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Fexterior General external Force matrix N/mm2

Finterior General interior Force matrix N/mm2

Fres Residual force ND

F b Body forces N/mm2

F Deformation gradient ND

Fp Plastic Deformation gradient ND

Fe Elastic Deformation gradient ND

g Gravity m/s2

˙Fm Rate of Force matrix N/s

Hi Continuum permeability matrix m−1

I Identity matrix ND

Ic Trace of strain matrix N/mm2

Ki Permeability matrix N/mm2

K General global stiffness matrix N/mm2

K1 Fracture toughness for mode one crack J/mm2

KFratt Fracture energy J
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L Flow potential matrix N/mm2

M Mass matrix ND

∇′ Differential operator ND

n surface normal ND

N General Shape functions ND

Ni Shape functions ND

∆p Pressure change N/mm2

Qi Boundary flow matrix m3/s

p̃i Trial pressure matrix for receptive region N/mm2

Rf Internal reaction forces N/mm2

R Rotation matrix ND

Re Elastic Rotation matrix ND

Rp Plastic Rotation matrix ND

T Stress N/mm2

S Piola-Kirchoff stress matrix N/mm2

vαr relative velocity in fluid m/s

vs relative velocity in solid media i m/s

W Work done J

Wp Plastic work J

ũ Trial deformation matrix ND

U General stretch matrix ND

Ue Elastic Stretch matrix ND

Up Plastic Stretch matrix ND

X Spatial Coordinates m

δ Kronecker matrix ND

σ Stress matrix ND

Other
` Aperture size m

`0 Initial aperture size m

Ṁin Mass in Kg/s

Note: ND = Non-Dimensional
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Abstract

A dual porosity damage model is developed with the intention for the
efficient solving of complex hydrofracture problems. The model is devel-
oped by utilising two pre-existing methodologies and adapting them for the
purpose of solving hydrofracture problems. The damage model uses a Neo-
Hookean finite deformation elastic constitutive model to calculate internally
stored elastic energy. The constitutive model is derived from the three strain
invariants so that with volume change, mechanical behaviour maintains con-
sistency, a property that will be discussed in the literature, important to the
development of both fracture and hydrofracture framework.

The energy required for material breakage is derived from the material
property: fracture strength. The two energy values are calculated over the
considered model domain and are used with the energy minimisation tech-
nique to find the global minimum energy that contains the sum of the two
aforementioned energy types. While calculating the domain configuration
which has the lowest energy sum, fracture behaviour can be deduced from
the required energy releases from the system to achieve the global energy
minimum.

This fracture methodology is combined with a dual porosity methodol-
ogy that is derived by considering the fluid interface between interconnected
porous and fractured domains. Mass balance and effective stress concepts
have been utilised to derive partial differential equations which model fluid
flow through these two domains in an interconnected manner. This aspect of
the model is used to model the fluid transfers that occur in hydrofractures.

The set of equations that govern the coupled porous flow are solved using
the finite element method. The Galerkin method of the spatial discretisation
is applied and solved using a Eularian scheme to iterate the solution of the
governing linearised equations utilising the Newton Raphson approach.
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The plastic behaviour of rock like materials has been described utilising
Mohr Coulomb plastic model through the application of the Hencky strain
conversion to apply the infinitesimal framework to the hydrofracture frame-
work.

A continuum damage model (CDM) method relying on the energy min-
imisation theory has been applied in a finite deformation context.

The variable minimised within the considered domain is mechanical energy,
in doing so fracture behaviour can be captured through the energy exchanges
required to maintain a global minimum.

Several methodologies from geomechanics and fracture mechanics have
been considered to create a model that can simulate post fracture behaviour
in terms of strength and fluid flow. Combining two pre-existing concepts one
for fracture problem and another for fluid flow modelling, a simple practi-
cal computational framework for hydrofracture is produced. The developed
minimisation methodology is proven suitable for modelling complex fracture
behaviour, by comparing numerical outputs against experimental and numer-
ical fracture paths. The minimisation approach produced is computationally
inexpensive, flexible and simple to implement within existing framework.

Section 5.2 and 5.2.1 also showed how leakage from fractures to the sur-
rounding porous system dictate pressure changes within the continuum and
the resultant mechanical changes further proving that leakage is an impor-
tant consideration mechanically as well as environmentally. Section: 5.1 also
showed that the developed methodology can capture geotechnical behaviour.
All whilst maintaining fracture/ hydrofracture capability and suitability. The
dual porosity coupling can be used to capture the flow properties of hydro
fractures. The use of which has the potential to reduce the number of re-
quired variables.
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In Section 5.2 and 5.2.1 the issue of two dimensional consolidation in closely
confined thin horizontal fractures that inhibit hydrofracture progress are clas-
sified. The considered thin fractures or "penny cracks" within a large domain
are shown in section: 5.3, further verifying this behaviour trend.
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1 Introduction

Cracks occur constantly in nature, yet they are not fully understood in
respect to their behaviour [24], furthermore their interaction with fluid is less
understood especially within many required applications.

Fracking, pressurising cracks with fluid is often used to improve the per-
meability of rock like materials and aids in the application of shale gas ex-
traction [124]. This research aims to create practical models which can deal
with versatile rock and stress conditions while requiring minimal material
constants and therefore minimal laboratory work.

Hydrofracture models are needed for improved resource mining such as in
the extraction of shale gas for better control of the mining process. Shale
gas extraction used to be deemed uneconomical but with the introduction
of more efficient fracking techniques and other resources becoming less cost
effective, previously untapped natural gas resources have become relatively
more viable [124]. Shale gas extraction is constantly increasing in popular-
ity, profit margins increasing due to the supply from traditional methods
decreasing [70]. Therefore, companies have become more interested recently
in cheaply evaluating whether a fracking venture is worth it, this requires
overall better prediction models that are computationally cheap [6], simple
to use and require minimal laboratory work for finding input variables.

Shale gas is naturally stored in porous rocks due to the formation process,
better gas yields typically come from rocks with higher porosity, with an
impermeable layer above to stop the gas from leaking and escaping [88].
Containing shale rock may have low porosity and poor interconnection [94]
between its pores hence pumping gas directly does not produce high yields
of shale gas. To solve this issue fracking is used to break apart pores within
the rock, improving pore connectivity and permeability.

The fracking process starts with a hole drilled into the ground to the depth
where shale gas is present or where extraction is most convenient [126]. Holes
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drilled in the 1990 - 2000’s consisted heavily of vertical drilling methods in-
stead of the far more efficient method of horizontal drilling. The reason for
the new prevalence in horizontal drilling is due to the ease it brings to the
hydrofracture procedure; in vertical drilling the fluid must overcome verti-
cal effective stresses as opposed to the naturally lower horizontal pressures
created during horizontal drilling [36].

A two way pump is inserted, building high pressure to break apart the
pore structure, increasing permeability. Once the hydrofractured zone grows
and pressure can no longer build sufficiently for further hydrofracture the
pump is reversed and shale gas is extracted through the additional newly
created and previously existing pore channels, the gas sometimes being dis-
placed by water or carbon dioxide [79].

During hydrofracture additives are usually used to accommodate the pro-
cess using proppants helping to hold fractures open [33]. These additives
typically are adsorbed by the rock, these additives can however potentially
leak if an error is made during the fracking process.

Leakage to local aquifers is a recurring problem in fracking, difficult to
remedy if any contaminate should leak. The best removal methods being;
plugging, extraction pumps, complete excavation and foam pumping, costly
and time consuming and interfering with ground conditions making further
shale gas extraction more difficult [158]. Fluid leakage tarnishes the repu-
tation of fracking, leading to further difficulties in the planning process for
even unrelated fracking plans. This shows the importance of prediction tools
to extract correctly on the first attempt in shale gas extraction. Tools which
can predict how each stage of hydrofracture occur while still being usable by
engineers practically [134].

The three main challenges in modelling hydrofracture in geomaterials are,
describing: how fluid pressures change within the continuum, how the frac-
ture progresses and how said progress further influences the domain’s be-
haviour post fracking. Integrating mathematical models which describe these
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three processes into a single model is essential to predict hydraulic fractur-
ing and is a challenging task requiring complex solutions that are difficult to
apply practically in practice.

An aim of this study is to compare several modelling methods and apply
one with constitutive modelling and cracking criteria to model the effects of
hydraulic crack propagation, supporting the theories and concepts used with
critically analysed literature.

Parts of other constitutive models will be combined together to model the
variations in the yield surface and pore pressure.

The interaction of these properties will be analysed in rocks and the be-
haviour will be studied to build a robust, capable model.

Limitations of the created model will be quantified and tested against
other existing model’s numerical/analytical hydrofracture experiments and
some practical hydrofracture experiments.

The aim is to produce a highly capable simple hydrofracture model with
low computational demand so that it may be possible to scale up the model
to represent large fracking operations in the future.

The derived model will verified for relevant geotechnical and fracture be-
haviour through various verifications under various conditions against refer-
ence numerical and experimental tests, found in the literature.

Fluid pressure evolution is completely different within a fracture compared
to porous flow because of the large change in pore inter-connectivity and fluid
pressure, a standard permeability model can be used to describe the effect
of having different permeability for each media but in doing so behaviour
is assumed constant and any exchange between both mediums would be
neglected [95]. A double permeability model is most suitable for this reason,
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not only is it generally more capable but it has greater potential to treat
each flow scenario differently as should be the case. The double permeability
model considers two domains within the whole continuum, a porous and a
fractured medium [58].

This thesis documents the theory used in the double permeability concept
followed by the fracture propagation modelling used for this thesis.

The second chapter introduces the relevant literature on current methods
used to model hydrofractures and the associated phenomena. The third
chapter introduces the key theory for fracture prediction using the energy
minimisation approach, this is accompanied by a verification example on
experimental data that analyse slit orientation effects fracture propagation
in a rectangular sample. The fourth chapter introduces the utilised porous
flow coupling to the previously introduced fracture methodology. The fifth
chapter uses the newly developed hydrofracture methodology to analyses
hydrofracture examples from the literature to test each aspect of the model
in terms of fracture and fluid behaviour prediction capabilities. The sixth
chapter develops the methodology to account for the effects of plasticity,
going on to revaluating the two more complex verifications examples from the
third and fifth chapters. The final chapters are the conclusions and references
and future proposals for the discussed and developed methodology.
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2 Literature review

This chapter begins with a comparison of current hydrofracture mod-
els under development available in the literature; their strengths and weak-
nesses summarised. The latter part of this chapter introduces key concepts
used throughout the study of hydrofracture and, in particular, the developed
model created during this study, the associated novelty of modelling the ef-
fects of a growing fracture network and the resulting effect on flow through
a fractured media.

2.1 Hydrofracture

With the increasing rise in costs of energy, shale gas extraction through
fracking is becoming economically viable [126]. The increase in fracking activ-
ity has been controversial with the potential for pollution, land degradation
and subsidence due to fracking still not fully understood [44].

The process of fracking starts when natural gas is first prospected, then
the setup for a large drill pad is built. The drill pad is often accommodated
with proppant storage facilitates, pumps, monitoring stations and drill [124].
The drill digs a narrow hole that can vary in depth, typically depending
on the depth of the shale rock. Once shale rock strata layer is reached, the
drill is turned horizontally, parallel to the layer of shale. Drilling horizontally
through the shale allows ease of access to the layer of rock in terms of fracking
as shown in Figure 1.
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Figure 1: Typical fracking set up in industry [120]

The drilled hole is lined with an impermeable steel tube to reduce ground-
water pollution risks and any undesired fluid leakage. At this point a fracking
fluid with a mixture of soluble and insoluble additions are pumped at high
pressures, up to 62 MPa in some cases. Fracking fluid builds pressure and
eventually creating multiple fractures but more importantly additional flow
options for both the injected fluid and shale gas [124]. Several pumping
stages may occur before the injected fluid is pumped back out, the cyclic ap-
plication of pumping liquid allows fractures to close at the end of one cycle
partially. Pressure can then be built up more readily elsewhere in the strata
to create further fracturing maximising shale gas extraction [156].

As fluid is pumped in, it becomes progressively more difficult to build
fluid pressure as fracking persists to create new fractures as there is a higher
surface to maintain the pressure over i.e. more energy is required [8].

Once fracking is complete, natural gas is extracted by displacing the nat-
ural gas with water, then carbon dioxide, usually succeeding in yielding up
to 80 % of the natural gas. Additives used in the initial pumping fluid help
to keep fractures open, lubricate the fracture surface aiding natural gas ex-
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traction [42].

Fractures and pores have different properties regarding their reaction to
fluid pressure; pore pressure exclusively pushes/sucks internally from the
pores, swelling or dilating the soil. Pore pressure exerts a net pressure
throughout a considered continuum. Internal fracture pressure pushes against
fracture walls assuming low permeability; opening the fracture and increasing
stress concentrations at the crack tips.

The hydrofracture process puts surrounding rock under high stress condi-
tions; causing cracks and large movements within the continuum [73]. These
changes affect how fluid flows through the continuum due to internal flow
routes changes and large fluid pressure variations. The changes in flow routes
are an important attribute to capture when modelling hydrofracture.

Rock strata at great depths are constantly under high confining stress,
this confinement acts to close all voids and fractures; either pre-existing
or newly created [19]. A resistance to fracture closure during the process
itself is the fluid pressure (assuming the crack is sufficiently long to negate
material strength at tips), and how much traction that fluid has on the
boundary layer [43]. For example, a closed 2 dimensional thin fracture "penny
crack" with incompressible fluid and impermeable boundaries remain open
whereas a similar penny crack with permeable boundaries will leak all of
its fluid and pressure into the surrounding medium, closing. Therefore, the
threshold ground pressure must be surpassed by the fluid pressure to allow
crack propagation. This threshold pressure is dependent on the surrounding
ground pressure, here shown as σ0, in Figure 2.
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Figure 2: Hydrofracture tip [21]

Figure 2 shows a simplified hydrofracture under ground where an inflow of
fluid, q is building pressure pf . The fluid pressure is maintaining the crack’s
opening, opposing the vertical/surrounding ground stress σ0. Figure 2 shows
that the fluid pressure, pf must exceed the vertical earth pressure, σ0 at a
minimum to induce tension at the fracture tip, otherwise the total force acts
to shorten the crack [21].

Permeability has been found to increase in dilative cases opening up cracks,
creating greater crack inter-connectivity, leading to an increase in permeabil-
ity overall. These effects start to decrease after some time, [69] giving rise to
a logarithmic trend, due to other internal effects such as viscosity and pore
wall friction taking over, i.e. more cracks mean more surface area and drag.

Modelling the permeability of fractured pore systems is difficult in prac-
tice due to the large variation of scenarios the fluid systems can undergo,
be it different flow paths or large open voids of stationary fluid [55]. The
complexity of the calculating the permeability of fractured media has in the
past couple decades met with equally complex solutions.

Biot’s flow has been applied in several cases to the hydrofracture prob-
lem with varying degrees of success. However due to the assumption that
flow in a Biot system is far greater than deformation rate of the containing
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continuum modelling flow in a crack becomes an issue due to the high local
strains involved in crack tip deformation. Furthermore, in the formulation
of the theory, other assumptions include linear elasticity [13]. Cracks require
non-linear elastic models to remain accurate during the large strains pro-
duced during fracture propagation which will be commented on in the finite
deformation section in this thesis.

Use of Navier-stokes is problematic due to solver issues, the constantly
changing boundary conditions due to crack propagation, increasing solving
process complexity, especially in 3D simulations [80]. For this reason, there
is little literature on the practical use of Navier-stokes in hydrofracture mod-
elling [91]. In most cases, Navier-stokes equations have been used for the
simulation of a simplified channel flow down a single crack [62] and [53] . No
multi fracture applications have been sourced in the literature review using
the Navier-Stokes equations.

Research has found agreement with the idea of crack density and it’s re-
lation to permeability/flow. This can be used to arrive to a reasonable solu-
tion with some merits of validation [97]. [73] has suggested how the pressure
evolves in relation to the permeability. They have suggested that in order
to model micro cracks reasonably well the aperture must be considered to
change according to low pressure volume strain and shear sliding.

Poiseuille’s law has been applied to simplify theoretical models predicting
permeability change with fracture propagation [137]. More simplistic models
have been created that are empirical and prove effective, however they again
need unique parameters that are not naturally procured during triaxial tests
and have no theoretical basis of which to rely on.

Flow speed through a porous medium is dictated heavily by the medium’s
permeability, this behaviour is captured by Darcy flow assuming laminar
flow, typically described as shown in equation 1.
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q =
k

µf
∆p (1)

where q is fluid flow rate, k is permeability, µf is the dynamic viscosity
(8.9.10−4m2/s for water) and ∆p is the pressure difference.

Research on high pressure flow in porous media has found that flow pre-
diction from Darcy’s laws are less accurate as fluid gains momentum and
becomes more energy dense, because Darcy equations do not contain any
momentum terms assuming laminar flow [14]. Once higher energy flows are
considered Biot’s flow or Navier-Stokes equations become more practical in
theory for accuracy due to their consideration of turbulent flow.

Darcy flow on its own assumes a homogeneous continuous flow, as demon-
strated previously. This is not strictly true in the case of hydrofracture [125].
Intertwining fractures complicate the evaluation of permeability and more
sophisticated approaches are required, such as the pore network modelling
method which account for varying flow paths.

Permeability depends on, several factors including but not limited to:
chemical composition, charge, pore wall roughness [19], pore volume fraction,
pore interconnectivity and pore size distribution; the latter proven vital to
describe fluid flow using pore network modelling.

Pore network modelling has shown that the inter-connectivity of pores
heavily influences the permeability [145]. When a fracture occurs locally, the
permeability will naturally increase due to extra connections created.

The creation of pore networks are typically created using ultrasonic imag-
ing techniques with many slices of a small rock/soil sample or any other
imaging techniques allowing for the 3D pore network to be captured [139].
The many slices are then input into a rendering program to identify pore
spaces and material grains, this 3D model can then be used to simulate per-
meability at the correct confining pressures which are difficult to recreate
in a laboratory specimen. In pore network models, pores are modelled as
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fluid storing nodes and connected by throats as channels for the pores/nodes
to transfer fluid, simplifying the modelling process, an example is shown in
Figure 3c, 3d showcasing a pore network interpreted from 3D imaged rock
samples seen in 3.

Higher permeability is also attributed to either a coordination value, in
that the pores are well connected and/or high void fraction so that fluid
flow can occur more freely inside a porous medium. In application, this adds
additional complexity to models and the required amount of laboratory work,
reducing practicality but does improve accuracy of predictions in terms of
fluid flow prediction [139]. Pore network modelling gives an insight to the
effect of fractures on permeability that laboratory experiments cannot. This
is due to both the confining pressure being difficult to model, the other
reason is due to sample deterioration caused by sample extraction and the
cost associated with laboratory testing. When a sample of rock is removed
at 500m the sudden change or reduction in confining pressure creates micro
fractures in the rock changing the permeability of the sample, however at a
microscopic scale some areas of the sample can be considered un-fractured.
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Figure 3: Micro-tomography extraction of two sand packs (a) and (b) to
conversion to equivalent pore network models (c) and (b) [138]

Figure 3 shows several stages of pore network modelling in the following
stages, sub figures a) and b) show an initial micro-tomography extraction of
two sand packs. Sub figures (b) and (c) demonstrate equivalent networks of
both sand packs.

Connectivity and porosity can be used alone to empirically estimate per-
meability. However, in the case of a crack where sensitive local changes are
needed to be recorded, full pore network simulations of samples loaded in
different scenarios are required. The connectivity of fractures or void space
is a big impact factor on material permeability at both the micro and macro
scales as previously mentioned [3]. Therefore, computational models used
in the prediction must be able to count for multiple fractures with varying
degrees of interaction, in order to calculate hydrofracture behaviour. It has
also been shown experimentally that with longer cracks, pressure variations
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are unpredictable due to accumulative errors [128], pore networking models
can predict the pressure variation to some accuracy, however after sufficient
crack length the number of input variables required substantially increases.

Pore networks can further be enhanced to account for additional criteria
such as throat shape [145] and roughness [75]. Roughness can have such
an effect that dry throats have a vastly different hydraulic conductivity to
their wet counterpart [131]. Furthermore, pore systems with larger specific
areas (total area of pores and throats) will experience more fluid adsorption.
At higher confining pressures pores and throat channels decrease, decreasing
flow capabilities of a porous medium.

In order to simulate permeability accurately, these must all be consid-
ered, which requires many experimental tests such as macro-pore scanning.
Furthermore, the computational efforts required by pore network modelling
are impractically large; often the permeability is analysed for a small sample
and scaled up in a multi-scale model approach.

Pore network modelling is computationally demanding because every in-
dividual throat, connection and void space [55] is modelled by an equivalent
pipe in a discrete manner. Demands are too high to allow practical modelling
of large pore networks or to allow the coupling of other behaviour types such
as fractures [3].

Dual porosity modelling considers fluid channels not as individual pipes,
but instead as a set of overlapping partial differential equations [26] [95].
The dual porosity model thus separates the hydrofracture problem into a
pore flow and fracture flow problem. The models currently developed have a
different permeability, pressure head and porosity associated with each zone
citeref204, [95].

Solving two coupled partial differential equations increases the method’s
efficiency [72] over that of the equivalent pore network model approach [3].
To achieve this, the dual porosity approach requires that the fractures are
represented and discretised with sufficient fidelity [72]. Dual porosity models
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have been shown to even replicate the expansion and contraction of flow
channels in fracture networks with the corresponding change in permeability
[34].

Jianjun Ma uses the dual porosity approach to replicate hydrofracture
phenomena, specifically within the context of wellbores [95]. This specific
application of the dual porosity model overlays two networks: porous and
fractured, in doing this the influence of fractures are homogenised and the
directionality of hydrofractures is lost.

Figure 4: Contour Damage map example of dual porosity model [95]

Figure 4 plots damage incurred by a pressured borehole, Figure 5 shows
building pressure over time as this hydrofractures develop within the model.
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Figure 5: Pressure in well-bore overtime modelled using dual porosity
model [95]

Figure 5 compares pressure profiles against Papanastasiou’s numerical
experiments [115], achieving a more brittle response. This is due to the
difference in approach, Ma uses a continuum approach where fluid pressures
are spread over considered damaged elements whereas Papanastasiou uses
lubrication theory, as a result fluid pressure is more concentrated leading to
more concentrated loading and a more brittle response. Figures 4 and 5 show
that the key principles of hydrofractures are modelled reasonably by the dual
porosity approach. The pressure is built within the well-bore until fracture
propagation begins, from this point on, the fluid pressure is lost to newly
created fractures.

Furthermore, as fractures propagate, rebuilding pressure becomes more
difficult due to the increasing pore pressure of which the fracture pressure is
leaking into.

The dual porosity methodology demonstrated in Figures 4 and 5 assumes
that fracture and porous flow coexist within the same space, similar to the
example presented in Figure 6.
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Figure 6: Dual porosity model principles

Figure 6 shows a typical dual porosity setup, consisting of two compo-
nents, a fractured and porous zone which interact via internal flow and leak-
age.

Where k2 and φ2 are the permeability and porosity for the fractured
domain, k1 and φ1 are the permeability for the porous domain. The fluid
transfer shown in Figure 6 describes flow between the two zone types utilised
in the dual porosity methodology.

It is clear that hydrofracture models should account for both fracture and
porous flow separately as shown in Figure 6. What is not clear is the interac-
tion between the two, to capture the exchange of fluid, a leakage parameter
is considered to couple the fluid flow in two media

The leakage parameter acts to equalise the pressure between both medi-
ums, once achieved the fluid driving aspect of the fracture fluid vanishes.
The same can be said when there is excess pressure in the porous medium
effectively closing the fractures [106]. The leakage parameter also dictates
the rate of pressure build up in a crack, if fluid flows out of a fracture quicker
than intake, the considered fracture will not be able to build up pressure for
fluid driven fracture propagation.
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The dual porosity model has also been shown to be effective [71], [95] in
practical uses due to associated low computational costs.

The leakage parameter in the work of [95] describes the leakage parameter
acting constant across the whole domain, where a porous and fracture pres-
sure coexist constantly throughout the continuum. In other work it is seen
applied bridging two permeable mediums together. This allows the pres-
sure difference to contribute to fracture propagation as a step change in the
pressure gradient can be more easily achieved.

The dual porosity’s ability to model the permeability of fractured porous
systems is apparent as seen in countless examples of literature: [48] [49] [58]
and [123].

However, the dual porosity model cannot predict the growth of fractures
and/or hydrofracture growth alone [49] A fracture methodology, specifically
one that can be integrated into the dual porosity model is required. The-
oretically; if the growth of fracture can be represented accurately and the
associated fracture and porous zones are updated with hydro-fracture growth
then the evolving permeability could be potentially captured.

2.2 Fracture mechanics

Fracture mechanics is a topic in mechanical science that alludes the use
of simple theoretical basis and modelling. Accurate models are difficult for
the simple fact that each created crack heavily influences the onset of other
cracks [164].

Griffith crack criterion The first real breakthrough in fracture mechan-
ics came shortly after the realisation that the fracture strength for inter-
molecular glass bonds was far higher than regular sized glass samples [52].
This led to Griffith formulating a new relationship dependent on surface en-
ergy, explaining why fracture strength is not wholly dependent on molecular
strength, but on sample size and geometry [67]. This led to the discovery
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of the minimal energy concept, founded with a classical example of fracture
mechanics; the slit in a thin plate under plane stress conditions shown in
Figure 7.

This classic example stems from one of Griffith’s conclusions, "The break-
ing load of a thin plate of glass having in it a sufficiently long straight crack
normal to the applied stress, is inversely proportional to the square root of
the length of the crack", here shown in equation 2 [52] under the assumption
of an infinite continuum containing the crack. Equation 2 is demonstrated
in Figure 7.

KI = σ
√
πa (2)

This relationship was later extrapolated and became the first of many
intensification factor equations. Solutions would become more versatile yet
more complicated. A unit thickness is assumed in 2D.

Figure 7: Classical Griffith crack

where a is the crack half-length and KI is the stress intensity value and
σ is stress as shown in Figure 7. The stress intensity value can be related to
the strain rate in plane mechanics.

When the critical value is exceeded the energy dissipation rate is used to
determine how the strain fields are altered. The strain rate G is shown in
equation 3 for a simple crack in plane stress conditions [121].
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G =
K2

1

E
(3)

where G is the strain energy release rate, E is the Young’s Modulus and
K1 can be interchanged with fracture toughness and represents whether a
certain material will resist fracture.

The reader may have noticed that there are several problems with this
solution for fracture. First, this solution is not a boundary value problem
and while it can be applied to bounded problems, as the aperture approaches
the edge, solutions become less accurate.

Second the crack path is predefined, this is impossible to know ahead
of time even with simple geometric brittle materials and the resulting crack
paths can be difficult to predict.

The rate of a crack’s growth found by Griffith can be more generally defined
in terms of energy and crack area as shown in equation 4 [77].

G =
dW

dA
(4)

where dW is the work done per unit area on material and dA is the area
in the crack front.

According to equations 3 and 4, when there is sufficient energy concen-
trated in a small enough area that exceeds the material’s excepted strain
growth rate, a fracture will grow or initiate.

Crack initiation
When crack initiation is considered the usual way to describe the crack

is through three failure modes, here demonstrated in Figure 8.
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Figure 8: Different crack modes for various load cases [76]

Figure 8 shows the various mode of fracture possible: Mode 1 is a tension
crack, mode 2 is through shear and mode 3 through torsional effects [77].

Less work has been done on branching cracks [98] but they should be
considered in certain cases to resolve omni-directional force cases, such as a
highly pressurised nozzle in a hole exerting load in all directions.

Crack branching occurs when the splitting of a fracture is required to
maintain equilibrium of force direction. This becomes more likely as higher
energies are considered as there is typically more fracture to resolve. Multiple
cracks provide several energy paths complicating many fracture prediction
methodologies.

Branching is why standard equilibrium methods are unsuitable as the
method makes it difficult to differentiate between creating one long crack or
two short cracks.

2.3 Existing fracture models and current gaps in exist-

ing methods

The following section will compare existing fracture models developed for
hydrofracture. Each section will showcase the relative strengths, weaknesses
and existing challenges of each methodology type.

2.3.1 Continuum damage model

The continuum damage model (CDM) method uses a damage variable to
model fractures. A damage variable is used to model material degradation,
often associated with the occurrence of micro voids/fractures that reduces
both the remaining strength and stiffness. The damage variable can be linked
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to other phenomena such as permeability or conductivity with the correct
modelling approaches if required.

Damage is not truly quantifiable in that no experiment can be used to
measure damage directly, instead decrease in stiffness is commonly used as
a supplementary measure. Typically, a damage variable varies from one to
zero; one representing fully intact and zero fully deteriorated.

When the damage variable is zero it is typical to assume some residual
strength or that the considered damage element ceases in that the considered
element no longer has any impact on the simulation. These considerations
prevent numerical problems that could arise with unrealistically low material
stiffness [95].

The damage variable is controlled by a damage law that can be influenced
by energy, stress or strain concentrations [64]. Different damage laws are
required for varying materials, rock/glass/brittle materials lose all strength
shortly after failure, however asphalt/rubber/ductile materials have a less
dramatic decrease in stiffness, both requiring different damage laws. These
are often derived from theory or experiments that test the decrease in stiffness
under various failure mode/processes.

A damage model requires two key components; a damage evolution law
as mentioned prior. The second key component is a set of equations that
impact material degradation. The change in stiffness can be described by a
step change or a curve fitted to pre-existing experimental data. Damage is
considered to occur when a user defined damage criterion is surpassed. There
are two methods used favourably in the literature; energy or stress based.
An energy based methodology can be based on thermodynamic principles to
ensure conservation of energy in terms of elastically stored energy and energy
released via the breakage of material bonds [66]. The method attempts to
calculate how much internal energy a material can sustain. This can be
calculated by the area under a stress-strain graph of the considered material,
requiring prior testing. A damage criterion can also be defined similarly to
a yield surface in terms of principal stresses [64] [27] [163].

With damage calculated, the influence of the new damage must be found.
This stage of the calculation is usually heavy on the use of empirical equations
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to assess changes in material stiffness. Empirical equations can be modified
to assimilate whichever mathematical trend is best suited to the considered
material, such as step changes for brittle and logarithmic or power laws for
more ductile materials [38].

Mechanical degradation is usually a result of micro-cracks within the con-
tinuum too small to consider individually with reasonable computational
effort, therefore a broader approach is needed [3]. If each micro crack was
considered and included within calculations, the computational time would
become unfeasible for large scale simulations [84].

Francfort and Marigo [16] formulated several theoretical equations to pre-
dict mechanical energy stored which in turn can be used to predict a de-
velopment towards fracture. The theoretical basis with an experimentally
calculated fracture energy term aids the description of a damage evolution
law that can both describe crack initiation and propagation [45].

The methodology allows multi cracks to be predicted; in this case due to
two forces pulling in separate directions as shown in Figure 9.
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Figure 9: Branched crack predicted via minimisation damage model [16]

Figure 9 shows a continuum damage model where the fractured region is
modelled by the 0 damage value [16]. The model captures the influence of
large local deformations influencing regions outside of modelled fracture, see
gray area surrounding the fracture in figure. This phenomena; process zone,
is later discussed in further detail in this thesis.

Continuous damage mechanics assumes that the area of resisting material
represented here by s, is acting to the carry load, Fm. The available resisting
area, s is reduced by micro cracks thus stress also increases when micro cracks
occur [85] this is represented in equations 5 - 7.

Fm
s

=
σ0

1−D
(5)

Hence the damage variable can be described by the reduction of resisting
material.

D =
s− s1

s
(6)
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thus

σd =
σ0

1−D
(7)

where Fm is the load, s is the internal resisting area, s1 the initial internal
resisting area, σ0 is true stress, D is damage and σd is stress accounting for
damage effects.

2.3.2 Extended finite element models

The extended finite element method (Xfem) was developed in 1999 by
Ted Belytschk and colleagues [18]. The method’s main advantage is lack of
re-meshing required, reducing computational efforts. The main drawback is
that tying the method to constitutive models often pose both mathematical
solver and coding difficulties due to the nonlinearity introduced [18]. The dif-
ficulty arising from the step function used to discern both sides of a fracture,
separating behaviour to the correct nodes.

The method works by splitting a continuous domain usually denoted Ω into
two sub-domains denoted Ω− and Ω+ on either side of a fracture. The fracture
or discontinuity is defined geometrically by Γ. When the displacement is
considered constant across the discontinuity but however if there is a change
in stress then it is considered as a weak discontinuity [77]. If the discontinuity
is defined by two geometric lines and the displacement varies between the two
lines, where the discontinuity is considered strong.

Enrichment is used to modify the behaviour of elements with varying cir-
cumstances affecting the global or local systems [106] where required by
adding extra degrees of freedom to model fluid flow or heat transfer problems.

The discontinuity is usually modelled with the aid of the Heaviside function
but other functions describing step changes such as the Dirac delta function
can be used [107]. When implemented it prevents elements from being able
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to transmit forces in the direction perpendicular to the direction of the crack
through the elements when required.

Solving the imposed nonlinear constitutive models are a significant draw-
back in the Xfem methodology, as the computational cost to solve the com-
plex systems of equations is vast.

Complexity and computational demand further increase with extra frac-
tures or adding behaviours captured such as heat transfer or flow. Ensuring
material behaviour remains consistent in and around a crack is challenging,
to ensure stability and convergence with all possible crack scenarios, it is
easy to see why the methodology is difficult to implement efficiently.

When a crack is created in Xfem, both crack tips (or a single tip if edge
crack) start to intensify the stresses locally due to sudden changes in struc-
ture. Stress intensification is modelled as asymptotic towards the crack
tip [165]. This increase in stress is assumed up to the crack tip, the im-
plemented asymptotic behaviour can exaggerate stress in certain cases [132].
Each of the stress intensification factors (SIF) considers different crack prop-
agation combinations of tensile, shear and compression.

Figure 10: Enrichment function across domain, representing fracture [109]

Figure 10 shows an enrichment function used to help a model differentiate
the two sides of a fracture, using a scalar operator ranging from -1 to 1 so
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pressure fields, stiffness matrices, etc can account for fractures and their
behaviour.

An example of when a local enrichment is needed would be a crack as two
discrete elements can no longer transmit forces and thus model behaviour
must be modified [78].

Enrichment is a large component of X-fem [109] particularly along with
other modelling methods, an enrichment field considered could be sourced
from the Laplace equation, allowing the Heaviside functions to interact co-
hesively within an element as shown by Duarte and Kim [78].

Interaction integrals are used to calculate the total energy available to a
fracture. Interaction integrals are another means to use energy in fracture
mechanics, used frequently and can be accurate, but only look at one crack
per interaction integral. Multiple interaction integrals are needed for branch-
ing cracks, increasing computational demands. Branch fractures complicate
the interaction-integrals because their interaction must also be accounted
for [25].

While calculating the interaction integrals, Rice’s formula is a favourite
among extended finite element researchers [154], also known as the J-integral,
shown in equation 8 and Figure 11.

G =

∫
Γ

Wi − niσijF (8)

where Γ is the crack boundary, Wi strain energy density, ni is the nor-
mal of the considered stress in relation to the crack, where the deforma-
tion’s distribution relates strain energy to the deformation gradient and stress
throughout the considered element and eventually the entire domain. σi is
the Cauchy stress and F is the deformation gradient describing how defor-
mation occurs relative to affixed nodes within a certain element, as shown in
Figure 11.
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Figure 11: Interaction-integral example 2D, [113]

Figure 11 shows typical considerations when applying the interaction-
integral methodology,

The formula is applicable to 2D and 3D examples the only difference is
that describing the integral in a 3D manner is both more complicated and
naturally more computationally demanding [113].

3D does improve the accuracy of predictions as the scenario is more realistic
[30] but in a lot of cases it is simply better to focus on constitutive model
development, the enrichment or some other section of the modelling process
for more efficient allocation of resources when aspiring for accuracy [157].

Plastic energy accumulated can be stored in the interaction-integral [154]
by manipulating the strain energy accordingly.

Studies have been done on cracking in plastic situations and have shown
that the interaction-integral is not only path dependent but when the sample
becomes small, the crack becomes heavily dependent on sample geometry
[140]. That is that the boundary conditions play a more important role on a
crack’s path. The same paper mentions that the crack geometry will always
be dependent on the whole domain in some way regardless of size.

2.3.3 Cohesive model

Cohesive models are dictated by specific strain dependent strength be-
haviour along element boundaries, showcasing typically a hardening regime
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followed by softening, similar to the function shown in Figure 12. Damage
associate excess strains with a decrease in cohesion [96].

More realistic crack models have been achieved by making the traction
forces dependent on a potential function [118].

Figure 12: Cohesive energy graph [118]

where ` is aperture size, `0 is the initial aperture size, ψ is energy and ψ0

is energy required to split.
Figure 12 shows a potential function used to model the process zone for

each fracture. As the fracture lengthens as shown on the x axis the resistance
varies, peaking at point of fracture.

2.3.4 Discrete element modelling

By considering individual particles or bonds in a solid it becomes possible
to account for unseen behaviour traits in fracture mechanics, provided the
initial set up is correct. Discrete element modelling has high accuracy yet
large computational costs. This method can uncover macroscopic behaviours
that other fracture frameworks cannot pickup on such as how strain rate can
depend on stochastic characteristics of used particles [161].

This technique has shown that the size of the plastic zone, is fully depen-
dent on particle size as shown in Figure 13 [140].
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Figure 13: Discrete element modelling of process zone (Red-fracture zone,
Blue-plastic zone) [140]

Figure 13 shows a discrete element model of a fracture, the red shows
material breakage and the blue shows plastic deformation due to the large
local deformations that occur during fracture propagation.

In the work presented by [140], metal materials where particles are con-
siderably smaller than soil particles and the bonds are relatively small and
hence found that the process zones are considerably smaller as a result.

2.4 Rock properties

Rocks have many unique mechanical properties which make them difficult
to model realistically; properties that vary significantly with the stress state
and condition of the rock [50].

Rock formations take millions of years to form, in the years of formations
the rock’s stress state can vary significantly, causing the creation of rock
fabrics and internal faults [28]. The rock fabrics can be formed due to a
temperature change, atmospheric change or change in deposit type/process.
Rock fabric contributes to anisotropic behaviour in the rock as each layer
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can have varying strength or stiffness and cause stress to distribute unevenly
with loading [28]. Rock faults dictate the strength and pore flow, as there
is a region of reduced stiffness and excess void space. The impact that rock
faults have on material properties is dependent on the rock fault’s orientation,
roughness and face pressure [11].

In mining engineering, the effect of confining pressure has to be taken into
account as rock material behaviour is heavily dictated by confining pressure
as shown in Figure 13 [63] [12]. Fracking operations occur at similar depths;
therefore, it is important that numerical models developed can account for
the difference in behaviour exhibited by rock at great depths.

Figure 14: Stress-strain curves for various confining pressures on rock [63]

Figure 13 shows stress scenarios that are only relevant for shear frac-
tures. During hydrofracture tensile failure of rock is typical. As discussed
previously, in order for this to occur compressive confinement and cohesive
strength must be overcome [152]. Hydrofractures take the path of least re-
sistance pushing cracks open, perpendicular to major stress of compression
in rock strata, propagating in the principal stress direction.
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Tensile fractures, of which are the primary failure mode incurred during
hydrofracture are often brittle and energetic, as shown in figure 15 [12].

Figure 15: Stress-strain curves for rock in tensile failure [12]

Loss of tensile strength is important to account for post fracture as the
change in structure can have large ramifications on future hydrofractures [12].

2.5 Plasticity

Plasticity is defined as non-linear irrecoverable deformation, irrecoverable
in the fact that if unstressed the original position is lost [155]. Plasticity does
not occur until a material is stressed past the yield point [95]. At the point of
yield, particles slide over each other, into a different rearrangement, whether
the newer particle arrangement is stronger depends on both the nature of
the material and loading. In geomechanics soil/ rock can temporarily stiffen
due to dilatancy.

Dilatancy [83], is caused when particles cannot move through each other
as they must be raised so that particles may slide over others as shown later
in Figure 20.

Additional movement of the particles requires additional energy as the
extra internal movements come with greater energy requirements. The ef-
fect of dilatancy is more evident in geomaterials under confining stress, the
confined stress must be overcome in order for particles to move [152].
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The effect of this temporary increase in resistance is only in effect when
particles are moving from their initial orientation. Once movement becomes
steady the only resistance becomes purely frictional. The increase in resis-
tance due to strains is often associated with the term strain-hardening or
hardening regime, whereas the loss of cohesion and normalisation of parti-
cle sliding is denoted as strain-softening or hardening regime [92]. For this
reason, plasticity behaviour is a specialist subject and has countless papers
published in its study.

Plasticity behaviour is typically described using a yield surface, flow rule
and consistency equation. The yield surface is plotted in true stress space;
that it can be represented in terms of principal stresses. Yield surfaces are
usually mathematically described as geometrical surfaces. The inside of the
yield surface is known as the elastic region and the boundary or outside the
plastic region [96]. When the boundary is reached a yield is declared and
the corresponding plastic strain is calculated from the later discussed flow
rule. Yield surfaces are dependent on stress in such a way that an increase
in confining stress delays the onset of yield as shown in Figure 16.

Figure 16: Mohr-Coulomb yield Criterion [143]

Figure 16 shows the Mohr-Coulomb yield criterion, here defined by the
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three principle stresses.

This models the resistance of particle sliding phenomenon mentioned prior,
which is modelled by a proposed flow function developed and described later
in chapter 6.

Flow functions are termed associated or non-associated, the term de-
scribes the relation between the yield function and the flow function [96].
The derivative of the flow rule with regards to stress describes plastic de-
formation, change in stiffness and plastic strain, the consistency equation
is fundamentally the same for all sets of plasticity equations, based on the
Drucker-Prager’s postulate.

The flow rule and consistency equation contribute to modelling hardening
and softening behaviour of different materials [59]. Different rocks and soils
have differing particle arrangements and characteristics, and thus far there
is no general description for all hardening/softening regimes hence diligence
is required when selecting constitutive plasticity equations for a model.

2.5.1 Plasticity in fracture

Plasticity is a material property that absorbs excess energy [54]. There-
fore, it comes as no surprise that ductile materials are more fracture resistant
and unpredictable in regards to fracture growth.

However as discussed above, hydrofractures cause rocks to fail through
mostly mode 1 fractures: tensile failure. As such prescribed equations used
to model plasticity must account for tensile fracture [117]. Due to the simpler
interaction of bonds during tensile failure so too are the required governing
equations [89].

At a crack tip, large deformations form due to crack propagation, the large
local deformations in a ductile material cause early onset of plasticity and
changing the conditions that the crack front must travel through. Strain
hardening increases the amount of energy required for further fracture [116].
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Large deformation capable models are hence important in predicting frac-
ture behaviour as the loss of stiffness in the region leads to dramatic structure
changes [144]. As the number of significant fractures required for modelling
grows, so too does the need for models that can interpret the resulting stress
redistribution.

2.5.2 The process zone

When a fracture propagates, significant mechanical movement occurs
around the tip, in effect expanding the surrounding region, this region is
often denoted as the process zone [56]. The process zone acts to help the me-
chanical energy to dissipate in the region; a process zone often occurs as an
initial means to absorb energy, [135]. When as is often the case the process
zone cannot dissipate enough energy, a fracture occurs to alleviate the energy
build up as described by equation 4 [41]. There are several factors that effect
the size and shape of the process zone including; energy contained within the
crack to be dissipated, sample size in relation to crack size [140], [46], material
stiffness [57] and to some extent the grain size of the material. In cracking,
the zone around a crack tip has three theoretically defined sections, these
vary in how much energy they consume through various amounts of plastic-
ity as shown in Figure 17. The fracture process zone is dictated by material
breakage in the region close to the fracture tip, the plastic zone where the
deformation is significant enough to create plastic deformation and the total
zone in the rest of the continuum [140]. The shape of the process zone is
typically balloon shaped if not impaired by sample size [149] as shown in
Figure 17.
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Figure 17: Different crack zones in energy distribution for a typical fracture
[140]: showing the fracture zone and plastic zone

Figure 17 shows the typical energy used up in the crack zone is usu-
ally higher nearer the centre of the crack tip, as the majority of the energy
is dissipated through high local plastic strains and internal damage [129].
The development of the process zone with the crack disrupts a materials
homogeneity by leaving varying amounts of damage/plasticity in the cracks’
wake [31], therefore it is imperative to capture these changes to predict post
fracture behaviour [135].

Numerical models capture the effect of the process zone by utilising the
cohesive zone model; in a typical finite element model when a fracture occurs,
the surrounding zone is enriched with cohesive element with the material
strength akin to that described by Figure 12, a temporary sharp increase in
stiffness followed by a steady decrease in stiffness and strength [57] [46].

The increase in stiffness allows the process zone to better dissipate energy
across a wider area, this explains why higher stiffness materials exhibit larger
process zones, although higher stiffness materials generally have greater frac-
ture toughness values [148]. Furthermore, with the restriction of sample size
it is clear how energy dissipated in the process zone becomes impeded with
smaller samples [51].
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The process zone is difficult to visualise and/or capture in experimental
situations during fracture propagation. [141] Leona Vavroa et al performed
a three point bending test on a cylindrical specimen 29mm diameter by
120mm next to an X-ray source. Using radiography, both the fracture path
and process zone, are captured as observed in Figure 18 [141].

Figure 18: Process zone of progressing (left to right) fracture captured with
X ray with accompanying force (N) vs time (s) plot on sample [141]

Figure 18 shows eight time stamps taken with accompanying X-ray snap-
shots from left to right of a fracture propagating. As the fracture propagates,
material either side of the fracture compresses, increasing in density. This
increase in density is captured by X-ray, hence the process zone can be cap-
tured in real time as the fracture propagates. The fracture is not as distinct
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as one would imagine. Figure 18 shows a more spread out crack with many
paths. The time of fracture initiation is shortly before the second snapshot
is taken. The darker regions in snapshots seven and eight show an increase
in material density around the crack, this is what is meant by the process
zone. [141] further illustrated that the process zone is restricted by sample
size, here compressing at the outer boundaries.

Large deformations are expected near crack tips. In classical plasticity
this becomes an issue as they are based on the principles of infinitesimal
strain. [68] found that during indentation modelling, these assumptions led
to inaccurate results, infinitesimal strain based models are unable to main-
tain accurate results at high strains. [99] showed that with the application of
deformation gradients within constitutive models, the distribution of stresses
increased and had a significant effect on the both the process zone and re-
sulting fracture behaviour.

2.6 Energy

Griffith successfully associated energy concentration with crack propaga-
tion. Hence it comes as no surprise that energy is heavily involved in many
fracture frameworks, energy conservation is key during formulating these
frameworks.

Understanding how a certain material can absorb energy internally is crit-
ical in the determination of fracture models. Rocks have several stages to
their strength through loading, highlighted in a typical stress-strain plot of
rock shown in Figure 19. The various stages each impact how well a rock
sample can absorb energy.
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Figure 19: General Stress-Strain graph from Figure 14: classes 1-3 of rock
deformation sectioned off from left to right

Figure 20: Particle rearrangement associated with the various classes of
rock loading

In mechanical models the only source of energy which is input is from
loading, this is converted by the continuum to kinetic energy, internal energy,
mechanical work and heat generated from mechanical work, according to the
first law of thermodynamics.
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Which rock class the rock is in changes how energy is stored or dissipated.
In class 1 all elastic energy is stored, and all energy can be theoretically
reclaimed. Class 1 exists until the yield point is reached when inner particles
can no longer keep their arrangement, at this point class 2 begins with plastic
flow, dissipating excess energy [10]. Once all possible plastic rearrangements
are complete the only way for further energy to be dissipated is through
breakage and acceleration of particle bonds [114], represented by class 3. A
decrease in material stiffness accommodates class 3, the decrease continues
until the material has no other means to resist deformation than by internal
friction of broken rock. During the transition from class 2 to 3 some elastic
energy is redistributed into fractured fragments through kinematic means;
this is later designated KED [150]. Ignoring heat created the conservation
of energy is shown in equation 9.

Ei +KE +KED = W (9)

where Ei is internal energy, KE is kinetic energy of the continuum, KED
is kinetic energy of fractured masses and W represents mechanical work
done on the continuum through loading. Kinetic energy KE can be cal-
culated from deformation rates and continuum mass, internal energies can
be calculated in terms of elastic and plastic energy, calculated from current
deformation on a continuum as shown in equation 10.

Ei = Ee + Ep (10)

where Ee is limited by how much recoverable deformation is possible,
hence how much energy is stored elastically, this is represented by class 1
as shown in figure 20. Ep accounts for the energy dissipated through plastic
flow through the material, represented by class 2 in Figure 19. These internal
energy limits are found experimentally through stress-strain tests [142], [31].

If the material’s internally stored energy surpasses the fracture energy
threshold for the apparent mode of failure then a failure is declared and
energy storage capacity of said material decreases, the decline in rock strength
regime in stress-strain plots are usually defined as the class 3 stage of rock
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loading as shown in Figures 14 and 20.

In constitutive models, the peak dilation angle of rock represents when the
material cannot continue to absorb energy through pure plastic means within
the material bonds or flow of particles [122]. The energy need for mode one
failure is denoted as R0, previously discussed in the damage section. Other
failure modes are possible, similarly calculated from ultimate tensile and
torsion tests.

Energy used during plastic deformation can be calculated by equation 11
[54]:

Wp =

∫
εpσe (11)

2.7 Finite strain

The hydrofracture process uses high pressure to break apart the rock
strata to access natural gas. During the fracture process, large strains are
expected locally along the fluid driven fractures [5]. When modelling these
fractures, normal infinitesimal assumptions breakdown, mass is not preserved
and material properties are influenced by said volume change. For this rea-
son, constitutive models must be defined in terms of finite strains to model
fracture behaviour accurately [60].

The finite strain methodology was proposed originally to model vulcanised
rubber [61], rubber when loaded exhibits large deformations and infinitesimal
models were found to breakdown in large strains [39].

Infinitesimal strains are incapable of assessing the influence of translations
in mechanical calculation. This issue is solved with the consideration of
deformation gradients which are based on the relative position of nodes, not
their translations [100] and therefore are independent of translations as shown
in Figure 21.
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Figure 21: Finite strain principle [15]

where X1, X2 and X3 are the global coordinates and x1, x2 and x3 are
local coordinates.

Figure 21 shows that even though the global coordinates of the cube have
change significantly, the local coordinates have not. The key distinction is
that the large strain methodology focuses on these local deformations to
better replicate material behaviour.
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2.8 Summary

The need for applicable hydrofractures solutions is clear, however the pri-
mary difficulty of utilising hydrofracture methodology is the required com-
putational resources for accounting for both fractures and fluid. Therefore
in order to account for large models for fracking, an efficient computational
methodology is required.

Hydrofractures involve many phenomena that are important to account
for such mechanical models which can realistically predict fracture and flow
models for the associated fluid pressure. The problem of hydrofracture con-
sists of a fluid flow and fracture problem, both research fields in their own
respect as shown in the literature review.

A broad case of fracture methodologies were explored and compared on
terms of accuracy, complexity of implementation and most importantly use
of computational resources. A simple damage model utilising a minimisation
algorithm was utilised so that the energy transitions within the considered
system could be represented accurately, which highlighted by Fracfort and
Marigo [52] is an important aspect of fracture mechanics.

Pore network models were reviewed and noted for their high accuracy,
however the large number of equations required to solve for each considered
fracture is not feasible in practical scenarios. However dual porosity models
have been shown capable of modelling multiple fractures to a reasonable
degree by modelling sets of fractures as damage fields differentiating where
porous fluid or fracture fluid interactions occur.
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No models currently exist which fully utilise a damage methodology within
a dual porosity model for the flow characteristics within a hydrofracture.
Therefore, the dual porosity model developed by Jianjun Ma [95] will be
further developed to use a damage model to distinguish porous media from
fractured so the different behaviour of the two can be captured with the pro-
gression of fluid driven fractures while maintaining fracture/hydrofracture
directionality.

Furthermore, the finite deformation framework will be utilised as typical
fracture mechanic problems. A model will be created and validated in the
remainder of the thesis with appropriate verification examples.
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3 Fracture prediction using the energy minimi-

sation Technique

The process of evaluating crack progression can become daunting when
more geometric and mechanical variables are introduced. Francfort and
Marigo [16] have developed the minimisation technique from the Mumford-
Shah functional, originally intended for computer vision scenarios to segment
images. Francfort and Marigo applied the idea to segment a field of energy
into segments of fractured and intact material whilst maintaining the low-
est energy feasible within the model. Francfort and Marigo re-purposed the
segmenting nature of the Mumford-Shah functional’s capability to analyse
branch cracks and overcome the issues of the Griffith crack regarding crack
initiation. Accounting for multiple branched cracks simultaneously whilst re-
ducing computational resource demand. The minimisation method considers
fields of potential energy paths and solves for the minimal energy path of
action in the system. This results in a multi-crack capable model where the
number of cracks does not significantly influence compute times [45].

The main driving force of the minimisation method is utilised by inducing
the minimal change in energy throughout a sample globally to ensure a stable
solution to fracture problems. The minimal energy concept is accepted as
an alternative to standard equilibrium solving mechanisms [39] for fracture
prediction. The methodology is particularly useful as the same equations
are used for crack initiation and propagation, reducing both the number of
variables and equations used, simplifying the modelling process and reducing
computational resource demand [45].

In this chapter the minimisation methodology utilised in this thesis will
be explained followed by a finite deformation constitutive model and how
fractures are in turn predicted.

The constitutive model utilised in this thesis is derived for compressible
materials; equations 12-14 summarise the free energy function used to calcu-
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late the total bulk energy in the considered system.

[15]

dE =
1

2
µ(Ic − 3) (12)

Trace of Cauchy green stain, isolating shear components [15]: described in
terms of deformation gradient
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where λ is the Lame constant, Ic the trace of the left Cauchy-green strain
tensor, µ is the shear modulus, dτ is shear energy and J is volume change.

The total energy in the system is calculated using equation 14. Total
energy, consisting of the bulk and shear components described above [35]

W = dτ + dE (14)

where W is work done.

The minimisation concept evaluates two possible energy paths, those being
defined in equation 15’s second and third terms; bulk energy and fracture
energy respectively. The minimisation algorithm evaluates the best crack
path in order to minimise the total energy contained within the domain.
A crack’s energy expenditure is modelled by surface energy and mechanical
elastically stored energy is described here as bulk energy. The exchange of
the two considered energy types are further described in equation 15 [35].
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E(F (x), D) = min(

∫
Ω

W (F (x))(D2 + ke)dΩ +R0

∫
Ω

HN−1(D)) (15)

where E is the total energy, ke is an infinitesimal integration term, F (x)

is a function describing deformation in the space of x, D is damage variable,
Ω is the simulation domain and HN−1 is the Hausdorff measure of fractures.

Two forms of energy are primarily considered in this study; bulk energy
and surface energy. Bulk energy is stored elastic energy whether due to
compressive or tension. The energy stored becomes comparable in magnitude
to fracture energy when the energy may be converted into surface energy as
previously discussed. Surface energy represents the breakage of bonds within
a material. In this study both the surface energy expended and the weakening
due to such fractures is represented by a damage model that assumes micro
cracks distributed through the material during fracture.

Solving equation 15 for damage and deformation simultaneously is com-
plex, therefore to simplify the process the damage and deformations, solved
separately, iterating between the two. The general approach is as follows:
initially all material parameters, model geometry and loads are defined. If a
crack is in the initial model, then that would be replicated in the model by a
set of element’s damage variable at 0.1. Forces are prescribed and deforma-
tions are calculated from the incurred deformations, the resulting mechanical
energy W is then calculated and equation 16 is used to discern where in the
continuum fractures occur due to excess energy in elements.

E(F (x), D) = min

∫
Ω

W (F (x))(D2
0 + ke)dΩ +R0

∫
Ω

HN−1(D0) (16)

where D0 is the damage variable, which here remains whilst equation 16 is
solved. The time steps where elements are damaged do not inherently model
the reduction in stiffness due to fracture. For this reason, the time step
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must be reset with the damage affected variables remaining, represented by
equation 17 to better capture fracture behaviour.

E(F (x0), D) = min

∫
ΩW (F (x0))(D2 + ke)dΩ +R0

∫
ΩHN−1(D) (17)

where x0 is the initial geometry, which here remains whilst equation 17 is
solved. Equations 17 and 16 are iterated between in order to find the minimal
energy in terms of fracture and bulk energy.

The solution of this equation is solved by comparing the bulk energy with
the surface energy plots. The particular function plotted here can be found
in equation 29. The surface energy is calculated using the Poisson equation
as a minimiser as shown in the literature [2] [87].

Figure 22 shows a plot of the extension of a hypothetical single element
bar in terms of energy versus extension. The amount of stored mechanical
potential energy increases with an element’s extension as expected. This
statement remains true until the extension reaches 0.085m, the intersection
point. Here the algorithm would assess that a fracture will reduce the stored
bulk energy thus the total of fracture and bulk energy would be reduced.
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Figure 22: Energy plot of 1D bar under tension over time (Red line- Frac-
ture energy threshold, Blue line- Stored energy

This methodology becomes more complex to solve with multiple element
models. With elements depending on each other the total number of energy
paths or possible fracture paths increase and the minimisation in the system
becomes more complicated.

The two equations are solved individually applying deformation and dam-
age in steps, this process is described in the following paragraphs.

By separating a domain into several sections, the points with the high-
est deformations and therefore higher stored potential energy; likely crack
paths become more pronounced and can be determined to fracture. These
determinations can be used to predict fracture behaviour and in this case is
alternated between the damaged calculation and deformation calculation in
order to find the minimal total energy in consideration of bulk and fracture
energy from an energy field that looks similar to that displayed in Figure 23.
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Figure 23: Energy field example showing regions of increasing energy inten-
sity near crack tips

Figure 23 shows the bulk energy calculated by equations 14, there are
three identifiable zones in the plot. The areas directly above and below the
fracture is the region lowest as the area is under compression, unlikely to
fracture in nature due to confinement. The area close to the domain bound-
aries are above zero but not significant. The fracture tips are where the most
interesting behaviour occurs, here energy has accumulated, unsurprisingly
where the gradient of deformation is most drastic.

The minimisation algorithm aids the damage methodology predicts where
fracture is likely to occur by segmenting the energy plot into two segments
at the fracture tips, for example in this case values above 8 × 10−5 and
below, from this the model can extend the pre-existent fracture and predict
the correct fracture path which will be later shown in this chapter. The
cut off limit for when segmenting to images can determined via varying the
constants within equation 17. All elements are also checked against fracture
strengths in order to predict fracture initiation times correctly.

With each iteration of the damage model the distribution of damaged
elements grows and the effected weak areas begin to change the load paths
within the model. How the minimisation algorithm is applied can dictate how
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changes in failure mode can be accounted for, however smaller segmenting of
damage are only required when model conditions change readily.

The approach of minimisation requires the use of convex energy functions
so that minimal energy solutions can be stable, the free energy function used
in this thesis is shown in equation 29 / Figure 24.

Figure 24: Convex free energy function of Neo-Hookean constitutive model

Figure 24 shows a free energy function plotted for both compression and
tension. Figure 24 also shows that as higher and higher deformations occur,
jumps in the deformation continuum at the expense of surface energy become
preferable to high concentrations of potential energy similar to that shown
in equations 18-19.

W (f) =W (F ), if W (F ) < R0 (18)

W (f) =R0 otherwise (19)
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3.1 Damage model

When micro cracks occur, the reality is that the stress paths though the
continuum are disrupted or in other words the amount of material resisting
load is decreasing. This is approximated for by considering the area of in-
ternal surfaces as shown in equations: 20-22. Continuum damage mechanics
assumes that the area, s is acting to carry the load Fm is reduced by micro
cracks thus stress increases when micro cracks occur [85].

Fm
s

=
T

1−D
(20)

where Fm is external Force, s is the internal surface area, T is the general
stress and D is damage. Hence the damage variable can be described by the
reduction of resisting material.

D =
s− s1

s
(21)

thus

σd =
σ0

1−D
(22)

where s1 is the current surface area of flaws, σd is stress due to damage
and σo is initial stress.

Equations 20-22 showcase the weakening utilised to represent the decline
in material stiffness with the propagation of fractures.

3.1.1 Finite deformation

Fracture mechanics can lead to large local deformations, especially if in-
clusions are created by a set of cracks. For this reason, it is important that
implemented constitutive equations and applied framework can still be ap-
plied with accuracy following large changes to a model’s structure. Here
the distinction is made between finite and infinitesimal strains; infinitesi-
mal strains assumed constant volume and a stationary model, when this is
not the case, theories that are based on these foundations breakdown and
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are no longer applicable [23]. Finite deformation algorithms overcome the
shortcomings that translations bring to infinitesimal theories by using the
deformation gradient as a primary input. Deformation gradients consider
only the relative movements of nodes in relation to each other as shown in
equation 23 and hence are unperturbed by translations.

[R][U ] = [F ] (23)

where the rotation matrix is described as

[R] =

 cos(θ) −sin(θ) −sin(θz)

sin(θ) cos(θ) −sin(θz)

sin(θz) sin(θz) cos(θz)

 (24)

where θ is the rotation in the x-y plane and θz is the rotation in the x-z
plane, in this thesis will always be 0.

The stretch matrix, where U is the stretch matrix:

[U ] =


dx
dX

0 0

0 dy
dY

0

0 0 dz
dZ

 (25)

R describes the relative rotation of an element andU is the stretch matrix
representing the change in distance between nodes.

A translation example is shown in Figure 25, this would be represented in
the form of equations 23-25 as shown below. The relative position of every
node is unchanged, the corresponding deformation gradient, rotation, stretch
matrices are unchanged. 1 0 0

0 1 0

0 0 1


 1 0 0

0 1 0

0 0 1

 =

 1 0 0

0 1 0

0 0 1
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Figure 25: Translation of square element

When the deformation created in Figure 25 is used, the energy calculated
by equation 14 also sums to 0J/m2 which is representative of reality.

If a rotation is considered on top of the above translation as shown in
Figure 26 resolves to 0J/m2 as shown below.

Figure 26: Translation and rotation of square element

 cos(45) −sin(45) −sin(0)

sin(45) cos(45) −sin(0)

sin(0) sin(0) cos(0)


 1 0 0

0 1 0

0 0 1

 =

 0.707 −0.707 0

0.707 0.707 0

0 0 1


When the deformation and rotation created in Figure 26 is used in equa-

tion the energy calculated in equation 14 sums to 0J/m2which is represen-
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tative of reality.

If the two above examples were in a framework where the nodes were
only compared to their previous location, gross errors would be expected
as the translations would be interpreted as strains. Now that strains are
represented with the deformation gradient, usual constitutive models are no
longer applicable as they are typically based on equation 26, where after the
strains become greater than 2 %, the models can become unstable [15].

[U ] =


dux
dx

1
2
(dux
dx

+ duy
dx

) 1
2
(dux
dx

+ duz
dx

)
1
2
(duy
dx

+ dux
dy

) duy
dy

1
2
(duy
dz

+ duz
dy

)
1
2
(duz
dx

+ dux
dz

) 1
2
(duz
dy

+ duy
dz

) duz
dz

 (26)

Elastic finite strain constitutive models which utilise deformation gradients
for modelling non-linear elasticity behaviour such as the Neo-Hookean com-
pressible hyper elastic material, derived from the strain energy function [15].

3.2 Fracture methodology

The method used to calculate strain energy was the Simon and Pister’s
method, comparing the strain energy to the fracture energy found from a
simple notched fracture test, shown in equations 27-29 [15].

dE =
1

2
µ(Ic − 3) (27)

dτ =
1

2
λlog(J)2 − µlog(J) (28)

W = dτ + dE (29)

The change in strain energy is used to decide how much damage an ele-
ment has undergone. This amount is solved using equations 30 - 31.

2W

Ro

D = 1 (30)
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R0 being the fracture strength defined by the ultimate compressive strength
σc and stiffness as shown in equation 30.

R0 =
2σc
E

(31)

Once the new damage has been calculated it is compared to the old damage
allocation. The irreversibility condition is evoked so that no elements damage
value can increase and undergo healing. A minimum is also used so that an
element cannot be damaged to have null strength and deflect unrealistically.

3.2.1 Fracture algorithm

A function calculates the current deformation of the mesh using the Mat-
lab pdegrad tool solving the equation through Gaussian reduction.

Gauss reduction method is a simple algorithm used to solve the linear
equations throughout this research project.

Note: Run time can be prescribed in either number of time-steps/iterations
or with a damage counter to ensure that failure is modelled.
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Algorithm 1 Fracture procedure

1: Specify run time tfull
2: j = 0
3: Create model geometry
4: Interpret geometry to mesh using Delaunay triangulation algorithm

[101]
5: Initialise material parameters µ, ν, λ,R0

6: Initialise damage variable for initial crack
7: while t < tfull do . run time of simulation
8: Calculate stiffness matrix Cijkl = λ

J
δijδkl + 2µ−λln(J)

J
δikδjl

9: Calculate internal forces
10: Form Global matrix and Global Force matrix
11: Solve system of Global equations for ∆ui
12: Calculate trial deformation gradients
13: Calculate stored elastic energy

W = 1
2
µ(Ic − 3) + 1

2
λlog(J)2 − µlog(J)

14: Check for fracture We > Kfratt

∆Dj = min(W
R0
, 1)

15: Assign damage variable accordingly
16: Calculate total energy
17: if j = 0 then

Etot
i =total energy, j = j + 1 goto line 6

18: else
19: if Etot

j >= Etot
j−1 then

20: t = t+ 1
21: j = 1
22: Update deformations Ut = Ut−1 + ∆dUt−1

23: Update damage Dt = Dt−1 −∆Di−1

24: goto line 6
25: else reset deformations Etot

j =total energy j=j+1
26: goto line 6
27: end
28: end

End while

56



The deformation gradient is used to formulate the deformation gradient
tensor then the Cauchy left strain tensor and change in volume.

These are then used with the trace of the Cauchy strain gradient to
calculate the strain energy density of elements.

Damage is assigned accordingly using the displacements to derive energy
values.

When the damage approaches < 0.2 (User defined limit, depending on
material and user case) then the medium is considered fully fractured [108],
having minimal strength of the element being considered as if near void. This
approach will be developed further in Chapter 4 with damage influencing
parameters relevant to hydrofracture.
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3.3 Constitutive Equations

In this approach hyper-elastic constitutive equations derived from a free
energy function are used, these are used to the effect that material behaviour
is unaffected by rotation or translation, material behaviour that causes in-
accuracy in infinitesimally based constitutive models in the prediction of
fractures, therefore the constitutive model and free energy function: ψ, must
be wholly dependent on strain invariants as shown in equation 32.

ψ(I1, II2, III3) (32)

where I, II and III denote the strain invariants as described in equations
33-35.

I1 = trace(b) (33)

II2 = trace(bb) (34)

III3 = J = det(b) (35)

where b is the left Cauchy-green strain and J is volume change.

The Cauchy-green strain gradient is typically used in infinitesimal strain
model’s however here the stress will be converted to the Piola-Kirchoff stress,
used for maintaining true stress in large strain frameworks. In doing this
simplifies the plasticity approach, shown later in chapter 6. In order to
derive the Cauchy stress tensor and Lagrangian elasticity tensor, first the
Piola Kirchoff stress tensor S must be considered in terms of the deformation
gradient as shown in equations 36-37.

S = S(F (X),X) (36)

S(F(X),X) =
dψ

dE
(37)
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Furthermore, the work done by S can be defined by the free energy func-
tion by considering continuum deformation as shown by equation 38, thus
the only required input is F, the deformation gradient.

ψ(F (X),X) =

∫
E(F (X),X) : Ḟ dt (38)

From equation 38 the derivation for Piola-Kirchoff stress can be as shown
in equation 39.

S(F(X),X) =
dψ(F (X),X)

dF
=
dψ(F (X),X)

dE
(39)

With equation 39 considered, the work conjugate 1
2
C = E; equation 40,

can be written.

S(C(X),X) = 2
dψ

dC
=
dψ

dE
(40)

As previously mentioned, the free energy function and stress measure
must both be invariant of rotation and translation, therefore the stress mea-
sure can be written as shown in equations 41 - 44.

S = 2(
dψ

dI1

dI1

dC
+
dψ

dII2

dII

dC
+
dψ

dII2

dIII3

dC
) = 2ψII2+4ψII2C+2J2ψIII3C

−1

(41)
where

dI1

dC
= I1 (42)

dII2

dC
= 2C (43)

dIII3

dC
= J2C−1 (44)

To transfer the Piola-Kirchoff to true Cauchy stress, equation 45 is con-
sidered to produce an equation for Cauchy stress; equation 46. This allows
the typically small strain stress Cauchy to be applicable in a large strain
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framework.

σ = J−1FSF T (45)

σ = 2J−1ψIb+ 4j−1ψIIb
2 + 2JψIII3I (46)

Equation 46 allows stresses to be derived for any given free energy func-
tion. The particular free energy function is used in this research is shown in
equation 47 .

ψ =
µ

2
(Ic − 3)− µln(J) +

λ

2
(ln(J))2 (47)

Therefore the derivatives: ψI , ψII , ψIII in respect to each invariant can
be found in equations 48-50:

ψI =
µ

2J
(48)

ψII = 0 (49)

ψIII =
λln(J2)

2
− µln(J2)

2
= − µ

2J2
+ λ

ln(J)

2J2
(50)

Finally, the equation for Cauchy stress can be derived from equations:
46, 48, 49 and 50.

σ =
µ

J
(b− I) +

λ

J
ln(J)I (51)
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3.4 Simple fracture and the effect of orientation on crack

path verification

To show the minimisation process in practice and to demonstrate the
previously discussed model’s capabilities, a simple crack under a uni-axial
load is modelled using the proposed methodology [74]. The results from [74]
are both numerical and experimental in nature, the fracture paths predicted
by the proposed methodology will be compared against experimental results
and the deformation profiles compared against the reference numerical result
which achieved reasonable fracture prediction results. Plane stress conditions
are utilised during all verification reported in this thesis.

Figure 27: Schematic for fracture methodology verification

The experiment was performed on a rectangular specimen of concrete
100 by 50 mm as seen in Figure 27. Each specimen had a flaw set in during
the concrete moulding phase by inserting a 4mm by 20mm aluminium case
inside. Once dry, the insert was pulled out to create the slit, causing minimal
initial stresses in the specimen. The aluminium case was held in place via a
screwed mount and secured with a plastic wedge to ensure accurate placing
and consistent slit shape between experiments.
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[74] developed a DEM model to predict the fracture behaviour of various
slit orientation, numerical results of which achieved reasonable agreement,
results that will be used for verification purposes.

All specimens were left to cure 28 days so that the concrete could reach full
maturity. The flaw was expected to initiate a fracture across the sample due
to loading, allowing the impact of notch orientation on fracture propagation/
initiation to be categorised.

Each sample was compressed uni-axially at a rate of 0.05 mm/s to avoid
any rate dependent behaviour effecting results. In the experiment, the top
and bottom boundaries were free to move in the x direction to grease placed
at both load points in the experimental version of the test. In the numerical
simulation the top and bottom were free to move in the x direction. This
was calibrated in the intact sample testing comparing against the reference
DEM deformation plots.

Table 2: Material properties for single slit experiment

Young’s modulus E 50 GPa
Poisson’s ratio ν 0.25
Fracture strength KFratt 12.5KJ/m2

The deformation profiles, crack path and stress- strain profiles were cap-
tured during testing and here a comparison will be made using experimental
and reference numerical results to verify the proposed fracture methodology.
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Figure 28: Experimental (gray) and traced experimental (white) fracture
initiations for various angled slit results from reference paper [74]

The key points of comparison to experimental data will be on the stress
strain plots, a qualitative look at crack initiation and crack propagation
through the concrete sample, such as that provided in the reference pa-
per; shown Figure 28. Additional comparisons will be qualitative compared
against the deformation plots generated numerically by the DEM reference
solution.
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Figure 29: Numerical fracture initiations for various angled slit results from
reference paper [74]

As seen in Figure 29 the numerical results from [74] predicted reasonable
fracture paths that agreed with the observed experimental results, shown in
Figure 32.

The data provided in the reference paper includes stress-strain plots for
slit angles from 0 degrees up to 90 degrees in 30 degree increments. The
deformation profiles in the principal x direction were recorded in the reference
paper for all notch angles up to 90 degrees in 15 degree increments.

The stress and strain plots for all with comparative data are shown in
Figure 30.
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Figure 30: Stress strain plot for intact and 30 degree slit over time

It can be seen in Figure 30 that the methodology account for the slits
effect on the stress strain plots are accurate, achieving agreeable results when
compared to the reference solutions, either numeric or experimental. Achiev-
ing within 8 % of the experimental stiffness achieved (comparing the lowest
and highest values shown) and 15 % below that of the reference Particle
flow code predicted stiffness. At failure strain however the strain is the same
across all three; proposed, experiment and reference solutions at point of
failure.
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Figure 31: Stress strain plot for 60 and 90 degree slit over time

The proposed fracture methodology matches the failure of an intact sam-
ple at 22MPa and 25MPa with similar stiffness in the 60 and 90 degree
experiments respectively. The stiffness is more closely predicted here, only
disagreements are with 3.2%.

The strength in the 90 degree sample over estimates the failure and post
failure behaviour when compared to the reference numerical solution and
observed experimental stress stain plot. This is likely due to the predicted
failure mode predicting the model splitting in two equally, reducing stress
concentrations within the model.
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As seen in Figures 30 and 31 the stiffness is more accurately captured in
comparison to the reference particle flow code initially, the early error is likely
due to the slipping condition imposed as the exact friction profile at contact
point and how it carried through the experiment is impossible to measure
and replicate.

Figure 32: Experimental fully developed fractures for various angled slit
results from reference paper [74]

The correct crack paths of angled notched in concrete axial compression
tests can be seen in Figure 32, with these the crack path prediction capa-
bilities are verified as shown in Figure 41 and Appendix B. It is seen that
after the notch is orientated at 45 degrees or greater the crack path stops
bifurcating and becomes singular.

For the stress-strain plots, the strain was known ahead of time due to
the displacement driven load however the stress was calculated by taking an
average of stress across the whole model. The stress vs strain plots calculated
by the proposed model, provides a agreement in terms of the stiffness and
points of failure. However, in the case of post failure behaviour, a more
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ductile behaviour is incorrectly predicted, this is true for all models except
the 90 degree notch model as shown in Figure 31.

Results In this section, several results of the thin slit experiment/verifi-
cation will be compared and critiqued. Due to the repetitive nature of some
of the results only the 0, 45 and 60 degree slits will be examined here with
the intact version. The remainder of the results can be found in appendix B.

Figure 33: Damage plots; proposed numerical solution (left) and reference
numerical solution (right) for intact specimen [74]

Figure 33 shows the deformation profile for an intact sample in compari-
son to the numeral results from the reference solution. Both samples show
a similar amount of x deformation due to Poisson effects from the uniax-
ial compression, the maximum deformations being within 1.8 %. Figure 33
shows that the heterogeneous nature of Particle Flow Code does not sig-
nificantly impact the deformation profiles when compared to the similarly
spaced deformation bands in the produced homogeneous result.
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The lack of friction can be seen in Figure 33’s regularity of deforma-
tion bands from the proposed solution, showing agreeability in the frictional
boundary’s modelling.

In the reference paper no value was assigned to a fracture energy term,
therefore the fracture strength was acquired through calibration of the model
in comparison to the reference model. This was done by calculating the rough
area under the provided stress-strain plot by [74], this came to a value of
12.5KJ/m2 by calculating the work done during testing.

Using this calculated fracture strength and the proposed method pre-
sented reasonable results in the predicted stress-strain graph as seen in Fig-
ure 30 producing linear elasticity similar to the reference particle flow code
and experimental stress-strain graph from [74].

Figure 34: Damage plots; proposed numerical solution (left) and reference
numerical solution (right) for intact specimen [74]

Figure 34 shows the crack path predicted for an intact specimen from
the proposed and reference numerical model do not align. However the lack
of heterogeneity in the proposed model a crack path initiation point is dif-
ficult for the model to calculate when compared to the reference computa-
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tional result [74]. The heterogeneity stems from the slight friction applied to
the boundaries used and the slight heterogeneity from the random particle
distribution in the model has not impacted fracture initiation significantly,
therefore the material properties do not fluctuate significantly and are not a
significant factor in the reference numerical results.

Figure 34 shows two failure paths produced by the reference and proposed
solution.

In the reference solution the fracture occurs due the Poisson effects on
deformation being slightly more extreme at the corners due to less confine-
ment, indicating issue with the implementation of friction at the boundary
layers.

45 degree slit

Figure 35: Deformation plots; proposed numerical solution (left) and refer-
ence numerical solution (right) for 45 degree slit at initiation [74]

Figures 35 shows that the proposed methodology is suitable predicting
the correct crack path and x deformation profile incurred from the uni-axial
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load’s effect on the 45 degree slit. The crack lips both slide over each other,
the contact aiding in the sliding behaviour of the specimen as expected [32].

The slight effect of the light friction can be seen in the deformation bound-
aries near the top and bottom boundaries, where they trend inwards, held
back by the friction. Both deforming similarly in reaction to the applied
uni-axial load, showing reasonable agreement in both the deformation trends
and magnitude, the maximum deformations being within 2.6 %..

Figure 36: Damage plots; proposed numerical solution (left) and reference
traced experimental solution (right) for fracture initiation of 45 degree slit
[74]

Figure 36 shows the numerical results from both the proposed and crack
initiation of a 45 degree slit under uniaxial load. Both results are similar in
nature, both initiating two fractures above at either tip, propagating verti-
cally at a reasonably similar rate.

The branching fracture showcased, is caused by the lateral expansion
through shear tension failure, as the sample is compressed the two sides
expand marginally. The expansion is greater on the right side. As the top
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section as the section moves leftwards, creating a greater stress and energy
concentration, creating the large branched fracture, observed in both the
experimental and observed fracture paths. The combination of the two ef-
fects forms the diagonal fracture shown in Figure 36. The left portion of the
sample also exhibits lateral movement and compression however the lateral
movement is less than the right side and after the right fracture branch, the
stresses on the left side area somewhat relieved hence no branching occurs
on the left’s side with increased loading.

0 degree notch

Figure 37: Deformation plots; proposed numerical solution (left) and refer-
ence numerical solution (right) for 0 degree slit at initiation [74]

The deformation profiles shown in Figure 37 match up with those calcu-
lated by the proposed model, all showing similar x deformation magnitudes
and intensity distribution, the maximum deformations being within 1.3 %..
The greatest areas of lateral movement being near the crack tips fanning out
towards the edges in both simulations due to Poisson effects being concen-
trated in the region and the lack of resisting material.
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The large deformation gradient across the plotted fans next to the prop-
agating crack contributes to the creation of the crack, the shearing energy
building up along the shear plane, creating the cracks as shown in Figure 38.

The deformation result from Figure 37 shows the top half of the sample
moving slightly more than the bottom, the lack of symmetry not being an
issue in the proposed solution deformation plot.

Figure 38: Damage plots; proposed numerical solution (left) and reference
traced experimental solution (right) for fracture initiation of 0 degree slit
[74]

Figure 38 shows the predicted fracture paths for a 0 degree slit from the
proposed model compared to the experimental result.

Two fractures initially propagate from both tips of the slit diagonally
towards the closest corners of the sample. The numerically procured angle
is observed to be less inclined than the experimental fracture path shown
in Figure 38 after a few time steps only the bottom two fractures maintain
propagation until complete failure.

The branching fracture from the tip showcased in both the experiment
behaviour and proposed solution is caused by shear tension failure. As the
sample is compressed uniaxially the two sides also compresses however the
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sample also laterally expands marginally, the combination of the two effects
forms the diagonal fractures shown in Figure 38.

For both the 0 and 15 degree notch experiments, the methodology fails
to predict a crack accurately compared with the rest of the numerical tests
carried out in terms of crack path prediction. Both of accompanying x-
deformation profiles are both reasonably within the reference plot’s deforma-
tion trends and magnitude provided by the reference paper [74]. The [74]
paper states that during testing of the 0 and 15 degree notches the crack lips
contacted/locked, shortly afterwards the crack began propagating perpen-
dicular to the crack due to the change in the load path through the sample.

The implemented damage model works on weakening the internal crack
model considerably, allowing void like behaviour, this is reasonable in most
cases, however in this case the contact is neglected. The constitutive model
uses the volume change and a calculated deformation gradient to dictate
internal forces and structural response, in this case the volumes become neg-
ative. (For Figure 39 the elements were completely erased for the sake of
pointing out the shortfall of the model and its implementation) The result
was improved and refined by putting a volume change penalty on the model;
the penalty activates if an extreme volume change is detected and the penalty
is met with a rapid increase in stiffness, representing an expected contact con-
dition in an ad-hoc manner. The penalty improved the result of the 0 degree
predicted crack path as shown in Figure 39, with four fractures initiating si-
multaneously at similar rates agreeing more favourably with the experimental
fracture results.

In the region close to the fracture tips small islands of deformation can be
seen in Figure 37, these are the main sources of instability in the model and
are the most likely region for inadmissible deformation to occur therefore it
is important that the damage model has a residual strength so that elements
don’t overlap and become unstable.
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Figure 39: Corrected crack path for 0 degree fracture initiation (Proposed
numerical result)

The initial deformation for these results were similar to the uncorrected
result, the key difference was in the y deformation, allowing shear planes
correctly move position and predict the correct crack path for this slit incli-
nation, thanks to the introduced ad hoc volume penalty.
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60 degree notch

Figure 40: Damage plots; proposed numerical solution (left) and reference
experimental solution (right) for full fracture of 60 degree slit [74]

Figure 41: Deformation plots; proposed numerical solution (left) and refer-
ence numerical solution (right) for 60 degree slit at initiation [74]
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Figure 42 shows that the crack, shown in figure 40 does not begin prop-
agating until the 860s mark, until this point the sample is accumulating
mechanical energy, similar to a spring.

Figure 42: Energy plot over time consisting of fracture (surface energy)
and stored energy (bulk) for 60 degree notch

The progressive failure of the sample is shown clearly at the 860s mark
shown in Figure 42, where the plot show transitional behaviour from bulk to
surface energy. After initial failure a second peak occurs, this is a secondary
failure once the newly created structure has redirected load.

At time 860s mark the elements at the tip of the fracture have surpassed
the critical energy density and therefore must fail but also that the failure
would incur further damage through the model, hence the model algorithm
repeats with the damaged elements accounted for. The lengthened crack has
new tips which in this case now also surpass the critical energy density, this
loop continues until complete failure is achieved. This loop is controlled and
dictated by the total energy, here shown as a blue line in Figure 42. Post this
point however when the model has completely failed, the reader may notice
that the fracture energy rate is constant, and the bulk continues to grow;
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this is due to the residual strength taking over the behaviour and should be
considered a null result post failure.

Figure 43: Deformation gradient plot before fracture initiation

Figure 43 shows the deformation gradient and deformation plots for a 60
degree slit for reference. Figure 43 shows prior to fracture. Here is can be
seen that the deformation gradient only active in the region of the fracture
and a little onward in the process zone as it should be.

3.5 Summary

The minimisation fracture methodology used has been showcased to cor-
rectly predict the fracture paths for a complex experimental fracture proce-
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dure, remaining stable through the large strains exhibited during the frac-
turing process, correctly predicting branching behaviour. An issue with the
proposed methodology is predicting fracture behaviour in the absence of het-
erogeneous material models and a clear driving force, this is why the final
leg of fracture predictions become less accurate with time. This issue will
be shown to be less prevalent when a clearer driving force, fluid pressure, is
introduced. Another issue was modelling the contact between two fracture
surfaces on the 0 and 15 degree experiments. However, the primary goal
of this thesis is to research hydrofracture where complete crack closure and
compression is rare. In the next section, a fluid flow model will be introduced
and derived then combined with the fracture model shown in this chapter.
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4 Fully coupled fracture and pore pressure model

The literature review covered the methods currently used to model hy-
drofracture phenomena comparing the pros and cons of each. After the
comparison is was decided to continue to the work of [95] using a damage
model in combination with a dual porosity methodology. This approach was
chosen as the computational demand and required variables required are low
and inspire a highly practical model for hydrofracture problems.

The methodology is based on two domains: fractured and porous overlap-
ping modelling a fracture porous medium instead of a void like fracture which
can realistically model the increase in stress at fracture tips due to crack ge-
ometry [153]. The produced methodology by Ma produces reasonable results
verified for a pressurised well bore in a confined aquifer however here with the
extension of a more sophisticated damage/fracture methodology it will that
shown that the dual porosity approach can be extended for penny cracks
and more realistic hydrofracture scenarios with minor adjustments to the
implementation of Ma’s coupled flow equations.

This chapter will explain in detail the derivation of the coupled flow equa-
tions used and how the methodology was combined with the fracture method-
ology previously shown in chapter 3. The primary novelty of this thesis will
then be described in terms of how the coupling interacts with introduced
fracture methodology.

Verifications of the proposed combined framework can be found later in
this chapter where numerical hydrofracture prediction output is compared to
several relevant hydrofracture examples found in the literature.

The verification examples include a one dimensional consolidation test to
evaluate the suitability of modelling the effects of porous flow using analytical
and a reference finite element method solution.

Three penny cracks are simulated under varying conditions, compared
qualitatively in terms of analytical and reference numerical solutions. A nu-
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merical hydrofracture model is then modelled in comparison to an experiment
conducted by [136] where fracture paths produced by non-uniform pressure
fields are compared quantitatively.

4.1 Dual porosity coupling framework

A double permeability framework based on Darcy flow by Jiangjun Ma
[95] has been developed to model hydromechanical components. Their deriva-
tion, spatial and time discretisation are described in the following pages.

The utilised fluid methodology considers two zones, in this case: one frac-
tured and the other porous throughout a considered domain both capable
of maintaining fluid flow and interacting with the containing pore/fracture
walls.

For the derivation of the coupled global equations the fluid flow velocities
within both zones are considered as shown in equation 52.

vrα = −kα
µf

(∇pα + ρfg), α = 1 (porous), 2 (fracture) (52)

where vrα is the relative velocity of fluid in the respective region, kα is
the permeability of the respective region, µf is the dynamic viscosity of the
fluid considered, pα is the pressure in the respective zones, ρf is the fluid
density and g is the gravity vector. Gravity here is described as:

−g =

[
9.81

0

]
The subscript notation on permeability, pressure and other variables de-

notes which zones is referred to, α = 1 refers to porous domain and α = 2

refers to a fracture’s domain, when α is left as is then both are modelled
simultaneously in the same space.

Both zone types are considered unique and independent of each other up
until coupling behaviour is later introduced in equation 56.
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The relative velocity of the fluid to the containing continuum can take the
form of equation 53.

vrα = φα(vα − vs) (53)

In which (vα − vs) is the velocity of the soil skeleton considered in the
continuum, φα is porosity of the respective domain and vα is the absolute
velocity of the fluid in the respective domain.

The absolute velocities; vα and vs are defined as shown in equations 54
and 55 respectively.

vα =
duα
dt

(54)

and
vs =

du

dt
(55)

where vα and vs are the velocities of the fluid and the continuum re-
spectably, uα is the deformation of the respective zone, u is the general
deformation and t is time. Taking the mass balance at a considered bound-
ary between the porous and fractured regions leads to equation 56.

∇(φαρfvs) +
∂(∇φαρf )

∂t
+ (−1)αΩ = 0 (56)

where ∇(φαρfvs) represents changes in porosity and density caused by
the fluid flow in the respective region. (δ(∇φαρf ))/δt represents the changes
in fluid density over time through deformation across the spatial domain.

The (−1)αΩ term describes effects resulting from fluid leakage from porous
to fractured or vice versa, here only active on the boundary between the two
considered domains to model fluid exchange along fracture boundaries which
develop with fracture propagation.

Substituting equation 53 into equation 56 produces equation 57.

−∇(φαρfvs)−∇(ρfv
r
α) =

∂(φαρf )

∂t
+ (−1)αΩ (57)

Note: the third and fourth term of equation 57 vary in space.
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Using the Lagrangian total derivative method concept for both a moving
solid; (ds(•))/dt = (∂s(•))/dt+∇(•)vs and fluid; (dα(•))/dt = (∂α(•))/dt+

∇(•)vα with an identity vector ∇[(•)vi] = (•)∇(vα) + (•)∇vα, equation 57
can be re-written as shown in equation 58.

− ρf∇vrα =
φαdαρf
dt

+ ρf
dsφα
dt

+ φαρf∇vs + (−1)αΩ = 0 (58)

This isolates each term, increasing the simplicity of the formulation, the
∇ terms describe that the variables vary through space. Here the variables
that vary in space are simplified to a single function defined by f to clarify
the use of the Lagrangian total derivative. The process of reduction is shown
below.

The first term ∇(φαρfvs) is considered within the solid continuum only
as the soil skeleton does not deform with varying fluid density or porosity
from the perspective of fluid only as shown in equation 59.

dfs(φsρfvs)

dt
=
fs(φαρfvs)

dt
+
dsρf
dt

dαfs(φαρfvα)

dρf
(59)

The second term ∇(ρvrα), with consideration that the soil skeleton does
not deform within the fluid and varying is therefore independent of the two
other function parameters as shown in equation 60.

dαfα(ρvrα)

dt
=
fs(ρv

r
α)

dt
+
dαρf
dt

fα(ρvrα)

dρf
(60)

Then we consider the third term of equation of in both 57 in terms of
the fluid: shown in equation 61 and in terms of the soil skeleton: shown in
equation 62.

dfα(φαρf )

dt
=
dfα(φαρf )

dt
+
dfα(φα)

dt

dfα(φαρf )

dφ
+
dfα(ρf )

dt

dfα(φαρf )

dρf
(61)
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dfs(φαρf )

dt
=
dfs(φαρf )

dt
+
dfs(φα)

dt

dfs(φαρf )

dφ
+
dfs(ρf )

dt

dfs(φαρf )

dρf
(62)

Equations (60-62) become equations (63-66):

df(φαρfvs)

dt
= φαρf

f(vs)

dt
(63)

df(ρfvα)

dt
= ρf

f(vα)

dt
(64)

dfα(φαρf )

dt
= φα

dfα(ρf )

dt
(65)

dfs(φαρf )

dt
= ρf

dfs(φα)

dt
(66)

Equations 64- 66 come together to model the behaviour throughout the
model in terms of fluid and soil skeleton velocity. These equations state
that soil/rock skeleton velocity i.e. continuum deformation is independent
of fluid density and porosity. Porosity is also independent of fluid density as
demonstrated in equation 67.

− ρf∇vrα =
φαdαρf
dt

+ ρf
dsφα
dt

+ φαρf∇vs + (−1)αΩ = 0 (67)

To consider the change in fluid density change with time in a more appro-
priate manner, fluid density is considered with the change in fluid pressure
over time, see equation 68.

dαρf
dt

= ρfcf
dspα
dt

(68)

where cf is the compressibility of the considered fluid. To remove the
absolute continuum velocity term vs, the change in continuum volume over
time is considered in terms of continuum velocity, as shown in equation 69.

1

Vtotal

ds(Vtotal)

dt
=∇vs (69)
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and considering equation 70 the definition of porosity:

dsφs
dt

=
1

Vtotal
(
dsVα
dt
− φα

dsVtotal
dt

) (70)

Substituting equation 68, 70 and 69 into equation 67 and expanding α
sub scripted terms for extra clarity, describing the contribution of porous and
fracture domain to the global equations yields equation 71:

ρf∇
kα

µf (∇pα + ρfg)
= φ1ρfcf

(∇dsp1)

dt
+

φ2ρfcf
∇ds(p2)

dt
+

1

Vtotal

∇dsVα
dt

+ (−1)αΩ (71)

The flow framework defined in equation 71 describes flow in both regions;
porous and fractured, these equations have been separated to model each
flow separately but still coupled as shown in equation 90 and 91 with the
structural component shown in equation 89.

Effective stress α terms are used to improve readability of the equations
and (−1)αΩ has been replaced with the term: γ(p1 − p2) to more clearly
demonstrate the leakage concept used where γ is a constant leakage term,
acting only on the boundary between the porous and the fractured regions.
In the applied model it is important to note that the γ term develops with
fracture/hydrofracture propagation, always acting only on the boundary be-
tween the fractured and porous zones, controlling the coupling. Therefore,
the leak off coefficient has a scalar value for each element used. Equation
71 can be written as shown in the equation 72, where the volume strain
component ∇dsVtotal

dt
is described in terms of volumetric strain: dεv

dt
.

ρf∇
kα

µf (∇pα + ρfg)
= φ1ρfcf

(∇dsp1)

dt
+

φ2ρfcf
∇ds(p2)

dt
+
∇dsεv
dt

+∇γ(p1 − p2) (72)
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In which the leakage term is defined as γ(p1 − p2) = Ω.

∇ kα
µf (∇pα + ρfg)

= φ1ρfcf
(∇dsp1)

dt
+

φ2ρfcf
∇ds(p2)

dt
+
∇dsεv
dt

+∇γ(p1 − p2) (73)

With alpha terms introduced to simplify the coupled equation and ∇dsεv
dt

redefined as ∇u, equation 73 can be re-written as equation 74 using com-
pressibility to relate deformations to increase in fluid pressure.

∇
[kα
µf

(p1+ρfg)
]

= −α1∇u̇+α11
∇ds(p1)

dt
−α12
∇ds(p2)

dt
+∇γ(p1−p2) (74)

Then by transforming the ds(p1)
dt

terms into time dependent spatial matrix
forms, equations 75 - 77 are formed.

div[Cijkl∇u̇ + α1ṗ1δ + α2ṗ2δ] + ˙Fm = 0 (75)

∇
[k1

µf
(p1 + ρfg)

]
= −α1∇u̇ + α11ṗ1 − α12ṗ2 + γ(p1 − p2) (76)

∇
[k2

µf
(p2 + ρfg)

]
= −α2∇u̇ + α22ṗ2 − α21ṗ1 + γ(p2 − p1) (77)

where δ = [1, 1, 1, 0, 0, 0]ᵀ, g is the gravity vector, pi are the pressure
matrices, ˙Fm is the matrix of forces (including all considered mechanical
forces) and ρf is the fluid density.

δ = [1, 1, 1, 0, 0, 0]ᵀ describes that the fluid pressure only has a direct effect
on other pressures and that only through the α and γ terms where the fluid
is coupled with the deformation aspect of the model.
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∇′ =



δ
δx

0 0

0 δ
δy

0

0 0 δ
δz

δ
δy

δ
δx

0

0 δ
δz

δ
δy

δ
δz

0 δ
δx


Equation 75 describes the behaviour for the soil skeleton, equations 76 and

77 describe the changes in pore and fracture pressure respectively. Equation
75 describes the soil skeleton. The first term is a typical continuum mechanics
description with the compliance matrix, relating displacements to internal
stresses, the derivation of which is showcased in chapter 2. The second
and third term describe the effect of pore and fracture pressures on the
soil skeleton. Terms α1 and α2 are a ratio of effective stress created by fluid
pressure. The lower the corresponding alpha the less effect a pressure has on
the effective stress within the material and resulting mechanical deformation
produced.

When considering the constants of this equation it is important to realise
the designation is in a sparse format. The dual porosity model considers
two zones which can be stand alone or overlapping. In the hydrofracture
algorithm the initial steps designates resources to discretisation of the crack
region. The points contained within the crack region would be assigned a
non-zero value for α2 and a zero value for α1 and the other alpha terms, vice
versa for the porous region surrounding the outlying points. The boundary
of the two regions is where the leakage parameter is present, as this is where
leaking can occur from fracture pressure to porous pressure or vice versa.

The fluid framework was originally used to model soils with pores and mi-
cro fractures overlaid, here the model is re-purposed to consider the two zones
separate only overlapping at the boundary between fractured and porous me-
dia.
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In the applied equations porosity is maintained as a constant. Void chang-
ing with the application of damage representing fracture propagation; there-
fore a more thorough description of change in porosity is required to define
the porosity development with fracture development, this is shown in equa-
tions 78 - 79.

φi(D) = φ2, ifD = 0.1 (78)

φi(D) = φ1 otherwise (79)

where φi(D) is a general description of porosity and varies with the con-
dition of the continuum determined by: D the damage which in this model
can vary from element to element. The coupling coefficients were originally
derived in terms of compressibility of the two zones and transition, described
here by equations: 80-84.

α1 = cp/D + φ1cf (80)

c =
1

KbulkD
(81)

α2 = c+ φ2cf (82)

α1 describes the compressibility of the porous system, or the material
properties before any damage/hydrofracture all with units N/m, relating
deformation to change in fluid pressure. As hydfrofracture progress and the
damage variable increases so to, does the compressibility of a material. This
can be more clearly described in equation 81 while ignoring the effects of
fluid compressibility.

α12 = α21 = (α1α2) (83)

αii = φicf + α12 (84)
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where cp is the compressibility of the porous media, c is the compressibility
of the fractured system, φi is the porosity in the pore blocks or fracture
network.

Equations 80 - 84 are the proposed models primary coupling terms. α1

and α2 showcase each materials relative compressibility cf is included for
completeness, only playing a minor role in this thesis.

The equations described here for α terms aid to described the coupling
of fluid to the soil skeleton and vice a versa. With the dual porosity model
coupling fracture and porous zones separately to the mechanical medium it
is important that the two are distinguished and the transition is accounted
for. The linear damage model as described in equation 81 allows this.

The compressibility of a material can be calculated from the inverse of the
bulk modulus of a material as shown in equation 85.

c =
1

Kbulk

(85)

As such the typical compressibility magnitude for a given rock is 10−6mm2/N .

As prior mentioned the α terms used in the dual porosity model have a
different value, depending on zone designation. In this proposed methodology
the variable which controls zone designation is the damage variable. When
the damage variable is lowest 0.1, then the zone is purely fractured varying
only fracture flow, when the damage variable is one then the flow is only
porous.

The porosity represents the pores within an element, assumed to be nu-
merous, evenly dispersed and when pressurised, distribute the fluid pressure
evenly.

Fractures will be primarily void; this means that the fluid pressure and
fluid compressibility will be relied upon for mechanical strength in water
filled cracks.
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4.1.1 Spatial discretisation

The following steps describes the spatial discretisation of the global equa-
tions, later shown in equations 89 - 91.

Equations 86 - 88 can be compartmentalised into a form suitable for finite
element

∇′T [Cijkl∇u̇] + α1∇T ṗ1δ + α2∇T ṗ2δ + Ḟ = 0 (86)

α1∇′u̇− α11ṗ1 + α12ṗ2 +∇T
[k1

µf
(p1 + ρfg)

]
− γ(p1 − p2) = 0 (87)

α2∇′u̇− α22ṗ2 + α21ṗ1 +∇T
[k2

µf
(p2 + ρfg)

]
− γ(p2 − p1) = 0 (88)

Galerkin’s weighted residual method is used to estimate the solution of
the global equations, applying weighted shape leads to:∫

Ω

(∇′T [Cijkl∇u̇] + α1∇T ṗ1δ + α2∇T ṗ2δ + Ḟ)dΩ = 0 (89)

∫
Ω

(α1∇′u̇− α11ṗ1 + α12ṗ2 +∇T
[k1

µf
(p1 + ρfg)

]
− γ(p1 − p2))dΩ = 0 (90)

∫
Ω

(α2∇′u̇− α22ṗ2 + α21ṗ1 +∇T
[k2

µf
(p2 + ρfg)

]
− γ(p2 − p1))dΩ = 0 (91)

where Ω represents the continuum that the global equations govern. Where
the approximate solutions are estimated by 92-93

ũ = [N]u (92)
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p̃i = [N]pi (93)

where N are shape functions. Then by rearranging and applying Green’s
theorem the equations 89, 90 and 91 become:

−
∫

Ω

[∇N]ᵀ[Cijkl]u̇dΩ +

∫
Γ

[N]ᵀ[Cijkl]u̇dΓ

−
∫

Ω

α1[∇N]ᵀδ[N]ṗ1dΩ

∫
Γ

α1[N]ᵀδ[N]ṗ1dΓ∫
Ω

α2[∇N]ᵀδ[N]ṗ2dΩ

∫
Γ

α2[N]ᵀδ[N]ṗ2dΓ +

∫
Ω

[∇N]ᵀḞdΩ = 0

(94)

∫
Ω

α1[N]ᵀδᵀ[∇N]u̇dΩ−
∫

Ω

α11[N]ᵀ[N]ṗ1dΩ +

∫
Ω

α12[N]ᵀ[N]ṗ2dΩ+∫
Ω

[∇N]ᵀ
[k1]

µf
[∇N]ᵀp1dΩ +

∫
Γ

[N]ᵀ[
[k1]

µf
p1][∇N]p1dΓ−∫

Ω

γ[N]ᵀ[N]p1dΩ +

∫
Ω

γ[N]ᵀ[N]p2dΩ = 0

(95)

∫
Ω

α2[N]ᵀδᵀ[∇N]u̇dΩ−
∫

Ω

α22[N]ᵀ[N]ṗ2dΩ +

∫
Ω

α21[N]ᵀ[N]ṗ1dΩ+∫
Ω

[∇N]ᵀ
[k2]

µf
[∇N]ᵀp2dΩ +

∫
Γ

[N]ᵀ
[k2]

µf
[∇N]p1dΓ−∫

Ω

γ[N]ᵀ[N]p1dΩ +

∫
Ω

γ[N]ᵀ[N]p2dΩ = 0

(96)

For simplicity, mechanical edger forces are left out and boundary condi-
tions are applied simplifying the equations to:

−
∫

Ω

[∇N]ᵀ[Cijkl]u̇dΩ−
∫

Ω

α1[∇N]ᵀδ[N]ṗ1dΩ∫
Ω

α2[∇N]ᵀδ[N]ṗ2dΩ =

∫
Ω

[∇N]ᵀḞdΩ

(97)
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∫
Ω

α1[N]ᵀδᵀ[∇N]u̇dΩ−
∫

Ω

α11[N]ᵀ[N]ṗ1dΩ

+

∫
Ω

α12[N]ᵀ[N]ṗ2dΩ−
∫

Ω

[∇N]ᵀ
[k1]

µf
[∇N]ᵀp1dΩ

−
∫

Ω

γ[N]ᵀ[N]p1dΩ +

∫
Ω

γ[N]ᵀ[N]p2dΩ =

∫
Γ

[N]ᵀq1dΓ

(98)

∫
Ω

α1[N]ᵀδᵀ[∇N]u̇dΩ−
∫

Ω

α22[N]ᵀ[N]ṗ2dΩ

+

∫
Ω

α21[N]ᵀ[N]ṗ1dΩ−
∫

Ω

[∇N]ᵀ
[k2]

µf
[∇N]ᵀp1dΩ

−
∫

Ω

γ[N]ᵀ[N]p1dΩ +

∫
Ω

γ[N]ᵀ[N]p2dΩ =

∫
Γ

[N]ᵀ q2dΓ

(99)

After unit substitution for simplification, the equations can be put into
matrix format to appear as shown in equations 100 - 105.

In the model used, the two flow models are related via relative compress-
ibility terms and a leakage term. This means that the compressible nature
of fractured media has to be known but this can be found from triaxial tests
on damaged rock. By referencing the strength of the two flow models, the
model is capable of determining how each medium will deform according to
internal pore and fracture pressures.

 [K] α1[Cc] α2[Cc]

α1[Cc]
ᵀ −α11 − β∆t([H1] + γ[M]) α12[M] + β∆t[M]

α2[Cc]
ᵀ α21[M] + β∆tγ[M] −α22[M]− β∆t([H1] + γ[M])


 ∆u

∆p1

∆p2

 =

=

 ∆Rf

0

0

+∆t

 0

(1− β)(Q1)t + β((Q1)t+∆t

(1− β)(Q2)t + β((Q2)t+∆t

+∆t

 0

(H1 + γM)(p1)t + γM)(p2)t

(H2 + γM)(p2)t + γM)(p1)t
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where the compliance tensor Cijkl

Cijkl =
λ

J
δijδkl + 2

µ− λln(J)

J
δikδjl (100)

Mathematical mass matrix

[M ] =

∫
Ω

[N]ᵀ[N]dΩ (101)

Coupling matrix

[Cc] =

∫
Ω

[B2]ᵀ[N]dΩ (102)

Permeability matrix

[Hi] =

∫
Ω

[B3]ᵀ
[ki]
µf

[B3]dΩ (103)

Internal Force matrix

[Rf ] =

∫
Ω

[B3]ᵀσ[B3]dΩ (104)

Boundary flow matrix

[Qi] = −
∫

Γ

[N]
ki
µf

[∇N]pidΓ (105)

Where the matrix terms B1, B2, B3 are the derivatives of respective
shape functions, demonstrated below for plane strain problems. M is the
mass matrix, ki is the Darcy permeability matrix (i=1 for pore system, i=2
for fracture system), N shape function matrix, ∆R is the loading matrix, Qi

is the pressure load matrix and Cijkl is the compliance matrix. µf is dynamic
viscosity, t is time, β is the time finite difference interpolation factor, αii are
the coupling constants.

B1 =


δN1

δx1
0 ...

0 δN1

δy1
...

δN1

δx1

δN1

δy1
...
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B2 =
[

δN1

δx1

δN1

δy1
...
]

B3 =

[
δN1

δx1
...

δN1

δy1
...

]
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4.2 Re-visiting minimisation

The procedure for calculating energy is similar to that described in chap-
ter 3, however the main difference is that the fluid pressures are introduced
as additional driving forces for fracture, complicating the minimisation pro-
cedure.

The Griffith fracture criteria, a global minimum of energy does not apply
fluid flow influenced by fracture propagation and resulting internal deforma-
tions. Therefore the application of this methodology should aim to minimise
only mechanical energy types: elastically stored and fracture as shown by
equation 106.

Ei(F (x(pn1 , p
n
2 ), D) = min

∫
Ω

W (F (x(pn1 , p
n
2 )))(D2

0+ke)dΩ+R0

∫
Ω

HN−1(D0)

(106)
where Ei is energy, F is the deformation gradient, x(pn1 , p

n
2 ) is the defor-

mation caused by the fluid pressure initially calculated for previous iteration
and fracture geometry, W is mechanical work, D0 is initial damage, ke is
a integration term, Ω is the considered continuum, HN−1 is the Hausdorff
measure of fracture and R0 is the fracture energy term, prescribed on an
element by element basis depending on the material modelled.

Then similarly to the old minimisation algorithm the time steps where
elements are damaged the time step must be reset with the damage affected
variables remaining, represented by equation 107, the pressure is still main-
tained and not progressing.

Ei(F (x0(p
n
1 , p

n
2 ))),D) = min

∫
ΩW (F (x0(p

n
1 , p

n
2 )))(D2 + ke)dΩ

+R0

∫
ΩHN−1(D)

(107)

Once the minimal energy profile for the initial pressure is calculated, the
pressure can be developed to accommodate the new fracture geometry as
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shown in equation 108.

Ei(F (x(p10
n+1, pn+1

2 ),D) = min

∫
Ω

W (F (x(pn+1
1 , pn+1

2 )))(D2
0 + ke)dΩ

+R0

∫
Ω

HN−1(D0)

(108)

where x(pn+1
1 , pn+1

2 ) is the deformation caused by the fluid pressure
initially calculated for previous iteration and fracture geometry.

Ei(F (x0(p
n+1
1 , pn+1

2 ))),D) =

min

∫
ΩW (F (x0(p

n+1
1 , pn+1

2 )))(D2 + ke)dΩ +R0

∫
ΩHN−1(D)

(109)

The fracture geometry changes are not directly coupled to both the fluid
pressure and deformation behaviour therefore many iterations through the
solution can be required for accurate simulation of hydrofracture behaviour.

It is important to capture how fluid behaves at the tip of the hydrofracture,
how the fluid can flow, when a hydrofracture propagates and how the flow
conditions change. The resultant fluid lag must be considered to account for
the additional forces and pressure accumulating at the hydrofracture tip and
their possible effect on behaviour.

How far along a crack can deliver pressure depends on the permeability
increase from the tip changing from porous to fracture, during fracture [47].

Consider Figure 44, an internal crack loaded with fluid. As the crack
tips extend at the end of a time step the permeability is enhanced, an en-
hancement that must be considered during time steps. Therefore in order
to calculate the hydrofracture procedure accurately, the time step must be
repeated to account for the increase in permeability at the tip during calcu-
lation
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Figure 44: Example of fluid lag

This consideration allows the model to account for fluid lag, when the
fracture tip is extended due to the damage process the fluid tip cannot be
fully pressurised immediately, this allows for the tip to suffer shrinkage due to
confining pressure being momentarily greater than the fluid pressure inside
of the fracture, effectively capturing the effect of fluid lag.

4.2.1 Hydrofracture algorithm

A flowchart showing the process the code and implementation follows is
shown in Algorithm 2.

97



Algorithm 2 Hydro-fracture procedure

1: Specify run time tfull
2: j = 0

3: Create model geometry
4: Interpret geometry to mesh using Delaunay triangulation algorithm

[101]
5: Initialise damage variable for starting crack
6: Initialise material parameters on element by element basis; µ, ν, λ, R0,
k1, k2,α1, α2, α12, α21, α11, α22 and γ

7: Initialise pore and fracture pressure on continuum
8: Initialise boundary conditions
9: while t < tfull do . run time of simulation

10: Calculate mass matrix
11: Calculate permeability matrices

[M ] =
∫

Ω
[N]ᵀ[N]dΩ

12: For n=1:3
13: Calculate coupling matrices [Cc] =

∫
Ω

[B2]ᵀ[N]dΩ

14: For j=1:3
15: Calculate internal forces [R] =

∫
Ω

[B3]ᵀσ[B3]dΩ

16: Calculate stiffness matrix Cijkl = λ
J
δijδkl + 2µ−λln(J)

J
δikδjl

[Hi] =
∫

Ω
[B3]ᵀ [ki]

µf
[B3]dΩ

17: Calculate internal forces
18: Form global matrix and global force matrix
19: Solve system of global equations for ∆Uj

20: Calculate trial deformation gradients
21: Calculate stored elastic energy

W = 1
2
µ(Ic − 3) + 1

2
λlog(J)2 − µlog(J)

22: Check for fractures We > Kfratt

∆Dj = min(W
R0
, 1)

23: Assign damage variable accordingly
24: continue for(j)
25: continue for(n)
26: continue while
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27: continue for(j)
28: continue for(n)
29: continue while
30: if j == 0 then

Etot
j =total energy j = j + 1 reset deformations and fluid pressures

goto line 9
31: else
32: if Etot

j >= Etot
j−1 then

33: t = t+ 1

34: j = 1

35: Update deformations Ut = Ut−1 + ∆Uj−1

36: Update pressures pt = pt + ∆p

37: Update damage Dt = Dt−1 −∆Dt−1

38: goto line 9
39: else reset deformations and fluid pressures pn1 and pn2 Etot

i =total
energy j=j+1

40: goto line 9
41: for(j) end

42: end
43: End for(i)
44: Redistribute permeabilities and leak off coefficient
45: Calculate total energy
46: End for(n)
47: End while
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4.2.2 Time discretisation

A forward Euler, finite difference temporal approach is used to solve ex-
plicitly for pressure changes of time as shown in equations 110-111.∫ t+∆t

t

y(t)dt = [(1− β)yt + βyt+∆t] (110)

where y is a temporal function as shown:

∆y = yt+∆t − y (111)

When β is used for the type of approximation used. When β = 0 for-
ward interpolation is used, β = 1 for backwards and β = 0.5 for central
interpolation, which is the most stable of the methods.

4.2.3 Fracture permeability

The permeability of fractures varies significantly between various scenar-
ios, depending upon the fluid pressure, fracture size and roughness of the
fracture walls. In this thesis the cubic law shown in equation 112 is used to
model the flow with the aid of an equivalent permeability, shown in equation
113 [74].

q =
h2

12µf

dp

dx
(112)

where q is fluid flow, h is fracture width, µf is dynamic viscosity, p is pressure
and x is a spatial coordinate. Equation 113 assumes two smooth parallel
walls containing the fluid separated by a distance of h, fluid contained in
a fully saturated environment with constant pressure gradient across the
considered fracture walls. The cubic law is widely used in the flow of fluid
within hydrofracture methodologies due to its reliance and theoretical basis.

k2 =
h2

12
(113)

The volume change of damaged elements will be used here in place of the
distance between the two plates [151] therefore as fractured element expand/
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constrict the permeability, adjusting accordingly. The porous material is as-
sumed to be still present in damaged elements for the purpose of conservation
of mass, however a fracture is assumed to have opened in damaged elements.
This presents an issue for elements that fracture due to compression, in this
case the permeability is considered the same as the porous model up until
the damaged element is expanded.

With a theoretical basis for fractured permeability there are less required
variables for an applicable hydrofracture model

4.2.4 Matlab implementation

The proposed methodology for hydrofracture and the later introduced
plastic methodology was coded using Matlab. The Matlab solvepde solver
was used to solve the discretised global equations and fracture equations
[101].

4.3 Summary

A Finite strain deformation framework has been derived for hydrofracture
problems based on both the energy minimisation for the fracture component
from Fracfort and Marigo and a dual porosity methodology adapted from
Ma’s work, adapting the model to account for both a sophisticated fracture
methodology and fractures discrete from the considered porous domain. The
methodology solves sets of partial differential equations using the Gauss re-
duction method in a simpler methodology allowing for performance gains
when compared to other hydrofracture methodologies with the added benefit
of requiring minimal input variables. The proposed methodology will now
be verified using both pre-existent analytical, numerical and experimental re-
sults attempting to repeat the experiments with the proposed methodology.
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5 Hydrofracture verifications

Whilst setting up a hydrofracture framework it is important to test the
created model on each aspect of behaviour the framework is designed to cap-
ture. The following four verifications contain a consolidation problem, two
numerical hydrofractures and an experimental hydrofracture. These verifi-
cations test the hydro-mechanical coupling, the integration of the damage
model and the applicability of the model to hydrofracture problems.

5.1 Consolidation verification

For correct prediction of hydraulic fracture, pore pressure must be pre-
dicted correctly. To verify this component of the model a one dimensional
test has been chosen from literature [130] where a generalised finite element
method was compared to an analytical solution,. The solution to Terzaghi’s
one dimensional consolidation problem as shown in equations. 114-115. This
particular verification did not require a second porous zone or the damage
model and was hence disabled for this analysis.

For Tv < Tc:

p = Σ
2qc
M3

vTc
sin

Mvz

Hd

[1− e(−M2
vTv)] (114)

For Tv > Tc:

p = Σ
2qc
M3

vTc

sin(Mvz)

Hd

e−M
2
vTv [e−M

2
vTv − 1] (115)

where p is pore pressure, qc is surcharge, Hd is drainage height, z is
height of interest and Mv is the modulus of volume change. Tc and Tv are
dimensionless time factors describing when loading begins. These variables
are calculated in equations 116-120:

mv =
(1 + v)(1− 2v)

E(1− v)
(116)
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Where E is the Young’s modulus and ν is the Poisson’s ratio.

Mv =
(2mv + 1)π

2
(117)

Cv =
k

mvρf
(118)

Tv =
Cvt

H2
(119)

Tc =
Cvtc
H2

(120)

In this test, a 10m by 1m column of soil is considered under a rapidly
applied pressure of 1kPa as seen Figure 45. At quarter height intervals, the
pore pressure was recorded over time, specifically the increase in pressure due
to mechanical loading and mechanical coupling. After loading, consequent
pressure dissipation resulting from drainage is also measured. The test was
to capture consolidation behaviour and compare to the numerical and ana-
lytical results mentioned in [130]. The material properties used during this
verification are reported in table 3.

Table 3: Material properties in consolidation test

Young’s modulus E 10000 MPa
Poisson’s ratio ν 0.2
Fracture strength KFratt inf
Porous permeability k1 5× 10−8m/s

Fracture permeability k2 0

Coupling coefficient α1 1

Coupling coefficient α2 1

Coupling coefficient α12 0

Coupling coefficient α21 0

Leakage parameter γ 0

Water density ρf 0kg/m3
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Note 1. Fluid density was considered as 0kg/m3 similar to reference to
not incur any additional fluid pressure or deviate from compared data set.

Note 2. This particular verification did not require a second porous zone
or the damage model active but were left in for clarity.

Figure 45: Schematic for one dimensional consolidation test

The load was applied then kept constant as shown in Figure 46.
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Figure 46: Graph showing the applied load during one dimensional consoli-
dation test

The one-dimensional consolidation test starts off initially with zero pore
pressure with fluid density set to 0kg/m3. A 1kPa load is then applied
with the pore pressure response being monitored and shown in Figure 47.
In Figure 47 each line represents the average pore pressure in the 10m tall
sample at 25%, 50%, 75% and 100% height intervals. The pressure change
corresponds to the 1kPa load and dissipates to become consolidated once
more.
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Algorithm 3 Hydro flow procedure

1: Specify run time tfull
2: Create model geometry
3: Interpret geometry to mesh using Delaunay triangulation algorithm

[101]
4: Initialise material parameters; µ, ν, λ, k1, α1, α2, α12, α21, α11, α22, γ
5: Initialise pore pressure on continuum
6: while t < tfull do . run time of simulation
7: Calculate stiffness matrix

Cijkl = λ
J
δijδkl + 2µ−λln(J)

J
δikδjl

8: Calculate mass matrix
[M ] =

∫
Ω

[N]ᵀ[N]dΩ
9: Calculate internal forces

[R] =
∫

Ω
[B3]ᵀσ[B3]dΩ

10: Calculate Pore and fracture pressure matrix
11: [Hi] =

∫
Ω

[B3]ᵀ [ki]
µf

[B3]dΩ

12: Calculate Coupling matrices
[Cc] =

∫
Ω

[B2]ᵀ[N]dΩ
13: Calculate Permeability matrices

[Hi] =
∫

Ω
[B3]ᵀ [ki]

µf
[B3]dΩ

14: Form Global matrix and Global Force matrix
15: Solve system of Global equations for ∆u, ∆p1 and ∆p2
16: Update deformations, pore pressure and fracture pressure
17: Goto line 6
18: end
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Figure 47: One dimensional graph showing pore pressure at various height
intervals through the sample over time during the consolidation process

Figure 47 shows the model generated solution versus the analytical solu-
tion. The numerical results were obtained by averaging the pore pressures
at the desired interval with all points 1% above and below, this explains
the 100% pressure plots marginally underestimating the pressure due to the
drained boundary condition represented by zero pressure at the top bound-
ary. Figure 47 also shows the initial pressurisation stage on day 0.

The result compares to the analytical solution with favourable agree-
ment despite typical finite deformation implementation [103], the pressure-
mechanical aspect is less hindered due to the coupling on this aspect being
simplistic in nature not accounting for changes in porosity. The coupled
hydromechanics aspects behave as expected, the highest pressure drops oc-
curring soon after the peak pressure. Pressure’s rate of change reducing over
time in the expected asymptotic manner, slowly approaching full equilibri-
um/ consolidation.
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As well as checking the consolidation results over time according to equa-
tion 115 the theoretically predicted pressure distributions were also tested
over several time stamps by varying the z variable. The results were close
and show that proposed models’ pressure components are working stable and
accurate.

Figure 48: Pore pressure distributions through the one dimensional sample
at various times
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Figure 49: Consolidation snapshot with pressure and flow distributions

The equal flow distribution is further shown in Figure 49 at the 40 day
mark. The pressure profiles back this up as shown in Figure 48, equal flow
out of the sample as expected over time, here depicted by vertical arrows.
The pressure disparity of 450Pa between the top and bottom show the flow
of "water" out of the sample.
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5.2 Hydrofracture verification

Data used in this penny hydrofracture verification of the model’s fracture
capabilities were sourced from [106]. The paper utilises a general finite ele-
ment model (GFEM), similar to XFEM using local enrichment functions to
capture fracture behaviour. The flow methodology utilised by [106] is similar
to the proposed model; Darcy’s model for porous flow.

The problem is a rectangular 3875 mm by 975 mm domain with crack
dimensions 0.5mm thick, 180mm long in the centre of the sample modelled
by fractured media, the damage value D set to 0.1 as shown in Figure 50.

Three segments A-A, B-B, C-C and D-D shown in Figure 50 are used
in this verification to measure pressure plots. Plots to later compared to
reference results to aid in validation.

Figure 50: Schematic for pressured penny crack test

A corresponding pressure of 20 MPa, was applied and maintained in the
crack via the fracture pressure matrix. The material properties used in the
verification are shown in table 4. The permeability post fracture was not
mentioned in the reference paper, therefore was calculated by the cubic flow
rule as shown in the literature [107].
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Table 4: Material properties in single slit hydrofracture

Young’s modulus E 2000 MPa
Poisson’s ratio ν 0.3
Fracture strength KFratt 1kJ/m2

Porous permeability k1 5× 10−15m/s

Fracture permeability k2 Calculated

Porosity φ1 0.25
Coupling coefficient α1 Calculated

Coupling coefficient α2 Calculated

Coupling coefficient α12 Calculated

Coupling coefficient α21 Calculated

Leakage parameter γ Calculated

Water density ρf 1000kg/m3

Dynamic viscosity µf 10−15Pas

Residual strength coefficient min(D) 0.1

The boundaries were considered fixed mechanically with zero pressure flux
considered to be across the boundaries for either partial differential equations
representing the fracture and porous domains.

The primary comparisons for verification was the crack opening size over
time, the results from the reference paper [106] are displayed in blue with
the proposed model’s results shown in orange, and the crack opening was
obtained via comparing the max displacement of the nodes above and below
the crack.
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Figure 51: Crack opening over time [106]

The proposed model expands similar to the reference solution as seen in
Figure 51, demonstrating agreeably in stiffness prediction of the fracture be-
fore the initial fracture at 5 seconds. The premature fracture clearly shows
that the proposed model was premature in the initial fracture prediction.
However, the developed method using a finite deformation framework re-
mained stable whilst opening up to 3mm wide steadily as expected [106],
peaking before decreasing again. The proposed model critically fractures at
20s as shown clearly in the peak. After this point fluid leakage into the sur-
rounding area increases. The fracture continues to propagate until 75s into
the experiment, each fracture ever becomes less evident in figure 51 as there
is less built up pressure inside of the crack relative the to the surrounding
pressure. Post initial fracture behaviour modelled begins to diverge, in [106]’s
work, the crack slowly closes in a slow manor, whereas the proposed model
has a more sudden response. The stiffness of 2 GPa can hold a lot of stored
elastic energy due to fluid pressure as seen in Figure 51. This contributes
to the proposed model’s greater snap back in crack opening size. The slight
increase the rate of opening can be attributed to the fact that the fluid com-
pressibility is accounted for in the solution approach when compared to the
reference solution by Gunther [106].
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Crack closure is due to pore pressure redistribution or in other words
through fluid leakage. From the onset of the numerical test, fluid is leaking
out of the crack into the surrounding continuum via the leakage parameter,
increasing the surrounding pore pressure. With the pressure surrounding the
crack increasing, the crack’s internal pressure is overcome by the surround-
ing pressure starting closure. The crack propagation increases at the rate
of transferred pressure. The problem becomes akin to a two dimensional
consolidation problem, where crack propagation acts as a catalyst for the
process, increasing the rate of leakage.

Evidence for the crack behaving as a two dimensional problem due to
increased fluid pressure leakage, due to fracture propagation, can be seen
in Figure 52, with time-steps: 10s, 40s and 80s respectively. After the 80s
mark the pressure has increased to 20MPa, matching the pressure inside of
the penny crack. The leaked pressure now surrounding the crack begins to
close the crack, decreasing the energy stored in the elements at the crack
tips; preventing further crack propagation.
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Figure 52: Pressure development with time at crack tip

To verify the developed computational framework in predicting the flow
behaviour, similar to [106], fluid pressure along four lines A-A, B-B, C-C and
D-D have been studied at intervals 1.75m, 1.544m and 1.2725m, respectively.
Figure 53 shows the distribution of pressure along these cross sections. A non-
linear behaviour for pressure distribution is predicted with our model for each
cross section, and it is seen that pressure along the section C-C significantly
increases after 80s when crack reaches this section. These findings agree with
discussions on pressure behaviour in compressible porous media presented
by [17].
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Figure 53: Fluid pressure distribution across A-A at 50s and 80s with fluid
compressibility enabled

The reason of the difference between the results of our model and those
presented by [106] is the consideration of compressibility of both fluid and
porous media [104]. This is proved by results of our simulations repeated with
the assumption of the incompressible fluid and porous domain (i.e. ignoring
third and fourth terms of equation 89) which are presented in Figure 53b in
greater agreement with results of [106]. The pressure profiles along A − A,
B −B, C − C at time 50s as presented in Figure 54.

As pores compress during crack expansion, pore pressure increases due
to the consequences of the third α11 p1 and fourth term, α12 ṗ2 of equation
102.
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Figure 54: Fluid pressure distribution across A-A, B-B and C-C at 50s and
80s with fluid compressibility disabled
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5.2.1 Stress contour verification

The reference paper for this verification is [147], the paper simulates a
penny crack with an internal growing pressure. The reference paper provides
analytical points of comparison, the analytical equations are derived in the
simplified environment of a boundless domain and therefore the solution is
also simplified.

The crack opening, length and well pressure data is also available to com-
pare, which the reference paper used against analytical results from [74].

The theoretical equations used for verification will be derived initially in
this chapter for completeness and for ease of understanding their limitations
of the analytical equations used for verification. The finite element approach
used by [147] achieves good agreement with the smooth behaviour exhibited
by the theoretical equations and numerical results from the reference solu-
tions, the results will be shown after the relevant analytical equations are
shown in equation 121.

u(a, p, x) =
2

E ′
(p− σh)(a2 − x2)

1
2 (121)

where u is the crack opening depth, E ′ is the Young’s Modulus, p is pressure,
σh is horizontal stress, a is the crack half-length and x is the distance from
the crack centre considered.

Equation 121 describes the crack opening behaviour of a single penny crack
with constant internal pressure across the whole crack enclosed in a porous
medium. This equation can be used to find the maximum crack opening
displacement by substituting x = 0, this leads to equation 122.

umax(a, p) =
2

E ′
(p− σh)a (122)

A smooth elliptical crack shape is assumed in the reference paper for the
shape of the two dimensional crack. Knowing only the maximum opening,
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the total volume of the crack can be assumed and extrapolated, as shown in
equation 123.

V (a, p) = πaumax(a, p) =
2π(p− σh)a2h

E ′
(123)

by setting V = qt in that the volume equal to the injected fluid volume,
assuming no fluid compression or fluid lag, an equation describing crack
length can be formed as seen in equation 124:

a(t) =

(
Eqt

2π(pc − σh)

) 1
2

(124)

where q is the pump flow rate (m3/s), pc is the critical fracture pressure
and t is time, plotted for comparison in Figure 57 against the proposed
methodology.

Equation 124 can be substituted into equation 123 for an equation describ-
ing the deformation along the crack whilst accounting for crack lengthening;
see equation 125.

Considering volume conservation with the known volume of fluid injected,
the crack length can also be calculated, see 124. For these equations to work
the crack is assumed fully saturated so that no voids are present, and that
crack propagation must be singular in direction.

It is important to note that the theoretical basis of the equation does not
consider damage directly, the increase in fracture length is formed under the
assumption of an elliptical crack progressing at the crack tips only, assuming
the crack opening can be predictable in terms of the mechanics given in
equations; 121 - 122.

The theoretical result assumes an elliptical shape crack opening depending
upon the crack length, hence can be calculated from equation 125. This result
can be seen plotted in Figure 56 compared against the solution produced by
the proposed methodology.

118



The initial verification compares the effect of constant pressure on crack
depth and length, whilst the second test, disables the damage component, in
effect fixing crack length so that pressure’s direct influence on crack opening
can be measured, using equation 125.

u(a, p, x) =

(
2

E ′
(p− σh)

Eqt

2π(q − σh)

) 1
2

(125)

[147] uses a Darcy flow equation for the flow component of the model and
a Biot term to describe the resultant expansion. The fracture methodology
utilises a maximum horizontal stress of 15 MPa, this poses an issue to the
verification simulation as the proposed fracture methodology uses energy
terms to determine the point of fracture, therefore conversion between the
methods required. The method of conversion starts with the displacement
field normal to an impermeable fracture wall, where pressure acts to open
the penny crack, shown in equation 126.

δp

δt
−∇

(k
µ
∇p
)

= −αδεv
δt

(126)

where α is a biot term and Ks is the solid grain modulus.

This version is more akin to the proposed methodology (see equations
80-83) accounting for internal grain compressibility in the porous medium
considered, giving more control over the variables input.

The reference solution for this verification uses a similar methodology
showcased in section 5.3, in that they both uses Biot flow and porous de-
formation equations, the key similarity being in the use of the pressure equa-
tions. [147] uses equation 138 whereas this paper uses equation 127:

W (a, p) =
πha

E ′
(p2 − σ2

h) (127)

where W is energy released in a fracture event, h is height of fracture,
a is the half length of the fracture, p is the internal mechanical pressure,
σh is horizontal pressure and E ′ is the Young’s Modulus. If a fracture is
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considered to release R0 energy when fractured, then the energy release rate
for a fracture of length a will correspond to equation 128

dW

dA
= 2R0 (128)

where R0 is the fracture energy and A is area.
Equating equations 127 and 128 for an infinitesimal fracture gives equa-

tion 129, allowing for the calculation of the fracture energy required for an
element.

2R0 =
πa2

E
(p2 − σ2

h) (129)

Therefore, a fracture energy requirement of 66.7 kJ/m2 can be calculated
using the values given in table 5 to give us a suitable value for fracture energy
term.

Table 5: Material properties in second hydrofracture verification

Young’s modulus E 10 GPa
Horizontal confining stress σh −1× 107 Pa
Fluid pressure p2 1.1× 107 Pa
Poisson’s ratio ν 0.25
Fracture strength KFratt 66.7KJ/m2

Porous permeability k1 5× 10−15m/s

Fracture permeability k2 Calculated

Coupling coefficient α1 Calculated

Coupling coefficient α2 Calculated

Coupling coefficient α12 Calculated

Coupling coefficient α21 Calculated

Leakage parameter γ Calculated

Water density ρf 1000kg/m3

Initial crack length a0 40.4m
Porosity φ1 0.25

Coupling coefficients and leakage parameter are prescribed as appropriate
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on the fracture boundary to ensure correct coupling characteristics.

The hydrofracture problem considers a 1000m square domain with a cen-
tralized predefined penny crack 40.4m long which is 1m thick as shown in
Figure 55. These boundaries were utilised to define the hydrofracture prob-
lem in a manner more akin to a infinite domain, reducing the influence of
boundary conditions unlike the two other hydrofracture examples shown in
this thesis. All boundaries are fixed mechanically in the x direction as stated
in the derivation of the analytical equations, the y direction is free on all
boundaries. The pressure flux was fixed on all boundaries.

Figure 55: Validation case: Hydrofracture fluid schematic

Both equations 125 and 124 are plotted in Figures 56 and 57 to show that
the proposed methodology predicts reasonable crack lengthening/widening.
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Figure 56: Crack opening over time with constant pressure; analytical solu-
tion (blue) vs proposed solution (Orange)

Constant pressure causes the crack to expand at a constant rate initially,
tapering towards a constant value of 0.015m. The smooth trend seen up
until this point, is similar to the theoretical result’s behaviour. When the
fracture lengthens at time 2.5 hours the trend rate of opening increases due
to increased pressure and decrease in stifness. At time 22 hours the opening
has a 16% difference the rate of change however is similar. The change in
length during this period is constant, as seen in Figure 57, later it will also
be shown in Figure 62 that when damage is disabled and the length fixed,
the crack opening growth remains smooth.

Roughly at the time period of 2.5h the crack begins to propagate. The rate
of propagation being steady until there is not enough pressure in the crack
to warrant further propagation, as seen in Figure 57. Afterward the crack
does carry on opening indefinitely not displaying the same two dimensional
consolidation phenomena exhibited in the previous hydrofracture verification
see section: 5.2. The opening does not equilibrate, instead the rate of opening
does, which is to be expected when the fracture length remains stable for a
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prolonged amount of time. This type of equilibrium occurs due to the large
domain. The leaked fluid takes a long time to reach the boundary and have
something to push against to close the fracture. With the fluid unable to
reach the boundary, the problem behaved similarly within an infinite domain.

The change in length is less steady, as the pressure distribution of the fluid
is changing and the surrounding crack structure is also changing due to crack
lengthening, weakening the structure and increasing the area which pressure
can act upon.

The crack length was measured by finding the left most and right most
point elements contained within the crack (elements with a damage value
0.1), comparing their relative positions.

Figure 57: Crack length over time with constant pressure-theoretical solu-
tion (blue) vs proposed solution (Orange)

The crack length after the 4.5 hour time period becomes constant and
no further propagation is no observed, this is due to the pressure lost in the
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fracture along with it the hydrofracture’s driving force.
The considered hydrofracture’s rate of progress slows halfway.
Thus is because the pressure leak-off variable, contributing to a similar

two dimensional consolidation problem catalysed with the crack growth and
the area which pressure can leak-off, grows [93]. This observed result is
similar to that observed in Gunther’s work [106], expected with a similar
leak-off variable. However not to the same extent due to the greater distance
from the boundary.

The inflow on this verification is higher than the Gunther Meshke model
verification example. This explains several successive cracks are required for
a reduction in crack propagation momentum to occur. Furthermore, due to
the boundaries being further from the pressurised crack itself, the pressure
buildup surrounding the crack took longer as there was more space for the
fluid to leak into and the boundaries hence took affect on the penny crack.
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Effective stress and fluid pressure comparisons

The effective stress has been calculated in the principal direction y-y as
that is the only comparison point provided by the reference paper shown in
Figure 59.

Figure 58: Effective Stress y-y homogeneous numerical hydrofracture result

Figure 58 shows two defining features in the stress contour plot; the stress
due to compression above and below the crack where the peak effective
stresses are most prominent, primarily due to pore pressure compounding
with the compressive stresses built up due to the crack opening up. The
max stress in the middle of Figure 58 produced by the proposed solution is
−12× 106 Pa compared to the −11.15× 106 Pa from the reference solution
showing a 7.6 % increase, as seen in Figure 59.

The other defining feature is at either crack tip, which is where the great-
est tension stresses occur within the structures, here counteracted somewhat
by the fluid pressure. The two results compare similarly in stress magnitude
at the fracture tips; the proposed solution’s maximum stress being −7.5×106

Pa compared to the reference solutions −8 × 106 Pa, showing reasonable
agreement of 6.7% in terms of stress magnitude as well as effective stress
behaviour due to hydrofracture.
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Figure 59: Effective pressure y-y homogeneous numerical hydrofracture
result

Figure 59 has effective stress features typical of a confined hydrofracture
shown in the results from similar numerical experiments. [90] shows that seep-
age of fluid pressure primarily from the crack’s boundaries is common, in the
case of [90] the boundaries are fixed for zero fluid flux across the boundaries
where, as in this case, the flow is free to pass through the boundaries.

The minimum stress here is due to the pore pressure over-balancing the
effect of the mechanical stress at the tips, however the effect of the tips on
stress profile is clear also, the stress peaking at the tip and fanning of in
the direction away from the crack, similar again to the results of confined
hydrofractures from [160] and [159]
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Fluid pressure comparison

The max pore pressure is similar in both results and both tend towards a
steady rate from the crack edges to the containing boundaries as expected
to a stable pressure of −1.2 × 107 Pa shown in Figure 60 proposed solution
compared to the reference solution, shown in: Figure 61.

The highest fluid pressure being on the inside of the fracture where the
pressure is injected over time during, therefore it makes sense that the dif-
fusion solution to this problem has fluid pressure decreasing with distance
from the crack.

Figure 60: Fluid pressure distribution result from proposed solution

The reference solution assumes both aspects of mechanical-fluid coupling
could be neglected and therefore a decoupled solution approach could be used
solving for pressure and mechanical deformation iteratively. The proposed
solution from this thesis can solve for pressure-mechanical coupling and can
provide a simplified approach to the problem in comparison to the reference
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solution through the solution of Biot’s equations. The addition of the cou-
pling terms allows the methodology to model more complex hydrofracture
scenarios which are later showcased in this work.

Figure 61: Fluid pressure distribution result from reference solution

5.2.2 Undamaged fracture opening vs theoretical result

Here the experiment is repeated with the damage model disabled to test
the proposed model’s coupling terms between pressure and the physical body
via swelling only. To test the fluid pressure to mechanical coupling, the
pressure was gradually increased to 11 MPa with the resulting crack opening
deformation recorded.

The generated pressure values over time were used in equation 122 where
the length of the crack is considered constant. This version was replicated in
the numerical model with the damage variable disabled and the crack length
remaining constant, to generate an ideal elliptical crack opening scenario;
the results are shown in Figure 62. The maximum y deformation in the
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penny crack was recorded; used to compare against the simplified theoretical
equation 125.

An agreeable 5 % between the theoretical and proposed model’s results
was found as shown in Figure 62. Both the reference and proposed solution
predicting a penny crack at 11MPa opening by 0.05m. The stiffness of the
crack at the start of the test were identical and asymptotic trend of deforma-
tion was also similar. This small comparison against the theoretical solution
shows the model’s capabilities to capture the effect of increasing pressure’s
effect on the crack’s walls.

Figure 62: Crack opening over time with rising pressure Theoretical solu-
tion (blue) vs proposed solution (Orange)

Unlike in the simulation version with the damage model crack opening is
far smoother as expected as the structure of the continuum was constant. The
opening of the crack agreeing more with the analytical prediction by equation
122, both solutions opening steadily to 0.05-0.06m, not surprising considering
the derivation of the crack opening assumes an elliptical crack shape, which
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the undamaged version maintains. The crack opening equilibrates in this
scenario much quicker; the crack still opening up at the 20s mark, however
due to the smaller crack the rate of opening is smaller while the fluid pressure
travels towards the boundary, causing 2D consolidation as discussed.
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5.3 Continuous fracture flow example

The key strengths of the proposed methodology are the evolving perme-
ability matrices with the development of cracks, capturing the accompanying
change in strength and permeability. The next verification will demonstrate
how the pressure distribution changes over time with constant pumping and
how the model correctly predicts the repeat pressure losses due to crack prop-
agation, which occur due to fracture volume increasing with associated fluid
lag.

The reference paper [146] uses a set of analytical equations derived from
Biot’s equations for pore-elastic media and Láme’s continuum mechanics
equations for estimating hydrofracture behaviour. Analytical equations used
for comparison from the reference paper are first derived and explained with
their underlying assumptions and limitations.

The paper from [146] has qualitative results for pressure drops associated
with fracture propagation, this allows a comparison on how the fluid pressure
varies with many fracture events over time. Other comparisons are in relation
to the deformation profiles using both the output results from the reference
paper and the theoretical solution to the hydrofracture problem, derived from
Láme’s equations and Biot’s porous flow equations.

5.3.1 Continuous flow undamaged

In [146] a large square model 100 by 100 m2 is considered with a central
penny crack with total length of 5.2m as shown in Figure 63. This value
coincided with the mesh density utilised in the reference paper [146]. The
penny crack is pressurised until the time step of 400 is reached, as this is the
range of comparison results available from [146]’s solution.
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Figure 63: Hydrofracture fluid schematic

The reference damage methodology with a fracture threshold defined by a
critical strain converted to an energy threshold. No value for fracture energy
term was assigned in the paper [146], therefore a typical fracture energy term
for rock has been calculated using an equation derived from particle packing
using the material properties shown in table 6, see equation 140.

The reference solution consists of two models: one without fracture propa-
gation, the other with. In the initial sample the damage model was disabled
and the mechanical and pressure respond to a pressurised penny crack were
measured over time along the domain, here we replicate both scenarios re-
spectively.
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Table 6: Material properties for large scale penny crack hydrofracture

Young’s modulus E 50 GPa
Poisson’s ratio ν 0.25
Fracture strength KFratt 39.5KJ/m2

Porous permeability k1 5× 10−15m/s

Fracture permeability k2 Calculated from cubic law

Coupling coefficient α1 Calculated

Coupling coefficient α2 Calculated

Coupling coefficient α12 Calculated

Coupling coefficient α21 Calculated

Leakage parameter γ Calculated

Water density ρf 1000kg/m3

Initial crack length a0 5.2m
Porosity φ1 0.25
Well pressure q 2.5 MPa

Coupling coefficients and leakage parameter are prescribed as appropriate
on the fracture boundary to ensure correct coupling.

The fracture strength used in this verification assumes mode one fracture.
Analytical equation basis: Biot’s equation for coupled flow and deforma-

tions in porous media are used in the reference solution, shown in equation
130.

δσij
δxj

= −ρfδi3 (130)

where σij is stress, xj are the spatial coordinates and the term ρfδi3

describes the effect of fluid mass on the porous system in the z direction. In
the considered solution to this hydrofracture problem the approach is a 2D
system where the z direction is ignored and hence ρδi3 = 0 is assumed.

When considered in terms of effective stress and in a 2D plane framework
the effective stress term can be calculated as shown in equation 131:
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Effective stress Lamé equation:

σ′ij = σij − αpδij = −(λεkkδij + 2Gεij) (131)

where p represents fluid pressure and ε strain is represented by equation
132:

εij =
1

2
(
δui
δxj

+
δui
δxi

) (132)

where u represents deformation and the mechanical Lame’s constant and
shear modulus; λ and G; can be described by equation 133.

λ =
νE

(1 + ν)(1− 2ν)
and G =

E

2(1 + nu)
(133)

Equation 131 can be expanded to equation 134.

(λ+G)
δ2uk
δxiδxk

+G
δ2uk
δxiδxk

− α δp
δxi

= 0 (134)

where α is a measure of the compressibility of the porous domain, de-
scribed by equation 135:

α =
Kbulk

H
(135)

where Kbulk is the bulk modulus and H is the pore-elastic expansion
coefficient. In this case the boundaries are fixed both in terms of deformation
and pressure flux.

Lamé’s equation here is simplified to a one dimensional format as equation
136.

δ2u

δx2
c

=
1

2G+ λ

δp

δxc
(136)

where xc is the distance along the considered fracture.

Equation 136 can then be solved simply to provide a deformation quantity
to compare produced results against, shown in equation 137.
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u(t, xc) =
1

2G+ λ

∫ x

0

(p(t, x′c)dx
′
c − p0xc) (137)

where u is deformation along the centre of the sample equation 137 and is
plotted in this case horizontally through the sample; G is the shear modulus,
λ is Lamé’s constant and x is the point along the sample considered.

Figure 64: Deformation profile through section A-A at various time steps
reference solution (Dashed lines) vs proposed solution (solid lines)

Figure 64 shows the deformation profile generated using the proposed solu-
tion for deformation through the sample at different time intervals compared
against the analytical result from equation 137.

The proposed solution predicts the increasing deformation over time, es-
pecially local to the fracture tip.
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The proposed solution predicts a decrease in deformation with increased
distance from the penny crack where pressure increased, however the overall
trend is different.

The reference solution is linear from the crack opening to the boundary,
whereas the proposed solution predicts a sloping deformation trend.

This result makes sense due to the increased coupling in the solution, be-
cause the fluid is compressible, therefore where the pressure increases towards
the boundary (seen in Figure 65), the fluid’s compressibility gains strength
and resists deformation more as pressure increases.

The α term: Biot coefficient is assumed to be one in the reference analytical
formulation for simplicity, this reduces the coupling between pressure and
continuum deformation, reducing required computational resources, however
also reducing the predicted accuracy. The reference solution only considers
the compressibility of the fluid in the calculation of pressure and not in the
deformation on top of the lack of direct coupling.

The Biot pressure equation used is stated as equation 138:

S
δp

δt
−∇(

k

µf
∇p) = −αδε

δt
(138)

where S represents the specific storage coefficient and the alpha value
is the Biot modulus relating fluid pressure to deformation, similar to the
proposed framework’s αi variable as previously discussed.

It can be seen in equation 138’s first term, the change in pressure is depen-
dent on volumetric change [105]; in this verification the main source of pres-
sure from the fluid pumped directly into the penny crack considered. There-
fore, the specific storage coefficient (shown in equation 139) is neglected and
co-dependence of mechanical behaviour and fluid pressure is reduced. For
this reason [146] solved their system of finite element equations in a decou-
pled framework, utilising equations 138 and 131 separately, calculating the
pressure initially then the resulting deformation. The difference in solution
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is different from the proposed solution’s coupled capability.

S =
dV

dp

1

A
(139)

where V is an element volume
The pressure flux at the boundaries were maintained at zero.
[146] calculated the increase of permeability according to the cubic flow

rule and averaging with the rock’s intrinsic permeability, an evolving equation
dependent on the width of the crack, according to equations 140 - 141.

kav = (1− w

h
)k1 + (

w

h
)k2 (140)

where w is the opening of the crack, h is the intrinsic element size (rep-
resenting fracture height), k1 is the permeability of the rock and k2 is the
permeability of the fractured zone, determined by equation 141.

where the permeability exclusive to the fractured zone is calculated ac-
cording to the crack opening.

k2 =
1

12
w2 (141)

In the case of compression, the fractured zone’s permeability does have
the capability to be lower than the rock’s intrinsic permeability hence that in
the implementation the permeability is limited by equation 142. The fracture
aperture, w must me greater than ( 1

12
kfh

1
3 ) in order to fracture permeability

to occur as posed in equation 142.

w >> wmin = (
1

12
kfh

1
3 ) (142)

The proposed model uses equations 141 - 142 to model the rock perme-
ability of porous and damaged/fractured zones, the implementation of these
equations are eased by the use of structured mesh similar to the reference so-
lution with elements of 1m×1m in size, a total of 5000 tetrahedral elements.
The deformation varies from element to element, changing the w term in
equation 141 marginally and easing implementation of the prior mentioned
width restriction.
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The equation used for an analytical comparison of fluid pressure along the
sample is derived and begins with Biot’s equation for pressure, shown in
equation 143.

d

dt

∫
ρfdV =

d

dt

∫
φcρfdV (143)

where φc is the fracture zone’s volume fraction, later described in equation
146 in terms of area of voids.

This is extended to include the mass pumped into a crack contained
within the continuum as equation 144 shows.

d

dt

∫
φcρfdV +

∫
ρfvDndA = Ṁin (144)

where vd is fluid flow rate into the crack and n is the normal to the
incoming surface.

Pressure equation:

φccf
δp

δt
−∇(

k1

µ
∇p) = −δφc

δt
(outside injection)

or
Qin

h2
∇ (inside injection) (145)

where φc is represented by a volume fraction, showcased in equation 146.

φc =
A− A0

A0

(146)

where A0 is the area of void space. Equation 145 is re-written in a non-
dimensional format to ease to solution method, here shown in equations
147-151.

p′ =
p

po
(147)

x′c =
xc
l

(148)

With an introduced scaled time variable for the equations to reach steady
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state as shown in equation 152 allowing for simpler solution.

t′ =
t

t0
(149)

where
t0 =

Sµl2

k
(150)

δp

δt
− δ2p

δx′2c
= 0 (151)

The solution of this non dimensional pressure equation is shown in equa-
tions 152- 154.

Calculating the pressure across the fracture, the pressure variable, this
study will be used to verify the behaviour of the proposed framework.

p(t′, x′c) = (x′c + Σ ansin(λnx
′
c)exp(−λ2

nt
′)p0 (152)

where the constants an and λn are described by equations 153 and 154.

an =
2(−1)n

λn
(153)

λn = nπ (154)

where n is an integer tending to infinity. In this numerical implementa-
tion, this value is calculated to 10000 numerically in reference comparisons.

The pressure profile provided by both the reference solution and the sup-
plied analytical solution assumes a stationary crack and the fluid pressure’s
motion is purely dictated by diffusion through a fixed permeability field de-
veloping the pressure field as shown in Figure 65.
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Figure 65: Pressure profiles along segment D-D reference (Dashed lines) vs
proposed solution (Solid lines)

Figure 65 shows the predicted pressure profile compared against the an-
alytical result for a stationary fracture subjected to steady fluid pressure
of 10MPa. Again, similar to the deformation result, the magnitude of the
pressure profiles are similar and the trend of a decrease with distance from
the fracture is also present and there are discrepancies. The trend is again
a result of the more complex coupling in the proposed model. The consid-
eration of fluid compressibility resulting in a pressure increase further along
the sample. Figure 65 reinforces this explanation with that if this were true
the trend would be similar at the beginning of the experiment but as time
progressed the effects of coupling would become more evident and the trend’s
differences would also increase with time.

The pressure along the lateral direction is also compared using analytical
comparison, however in this case the pressure distribution accounts for fluid
compressibility. For calculating the normalized pressure along the sample in
the lateral direction with time, equation 155 was utilised.

p(r, t) =
Q

4πk1dz
E1
φcfµfr

2

4k1t
+ p0 (155)
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where p is the pressure, r is the distance from the crack, t is time, µf is
dynamic viscosity, k is permeability, dz is the height through the section, Q
is flow into the crack, φ is porosity, cf is fluid compressibility, p0 is initial
pressure and E is an exponential integral as shown in equation 156.

E1 =

∫
e−t

t
(156)

With the fluid compressibility considered the agreement between analytical
and the proposed numerical result is better than the previous comparison.

Figure 66: D-D pressure profile across fracture, analytical (Blue) vs pro-
posed (orange)

Figure 66 shows the pressure profile generated by the proposed framework
and the analytical pressure distribution described by equation 155.

The pressure trend is in good agreement in the sloping trend being main-
tained as time progresses, it is not surprising that there is not a perfect
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correlation as the analytical equations are not coupled and the mechanical
component in the analytical solution is not affected by fluid compressibility,
simplifying the analytical equations.

Figure 67: Tip deformation over time reference solution vs proposed solu-
tion

The reference solution provided a tip deformation plot from their nu-
merical result for an undamaged version of the problem, if the problem of
symmetry is solved then both tips should deform correctly. Figure 67 shows
that the crack is deforming in a symmetric manner and deforming similarly
to the solution provided by the reference paper.
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5.3.2 Continuous flow damaged

Pressure was injected into the penny crack so that the crack would ex-
pand, the pressure reaches the fracture threshold early into the simulation
and causes a pressure drop as represented in the reference pressure plot:
Figures 68 and reproduced pressure plot: Figures 69.

Figure 68: Pressure variation over time inside of fracture (Reference solu-
tion [146])

Figure 68 shows that the crack continues to propagate, growing in length.
Each fracture event decreases the pressure inside of the fracture as the newly
created void space needs filling and the crack walls that used to hold the
pressure have moved further from the crack. Similar to the Gunther Mechke
verification, the drop in pressure corresponds to a further reduction in crack
opening.
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Figure 69: Pressure variation over time inside of fracture (Proposed solu-
tion)

It can be seen in Figure 69, the proposed pressure plot next to the refer-
ence pressure plot that the rate of pressure drops is similar in terms of regu-
larity and magnitude as seen in Figure 70. However this is short lived after
120 seconds of running pressure drops due to fracture no longer occur. How-
ever, the general magnitude of the pressure does not decrease significantly
over time unlike the reference solution. This implies that some coupling com-
ponents may be inadequate to capture swelling and may not be appropriate
for hydro-fracture mechanics.

[146] suggests that the pressure required to open the crack decreases
over time as the area that internal crack pressure can act upon increases.
Therefore, to produce the same net force on the crack wall less pressure is
required.

The damage shown in Figure 70 rises at a similar, constant rate, when
compared to bond breakage shown in Figure 71. The pressure drops over time
are also similar in nature, the pressure drops corresponding to an increase in
total damage; in this case representing crack propagation.
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Figure 70: Accumulative damaged over time during hydrofracture progress
(Proposed solution)

The damage methodologies used in the proposed model and reference
models are fundamentally different, one based on element energy, the other
on bond. However a quantitative comparison can be made on the rate of
damage by plotting the total damaged elements and bonds vs time, as seen
in Figures 70 and 71, both having similar rates of degradation.

Figure 71: Cumulative damage (Bonds broken) over time during hydrofrac-
ture progress (Reference solution [146])

Figure 72 shows that the hydrofracture propagated at a near equal rate
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on both sides of the hydrofracture as expected with the homogeneous nature
of the model.

Figure 72: Fracture propagation over time during hydrofracture propaga-
tion showing symmetry

5.3.3 Fluid lag behaviour

As a hydrofracture propagates, the ratio of fluid to void space varies
significantly with time, the variation behaviour depending heavily on fracture
progression, media permeability, surrounding media permeability and the
dynamic viscosity of the fluid. The phenomenon of fluid lag can be seen in
Figure 73 [22].

In [22]’s experiment, injected fluid causes an infill of pressure until crack
propagation. Just before this point, the fluid was noted to have undergone
compression with a noticeable void at the crack front.
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Figure 73: Fluid lag behaviour captured in hydrofracture experiment [22].

Figure 73 shows a perspex box which initially had a thin slit connected
to a pump.

The pump was turned on and pressure filled the slit, building pressure.
Once the fluid pressure had built to a sufficient level the slit fractured. After
propagation a void was created ahead of the fracture front denoted Rf , the
void denoted in Figure 73 as R. Figure 73 shows four different time steps at:
1.96, 2.38, 3.08 and 5.08 seconds, a fracture event between each step. It can
be seen that during fracture progression, fluid lag becomes less significant as
fluid to newly create void ratio diminishes.

The evidence of fluid lag can be noted to be present at each fracture
event, at the same time a pressure drop is observed in the system, similar to
the hydrofracture verification presented in this thesis.
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Section 5.3.2 showcases the proposed methodology’s ability to capture
fluid lag, [21]. Fluid lag becomes more relevant in situations where confining
pressure is low and the surrounding media is impermeable [7], primarily
because the fluid lag depends highly upon fracture saturation and volume
space created during a fracture event. In single phase model approaches
to capturing hydrofracture behaviour, it isn’t uncommon to find the author
assuming the Stefan condition where the crack velocity matches fluid velocity;
no fluid lag due to the difficulty of solving the pressure equations with the
inclusion of leak-off [133].

Further evidence of fluid lag being captured by the proposed methodology
is showcased in Figure 69, after the initial drop in pressure an oscillating
pressure nature can be spotted. A.A. Andreev [4] spots a similar trend in
their hydrofracture simulations. The oscillating nature is noted to cause
instability within the model, the same can be said for the proposed model,
when time steps are too short, the oscillations in pressure become too volatile
and begins to create numerical errors. The cause of the oscillation nature
comes from the pressure disparity between the crack tip and the main body
the fracture, if the disparity becomes too large and the pressure flow equa-
tions cannot normalise the pressure before further crack propagation then
the disparities begin to build up to unrealistic pressures causing errors in
future calculation. [82] Kumar succeeds in modelling the fluid lag behaviour
by stimulating the fracture tip with temporary suction zones, if the suction
zones are too great, numerical instability still occurs however.

Once a crack has progressed sufficiently, the ratio of fluid stored to newly
created void space due to a fracture event decreases; Peirce [119] show that
the effect of fluid lag decreases after some time due to decreased fluid supply.
[133] Bao also showed that the effect of fluid lag must be considered, otherwise
the crack half-length may be predicted incorrectly. The model used by [133] is
similar to [22] showcasing the need for fluid lag consideration. The relevance
of leak-of is neglected in both papers, therefore it is difficult to conclude the
effect of fluid lag with varying crack length when leak-off is involved. It can
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be conjectured that the length assumption may not apply for leak-off models,
this would follow logically as the volume stored in a leaking fracture would
vary, attributing to a higher probability of fluid lag occurring.

It is of note to mention also the agreement of experimental results to
analytical achieved in [22] for saucepan shaped crack was also for very small
cracks with no leak off. Without further experimental data it is difficult
to confirm the possible relation of fluid leakage to fracture propagation and
the extend of said effect. It makes sense logically but cannot yet be proven
through experimental means. There is currently little numerical/analytical
evidence to back up this claim as [37] and [1] mentions solving for both volume
fraction and crack propagation in the presence of fracture propagation is a
difficult task and no full solution in the literature yet yields a satisfactory
solution. The verifications conducted in this thesis demonstrate that the
correct use of the leak-off coefficient is necessary in the simulation of realistic
hydrofracture behaviour.
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5.4 Non-uniform pressure field crack prediction

All hydrofracture verifications so far conducted have been single hy-
drofractures, fluid traveling through singular newly propagated section of
the fracture, building pressure and repeating until equilibrium in a linear
direction with a somewhat expected fracture path and singular in nature.

The following hydrofracture example has two points of pressurisation and
will show that the proposed methodology can account for multiple pressure
instances, uni-axial load conditions and non-uniform pressure fields. The ver-
ification will also capture how the aforementioned variables will change with
fracture propagation and how crack path deviation will impact hydrofracture
behaviour.

Song [136] casts a cuboid of sandstone with two distinct holes bored, as
shown in Figure 74. pressuring the two holes within the cuboid of dimensions
are 100mm (wide) x 100mm (Deep) x 200mm (long) with two holes placed
as shown in Figure 74.

Figure 74: Non-uniform pressure schematic (left) and experimental set up
(right)
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The schematic for this experiment shown in Figure 74 shows there are two
designated holes; one and two. Hole one’s pressure is constantly increased
until complete failure is achieved.

Whereas hole two’s pressure is maintained constant throughout individual
experiments.

Several experiments by Song [136] were conducted with different pressure
values between experiments, shown in table 7. Table 7 showcases the ex-
periments undertaken, showing the uni-axial pressure and constant hole two
fluid pressure for each test preformed.

Table 7: Experimental setups

Experiment Number Axial Pressure (MPa) hole two Pressure (MPa)
1 10 0
2 10 2
3 10 4
4 10 6
5 10 8

The two holes are both 55mm deep; hole one having an additional notch
2mm deep at the bottom to ensure clean crack initiation during the experi-
ment. Once both holes were drilled, two pump nozzles (260D Syringe pump)
were placed in the holes, the nozzle radius at 3.175mm (approx) and a pres-
sure sensitivity of 0.1 %, both sealed with epoxy to ensure low pressure loss.

In the five experiments carried out the data presented include the pressure
over time in hole one and the distribution of pressure, damage and defor-
mation in the x direction through numerical means. The three variables are
dependent on each other in nature and in the following presentation of results
the links between three variables will be showcased and explored, addition-
ally the effect of newly created crack paths and their effect on the model will
also be observed and analysed. Test 1 and 5 are shown here in chapter 5,
tests 2-4 can be found in Appendix C. Material properties used are shown in
table 8.
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Table 8: Material properties

Young’s modulus E 35 MPa
Poisson’s ratio ν 0.25
Fracture strength KFratt 12.5KJ/m2

Porous permeability k1 5× 10−15m/s

Fracture permeability k2 Calculated

Coupling coefficient α1 0.1

Coupling coefficient α2 0.1

Coupling coefficient α12 0.2

Coupling coefficient α21 0.2

Leakage parameter γ Calculated

Water density ρ 1000kg/m3

Initial crack length a0 5.2m
Porosity φ1 0.25
Well pressure q 2.5MPa

Residual strength coefficient min (D) 0.1

Coupling coefficients and leakage parameter are prescribed as appropriate
on the fracture boundary to ensure correct coupling characteristics.

The boundary conditions set for movement in the y direction are fixed for
both the top and bottom, with a set deformation of 0.5 mm to recreate the
uni-axial stress of 10 MPa.

The top and bottom mechanical boundary conditions in the x direction,
accounts for a coefficient of friction of 0.25, this is the cause for the asymmet-
ric deformation profiles presented as the model showed a tendency to slide to
one side or the other; further exaggerated by the asymmetric fracture paths
and accompanying pressure fields. The accuracy of this value is difficult to
calculate accurately as the variable is difficult to measure in nature. The
pressure boundary conditions fixed pressure flux as the experiment was open
to the environment.
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Test 1: 10MPa Axial pressure, 0MPa hole two pressure

The reference experimental result of pressurising only hole one in test one
is shown in Figure 75, hole two only impacting the preceding crack path with
a void of material and associated weakness.

Figure 75: Test 1, Experimental fracture path [136]

Figure 75 shows that only hole one has the 260D Syringe pump inserted,
the singular pressure building up to a single vertical crack straight down the
centre, where the tensile forces are at their maximum.

The primary mode of failure shown in Figure 75 was a tensile crack down
the centre of the sample, caused by the pressure in hole one pushing the
sample apart laterally. The fracture is defined below hole one as the middle
of the sample is prone to Poisson effects from the uniaxial load.

153



Figure 76: Test 1, Numerical Hydrofracture at time=0s showing from left
to right; fluid pressure distribution, X deformation and damage distribu-
tion

Figure 76 shows the initial deformation profile in the numerical result
produced by the proposed methodology. The initial fracture pressure at 0.8
MPa and the uni-axial pressure applied. The amount of stored mechanical
energy in any part of the model has not surpassed the required fracture
energy to initiate a fracture local to hole one.

The deformation plot shows the structural impact of both holes, hole two
is experiencing x deformation due to the applied uni-axial compression and
lack of resisting material; exhibiting a similar deformation trend to the slit
experiments prior. However, hole one where fluid pressure is present shows
an exaggerated deformation profile as expected of the pressurised location
and will become the primary driving force of the fractures propagation in all
experiments carried out acting through the coupling terms in the numerical
models.
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Figure 77: Test 1, Numerical Hydrofracture at time=25s showing from left
to right; fluid pressure distribution, X deformation and damage distribu-
tion

Figure 77 shows crack initiation from hole one in a vertical manner agree-
ing with the provided crack path in the provided photo by [136], not impacted
by hole two, shown in Figure 75.

This "snapshot" was taken shortly after the stored mechanical energy sur-
passed the fracture strength threshold typical for sandstone.

The deformation profile is more dramatic in comparison to the deforma-
tion profile shown in Figure 76. This is due to the generally increased fluid
pressure and the fracture pressure development. It can be seen in Figure 77
that the deformation profile is more consistent across the faces of hole one;
left and right when compared to Figure 76’s deformation profile, this is due
to the main driving force of deformation/stress has built up pressure along
the crack face.
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Figure 77 shows that the fluid has flowed along the newly created fracture,
the transport of the pressure through the fracture aids in the momentum of
fracture growth and exchange of mechanical to fracture energy, leading to
the future damage distribution and complete failure of test one’s sample, see
Figure 78.

Figure 78: Test 1, Numerical hydrofracture at time=35s showing from left
to right; fluid pressure distribution, X deformation and damage distribu-
tion

Figure 78 shows that a failure mode has been predicted within the sample,
leading to the crack changing direction towards both supports and right
branching; similar to the fracture path shown in the experimental result.

As the top boundary is pushed down due to applied uni-axial load, the
more the dominant stress path changes direction, the closer the fracture edges
towards the top boundary. The fracture path becomes similar to the fracture
path previously observed in the 15 degree slit experiment.

156



It is important to note that as the branched fractures propagate, the fluid
pressure in them accumulate. With time the failure mode of the hydrofrac-
ture becomes dominated by tensile failure due to the mounting fluid pressure
pushing the fracture’s walls apart. The fluid in the fractures influences the
fractures direction by maintaining the stress field surrounding the fracture
maintaining the direction unless other significant loads occur. Therefore,
once a hydrofracture has initiated in the following set of experiments it is
rare that a change of direction is observed. The point of branching is always
local to the two pressurised holes as this is where fluid pressure is applied,
acting in all directions and the accompanying equilibrium require branch-
ing to be maintained. This behaviour can be seen in the range of results
showcased in appendix C.

The experimentally observed fractures from the reference paper [136] favour
downwards fracture propagation, fractures towards the top boundary remain
faint and less distinguished when compared to the fracture propagating down
the sample. The favour of downwards propagation is likely to be due to the
notch placed in each sample during preparation.

The damaged elements in the model utilised have low stiffness and are
subject to the high pressure and therefore if left unchecked can undergo
inadmissible deformation.

The deformation in the x direction now is been heavily influenced by the
fracture and contained fluid pressure on the profile has been overwhelmed
by the now eccentrically applied uni-axial load. This has driven a crack
path prediction error. This large deformation across the fractured elements
influences the fluid pressure by changing the permeability of the damaged
elements via the implementation of the cubic flow rule. This explains the
pressure plot in Figure 78 is more drastic than that shown in Figure 77.
With the increase in permeability the driving force and mobility of the fluid
increases over time as the fracture’s aperture grows throughout the sample,
increasing each hydrofracture’s rate of growth over time. This trend acts in
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all tests carried out, the rate of hydrofracture increasing due to the introduced
cubic flow rule.

Figure 79: Test 1, Fluid pressure in hole one over time

Figure 79 shows the pressure averaged from the elements contained within
hole one over time compared to the experimentally observed pressure.

Figure 79 shows reasonable agreement in both the trend and magnitude
for the proposed solution vs experimental reference data [22].

Although present in all experiments it is important to mention the influence
of gravity on the fluid flow through the sample in the experiment performed
by [136]. In the photos provided by [136] the crack path is mostly seen to be
traveling in a downwards fashion. This is likely due to the porous sandstone
used and downward positioned notch. The only pressure profile data supplied
by [136] is in the form of an accompanying computational model attempting
to simulate the same crack path with changes in the non- uniform pressure
fields and the wetted photo is showing where fluid has travelled roughly. In
these photos the fluid is never seen fully wetting the top boundary of the
sample unlike the bottom boundary. This is likely due to gravity increasing
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fluid flow more than the pump in terms of porous flow. The fluid is leaking
from the top at a greater rate as the fluid that is leaked flows down the porous
rock, increasing the pressure gradient between the fracture pressure and the
surrounding porous pressure. This pressure gradient increases the rate of
leakage from the top fracture and further impedes fracture progress towards
the top boundary. This effect leads to fluid tending down the sample. This
is likely increasing the pressure confining the lower fractures below hole one.

When the fluid leaks into the surrounding porous domain the fluid has
no boundaries to push upon due to the drained boundaries. Therefore, in
this case, the porous flow does not influence the mechanical behaviour of the
sample other than in the decrease of the fluid pressure within the fracture.
This discrepancy is captured by the dual porosity methodology and demon-
strates how the two sets of boundaries are needed to predict hydrofracture
behaviour.
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Test 5: 10MPa Axial pressure, 8MPa hole two pressure

Figure 80: Test 5, Experimental fracture path [136]

Figure 110 shows that with an increase in hole two’s pressure, the crack
path was led through both holes, in the case of experiment five the pressure
in hole two overwhelmed the pressure in hole one and was sufficient enough
to create a fracture itself.

The deformation profile in Figure 83 shows that the green/yellow defor-
mation contour line (representing neutral deformation) is more central than
previous numerical hydrofracture experiments where the hole two has been
pressurised initiating a more unified crack throughout the specimen. The
beginning of a more consistent fracture can also be spotted the deformation
profile of Figure 82.

160



Figure 81: Test 5, Numerical Hydrofracture at time=0s showing from left
to right; fluid pressure distribution, X deformation and damage distribu-
tion

At this stage it is clear that the pressure in hole two is far greater than
the pressure in hole one and the effect on the X deformation is clear, as
shown in Figure 81. At this point not too different from the initial plots
from experiments 2-4 although is again exaggerated in terms of magnitude
as expected.
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Figure 82: Test 5, Numerical Hydrofracture at time=25s showing from left
to right; fluid pressure distribution, X deformation and damage distribu-
tion

Throughout all five experiments as pressure has increase a wedge like
pattern has emerged in the deformation profile. This is caused by the fluid
pressure exerting force on the newly developed fracture, this is shown in
Figure 82.

The wedge shape shown in all numerical plot’s first time snapshot de-
formation plots is caused by the pressure attempting to split the model in
two.

In all experiments conducted the wedge is always shown to tend to the
left, this is due to the placement of hole two, whereas hole one is unbiased
in direction as seen in test one’s results, see Figure 78. Hole two’s placement
leads to resilient material on the right of the hole which the pressure from hole
two can act against, pushing the material surrounding hole two, leftwards.

The crack sourced from hole one seems vertical, the lower half heading
towards the central section of the section where in 113 is where the two
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fractures met. The crack from hole two is slanted, similar to the experimental
results shown in Figure 80.

Figure 83 showcases the proposed methodology’s ability to model multiple
fluid driven cracks at once in an efficient manner, as with the addition of
another hydrofracture computation time is similar at about 20 minutes on a
standard desktop machine (I7 2018).

Figure 83: Test 5 Numerical Hydrofracture at time=35s showing from left
to right; Fluid pressure distribution, X deformation and damage distribu-
tion

Figure 83 shows that the crack has bifurcated/branched one heading to-
wards the left boundary, the other branch being vertical in nature, showing
agreement with the experimental results shown in Figure 80.

The crack from hole one has met up with the upwards crack from hole two
again agreeing with the experimental results from [136]. The two hydrofrac-
tures shown in Figure 102, both aid the opening of the other, widening the
path that they both take, increasing the fracture width and flow. The fluid is
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seen to be traveling from both holes into the newly created fractures aiding
the fracture propagation with the built up pressure. In test one where there
were only singular fractures, the apertures at the sources were far wider than
the front of the fractures, creating a permeability gradient and stable fracture
behaviour.

When comparing the final fracture path predicted in Figure 83 the wing
crack shown in Figure 80 below hole two is predicted with reasonable accu-
racy. The cause for this crack’s sudden change in direction can be attributed
to the geometry and stress paths changing within the model/experiment with
the significant cracks observed. At this point in both experiments the uniax-
ial load is equally split between two sections divided by the top fracture, the
right section is shown in Figure 83 to be moving significantly to the right.
The resulting tension creates the crack to bifurcate into a typical fracture and
wing crack, this theory is further confirmed in the observed x deformation
plot, where the contour of the cyan section follows closely the same pattern
of a smooth curve, similar to the wing crack shown in Figure 80.

Figure 84: Test 5 fluid pressure in hole one over time (Test 5)
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Figure 84 shows the pressure averaged from the elements contained within
hole one over time compared to the pressure results observed in the reference
experimental test. Figure 84 shows that the pressure in hole one pressurises
in the numerical result at a greater rate when compared to the reference
experimental results, this is due to the delayed fracture in the numerical
result, with no leakage the numerical test the pressure built at a higher rate.

Figure 84 shows the experimental result builds pressure at a compara-
tively more stable rate when compared to the numerical pressure increases.
The point of failure is clearly identifiable near the 28s mark at 8Mpa, this
is the point where the fracture from hole one meets the bottom boundary in
both the numerical and experiential test. The numerical result shows good
agreement with the experimental pressure plot.

Two pumps are inserted into both holes as shown in Figure 80. The
strength of the two pumps and influence on the structure are unknown.
However, the material model, the reference paper provided are shown in
table 8 and from that, some reasonable estimation can be made. However,
the estimation of the pump’s structural influence upon the structure is likely
to introduce some error in both the proposed and reference solutions both
experimentally and numerically.
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Over all trends
It is clear that with the introduction of asymmetric pressure fields the

crack path is influenced significantly and that the proposed methodology is
fully capable of modelling the effects of non-uniform pressure fields and the
resulting crack propagation. The fluid has flown into the newly propagated
fractures, the pressure from which has begun to split apart the model. This
creates further tension cracks as seen in the deformation plot.

The pressure plots: Figure 78 shows that generally as more pressure is
introduced into the system through hole two, the lower the pressure must
be in hole one for complete failure to occur in the sample. Test 3 is the
only version which does not agree with this trend. The pressure increases in
hole one as more fluid is pumped into the system as expected, the rate of
pressure increase also increases as the fluid leaking from hole one begins to
reduce the pressure gradient across hole one’s boundaries and hence the rate
of flow and pressure leakage decreases. This allows the pressure to build more
efficiently with time due to less leakage. Once a fracture connects hole one to
a boundary the fluid pressure rapidly drops as the fluid can now traverse to
a drained boundary quickly and can no longer store fluid to build pressure.

5.5 Summary

The proposed methodology has been compared to several verification ex-
amples showing various aspects of the proposed methodology. The fluid-
mechanical coupling aspect was tested in the one dimensional test, correctly
predicted the fluid pressure response to the initial mechanical loading and
fluid boundary drainage. Three hydrofracture examples from the literature
were replicated with the proposed hydrofracture methodology comparing
favourably with analytical and numerical results on fronts of coupling and
hydrofracture behaviour prediction. Finally, the proposed model was used to
re-create experimental hydrofractures in porous sandstone with non-uniform
fluid pressure fields, replicating the experimental fracture paths due to the
concentrated fluid pressure.
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6 An Introduction to Plasticity

In reality, rocks don’t exhibit linear elastic behaviour, the model previ-
ously defined, neglects plasticity and the effects of strain hardening/softening.

The following chapter demonstrates the application of a simple set of
Mohr Coulomb constitutive equations in a finite strain scenario thanks to
the application of the Hencky strain.

6.1 Finite deformation procedure

Fracture mechanics can lead to large local deformations at the tip.
For this reason, it is important that implemented constitutive equations

and applied framework can still be applied with accuracy following large
changes to a model’s structure. Here the distinction is made between finite
and infinitesimal strains. Infinitesimal strains assume constant volume and
stationary elements, when this is not the case, theories that are based on
these foundations breakdown and become unstable [23].

Finite deformation algorithms overcome the shortcomings that transla-
tions bring to infinitesimal theories by using the deformation gradient as a
primary input. Deformation gradients consider only the relative movements
of nodes in relation to each other as previously shown in equation 25.

However, if plasticity is required in a model, the addition of plastic strain
becomes problematic, to overcome this, the Hencky strain can be considered
[65].

The conversion of the strains, using Hencky’s log strain, assumes that the
material properties are constant during volume change, if not then the new
dependency must be included within the model accordingly [20], this explains
isochoric assumptions that are typically seen in finite formulations to simplify
formulation procedure.

If we consider a strain on a one dimensional bar, as an integral of the
change in strain as shown in equation 157.
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The change in length can be denoted by a stretch vector U .

ε =

∫
δε =

∫
δl

l
= ln(

δl

l
) = ln(U) (157)

where ε is strain, l is length, δl is change in length and U is the stretch
vector.

In this form the infinitesimal strains can be extracted from finite deforma-
tion calculations whilst independent of translations, maintaining the consti-
tutive framework and strength of the finite deformation methodology.

With finite deformation another issue arises when plastic strains are con-
sidered, usually plastic strains are simply added to elastic strains however
the deformation gradient setup, this is not possible mathematically due to
the use of deformation gradients and stretch matrices [15]. The following
occurs with the addition of a plastic flow rule, in infinitesimal formulation
the typical isolation of plastic strains is as described in equation 158.

ε = εe + εp (158)

where εe and εp are elastic and plastic infinitesimal strains respectively,
assumed in an incremental setting [9].

Equivalent log plastic and elastic strains allow for infinitesimal plastic con-
stitutive models to remain applicable with the use of equation 159, this is
called the lee decomposition. The Lee decomposition allows for plastic con-
stitutive models to remain applicable [23] as shown in equations 160. The
log strain allows for infinitesimal constitutive models use within principal
stretches [112].

ln(U) = ln(Ue) + ln(Up) = ln(UeUp) (159)

where Ue and Up are the elastic and plastic constituents of the stretch vari-
able respectively [15]. Instead of trial plastic infinitesimal strains, trial plastic
stretch matrices are used as shown in equation 160 [130].
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[F ] = [F e][F p] (160)

where [F ] is the deformation gradient defined by equations 161 and 162
and the elastic and plastic components are [F e] and [F p] respectively [23].

[F ] = RU (161)

where R is the rotational component of the deformation gradient, dic-
tating the angle of which the stretch gradient U acts through, describing an
element’s deformation magnitude.

[F ] = 1 +
du

dX
(162)

where u is deformation andX is a set of spatial coordinates or the original
coordinates or in matrix form:

[F ] =


dx
dX

dx
dY

dx
dZ

dy
dX

dy
dY

dy
dZ

dz
dX

dz
dY

dz
dZ


where x, y and z are the deformed coordinates and X, Y and Z are the

original spatial coordinates.

6.2 Algorithm applicability

Finite deformation relies on a Lagrangian coordinate system whereas in-
finitesimal relies on a Euclidean system, hence it is important to be able to
convert in algebraic terms between the two systems. The following will show
that infinitesimal algorithms can be applicable to finite deformation scenar-
ios by using various assumptions. To show that this approach is possible the
associated increment of deformation within a finite deformation framework
is considered as shown in equation 163.
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[∆Fn+1] =

[
[1]− [

δ(∆u)n+1

δXn+1

]

]−1

= [1] +

[
δ(∆u)n+1

δXn

]
(163)

where [∆Fn+1] is the change in the deformation gradient of an element
between each iteration. u is the deformation across the spatial coordinates
Xn and n is the iterator. [∆Fn+1] is calculated by utilising the non-linear
structure matrix and the accompanying fluid pressures: p1 and p2 for hy-
drofracture problems. The updated deformation gradient is obtained through
the relationship as shown in equation 164:

[Fn+1] = [∆Fn+1][Fn] (164)

The deformation gradient can also be calculated from spatial data gen-
erated by a material formulation, using nodal deformation with the original
coordinate’s positions using equation 165.

[Fn+1] = [1] +

[
δun+1

δX

]
(165)

for completion, the deformation gradient increment can also be obtained from
the two iterated deformation gradients as shown in equation 166.

[∆Fn+1] = [Fn+1][Fm]−1 (166)

The trial Cauchy-Green strain matrix can be described by equation 167

[bet ] = [∆Fn+1][ben][∆Fn+1]T (167)

6.2.1 Plastic flow update

Important care must be taken numerically when calculating the plastic
deformation gradient Fp, ensuring appropriate elastic spring back in the finite
deformation model.

Initially the Plastic velocity gradient is in a stress free given configuration
is given as equation 168.
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[Lp] = [F p][F p]−1 (168)

where [F p] is the plastic deformation gradient and [F p] is the instanta-
neous plastic gradient. The plastic gradient is calculated by assuming the
same rotational component [Re] as the elastic, as shown in equation 169.

[Lp] = [Re]
[ ˙[F p][F p]−1

]
[Re]

T (169)

The rate of plastic stretching in the current configuration is given by
equation 170. Equation 170 assumes that the deformation is homogeneous
with zero plastic spin.

[Lp] = γ̇p[gp] (170)

where γp is the consistency parameter and gp is the plastic potential
function. Combining equations 169 and 170 gives equation 171.

[Lp] = γ̇p[Re]
T dg

dσ
][Re] (171)

Eterovic and Bathe [40] showed that, through the use of an implicit ex-
ponential integration map, the updated plastic deformation gradient can be
given by equation 172:

[F pn+1] = [Re
n+1]T exp[∆γp

dg

dσ
|n+1][Re

n+1][F pn ] (172)

An updated deformation gradient is given by equation 173.

[F en+1] = [Fn+1][F pn+1]−1 = [∆F ][Fn][F pn+1]−1 = [∆F ][F en][F pn ][F pn+1]−1

(173)
where [∆F ] is the increment of the deformation gradient, by substituting

equation 173 into 171 we obtain equation 174.

[F en+1] = [∆F ][F en][Re
n+1]T exp[−∆γp

dg

dσ
|n+1][Re

n+1] (174)
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Then by multiplying both sides by [Re
n+1]T we obtain the stretch trial

elastic stepped solution, shown in equation 175.

[Ue
n+1] = [F et ][Re

n+1]T exp[−∆γp
dg

dσ
|n+1] (175)

where [Ft] is the trial deformation gradient.
The natural log of equation 175 provides equation 176, a similar method

to a infinitesimal strain based constitutive model.

[εen+1] = [εet ]−∆γp[
dg

dσ
|n+1] (176)

Equations 175 and 176 have been implemented to capture plastic deforma-
tion while maintaining a finite deformation framework. The model maintains
independence from translation and rotation.

The updated Cauchy stress is obtained through the conversion shown in
equation 177

σn+1 =
1

Jn+1

Sn+1 (177)

where σN+1 is the Cauchy stress in the new configuration, Jn+1 is volume
change in the new configuration and SN+1 is the Piola Kirchoff stress in the
new configuration.

6.3 Constitutive Equations

The model considered is an elasto-plastic damage model; the elastic com-
ponent being a Neo-Hookean model, the plastic: a Mohr coulomb criterion,
the damage determined on thermodynamic energy principles. Equations 178
will be solved in a coupled format.

∇[Ce
ijkl∇u̇e] + Ḟe = 0 (178)

where Ce
ijkl is the elastic compliance matrix Ḟe are the internal forces

due to internal stresses, these are calculated according to equations 178 and
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100 [15]:

˙Ce
ijkl =

∫
µ

J
(b− I) +

λ

J
(ln(J))I (179)

where b is the Cauchy strain tensor and I is an identity matrix. b can
be calculated as shown in equation 180.

b = [F ]T [F ] (180)

and J can be calculated by finding the determinant of the deformation
gradient, shown in equation 181:

J = det[F ] (181)

The elastic and plastic force matrices are calculated, using the respective
elastic/plastic deformation gradient and material properties.

6.3.1 Elastic component

The Elastic compliance matrix here is described by equation 182.

Ce
ijkl =

λ

J
δijδkl + 2

µ− λln(J)

J
δikδjl (182)

with the introduction of damage, the stiffness values are expected to lower,
reducing the considered continuum’s mechanical resistance.

6.3.2 Plasticity component

The constitutive equation used for plasticity in this model were used
from [143] due to their simplicity and relevance to the planned rock model
application [28].

The general Yield function considered is shown in equation 183.

fy = τ − σmsin(φ)− Cu (183)
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where fy is the yield value, τ is shear stress shown in equation 184, σm is
mean stress shown in equation 185, φ is friction angle and Cu is cohesion.

τ =
σ1 − σ3

2
(184)

σm =
σ1 + σ3

2
(185)

The finite deformation framework considered the flow rule is written as
shown in equation 186.

∆ln(Up) = γp
∂gp
∂σ

(186)

The plastic potential function as shown in equation 187

gp = τ − σm sin(ψ)− c (187)

where ψ is the angle of dilation.
Equations 185 and 184 substituted into equation 186, yields the flow

function in terms of σ1 and σ3 allowing equations 188 - 190.

gp =
σ1 − σ3

2
− σ1 + σ3

2
sin(ψ)− c (188)

Differentiation of equation 188 yields the equations:

dgp
dσ1

=
1

2
(1− sin(ψ)) (189)

dgp
dσ2

= 0; (190)

dgp
dσ3

= −1

2
(1 + sin(ψ)) (191)

Equations 189 -191 are substituted into equation 188 showing the change
in principal strains can be described as shown in equations 192-194.

∆ln(Up
1 ) = ∆εp1 = γp

δgp
δσ1

=
1

2
γp(1− sin(ψ)) (192)
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∆ln(Up
2 ) = ∆εp1 = γp

δgp
δσ1

= 0 (193)

∆ln(Up
3 ) = ∆εp1 = −γp

δgp
δσ1

= −1

2
γp(1 + sin(ψ)) (194)

where the sub script i=1-3 represents the designated principal axis and γp is
the unsolved consistency variable. The consistency variable can be described
as shown in equation 195 [127].

γp =
fy(σ1, σ3)

(αp − λNψ)− (αp − λNψ)Nφ

(195)

where
Nφ =

1 + φ

1− φ
(196)

Nψ =
1 + ψ

1− ψ
(197)

With the plastic corrections procedure complete, the adjustments to a
deformation gradient can be highlighted.

From the new reduced elastic stress matrix and equation 198, the elastic
stretches calculated are then combined with plastic stretches to create the
final deformation gradient as shown in equation 198 [28].

[F ] = [Fe][Fp] = [Re][Ue][Re][Up] = (198)

[Re]

 exp(∆ln(Up
1 )) 0 0

0 exp(∆ln(Up
3 )) 0

0 0 1

 [Re]

 exp(∆ln(U e
1 )) 0 0

0 exp(∆ln(U e
3 )) 0

0 0 1


Note: when the internal elastic forces are recalculated for the next itera-

tion, the initial spatial coordinates must be accounted for to ensure realistic
behaviour. This is to ensure that if and when driving forces return to zero the
resting position accounts for plastic deformation but is still stable as shown
in Figure 85. If this was not considered, then in stage 3 of Figure 85 the x
deformation would be incorrectly represented by 0.91, leading to an internal
elastic force resisting nothing, causing model instability. Note: A 1 % plastic
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strain was allowed before all resistance was assumed to ceases. this was done
to replicate softening behaviour.

Figure 85: Example of updating spatial coordinates with plastic considera-
tions

6.3.3 Plastic energy dissipation

The damage law used in this constitutive model is energy based, for this
reason it is important with the introduction of plasticity and hardening, that
the energy of these be considered. The hardening function allows for addi-
tional energy to be stored in a recoverable method; this concept is explained
in Figure 86.

When plasticity behaviour is active the particles are rearranged due to
plastic flow, initially into a softer configuration, this is represented by the
hardening/softening regime. During the hardening/softening regime, the
stiffness of the material can increase/decrease allowing for greater overall

176



internal energy storage.

It can be seen on the left of the Figure 86 that after yielding the material
can store more energy due to softening compared to purely elastic stored
energy. However due to yielding and reduction in stiffness, if the material
was unloaded and reloaded the energy capacity is reduced. What remains is
the energy dissipated through plastic flow, this function must be dependent
on the flow function. Figure 86 shows on that after unloading that the
amount of energy that can be absorbed is reduced due to plastic softening,
hence the lower stiffness.

Figure 86: Energy usage in a constitutive model

The free energy functions used in this model describe how much energy is
stored internally as loading progresses. These are derived from consideration
of averaging the strengths of long chain molecules. The constitutive model
used for determining both the compliance matrix and free energy functions in
this paper is named the Neo-Hookean model [28]. Here we adjust in order to
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account for the effect of plasticity on energy accumulation in the continuum
in consideration of plastic deformations offsetting spatial coordinates using
a modified version for shear calculation, shown in equations 199 - 201.

dE =
1

2
µ(I∗c − 3) (199)

where dE is bulk energy, µ is the shear modulus and I∗c is the trace of
the Cauchy strain vector, a vector of the principal strains.

I∗c = trace

(
dxe+dxp

dXp

dye+dyp

dXp

dze+dzp

dXp

dxe+dxp

dXp

dye+dyp

dYp
dze+dzp

dXp

dxe+dxp

dZp

dye+dyp

dZp

dze+dzp

dZp




dxe+dxp

dXp

dye+dyp

dXp

dze+dzp

dXp

dxe+dxp

dXp

dye+dyp

dYp
dze+dzp

dXp

dxe+dxp

dZp

dye+dyp

dZp

dze+dzp

dZp


)

where dXp, dYp and dZp are the spatial coordinates, accounting for plastic
deformation.

dτ =
1

2
λlog(J)− µlog(J) (200)

where dτ is the surface energy, λ is the Lamé’s material constant and J is
volume change calculated according to equation 201.

J = det

(
dxe+dxp

dXp

dye+dyp

dXp

dze+dzp

dXp

dxe+dxp

dXp

dye+dyp

dYp
dze+dzp

dXp

dxe+dxp

dZp

dye+dyp

dZp

dze+dzp

dZp




dxe+dxp

dXp

dye+dyp

dXp

dze+dzp

dXp

dxe+dxp

dXp

dye+dyp

dYp
dze+dzp

dXp

dxe+dxp

dZp

dye+dyp

dZp

dze+dzp

dZp


)

W = dτ + dE (201)

where W is total work.

The plasticity methodology implementation is shown in algorithm 4.
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Algorithm 4 Fracture procedure with plasticity
1: Set initial parameters; Cu, µ, ν, mass and boundary conditions
2: while t < tfull do . run time of simulation
3: while δ∆log(Up) > 0.05 do check1
4: Assume elastic case on first increment of each time step
5: Derive deformation gradients from deformation and spatial coor-

dinates by F = du
dX

6: Calculate internal pressures and self-weight and put in matrix
forms; Ḟ =

∫
µ
J

(b− I) + λ
J

(ln(J))Idxdy
7: Solve for step deformations: ∇[Ce

ijkl∇u̇e] + Ḟe = 0
8: Find new deformation gradient [Fn+1]
9: Decompose into elastic rotation and stretch component; [Rn+1]

and [Un+1]
10: Find equivalent Hencky strain ε = log([Un + 1])
11: Assume [Rp

n] = [Re
n+1]

12: Check yield criteria for each element: f = τ − σmsin(φ)− c
13: Calculate trial plastic strains

∆ln(Up) = γp
∂gp
∂σ

gp = σ1 − σ3 sin(ψ) γp = 1
h
δf
δσ
h = −(1

3
(1 +

sin(φ)sin(ψ)))
1
2

14: convert plastic and elastic strain to trial stretch vectors
[Up] = [1 + εp, 0; 0, 1 + εp] [Ue] = [1 + εe, 0; 0, 1 + εe]

15: Find new deformation gradients and volume change, assuming
previous rotation gradient [Fp] = [Up][Re] [Fe] = [Ue][Re], Je =
det(Fe) and Jp = det(Fp)

16: Calculate energy in each element and compare energy capacity
an assign damage

∆D = min(W
R0
, 1)

D = max(D −∆D, 0.1)
17: End While δε > 0.05
18: Finish current time step, t = t+ 1
19: Goto line 2
20: End while t < tfull
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6.4 Finite deformation plasticity verification

In this section the plasticity equations and procedure within a large strain
framework will be verified on a simple/ classic foundation bearing problem.

The Prandtl solution to bearing capacity failure has been used to verify
the plastic constitutive equations implementation. First background on the
problem will be presented, followed by results produced by the proposed
plasticity code and Abaqus.

The plasticity failure mechanism of a pad foundation according to Prandtl
is shown in Figure 87.

Figure 87: Upper bound solution by Prandtl for bearing capacity

where δwload is the displacement of the load F and hence the work done
by the load δW , is as shown in equation 202.

δW = Bwload (202)
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where, δwa and δwb are the slip plane displacements of the two failure
wedges and δwfan is for the fan. B is the width of the foundation

The internal energy accumulated can be calculated by considering the
cohesion along the boundary of the failure envelope; two wedges and a fan.

Table 9: Internal energies

Section Length Displacement Work done
Wedge a 1√

2
B

√
2δwf CuBδwf

Wedge b 1√
2
B

√
2δwf CuBδwf

Fan πB δwf πCuBδwf

Total (2 + π)Cuδwf

A slip plane failure is assumed for the failure of the foundation. The
values calculated in the second column of table 9 show the length of the failure
surface that appears on the given wedge, the length that is supported by soil
cohesion. The displacement describes the distance that forces generated by
cohesion act through.

With equilibrium assumed the failure load can be calculated thus equation
203 shows:

δW = Bwloadδwf = (2 + π)Cuδwf (203)

therefore:
Bwload = (2 + π)Cu (204)

To ensure that the plasticity component of the model is working, a simple
foundation pad failure process has been selected from the literature. In the
paper by Nazem [111] [110], the considered model verification is 4m by 8m,
the pad 0.5m long as shown in Figure 88.

To accommodate this the pad force for simplicity was modelled as a small
square placed on the pad to re-create the load, the load is incrementally
increased, the resultant deformation of all points within the pad are recorded
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and compared to a reproduced Abacus model with Mohr Coulomb plasticity
model.

Figure 88: Pad verification model layout

The material properties used in this verification can be found in table 10.
For this simulation both the fluid coupling and damage model were disabled
to allow a clearer comparison of the plastic methodologies.

Table 10: Material properties for numerical pad experiment

Young’s modulus E 2 MPa
Poisson’s ratio ν 0.3
Angle of friction φ 15
Dilation angle ψ 15
Cohesion Cu 2 kPa

In this model the pad is loaded incrementally, here at a constant rate.
The analytical approach assumes the two wedge’s self-weights counter-

act each other but for simplicity model symmetry is used and self-weight is
ignored in both the proposed and Abaqus model.

The applied load required for failure is related to the cohesion as previ-
ously discussed, hence the results shown in Figure 89 have their vertical load
normalised by the cohesion, in this case: 2× 103Pa.
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The bottom boundary was considered fixed in all directions, the two edge
boundaries only fixed in the x deformation and the rest of the boundaries were
considered free. The model was calculated assuming plane stress conditions.
Pad deformation was calculated by averaging the displacement of the nodes
contained in the pad region, this calculated average is shown in figure 89.

Figure 89: Load displacement graph for a loaded foundation comparing;
Abaqus output (yellow) and proposed solution (blue)

As seen in Figure 89 the elastic response is similarly predicted when com-
pared to the Abaqus solution showing good agreement of the Neo-hookean
finite model with the linear elastic model utilised by Abaqus, showing similar
stiffness.

Figure 89 also shows similarities in prediction of the yield occurring when
the load is at 2MPa having deformed 0.03m, after this point the prescribed
1% strain softening behaviour and wedge failure take place.

The transition to perfectly plastic behaviour is uneven, starting at a pad
displacement of roughly 0.025m where a sudden increase in stiffness is ev-
ident. The proposed model compensates at a pad displacement of 0.035m
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becoming more stable once fully plastic in the failing region. This deforma-
tion pattern indicates that more consistency is required particularly in the
yielding component with more care taken on internal stress calculations dur-
ing yield. The model becomes unstable at 0.07m of pad displacement, after
this point no results could be produced.

The point of failure/ultimate failure load is similar to that of the solution
from Abaqus; roughly at the load of 3.95MPa and pad deformation of 0.03m.
The proposed model shows a slight premature failure when compared to the
4.1MPa failure prediction from Abaqus. The proposed solution is more stable
than the Abaqus solution, shown by the prolonged strains that are allowed
to occur becoming unstable at 0.07m of deformation as shown in Figure 93.

The steady strain softening behaviour can be spotted in the proposed
solution, to the point where the modelled soil material can no longer provide
any resistance to the applied load, hence the large strains that occur post
yield.

Figure 90: Elastic deformation from proposed solution (left) and Abaqus
solution (right)

Both models shown in Figures 90 and 91 demonstrate the expected wedge
failure mode exhibited in Figure 87. The wedge clearly identifiable in both
Figures 92 and 93. The model deforms downwards local to the pad and the
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adjacent material heaves to accommodate the motion of material. The x
deformation direction is conforming to the flow of material to accommodate
the predicted heaving in the observed failure mode.

Figure 91: Elastic deformation from proposed solution (left) and Abaqus
solution (right)

The magnitudes of the calculated deformations are similar, the maximum
elastic y deformation from the proposed solution is -0.04m and a maximum
heave deformation of 0.006m. When compared to the Abaqus solution of
-0.05 pad deformation and 0.005m heave.
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Figure 92: Plastic deformation from proposed solution (left) and Abaqus
solution (right)

Both models demonstrate the expected failure mode shown in Figure 87,
the wedge is identifiable again in both Figures 93 and 92.

Figure 92 and 91 show the Abaqus plastic deformation plot in both the
x-x and y-y direction at point of yield whereas Figure 93 shows the defor-
mation profiles produced by the proposed solution using the Hencky strain
transformation.

There is a slight plastic heave predicted in both models, showing good
agreement. The proposed solution over predicts the plastic deformation at
a magnitude of 0.3m. The calculated plastic deformation from the Abaqus
solution predicts a maximum y deformation of 0.17m.

The model deforms local to the pad and the adjacent material heaving to
accommodate the motion similar to that shown in the plastic x deformation
plot shown Figure 90 comparing the proposed solution vs the output Abaqus
solution.
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Figure 93: Plastic deformation from proposed solution (left) and Abaqus
solution (right)

The deformation in the x direction is conforming the flow of material to
accommodate the expected heaving. Most deformation is local to the applied
load, decreasing with distance from the load.

Figure 91 and 93 shows that using an equivalent Hencky strain allows
plastic theorems, in this work: Mohr coulomb is applied within the finite
deformation framework to capture realistic soil behaviour.

As expected after observing the relevant deformation plots and failure
modes in Figures 93 and 92 the yield occurs along the failure plane of the
wedge mechanism in the top left of the model. This is confirmed in figure 94
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Figure 94: Plastic yield plots from proposed solution (left) and Abaqus
solution (right)

For completion the specific points of yielding are shown in Figure 94.

6.5 Summary

The Hencky strain conversion has been applied to an infinitesimally based
constitutively based model Mohr-Colomb to a large strain framework. The
resultant methodology is compared with the classical solutions for the failure
surface of a pad foundation along with a numerical Abaqus solution. The
results for this numerical experiment showed reasonable agreement.

The produced plasticity framework is stable and applicable to the hy-
drofracture problem but requires more rigorous validation within the context
of fractures/hydrofractures, especially within the context of hydrostatic stress
confinement. The developed plasticity framework has issues with maintaining
sign, magnitude and boundary conditions, further development is required
to couple the elastic and plastic behaviours especially in regard to behaviour
at considered boundaries.
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7 Analysis

The initial goal of this thesis was to model complex hydrofractures with
relatively low computational demand and minimal input variables. Through
the verification a suitable hydrofracture model has been produced and val-
idated against experimental works. The methodology offers a numerical
model capable of solving many hydrofracture problems. However, the de-
veloped framework needs to be built upon for practical application as the
following analysis will highlight.

7.1 Minimisation algorithm analysis for fracture

The fracture framework in this thesis is based on the pre-existing work by
Fracfort and Marigo on minimisation work with a pre-existing finite deforma-
tion constitutive model; the Neo-Hookean model [39], introduced in section
3. This model is derived from strain invariants of a free energy function [15]
which gives the model its unique properties. Using this approach; internal
stresses and stored energy, the methodology is simplified.

In this thesis the methodology is applied to more complex fracture sce-
narios, see section: 3.4 and 5.4 for examples.

It has been shown that the fracture methodology is capable of predicting
experimental fracture path results with reasonable accuracy as shown in with
a range of verification examples discussed in section 3.4.

The proposed model is computationally simple to solve, many variables
are reused in the calculation of both the internal stresses, deformation, energy
and damage.

The framework’s shortfall is that it assumes an isotropic material and
a specific constitutive model originally developed for homogeneous isotropic
vulcanised rubber [61]. The proposed model can be adapted for heteroge-
neous behaviour, however the relation between the Láme constant and shear
modulus must be accounted for in order to maintain the model’s benefits.

Isotropic behaviour is inherently baked into the derivation of the free
energy function utilised and therefore a new free energy function and con-
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stitutive model would be required in order to account for more complex
anisotropic materials, limiting the proposed methodologies capabilities.

The minimisation process can be applied to any constitutive model if there
is a method for calculating accumulated damage through energy and stored
mechanical energy. By considering two types of energy during the fracturing
process, this specific application of the minimisation process of the stored en-
ergy and fracture energy neglects the effect of kinetic energy and is therefore
limited to quasi-static load cases.

The minimisation algorithm could be applied by alternating between ad-
ditional fields of energy however as the process would be decoupled the
amount of iterations between the considered energies would escalate the com-
putational demand of the algorithm, compromising the main strength of this
approach.

In this work the methodology cannot account for the work done by bound-
ary forces they are neglected and replaced by displacement boundary condi-
tions.

The simple slit verification example produced reasonable results in the
prediction of fracture initiation and propagation as shown in section 3.4.
Created inclusions at the top and bottom of the sample were incorrectly
accounted for in post failure behaviour when the fractures were compression
or shear-tension based, offering incorrect residual strength. This is most
evident in the 90 degree slit experiment.

The minimisation algorithm calculates the gradient of energy terms through-
out the domain as described in section 3. When a branch fracture occurs and
both branch fractures are equal in magnitude the algorithm is reasonably ac-
curate in predicting branching behaviour. The issue arises when the two
branches are not equal in magnitude, the algorithm can tend to favour the
dominating branch and as a result overestimate the larger crack and under
estimate the smaller branch, similar to the fracture shown in section 3.4 Fig-
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ure 38. The prediction algorithm by the minimisation approach becomes
more accurate by varying the amount of allowed newly damaged material,
increasing the capability of picking up on branching behaviour.

It is mentioned that as this methodology was developed for hydrofractures
where the main driving force is the pressurised fluid. However, with all hy-
drofracture methodologies considered the final goal is to model large fracking
scenarios where both hydrofractures and typical fractures are required to be
modelled simultaneously [136]. Therefore, if the model is taken forward this
problem needs to be overcome for large scale applications.

The issue with incorrectly predicting branches was overcome in sections:
3.4 and 5.4. This was overcome by shortening the time step used in the
numerical simulation and reducing the minimisation parameters ke and v(k),
shown in equation 15. These values improved the ability to predict unusual
branching fractures with less user input, consequentially however, the simu-
lation time increased.

In most results obtained, the values of ke and v(k) were modified to
ensure that any expected branching behaviour was captured by the proposed
methodology, which again, was only possible with pre-existing data sets and
is not feasible in practical application.

The damage model utilised in this model is simplistic, but is based on
theory which offers up wide range of uses, hence why it is applied in many
other works [85] [86] [81] [102] due to its simplicity and inherent flexibility of
the damage approach.

The damage values in this thesis are based on an element by element ba-
sis, making all produced results to an extent, mesh dependent. In most of the
numerical experiments undertaken in this thesis without complex branching
behaviour fine meshes were not required. Some coarse meshes of 100 ele-
ments can be used for modelling test one in the non-uniform hydrofracture
experiment, shown in section 5.4. this was only possible because the load
case was the fluid pressure splitting the model in two.
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In the single slit numerical slit experiments carried out, the newly damaged
elements were considered to maintain their mass and some of their original
strength. For added accuracy additional data would be required to determine
post fracture mass and strength accurately.

Mass reduction was not an issue in the presented methodology as self-
weight was never the driving force for fracture initiation in the undertaken
numerical tests. However, reduced strength played a key part in post fracture
behaviour. The self-weight of voids i.e. in the slit numerical experiment and
the non-uniform experiment the mass densities were set as 0kg/m3.

Furthermore, the friction between fracture walls was not captured and
would require significant changes in order to implement within the existing
framework.

This issue was solved for the 0 degree slit example in an ad-hoc manner,
see Figure 34 for further details. However, this was a specific case where
the expected result was already observed experimentally. The fix was trial
and error until the correct volume penalisation was found. In reality this is
not possible unless a range of experimental data is already available that is
applicable to the scenario.

The proposed model proved reasonably stable during numerical experi-
ments. In the numerical experiments from section 3.4, stability was never
truly tested due to the slow rate of loading of 0.05 mm/s. The model could
take on deformation driven loads of 20 mm/s and be stable until the 200mm
tall sample was compressed 100mm, which was sufficiently stable for the
needs of the numerical verification.

In the single slit experiment, there were no signs of damage until 0.8mm

of deformation, this value could have been jumped to with a single large time
step then resuming at 0.05mm/s and would have maintained the same degree
of accuracy. In order to achieve this however a large degree of experience
about the modelled test would be required.
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The single slit examples in section 3.4 acted with the slit’s position known
ahead of time and does not reflect a realistic, practical fracture initiation
scenario.

The variable fracture energy term used to determine the capacity of ma-
terials was calculated from pre-existing stress-strain graphs provided and
would not always be available in practical scenarios, especially in regard to
hydrofractures.

Plane stress issues: fracking scenarios are vast in size and need to account
for three dimensional space. The current implementation is plane stress and
cannot account for realistically fractures/ hydrofractures in its current state.

A key strength of the minimisation methodology is the model’s capability
to capture multiple fractures propagating. The minimisation framework eval-
uates the whole continuum’s energy field and therefore every element is con-
sidered whether damaged or not, therefore the computational demand of the
utilised methodology does not increase with additional fractures. However,
in order to model several fractures accurately the mesh must be adequate for
fractures, which can rack up the computational cost. This drawback would
be solved with dynamic mesh refinement.

An issue with the considered framework is the initiation of newer frac-
tures after some fractures have already gathered momentum. This occurs
when there is more energy included within pre-existing fractures, the energy
included within fracture initiations far smaller and therefore the existing
fractures take priority.

The large deformation framework allows the inclusions created during frac-
ture to remain stable. The main cause of the proposed methodology becom-
ing unstable was through in admissible deformation. This allows some post
failure behaviour to be observed in the single slit experiments after a small
chunk fractures off. By reducing the energy contributions of fully damaged
elements they will no longer dominate fracture behaviour.
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7.2 Hydrofracture algorithm analysis

In the literature review pore network models were mentioned as the most
accurate solution for modelling multiple flow paths through rocks. Pore net-
work models are cumbersome computationally and are difficult to implement
with fracture models due to their complex structure when compared to con-
tinuum fracture prediction approaches.

The presented work uses a damage model with a dual porosity flow frame-
work in order to capture realistic flow networks created from hydrofractures.
All simulations were carried out on a single machine on an I7 processor (2016;
solutions calculated in under an hour).

The fluid methodology derived in section 4.1 assumes fully saturated soil/rock.
Therefore, the methodology is unsuitable to account for dry or partially dry
scenarios. During fracking it is not uncommon for fracking fluid to come a
across dry voids, losing fluid pressure. This loss in pressure is important in
determining the length and direction of created fractures.

Fractures occur in three dimensions, these fractures carry flow also in three
dimensions. Three dimensions are required for the realistic analysis of hy-
drofracture problems. The main challenge with extending to the third di-
mension is a problem of available computational resources.

The Mumford Shah functional is easily posed in three dimensions, how-
ever the solving of the three dimensional equations is far more difficult to
solve in an accurate timely manner [87]. A three dimensional version of the
free energy function would be capable of modelling the energy with a three
dimensional domain, the challenge would rise from the consideration of ad-
ditional fracture modes. With additional energy paths, further development
would be required in order to implement the equations similarly. Further
computational demand could be reduced by compartmentalising the min-
imisation algorithm more intelligently at fracture tips instead of constant
monitoring the full domain at each time step/iteration. This would com-
promise accuracy somewhat as some energy would be disregarded however
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resources saved via compartmentalising could be better spent elsewhere such
as finer mesh.

The minimisation concept applied in this thesis considers the entirety of
the domain when evaluating possible fracture propagation. With the advent
of fluid driven fractures, satisfying the minimisation algorithm and finding
the energy minimal whilst maintaining pressure equilibrium has increased
computational demand. However, it need only be applied in regions that are
already damaged, potentially reducing computational demand. It is reason-
able to assume that fractures will only initiate from pre-existing fractures as
there is an abundance of fractures in shale rock and the driving force from
fluid is easy. This is also why the failure of predicting the fracture path in
the intact sample does is less significant in the context of fracking problems.

In the formulation of the coupled dual porosity framework the traction
force component was neglected for simplicity, this does reduce the capacity
of the framework. However, in the context of fracking, shale rock typically
is under constant confinement with no active external forces applied [122].

Confinement can be modelled artificially by displacement forced bound-
aries when knowing the Young’s modulus of the rock modelled and even
calibrated to ensure the correct stress conditions throughout the work are
maintained. Confining stress has not been tested with this methodology due
to the difficulty of testing such conditions experimentally, hence no data to
validate the results could be sourced in the literature.

In section 7.1 the applied minimisation would sometimes favour one frac-
ture over another when running through the minimisation loop which com-
pares different damage compositions and how much either energy either store.

This problem changes with the introduced fluid methodology. Instead of
sometimes having only one fracture instead of a branch, branching fractures
are almost encouraged with the fluid aspect introduced into the minimisa-
tion algorithm. The encouragement results from the minimisation algorithm
realising that branched fractures spread pressure and can dissipate energy at
a greater rate, hence the large degree of branching shown in Figure 103.
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To ensure fluid can flow into newly created fractures, the minimisation
loop is rerun with the new fracture permeability in place, letting fluid pres-
sure in the system to exchange further energy in the system. This can be
simply remedied by reducing the number of reset loops during the minimi-
sation algorithm, however as a trade of the fluid flow is stagnated, no longer
capturing fluid lag behaviour.

In the pressurised Penny Crack verification example from sections 5.2.1
and 5.3: the approach was stable primarily due to the fracture driving forces
being minimal and not highly localised when compared to the locality of fluid
pressure applied to the walls of the penny shaped fractures.

In the application of high fluid pressure in section 5.4: there were occa-
sionally cases where damaged elements would be subject to a high local fluid
pressure and undergo large inadmissible displacement. This was solved in
many cases by reducing the time step and pressure changes. This allows for
smoother pressure changes and stable behaviour in the implemented frame-
work. This was a particular issue in the non-uniform verification examples
where fully saturated voids were modelled as massless damaged elements. To
fix this an intervention was made in the algorithm to improve stability, this
is not reasonable in practical application, as it requires knowledge ahead of
the test.

The Darcy equations used in the derivation of the fluid methodology shown
in section 4 assumes steady saturated flow, which cannot account for fluid
momentum. Which in the case of realistic fracking scenarios can be important
[14].

Another assumption made during the derivation of the fluid methodology
was isotropic, homogeneous permeability and porosity in all directions. In
the case of rock fabric there is usually a tendency for fluid pressures to favour
flow in the direction of the rock fabric or pre-existing fractures or both. The
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proposed methodology would require additional work in order to account for
the natural heterogeneity of rock.

In chapter 3, the fluid methodology is combined with a damage methodol-
ogy in order to capture when porous material becomes fractured, capturing
an associated change in permeability and porosity. The change in these ma-
terial properties are numerically harsh and the transition is not reflective of
what occurs in hydrofracture scenarios, albeit effective modelling at compu-
tationally low demand.

Ignoring the changes in material properties due to hydrofracture propa-
gation leads to the question of what occurs to the fluid pressure in a con-
sidered element while transitioning. It is assumed in this approach that the
fluid pressure is conserved and carried over from the porous pressure p1 to
fracture pressure p2 initially. This pressure is recalculated in the following
algorithm iteration to account for the new displacements and the resulting
pressure changes, capturing fluid lag to an extent. This is reasonable for the
verification examples considered as the porous pressure has not been signif-
icant when compared to the fracture pressures and have not led to fracture
within considered context [124].

Fluid lag is captured within the framework, as shown in the non-uniform
hydrofracture experiments however, the fluid was still calculated in a quasi-
static manner not transferring the fluids momentum over in to the method-
ology, further specialised testing would be required to verify this aspect of
the model.

Throughout this thesis the proposed methodology is compared against
several pre-existing analytical solutions, such as the; one dimensional consol-
idation problem in section 5.1, pressure filled penny crack dimension and the
pressure distributions around a fluid filled fracture in section 5.

The consolidation problem used a fluid density of 0kg/m3 in order to re-
duce complexity, this should not affect the result but rather the rate of con-
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solidation. However this discrepancy has been shown in other works to not
affect the consolidation curve significantly when compared to analytical so-
lutions [87].

For the continuous flow penny crack example in section: 5.3, the analytical
fracture equation 155 assumes constant permeability in the crack, however
with the cubic flow equation used in the framework implementation, the
permeability of the fracture is not constant. Although, the fracture opening
in this particular verification does not vary significantly enough to affect the
result in this case readers should be mindful of the discrepancy.

In the two penny crack fractures shown in sections 5.2.1 and 5.3 the do-
mains are considered are 20+ times larger than the initial crack length com-
pared to the initial penny fracture. This gives the penny fracture indepen-
dence from imposed boundary conditions, hence the differing pressure profiles
and the varying appearance of two dimensional consolidation behaviour.

The implemented damage model cannot model micro fractures or their
flow. These are estimated with Darcy’s equations. The implemented damage
model works on an element basis and is inherently mesh dependent with the
addition of fluid pressure assumed to fill the entirety of the element it is
modelling. Modelled pressures generate force in all directions equally, this
introduces some error into the methodology. The errors can be reduced
by finer mesh however the issue will always be present regardless of how
fine the mesh becomes. Micro fractures naturally occur in rock through
their formation, the damage model also limits how micro fractures can be
accounted for.

7.3 Plastic algorithm analysis

The plastic component in this thesis is the least rigorous compared qual-
itatively as shown in section 6.
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During the derivation of the plastic large strain conversion the plastic ro-
tation matrix constituent of the plastic deformation gradient was considered
to act in the same manner as the elastic rotation matrix.

This combined with the exponential terms used in the Hencky strain
conversion increases the instability of the approach, shown in equation 6.3.2,
section 2.5. This assumption hinders the approach so the original strength
of the elastic version being based on a finite deformation framework, almost
irrelevant. However, the large strain methodology utilised allows infinitesimal
constitute methodologies to be used in large strain context increasing their
stability when compared against purely infinitesimal approaches.

As prior mentioned in both prior analysis sections 7.1 and 7.2; with ad-
ditional components the number of comparisons of energy paths increases
when additional behaviour is introduced, the computational demand in-
creases. This is especially true in the plastic hydrofracture as the plastic
correction would also require the fluid pressures be re calculated during sig-
nificant plastic deformations.

To accommodate the minimisation compartment additional reset loops
were created to ensure the lowest energy value was found whilst maintaining
integrity on the fluid/plastic side. These additional loops cause some of the
equilibrium equations to be modified with slight variations in damage fields,
requiring more computational resources.

This drawback sacrifices computational demand for accuracy however by
assuming the flow/ plastic deformations occur independently of fracture de-
velopment these loops may be reduced. In the case of the repeated single
slit experiment with plasticity, there was little difference in results when
the number of minimisation loops were reduced. The key difference was ob-
served in the fluid extension of the framework. When the loops were reduced,
complex branching behaviour was reduced, instead only equal branches were
observed. In most cases this did not impact the results from the numerous
hydrofracture verifications undertaken including consolidation, penny crack,
continuous flow penny crack, stress contour penny crack and the tests 1:3.
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Tests 4:5 were the only hydrofracture verifications that required multiple
minimisation loops in order to yield reasonable results.

Mohr Coulomb was used in the proposed plasticity framework due to con-
stitutive model’s shown favour of modelling highly compressible materials
such as rock/ concrete [122], discussed in section 2.5.

The Mohr Coulomb constitutive methodology’s key strength relies on the
growing yield criteria with confining stress and prediction of shear failure.
The model’s lack of accounting for tension failure in this framework does
pose an issue with disregard to plastic tension mode failures. Furthermore,
the Mohr coulomb model assumes steady loading conditions, which is not
the most suitable for fracture/hydrofracture problems [162]. A more suitable
constitutive model would be required for accurate ductile modelling.
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8 Conclusion

The goal of this research was to produce and numerically implement a
hydrofracture framework that can correctly capture the complex phenom-
ena that occur when matter is subject to highly pressurised such as porous
flow, fracture propagation, flow within fractures, fluid compressibility, fluid-
mechanical coupling and finite deformation.

The framework proposed in this thesis uses two pre-existing frameworks for
modelling fracture and geomechancial systems, combining the two, using the
damage variable to distinguish fractured and porous domains. This simplifies
the modelling process, reducing the required computational resources and
initial laboratory testing for variables required.

The result was a highly efficient model which requires minimal input
variables and is computationally inexpensive, all solutions provided have been
ran on a single (i7 Processor) desktop computer. The ability of the proposed
model to capture fracture/ hydrofracture behaviour has been demonstrated
through various verifications against numerical, analytical and experiential
data sets as shown in sections: 3.4, 5.1, 5.2.1, 5.3 and 5.4.

The key findings and developments of this research are as follows:

1. The Methodology has been proven to demonstrate accurate prediction
of many hydrofracture scenarios.

2. The minimisation methodology is suitable for modelling complex frac-
ture behaviour, proven by comparing numerical outputs against exper-
imental and numerical fracture paths.

3. The minimisation approach is computationally inexpensive, flexible and
simple to implement within existing framework. The main drawback
being that the computational overhead increases as more phenomena
are introduced into the considered framework.
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4. Several methodologies from geomechanics and fracture mechanics have
been considered to create a model post fracture behaviour in terms of
strength and fluid flow.

5. The prediction algorithm by the minimisation approach becomes more
accurate by varying the amount of allowed newly damaged material
unless the change in distribution becomes one element of damage with
each iteration.

6. The dual porosity coupling can be used to capture the flow properties
of hydro fractures. The use of which has the potential to reduce the
number of required variables.

7. In section 5.2 and 5.2.1 the issue of two dimensional consolidation in
closely confined penny cracks inhibit the progress of hydrofractures was
classified. The Penny crack within a large domain shown in section:
5.3 further verified this behaviour trend.

8. Section 5.2 and 5.2.1 also showed how leakage from fractures to the
surrounding porous system dictate pressure changes within the contin-
uum and the resultant mechanical changes further proving that leakage
is an important consideration mechanically as well as environmentally.

9. Section: 5.1 and showed that the developed methodology can capture
geotechnical behaviour. All whilst maintaining fracture/ hydrofracture
capability and suitability.

10. The laminar flow assumption of the utilised Darcey equations discussed
in section 7.2, is reasonable in the aspect of small scale hydrofractures
as shown in section 5.4 where flow rate did not effect hydrofracture
path direction, hence the accurate prediction of hydrofracture path by
the developed model.

11. That the Hencky log strain conversion for infinitesimal constitutive
models is applicable to large strain fractures for quick applications of
pre-existing plasticity methodologies.
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12. The brittle-to-ductile transition is simulated accurately in the pad slip
plane simulation, showing that the softening behaviour from the Mohr
Coulomb was transferable to the large strain model.

8.1 Further work

In summary the model developed in this study shows promise in both
its simplicity and capability. However, the hydrofracture theory requires de-
velopment in three dimensions and to be compared against practical frack-
ing results, particularly fracking scenarios under high confining pressures.
The plasticity framework requires further development so the hydrofracture
model may regain the flexibility the elastic approach maintains to improve
stability. Further validation against laboratory experiments which contain
plasticity fracture behaviour.

Specific aspects for suggested further work include:

1. Coupling the hydro aspect of the methodology with damage. This
could effectively reduce number of required equations, improving com-
putational efficiency and accuracy.

2. Extending the methodology into the third dimension. This would al-
low for more realistic hydrofracture scenarios. Furthermore, the im-
plementation should perhaps move to an efficient coding language, to
improve computational efficiency. Matlab was used in this approach for
simplifying the numerical implementation of fluid coupling. However
Matlab did impede on the progress of calculation time, not allowing
the approach’s efficiency to be compared to other methods in terms of
resource usage.

3. Adopting a hypo-elastically derived plastic function in order to improve
stability and rigorous testing of ductile fractures with closely observed
comparisons.

4. Account for additional phenomena such as temperature, dual liquid
flows, etc. Further improving the model’s capability to model fracking
scenarios practically.
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[141] Vavro, L., Souček, K., Kytỳř, D., Fíla, T., Keršner, Z., and

Vavro, M. Visualization of the evolution of the fracture process zone
in sandstone by transmission computed radiography. Procedia engi-
neering 191 (2017), 689–696.

[142] Vaz Jr, M., and Owen, D. Aspects of ductile fracture and adaptive
mesh refinement in damaged elasto-plastic materials. International
Journal for Numerical Methods in Engineering 50, 1 (2001), 29–54.

219



[143] Vermeer, P. A., and De Borst, R. Non-associated plasticity for
soils, concrete and rock. HERON, 29 (3), 1984 (1984).

[144] Wang, P., Cai, M., and Ren, F. Anisotropy and directionality of
tensile behaviours of a jointed rock mass subjected to numerical brazil-
ian tests. Tunnelling and Underground Space Technology 73 (2018),
139–153.

[145] Wang, Y., Pu, J., Wang, L., Wang, J., Jiang, Z., Song, Y.-F.,

Wang, C.-C., Wang, Y., and Jin, C. Characterization of typical 3d
pore networks of jiulaodong formation shale using nano-transmission
x-ray microscopy. Fuel 170 (2016), 84–91.

[146] Wangen, M. Finite element modeling of hydraulic fracturing on a
reservoir scale in 2d. Journal of Petroleum Science and Engineering
77, 3-4 (2011), 274–285.

[147] Wangen, M. A 2d volume conservative numerical model of hydraulic
fracturing. Computers & Structures 182 (2017), 448–458.

[148] Wei, M., Dai, F., Xu, N., Zhao, T., and Xia, K. Experimental
and numerical study on the fracture process zone and fracture tough-
ness determination for isrm-suggested semi-circular bend rock speci-
men. Engineering Fracture Mechanics 154 (2016), 43–56.

[149] Wei, M.-D., Dai, F., Xu, N.-W., and Zhao, T. Stress intensity
factors and fracture process zones of isrm-suggested chevron notched
specimens for mode i fracture toughness testing of rocks. Engineering
Fracture Mechanics 168 (2016), 174–189.

[150] Winner, R. A., Lu, G., Prioul, R., Aidagulov, G., and

Bunger, A. P. Acoustic emission and kinetic fracture theory for
time-dependent breakage of granite. Engineering Fracture Mechanics
199 (2018), 101–113.

220



[151] Witherspoon, P. A., Wang, J. S., Iwai, K., and Gale, J. E.

Validity of cubic law for fluid flow in a deformable rock fracture. Water
resources research 16, 6 (1980), 1016–1024.

[152] Wu, J., Feng, M., Yu, B., Zhang, W., Ni, X., and Han, G.

Experimental investigation on dilatancy behavior of water-saturated
sandstone. International Journal of Mining Science and Technology
28, 2 (2018), 323–329.

[153] Wu, Y.-S., Liu, H., and Bodvarsson, G. A triple-continuum ap-
proach for modeling flow and transport processes in fractured rock.
Journal of Contaminant Hydrology 73, 1-4 (2004), 145–179.

[154] Xiao, S., Wang, H.-L., Liu, B., and Hwang, K.-C. The surface-
forming energy release rate based fracture criterion for elastic–plastic
crack propagation. Journal of the Mechanics and Physics of Solids 84
(2015), 336–357.

[155] Xue, L., and Wierzbicki, T. Ductile fracture initiation and propa-
gation modeling using damage plasticity theory. Engineering Fracture
Mechanics 75, 11 (2008), 3276–3293.

[156] Yoon, J. S., Zang, A., and Stephansson, O. Numerical investi-
gation on optimized stimulation of intact and naturally fractured deep
geothermal reservoirs using hydro-mechanical coupled discrete particles
joints model. Geothermics 52 (2014), 165–184.

[157] Yu, H., Wu, L., Guo, L., Wu, H., and Du, S. An interaction
integral method for 3d curved cracks in nonhomogeneous materials with
complex interfaces. International Journal of Solids and Structures 47,
16 (2010), 2178–2189.

[158] Yudhowijoyo, A., Rafati, R., Haddad, A. S., Raja, M. S.,

and Hamidi, H. Subsurface methane leakage in unconventional shale
gas reservoirs: A review of leakage pathways and current sealing tech-
niques. Journal of Natural Gas Science and Engineering 54 (2018),
309–319.

221



[159] Zeng, Q., Liu, W., and Yao, J. Numerical modeling of multiple
fractures propagation in anisotropic formation. Journal of Natural Gas
Science and Engineering 53 (2018), 337–346.

[160] Zeng, Q.-D., Yao, J., and Shao, J. Numerical study of hy-
draulic fracture propagation accounting for rock anisotropy. Journal of
Petroleum Science and Engineering 160 (2018), 422–432.

[161] Zhao, G.-F., Russell, A. R., Zhao, X., and Khalili, N. Strain
rate dependency of uniaxial tensile strength in gosford sandstone by
the distinct lattice spring model with x-ray micro ct. International
Journal of Solids and Structures 51, 7-8 (2014), 1587–1600.

[162] Zhao, J. Applicability of mohr–coulomb and hoek–brown strength
criteria to the dynamic strength of brittle rock. International Journal
of Rock Mechanics and Mining Sciences 37, 7 (2000), 1115–1121.

[163] Zhao, L., Zhu, Q., Xu, W., Dai, F., and Shao, J.-F. A uni-
fied micromechanics-based damage model for instantaneous and time-
dependent behaviors of brittle rocks. International Journal of Rock
Mechanics and Mining Sciences 84 (2016), 187–196.

[164] Zheng, H., Liu, F., and Du, X. Complementarity problem arising
from static growth of multiple cracks and mls-based numerical manifold
method. Computer Methods in Applied Mechanics and Engineering 295
(2015), 150–171.

[165] Zhu, X., Liu, G., and Chao, Y. Three-dimensional stress and dis-
placement fields near an elliptical crack front. International Journal of
fracture 109, 4 (2001), 383–401.

222



Appendix A: Newton-Raphson Solver

Newton-Raphson Solver Here the Newton-Raphson (NR) is used to
solve the global equations iteratively. The problem reduces to solving equa-
tion 205.

Kδu[n+1] = Fres (205)

whereK is the global stiffness matrix, δun+1 is the deformation and Fres
are the residual load left from the previous iteration. The residual force is
calculated by taking the difference of external and internal loads within the
model as shown in equation 206. These loads are those accumulated over the
model’s captured deformation over δun+1

Fres = Fext − Fint (206)

The deformation δun+1 is the sum of all iterated solutions calculated
during the NR approach, as shown in equation 207

un+1 = un + Σδun + 1 (207)

The global stiffness matrix is given generally by equation 208, the pressure
terms becoming zero in cases of typical fractures.

K(D) =
δfres(p1,p2,Fm,D)

δun+1

(208)

where D is damage, p1 is the pressure within the porous system, p2 is
the pressure within the fractured system and Fm is the deformation gradient
of the previous iteration’s configuration. The Global stiffness matrix is cali-
brated for the use in a large strain environment. The changes in volumes are
used to calculate changes in permeability and porosity in the model when
significant volume changes occur.

δFres(p1,p2,F ,D), is used to evaluate the progress of the iterative solu-
tion’s progress according to equation 209.

223



Fres
Fext

< tolerance (209)

The initiation of further iterations assumes no residual forces from the
previous iterative solution.

The integrals used in evaluating both the global stiffness matrix and force
matrix are calculated via Gauss quadrature, in this case the integrals were
across tetrahedral elements.

Force integration When implementing a complex set of coupled equa-
tions via the finite element method, an equilibrium of externally applied
loads are considered in equilibrium with the internal stresses and when re-
quired internal fluid pressures. Here we go through how the general solution
process undergoes little change with the addition of internal fluid/fracture
pressure [29]. This can be represented in the non purely mechanical sense as
shown in equation 210. ∫

(σ)ν − [F b − ρgg]dΩ = 0 (210)

where σ are the internal stresses, F b are the body forces, ρg is self weight,
g is acceleration due to gravity and ν is any given deformation field.

It is assumed that equation 210 is satisfied for any given displacement field.
Discretisation of equation 210 gives equation 211 which must be maintained.

Finternal(F )− Fexterior = 0 (211)

Or in the presence if fluid pressures:

Finternal(F ,p1,p2)− Fexterior = 0 (212)

where the internal forces are obtained from equations 213 and 214.

Finternal =

∫
[N]TσdΩ (213)
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Fexterior =

∫
[N]TF bdΩ +

∫
NT tdΓ (214)

Where N is a set of updated nodal shape functions and B are strain
displacement matrices, shown in Chapter 4.

225



Appendix B: Chapter 3 results

15 degree notch

Figure 95: Deformation and Damage plots; proposed numerical solution
(left) and reference numerical solution (right) for 15 degree slit at initiation
[74]
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30 degree notch

Figure 96: Deformation and Damage plots; proposed numerical solution
(left) and reference numerical solution (right) for 30 degree slit at initiation
[74]

Note: Experimental reference photo has been flipped on the x axis to
match reference deformation result
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75 degree notch

Figure 97: Deformation and Damage plots; proposed numerical solution
(left) and reference numerical solution (right) for 75 degree slit at initiation
[74]
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Figure 98 shows that the fracture is far more violent in comparison to the
60 degree fracture shown in figure 42 as the energy transfer occur in a far
shorter time span.

Figure 98: Energy plot over time consisting of fracture (surface energy)
and stored energy (bulk) over time (s) for 75 degree notch
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90 degree notch

Figure 99: Deformation and Damage plots; proposed numerical solution
(left) and reference numerical solution (right) for 90 degree slit at initiation
[74]

As shown in Figure 99 there wasn’t any major stress concentrations there-
fore crack initiation was more difficult for the model to predict. This leads to
a more sporadic crack path in both the numerical and experimental results.
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Appendix C: Chapter 5 results

Test 2: 10MPa Axial pressure, 2MPa hole two pressure

Figure 100: Test 2, Experimental fracture path [136]
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Figure 101: Test 2, Numerical Hydrofracture at time=0s showing from left
to right; fluid pressure distribution, X deformation and damage distribu-
tion

Figure 102: Test 2, Numerical Hydrofracture at time=25s showing from
left to right; fluid pressure distribution, X deformation and damage distri-
bution
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Figure 103: Test 2, Numerical Hydrofracture at time=35s showing from
left to right; fluid pressure distribution, X deformation and damage distri-
bution

Figure 104: Test 2, fluid pressure in hole one over time
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Test 3: 10MPa Axial pressure, 3MPa hole two pressure

Figure 105: Test 3, Experimental fracture path [136]

Figure 106: Test 3, Numerical Hydrofracture at time=35s showing from
left to right; fluid pressure distribution, X deformation and damage distri-
bution
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Figure 107: Test 3, Numerical Hydrofracture at time=25s showing from
left to right; fluid pressure distribution, X deformation and damage distri-
bution

Figure 108: Test 3, Numerical Hydrofracture at time=35s showing from
left to right; fluid pressure distribution, X deformation and damage distri-
bution
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Figure 109: Test 3, fluid pressure in hole one over time

Test 4: 10MPa Axial pressure, 6MPa hole two pressure

Figure 110: Test 4, Experimental fracture path [136]
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Figure 111: Test 4, Numerical Hydrofracture at time=0s showing from left
to right; fluid pressure distribution, X deformation and damage distribu-
tion

Figure 112: Test 4, Numerical Hydrofracture at time=25s showing from
left to right; fluid pressure distribution, X deformation and damage distri-
bution
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Figure 113: Test 4, Numerical Hydrofracture at time=35s showing from
left to right; fluid pressure distribution, X deformation and damage distri-
bution

Figure 114: Test 4, fluid pressure in hole one over time (Test 4)
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