𝑛−1) cos 𝑛𝜔𝑡 + 𝑥(𝑗,2𝑛) sin𝑛𝜔𝑡)
𝑁
𝑛=1 = ℜ{∑ 𝑅̃(𝑗,𝑛)

𝑁
𝑛=0 𝑒i𝑛𝜔𝑡},             

(3.13) 

where 𝑥(𝑗,0)  is the steady-state oscillating position of the 𝑗 -th DOF coordinate,  

𝑥(𝑗,2𝑛−1) and 𝑥(𝑗,2𝑛) are the coefficients of 𝑛-th order harmonic terms for the 𝑗-th DOF 

coordinate, 𝑁  is the total number of harmonics of the Fourier series, 𝑅̃(𝑗,𝑛)  is the 

corresponding complex coefficient for the 𝑛-th order harmonic approximation of the 𝑗-

th DOF and ℜ denotes the operation of taking real part of a complex number.  

The corresponding approximation of the velocity and acceleration can be obtained 

by taking differentiation of 𝑥𝑗(𝑡) expressed in Eq. (3.13), we have 

𝑥̇𝑗(𝑡) = −∑ 𝑛𝜔(𝑥(𝑗,2𝑛−1) sin𝑛𝜔𝑡 − 𝑥(𝑗,2𝑛) cos𝑛𝜔𝑡)
𝑁
𝑛=1 = ℜ{∑ i𝑛𝜔𝑅̃(𝑗,𝑛)

𝑁
𝑛=0 𝑒i𝑛𝜔𝑡},             

(3.14a) 

𝑥̈𝑗(𝑡) = −∑ (𝑛𝜔)2(𝑥̂(𝑗,2𝑛−1) cos 𝑛𝜔𝑡 + 𝑥(𝑗,2𝑛) sin𝑛𝜔𝑡)
𝑁
𝑛=1           

= −ℜ{∑ (𝑛𝜔)2𝑅̃(𝑗,𝑛)
𝑁
𝑛=0 𝑒i𝑛𝜔𝑡}  ,                                                               (3.14b) 

respectively.  

The nonlinear terms in the governing equation, i.e. the nonlinear force vector {𝑓n}, 

and the external excitation force vector {𝑓ex(𝑡)} can be also approximated by Fourier 

series with 𝑁  harmonics terms in a similar way. For the 𝑗 -th coordinate, the 

corresponding element of the nonlinear force vector and the external excitation force 

vector can be expressed as 

𝑓n(𝑡) = ℎ̂(𝑗,0) + ∑ (ℎ̂(𝑗,2𝑛−1) cos 𝑛𝜔𝑡 + ℎ̂(𝑗,2𝑛) sin𝑛𝜔𝑡)
𝑁
𝑛=1 = ℜ{∑ 𝐻̃(𝑗,𝑛)

𝑁
𝑛=0 𝑒i𝑛𝜔𝑡},       

(3.15a) 

𝑓ex(𝑡) = 𝑠̂(𝑗,0) + ∑ (𝑠̂(𝑗,2𝑛−1) cos 𝑛𝜔𝑡 + 𝑠̂(𝑗,2𝑛) sin𝑛𝜔𝑡)
𝑁
𝑛=1 = ℜ{∑ 𝑆̃(𝑗,𝑛)

𝑁
𝑛=0 𝑒i𝑛𝜔𝑡},       

(3.15b) 

respectively, where 𝐻̃(𝑗,𝑛) and 𝑆̃(𝑗,𝑛) are the complex coefficient for the nonlinear force 

and external excitation force, respectively. It is noted that the analytical approximated 

expression for the simple nonlinear forces (e.g. nonlinearity in a polynomial form) may 

be possibly obtained when the order of Fourier series is small (𝑁 = 1 or 2). However, 

for the nonlinearities with more complicated form, the numerical processes, such as 

alternating frequency/time domain (AFT) technique, may be needed for the 



Chapter 3  Methodologies 

29 

 

determination of the coefficients 𝐻̃(𝑗,𝑛)  of nonlinear forces in Eq. (3.15a). The AFT 

technique will be illustrated in following Subsection 3.3.2.  

By a substitution of the system responses in Eq. (3.13), (3.14) and forces in Eq. 

(3.15) to the general governing equations (3.1), and balancing the corresponding the 

coefficients of the 𝑛-th (0 ≤  𝑛 ≤ 𝑁) harmonic terms, we have 

(−(𝑛ω)2[𝑴] + i(𝑛ω)[𝑪] + [𝑲]){𝑹̃𝑛} = {𝑺̃𝑛} − {𝑯̃𝑛},              (3.16) 

where {𝑹̃𝑛} = {𝑅̃(1,𝑛), … 𝑅̃(𝑗,𝑛), … 𝑅̃(𝑄,𝑛)}
T

, {𝑯̃𝑛} =

{𝐻̃(1,𝑛), … 𝐻̃(𝑗,𝑛), … 𝐻̃(𝑄,𝑛)}
T
 and {𝑺̃𝑛} = {𝑆̃(1,𝑛), … 𝐻̃(𝑗,𝑛), … 𝐻̃(𝑄,𝑛)}

T
.  

By introducing the dynamic stiffness matrix [𝑫̃𝑛]  with [𝑫̃𝑛] = −(𝑛ω)
2[𝑴] +

i(𝑛ω)[𝑪] + [𝑲], Eq. (3.16) can be rewritten as 

[𝑫̃𝒏]{𝑹̃𝒏} = {𝑺̃𝒏} − {𝑯̃𝒏}.                                   (3.17) 

Therefore, by combining the balancing conditions for each harmonic from 𝑛 = 0 

to 𝑛 = 𝑁, we have 

[
 
 
 
𝐷̃0 0

0 𝐷̃1

⋯ 0
⋯ 0

⋮ ⋮
0 0

⋱ ⋮
⋯ 𝐷̃𝑁]

 
 
 

{
 

 
𝑅̃0
𝑅̃1
⋮
𝑅̃𝑁}
 

 
=

{
 

 
𝑆̃0 − 𝐻̃0
𝑆̃1 − 𝐻̃1

⋮
𝑆̃𝑁 − 𝐻̃𝑁}

 

 
.                      (3.18)  

For each DOF, by grouping a number of 𝑁 harmonics equations in Eq. (3.18), we 

can obtain (2𝑁 + 1) real nonlinear algebraic equations. Hence for all DOFs, a total 

number of 𝑄(2𝑁 + 1) real nonlinear algebraic equations can be obtained and solved by 

the Newton-Raphson technique iteratively. It is noted that to achieve a sufficient 

approximation accuracy for the response of the system, a higher order of Fourier series 

approximation may be considered (i.e. the value of 𝑁 is large).  After determining the 

response of the system, the vibration transmission and power flow can be quantified 

based on Eqs. (3.2) and (3.7). 

Compared to the numerical integration method, the main advantage of the HB 

method is the efficiency of computation. Since the numerical integration method uses 

direct time step integration, it usually takes a long time to find the periodic limit state 

when the transient decays slowly. Moreover, for the stiff ordinary differential equations, 

such as frictional oscillator system, very small time steps should be controlled 

considering the accuracy of the solution, which will significantly increase the 
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computational cost. In contrast, the HB method is based on periodic approximation. The 

simulation of long transients is not needed in the HB method, which can substantially 

reduce the computing time. Therefore, the HB method is suitable for studying nonlinear 

dynamical systems with complex nonlinearities. Apart from the computational 

efficiency, the HB method is capable of computing both stable and unstable periodic 

oscillations, which provides more information on dynamics. However, it should be 

pointed out that the HB method may not be applicable for the transient, random or non-

periodic processes (Krack and Gross, 2019).  

3.3.2. Alternating frequency/time domain technique 

The analytical harmonic balance method illustrated in the previous Subsection 

3.3.1 can be employed for the system with simple nonlinearities. For such systems. the 

coefficients of the harmonic terms of the nonlinear forces can be obtained analytically, 

and the accuracy of the approximation has reached an acceptable level when the 

harmonics order 𝑁 is small. However, when the nonlinearity in the system becomes 

complex, such as non-smooth contact nonlinearity (e.g. stick-slip, impact contact), or 

when a high order of Fourier series is needed for a better approximation of the nonlinear 

force, it may be difficult to determine the Fourier coefficients of the nonlinear force 

analytically. To overcome this problem, the numerical AFT technique can be employed 

for resolving the nonlinear force (Von Groll and Ewins, 2002; Cameron and Griffin, 

1989; Kim and Noah, 1991).  

The basic idea of AFT technique is that the approximation of the response in the 

frequency domain can be inverse Fourier transformed to the response expression in the 

time domain. The time history of the nonlinear force can then be obtained, which can 

be Fourier transformed to find the Fourier coefficients of the nonlinear force. The 

conversion between the time domain and frequency domain is performed numerically 

by the discrete Fourier transform (DFT) and its inverse (IDFT). The algorithm of the 

AFT scheme for the treatment of the nonlinear force term 𝑓n(𝑡)  in the governing 

equation of Eq. (3.1) is illustrated in Fig. 3.1. The approximated coefficient of the 

Fourier series 𝑅̃(𝑗,𝑛) for the response of the 𝑗-th coordinate is shown in Fig. 3.1(a). The 

time histories of responses 𝑥𝑗(𝑡), 𝑥̇𝑗(𝑡) and 𝑥̈𝑗(𝑡) for the 𝑗-th coordinate are obtained by 

iDFT shown in Fig. 3.1(b). By a substitution of the time domain responses expressions 

into the nonlinear force expression 𝑓n(𝑥𝑗, 𝑥̇𝑗, 𝑥̈𝑗) for the 𝑗-th element, the time history of 

the nonlinear force 𝑓n(𝑡) can then be obtained and the coefficients of the Fourier series 

𝐻̃(𝑗,𝑛) for the 𝑗-th element of the nonlinear force vector can be calculated by DFT shown 

in Fig. 3.1(c) and (d).  
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The general nonlinear force in the form of Fourier series for the 𝑗-th element of the 

system can be described as 

 𝑓n = DFT[ 𝑓n(IDFT[{𝑅̃(𝑗,0), 𝑅̃(𝑗,1), … , 𝑅̃(𝑗,𝑁)}])                     (3.19) 

N

(a)  
R(j,n)
  

t

(b)  
xj(t)

N

(d)  
H(j,n)
  

t

(c)  
fn(t)

iDFT

DFT

Force Law

Frequency Domain Time Domain

Response

Force

0

0

 

Figure 3.1. Algorithm of alternating frequency/time domain scheme for the treatment of 

nonlinear force. 

3.4. Numerical continuation method 

Recalling the use of the harmonic balance method illustrated in Subsection 3.3, a 

set of real nonlinear algebraic equations is obtained and needed to be solved to 

determine the dynamic response of the system. The Newton-Raphson iterative method 

can be used for solving those nonlinear algebraic equations with a good initial guess.  In 

the study of dynamic behaviour of nonlinear vibrating systems, the response solution 

varying with the excitation frequency, i.e. the frequency response, is usually of interest. 

A system of nonlinear algebraic equations is written as 

𝑓(𝒚,𝜔) = 0,                                                (3.20) 

where 𝒚 represents a vector of dimension 𝑁 and 𝜔 is an independent scalar parameter, 

such as the external excitation frequency. To obtain the frequency response, it is natural 

to calculate the solution of Eq. (3.20) by Newton-Raphson method for a sequence of 

frequency points in the range of excitation frequency. However, this procedure will 

increase the computational burden and reduce computational efficiency. The sequential 

continuation algorithm can be considered to take the solution at the current frequency 
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point as the initial guess for determining the next solution point. The next solution point 

is predicted based on the Newton-Raphson iteration scheme. But this continuation 

algorithm will encounter the failure of convergence when there are turning and branch 

points within the solutions due to that the Jacobian matrix is singular at such points. To 

track the branch or path near the turning point, the predictor-corrector continuation 

methods can be applied. 

In this research, the pseudo-arclength continuation method is employed in 

conjunction with the harmonic balance method to determine the steady-state response 

of the dynamical systems. The algorithm of pseudo-arclength continuation method is 

illustrated in Fig. 3.2 below.  

ω 

y

Corrector
Predictor

(ypre,ωpre
)

(y,ω)(y*,ω*)

 

Figure 3.2. Algorithm of pseudo-arclength continuation method. 

The continuation step from the solution point of (𝒚,𝜔) to the next solution point 

of (𝒚∗, 𝜔∗) is divided into two Substeps described as: 

(𝒚, 𝜔) → predictor → (𝒚pre, 𝜔pre) → corrector → (𝒚∗, 𝜔∗). 

The predictor Substep from  (𝒚, 𝜔) to (𝒚pre, 𝜔pre) provides an initial guess for the later 

corrector iterations. The arclength along the solution path is used as the continuation 

parameter (Von Groll and Ewins, 2001). The direction of the predictor step is along the 

tangent of the solution branch. Hence the predicted point of  (𝒚pre, 𝜔pre) is expressed 

as 

𝒚pre = 𝒚 +
𝑑𝒚

𝑑𝑠
Δ𝑠 ,                                        (3.21a) 

𝜔pre = 𝜔 +
𝑑𝜔

𝑑𝑠
Δ𝑠 ,                                      (3.21b) 
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where Δ𝑠 is the step length. Here the 
𝑑𝒚

𝑑𝑠
 and 

𝑑𝜔

𝑑𝑠
 remain unknown and can be determined 

as follows. 

By differentiating the Eq. (3.20) respect to the arclength 𝑠, we have 

𝐹𝒚
𝑑𝒚

𝑑𝑠
+ 𝐹𝜔

𝑑𝜔

𝑑𝑠
= [𝐹𝒚, 𝐹𝜔] (

𝒚′

𝜔′
) = 0,                           (3.22) 

where  𝐹𝒚 =
𝜕𝑓(𝒚,𝜔)

𝜕𝒚
, 𝐹𝜔 =

𝜕𝑓(𝒚,𝜔)

𝜕𝜔
 and (

𝒚′

𝜔′
) is the tangent vector having a unit length 

(Seydel, 2009). Therefore, a relation of the arclength 𝑠 can be obtained as 

(
𝑑𝑦1

𝑑𝑠
)
2
+⋯+ (

𝑑𝑦𝑁

𝑑𝑠
)
2
+ (

𝑑𝜔

𝑑𝑠
)
2
= 1.                       (3.23) 

The predicted point of (𝒚pre, 𝜔pre) can be obtained by solving the Eqs. (3.21-3.23). 

For the corrector process, the correction vector in the pseudo-arclength 

continuation is normal to the tangent vector of (
𝒚′

𝜔′
), we have 

(
𝒚∗ − 𝒚pre

𝜔∗ −𝜔pre
)
T

(
𝒚′

𝜔′
) = 0.                                   (3.24) 

To identify the solution points mathematically, the parameterization on the solution 

branch is performed by using the parameter of the arclength 𝑠. By substitution of Eqs. 

(3.21) into (3.24), an additional scalar equation is obtained: (Nayfeh and Balachandran, 

2008) 

0 = 𝑓pa(𝒚,𝜔, 𝑠) = (𝑦1
∗ − 𝑦1)

𝑑𝑦1

𝑑𝑠
+⋯+ (𝑦𝑁

∗ − 𝑦𝑁)
𝑑𝑦𝑁

𝑑𝑠
+ (𝜔∗ −𝜔)

𝑑𝜔

𝑑𝑠
− Δ𝑠. (3.25) 

Then an extended system can be formulated by a combination of Eqs. (3.20) and (3.25), 

𝑭(𝒚,𝜔, 𝑠) = (
𝑓(𝒚,𝜔)

𝑓pa(𝒚,𝜔, 𝑠)
).                                     (3.26) 

The correctors can be obtained by solving the Eq. (3.26), where the Newton iteration 

method is employed. When the next point of (𝒚∗, 𝜔∗) is reached, the correction iteration 

process is finished. It is noted that the ending condition for the corrector iteration is 

controlled by the parameterization equation of 0 = 𝑓pa(𝒚,𝜔, 𝑠). Moreover, the step-

length is adaptively controlled within a range and the control strategy is determined 

empirically and varied with the solver and tolerances (Krack and Gross, 2019).  
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Figure. 3.3 shows the summarized procedures of HB approximation method and 

numerical continuation method in this study for solving the governing equations of the 

nonlinear dynamical system. The solution for the corresponding linear system is taken 

as the initial guess of the problem. If the nonlinear force in the dynamical system can 

be directly expanded to harmonic terms in an analytical way and a sufficient accuracy 

has been achieved by first-order terms (𝑁 = 1), those systems can be regarded as simple 

systems and the analytical 1st order HB method can be applied on those systems. The 

obtained nonlinear algebraic equations can then be solved by the bisection method 

(Press et al., 1989) straightforwardly or by the pseudo-arclength numerical continuation 

method. 

Nonlinear force  fn:

1st order Analytical  HB

Initial Guess 

( solution of linear 

system)

Simple System?

Yes No

N-order HB

R(j,n)
  

Nonlinear force  fn:

H(j,1)
  

AFT Scheme

H(j,n)
  

Analytical FFT

Solutions

R(j,1)
  

Bisection 

Algorithm

R*    
(j,1)

  ||Residual||< ε ?

Newton-type

 iteration

R*    
(j,n)

Yes

Newton-type

 iteration

  ||Residual||< ε ?

Yes

  Continuation   

end?

No   Continuation   

end?

Yes

Solutions Solutions

No

Next step Next step 

Yes

No

Repeat

 iteration

No

Repeat

 iteration

 

Figure 3.3. Schematic of procedures of harmonic balance approximation in conjunction 

with the numerical continuations 
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For the complex systems, the nonlinear force is more generic and the structure of 

the system is more complicated. The AFT scheme illustrated in Subsection 3.3.2 is 

needed to resolve the nonlinear force and a higher order of HB method with 𝑁 > 1 

should be applied for capturing more dynamic information of the system. The numerical 

continuation method is combined with HB to trace the solution path of the nonlinear 

algebraic equations within a range of parameter values. The Newton-Raphson based 

correction process is repeated until the result is on the solution branch, i.e. the residual 

of the Eq. (3.26) is small enough (‖Residual‖ < 𝜀, and 𝜀 is the user-defined tolerance 

value). During the continuation process, the current solution point is used as the initial 

guess for the next solution. When the frequency in the continuation reaches the 

boundary of the pre-defined frequency range, the numerical continuation is ended. 

3.5. Exemplary application to a 2DOF coupled Duffing oscillator system 

Duffing oscillator has been widely accepted as a prototype of nonlinear dynamics. 

It has been used to model different physical processes, such as stiffening springs and 

beam buckling (Duffing, 1918). In this Subsection, a 2DOF coupled Duffing oscillator 

system, which has been investigated by Shi and Yang (2019), is used as an example for 

demonstrating the harmonic balance approximation method and the vibration 

transmission analysis method presented in this chapter.   

3.5.1. Mathematical model and frequency response 

As shown in Fig. 3.4, the system consists of two SDOF systems coupled via a linear 

interface. The linear interface is formed by a linear spring of stiffness 𝑘3 and a linear 

damper of damping 𝑐3. The primary system comprises a Duffing-type nonlinear spring, 

a linear damper of 𝑐1 and a mass of 𝑚1 subjected to a harmonic force excitation with 

amplitude of 𝑓0 and frequency of 𝜔. The secondary system consists of another identical 

nonlinear spring, a linear damper of 𝑐2 and a mass of 𝑚2.  

x1fd(x1)

c1

f0 e
iωt  

.

AB
m1

c2

x2

m2

k3

Primary system Secondary systemInterface

c3

fd(x2)

 

Figure 3.4. Schematic of a 2DOF coupled Duffing oscillator system (Shi and Yang, 2019)  
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The governing equation of the system can be written in a matrix form as 

[
𝑚1 0
0 𝑚2

] {
𝑥̈1
𝑥̈2
} + [

𝑐1 + 𝑐3 −𝑐3
−𝑐3 𝑐2 + 𝑐3

] {
𝑥̇1
𝑥̇2
} + [

𝑘1 + 𝑘3 −𝑘3
−𝑘3 𝑘2 + 𝑘3

] {
𝑥1
𝑥2
} + {

𝑓d(𝑥1)
𝑓d(𝑥2)

} =

{𝑓0𝑒
i𝜔𝑡 
0

}. (3.27) 

where 𝑓d(𝑥) is the function of nonlinear restoring force of the nonlinear spring with 

𝑓d(𝑥) = 𝑘d1𝑥 + 𝑘d2𝑥
3 , 𝑘d1  and 𝑘d2  are the stiffness coefficients for the nonlinear 

springs.  

Based on the harmonic balance method illustrated in Subsection 3.3.1, the steady-

state response of the system can be approximated as 

{𝑥1, 𝑥2}
T = ℜ{∑ 𝑅̃(1,𝑛)

𝑁
𝑛=0 𝑒i𝑛𝜔𝑡, ∑ 𝑅̃(2,𝑛)

𝑁
𝑛=0 𝑒i𝑛𝜔𝑡}

T
 ,             (3.28) 

The corresponding velocity and acceleration are 

{𝑥̇1, 𝑥̇2}
T = ℜ{∑ i𝑛𝜔𝑅̃(1,𝑛)

𝑁
𝑛=0 𝑒i𝑛𝜔𝑡, ∑ i𝑛𝜔𝑅̃(2,𝑛)

𝑁
𝑛=0 𝑒i𝑛𝜔𝑡}

T
 ,       (3.29a) 

{𝑥̈1, 𝑥̈2}
T = ℜ{−∑ (𝑛𝜔)2𝑅̃(1,𝑛)

𝑁
𝑛=0 𝑒i𝑛𝜔𝑡, −∑ (𝑛𝜔)2𝑅̃(2,𝑛)

𝑁
𝑛=0 𝑒i𝑛𝜔𝑡}

T
, (3.29b) 

respectively.  

The nonlinear restoring force 𝑓d(𝑥) of the nonlinear spring can be approximated by a 

truncated Fourier series as 

 {𝑓d(𝑥1), 𝑓d(𝑥2)}
T = ℜ{∑ 𝐻̃(1,𝑛)

𝑁
𝑛=0 𝑒i𝑛𝜔𝑡, ∑ 𝐻̃(2,𝑛)

𝑁
𝑛=0 𝑒i𝑛𝜔𝑡 }

T
.        (3.30) 

In accordance of the AFT scheme presented in Subsection 3.3.2, the approximated 

displacement response in time domain expressed in Eq. (3.28) is firstly substituted into 

the restoring force function of the nonlinear spring 𝑓d(𝑥) = 𝑘d1𝑥 + 𝑘d2𝑥
3. The time 

history of the nonlinear restoring force acting on the two masses can be obtained as 

{𝑓d(𝑥1), 𝑓d(𝑥2)}
T = ℜ{

∑ (𝑘d1𝑅̃(1,𝑛)𝑒
i𝑛𝜔𝑡𝑁

𝑛=0 + 𝑘d2𝑅̃(1,𝑛)
3 𝑒i3𝑛𝜔𝑡)

∑ (𝑘d1𝑅̃(2,𝑛)𝑒
i𝑛𝜔𝑡𝑁

𝑛=0 + 𝑘d2𝑅̃(2,𝑛)
3 𝑒i3𝑛𝜔𝑡) 

}

 

,   (3.31) 

which can then be Fourier transformed to determine the coefficients of 𝐻̃(1,𝑛) and 𝐻̃(2,𝑛) 

in Eq. (3.30) numerically.  

By substituting the Eqs. (3.28-3.30) into Eq. (3.27) and balancing the 

corresponding coefficients of the corresponding 𝑛-th order harmonic terms, the Eq. 
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(3.27) can be transformed in the form of Eq. (3.17) with [𝐷̃𝑛] = −(𝑛𝜔)
2 [
𝑚1 0
0 𝑚2

] +

i(𝑛𝜔) [
𝑐1 + 𝑐3 −𝑐3
−𝑐3 𝑐2 + 𝑐3

] + [
𝑘1 + 𝑘3 −𝑘3
−𝑘3 𝑘2 + 𝑘3

] and {𝑆̃𝑛} = {𝐹0, 0, … , 0}T. A set of 

2(2𝑁 + 1) algebraic equations is obtained by grouping a number of 𝑁  harmonics 

equations, which can be solved by Newton-Raphson method. The pseudo-arclength 

continuation method illustrated in Subsection 3.4 is also used for tracking the solution 

path. In this example, the harmonic order 𝑁 in the HB-AFT is set as 𝑁 = 2. When the 

numerical continuation is used, the initial guess of the system is obtained by solving the 

corresponding linear governing equation of the system with 𝑘d2 = 0. The default step 

size is pre-defined as Δ𝑠 = 0.01 and the range for adaptive step size control is set as 

[Δ𝑠 5⁄ , 2Δ𝑠]. 

The results of steady-state frequency response amplitudes of the two masses are 

shown in Fig. 3.5 below. The solid line represents the 2nd order HB-AFT result, the 

symbols denote the numerical integration results. Here the system parameters are set as 

𝑚1 = 𝑚2 = 1 kg , 𝑘d1 = 𝑘3 = 1 N/m , 𝑘d2 = 0.1 N/m , 𝑐1 = 𝑐2 = 𝑐3 = 0.02 Nm/s  

and 𝑓0 = 0.5 N . It shows that when the value of 𝑘d2  is positive, the Duffing-type 

nonlinearity can bend the curves of the response amplitude of the masses to the high 

frequencies. It can also lead to a jump phenomenon and multiple solutions near the 

resonant frequencies. Up to five solutions near the second peak of the response curve 

can be captured by the HB-AFT method with numerical continuations. 

  

Figure 3.5. The steady-state response amplitude results of (a) 𝑋1_amp for the primary mass and 

(b) 𝑋2_amp for the secondary mass. The solid line is HB-AFT result and symbols are the RK 

results. 
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3.5.2. Force transmissibility and PFA analysis 

For the current system, the transmitted force 𝑓ts from the primary system to the 

secondary system is the total coupling force at the interface, hence we have 𝑓ts =

𝑘3(𝑥1 − 𝑥2) + 𝑐3(𝑥̇1 − 𝑥̇2). By the definition of force transmissibility in Eq. (3.2), the 

force transmissibility to the secondary system can be expressed as 

𝑇𝑅S =
max( |{𝑓ts}|)

𝑓0
 .                                      (3.32) 

In accordance of the definitions of power flow variables in Eq. (3.7), the time-

averaged input power 𝑃̅in, the time-averaged power dissipation by the damper 𝑐2 and  

𝑐3 are defined as 

𝑃̅in =
1

𝜏p
∫ 𝑥̇1𝑓0𝑒

i𝜔𝑡d𝑡
𝜏0+𝜏p
𝜏0

,                                    (3.33a) 

𝑃̅d2 =
1

𝜏p
∫ 𝑥̇2

2𝑐2d𝑡
𝜏0+𝜏p
𝜏0

,                                      (3.33b) 

𝑃̅d3 =
1

𝜏p
∫ (𝑥̇1 − 𝑥̇2)

2𝑐3d𝑡
𝜏0+𝜏p
𝜏0

,                               (3.33c) 

respectively, where 𝜏0 is starting time of averaging, 𝜏p is the time span for averaging 

with 𝜏p = 2𝜋/𝜔. Based on the energy conservation, over one cycle of oscillation, the 

total energy transmitted to the secondary system is fully dissipated by the damper 𝑐2 of 

the secondary system. Therefore, we have the time-averaged power transmission 𝑃̅ts to 

the secondary system equals to 𝑃̅d2. By this way, the vibration transmission from the 

primary system to the secondary system can be evaluated from the energy transmission 

perspective.  

Figure 3.6(a), (b), (c) and (d) shows the force transmission 𝑇𝑅S, the time-averaged 

input power 𝑃̅in, the time-averaged transmitted power 𝑃̅ts to the secondary system and 

the time-averaged dissipated power 𝑃̅d3 by the interfacial damper, respectively. From 

Fig. 3.6(a) and (d), an anti-peak is found in the curves of 𝑇𝑅S  and 𝑃̅d3  when the 

frequency is near the in-phase mode of the corresponding linear system and the anti-

peak shows a significant bending to the right. Jump-down and jump-up behaviour as 

well as multiple solutions can be observed in the force transmissibility curve and the 

curves of power flow variables. Fig. 3.6(b) and (c) shows that both peaks of 𝑃̅in and 𝑃̅ts 

are bending to the high frequencies. Those characteristics are due to the nonlinear effect 

introduced by the nonlinear spring. Fig. 3.6(b-d) shows that the input energy from the 

external force excitation, the energy transmission between the sub-systems and the 
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energy dissipation at the interface can be quantified by the PFA indices, which may 

provide insight into vibration transmission behaviour and benefit the dynamic design of 

vibration suppression.   

 

Figure 3.6. Comparison between HB-AFT method and RK method on the result of (a) the force 

transmissibility 𝑇𝑅S, (b) the time-averaged input power 𝑃̅in, (c) the time-averaged transmitted 

power 𝑃̅ts and (d) the time-averaged dissipated power 𝑃̅d3. The solid line is HB-AFT result and 

symbols are the RK results. 

 

3.6. Summary 

In this research, analytical, semi-analytical (HB-AFT) and numerical methods 

discussed in this chapter have been applied in the investigation of dynamics, vibration 

transmission and PFA of different nonlinear non-smooth dynamical systems, including 

impact oscillators and Coulomb friction oscillators, and also in the analysis of nonlinear 

vibration isolators created by a linkage mechanism. For the non-smooth impact 

oscillator with a linear constraint in Chapter 4, the discontinuity due to the intermittent 

contact is approximated by Fourier series. The analytical derivation of the steady-state 

frequency-response relationship, force transmission and power flow indices are 
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performed by analytical HB method. In the other systems of this research, both semi-

analytical HB-AFT with numerical continuations and numerical integrations have been 

used for comparison and cross verifications of the dynamic behaviour and vibration 

transmission results. In Chapter 6, the power flow indices obtained from the energy 

balance equations are used as performance indicators of the proposed nonlinear 

vibration isolators.  



Chapter 4   Vibration transmission analysis of impact oscillators with linear and nonlinear QZS constraints 

41 

 

Chapter 4                                     

Vibration transmission analysis of 

impact oscillators with linear and 

nonlinear QZS constraints 
 

Impact oscillator models are widely used for dynamic analysis of engineering 

systems such as rotating machinery with possible rotor and stator contact (Peletan et al., 

2014), drilling systems (Chávez et al., 2014), tooling machinery (Theodossiades and 

Natsiavas, 2000) and bearing systems with clearance (Gupta et al., 2011). Such systems 

often have the property that a vibrating main substructure may be in engaged with 

another substructure (i.e., a constraint) when its displacement response exceeds a certain 

clearance. The collision between the substructures leads to abrupt changes in dynamic 

properties of the integrated system.  There may be non-smooth variations in damping or 

restoring forces and consequently discontinuities in damping or stiffness coefficients. 

As a result, the integrated system becomes nonlinear and can exhibit complex nonlinear 

phenomena. Many previous works have been reported on nonlinear dynamic analysis 

of SDOF, 2DOF or multiple-DOF impact oscillators with a linear elastic or rigid 

constraint (Shaw and Holmes, 1983; Lau and Zhang, 1992; Ing et al., 2010; Jiang et al., 

2017); yet, there are far fewer studies considering impact oscillators comprising a 

nonlinear main structure or a nonlinear constraint (Chatterjee et al., 1995). Chávez et al. 

(2017) conducted bifurcation analysis of Duffing oscillators coupled via a soft constraint 

and showed the destabilization of solutions when decreasing the distance between the 

oscillating systems and the loss of stability for the solutions due to grazing-induced 

bifurcations. Gilardi and Sharf (2002) suggested that the continuous contact dynamics 

models involve nonlinear impact force model i.e. Hertz’s model when considering the 

elastic deformation of the interface material. Therefore there is still a need to examine 

and reveal the effect of a nonlinear constraint on the dynamics of impact oscillators. 

Moreover, not much work was reported on the vibration transmission characteristics of 

impact oscillators. In the dynamic design of such systems, understanding of vibration 

transmission behaviour is of great importance to ensure both system integrity and also 

dynamic performance. In particular, the influence of different types of constraint on the 

level of vibration transmission needs to be explored. In this chapter, the vibration force 

transmission and power flow characteristics of SDOF and 2DOF impact oscillators with 
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linear or nonlinear quasi-zero-stiffness (QZS) constraints are investigated. Both HB 

method and numerical integration method are used to obtain the force transmissibility 

and time-averaged power flow variables so as to quantify vibration transmission in the 

systems. The effects of the stiffness and damping levels of the constraint on the dynamic 

response and vibration transmission are revealed 

4.1. SDOF impact oscillator with a linear constraint 

4.1.1. Mathematical modelling 

Figure 4.1 shows an SDOF oscillator comprising a mass 𝑚1, a viscous damper with 

damping coefficient 𝑐1 and a linear spring with stiffness coefficient 𝑘1. The mass is 

subjected to a harmonic excitation of amplitude 𝑓0  and frequency 𝜔  and moves in 

horizontal direction. The equilibrium position of the mass, where the spring 𝑘1 is un-

stretched, is set as a reference with 𝑥1 = 0. A linear constraint consisting of a linear 

spring of stiffness coefficient 𝑘h and a viscous damper of damping coefficient of 𝑐h is 

placed between the mass and the right-hand wall. The initial gap between the mass and 

the constraint is denoted by 𝑥c. Throughout this chapter, it is assumed that the constraint 

has negligible mass and no friction is considered.  

+ +
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k1

c1

f0 cosωt  

.
xc

A
B

m1

kh

ch

 

Figure 4.1. A schematic representation of an SDOF impact oscillator with a linear constraint. 

When the mass moves to the right, it becomes in contact with the linear constraint 

when its displacement 𝑥1 increases to 𝑥c. When there is no damping in the constraint, 

the governing equation of the mass of 𝑚1 is 

𝑚1𝑥̈1 + 𝑐1𝑥̇1 + 𝑘1𝑥1 +  𝑈(𝛿)𝑘h𝛿 = 𝑓0 cos𝜔𝑡,                        (4.1) 

where 𝛿 = 𝑥1 − 𝑥c and  𝑈(𝛿) representing the Heaviside step function expressed by 

𝑈(𝛿) = {
0,   when 𝛿 ≤ 0,
1,   when 𝛿 > 0.

                                          (4.2) 

Note that if there exists damping in the constraint, physically the contact between 

the mass and the constraint is lost when the force acted on the mass from the constraint 
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becomes zero (Chávez et al., 2017). In this chapter, the damping in the constraint is 

assumed to be weak. When the mass is moving left with the constraint, the restoring 

force by the constraint spring pushing the mass is generally larger than the damping 

force by the constraint damper pulling the mass. Therefore, the loss of the contact 

between the mass and the constraint occurs when the displacement of the mass is only 

slightly larger than the gap distance such that 𝑥1 ≈ 𝑥c. This approximation of the loss 

of contact condition has been made in the modelling of impact oscillators (Narimani et 

al., 2004; Natsiavas, 1990; Ma et al., 2006), and is also adopted in the current chapter. 

The equation of motion of the mass with consideration of the constraint damping is 

𝑚1𝑥̈1 + 𝑐1𝑥̇1 + 𝑘1𝑥1 +  𝑈(𝛿)(𝑘h𝛿 + 𝑐h𝛿̇)  = 𝑓0 cos𝜔𝑡.                (4.3) 

To obtain analytical approximations of frequency-response relationship, the 

steady-state response of the system is assumed to be 

 𝛿 = 𝑟0 + 𝑟1 cos(𝜔𝑡 + 𝜙) = 𝑟0 + 𝑟1 cos 𝜃 = 𝑟1(cos𝜃 − cos𝜃0),       (4.4a) 

𝛿̇ = −𝜔𝑟1 sin(𝜔𝑡 + 𝜙) = −𝜔𝑟1 sin𝜃,                            (4.4b) 

where 𝜃 = 𝜔𝑡 + 𝜙, and 𝜃0 = cos
−1(−𝑟0 𝑟1⁄ ). Eq. (4.4) implies that the impact of the 

vibrating mass and the linear constraint occurs in the oscillation cycle so that 𝑟0 − 𝑟1 <

0 < 𝑟0 + 𝑟1 and correspondingly we have |𝑟0|/𝑟1 ≤ 1. Over one oscillation cycle with 

𝜃 ∈ [−𝜃0, 2𝜋 − 𝜃0], the linear constraint is engaged with the mass when 𝜃 ∈ [−𝜃0, 𝜃0]. 

The second-order Fourier expansion of the Heaviside step function is 

𝑈(𝛿) ≈ 𝐵0 + 𝐵1c cos𝜔𝑡 + 𝐵1s sin𝜔𝑡 + 𝐵2c cos 2𝜔𝑡 + 𝐵2s sin2𝜔𝑡,     (4.5) 

where 

𝐵0 =
ω

2𝜋
∫ 𝑈(𝛿)
2𝜋

ω
0

d𝑡 =
cos−1(

−𝑟0
𝑟1
)

𝜋
=

𝜃0

𝜋
,                           (4.6a) 

𝐵1c =
ω

𝜋
∫ 𝑈(𝛿)
2𝜋

ω
0

cos𝜔𝑡 d𝑡 =
 2 cos𝜙

𝜋
√1 − (

𝑟0

𝑟1
)
2
=

 2 cos𝜙 sin𝜃0

𝜋
,       (4.6b) 

𝐵1s =
ω

𝜋
∫ 𝑈(𝛿)
2𝜋

ω
0

sin𝜔𝑡 d𝑡 = −
 2 sin𝜙

𝜋
√1 − (

𝑟0

𝑟1
)
2
= −

 2 sin𝜙 sin𝜃0

𝜋
,      (4.6c) 

𝐵2c =
ω

𝜋
∫ 𝑈(𝛿)
2𝜋

ω
0

cos2𝜔𝑡 d𝑡 =
 cos2𝜙 sin2𝜃0

𝜋
,                      (4.6d) 

𝐵2s =
ω

𝜋
∫ 𝑈(𝛿)
2𝜋

ω
0

sin2𝜔𝑡 d𝑡 = −
 sin2𝜙 sin2𝜃0

𝜋
.                     (4.6e) 
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Thus we have 𝑈(𝛿) ≈ 𝐵0 + 𝐵1 cos(𝜔𝑡 + 𝜙) + 𝐵2 cos(2𝜔𝑡 + 2𝜙) , where 𝐵1 =

 2

𝜋
√1− (

𝑟0

𝑟1
)
2
=

 2

𝜋
sin 𝜃0 , 𝐵2 =

 1

𝜋
sin 2𝜃0, so that 

𝑈(𝛿) ≈
1

𝜋
(𝜃0 + 2 sin𝜃0 cos 𝜃 + sin 2𝜃0 cos2𝜃).                     (4.7) 

Figure. 4.2 plots the variations of the exact Heaviside function with respect to 𝛿 as 

well as the approximations based on the first order and the second-order Fourier 

expansions based on Eq. (4.7). For illustration purpose, variables are set as 𝑟0 = 0.4 and 

𝑟1 = 0.8 , and thus 𝛿 = 0.4 + 0.8 cos𝜃 . Correspondingly, we have 𝜃0 =

cos−1(−𝑟0 𝑟1⁄ ) = 2𝜋/3  and 𝑈(𝛿) ≈ (4𝜋 + 6√3 cos 𝜃 + 3√3 cos2𝜃)/(6𝜋) . The 

figure shows that the use of the 2nd order expansion can generally capture the waveform 

of the Heaviside function with a degree of accuracy. It enables analytical derivations of 

the frequency-response relation to gain physical insights into the dynamic behaviour. 

More accurate approximations of the function may be achievable by higher-order 

expansions, but at the cost of increasing complexity in the analytical derivation process 

and higher computational cost.  

 
Figure 4.2. Approximation of the Heaviside function using Fourier expansion (𝛿 = 0.4 +

0.8 cos 𝜃). Solid line: exact value of 𝑈(𝛿); dotted line: first order expansion; dashed line: 2nd 

order expansion. 

 

By inserting Eqs. (4.4) and (4.7) into Eq. (4.3) and balancing the static term and 

the coefficients of the harmonic terms cos 𝜃 and sin 𝜃, we have 

𝑘h

𝜋
(𝑟0𝜃0 + 𝑟1 sin𝜃0) + 𝑘1(𝑥c + 𝑟0) = 0,                             (4.8a) 

(𝑘1 −𝑚1𝜔
2)𝑟1 + 𝑘h𝑟1 (

𝜃0

𝜋
+
sin2𝜃0

2𝜋
) + 𝑘h𝑟0

 2 sin𝜃0

𝜋
= 𝑓0 cos𝜙,         (4.8b) 

−𝑐1𝜔𝑟1 − 𝑐h𝜔𝑟1(
𝜃0

𝜋
−
sin2𝜃0

2𝜋
) = 𝑓0 sin𝜙.                            (4.8c) 
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Recalling that 𝑟0 = −𝑟1 cos 𝜃0, Eq. (4.8a) becomes 

(𝑘h sin𝜃0 − 𝑘h𝜃0 cos 𝜃0 − 𝜋𝑘1 cos 𝜃0)𝑟1 + 𝜋𝑘1𝑥𝑐 = 0.               (4.9) 

By using a manipulation of Eq. (4.8b) and (4.8c) to cancel out the trigonometric terms 

of 𝜙, we have 

[(𝑘1 −𝑚1𝜔
2) + (

𝜃0

𝜋
−
 sin2𝜃0

2𝜋
) 𝑘ℎ]

2
𝑟1
2 + [𝑐1 + (

𝜃0

𝜋
−
 sin2𝜃0

2𝜋
)𝑐h]

2
𝜔2𝑟1

2 = 𝑓0
2.        

(4.10) 

Therefore, the frequency-response relationship is obtained and expressed by Eqs. (4.9) 

and (4.10), which are two nonlinear algebraic equations of 𝑟1 and 𝜃0. Note that 𝑟1 can 

be firstly expressed as a function of 𝜃0 by using Eq. (4.9). By inserting the resultant 

expression into Eq. (4.10) and employing a standard bisection method, the steady-state 

dynamic response amplitudes 𝑟1 and 𝜃0 can be found.  

The following parameters are introduced for clarity and later parametric study: 

𝜔1 = √
𝑘1

𝑚1
,   𝜁1 =

𝑐1

2𝑚1𝜔1
,   𝑋1 =

𝑥1

𝑥𝑐
,    𝜆 =

𝑘h

𝑘1
,  𝜌 =

𝑐h

𝑐1
, 𝐹0 =

𝑓0

𝑘1𝑥c
, Ω =

𝜔

𝜔1
,  𝜏 = 𝜔1𝑡, 

where 𝜔1 and 𝜁1 the undamped natural frequency and the damping ratio of the system 

without the constraint, respectively; 𝑋1 denotes the dimensionless displacement of the 

mass; 𝜆 and 𝜌 are the stiffness ratio and damping ratio of the linear constraint; 𝐹0 and 

Ω are the dimensionless excitation amplitude and frequency, respectively; and 𝜏 is the 

dimensionless time. Eq. (4.3) can be transformed into 

𝑋1
′′ + 2𝜁1𝑋1

′ + 𝑋1 + 𝐹LC = 𝐹0 cosΩ𝜏,                             (4.11) 

where 𝐹LC = (𝜆𝛥 + 2𝜁1𝜌𝑋1
′)𝑈(𝛥)  is the nonlinear force generated by the linear 

constraint with 𝛥 = 𝑋1 − 1, and the prime denotes differentiation with respect to 𝜏. Eqs. 

(4.9) and (4.10) become              

(𝜆 sin 𝜃0 − 𝜆𝜃0 cos𝜃0 − 𝜋 cos 𝜃0)𝑅1 + 𝜋 = 0,                  (4.12a) 

[(1 − Ω2) + (
𝜃0

𝜋
−
 sin2𝜃0

2𝜋
)𝜆]

2
𝑅1
2 + 4𝜁1

2 [1 + (
𝜃0

𝜋
−
 sin2𝜃0

2𝜋
) 𝜌]

2
Ω2𝑅1

2 = 𝐹0
2, (4.12b) 

where 𝑅0 = 𝑟0 𝑥c⁄  and 𝑅1 = 𝑟1 𝑥c⁄  are the dimensionless displacement amplitudes for 

the static and fundamental frequency components, respectively. 
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4.1.2. Vibration transmission analysis 

For the current system, the dimensionless transmitted force from the mass 𝑚1 to 

the right-hand-side (RHS) and the left-hand-side (LHS) walls are 

𝐹tR = 𝐹LC = (𝜆𝛥 + 2𝜁1𝜌𝑋1
′)𝑈(𝛥) ≈ (𝜆(𝑅0 + 𝑅1 cos𝜃) − 2𝜁1𝜌𝑅1 sin 𝜃)𝑈(𝛥),           

(4.13a) 

𝐹tL = 2𝜁1𝑋1
′ + 𝑋1 ≈ 1 − 𝑅1 cos 𝜃0 + 𝑅1 cos 𝜃 − 2𝜁1Ω𝑅1 sin𝜃,      (4.13b) 

respectively, where only components of the static term and the one at the fundamental 

frequency were considered in the approximations. The force transmissibility can be 

defined as the maximum magnitude of the transmitted forces to that of the input force: 

𝑇𝑅R =
max( |𝐹tR|)

𝐹0
,      𝑇𝑅L =

max( |𝐹tL|)

𝐹0
,                (4.14a, 4.14b) 

where only first-order approximations of the transmitted forces are employed in the HB 

approximations. To suppress the vibration transmission, a low value of force 

transmissibility is desirable for the design of the linear constraint. 

The steady-state dimensionless time-averaged input power into the system is 

expressed by 

𝑃̅in =
1

𝜏𝑝
∫ 𝑋1

′𝐹0 cosΩ𝜏
𝜏0+𝜏𝑝
𝜏0

d𝜏 ≈ −
𝐹0Ω𝑅1 sin𝜙

2
= 𝜁1Ω

2𝑅1
2 [1 + 𝜌(

𝜃0

𝜋
−
sin2𝜃0

2𝜋
)],              

(4.15) 

where Eqs. (4.4b) and (4.8c) were used in the approximations of the response, 𝜏𝑝 =

2𝜋 Ω⁄  (e.g., one excitation cycle) is the averaging time and 𝜏0 is the starting time for 

averaging. Over one cycle of steady-state periodic response, the dimensionless time-

averaged power dissipated by the damper 𝑐h in the constraint and by the damper 𝑐1 is 

expressed by 

𝑃̅dc =
1

𝜏𝑝
∫ 𝐹dc𝑋1

′𝜏0+𝜏𝑝
𝜏0

𝑈(𝛥)d𝜏 ≈ 𝜁1𝜌Ω
2𝑅1

2(
𝜃0

𝜋
−
sin2𝜃0

2𝜋
),           (4.16a) 

𝑃̅d1 =
1

𝜏𝑝
∫ 𝐹d1𝑋

′𝜏0+𝜏𝑝
𝜏0

d𝜏 ≈ 𝜁1Ω
2𝑅1

2,                            (4.16b) 

respectively, where 𝐹dc = 2𝜁1𝜌𝑋1
′𝑈(𝛥)  and 𝐹d1 = 2𝜁1𝑋1

′  are the corresponding 

dimensionless damping forces, and first-order approximations were used.  The power 

dissipation ratios are defined as the ratios between the time-averaged dissipated power 

and input power 𝑃̅in: 
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𝑅ac =
𝑃̅dc

𝑃̅in
≈

𝜌(2𝜃0−sin2𝜃0)

2𝜋+𝜌(2𝜃0−sin2𝜃0)
 ,   𝑅a1 =

𝑃̅d1

𝑃̅in
≈

2𝜋

2𝜋+𝜌(2𝜃0−sin2𝜃0)
. (4.17a, 4.17b) 

Note that based on the conservation of energy, these ratios also provide indications of 

the relative portion of vibration energy transmitted and dissipated within the oscillator. 

4.1.3. Effects of linear constraint  

Figure. 4.3(a) and 4.3(b) investigates the effects of the stiffness and damping of 

the linear constraint on the maximum steady-state displacement response 𝑋1_max of the 

mass, respectively. The first-order HB results are represented by different lines. The 

numerical integration results based on the fourth-order Runge-Kutta (RK) method are 

denoted by symbols. The RK method has been widely used to solve smooth differential 

equations and to study non-smooth systems (Shi et al., 2019). To implement this method, 

the original governing equation is firstly transformed into a first-order form. By using 

conditional execution statements in the numerical algorithm to capture to the occurrence 

of discontinuities in the stiffness and / or damping coefficients, this method can be 

employed to investigate the dynamics of impact oscillators.  

 

Figure 4.3. Effects of (a) stiffness and (b) damping properties of the linear constraint on the 

maximum displacement 𝑋1_max.  The solid line and circles, dashed line and triangles, dotted line 

and squares, dash-dot lines and rhombuses are for 𝜆 = 0, 0.5, 1 and 2, respectively in (a), and 

for 𝜌 = 0, 1, 2 and 5, respectively in (b).  

In Figure. 4.3(a), the stiffness ratio 𝜆 changes from 0 to 0.5, to 1 and then to 2 while 

the constraint damping is set as 𝜌 = 0. In Fig. 4.3(b), the constraint damping ratio 𝜌 

varies from 0, 1, 2 and then to 5 while fixing constraint stiffness as 𝜆 = 1. The other 

system parameters are set to be 𝜁1 = 0.01, 𝐹0 = 0.1. It shows that the HB results agree 

relatively well with numerical integration results when 𝜆 is small. For a larger value of 

𝜆, higher order HB may be needed for more accurate approximations. Fig. 4.3(a) shows 

that the values of 𝑋1_max  are small than 1 at low and high excitation frequencies, 

(𝜆 = 1) 
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suggesting that the mass and the constraint are not in contact. When the excitation 

frequency is approximately between 0.94 and 1.04, the response amplitude of oscillator 

may exceed the gap width, and the mass is engaged with the linear constraint. As 𝜆 

increases, the response peak of 𝑋1_max curve bends to the high-frequency range with 

reducing peak value. Fig. 4.3(b) shows that the increase of constraint damping will 

reduce the peak value of response curves of 𝑋1_max. 

Figure. 4.4 shows the effects of the linear constraint on the force transmission 

within the system. Understanding of the property can be useful in the designs of drilling 

systems or hand tools, in which low or high transmitted force may be desirable. The 

different lines are for HB approximations and the symbols are for RK results, as used 

in Fig. 4.3.  

 

Figure 4.4. Effects of stiffness and damping properties of the linear constraint on force 
transmissibility 𝑇𝑅L and 𝑇𝑅R. The solid line and circles, dashed line and triangles, dotted line 

and squares, dash-dot lines and rhombuses are for 𝜆 = 0, 0.5, 1 and 2, respectively, in (a) and 

(b), and for 𝜌 = 0, 1, 2 and 5, respectively, in (c) and (d). 

Fig. 4.4(a) and (b) examines the influence of the constraint stiffness by setting 𝜌 =

0, 𝜁1 = 0.01, 𝐹0 = 0.1. Fig. 4.4(a) and (b) shows that with the increase of linear stiffness 

coefficient 𝜆, the peaks of force transmissibility curves 𝑇𝑅L and 𝑇𝑅R both bends more 

(𝜆 = 1) (𝜆 = 1) 



Chapter 4   Vibration transmission analysis of impact oscillators with linear and nonlinear QZS constraints 

49 

 

towards higher frequencies. It shows that with 𝜆 increasing from 0.5 to 1 and then to 2, 

there are only slight changes in the peak value of  𝑇𝑅L but significant increases in the 

peak of 𝑇𝑅R. Fig. 4.4(c) and (d) investigates the effects of constraint damping by setting 

𝜆 = 1, 𝜁1 = 0.01, 𝐹0 = 0.1  while changing the damping ratio 𝜌  from 0 to 1, 2 and 

finally to 5. With the increase of the level of constraint damping, the peak values of 

force transmissibility 𝑇𝑅L and 𝑇𝑅R reduce. This characteristic demonstrates that larger 

linear constraint damping 𝜌  is beneficial for the mitigation of vibration force 

transmission.  

 

Figure 4.5. Effects of linear constraint on the power flow behaviour. Influence of (a) constraint 

stiffness on 𝑃̅in, and constraint damping on (b) 𝑃̅in, (c) 𝑃̅dc and (d) 𝑅ac. In (a), solid line and 

circles, dashed line and triangles, dotted line and squares, and dash-dot line and rhombuses for 

𝜆 = 0, 0.5, 1 and 2, respectively; In (b),  (c) and (d),  dashed line and triangles, dotted line and 

squares, and dash-dot line and rhombuses are for 𝜌 = 1, 2 and 5, respectively. 

Figure. 4.5 investigates the influence of the linear constraint on the vibration power 

flow behaviour. The lines and symbols represent HB and RK results, respectively. Fig. 

4.5(a) examines the effects of constraint stiffness 𝜆 on the time-averaged input power 

𝑃̅in while setting 𝜌 = 0, 𝜁1 = 0.01, 𝐹0 = 0.1. It shows that a larger value of 𝜆 bends the 

peak of 𝑃̅in more to the high-frequency range. However, the peak value of 𝑃̅in remains 

nearly the same for the different constraint stiffness values. Fig. 4.5(b), (c) and (d) 

(𝜆 = 1) (𝜆 = 1) 
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considers the effects of constraint damping 𝜌  on 𝑃̅in , the time-averaged dissipated 

power by the constraint 𝑃̅dc  and power dissipation ratio 𝑅ac , respectively. The 

parameters are set as 𝜆 = 1, 𝜁1 = 0.01, 𝐹0 = 0.1 while 𝜌 changes from 0, to 1, to 2 and 

then to 5. It shows that a higher level of constraint damping 𝜌 leads to a substantial 

reduction in the peak value of 𝑃̅in. Fig. 4.5(c) and (d) shows that a larger value of 

constraint damping 𝜌 generally results in less bending of the curves of 𝑃̅dc and 𝑅ac. It 

also shows that as 𝜌 increases from 1 to 5, there is a larger amount of peak power 

dissipation as well as the relative proportion of power dissipated in the constraint as 

compared to the total power input. It shows that a high damping ratio can effectively 

dissipate vibration power transmitted to the constraint.  

 

4.2. SDOF impact oscillator with a nonlinear QZS constraint 

4.2.1. Mathematical modelling 

Here the dynamics and vibration transmission within an SDOF impact oscillator 

with a nonlinear constraint is considered. Fig. 4.6 shows the system placed in the 

horizontal plane comprising a nonlinear constraint having geometric stiffness 

nonlinearities. Comparing with the linear constraint case shown in Fig. 4.1, the 

nonlinear constraint includes an extra pair of lateral springs, joined together at point B 

with the other ends fixed. These lateral springs are of un-stretched length of 𝑙0 and 

stiffness coefficient 𝑘v. Their length changes to 𝑙 when point B is in the equilibrium 

position, i.e., when the lateral springs are oriented in the same direction and the original 

spring 𝑘h is un-stretched. It is assumed that the block B is massless.  
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Figure 4.6. A schematic representation of an SDOF impact oscillator with a nonlinear 

constraint. 

The dimensional governing equation of the mass is  
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𝑚1𝑥̈1 + 𝑐1𝑥̇1 + 𝑘1𝑥1 + (𝑐h𝛿̇ + 𝑔(𝛿))𝑈(𝛿) = 𝑓0 cos𝜔𝑡,            (4.18) 

where 𝛿 = 𝑥1 − 𝑥𝑐 as defined previously, 𝑈(𝛿) was expressed in Eq. (4.2), and 𝑔(𝛿) 

represents the nonlinear restoring force generated by the springs in the nonlinear 

constraint and is expressed by  

𝑔(𝛿) = 𝑘h𝛿 + 2𝑘v𝛿 (1 −
𝑙0

√𝑙2+𝛿2
) ≈ 𝑘h𝛿 + 2𝑘v (1 −

𝑙0

𝑙
) 𝛿 +

𝑘v𝑙0

𝑙3
𝛿3 = 𝑘s1𝛿 +

𝑘s2𝛿
3 ,        (4.19) 

where 𝑘s1 = 𝑘h + 2𝑘v(1 − 𝑙0 𝑙⁄ ), 𝑘s2 = 𝑘v𝑙0/𝑙
3 and Taylor expansion was employed 

for the approximation. Eq. (4.19) shows that the use of the pair of lateral springs results 

in the addition of a linear term and also a nonlinear term of 𝛿 in 𝑔(𝛿). Note that the 

lateral springs can be tailored in a way such that 𝑘s1 = 0, e.g., the nonlinear constraint 

has a so-called quasi-zero-stiffness (QZS) characteristic (Cao et al., 2006; Hao and Cao, 

2015; Hao et al., 2017). For this purpose, the lateral springs needs to be initially 

compressed with 𝑙0 𝑙⁄ = 1 + 𝑘h (2𝑘v)⁄ . The constraint can be termed a nonlinear QZS 

constraint. 

Non-dimensional parameters are introduced as 

    𝛼 =
𝑙0

𝑙
,   𝛽 =

2𝑘v

𝑘h
,   𝐾1 = 𝜆(1 + 𝛽(1 − 𝛼)),   𝐾2 =

𝜆𝛼𝛽

2𝜂2
  , 𝜂 =

𝑙

𝑥c
, 

where 𝛼 is the spring length ratio of un-stretched length 𝑙0 to length 𝑙, 𝛽 is the stiffness 

ratio of lateral springs in the nonlinear constraint, 𝜂 is the ratio of stretched length 𝑙 to 

the gap width 𝑥c . Using them and 𝜁1, 𝐹0, Ω, 𝑅0, 𝑅1, 𝜆 and 𝜌, that have been defined 

previously in Section 4.1.1, the approximated dimensionless governing equation is 

𝑋1
′′ + 2𝜁𝑋1

′ + 𝑋1 + 𝐹NC = 𝐹0 cosΩ𝜏,                              (4.20) 

where 𝐹NC = (2𝜁1𝜌𝑋1
′ + 𝐾1𝛥 + 𝐾2𝛥

3)𝑈(𝛥) represents the nonlinear force arising from 

the addition of the nonlinear constraint. Eq. (4.20) can be solved using numerical 

integrations or the HB approximation. For the latter approach, while the analytical 

derivations of the Fourier coefficients for 𝐹NC are possible, as in the previous linear 

constraint case, the AFT based HB illustrated in Chapter 3 is employed here for 

numerical determination (Von Groll and Ewins, 2001). Here for the implementation, 

the steady-state periodic response of the mass 𝑋1, 𝑋1
′  and 𝑋1

′′ is firstly expressed by an 

N-order Fourier series with a fundamental frequency of Ω. The time histories of the 

nonlinear force 𝐹NC can then be obtained by a substitution of 𝑋1, 𝑋1
′  and 𝑋1

′′  into its 

expressions, which are then Fourier transformed to find the Fourier coefficients. By 
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inserting the expressions of the response and the nonlinear force into Eq. (4.20) and 

balancing the corresponding coefficients, a total number of (2N+1) nonlinear algebraic 

equations can be obtained, which can be solved by Newton-Raphson method with a 

numerical continuation. The steady-state periodic response of the mass can then be 

determined. 

4.2.2. Vibration transmission analysis 

The force transmissibility and vibration power transmission characteristics are of 

interest in this Chapter. For the current system, the dimensionless transmitted force 

through the nonlinear constraint to the RHS wall changes to 𝐹tR = 𝐹NC  . The 

dimensionless transmitted force to the LHS wall is still expressed by Eq. (4.13b). The 

force transmissibilities 𝑇𝑅R  and 𝑇𝑅L  are still defined as shown by Eq. (4.14). The 

definitions of the dimensionless time-averaged input power 𝑃̅in and dissipated powers 

𝑃̅d1 and 𝑃̅dc, as well as the power dissipation ratios as in Eq. (4.15)-(4.17) are followed. 

4.2.3. Effects of nonlinear QZS constraint  

Figures. 4.7, 4.8 and 4.9 investigate the effects of nonlinear parameters of the 

constraint, i.e., the lateral spring length ratio 𝛼 and lateral spring stiffness ratio 𝛽, on the 

steady-state response 𝑋1_max of the mass as well as the force transmission and power 

flow behaviour, respectively. With considerations of the accuracy and computational 

cost, the second-order HB-AFT results are employed and the results are represented by 

different lines. Numerical integration results based on the fourth-order Runge-Kutta 

(RK) method are denoted by symbols. The figures show that the HB-AFT results agree 

relatively well with those obtained from numerical integrations. The system parameters 

are set as 𝜆 = 1, 𝜌 = 1, 𝜁1 = 0.01, 𝜂 = 1, 𝐹0 = 0.1. In the examination of the parameter 

𝛼, three possible values are selected with 𝛼 = 1, 1.5 and 2, while setting 𝛽 = 1. Thus 

we have 𝐾1 = 1, 𝐾2 = 0.5 (Case one), 𝐾1 = 0.5, 𝐾2 = 0.75 (Case two) and 𝐾1 = 0, 

𝐾2 = 1 (Case three) and the corresponding results are represented by solid lines and 

circles, dashed lines and the triangles as well as dotted lines and squares, respectively. 

When studying the effect of 𝛽, three values are used with 𝛽 = 0, 0.5 and 1 while setting 

𝛼 = 2. Consequently we have 𝐾1 = 1, 𝐾2 = 0 (Case four), 𝐾1 = 0.5, 𝐾2 = 0.5 (Case 

five) and 𝐾1 = 0, 𝐾2 = 1 (Case six), which are shown by solid lines and circles, dashed 

lines and the triangles as well as dotted lines and squares, respectively. 

Figure. 4.7(a) shows that as the spring length ratio 𝛼 increases from 1 to 2, the 

displacement response curve of 𝑋1_max bends less to the high frequencies. It shows that 

for the three cases considered, the peak values of 𝑋1_max are found at a similar exciting 
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frequency and are almost the same. However, at a prescribed frequency between Ω ≈

0.96  and the peak frequency, a larger 𝛼  generally leads to a larger maximum 

displacement 𝑋1_max. This is due to the fact that with an increasing 𝛼, the linear stiffness 

𝐾1  decreases but the nonlinear stiffness 𝐾2  increases so that there is stronger 

nonlinearity.  In Fig. 4.7(b), the spring stiffness ratio 𝛽 changes from 0 to 0.5 and then 

to 1, and correspondingly, 𝐾1 decreases but 𝐾2 increases. With an increasing 𝛽, there is 

a slightly lower peak value of 𝑋1_max but a higher peak frequency. Also, the response 

curve bends more to the high-frequency range. The figure shows that comparing with 

the other two cases, the case with 𝛽 = 1 has the largest value of  𝑋1_max  when the 

excitation frequency Ω is between approximately 0.96 and 1.07. 

 

Figure 4.7. Effects of (a) spring length ratio 𝛼 and (b) spring stiffness ratio 𝛽 of the nonlinear 

constraint on the maximum displacement 𝑋1_max. In (a), the solid, dashed and dotted lines for 

𝛼 = 1.0, 1.5 and 2, respectively; In (b), the solid, dashed and dotted lines are for 𝛽 = 0, 0.5 and 

1, respectively. 

Figure. 4.8 investigates the influence of nonlinear constraint on the force 

transmissibility behaviour of the system. Fig. 4.8(a) and (b) examines the influence of 

the nonlinear constraint parameters 𝛼 and 𝛽, on the force transmissibility 𝑇𝑅L to the 

LHS wall, respectively. Comparing with Fig. 4.7, it shows that 𝛼 and 𝛽 affect 𝑇𝑅L in a 

similar way as they affect 𝑋1_max. The reason is that the dimensionless transmitted force 

𝐹tL = 2𝜁𝑋1
′ + 𝑋1 is directly related to the displacement response of the mass. It shows 

that the peak value and the associated peak frequency of 𝑇𝑅L change little regardless of 

the variations in the value of 𝛼. In comparison, the changes of stiffness ratio 𝛽 can lead 

to substantial differences in the peak frequency of 𝑇𝑅L. Fig. 4.8(c) and (d) examine the 

influence of parameters 𝛼 and 𝛽 of the nonlinear constraint on 𝑇𝑅R, representing the 

level of force transmission to the RHS wall. It shows that with  𝛼 increasing from 1 to 

1.5 and then to 2, the peak value of 𝑇𝑅R also increases but the corresponding peak 

frequency is similar for the three cases.  Fig. 4.8(d) shows that as the spring stiffness 
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ratio 𝛽 changes from 0 to 1, the peak value of 𝑇𝑅𝑅 increases significantly. In summary, 

a lower value of 𝛼 is beneficial for having a low transmissibility 𝑇𝑅L and 𝑇𝑅R. A small 

value of stiffness ratio 𝛽 may assist in reducing the peak value of 𝑇𝑅R, but it can lead 

to a higher peak value of 𝑇𝑅L. 

 

Figure 4.8. Effects of spring length ratio 𝛼 and spring stiffness ratio 𝛽 of the nonlinear constraint 

on 𝑇𝑅L and 𝑇𝑅R, respectively. In (a) and (c), the solid, dashed and dotted lines for 𝛼 = 1.0, 1.5 

and 2, respectively; In (b) and (d), the solid, dashed and dotted lines are for 𝛽 = 0, 0.5 and 1, 

respectively. Symbols: RK results. 

Figure. 4.9 studies the influence of nonlinear constraint parameters 𝛼 and 𝛽 on the 

vibration power flow behaviour. Fig. 4.9(a) and (b) shows that with the variations of the 

values of 𝛼 and 𝛽 for the considered cases, there are very small changes in the peak 

values of time-averaged input power 𝑃̅in. Comparing with Cases one and two, Case 

three with 𝛼 = 2  can lead to a larger 𝑃̅in  when the excitation frequency Ω  locates 

between approximately 0.96 and 1.1. Fig. 4.9(b) shows that the addition of the lateral 

springs with 𝛽 increases from 0 to 1 can shift the peak frequency to the right. Fig. 4.9(c) 

and (d) shows the variations of power dissipation ratio 𝑅ac by the constraint for the 

cases considered. It is interesting to note that a larger value of 𝛼 can usually result in a 

larger portion of time-averaged input power dissipated by the damper in the constraint. 
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However, the peak value of 𝑅ac for Cases one, two and three cases are similar. Fig. 

4.9(d) shows that a stronger lateral spring stiffness with 𝛽 = 1 (Case six) can lead to a 

larger 𝑅ac between Ω = 0.96 and Ω =1.07. However, there is a lower peak value of 𝑅ac, 

comparing with Case four with the absence of the lateral springs and also Case five with 

𝛽 = 0.5. 

 

Figure 4.9. Effects of spring length ratio 𝛼 and spring stiffness ratio 𝛽 of the nonlinear constraint 

on 𝑃̅in  and 𝑅ac . In (a) and (c), the solid, dashed and dotted lines for 𝛼 =  1.0, 1.5 and 2, 

respectively; In (b) and (d), the solid, dashed and dotted lines are for 𝛽 = 0, 0.5 and 1, 

respectively. Symbols: RK results. 

 

4.3. A 2DOF impact oscillator with a linear or nonlinear constraint 

4.3.1. Mathematical modelling 

In this section, the dynamics and vibration transmission characteristics of 2DOF 

impact oscillators with linear or nonlinear QZS constraints are investigated. Fig. 4.10(a) 

provides a schematic representation of system comprising two SDOF oscillators 

coupled via a linear spring with stiffness 𝑘3 and damper with a damping coefficient 𝑐3. 

A primary oscillator consists of the primary mass 𝑚1 subject to a harmonic excitation 
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𝑓0 cos𝜔𝑡, a spring with stiffness coefficient 𝑘1 and a viscous damper 𝑐1. A secondary 

oscillator has the secondary mass 𝑚2, a viscous damper of damping coefficient 𝑐2, and 

a linear spring with stiffness coefficient  𝑘2 . The constraint can either be a linear 

constraint with spring stiffness 𝑘h  and damping coefficient 𝑐h  or a nonlinear QZS 

constraint with an additional pair of springs with stiffness coefficient of 𝑘v, as shown in 

Fig. 4.10(b) and (c), respectively. It is assumed that both two masses can move 

horizontally without frictions. The equilibrium position of two masses, where the 

springs 𝑘1, 𝑘2 and 𝑘3 are un-stretched and 𝑥1 = 𝑥2 = 0, is set as reference with the 

initial gap between 𝑚1 and the constraint being 𝑥𝑐. 
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Figure 4.10. A 2DOF impact oscillator with a linear or nonlinear constraint. (a) A schematic 

representation, (b) a linear constraint and (c) a nonlinear constraint.   

For the coupled oscillators with linear or nonlinear constraints, the general dynamic 

governing equation can be written in a matrix form as 

[
𝑚1 0
0 𝑚2

] {
𝑥̈1
𝑥̈2
} + [

𝑐1 + 𝑐3 −𝑐3
−𝑐3 𝑐2 + 𝑐3

] {
𝑥̇1
𝑥̇2
} + [

𝑘1 + 𝑘3 −𝑘3
−𝑘3 𝑘2 + 𝑘3

] {
𝑥1
𝑥2
} + {𝑓𝑐(𝛿, 𝛿̇)

0
} =

{
𝑓0 cos𝜔𝑡 

0
}.  (4.21) 

where 𝛿 = 𝑥1 − 𝑥𝑐  . Here the new non-dimensional parameters are introduced as 

𝜔2 = √
𝑘2

𝑚2
,    𝜁2 =

𝑐2

2𝑚2𝜔2
,    𝑋2 =

𝑥2

𝑥𝑐
,     𝛾 =

𝜔2

𝜔1
,     𝜇 =

𝑚2

𝑚1
,     𝜅 =

𝑘3

𝑘1
,      𝜖 =

𝑐3

𝑐1
, 

where 𝜔2 and 𝜁2 represent the undamped natural frequency and the damping ratio of 

the secondary oscillator, respectively, 𝑋2 denotes the dimensionless displacement of the 

secondary mass, 𝛾 is the undamped natural frequency ratio between primary and the 

secondary oscillator, 𝜇 is the mass ratio,  𝜅 and 𝜖 are the dimensionless stiffness and 
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damping ratios for the interfacial spring and damper, respectively. By using them and 

the previously defined parameters, the dimensionless governing equations are  

[
1 0
0 𝜇

] [
𝑋1
′′

𝑋2
′′] + [

2𝜁1(1 + 𝜖) −2𝜁1𝜖
−2𝜁1𝜖 2(𝜇𝜁2𝛾 + 𝜁1𝜖)

] [
𝑋1
′

𝑋2
′ ] + [

1 + 𝜅 −𝜅
−𝜅 𝜇𝛾2 + 𝜅

] [
𝑋1
𝑋2
] +

{
𝐹c(𝛥, 𝛥′)

0
} = {

𝐹ex
0
},                (4.22) 

where 𝛥 = 𝑋1 − 1 as defined previously, 𝐹ex = 𝐹0 cosΩ𝜏 and 𝐹c(𝛥, 𝛥
′) = 𝐹LC for the 

nonlinear force from the linear constraint case and 𝐹c(𝛥, 𝛥′) = 𝐹NC for that generated 

by the nonlinear constraint, respectively. Considering the steady-state periodic response 

of the system with oscillation frequency Ω, the displacement and velocity responses 

corresponding to the j-th (𝑗 = 1 or 2) coordinate can be approximated by 𝑁-harmonics:     

𝑋𝑗 = 𝑋̂(𝑗,0) + ∑ (𝑋̂(𝑗,2𝑛−1) cos 𝑛Ω𝜏 + 𝑋̂(𝑗,2𝑛) sin𝑛Ω𝜏)
𝑁
𝑛=1 = ℜ{∑ 𝑅̃(𝑗,𝑛)

𝑁
𝑛=0 𝑒i𝑛Ω𝜏},             

(4.23a) 

𝑋𝑗′ = ∑ 𝑛Ω(−𝑋̂(𝑗,2𝑛−1) sin 𝑛Ω𝜏 + 𝑋̂(𝑗,2𝑛) cos𝑛Ω𝜏)
𝑁
𝑛=1 = ℜ{∑ i𝑛Ω𝑅̃(𝑗,𝑛)

𝑁
𝑛=0 𝑒i𝑛Ω𝜏},           

(4.23b) 

where 𝑋̂(𝑗,2𝑛−1)  and 𝑋̂(𝑗,2𝑛)  provide the coefficients of the 𝑛 -th harmonic, 𝑅̃  is the 

corresponding complex coefficient, and ℜ denotes the operation of taking the real part 

of a complex number. The nonlinear force generated by the constraint can then be 

obtained by using Fourier series expansion: 

𝐹c(𝛥, 𝛥′) = 𝑄̂(𝑗,0) + ∑ (𝑄̂(𝑗,2𝑛−1) cos 𝑛Ω𝜏 + 𝑄̂(𝑗,2𝑛) sin𝑛Ω𝜏)
𝑁
𝑛=1 =

ℜ{∑ 𝑄̃(𝑗,𝑛)
𝑁
𝑛=0 𝑒i𝑛Ω𝜏},     (4.24a) 

𝐹ex = ℜ{∑ 𝑆̃(𝑗,𝑛)
𝑁
𝑛=0 𝑒i𝑛Ω𝜏}.                                 (4.24b) 

Note that analytical derivation of the Fourier coefficients of the nonlinear constraint 

force 𝐹c(𝛥, 𝛥′) is feasible when the number of the order 𝑁  is small. When a large 

number of harmonics are considered, the AFT technique can be employed for numerical 

determinations (Von Groll and Ewins, 2001). By inserting Eqs. (4.23) and (4.24) into 

Eq. (4.22) and balancing the coefficients of the 𝑛-th (0 ≤  𝑛 ≤ 𝑁) harmonic terms, we 

have: 

[𝑫̃𝒏]{𝑹̃𝒏} = {𝑺̃𝒏} − {𝑸̃𝒏},                                       (4.25) 

where the dynamic stiffness matrix for the 𝑛-th harmonic is 
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[𝑫̃𝒏] = −(𝑛Ω)
2 [
1 0
0 𝜇

] + i(𝑛Ω) [
2𝜁1(1 + 𝜖) −2𝜁1𝜖
−2𝜁1𝜖 2(𝜇𝜁2𝛾 + 𝜁1𝜖)

] + [
1 + 𝜅 −𝜅
−𝜅 𝜇𝛾2 + 𝜅

],           

(4.26) 

{𝑹̃𝒏} = {𝑅̃(1,𝑛), 𝑅̃(2,𝑛) }
T

,  {𝑺̃𝒏} = {𝑆̃(1,𝑛), 𝑆̃(2,𝑛) }
T

 and {𝑸̃𝒏} = {𝑄̃(1,𝑛), 𝑄̃(2,𝑛) }
T

. By 

rewriting the balancing conditions for all the harmonics (𝑛 = 0,1,… ,𝑁), we have 

[
 
 
 
𝐷̃0 0

0 𝐷̃1

⋯ 0
⋯ 0

⋮ ⋮
0 0

⋱ ⋮
⋯ 𝐷̃𝑁]

 
 
 

{
 

 
𝑅̃0
𝑅̃1
⋮
𝑅̃𝑁}
 

 
=

{
 

 
𝑆̃0 − 𝑄̃0
𝑆̃1 − 𝑄̃1

⋮
𝑆̃𝑁 − 𝑄̃𝑁}

 

 
.                      (4.27) 

This equation can be transformed into a total number of 2(2𝑁 + 1) real nonlinear 

algebraic equations, which can then be solved using the Newton-Raphson technique in 

an iterative way. To track the solution path with variations of parameters, pseudo-

arclength continuations are employed, which have been illustrated in chapter 3. 

Consequently, the system response and vibration transmission within the system can be 

determined and quantified.  

4.3.2. Vibration transmission analysis 

The force transmissibility can be defined as the maximum magnitude of the 

transmitted force at an interested point in the system to that of the input force: 

𝑇𝑅S =
max( |𝜅(𝑋1−𝑋2)+2𝜁1𝜖(𝑋1

′−𝑋2
′)|)

𝐹0
,                         (4.28a)  

  𝑇𝑅L =
max( |2𝜁1𝑋1

′+𝑋1|)

𝐹0
,                                    (4.28b)  

   𝑇𝑅C =
max( |𝐹𝑐(𝛥,𝛥

′)|)

𝐹0
,                                      (4.28c) 

for the force transmissibility to mass 𝑚2, to the LHS wall of the primary oscillator, to 

the constraint, respectively. The dimensionless transmitted force to mass 𝑚2 is 𝐹ts =

𝜅(𝑋1 − 𝑋2) + 2𝜁1𝜖(𝑋1
′ − 𝑋2

′). 

The dimensionless steady-state time-averaged input power into the system is 

𝑃̅in ≈
1

𝜏𝑝
∫ 𝑋1

′𝐹0 cosΩ𝜏
𝜏0+𝜏𝑝
𝜏0

d𝜏 =
Ω𝐹0𝑋̂(1,2)

2
,                      (4.29) 

where Eq. (4.23b) was used for approximation of velocity 𝑋1′ , the averaging time 𝜏𝑝 =

2𝜋/Ω, i.e., one oscillation cycle, and the orthogonal properties of the trigonometric 
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functions are used. The steady-state time-averaged dissipated powers by the dampers 

are 

𝑃̅d1 =
1

𝜏𝑝
∫ 2𝜁1𝑋1

′2𝜏0+𝜏𝑝
𝜏0

d𝜏,    𝑃̅d2 =
1

𝜏𝑝
∫ 2𝜇𝜁2𝛾𝑋2

′ 2𝜏0+𝜏𝑝
𝜏0

d𝜏, (4.30a, 4.30b)                                          

𝑃̅d3 =
1

𝜏𝑝
∫ 2𝜁1𝜖(𝑋2

′ − 𝑋1
′)2

𝜏0+𝜏𝑝
𝜏0

d𝜏,                        (4.30c) 

 𝑃̅d𝑐 =
1

𝜏𝑝
∫ 2𝜁1𝜌(𝛥′𝑈(𝛥))

2𝜏0+𝜏𝑝
𝜏0

d𝜏.                         (4.30d) 

Note that the corresponding instantaneous dissipated powers are expressed by 𝑃d1 =

2𝜁1𝑋1
′2 , 𝑃d2 = 2𝜇𝜁2𝛾𝑋2

′ 2 , 𝑃d3 = 2𝜁1𝜖(𝑋2
′ − 𝑋1

′)2  and  𝑃dc = 2𝜁1𝜌(𝛥′𝑈(𝛥))
2

.  The 

power dissipation ratios are then defined as  

𝑅d1 =
𝑃̅d1

𝑃̅in
,      𝑅d2 =

𝑃̅d2

𝑃̅in
,     𝑅d3 =

𝑃̅d3

𝑃̅in
,     𝑅dc =

𝑃̅dc

𝑃̅in
.  (4.31a-4.31d) 

When the time-averaged power flow is considered over one cycle of a periodic response, 

it follows that 𝑅d1 + 𝑅d2 + 𝑅d3 + 𝑅dc = 1, in accordance with the principle of energy 

balance. It is noted that these variables provide a relative portion of vibration energy 

transmitted to various subsystems of the 2DOF impact oscillator. Over a cycle of 

periodic oscillation, the time-averaged transmitted power 𝑃̅t  to mass 𝑚2  should be 

entirely dissipated by the damper 𝑐2, therefore we have 𝑃̅t = 𝑃̅d2. Consequently, the 

level of vibration transmission within the system can be quantified using power flow 

variables. 

4.3.3. A 2DOF impact oscillator with a linear constraint 

Figures. 4.11, 4.12 and 4.13 investigate the effects of the linear constraint on the 

steady-state response, the force transmission and power flow behaviour of the system, 

respectively. The second-order HB-AFT results with different lines are compared with 

fourth-order RK method denoted by symbols. The system parameters are set as 𝜁1 =

𝜁2 = 0.01, 𝜂 = 1, 𝛾 = 1, 𝜇 = 1, 𝜅 = 1, 𝜖 = 1, and 𝐹0 = 0.5. In the examination of the 

parameter 𝜆, four possible values are selected with 𝜆 = 0, 0.5, 1 and 2, while setting 

𝜌 = 0. The corresponding results are represented by solid lines and circles, dashed lines 

and the triangles, dotted lines and squares as well as dash-dot lines and rhombuses, 

respectively. When studying the effect of parameter 𝜌, four values are used with 𝜌 = 0, 

1, 2 and 5 while setting 𝜆 = 2, which are shown by solid lines and circles, dashed lines 

and the triangles, dotted lines and squares as well as dash-dot lines and rhombuses, 

respectively. 
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Figure 4.11. Effects of the linear constraint on 𝑋1_max and |𝑋1 −𝑋2|max. In (a) and (b), the 

solid, dashed, dotted and dash-dot lines for 𝜆 = 0, 0.5, 1 and 2, respectively; In (c) and (d), the 

solid, dashed, dotted and dash-dot lines are for 𝜌 = 0, 1, 2 and 5, respectively. Symbols: RK 

results. 

Figure. 4.11 examines the influence of the linear constraint on the maximum 

steady-state displacement response 𝑋1_max of the primary mass 𝑚1 and the amplitude 

of the relative displacement between the masses |𝑋1 − 𝑋2|max . The effects of the 

constraint stiffness 𝜆 are considered in Fig. 4.11(a) and (b) while those of the constraint 

damping 𝜌  studied in 4.11(c) and (d). Two resonance peaks can be found in each 

response curve of 𝑋1_max as shown in Fig. 4.11(a) and (c). By carrying out a modal 

analysis of the un-constrained system with = 𝜌 = 0 , it can be shown that the first peak 

of 𝑋1_max corresponds to the in-phase mode, while the second is associated with the out-

of-phase mode. Fig. 4.11(a) shows that as the constraint stiffness ratio 𝜆 increases from 

0 to 2, both resonance peaks of each response curve 𝑋1_max bend towards the high-

frequency range. Correspondingly, there is a substantial reduction in the first peak value, 

but a slight increase in the second peak value. For the relative displacement amplitude, 

Fig. 4.11(b) shows that there is only one peak in the curve  |𝑋1 − 𝑋2|max when 𝜆 = 0, 

but when 𝜆 changes to 0.5, 1 or 2, two extra peaks are generated in the frequency range 

(𝜆 = 2) 

(𝜆 = 2) 
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from Ω ≈ 0.8 to Ω ≈ 1.2.  It shows that its first peak near Ω =0.89 becomes higher as 

the stiffness ratio 𝜆 increases. At the same time, its second and third peaks bend towards 

high frequencies with larger peak value. Physically, when there is a higher constraint 

stiffness, the primary mass 𝑚1 is further restrained from moving to the right while at 

the same time the second mass is not constrained, resulting in a larger relative 

displacement. Fig. 4.11(c) and (d) studies the effects of damping in the linear constraint. 

Fig. 4.11(c) shows that with the increase of constraint damping ratio 𝜌 from 0 to 5, there 

may be a significant reduction in the first peak value of 𝑋1_max , and small changes in 

its second peak. Fig. 4.11(d) shows that the increase in the damping ratio 𝜌 has very 

small influence on the first peak of |𝑋1 − 𝑋2|max  near Ω ≈0.89. In comparison, the 

second and third peak values of each curve reduce substantially, suggesting the 

suppression of vibrations near the resonance. It demonstrates that the damping in the 

linear constraint can effectively reduce the peak displacement responses of the impact 

oscillator. 

Figure. 4.12 investigates the influence of the stiffness ratio 𝜆 and the damping ratio 

𝜌 of the linear constraint on force transmissibility 𝑇𝑅L and 𝑇𝑅S for the LHS wall and 

the secondary mass, respectively. Fig. 4.12(a) and (b) shows two peaks in each curve of 

𝑇𝑅L, but there may be three peaks in each curve of 𝑇𝑅S when 𝜆 ≠ 0. An increase in the 

linear constraint stiffness ratio 𝜆 from 0 to 2 can lead to bending of the peaks in the force 

transmissibility curves to the high frequencies. The increase in the value of 𝜆 can also 

result in the reduction of the first peak force transmissibility 𝑇𝑅L to the LHS wall, but 

large increases in the first and second peak values of 𝑇𝑅S  to mass 𝑚2 . This 

characteristic is in correspondence with the variations of displacement responses of 

𝑋1_max and |𝑋1 − 𝑋2|max, as suggested by Eq. (4.28) for the definitions of 𝑇𝑅L and 𝑇𝑅S. 

The figure also shows that the stiffness ratio has a much smaller influence on the second 

peak of 𝑇𝑅L and the third peak of 𝑇𝑅S, both associated with the out-of-phase mode of 

the system.  Fig. 4.12(c) and (d) examines the effects of damping ratio 𝜌  of the 

constraint on 𝑇𝑅L and 𝑇𝑅S. It shows that the increase of 𝜌 from 0 to 5 mainly reduces 

the first peak value of 𝑇𝑅L and the second peak value of 𝑇𝑅S in the vicinity of Ω ≈ 1.1. 

It shows that a larger linear damping ratio 𝜌 is beneficial for the mitigation of force 

transmission between the two masses when excited in the neighbourhood of Ω ≈ 1.1.   
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Figure 4.12. Effects of the linear constraint on force transmissibility 𝑇𝑅L and 𝑇𝑅S . In (a) and 

(b), the solid, dashed, dotted and dash-dot lines for 𝜆 = 0, 0.5, 1 and 2, respectively; In (c) and 

(d), the solid, dashed, dotted and dash-dot lines are for 𝜌 = 0, 1, 2 and 5, respectively. Symbols: 

RK results. 

Figure. 4.13(a) and (b) examines the effects of stiffness ratio  𝜆  of the linear 

constraint on the time-averaged transmitted power 𝑃̅t to secondary mass 𝑚2 and the 

time-averaged dissipated power 𝑃̅d3 at the interface, respectively.  Fig. 4.13(a) shows 

that with the increase of the stiffness ratio 𝜆 from 0 to 2, both peaks in each curve of 𝑃̅t 

bend towards the high-frequency range. As 𝜆  increases, the first peak value of 𝑃̅t 

slightly reduces and its second peak value changes little. Fig. 4.13(b) shows that the 

addition of the linear constraint stiffness can lead to a much higher level of power 

dissipation at the interface between Ω ≈ 0.86 and Ω ≈ 1.1, compared with that of the 

un-constrained system. The reason is that with the constraint, there is correspondingly 

a larger amplitude for the relative displacement |𝑋1 − 𝑋2|𝑚𝑎𝑥. Consequently, there is a 

larger amount of time-averaged dissipated power 𝑃̅d3 at the interface. Fig. 4.13(c) and 

(d) investigates the influence of the damping level in the linear constraint on 𝑃̅t and 𝑃̅d3 , 

respectively. It shows that the increase in the damping ratio 𝜌 of the constraint from 0 

to 5 can lead to reductions in the two peak values of 𝑃̅t, suggesting lower vibration 

(𝜆 = 2) (𝜆 = 2) 
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energy transmission to mass 𝑚2.  At the same time, there are also a decreasing second 

and the third peak values of power dissipation 𝑃̅d3 at the interface. By comparing with 

Fig. 4.12(b), it is shown that a larger linear stiffness ratio may increase the force 

transmissibility to the secondary mass, but can reduce the time-averaged power 

transmission. The characteristic illustrates that the use of force transmissibility and 

power flow to measure vibration transmission level may lead to different evaluation 

outcomes. 

 

Figure 4.13. Effects of the linear constraint on 𝑃̅t and 𝑃̅d3. In (a) and (b), the solid, dashed, dotted 

and dash-dot lines for 𝜆 = 0, 0.5, 1 and 2, respectively; In (c) and (d), the solid, dashed, dotted 

and dash-dot lines are for 𝜌 = 0, 1, 2 and 5, respectively. Symbols: RK results. 

Figure. 4.14 further investigates the reasons for the significant change in the force 

transmissibility 𝑇𝑅S and power flow dissipation 𝑃̅d3  arising from the addition of the 

constraint in the frequency range between Ω ≈ 0.9 and Ω = 1.1. The system is excited 

at Ω = 1.0  and the time histories of the steady-state displacement response, 

dimensionless transmitted force to mass 𝑚2 and the instantaneous dissipated power 𝑃d3 

are obtained. Fig. 4.14(a), (b) and (c) is for the system without the constraint with 𝜆 =

0 while Fig. 4.14(d), (e) and (f) for the coupled system with linear spring constraint with 

𝜆 = 1. The other system parameters are set as 𝜌 = 0, 𝜁1 = 𝜁2 = 0.01, 𝛾 = 1, 𝜇 = 1, 𝜅 =

(𝜆 = 2) (𝜆 = 2) 
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1, 𝜖 = 1 and 𝐹0 = 0.5 . Fig. 4.14(a) shows that the two masses move in an 

approximately synchronous manner, and their relative displacement 𝑋1 − 𝑋2 is of low 

amplitude. In comparison, Fig. 4.14(d) shows that the addition of the linear constraint 

changes the phase angle between displacements 𝑋1  and 𝑋2 , and consequently, the 

relative displacement 𝑋1 − 𝑋2 has a much higher amplitude.  Fig. 4.14(b) and (e) shows 

that the amplitude of the transmitted force 𝐹ts is increased from approximately 0.24 to 

0.5 by the addition of the linear constraint, indicating a larger transmitted force to the 

secondary system. Fig. 4.14(c) and (f) shows that with the inclusion of the linear 

constraint, the amplitude of the dissipated power 𝑃d3  increases. Over an oscillation 

cycle, there is more energy dissipated at the interface. As a result, there is a much higher 

amount of the time-averaged dissipated power 𝑃̅d3  arising from the addition of the 

linear constraint.  

 

Figure 4.14. Effects of the linear constraint on displacement response, 𝐹ts and 𝑃d3 at Ω = 1.0 for 

𝜆 = 0  in (a)-(c) and for 𝜆 = 1  in (d)-(f). (a) and (d): displacement response; (b) and (e): 

transmitted force 𝐹ts; (c) and (f): 𝑃d3 . For (a) and (d), the solid, dashed and dotted lines for 𝑋1, 

𝑋2, and 𝑋1 − 𝑋2 respectively. 
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4.3.4. A 2DOF impact oscillator with a QZS nonlinear constraint 

Figures. 4.15, 4.16 and 4.17 examine the influence of the nonlinear constraint on 

the steady-state response, the force transmission and power flow behaviour of the 2DOF 

impact oscillator. The system parameters are set as 𝜌 = 0, 𝜂 = 1, 𝜁1 = 0.01, 𝜁2 =

0.01, 𝛾 = 1, 𝜇 = 1, 𝜅 = 1, 𝜖 = 1, and 𝐹0 = 0.5 . In Case one, the system is not 

constrained with 𝐾1 = 0 and 𝐾2 = 0. In Cases two and three, the constraint stiffness 

ratio 𝜆  is set as 0.2 and 1, respectively, while 𝛼 = 2  and 𝛽=1. The nonlinear QZS 

constraint is therefore characterised by a purely cubic nonlinear restoring force term so 

that 𝐾1 = 0  with 𝐾2 = 0.2  and  𝐾2 = 1 , respectively. Case four considers a linear 

constraint with 𝐾1 = 1, 𝐾2 = 0 (𝜆 = 1), used for comparison. The second-order HB-

AFT results are represented by different lines and the numerical integration results 

based on the fourth-order Runge-Kutta (RK) method are denoted by symbols. The 

results of Cases one to four are represented by solid lines and circles, dashed lines and 

the triangles, dotted lines and squares as well as dash-dot lines and rhombuses, 

respectively.  

  

Figure 4.15. Effects of the nonlinear constraint on the maximum displacement 𝑋1_max  and 

|𝑋1 − 𝑋2|max. the solid, dashed and dotted lines for 𝐾2  = 0, 0.2 and 1 with 𝐾1 = 0, respectively. 

The dash-dot line is for 𝐾1 = 1 and 𝐾2  = 0. Symbols: RK results. 

Figure. 4.15(a) and (b) investigates the effects of the nonlinear constraint on the 

maximum steady-state displacement response 𝑋1_max of the primary mass 𝑚1 and the 

relative displacement amplitude of the masses |𝑋1 − 𝑋2|max, respectively. Fig. 4.15(a) 

shows that compared with the un-constrained system (Case one), the addition of the 

nonlinear constraint in Cases two and three bends the resonance peaks towards the high-

frequency range. As 𝐾2 increases from 0, to 0.2 and then to 1, the first peak value of 

𝑋1_max reduces significantly but the second peak value increases slightly. A comparison 

of Case three with 𝐾2 = 1  and Case four with 𝐾1 = 1  shows that the nonlinear 
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constraint can effectively reduce the first peak value of the 𝑋1_max . For relative 

displacement amplitude |𝑋1 − 𝑋2|max, Fig. 4.15(b) shows only one peak exists in Case 

one for the un-constrained system, but two peaks in Cases two and three, for the system 

with the nonlinear constraint.  It also shows that the introduction of the nonlinear 

constraint can lead to a large peak value of |𝑋1 − 𝑋2|max near Ω = 1.1, the in-phase 

mode of the un-constrained system. The reason is that with the nonlinear constraint, the 

primary mass 𝑚1 is further restrained while the second mass is not constrained, leading 

to a large relative displacement. With the increase of 𝐾2 from 0.2 to 1, there is a small 

increase in the peak value of the relative displacement |𝑋1 − 𝑋2|max near the out-of-

phase mode of the system without the constraint. By comparing the results associated 

with the linear constraint case and the nonlinear constraint cases, the figure shows that 

the inclusion of the nonlinear constraint can provide a stronger restraint to limit the 

dynamic response of the system. It can lead to further bending of the response peaks to 

the high-frequency range, as well as the generation of higher peak values of 

|𝑋1 − 𝑋2|max.  

Figure. 4.16(a) and (b) examines the influence of the nonlinear constraint on the 

force transmissibilities 𝑇𝑅L  and 𝑇𝑅S  for the LHS wall and the secondary mass 𝑚2 , 

respectively. In Case one, for the coupled oscillators without any constraint, Fig. 4.16(a) 

shows two peaks in the curve of 𝑇𝑅L, with the first corresponds to the in-phase mode 

and the second to the out-of-phase mode, respectively. With the use of the nonlinear 

constraint in Cases two and three, the first peak of 𝑇𝑅L twists to the higher frequencies 

and the corresponding peak value reduces as 𝐾2 changes from 0.2 to 1. Its second peak 

associated with the out-of-phase mode also bends slightly to the right but there is less 

change in the peak value. When comparing the nonlinear constraint case with 𝐾2 = 1 

and the linear constraint case with 𝐾1 = 1, it is shown that the nonlinear constraint case 

yields a lower first peak value of 𝑇𝑅L.  Fig. 4.16(b) shows only one peak value of 𝑇𝑅S, 

for the un-constrained system, two peaks of 𝑇𝑅S for each nonlinear constraint case and 

three peaks for the linear constraint case. An increase in the value of 𝐾2 of the nonlinear 

constraint can bend the peaks in the curve of 𝑇𝑅S to the high-frequency range. However, 

the peaks of force transmissibility 𝑇𝑅S to mass 𝑚2 associated with the two considered 

nonlinear constraint cases are of similar heights. By a comparison between Case three 

(𝐾1 = 0, 𝐾2 = 1), and Case four (𝐾1 = 1, 𝐾2 = 0), it shows that the introduction of the 

nonlinear constraint case with cubic restoring force can bring about a more significant 

hardening effect on the force transmissibility than the linear constraint case. The figure 

shows that the use of the constraint is able to reduce the peak force transmissibility of 

𝑇𝑅L, but can lead to substantial increases in the force transmissibility to the secondary 
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mass, when the excitation frequency is in the neighbourhood of the in-phase mode of 

the un-constrained system. 

 

Figure 4.16. Effects of the nonlinear constraint on the force transmissibilities 𝑇𝑅L and 𝑇𝑅S. the 

solid, dashed and dotted lines for 𝐾2  = 0, 0.2 and 1 with 𝐾1 = 0, respectively. The dash-dot line 

is for 𝐾1 = 1 and 𝐾2  = 0. Symbols: RK results. 

Figure. 4.17 investigates the effects of the nonlinear constraint on the power flow 

behaviour of the system. The characteristics of the time-averaged transmitted power 

𝑃̅t to the secondary mass 𝑚2, power dissipation ratio 𝑅d2 of the damper 𝑐2, the time-

averaged dissipated power 𝑃̅d3  at the interface and power dissipation ratio 𝑅d3 of 

damper 𝑐3, are shown in Fig. 4.17(a), (b), (c) and (d), respectively. Fig. 4.17(a) shows 

that with the introduction of the nonlinear constraint in Cases two and three, both peaks 

in each curve of 𝑃̅t bend towards the high-frequency range as the nonlinear stiffness 𝐾2 

increases from 0.2 to 1. The first peak value of 𝑃̅t reduces substantially but there is much 

less change in the second peak value. By a comparison of Case three (with 𝐾2 = 1) and 

Case four (with 𝐾1 = 1), it shows that the nonlinear QZS constraint characterised by 

purely cubic restoring force bends the first peak of 𝑃̅t more to the high-frequency range 

and reduces the peak value of vibration energy transmission to the secondary mass 𝑚2. 

Fig. 4.17(b) shows that the nonlinear constraint has a large effect on the power 

dissipation ratio 𝑅d2 when the excitation frequency is near the first natural frequency of 

the un-constrained system (i.e., Case one). The inclusion of the nonlinear constraint in 

Cases two and three reduces the portion of input power that is dissipated in the 

secondary system from Ω ≈ 0.9 to Ω ≈ 1.2. By comparing Case three with Case four, 

it is shown that the nonlinear constraint provides a lower value of power dissipation 

ratio 𝑅d2 from Ω ≈ 1.0 to Ω ≈ 1.2 while the linear constraint can yield a lower 𝑅d2 

from approximately Ω ≈ 0.85  to Ω ≈ 1.0.  
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Figure 4.17. Effects of the nonlinear constraint on the (a) power transmission 𝑃̅t, (b) power 

dissipation ratio of 𝑅d2, (c) power dissipation 𝑃̅d3 at the interface and (d) power dissipation ratio 

of 𝑅d3. The solid, dashed and dotted lines for 𝐾2  = 0, 0.2 and 1 while 𝐾1 = 0, respectively. The 

dash-dot line is for the case with 𝐾1 = 1, 𝐾2  = 0. Symbols: RK results. 

Fig. 4.17(c) shows that only one peak is observed in the curve of 𝑃̅d3 for the un-

constrained system, two peaks for the system with the nonlinear constraint, and three 

peaks for the system with the linear constraint. It shows that the peaks of 𝑃̅d3 curves 

bend to the high-frequency range as the 𝐾2 increases from 0.2 to 1, corresponding to 

Cases two and three, respectively. However, the peak values of  𝑃̅d3 remain similar for 

these two cases. It is shown that the introduction of the linear or the nonlinear QZS 

constraint can significantly increase the amount of dissipated power at the interface 

when the excitation frequency is in the vicinity of the first resonance frequency of the 

un-constrained system. This behaviour is associated with a higher relative displacement 

between masses, as created by the addition of the constraint. It also shows that the 

constraint has a much smaller influence on the second peak value 𝑃̅d3. Fig. 4.17(d) 

shows that the nonlinear constraint mainly affects the power dissipation ratio 𝑅d3 when 

the excitation frequency Ω is near the first resonance frequency of the un-constrained 

system. The addition of the nonlinear constraint in Case two and Case three effectively 
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increases the relative portion of total input power, which is then dissipated at the 

interface in the frequency range from Ω ≈ 0.9 to Ω ≈ 1.1. By comparing Case three 

with Case four, it is shown that the nonlinear constraint can lead to a larger 𝑅d3 from 

approximately Ω = 0.95 to Ω = 1.2 while the linear constraint results in a larger value 

of 𝑅d3 when the excitation frequency Ω is approximately between 0.85 and 0.95. The 

results show that the nonlinear constraint can be used to modify the vibration 

transmission within the impact oscillator when the excitation frequency is in the vicinity 

of the in-phase mode of the corresponding un-constrained system. It demonstrates that 

the potential benefits of using nonlinear constraint for vibration suppression purpose. 

 

4.4. Summary 

This chapter investigated the dynamic behaviour and the vibration transmission of 

impact oscillators. The level of vibration transmission in both SDOF and 2DOF impact 

oscillators incorporating linear or nonlinear QZS constraint was quantified using force 

transmissibility and time-averaged power flow variables based on the HB 

approximation and numerical integrations. The effects of stiffness and damping 

properties of the constraint on the response and vibration transmission were revealed. 

Main findings based on this investigation are listed as follows: 

(1) The linear constraint in the SDOF system can yield significant changes in the 

peak values and frequencies of the vibration power input and the distribution 

of power dissipation within the oscillator.  

(2) A nonlinear constraint can be used in the SDOF impact oscillator such that the 

level of force transmissibility and vibration power flow can be tailored near 

the peak frequencies.  

(3) The introduction of a linear constraint at the coupling interface of the 2DOF 

oscillator system can lead to multiple peaks in the force transmissibility to the 

secondary mass and the time-averaged dissipated power at the interface.  

(4) The use of a nonlinear QZS constraint for the 2DOF impact oscillator can 

effectively reduce the peak of time-averaged transmitted power but can 

increase the force transmissibility to the secondary mass. The use of force 

transmissibility and time-averaged power flow as measures of the vibration 

transmission level may lead to different evaluation outcomes.  
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Chapter 5                                     

Vibration transmission analysis of 

impact oscillators with nonlinear 

motion constraints created by 

DSLM 
 

The impact oscillator with multiple constraints can be used to model the dynamic 

behaviour of various engineering systems such as meshing gears with gear rattling, 

passive walking robots, electric impact platforms and energy harvesters. Some 

researchers have focused on the impact oscillator with multiple linear constraints 

(Natsiavas, 1990; Li et al., 2019), and described some new dynamic behaviour compared 

with that of the impact oscillator with a single constraint. Li and Ding (2018) proposed 

a semi-analytical method to obtain the periodic response of a vibro-impact system with 

two asymmetric clearances. In the work, the formation mechanism of chatting-impact 

periodic response with sticking motion influenced by grazing bifurcation was studied. 

Dou et al. (2020) investigated a friction-influenced Duffing oscillator with two-sided 

rigid constraints and established analytical conditions of all motions. However, there 

are very limited studies on the dynamics of impact oscillators with multiple nonlinear 

constraints. It has been mentioned in previous content that the compliant contact models 

may contain nonlinear impact force generated by elastic deformation with the contact 

stiffness varying with the material and geometric properties of the contacting objects 

(Gilardi and Sharf, 2002). The global dynamics of impact oscillator may depend on 

contact force models applied (Ajibose et al., 2010).  Moreover, previous research on the 

dynamic characteristics of impact oscillators has been focused on the displacement 

response (Kundu et al., 2012), with very few studies reported on the vibration 

transmission, especially on the quantification of vibration energy transfer and 

dissipation within such systems. In this chapter, a nonlinear motion constraint created 

by a linear spring embedded in a diamond-shaped linkage mechanism (DSLM)  is 

proposed and used in SDOF and 2DOF impact oscillators. The vibration force 

transmission and power flow characteristics of such impact oscillators with a single 

constraint or multiple nonlinear constraints are investigated by using HB-AFT method 

with numerical continuations and compared with the results obtained by the time-
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marching method. The influence of the design parameters of the proposed nonlinear 

constraints on the dynamic behaviour and vibration transmission is investigated. 

Moreover, the effects of different locations for adding the nonlinear constraints to 2DOF 

impact oscillators are studied. 

5.1. Mathematical model 

5.1.1. Nonlinear constraint based on DSLM 

Figure 5.1 shows the schematic diagram of the nonlinear motion constraint based 

on a geometrically nonlinear diamond-shaped spring (which is named D-spring 

hereafter) considered in this chapter. Fig. 5.1(a) presents the D-spring comprising a 

DSLM and a linear vertical spring of stiffness 𝑘s at its original length 𝑙s. The DSLM 

consists of four identical rigid rods AC, AD, BC, and BD, each with a fixed length of 

𝑙b, hinged end to end at points A, B, C and D. When the spring is unstretched, the angle 

between AC and AB is denoted as 𝜃0  ( 0° ≤ 𝜃0 < 90° ) and sin𝜃0 = 𝑙s (2𝑙b)⁄ . 

Correspondingly, the initial distance 𝑦0  between terminal A and B is 𝑦0 =

2𝑙bcos𝜃0. The nonlinear D-spring constraint is fixed to the right-hand wall at terminal 

A. Throughout this chapter, it is assumed that the constraint has negligible mass and 

damping.  
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Figure 5.1. Schematics of the nonlinear D-spring constraint (a) with the spring un-stretched 

and (b) subjected to a force. 

Figure 5.1(b) shows the deformed geometry of the nonlinear D-spring constraint 

with its left terminal B moved by a distance of 𝛿 due to a horizontal impact force 𝑓a. 
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The horizontal distance of point B measured from point A is denoted by 𝑦 = 𝑦0 − 𝛿. 

The angle between the AC and AB is represented by 𝜃  with cos𝜃 = 𝑦 (2𝑙b)⁄ . For 

practical applications, we have 𝜃0 < 𝜃 < 90°. The vertical spring will be extended by 

2𝑙bsin𝜃 − 𝑙s  and therefore its restoring force 𝑓s is expressed by 

𝑓s = 𝑘s(2𝑙bsin𝜃 − 𝑙s).                                        (5.1) 

The restoring force 𝑓r of the nonlinear D-spring is the reaction force corresponding to 

𝑓a  such that 𝑓r = 𝑓a , pointing to the left. From geometric and force equilibrium 

conditions of the linkage mechanism, we have 

𝑓r(𝑦) = 𝑓a = 𝑓s ∙
cos𝜃

sin𝜃
= 𝑘s(2𝑙bsin𝜃 − 𝑙s)

cos𝜃

sin𝜃
= 𝑘s𝑦(1 −

𝑙s

√4𝑙b
2−𝑦2

). (5.2) 

By introducing 𝑌0 = 𝑦0 (2𝑙b)⁄ , 𝑌 = 𝑦 (2𝑙b)⁄  and Δ = 𝛿 (2𝑙b)⁄ , it follows that 

cos𝜃0 = 𝑌0,      sin𝜃0 = 𝑙s (2𝑙b)⁄ = √1 − cos2𝜃0 = √1 − 𝑌0
2,  (5.3a, 5.3b) 

cos𝜃 = 𝑌,      sin𝜃 = √1 − 𝑌2.                       (5.3c, 5.3d) 

By using Eq. (5.3) to replace variable 𝜃  with 𝑌  in Eq. (5.2), we have the non-

dimensional restoring force: 

𝐹r(𝑌) = 𝐹a =
𝑓a

2𝑙b𝑘s
= 𝑌 (1 − √

1−𝑌0
2

1−𝑌2
),   0 < 𝑌 ≤ 𝑌0  .                  (5.4) 

This equation shows that the restoring force by the nonlinear D-spring depends on the 

dimensionless initial distance 𝑌0 and the deformed distance 𝑌 between terminals A and 

B. Therefore, it is straightforward to tailor the characteristics of the constraint to achieve 

design requirements by adjusting the initial distance 𝑌0.    

A differentiation of 𝐹r  with respect to the non-dimensional deflection Δ of the 

constraint yields the non-dimensional stiffness: 

𝐾r(Δ) =
𝑑𝐹r(Δ)

𝑑(Δ)
= −

𝑑𝐹r(𝑌)

𝑑(𝑌)
= √

1−𝑌0
2

1−𝑌2 
+ 𝑌2√1 − 𝑌0

2[1 − 𝑌2]−(3 2)⁄ − 1. (5.5) 

Figure 5.2(a) and (b) shows the variation of the restoring force 𝐹r and the nonlinear 

stiffness 𝐾r with respect to the dimensionless distance 𝑌 between the two ends of the 

nonlinear D-spring, respectively. Four different values of the dimensionless initial 

distance 𝑌0 are considered with 𝑌0 increasing from 0.3 to 0.5, to 0.7 and to 0.8. Fig. 

5.2(a) shows that for a given value of 𝑌0, the restoring force 𝐹r is a nonlinear function 
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of 𝑌. When the constraint is compressed with the distance 𝑌 between its two ends 

decreasing from 𝑌0 to 0, the value of the restoring force 𝐹r increases to a maximum point 

and then decreases to zero. Fig. 5.2(a) also shows that a larger value of 𝑌0 leads to a 

higher peak in the curve of 𝐹r. Fig. 5.2(b) shows that for a given value of 𝑌0, as the 

constraint is compressed with the value of 𝑌 reducing from 𝑌0 to 0, the value of the 

stiffness 𝐾r decreases from positive to zero, and then to negative. Here the positive 

stiffness refers to the value of constraint stiffness larger than zero while the negative 

stiffness refers to the value of stiffness smaller than zero. The negative stiffness 

characteristic is obtained by geometric nonlinearity of the DSLM under large 

deformation. It is also found that increasing 𝑌0  from 0.3 to 0.8 can lead to a larger 

positive static stiffness at 𝑌 = 𝑌0 , i.e., the un-deformed state. At a pre-determined value 

of 𝑌 close to 0, a larger value of 𝑌0 can also result in a lower value of the negative 

stiffness. 

 
Figure 5.2.  Variations of the dimensionless (a) restoring force 𝐹r  and (b) stiffness 𝐾r  with 

respect to the distance 𝑌 between the two ends of the nonlinear constraint. The solid, dashed, 

dotted and dash-dotted lines are for cases with 𝑌0  = 0.3, 0.5, 0.7 and 0.8, respectively. 

5.1.2. Impact oscillators with the nonlinear constraint 

For a general Q-DOF impact oscillator comprising the proposed nonlinear D-

spring constraint, the general non-dimensional dynamic governing equation can be 

written in a matrix form as 

  [𝑴]{𝑿′′} + [𝑪]{𝑿′} + [𝑲]{𝑿} + {𝑭𝐜(𝑋)}   = {𝑭𝐞𝐱(𝜏)},               (5.6) 

where {𝑿}, {𝑿′} and {𝑿′′} denote the displacement, velocity and acceleration response 

vectors, respectively, [𝑴] , [𝑪]  and [𝑲]  are the corresponding mass, damping and 

stiffness matrices of the linear sub-system without considering the constraints, 

respectively, {𝑭𝐜(𝑋)} is the nonlinear force arising from the constraints, {𝑭𝐞𝐱(𝜏)} =

{… , 𝐹0𝑒
iΩ𝜏, …}T is a harmonic excitation force applied to the 𝑗-th DOF (1 ≤  𝑗 ≤
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𝑄)  of the system, where 𝐹0  and Ω  are the dimensionless excitation amplitude and 

frequency, respectively, and 𝜏 is the non-dimensional time. 

The HB-AFT method with numerical continuations is used to obtain the steady-

state periodic solution. The steady-state displacement response {𝑋} and the nonlinear 

force {𝐹c(𝑋)} are firstly approximated by a truncated 𝑁-order Fourier series with a 

fundamental frequency of Ω: 

{𝑿} = {∑ 𝑅̃(1,𝑛)
𝑁
𝑛=0 𝑒i𝑛Ω𝜏, … ∑ 𝑅̃(𝑗,𝑛)

𝑁
𝑛=0 𝑒i𝑛Ω𝜏, … ∑ 𝑅̃(𝑄,𝑛)

𝑁
𝑛=0 𝑒i𝑛Ω𝜏}

T
, (5.7a)  

{𝑭𝐜(𝑋)} = {∑ 𝐻̃(1,𝑛)
𝑁
𝑛=0 𝑒i𝑛Ω𝜏, … ∑ 𝐻̃(𝑗,𝑛)

𝑁
𝑛=0 𝑒i𝑛Ω𝜏, … ∑ 𝐻̃(𝑄,𝑛)

𝑁
𝑛=0 𝑒i𝑛Ω𝜏}

T
, 

(5.7b) 

where 𝑅̃(𝑗,𝑛)and 𝐻̃(𝑗,𝑛) are the complex Fourier coefficients of the 𝑛-th order Fourier 

approximations corresponding to the 𝑗-th DOF, {𝑿′} and {𝑿′′} can then be obtained by 

taking differentiation of {𝑿} with respect to time 𝜏. The AFT technique discussed in 

Chapter 3 can be employed to determine the Fourier coefficients 𝐻̃ of the nonlinear 

force {𝑭𝐜(𝑋)}. By substituting the expressions of the response and the nonlinear force 

into Eq. (5.6) and balancing the coefficients of the corresponding harmonic terms, a 

total number of 𝑄(2𝑁 + 1) real nonlinear algebraic equations can then be established. 

The solution of those equations in the frequency domain can be found by using the 

Newton-Raphson method with the arc-length continuation illustrated in Chapter 3. 

Subsequently, the steady-state response of the system and the vibration transmission 

within impact oscillators can be determined. 

For the power flow analysis of the impact oscillator system, the steady-state time-

averaged input vibration power into the system is defined as the product of the velocity 

𝑋𝑗
′ of the 𝑗-th DOF and the harmonic excitation force 𝐹0e

iΩ𝜏 over an averaging time 

span 𝜏p. Note that the velocity 𝑋𝑗
′ can be obtained by the differentiation of 𝑋𝑗 as 𝑋𝑗

′ =

∑ i𝑛Ω𝑅̃(𝑗,𝑛)
𝑁
𝑛=0 𝑒i𝑛Ω𝜏, hence we have 

𝑃̅in =
1

𝜏p
∫ ℜ{𝑋𝑗

′}ℜ{𝐹0𝑒
iΩ𝜏𝜏0+𝜏p

𝜏0
}d𝜏 =

1

2
𝐹0ℜ{(iΩ𝑅̃(𝑗,1))

∗} ,              (5.8) 

where 𝜏0 is the starting time for averaging, the averaging time 𝜏p is set as one cycle of 

excitation with 𝜏p = 2𝜋 Ω⁄ , and the symbols ℜ and * denote the operation of taking the 

real part and complex conjugate of a complex number, respectively. 
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The maximum kinetic energy is often used as an index to evaluate the performance 

of vibration suppression systems (Xiong et al., 2003). For the impact oscillator system, 

the non-dimensional maximum kinetic energy 𝐾𝑗  associated with the 𝑗-th mass (i.e., 

𝑚𝑗) of the impact oscillator is 

𝐾𝑗 =
1

2
(|𝑋𝑗

′|
max

)2,                                              (5.9) 

where |𝑋𝑗
′|
max

 represents the maximum magnitude of the velocity of the 𝑗-th mass in 

the steady-state motion. 

5.2. SDOF impact oscillator with the nonlinear constraint  

5.2.1. Dynamic response 

In this section, the dynamics and vibration transmission characteristics of an 

impact oscillator with a SDOF subsystem and the nonlinear D-spring constraint are 

investigated. Fig. 5.3 shows the SDOF system, comprising a mass 𝑚1  excited by a 

harmonic force 𝑓0𝑒
i𝜔𝑡 , a viscous damper with damping coefficient  𝑐1  and a linear 

spring with stiffness coefficient 𝑘1. The whole system is placed in the horizontal plane. 

The equilibrium position of the mass, where the spring 𝑘1 is un-stretched, is set as a 

reference with the displacement  𝑥1 = 0 . The left-hand terminal of the nonlinear 

constraint as shown in Fig. 5.1(a) and Fig. 5.3(a), initially with its spring un-stretched, 

is placed at a distance of 𝑑  from the mass when 𝑥1 = 0 . Fig. 5.3(b) shows a 

corresponding linear constraint with a spring stiffness of 𝑘s , used for comparison. 
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Figure 5.3. (a) A SDOF impact oscillator with a nonlinear constraint, and (b) a linear spring 

constraint. 

The dimensional governing equation of the mass is  

𝑚1𝑥̈1 + 𝑐1𝑥̇1 + 𝑘1𝑥1 + 𝑓c(𝑥1) = 𝑓0𝑒
𝑖𝜔𝑡,                         (5.10) 

where 𝑓c(𝑥1) = 𝑓r(𝑦) is the leftward pointing force applied by the nonlinear D-spring 

to the mass 𝑚1, as expressed by Eq. (5.2) with 𝑦 = (𝑦0 + 𝑑 − 𝑥1)𝑈(𝛿) and 𝛿 = 𝑥1 −

𝑑 while 𝑈(𝛿) representing the Heaviside step function expressed by 
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𝑈(𝛿) = {
0,   when 𝛿 ≤ 0,
1,   when 𝛿 > 0.

                                          (5.11) 

To obtain the non-dimensional governing equation, the following parameters are 

introduced:  

𝜔1 = √
𝑘1

𝑚1
,  𝜁1 =

𝑐1

2𝑚1𝜔1
,  𝑋1 =

𝑥1

2𝑙𝑏
,  𝜆 =

𝑘s

𝑘1
,  𝐹0 =

𝑓0

2𝑙𝑏𝑘1
,  Ω =

𝜔

𝜔1
,  𝜏 = 𝜔1𝑡,  𝜂 =

𝑑

2𝑙𝑏
 ,      

(5.12a-5.12h) 

where 𝜔1 and 𝜁1 are the undamped natural frequency and the damping ratio of the linear 

subsystem without the constraint, respectively, 𝑋1  denotes the dimensionless 

displacement of the mass, 𝜆 is the spring stiffness ratio of the constraint, 𝐹0, Ω and 𝜏 are 

the dimensionless excitation amplitude, excitation frequency and the dimensionless 

time, respectively, and 𝜂 is the gap width ratio. Eq. (5.10) is transformed into the form 

of Eq. (5.6), described as 

𝑋1
′′ + 2𝜁1𝑋1

′ + 𝑋1 + 𝐹c(𝑋1) = 𝐹0𝑒
iΩ𝜏,                         (5.13) 

where 𝐹c(𝑋1) = 𝜆𝐹𝑟(𝑌(𝑋1))  represents the non-dimensional force applied by the 

nonlinear constraint, with 𝐹𝑟(𝑌(𝑋1)) expressed by Eq. (5.4), and 𝑌(𝑋1) = (𝑌0 + 𝜂 −

𝑋1)𝑈(𝑋1 − 𝜂). By using HB-AFT approximations, Eq. (5.13) can be solved and the 

steady-state dynamic response of the mass 𝑚1 can be determined.  

In Fig. 5.4, the influence of the design parameters of the nonlinear D-spring 

constraint on the steady-state response is examined. The system parameters are fixed as 

𝜁1 = 0.01, 𝜂 = 0.1 and  𝐹0 = 0.015. The response curves are obtained based on the 

second-order HB-AFT. The response amplitude and the steady-state oscillating position 

of the mass are denoted by 𝑋1_amp and 𝑅0, respectively. Here 𝑅0 is defined by Eq. 5.7(a) 

with 𝑗 = 1 and 𝑛 = 0. The displacement responses are also obtained by using a time-

domain method, i.e., the fourth-order RK method, and are denoted by symbols.  

In Fig. 5.4(a) and (b), the effects of the nonlinear constraint stiffness 𝜆  are 

investigated, by changing its value from 0 to 1 and to 2 while setting 𝜃0 = 30°. The 

response curves of the linear constraint case with 𝜆 =1 are also included for comparison. 

It shows that the HB-AFT results agree relatively well with those obtained from the RK 

method. Fig. 5.4(a) shows that the value of 𝑅0 keeps negative when the mass is engaged 

with the constraint. It shows that at a certain excitation frequency, there can be up to 

five possible solutions. Fig. 5.4(b) shows that there is a frequency interval of 0.92 <

Ω < 1.07, at the boundary of which the response curves diverge. Fig. 5.4(a) and (b) 
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shows that the curves of 𝑅0 and 𝑋1_amp associated with the nonlinear constraint cases 

firstly extend to the high-frequency range and then twist back to the low frequencies. 

This is of contrast to the linear constraint case, for which the curves only extend to the 

high-frequency range. This phenomenon is due to the fact that when the deformation of 

the constraint Δ is small, the nonlinear constraint with 𝜃0 = 30° has a higher constraint 

stiffness 𝐾r than the linear constraint, as shown by Eq. (5.5) and Fig. 5.2(b). When the 

deformation of the constraint is large, the stiffness of the nonlinear constraint can be 

smaller than that of the corresponding linear constraint. With the increase of 𝜆 from 1 

to 2 for the nonlinear constraint, the curves of 𝑅0 and 𝑋1_amp bend more to the high 

frequencies due to a larger constraint restoring force but their absolute peak values 

decrease.  

 
Figure 5.4. Effects of the spring stiffness ratio 𝜆  and the initial angle 𝜃0  of the nonlinear 

constraint on (a) and (c): the steady-state oscillating position of the mass 𝑅0 , and on (b) and (d): 

the response amplitude 𝑋1_amp. In (a) and (b), the solid, dashed and dotted lines are for nonlinear 

constraint with 𝜆 = 0, 1 and 2, respectively. The dash-dot line is for linear constraint with 𝜆 = 

1; in (c) and (d), the solid, dashed, dotted and dash-dot lines are for 𝜃0 = 20, 30, 45 and 60 

degrees, respectively. Symbols: RK results. 

In Fig. 5.4(c) and (d), the influence of the initial angle 𝜃0 of the nonlinear constraint 

is studied while setting 𝜆 = 1. With the 𝜃0 changing from 60 to 45, to 30 and to 20 



Chapter 5                   Vibration transmission analysis of impact oscillators with nonlinear motion constraints 

created by DSLM 

78 

 

degrees, the response curves of 𝑅0 and 𝑋1_amp bend more to the high-frequency range 

with lower peak values. It can be explained by Eq. (5.5) and Fig. 5.2(b) that a smaller 

value of 𝜃0 for the nonlinear constraint can provide a larger constraint stiffness, which 

leads to a stronger hardening effect on the response curve of the mass. Meanwhile, it is 

found that the peak of each curve twists back to the low frequencies. This is due to the 

decreased stiffness of the constraint when the deformation of the constraint Δ is large. 

5.2.2. Force transmissibility and vibration power flow 

When designing the nonlinear constraint, it is useful to evaluate the level of force 

transmission and also the amount of vibration power flow into the system. In this chapter, 

the force transmissibility 𝑇𝑅 is defined as the maximum magnitude of the transmitted 

force at an interested point in the system to that of the input force. The force 

transmissibility from mass 𝑚1 to the RHS wall of the nonlinear constraint is 

        𝑇𝑅R =
max( |ℜ{𝐹tR}|)

𝐹0
,                                           (5.14) 

where 𝐹tR = 𝐹c(𝑋1)  represents the non-dimensional transmitted force from mass 𝑚1 to 

the RHS wall.  

For the current system, the time-averaged input power 𝑃̅in and the maximum 

kinetic energy 𝐾1 of the mass 𝑚1 can be obtained from Eq. (5.8) and (5.9) respectively, 

with 𝑗 = 1. It is noted that according to the conservation of energy, over a cycle of 

periodic response, the input energy by the external force should be all dissipated by the 

damper 𝑐1. 

In Figs. 5.5 and 5.6, the effects of the design parameters of the nonlinear constraint 

on the force transmissibility and the vibration power flow and energy are investigated, 

respectively. The system parameters are set as 𝜁1 = 0.01, 𝜂 = 0.1 and 𝐹0 = 0.015. The 

second-order HB-AFT approximations are represented by different lines and the fourth-

order RK results are denoted by symbols. In Fig. 5.5(a), 5.6(a) and 5.6(b), the influence 

of the spring stiffness ratio 𝜆 of the nonlinear constraint is examined by changing it from 

0 to 1 and to 2, while setting 𝜃0 = 30°. A linear constraint case with  𝜆 =1 is also added 

for comparison. In Fig. 5.5(b), 5.6(c) and 5.6(d), the effects of the initial angle 𝜃0 of the 

nonlinear constraint are investigated considering four possible values of 20, 30, 45 and 

60 degrees while setting 𝜆 = 1. Fig. 5.5(a) and (b) shows that the 𝑇𝑅R  curves for 

nonlinear constraint cases have flat peaks, of contrast to the shape of the peak for the 

linear constraint case. The reason is that in the vicinity of the resonance peak, the 

displacement amplitude of the mass (or the deformation Δ for the nonlinear constraint) 
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becomes larger than the critical value at which the restoring force 𝐹c(𝑋1)  of the 

nonlinear constraint reaches it’s maximum, as shown in Eq. (5.4) and Fig. 5.2(a). As the 

magnitude of the restoring force is the same as the transmitted force to the RHS wall, 

the maximum amplitude of the transmitted force remains unchanged in a certain 

frequency band near the resonance. Consequently, the force transmissibility will have a 

flat peak. It is noted that in Fig. 5.5(a), in the nonlinear constraint case with 𝜆 = 0, there 

is no force transmission via the nonlinear constraint to the RHS wall, therefore the 

corresponding force transmissibility 𝑇𝑅R results are not shown. Fig. 5.5(a) shows that 

as the spring stiffness ratio 𝜆 of the nonlinear constraint increases from 1 to 2, both the 

peak value and the peak frequency of 𝑇𝑅R increase. By comparing the results of the 

nonlinear and linear constraint cases both with 𝜆 = 1, it is shown that the peak value of 

𝑇𝑅R for the nonlinear constraint case is much smaller than that for the linear constraint 

case. Fig. 5.5(b) shows that the increase of the initial angle 𝜃0 from 20 to 30, to 45 and 

to 60 degrees will result in a substantial reduction in the peak value of 𝑇𝑅R and its 

corresponding frequency. In summary, a lower value of 𝜆 or a higher value of 𝜃0 maybe 

beneficial for obtaining lower values of the force transmissibility 𝑇𝑅R.  

 

Figure 5.5. Effects of (a) the spring stiffness ratio 𝜆 and (b) the initial angle 𝜃0 of the nonlinear 

constraint on the force transmissibility 𝑇𝑅R. In (a), the solid, dashed and dotted lines are for 

nonlinear constraint with 𝜆 = 0, 1 and 2, respectively. The dash-dot line is for linear constraint 

with 𝜆 = 1; in (b), the solid, dashed, dotted and dash-dot lines are for 𝜃0 = 20, 30, 45 and 60 

degrees, respectively. Symbols: RK results. 

Figure 5.6 shows the effects of the design parameters of the nonlinear constraint 

on the time-averaged input power 𝑃̅in and the maximum kinetic energy 𝐾1 of the mass. 

The figure shows that the patterns of the curves for 𝑃̅in and 𝐾1 are similar.  Fig. 5.6(a) 

and (b) shows that the increase of the spring stiffness ratio 𝜆 from 0 to 1 and to 2 for the 

nonlinear constraint can shift the peaks of 𝑃̅in and 𝐾1 to the right, but their peak values 

change little. By comparing the linear and nonlinear constraint cases both with the same 

spring stiffness ratio of 𝜆 = 1, it is found that the peak frequency of 𝑃̅in for nonlinear 



Chapter 5                   Vibration transmission analysis of impact oscillators with nonlinear motion constraints 

created by DSLM 

80 

 

constraint case is lower but the peak values are of similar heights. A similar observation 

can be made on the peaks of the maximum kinetic energy curves for the linear and 

nonlinear constraint cases. Fig. 5.6(c) and (d) shows that as the initial angle 𝜃0 of the 

constraint reduces from 60 to 20 degrees, there are more extension of the curves of 𝑃̅in 

and 𝐾1 to the high frequencies. As 𝜃0 decreases, the peak frequencies of 𝑃̅in and 𝐾1 

curves increase but the peak values change little. 

 

Figure 5.6. Effects of the spring stiffness 𝜆 and the initial angle 𝜃0 of the nonlinear constraint on 

(a) and (c): the time-averaged input power 𝑃̅in, and on (b) and (d): the maximum kinetic energy 

𝐾1. In (a) and (b), the solid, dashed and dotted lines are for nonlinear constraint with 𝜆 = 0, 1 

and 2, respectively. The dash-dot line is for linear constraint with 𝜆 = 1; in (c) and (d), the solid, 

dashed, dotted and dash-dotted lines are for  𝜃0 = 20, 30, 45 and 60 degrees, respectively. 

Symbols: RK results. 

5.3. 2DOF impact oscillators with multiple nonlinear constraints 

5.3.1. The model and power flow formulations 

In this section, the dynamics and vibration transmission characteristics of two-DOF 

impact oscillators with a single constraint or multiple nonlinear constraints are 

investigated. The impact oscillator comprises two SDOF systems coupled via a linear 

interface of a spring with stiffness 𝑘3 and a damper with damping coefficient 𝑐3. The 

SDOF primary system on the left consists of the primary mass 𝑚1  subjected to a 
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harmonic excitation 𝑓0𝑒
i𝜔𝑡, a spring with stiffness coefficient 𝑘1 and a viscous damper 

𝑐1. The SDOF secondary system on the right has the secondary mass 𝑚2, a viscous 

damper of damping coefficient 𝑐2, and a linear spring with stiffness coefficient 𝑘2. The 

static equilibrium positions of the two masses, where 𝑥1 = 𝑥2 = 0 and the springs 𝑘1, 

𝑘2, 𝑘3 are un-stretched, are set as a reference. Constraints C1 and C3 are for the mass 

𝑚1 while the constraint C2 is for the mass 𝑚2. When the springs in the constraints are 

un-stretched, i.e., 𝑥1 = 𝑥2 = 0, the LHS terminals of constraints C1 and C2 are placed 

at a distance of 𝑑  to the right of masses 𝑚1  and 𝑚2 , respectively, while the RHS 

terminal of constraint C3 is located at a distance 𝑑 from mass 𝑚1 . Note that the 

constraints C1, C2, C3 can be nonlinear as shown in Fig. 5.7(b) or linear, as shown by 

Fig. 5.7(c).  

x1k1
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f0 e
iωt 

.

d
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Figure 5.7. (a) A 2DOF impact oscillator with linear or nonlinear constraints, (b) nonlinear 

constraint and (c) linear spring constraint. 

Based on the Newton’s 2nd law, the equations of the motion of the system in a 

matrix form are 

[
𝑚1 0
0 𝑚2

] {
𝑥̈1
𝑥̈2
} + [

𝑐1 + 𝑐3 −𝑐3
−𝑐3 𝑐2 + 𝑐3

] {
𝑥̇1
𝑥̇2
} + [

𝑘1 + 𝑘3 −𝑘3
−𝑘3 𝑘2 + 𝑘3

] {
𝑥1
𝑥2
} +

{
𝑓c1 − 𝑓c3
𝑓c2

} = {𝑓0𝑒
i𝜔𝑡 
0

}, (5.15) 

where 𝑓c1 and 𝑓c3 represent the forces applied by the nonlinear constraints C1 and C3 

to the mass 𝑚1 , respectively, while 𝑓c2  denotes the force applied by the nonlinear 

constraint C2 to the mass 𝑚2. For the convenience of later derivation, new parameters 

are introduced: 

𝜔2 = √
𝑘2

𝑚2
,    𝜁2 =

𝑐2

2𝑚2𝜔2
,    𝑋2 =

𝑥2

2𝑙b 
,    𝛾 =

𝜔2

𝜔1
,    𝜅 =

𝑘3

𝑘1
,     𝜖 =

𝑐3

𝑐1
,   𝜇 =

𝑚2

𝑚1
,    

(5.16a-5.16g) 

where 𝜔2 and 𝜁2 denote the undamped natural frequency and the damping ratio of the 

linear secondary system, respectively, 𝑋2 represents the non-dimensional displacement 
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of the secondary mass, 𝛾 is the undamped natural frequency ratio between primary and 

the secondary oscillator, 𝜅 and 𝜖 are the dimensionless stiffness and damping ratios for 

the interfacial spring and damper, respectively, and 𝜇 is the mass ratio. By using these 

parameters and those defined in the previous section, the non-dimensional governing 

equation of the system is 

[
1 0
0 𝜇

] {
𝑋1
′′

𝑋2
′′} + [

2𝜁1(1 + 𝜖) −2𝜁1𝜖

−2𝜁1𝜖 2(𝜇𝜁2𝛾 + 𝜁1𝜖)
] {
𝑋1
′

𝑋2
′ } + [

1 + 𝜅 −𝜅
−𝜅 𝜇𝛾2 + 𝜅

] {
𝑋1
𝑋2
} +

{
𝐹c1 − 𝐹c3
𝐹c2

} = {𝐹0𝑒
iΩ𝜏

0
}, (5.17) 

where 𝐹c1 ,  𝐹c2  and 𝐹c3  denote the non-dimensional forces applied by nonlinear 

constraint C1, C2 and C3, respectively. By the employment of HB-AFT method, the 

steady-state response of the masses can be determined. 

The effects of the constraints on the vibration transmission between the two 

subsystems and the vibration energy dissipation at the interface are of interest. The 

force transmissibility from mass 𝑚1 to the mass 𝑚2 is expressed by: 

𝑇𝑅S =
max( |ℜ{𝐹ts}|)

𝐹0
 ,                                        (5.18) 

where 𝐹ts = 𝜅(𝑋1 − 𝑋2) + 2𝜁1𝜖(𝑋1
′ − 𝑋2

′)  is the dimensionless transmitted force to 

mass 𝑚2.  

For the current system in the steady-state motion, the non-dimensional time-

averaged input power 𝑃̅in over one cycle of the periodic response is obtained by setting 

𝑗 = 1 in Eq. (5.8). The time-averaged transmitted power 𝑃̅ts to mass 𝑚2 and the time-

averaged dissipated power 𝑃̅di by the damper 𝑐3 at coupling interface are  

  𝑃̅ts =
1

𝜏𝑝
∫ 2𝜇𝜁2𝛾(ℜ{𝑋2

′})2
𝜏0+𝜏𝑝
𝜏0

d𝜏,       𝑃̅di =
1

𝜏𝑝
∫ 2𝜁1𝜖(ℜ{𝑋2

′ − 𝑋1
′})2

𝜏0+𝜏𝑝
𝜏0

d𝜏,     

(5.19a, 5.19b) 

respectively. By replacing 𝑋1
′  and 𝑋2

′  using a truncated Fourier series shown in Eq. 

(5.7a), Eq. (5.19) can be transformed into 

𝑃̅ts =
1

2
ℜ{(∑ i𝑛Ω𝑅̃(2,𝑛)

𝑁
𝑛=0 )

∗
(2𝜇𝜁2𝛾∑ i𝑛Ω𝑅̃(2,𝑛)

𝑁
𝑛=0 )} = 𝜇𝜁2𝛾|∑ i𝑛Ω𝑅̃(2,𝑛)

𝑁
𝑛=0 |

2
,           

(5.20a) 

𝑃̅di =
1

2
ℜ{[∑ i𝑛Ω(𝑅̃(2,𝑛) − 𝑅̃(1,𝑛)

𝑁
𝑛=0 )]∗[2𝜁1𝜖 ∑ i𝑛Ω(𝑅̃(2,𝑛)

𝑁
𝑛=0 − 𝑅̃(1,𝑛))]} =

𝜁1𝜖|∑ i𝑛Ω𝑁
𝑛=0 (𝑅̃(2,𝑛) − 𝑅̃(1,𝑛))|

2
 ,                             (5.20b)  
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respectively. The power dissipation ratio provides a relative portion of vibration energy 

that is dissipated within the total input energy into the system by the external force. The 

power dissipation ratio at the interface is 

  𝑅di =
𝑃̅di

𝑃̅in
.                                                 (5.21) 

By using power flow variables 𝑃̅ts, 𝑃̅di and 𝑅di, the effects of the nonlinear constraints 

on the vibration energy transmission within the system and dissipation at the interface 

can be quantified and evaluated. 

In the following Subsections 5.3.2, 5.3.3 and 5.3.4, the influence of three different 

configurations of the D-spring constraints on the dynamic response and vibration 

transmission characteristics of the 2DOF impact oscillators are investigated. The effects 

of having only constraint C1 in the impact oscillators are firstly studied. Then two other 

cases, with one having two constraints C1 and C2 and the other one having constraints 

C1 and C3 in impact oscillators are investigated. The HB-AFT method is used to obtain 

the response and power flow variables. The force transmissibility and power flow 

variables are defined by Eqs. (5.18)-(5.21). The system parameters are set as 𝜁1 = 𝜁2 =

0.01, 𝜂 = 0.1, 𝛾 = 1, 𝜇 = 1, 𝜅 = 1, 𝜖 = 1 . The HB-AFT results are presented by 

different types of lines and are compared with those obtained using the fourth-order RK 

method and denoted by different symbols. When investigating the influence of the 

spring stiffness ratio 𝜆 of the nonlinear constraint, three possible values are chosen with 

𝜆 = 0, 1 and 2 while setting the initial angle 𝜃0 = 30° and the excitation amplitude 

𝐹0 = 0.035 . A linear constraint case with 𝜆 = 1  and 𝐹0 = 0.035  is also added for 

comparison. When examining the effects of the initial angle 𝜃0  of the nonlinear 

constraint, four possible values with 𝜃0 = 20, 30, 45 and 60 degrees are selected while 

setting 𝜆 = 1 and 𝐹0 = 0.02. When studying the influence of the damping ratio 𝜁1 of 

the primary system, four cases are considered with 𝜁1 = 0.02, 0.04, 0.10 and 0.20 while 

setting 𝜆 = 1, 𝜃0 = 30° and 𝐹0 = 0.02. In the meantime, to ensure the other system 

damping coefficients remaining the same value, the ratio of the interfacial damping 𝜖 is 

chosen as 𝜖 = 1, 0.5, 0.2 and 0.1 in four cases, respectively. It is noted that to avoid the 

self-locking of the nonlinear D-spring constraint when the terminals distance 𝑌  is 

reduced to 0, the amplitude excitation force 𝐹0  should be carefully controlled. For 

instance, the value of 𝐹0 should be set less than 0.04 when 𝜆 = 1 and 𝜃0 = 30°. 

5.3.2. Use of constraint C1 only 

Here the 2DOF impact oscillators with the constraint C1 for mass 𝑚1 is considered. 

Figs. 5.8, 5.9, 5.10 and 5.11 show the effects of the parameters of the nonlinear 
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constraint on the steady-state response, the force transmission, the time-averaged power 

flow and the power dissipation ratio, respectively. The dimensionless governing 

equation shown by Eq. (5.17) is with 𝐹c2 = 𝐹c3 = 0, 𝐹c1 = 𝐹c(𝑌(𝑋1)) = 𝜆𝐹r(𝑌(𝑋1)) 

where 𝐹r(𝑌(𝑋1)) has been defined in Eq. (5.4) and 𝑌(𝑋1) = (𝑌0 + 𝜂 − 𝑋1)𝑈(𝑋1 − 𝜂).  

In Fig. 5.8, the effects of the design parameters of the nonlinear constraint C1 on 

the steady-state maximum displacement 𝑋1_max of the primary mass 𝑚1  and the 

maximum relative displacement of two masses |𝑋1 − 𝑋2|max are investigated. In Fig. 

5.8(a) and (b), the influence of the spring stiffness ratio 𝜆 of the nonlinear constraint is 

examined while in Fig. 5.8(c) and (d), the effects of the initial angle 𝜃0 of the nonlinear 

constraint are studied. Figure 5.8(a) and (c) shows two resonance peaks in each curve 

of 𝑋1_max. A modal analysis of the un-constrained system shows that the first peak of 

𝑋1_max corresponds to the in-phase mode, while the second is associated with the out-

of-phase mode. Fig. 5.8(a) shows that the response curves of 𝑋1_max diverge from the 

boundaries of the frequency intervals 0.90 < Ω < 1.08  and 1.69 < Ω < 1.78 . Fig. 

5.8(a) also shows that due to the nonlinear constraint, the first peak in each curve of 

𝑋1_max extends firstly to the right and then twists back to the left. In contrast, for the 

linear constraint case, the first peak of 𝑋1_max curve only extends to the high frequencies. 

The reason is that, with the increase in 𝑋1_max  and also the deformation Δ  of the 

nonlinear constraint, the stiffness provided by the constraint reduces from a value larger 

than the linear constraint stiffness to a value lower than that. As the nonlinear constraint 

stiffness 𝜆 increases from 1 to 2, both peaks of each curve of 𝑋1_max bend towards the 

high frequencies with a slight reduction in the first peak value but a small increase in 

the second peak value. Fig. 5.8(b) shows that for the case of the corresponding un-

constrained system with 𝜆 = 0, there is only one peak in the curve of the relative 

displacement amplitude |𝑋1 − 𝑋2|max, corresponding to the out-of-phase mode of the 

associated linear system. However, when the linear or nonlinear constraint C1 is used, 

one extra peak appears in the frequency range from Ω ≈ 0.9 to Ω ≈ 1.1. By comparing 

the nonlinear and linear constraint cases both with 𝜆 = 1, it is found that the nonlinear 

constraint can lead to a lower first peak value. As 𝜆 increases from 1 to 2, both peaks of 

|𝑋1 − 𝑋2|max curves become higher. This characteristic is due to the stronger leftward-

pointing force applied by the constraint to the primary mass 𝑚1 keeping it from moving 

more to the right. Consequently, there is a larger relative displacement. Fig. 5.8(c) 

shows that with the initial angle 𝜃0 of the nonlinear constraint reducing from 60 to 45, 

and then 30 and finally to 20 degrees, the first peak in each curve of 𝑋1_max curve bends 

more to the higher frequencies with a lower peak value. This is due to the lower 
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constraint stiffness when a larger initial angle 𝜃0 is used. The second peak of 𝑋1_max 

remains nearly unchanged for the four cases considered.  Fig. 5.8(d) shows that the 

increase of the initial angle 𝜃0 can significantly reduce the first peak of the relative 

displacement |𝑋1 − 𝑋2|max. This is because that the first peak is induced by the addition 

of the constraint. As the initial angle 𝜃0  increases, the stiffness that the constraint 

provides is lower and consequently there is a lower value of the first peak. In comparison, 

there is little change in the second peak value regardless of the variations in 𝜃0. 

 

Figure 5.8. Effects of the nonlinear constraint on (a) and (c): 𝑋1_max , and on (b) and 

(d): |𝑋1 − 𝑋2|max. In (a) and (b), the solid, dashed and dotted lines are for the nonlinear constraint 

with 𝜆 = 0, 1 and 2, respectively. The dash-dot line is for linear constraint with 𝜆 = 1; in (c) 

and (d), the solid, dashed, dotted and dash-dotted lines are for 𝜃0 = 20, 30, 45 and 60 degrees, 

respectively. Symbols: RK results. 

In Fig. 5.9, the influence of the nonlinear constraint on the force transmissibility 

𝑇𝑅S  to the secondary system is studied. Fig. 5.9(a) shows that for the case of the 

corresponding un-constrained system with 𝜆 = 0, there exists only one peak in the curve 

of 𝑇𝑅S. In comparison, for the impact oscillator with constraint C1, two peaks are found 

in each curve of 𝑇𝑅S, corresponding to the in-phase and out-of-phase modes. In Fig. 

5.9(a), by comparing linear and nonlinear constraint cases both with the same spring 

stiffness ratio 𝜆 = 1, it is found that the nonlinear constraint yields a much lower first 
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peak near Ω = 1.05, but a relatively higher second peak at Ω ≈ 1.70. It also shows that 

the increase of 𝜆 for the nonlinear constraint from 1 to 2 leads to a higher first peak. The 

increase in the spring stiffness ratio 𝜆 also bends the second peak more to the high 

frequencies with a minor increase in the peak value. Fig. 5.9(b) shows that as the initial 

angle 𝜃0 of the nonlinear constraint C1 increases from 20 to 60 degrees, there is less 

bending of the first peak of 𝑇𝑅S to the right near Ω = 1.05. The increase in the value of  

𝜃0  also leads to substantial reductions in the first peak value, but the second peak 

remains nearly unchanged. The figure demonstrates that a lower spring stiffness ratio 𝜆 

or a larger initial angle 𝜃0 of the nonlinear constraint is beneficial for the suppression 

of force transmission to mass 𝑚2 when the excitation frequency is in the vicinity of the 

in-phase mode of the un-constrained system.  

 

Figure 5.9. Effects of (a) the spring stiffness ratio 𝜆 and (b) the initial angle 𝜃0 of the nonlinear 

constraint on the force transmissibility 𝑇𝑅S. In (a), the solid, dashed and dotted lines are for 

nonlinear constraint with 𝜆 = 0, 1 and 2, respectively. The dash-dot line is for linear constraint 

with 𝜆 = 1; in (b), the solid, dashed, dotted and dash-dotted lines are for 𝜃0 = 20, 30, 45 and 60 

degrees, respectively. Symbols: RK results. 

In Fig. 5.10(a) and (b), the effects of the spring stiffness ratio 𝜆 of the nonlinear 

constraint C1 on the time-averaged transmitted power 𝑃̅ts through the interface to the 

secondary mass 𝑚2  and the time-averaged dissipated power 𝑃̅di  at the interface are 

examined, respectively. Fig. 5.10(a) shows that for the impact oscillator with nonlinear 

constraint C1, both peaks in each curve of 𝑃̅ts bend right towards the high frequencies 

as 𝜆 increases from 0 to 1, and to 2. There are slight changes in the two peak values of 

𝑃̅ts due to the changes in 𝜆. Fig. 5.10(b) shows that for the case of the corresponding 

un-constrained system with 𝜆 = 0, there is only one peak in 𝑃̅di corresponding to the 

out-of-phase mode. However, for impact oscillators with C1, one extra peak appears 

when Ω is near the in-phase mode of the un-constrained system. The reason is that the 

addition of the constraint C1 can lead to a larger amplitude of the relative displacement 
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|𝑋1 − 𝑋2|max, and consequently a larger amount of time-averaged dissipated power 𝑃̅di 

at the interface. Fig. 5.10(b) also shows that the increase of the spring stiffness ratio 𝜆 

of the nonlinear constraint can lead to more power dissipation at the interface from Ω ≈

0.86 to Ω ≈ 1.1, as the rightwards motion of the primary mass is more restrained. By 

the comparison of linear and nonlinear constraint cases both with 𝜆 = 1, Fig. 5.10(a) 

and (b) shows that the nonlinear constraint can yield a higher peak value of 𝑃̅ts and a 

smaller peak value of 𝑃̅di for the power dissipated at the interface.  

 

Figure 5.10. Effects of nonlinear constraint on (a) and (c): 𝑃̅ts, and on (b) and (d): 𝑃̅di.  In (a) and 

(b), the solid, dashed and dotted lines are for nonlinear constraint with 𝜆 = 0, 1 and 2, 

respectively. The dash-dot line is for linear constraint with 𝜆 = 1; in (c) and (d), the solid, dashed, 

dotted and dash-dotted lines are for 𝜃0 = 20, 30, 45 and 60 degrees, respectively. Symbols: RK 

results. 

Fig. 5.10(c) and (d) shows the influence of the initial angle 𝜃0 of the nonlinear 

constraint C1 on 𝑃̅ts and 𝑃̅di , respectively. Fig. 5.10(c) shows that the reduction of the 

initial angle 𝜃0  from 60 to 20 degrees can bend the first peak in each curve of 

transmitted power 𝑃̅ts more to the high frequencies with its first peak value reduced, 

suggesting lower vibration energy transmission to mass 𝑚2.  Fig. 5.10(d) shows that as 

the initial angle 𝜃0 increases, the first peak in each curve of power dissipation 𝑃̅di at the 

interface becomes lower but little difference can be found on the second peak. A 
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comparison of Fig. 5.10(c) with Fig. 5.9(b) shows that a reduction in the initial angle 𝜃0 

from 60 to 20 degrees can lead to a larger peak value of the force transmissibility 𝑇𝑅S 

but a lower amount of the peak time-averaged transmitted power to the secondary mass 

at specific excitation frequencies. This shows the importance of selecting appropriate 

indices to evaluate the level of vibration transmission in nonlinear systems. 

In Fig. 5.11, the effects of the design parameters of the nonlinear constraint on the 

power dissipation ratio 𝑅di at the interface are investigated. Fig. 5.11(a) shows that for 

the un-constrained case with 𝜆 = 0, there is a local minimum point in the curve of 𝑅di 

near its resonance, i.e., the in-phase mode. This is reasonable as the relative motion 

between the two masses is small so there is very small power dissipation. Fig. 5.11(a) 

also shows that the introduction of a linear or nonlinear constraint C1 leads to significant 

increases in the value of 𝑅di near the original local minimum. By comparing the linear 

constraint case with the corresponding nonlinear constraint case (𝜆=1), it is shown that 

the former yields a higher 𝑅di from approximately Ω = 1.05 to Ω = 1.07. However, 

the latter provides a higher portion of power dissipated at the interface between Ω ≈ 0.9 

and Ω ≈ 1.05.  An increase in the spring stiffness ratio 𝜆 of the nonlinear constraint 

from 1 to 2 can lead to a larger value of 𝑅di in the frequency band from Ω ≈ 0.9 to Ω ≈

1.1. Fig. 5.11(b) shows that as the initial angle 𝜃0 of the nonlinear constraint increases 

from 20 to 60 degrees, the value of the power dissipation ratio 𝑅di reduces substantially 

in the frequency range of  Ω ≈ 0.95 and Ω ≈ 1.1. This is due to a smaller constraint 

stiffness when increasing the initial angle of the nonlinear constraint C1. The primary 

mass is less constrained, resulting in a lower value of relative displacement 

|𝑋1 − 𝑋2|max and less amount of power dissipated at the interface. 

 
Figure 5.11. Effects of (a) the spring stiffness ratio 𝜆 and (b) the initial angle 𝜃0 of the nonlinear 

constraint on the power dissipation ratio 𝑅di. In (a), the solid, dashed and dotted lines are for 

nonlinear constraint with 𝜆 = 0, 1 and 2, respectively. The dash-dot line is for linear constraint 

with 𝜆 = 1; in (b), the solid, dashed, dotted and dash-dotted lines are for 𝜃0 = 20, 30, 45 and 60 

degrees, respectively. Symbols: RK results. 
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It should be pointed out that for the nonlinear constraint cases with 𝜆 = 2, 𝜃0 =

30°, 𝐹0 = 0.035 and 𝜆 = 1, 𝜃0 = 20°, 𝐹0 = 0.02 in Subsections 5.3.2, 5.3.3 and 5.3.4, 

there may be relatively large differences between HB-AFT approximation results and 

RK results of |𝑋1 − 𝑋2|max , 𝑇𝑅S , 𝑃̅di  and 𝑅di  near Ω ≈ 0.95 . This phenomenon is 

further explored considering the system with 𝜆 = 2 , 𝜃0 = 30°, 𝜁1 = 𝜁2 = 0.01, 𝜂 =

0.1, 𝛾 = 1, 𝜇 = 1, 𝜅 = 1, 𝜖 = 1  and 𝐹0 = 0.035 . Fig. 5.12(a) shows the bifurcation 

diagram, 5.12(b) and 5.12(c) is for the system excited at Ω = 0.94 while 5.12(d)-12(f) 

is for that excited at Ω = 0.96. The responses shown here are all obtained by using the 

RK method. Fig. 5.12(a) shows the bifurcation diagram by using a low-to-high 

frequency sweep. The response time histories 𝑦s of the primary mass are sampled using 

a sampling period of 𝑇 = 2𝜋/Ω and a starting time of 500𝑇. Fig. 5.12(b) and (e) shows 

the Poincare sections while Fig. 5.12(c) and (f) shows the frequency spectra of the 

steady-state responses at Ω = 0.94  and Ω = 0.96 , respectively, obtained based on 

Fourier transformation of the time histories of the responses. Fig. 5.12(d) shows the 

phase diagram at Ω = 0.96 . Fig. 5.12(a) shows the occurrence of bifurcations. 

Moreover, non-periodic responses can be found in the frequency range from Ω ≈ 0.94 

to Ω ≈ 0.97. Fig. 5.12(b) and (e) shows that the system excited at Ω = 0.94 and Ω =

0.96 can exhibit quasi-periodic responses. The quasi-periodic response of the system 

excited at Ω = 0.96 is further confirmed by Fig. 5.12(d) and 5.12(f). Fig. 5.12 also 

shows that large super-harmonic and noticeable sub-harmonic components appear in 

the responses. 

 
Figure 5.12. Steady-state response of the mass 𝑚1 in the 2DOF impact oscillator with nonlinear 

constraint C1 , excited at Ω = 0.94  for (b)-(c), and at Ω = 0.96  for (d)-(f). (a): bifurcation 

diagram; (b) and (e): Poincare sections; (c) and (f): frequency spectra of response displacement 

𝑋1; (d): phase diagram. 
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5.3.3. Two constraints case with C1 and C2 

Here two constraints C1 and C2 are considered to exist in the impact oscillator 

shown by Fig. 5.7. In Figs. 5.13, 5.14, 5.15 and 5.16, the effects of the design parameters 

of the nonlinear constraints on the steady-state response, the force transmission, the 

time-averaged power flow and the power dissipation ratio are examined, respectively. 

The dimensionless governing equation of the system is obtained by converting Eq. (5.17) 

with 𝐹c3 = 0, 𝐹c1 = 𝐹c(𝑌(𝑋1)) where 𝐹c(𝑌(𝑋1)) has been defined in Subsection 5.3.2, 

𝐹c2 = 𝐹c(𝑌(𝑋2)) = 𝜆𝐹r(𝑌(𝑋2))  where 𝐹r(𝑌(𝑋2))  was defined in Eq. (5.4) and 

𝑌(𝑋2) = (𝑌0 + 𝜂 − 𝑋2)𝑈(𝑋2 − 𝜂).  

In Fig. 5.13, the influence of the parameters of the nonlinear constraints C1 and 

C2 on the maximum steady-state displacement response 𝑋1_max of the primary mass 𝑚1 

and the amplitude of the relative displacement |𝑋1 − 𝑋2|max between the masses is 

investigated. In Fig. 5.13(a) and (b), the effects of the spring stiffness ratio 𝜆 of the 

nonlinear constraints are studied, while in Fig. 5.13(c) and (d), the influence of the initial 

angle 𝜃0 of the nonlinear constraints is examined. Fig. 5.13(a) shows that with C1 and 

C2, both peaks in each curve of 𝑋1_max extend firstly to the right and then the first peak 

twists back to the left near Ω = 1.1. With the increase of the spring stiffness ratio 𝜆 of 

the nonlinear constraints from 1 to 2, there is more bending of both peaks to the right. 

Fig. 5.13(b) shows that compared with the system without constraints, the use of the 

nonlinear constraints leads to larger values of  |𝑋1 − 𝑋2|max when 0.9 < Ω < 1.05 but 

lower values when 1.05 < Ω < 1.25. Based on the time-domain analysis by RK method, 

it is found that when the system is excited in the frequency range from Ω ≈ 0.9 to Ω ≈

1.05, the rightwards motion of mass 𝑚1 is constrained by C1, while the secondary mass 

𝑚2 has not moved beyond the gap width 𝜂 to engage with the constraint C2. Therefore, 

there is a large relative displacement between the masses. When 1.05 < Ω < 1.25, the 

mass 𝑚2 becomes in contact with constraint C2 and both masses are constrained from 

moving to the right, resulting in a small relative displacement. Fig. 5.13(b) also shows 

that when the spring stiffness ratio 𝜆 of the nonlinear constraint increases from 1 to 2, 

there is a significant increase in the first peak value of |𝑋1 − 𝑋2|max near Ω = 0.95. In 

contrast, the value of |𝑋1 − 𝑋2|max  is reduced in the range from Ω ≈ 1.15 to Ω ≈ 1.25 

because the responses of both masses are further restrained by a higher constraint 

stiffness. Fig. 5.13(c) shows that as the initial angle 𝜃0 increases from 20 to 30, to 45 

and to 60 degrees, the first peak of 𝑋1_max  bends less to the right but there is no 

noticeable change in the second peak. With the nonlinear constraints C1 and C2, the 

variation of 𝜃0 has little effect on the peak values of 𝑋1_max compared to the constraint 
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C1 only case in Fig. 5.8(c). Fig. 5.13(d) shows that at a given frequency from Ω ≈ 0.95 

to Ω ≈ 1.05, as the initial angle 𝜃0 increases from 20° to 60°, there are reductions in the 

values of |𝑋1 − 𝑋2|max . This is due to the corresponding reduction in the stiffness 

provided by the nonlinear constraint C1, leading to a smaller limitation effect on the 

primary mass 𝑚1 from moving to the right. In the meantime, there is no contact between 

the secondary mass 𝑚2 and the constraint C2. Consequently, it can generate smaller 

relative displacement in this frequency band. In comparison, the relative displacement 

|𝑋1 − 𝑋2|max may increase with 𝜃0 when 1.15 < Ω < 1.25.  

 
Figure 5.13. Effects of nonlinear constraints C1 and C2 on (a) and (c): 𝑋1_max, and on (b) and 

(d): |𝑋1 − 𝑋2|max.  In (a) and (b), the solid, dashed and dotted lines are for nonlinear constraints 

with 𝜆 = 0, 1 and 2, respectively. The dash-dot line is for linear constraints with 𝜆 = 1; in (c) 

and (d), the solid, dashed, dotted and dash-dotted lines are for 𝜃0 = 20, 30, 45 and 60 degrees, 

respectively. Symbols: RK results. 

In Fig. 5.14(a) and (b), the influence of the nonlinear constraint on the force 

transmissibility 𝑇𝑅S to the secondary mass 𝑚2 is examined. Fig. 5.14(a) shows that 

there are two peaks in each curve of 𝑇𝑅S when the linear or nonlinear constraints C1 

and C2  are used. Compared with the results associated with the case of the 

corresponding un-constrained system, the use of linear or nonlinear constraints leads to 

larger values of 𝑇𝑅S when 0.9 < Ω < 1.05 but lower values when 1.05 < Ω < 1.25. 
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By comparing the linear and the nonlinear constraints cases both with the spring 

stiffness ratio 𝜆 = 1, it shows that the nonlinear constraint can result in a higher first 

peak of 𝑇𝑅S near Ω = 0.95 while the second peaks near Ω = 1.75 in two cases are of 

similar height. An increase in the spring stiffness ratio 𝜆 of the nonlinear constraint from 

1 to 2 can lead to a higher first peak of 𝑇𝑅S near Ω = 0.95 but a lower value in the 

frequency range from Ω ≈ 1.15 to Ω ≈ 1.25. Fig. 5.14(b) shows that as the initial angle 

𝜃0 increases from 20 to 30, then to 45 and finally to 60 degrees, there is a noticeable 

reduction in the first peak of 𝑇𝑅S. The reason is that when increasing 𝜃0, the constraint 

C1 has a weaker effect on the primary mass 𝑚1 while the secondary mass 𝑚2 has not 

been in contact with the constraint C2 . Consequently, there is a smaller relative 

displacement between masses and therefore lower force transmissibility. However, in 

the frequency range between Ω ≈ 1.15 and Ω ≈ 1.25, the secondary mass 𝑚2 becomes 

in contact with the constraint C2 and 𝑇𝑅S can increase with 𝜃0 due to the less motion 

restraint effect by the constraints on both masses from moving to the right.  

 
Figure 5.14. Effects of (a) the spring stiffness ratio 𝜆 and (b) the initial angle 𝜃0 of the nonlinear 

constraints C1 and C2 on the force transmissibility 𝑇𝑅S. In (a), the solid, dashed and dotted lines 

are for nonlinear constraints with 𝜆 = 0, 1 and 2, respectively. The dash-dot line is for linear 

constraints with 𝜆 = 1; in (b), the solid, dashed, dotted and dash-dotted lines are for 𝜃0 = 20, 

30, 45 and 60 degrees, respectively. Symbols: RK results. 

In Fig. 5.15(a) and (b), the influence of the spring stiffness ratio 𝜆 of the constraints 

C1 and C2 on the time-averaged transmitted power 𝑃̅ts to the secondary mass 𝑚2 via 

the interface and the time-averaged dissipated power 𝑃̅di  at the interface is studied, 

respectively. Fig. 5.15(a) shows that when the linear or nonlinear constraints C1 and C2 

are introduced, both peaks of the 𝑃̅ts curves extend toward the high frequencies but there 

are only minor changes on the peak values, compared to those of the corresponding un-

constrained system. The first peaks of 𝑃̅ts in nonlinear constraints cases twist to the left 

near Ω = 1.1. As the spring stiffness ratio 𝜆 of nonlinear constraints increases from 1 to 

2, both peaks of 𝑃̅ts curve bend more to the high-frequency range while the peak values 
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for both peaks change little. Fig. 5.15(b) shows that compared with the un-constrained 

system, the use of the linear or nonlinear constraints C1 and C2 can lead to a larger 

power dissipation 𝑃̅di at the interface when 0.9 < Ω < 1.05. However, there can be a 

smaller value of 𝑃̅di in the frequency range from Ω ≈ 1.05 to Ω ≈ 1.25. The reason is 

that the rightwards motion of masses 𝑚1 and 𝑚2 are limited by the constraints when 

1.05 < Ω < 1.25, leading to a lower relative displacement. Therefore, there is less time-

averaged power dissipated at the interface. Moreover, an increase of the spring stiffness 

ratio 𝜆 of the nonlinear constraints from 1 to 2 can result in a higher 𝑃̅di when 0.9 <

Ω < 1.05  while providing a smaller 𝑃̅di  from Ω ≈ 1.15  to Ω ≈ 1.25 . By the 

comparison of the linear and the nonlinear constraints cases both with 𝜆 = 1, it shows 

that the nonlinear constraints can yield a larger first peak of 𝑃̅di  but there is little 

difference on the peak values of 𝑃̅ts between the linear and the nonlinear constraints 

cases. In Fig. 5.15(c) and (d), the influence of the initial angle  𝜃0  of the nonlinear 

constraints on 𝑃̅ts  and 𝑃̅di  is studied. Fig. 5.15(c) shows that as the initial angle 𝜃0 

increases from 20 to 30, to 45 and to 60 degrees, the first peak of 𝑃̅ts curve bends less 

to the right. The variations of the angle 𝜃0 of the constraints C1 and C2 have very small 

effects on the first peak value of 𝑃̅ts near Ω = 1, compared to the constraint C1 only 

case shown in Fig. 5.10(c). Fig. 5.15(d) shows that the growth of 𝜃0 from 20 to 60 

degrees can significantly reduce the amount of dissipated power 𝑃̅di at the interface 

when 0.95 < Ω < 1.05 due to the reduced relative displacement between masses. In 

contrast, the increase can result in a higher amount of power dissipation 𝑃̅di from Ω ≈

1.15  to Ω ≈ 1.25 . The figure indicates the possibility of tailoring the energy 

transmission in the impact oscillator system by the adjustment of nonlinear constraint 

design parameters, to achieve desired dynamic characteristics.  

Figure 5.16 presents the effects of the parameters of the nonlinear constraints C1 

and C2 on the power dissipation ratio 𝑅di. Fig. 5.16(a) shows that when 0.95 < Ω <

1.10 , the use of constraints C1  and C2  can lead to a larger dissipation ratio 𝑅di 

compared to the case of the corresponding un-constrained system. In comparison, the 

addition of C1 and C2 results in a smaller 𝑅di compared to un-constrained system from 

Ω ≈ 1.1 to Ω ≈ 1.2. When comparing the nonlinear and the linear constraints case both 

with 𝜆 = 1, it is found that the nonlinear constraint can yield a larger value of 𝑅di in the 

frequency range between Ω ≈ 0.95 to Ω ≈ 1.1. Moreover, an increase of the spring 

stiffness ratio 𝜆 of the nonlinear constraints from 1 to 2 can lead to a larger value of 𝑅di 

in the range of 0.95 < Ω < 1.20. Fig. 5.16(b) shows that as the initial angle 𝜃0 of the 

nonlinear constraints increases from 20 to 30, to 45 and finally to 60 degrees, the portion 

of the time-averaged input power dissipated at the interface is reduced substantially 
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from Ω ≈ 0.95 to Ω ≈ 1.05. This is due to the reduced restraint effect on the primary 

mass 𝑚1 by constraint C1. Meanwhile, with the increase of 𝜃0, the frequency of the 

local minimum point is shifting to the left with a lower local minimum value of 𝑅di. 

 
Figure 5.15. Effects of nonlinear constraints C1 and C2 on (a) and (c): 𝑃̅ts, and on (b) and (d): 𝑃̅di.  
In (a) and (b), the solid, dashed and dotted lines are for nonlinear constraints with 𝜆 =  0, 1 and 

2, respectively. The dash-dot line is for linear constraints with 𝜆 = 1; in (c) and (d), the solid, 

dashed, dotted and dash-dotted lines are for 𝜃0 = 20, 30, 45 and 60 degrees, respectively. 

Symbols: RK results. 

 

 
Figure 5.16. Effects of (a) the spring stiffness ratio 𝜆 and (b) the initial angle 𝜃0 of the nonlinear 

constraints C1 and C2 on the power dissipation ratio 𝑅di. In (a), the solid, dashed, and dotted 

lines are for nonlinear constraints with 𝜆 = 0, 1 and 2, respectively. The dash-dot line is for 

linear constraints with 𝜆 = 1; in (b), the solid, dashed, dotted and dash-dotted lines are for 𝜃0 =
 20, 30, 45 and 60 degrees, respectively. Symbols: RK results. 
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5.3.4. Two-sided constraints case with C1 and C3 

Here two constraints C1 and C3 are considered to exist in the impact oscillator 

system shown by Fig. 5.7. In Figs. 5.17, 5.18, 5.19 and 5.20, the influence of the 

parameters of the nonlinear constraints on the steady-state response, the force 

transmission, the time-averaged power flow and the power dissipation ratio is 

investigated, respectively. In Figs. 5.21 and 5.22, the influence of the damping ratio of 

the primary system is studied. The dimensionless governing equation of the system is 

still obtained by converting Eq. (5.17) with 𝐹c2 = 0 , 𝐹c1 = 𝐹c(𝑌(𝑋1)) 

where  𝐹c(𝑌(𝑋1))  has been defined in Subsection 5.3.2, 𝐹c3 = 𝐹c(𝑌(−𝑋1)) =

𝜆𝐹r(𝑌(−𝑋1)) where 𝐹r(𝑌(−𝑋1)) was defined in Eq. (5.4) and 𝑌(−𝑋1) = (𝑌0 + 𝜂 +

𝑋1)𝑈(−𝑋1 − 𝜂).  

In Fig. 5.17, the effects of the design parameters of the nonlinear constraints C1 

and C3 on the steady-state maximum displacement 𝑋1_max of the primary mass 𝑚1 and 

the maximum relative displacement of two masses |𝑋1 − 𝑋2|max are examined. In Fig. 

5.17(a) and (b), the influence of the spring stiffness ratio 𝜆 of the constraint is studied 

while in Fig. 5.17(c) and (d), the effects of its initial angle 𝜃0 are investigated. Fig. 

5.17(a) shows that with the use of C1 and C3, both peaks of the 𝑋1_max curves extend 

to the high frequencies. When comparing the linear and the nonlinear constraints case 

both with 𝜆 = 1, the nonlinear constraints can firstly bend both peaks of 𝑋1_max more 

to the right and then twist the first peak near Ω = 1.1 back to the left. Both peaks of 

𝑋1_max in the nonlinear constraints case are higher than those in the linear constraints 

case. As the 𝜆 of nonlinear constraints C1 and C3 changing from 1 to 2, both peaks of 

𝑋1_max bend further to the right with the first peak value substantially reduced but the 

second peak value increased. By comparing to the constraint C1 only case in Fig. 5.8(a), 

Fig. 5.17(a) shows that the combined use of C1 and C3 can provide better suppression 

of the vibration of the primary mass 𝑚1  near the first peak frequency. Fig. 5.17(b) 

shows that when the constraints C1 and C3 are used, there is a local minimum point in 

the curve of |𝑋1 − 𝑋2|max at Ω ≈ 1.0 and an extra peak near Ω = 1.1 compared to the 

case of the corresponding un-constrained system with 𝜆 = 0. The reason is that when 

the system is excited near Ω = 1.0, the motion of the mass 𝑚1 is largely restrained by 

C1 and C3. The response amplitudes for both masses become relatively small, leading 

to a small maximum value of the relative displacement between masses. When the 

excitation frequency is Ω ≈ 1.1, the response amplitude of the mass 𝑚2 becomes larger 

than that of the mass 𝑚1  and hence results in a  peak of |𝑋1 − 𝑋2|max . With the 

increasing spring stiffness ratio 𝜆 of the nonlinear constraints from 1 to 2, both peaks of 
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|𝑋1 − 𝑋2|max show a slight increase with higher peak frequencies. Fig. 5.17(c) shows 

that as the initial angle 𝜃0 of the nonlinear constraints increases from 20 to 30, to 45 and 

to 60 degrees, the first peak of 𝑋1_max bends less to the right and the peak value becomes 

larger. This is due to the reduction of the nonlinear constraints’ stiffness with the 

increasing 𝜃0 and hence there is less restriction on the leftwards or rightwards motion 

of the mass 𝑚1 . Fig. 5.17(d) shows that an increase of the angle 𝜃0  from 20 to 60 

degrees can lead to a significant reduction in the first peak of |𝑋1 − 𝑋2|max at Ω ≈ 1.1 

with a slightly lower corresponding frequency. The reason is that with the increasing 

𝜃0, there is a weaker motion-limitation effect on the mass 𝑚1, and therefore a smaller 

relative displacement of masses is obtained. 

 
Figure 5.17. Effects of nonlinear constraints C1 and C3 on (a) and (c): 𝑋1_max, and on (b) and 

(d): |𝑋1 − 𝑋2|max.  In (a) and (b), the solid, dashed, and dotted lines are for nonlinear constraints 

with 𝜆 = 0, 1 and 2, respectively. The dash-dot line is for linear constraints with 𝜆 = 1; in (c) 

and (d), the solid, dashed, dotted and dash-dotted lines are for 𝜃0 = 20, 30, 45 and 60 degrees, 

respectively. Symbols: RK results. 

In Fig. 5.18(a) and (b), the influence of the nonlinear constraints C1 and C3 on the 

force transmissibility 𝑇𝑅S to the secondary mass 𝑚2 is studied. Fig. 5.18(a) shows that 

with the use of linear or nonlinear constraints C1 and C3, a local minimum point near 
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Ω = 1 and an extra peak near Ω = 1.1 appear in the curve of 𝑇𝑅S compared to the case 

of the corresponding un-constrained system. When comparing the linear and the 

nonlinear constraints case both with 𝜆 = 1, it is found that the nonlinear constraints can 

lead to a lower first peak of 𝑇𝑅S at Ω ≈ 1.1. As the spring stiffness ratio 𝜆 of nonlinear 

constraints C1 and C3 increases from 1 to 2, both peaks bend to the right with slightly 

larger peak values. Fig. 5.18(b) shows that when the initial angle 𝜃0 of the nonlinear 

constraints increases from 20 to 30, to 45 and to 60 degrees, the first peak of 𝑇𝑅S and 

its corresponding frequency are both reduced. This is due to the reducing stiffness of 

constraints C1  and C3  when increasing 𝜃0 , which can lead to a lower relative 

displacement between masses and hence result in a smaller force transmissibility to the 

secondary system. In comparison, the second peak in 𝑇𝑅S curve found near Ω ≈ 1.75 

remains nearly the same regardless of the variations of 𝜃0. When comparing to the 

results of constraint C1 only case in Fig. 5.9, it is found that with the use of constraints 

C1 and C3, much lower force transmissibility to the secondary system can be achieved 

near the in-phase mode of the corresponding linear system.  

 
Figure 5.18. Effects of (a) the spring stiffness ratio 𝜆 and (b) the initial angle 𝜃0 of the nonlinear 

constraints C1 and C3 on the force transmissibility 𝑇𝑅S. In (a), the solid, dashed, and dotted lines 

are for nonlinear constraints with 𝜆 = 0, 1 and 2, respectively. The dash-dot line is for linear 

constraints with 𝜆 = 1; in (b), the solid, dashed, dotted and dash-dotted lines are for 𝜃0 = 20, 

30, 45 and 60 degrees, respectively. Symbols: RK results. 

In Fig. 5.19(a) and (b), the effects of the stiffness ratio 𝜆 of the constraints C1 and 

C3 on the time-averaged transmitted power 𝑃̅ts and dissipated power 𝑃̅di at the interface 

are investigated, respectively. Fig. 5.19(a) shows that compared to the case of the 

corresponding un-constrained system, the addition of C1 and C3 can bend both two 

peaks in the curve of 𝑃̅ts to the right with lower peak values. By comparing the linear 

and the nonlinear constraints cases both with 𝜆 = 1, the latter case can result in a slightly 

larger amount of power transmission to the secondary mass 𝑚2 near the first peak at 

Ω ≈ 1.1. As the stiffness ratio 𝜆 of the nonlinear constraint increases from 1 to 2, there 
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is more bending of both peaks of 𝑃̅ts to the right with reduced peaks values. Fig. 5.19(b) 

shows that when constraints C1 and C3 are used, there exists one extra peak in the curve 

of 𝑃̅di  near Ω = 1.1  and one local minimum point at Ω ≈ 1.0 , compared to the 

corresponding case of the un-constrained system. By a comparison of the linear and the 

nonlinear constraints cases both with 𝜆 = 1, it shows that linear constraints can lead to 

a smaller local minimum value of 𝑃̅di  near Ω = 1.0, while the nonlinear constraints 

result in a slightly lower first peak of 𝑃̅di near Ω = 1.1. As the stiffness ratio 𝜆 of the 

nonlinear constraints changes from 1 to 2, both peaks of 𝑃̅di increase with higher peak 

frequencies and the local minimum value of 𝑃̅di becomes slightly larger. Fig. 5.19(c) 

shows that as the initial angle 𝜃0 of the nonlinear constraints increases from 20 to 30, to 

45 and to 60 degrees, there is less rightwards bending of the first peak of the time-

averaged transmitted power 𝑃̅ts but the peak value becomes larger. Fig. 5.19(d) shows 

an increase in the initial angle 𝜃0 from 20° to 60° results in a lower peak of 𝑃̅di near 

Ω ≈ 1.1 . This is due to the fact that when increasing 𝜃0 , the nonlinear constraint 

provides smaller stiffness, leading to a smaller relative displacement between masses 

and hence less amount of time-averaged power dissipation at the interface. Moreover, 

as 𝜃0 increases, there is a smaller value of the local minimum in 𝑃̅di found at Ω ≈ 1.0.  

In Fig. 5.20(a) and (b), the influence of the design parameters of the nonlinear 

constraints C1 and C3 on the power dissipation ratio 𝑅di at the interface is studied. Fig. 

5.20(a) and (b) shows that there is a local minimum point in each curve of 𝑅di near the 

in-phase mode of the un-constrained system.  Fig. 5.20(a) shows that compared with the 

corresponding un-constrained system, the use of constraints C1 and C3 can increase the 

local minimum value of 𝑅di near the in-phase mode of the corresponding linear system. 

When comparing the linear and the nonlinear constraints cases both with 𝜆 = 1, it is 

found that the nonlinear constraints can lead to a larger 𝑅di when 0.95 < Ω < 1.10. As 

the spring stiffness ratio 𝜆 of the nonlinear constraints increases from 1 to 2, the value 

of 𝑅di increases slightly in the frequency range between Ω ≈ 0.95 and Ω ≈ 1.20. Fig. 

5.20(b) shows that as the initial angle 𝜃0 increases from 20 to 30, to 45 and to 60 degrees, 

the value of the power dissipation ratio 𝑅di decreases when the excitation frequency is 

from Ω ≈ 0.95 to Ω ≈ 1.10. Comparing the power dissipation ratio results among three 

configurations of the constraints in Figs. 5.11, 5.16 and 5.20, it shows that the combined 

use of constraints C1 and C3 is able to yield the lowest portion of input power dissipated 

at the interface when the excitation frequency is near the in-phase mode of the un-

constrained system.  
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Figure 5.19. Effects of nonlinear constraints C1 and C3 on (a) and (c): 𝑃̅ts, and on (b) and (d): 

𝑃̅di.  In (a) and (b), the solid, dashed and dotted lines are for nonlinear constraints with 𝜆 = 0, 1 

and 2, respectively. The dash-dot line is for linear constraints with 𝜆 = 1; in (c) and (d), the solid, 

dashed, dotted and dash-dotted lines are for 𝜃0 = 20, 30, 45 and 60 degrees, respectively. 

Symbols: RK results. 

 
Figure 5.20. Effects of (a) the spring stiffness ratio 𝜆 and (b) the initial angle 𝜃0 of the nonlinear 

constraints C1 and C3 on the power dissipation ratio 𝑅di. In (a), the solid, dashed and dotted lines 

are for nonlinear constraints with 𝜆 = 0, 1 and 2, respectively. The dash-dot line is for linear 

constraints with 𝜆 = 1; in (b), the solid, dashed, dotted and dash-dotted lines are for 𝜃0 = 20, 

30, 45 and 60 degrees, respectively. Symbols: RK results. 
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In Fig. 5.21, the effects of the damping ratio 𝜁1 of the primary system on the steady-

state maximum displacement 𝑋1_max of the primary mass 𝑚1 and the maximum relative 

displacement of two masses |𝑋1 − 𝑋2|max  are investigated. Two nonlinear D-spring 

constraints of C1 and C3 are considered with 𝜆 = 1  and 𝜃0 = 30° . The damping 

coefficient at the interface and the secondary system remains unchanged. Fig. 5.21(a) 

shows that when increasing the damping ratio 𝜁1 of the primary system from 0.02 to 

0.04, to 0.10 and to 0.20, the heights of both two peaks in the maximum displacement 

𝑋1_max curve of the primary mass become lower. Both two peaks show less bending to 

the right and there is also less extension to the low-frequency range in the first peak. 

The reason is that a larger value of damping ratio 𝜁1 can provide a stronger suppression 

effect on the response amplitude of the mass 𝑚1 and hence result in less deformation of 

the nonlinear constraints during the contact. Therefore, the nonlinear effects caused by 

the geometrically nonlinear constraints are weaker at a small deflection, as shown by 

Fig. 5.2. It is also found that the second peak of 𝑋1_max  near Ω = 1.7 is no longer 

bending to the right at a large damping ratio, which is due to that the maximum 

displacement of the mass has not exceeded the gap width between the mass and the 

constraints in the out-of-phase mode. Fig. 5.21(b) shows that with the increase of 𝜁1, the 

absolute value of the anti-peak in the curve of the maximum relative displacement 

|𝑋1 − 𝑋2|max is increased while the peaks values at Ω ≈ 1.1 and Ω ≈ 1.7 are reduced. 

The reason is that an increase in the damping ratio in the primary system can 

substantially suppress the motion of the primary system. The deformation of the 

nonlinear constraint is reduced and there is less influence by the nonlinear D-spring 

constraints on the relative motion of masses.   

 

Figure 5.21. Effects of the damping ratio 𝜁1  of the primary system on (a):  𝑋1_max  and on 

(b): |𝑋1 − 𝑋2|max. The solid, dashed, dotted and dash-dot lines are for 𝜁1 = 0.02 and 𝜖 = 1.0, 

𝜁1 = 0.04 and 𝜖 = 0.5, 𝜁1 = 0.10 and 𝜖 = 0.2, and  𝜁1 = 0.20 and 𝜖 = 0.1, respectively. Symbols: 

RK results. 
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In Fig. 5.22, the effects of the damping ratio 𝜁1 of the primary system on the force 

transmissibility 𝑇𝑅S to the secondary mass 𝑚2, the time-averaged transmitted power 

𝑃̅ts, the time-averaged dissipated power 𝑃̅di at the interface and the power dissipation 

ratio 𝑅di at the interface are examined, respectively. Fig. 5.22(a) shows that as the 

damping ratio 𝜁1 increases from 0.02 to 0.04, to 0.10 and to 0.20, the values for both 

peaks of force transmissibility 𝑇𝑅S are decreased and a lower local minimum of 𝑇𝑅S 

near the in-phase mode frequency of the corresponding linear system (i.e. 𝜆 = 0) is 

observed. This phenomenon is corresponding to the relative displacement |𝑋1 − 𝑋2|max. 

Fig. 5.22(b) shows that the increase of 𝜁1  can substantially reduce the peak time-

averaged power transmission 𝑃̅ts to the secondary system. From Fig. 5.22(a) and (b), it 

can be summarized that an increase of the damping in the primary system can further 

reduce the vibration transmission to the secondary system.  

 

Figure 5.22. Effects of the damping ratio 𝜁1 of the primary system on (a): the force 

transmissibility 𝑇𝑅S, (b): the power transmission 𝑃̅ts, (c): the power dissipation 𝑃̅di and (d): the 

power dissipation ratio 𝑅di. The solid, dashed, dotted and dash-dot lines are for 𝜁1 = 0.02 and 

𝜖 = 1.0, 𝜁1 = 0.04 and 𝜖 = 0.5, 𝜁1 = 0.10 and 𝜖 = 0.2, and  𝜁1 = 0.20 and 𝜖 = 0.1, respectively. 

Symbols: RK results. 



Chapter 5                   Vibration transmission analysis of impact oscillators with nonlinear motion constraints 

created by DSLM 

102 

 

Fig. 5.22(c) shows that when the value of the damping ratio 𝜁1 is larger, there is a 

much smaller amount of power dissipated at the interface when the excitation frequency 

is near the in-phase mode or the out-of-phase mode of the corresponding linear system. 

This is due to the less relative motion between the masses. Fig. 5.22(d) shows that with 

the increasing value of damping ratio 𝜁1, the portion of the input power that is dissipated 

at the interface becomes lower in a broad frequency range. It is noticed that the power 

dissipation ratio 𝑅di shows a significant decrease at the in-phase mode frequency and 

low/high frequencies. 

 

5.4. Summary 

This chapter investigated the dynamics and vibration transmission behaviour of 

impact oscillators with a single nonlinear constraint or multiple nonlinear constraints 

created by DSLM. The force transmissibility and time-averaged power flow were used 

to quantify the vibration transmission in SDOF and 2DOF impact oscillators with 

nonlinear constraints. The influence of design parameters and locations of the nonlinear 

constraints on the response and vibration transmission within the systems were explored. 

This investigation yields the following main findings: 

(1) For the SDOF impact oscillator with a single constraint, the nonlinear 

constraint can suppress the response amplitude but increase the force 

transmission at high frequencies.  

(2) For the 2DOF impact oscillators with a single nonlinear constraint at the 

interface, the use of the nonlinear constraint can significantly increase the 

power dissipation at the interface and slightly reduce the peak of the time-

averaged transmitted power to the secondary system.  

(3) When the stiffness of the nonlinear constraint is high, 2DOF impact oscillators 

can exhibit bifurcations and show strong super-harmonic and sub-harmonic 

response.  

(4) For the 2DOF impact oscillators with two nonlinear constraints, a local 

minimum point of the force transmissibility can be found. The peak power 

transmission can be substantially reduced when the two identical nonlinear 

constraints are set symmetrically on the two sides of the primary DOF.  

(5) The nonlinear D-spring constraint shows the limitation of self-locking under 

large deformation, which should be considered in the design of such systems.  
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Chapter 6                                     

Vibration energy flow and force 

transmissibility of nonlinear 

isolators with nonlinear spring 

based on DSLM 
 

To control the undesired vibration transmitted from the vibrating source to the 

receiving structure, active or passive vibration isolators are commonly inserted into the 

vibration transmission path (Rivin, 2004). Compared with active isolators, passive 

isolators usually have simpler structures and also the advantages of not relying on the 

external power supply (Carrella et al., 2007). For a conventional SDOF linear passive 

isolator, the frequency range of effective isolation starts from √2 times of the natural 

frequency (Zheng et al., 2018), which limits the applications of such isolator from 

isolating broadband excitations such as shocks or random ground motion containing 

ultra-low frequency components (Feng et al., 2019). To improve isolation performance, 

nonlinear elements can be introduced into the passive isolation system. For instance, the 

negative stiffness mechanism (NSM) can be connected in parallel with conventional 

linear springs and damper to widen the effective vibration isolation frequency band (Liu 

and Yu, 2018). Some researchers also used nonlinear elements created by linkage 

mechanisms to create geometric nonlinearity in the isolator to enhance vibration 

isolation performance (Sun et al., 2014; Jing et al., 2019a). However, in the evaluation 

of the vibration isolation performance of the nonlinear isolators with linkage mechanism, 

force or displacement transmissibilities were usually used as the performance indices in 

the past research (Jing et al., 2019a), there is limited research on the vibration power 

flow behaviour in such nonlinear vibration isolation system. New insights gained by 

investigating these systems from the perspective of vibration energy input, dissipation, 

and transmission can assist the better design of the vibration isolator. Moreover, many 

previous investigations on nonlinear vibration isolation systems are based on the 

assumption that the isolation system is installed on a rigid and massless foundation (Lu 

et al., 2013; Yang and Harne et al., 2014). This assumption may not always be valid in 

some real-life engineering applications, such as aircrafts and ships, where the mounting 

foundation of the isolator is flexible and can have a large influence on the performance 
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of the isolator. Only limited research has been reported to consider the situation when 

the base of the isolated objects is flexible (Xiong et al., 2005b; Yang et al., 2016). In 

this chapter, a nonlinear vibration isolator with nonlinear elements created by a 

diamond-shaped linkage mechanism (DSLM) embedded with linear springs is proposed. 

Both force excitation and base-motion excitation cases are considered. The vibration 

isolation performance of this nonlinear isolator in SDOF systems and a 2DOF system 

with a flexible base is assessed by the force / displacement transmissibility and power 

flow variables. These performance indicators are obtained by using HB-AFT method 

with numerical continuations and numerical integration. The influence of the design 

parameters of the proposed nonlinear element on vibration isolation performance is 

examined systematically. 

6.1. Nonlinear stiffness mechanism 

Figure 6.1 shows a schematic diagram of a proposed nonlinear spring element 

based on the geometrical nonlinearity of a linkage mechanism. For clarity, the nonlinear 

element is named as D-spring hereafter. The D-spring consists a DSLM and an 

embedded linear spring with un-stretched length of 𝑙s and stiffness coefficient of 𝑘s. 

The DSLM is formed by four rigid rods AC, AD, BC and BD, which are hinged end to 

end at points A, B, C and D with a fixed length of 𝑙b for each rod. Terminals C and D 

are linked by the horizontal linear spring.  
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Figure 6.1. Schematic of the nonlinear D-spring (a) with the horizontal spring un-stretched, and 

(b) subjected to a force. 

Fig. 6.1(a) shows that when the horizontal linear spring is at its unstretched length, 

the angle between AC and CD is represented as 𝜃0 (0° ≤ 𝜃0 < 90°) such that cos 𝜃0 = 

𝑙s 2𝑙b⁄ . The initial distance of terminal A measured from terminal B is denoted by 

𝑦0 and correspondingly we have  𝑦0 = 2𝑙bsin𝜃0.  Figure 6.1 shows the situation that 

terminal A is free to move in the vertical direction while terminal B is fixed on the 

ground. However, in other application, both terminals A and B of the D-spring can move. 

The mass and the damping of the D-spring is assumed to be neglected throughout this 
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chapter. Figure 6.1(b) shows the deformed shape of the D-spring when its terminal A is 

subjected to a force 𝑓a pointing upwards in the vertical direction. After reaching force 

equilibrium, the terminal A moves up by a distance of 𝛿 and the new vertical distance 

between terminals A and B becomes 𝑦 = 𝑦0 + 𝛿. The angle between the rod AC and 

line CD is denoted by 𝜃, and from Fig. 6.1(b) we have sin𝜃 = 𝑦 (2𝑙b)⁄ . The value of 𝜃 

is limited to the range of 0 < 𝜃 < 90° for practical reasons. From Fig. 6.1(a) to 6.1(b), 

the horizontal spring will be compressed by 2𝑙bcos𝜃 − 𝑙s and its restoring force 𝑓s can 

be expressed by 

𝑓s = 𝑘s(2𝑙𝑏cos𝜃 − 𝑙s).                                          (6.1) 

The restoring force 𝑓r of the nonlinear D-spring is the counteracting force of 𝑓a such that 

𝑓r = 𝑓a, pointing to the downwards. From force equilibrium and geometric condition of 

the DSLM, we have 

𝑓r(𝑦) = 𝑓a = −𝑓s ∙
sin𝜃

cos𝜃
= −𝑘s(2𝑙bcos𝜃 − 𝑙s)

sin𝜃

cos𝜃
= 𝑘s𝑦(

𝑙s

√4𝑙b
2−𝑦2

− 1).  (6.2) 

Non-dimensional parameters and variables are introduced as 𝑌0 = 𝑦0 (2𝑙b)⁄ , 𝑌 =

𝑦 (2𝑙b)⁄  and Δ = 𝛿 (2𝑙b)⁄ = 𝑌 − 𝑌0 , where 𝑌0  and 𝑌  are the non-dimensional initial 

distance and deformed distance between two ends of the D-spring, respectively, while 

Δ is the dimensionless deflection of the D-spring. From geometric conditions, we have 

sin𝜃0 = 𝑌0,      cos𝜃0 = 𝑙s (2𝑙b)⁄ = √1 − (sin𝜃0)
2 = √1 − 𝑌0

2,  (6.3a, 6.3b) 

sin𝜃 = 𝑌 ,      cos𝜃 = √1 − 𝑌2,                       (6.3c, 6.3d) 

By using Eq. (6.3) to replace the variable 𝜃  by 𝑌  in Eq. (6.2), the dimensionless 

restoring force of the D-spring can be obtained as 

𝐹r(𝑌) = 𝐹a =
𝑓a

2𝑙b𝑘s
= 𝑌 (√

1−𝑌0
2

1−𝑌2
− 1),   where 0 < 𝑌 < 1.         (6.4) 

The non-dimensional stiffness of the D-spring can be yielded by differentiating 𝐹r 

with respect to the dimensionless deflection Δ:  

𝐾r(Δ) =
𝑑𝐹r(Δ)

𝑑(Δ)
=

𝑑𝐹r(𝑌)

𝑑(Y)
= √

1−𝑌0
2

1−𝑌2
+ 𝑌2√1− 𝑌0

2[1 − 𝑌2]−(3 2)⁄ − 1.    (6.5) 

Equations (6.4) and (6.5) demonstrate the dependence of the restoring force and 

stiffness of the D-spring on the initial distance 𝑌0 and the deformed distance 𝑌 between 
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terminals A and B. It is clear that the dynamic characteristics of the D-spring can be 

adjusted by changing the initial distance 𝑌0. 

Figure 6.2(a) and (b) shows the variation of the dimensionless restoring force 𝐹r 

and the stiffness 𝐾r  of the D-spring against the dimensionless terminals distance 𝑌, 

respectively. Four different values of initial terminals distance 𝑌0 of the D-spring in the 

unstretched-state are selected with 𝑌0 changing from 0.3 to 0.5, to 0.7 and to 0.8. Fig. 

6.2(a) shows that for a prescribed value of 𝑌0, there exists a non-monotonic relationship 

between 𝐹r and 𝑌. When the D-spring is compressed with the distance 𝑌 decreasing 

from 𝑌0 to 0, the value of the restoring force 𝐹r firstly decreases from 0 to a negative 

peak value and then increases to 0. However, when the D-spring is stretched as the 

distance 𝑌 increases from 𝑌0 to 1, the value of 𝐹r grows up exponentially from 0 to a 

positive value. Fig. 6.2(a) also shows that at the same value of 𝑌, a larger value of 𝑌0 

leads to a larger absolute negative peak value of 𝐹r.  Fig. 6.2(b) shows that for a given 

value of 𝑌0, with the reduction of distance 𝑌 from 1 to 0, 𝐾r decreases from a positive 

value to zero, and then to be negative. It is found that an increasing value of 𝑌0 from 0.3 

to 0.8 can lead to a stronger negative stiffness effect when 𝑌 is close to 0 but a smaller 

positive stiffness effect when 𝑌 is close to 1. Fig. 6.2(b) shows that the nonlinear D-

spring can be pre-deformed to a dimensionless distance of 𝑌 = 𝑌1 (0 < 𝑌1 < 𝑌0 ) to 

obtain a negative stiffness. 

 

Figure 6.2. Variations of the dimensionless (a) restoring force 𝐹r  and (b) stiffness 𝐾r  of the 

nonlinear D-spring against the dimensionless terminals distance 𝑌. The solid, dashed, dotted and 

dash-dotted lines are for 𝑌0  = 0.3, 0.5, 0.7 and 0.8, respectively. 

6.2. SDOF nonlinear isolator for force excitations 

6.2.1. Mathematical model 

Figure 6.3 shows the use of the D-spring for vibration isolation of a forced-excited 

machine. The nonlinear isolator comprises a linear spring with stiffness coefficient 𝑘1, 
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a viscous damper with damping coefficient 𝑐1, and a nonlinear D-spring as shown in 

Fig. 6.1(a). The mass 𝑚1 represents a machine subjected to a harmonic force excitation 

with amplitude of 𝑓0 and frequency of 𝜔. The equilibrium position of the mass, is set as 

a reference with 𝑥1 = 0, at which the distance 𝑦 between terminals A and B of the D-

spring is set as 𝑦1 (0 < 𝑦1 < 𝑦0).  
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Figure 6.3. Schematic of a nonlinear isolator with the D-spring for isolation of force excitation.  

The dimensional equation of motion of the mass is  

𝑚1𝑥̈1 + 𝑐1𝑥̇1 + 𝑘1𝑥1 + 𝑓D(𝑥1, 𝑦1) = 𝑓0e
i𝜔𝑡,                       (6.6) 

where 𝑓D(𝑥1, 𝑦1) = 𝑓r(𝑦(𝑥1, 𝑦1)) − 𝑓r(𝑦1)  is the dynamic force applied by the 

nonlinear D-spring to the mass with 𝑦(𝑥1, 𝑦1) = 𝑦1 + 𝑥1, and 𝑓r(𝑦) has been expressed 

by Eq. (6.2). To facilitate later parametric studies, the following parameters are 

introduced   

𝜔1 = √
𝑘1

𝑚1
,  𝜁1 =

𝑐1

2𝑚1𝜔1
,  𝑋1 =

𝑥1

2𝑙𝑏
,  𝑌1 =

𝑦1

2𝑙b
,  𝜆 =

𝑘s

𝑘1
,  𝐹0 =

𝑓0

2𝑙b𝑘1
,  Ω =

𝜔

𝜔1
,  𝜏 = 𝜔1𝑡, 

where 𝜔1  and 𝜁1  are the undamped natural frequency and the damping ratio of the 

original system without the D-spring, respectively; 𝑋1 represents the non-dimensional 

displacement of the machine 𝑚1 ;  𝑌1  denotes the dimensionless distance between 

terminals A and B of the D-spring when 𝑋1 = 0; 𝜆 is the stiffness ratio of the nonlinear 

D-spring; 𝐹0, Ω and 𝜏 are the non-dimensional force excitation amplitude, the excitation 

frequency and the dimensionless time, respectively. Eq. (6.6) can be transformed into 

the following non-dimensional form: 

𝑋1
′′ + 2𝜁1𝑋1

′ + 𝑋1 + 𝐹D(𝑋1, 𝑌1) = 𝐹0𝑒
iΩ𝜏,                      (6.7) 
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where  𝐹D(𝑋1, 𝑌1) = 𝜆 (𝐹r(𝑌(𝑋1, 𝑌1)) − 𝐹r(𝑌1)) is the dimensionless dynamic force 

applied by the nonlinear D-spring to the mass, 𝑌(𝑋1, 𝑌1) = 𝑌1 + 𝑋1 and the function of 

𝐹r(𝑌) has been defined by Eq. (6.4). 

For small-amplitude vibrations with the distance of two D-spring terminals 𝑌 in 

the vicinity of 𝑌1, the restoring force 𝐹r(𝑌) of the D-spring expressed in Eq. (6.4) can 

be linearized by a first-order Taylor expansion at 𝑌 = 𝑌1:  

𝐹r(𝑌) = 𝑌 (√
1−𝑌0

2

1−𝑌2
− 1) ≈ 𝛼0 + 𝛼(𝑌 − 𝑌1),                          (6.8) 

where 

        𝛼0 = 𝑌1 (√(1 − 𝑌0
2) (1 − 𝑌1

2)⁄ − 1) = 𝐹r(𝑌1),                       (6.9a) 

        𝛼 = (√(1 − 𝑌0
2) (1 − 𝑌1

2)⁄ + 𝑌1
2 − 1) (1 − 𝑌1

2)⁄ ,                   (6.9b) 

are the coefficients of the constant and the linear stiffness term, respectively.  

 By substituting Eq. (6.8) into the expression of 𝐹D(𝑋1, 𝑌1), we have 𝐹D(𝑋1, 𝑌1) ≈

𝜆𝛼𝑋1. Thus Eq. (6.7) can be transformed to a linearized governing equation, expressed 

by  

  𝑋1
′′ + 2𝜁1𝑋1

′ + (1 + 𝜆𝛼)𝑋1 = 𝐹0𝑒
𝑖Ω𝜏.                            (6.10) 

Therefore the linearized stiffness and linearized natural frequency of the system 

are 

 𝐾L = (1 + 𝜆𝛼),       ΩL = √𝐾L,                     (6.11a, 6.11b) 

respectively. Eq. (6.11b) shows that the natural frequency of the system can be reduced 

by adding the D-spring while setting 𝛼 < 0. 

Figure 6.4 shows the dimensionless linearized dynamic stiffness 𝐾L and linearized 

natural frequency ΩL of the isolation system with respect to the distance 𝑌1 between two 

terminals of the D-spring at 𝑋1 = 0. Fig. 6.4(a) and 6.4(b) presents the effects of the 

spring stiffness ratio 𝜆 of the nonlinear D-spring. Four different cases with varying 

values of 𝜆 from 0 to 1, to 2 and to 3 are considered. The case with 𝜆 = 0 corresponds 

to the conventional linear isolator case without using the nonlinear D-spring. The initial 

distance 𝑌0  between two ends of D-spring is set as 𝑌0 = √2 2⁄ . It shows that for a 

specific case with a non-zero value of 𝜆, the values of the 𝐾L and ΩL increase with 𝑌1. 
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At a prescribed value of 𝑌1  smaller than a critical threshold of approximately 0.45 

(obtained by letting 𝛼 = 0  in Eq. (6.8)), the values of 𝐾L  and ΩL  reduce as the 𝜆 

increases from 0 to 3. At a larger value of 𝑌1 compared to the threshold, both 𝐾L and ΩL 

increase with 𝜆. In contrast, the values of  𝐾L and ΩL will decrease with the increasing 

𝜆 at a value of 𝑌1 lower than the threshold. The figure shows that the value of 𝑌1 of the 

D-spring can be set smaller than the threshold so as to achieve lower values of 𝐾L and 

ΩL compared with the corresponding linear isolator case.  

 

Figure 6.4. Effects of the nonlinear D-spring on (a) and (c): the dimensionless linearized dynamic 

stiffness 𝐾L, and on (b) and (d): dimensionless linearized natural frequency ΩL.  In (a) and (b), 

The solid line, dashed line, dotted line and dash-dotted line are for 𝜆 = 0, 1, 2 and 3, respectively; 

in (c) and (d), The solid line, dashed line, dotted line and dash-dotted line are for 𝑌0  = 0.3, 0.5, 

0.7 and 0.8, respectively. 

In Fig. 6.4(c) and 6.4(d), the influence of the initial distance 𝑌0 between terminals 

is examined, by considering four different values of 𝑌0 =0.3, 0.5, 0.7 and 0.8. The 

stiffness ratio of the D-spring is set as 𝜆 = 1. For a pre-described value of 𝑌0, as 𝑌1 

decreases from 𝑌0 to 0, both the linearized system stiffness 𝐾L and the linearized natural 

frequency ΩL decreases. At the same 𝑌1 value, an increase in the value of 𝑌0 can lead to 

lower values of 𝐾L and ΩL. 
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6.2.2. Nonlinear analysis 

To obtain dynamic behaviour and isolation performance, Eq. (6.7) needs to be 

solved. Here the harmonic-balance method with alternating-frequency-time (HB-AFT) 

technique is used to determine the steady-state periodic responses of the nonlinear 

isolation system. The steady-state displacement response 𝑋1 and the nonlinear force 𝐹D 

are approximated by a truncated 𝑁-order Fourier series with a fundamental frequency 

of Ω: 

𝑋1 = ∑ 𝑅̃(1,𝑛)
𝑁
𝑛=0 𝑒i𝑛Ω𝜏 ,              𝐹D = ∑ 𝐻̃𝑛

𝑁
𝑛=0 𝑒i𝑛Ω𝜏,      (6.12a, 6.12b)  

where 𝐹D ≡ 𝐹D(𝑋1, 𝑌1) = 𝜆 (𝐹r(𝑌(𝑋1, 𝑌1)) − 𝐹r(𝑌1)) is for the current force-excited 

system. The symbols 𝑅̃(1,𝑛) and 𝐻̃𝑛 denote the complex Fourier coefficients of the 𝑛-th 

order Fourier approximation. The velocity 𝑋1
′  and the acceleration 𝑋1

′′ of the mass can 

be obtained by taking differentiation of 𝑋1 with respect to time 𝜏. The AFT technique 

presented in Chapter 3 can be applied to determine the Fourier coefficients 𝐻̃ of the 

nonlinear force 𝐹D. Once the Fourier coefficients are obtained, Eq. (6.12) is substituted 

into Eq. (6.7). By balancing the corresponding coefficients of the n-th (0 ≤ 𝑛 ≤ 𝑁) 

order harmonic terms of the resultant equation, we have  

 (−(𝑛Ω)2 + i(2𝑛Ω𝜁1) + 1)𝑅̃(1,𝑛) = 𝑃̃(1,𝑛) − 𝐻̃𝑛,               (6.13) 

where 𝑃̃(1,𝑛) is the n-th order coefficient of the excitation source. For the current SDOF 

system subjected to the force-excitation we have 𝑃̃(1,1) = 𝐹0. Eq. (6.13) provides a total 

number of N algebraic equations with complex numbers 𝑅̃(1,𝑛)  as unknowns. By 

balancing the real and imaginary parts, a total number of (2𝑁 + 1)  real nonlinear 

algebraic equations can be obtained, which are solved by using the Newton-Raphson 

iterative method. In the meantime, the arc-length continuation method illustrated in 

Chapter 3 is used to track the solution branch in a range of parameter values. Hence, the 

steady-state response of the system can be determined and the vibration isolation 

performance of the isolation system is then evaluated. 

6.2.3. Performance indices 

To assess the isolation performance of linear or nonlinear isolators, the force and 

displacement transmissibility, as well as vibration power flow variables have been 

widely used as performance indicators. Here the following performance indices have 

been used to evaluate nonlinear vibration isolators (Yang et al., 2019, 2016; Alberdi-

Munian et al., 2012; Xiong et al., 2005b) and will also be used in the current study:  
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(a) Peak dynamic response displacement amplitude. 

(b) Peak transmissibility. 

(c) Unity isolation frequency range, in which the value of transmissibility is less 

than unity. 

(d) Time-averaged vibration power flow. 

For the current system, the force transmissibility 𝑇𝑅G  is defined as the ratio 

between the maximum magnitude of the dimensionless transmitted force to the ground 

and the excitation force amplitude: 

𝑇𝑅G =
max( |ℜ{𝐹tG}|)

𝐹0
,                                          (6.14) 

where 𝐹tG is the total non-dimensional transmitted force from mass 𝑚1 to the ground 

with 𝐹tG = 𝐹D(𝑋1, 𝑌1) + 2𝜁1𝑋1
′ + 𝑋1, the symbol ℜ denotes the operation of taking the 

real part of a complex number. To isolate the vibration, a low value of force 

transmissibility is desirable for the design of the isolator. 

For the force-excited system, the dimensionless steady-state input power 𝑃in by 

the external excitation is defined as the product of the velocity 𝑋1
′  of the machine and 

the harmonic excitation force 𝐹0e
𝑖Ω𝜏. The time-averaged input power is 

𝑃̅in =
1

𝜏p
∫ ℜ{𝑋1

′}ℜ{𝐹0𝑒
iΩ𝜏𝜏0+𝜏p

𝜏0
}d𝜏 =

1

2
𝐹0ℜ{(iΩ𝑅̃(1,1))

∗
},             (6.15) 

where 𝑋1
′ = ∑ i𝑛Ω𝑅̃(1,𝑛)

𝑁
𝑛=0 ei𝑛Ω𝜏 using Eq. (6.12a),  𝜏0 is the averaging starting time, 

𝜏p is averaging time span set as one period of the external excitation with 𝜏p = 2𝜋 Ω⁄ , 

and * represents the operation of taking the complex conjugate of a complex number.   

The maximum kinetic energy is often used as an indicator to assess the 

performance of vibration isolation systems (Xiong et al., 2003). For the current SDOF 

system, the dimensionless maximum kinetic energy 𝐾1 of the machine mass is given by 

𝐾1 =
1

2
(|𝑋1

′ |max)
2.                                              (6.16) 

where |𝑋1
′ |max is the maximum absolute velocity of the machine mass 𝑚1 in the steady 

state. 

6.2.4. Performance evaluations 

In this section, the effects of the design parameters of the D-spring on the steady-

state response and the performance of the isolator are investigated. The results are 
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obtained by both the HB-AFT method and the time-marching method based on the 

fourth-order Runge-Kutta (RK) method. The HB results are represented by different 

lines while the RK results are denoted by symbols. The order N of HB-AFT is set as 7 

throughout this chapter with a consideration of both the accuracy and the computational 

cost.  When examining the influence of the stiffness ratio 𝜆  of the D-spring, four 

different cases are considered with the value 𝜆 changing from 0 to 3, to 4 and to 5 while 

setting the initial angle 𝜃0, the excitation amplitude 𝐹0 and the distance 𝑌1 between two 

ends of the D-spring at equilibrium point as 𝜃0 = 45° , 𝐹0 = 0.002  and 𝑌1 = 0.4 , 

respectively. as 𝜃0 = 45°, 𝐹0 = 0.002 and 𝑌1 = 0.4, respectively. The case with 𝜆 = 0 

is corresponding to the linear isolator case without the nonlinear D-spring for 

comparison. When studying the effects of the initial angle 𝜃0, four possible values of 

𝜃0  are selected with 𝜃0 = 30 , 45, 55 and 60 degrees while setting 𝜆 = 2 , 𝐹0 =

0.0025 and  𝑌1 = 0.4. In the investigation of the influence of the distance 𝑌1 , four 

different values of 𝑌1 are chosen with 𝑌1 = 0.3, 0.4, 0.5 and 0.6 while setting 𝜆 = 2, 

𝜃0 = 60° and 𝐹0 = 0.002. In the parameter studies, the damping ratio 𝜁1 of the system 

is fixed as 𝜁1 = 0.01.  

In Fig. 6.5(a) and (b), the effects of the stiffness ratio 𝜆 and initial angle 𝜃0 of the 

D-spring on the steady-state response amplitude of the mass 𝑋1_amp  are studied, 

respectively. The figure shows that the HB-AFT results agree quite well with those of 

the RK method. Fig. 6.5(a) shows that compared with linear isolation system with 𝜆 =

0, the addition of nonlinear D-spring can shift the peak in the response curve to the low-

frequency range. The reason is that the dynamic stiffness of D-spring is negative near 

the equilibrium point (𝑌 = 𝑌1 = 0.4) as shown by Eq. (6.5) and Fig. 6.2(b). Therefore 

the use of the D-spring can reduce the system stiffness and hence reduce the resonant 

frequency of the isolation system. These characteristics are also indicated by the 

expressions of the linearized stiffness and the linearized natural frequency in Eq. (6.11). 

Fig. 6.5(a) also shows that with the D-spring, the peak of the response curve bends to 

the left, which is due to the nonlinear relationship between the D-spring stiffness and 

the distance 𝑌 between the terminals. Fig. 6.2(b) showed that when the deformation of 

the D-spring Δ is large, the value of the D-spring stiffness may become larger or smaller 

than the stiffness value at Δ = 0 . It can correspondingly result in a hardening or 

softening effect on the displacement response curve. As the stiffness ratio 𝜆 increasing 

from 3 to 4 and to 5, the peak in the curve of 𝑋1_amp is shifted further to the low 

frequencies. This is due to the stronger negative stiffness effect provided by the 

nonlinear D-spring, leading to a smaller system stiffness and therefore a lower 
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resonance frequency. Moreover, the peak of 𝑋1_amp  bends more towards left with 

higher peak value. The reason is the stronger stiffness nonlinearity of the D-spring by a 

larger 𝜆 value. As the response amplitude increases at the resonance frequency with a 

larger value of 𝜆, the deformation of the D-spring Δ becomes larger and can result in a 

stronger softening effect on the response. Fig. 6.5(b) shows that when the initial angle 

𝜃0 of the D-spring increases from 30 to 45, to 55 and to 60 degrees, the peak of 𝑋1_amp 

shifts significantly to the left due to the reduction of the D-spring stiffness near the 

equilibrium point of 𝑌 = 𝑌1 = 0.4 as shown by Eq. (6.5). An increasing 𝜃0 can also 

bend the peak further to the left with a larger peak value, resulting in multiple solutions 

at certain excitation frequency near the peak. The reason can be found from Eq. (6.5) 

and Fig. 6.2(b), i.e., when the response displacement of the mass is large and the position 

of the mass is away from the equilibrium point, the nonlinear D-spring can provide a 

lower stiffness with the increasing 𝜃0, resulting in a possible softening effect. It is also 

noticed that when the value of 𝜆 or 𝜃0 becomes larger for the D-spring, the values of 

𝑋1_amp are increased in the low-frequency range and the super-harmonic responses can 

be found near Ω = 0.3. 

 

Figure 6.5. Effects of (a) the spring stiffness ratio 𝜆 and (b) the initial angle 𝜃0 of the nonlinear 

D-spring on the steady-state response amplitude of the mass 𝑋1_amp. In (a), the solid, dashed, 

dotted and dash-dotted lines are for 𝜆 = 0, 3, 4 and 5, respectively; in (b), The solid, dashed, 

dotted and dash-dotted lines are for 𝜃0 = 30, 45, 55 and 60 degrees, respectively. Symbols: RK 

results. 

In Fig. 6.6(a) and (b), the influence of the stiffness ratio 𝜆 and initial angle 𝜃0 of 

the D-spring on the force transmissibility 𝑇𝑅G is investigated, respectively. Fig. 6.6(a) 

shows that by adding the D-spring to the linear isolator, the peak in the 𝑇𝑅G curve shifts 

to the left and a larger effective frequency band is obtained for the attenuation of force 

transmission. This is due to the negative stiffness provided by the D-spring at the 

equilibrium point. The peak of the 𝑇𝑅G curve also bends to the low-frequency range 
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and results in multiple possible levels of 𝑇𝑅G near the resonance frequency. The reason 

is that there is a nonlinear relationship between the D-spring stiffness and the distance 

𝑌 between the terminals. When the excitation frequency is in the vicinity of the resonant 

peak, the stiffness of the D-spring can be reduced with the increase of the response 

displacement, resulting in the bending behaviour.  Fig. 6.6(a) also shows that as the 

stiffness ratio 𝜆 increases from 0 to 3, to 4 and to 5, there is a further shift of the peak 

in 𝑇𝑅G curve to the low frequencies and its peak shows more bending to the left with 

higher peak values. Fig. 6.6(b) shows that as the initial angle 𝜃0  of the D-spring 

increases from 30 to 45, to 55 and to 60 degrees, the peak of 𝑇𝑅G shifts to the low-

frequency range so as to provide a broader frequency band for effective vibration 

isolation. This is again due to the lower system dynamic stiffness with a larger value of 

𝜃0, leading to a lower resonant frequency of the system. An increase of the 𝜃0 value can 

also introduce stronger nonlinear effect into the system, which can then bend the peak 

of 𝑇𝑅G curve to the left with a slightly lower peak value of 𝑇𝑅G.  

 

Figure 6.6. Effects of (a) the spring stiffness ratio 𝜆 and (b) the initial angle 𝜃0 of the nonlinear 

D-spring on the force transmissibility 𝑇𝑅G. In (a), The solid, dashed, dotted and dash-dotted lines 

are for 𝜆 = 0, 3, 4 and 5, respectively; in (b), The solid, dashed, dotted and dash-dotted lines are 

for 𝜃0 = 30, 45, 55 and 60 degrees, respectively. Symbols: RK results. 

In Fig. 6.7, the reasons for the increase of the peak value of force transmissibility 

𝑇𝑅G with the increasing stiffness ratio 𝜆 in Fig. 6.6(a), and for the decrease of the peak 

value of 𝑇𝑅G with the increasing initial angle 𝜃0 in Fig. 6.6(b) are further explored.  Fig. 

6.7(a) and (b) shows the time histories of the steady-state response 𝑋1 as well as the 

total transmitted force 𝐹tG for the cases of 𝜆 = 5 at Ω = 0.75 and 𝜃0 = 60° at Ω = 0.5 

shown in Fig. 6.6(a) and (b), respectively. It is found that for both cases, the maximum 

absolute transmitted force 𝐹tG is found when the mass is reaching the highest position 

(𝑋1 ≈ 0.06) and the D-spring is under tension (𝑌 > 𝑌0). From Fig. 6.2(b), it is known 

that the D-spring stiffness is positive when 𝑌 > 𝑌0. Therefore, a larger value of stiffness 
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ratio 𝜆 can increase the D-spring stiffness, leading to a larger maximum absolute value 

of 𝐹tG and hence a higher peak of 𝑇𝑅G. However, as shown in Fig. 6.2(b), an increasing 

initial angle 𝜃0 (i.e. an increasing 𝑌0) will reduce the D-spring stiffness when 𝑌 > 𝑌0. 

Hence it can result in a smaller maximum absolute value of 𝐹tG and subsequently a 

lower peak value of the force transmissibility 𝑇𝑅G. 

  

Figure 6.7. Time history of the dimensionless total transmitted force 𝐹tG and the dimensionless 

displacement response of the mass 𝑋1 with the system parameters set as (a) 𝜆 = 5, 𝜃0 = 45°, 
𝐹0=0.002, Ω = 0.75, and (b) 𝜆 = 2 and 𝜃0 = 60°, 𝐹0=0.0025, Ω = 0.5, respectively; The solid 

line and the dashed line are the dimensionless response 𝑋1  and the dimensionless total 

transmitted force 𝐹tG, respectively. 

In Fig. 6.8(a) and (b), the effects of D-spring on the maximum kinetic energy 𝐾1 

of the machine mass are examined. Fig. 6.8(a) shows that compared with linear isolation 

system (𝜆 = 0), the introduction of the D-spring to the isolator can shift the peak in the 

kinetic energy 𝐾1  curve to the low-frequency range and bend it to the left. The 

behaviour can bring benefits to the vibration isolation performance. As the stiffness ratio 

𝜆 of the D-spring increases from 0 to 3, to 4 and to 5, the 𝐾1 curve shifts further to the 

low frequencies and its peak bends more to the left, but the peak value of 𝐾1 changes 

little. Fig. 6.8(a) also shows that a larger value of 𝜆 can lead to an increase of 𝐾1 at low 

frequencies when away from the resonant peak. The curves of 𝐾1 for different values of 

𝜆 tend to merge at high frequencies. Fig. 6.8(b) shows that with the increasing 𝜃0 from 

30 to 45, to 55 and to 60 degrees, the peak frequency of the 𝐾1  curve reduces 

substantially and the peak bends more to the left. This is due to the reduction of stiffness 

of the D-spring near the equilibrium point and a stronger stiffness nonlinearity with the 

increasing 𝜃0 . However, there is little difference in the peak value of 𝐾1  with the 

variation of 𝜃0. When the frequency is away from the resonant region, a larger initial 

angle 𝜃0 can lead to a significantly larger 𝐾1 value in the low-frequency range but the 

curves for different value of 𝜃0 are tending to overlap at high frequencies. From Fig. 
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6.8, an extra peak can be found in each curve of 𝐾1 for nonlinear isolator cases with a 

non-zero value of 𝜆, which is due to the presence of relatively large super-harmonic 

components in the response. 

  

Figure 6.8. Effects of (a) the spring stiffness ratio 𝜆 and (b) the initial angle 𝜃0 of the nonlinear 

D-spring on the maximum kinetic energy 𝐾1. In (a), The solid, dashed, dotted and dash-dotted 

lines are for 𝜆 = 0, 3, 4 and 5, respectively; in (b), The solid, dashed, dotted and dash-dotted 

lines are for 𝜃0 = 30, 45, 55 and 60 degrees, respectively. Symbols: RK results. 

In Fig. 6.9(a), the influence of the spring stiffness ratio 𝜆 of the D-spring on the 

time-averaged input power 𝑃̅in into the system is studied. By a comparison between the 

linear isolator case with 𝜆 = 0 and the nonlinear isolator cases using D-spring, it is 

found that the addition of the D-spring can lower peak frequency of the time-averaged 

input power but the variations of 𝜆 have little effect on the peak value of 𝑃̅in. Moreover, 

with the 𝜆 changing from 3 to 4 and to 5, the peak frequency of 𝑃̅in further decreases, 

which benefits the isolation performance of the system. Fig. 6.9(b), (c) and (d) presents 

the effects of the distance 𝑌1 between the two ends of the nonlinear D-spring at 𝑋1 = 0 

on the steady-state response amplitude 𝑋1_amp, the force transmissibility 𝑇𝑅G and the 

maximum kinetic energy 𝐾1, respectively. Fig. 6.9(b) shows that as the value of 𝑌1 

decreases from 0.6, to 0.5, to 0.4 and to 0.3, the response peak in the curve of 𝑋1_amp 

shifts to the low frequencies due to the reducing stiffness of the D-spring at the 

equilibrium point, as shown by Eq. (6.5) and Fig. 6.2(b). Moreover, with the decrease 

of 𝑌1, there is more bending of the peak in the 𝑋1_amp curve to the left with increasing 

peak value. This is again due to the non-monotonic relationship between D-spring 

stiffness and the distance 𝑌 between the terminals. When the value of 𝑌1 is decreased, 

the stiffness of the D-spring near the equilibrium point of 𝑌 = 𝑌1 becomes smaller. The 

response amplitude of the mass is increased due to the less restraint, which can lead to 

a larger deformation of the D-spring. Therefore, the stiffness of the D-spring will be 

further reduced when the position of the mass is lower than the equilibrium point (i.e. 
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𝑌 < 𝑌0), as shown by Eq. (6.5) and Fig. 6.2(b). Consequently, a softening effect can be 

observed.  

 
Figure 6.9. Effects of (a) the spring stiffness ratio 𝜆 on 𝑃̅in, and the distance 𝑌1 on (b) the steady-

state response amplitude 𝑋1_amp, (c) the force transmissibility 𝑇𝑅G and (d) the maximum kinetic 

energy 𝐾1.  In (a), the solid, dashed, dotted and dash-dotted lines are for 𝜆 = 0, 3, 4 and 5, 

respectively; in (b-d), the solid, dashed, dotted and dash-dotted lines are for 𝑌1 =0.3, 0.4, 0.5 and 

0.6, respectively. Symbols: RK results.  

Fig. 6.9(c) shows that when the distance 𝑌1 reduces from 0.6 to 0.3, the peak in the 

force transmissibility 𝑇𝑅G curve is also shifting to the left while its peak bends more to 

the left with reducing peak value. This phenomenon demonstrates a possible 

straightforward way to tailor the isolation characteristic of the D-spring without 

replacing the embedded spring. Combining the Fig. 6.6(a), 6.6(b) and 6.9(c), it can be 

found that at high frequencies away from the resonant region, the value of 𝑇𝑅G can be 

substantially reduced by using a large value of 𝜆 or 𝜃0, or a small value of 𝑌1, by which 

a wider frequency band of low force transmissibility can be obtained. However, in the 

low-frequency range close to Ω ≈ 0.1 , there are little changes in values of 𝑇𝑅G  

regardless of the variations of design parameters of the D-spring. Fig. 6.9(d) shows that 

the reduction of the distance 𝑌1 can significantly shift the curve of the maximum kinetic 

energy 𝐾1 to the low frequencies and also bend the peak to the left. This behaviour may 
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assist the vibration isolation. It is found that the change of the 𝑌1 value has a weak 

influence on the peak value of 𝐾1. In contrast, when the excitation frequency is away 

from resonance, the reduction of 𝑌1 can result in a much higher 𝐾1 at low frequencies 

and a higher extra peak near Ω = 0.25 while the curves of 𝐾1 for different values of 𝑌1 

coincide in high frequencies. 

6.3. SDOF nonlinear isolator for base excitations 

6.3.1. Mathematical model 

The nonlinear isolation system may also encounter base-motion excitations in 

some applications such as vehicle suspension system when travelling down the uneven 

road. Fig. 6.10 shows the use of the D-spring for suppressing the vibration transmitted 

from base to the machine. The machine with mass 𝑚1  is mounted on a foundation 

through a linear spring of stiffness coefficient 𝑘1 , a linear damper with damping 

coefficient 𝑐1 and the nonlinear D-spring, as shown in Fig. 6.1(a). The foundation base 

is driven by the harmonic displacement excitation 𝑧 with 𝑧 = 𝑧0𝑒
𝑖𝜔𝑡. The equilibrium 

position of the mass, is set as a reference with 𝑥1 = 0, at which the distance 𝑦 between 

terminals A and B of the D-spring is set as 𝑦1 (0 < 𝑦1 < 𝑦0).  
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Figure 6.10. Schematic of a nonlinear isolator with the D-spring for isolation of base 

excitation. 

The dynamic governing equation of the mass is  

𝑚1𝑥̈1 + 𝑐1𝑥̇1 + 𝑘1𝑥1 + 𝑓D(𝑥1, 𝑦1, 𝑧) = 𝑐1𝑧̇ + 𝑘1𝑧,                 (6.17)  

where 𝑓D(𝑥1, 𝑦1, 𝑧) = 𝑓r(𝑦(𝑥1, 𝑦1, 𝑧)) − 𝑓r(𝑦1)  is the dynamic force applied by the 

nonlinear D-spring on the mass with 𝑦(𝑥1, 𝑦1, 𝑧) = 𝑦1 + 𝑥1 − 𝑧, and 𝑓r(𝑦) has been 

expressed by Eq. (6.2). Here by introducing the dimensionless displacement excitation 

amplitude  𝑍0  with 𝑍0 =
𝑧0

2𝑙𝑏
 and reusing the parameters defined previously in the 

Subsection 6.2.1, the Eq. (6.17) can be transformed to a dimensionless form: 
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𝑋1
′′ + 2𝜁1𝑋1

′ + 𝑋1 + 𝐹D(𝑋1, 𝑌1, 𝑍) = 2𝜁1𝑍
′ + 𝑍,                     (6.18) 

where 𝑍 = 𝑍0𝑒
𝑖Ω𝜏, 𝑍′ = 𝑖Ω𝑍0𝑒

𝑖Ω𝜏, 𝐹D(𝑋1, 𝑌1, 𝑍) ≡ 𝜆(𝐹r(𝑌(𝑋1, 𝑌1, 𝑍)) − 𝐹r(𝑌1)) is the 

non-dimensional dynamic force applied by the D-spring on the mass with 

𝑌(𝑋1, 𝑌1, 𝑍) = 𝑌1 + 𝑋1 − 𝑍 and the function of 𝐹r(𝑌) has already been defined by Eq. 

(6.4).  

Based on HB-AFT technique and numerical continuation method illustrated in 

Subsection 6.2.2, by taking the nonlinear force 𝐹D  as 𝐹D = 𝐹D(𝑋1, 𝑌1, 𝑍) =

𝜆(𝐹r(𝑌(𝑋1, 𝑌1, 𝑍)) − 𝐹r(𝑌1))  in Eq. (6.12b) and the excitation source 𝑃̃(1,𝑛)  as 

𝑃̃(1,𝑛)=2𝜁1𝑍
′ + 𝑍 = (𝑖2𝜁1Ω+ 1)𝑍0 in Eq. (6.13), the steady-state response amplitude 

of the base-excited system can be determined. 

6.3.2. Performance indices 

For the current base-excited oscillating system, the displacement transmissibility 

can be used to evaluate the isolation performance. It is defined as the ratio between the 

amplitude of the response and the input displacement magnitude: 

𝑇𝑅D =
 |ℜ{𝑋1_amp}|

𝑍0
 ,                                            (6.19) 

The maximum kinetic energy is still defined by Eq. (6.16). In accordance of the 

energy conservation, the steady-state dimensionless time-averaged input power 𝑃̅in into 

the system is fully dissipated by the damper 𝑐1, hence we have 

𝑃̅in = 𝑃̅d1 =
1

𝜏𝑝
∫ 2𝜁1(ℜ{𝑍

′ − 𝑋1
′})2

𝜏0+𝜏𝑝
𝜏0

d𝜏,                     (6.20) 

where 𝑃̅d1 is the time-averaged power dissipation by the damper 𝑐1. 

6.3.3. Performance evaluations 

This section studies the influence of the design parameters of the D-spring on the 

steady-state response and performance of the nonlinear isolator for base-excitations. 

The results obtained by the HB-AFT method are represented by different lines while 

those obtained by the 4th-order RK method are denoted by symbols. In the examination 

of the effects of the stiffness ratio 𝜆, three cases are considered with the value of 𝜆 

varying from 3, to 4 and to 5 while setting the initial angle as 𝜃0 = 45° and the distance 

𝑌1 between two ends of the D-spring at the equilibrium point as 𝑌1 = 0.4. A reference 

case with 𝜆 = 0 corresponds to the linear isolator system without the D-spring is also 

added for comparison. For investigating the influence of 𝜃0, four possible values of 𝜃0 
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are selected changing from 30 to 45, to 55 and to 60 degrees while setting 𝜆 = 2 and 

𝑌1 = 0.4. When studying the effects of 𝑌1, four possible values of 𝑌1 are specified with 

𝑌1 = 0.3, 0.4, 0.5 and 0.6 while setting 𝜆 = 2 and 𝜃0 = 60°. The system parameters 

are fixed as 𝜁1=0.01 and 𝑍0 = 0.006.   

In Fig. 6.11(a) and (b), the effects of the stiffness ratio 𝜆 and initial angle 𝜃0 of the 

D-spring on the steady-state response amplitude of the machine 𝑋1_amp are investigated, 

respectively. Fig. 6.11(a) shows that compared to the linear system with 𝜆 = 0, the peak 

in the response amplitude curve of the nonlinear isolation system shifts to the left. This 

characteristic is due to the reduction of the system stiffness by the negative stiffness of 

the nonlinear D-spring. It is also found that the peak of the nonlinear system bends to 

the left with lower peak value due to that the stiffness of the D-spring is a nonlinear 

function of distance 𝑌 between the terminals. As the response amplitude of the mass 

and also the deformation of the D-spring increase near the peak frequency, the stiffness 

of the D-spring can be decreased as shown by Fig. 6.2(b). When the value of the stiffness 

ratio 𝜆 changes from 3 to 4 and to 5, the 𝑋1_amp shifts more to the low frequencies 

because of the smaller stiffness of the D-spring at the equilibrium point (𝑋1 = 0, 𝑌 =

𝑌1), and the peak bends further to the left due to the stronger nonlinearity of the D-spring 

stiffness with respect to the distance 𝑌. Moreover, there is a substantial reduction in the 

peak height of the 𝑋1_amp curve.  

 

Figure 6.11. Effects of (a) the spring stiffness ratio 𝜆 and (b) the initial angle 𝜃0 of the nonlinear 

D-spring on the steady-state response amplitude of the mass 𝑋1_amp. In (a), The solid, dashed, 

dotted and dash-dotted lines are for 𝜆 = 0, 3, 4 and 5, respectively; in (b), The solid, dashed, 

dotted and dash-dotted lines are for 𝜃0 = 30, 45, 55 and 60 degrees, respectively. Symbols: RK 

results. 

Fig. 6.11(b) shows that as the initial angle 𝜃0 increases from 30 to 45, to 55 and to 

60 degrees, the 𝑋1_amp curve shifts to the left. The peak in the 𝑋1_amp curve bends to 

the high-frequencies with larger peak value when 𝜃0 = 30° while it bends to the low-
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frequencies with smaller peak value when 𝜃0 increases from 45 to 55 and to 60 degrees. 

The reason is due to the nonlinear relationship between the distance 𝑌 and stiffness of 

the D-spring, resulting in a hardening effect when 𝜃0 = 30° but a softening effect when 

𝜃0 = 55° or 60°. 

In Fig. 6.12(a) and (b), the influence of the stiffness ratio 𝜆 and initial angle 𝜃0 of 

the D-spring on the displacement transmissibility 𝑇𝑅D is examined, respectively. Fig. 

6.12(a) shows that the addition of the nonlinear D-spring reduces the resonance 

frequency of 𝑇𝑅D curve compared to the corresponding linear system (i.e. 𝜆 = 0). The 

peak in the 𝑇𝑅D curve also bends to the left with a smaller value. When the stiffness 

ratio 𝜆 increasing from 3 to 4 and to 5, the peak in the curve of 𝑇𝑅D shifts further to the 

left due to the reduction of the D-spring stiffness at 𝑋1 = 0. Moreover, there is more 

bending of the 𝑇𝑅D peak to the left with lower peak value. Fig. 6.12(b) shows that with 

the increase of 𝜃0 from 30 to 45, to 55 and to 60 degrees, the 𝑇𝑅D curve shifts to the 

low-frequency range and the effective frequency band for displacement transmission 

isolation is enlarged. The peak of 𝑇𝑅D curve bends to the right with higher peak value 

when 𝜃0 decreases from 45 to 30 degrees while the peak bends to the left when 𝜃0 

increases from 45 to 60 degrees. This is again due to the stiffness nonlinearity of D-

spring, leading to different nonlinear effect in the variation of 𝜃0. 

 

Figure 6.12. Effects of (a) the spring stiffness ratio 𝜆 and (b) the initial angle 𝜃0 of the nonlinear 

D-spring on the force transmissibility 𝑇𝑅B. In (a), The solid, dashed, dotted and dash-dotted lines 

are for 𝜆 = 0, 3, 4 and 5, respectively; in (b), The solid, dashed, dotted and dash-dotted lines are 

for 𝜃0 = 30, 45, 55 and 60 degrees, respectively. Symbols: RK results. 

In Fig. 6.13(a) and (b), the effects of stiffness ratio 𝜆 and initial angle 𝜃0 of the D-

spring on the maximum kinetic energy 𝐾1 of the mass are studied, respectively. Fig. 

6.13(a) shows that with the use of the nonlinear D-spring, the peak value of maximum 

kinetic energy 𝐾1 is reduced and its resonant peak is shifted to the left compared with 

the linear system (𝜆 = 0). This behaviour suggests an improvement in the vibration 
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isolation performance. As the value of stiffness ratio 𝜆 increases from 3 to 4 and to 5, 

the peak value of 𝐾1 and its peak frequency is further reduced. Fig. 6.13(b) shows that 

when the initial angle 𝜃0 increases from 30 to 45, to 55 and to 60 degrees, the peak value 

and the associated frequency of 𝐾1 are both reduced substantially due to the smaller D-

spring stiffness at the equilibrium point. When  𝜃0 = 30°, the peak of the 𝐾1 curve 

bends to the high frequencies. However, when 𝜃0 increases from 55 to 60 degrees, the 

𝐾1 peak bends to the left. This is again due to the nonlinear effect introduced by the D-

spring. 

 

Figure 6.13. Effects of (a) the spring stiffness ratio 𝜆 and (b) the initial angle 𝜃0 of the nonlinear 

D-spring on the maximum kinetic energy 𝐾1. In (a), The solid, dashed, dotted and dash-dotted 

lines are for 𝜆 = 0, 3, 4 and 5, respectively; in (b), The solid, dashed, dotted and dash-dotted 

lines are for 𝜃0 = 30, 45, 55 and 60 degrees, respectively. Symbols: RK results. 

In Fig. 6.14(a), the influence of the spring stiffness ratio 𝜆 on the time-averaged 

input power  𝑃̅in into the system is investigated. It shows that as the stiffness ratio 𝜆 

increases from 0 to 3, to 4 and to 5, the curve of 𝑃̅in shifts to the low-frequency range 

and the peak value of 𝑃̅in as well as its associated frequency are both reduced. When the 

excitation frequency is away from the resonance, It can be found that the value of 𝑃̅in is 

increased with 𝜆 in the low-frequency range, while the curves of 𝑃̅in with different 𝜆 

values merge in the high-frequency range. Fig. 6.14(b), (c) and (d) presents the effects 

of the distance 𝑌1 between the terminals of the nonlinear D-spring at 𝑋1 = 0 on the 

steady-state response amplitude 𝑋1_amp of the mass, the displacement transmissibility 

𝑇𝑅D to the machine mass 𝑚1 and the maximum kinetic energy 𝐾1, respectively. Fig. 

6.14(b) shows that a decrease of 𝑌1 from 0.6 to 0.5, to 0.4 and to 0.3 can shift the 𝑋1_amp 

curve to the low-frequency range. In the meantime, the peak shows less bending to the 

left with a smaller peak value. This is due to that a smaller value of 𝑌1 can lead to a 

smaller stiffness of the D-spring at the equilibrium point, which reduces the transmitted 

force to the mass and results in a lower vibration amplitude 𝑋1_amp. Moreover, since the 
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vibration amplitude is reduced, the deformation of the D-spring is small and therefore 

the nonlinear effect by the D-spring is minimized, leading to less bending at the peak in 

the response curve.  

 

Figure 6.14. Effects of spring stiffness ratio 𝜆 (a) on 𝑃̅in, and distance 𝑌1 on (b) 𝑋1_amp, (c) 𝑇𝑅B 

and (d) 𝐾1.  In (a), the solid, dashed, dotted and dash-dotted lines are for 𝜆 = 0, 3, 4 and 5, 

respectively; in (c-d), the solid, dashed, dotted and dash-dotted lines are for 𝑌1 = 0.3, 0.4, 0.5 

and 0.6, respectively. Symbols: RK results.  

Fig. 6.14(c) shows that by reducing the distance 𝑌1 from 0.6 to 0.3, the 𝑇𝑅D curve 

is shifting to the left. In contrast, the peak of 𝑇𝑅D curve bends less to left with lower 

peak value. From Figs. 6.12(a), (b) and 6.14(c), it is found that a larger 𝜆, a larger 𝜃0 or 

a smaller 𝑌1  can substantially reduce the 𝑇𝑅D at the high frequencies, which shows a 

good performance for the displacement transmission isolation. Fig. 6.14(d) shows that 

as the distance 𝑌1 decreases from 0.6 to 0.3, there is a reduction in the peak value as 

well as the peak frequency of the maximum kinetic energy curve 𝐾1. Less bending of 

the peak is also found in the 𝐾1  curve. From Figs. 6.13(a), (b) and 6.14(d), it is 

summarized that when the excitation frequency is away from the resonant region, a 

higher value of 𝜆, 𝜃0 or a lower value of 𝑌1 can lead to smaller values maximum kinetic 

energy at high frequencies, which can assist the vibration isolation of the nonlinear 
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isolator. At low frequencies away from resonance frequency, the curves of 𝐾1  are 

tending to coincide, suggesting that the nonlinear isolator may not be effective on the 

suppression of 𝐾1 in low-frequencies for the isolation from the base-excitation. 

6.4. 2DOF nonlinear isolation system for force excitation  

6.4.1. Mathematical model 

This subsection explores the isolation performance of the nonlinear isolator with 

D-spring when considering the flexibility of the base structure. Fig. 6.15 provides a 

schematic representation of a coupled 2DOF system comprises a SDOF base of a mass 

𝑚b, a linear spring with stiffness 𝑘b and a linear damper with damping 𝑐b to model a 

movable base structure. A machine of mass 𝑚1 subjected to a harmonic force-excitation 

𝑓0𝑒
𝑖𝜔𝑡  is mounted on the SDOF base via a linear spring with stiffness 𝑘1, a linear 

damper with damping 𝑐1  and the nonlinear D-spring, as shown in Fig. 6.1(a). The 

equilibrium position of the mass, is set as a reference with 𝑥1 = 𝑥b = 0, at which the 

distance 𝑦 between terminals A and B of the D-spring is set as 𝑦1 (0 < 𝑦1 < 𝑦0). 
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Figure 6.15. Schematic of a 2DOF nonlinear isolation system with the D-spring for isolation of 

force excitation. 

In many applications, it is not possible to add the isolator into the foundation 

structure. If it is also possible to insert the nonlinear D-spring into the base structure, 

since the excitation force is applied to the machine mass, the response displacement of 

the base is naturally smaller than the machine mass and hence there will be less 

deformation of the D-spring if it was mounted between the base and the ground. Due to 
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the geometric nonlinearity of the D-spring, the nonlinear effects caused by the D-spring 

in the base structure will be weaker. 

For the current 2DOF nonlinear isolation system, the dimensional equation of 

motion can be written in a matrix form as 

[
𝑚1 0
0 𝑚b

] {
𝑥̈1
𝑥̈b
} + [

𝑐1 −𝑐1
−𝑐1 𝑐1 + 𝑐b

] {
𝑥̇1
𝑥̇b
} + [

𝑘1 −𝑘1
−𝑘1 𝑘1 + 𝑘b

] {
𝑥1
𝑥b
} +

{
𝑓D(𝑥1, 𝑥b, 𝑦1)

−𝑓D(𝑥1, 𝑥b, 𝑦1)
} = {𝑓0𝑒

𝑖𝜔𝑡

0
}.  (6.21) 

where 𝑓D(𝑥1, 𝑥b, 𝑦1) = 𝑓r(𝑦(𝑥1, 𝑥b, 𝑦1)) − 𝑓r(𝑦1) is the dynamic force applied by the 

nonlinear D-spring with 𝑦(𝑥1, 𝑥b, 𝑦1) = 𝑦1 + 𝑥1 − 𝑥b, and 𝑓r(𝑦) has been expressed by 

Eq. (6.2). Here the new parameters are introduced as 

𝜔b = √
𝑘b

𝑚b
,    𝜁b =

𝑐b

2𝑚b𝜔b
,    𝑋b =

𝑥b

2𝑙b 
,     𝛾 =

𝜔b

𝜔1
,     𝜇 =

𝑚b

𝑚1
,      

where 𝜔b and 𝜁b represent the undamped natural frequency of the base structure and 

the damping ratio of the linear damper in the base structure, respectively, 𝑋b denotes 

the non-dimensional displacement of the base structure, 𝛾  is the undamped natural 

frequency ratio and 𝜇  is the mass ratio. By using them and the previously defined 

parameters, Eq. (6.21) can be transformed into dimensionless form as  

[
1 0
0 𝜇

] {
𝑋1
′′

𝑋b
′′} + [

2𝜁1 −2𝜁1
−2𝜁1    2(𝜁1 + 𝜁b𝜇𝛾)

] {
𝑋1
′

𝑋b
′ } + [

1 −1
−1   1 + 𝜇𝛾2

] {
𝑋1
𝑋b
} +

{
𝐹D(𝑋1, 𝑋b, 𝑌1)

  −𝐹D(𝑋1, 𝑋b, 𝑌1)
} = {𝐹0𝑒

𝑖Ω𝜏

0
},  (6.22) 

where  𝐹D(𝑋1, 𝑋b, 𝑌1) = 𝜆(𝐹r(𝑌(𝑋1, 𝑋b, 𝑌1)) − 𝐹r(𝑌1)) is the non-dimensional dynamic 

force applied by the D-spring with 𝑌(𝑋1, 𝑋b, 𝑌1) = 𝑌1 + 𝑋1 − 𝑋b, and the function of 

𝐹r(𝑌) has been defined by Eq. (6.4).  

Based on the HB-AFT technique illustrated in Subsection 6.2.2, the steady-state 

response of the machine mass 𝑚1 is still approximated by Eq. (6.12a). The steady-state 

response of the base mass 𝑚b can be approximated with 𝑋b = ∑ 𝑅̃(b,𝑛)
𝑁
𝑛=0 𝑒i𝑛Ω𝜏, and 

the corresponding velocity and acceleration responses 𝑋b
 ′ and 𝑋b

′′ can then be calculated 

by taking differentiation of 𝑋b with respect to time 𝜏. The Fourier coefficient 𝐻̃𝑛 of the 

nonlinear force 𝐹D  can be obtained by taking 𝐹D = 𝐹D(𝑋1, 𝑋b, 𝑌1) =

𝜆(𝐹r(𝑌(𝑋1, 𝑋b, 𝑌1)) − 𝐹r(𝑌1)) in Eq. (6.12b). Those expressions can be substituted into 
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Eq. (6.22) and by balancing the corresponding 𝑛 -th order harmonic terms of the 

resultant equations, we have 

(−(𝑛Ω)2 [
1 0
0 𝜇

] + i(𝑛Ω) [
2𝜁1 −2𝜁1
−2𝜁1    2(𝜁1 + 𝜁b𝜇𝛾)

] + [
1 −1
−1   1 + 𝜇𝛾2

]) {
𝑅̃(1,𝑛)

𝑅̃(b,𝑛)
} =

{
𝐹0
0
} + {

−𝐻̃𝑛
𝐻̃𝑛

}. (6.23) 

Recalling that the harmonic order 𝑛 is within the range of 0 ≤ 𝑛 ≤ 𝑁, therefore Eq. 

(6.23) can be transformed into a total number of 2(2𝑁 + 1) real nonlinear algebraic 

equations and solved by using the Newton-Raphson method. The solutions of those 

algebraic equations in the frequency domain can be obtained by a combined use of HB 

and arc-length path continuations illustrated in Chapter 3. Subsequently, the steady-state 

response of the system can be determined and the performance of the nonlinear isolation 

system can then be evaluated. 

6.4.2. Performance indices 

The force transmissibility to the base mass 𝑚1 and the force transmissibility to the 

stationary ground are defined as 

𝑇𝑅B =
max( |𝐹tB|)

𝐹0
,                𝑇𝑅G =

max( |𝐹tG|)

𝐹0
,         (6.24a, 6.24b) 

respectively, where 𝐹tB = 𝑋1 − 𝑋b + 2𝜁1(𝑋1
′ − 𝑋b

′ ) + 𝐹D(𝑋1, 𝑋b, 𝑌1)  is the 

dimensionless transmitted force from the machine 𝑚1 to the base structure and 𝐹tG =

𝜇𝛾2𝑋b + 2𝜁b𝜇𝛾𝑋b
′  is the dimensionless transmitted force from the base structure to the 

ground. 

Noting that over one cycle of the periodic motion, the power transmitted to the 

base is fully dissipated by the damper 𝑐1 in the base structure, so the steady-state time-

averaged transmitted power 𝑃̅tB to the base is 

𝑃̅tB =
1

𝜏𝑝
∫ 2𝜁b𝜇𝛾(ℜ{𝑋b

′ })2
𝜏0+𝜏p
𝜏0

d𝜏.                             (6.25) 

By replacing 𝑋b
′  with a truncated Fourier series 𝑋b

′ = ∑ i𝑛Ω𝑅̃(b,𝑛)
𝑁
𝑛=0 𝑒i𝑛Ω𝜏  obtained 

from the differentiation of 𝑋b, Eq. (6.25) can be transformed as  

𝑃̅tB =
1

2
ℜ{(∑ i𝑛Ω𝑅̃(b,𝑛)

𝑁
𝑛=0 )

∗
(2𝜁b𝜇𝛾∑ i𝑛Ω𝑅̃(b,𝑛)

𝑁
𝑛=0 )} = 𝜁b𝜇𝛾|∑ i𝑛Ω𝑅̃(b,𝑛)

𝑁
𝑛=0 |

2
. 

(6.26) 
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To assess the relative portion of power transmitted to the base, the power transmission 

ratio can then be defined as  

𝑅tB =
𝑃̅tB

𝑃̅in
,                                                  (6.27) 

where 𝑃̅in is the time-averaged input power into the system, which has been defined by 

Eq. (6.15). 

6.4.3. Performance evaluations 

Figures 6.16-6.20 present the effects of the design parameters of the D-spring on 

the steady-state response and performance of the 2DOF nonlinear isolation system. The 

results obtained by HB-AFT approximations are represented by different lines and those 

obtained by RK time-domain method are denoted by different symbols. The system 

parameters are fixed as 𝜁1 = 𝜁b = 0.01, 𝛾 = 1, 𝜇 = 1. In the investigation of the spring 

stiffness ratio 𝜆 of the nonlinear D-spring, four cases of 𝜆 are investigated with the value 

of 𝜆 changing from 0 to 3, to 4 and to 5 while setting the initial angle 𝜃0 = 45°, the 

distance 𝑌1 between two ends of the D-spring at equilibrium point as 𝑌1 = 0.4 and the 

excitation force amplitude 𝐹0 = 0.0025. The case of 𝜆 = 0 corresponds to the linear 

isolator without using the D-spring. When examining the effects of the initial angle 𝜃0, 

four values of 𝜃0 are selected with 𝜃0 = 30, 45, 55 and 60 degrees while setting 𝜆 = 2, 

𝑌1 = 0.4 and 𝐹0 = 0.002. For the study of 𝑌1, four possible values of 𝑌1 are chosen with 

𝑌1 = 0.3, 0.4, 0.5 and 0.6 while setting 𝜆 = 2, 𝜃0 = 60° and 𝐹0 = 0.0015.  

In Fig. 6.16(a) and (b), the influence of spring stiffness ratio 𝜆 and initial angle 𝜃0 

of the nonlinear D-spring on the steady-state response amplitude 𝑋1_amp of the machine 

mass 𝑚1 is examined, respectively. From Fig. 6.16(a) and (b), two resonance peaks are 

observed in the 𝑋1_amp curves. An anti-peak is found near Ω = 1.4 in each of 𝑋1_amp 

curve, where a local minimum point of the response amplitude 𝑋1_amp can be obtained. 

Fig. 6.16(a) shows that with the use of the nonlinear D-spring, both two peaks and the 

anti-peak shift to the left. The reason is that the use of the D-spring with negative 

stiffness can lead to a smaller supporting stiffness for the machine mass. It is also 

observed that the first peak bends to the left due to the nonlinear relationship of the 

restoring force of the D-spring against its distance 𝑌 as shown by Fig. 6.2(a). When the 

value of 𝑋1_amp is large near the first peak, the magnitude of the relative displacement 

between the base and the machine (and also the terminals displacement of the D-spring) 

is also increased, the D-spring can exhibit strong nonlinearity and hence largely affect 

the dynamic behaviour of the machine near the peak. As the increase of stiffness ratio 
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𝜆 from 3 to 4 and to 5, both peaks and the anti-peak of each 𝑋1_amp curve are shifting 

further to the left with the first peak bending more to the low frequencies, which can be 

beneficial for the vibration isolation. This behaviour is due to the stronger negative 

stiffness effect introduced by the D-spring with a higher value of 𝜆. Fig. 6.16(a) also 

shows that the absolute peak values of the first peak and the anti-peak are both decreased 

with the increasing 𝜆 while minor changes are observed for the second peak value. Fig. 

6.16(b) shows that when increasing the initial angle 𝜃0 from 30 to 45, to 55 and to 60 

degrees, both two peaks and the anti-peak shift to the low-frequency range with the first 

peak bends further to the left. This is again due to a stronger negative stiffness of the D-

spring, and an increasing nonlinearity between the restoring force and the distance 𝑌 of 

the D-spring when 𝜃0  is larger. This characteristic demonstrates the possibility of 

employing D-spring to improve the isolation performance for such systems. Fig. 6.16(b) 

also shows that with the growing value of 𝜃0, there is a slight increase in the first peak 

value while reductions can be found in the second peak value and the absolute value of 

the anti-peak. From Fig. 6.16 it can be summarized that a larger value of 𝜆 or 𝜃0 can 

suppress the response amplitude of the machine at high frequencies away from the 

resonant peaks but can increase the response amplitude at low frequencies.  

 

Figure 6.16. Effects of (a) the spring stiffness ratio 𝜆 and (b) the initial angle 𝜃0 of the nonlinear 

D-spring on the steady-state response amplitude 𝑋1_amp of the machine mass. In (a), The solid, 

dashed, dotted and dash-dotted lines are for 𝜆 = 0, 3, 4 and 5, respectively; in (b), The solid, 

dashed, dotted and dash-dotted lines are for 𝜃0 = 30, 45, 55 and 60 degrees, respectively. 

Symbols: RK results. 

In Fig. 6.17, the effects of D-spring parameters on the force transmissibility 𝑇𝑅B 

from the machine to the base structure and force transmissibility 𝑇𝑅G from the base to 

the fixed ground are investigated, respectively. Fig. 6.17(a) and (b) shows the influence 

of the stiffness ratio 𝜆 while Fig. 6.17(c) and (d) presents the effects of the initial angle 

𝜃0. Two peaks can be found in the 𝑇𝑅B and 𝑇𝑅G curves, and an anti-peak is observed 
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in each curve of 𝑇𝑅B. Fig. 6.17(a) shows that the use of nonlinear D-spring can bend 

the first peak of 𝑇𝑅B  near Ω = 0.6 to the left and shift the second peak to the low 

frequencies. This is corresponding to the response amplitude 𝑋2_amp curve affected by 

the D-spring shown in Fig. 6.16(a). It is also found that both peak values of 𝑇𝑅B are 

reduced. As the stiffness ratio 𝜆 changing from 3 to 4 and to 5, the first peak of 𝑇𝑅B 

bends further to the left and the second 𝑇𝑅B peak shifts more to the low-frequency range. 

Moreover, with the increasing 𝜆, there are reductions in the values of both 𝑇𝑅B peaks 

while little changes can be found in the anti-peak near Ω = 1. By conducting modal 

analysis for the linear system with 𝜆 = 0, it is known that the anti-peak corresponds to 

the in-phase mode and the relative displacement between the base mass 𝑚1 and the 

machine 𝑚2  and also the terminals displacement of the D-spring are small. 

Consequently, the D-spring may have little effect on the 𝑇𝑅B near the frequency of the 

anti-peak. Fig. 6.17(b) shows that with the addition of the nonlinear D-spring, the first 

peak of the 𝑇𝑅G bends to the low frequencies and the second peak shift to the low 

frequencies. When the stiffness ratio 𝜆 increases from 3 to 5, there is more bending on 

the first peak of 𝑇𝑅G with smaller peak value. Moreover, the second peak shifts further 

to the lower frequencies with the height of the second peak remaining nearly unchanged. 

Fig. 6.17(c) shows that with the increase of the D-spring initial angle 𝜃0 from 30 to 45, 

to 55 and to 60 degrees, both peaks of the 𝑇𝑅B curve shift to the low frequencies with 

smaller peaks values. The reason is that an increase of the 𝜃0 value can lead to a smaller 

negative stiffness of the D-spring, which can alter the resonance frequencies of the 

isolation system and hence lead to significant changes in the peak frequencies of the 

𝑇𝑅B curve. Fig. 6.17(d) shows that by using a larger value of 𝜃0, both peaks of 𝑇𝑅G 

curve shift more to the low frequencies. Moreover, the first peak of 𝑇𝑅G extends further 

to the left with lower peak value due to a stronger nonlinearity of the restoring force 

with respect to the distance 𝑌. In comparison, the second 𝑇𝑅G peak shifts to the low 

frequencies with a minor difference on the peak value. From Fig. 6.17(a-d), it is found 

that in the high-frequency range away from the resonance peaks, the values of 𝑇𝑅B and 

𝑇𝑅G  curves become substantially lower by using a larger value of 𝜆  and 𝜃0 . This 

behaviour may assist the vibration isolation performance. 
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Figure 6.17. Effects of nonlinear D-spring on (a) and (c): 𝑇𝑅B, and on (b) and (d): 𝑇𝑅G.  In (a) 

and (b), The solid, dashed, dotted and dash-dotted lines are for 𝜆 = 0, 3, 4 and 5, respectively; 

in (c) and (d), The solid line, dashed line, dotted line and dash-dotted line are for 𝜃0 = 30, 45, 

55 and 60 degrees, respectively. Symbols: RK results. 

 

Figure 6.18. Effects of (a) the spring stiffness ratio 𝜆 and (b) the initial angle 𝜃0 of the nonlinear 

D-spring on the time-averaged transmitted power to the base structure 𝑃̅tB. In (a), The solid, 

dashed, dotted and dash-dotted lines are for 𝜆 = 0, 3, 4 and 5, respectively; in (b), The solid, 

dashed, dotted and dash-dotted lines are for 𝜃0 = 30, 45, 55 and 60 degrees, respectively. 

Symbols: RK results. 
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In Fig. 6.18(a) and (b), the influence of the stiffness ratio 𝜆 and the initial angle 𝜃0 

on the time-averaged power transmission 𝑃̅tB  to the base structure is examined, 

respectively. Two peaks are observed in each curve of 𝑃̅tB. Fig. 6.18(a) shows that by 

using the nonlinear D-spring, both peaks in each curve of the time-averaged transmitted 

power to the base structure are reduced moderately, indicating a vibration suppression 

effect by the D-spring. As the value of the stiffness ratio 𝜆 increases from 3 to 4 and to 

5, the first peak of transmitted power bends to the low-frequency range and the peak 

value is further reduced. In contrast, the second peak value of 𝑃̅tB only shows a slight 

reduction although the peak frequency is largely decreased. Fig. 6.18(b) shows that by 

increasing initial angle of the D-spring 𝜃0 from 30 to 45, to 55 and to 60 degrees, both 

peaks of the 𝑃̅tB curve shift to the low-frequency range with the corresponding peak 

values reduced. This characteristic shows the possibility of tailoring the vibration power 

transmission by adjusting the design parameters of the nonlinear D-spring in a direct 

way. Fig. 6.18 also shows that with the D-spring, there is a substantial reduction in the 

values of 𝑃̅tB when the excitation frequency is high (i.e. Ω > 1.7). Combining the force 

transmissibility result presented in Fig. 6.17, it can be summarized that a larger value of 

the 𝜆  or 𝜃0  of the D-spring can enhance the vibration isolation performance of the 

2DOF system.  

Figure. 6.19(a-d) presents the effects of the distance 𝑌1  of the D-spring on the 

steady-state response amplitude of the machine mass 𝑋1_amp, the force transmissibility 

𝑇𝑅B to the base structure, the force transmissibility 𝑇𝑅G to the fixed ground and time-

averaged transmitted power to the base structure 𝑃̅tB, respectively. An anti-peak can be 

found in the each curve of 𝑋1_amp and 𝑇𝑅B, which is corresponding to the in-phase 

mode of the linear system without the D-spring. Fig. 6.19(a) shows that with a 

decreasing distance 𝑌1  from 0.6 to 0.5, to 0.4 and to 0.3, both peaks and the anti-

resonance peak of 𝑋1_amp shift significantly to the low frequencies. This is again due to 

the stronger negative stiffness effect by the nonlinear D-spring when decreasing the 𝑌1. 

Moreover, the first peak is bending more to the left and the value of the first peak is 

increased. In contrast, there is a substantial reduction in the second peak value as well 

as the absolute value of the anti-peak. Fig. 6.19(b) and (c) shows that as the value of 

distance 𝑌1 decreases from 0.6 to 0.3, both peaks for each curve of 𝑇𝑅B and 𝑇𝑅G shifts 

more to the lower frequency range with their corresponding peak values reduced 

significantly, which can contribute to the suppression of the vibration transmission 

between the sub-structures. It is also found that the first peaks of the 𝑇𝑅B and 𝑇𝑅G 

curves near Ω = 0.5  bend more to the low frequencies due to the non-monotonic 
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relationship between the restoring force and the distance 𝑌  of the D-spring. In 

comparison, it is also noticed from Fig. 6.19(b) that the anti-peak in the curve of 𝑇𝑅B 

shows little changes at Ω ≈ 1 under the variations of 𝑌1 . Fig. 6.19(d) shows that a 

decrease of 𝑌1 can lead to a smaller peak time-averaged power transmission 𝑃̅tB to the 

base structure. The peak values and peak frequencies of both peaks in the curve of 𝑃̅tB 

are reduced with the decreasing 𝑌1, showing an improvement to the effectiveness of the 

vibration isolation. From Fig. 6.19(b-d), it is summarized that a smaller value of 𝑌1 can 

reduce the vibration transmission from the machine to the base and from the base to the 

ground when the excitation frequency is high. 

 

Figure 6.19. Effects of the terminals distance 𝑌1 of the D-spring on (a) the response amplitude 

𝑋1_amp, (b) the force transmissibility to the base structure 𝑇𝑅B, (c) the force transmissibility to 

the ground 𝑇𝑅G and (d) the time-averaged transmitted power to the base structure 𝑃̅tB . The solid, 

dashed, dotted and dash-dotted lines are for 𝑌1  = 0.3, 0.4, 0.5 and 0.6, respectively. Symbols: 

RK results. 

In Fig. 6.20(a-c) the effects of the stiffness ratio 𝜆, the initial angle 𝜃0 and the 

distance 𝑌1 on the power transmission ratio 𝑅tB, i.e. the portion of input power that is 

tranmitted from the machine to the base structure, are examined, respectively. Fig. 

6.20(a) shows that when the nonlinear D-spring is used, the power tranmission ratio 𝑅tB 



Chapter 6              Vibration energy flow and force transmissibility of nonlinear isolators with nonlinear 

spring based on DSLM 

133 

 

to the base structure is substantially reduced at the frequencies away from the resonance, 

which benefits the vibration isolation performance. Moreover, there is a local minimum 

point of 𝑅tB near Ω = 0.6. With the increase of stiffness ratio 𝜆 form 3 to 4 and to 5, 

the 𝑅tB is reduced in a broad frequency band and the value of the local minimum is 

decreased. There is a larger reduction effect on the 𝑅tB  by increaing 𝜆  when the 

excitation frequency is away from Ω ≈ 1. Fig. 6.20(b) and (c) shows that an increase of 

the initial angle 𝜃0 or the distance 𝑌1 can substantially reduce the portion of input power 

that is transmitted to the base structure when away from Ω ≈ 1. In Fig. 6.20(b) and (c), 

an extra peak can be observed near Ω = 0.4 when the value of 𝜃0 is high or the value 

of 𝑌1  is small, which is related to the presence of the super-harmonic response 

components.  

 

Figure 6.20. Effects of (a) the spring stiffness ratio 𝜆 and (b) the initial angle 𝜃0 and (c) the 

terminals distance 𝑌1 of the nonlinear D-spring on the power dissipation ratio 𝑅tB. In (a), The 

solid, dashed, dotted and dash-dotted lines are for 𝜆 = 0, 3, 4 and 5, respectively; in (b), The 

solid, dashed, dotted and dash-dotted lines are for 𝜃0 = 30, 45, 55 and 60 degrees, respectively; 

in (c), The solid, dashed, dotted and dash-dotted lines are for 𝑌1  =  0.3, 0.4, 0.5 and 0.6, 

respectively. Symbols: RK results. 

It is also found from Fig. 6.20 that the variations of 𝜆, 𝜃0 or 𝑌1 have little influence 

on the value of 𝑅tB near Ω = 1. The reason for this phenomenon is that the responses 
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of the machine mass 𝑚1 and base mass 𝑚2 are in-phase at this frequency, leading to a 

small relative displacement between the two masses and hence small changes in the 

distance 𝑌 between the terminals of the D-spring. Therefore there is negligible effect of 

D-spring on the power transmission from machine to the base at the in-phase mode 

frequency of the corresponding linear system. 

6.5. Summary 

This chapter investigated the force transmissibility and power flow behaviour of a 

nonlinear vibration isolator with a nonlinear D-spring. The D-spring with geometric 

stiffness nonlinearity consists of a linear spring and a DSLM. The effectiveness of using 

the proposed nonlinear isolator in SDOF and 2DOF systems subjected to force or base-

motion excitations has been examined by using vibration force transmissibility and 

power flow indices.  

The introduction of the D-spring into the linear isolation system can benefit the 

vibration isolation, which is demonstrated by following findings: 

(1) For the SDOF isolation system under force excitations or base excitations, the 

addition of the D-spring can shift the peaks in curves of force/displacement 

transmissibility, kinetic energy and time-averaged input power to low 

frequencies as well as bend the peaks of those curves to the low-frequency 

range.  

(2) For the isolation of base-motion excitations, the peak values in the curves of 

frequency response, displacement transmissibility, kinetic energy and time-

averaged input power are reduced. 

(3) For the 2DOF isolation system under force excitations, the use of nonlinear 

D-spring can shift both peaks in the curves of force transmissibility and time-

averaged power transmission towards low frequencies with potential 

reductions in the peaks values.  

(4) The power transmission in the 2DOF isolation system is reduced at high 

frequencies and the power transmission ratio is also substantially decreased 

when the excitation frequency is away from the in-phase mode of the 

corresponding linear system. 
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Chapter 7                                     

Vibration transmission and energy 

flow analysis of oscillators with 

Coulomb friction element 
 

Dry friction is a typical type of non-smooth nonlinearity which can be found in 

many dynamic systems having contact surfaces with relative motion, such as turbine 

blade joints (Claeys et al., 2016), robot joints (Qian et al., 2018), electric motors (Hong 

et al., 2019) and brake system (Awrejcewicz and Olejnik, 2005). The friction oscillator 

has been widely used as a representative model for investigating the dynamic behaviour 

of the engineering systems with dry friction non-smoothness (Popp, 1998). The 

Coulomb friction law is commonly selected to predict the nonlinear dry friction effect 

(Mostaghel, 2005). In the Coulomb friction model, the dry friction force is a 

discontinuous function of velocity and the friction coefficient varies with velocity. This 

discontinuity in the friction oscillators can lead to rich nonlinear phenomena such as 

bifurcations with unstable branches (Oestreich et al., 1996) and chaos (Feeny and Moon, 

1994). In most cases, the dry friction force is unwanted due to the introduction of 

nonlinear complexity to the dynamics of the system, the dissipative effect on the kinetic 

energy and the generation of wear on the contacting surfaces (Marques et al., 2016). 

However, there are also many useful applications of dry friction, e.g. the contact 

between the tyres of a vehicle and the road. Given the energy dissipation effect, the 

friction within mechanical systems can be treated as frictional damper, which may 

enhance the system performance such as passive vibration control (Marino et al., 2019; 

Gaul and Nitsche, 2001). Krack et al. (2016) investigated the nonlinear modal 

interactions in a jointed system induced by friction. It showed the possibility of taking 

advantage of friction to tune the system so as to obtain a minimum response level. While 

much research has been carried out on the dynamic response of nonlinear dynamic 

systems with friction, there are still limited studies on the effects of non-smooth dry 

friction force on the vibration transmission, especially on the energy transfer and 

dissipation within the coupled system. PFA is needed to better understand the vibration 

transmission and energy distribution characteristics in such systems. Guidance on the 

dynamic design of engineering systems comprising dry friction nonlinearity can be 

generated based on the findings from PFA. In this chapter, a nonlinear dry friction 
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element modelled by two established approaches based on Coulomb friction model is 

used in a SDOF oscillator and the coupling interface of a 2DOF oscillator system. The 

HB-AFT method with numerical continuations as well as numerical integration method 

is employed to investigate the vibration transmission in the oscillator systems with dry 

friction element. The influence of the non-smooth dry friction force on the energy input, 

transmission and dissipation within the SDOF and 2DOF systems is studied. 

7.1. Mathematical modelling 

7.1.1. Dry friction force models 

Classical Coulomb friction model 

Figure 7.1(a) shows a schematic of two contacting solid objects 𝑚A and 𝑚B. The 

object 𝑚A on the top is subjected to an external force 𝑓ex in the horizontal direction. A 

normal force exits at the contact interface. The interactive dry friction force 𝑓c generated 

at the interface of the two objects can be represented by a dry friction element shown in 

Fig. 7.1(b) with two terminals of A and B attached to 𝑚A and 𝑚B, respectively. The 

relationship between the friction force 𝑓c and the relative velocity 𝑣r of the two objects 

can be modelled by the classical Coulomb friction model shown in Fig. 7.1(c). When 

there is relative motion between contact surfaces (i.e., the slip state), there exits dynamic 

friction force, with its direction opposite to that of the relative motion and its magnitude 

being the product of the coefficient of dynamic friction and the normal force at the 

interface. When there is no relative motion between the contacting surfaces (i.e. the 

stick state), there may be static friction force counteracting the external force. 

Mathematically, the classical Coulomb friction force is expressed as 

  𝑓c = {

   𝑓d sgn(𝑣r),                    if 𝑣r ≠ 0                           

𝑓s sgn(𝑓ex) ,                  if 𝑣r = 0 and |𝑓ex| ≥ 𝑓s
𝑓ex ,                                 if 𝑣r = 0 and |𝑓ex| < 𝑓s      

               (7.1) 

where 𝑓d  is the magnitude of the dynamic friction force, being the product of the 

coefficient of dynamic friction and the normal force, 𝑓s is the maximum static friction 

force, 𝑣r is the relative velocity of the contacting objects, 𝑓ex is the resultant external 

force applied to object 𝑚A in tangential direction except the friction, and sgn(𝑣r) is the 

signum function expressed by 

sgn(𝑣r)  = {
−1,      𝑣r < 0,
   0,      𝑣r = 0,
   1,      𝑣r > 0.

                                          (7.2) 
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The classical Coulomb friction model introduces strong discontinuities at 𝑣r = 0, 

which may create computational challenges for dynamic analysis.  For instance, when 

applying a time marching method to solve dynamic governing equations, the detection 

of 𝑣r = 0 for switching friction state may be inaccurate due to the use of discrete and 

variable time steps. A modified Coulomb friction model, or the so-called Karnopp 

model (Karnopp, 1985), is combined with the numerical integration method in this 

chapter. As shown in Fig. 7.1(d), compared to the classical Coulomb model, the 

Karnopp model assumes a region of small velocity dead zone [−𝑣d, 𝑣d], where the 

contact interface is assumed to be in stuck and the relative velocity 𝑣r is regarded null. 

In this way, some of the numerical issues encountered when using the classical Coulomb 

model may be avoided and the main characteristics of the friction model can still be 

captured. The Karnopp friction model is expressed as  

𝑓c = {

   𝑓d sgn(𝑣r),                    if |𝑣r| > 𝑣d                          

𝑓s sgn(𝑓ex) ,                  if |𝑣r| ≤ 𝑣d and |𝑓ex| ≥ 𝑓s
𝑓ex ,                                 if |𝑣r| ≤ 𝑣d and |𝑓ex| < 𝑓s      

            (7.3) 

As in many applications 𝑓d ≈ 𝑓s,  it is assumed that  𝑓d = 𝑓s throughout the chapter. 
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Figure 7.1. Schematic of (a) dry friction between two solid contacting bodies, (b) dry friction 

element, (c) the classical Coulomb model and (d) the Karnopp model. 

Smooth Coulomb model 

The classical Coulomb friction force model contains discontinuities at 𝑣r = 0, a 

smooth Coulomb friction model can be used to facilitate the implementation of 

analytical approximation methods for dynamic analysis of systems with frictions 

(Pennestrì et al., 2016). The discontinuous classical Coulomb model is replaced with a 

regularized hyperbolic tangent curve with the friction force expressed by 

𝑓c = 𝑓d tanh (
𝑣r

𝜖
) = 𝑓d

exp(
𝑣r
𝜖
)−exp(−

𝑣r
𝜖
)

 exp(
𝑣r
𝜖
)+exp(−

𝑣r
𝜖
)
,                              (7.4) 
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where 𝜖 is the tolerance parameter of the tanh-regularization. The smooth Coulomb 

model can eliminate the detection of stick-slip state transitions (Mostaghel and Davis, 

1997) and therefore the computational cost associated with dynamic analysis can be 

reduced.   

Figure 7.2 shows the variations of the friction force against the relative velocity 

following both the classical and the smooth Coulomb model. Moreover, the influence 

of the selection of the tolerance parameter 𝜖 on the friction force of the smooth Coulomb 

model with respect to the relative velocity of contact surfaces is examined. Three values 

of 𝜖 in the smooth Coulomb model are selected changing from 0.1 to 0.2 and to 0.3, 

which are represented by different lines. A classical Coulomb friction force model 

defined in Eq. (7.1) is also added for comparison. The magnitude of the dynamic and 

static friction force for those four cases are set as 𝑓d = 𝑓s = 0.06. It is shown that a 

smaller value of 𝜖 can provide a better smooth approximation on the classical Coulomb 

friction force. In this chapter, the smooth Coulomb model is combined with harmonic 

balance approximation for simulation.  

 

Figure 7.2.  Dry friction force 𝑓c by the classical Coulomb friction model and by the smooth 

Coulomb friction model. The solid line is for the classical Coulomb friction model. The dashed, 

dotted and dash-dotted lines are for the smooth Coulomb friction model with 𝜖 = 0.1, 0.2 and 

0.3, respectively. 

7.1.2. Dynamic analysis of systems with dry friction 

For a general Q-DOF system comprising dry friction element, the non-dimensional 

general dynamic equation of motion can be expressed in a matrix form as 

  [𝑴]{𝑿′′} + [𝑪]{𝑿′} + [𝑲]{𝑿} + {𝑭𝐜(Δ(𝑋
′))}   = {𝑭𝐞𝐟(𝜏)},          (7.5) 

where {𝑿}, {𝑿′} and {𝑿′′} denote the displacement, velocity and acceleration response 

vectors, respectively, [𝑴], [𝑪] and [𝑲] are the mass, damping and stiffness matrices, 
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respectively, {𝑭𝐜(Δ(𝑋
′))} is the dimensionless nonlinear friction force induced by dry 

friction element and Δ(𝑋′) is the relative velocity between the two terminals of the 

element, {𝑭𝐞𝐟(𝜏)} is the harmonic force excitation applied to the q-th DOF (1 ≤  𝑞 ≤

𝑄) of the system with {𝑭𝐞𝐟(𝜏)} = {… , 𝐹0 𝑒
iΩ𝜏, …}T, of which 𝐹0 and Ω are the non-

dimensional force amplitude and excitation frequency, respectively, and 𝜏  is the 

dimensionless time. 

 For the numerical determination of the steady-state response of the system, the 

nonlinear friction force {𝑭𝐜(Δ(𝑋
′))} in Eq. (7.5) can be firstly modelled by the Karnopp 

model and the Eq. (7.5) can then be solved by the 4th order Runge-Kutta (RK) method. 

The energy dissipation and the force transmission between sub-systems can then be 

determined. It should be mentioned that the Karnopp model may be more efficient and 

accurate than the classical Coulomb model from numerical aspects. However, the 

resultant external force, which is needed in the Karnopp model, may be difficult to 

define in a multi-DOF system (i.e. 𝑄 > 2) (Pennestrì et al., 2016).  

As for comparison, the harmonic balance (HB) approximation method is also used 

for obtaining the steady-state periodic response of the system with dry friction element. 

Here the dry friction force {𝑭𝐜(Δ(𝑋
′))} in Eq. (7.5) can be modelled by the smooth 

Coulomb friction model considering the continuous relationship between the friction 

force and the relative velocity. The steady-state displacement response {𝑿} and the 

nonlinear friction force {𝑭𝐜} can be approximated by a truncated 𝑁-order Fourier series 

with a fundamental frequency of Ω: 

{𝑿} = {∑ 𝑅̃(1,𝑛)
𝑁
𝑛=0 𝑒i𝑛Ω𝜏, … ∑ 𝑅̃(𝑞,𝑛)

𝑁
𝑛=0 𝑒i𝑛Ω𝜏, … ∑ 𝑅̃(𝑄,𝑛)

𝑁
𝑛=0 𝑒i𝑛Ω𝜏}

T
 , 

(7.6a)  

{𝑭𝐜(Δ(𝑋
′))} =

{∑ 𝐻̃(1,𝑛)
𝑁
𝑛=0 𝑒i𝑛Ω𝜏, … ∑ 𝐻̃(𝑞,𝑛)

𝑁
𝑛=0 𝑒i𝑛Ω𝜏, … ∑ 𝐻̃(𝑄,𝑛)

𝑁
𝑛=0 𝑒i𝑛Ω𝜏}

T
 ,   (7.6b) 

where 𝑅̃(𝑞,𝑛)and 𝐻̃(𝑞,𝑛) are the complex Fourier coefficient of the 𝑛-th order Fourier 

approximation corresponding to the 𝑞-th DOF, {𝑿′} and {𝑿′′} can then be obtained by 

taking differentiation of {𝑿}  with respect to time 𝜏 . To determine the Fourier 

coefficients 𝐻̃  of the nonlinear friction force {𝑭𝐜(Δ(𝑋
′))}  in Eq. (7.6b),  the 

Alternating-Frequency-Time (AFT) technique can be used, which has been illustrated 

in Chapter 3. 
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After the determination of the Fourier coefficients 𝐻̃ , the Eq. (7.6) can be 

substituted into the governing equation of Eq. (7.5) and by balancing the corresponding 

coefficients of the n-th (0 ≤ 𝑛 ≤ 𝑁) order harmonic terms of the resultant equation, we 

have  

 (−(𝑛Ω)2[𝑴] + i(𝑛Ω)[𝑪] + [𝑲]){𝑹̃𝑛} = {𝑺̃𝑛} − {𝑯̃𝑛},                  (7.7) 

where {𝑹̃𝑛} = {𝑅̃(1,𝑛), … 𝑅̃(𝑞,𝑛), … 𝑅̃(𝑄,𝑛)}
T

, {𝑯̃𝑛} =

{𝐻̃(1,𝑛), … 𝐻̃(𝑞,𝑛), … 𝐻̃(𝑄,𝑛)}
T
 and {𝑺̃𝑛} = {0, … 𝐹0, … 0}T. By sorting a 

number of 𝑁  harmonics equations of Eq. (7.7), a set of real nonlinear algebraic 

equations with a total number of 𝑄(2𝑁 + 1) can be obtained. The Newton-Raphson 

iterative method can be employed to solve those equations and the arc-length 

continuation method presented in Chapter 3 is also used to trace the solution path in the 

frequency domain. Subsequently, the steady-state response of the system can be 

obtained. The level of force transmission and power flow behaviour within the oscillator 

system can then be evaluated.  

For the power flow analysis of the chain oscillator system with dry friction element, 

the total instantaneous input vibration power into the system is product of the harmonic 

excitation force 𝐹0𝑒
𝑖Ω𝜏 and the corresponding velocity 𝑋𝑞

′  of the q-th DOF. Note that 

the velocity 𝑋𝑞
′  can be obtained by taking differentiation of Eq. (7.6a) as 𝑋𝑞

′ =

∑ i𝑛Ω𝑅̃(𝑞,𝑛)
𝑁
𝑛=0 𝑒i𝑛Ω𝜏, hence we have  

𝑃in = ℜ{𝑋𝑞
′ }ℜ{𝐹0𝑒

iΩ𝜏} = ℜ{∑ i𝑛Ω𝑅̃(𝑞,𝑛)
𝑁
𝑛=0 𝑒i𝑛Ω𝜏}ℜ{𝐹0𝑒

iΩ𝜏},            (7.8) 

where symbols ℜ represents the operation of taking the real part of a complex number. 

The steady-state time-averaged input vibration power into the system over an averaging 

time span 𝜏p is  

𝑃̅in =
1

𝜏p
∫ 𝑃in
𝜏0+𝜏p
𝜏0

d𝜏 =
1

2
𝐹0ℜ{(iΩ𝑅̃(𝑞,1))

∗},                          (7.9) 

where 𝜏0  and 𝜏p  are the starting time for averaging and the averaging time span, 

respectively, and in the current study, 𝜏p is set as one period of excitation with 𝜏p =

2𝜋 Ω⁄ , symbols * denotes taking the complex conjugate of a complex number. 

For the current system, the non-dimensional maximum kinetic energy 𝐾𝑞 for the 

q-th DOF is defined as 
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𝐾𝑞 =
1

2
(|𝑋𝑞

′ |
max

)2.                                            (7.10) 

where |𝑋𝑞
′ |
max

 is the maximum magnitude of velocity for the q-th DOF in the steady-

state response. 

7.2. SDOF system with friction  

7.2.1. Dynamic response 

In this section, the dynamics and vibration transmission as well as energy 

dissipation characteristics of a single-DOF (SDOF) system (i.e., 𝑄 = 1 ) with dry 

friction is studied. Fig. 7.3(a) shows an SDOF oscillator comprising a mass 𝑚1 , a 

viscous damper with damping coefficient 𝑐1, a linear spring with stiffness coefficient 𝑘1 

and a dry friction element with friction force 𝑓c and magnitude of 𝑓d. The whole system 

is placed on a horizontal plane. The mass is subjected to a harmonic force excitation 

with the forcing amplitude 𝑓0 and frequency 𝜔. The equilibrium position of the mass, 

where the spring 𝑘1 is un-stretched, is set as a reference with 𝑥1 = 0. The dry friction 

element is shown in Fig. 7.3(b) and is placed between the mass and the left-hand wall 

shown in Fig. 7.3(a). The dry friction element in Fig. 7.3(a) can be replaced by a viscous 

damper element with damping coefficient 𝑐d so as to facilitate comparisons of their 

effects on the system dynamics and vibration transmission. 

cd
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Figure 7.3. (a) A SDOF oscillator with (a) a dry friction element and (b) a viscous damper 

element. 

The governing equation of the system can be written as 

𝑚𝑥̈1 + 𝑘1𝑥1 + 𝑐1𝑥̇1 + 𝑓c = 𝑓0𝑒
i𝜔𝑡,                               (7.11) 

where 𝑓c is the nonlinear dry friction force. When the Karnopp model is used, we have 

𝑣r = 𝑥̇1 and 𝑓ex = 𝑓0 cos𝜔𝑡 − 𝑘1𝑥1 − 𝑐1𝑥̇1 in Eq. (7.3).  

The following parameters are introduced for the later parametric study: 
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   𝜔1 = √
𝑘1

𝑚1
,   𝜁1 =

𝑐1

2𝑚1𝜔1
, 𝑋1 =

𝑥1

𝑙0
, 𝜌 =

𝑐d

𝑐1
, 𝐹0 =

𝑓0

𝑘1𝑙0
, 

Ω =
𝜔

𝜔1
,  𝜏 = 𝜔1𝑡, 𝐹d =

𝑓𝑑

𝑘1𝑙0
, 𝜂 =

𝜖

𝜔1𝑙0
, 𝑉d =

𝑣d

𝜔1𝑙0
  

where 𝜔1  and 𝜁1  are the undamped natural frequency and the damping ratio of the 

system without considering the friction, respectively, 𝑙0 is the un-stretched length of the 

spring on the left, 𝑋1 is the non-dimensional displacement of the mass, 𝜌 is used to 

represent the damping level of the viscous damper element which is used to replace the 

dry friction element for comparison purpose, 𝐹0 and Ω are the dimensionless external 

force-excitation amplitude and frequency, respectively, 𝜏 is the dimensionless time,  𝐹d 

is the non-dimensional magnitude of the dynamic dry friction force and is named 

dynamic friction force hereafter,  𝜂  is the ratio of tolerance parameter of tanh-

regularization in the smooth Coulomb model and 𝑉d  is the dimensionless boundary 

velocity of the dead zone in the Karnopp model. By using those defined parameters, the 

Eq. (7.11) can be transformed into a non-dimensional form, described as 

𝑋1
′′ + 𝑋1 + 2𝜁1𝑋1

′ + 𝐹c = 𝐹0𝑒
iΩ𝜏,                                 (7.12) 

where the prime denotes differentiation with respect to 𝜏, 𝐹c is the non-dimensional 

friction force expressed by 

           𝐹c = {

   𝐹d sgn(𝑋1
′),                    if |𝑋1

′ | > 𝑉d                          

𝐹d sgn(𝐹ex) ,                  if |𝑋1
′ | ≤ 𝑉d and |𝐹ex| ≥ 𝐹d

𝐹ex ,                                  if |𝑋1
′ | ≤ 𝑉d and |𝐹ex| < 𝐹d      

 

based on the Karnopp model, 

or              𝐹c = 𝐹d
exp(

𝑋1
′

𝜂
)−exp(−

𝑋1
′

𝜂
)

 exp(
𝑋1
′

𝜂
)+exp(−

𝑋1
′

𝜂
)
             based on the smooth Coulomb model, 

and 𝐹ex = 𝐹0 cosΩ𝜏 − 𝑋1 is the non-dimensional resultant external force. It is noted 

that for the corresponding case of using the viscous damper element to replace the 

friction element, the friction force 𝐹c in Eq. (7.12) can be replaced with the damping 

force 𝐹cd = 2𝜌𝜁1𝑋1
′  by the viscous damper element. 

To solve Eq. (7.12), the HB-AFT method with numerical continuations described 

in Subsection 7.1.2 can be employed with the friction element force 𝐹c estimated by the 

smooth Coulomb model. The steady-state response results can be compared to those 

obtained from 4th order RK method with 𝐹c determined by the Karnopp model. 
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In Fig. 7.4, the effects of the dry friction on the steady-state response amplitude 

𝑋1_amp of the mass are investigated. Fig. 7.4(a) presents the curves of 𝑋1_amp in the 

frequency range of 0 < Ω < 2 and Fig. 7.4(b) shows an enlarged view of Fig. 7.4(a) in 

the range of 1.5 < Ω < 2. Cases one and two consider the presence of dry friction 

element with the dynamic friction force 𝐹d being 0.02 and 0.04, respectively, while 

setting 𝜌 = 0. Cases three and four correspond to linear systems without friction (i.e., 

𝐹d = 0) with the damping ratio 𝜌 of the viscous damper element set as 𝜌 = 0 and 𝜌 =

2, respectively. Other parameters are set as 𝜁1 = 0.01, 𝑉d = 1 × 10
−4, 𝜂 = 1 × 10−4 

and 𝐹0 =0.1. The results obtained by HB method using smooth Coulomb friction model 

are represented by different types of lines, while those obtained by the RK method using 

Karnopp friction model are denoted by symbols for comparison. With a balanced 

consideration of the accuracy and the computational efficiency, the order 𝑁 used in HB-

AFT approximations is set as 7 throughout the chapter. The figure shows that the HB-

AFT results agree well with the RK results. 

 

Figure 7.4.  Effects of the dynamic friction force 𝐹d  on the steady-state response amplitude 

𝑋1_amp. The solid and dashed lines are for the linear system with 𝜌 = 0 and 2, respectively. The 

dotted and dash-dotted lines are for the nonlinear system having dry friction element with 𝐹d  = 

0.02 and 0.04, respectively.  

Figure 7.4 shows that by comparing to the linear system with 𝐹d = 𝜌 = 0 , the 

addition of the dry friction element can suppress the steady-state response amplitude 

𝑋1_amp of the mass in a broad frequency band. In contrast, the use of the viscous damper 

element with 𝜌 = 2  can only reduce the vibration response near the resonant peak 

frequency. The viscous damper element can have a better vibration suppression effect 

on the peak value of 𝑋1_amp than the friction element. However, when the excitation 

frequency is away from the resonant peak, the friction element can reduce the values of 

𝑋1_amp while the viscous damper element has little influence on the 𝑋1_amp. The reason 

for this behaviour is further explored in later content. Fig. 7.4 also shows that as the 



Chapter 7        Vibration transmission and energy flow analysis of oscillators with Coulomb friction element 

144 

 

dynamic friction force 𝐹d increases from 0.02 to 0.04, there is a stronger suppression 

effect on the 𝑋1_amp in the whole frequency range. 

Figure 7.5 presents the steady-state time history of the responses, friction force 𝐹c 

and damper force 𝐹cd at particular frequencies in Fig. 7.4. In Fig. 7.5(a) and (b), the 

system with a dry friction element is investigated with 𝐹d = 0.04 and 𝜌 = 0, while in 

Fig. 7.5(c) and (d), the system with a viscous damper element is examined by setting 

𝐹d = 0 and 𝜌 = 2. The system parameters are set as 𝜁1 = 0.01, 𝑉d = 1 × 10
−4, 𝜂 =

1 × 10−4 and 𝐹0 = 0.1, which are the same as those used in Fig. 7.4. The results are 

obtained by the RK method based on Karnopp model. 

 
Figure 7.5. Time history of element force and response for friction element case in (a) and (b) 

with 𝐹d = 0.04 and 𝜌 = 0, and for viscous damper case in (c) and (d) with 𝐹d = 0 and 𝜌 = 2.  

The excitation frequency in (a) and (c) is Ω = 0.3, while in (b) and (d) is Ω = 1. 

 Fig. 7.5(a) and (c) shows the responses and element force with respect to the 

dimensionless time at a low excitation frequency, i.e. Ω = 0.3. Fig. 7.5(a) shows that at 

low frequencies, the system with the dry friction element can exhibit stick-slip 

behaviour in steady-state motion. By a comparison to the damping force 𝐹cd of the 

viscous damper element in Fig. 7.5(c), it is found that the friction element generates a 
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much larger amplitude of the friction force than the damping force of the damper 

element. This is due to that the damping force 𝐹cd is a function of velocity. Since the 

velocity is small in low frequencies, a relatively small damping force is induced by the 

viscous damper element. As a result, at low frequencies away from the resonance, the 

friction element can provide a better vibration suppression performance than the viscous 

damper element. Fig. 7.5(b) and (d) presents the element force against dimensionless 

time when the system is excited at Ω = 1. Fig. 7.5(b) shows that the amplitude of the 

friction force 𝐹c  remains as 𝐹c = 𝐹d = 0.04  which is independent of the excitation 

frequency, while Fig. 7.5(d) shows that there is a significant growth in the amplitude of 

damping force 𝐹cd of the viscous damper element at Ω = 1 compared to the amplitude 

of 𝐹cd  at Ω = 0.3 shown in Fig. 7.5(c). This is due to the relatively large velocity 

amplitude at the resonant frequency, leading to a larger amplitude of damping force. 

Therefore, the viscous damper element can provide large resistance force to for the 

suppression of the peak value of 𝑋1_amp than the dry friction element.  

7.2.2. Force transmission and power flow 

For the current system, the force transmissibility 𝑇𝑅L can be defined as the ratio 

between the maximum magnitude of the transmitted force from mass 𝑚1 to the left-

hand-side (LHS) wall and the amplitude of the input force, given by 

        𝑇𝑅L =
max( |ℜ{𝐹tL}|)

𝐹0
,                                        (7.13) 

where 𝐹tL = 𝐹c + 𝑋1 + 2𝜁1𝑋1
′  represents the non-dimensional transmitted force from 

mass 𝑚1 to the LHS wall, 𝐹c is the dry friction force of the friction element and it can 

be replaced with the damping force 𝐹cd by the viscous damper element. For enhanced 

vibration suppression, a low value of force transmissibility is desirable.  

The instantaneous input power 𝑃in and time-averaged input power 𝑃̅in  as well as 

the maximum kinetic energy 𝐾1 of the mass 𝑚1 can be obtained from Eqs. (7.9), (7.10) 

and (7.11) with 𝑞 = 1, respectively. The instantaneous dissipated power 𝑃d1  by the 

system damper 𝑐1, and the instantaneous dissipated power 𝑃de by the additional viscous 

damper element or the dry friction element are expressed as 

 𝑃d1 =  2𝜁1(ℜ{𝑋1
′})2,      𝑃de = {

     2𝜁1𝜌(ℜ{𝑋1
′})2 ,

ℜ{𝑋1
′}ℜ{𝐹c},

                                          

(7.14a, 7.14b) 

For the damper element 

For the friction element 
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respectively, and 𝑋1
′  is obtained by the differentiation of 𝑋1 from Eq. (7.6a) as 𝑋1

′ =

∑ i𝑛Ω𝑅̃(1,𝑛)𝑒
i𝑛Ω𝜏𝑁

𝑛=0 . The corresponding time-averaged dissipated power are 

𝑃̅d1 =
1

𝜏𝑝
∫ 𝑃d1
𝜏0+𝜏𝑝
𝜏0

d𝜏,           𝑃̅de =
1

𝜏𝑝
∫ 𝑃de
𝜏0+𝜏𝑝
𝜏0

d𝜏 ,    (7.15a, 7.15b) 

respectively. The power dissipation ratio provides the proportion of vibration energy 

dissipated within the total input energy into the system. The corresponding power 

dissipation ratios are 

𝑅d1 =
𝑃̅d1

𝑃̅in
,                    𝑅de =

𝑃̅de

𝑃̅in
 ,                    (7.16a, 7.16b) 

respectively, it is noted that according to the conservation of energy, over a cycle of 

periodic response, we have 𝑅d1 + 𝑅de = 1. 

In Figs 7.6, 7.7 and 7.8, the influence of the dynamic friction force of the dry 

friction element on the force transmissibility, power flow behaviour and the maximum 

kinetic energy of the mass is investigated, respectively. Case one and two examine the 

system having dry friction element with the dynamic friction force chosen as 𝐹d = 0.02 

and 0.04, respectively, while the damping ratio is set as 𝜌 = 0. For comparison purpose, 

case three and four are the corresponding linear systems neglecting friction force (i.e., 

𝐹d = 0) with the damping ratio of the viscous damper element set as 𝜌 = 0 and 𝜌 = 2, 

respectively. The HB-AFT results using smooth Coulomb friction model are 

represented by different types of lines while the RK results using Karnopp friction 

model are denoted by different symbols.  

Figure 7.6 shows that when the dry friction element is added into the system, 

compared with the linear system with 𝐹d = 𝜌 = 0 , the values of the force 

transmissibility 𝑇𝑅L is reduced near the peak frequency Ω = 1 while increased in the 

low/high-frequency range away from the peak frequency. This is due to the nonlinearity 

of the discontinuous friction force introduced into the system. At the peak frequency, 

the amplitudes of the displacement and velocity responses are suppressed due to the 

friction force, resulting in a smaller transmitted force 𝐹tL to the LHS wall and a smaller 

value 𝑇𝑅L. In the high/low-frequency range, the response amplitude is smaller while 

the amplitude of the friction force is not changed shown in Fig. 7.5(a), which can lead 

to a larger amplitude of the 𝐹tL as well as a larger value of 𝑇𝑅L compared to that of 

linear systems. By comparing to the linear system comprising a replacement viscous 

damper element with 𝜌 = 2, the systems with friction element show a higher peak of 

𝑇𝑅L  and larger values of 𝑇𝑅L  when the excitation frequency is away from peak 
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frequency. It is suggested that the friction element can be more effective than the damper 

element in adjusting force transmission when the frequency is high. With the dynamic 

friction force 𝐹d increasing from 0.02 to 0.04, the peak value of 𝑇𝑅L is decreased while 

there is a significant increase in the values of 𝑇𝑅L at high frequencies. It is also found 

that in the frequency band from Ω ≈ 0.15 to Ω ≈ 0.35, there are fluctuations in the 𝑇𝑅L 

curves of two friction element cases. The values of 𝑇𝑅L for the friction element case 

with 𝐹d = 0.02 can become higher than the those in the case with 𝐹d = 0.04. This is 

due to that, a smaller dynamic friction force, i.e. 𝐹d = 0.02 , provides a smaller 

suppression effect on the response displacement at this frequency. Therefore, it can lead 

to a larger amplitude of the response displacement and hence a larger maximum 

restoring force of the linear spring. Consequently the magnitude of the total transmitted 

force can be increased, resulting in a larger value of 𝑇𝑅L. 

   

Figure 7.6.  Effects of the dynamic friction force 𝐹d on the force transmissibility 𝑇𝑅L. The solid 

and dashed lines are for the linear system with 𝜌 = 0 and 2, respectively. The dotted and dash-

dotted lines are for the nonlinear system having dry friction element with 𝐹d  = 0.02 and 0.04, 

respectively.  

In Fig. 7.7(a) and (b), the effects of the dry friction on the time-averaged input 

power 𝑃̅in into the oscillating system and maximum kinetic energy 𝐾1 of the mass are 

studied, respectively. Fig. 7.7(a) shows that when friction exists in the system, the peak 

value of 𝑃̅in shows a slight decrease compared with the linear system with 𝐹d = 𝜌 = 0. 

However, when the excitation frequency is away from the peak frequency, there is a 

substantial increase in the amount of input power into the oscillating system. The reason 

for this phenomenon will be further explored in later content. Compared to the 

corresponding case of using a replacement viscous damper element, it is found that the 

peak value of 𝑃̅in in dry friction element cases is close to that of viscous damper element 

case. However, the dry friction element leads to much larger values of 𝑃̅in than the 

viscous damper element at low or high excitation frequencies. With the increase of the 
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dynamic friction force 𝐹d from 0.02 to 0.04, the peak value of 𝑃̅in is reduced because of 

the lower velocity amplitude at the resonance frequency due to the stronger frictional 

resistance, while the values of 𝑃̅in is increased when away from the peak. Fig. 7.7(b) 

shows that the dry friction element can lead to a slight reduction in the peak value of the 

maximum kinetic energy 𝐾1. In the frequency range between Ω ≈ 0.15 and Ω ≈ 0.5, 

the values of 𝐾1 in friction element cases become larger than those of linear system 

cases. By a comparison of the time history of the response velocity of the mass between 

the systems comprising friction element or the viscous damper element at Ω = 0.3 

shown in Fig. 7.5(a) and (c), respectively, it is found that the use of friction element can 

yield a larger maximum velocity of the mass, leading to larger kinetic energy in this 

frequency band. Fig. 7.7(b) also shows that in the high-frequency range, the addition of 

the dry friction element can reduce the values of 𝐾1 due to a larger friction damping 

force. Moreover, an increase of the dynamic friction force 𝐹d from 0.02 to 0.04 can 

slightly lower the peak height of 𝐾1 and reduce the values of 𝐾1 at high frequencies. 

However, the values of  𝐾1  become slightly larger with the increasing 𝐹d  when Ω 

locates approximately between 0.25 and 5.  

 

Figure 7.7.  Effects of the dynamic friction force 𝐹d on (a) the time-averaged input power 𝑃̅in 

and (b) the maximum kinetic energy 𝐾1. The solid and dashed lines are for the linear system with 

𝜌 = 0 and 2, respectively. The dotted and dash-dotted lines are for the nonlinear system having 

dry friction element with 𝐹d  = 0.02 and 0.04, respectively.  

In Fig. 7.8(a) and (b), the influence of dry friction on the time-averaged dissipated 

power 𝑃̅de by the additional element and the corresponding power dissipation ratio 𝑅de 

is investigated, respectively. Fig. 7.8(a) shows that although the peak values of 

dissipated power 𝑃̅de in the cases of using dry friction element and the case of using the 

viscous damper element with 𝜌 = 2 are close, the dry friction element can dissipate 

more power than the viscous damper element when the excitation frequency is away 

from the resonant peak. This is because of the higher magnitude of dry friction force 
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than the damping force of the viscous damper element at low or high frequencies, as 

shown in Fig. 7.5(a) and (c). This phenomenon will be further discussed by examining 

the instantaneous power dissipation in Fig. 7.9. Fig. 7.8(a) also shows that with the 

increasing excitation frequency Ω from 1 to higher frequencies, the difference of the 

values of 𝑃̅de between dry friction element case and viscous damper element case are 

increased. When the dynamic friction force 𝐹d increasing from 0.02 to 0.04, there is 

more power dissipation by the dry friction element in the whole frequency range. Fig. 

7.8(b) shows that for the viscous damper case with 𝜌 = 2, the proportion of input power 

that is dissipated by the viscous damper element 𝑅de remains unchanged regardless of 

the variations of the excitation frequency. In comparison, for the dry friction element 

cases, there is a minimum value of the power dissipation ratio 𝑅de by the dry friction 

element at the corresponding resonant frequency of the response, i.e., Ω = 1. As the 

excitation frequency increases from 0.1 to 2, the values of 𝑅de  for the dry friction 

element cases decrease first from a value close to 1, to the value that is smaller than that 

of the viscous damper element case, and then increase to the value close to 1. It suggests 

that the dry friction element is effective for energy dissipation when the system is not 

in resonance. By increasing the dynamic friction force from 0.02 to 0.04, the absolute 

value of the minimum point of 𝑅de near Ω = 1 is largely increased while the value of 

𝑅de only shows a small growth when the excitation frequency is away from Ω = 1.  

 

Figure 7.8. Effects of the dynamic friction force 𝐹d on (a) the time-averaged dissipated power 

by the element 𝑃̅de and (b) the power dissipation ratio 𝑅de. The solid and dashed lines are for the 

linear system with 𝜌 = 0  and 2, respectively. The dotted and dash-dotted lines are for the 

nonlinear system having dry friction element with 𝐹d  = 0.02 and 0.04, respectively.  

In Fig. 7.9, the reasons for the characteristics of 𝑃̅in and 𝑃̅de at low frequencies 

shown in Fig. 7.7(a) and 7.8(a) are further explored, respectively. Fig. 7.9(a) and (c) 

presents the instantaneous input power 𝑃in into the system against the dimensionless 

time for the case of considering the dry friction element with 𝐹d = 0.04 and for the case 
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of using the viscous damper element with 𝜌 = 2, respectively. The excitation frequency 

is set as Ω = 0.3 and the system parameters are the same to those used in Figs. 7.6, 7.7 

and 7.8. Fig. 7.9(a) shows that due to the stick-slip characteristic at low frequencies, the 

positive part of the instantaneous input power becomes significantly larger than the 

negative part. Compared to the instantaneous input power 𝑃in in the viscous damper 

element case shown in Fig. 7.9(c), it is found that the dry friction element can result in 

a much larger amount of input energy into the system. Fig. 7.9(b) shows the time history 

of the instantaneous dissipated power 𝑃de  by the dry friction element and the 

instantaneous dissipated power 𝑃d1 by the system damper 𝑐1 at Ω = 0.3. It shows that 

the dry friction element dissipates most amount of the input power into the system while 

there is only a little power dissipated by the system damper at this frequency. By a 

comparison to the time history of 𝑃de in the viscous damper element case shown in Fig. 

7.9(d), it is found that the dry friction element can dissipate more power than the 

replacement viscous damper element when the excitation frequency is low. 

 

Figure 7.9. Instantaneous power flow indices against time for friction element case with 𝐹d =
0.04 and 𝜌 = 0 in (a) and (b) while for viscous damper case with 𝐹d = 0 and 𝜌 = 2 in (c) and 

(d) at Ω = 0.3. In (a) and (c): the instantaneous input power 𝑃in; in (b) and (d): the instantaneous 

power dissipation by element 𝑃de and by the system damper 𝑃d1. 
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7.3. 2DOF system with friction at the interface 

7.3.1. Mathematical modelling 

In this section, the dynamics, vibration transmission and energy dissipation 

behaviour of a coupled 2DOF oscillator system (i.e., 𝑄 = 2) with interactive dry friction 

force at the interface are investigated. Fig. 7.10(a) shows the system consisting of two 

SDOF systems coupled via a spring of stiffness coefficient 𝑘3 and a dry friction element 

with dry friction force 𝑓c shown in Fig. 7.10(b). Here the dry friction element represents 

the interactive friction force between the two masses and the magnitude of the dynamic 

friction force is 𝑓d. The 2DOF system is placed horizontally on the smooth surface. The 

SDOF primary system on the left comprises the primary mass 𝑚1  subjected to a 

harmonic force excitation with amplitude of 𝑓0 and frequency of 𝜔, a linear spring with 

stiffness coefficient 𝑘1 and a viscous damper with damping 𝑐1. The SDOF secondary 

system on the right has the secondary mass 𝑚2, a viscous damper of damping 𝑐2, and a 

linear spring with stiffness 𝑘2. The static equilibrium positions of the two masses, where 

𝑥1 = 𝑥2 = 0 and the springs 𝑘1, 𝑘2, 𝑘3 are un-stretched, are set as a reference. The dry 

friction element can be replaced by a viscous damper element with a damping 

coefficient of 𝑐d as shown in Fig. 7.10(c) for comparison.  
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Figure 7.10. (a) A 2DOF oscillator with (b) a dry friction element and (c) a viscous damper at 

coupling interface. 

The equations of motion of the system can be written as 

[
𝑚1 0
0 𝑚2

] {
𝑥̈1
𝑥̈2
} + [

𝑐1 0
0 𝑐2

] {
𝑥̇1
𝑥̇2
} + [

𝑘1 + 𝑘3 −𝑘3
−𝑘3 𝑘2 + 𝑘3

] {
𝑥1
𝑥2
} + {

𝑓c(𝑥̇1 − 𝑥̇2)
−𝑓c(𝑥̇1 − 𝑥̇2)

} =

{𝑓0𝑒
i𝜔𝑡 
0

}. (7.17) 

where 𝑓c is the dry friction force at the interface, which can be obtained by the Karnopp 

model expressed in Eq. (7.3) or by the smooth Coulomb model expressed in Eq. (7.4) 

with 𝑣r = 𝑥̇1 − 𝑥̇2.  
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In the use of the Karnopp model, when there is no relative motion between masses 

(i.e. stick state), the resultant external force 𝑓ex is balanced by the dry friction force with 

𝑓ex = 𝑓c(𝑥̇1 − 𝑥̇2). Moreover, the relative velocity 𝑣r of two masses is zero with 𝑥̇1 =

𝑥̇2 and 𝑥̈1 = 𝑥̈2. By substituting those expressions into Eq. (7.17) we have 

  𝑓ex =
𝑚1

𝑚1+𝑚2
[𝑘2𝑥2 + 𝑐2𝑥̇2 − 𝑘3(𝑥1 − 𝑥2)] +

𝑚2

𝑚1+𝑚2
[𝑓0𝑒

i𝜔𝑡 − 𝑘1𝑥1 − 𝑐1𝑥̇1 −

𝑘3(𝑥1 − 𝑥2)].                                (7.18) 

Here the new parameters are defined as  

𝜔2 = √
𝑘2

𝑚2
,    𝜁2 =

𝑐2

2𝑚2𝜔2
,    𝑋2 =

𝑥2

𝑙0
,     𝛾 =

𝜔2

𝜔1
,     𝜇 =

𝑚2

𝑚1
,     𝜅 =

𝑘3

𝑘1
, 

where 𝜔2  and 𝜁2  are the undamped natural frequency and damping ratio for the 

secondary system without friction, respectively, 𝑋2  represents the dimensionless 

displacement of the secondary mass, 𝛾  is the ratio of undamped natural frequency 

between the primary and the secondary oscillator. 𝜇 is the mass ratio and 𝜅 is the non-

dimensional stiffness ratio for the spring at the interface. By using them and the 

previously defined parameters, the non-dimensional governing equations can be 

transformed from Eq. (7.17), described as 

[
1 0
0 𝜇

] [
𝑋1
′′

𝑋2
′′] + [

2𝜁1 0
0 2𝜇𝜁2𝛾

] [
𝑋1
′

𝑋2
′ ] + [

1 + 𝜅 −𝜅
−𝜅 𝜇𝛾2 + 𝜅

] [
𝑋1
𝑋2
] + {

𝐹c(𝑋1
′ − 𝑋2

′)

−𝐹c(𝑋1
′ − 𝑋2

′)
} =

{𝐹0𝑒
𝑖Ω𝜏

0
}, (7.19) 

where 𝐹c(𝑋1
′ − 𝑋2

′) is the dimensionless friction force with 

𝐹c(𝑋1
′ − 𝑋2

′) = {

   𝐹d sgn(𝑋1
′ − 𝑋2

′),               if |𝑋1
′ − 𝑋2

′ | > 𝑉d                          

𝐹d sgn(𝐹ex) ,             if |𝑋1
′ − 𝑋2

′ | ≤ 𝑉d and |𝐹ex| ≥ 𝐹d
𝐹ex ,                             if |𝑋1

′ − 𝑋2
′ | ≤ 𝑉d and |𝐹ex| < 𝐹d      

 

based on the Karnopp model, 

or                               𝐹c(𝑋1
′ − 𝑋2

′) = 𝐹d

exp(
𝑋1
′ −𝑋2

′

𝜂
)−exp(−

𝑋1
′ −𝑋2

′

𝜂
)

exp(
𝑋1
′ −𝑋2

′

𝜂
)+exp(−

𝑋1
′ −𝑋2

′

𝜂
)

           

based on the smooth Coulomb model, 

and 𝐹ex is the dimensionless resultant external force which can be transformed from Eq. 

(7.18), expressed by 
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  𝐹ex =
1

1+𝜇
[𝜇𝛾2𝑋2 + 2𝜇𝜁2𝛾𝑋2

′ − 𝜅(𝑋1 − 𝑋2)] +
𝜇

1+𝜇
[𝐹0𝑒

𝑖Ω𝜏 − 𝑋1 − 2𝜁1𝑋1
′ − 𝜅(𝑋1 −

𝑋2)].  (7.20)       

For the corresponding case of using viscous damper element to replace the dry friction 

element, the friction force 𝐹c(𝑋1
′ − 𝑋2

′) in Eq. (7.19) is replaced with the damping force 

𝐹cd(𝑋1
′ − 𝑋2

′) = 2𝜁1𝜌(𝑋1
′ − 𝑋2

′) by the viscous damper element. 

The governing equation of Eq. (7.19) can be solved by the HB-AFT method 

illustrated in Subsection 7.1.2, where the smooth Coulomb model is used for the 

approximation of friction force. The results are compared with the 4th order RK method 

with the friction force determined by the Karnopp model.  

7.3.2. Force transmission and power flow formulations 

The influence of the dry friction on the vibration transmission between the two 

subsystems and the vibration energy dissipation at the interface is of interest. The force 

transmissibility from the primary mass 𝑚1 to the secondary mass 𝑚2 is expressed by: 

𝑇𝑅S =
max(ℜ{|𝐹ts|})

𝐹0
 ,                                       (7.21) 

where 𝐹ts = 𝜅(𝑋1 − 𝑋2) + 𝐹c(𝑋1
′ − 𝑋2

′) is the dimensionless transmitted force to mass 

𝑚2 for the systems comprising dry friction element. It is noted that in the case of using 

viscous damper element, the transmitted force can be replaced with 𝐹ts = 𝜅(𝑋1 − 𝑋2) +

𝐹cd(𝑋1
′ − 𝑋2

′) and 𝐹cd(𝑋1
′ − 𝑋2

′) = 2𝜁1𝜌(𝑋1
′ − 𝑋2

′). 

For the current system in the steady-state motion, the non-dimensional time-

averaged input power 𝑃̅in over one cycle of the periodic response is obtained from Eq. 

(7.9) by setting 𝑞 = 1. The time-averaged dissipated power 𝑃̅d1 by system damper 𝑐1 

is still defined by Eq. (7.15a). Over one cycle of periodic motion, the time-averaged 

transmitted power to the secondary system is entirely dissipated by the damper 𝑐2 , 

therefore, the time-averaged transmitted power 𝑃ts  to the secondary system and the 

time-averaged dissipated power 𝑃̅di by the interfacial element (dry friction element or 

viscous damper element) are expressed as  

𝑃̅ts =
1

𝜏𝑝
∫ 𝑃ts
𝜏0+𝜏𝑝
𝜏0

d𝜏,         𝑃̅di =
1

𝜏𝑝
∫ 𝑃di
𝜏0+𝜏𝑝
𝜏0

d𝜏,      (7.22a, 7.22b) 

respectively, The corresponding instantaneous transmitted power 𝑃ts  and the 

instantaneous dissipated power 𝑃di are 

𝑃ts =  2𝜇𝜁2𝛾(ℜ{𝑋2
′ })2,                                      (7.23a) 
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  𝑃di = {
 ℜ{𝑋2

′ − 𝑋1
′}ℜ{𝐹c(𝑋1

′ − 𝑋2
′)} ,

2𝜁1𝜌 (ℜ{𝑋1
′ − 𝑋2

′ })2,
                           (7.23b) 

respectively. 𝑋1
′  and 𝑋2

′  are obtained by taking the differentiation of 𝑋1 and 𝑋2 as 𝑋1
′ =

∑ i𝑛Ω𝑅̃(1,𝑛)𝑒
i𝑛Ω𝜏𝑁

𝑛=0  and 𝑋2
′ = ∑ i𝑛Ω𝑅̃(2,𝑛)𝑒

i𝑛Ω𝜏𝑁
𝑛=0 .The power dissipation ratio 𝑅d1 

by the damper 𝑐1 is still obtained from Eq. (7.16a). The power dissipation ratio 𝑅di at 

the interface and the power transmission ratio 𝑅ts are defined as 

        𝑅di =
𝑃̅di

𝑃̅in
,                                   𝑅ts =

𝑃̅ts

𝑃̅in
,                            (7.24) 

respectively. It is noted that in accordance of the energy conservation, we have 𝑅di +

𝑅ts + 𝑅d1 = 1. 

7.3.3. Dynamics and power flow results 

In Figs. 7.11-7.18, the influence of the dynamic friction force of the dry friction 

element on the dynamics, force transmissibility and power flow behaviour of the 2DOF 

oscillator system is investigated. Case one and two consider the systems having dry 

friction element with the dynamic friction force selected with 𝐹d =0.10 and 0.15, 

respectively, for the steady-state response analysis in Figs. 7.11 and 7.13, while for the 

force transmission and power flow analysis in Figs. 7.14, 7.15 and 7.17, the dynamic 

friction forces in case one and two are set as 𝐹d =0.05 and 0.15, respectively. The 

damping ratio in these two cases is fixed as 𝜌 = 0. For comparison purpose, case three 

and case four correspond to the linear system without friction force (i.e., 𝐹d = 0) with 

the damping ratio of the viscous damper element chosen as 𝜌 =0 and 𝜌 =4, respectively. 

The system parameters are set as 𝜁1 = 𝜁2 = 0.01, 𝛾 = 1, 𝜇 = 1, 𝜅 = 1, 𝑉d = 1 × 10
−4, 

𝜂 = 1 × 10−4 and 𝐹0 = 0.5. The different types of lines represent the results obtained 

by the HB method with the friction force approximated by the smooth Coulomb friction 

model, while the different symbols denote the results by using RK method with the 

friction force determined by the Karnopp friction model.  

In Figure 7.11(a) and (b), the effects of the dynamic friction force 𝐹d of the dry 

friction element on the steady-state maximum response displacement of the primary 

mass 𝑋1_max  and secondary mass 𝑋2_max  are studied, respectively. Two peaks are 

observed in each curve of 𝑋1_max and 𝑋2_max. An anti-peak is found in each of 𝑋1_max 

curve shown in Fig. 7.11(a). By conducting modal analysis on the corresponding linear 

system without friction (𝐹d = 𝜌 = 0), it is found that the first peak is corresponding to 

the in-phase mode while the second corresponds to the out-of-phase mode. Fig. 7.11(a) 

shows that with the use of dry friction element, the first peak of 𝑋1_max near Ω = 1 

For the damper element 

For the friction element 
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shows little changes while the second peak value is substantially reduced compared to 

the linear system with 𝐹d = 𝜌 = 0. This is because at the first peak frequency, the 

relative displacement between two masses are small, therefore, the dry friction force has 

little effect on the motion of two masses. However, at the second peak frequency near 

Ω = 1.74, the moving direction of the two masses are opposite and the friction force at 

the coupling interface opposes the motion of each mass. As a result, the displacement 

response of the two masses is suppressed by the friction force. Fig. 7.11(a) also shows 

that compared with the corresponding linear system comprising a replacement viscous 

damper element with 𝜌 = 4, the systems with the dry friction element have lower values 

of 𝑋1_max at a low or high excitation frequency, but the system with the viscous damper 

element has a lower second peak near Ω = 1.74 and a lower anti-peak near Ω = 1.41. 

Moreover, when the dynamic friction force 𝐹d of the dry friction element increases from 

0.10 to 0.15, there is an increase in the anti-peak value of 𝑋1_max  while a further 

reduction can be found in the second peak value as well as the values in the low/high-

frequency range. Fig. 7.11(b) shows that compared to the linear system without friction 

with 𝐹d = 𝜌 = 0, the addition of the dry friction element can reduce the second peak 

value of the response 𝑋2_max while minor changes can be found in the first peak. This 

is again due to the opposite moving directions for two masses at Ω ≈ 1.74 such that the 

dry friction element provides a resistance force for the motion of both masses. It is also 

found that when the excitation frequency is away from the resonant peaks, the use of 

the viscous damper element with 𝜌 = 4 may have negligible effects on the values of 

𝑋2_max. In contrast, in the dry friction element cases, the values of 𝑋2_max are increased 

significantly in the low/high-frequency range. It is also noticed that with the increase of 

excitation frequency Ω, the difference of the values of 𝑋2_max  between the viscous 

damper element case and dry friction element cases becomes larger. Fig. 7.11(b) also 

shows that when the dynamic friction force 𝐹d changes from 0.10 to 0.15, the second 

peak value of 𝑋2_max is further reduced due to the stronger friction damping force. 

However, the values of 𝑋2_max at low or high frequencies are further increased. This 

behaviour will be explored in Fig. 7.12 as follows.  
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Figure 7.11.  Effects of dynamic friction force 𝐹d  on the steady-state maximum response 

displacement (a) 𝑋1_max  for the primary mass and (b) 𝑋2_max  for the secondary mass, 

respectively. The solid and dashed lines are for the linear system with 𝜌 = 0 and 4, respectively. 

The dotted and dash-dotted lines are for the nonlinear system having dry friction element with 

𝐹d  = 0.10 and 0.15, respectively.  

Figure 7.12(a), (b), (d) and (e) presents the steady-state time-histories of the friction 

force and the velocity of the masses for the system comprising dry friction element at 

the excitation frequency of Ω = 0.4, Ω = 1.41, Ω = 1.74 and Ω = 3, respectively. The 

dynamic friction force of the dry friction element is considered with 𝐹d = 0.15 while 

setting 𝜌 = 0. For comparison purpose, Fig. 7.12(c) and (f) shows the time histories of 

the velocity of the masses for the system using a replacement viscous damper element 

with 𝜌 = 4 and 𝐹d = 0, and the damping force by the viscous damper element at the 

excitation frequency of Ω = 1.41 and Ω = 3, respectively. The system parameters are 

the same as those used in Fig. 7.11. The solid lines represent the dry friction force 𝐹c in 

Fig. 7.12(a), (b), (d) and (e), while representing the damping force 𝐹cd by the viscous 

damper element in Fig. 7.12(c) and (f). The dashed and dotted lines denote the velocity 

of the primary mass 𝑋1
′  and secondary mass 𝑋2

′ , respectively. Fig. 7.12(a) shows that at 

low frequencies, i.e. Ω = 0.4, there are certain time spans within one oscillation cycle 

that two masses are moving at the same velocity with 𝑋1
′ = 𝑋2

′ , suggesting that the 

interface between the two masses is in stick state. From the variations of the friction 

force 𝐹c against dimensionless time in Fig. 7.12(a), it is known that the magnitude of 

the resultant external force 𝐹ex has not increased beyond the value of the maximum 

static friction force (which equals to the dynamic friction force 𝐹d). However, when the 

absolute value of the velocity 𝑋1
′  of the primary mass becomes larger than the certain 

value, the stick-state at the interface is switched to slip-state due to that the value of 𝐹ex 

becomes larger than the value of 𝐹d. In the slip region, the value of the friction force 

remains as a constant, i.e., 𝐹c = 𝐹d . Because of the relative relation between the 

response velocity of two masses as |𝑋1
′ | > |𝑋2

′ |, the friction force acts in the same 
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direction to the moving direction of secondary mass 𝑚2  but against to that of the 

primary mass 𝑚1 . Consequently, the dry friction force can increase the maximum 

displacement of the secondary mass but suppress the motion of the primary mass.  

   

Figure 7.12. Time history of element force and the velocity responses in steady-state for the dry 

friction element case with 𝐹d = 0.15, 𝜌 = 0 at (a) Ω = 0.4, (b) Ω = 1.41, (d) Ω = 1.74 and (e) 

Ω = 3, respectively; For the viscous damper element case with 𝐹d = 0, 𝜌 = 4 at (c) Ω = 1.41 

and (f) Ω = 3, respectively. The solid line is the dry friction force 𝐹c by the friction element at 

the interface in (a), (b), (d) and (e), while in (c) and (f) is the damping force 𝐹cd by the viscous 

damper element at the interface. The dashed line and dotted lines are the response velocity of the 

primary mass 𝑋1
′  and the secondary mass 𝑋2

′ , respectively. 

Fig. 7.12(b) shows that for the case of using dry friction element excited near the 

frequency of the anti-peak, as shown in Fig. 7.11(a), there exists an approximate 𝜋/2  

phase difference between the periodic velocity responses of two masses. By comparing 

to the velocity responses in the corresponding system comprising a replacement viscous 

damper element at the same excitation frequency shown in Fig. 7.12(c), it is found that 

the use of the dry friction element can lead to a much larger amplitude of 𝑋1
′  but a 

smaller amplitude of 𝑋2
′ . Fig. 7.12(d) shows that at the excitation frequency of Ω = 1.74 

which corresponds to the second peak frequency shown in Fig. 7.11(a) and (b), the two 

masses are moving in opposite directions and the motions are hence suppressed by the 

frictional resistance force at the interface. It explains the reason for the lower peak 

values of 𝑋1_max and 𝑋2_max near Ω = 1.74 in the dry friction element cases shown in 

Fig. 7.11(a). When comparing the time history of the velocity of the masses between 

dry friction element case and viscous damper element case at high frequencies away 

from the peaks, i.e., Ω = 3, as shown by Fig. 7.12(e) and (f), respectively, it is found 

that the friction element provides a much larger amplitude of the friction force than 
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damping force by the viscous damper element at this frequency. The amplitude of the 

response velocity 𝑋1
′  is smaller but the amplitude of 𝑋2

′  is larger in the dry friction 

element case.  

In Fig. 7.13, the influence of the dynamic friction force of the friction element on 

the maximum relative displacement |𝑋1 − 𝑋2|max between two masses is studied. Only 

one peak can be found in the relative displacement |𝑋1 − 𝑋2|max curves near the out-

of-phase mode of the corresponding linear system. It shows that the addition of the dry 

friction element can reduce the values of |𝑋1 − 𝑋2|max in the whole frequency band. 

This is due to that the friction force generated by the dry friction element at the interface 

will always restraint the two masses from moving to different directions. As a result, 

the dry friction element can suppress the relative motion of the two masses in a broad 

frequency range. Fig. 7.13 also shows that the case of the linear system having viscous 

damper element with 𝜌 = 4 shows a lower peak of |𝑋1 − 𝑋2|max compared to that of 

dry friction element cases. However at low or high excitation frequencies, the systems 

with dry friction element have much lower values of  |𝑋1 − 𝑋2|max. Fig. 7.13 also 

shows that as the dry friction force increases from 0.10 to 0.15, there is a further 

reduction in the values of |𝑋1 − 𝑋2|max due to a stronger friction damping force. It can 

be summarized that the dry friction element has a good suppression performance on the 

relative motion between the coupled oscillators in the low/high-frequency range. 

 

Figure 7.13. Effects of dynamic friction force 𝐹d on the steady-state maximum relative response 

displacement |𝑋1 − 𝑋2|max between two masses. The solid and dashed lines are for the linear 

system with 𝜌 = 0 and 4, respectively. The dotted and dash-dotted lines are for the nonlinear 

system having dry friction element with 𝐹d  = 0.10 and 0.15, respectively.  

In Fig. 7.14(a) and (b), the effects of the dynamic friction force on the force 

transmissibility 𝑇𝑅S  from the primary system to the secondary mass and the time-

averaged input power 𝑃̅in into the system are investigated, respectively. Only one peak 

is observed in the curve of 𝑇𝑅S in Fig. 7.14(a), which is corresponding to the out-of-
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phase mode of the linear system.  In Fig. 7.14(b), two peaks can be found in the curve 

of 𝑃̅in.  Fig. 7.14(a) shows that for the case of using the viscous damper element with 

𝜌 = 4, the peak value near Ω = 1.73 is substantially reduced and values in the high-

frequency range are increased a bit compared to the linear system with 𝜌 = 0 . In 

contrast, the use of dry friction element can slightly reduce the peak value of 𝑇𝑅S but 

significantly increase the values of 𝑇𝑅S when the excitation frequency is away from the 

peak. This is due to that, the masses are moving in opposite directions near the peak 

frequency Ω = 1.74, the friction force acting at the coupling interface restraints the 

relative motion of two masses. Therefore, a smaller spring force at the interface is 

obtained due to the smaller relative displacement between masses, resulting in a smaller 

total transmitted force and a smaller value of 𝑇𝑅S. At low or high excitation frequencies, 

the relative displacement between masses is small, leading to a relatively small spring 

force at the coupling interface. The damping force by the viscous damper element in the 

damper element case is also small because of the small relative velocity at low 

frequencies, while it can be increased slightly in the high-frequency range due to the 

larger value the frequency component in the damping force expression. In contrast, from 

the Karnopp model expressed in Eq. (7.3), the magnitude of friction force by the dry 

friction element is only depending on the magnitude relationship between the resultant 

external force and the dynamic friction force. In the low/high-frequency range, the 

amplitude of friction force provided by the dry friction element is a constant which 

equals to dynamic friction force. Therefore, the addition of the friction element can 

increase the maximum total transmitted force to the mass 𝑚2 via the interface in those 

frequency ranges and results in a larger force transmissibility 𝑇𝑅S. As the excitation 

frequency further increases, the value of 𝑇𝑅S in dry friction element cases becomes 

close to a constant value. This is due to that with the increasing frequency, the spring 

force at the interface is smaller and the value of the maximum total transmitted force is 

becoming close to the value of dynamic friction force. Fig. 7.14(a) also shows that an 

increase of dynamic friction force 𝐹d from 0.05 to 0.15 can further reduce the peak value 

of 𝑇𝑅S but increase the values of 𝑇𝑅S when the excitation frequency is away from the 

resonance. Fig. 7.14(b) shows that the use of viscous damper element or the dry friction 

element have little effect on the first peak of time-averaged input power at Ω = 1 but 

can reduce the second peak value of the 𝑃̅in near Ω = 1.74. Both two types of elements 

can also increase the amount of input power into the system in the low/high-frequency 

range. However, the dry friction element can result in larger values of 𝑃̅in when the 

excitation frequency is away from the peaks. When increasing the dynamic friction 

force 𝐹d from 0.05 to 0.15, the second peak value of 𝑃̅in is further reduced while there 
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is an increase in the values of 𝑃̅in  when the excitation frequency is away from the 

resonant peaks.  

 

Figure 7.14. Effects of dynamic friction force 𝐹d on (a) the force transmissibility to the secondary 

system 𝑇𝑅S and (b) the time-averaged input power 𝑃̅in into the system, respectively. The solid 

and dashed lines are for the linear system with 𝜌 = 0 and 4, respectively. The dotted and dash-

dotted lines are for the nonlinear system having dry friction element with 𝐹d  = 0.05 and 0.15, 

respectively.  

In Fig. 7.15(a) and (b), the influence of the dynamic friction force of the dry-

friction element on the time-averaged transmitted power 𝑃̅ts to the secondary system and 

the power transmission ratio 𝑅ts is examined, respectively. In Fig. 7.15(a), two peaks 

can be found in the 𝑃̅ts curve. Compared with the linear system with 𝐹d = 𝜌 = 0, it is 

found that the use of the dry friction element can reduce the amount of power 

transmitted to the secondary system near the second peak when Ω ≈ 1.738. When 

comparing the power transmission between the case of using viscous damper element 

with 𝜌 = 4 and cases of having dry friction element, it is found that the viscous damper 

element may have little influence on the 𝑃̅ts at low or high excitation frequencies while 

the dry friction element can significantly increase the amount of power transmission 𝑃̅ts 

especially in the high-frequency range. The difference of the values of 𝑃̅ts between the 

dry friction element case and the viscous damper element case becomes larger with the 

increasing frequency. The reason is that at the high excitation frequency, the addition 

of the dry friction element can increase the transmitted force to the secondary system 

and also increase the amount of input power into the integrated system compared to the 

case of using viscous damper element, as shown by Fig. 7.14(a) and (b), respectively. 

Therefore, there is an increasing amount of input power that is transmitted to the 

secondary system. By a comparison of the instantaneous power transmission 𝑃ts at Ω =

5 between friction element case with 𝐹d = 0.15 and viscous damper element case with 

𝜌 = 4 as shown in Fig. 7.16(a) and (b), respectively, it is found that much more power 
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is transmitted to the secondary system in the dry friction element case. Fig. 7.15(a) also 

shows that an increase of the dynamic friction force 𝐹d in the friction element cases 

from 0.05 to 0.15 can further reduce the height of the second peak of 𝑃̅ts but increase 

the values of 𝑃̅ts in the low/high-frequency range. It is also noted that neither the viscous 

damper element nor the dry friction element can affect the first peak of 𝑃̅ts near the in-

phase mode frequency of the corresponding linear system. Fig. 7.15(b) shows that two 

peaks can be found in the curves of power transmission ratio 𝑅ts when the dry friction 

exists in the system, while only one peak can be found in the linear systems without 

friction. By comparing to the linear system with 𝐹d = 𝜌 = 0, the use of the dry friction 

element or the viscous damper element can lead to a much smaller portion of input 

power that is transmitted to the secondary system when Ω < 5  approximately. 

Moreover, when the system is excited at high frequency, i.e. Ω > 6, the system having 

the viscous damper element shows a smaller value of power transmission ratio 𝑅ts than 

the linear system with 𝐹d = 𝜌 = 0, while the system comprising the dry friction element 

has a larger value of 𝑅ts. Compared with the viscous damper element case, it is found 

that the dry friction element can lead to smaller values of 𝑅ts when Ω < 1, but larger 

values when Ω > 6 or Ω is near the second peak (Ω ≈ 1.74). When the dynamic friction 

force 𝐹d of the dry friction element increases from 0.05 to 0.15, the values of 𝑅ts are 

increased in the high-frequency range but reduced near the second peak frequency and 

in the low-frequency range when Ω < 1.                

 

Figure 7.15.  Effects of dynamic friction force 𝐹d on (a) the time-averaged transmitted power 𝑃̅ts 
to the secondary system and (b) the power transmission ratio 𝑅ts, respectively. The solid and 

dashed lines are for the linear system with 𝜌 = 0 and 4, respectively. The dotted and dash-dotted 

lines are for the nonlinear system having dry friction element with 𝐹d  =  0.05 and 0.15, 

respectively.  
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Figure 7.16. Time history of the instantaneous transmitted power 𝑃ts to the secondary system 

when the excited at Ω = 5 for (a) the friction element case with 𝐹d = 0.15 and 𝜌 = 0 and for (b) 

the linear damper case with 𝐹d = 0 and 𝜌 = 4.        

In Fig. 7.17(a) and (b), the effects of the dynamic friction force of the friction 

element on the time-averaged dissipated power 𝑃̅di  at the interface and the 

corresponding power dissipation ratio 𝑅di are studied, respectively. Fig. 7.17(a) shows 

that, when the frequency is near the in-phase mode of the corresponding linear system, 

the system having viscous damper element with 𝜌 = 4 shows a similar amount of power 

dissipation 𝑃̅di at the interface compared to the systems comprising dry friction element. 

However the cases of using dry friction element have larger values of 𝑃̅di when the 

system is excited at low or high frequencies. As the dynamic friction force 𝐹d increases 

from 0.05 to 0.15, there is a slight reduction in the peak value of the 𝑃̅di but a significant 

increase in the values of 𝑃̅di when the excitation frequency is away from the peak. Fig. 

7.17(b) shows that in the viscous damper element case, there is a local minimum point 

near the in-phase mode of the corresponding linear system in the curve of power 

transmission ratio 𝑅di . The replacement of the viscous damper element by the dry 

friction element can introduce an extra local minimum point of  𝑅di near the out-of-

phase mode of the linear system. By a comparison between the viscous damper element 

case and the dry friction element case, it is found that the value of 𝑅di at the first local 

minimum near Ω=1 is smaller in the viscous damper element case. In contrast, a lower 

value at the second local minimum near Ω=1.73 is observed in the dry friction element 

cases. In the low/high-frequency range, the values of 𝑅di in dry friction element cases 

are close to 1, indicating that a large portion of the input power is dissipated at the 

interface. Fig. 7.17(b) also shows that an increase of the dynamic friction force 𝐹d from 

0.05 to 0.15 can slightly increase the values of 𝑅di near the frequencies of both local 

minimum point.  
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Figure 7.17.  Effects of dynamic friction force 𝐹d on (a) the time-averaged dissipated power 𝑃̅di 
at the interface and (b) the power transmission ratio 𝑅di, respectively. The solid and dashed lines 

are for the linear system with 𝜌 = 0 and 4, respectively. The dotted and dash-dotted lines are for 

the nonlinear system having dry friction element with 𝐹d  = 0.05 and 0.15, respectively.  

In Fig. 7.18, the influence of the dry friction force on the steady-state instantaneous 

power dissipation 𝑃di at different frequencies are investigated. Fig. 7.18(a-c) presents 

instantaneous dissipated power 𝑃di for the case of using dry friction element by setting 

𝐹d = 0.15 and 𝜌 = 0, while Fig. 7.18(d-f) presents the 𝑃di for the case of using viscous 

damper element with 𝐹d = 0 and 𝜌 = 4. The system parameters remain the same to 

those used in Fig. 7.17. Fig. 7.18(a) shows the instantaneous power dissipation 𝑃di by 

the dry friction element at Ω = 0.4, it is found that the power dissipation by the dry 

friction element keeps zero for a certain time-length periodically. This is due to the stick 

behaviour arise by the friction nonlinearity. As the magnitude of resultant external force 

𝐹ex is lower than the dynamic friction force 𝐹d, the interface keeps in stick-state and 

there is no relative motion between the masses. As suggested by Eq. (7.23b), the dry 

friction element cannot dissipate power when there is no relative motion of the masses, 

i.e., when the interface is in stick state. By comparing to the viscous damper element 

case excited at the same frequency shown in Fig. 7.18(d), it is found that the dry friction 

element can lead to a much higher amplitude of 𝑃di and hence a larger time-averaged 

power dissipation 𝑃̅di at the interface. Fig. 7.18(b) and (e) compares the steady-state 

instantaneous power dissipation 𝑃di between dry friction element case and viscous 

damper element case at the excitation frequency of Ω = 1.74 which corresponds to the 

peak frequency of 𝑃̅di curve, as shown in Fig. 7.17(a). It shows that the friction element 

can dissipate more amount of power than the viscous damper element at the interface. 

The reason is that the moving directions of two masses are opposite at this frequency, 

leading to a large amount of energy dissipation by friction. Fig. 7.18(c) and (f) compares 

the 𝑃di at Ω = 5 between friction element case and viscous damper element case. It 

shows that there is more energy dissipation by the dry friction element. It can be 
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summarized from Fig. 7.18 that the dry friction element may be more effective than the 

viscous damper element in dissipating power at the interface when the system is excited 

at low or high frequencies.  

 

Figure 7.18. Instantaneous dissipated power 𝑃di for the dry friction element case with 𝐹d = 0.15 

and 𝜌 = 0 in (a-c) and for the viscous damper element case with 𝐹d = 0 and 𝜌 = 4 in (d-f). The 

system is excited at Ω = 0.4 in (a) and (c), at Ω = 1.74 in (b) and (e), and at Ω = 5 in (c) and 

(f). 

 

7.4. Summary 

The dynamics, force transmission and vibration power flow behaviour of a SDOF 

oscillator system and a coupled 2DOF oscillating system comprising dry friction 

element were investigated in this chapter. The effects of the dry-friction element on the 

vibration transmission and energy dissipation within the SDOF and 2DOF systems were 

evaluated by the force transmissibility and power flow indices. Some main findings can 

be summarized as below: 

(1) For the SDOF system with a dry friction element, comparing with the viscous 

damper element, the friction nonlinearity is effective in the suppression of 

dynamic response in the low/high-frequency range, while it can significantly 

increase the force transmission and the time-averaged input power into the 

system in these frequency ranges.  

(2) With the use of the dry friction element, a larger portion of vibration input 

power is dissipated by the dry friction element when the excitation frequency 

is away from the peak compared to the case using viscous damper element.  
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(3) For the 2DOF system with the dry friction element at the interface, compared 

to the system having the viscous damper element, the system with friction 

element shows a larger amount of time-averaged input power and transmitted 

power at high frequencies. Moreover, there is much more power dissipation 

at the interface in the dry-friction element case in the low/high-frequency 

range. 

It can be summarized that the nonlinear dry-friction element has a good potential 

to be used for altering the vibration transmission, energy flow and energy dissipation 

behaviour within dynamic systems. 
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Chapter 8                                     

Conclusions and future work 
 

Power flow behaviour has been widely used to quantify vibration transmission 

within linear systems. However, limited researches have been reported on the power 

flow characteristics in nonlinear dynamical systems, especially in non-smooth systems. 

This thesis has considered different types of nonlinearities embedded in the SDOF or 

2DOF structures as archetypes of many engineering systems. The vibration transmission 

and power flow behaviour of impact oscillators and friction oscillators has been 

investigated. The power flow indices are also applied in the design of the nonlinear 

passive vibration control system.  

A review of different evaluation approaches for vibration transmission and energy 

flow in linear and nonlinear systems is provided in Chapter 2. In Chapter 3, general 

vibration transmission formulations are introduced and different methods for 

determining the response of the nonlinear dynamical systems are discussed. Then the 

presented approaches are developed to investigate the dynamics and vibration  

transmission behaviour in the non-smooth impact oscillator systems with a linear or 

nonlinear QZS constraints in Chapter 4, and with the nonlinear motion constraints 

formed by a diamond-shaped linkage mechanism in Chapter 5. The impact oscillator 

systems with a single motion constraint are studied in Chapter 4 while the influence of 

multiple nonlinear constraints setups is evaluated in Chapter 5. In Chapter 6, a nonlinear 

passive isolator with the nonlinear spring based on the diamond-shaped linkage 

mechanism is put forward. The vibration isolation performance of such an isolator under 

different working environments is evaluated by using force transmission and power 

flow indices. The energy transmission and dissipation behaviour in the friction oscillator 

systems considering non-smooth Coulomb dry friction force is investigated in Chapter 

7.         

8.1. Conclusions 

In this thesis, the principal contributions are: 

(1) An in-depth understanding of the vibration transmission and energy flow behaviour 

in non-smooth impact oscillators with different types of constraints, including linear 

constraint, nonlinear quasi-zero-stiffness constraint and nonlinear linkage-based 
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constraint, is provided. The constraint used in the coupled systems is found to 

largely increase the energy dissipation at the coupling interface. 

(2) The influence of different locations for adding nonlinear constraints to 2DOF 

impact oscillators on the dynamics and vibration transmission has been studied and 

compared. A symmetric configuration of two identical nonlinear constraints on the 

two sides of the primary system is found to be effective in suppressing vibration 

transmission  

(3) Novel nonlinear vibration isolators based on linkage mechanism are proposed for 

isolating force or base-motion excitations. The performance of such isolators in real 

engineering applications such as aircrafts and ships is evaluated by considering a 

flexible foundation. The proposed isolators have shown a good attenuation effect 

on vibration transmission. 

(4) The vibration transmission, energy flow and dissipation mechanism in a SDOF non-

smooth friction oscillator and a 2DOF coupled oscillator with discontinuous dry 

friction force acting at the interface are comprehensively investigated.   

The research of the vibration transmission and power flow behaviour within the 

investigated nonlinear dynamical systems in this research yields the following findings, 

which can provide a deeper understanding of the vibration transmission mechanisms in 

the nonlinear smooth and non-smooth dynamical systems. 

(1) The effects of motion constraints on the vibration transmission characteristics of 

impact-oscillator systems are examined in Chapters 4 and 5. It is shown that 

• The nonlinear motion constraint can introduce hardening nonlinearity into the 

system in certain excitation frequency intervals, and can result in bifurcations 

as well as super-harmonic and subharmonic responses when the nonlinear 

constraint stiffness is high, as shown in Chapter 5.  

• For the SDOF impact oscillator, the nonlinear motion constraint can lead to a 

substantially smaller force transmissibility than the linear motion constraint 

but result in larger response amplitude.  

• For the 2DOF impact oscillator, the use of a single constraint can significantly 

increase the peak amount of the dissipated power at the coupling interface, 

while a local minimum power dissipation can be observed near the peak 

frequency when two nonlinear constraints are used, as shown in Chapter 5. 

The peak power transmission between two coupled sub-systems can be largely 
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reduced when the two identical nonlinear constraints are set symmetrically on 

the two sides of the primary DOF, as shown in Chapter 5.  

• Using the force transmissibility and time-averaged power transmission for the 

quantification of vibration transmission may give a different prediction result 

for the 2DOF impact oscillator system. The design parameters of the nonlinear 

motion constraint can be adjusted to tailor the vibration power flow behaviour 

within the system. 

(2) A nonlinear isolation system formed by adding a geometrically nonlinear element 

created by a diamond-shaped linkage mechanism to the traditional linear isolator is 

developed in Chapter 6, with the following results,   

• The geometrically nonlinear element can be adjusted to provide a negative 

stiffness so as to widen the frequency range of the effective vibration 

mitigation for the vibration isolation system. The curves of the response 

amplitude, the force / displacement transmissibility and the maximum kinetic 

energy of the vibration isolation system are all shifting to the low frequencies 

with the peaks bending to the low-frequency range.  

• For the SDOF nonlinear isolation system under base excitation, the peak 

height of the response amplitude, the force transmissibility and the kinetic 

energy of the mass become much lower than those of the linear isolation 

system without the D-spring.  

• For the 2DOF nonlinear isolation system, the addition of the nonlinear 

linkage-based element can largely reduce the power transmission from the 

mass to the flexible base structure at high frequencies. A substantial decrease 

can be found in the power transmission ratio when the excitation frequency is 

away from the in-phase mode of the corresponding linear system.  

(3) The influence of the Coulomb dry friction force on the vibration transmission and 

energy flow characteristics of friction oscillators are investigated in Chapter 7. It is 

observed that  

• The dry friction may be more effective in energy dissipation than the viscous 

damping in low- and high-frequencies when away from the resonance.  

• For the coupled oscillating system considering the interactive dry-friction at 

the contacting interface, the force transmissibility, energy transfer to the 

secondary system and the energy dissipation at the interface in the high-
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frequency range are all increased compared with those of the corresponding 

linear system without friction. However, slight reductions can be found in the 

peaks of those indices for the system with friction near the out-of-phase mode 

of the corresponding linear system.  

• A larger dynamic friction force in the coupled system can increase the power 

transmission ratio to the secondary system in the high frequencies. The power 

flow behaviour within the system can be altered by changing the dynamic 

friction force. 

Based on the findings of this research, some guidance on future dynamical design 

of engineering systems, such as tooling machineries, drilling rigs, transmission systems 

and vibration isolation platforms, can be provided as below: 

1. To improve the operation efficiency of the tooling machinery or drilling platform, 

the impact frequency of the tools or drill bits can be set at resonance frequencies of 

the local impact subsystem to transmit the maximum vibration energy to the 

workpiece or rock. The material and geometry properties of the workpiece or rock 

should be considered in the design of tools or drill bits since those properties have 

strong effects on the dynamic stiffness, resonant frequencies and hence the cutting 

efficiency of the impact subsystem.      

2. For the suppression of vibration in the transmission system, nonlinear motion 

constraints proposed in this thesis can be added onto the vibration transmission path, 

such as a shafting system on the ship, to substantially reduce the local power 

transmission in the axial direction. Extensively, the nonlinear constraints can be 

applied to reduce the longitudinal vibration transmission in any coupled chain 

structures. The use of multiple nonlinear constraints with a symmetrical 

configuration can further improve the vibration suppression performance.  

3. The proposed nonlinear linkage-based vibration isolators have a relatively simple 

structure and can be easily employed in various engineering systems for vibration 

mitigation. The properties of the embedded nonlinear element can be altered to meet 

different engineering requirements by adjusting its geometric parameters 

straightforwardly without replacing the embedded linear spring. 

4. The dry friction element can be used as an effective power dissipation component 

in the dynamical systems. A combined use of dry friction element and viscous 

damper element in the suspension system may effectively absorb and dissipate 

energy in a broad frequency range, which can improve the ride quality.  
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8.2. Future work 

In light of the complexity of vibration transmission and power flow phenomena in 

the nonlinear smooth and non-smooth dynamical systems, further work is needed to 

understand the vibration transmission mechanisms of more integrated and complicated 

dynamical systems. Several interesting research areas are suggested here for future 

research. 

• Vibration transmission and energy transfer behaviour in MDOF (number of 

DOF ≥ 3) impact oscillator systems with nonlinear motion constraints remain 

unexplored. The influence of different configurations of motion constraints on 

the power flow characteristics of the complex impact oscillator systems 

should be revealed. 

• For a more realistic representation of the engineering applications, vibration 

transmission analysis on the nonlinear dynamical system comprising multiple 

types of nonlinearities, such as impact oscillator with motion constraints as 

well as non-smooth dry-friction nonlinearity, is needed.  

• In terms of more efficient passive vibration control, the nonlinear 

substructures providing discontinuous forces, such as dry friction elements 

and nonlinear constraints, can be integrated into vibration control systems. 

PFA is required to evaluate the vibration suppression performance and 

enhance the dynamical design of such systems.      
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