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Abstract

In this thesis we investigate scalar and scalar-tensor field theories and their relation

to low energy modifications of Einstein’s General Relativity (GR), as well as their

mathematical validity and self-consistency. We begin by outlining the cosmological

constant problem, and how large quantum corrections lead to unnatural space-time

curvatures. Going into depth, we present a rearrangement of GR which emphasises

the global structure within the Einstein equations. Preceding in this manner, we

examine global modifications of GR which semi-classically act to insulate the highly

Ultra-Violet (UV) sensitive loop corrections to the vacuum energy from the curvature

of space-time. We explore the consequences of a manifestly local variant of this

model, studying the UV sensitivity to place bounds on resulting cosmological profiles,

the effect of phase transitions on fine-tuning, and its compatibility with inflation.

Taking a different approach, we examine other local modifications of GR, which

introduce new degrees of freedom. We summarise the need for screening mecha-

nisms which are an important feature of any local modification of GR, in order to

remain within constraints imposed by observation. Presenting a high energy exten-

sion of a massive Galileon theory, we investigate if it exhibits so-called Vainshtein

screening; Vainshtein screened theories are commonly incompatible with Wilsonian

UV completion. Using this theory as a toy model, we examine what can go wrong

when integrating out a heavy field, as well as what kind of role mass term deforma-

tions might play in a wider class of theories, and at what scale Vainshtein screening

potentially breaks down.
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Convention & notation

The following conventions, notations and definitions will be applied throughout:

Unless they appear explicitly, we will take c = ~ = 1 via Natural units. For example,

in these units we write the (reduced) Planck mass as MPl = (8πGN)−
1
2 ≈ 1018GeV

where GN is Newton’s gravitational constant.

We will use the mostly-positive signature for the metric (−,+,+,+). For example,

we express the Minkowski metric as ds2 = −dt2 + dx2 + dy2 + dz2.

Greek indices µ, ν, . . . = (0, 1, 2, 3) are space-time indices, we denote a partial deriva-

tive as ∂µ and a covariant derivative as ∇µ. The operator � is the 4-Laplacian given

by ∇µ∇µ.

The space-time average of a scalar quantity Q looks like,

〈Q〉 =

∫
d4x
√
−g Q∫

d4x
√
−g

where the integrals are over the entire 4-volume of a space-time.

We denote symmetrisation of a tensor over enclosed indices as,

S(µν) =
1

2
(Sµν + Sνµ).
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Chapter 1

Introduction

1.1 General Relativity

Gravity is the weakest of the four fundamental forces we observe in Nature. The

force due to gravity between two electrons is approximately 43 orders of magnitude

smaller than the size of the corresponding force due to electromagnetism. Similar

statements hold for the comparison between the relative strengths of gravity and the

strong and weak forces. In spite of this, gravity is often the only interaction relevant

on cosmological scales. As a result, the search for a deeper understanding of the

observable universe is intimately related with the pursuit of gravitational knowledge.

Likewise, developments in cosmology can strongly influence our approach to gravity.

Einstein’s theory of General Relativity (GR), as presented in 1915, is our best

picture of gravity to date. Amending Newtonian predictions with relativistic correc-

tions, GR solved several of the observational problems present at the time, including

the bending of light by the sun, gravitational red-shift, and the perihelion precession

of Mercury. Additionally, it resolved the inconsistencies present between Newtonian

gravity and special relativity, such as locality and causality, by elevating space-time

to a dynamical construction viewed through a geometrical lens. Both solar system

and earthbound observational testing of gravity continually affirms GR as a remark-

ably accurate theory of gravity, see e.g. [1]–[6] and references therein. Most recently,

advances in experimental physics have allowed multiple detections of gravitational

waves, predicted to exist by GR a century ago [7].

The Einstein-Hilbert action, with a bare cosmological constant term Λc, is given

by,

SGR =

∫
d4x
√
−g
(
M2

Pl

2
R− Λc

)
(1.1.1)
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1.1. GENERAL RELATIVITY

where R = gµνRµν is the Ricci scalar, with gµν as the metric tensor and Rµν as the

Ricci tensor, g = detgµν , and MPl is the Planck mass. The Ricci tensor is defined

in terms of the Riemann curvature tensor as Rµν = Rα
µαν , with the Riemann tensor

given by,

Rα
βγδ = ∂γΓαδβ − ∂δΓαγβ + ΓαγσΓσδβ − ΓαδσΓσγβ (1.1.2)

with Christoffel symbols Γλµν defined as,

Γλµν =
1

2
gλσ
(
∂µgνσ + ∂νgµσ − ∂σgµν

)
. (1.1.3)

The metric gµν describes the geometry of the system via these various curvature

tensors, and through the line element (or space-time interval) describing the distance

between two infinitesimally separated points in space-time as,

ds2 = gµνdxµdxν . (1.1.4)

We couple a sector of matter fields to gravity minimally, that is to say purely through

the covariant volume element d4x
√
−g and any covariant derivatives, with the total

action a linear combination of the gravitational and matter sector actions,

S = SGR + Sm[gµν ,Ψ] (1.1.5)

where Ψ denotes the matter fields. After variation with respect to gµν the ten

independent field equations obtained, known as the Einstein equations, are given by,

M2
PlGµν = Tµν − Λcgµν (1.1.6)

where the Einstein tensor Gµν is defined by Gµν = Rµν − 1
2
Rgµν , and the energy-

momentum tensor of the matter sector Tµν is defined as,

Tµν = − 2√
−g

δSm

δgµν
. (1.1.7)

After some rearranging, the total cosmological constant that appears in the Einstein

equations, i.e. the coefficient of the metric term, is a sum of the bare value Λc

from the Einstein Hilbert action, and the matter sector vacuum energy Vvac which

contributes to the energy-momentum tensor as Tµν vac = −gµνVvac. Here Vvac is the
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1.1. GENERAL RELATIVITY

sum of all matter loop diagrams with no external legs; we shall see why it takes

this form in chapter 2. The Einstein equations treat each part identically, thus

observations can only constrain the combination Λt = Λc + Vvac.

General relativity has had many experimental successes, which cement its place

as our current most accurate gravitational theory. Predictions made by GR such as

the precession of the orbit of mercury and the bending of light by massive objects,

amongst others, have been verified by experiments to a large degree of precision.

However, GR is thought to be an insufficient description of phenomena at small

distance scales as quantum mechanical considerations become important or even

dominant, and a yet-to-be-discovered quantum theory of gravity is required. Despite

this expected breakdown of the theory, it was widely thought that it would be an

excellent approximation all the way to cosmological scales. Recently this expectation

has come under scrutiny with the discovery of the accelerated expansion of the

universe, a consequence of so-called ‘dark energy’, which earned the Nobel Prize in

physics in 2011. Experimental results, such as observations of Type 1a supernovae [8],

[9] and precision measurements of the Cosmic Microwave Background (CMB) [10]–

[13], require us to accept a tiny non-zero cosmological constant that is not chosen a

priori by GR. Whilst this is not a problem within the classical theory, once one tries

to treat GR as a quantum theory within an EFT framework issues arise regarding

naturalness and fine-tuning. This is known as the cosmological constant problem,

which will be discussed thoroughly in chapter 2. Additionally, observational evidence

strongly suggest that within a GR framework there must exist a large amount of

‘dark matter’ in order to explain several galactic and cosmological phenomena, such

as anomalous behaviour of galactic rotation curves [14]–[16], gravitational lensing

measurements [17]–[20], and large scale structure such as galaxy clusters [21]–[25].

These issues introduce the possibility that we may be required to modify our theory

of gravity in order to adequately describe our Universe on the largest distance scales.
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1.2. DARK ENERGY

1.2 Dark Energy

Since the formulation of GR, advancements in observational cosmology provide us

with the tools to study gravity on huge distances comparable to the Hubble scale

H−1
0 ∼ 1026m. One facet of this research is the increasingly large amount of evi-

dence supporting the aforementioned accelerated expansion of the universe. Initially,

observations of Type 1a supernovae appearing dimmer than expected, from a non-

relativistic particle dominated universe, hinted at late time expansion acceleration

[8], [9]. Numerous additional studies, including precision Cosmic Microwave Back-

ground (CMB) measurements [10]–[13], established concretely that the energy den-

sity of non-relativistic matter is not the dominant component of the total energy of

the universe in the current cosmological epoch, and that an alternative phenomenon,

commonly referred to as dark energy, was causing the cosmological acceleration.

There exists an easy solution to the nature of dark energy; a period of late time

acceleration can be simply explained by the presence of the cosmological constant

Λt = Λc + Vvac. As the energy density of a cosmological constant term does not

dilute upon cosmological expansion, as opposed to any other type of energy den-

sity satisfying null energy conditions, it will naturally become the dominant energy

contribution at late times. This results in an asymptotically de-Sitter cosmological

profile [26], with a curvature directly related to the size of the cosmological constant.

In addition, all current data is consistent with a cosmological constant explanation

of dark energy, with magnitude Λobs ∼ (meV)4 [13].

However, in reality the situation is not so simple. The total cosmological con-

stant Λt receives radiative corrections through Vvac from vacuum fluctuations of each

massive particle coupled to gravity. In the standard model of particle physics these

fluctuations are extremely sensitive to ultra violet (UV) physics, and the value of

Vvac is vastly larger than Λobs, even when only considering the contribution from the

electron. Heavier particles provide corrections that exacerbate the situation, adding

of the order of their mass to the fourth power. In order to even approach the diagno-

sis of a small Λt, we must repeatedly fine tune Λc every time our description of the
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1.3. SCREENING MECHANISMS

matter sector changes, for instance when changing how many orders of the loops we

calculate Vvac to, or modifying the effective action’s Wilsonian cut-off. This repeated

need to fine tune a classical parameter of the action is the cosmological constant

problem [27]–[33], and is the subject of a large proportion of this thesis.

A common modification to GR is the introduction of one or more scalar fields

into the action. Known as scalar-tensor theories, due to the presence of both the

metric and scalar degrees of freedom, they are often used in current attempts to

modify gravity in the infrared (IR), in pursuit of a resolution to the cosmological

constant problem or a potential source of dynamical dark energy. Scalar fields auto-

matically satisfy the isotropy required from a cosmological standpoint since they do

not select a preferred direction, making them good candidates for modifying gravity.

Additionally, most models of modified gravity reduce to scalar-tensor theories when

appropriate limits are taken, i.e. when considering the departure from GR and how

this affects the dynamics. For example, scalar fields usually occur in theories with

extra dimensions and can describe such things as the position of a hyper-surface

(known as a brane) in an extra-dimensional space, or the size of compactified dimen-

sions in string theory [34]–[38].

1.3 Screening mechanisms

The main problem with modifying gravity to achieve cosmological acceleration is

not in actualising suitable behaviour at late times, but rather concurring with tests

of gravity on local scales. Any local modification of GR that provides altered long

distance behaviour necessitates the introduction of new degrees of freedom acting as

force mediators. Commonly, modifications to GR use light scalar fields coupled to

the matter sector, as these are often the simplest to work with.

Any deviations from GR resulting from a new force mediated by a varying scalar

field must be suppressed by O(10−5) within the solar system for the modification to

not be invalidated by current observational evidence [1]. Let us illustrate this with

a toy model of a massive scalar field coupled to matter linearly through the trace of
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1.3. SCREENING MECHANISMS

the energy-momentum tensor, in the limit MPl →∞, to obtain the action,

S =

∫
d4x
√
−g
(
−1

2
(∂φ)2 − 1

2
m2φ2 +

λ

MPl

φT

)
(1.3.1)

where λ is a dimensionless coupling constant and φ is a massive scalar field which

couples to the trace of the energy-momentum tensor. If λ ∼ O(1), φ is coupled to

matter with gravitational strength. The dynamics of the scalar field are understood

via the equation of motion,

�φ−m2φ+
λ

MPl

T = 0. (1.3.2)

Modelling the stress-energy as approximating a non-relativistic astronomical point

source, we assume it to be static and spherically symmetric with mass M such that,

Tµν = Mδµ0δ
ν
0δ

3(x) (1.3.3)

so that T = −Mδ3(x). In this case the scalar field solution is a static, spherically

symmetric profile given by (e.g. [39], [40]),

φ(r) = − λM

4πMPl

e−mr

r
(1.3.4)

where we assume asymptotic vanishing of φ. As expected for a massive scalar field,

we recover the standard potential with a Yukawa suppression. The scalar field acts on

the matter sector it is coupled to with force per unit mass of the form Fφ = − λ
MPl
∇φ

(see e.g. [40]), giving the full expression,

Fφ = − λ2M

4πM2
Pl

e−mr

r2
(1 +mr) (1.3.5)

where Fφ is the magnitude of a radial force. Contrasting with the magnitude of the

Newtonian force FN enacted by the source, we find,∣∣∣∣FφFN

∣∣∣∣ = 2λ2e−mr(1 +mr). (1.3.6)

We are free to use the Newtonian approximation here as we are comparing the

forces on the scale of the solar system, at which distances this simplification is

legitimate and illustrative. Let us consider what parameter values we require to have
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1.3. SCREENING MECHANISMS

an interesting field theory that satisfies experimental bounds. Generically we would

naturally expect λ ∼ O(1), and m must be chosen as small relative to the Hubble

scale to permit the scalar force to contribute at cosmological distances. Under these

choices it seems that this theory provides a force with magnitude comparable to

Newtonian gravity, and is therefore unable to meet experimental tests, which require

this additional force to be suppressed. To circumvent these issues we usually employ

some sort of screening mechanism.

A screening mechanism is a feature of a theory that dynamically suppresses the

force of additional fields at scales where they are required to be small to meet exper-

imental bounds, while permitting a non-negligible effect elsewhere. In the context

of modified GR, we would require suppression at solar system scales, while desiring

an effect similar to dark energy at cosmological distances. Our primary screening

method of interest is known as the Vainshtein mechanism, which we consider below.

1.3.1 The Vainshtein Mechanism

Vainshtein screening is a mechanism that depends on a non-linear kinetic sector in

the action. It was originally introduced in connection with massive gravity, specif-

ically Fierz-Pauli theory [41], where efforts to make the graviton massive led to

contradictions with solar system tests, even in the limit of vanishing graviton mass.

This is usually a cause for concern, as at least at these distances one would anticipate

a massive gravity theory in the massless limit would match GR predictions. This

discrepancy between GR and Fierz-Pauli theory is commonly known as the vDVZ

discontinuity [42], [43]. This dissonance between the two theories is due to the pres-

ence of an additional scalar degree of freedom, originating as the longitudinal mode

of the massive graviton, which even in the limit of vanishing mass remains coupled

to the trace of the stress-energy tensor. More rigorously, the Fierz-Pauli action is,

SFP =

∫
d4x

(
LGR,lin −

m2

2

(
hµνh

µν − h2
)

+
hµνT

µν

MPl

)
(1.3.7)

where gµν = ηµν +hµν , LGR,lin is the linearised GR Lagrangian and m is the graviton

mass. First used in the context of Abelian gauge theories, and applied to massive

gravity in [44], the Stükelberg trick allows us to extract the new degrees of freedom
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1.3. SCREENING MECHANISMS

by recovering the gauge symmetry that is broken by the graviton mass. This is done

by adding new fields and gauge symmetries to make the degrees of freedom explicit

whilst preserving their number, so that we can make sense of the m → 0 limit. To

recover the linearised diffeomorphism symmetry we transform (1.3.7) by,

hµν → hµν + 2∂(µAν) + 2∂µ∂νφ (1.3.8)

where we have introduced the vector field Aµ and the scalar field φ. This trans-

formation is structurally identical to the gauge symmetry we are trying to recover

and so LGR,lin is invariant. After integration by parts and the assumption of energy-

momentum conservation ∂µT
µν = 0 the matter coupling also remains invariant.

However the mass term is transformed, resulting in,

S =

∫
d4x

(
LGR,lin −

1

2
m2(hµνh

µν − h2)− 1

2
m2Fµν F

µν

−2m2(hµν∂
µAν − h∂µAµ)− 2m2(hµν∂

µ∂νφ− h∂2φ) +
hµνT

µν

MPl

)
(1.3.9)

where we have defined Fµν = ∂µAν−∂νAµ and the Fierz-Pauli structure of the mass

term allows the evasion of a ghostly degree of freedom by sending its mass to infinity

and decoupling it from the theory. This action now allows two gauge transformations

that it is invariant under, given by,

hµν → hµν + ∂µξν + ∂ν ξµ, Aµ → Aµ − ξµ (1.3.10)

Aµ → Aµ + ∂µΛ, φ→ φ− Λ (1.3.11)

and we can see that the linearised diffeomorphism symmetry is now recovered and

encapsulated within (1.3.10). Now that we have restored the gauge symmetry of

linearised GR we are able to take the limit m→ 0, preceded by rescaling Aµ → Aµ/m

and φ→ φ/m2. We obtain,

S =

∫
d4x

(
LGR,lin −

1

2
Fµν F

µν − 2hµν∂
µ∂νφ+ 2h∂2φ+

hµνT
µν

MPl

)
. (1.3.12)

Diagonalising the action by transforming hµν → hµν + φ ηµν to eliminate the kinetic

mixing between hµν and φ, we show explicitly the final action,

S =

∫
d4x

(
LGR,lin −

1

2
Fµν F

µν − 1

2
(∂φ)2 +

φT√
6MPl

+
hµνT

µν

MPl

)
(1.3.13)
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1.3. SCREENING MECHANISMS

where there are now the standard two degrees of freedom contained within the metric,

and the extra degrees of freedom present in massive gravity are now incorporated

within Fµν and φ. It is now apparent that φ couples to T with gravitational strength

similarly to (1.3.1), providing an extra force in tandem with that produced by the

metric, and so (1.3.7) differs from linearised GR even in the massless limit; this is

the vDVZ discontinuity.

Vainshtein was the first to notice that, in a non-linear gravity theory that reduces

to linearised massive gravity, there will be a scale at which the non-linear interactions

become comparable to the linear interactions [45], [46], now designated the Vain-

shtein scale. At distances shorter than this scale non-linear terms either contribute

to or even dominate the dynamics, causing a departure from the linearised approxi-

mation. For example, DGP gravity has a Vainshtein radius of rV = (GM/m4)
1
5 [38],

[47], where m is the graviton mass and the M is the mass of a spherically symmetric

non-relativistic source. In the massless limit m→ 0, the linear theory is invalidated

for all space and therefore any resulting predictions become untrustworthy, and we

consequently avoid the vDVZ discontinuity.

If instead deviations from Newton’s potential are computed in the non-linear

regime, the scalar force Fφ is found to be of strength,

Fφ
FN

∼
(
r

rV

) 3
2

(1.3.14)

for r � rV [38]. Clearly the non-linear interaction terms suppress the scalar force,

screening Fφ in the vicinity of the source. Although as we have presented here

Vainshtein screening originated in the context of massive gravity, it is in general

more widely applicable, and appears in a variety of theories containing non-linear

interactions.

To explore the Vainshtein mechanism in more depth, let us consider the action,

S =

∫
d4x
√
−g
(
−1

2
(∂φ)2 +

c

µ4
(∂φ)4 +

λ

MPl

φT

)
(1.3.15)

where λ and c are dimensionless coupling coefficients of O(1) and µ . MPl is the

cut-off of the theory. It is worth noting that the coupling of the scalar field to matter
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1.3. SCREENING MECHANISMS

does not break the shift symmetry that the derivative terms in φ clearly have, since

∂µT
µ
ν = 0 means we can write,

λ

MPl

φT =
λ

MPl

φ ∂µ (xνT µν ) (1.3.16)

which under the shift symmetry transformation is a total derivative.

Once again taking the source to be a static spherically symmetric point source of

mass M , by dimensional analysis we can conjecture that far from the source the non-

linear term will be subdominant. Under this hypothesis, we linearise the equation

of motion to find,

φlin(r) = − λM

4πMPl

1

r
(1.3.17)

which as expected is (1.3.4) in the limit m → 0. Having approximated the theory,

we can then ask when the non-linear terms we have neglected will start to become

important, or equivalently the radius at which,

(∂φ)2

µ4

∣∣∣∣
φlin

∼ O(1). (1.3.18)

This radius is known as the Vainshtein radius [45], [46], and in this scenario is given

by,

rV ∼
1

µ

√
λM

4πMPl

∼ 1

µ

√
M

MPl

. (1.3.19)

Solving the equation of motion far inside the Vainshtein radius where the non-linear

term dominates, the solution is of the form,

φnl = −
(

27λ

16π

) 1
3

c−
1
3µ

4
3

(
M

MPl

) 1
3

r
1
3 + const. (1.3.20)

Comparing the force on matter due to the scalar field Fφ with a similarly acting

Newtonian force FN, we see that, ∣∣∣∣FφFN

∣∣∣∣ ∼ ( r

rV

) 4
3

. (1.3.21)

It is important to realise that the solution for the scalar field can only be matched

continuously across the two regimes if c < 0, otherwise we obtain a branch-cut

singularity [48]. Comparing equation (1.3.21) to (1.3.6) we see a significant difference
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in behaviour, i.e. when r � rV we get a relative suppression of the scalar force on

matter, which increases as we approach the source.

To explain the restrictions on c more rigorously, we can look at perturbations of

the theory about a given background solution, and how those perturbations couple

to the matter sector. Choosing a background solution ψ and a perturbation ψ about

ψ such that φ = ψ + ψ, we expand the action to obtain,

Spert =

∫
d4x

(
−1

2
Zµν [ψ]∂µψ∂νψ +

λ

MPl

ψδT

)
(1.3.22)

where we have dropped terms of higher than quadratic order, and,

Zµν [ψ] = ηµν
(

1− 4c

µ4
(∂ψ)2

)
− 8c

µ4
∂µψ∂νψ. (1.3.23)

We can clearly see that as the non-linear terms begin to dominate Z diverges from

η and becomes large. Under a schematic canonical normalisation the fluctuations

couple to the matter sector with an effective coupling of λ
MPl

√
Z

, clearly indicating a

dynamical decoupling of the scalar field and the matter sector as non-linear terms

become large, and hence a reduction of the scalar force acting on matter particles.

To examine this closer, we specify the static spherically symmetric ansatz for the

background solution ψ = ψ(r). Under this assumption, we find,

Z00 = −1 +
4c

Λ4
ψ
′2

(1.3.24)

Z0i = 0 (1.3.25)

Zij = δij
(

1− 4c

Λ4
ψ
′2
)
− 8c

Λ4

xixj

r2
ψ
′2

(1.3.26)

where ψ
′

is taken to mean dψ
dr

. Physical considerations constrict us to solutions

for which limr→∞ ψ
′

= 0, at which point Zµν becomes the Minkowski metric, and

therefore has one negative and three positive eigenvalues. In order to maintain this

structure for any r, we must necessarily demand c < 0 [48], [49]. If this is not the

case, there will be a point at which the fluctuation ψ becomes infinitely strongly

coupled. This is an example of disallowed Vainshtein Screening, despite the action

having a non-linear operator of the correct form, a situation that has been known to

occur in other theories [48].
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It is worth noting that different assumptions about the background solution will

necessarily inform the bounds on c. For example, if we instead take a homogeneous

and isotropic background ψ = ψ(t), we find that now the requirement is c > 0. We

would then have a theory manifesting a sort of ‘cosmological Vainshtein’ effect. We

may conclude from this analysis that, in at least this theory if not others, the sign

of c is vitally important to whether the Vainshtein mechanism is viable.

This Vainshtein validity interacts with fundamental constraints on coupling con-

stants of leading order irrelevant operators, as discussed in [50]. To summarise, for

2 → 2 tree level scattering amplitudes, where s, t, u are the standard Mandelstam

variables, [50] concludes that in the forward limit (t → 0) the s2 term must have

a strictly positive coefficient if the UV completion is to be Lorentz invariant with

analytic S-matrix. In other words, this positivity condition must be met if the theory

is to UV-extend to a local QFT.

If we consider the form of the 2→ 2 scattering amplitude A(s, t) in more detail,

we can see where this bound originates from. The amplitude A(s, t) has a pole at

s = 0 and cuts on the real axis above some |s?| < ∞. Using Cauchy’s integral

formula around a closed curve γ about s = 0 gives,

∂2

∂s2
A(s, t)

∣∣∣∣
s=0

=
1

iπ

∮
γ

ds
A(s, t)

s3
. (1.3.27)

Deforming the contour appropriately and taking the forward limit t→ 0, we obtain

by symmetry,
∂2

∂s2
A(s, 0)

∣∣∣∣
s=0

=
4

π

∮ ∞
s?

ds
ImA(s, 0)

s3
≥ 0 (1.3.28)

where the inequality is given by the optical theorem. The contribution from the

contour at infinity will vanish as long as the amplitude is at least s2 to leading order.

This is true in massive theories [50]–[52], however the situation is somewhat less clear

for massless theories [50]. The full details of this calculation can be found in [39].

In our example (1.3.15) the 2→ 2 scattering amplitude is given by [39],

A(s, t) =
2c

Λ4

(
s2 + t2 + u2

)
=

4c

Λ4

(
s2 + t2 + st

)
(1.3.29)

where shift symmetry protects a massless φ, and so s+ t+u = 0. It is now apparent

that the positivity bound requires c > 0 in order for a standard Wilsonian UV
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completion to be possible. This restriction directly conflicts with our requirement

c < 0 for Vainshtein screening scalar forces on static backgrounds, for our example

(1.3.15). This strongly implies that applying the Vainshtein mechanism to (1.3.15)

to suppress scalar forces on solar system scales results in a theory that cannot be

the IR limit of a local, Lorentz invariant UV completion.

Later in this thesis we will examine so-called galileon theories, in particular

Wess-Zumino galileons. Positivity conditions affect these theories with even greater

strength. The 2 → 2 scattering amplitude for galileons has leading order term s3;

with the s2 coefficient fixed at zero, the theory violates the positivity condition for

all parameter choices, and so [50] suggests it does not admit a local, Lorentz invari-

ant UV completion. This disconnect between positivity bounds and the parameter

choices necessary for Vainshtein screening is one of the main problems for theories

exhibiting the mechanism.

1.4 Effective Field Theories

Effective field theories (EFTs) are a natural step when considering the UV completion

of any low energy theory. EFTs are constructed according to the guiding principle

that every operator that is invariant under a certain set of symmetries, chosen a

priori, should be included in the action. The form this EFT takes is therefore

substantially determined by the selected symmetries. Sometimes however, there are

too many candidate operators that satisfy all symmetries to write down or deal with

in a meaningful way. In this case a common practice is to power count in terms

of some suppression scale, and truncate at some point along the series expansion of

this parameter, with some justification as to why the remaining terms stay small

in magnitude. This latter point is very important, as discarding terms that can

become large in some regime will produce a completely fictitious theory that makes

misleading predictions, as we will see in chapter 4. The expansion parameter has

another name in the context of EFTs, where it is known as the cut-off, i.e. the scale

at which our effective description breaks down. This is a key feature of EFTs, and

what distinguishes them from standard field theories.

13
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General Relativity, in the form set forth by Einstein, is fundamentally a classical

theory. This distinguishes it from every other force in the Standard Model which is

described quantum mechanically. The common saying is that General Relativity and

Quantum Mechanics are incompatible because of this, but it is possible to express

GR as an effective theory of gravity, where quantisation is permitted in an approach

akin to Yang-Mills theories [53]. By expressing GR as an EFT we are able to make

predictions, but with the understanding that they only remain valid below the cut-off.

Using this formalism for GR permits us to make gravitational quantum predictions

up to the Planck scale [47], [53], whereupon loop perturbation theory breaks down

and we judge our effective theory to be no longer legitimate. Most notably, it is

possible to calculate the correction to the non-relativistic gravitational potential at

1-loop as [54],
δV (r)

V (r)
=

41

10π

G~
r2

(1.4.1)

where V (r) = −Gm1m2

r
is the Newtonian potential, and the presence of ~ highlights

the quantum character of this correction. This being said, we would like to push the

cut-off higher than the Planck scale, and potentially find some sort of UV completion

of GR, and eventually unify this new theory with the rest of the standard model to

find a Grand Unified Theory describing all forces in nature. There are many avenues

of research pursuing this, including String Theory [55]–[57], but the rest of this thesis

will have little to say about this lofty goal.

1.5 Vacuum Decay

As previously discussed, scalar fields are commonly used in theoretical physics, from

inflationary model building [58]–[62] to the Higgs mechanism [63]–[65] which gives

standard model particles mass. In these scenarios it is possible for the potential

of the scalar field to possess a false minimum. For example, the experimentally

verified value of the Higgs mass (≈ 125GeV) suggests that radiative corrections to

the Higgs potential cause it to possess such a minimum [66]. The first analysis of

these metastable fields was conducted by Voloshin, Kobzarev, and Okun [67], and

this work was later progressed by Coleman [68].

14



1.5. VACUUM DECAY

Coleman describes in his seminal work an analogy to vacuum decay of phase

transitions from the field of statistical mechanics, wherein a superheated fluid in a

liquid phase (the false minimum) forms bubbles of vapour via thermal fluctuations.

If the bubble is too small then it is energetically favourable for it to shrink to nothing,

as it takes more energy to form the bubble wall than is gained from the transition

inside the bubble. Vice versa, if the bubble is large enough then it is favourable

for the bubble to grow, and so it does so until it has converted the entire fluid to

a vapour phase. The corresponding picture for vacuum decay is represented by a

replacement of thermal fluctuations with their quantum counterparts. Once a bubble

of true vacuum is formed that is large enough, Lorentz invariance informs us that it

will start to grow at the speed of light [69], spreading through the universe changing

false vacuum into true vacuum.

The probability for such a bubble to form per unit 4-volume is such that vac-

uum decay occurs on cosmological timescales. Such cosmological phenomena can

be utilised in hybrid inflation, combining a slow-roll effect with the aforementioned

phase transitions [70], as well as in the field of cosmic strings [71].

As will be shown below, perturbation theory will be inadequate to study non-

perturbative phenomena such as bubble formation. Instead, Coleman describes a

semi-classical formulation involving a Wick rotation to a Euclidean action, which

solves the Euclidean field equations to approximate bubble formation [68].

We present a summary of Coleman’s work, preceded by an illustrative exam-

ple of a perturbative calculation of barrier penetration in non-relativistic quantum

mechanics.

1.5.1 The WKB Method

The WKB approximation allows one to solve linear differential equations with vary-

ing coefficients, under certain approximations. The method comes in use when

performing semiclassical calculations in quantum mechanics. The usual procedure,

demonstrated below, involves an exponential ansatz for an approximation to the

equation, under the assumption of a slowly varying phase.
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We reduce the one-dimensional, time-independent Schrödinger equation given by,

− ~
2m

d2Ψ(x)

dx2
+ V (x)Ψ(x) = EΨ(x) (1.5.1)

to the form,

iΦ′′(x)− (Φ′(x))2 + (k(x))2 = 0 (1.5.2)

by making the substitution Ψ(x) = AeiΦ(x), where k(x) = ~−1
√

2m(E − V (x)), A is

some normalisation and Φ(x) is a varying phase that for a flat potential is linear in

x as Φ(x) = ±κx. For slowly varying V (x), we approximate Φ′′(x) ≈ 0, which gives

the solution,

Ψ0(x) = e±i(
∫
k(x) dx+C0) (1.5.3)

or to first order, Φ′′0(x) = k′(x), from which we obtain,

Ψ1(x) = e
±i
(∫ √

(k(x))2±ik′(x) dx+C1

)
. (1.5.4)

We note this is to first order the same solution that we would’ve obtained had we

considered Ψ(x) = ρ(x)eiφ(x) with ρ and φ both real functions.

Let us provide an example. Taking a top hat potential for V (x),

V (x) =

V 0 ≤ x ≤ L

0 otherwise

where we choose V > E, and a basic approximation Ψ(x) = Ψ0(x) = Ψ0(0)e±i(
∫ x
0 k(x) dx),

we attempt to compute the tunnelling probability T , given by the ratio of the trans-

mitted intensity |Ψ(L)|2 to the incident intensity |Ψ(0)|2,

T (L,E) =
|Ψ(L)|2

|Ψ(0)|2
= e

±2i
(∫ L

0 ~−1
√

2m(E−V (x)) dx
)

= e−2~−1
√

2m(V−E)L (1.5.5)

where L is the barrier width, E is the particle energy, and the sign of the exponent

has been resolved such that the probability is less than 1. This is the probability of

a particle tunnelling through the potential barrier.
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1.5.2 Instantons

We have seen from the WKB approximation that the amplitude of transmission

through a potential barrier is of the form,

|T (E)| = e
−2~−1

(∫ x2
x1

√
2m(V (x)−E) dx

)
(1.5.6)

This equation vanishes more rapidly than any power of ~ in the classical limit ~→

0, and therefore cannot hope to be captured by perturbation theory. In standard

quantum mechanics this phenomenon is captured by the WKB approximation. We

must look to an equivalent non-perturbative description or method in QFT in order

to fully capture effects such as this.

In the following section we will discuss such a non-perturbative process, which

aims to capture tunnelling from a local minimum of the potential to a global mini-

mum. In the context of QFT this is known as false vacuum decay. We will illustrate

the approach by considering a problem in quantum mechanics, to which we already

know the answer to by the standard means, but which will illuminate the workings

of the method. We will proceed to a field theory generalisation, before lastly con-

sidering gravity as well, and what effect space-time curvature has on false vacuum

decay. This outline will roughly follow that given in Coleman’s papers on the subject

[68], [72], [73], with an emphasis on our particular area of interest, but for brevity

and clarity we omit some technical details which can be found in said works.

There exist two equivalent descriptions of quantum mechanics, expressed via

states and operators or the path integral formulation. Our primary tool for evaluating

the non-perturbative questions in quantum mechanics we wish to answer will be the

main equation that connects the two, describing in each interpretation the transition

amplitude between position eigenstates, |xi〉 at t = − t0
2

and |xf〉 at t = t0
2

, which

takes the form, ∫
Dx e−iS[x(t)] = 〈xf |e−iHt0|xi〉 (1.5.7)

where H is the Hamiltonian of a system, S[x(t)] is the corresponding action eval-

uated on paths between points (xi,−t0/2) and (xf , t0/2), and Dx is a normalised

measure for the integration over trajectories satisfying these boundary conditions.
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The boundary conditions are important, and we set them based on the problem

we wish to consider. Inserting a complete set of energy eigenstates, and identifying

〈x|n〉 = ψn(x), the right hand side gives us,

〈xf |e−iHt0 |xi〉 = Σne
−iEnt0ψn(xf)ψ

∗
n(xi). (1.5.8)

We can now see that if we perform a Wick rotation, τ = it, then the oscillating

exponentials become exponentially decreasing instead, and as τ becomes large only

the terms with the lowest energy E0 will survive, which helpfully picks out the ground

state of the theory,

limτ0(=it0)→∞Σne
−iEnt0ψn(xf)ψ

∗
n(xi) ≈ e−E0τ0ψ0(xf)ψ

∗
0(xi). (1.5.9)

If we can now match with a corresponding expression on the left hand side of (1.5.7),

it will be possible to read off the value of E0 and the overlap of the two position states.

Although in this specific example there are simpler ways to find these quantities,

Coleman’s method has the advantage that it is immediately generalisable to non-

perturbative QFT in a way that ‘simpler’ methods are not.

Let us proceed to treat the path integral in the same way and simplify the left

hand side. Firstly, the transformation from real to imaginary time means that the

relevant quantity is now the Euclidean action,

S =

∫ t0/2

−t0/2

(
1

2
ẋ2 − V (x)

)
dt −→τ=it iSE = i

∫ τ0/2

−τ0/2

(
1

2
ẋ2 + V (x)

)
dτ. (1.5.10)

Expressing the path integral in terms of the Euclidean action, we obtain an expo-

nential weight for each path; the Euclidean version of (1.5.7) is,∫
Dx e−SE[x(τ)] = 〈xf |e−Hτ0|xi〉. (1.5.11)

It is now easy to see that the dominant contribution originates from the trajectory

with the lowest value for SE, i.e. the solution to the Euclidean equations of motion.

The Euclidean path integral then behaves as,∫
Dx e−SE[x(τ)] ∝ e−SE[xcl] (1.5.12)
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where xcl(τ) is a solution of δSE = 0, which in this case is the equation of motion

ẍ − V ′(x) = 0. We now draw some parallels between this system and a classical

particle moving in a potential: Firstly that this equation describes a particle moving

in the inverted potential “−V (x)”, and secondly the conserved energy of such a

system looks like,

E =
1

2
ẋ2 − V (x) = const. (1.5.13)

Now if the potential has but a single minimum, which without loss of generality we

will put at x = 0, the only path that satisfies the Euclidean equation of motion while

keeping the action finite is the path that sits at the minimum for all τ . Treating

(1.5.12) a little more carefully we could consider fluctuations around xcl(τ), and by

integrating the resulting gaussians we would obtain,√
ω

π
e−

ωτ0
2 = 〈0|e−Hτ0|0〉 −→τ0→∞ |〈x = 0|n = 0〉|2e−E0τ0 (1.5.14)

where xi and xf have been set to zero by our boundary conditions, hence we are

considering the state |0〉. We see that by inserting a complete set of states and

comparing the exponents and coefficients of each side of the equation in the limit

τ0 →∞ we obtain the standard results for a single-minimum potential, namely the

ground state energy E0 = 1
2
ω and the probability of the particle being localised at

the minimum in the ground state
√

ω
π

.

To illustrate the workings of this method further we consider a non-trivial ex-

ample of a potential with two minima. In principle we could treat this generally,

however as it is an example it will be sufficient for our purposes to take the potential,

V (x) = λ(x2 − η2)2. (1.5.15)

We now have a non-trivial ground state, on account of the double minima at x = ±η.

As opposed to the simple choice of boundary conditions xi = xf above, we can now

choose our start and end positions to be ±η. Let us cut to the chase and choose

xi = −η and xf = η. Classically this process is disallowed, but there is no such

barrier once we consider the inverted potential; in the limit τ → ∞ there exists

a solution where the particle reaches the top of either hill at ±∞, and makes the

19



1.5. VACUUM DECAY

transition between the two at some finite time. The particle must then reach the hill

with zero energy, and so we can set E to zero in (1.5.13), which allows us to simplify

the Euclidean action as,

S0 =

∫ ∞
−∞

(
1

2
ẋ2

cl + V (xcl)

)
dτ =

∫ ∞
−∞

ẋ2
cl dτ =

∫ η

−η
ẋcl dx =

∫ η

−η

√
2V (xcl) dx

(1.5.16)

and so (1.5.11) becomes,

lim
τ→∞
〈η|e−Hτ | − η〉 ≈ e−S0[xcl] = exp

(
− ω3

12λ

)
(1.5.17)

where ω is defined by ω2 = V ′′(±η) = 8λη2. Once again, treating (1.5.17) more

rigorously with integration of perturbations around xcl, we obtain an expression

which by matching allows us to obtain the lowest lying energy states.

1.5.3 Unstable Vacua

Having explored this instanton method in quantum mechanics, and found it repro-

duces known results accurately, we turn to generalising it to QFT, and investigate

what happens once we have an infinite amount of degrees of freedom. For clarity and

brevity we will only consider the case we will ultimately be interested in, namely a

real scalar field theory φ with a double-minimum potential where only one of them

is a global energy minimum. Let us label the global minimum (or “true vacuum”)

as at φ = φT, while the local minimum (or “false vacuum”) is at φ = φF.

We choose our initial conditions such that the field is in the false vacuum state

φ = φF over all space. Again, this state is classically stable due to the potential

barrier between the false and the true vacuum, but may decay in a quantum system.

Naively one might expect that all the degrees of freedom of a QFT should tunnel

simultaneously, which results in a zero probability, and the conclusion that tunnelling

is forbidden. Examining the situation in more detail leads to a different result

however.

Similar to the previously described thermal phase transition, or nucleation pro-

cess, in statistical physics, there is a non-zero probability that some number of de-

grees of freedom within a finite spherical region simultaneously transition from φF
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to φT. More rigorously, the gain in energy from the transition is proportional to the

difference in energy between the two minima, and to the volume of the sphere, which

scales as R3, where R is the sphere radius. There is also an energy cost in creating the

bubble wall, which behaves like R2. Balancing the two, there exists a critical radius

Rc, where if R > Rc at the point of formation the sphere will grow until it converts

the whole space to the true vacuum. Having qualitatively described tunnelling in

QFT, we proceed to cement this description with a more technical discussion.

It should be noted that the quantity we want to compute is the decay rate per

unit time, Γ, per unit volume. This is because in any given volume Γ must be

proportional to said volume, on account of the bubble of true vacuum being equally

likely to form anywhere within the space. We have demonstrated that the important

quantity in determining tunnelling probability is the exponential of the Euclidean

action on the classical solution to the equations of motion with the appropriate

boundary conditions.

A key simplification we will make is that the behaviour of phase transitions is

dominated by O(4) invariant solutions, and therefore we will limit our considerations

to this scenario, where φ is a function that only depends on the four-dimensional

euclidean distance ρ =
√
τ 2 + x2. This was shown to hold true in the case of a single

scalar field in [74].

Within this simplification the Euclidean action becomes,

SE = 2π2

∫
dρ ρ3

(
1

2

(
dφ

dρ

)2

+ V (φ)

)
(1.5.18)

and the equations of motion simplify to,

d2φ

dρ2
+

3

ρ

dφ

dρ
=

dV

dφ
. (1.5.19)

For the sake of simplicity we will add a constant to the potential such that the energy

of the false vacuum is equal to zero, V (φF) = 0. This will not be allowed once we

wish to consider gravity, as the potential energy at the minimum will determine

curvature, but we will accept the leeway while we can.

Remembering that the equation of motion must be accompanied by boundary
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conditions, we assume that initially the field sits in the false vacuum for all space,

lim
τ→−∞

φ(τ,x) = φF (1.5.20)

where we have now taken τ0 to infinity, and that φ should take the false vacuum

value at large distances,

lim
|x|→∞

φ(τ,x) = φF (1.5.21)

in order for the action to be finite. Recognising that the action is invariant under

τ → −τ , these boundary conditions can be expressed as one in terms of the radial

distance,

lim
ρ→∞

φ(ρ) = φF. (1.5.22)

That the boundary conditions combine to an O(4)-invariant form gives us some more

faith in our assumption.

Noting that the action exhibits time translation symmetry, we can assume with-

out loss of generality that the tunnelling occurs at τ = 0, and that the bubble comes

into existence at rest, hence,

∂

∂τ
φ(τ,x)

∣∣∣∣
τ=0

= 0 (1.5.23)

and we find a final boundary condition for (1.5.19) of the form,

dφ(ρ)

dρ

∣∣∣∣
ρ=0

= 0 (1.5.24)

so as to avoid a ρ = 0 singularity.

We see we have simplified the problem of tunnelling in QFT, a system with an

infinite amount of degrees of freedom, into the study of a single partial differential

equation. We can make an analogy to the situation we have already described in

the previous section: a classical particle in a potential ‘−V ’, although this time with

an additional friction-like force whose ‘friction coefficient’ is inversely proportional

to the ‘time’ ρ. The boundary conditions tell us that the particle starts at rest at

φ ≈ φT, then travels down the potential to arrive at the local maximum φ = φF at

ρ = ∞. If the particle starts too far from φT the frictional force means it would

fall short of reaching φF. If however the particle begins too close to φT then it will
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Figure 1.5.1: A schematic of the type of potential we wish to consider, showing two local maxima

within the thin wall approximation. The field starts close to φT and remains there until ρb at which

point it quickly traverses the gap to φF, where it stays.

overshoot φF and run to infinity; this is helped by the frictional force becoming

smaller the longer the particle stays at the top of the hill. A continuity argument

suggests there will be an initial position that fulfils our boundary conditions.

It is easy to see that (1.5.19) becomes easier to solve once the frictional term is

negligible. To this end we make the assumption that the difference in energy between

the global and local maxima ε = V (φT) − V (φF) > 0 is small. The path taken by

the particle now looks like this; the particle spends time at φ ≈ φT at rest while the

friction force is becoming smaller due to increasing ρ, until it becomes negligible and

the particle quickly traverses the gap between the two vacua, remaining at φ ≈ φF

for the rest of the motion, reaching it at infinite time. This is known as a thin-wall

limit, because it results in the transition between the two maxima happening at

ρ ≈ const, i.e. the ‘wall’ between the two vacua is small.

In this limit we can split the integral (1.5.18) into three regimes. Firstly, for

ρ < ρb, (the bubble radius), we have φ ≈ φT and any derivative terms are negligible,

Sb = 2π2

∫ ρb

0

dρ ρ3V (φT) = −1

2
π2ρ4

bε. (1.5.25)

Secondly we evaluate the integral in the transition between vacua. As stated, in a
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thin-wall limit the conversion to false vacuum happens at ρ ≈ ρb. Here the bubble

wall takes the form of a 3-dimensional surface that divides the two regions of vacuum,

with some surface tension σ. Close enough to the bubble wall we can neglect the

small difference in the energy of the two vacua, and generalising (1.5.16) to our QFT

scenario we obtain,

Sw = 2π2

∫ ρb+δ

ρb−δ
dρ ρ3

(
1

2

(
dφ

dρ

)2

+ V (φ)

)
= 2π2ρ3

b

∫ φT

φF

√
2V (φ) dφ = 2π2ρ3

bσ.

(1.5.26)

Finally, outside of the bubble φ sits at the false vacuum; a negligible derivative and

V (φF) = 0 gives a zero action.

Combining these terms, the total action is,

SE = Sb + Sw = −1

2
π2ρ4

bε+ 2π2ρ3
bσ (1.5.27)

The last thing to do is to find the value for ρb in terms of our thin-wall limit parameter

ε. We know we want to extremise the action, hence by varying SE with respect to

the ρb we can find,
∂SE

∂ρb

= 0 =⇒ ρb =
3σ

ε
(1.5.28)

giving a final expression for the Euclidean action in the thin-wall limit as,

SE =
27π2σ4

2ε3
. (1.5.29)

Once we have determined the field configuration after the tunnelling event the field

evolves according to the Lorentzian equation of motion, and by matching at τ = t = 0

the field evolves according to the analytic continuation of the tunnelling solution to

real time. Wick rotating ρ,

ρ2 = τ 2 + x2 = x2 − t2 (1.5.30)

we see that surfaces of constant Euclidean distance relate to three dimensional sur-

faces of constant distance expanding with real time t. After tunnelling, the bubble

wall follows the hyperboloid x2 − t2 = ρ2
b, and hence the bubble of true vacuum

rapidly accelerates to an almost light-speed expansion.
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1.5. VACUUM DECAY

1.5.4 Inclusion of Gravity

As will become clear in the later parts of this thesis, we wish to account for the effects

of gravitation on vacuum decay. A hasty analysis might tell us that vacuum decay

itself occurs at scales of negligible gravitational effect, however the growth of the

bubble must necessarily stray into gravitational territory, so let us try to estimate

at what distances this happens. Vacuum decay releases energy proportional to the

bubble volume, which therefore dictates the behaviour of its Schwarzschild radius;

with the growth of the bubble there must be a point at which it is comparable with

the radius of the bubble itself. A sphere of radius l and energy density ε has a

Schwarzschild radius of the form 2GN(4πl3

3
)ε. The two radii are equal at,

l =

(
8πGNε

3

)− 1
2

= MPl

√
3

ε
. (1.5.31)

For example, ε ∼ (1GeV)4 results in l ∼ 1km. Certainly we wish to consider larger

energy densities than this, and therefore smaller values of l. It is apparent that

gravity is non-negligible well before we arrive at any kind of cosmological distance,

and gravity must be included in our understanding of tunnelling if we are to obtain

accurate conclusions.

A subtlety that we were able to ignore in the previous section when we set

V (φF) = 0 raises its head once we introduce gravity. Up to this point there has been

no absolute zero of energy density, and we have been able to add a constant to V

as we please. This is no longer the case once gravity is included, as we can see from

the gravitational action,

S =

∫ √
−g
(

1

2

(
∂µφ

)2 − V (φ)− 1

2
M2

PlR

)
(1.5.32)

where R is the Ricci scalar. Now, shifting V by a constant introduces a term pro-

portional to
√
−g to the integrand, i.e. a cosmological constant. Vice versa, once

the vacuum has decayed from false to true vacuum the cosmological constant will

change within that volume. We must therefore determine the absolute zero of energy

density by giving its initial value as an additional boundary condition.
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1.5. VACUUM DECAY

We will undergo the remainder of this section following the approach taken by

Coleman and de Luccia [73]; we consider there to be two useful examples based on

the experimental declaration that the observed value of the cosmological constant

is approximately zero in natural units. These two examples will therefore be: 1)

V (φT) is zero, and we reside after the decay of the false vacuum. 2) V (φF) is zero,

and we currently reside in the false vacuum. In general this method would work for

any values of the cosmological constant, but it will be helpful to be aware of these

two special cases.

As before we wish to solve the Euclidean equations of motion, only now for the

action (1.5.32), with corresponding boundary conditions. In principle, this gives

us an additional ten degrees of freedom to find, originating from the metric tensor.

However, it is reasonable to assume that the introduction of gravity doesn’t break the

symmetry of the original problem; in our semi-classical approach we are considering

classical gravity, in which the vacuum solutions are exactly those that allow us to

retain O(4) invariance. It should be noted that while this is merely a supposition,

some attempts to consider solutions that are not O(4) invariant have been made,

and so far they suggest that our assumption is accurate [75].

The most general O(4) invariant Euclidean metric is of the form,

ds2 = dξ2 + ρ(ξ)2dΩ2
3 (1.5.33)

where dΩ2
3 is the element of distance on a unit three-sphere, ρ gives the radius of

curvature of each three-sphere, and ξ is a radial coordinate which is orthogonal to

all angular coordinates on the sphere. Once again rotational invariance has allowed

us to considerably simplify our problem; instead of considering ten functions of four

variables we can work with a single function of one variable.

Denoting differentiation with respect to ξ with a prime from hereon out, the

Einstein equations for this metric are given by,

ρ′2 = 1 +
1

3

ρ2

M2
Pl

(
1

2
φ′2 − V

)
(1.5.34)

with all others resulting in trivial expressions. The equation of motion for φ, assum-
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ing ξ dependence only, is given by,

φ′′ + 3
ρ′

ρ
φ′ =

dV

dφ
(1.5.35)

where we can see compared to the corresponding equation without gravity, (1.5.19),

only the coefficient of φ′ has changed. We can again use the thin-wall approximation

to neglect this term [73], and we once again obtain the simplified equation φ′′ = dV
dφ

that we did in the scalar scenario. We now wish to compute the Euclidean action for

this theory in the thin-wall limit. As we have said, we cannot simply set V (φF) = 0

due to the metric coupling, but we do need to perform a background subtraction

in order to obtain a finite decay rate. The probability will now be related to the

difference between the Euclidean actions for the solution to the equations of motion,

and for a field sitting in the false vacuum,

B = SE[φb]− SE[φF]. (1.5.36)

The other difference when compared to the purely scalar calculation is the addition

of the Einstein-Hilbert term to SE. The Ricci scalar for our O(4) invariant metric

(1.5.33) is,

R =
6

ρ2

(
1− ρρ′′ − ρ′2

)
. (1.5.37)

Combining with (1.5.34), we substitute into the Euclidean version of (1.5.32), and

integrate by parts to arrive at the expression,

SE = 4π2

∫
dξ
(
ρ3V − 3M2

Plρ
)
. (1.5.38)

Following the same approach as the scalar case, we split the integration into three

regions. Outside of the bubble φ = φF, which exactly matches our background

subtraction, hence Boutside = 0. For the bubble wall ρ ≈ ρb, hence using (1.5.38) we

get,

Bwall = 4π2ρ3
b

∫
dξ (V (φ)− V (φF)) = 2π2ρ3

bσ. (1.5.39)

Lastly, inside of the bubble φ = φT. From (1.5.34) we obtain the relation,

dξ =
dρ√

1− 1
3
M−2

Pl ρ
2V

(1.5.40)
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which we can use in (1.5.38) to integrate from ρ = 0 to ρ = ρb, and get,

Binside =
12π2M4

Pl

V (φT)

((
1− 1

3

ρ2
bV (φT)

M2
Pl

) 3
2

− 1

)
− (φT → φF) (1.5.41)

where the first term is from SE inside[φT] and the second from the background sub-

traction in terms of φF.

Let us now consider the two examples outlined at the start of this section. The

first case is for an absolute zero vacuum energy defined by the true vacuum, V (φT) =

0, which in the thin-wall approximation gives V (φF) = ε. This is equivalent to

a tunnelling scenario from a de Sitter into a Minkowski space-time. Simplifying

(1.5.41), our full expression is now given by,

B = Bwall+Binside = 2π2ρ3
bσ−6π2M2

Plρ
2
b−

12π2M4
Pl

ε

((
1− 1

3

ρ2
bε

M2
Pl

) 3
2

− 1

)
. (1.5.42)

Varying with respect to ρb, and demanding that the actual bubble radius is a sta-

tionary point, we find,

ρb =
12σ

4ε+ 3M−2
Pl σ

2
=

ρ0

1 + (ρ0/2l)2
(1.5.43)

where ρ0 is the value of the bubble radius in the purely scalar case, given by (1.5.28),

and l = MPl

√
3
ε
, as in (1.5.31). This results in a simplified version of the total

tunnelling exponent (1.5.42) of the form,

B =
B0

(1 + (ρ0/2l)2)2 (1.5.44)

where B0 is the Euclidean action in the purely scalar case (1.5.29); for a decay

from de Sitter into Minkowski space-time gravity increases the decay probability by

diminishing the action.

The second case is tunnelling from a Minkowski space-time, V (φF) = 0, to an

Anti de Sitter space-time, V (φT) = −ε, where now the absolute zero of vacuum

energy is set by the false vacuum, and the true vacuum has an associated negative

vacuum energy. Following the same procedure, we arrive at similar expressions for

the bubble radius,

ρb =
ρ0

1− (ρ0/2l)2
(1.5.45)
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and tunnelling exponent,

B =
B0

(1− (ρ0/2l)2)2 (1.5.46)

where the denominator now carries a sign change when compared with the equations

for case 1. We see that for this case gravity will decrease the decay probability, and

increase the radius of the materialised bubble. In fact, for ρ0 = 2l, gravity has

the effect of completely stabilising the false Minkowskian vacuum, by requiring the

bubble to form with infinite size. This phenomenon has a simple explanation in

terms of energy requirements: Energy conservation demands a materialised bubble

has zero energy, the balance of a negative energy volume term and a positive energy

surface term. In the purely scalar case it is always possible to make a bubble satisfy

this regardless of the value of ε; for a big enough bubble the volume/surface ratio

will automatically fulfil our requirements. In contrast, when we include gravitation,

the negative energy density of the bubble curves the space-time so as to reduce the

volume/surface ratio. We therefore reach the requirement of infinite bubble radius

at a finite value of ε, past which no bubble will have zero energy.

29



Chapter 2

The Cosmological Constant

Problem

2.1 Vacuum Energy

In the previous chapter we have stated that we expect there to be corrections to

the cosmological constant coming from vacuum energy matter loops. Let us now

explain why we expect them to contribute to the energy momentum tensor with

form Tµν vac = −gµνVvac, and estimate their magnitude.

In order to estimate the vacuum energy in GR coupled to matter, we utilise a

semi-classical method, treating the field theory sector quantum mechanically but the

gravitational degrees of freedom classically. We initially expand the action around a

Minkowski background with canonically normalised fluctuations of the metric. We

then decouple gravity by sending MPl → ∞, and calculate loop corrections in this

limit; we now have a theory on a Minkowski background where standard quantum

field theory is applicable. After calculating the vacuum energy corrections to a

selected order in perturbation theory, we return MPl to a finite value and let gravity

interact classically with the resulting vacuum corrections as imposed by the gauge

invariance.

It should be made clear that this is an approximation to the full prescription.

Although pure graviton loops do not contribute, once the graviton is coupled to

matter we will see similar large radiative corrections. However, the matter loops

already present enough of a conundrum when comparing our perturbation theory

result to experimental observation, as will become apparent, therefore as a first

attempt this semi-classical method will be sufficient. Of course the corrections from
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2.1. VACUUM ENERGY

virtual gravitons are expected to be non-negligible relative to the experimentally

observed value of the cosmological constant [76], even with suppression from the

Planck mass, and so in a full solution to the cosmological constant problem these

would need to be considered. We will examine these contributions later within an

EFT approach.

Let us take an example action to illustrate the calculation,

S =

∫
d4x
√
−g
(
−1

2
(∂φ)2 − 1

2
m2
φφ

2 + λφ4

)
(2.1.1)

The 1-loop correction to the cosmological constant then takes the form,

S = −1

2

∫
d4x

∫
d4p

(2π)4
log
(
p2 +m2

φ

)
. (2.1.2)

In simplifying this equation divergent momentum integrals arise, which require some

form of regularisation. Here we choose to use dimensional regularisation working in

d = 4− ε dimensions (closely following [31]). We obtain a result at the 1-loop level

for our example of [33],

V φ,1-loop
vac = −

m4
φ

(8π)2

(
1

2ε
+ log

(
µ2

m2
φ

)
+ finite

)
(2.1.3)

where µ is an arbitrary mass scale introduced during the regularisation procedure,

which by dimensional analysis must be inserted. Any finite contributions to the loop

correction are therefore also arbitrary, as µ can always be redefined to absorb them.

We can clearly see that, in the limit ε→ 0, (2.1.3) is divergent. As is standard QFT

procedure, we cancel the divergence by adding a counter term Λc, of the form,

Λφ,1-loop
c =

m4
φ

(8π)2

(
1

2ε
+ log

(
µ2

M2

)
+ finite

)
(2.1.4)

where M is the scale of renormalisation. We can recognise Λφ,1-loop
c as the bare

cosmological constant that was present in our gravitational action, since it appears

in exactly the same form, hence the notation choice. The resulting renormalised

vacuum energy is the sum of the two and is given by,

Λφ,1-loop
ren =

m4
φ

(8π)2

(
log

(
m2
φ

M2

)
+ finite

)
. (2.1.5)
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We can once again see that the finite part of the loop correction is arbitrary since

we can always redefine M to absorb it. This is an example of an important principle

in the study of EFTs: it is impossible to predict a priori the exact size of the loop

corrections to the cosmological constant, or indeed any relevant operator, as the

result will always contain an arbitrary mass scale. Instead, we have to perform a

measurement, and modify the finite contribution to Λc accordingly in order to match

theory with observation.

2.2 Fine Tuning and Re-Fine Tuning

As an example, let’s assume our scalar field is the Higgs boson, with a mass of

mφ = 126GeV [64], [65]. Observations give an upper bound of (meV)4 on the total

cosmological constant, so the counterterm must cancel vacuum energy contributions

at the 1-loop level to an accuracy of 1 part in 1060.

Having shown that at the 1-loop level the counterterm needs to be fine-tuned to

match observation, we now calculate the 2-loop correction. The exact form of this

calculation is not important, and from dimensional analysis we see it is of the form,

V φ,2-loop
vac ∼ λm4

φ (2.2.1)

where the λ originates from the 4-point vertex in this interaction. It is important

to note that this is an additional correction on top of our result for 1-loop. Again

taking the Higgs boson to be our example scalar, with λ ∼ 0.1, this is another large

correction relative to the observed cosmological constant value . However, the bare

cosmological constant counterterm has already been fixed such that Λren matches

observations at 1-loop. We now must re-tune it to cancel the 2-loop contributions

as well, as a similar level of accuracy. This pattern repeats and we must continue to

re-tune at 3-loops, 4-loops and beyond. At every order the correction to the vacuum

energy from the scalar field is not perturbatively suppressed relative to the previous

loop correction like we might expect, and remains well above the observed value for

the cosmological constant. This is known as radiative instability, and is a symptom

of the highly UV sensitive nature of the cosmological constant; we denote its small

observed value as being unnatural.
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It is worth noting that the same result, that the cosmological constant is radia-

tively unstable, can be obtained from a Wilsonian viewpoint [77], [78]. This involves

integrating out high energy modes above some cut-off, leaving a lower energy EFT.

There one finds that the correction to the vacuum energy is highly sensitive to the

cut-off of the effective theory, and that if one changes the cut-off, again re-fine tuning

is required. This is an equivalent argument to that discussed above, and produces the

same understanding of the nature of the cosmological constant. For a full discussion

of this approach see [29], [79].

For comparison to the cosmological constant, the calculation of loop corrections

to the electron mass results in a series of terms, where each loop order contributes

a correction that is suppressed relative to the previous order. Additionally, these

contributions have a logarithmic form as opposed to a power law, making them

much more robust to changes in UV physics [80]. This means we can set the bare

mass of the electron in our EFT such that we obtain the correct observed value,

and calculating to additional loop orders will not cause an appreciable difference.

This occurs because massless fermions are protected by their chiral symmetry, which

prevents a mass term from being generated by loops. If we were to introduce a small

symmetry breaking term, i.e. a mass term, to obtain the theory of a massive fermion,

corrections will now be generated that affect the mass term. However, these will be

proportional to the bare mass and not the mass of some heavy particle from the

UV theory, therefore keeping the corrections small at any loop order. We will use a

similar argument to this in chapter 4.

This contrast between the cosmological constant and our example of a massive

fermion shines a light on the real issue of the cosmological constant problem - the

power law dependence of the quantum corrections on the cut-off. There is nothing

intrinsically wrong with cut-off dependent corrections to the vacuum energy. How-

ever, a power law dependence rather than logarithmic means we must repeatedly fine

tune Λc to agree with observations when our description of the EFT changes, i.e.

when we change the cut-off or calculate to additional loop orders. This is the real

issue with the vacuum energy, as opposed to most parameters in the standard model
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which undergo logarithmic re-normalisation. The exception to this is the Higgs mass,

which also receives large radiative corrections due to not being protected, by symme-

try or otherwise. This is known as the hierarchy problem, and we generously leave

the solution to someone else’s thesis.

2.3 Global Structure of General Relativity

A key distinguishing feature of the cosmological constant as a form of energy den-

sity is the fact that it does not dilute under cosmological expansion. In order to

comprehend the consequences of this, we examine the cosmological constant more

rigorously by introducing the space-time average, denoted by angled brackets. This

average applied to a scalar quantity Q looks like,

〈Q〉 =

∫
d4x
√
−g Q∫

d4x
√
−g

(2.3.1)

where the integrals are over the entire 4-volume of space-time. It is then easy to see

that the cosmological constant is the unique contribution to the energy-momentum

tensor that is equal to its space-time averaged value at all points in time of cosmo-

logical evolution,

Λ = 〈Λ〉 =

∫
d4x
√
−gΛ∫

d4x
√
−g

. (2.3.2)

Equivalently, Λ is a zero momentum, infinite wavelength source.

With this new perspective on the cosmological constant, we will re-examine Ein-

stein’s equations (1.1.6). Let us initially decompose them into an equation containing

pure trace terms, and a remaining set of traceless equations,

M2
PlRµν −

1

4
Rgµν = Tµν −

1

4
Tαα gµν (2.3.3)

M2
PlR = 4Λc − Tαα (2.3.4)

with Tαα = gµνTµν as the trace of the energy-momentum tensor. This way of writing

the GR equations of motion is equivalent to (1.1.6), and in fact we can recover the

original form from these new equations. We see that the cosmological constant only

affects curvature via the trace equation. Likewise, the loop corrections to the total

cosmological constant of the form Tµν = −gµνVvac are removed in the right hand
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side of equation (2.3.3), by virtue of cancellation. Let us further decompose these

equations by taking the space-time average of the trace equation,

M2
Pl〈R〉 = 4Λc − 〈Tαα 〉 (2.3.5)

which has been simplified by utilising Λc = 〈Λc〉. Taking the difference between this

equation and (2.3.4), we obtain the full set of equations,

M2
PlRµν −

1

4
Rgµν = Tµν −

1

4
Tαα gµν (2.3.6)

M2
Pl(R− 〈R〉) = 〈Tαα 〉 − Tαα (2.3.7)

M2
Pl〈R〉 = 4Λc − 〈Tαα 〉 (2.3.8)

which fully characterise the behaviour of GR, over the entire space-time. We see that

the cosmological constant term now only appears in the globally averaged equation

(2.3.8).

As we are concerned with the cosmological constant and how it appears in these

rearranged GR equations, we shall separate the vacuum energy from the energy

originating from localised sources by defining,

Tµν = τµν − Vvacgµν (2.3.9)

where τµν encapsulates all localised sources. This leads to a final set of equations,

M2
PlRµν −

1

4
Rgµν = τµν −

1

4
ταα gµν (2.3.10)

M2
Pl(R− 〈R〉) = 〈ταα 〉 − ταα (2.3.11)

M2
Pl 〈R〉 = 4(Λc + Vvac)− 〈ταα 〉. (2.3.12)

Let us reiterate that we are simply rearranging the Einstein equations to show man-

ifestly how the cosmological constant sources curvature, which is that its only direct

effect is through 〈R〉. Its effect on terms describing local curvature is indirect, and

summarised by equations (2.3.10), (2.3.11). We may designate (2.3.12) as a global

equation, since it singularly involves quantities that depend on the entirety of the

space-time. We again see an obligation for repeated fine tuning of Λc to oppose the
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radiatively unstable Vvac; this is necessary to prevent the curvature term 〈R〉 from

being sourced by radiatively unstable corrections to the total cosmological constant.

This equation therefore suggests that perhaps a solution to the cosmological constant

problem lies in a global modification of gravity.

Additionally, there exists a supplementary reason why we may want to modify

gravity on a global scale to solve the cosmological constant problem. As we have

seen when combining two separate contributions to produce the total cosmological

constant, the only distinguishing feature of the cosmological constant is that it does

not evolve i.e. to no big surprise, it is constant. As a consequence of this, any gravity

candidate can only identify a true cosmological constant by having knowledge of the

future dynamics of the system. If this were not true, how would it distinguish between

vacuum energy and for instance a scalar field in extreme slow roll until asymptotically

late times. This means that we may only consider separating the vacuum energy from

the full energy-momentum tensor if we have knowledge of the entire space-time. If

we wish to decouple exclusively the vacuum energy from sourcing curvature, we

must make a global modification to GR. This argument involving causality was first

explored in [81].
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Chapter 3

Sequestering & Vacuum Decay

3.1 Sequestering

The following chapter features heavily the sequestering theories, whose first itera-

tion was proposed by Kaloper and Padilla in 2013 as a potential solution to the

cosmological problem. We will showcase the original theory [82]–[84] and see how it

impedes vacuum energy-like contributions to the cosmological constant from sourc-

ing curvature, while making sure all other types of source gravitate as in GR. This

automatically implies sequestering conforms to all experimental bounds imposed by

tests of gravity on solar system scales without the need for any type of screening

to occur. We will proceed to present more recent versions of the sequester, which

deal with a formulation of the original proposal as a local theory, and subsequently

the treatment of virtual gravitons. Both of these amendments serve to improve the

theory from the perspective of UV completion.

3.1.1 Global Sequestering

We have seen previously the manner in which radiatively unstable contributions to

the cosmological constant originating from the matter sector of the standard model

source curvature. More precisely, we highlighted that it is necessary to probe the

entirety of the cosmological timeline in order to separate the vacuum energy from the

full energy-momentum tensor Tµν . Following this, we would like to modify gravity

such that only vacuum energy is impeded from sourcing curvature, and all other

forms of energy-momentum behave as in General Relativity. We saw that in order

to implement this we must make changes to gravity on a global scale by modifying

the global element present in the GR field equations (2.3.12). Sequestering satisfies
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precisely these criteria. At the level of the action, sequestering and GR differ by

the introduction of global variables Λc and λ. Global variables are defined here by

being unvarying in space-time, but allowed to vary in the action. They act to enforce

global constraints rather than supplying any new local degrees of freedom. It shall

become clear that these global constraints are a key component of vacuum energy

sequestering.

The original version of Sequestering is represented by the Einstein frame action

[82],

S = σ

(
Λc

λ4µ4

)
+

∫
d4x
√
−g
(
M2

Pl

2
R− Λc − λ4Lm(λ−2gµν ,Ψ)

)
(3.1.1)

where we introduce a smooth function σ which resides explicitly outside the integral

as a global contribution to the modified GR action. The mass scale µ is included

to make the argument of the function dimensionless, and its value can be fixed by

a redefinition of σ. Any standard model matter that is minimally coupled to the

rescaled metric λ2gµν is represented by Ψ.

Having introduced (3.1.1) in the form in which it was first proposed, we will

immediately transform this action into the Jordan frame, in order to make better

comparisons with the later versions of Sequestering shown in this chapter. Under

the rescalings,

gµν → g̃µν = λ2gµν (3.1.2)

Λc → Λ̃c =
Λc

λ4
(3.1.3)

the action reads,

S = σ

(
Λ̃c

µ4

)
+

∫
d4x
√
−g̃
(
M2

Pl

2λ2
R̃− Λ̃c − Lm(g̃µν ,Ψ)

)
(3.1.4)

where R̃ is the Ricci scalar defined with respect to the conformally rescaled metric

g̃µν . The full equations of motion are obtained by varying over the degrees of freedom

given by g̃µν , Λ̃c and λ. Varying in g̃µν gives,

M2
PlG̃µν = λ2T̃µν − λ2Λ̃cg̃µν (3.1.5)
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where T̃µν is the energy-momentum tensor related to g̃µν . Converting Λ̃c and g̃µν

back to their Einstein frame counterparts, and using λ2T̃µν = Tµν and G̃µν = Gµν ,

if we recognise Λc as the bare cosmological constant of the Einstein-Hilbert action,

then we obtain exactly the GR equations of motion (1.1.6). In contrast to GR,

Sequestering also has two additional constraint equations, obtained by variation over

the global parameters of the theory. Varying over Λc provides an equation of motion

constraining the 4-volume of the entire space-time in terms of global variables, of

the form, ∫
d4x
√
−g̃ =

σ′

µ4
(3.1.6)

where σ′ is the differential of σ by its argument. We therefore constrain σ to the set

of differentiable functions, in order to have a well defined variational principle. We

now see why σ is an integral part of the sequestering formalism, as without it we

would obtain a zero space-time volume. It also clear that as µ and σ′ are assumed

to be finite, this theory does not allow an infinite Jordan frame space-time volume.

To obtain the twelfth and last equation of motion of Global Sequestering, varia-

tion over λ provides an expression constraining the integral of the Ricci scalar over

the entire space-time to depend on the global variables as,

M2
Pl

λ3

∫
d4x
√
−g̃ R̃ = 0. (3.1.7)

Lastly, we take the ratio of (3.1.7) and (3.1.6), giving a single constraint 〈R̃〉 = 0.

For clarity, we wish to examine what modifications the introduction of these two

constraint equations have made to the gravitational dynamics. To this purpose, let

us replace the global variable Λ̃c from (3.1.5), to obtain modified Einstein equations.

Taking the trace of (3.1.5) we get,

−M2
PlR̃ = λ2T̃αα − 4λ2Λ̃c (3.1.8)

which, after integrating over all space-time, in combination with (3.1.7), yields,

4Λ̃c

∫
d4x
√
−g̃ =

∫
d4x
√
−g̃ T̃αα (3.1.9)

or alternatively, with the help of (3.1.6),

4Λ̃c
σ′

µ4
=

∫
d4x
√
−g̃ T̃αα (3.1.10)
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which tells us the integral of the Jordan frame traced energy-momentum tensor, or

energy-momentum scalar, is wholly constrained by global variables.

We can also now see that by rearranging (3.1.9) we obtain,

4Λ̃c = 〈T̃αα 〉. (3.1.11)

The global variable equations of motion have enabled us to make a global constraint

of the space-time average of the energy-momentum scalar as a function of the bare

cosmological constant. Alternatively, we can write the bare cosmological constant

wholly as a function of the space-time average of the energy-momentum scalar, in

contrast to GR where Λc is a free parameter. This on-shell constraint equation is

key to the sequestering of vacuum energy.

Substituting this equation back into (3.1.5) eliminates the global variables and

produces our final modified Einstein equations, given by,

M2
PlG̃µν = λ2T̃µν −

1

4
λ2〈T̃αα 〉g̃µν . (3.1.12)

Having successfully obtained field equations describing gravitational dynamics in the

Global Sequestering theory, we now switch back to Einstein frame for the remainder

of the section in order to make a concrete comparison with GR. The field equations

(3.1.12) become,

M2
PlGµν = Tµν −

1

4
〈Tαα 〉gµν . (3.1.13)

Let us separate the energy-momentum tensor as Tµν = τµν − Vvac gµν , to manifest

the cosmological constant contribution, so that we may readily track the quantum

corrections. Then we obtain,

M2
PlGµν = τµν −

1

4
〈ταα 〉gµν . (3.1.14)

It is now apparent that the vacuum energy is unable to contribute to (3.1.14) and

is therefore unable to source curvature. The cancellation of vacuum energy-like con-

tributions between the two terms on the right hand side is active for all perturba-

tive loop orders and likewise for any Wilsonian cut-off. The sequestering constraint

(3.1.11) demands that the bare cosmological constant Λc compensates for all quan-

tum corrections originating from Vvac to the total cosmological constant Λt without

40



3.1. SEQUESTERING

the need for fine tuning. The repeated fine tuning that we saw was necessary in GR,

and was the root of the cosmological constant problem, is completely taken care of

by the global constraint equation in Sequestering.

Returning to examine (3.1.13), we see that curvature is now solely determined by

the local contributions contained in τµν , which contribute exactly as in GR, as well as

the residual cosmological constant term 1
4
〈ταα 〉gµν . This residual vacuum energy-like

contribution 1
4
〈ταα 〉 is radiatively stable, and takes the form of a space-time average

of the energy-momentum representing local matter excitations. As in any EFT its

value should be fixed by experimental observations, which give Λobs . (meV)4.

Having arrived at modified Einstein equations for the Global Sequestering the-

ory, we remind ourselves of (2.3.8), a global equation which we claimed would be

important in solving the cosmological constant problem. Let us attempt to connect

our Sequestering theory to equations (2.3.7-2.3.8) by splitting the field equations we

have just obtained in a similar fashion, and manifest the global character of this

gravitational modification. We again decompose the equations of motion (3.1.5)

into a trace equation and the traceless degrees of freedom. Repeating the procedure

we underwent for GR, we subtract the trace equation from its space-time average.

Unsurprisingly, this produces precisely the Einstein equations of GR, but with the

additional global constraint of Sequestering. After this process, the field equation

decomposition for Global Sequestering is,

M2
PlR

µ
ν −

1

4
Rδµν = τµν −

1

4
ταα δ

µ
ν (3.1.15)

M2
Pl(R− 〈R〉) = 〈ταα 〉 − ταα (3.1.16)

M2
Pl〈R〉 = 4(Λc + Vvac)− 〈ταα 〉 (3.1.17)

4(Λc + Vvac) = 〈ταα 〉 (3.1.18)

and the final equation (3.1.18) makes transparent the exact cancellation of any vac-

uum energy contributions.

In conclusion, we have seen that imposing global constraints on the Einstein

equations can completely decouple radiatively unstable quantum corrections to the

cosmological constant from sourcing classical gravity. The mechanism behind Global
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Sequestering is the introduction of global variables to the base Einstein-Hilbert action

with matter coupling, as well as a function containing these global parameters outside

of the action space-time integral.

3.1.2 Local Sequestering

In order to thoroughly discuss the local version of the sequestering theory, it is

helpful to first present a brief overview of unimodular gravity, and the gauge invariant

version of Henneaux and Teitelboim [85]. Unimodular gravity attempts to solve the

cosmological constant problem but ultimately fails [86]. The theory itself differs from

general relativity only in that it enforces the additional constraint
√
−g = 1. This

has the effect of a vanishing metric determinant variation,

δ

δgµν

√
−g = 0. (3.1.19)

Under this constraint the GR action (1.1.1) gives,

M2
PlRµν −

1

4
Rgµν = Tµν −

1

4
Tgµν (3.1.20)

which are the Einstein equations in a traceless form. The cosmological constant

is not present in these equations since it appears in the action as
√
−gΛc, and

likewise radiative corrections Vvac also disappear. It may appear as if the cosmological

constant problem has been solved, but alas as we shall see this is not the case [87].

Using the Bianchi identity on the divergence of (3.1.20) yields,

∇µ(M2
PlR + T ) = 0 (3.1.21)

which when integrated gives,

M2
PlR + T = 4Λc. (3.1.22)

It is apparent that this is merely the trace of the Einstein equations and Λc has

reentered our equations in the form of an integration constant. The combination of

(3.1.20) and (3.1.22) yields the full GR field equations,

M2
PlGµν = Tµν − Λcgµν (3.1.23)
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and the return of the cosmological constant problem. The main effect of having

imposed (3.1.19) is that Λc is now an integration constant as opposed to a constant

present in the action. So instead of the repeated fine-tuning we were forced to do in

GR we must now constantly change the value of our integration constant in reaction

to the quantum corrections from the matter sector, i.e. the cosmological constant

problem is alive and well.

To see this in more detail, we can repackage the unimodular constraint into the

action via a Lagrange multiplier λ(x) in the form,

Sunimodular = SGR +

∫
d4xλ(x)(

√
−g − 1). (3.1.24)

This action explicitly breaks gauge invariance, which tells us that the constraint
√
−g = 1 is merely a local choice of gauge. In a full diffeomorphism invariant theory

it is always possible to select a reference frame that locally obeys the unimodular

constraint. Fixing a gauge in this way cannot give us insight into the cosmological

constant problem.

Hence, let us consider Henneaux and Teitelboim’s gauge invariant unimodular

gravity [85]. To implement a diffeomorphism invariant construction, it is possible to

use a different measure in the action. The usual covariant four volume is a 4-form,

which written in full is given by,∫
d4x
√
−g =

1

4!

∫ √
−g εµνλρεµνλρd4x =

1

4!

∫ √
−g εµνλρdxµ ∧ dxν ∧ dxλ ∧ dxρ

(3.1.25)

where εµνλρ is the Levi-Civita symbol, which behaves as a tensor density under co-

ordinate transformations. However, although
√
−g εµνλρ is the 4-form that appears in

the Einstein-Hilbert action, in general any 4-form Fµνλρ could be used as a measure

and the action would be diffeomorphism invariant. Henneaux and Teitelboim used

this to modify unimodular gravity into the form,

S =
M2

Pl

2

∫
d4x
√
−gR−

∫
Λc(x)

(√
−g d4x− 1

4!
Fµνλρ dxµ ∧ dxν ∧ dxλ ∧ dxρ

)
(3.1.26)

where the 4-form Fµνλρ is defined as the exterior derivative of a 3-form Aνλρ, as given
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by,

Fµνλρ = 4∂[µAνλρ]. (3.1.27)

It is worth noting that Fµνλρ is completely independent of the metric off-shell; it

transforms correctly due to its totally anti-symmetric nature, resulting in its absence

from the modified Einstein equations. Varying Λc(x) generates a constraint equation

for
√
−g and varying Aνλρ gives us ∂µΛc(x) = 0. Solving this equation yields an

integration constant that is exactly the cosmological constant present in the GR

action, and is the fixed on-shell value of our Lagrange multiplier. More generally,

it is possible to have gauge invariant unimodular gravity with a more complicated

Λc(x) in the topological sector, such as,

S =

∫
d4x
√
−g
(
M2

Pl

2
R− Λc(x)

)
+

1

4!

∫
σ

(
Λc(x)

µ4

)
Fµνλρ dxµ ∧ dxν ∧ dxλ ∧ dxρ

(3.1.28)

where µ is a mass scale necessary for dimensional consistency and σ is some smooth

function. Continuing along our line of inquiry, in keeping with our analysis of the

global sequester, let us introduce a matter sector with the standard minimal coupling

to the metric and show that unimodular gravity once again falls short of solving the

cosmological constant problem. The gµν field equation is given by,

M2
PlG

µ
ν = T µν − Λc(x)δµν (3.1.29)

which we can identify as the GR field equations where the cosmological constant has

been promoted to a dynamical scalar field. As mentioned, varying Λc(x) leads to,

σ′

µ4
Fµνλρ =

√
−g εµνλρ (3.1.30)

and the variation of Aνλρ now yields,

σ′

µ4
∂µΛc(x) = 0 (3.1.31)

which again constrains Λc(x) on-shell to be a constant. Substituting this constant

into (3.1.29) results in the Einstein equations with the added constraint of (3.1.30)

on-shell. As a result of the rigidity of Λc(x) we can integrate (3.1.30) to obtain a
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constraint on the space-time volume of the form,

1

4!

σ′

µ4

∫
F4 =

∫
d4x
√
−g (3.1.32)

However, as opposed to the global sequester, this constraint equation is unable to

inform us about 〈R〉 or 〈Tαα 〉. In short, it has nothing to say about the global

equation of GR (2.3.12) which we have previously identified as a significant aspect

of any theory hoping to address the cosmological constant problem.

For the sake of clarity we shall once again decompose the field equations, similarly

to our analysis of general relativity and the global sequester. The resulting equations

are given by,

M2
PlR

µ
ν −

1

4
Rδµν = τµν −

1

4
ταα δ

µ
ν (3.1.33)

M2
Pl(R− 〈R〉) = 〈ταα 〉 − ταα (3.1.34)

M2
Pl〈R〉 = 4(Λc + Vvac)− 〈ταα 〉 (3.1.35)

?F − 〈?F 〉 = 0, 〈?F 〉 =
µ4

σ′
(3.1.36)

where we have separated the energy-momentum content into T µν = τµν − Vvac δ
µ
ν

and ? denotes the Hodge dual of a form, which for our purposes is given by,

? F =
1

4!

1√
−g

εµνλρFµνλρ . (3.1.37)

This presentation of the field equations shows explicitly that the defining constraint of

unimodular gravity is insufficient, since the constraint equations (3.1.36) are totally

decoupled from the Einstein equations represented by (3.1.33)–(3.1.35). Once again

it is necessary to continually re-tune Λc in order to address the radiative instability

of Vvac.

In conclusion, we have demonstrated that Λc, a global parameter in the origi-

nal sequester, can emerge as an integration constant from on-shell field equations.

Additionally, we have shown how via the introduction of a new covariant measure

it is possible to produce global constraints from a theory comprised solely of local

fields. We have illustrated how these mechanisms are insufficient for addressing the

cosmological constant problem in the arena of unimodular gravity. We proceed to
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present how these methods can instead be applied to a theory that produces local

field equations resembling the design of the global sequester, and thus connect to the

cosmological constant problem.

We recall that the global sequestering theory in the Jordan frame is given by,

S =

∫
d4x
√
−g̃
(
M2

Pl

2λ2
R̃− Λ̃c − Lm(g̃µν ,Φ)

)
+ σ

(
Λ̃c

µ4

)
(3.1.38)

where the equation of motion of the global parameter λ constrained the integral of

the Ricci scalar R over all space-time. We now wish to produce a corresponding

constraint in a theory constructed from only local fields. In our examination of

unimodular gravity Λ̃c was replaced by a scalar field, forced to be rigid on-shell by

the variation of a 3-form, with its off-shell fluctuations providing a global constraint.

Let us continue in a similar manner by promoting the remaining global parameter λ

to a scalar field as,
M2

Pl

λ2
→ κ2(x) (3.1.39)

where we aim for κ2(x) to be similarly fixed rigid on-shell, whilst allowing an off-shell

variation that produces a constraint on 〈R〉. In order to realise this we implement

a second 4-form, supplementary to that discussed in the Henneaux and Teitelboim

formulation of unimodular gravity, which is coupled to κ2(x) whilst being indepen-

dent of the metric off-shell, and that leaves the gauge invariance of the theory intact.

These requirements are satisfied by the theory given by [88],

S =

∫
d4x
√
−g
(
κ2(x)

2
R− Λc(x)

)
+ Sm [gµν ,Ψ]

+
1

4!

∫
d4x εµνλρ

(
σ

(
Λc(x)

µ4

)
Fµνλρ + σ̂

(
κ2(x)

M2
Pl

)
F̂µνλρ

)
(3.1.40)

where σ and σ̂ are smooth functions independent of each other, both Fµνλρ and

F̂µνλρ are defined as exterior derivatives of 3-forms in the same way, and µ . MPl

where MPl and µ are the gravitational and field theory cutoffs. The function σ is

still restricted in the same way that it cannot be a purely logarithmic function. This

is the full, manifestly local, Sequestering theory.

We now have in total five fields to vary over. As in previous sections, it is

important to note that the following is carried out in a semi-classical picture, where
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gravity is treated classically and we ask how the vacuum energy influences classical

curvature if fine tuning is absent.

Firstly, variation with respect to gµν gives,

κ2(x)Gµ
ν = (∇µ∇ν − δµν∇2)κ2(x) + T µν − δµνΛc(x). (3.1.41)

The two scalar fields Λc(x) and κ2(x) yield equations of motion of the form,

σ′

µ4
Fµνλρ =

√
−g εµνλρ (3.1.42)

σ̂′

M2
Pl

F̂µνλρ = −1

2

√
−gR εµνλρ (3.1.43)

from which we can determine that neither σ nor σ̂ are allowed to be linear functions,

so as to not completely constrain either 4-form in terms of the space-time geometry.

Lastly, variation of the 3-forms restricts the scalars on-shell to be constant,

σ′

µ4
∂αΛc(x) = 0 (3.1.44)

σ̂′

M2
Pl

∂ακ
2(x) = 0. (3.1.45)

This removes the possibility of new long range fifth forces and as a consequence

there is no need to use any kind of screening mechanism in order to match with solar

system tests of gravity, as we would with other theories of modified gravity; this is a

direct consequence of the modification only effecting the global structure of gravity.

This system of equations boils down to GR with additional global constraints on 〈R〉,

in comparison to the original sequestering model which sets 〈R〉 = 0; the advantages

of having a non-zero constraint will become apparent shortly.

Integrating the scalar equations and substituting the resulting integration con-

stants, which we shall denote by Λc and κ2, back into (3.1.41), the gravity equations

become,

κ2Gµ
ν = T µν − δµνΛc (3.1.46)

where κ ∼ 1018 GeV is now the bare Planck mass. Fixing κ so as to match observa-

tions generates a hierarchy between itself and the scales present in the matter sector,
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but it will still be a radiatively stable quantity against matter loop corrections as

long as µ .MPl. Integrating the constraints (3.1.42) and (3.1.43) gives,

1

4!

σ′

µ4

∫
F4 =

∫
d4x
√
−g (3.1.47)

1

4!

σ̂′

M2
Pl

∫
F̂4 = −1

2

∫
d4x
√
−gR. (3.1.48)

Upon taking the ratio of the two equations, we obtain,

〈R〉 = −2
σ̂′

σ′
µ4

M2
Pl

∫
F̂4∫
F4

. (3.1.49)

The space-time average of the Ricci scalar is now constrained by the ratio of the

4-form fluxes. In order to make the proceeding discussion clearer, we will write this

equation as κ2〈R〉 = 4∆Λ with ∆Λ taking its definition from (3.1.49).

Let us go back to the gravity equations (3.1.46) and make explicit the 〈R〉 de-

pendence by taking the trace and space-time average, giving us,

4Λc = 〈Tαα 〉+ κ2〈R〉 (3.1.50)

where we have used the fact that Λc = 〈Λc〉 and κ2 = 〈κ2〉. Now by using (3.1.49)

we can replace 〈R〉 in (3.1.50) by the ratio of the integrated 4-forms, expressed in

terms of ∆Λ. Finally we can substitute for Λc, resulting in a set of gravitational field

equations of the form,

κ2Gµ
ν = T µν −

1

4
〈Tαα 〉δµν −∆Λδµν (3.1.51)

which are the same as the equations we obtained from the global sequestering model,

but for the addition of ∆Λ. Once again splitting the energy-momentum tensor into

global vacuum energy and local matter contributions as T µν = τµν − Vvacδ
µ
ν , it is

apparent that the radiatively unstable vacuum energy contributions to the cosmolog-

ical constant do not appear in these modified Einstein equations, and are therefore

unable to source curvature. The only sources allowed to affect curvature are local

matter excitations and the residual cosmological constant. This is similar to the

original Sequestering model, but with a new addition to the previous residual cos-

mological constant 1
4
〈ταα 〉 of the form ∆Λ. These two terms are both radiatively
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stable and are therefore allowed to be set by observation without issue. In contrast to

the global Sequester, this residual cosmological constant can now be a Dark Energy

candidate and responsible for observed late time cosmological acceleration as we no

longer need be restricted to a finite space-time volume.

If this residual cosmological constant is the only source of acceleration then it

will result in an infinite space-time volume, in which case matter fields satisfying

null energy conditions will fulfill 〈ταα 〉 = 0, due to the denominator of the space-

time average diverging while the numerator dilutes as the universe expands. We

are left with only a ∆Λ contribution, which can now be fixed by observation to

be ∆Λ ∼ (meV)4. We know ∆Λ must be radiatively stable, as it is comprised of

4-form fluxes and the ratio of the derivatives of σ and σ̂. The integrals of F4 and

F̂4 are infrared quantities and so are not sensitive to variation of the cut-off µ. The

functions σ and σ̂ will receive corrections from matter loops on account of their Λc

and κ dependencies, but if we restrict ourselves to sufficiently smooth functions (i.e.

σ(O(1)z) ∼ O(1)σ(z)) then these matter loops can only ever contribute corrections

of O(1) as they are suppressed by the cut-offs as Λc/µ
4 and κ2/M2

Pl.

Finally, in order to highlight the significance of the global constraints, we present

the decomposition of the field equations for local sequestering, which take the form,

κ2Rµ
ν −

1

4
Rδµν = τµν −

1

4
ταα δ

µ
ν (3.1.52)

κ2(R− 〈R〉) = 〈ταα 〉 − ταα (3.1.53)

κ2〈R〉+ 〈ταα 〉 = 4(Λc + Vvac) (3.1.54)

?F − 〈?F 〉 = 0, 〈?F 〉 =
µ4

σ′
(3.1.55)

?F̂ − 〈?F̂ 〉 =
M2

Pl

2κ2σ′
(ταα − 〈ταα 〉) (3.1.56)

∆Λ =
1

4
κ2〈R〉 = − κ2σ̂′

2M2
Pl

〈?F̂ 〉. (3.1.57)

The equations (3.1.52)–(3.1.54) correspond exactly to the Einstein equations and

they confirm that this version of sequestering is able to locally reproduce GR. The

next equations, labelled (3.1.55), are identified as the unimodular gravity constraint

equations. It should be obvious that these would appear in our decomposition, as
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local sequestering (3.1.40) reduces to the generalisation of gauge invariant unimod-

ular gravity (3.1.28) in the limit σ̂ = 0. Lastly, the modifications to unimodular

gravity, and hence GR, are represented by (3.1.56) and (3.1.57). As requested they

interact with the global GR equation by constraining the space-time average of the

Ricci scalar. Equation (3.1.56) demonstrates the radiative stability of F̂4, due to the

cancellation of vacuum energy corrections and the fact that κ2σ′/M2
Pl as previously

discussed only shifts by O(1). Likewise, equation (3.1.57) demonstrates that the

space-time averaged Ricci scalar is made radiatively stable by virtue of the ∆Λ con-

straint. With the left hand side of (3.1.54) radiatively stable, Λc is forced to absorb

radiatively unstable contributions originating from Vvac. Finally, it is worth mention-

ing that it is the 4-forms that permit local sequestering to avoid Weinberg’s no-go

theorem. This is due to them allowing diffeomorphism invariant non-gravitating

measures independent of the metric off-shell.

The local sequester as we have described it does not produce a numerical value for

the Ricci scalar space-time average, and as in any EFT it would need to be measured.

Any a priori insight would necessarily come from a more complete understanding of

the UV physics with regards to the source of the four-forms and their fluxes.

In summary, presenting the material of [82]–[84], we have built upon our analysis

of the cosmological constant problem and the global description of the vacuum energy

within GR from chapter 2. We have proceeded to show how the problematic vacuum

energy contributions from the matter sector can be completely decoupled from the

curvature by implementing a modification to GR involving global constraints. The

original sequester achieves this via global variables, whose equations of motion de-

mand that the cosmological constant cancel the radiative corrections without a need

for fine tuning. We then demonstrated how this mechanism could be implemented

within a local theory, by introducing a topological sector that leads to similar global

constraints, as shown and built upon in [88]–[90]. This again leaves finite wavelength

sources untouched, and so replicates GR locally, automatically passing solar system

tests. Now we turn our attention to the problem of including the virtual graviton in

our analysis of the cosmological constant problem, which up until now we had put
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to one side. It is an important consideration, as it is found to be essential to the

complete sequestration of the radiatively unstable vacuum energy [91]. We will also

study the cosmological consequences of such a model in greater detail.

3.2 Omnia Sequestra

So far we have a mechanism for protecting the vacuum energy from matter loop

corrections. We have achieved this by utilising constraints at the largest wavelengths,

as well as new gauge symmetries preventing additional local degrees of freedom.

Curvature is then sourced by a residual radiatively stable vacuum energy, with a

value that must be measured, as is the case for other parameters in EFTs e.g. the

electron mass. For a full portfolio of work surrounding the local sequester, see [82]–

[84], [88]–[90], [92]–[94].

We now aim to modify the mechanism to accommodate vacuum energy loops that

include virtual gravitons. It will become apparent that higher dimensional operators

are useful as conjugate variables to constraint parameters that sequester said loops

from the gravitational field equations. Since this modification is focused on vacuum

energy loops as opposed to the locality of the theory, we truncate our analysis by

concentrating on the global sector from the start. We therefore integrate out the

3-forms from (3.1.40), which forces the scalars κ and Λ to be space-time constants.

The global sector of the local sequestering theory is now described by the action,

S =

∫
d4x
√
−g
(
κ2

2
R− Λ− Lm(gµν ,Ψ)

)
+ σ

(
Λ

µ4

)
c+ σ̂

(
κ2

M2
Pl

)
ĉ (3.2.1)

where c and ĉ are the fluxes of 3-forms A and Â respectively, with constraints orig-

inating from the variation of the ‘rigid’ scalars κ2 and Λ. The field equations are

given by,

κ2Gµ
ν = T µν − Λδµν ,

σ′

µ4
c =

∫ √
−g d4x,

σ̂′

M2
Pl

ĉ = −1

2

∫
R
√
−g d4x. (3.2.2)

Tracing and averaging over space-time as in the previous section, we once again

obtain (3.1.51). The vacuum energy cancellation that occurs as a consequence of

(3.1.51) is a result of two approximate symmetries of the local sequestering action
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[82]–[84]. There is an approximate shift symmetry Lm → Lm + ν4, Λ→ Λ− ν4, for

constant ν, which is promoted to an exact symmetry in the limit c/µ4 → 0 as the

topological sector is suppressed.

There also exists an approximate symmetry in κ2. To observe it, let us consider

metric and κ2 fluctuations about a Minkowski space-time with negligible cosmological

constant. Setting κ2 = M2
Pl(1 + φ/MPl) and gµν = ηµν + hµν/MPl, the theory is

invariant under the transformation φ → φ + ν̂ in the limit MPl → ∞, ĉ/M2
Pl → 0.

However, this symmetry is broken at finite MPl, hence graviton loops will not be

cancelled in (3.1.40).

We can alternatively see this by examining vacuum energy loops that include both

matter and gravitons. Let us give an outline of the calculation in a locally Lorentzian

frame, treating the background geometry as flat. This adequately describes all the

UV contributions. Expanding in 1/κ2, we obtain,

−
(
a0M

4 + a1
M6

κ2
+ a2

M8

κ4
+ . . .

)∫ √
−g d4x (3.2.3)

where ai ∼ O(1). The first term in the expansion contains the pure matter (and pure

gravity) loop corrections; these are the contributions that are sequestered by (3.1.40).

The following terms contain graviton interactions. For κ ∼MPl, and a cutoff of M ∼

TeV, M6/κ2 is thirty orders of magnitude above Λobs. The contribution ∼ M8/κ4

represents diagrams containing either more, or higher order, graviton interactions.

This term is smaller than the proceeding one, but is nevertheless problematic for a

high enough cutoff. Regardless, κ2-dependent corrections to vacuum energy will not

be sequestered in (3.1.40), due to different cutoff scaling.

Explicitly, the equivalent of equation (3.1.51) is given by,

κ2Gµ
ν = −

(
∆Λ− a1

M6

2κ2
− a2

M8

κ4
+ . . .

)
δµν (3.2.4)

with ∆Λ = κ2〈R〉/4 = −µ4

2
κ2σ̂′

M2
Plσ
′
ĉ
c

as before. Clearly the terms independent of κ

from (3.2.3) are absent, and are replaced by a residual, radiatively stable, finite

contribution ∆Λ. However, the κ-dependent terms are still present. The largest

corrections are of the form ∼ M6

2κ2 , but the following contributions are potentially
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also well above the dark energy scale, hence demanding an additional mechanism to

sequester them.

We now proceed to show that such a mechanism can be obtained by a simple

modification of the local sequestering theory (3.1.40). Local sequestering makes

three main modifications to GR: (i) promote the constants κ2, Λ into local fields;

(ii) fix them to be rigid via 4-form gauge symmetries; (iii) use the field equations

of κ2 and Λ to fix the counterterms and decouple radiatively unstable contributions

from the metric. These radiative instabilities instead only couple to the physically

unobservable local 4-form fluctuations. The key constraint then originates from the

κ equation of motion, which in the global limit fixes the space-time average of R to

be a radiatively stable ratio of 4-form fluxes, dubbed ∆Λ. This is the condition that

results in the cutoff-dominated terms cancelling in the Λ − 〈Tαα 〉/4 portion of the

field equations.

It is clear that if we are able to retain all of the main points of the local sequester,

whilst somehow not promoting κ2 to a scalar field, then we will simultaneously deal

with all erroneous terms appearing in (3.2.4). It is verifiable that a similar set of

conditions would be met by the vanishing of any space-time averaged curvature

invariant not purely comprised of scale invariant quantities. The Einstein equations

in vacua then imply this invariant would be polynomial in Λ−〈Tαα 〉/4. Constraining

it via the field equations in terms of a radiatively stable quantity would then produce

a similar construction to that given by (3.1.40). Additionally, as previously stated,

if the constraint is not as a consequence of MPl variability then vacuum energy

corrections involving MPl will automatically cancel from the residual cosmological

constant.

There are many candidate invariants that fill our requirements in four dimensions,

but the Gauss-Bonnet term, RGB = R2
µναβ − 4R2

µν +R2, is in some sense a ‘minimal

modification’. As the Gauss-Bonnet invariant is a total derivative it only affects the

topological sector, leaving finite wavelength behaviour unchanged. It is also not scale

invariant, and so it successfully constrains the counterterms required to sequester all

large vacuum energy loop corrections.
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More rigorously, our candidate action is of the form,

S =

∫
d4x
√
−g
(
M2

Pl

2
R− Λ(x) + θ(x)RGB − Lm (gµν ,Ψ)

)
+

1

4!

∫
d4x εµνλρ

(
σ

(
Λ

µ4

)
Fµνλρ + σ̂(θ)F̂µνλρ

)
(3.2.5)

where we have replaced the promotion of the Planck mass with that of the Gauss-

Bonnet coupling θ(x). We shall call this theory Omnia Sequestra (OS) due to its

ability to sequester all [95], as we will go on to show.

As before, we work ‘in the action’ concentrating on the global sector by once

again integrating out the 3-forms, which leaves us with an effective action of,

S =

∫
d4x
√
−g
(
M2

Pl

2
R− Λ + θRGB − Lm (gµν ,Ψ)

)
+ σ

(
Λ

µ4

)
c+ σ̂(θ)ĉ. (3.2.6)

The two scalars are now fixed to be stiff, and have no local off-shell fluctuations.

The parameters c and ĉ are the boundary fluxes of the two 3-forms. The equations

of motion become,

M2
PlG

µ
ν = T µν − Λδµν ,

σ′

µ4
c =

∫ √
−g d4x, σ̂′ĉ = −

∫
RGB

√
−g d4x. (3.2.7)

It is possible to express the Gauss-Bonnet invariant as RGB = −2
(
Rµν − 1

4
Rgµν

)2
+

W 2
µναβ + 1

6
R2, where the Weyl tensor Wµναβ vanishes in vacuum. Undergoing the

same procedures as the previous section of tracing, averaging and substituting, we

arrive at,

M2
PlG

µ
ν = T µν −

1

4
δµν 〈Tαα 〉 −∆Λδµν (3.2.8)

where ∆Λ is now given by,

∆Λ2 =
3M4

Pl

8

(
〈RGB〉 − 〈W 2

µναβ〉+
2

M4
Pl

〈(Tµν −
1

4
Tgµν )2〉 − 1

6M4
Pl

(
〈T 2〉 − 〈T 〉2

))
(3.2.9)

and with the space-time average of the Gauss-Bonnet term expressed as the ratio of

the two global constraints,

〈RGB〉 =

∫
RGB

√
−g d4x∫ √
−g d4x

= −µ4 σ̂
′ĉ

σ′c
. (3.2.10)

Naturally, the full analysis of (3.2.5) is more complex, however the global limit of

that analysis is fully represented by the field equations given by (3.2.6).
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As we saw previously, the regularised vacuum energy, 〈vac|T µν |vac〉 = −δµνVvac,

automatically cancels from the right hand side of (3.2.8). The Weyl tensor gives a

vanishing contribution by virtue of scale invariance, and so ∆Λ only receives radiative

corrections through 〈RGB〉 [96]. These corrections are of the form Λ→ Λ +O(M4),

and θ → θ + O(1) log(M/m), where m represents a generic EFT mass scale [97].

Therefore, under the same requirements on σ and σ̂ as before, ∆Λ is radiatively

stable. This cancellation in the resulting equation of motion now accommodates both

matter loops, and loops containing virtual gravitons. Additionally, graviton loops

are prevented from introducing extra θ dependence in the effective action because

the Gauss-Bonnet term is a total derivative. Background curvature effects and their

corresponding IR corrections are suppressed by the background curvature scale, and

so any extra dependence on the rigid scalars is expected to be negligible. Other

curvature contributions to radiative corrections, coming from the renormalisation of

(3.2.5), will similarly be sub-leading below the cutoff M .MPl.

The improved nature of the global sector (3.2.6) of OS, as presented in (3.2.5),

when contrasted with the global sector of the local sequester (3.1.40) is due to the

second approximate shift symmetry. This shift symmetry is now represented by

θ → θ + α, which remains unbroken regardless of whether MPl is finite, up to the

topological terms. In the limit ĉ → 0 with MPl fixed to be finite, the symmetry is

restored. This modified approximate shift symmetry, which in the local sequester

was unavailable for finite MPl, forces the cancellation of the large virtual graviton

loop contributions to the vacuum energy. That the symmetry is untouched by all

but the topological terms restricts any generation of terms involving θ that would

interfere with the sequester of the vacuum energy.

In summary, a modification of the local sequester allows for the de-gravitation

of cutoff-dominated corrections to the vacuum energy, including diagrams involving

virtual gravitons. Using a loop expansion, we consider gravity as an EFT with a

sub-Planckian cutoff. This additional capability of the sequester results from an

employment of the Gauss-Bonnet topological invariant, promoting the approximate

shift symmetry to a bulk invariant independent of the value of MPl.
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3.2.1 Sequestering at the Boundaries

Having obtained an action for the OS theory that deals with both matter and gravi-

ton loops (3.2.5), a more complete definition of OS should include boundary con-

ditions and any additional boundary terms required for a well defined variational

principle, the analogue of the Gibbons-Hawking term in General Relativity [98]. For

the original sequestering theory it was found that a simple Dirichlet boundary condi-

tion on the Einstein frame metric was sufficient [89], but as we will see the equivalent

for OS is a little more involved. For an action of the form (3.2.5), the analogue of the

Gibbons-Hawking boundary term is the Myers boundary term given by [99]–[101],

−
∫

Σ

d3x
√
|h|
[
M2

PlK + 4θ(J − 2ĜijKij)
]

(3.2.11)

where hij is the induced metric on the space-time boundary, Σ, with corresponding

Einstein tensor Ĝij. The extrinsic curvature, Kij = −1
2
Lnhij, is defined in terms of

the Lie derivative of the induced metric with respect to the outward pointing normal,

na, and K = hijKij is its trace. Finally, we define,

Jij =
1

3

[
(KklK

kl −K2)Kij + 2KKikK
k
j − 2KikK

klKlj

]
(3.2.12)

along with its trace J = hijJij. The full action is now given by (3.2.5) supplemented

with the boundary term (3.2.11). Its variation now yields a boundary contribution

of the form [99]–[101],

− 1

2

∫
Σ

d3x
√
|h|
[
I ijδhij + Iθδθ

]
(3.2.13)

with,

I ij = −M2
Pl(K

ij −Khij)− 4θ(3J ij − Jhij + 2P̂ ikljKkl ) + . . . (3.2.14)

Iθ = 8(J − 2ĜijKij) (3.2.15)

where P̂ iklj is the double dual of the Riemann tensor and the ellipsis denote terms

proportional to gradients of θ that will vanish automatically thanks to the bulk

equations of motion.

56



3.3. COSMOLOGICAL IMPLICATIONS

If we were to impose Dirichlet boundary conditions on all fields, the action and

variational principle would now be well defined. However, as explained analogously

in [89], Dirichlet boundary conditions on either θ or Λ would suppress their off-shell

global fluctuations which are crucial to the success of the sequestering mechanism.

To preserve the vacuum energy cancellation we must impose Neumann boundary

conditions instead,

na∂aδΛ|Σ = 0, na∂aδθ|Σ = 0 (3.2.16)

Further imposing Dirichlet boundary conditions on the metric would now be prob-

lematic. Instead, we seek a boundary condition of the form δhij|Σ = Aijδθ|Σ where

Aij is chosen so that, (
I ijδhij + Iθδθ

)
|Σ = 0 (3.2.17)

guaranteeing a stationary action on-shell. The task of finding a suitable choice of

Aij is simplified for a three dimensional boundary by noting that the double dual of

the Riemann tensor, P̂ iklj, vanishes identically in 3 dimensions. We can also use the

Cayley-Hamilton theorem for a 3 × 3 matrix, applied to Kij, to show that Jij is a

pure trace, Jij = −2
3
hij detK. As a result, the final expression for (3.2.14) simplifies

considerably, giving I ij = −M2
Pl(K

ij −Khij). In the end, we found a one parameter

(z) family of suitable choices for Aij,

Aij =
1

M2
Pl

[
− 16

(
R̂ij −

1

4
R̂hij

)
− 16

3

(
KikK

k
j −KKij −

1

4
(KklK

kl −K2)hij

)]
+ z

[
2KKij + (KklK

kl −K2)hij
]
. (3.2.18)

We have not been able to establish an intuitive geometric interpretation of this choice,

although we note that for z = 0, the extrinsic curvature terms appear in combinations

familiar to the bulk curvature tensor, via the Gauss-Codazzi equations.

3.3 Cosmological Implications

Before studying the cosmological dynamics in detail, it is convenient to rewrite our

effective gravity equation (3.2.8) after explicitly splitting the energy-momentum ten-

sor up into its constant vacuum energy part, Vvac and local excitations, described by
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τµν . To this end we write Tµν = −Vvac gµν + τµν so that the vacuum energy drops

out altogether and we obtain,

M2
PlGµν = τµν − Λres gµν (3.3.1)

where we have a residual cosmological constant given by,

Λres =
1

4
〈τ〉+ ∆Λ (3.3.2)

with,

∆Λ2 =
3M4

Pl

8

[
〈RGB〉−

〈
(Wµναβ )2

〉
+

2

M4
Pl

〈(
τµν −

1

4
τgµν

)2
〉
− 1

6M4
Pl

(〈
τ 2
〉
− 〈τ〉2

)]
(3.3.3)

where τ = gµντµν . As emphasised previously, this residual cosmological constant is

stable against radiative corrections to the vacuum energy and should now be fixed

empirically. Of course, this is the same approach one takes for any relevant operator

in effective field theory. For example, the electron mass is radiatively stable thanks

to chiral symmetry, but its value cannot be predicted in effective field theory and

should be set by measurement.

Let us now focus on a homogeneous and isotropic background, described by the

standard cosmological metric,

ds2 = −dt2 + a(t)2dx2
κ (3.3.4)

where a(t) is the scale factor at time t, and dx2
κ is the metric on unit sphere (κ = 1),

plane (κ = 0) or hyperboloid (κ = −1). Assuming that the local matter content of

the Universe is described by a homogeneous energy density, ρ and pressure, p = wρ,

we find that the dynamics is described by a Friedmann equation,

H2 +
κ

a2
=
ρ+ Λres

3M2
Pl

(3.3.5)

where Λres = −1
4
〈(1− 3w)ρ〉+ ∆Λ and,

∆Λ = ±
√

1

2
〈ρ2(1 + 3w)〉+

1

16
〈ρ(1− 3w)〉2 − 3

8
M4

Plµ
4
σ̂′

σ′
ĉ

c
(3.3.6)
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Here we have used the fact that the Weyl tensor vanishes on a Friedmann-Robertson-

Walker metric (3.3.4), as well as the constraint (3.2.10). Following [83] , we evaluate

the space-time averages by assuming that the cosmology takes place over a (reg-

ulated) proper time interval tin < t < tout, with a (regulated) spatial co-moving

volume Vol3. For example, when we explicitly compute the constraint (3.2.10) in

this way we obtain,

〈RGB〉
def
=

∫ tout

tin
dt a3

[
24 ä

a

(
H2 + κ

a2

)]∫ tout

tin
dt a3

= −µ4 σ̂
′ĉ

σ′c
. (3.3.7)

The cancellation of the spatial volumes will be generic for all space-time averages

computed on this background.

3.3.1 Calculation of historic integrals

Let us now estimate the historic integrals that appear in (3.3.2) and (3.3.3). To do

so, we follow [83] and split the cosmological history into intervals (ti, ti+1), for which

the dominant source, ρ, has equations of state wi and the cosmological evolution

has an effective equation of state w̄i. Generically we expect wi = w̄i, although

exceptions could include an epoch of curvature domination or domination by the

residual cosmological constant, Λres, as one might expect to see at late times. In this

ith interval, we can use the energy conservation equation ρ̇ = −3H(ρ + p) and the

Friedmann equations (3.3.5) to obtain,

H = Hi+1

(
a

ai+1

)− 3
2

(1+w̄i)

, ρ = ρi+1

(
a

ai+1

)−3(1+wi)

(3.3.8)

where aj and Hj denote the scale and Hubble factors evaluated at time tj. Let us

define the generic contributions to the integrals in (3.3.6) and evaluate them using

(3.3.8). For n = 0, 1, 2, we write,

In,i
def
= fn,i

∫ ti+1

ti

dt a3ρn (3.3.9)

=

(
a3ρn

H

)
i+1

fn,i
gn,i

[
1−

(
ai
ai+1

)gn,i]
(3.3.10)

=

(
a3ρn

H

)
i

fn,i
gn,i

[(
ai+1

ai

)gn,i
− 1

]
(3.3.11)
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where,

fn,i =


1 n = 0

1− 3wi n = 1

1 + 3wi n = 2

(3.3.12)

and,

gn,i =
3

2
(3 + w̄i)− 3n(1 + wi). (3.3.13)

Note that for gn,i = 0, we understand the formulae for In,i by taking the limit as

gn,i → 0, in which case we obtain logarithms. Let us also define In =
∑

i In,i where

the sum is performed over all intervals in the entire cosmic history, so that now we

may write,

Λres = −1

4

I1

I0

±

√
1

2

I2

I0

+
1

16

(
I1

I0

)2

− 3

8
M4

Plµ
4
σ̂′

σ′
ĉ

c
. (3.3.14)

Owing to the quadratic nature of the global constraint, our solution comes with two

roots. At this stage, we have no compelling reason to pick one root over the other. In

higher dimensional Gauss-Bonnet gravity, solutions also split into two branches, and

it is the branch that admits a smooth Einstein limit that typically avoids pathological

behaviour [102].

Consider first an expanding phase, so that adjacent intervals satisfy ai−1 � ai �

ai+1. We obtain the following ratio,

∣∣∣∣ In,iIn,i−1

∣∣∣∣ =

fn,i
gn,i

[(
ai+1

ai

)gn,i
− 1
]

fn,i−1

gn,i−1

[
1−

(
ai−1

ai

)gn,i−1
] . (3.3.15)

Depending on the values for the gn,i, there are three possible scenarios1:

1. |In,i| � |In,i−1| e.g. when gn,i > 0, gn,i−1 > 0

2. |In,i| ∼ |In,i−1| e.g. when gn,i < 0, gn,i−1 > 0

3. |In,i| � |In,i−1| e.g. when gn,i < 0, gn,i−1 < 0.

1When gn,i > 0, gn,i−1 < 0 we could in principle be in any of the three cases, depending on the

relative size of the scale factors.
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When case 1 occurs, the later interval dominates thanks to the largeness of ai+1,

for appropriate values of gn,i. In contrast, when case 3 occurs, the earlier interval

dominates thanks to the smallness of ai−1, again, for appropriate values of gn,i. One

can obtain analogous results in a contracting phase (if there is one). What all this

tells us is that the sums In are dominated by their extreme infra-red and ultra-violet

intervals, where the scale factor is largest and smallest respectively. To develop this

further, let us define the infra-red interval as a? < a < amax and the ultra-violet

interval as amin < a < a†, where amax is the largest scale factor in the cosmic history,

and amin is the smallest. amin is not taken to be zero, as one might naively expect, but

to a regulated finite value consistent with the UV cut-off of the theory. In contrast,

we do allow amax to be infinite, in principle. The precise values of a? and a† are not

important in what follows. We may now write2,

In ∼ IUVn + IIRn (3.3.16)

where,

IUVn =

(
a3ρn

H

)
?

fn,UV
gn,UV

[
1−

(
amin

a?

)gn,UV ]
(3.3.17)

IIRn =

(
a3ρn

H

)
†

fn,IR
gn,IR

[(
amax

a†

)gn,IR
− 1

]
. (3.3.18)

These terms contain possible divergences as amin → 0 (for gn,UV ≤ 0) and amax →∞

(for gn,IR ≥ 0). Of course, what we are really interested in are the ratios In/I0.

To this end we note that g0,i = 3
2
(3 + w̄i) ∈ [3, 6] for an effective equation of state

w̄i ∈ [−1, 1]. This range is consistent with sources that satisfy the dominant energy

condition. In any event, it follows that there is no divergent UV contribution to I0,

so that we simply have,

I0 ∼ IIR0 ∼
(
a3

H

)
†

1
3
2
(3 + w̄IR)

(
amax

a†

) 3
2

(3+w̄IR)

. (3.3.19)

2In an expanding then contracting Universe, we would get UV and IR contributions from both

phases, but we suppress this sum in the interest of brevity.
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Now consider the ratios. From the infra-red regime, we have,

IIRn
I0

∼ 3

2
(3 + w̄IR)ρn†

fn,IR
gn,IR

(
amax

a†

)−3n(1+wIR)

∼ 3

2
(3 + w̄IR)ρnmax

fn,IR
gn,IR

. (3.3.20)

The matter equation of state satisfies the dominant energy condition with vacuum

energy excluded3, wi ∈ (−1, 1], so there is no divergence in the ratio IIRn /I0 for

n = 1, 2. Indeed, we see that this ratio scales like ρnmax, where ρmax is the homoge-

neous energy density associated with localised matter sources at the point where the

Universe is at its largest. This contribution vanishes in an infinite Universe thanks

to the dilution of such sources.

Now consider the ultra-violet regime. Here we have,

IUVn
I0

∼ −3

2
(3 + w̄IR)

(
a3ρn

H

)
?(

a3

H

)
†

fn,UV
gn,UV

[(
amin

a?

)gn,UV
− 1
]

(
amax

a†

) 3
2

(3+w̄IR)
. (3.3.21)

For gn,UV < 0, there is a dangerous power law divergence as amin → 0 in a finite

Universe (where amax is finite). Such a divergence could contaminate the observed

cosmological constant, Λres, with power law cut-off dependence, in violation of nat-

uralness. Indeed, given the allowed values wi ∈ (−1, 1], w̄i ∈ [−1, 1], we have that

gn,i ∈ [3−6n, 6) and therefore a potentially dangerous cut-off dependence for n = 1, 2.

If we choose to identify w̄UV = wUV , we can reduce the cut-off scaling to at worst

a logarithmic one (for wUV = 1) for n = 1 [83], although for n = 2, power law

dependence remains for wUV ∈ [−1/3, 1].

This unnatural cut-off dependence can be eliminated in an infinite Universe,

thanks to the volume suppression as amax → ∞. This suggests that there is a

lower bound on the size of the Universe set by naturalness. Let’s have some fun

by estimating this, noting first that IUVn
I0
∼
(
a3ρn

H

)
min

/
(
a3

H

)
max

. If we take ρmin ∼

3The constant underlying vacuum energy gets sequestered. We will deal wth vacuum energy

phase transitions in the next section.
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M2
PlH

2
min then we can write,

IUVn
I0

∼
(
N

amax/a0

)3
Hmax

H0

(M2
PlH

2
0 )n (3.3.22)

.

(
N

amax/a0

)3

(M2
PlH

2
0 )n (3.3.23)

where a0 is the present day scale factor and,

N =

(
1

H0lUV

) 1
3

[
2n−1− 2

1+W̄ (amin,a0)

]
. (3.3.24)

Here we have integrated over the cosmic history from the cutoff to the present day,

giving,

Hmin

H0

=

(
a0

amin

) 3
2

(1+W̄ (amin,a0,))

(3.3.25)

where,

1 + W̄ (amin, a0) =

∫ ln a0

ln amin
d ln a (1 + w̄(ln a))∫ ln a0

ln amin
d ln a

(3.3.26)

and w̄(ln a) is the effective equation of state when the scale factor has size a. We

have also assumed Hmin ∼ l−1
UV where lUV is the length scale at which we cut-off

the theory (possibly the string length or the Planck length). In any event, provided

amax/a0 & N , we are guaranteed that the UV contribution does not exceed the scale

set by the critical density today, IUVn /I0 . (M2
PlH

2
0 )n.

The condition amax/a0 & N is only required for n = 1, 2, and given that W̄ ∈

[−1, 1] our strongest bound comes from n = 2 and W̄ = 1. This yields amax/a0 &

(H0lUV )−2/3, which for a Planckian cut-off, is a comforting amax/a0 & 1040 or 92

more efolds of expansion! In any event, we trust that the reader has enough time to

finish going through the rest of this chapter.

Bringing everything together, we see that the residual cosmological constant re-

ceives up to three distinct contributions: the IR part of the historic integrals scaling

as ρmax . M2
PlH

2
0 , the UV part scaling as

(
N

amax/a0

) 3
n
(
Hmax

H0

) 1
n
M2

PlH
2
0 . M2

PlH
2
0 ,

and the flux contribution scaling as Λflux =
√
−3

8
M4

Plµ
4 σ̂′

σ′
ĉ
c
. The latter can be fixed

empirically and assumed to lie below the dark energy scale. In conclusion, then, pro-

vided the Universe grows sufficiently large, the residual cosmological constant will

not exceed the critical density of the Universe today.
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3.3.2 Homogeneous phase transitions

We now consider the effect of a single homogeneous phase transition in the vacuum

energy. Such transitions shift the potential by a constant amount O(M4), where M

is the scale of the transition, with well known examples being the electroweak and

the QCD phase transitions. Assuming a rapid transition, we can model this by a

step function of size ∆V = V2−V1, at time t∗, so that the energy momentum tensor

is given by Tµν = −V (t)gµν + τµν , where,

V (t) =


V1 t < t∗

V2 t > t∗

(3.3.27)

and τµν represents localised sources with equation of state in the range (−1, 1], con-

sistent with the dominant energy condition. In what follows, we will make use of the

following shorthand for the space-time volume before transition,

Ω1 = Vol3

∫ t∗

tin

dt a3 (3.3.28)

the space-time volume after,

Ω2 = Vol3

∫ tout

t∗

dt a3 (3.3.29)

and their ratio I = Ω2

Ω1
. We also define the following “before” and “after” averages,

respectively,

〈τ〉1 =
Vol3

∫ t∗
tin
dt a3τ

Ω1

, 〈τ〉2 =
Vol3

∫ tout

t∗
dt a3τ

Ω2

. (3.3.30)

Finally we introduce the local excitation of the potential,

δV = V (t)− 〈V 〉 =

−∆V I
(1+I)

t < t∗

∆V 1
(1+I)

t > t∗.

(3.3.31)

We are now ready to write down the effective gravity equation in the presence of

a homogeneous transition. It is given by M2
PlGµν = −Λeff(t)gµν + τµν where the

effective cosmological constant is,

Λeff(t) = δV + ∆Λ +
1

4
〈τ〉 (3.3.32)
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and,

∆Λ2 = − I
(1 + I)2

[
(∆V )2 − 1

2
∆V (〈τ〉2 − 〈τ〉1)

]
+

3

4

〈(
τµν −

1

4
τgµν

)2
〉
− 1

16

(〈
τ 2
〉
− 〈τ〉2

)
− 3

8
M4

Plµ
4 σ̂
′

σ′
ĉ

c
. (3.3.33)

For ∆V = 0, this result reduces to (3.3.2) and (3.3.3) for vanishing Weyl tensor,

as of course it should. To study the effect of the phase transition, we focus on the

∆V dependent terms in our expression. These introduce some time dependence in

the effective cosmological constant, through δV . To develop some intuitive under-

standing let us first consider very early and very late transitions. For a very early

transition, we expect I � 1 and so to get some insight we take the limit I → ∞. In

this case, the effective cosmological constant after the transition loses all knowledge

of the scale of the jump. Prior to the transition, the effective cosmological constant

is strongly sensitive to ∆V . In contrast, for late transitions, modelled intuitively

with the limit I → 0, we have the opposite: no sensitivity to ∆V prior to transition,

but strong sensitivity after. Although the details are different, these conclusions are

qualitatively the same as for earlier models of sequestering: sequestering works best

in the volume that dominates the space-time. This means that we always have late

time suppression of the jump for early transitions [83].

Let us now estimate the size of this volume ratio and the impact on the effective

cosmological constant more carefully. As we saw in the previous section, historic in-

tegrals are generically dominated by the period in which the Universe is largest. This

corresponds to the latest time during an expanding phase. We shall consider phase

transitions occurring in the past, during expansion, consistent with the structure of

the Standard Model. The results of the previous section (see equation (3.3.19) and

use (3.3.8)) then suggest that,

Ω1 + Ω2 = I0 = O(1)

(
a3

H

)
max

, Ω1 = O(1)

(
a3

H

)
∗

(3.3.34)

and so,

I = O(1)

(
amax

a∗

)3
H∗
Hmax

− 1 ∼ O(1)

(
amax

a∗

)3
H∗
Hmax

(3.3.35)
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where we have used the fact that amax � a∗ and Hmax � H∗. Since I � 1, we have

that,

∆Λ2 ≈ −
[

(∆V )2

I
− ∆V

2I
(〈τ〉2 − 〈τ〉1)

]
+ . . . (3.3.36)

where . . . denote transition independent terms and,

δV ≈

−∆V t < t∗

∆V
I t > t∗.

(3.3.37)

As anticipated, we get strong dependence on the scale of the jump, prior to the

transition. This will yield a short burst of inflation just before the transition occurs.

After the transition, it would seem that any dependence on the scale of the jump is

heavily suppressed. To see by how much, recall that integrating the cosmic history

from the transition to the maximum size, we can show that,

H∗
Hmax

=

(
amax

a∗

) 3
2

(1+W̄ (a∗,amax))

(3.3.38)

where 1 + W̄ (a∗, amax) =
∫ ln amax
ln a∗ d ln a (1+w̄(ln a))∫ ln amax

ln a∗ d ln a
. It then follows that the contribution

to δV after the transition goes as,

δVafter ≈
∆V

I
= O(1)

∆V

M2
PlH

2
∗

(
Hmax

H∗

) 1−W̄
1+W̄

M2
PlH

2
max. (3.3.39)

We expect |∆V | = O(1)M2
PlH

2
∗ and so since W̄ (a∗, amax) ∈ [−1, 1], it follows that

this contribution is no larger than the critical density at maximum size, or indeed

the critical density today, δVafter .M2
PlH

2
max .M2

PlH
2
0 . This reflects similar conclu-

sions drawn in [83]. In an infinitely old, asymptotically de Sitter Universe, we get

exponential suppression since W̄ (a∗, amax) = −1.

Now consider the jump contributions to ∆Λ as shown in (3.3.36). Similar con-

siderations yield,

(∆V )2

I
= O(1)

(
∆V

M2
PlH

2
∗

)2(
Hmax

H∗

)− 1+3W̄
1+W̄

M4
PlH

4
max. (3.3.40)

For the other contribution, we adapt the results of the previous section to estimate

the “before” and “after” averages as 〈τ〉1 ∼ O(1)ρ∗ � 〈τ〉2 ∼ O(1)ρmax. This then
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gives the scale,

∆V

2I
(〈τ〉2 − 〈τ〉1) = O(1)

∆V

M2
PlH

2
∗

ρ∗
M2

PlH
2
∗

(
Hmax

H∗

)− 1+3W̄
1+W̄

M4
PlH

4
max. (3.3.41)

Assuming |∆V |, ρ∗ = O(1)M2
PlH

2
∗ the result is that the jump contributions to ∆Λ

both come in at the scale,

[∆Λ]jump = O(1)

(
Hmax

H∗

)− 1+3W̄
2(1+W̄ )

M2
PlH

2
max. (3.3.42)

In contrast to δVafter, this contribution has the potential to be enhanced relative

to the critical density at maximum size M2
PlH

2
max, whenever W̄ ∈ (−1/3, 1]. This

enhancement could easily make ∆Λ larger than the critical density today. Requiring

that this is not the case imposes the following bound,

W̄ < −1

3

(
1− 4r

1− 4
3
r

)
, r =

ln H0

Hmax

ln H∗
Hmax

(3.3.43)

where we have assumed r < 3
4
. As we have stated previously, in an infinitely old,

asymptotically de Sitter Universe, we get W̄ (a∗, amax) = −1 and so there are no

dangerously large contributions to ∆Λ. But what if the current de Sitter phase is

only transient? Let’s have more fun and estimate how long this quasi de Sitter stage

needs to last in order to ensure there is no dangerous enhancement of [∆Λ]jump. To

do this, we crudely model the history of the universe as radiation dominated from

a∗ until aeq, then matter dominated from aeq until ade, and finally quasi-de Sitter

behaviour from ade until amax. We shall not assume that amax is infinite, allowing for

the possibility that the quasi de Sitter stage comes to an end close to the maximum

size. In any event, we find that,

W̄ =

ln

[(
aeq

a∗

) 4
3 ade

aeq

]
ln amax

a∗

− 1. (3.3.44)

Assuming r to be small then requiring W̄ < −1/3, we obtain the following lower

bound on the would-be size of the Universe,

amax >

√
aeqade

a∗
ade. (3.3.45)
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To bring this to life, we note that the QCD phase transition, matter-radiation equal-

ity and matter-dark energy equality occur at redshifts of 1012, 3400 and 0.4 respec-

tively. Setting a∗ ∼ aQCD, our bound then implies amax/a0 & 1010 which is less

constraining than our estimate in the previous section. Earlier transitions would

suggest a longer future, of course.

3.3.3 Inflation

We have seen in previous sections how a large and old Universe can eliminate po-

tentially large and unnatural contributions to the residual cosmological constant.

The standard mechanism for achieving a large Universe is through inflation so it

is natural to ask if it can be embedded in a theory of OS. We might be concerned

that the inflaton source behaves like a constant vacuum energy to zeroth order in

slow roll and will therefore be sequestered. This conclusion is too quick, however.

Inflation resembles a (slow) phase transition and, as we have just seen, the corre-

sponding scale is visible in the effective cosmological constant prior to the end of the

transition. Compatibility with inflation was shown for earlier models of sequestering

[83], and we will now show that this is also the case here.

We assume, for simplicity, standard single field inflation (for a review, see [103]),

described by a canonical scalar ϕ with potential V (ϕ), minimally coupled to the

metric. During inflation, all other sources of energy-momentum are quickly diluted

away, and, during slow roll, we have that the effective Friedmann equation and energy

conservation equation are given by,

H2 ≈ V + Λres

3M2
Pl

, 3Hϕ̇ ≈ −V ′ (3.3.46)

where we have also neglected spatial curvature. We now ask whether or not the

inflationary contribution to the residual cosmological constant can significantly affect

the dynamics. If inflation were to go on like this forever, the answer would be

“yes”, since the sequestering mechanism would force an exact cancellation between

a constant value for V and Λres. Of course, inflation must end, and it turns out that

its contribution to Λres is nowhere near large enough to compete with the potential.
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To see this, let us now estimate the inflationary contribution to Λres. Again,

assuming slow roll, we have that τµν ≈ −V (ϕ)gµν . It follows that,

〈τ〉 ≈ −4

∫ tend

tstart
dt a3V (ϕ)∫ tout

tin
dt a3

(3.3.47)

where inflation starts at time tstart ≈ tin and ends at time tend � tout. We can

estimate the integrals to give,

〈τ〉 = O(1)Vinf

(
aend

amax

)3
Hmax

Hinf

(3.3.48)

where Vinf = M2
PlH

2
inf and H2

inf is the scale of inflation. Since Hmax � Hinf and

aend � amax we have that |〈τ〉| is much less than the scale of the potential during

inflation Vinf. Similarly, we find that,

〈τ 2〉 = O(1)V 2
inf

(
aend

amax

)3
Hmax

Hinf

� V 2
inf (3.3.49)

and
〈(
τµν − 1

4
τgµν

)2
〉
≈ 0. Since the flux contribution, Λflux . M2

PlH
2
0 � Vinf,

we conclude that, |Λres| � Vinf, or in other words, inflation in OS goes through as

normal.

3.3.4 Geometric consequences of choosing the flux

The boundary fluxes, given by c and ĉ, are taken to be infra-red geometric quan-

tities, whose values are simply given as fixed boundary conditions in the effective

field theory. Nevertheless, it is interesting to explore the consequences of particular

choices. For example, in an homogeneous universe, vanishing ĉ forces the spatial

curvature to be negative, consistent with a spatially open Universe. To see this we

simply set ĉ = 0 in (3.3.7), then solve the integral to give,

κ|ĉ=0 = −
[ȧ3]tout

tin

3[ȧ]tout
tin

. (3.3.50)

The right hand side of this expression is negative for all real choices of ȧin and ȧout.

We emphasise that for generic ĉ, there are no such well defined constraints on the

spatial geometry. Indeed, more generally we have from (3.3.7),

κ = −
[ȧ3]tout

tin

3[ȧ]tout
tin

− µ4 σ̂
′ĉ

σ′c

∫ tout

tin
dt a3

24[ȧ]tout
tin

(3.3.51)
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where the second term can take either sign and be as large or small as we like,

depending on the choices for the flux and the cosmological dynamics.

3.4 Inhomogeneous Phase Transitions

Transitions in vacuum energy can also occur locally through bubble nucleation. In

standard Einstein gravity, the formalism for describing this was pioneered by Cole-

man and collaborators [68], [72], [73] and adapted to early models of sequestering

in [89]. There it was shown that vacuum energy was most efficiently sequestered

in regions of space-time of largest volume, favouring near-Minkowski configurations

without fine-tuning. We shall now show that similar conclusions can be drawn for

OS.

First we assume a potential that interpolates between two minima, separated by

a scale ∆V . Tunnelling from one vacuum to the other can occur via spontaneous

nucleation of a spherical bubble containing the new vacuum in the interior, then

expanding at the speed of light. As we will see, not all configurations are kinemat-

ically allowed, at least if we assume a sensible microscopic structure in the bubble

wall. Further, for the kinematically allowed configurations, we can estimate the rate

of transition per unit volume by computing the so-called bounce solution to the

Euclidean field equations.

Let us proceed by first computing the bounce. As usual, we will work in the

thin wall approximation [73], and assume that the bounce solution is O(4) invariant

[104], [105]. Under these assumptions we can write the metric with the ansatz

ds2 = dr2 +ρ2(r)dχ2 where dχ2 = γijdx
idxj is the unit 3-sphere. In a neighbourhood

of the bubble wall, we adopt a coordinate system with the wall at r = 0, the bubble

exterior corresponding to r > 0 (which we will call denote M+), and the interior

r < 0 (which we will denote M−). We shall also refer to the exterior as the “old”

vacuum, and to the interior as the “new”. The rotational invariance allows us to

write all fields as functions of the radial coordinate r only. For example, the 3-forms

components are now,

Aijk = A(r)
√
γεijk, Âijk = Â(r)

√
γεijk . (3.4.1)
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The computation of the Gauss-Bonnet term gives,

RGB = −24

(
1

ρ2
− ρ′2

ρ2

)
ρ′′

ρ
(3.4.2)

while the Ricci scalar is still,

R = 6

(
1

ρ2
− ρ′2

ρ2
− ρ′′

ρ

)
. (3.4.3)

We can now write down the equations of motion. We obtain constant Λ and θ

on-shell, while the remaining equations can be written,

3M2
Pl

(
ρ′2

ρ2
− 1

ρ2

)
= −(Λ + V (r)) (3.4.4)

M2
Pl

(
ρ′2

ρ2
− 1

ρ2
+ 2

ρ′′

ρ

)
= −(Λ + V (r) + σwδ(r)) (3.4.5)

σ′

µ4
A′(r) = ρ3 (3.4.6)

σ̂′Â′(r) = 24
(
1− ρ′2

)
ρ′′ . (3.4.7)

It should be noted that (3.4.4) and (3.4.5) are unchanged from General Relativity

(GR), while (3.4.6) is the same as in [89]. The potential,

V (r) =

V+ r > 0

V− r < 0

(3.4.8)

is taken to be a step function interpolating between the constant minima, whereas

the bubble wall is modelled with a delta-function weighted by a tension σw.

Solving away from the bubble wall, we find that,

ρ(r) =
1

q
sin q(r0 + εr) (3.4.9)

where ε = ±1, r0 is a constant of integration which in principle can differ between

interior and exterior, and,

q2 =
Λ + V

3M2
Pl

(3.4.10)

represents the local value of the space-time vacuum curvature. Here q2 can be pos-

itive, zero, or negative for a spherical, planar or hyperbolic geometry respectively4.

4Later, when we Wick rotate back to Lorentzian signature, these will correspond to locally de

Sitter, Minkowski and anti-de Sitter space-times.
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For the planar geometry, we can formally take the limit of (3.4.9) as q → 0, while

for the hyperbolic case we analytically continue the formula to imaginary values of

q. In all cases, we can rewrite (3.4.2) and (3.4.3) in terms of the local curvature q,

R = 12q2 , RGB = 24q4 . (3.4.11)

Matching conditions across the wall require continuity in 3-sphere radius, ρ, and the

3-form, A, at r = 0, or in other words,[
1

q
sin qr0

]
+

=

[
1

q
sin qr0

]
−
, A(0+) = A(0−) (3.4.12)

where labels ± denote evaluation in M±. In contrast, integrating equations (3.4.5)

and (3.4.7) across the bubble wall yields the following discontinuities,

2M2
Pl

∆ρ′(0)

ρ0

= −σw , ∆Â(0) =
24

σ̂′

(
∆ρ′(0)− ∆ (ρ′(0)3)

3

)
(3.4.13)

where ∆ is defined by ∆Q = Q+ − Q− and ρ0 = ρ(0+) = ρ(0−). The jump in

ρ′ is just the jump in extrinsic curvature across the bubble wall, familiar from the

Israel junction conditions [100], [106]. Less familiar is the jump in Â, which can be

rewritten as,

Â(0+)− Â(0−) = −12

σ̂′
ρ0σw

M2
Pl

[
1−

(
ρ′(0)

)2

− ρ2
0σ

2
w

48M4
Pl

]
(3.4.14)

where a bar refers to the average of a quantity across the wall, as Q̄ = (Q+ +Q−)/2.

The jump in Â occurs because Â couples to energy-momentum through the curvature.

Tensional thin walls therefore behave as membranes charged under Â, as in [89],

although the mapping between the wall tension and the effective 3-form charge is

now different. In a physical set-up, we would, of course, expect the bubble wall to

have finite thickness, allowing for a smooth but rapid transition in the value of Â.

Requiring that the bubble wall is supported by a sensible microscopic configu-

ration, we require that it carries non-negative tension. Through (3.4.13) this places

the usual kinematic constraint on the allowed configurations,

∆(ε cos qr0) ≤ 0 (3.4.15)
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Now let us turn our interest to the tunnelling rates between vacua. In the semi-

classical theory of vacuum decay, including gravity, these rates are given by [68],

[72], [73],
Γ

V
∼ e−B/~ , (3.4.16)

where,

B = δSE
def
= SE|bounce − SE|initial vac (3.4.17)

is the difference in the Euclidean actions for the bounce and the initial vacuum.

Splitting B into parts originating from different terms in the action, we can write,

B = BGR − σδc− σ̂δĉ (3.4.18)

where BGR = −2M2
PlΩ3∆

[
1
q2 [ρ′3]0rmin

]
+ σwΩ3ρ

3
0, represents the tunnelling exponent

computed in GR for the same geometrical configuration and Ω3 is the volume of the

unit 3-sphere. The flux terms are of the form,

δc
def
=

∫
bounce

F4 −
∫

initial vac

F4

= −µ
4

σ′
Ω3∆

[∫ 0

rmin

drρ3

]
= −µ

4

σ′
Ω3∆

[
− 1

3q4
[ρ′(3− ρ′2)]0rmin

]
(3.4.19)

and,

δĉ
def
=

∫
bounce

F̂4 −
∫

initial vac

F̂4

=
24Ω3

σ̂′
∆

[
ρ′(rmin)− 1

3
ρ′3(rmin)

]
. (3.4.20)

Note that δĉ does not depend on quantities on the brane thanks to an exact cancel-

lation that occurs due to the junction condition on Â. It is also worth highlighting

that rmin is a priori different for the false vacuum and the bounce solution. Indeed,

for the bounce, the radial coordinate r ∈ [r−min, r
+
max], passing from the interior, with

r < 0, to the exterior, r > 0. The precise values of rmax and rmin depend on the sign
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S+ − S− S+ − H− H+ − S− H+ − H−

ε± = 1 (qr0)+ ≥ (qr0)− 3 7 |q|+ ≤ |q|−

ε± = −1 (qr0)+ ≤ (qr0)− 7 7 7

ε+ = 1, ε− = −1 qr0 ∈ [π/2, π] 7 7 7

ε+ = −1, ε− = 1 qr0 ∈ [0, π/2] 3 7 7

Table 3.4.1: Summary of allowed configurations. Those marked with a “3” are allowed while those

marked with a “7” are not. Note that S denotes the sphere, H the hyperboloid. Planar limits can

be extracted by taking q± → 0.

of the curvature and the orientation of the bubble [89]:

rmin =


−r0 , ε = +1

r0 − π
q
, ε = −1, q2 > 0

−∞ , ε = −1, q2 ≤ 0

rmax =


π
q
− r0 , ε = +1, q2 > 0

∞ , ε = +1, q2 ≤ 0

r0 , ε = −1 .

(3.4.21)

Similarly, for the initial vacuum, the radial coordinate spans a range r ∈ [r+
min, r

+
max],

although there is no longer any notion of exterior versus interior.

The contribution from the Gauss-Bonnet term in (3.4.18) is notable by its ab-

sence. Because of its topological nature in four dimensions, the bulk Gauss-Bonnet

contribution is a total derivative, and is projected into a pure boundary contribution,

at rmax and rmin. These are then cancelled by the Myers boundary term (3.2.11).

In principle, the constraint on the wall tension (3.4.15) does not forbid configu-

rations in which the unbounded part of a Minkowski or AdS space tunnels to a new

vacuum. However, these cannot be considered bubble solutions and are inconsistent

with a suitable boundary prescription. The complete list of allowed transitions are

summarised in table 3.4.1. focusing now on the allowed configurations we note that

they all have [89],

ρ′(rmin) = 1, −1 ≤ ρ′(0+) ≤ ρ′(0−) (3.4.22)

74



3.4. INHOMOGENEOUS PHASE TRANSITIONS

and so,

BGR = 2Ω3M
2
Plρ

2
0∆

[
1

1 + ρ′(0)

]
≥ 0 (3.4.23)

−σδc = Ω3
µ4ρ4

0

3

σ

σ′
∆

[
1

1 + ρ′(0)
+

(
1

1 + ρ′(0)

)2
]

(3.4.24)

−σ̂δĉ = 0. (3.4.25)

Bringing it all together, we find that the tunnelling rate is given by an exponent,

B = 2Ω3M
2
Plρ

2
0

(
1 +

µ4ρ2
0

6M2
Pl

σ

σ′

)
∆

[
1

1 + ρ′(0)

]
+ Ω3

µ4ρ4
0

3

σ

σ′
∆

[(
1

1 + ρ′(0)

)2
]
.

(3.4.26)

This suggests that a sufficient condition to avoid infinitely enhanced tunnelling rates,

and a catastrophic instability in the theory, is σ
σ′
> 0.

We now consider two special cases as in [73]: tunnelling from de Sitter into

Minkowski and tunnelling from Minkowski into Anti de Sitter. For tunnelling from

de Sitter into Minkowksi (q2 → 0), we have that ρ′(0−) = 1 and ρ′(0+) ∈ [−1, 1],

and a tunnelling exponent,

B = BGR

[
1 +

µ4

12q2M2
Pl

σ

σ′
s(8− 3s)

]
(3.4.27)

where, as in [73], [89], BGR = Ω3
M2

Pl

q2 s
2 and,

s = 1− ρ′(0+) =
σ2

w

2M4
Plq

2

(
1

1 + σ2
w/4M

4
Plq

2

)
. (3.4.28)

Given the constraint σ
σ′
> 0 and the fact that in this case we have s ∈ [0, 2], we see

that the corrections due to OS always suppress this tunnelling event relative to GR.

Now consider the tunnelling from Minkowski into anti de Sitter (0 → −|q|2).

Now we have ρ′(0+) = 1 and ρ′(0−) ≥ 1, and a tunnelling exponent,

B = BGR

[
1− µ4

12|q|2M2
Pl

σ

σ′
s(8− 3s)

]
(3.4.29)

where, now, BGR = Ω3
M2

Pl

|q|2 s
2 and,

s = 1− ρ′(0−) = − σ2
w

2M4
Pl|q|2

(
1

1− σ2
w/4M

4
Pl|q|2

)
. (3.4.30)
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Transitions for which |q|2 < σ2
w/4M

4
Pl are forbidden by energetic considerations [73].

In anti de Sitter the bubble cannot get big enough for the energy stored in the wall

to balance the energy stored in the interior. Once again, given the constraint σ
σ′
> 0

and the fact that in this case we have s ≤ 0, we see that OS corrections always

suppress this tunnelling event. To sum up, for a consistent theory of OS satisfying

the constraint σ
σ′
> 0, the allowed inhomogeneous tunnelling events coincide exactly

with those in GR, but always occur at a slower rate.

Finally we consider the evolution of the bubble once it has materialised. To

see what it does, we simply Wick rotate the bounce solution back to Lorentzian

signature. The Lorentzian solutions in our case are geometrically identical to those

described in considerable detail, including their global structure, in [89]. It is far too

lengthy to repeat here and we refer the reader to [89] for further details. The only

difference in the generalised case under consideration here is the mapping between

the local curvature and the fluxes.

To find this relation, we note that the integrated versions of (3.4.6) and (3.4.7)

are written as,

c =

∫
F4 =

µ4

σ′

∫
d4x
√
−g =

µ4

σ′
(Ω+ + Ω−) (3.4.31)

ĉ =

∫
F̂4 = − 1

σ̂′

∫
d4x
√
−gRGB = −24

σ̂′
(q4

+Ω+ + q4
−Ω−) (3.4.32)

where Ω+ is the space-time volume corresponding to the initial vacuum and Ω− to

the new vacuum. In particular, Ω+ includes the entire spatial volume at all times up

until the nucleation of the bubble, and then the exterior spatial volume afterwards.

Ω− is simply the bubble interior.

Taking ratios of the two fluxes, we obtain,

Λ2
flux

9M4
Pl

=
q4

+

1 + I−1
+

q4
−

1 + I
(3.4.33)

where I = Ω+

Ω−
is ratio of the space-time volumes occupied by each particular vacuum,

and we recall that Λflux =
√
−3

8
M4

Plµ
4 σ̂′

σ′
ĉ
c
. From equation (3.4.10), we also have that,

∆q2 def
= q2

+ − q2
− =

∆V

3M2
Pl

. (3.4.34)
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It follows that,

q2
± =

1

6M2
Pl

[
−∆V (R∓ 1) + α

√
(∆V )2(R2 − 1) + 4Λ2

flux

]
(3.4.35)

where R = I−1
I+1

. Owing to the quadratic nature of the global constraint, our solution

comes in two families, parametrised by α = ±1.

Now, if the old vacuum dominates the space-time volume, then I � 1 and so

R ≈ 1. It then follows that the local curvature in this region, q2
+, is largely insensitive

to the jump in vacuum energy, being given entirely by Λflux. In contrast, q2
− is highly

sensitive to ∆V . The reverse is true when the new vacuum dominates the space-time

volume. Then we have I � 1 and so R ≈ −1: q2
+ becomes highly sensitive to ∆V ,

while q2
− is given by Λflux.

The computation of the space-time volumes, which ultimately control which re-

gions sequester vacuum energy most efficiently, is a highly non-trivial exercise. The

volumes are formally divergent to the infinite past and the infinite future. However

the divergence rates can be correlated using the covariant junction conditions. Full

details are presented in the appendix of [89], and the results can be carried over

to the present case. We do so, however, with an additional word of caution. These

ratios were computed using a global time regulator. Other regulators exist and could

yield potentially different results due to the so-called measure problem, familiar from

eternal inflation [107]. The global time regulator was chosen in [89] because global

coordinates cover the entire space-time. We have nothing more to say on this diffi-

cult question. Let us simply quote the stated ratios and explore their consequences

for the case under consideration here.

For a transition from X to Y , where X, Y are dS (de Sitter), M (Minkowski) or

AdS (anti de Sitter), we label the corresponding volume ratio as IX→Y . From [89],
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we then have,

IdS→dS ∼
q−
q+

(3.4.36)

IdS→M = 0 (3.4.37)

IdS→AdS = ∞ (3.4.38)

IM→AdS = ∞ (3.4.39)

IAdS→AdS = ∞ . (3.4.40)

The consequences of these ratios turn out to be the same as in [89], so we summarise

those results. For phenomenologically interesting de Sitter to de Sitter transitions,

we can have transitions in either direction. Transitions that lower the curvature

(q− � q+) are far more probable and for these we have I � 1, ensuring insensitivity

to ∆V in the low curvature new vacuum. For the suppressed transitions that raise

the curvature (q− � q+), we have I � 1, again ensuring insensitivity to ∆V in the

low curvature vacuum, although this time it is the old vacuum. More generally, the

following behaviour prevails: for a given transition, insensitivity to ∆V is achieved

in the vacuum with lowest absolute curvature. The one exception to this rule is

transitions from large curvature de Sitter to small curvature anti de Sitter vacua.

This generic behaviour is important. It suggests that vacua with low absolute

curvature do not require fine-tuning to achieve their low curvature: the sequestering

mechanism will always take care of the required cancellations. We now see how this

is common to all sequestering models.

3.5 Discussion

In this chapter, we have explored the cosmological framework of Omnia Sequestra,

the generalised theory of vacuum energy sequestering with the capacity to enforce

cancellation of all radiative corrections to vacuum energy, including both matter and

graviton loops [95].

As in older models of sequestering, the cosmological behaviour relies on certain

historic integrals, although their structure is different in subtle but important ways.

As usual, the historic integrals feed into the residual cosmological constant that we
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observe through the large scale curvature. In OS, we find that there are potentially

dangerous divergences coming from the singular region of space-time. These repre-

sent a potential UV instability that could render the observed cosmological constant

power law dependent on the UV cut-off of the theory. Such a scenario would mean a

violation of naturalness and the theory would do no better than General Relativity.

However, it turns out that this behaviour can be tamed in a sufficiently large and old

Universe, and eliminated altogether in a Universe that continues for eternity. For a

Planckian cut-off, 92 more efolds in expansion will be sufficient. We also find that

the scale of residual cosmological constant can be assumed to be bounded above by

the scale of the critical density today. This relies on two things: that the Universe

grows old enough to tame any cut-off dependence in the historic integrals, and that

the flux contribution is not too large.

We also studied the effect of phase transitions through these historic integrals.

For homogeneous transitions, we once again encountered potential naturalness prob-

lems that mirrored the UV sensitivity problem described in the previous paragraph.

More precisely, we find that the residual cosmological constant at late times can

become sensitive to jumps in vacuum energy from transitions at early times. Again,

these contributions can be tamed as long as the Universe gets sufficiently old and

eliminated altogether in an eternal universe. In particular, in a crude historical

model, the effect of the QCD phase transition at high redshift would require the

Universe to continue for at least 23 more efolds. Again, with this proviso, we found

that the late time behaviour became insensitive to the scale of the phase transition.

The role of the 3-form fluxes was also investigated. This is boundary data,

assumed to be UV insensitive and taking on values that should be set empirically

within the effective field theory. Nevertheless, there are geometric consequences of

certain choices. In particular, we showed that for a vanishing flux ratio, the spatial

geometry is forced to be that of a hyperboloid.

The formalism for OS was reviewed in some detail in section 3.2, and built upon to

include the effect of space-time boundaries. Owing to the non-trivial global dynamics

in sequestering models, this extension is non-trivial but was important to allow for
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a study of inhomogeneous transitions, through the nucleation of a spherical bubble

and the bounce computation originally developed for GR by Coleman and De Luccia

[73]. Indeed, via a calculation of the bounce, we were able to show that the allowed

transitions coincided with those from GR. An important new ingredient, however,

was the mapping from the source potential to the local curvature. The local curvature

became insensitive to the scale of the transition in the region of space-time that

dominated the volume. As in [89], the consequence of this is that generically those

vacua with low absolute curvature are the least sensitive to the scale of the transition.

This may seem obvious, but it is not. One could have a scenario in which the low

curvature is highly sensitive to the transition scale and one has to fine-tune. Indeed,

there is one particular scenario where precisely this happens, although it is not

generic.

The meaning of tunnelling probabilities in sequestering models may seem un-

clear at first glance, since the local value of the cosmological constant seems to have

knowledge of whether or not tunnelling will occur. Indeed, for a space-time with-

out any bubbles of true vacuum, there is complete cancellation of vacuum energy,

whereas if a bubble exists to the future the cancellation is inexact, depending on

the ratio of space-time volumes as explained above. However, there is no tension

with the probabilistic interpretation of quantum tunnelling. On the one hand, the

tunnelling rate per unit volume per unit time is faithfully captured by the bounce,

corresponding to a saddle point of the Euclidean action. The various space-time

configurations that may occur with and without bubble nucleation are all stationary

points of the Lorentzian action. This is exactly as in General Relativity, the only dif-

ference being that the sequestering solutions are also required to satisfy an additional

global constraint. Furthermore, as a local observer, we have no way of knowing if

the residual cosmological constant we measure contains contributions from inexact

cancellations due to future bubble nucleation, or some future fluctuation in the local

energy-momentum and its resulting contribution to the space-time average.

Although our analysis has been thorough, some specific questions remain. In

particular, we noted that the quadratic nature of Gauss-Bonnet ultimately means
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that there are multiple roots for the residual cosmological constant. This deserves

further investigation: does it lead to problems with well-posedness and branching;

is there a physical mechanism for selecting one branch over the other? We have also

been unable to attach any extra physical significance to the generalised boundary

conditions (3.2.18) we proposed for a well defined variational principle. Establishing

this may yield a deeper understanding of the model and how it can be embedded in

a more complete theory.

The presiding message is that all sequestering models exhibit similar cosmological

behaviour. The phenomenology is consistent with observation, without fine-tuning,

and seems to favour Universes that grow old and big. To a large extent, sequestering

is best interpreted as a mechanism for cancellation of vacuum energy, rather than

a specific model. With this perspective the future focus should really be to better

understand how and why it does what it does, at a much deeper level. This depth of

understanding should help facilitate the search for the mechanism at a fundamental

level, probably as an emergent low energy effect in a UV complete theory. Leading

on from this, we spend the remainder of this thesis on the subject of UV completion,

in particular with regards to modified gravity theories that are candidates to exhibit

Vainshtein screening at low energies.
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Chapter 4

Massive Galileons & Vainshtein

Screening

This chapter is based upon the candidate UV completion of a massive galileon theory

as presented in [108]. We will discuss a generalisation of the theory and explain how

it avoids the positivity bounds that would disrupt its UV completion. We proceed

to demonstrate its candidacy for Vainshtein screening, and how it fails to retain its

screening properties under the process of UV completion, due to the presence of

additional EFT operators. Motivated by this analysis, we will then consider similar

mass deformations in the context of Wess-Zumino galileons, and ask whether similar

EFT operators disrupt screening in this case.

Often in modified gravity model-building, dark energy and the acceleration of

the universe can be identified with the dynamics of an ultra-light scalar field which

couples to ordinary matter with gravitational strength [38], [39], [109], [110]. If the

scalar continued to operate in this way at shorter distances - within the scale of the

solar system - it would mediate a fifth fundamental force that so far has not been

detected [2], [111]. As introduced in section 1.3, viable models must therefore be

able to screen, i.e. suppress, the extra force in environments where it is known to

be small. Only a handful of screening mechanisms are known (see eg [45], [112]–

[120]), one of which is Vainshtein screening (for a review see [41]). Here, a derivative

interaction term dominates close to a matter source, causing a breakdown of the

linear theory and suppressing the gradient of the scalar field, thus screening the

fifth force within a typically large Vainshtein radius. Vainshtein screening is seen in

non-linear massive gravity [121] and Galileon-type models [122]. Theories displaying

Vainshtein screening necessarily run into strong coupling at macroscopic scales in
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order for the derivative interactions to kick in at sufficiently large distances from

the source [123]. For this reason, these theories can only be properly understood as

effective theories with a limited range of validity. Since the breakdown occurs on

macroscopic scales it is important to ask what happens beyond that scale and what

impact it has on Vainshtein screening. This question has been studied before [48],

[124], where it was argued that a generic ultra-violet (UV) completion of a theory

with derivative interactions could introduce further interaction terms that have the

potential to destroy the Vainshtein mechanism. However, the difficulty in addressing

this question directly has been the absence of a known UV completion of a theory

that exhibits Vainshtein screening (indeed, in the case of Galileons [122], it has been

argued that a standard Wilsonian UV completion does not exist [50]).

In this chapter, we examine the potential of Vainshtein screening to survive UV

completion directly. This has been made possible with the advent of an interacting

massive Galileon (IMG) and its UV completion presented in [108]. Motivated by

that set-up, we examine a generalised set of IMG theories together with their possi-

ble UV completions. We show that Vainshtein screening does occur for each type of

interaction provided the Galileon is massive. Armed with an extended description at

high energies, we are able to see if screening survives the inclusion of UV corrections.

The answer is a resounding no. Through these explicit examples, it becomes clear

that a low energy approximation to any UV theory is not automatically trustworthy

when pushed into a non-perturbative regime. Such conclusions should not come as a

surprise given our understanding of effective field theories in particle physics. Nev-

ertheless, the conclusion is significant in the context of Vainshtein screening, where

at least some higher order operators are required to become large by construction.

These results cast further doubt on the theoretical viability of Vainshtein screening,

even before observational constraints are attempted.

Our approach combines analytic estimates with a careful numerical analysis. A

flavour of the numerical results are presented in Fig. 4.0.1 where we plot the ratio

of the fifth force to the standard Newtonian force in the vicinity of a spherically

symmetric compact source. The dotted lines reveal what happens for a family of

83



10 1 100 101 102 103 104 105 106

r/rs

10 10

10 8

10 6

10 4

10 2

100

Fs/FN

full UV
IR, n = 2
IR, n = 3
IR, n = 4

rs
1/m
1/
Vainshtein radius

Figure 4.0.1: Ratio of the scalar fifth force to Newtonian force around a compact object, for the

IMG theories described in the text (Eq. 4.1.8) (dotted lines) and a possible UV completion for the

n = 3 case (Eq. 4.2.2) (solid black line). The shaded region indicates the distance scales where the

behaviour of the force changes for the different theories. When pushed towards strong coupling,

the IMGs show marked suppression of the fifth force around the compact object. However, because

this occurs at strong coupling, one really ought to work with a description that extends the theory

further into the UV. For the UV complete example shown here (solid black line), we see that there

is no longer any suppression of the fifth force. Figure produced by Daniela Saadeh.

massive Galileon theories with particular derivative interactions. In each case, the

fifth force is suppressed close to the source as the derivative interaction begins to

dominate. The black solid line is the prediction for a UV completion of one of these

scenarios. It is easy to see that suppression of the fifth force no longer occurs: the

Vainshtein mechanism is completely destroyed by the UV corrections to the theory.

The rest of this chapter is organised as follows: in the next section, we will

identify a family of higher order Galileon invariant operators that have the potential

to Vainshtein screen, but only when the Galileon is massive. We give simple analytic

arguments to indicate that screening will take place which are then reinforced by our

numerical analysis. In section 4.2 we raise the cut-off of our effective description by

84



4.1. INTERACTING MASSIVE GALILEONS AND VAINSHTEIN SCREENING

integrating in a heavy field. This is done for each family of interactions considered in

section 4.1. We present a generic analytic argument for why we expect screening to

be spoiled in these UV extended theories. For the special case already identified in

[108], the theory in question is UV complete in the limit MPl → ∞. In section 4.3,

we perform a numerical analysis on this UV complete theory and see that screening

is destroyed. This allows us to scrutinise the integrating process in detail, and re-

examine operators one would usually neglect due to heavy mass suppression. It

turns out that a tower of higher order operators can no longer be neglected within

a certain macroscopic distance from the source. This is entirely consistent with the

generic arguments presented in [48], [124] and reinforces the idea that Vainshtein

screening cannot be taken seriously without a much better understanding of the UV

effects in any particular model. Our numerical methods and results are presented

in section 4.3, with additional details found in a methods paper that accompanies

this analytical research [125]. We conclude in section 4.5. In the appendix, we

consider adding a mass deformation to so-called Wess-Zumino Galileon theories, and

ask whether the screening properties remain intact.

4.1 Interacting Massive Galileons and Vainshtein

screening

Galileon theories [122] have been seen to emerge in a variety of interesting cosmo-

logical scenarios, from DGP gravity [126] to non-linearly realised massive gravity

[127]. Although they contain higher order derivative interactions, the field equations

remain at second order, thereby avoiding the Ostrogradski instability [128]. The

defining characteristic of a Galileon theory is one that is invariant under a Galilean

transformation π → π+bµx
µ+c in flat space, where bµ and c are constant and we sum

repeated indices following the Einstein convention. For the theories with second order

field equations defined in [122], the interaction operators shift by a total derivative

under the Galileon transformation and for this reason they are sometimes referred to

as Wess-Zumino interactions [129]. Of course, we can also include interactions that
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are manifestly invariant under the Galileon transformation, such as (∂∂π)n, where

there are two (or more) derivatives acting on each insertion of the scalar. These are

expected to arise anyway as effective field theory (EFT) corrections to the leading

order interactions.

The Wess-Zumino interactions are known to facilitate Vainshtein screening [122].

Although, as emphasised earlier, this goes hand in hand with strong coupling and

concerns about the validity of our effective description when screening is active [48],

[124]. One way to avoid this concern would be to find a UV theory which could

reproduce the Vainshtein mechanism at low energies, but generalises to higher en-

ergies. Unfortunately, positivity constraints suggest that a standard Wilsonian UV

completion of the theory cannot exist [50], [130]. To avoid these bounds, it is nec-

essary to deform the Galileon theory in the infra-red (IR), in order to change the

form of the low energy scattering amplitudes. One of the simplest deformations is

the inclusion of a mass term. This massive Wess-Zumino galileon theory would take

the form,

Lmass gals =LWZ −
1

2
m2π2 (4.1.1)

=− 1

2
(∂π)2 +

g3

Λ3
L3 +

g4

Λ6
L4 +

g5

Λ9
L5 −

1

2
m2π2 (4.1.2)

where the gi are dimensionless coupling coefficients, and Li are known as the cubic,

quartic and quintic Galileons [122], given respectively by,

L3 = −1

2
∂2π (∂π)2 (4.1.3)

L4 = −1

2

(
(∂2π)2 − (∂∂π)2

)
(∂π)2 (4.1.4)

L5 = −1

2

(
(∂2π)3 − 3(∂2π)(∂∂π)2 + 2(∂∂π)3

)
(∂π)2. (4.1.5)

The tree level 2→ 2 scattering amplitude for this theory is then given by,

A(s, t) = As +At +Au +A4

AX =
9g2

3X
2(X + 4m2)2

4Λ6(m2 +X)
, A4 = −6g4

stu

Λ6

(4.1.6)

where X ∈ {s, t, u}, and A4 is the amplitude contribution from the 4-point interac-

tion. The 5-point interaction does not contribute to A(s, t) at tree level. We can see
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that in the massless limit the quadratic terms vanish, and we necessarily violate the

positivity bounds requiring the coefficient of s2 to be strictly positive [50].

It should be noted that although a mass term breaks the Galileon symmetry, the

action continues to respect the Galileon non-renormalisation theorem at low scales

[131]. Additionally, loop corrections generated by the addition of a mass term do

not violate the Galileon symmetry at any order. We look to be in good shape to

have a well-behaved theory that has some hope of being UV completed.

An example of a UV-complete massive Galileon theory was given in [108], where,

through the introduction of a single heavy field H, Galileon invariant interactions

for the light Galileon field π can be obtained, with the exception of the mass term.

Integrating out the heavy field to leading order1 yields a single field Galileon theory

in π at low energies, respecting the same symmetry. Generalising the self interaction

term for the heavy field to any integer power n + 1, the IR theory then contains

terms of the form (�π)n. Further details on how this is done can be found in section

4.2. The non-linear nature of the derivative interactions opens up the possibility

that screening will occur.

With this in mind, we consider the following action assumed to be valid at low

energies2,

S[π] =

∫
d4x

(
−1

2
(∂π)2 − 1

2
m2π2 +

ε

n+ 1

(�π)n+1

Λ3n−1
+
πT

MPl

)
(4.1.7)

where π is a scalar field with mass m, the integer n ∈ {2, 3, 4 . . .} and ε = ±1.

One can see that this action is invariant under the Galileon transformation of π →

π+bµx
µ+c, with the exception of the mass term, verifying that it is indeed a theory

of a massive Galileon3. As usual, the Galileon is coupled to external sources with

gravitational strength through the trace of the energy-momentum tensor T . The

1We do this by substituting the equation of motion for H back into the action. We explicitly

computed the first-order loop corrections to these results and they do not alter the form of the

would-be screening operator.
2Note that we employ a different definition of the parameters ε and Λ compared to those of the

corresponding method paper that accompanies this analytical research [125].
3For clarity and brevity, we define a massive Galileon in flat space as a theory for which δL ∝ m2

under the Galileon transformation, up to total derivatives.
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theory becomes strongly coupled at some scale Λ� MPl, reflecting its status as an

effective theory only valid at large distances. We now ask the following: does this

theory exhibit Vainshtein screening close to the source and, if so, how close to the

source can we go and still trust its predictions? The latter requires knowledge of the

UV completion to be discussed in the next section.

We proceed by varying the action to obtain the equation of motion,

�π −m2π + εOn =
MS

MPl

δ(x) (4.1.8)

where On ≡ �(�π)n

Λ3n−1 , and we have chosen a pressureless delta function source of mass

MS with support at x = 0. We shall now look for static, spherically symmetric

configurations.

Firstly, considering Eq. (4.1.8) far from the source, we are in the so-called linear

regime, and the solution has the form πlin ∼ MS

MPl

e−mr

r
. In order to determine at

what radius we might expect a breakdown of the linearised theory, and therefore

identify a candidate Vainshtein radius, we evaluate On on the linearised solution,

and compare it to the other terms in the equation of motion. We find that On|πlin
∼

Λ1−3nm2n�πnlin. Assuming that we are well inside the Compton wavelength of π,

we can take the approximation r � m−1, which then simplifies the expression to

On|πlin
∼ Λ1−3nm2n

(
MS

MPl

)n
r−(n+2).

Comparing with the mass term, the ratio On|πlin
/m2πlin is given by

(
r
(n)
v

r

)n+1

,

where r
(n)
v ∼ (σSκ

2)
n−1
n+1 Λ−1, with σS ≡ MS

MPl
and κ ≡ m

Λ
. We see that so long

as σSκ
2 � 1, then the linearised theory breaks down at some macroscopic scale

r
(n)
v � Λ−1. It is worth recognising that, without a mass term, κ = 0 and there is

no screening.

Although we have identified a potential breakdown of the linear theory, we still

have not confirmed the existence of screening; we must examine the non-linear regime

and determine whether the solution supports a screening mechanism. To this end,

we neglect the kinetic and mass terms in (4.1.8), and integrate the equation to obtain

(�π)n

Λ3n−1 ∼ MS

MPl

1
r

+ c where c is a constant. If the constant is negligible, we integrate to

obtain a solution of the form π ∼ (σSΛ3n−1)
1
n r2− 1

n . However, if the constant instead
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dominates, the solution is of the form π ∼ (cΛ3n−1)
1
n r2 + d. We see that in both

cases the scalar force is suppressed at small radii, consistent with screening.

To complete our analysis, we need to show that the two asymptotic solutions,

at large and small radii, can be consistently matched onto one another. We have

not been able to show this analytically, but our numerical solutions indicate that

the two solutions can indeed be matched (see Fig. 4.0.1). This suggests that the

family of interacting massive Galileon theories given by equation (4.1.7) will exhibit

Vainshtein screening around a heavy source. However, given the importance of the

derivative interaction in suppressing the force close to the source, it remains to ask

whether or not we really trust this prediction. UV corrections are expected in order

to preserve perturbative unitarity and raise the cut-off of the effective theory. What

effect do these corrections have on the predictions of the theory close to the source?

4.2 Raising the cut-off eliminates screening

Consider the action,

S[π,H] =

∫
d4x

(
−1

2
(∂π)2 − 1

2
(∂H)2 − 1

2
m2π2

−1

2
M2H2 − αH�π − λHn+1

(n+ 1)!µn−3
+
πT

MPl

)
(4.2.1)

generalised from [108], where π is the Galileon field, with light mass m, H is some

heavy field of mass M � m, and T is the trace of the energy-momentum tensor of

the source, coupling only to the Galileon field. The coupling coefficients λ and α

are dimensionless and of order one, although we must impose λ ≥ 0 and |α| < 1 to

avoid instabilities. The high energy scale µ represents the new cut-off of the theory

when n ≥ 4. For n ∈ {2, 3}, the theory is well-defined all the way up to the Planck

scale. One can see that in each case the action will transform in the correct way in

order to be considered a massive Galileon theory. Variation yields the following field

equations, 
�π −m2π − α�H = − T

MPl

�H −M2H − α�π − λHn

n!µn−3 = 0 .

(4.2.2)
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We assume as boundary conditions that the fields are everywhere regular and asymp-

toting to the vacuum expectation value.

Once again, we wish to consider 2 → 2 tree level scattering to examine the

positivity bounds. Using m � M , we show the example calculation for n = 3 from

[108], which gives an amplitude of the form,

A(s, t) = As +At +Au +A4

AX = − λ2α4

32π2(1− α2)2

(m
M

)8
∫ 1

0

dx log

(
(1− α)−1M +Xx(1− x)

µ2

)
A4 = −λα4

(m
M

)8

(4.2.3)

with corresponding positivity bound (obtained in the regime −4m2 ≤ X ≤ 0),

λ2α4

32π2(1 + α)2M4

(m
M

)8
(

1

15
+

(1− α2)(4m2 + t)

70M2
+O

(
m4

M4

))
> 0. (4.2.4)

It is clear that no matter what value t takes between −4m2 and 0 we are always able

to satisfy the bound.

Proceeding with our attempted connection between IR and UV, we can exam-

ine (4.2.1) in the region far outside the Compton wavelength of H, and under the

assumption ��M2 we obtain,

H ∼ − α

M2
�π − λαn(−1)n

n!M2(n+1)

(�π)n

µn−3
+O(λ2) . (4.2.5)

It should be noted that we have discarded terms of the form
(
�
M2

)j
π in order to write

down this expression. While these are legitimate terms under all of our perturbation

expansions, they are subdominant in both the linear and non-linear regimes, and

only become important at the Compton wavelength of H, at which point one would

have to work with the full UV theory anyway.

Using this result, we can write a low energy action as,

S̃ =

∫
d4x

(
−1

2
(∂π)2 − 1

2
m2π2 +

(−1)nλαn+1(�π)n+1

(n+ 1)!M2(n+1)µn−3
+
πT

MPl

)
(4.2.6)

where we have discarded terms of order λ2 or higher. We then identify this with our

IR theory, and see that we must have M2(n+1)µn−3 ∼ Λ3n−1 and, for n odd, ε = −1.

If we want the UV theory to be able to describe physics at higher energies reliably,
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we require it to have a larger strong coupling scale than the corresponding IR theory.

For n ∈ {2, 3}, the UV theory is renormalisable in the absence of external sources,

but for n ≥ 4 we must restrict ourselves to Λ < µ. Writing µ = NΛ for N > 1, we

see that M = N
3−n

2(n+1) Λ, i.e. the heavy field must be lighter than the strong coupling

scale, in keeping with our intuition from Wilsonian UV completions.

We now give analytic arguments to explain why we expect screening to be absent

in this extended theory, focusing on the UV complete case with n = 3. We start by

rewriting the equations of motion as follows:
�(π − αH)−m2π = ρ

MPl

�(H − απ)− V ′(H) = 0

(4.2.7)

where V ′(H) = M2H+ λ
3!
H3, and for simplicity the source ρ is taken to be a top-hat

function of radius rs, i.e. ρ(r) = ρ̄Θ(rs− r), so that we may explore the field profiles

both inside and outside the source. The main focus here will be on the solution for

the Galileon field, π, since this is the one probed directly by matter.

We start by assuming that β ≡ �H/V ′(H) varies slowly. This is consistent with

the numerical simulations everywhere away from the source-vacuum transition. In

principle the constant value of β could differ from inside to outside the source. The

second equation in Eq. (4.2.7) now yields �H = α
1−β−1�π and substituting this into

the first equation gives,

(Z�−m2)π =
ρ

MPl

(4.2.8)

where Z ≡ 1 − α2

1−β−1 is assumed to be positive. It is convenient to define effective

mass scales m̄in = m/
√
Zin and m̄out = m/

√
Zout so that this equation has the regular

solution:

πin(r) =− ρ̄

MPlm2

[
1− (1 + xout) sinh(m̄inr)

xout sinhxin + xin coshxin

rs
r

]
(4.2.9)

πout(r) =− ρ̄

MPlm2

[
exout(xin coshxin − sinhxin)

xout sinhxin + xin coshxin

]
rs
r
e−m̄outr (4.2.10)

where we define xin ≡ x/
√
Zin and xout ≡ x/

√
Zout for x ≡ mrs. Note that the

solutions match at the source-vacuum transition, along with their first derivatives.
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We will also assume that the source lies deep within the Compton wavelength of the

Galileon, so in other words, x� 1. To examine screening, we compare the exterior

solution πout with a typical Newtonian potential, VN = − ρ̄r3
s

6MPl
2r

. The ratio,

πout/MPl

VN
=

6

x2

[
exout(xin coshxin − sinhxin)

xout sinhxin + xin coshxin

]
e−m̄outr (4.2.11)

is suppressed in two cases. The first corresponds to Yukawa suppression in the

exterior, with Zout � 1. Alternatively, if Zout & 1, suppression can also occur if the

scalar decouples in the interior, with Zin � 1. We shall now demonstrate that these

scenarios are incompatible with the required profile for H and so screening is not

possible, at least up to the caveat of our approximations.

Recall that �H = α
1−β−1�π = (1−Z)

α
�π and so H = (1−Z)

α
π + Ĥ where �Ĥ = 0.

Assuming regularity and continuity of H and its first derivative at the transition, we

obtain,

Hin =
(1− Zin)

α
πin +

(Zout − Zin)

α
xoutπs (4.2.12)

Hout =
(1− Zout)

α
πout +

(Zout − Zin)

α
(xout + 1)πs

rs

r
(4.2.13)

where πs ≡ − ρ̄
MPlm2

[
xin coshxin−sinhxin

xout sinhxin+xin coshxin

]
is the value of the Galileon at the transi-

tion.

For the case of Yukawa suppression for the exterior Galileon, we have Zout � 1.

The Yukawa suppression allows us to neglect πout inHout. This means thatHout scales

like a massless field in most of the exterior, and given our definition β ≡ �H/V ′(H),

we infer βout � 1. The problem now is that this gives Zout ≈ 1 in contradiction with

the condition for Yukawa suppression.

For the case of suppression through decoupling of the interior Galileon, we have

Zin � 1. It follows that πin ≈ − ρ̄
6MPlZin

(
3+xout

1+xout
rs

2 − r2
)

and so �Hin ≈ − ρ̄
MPlα

.

However, for Zin � 1 we require βin ≈ 1, and so we now expect V ′(Hin) ≈ − ρ̄
MPlα

.

This suggests Hin ≈ constant, in obvious contradiction with �Hin ≈ − ρ̄
MPlα

, except

in the trivial limit where ρ̄→ 0.

In summary then, our heuristic analysis seems to suggest that screening of the

Galileon will not be possible when the backreaction of the heavy field is taken into
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account. Of course, the assumption of constant �H/V ′(H) was a little crude and

the numerics show that this does not hold particularly well near the vacuum-source

transition, casting some doubts on our right to apply continuity conditions at this

point. For these reasons we do not present our analytics as the main evidence that

ultra-violet effects will spoil the Vainshtein effects. We leave that to the numerics.

4.3 Numerical methods and results

Determining the screening property of the UV theory analytically is challenging if

one is to avoid some crude assumptions. Likewise, for the IR theory, there is no

a-priori guarantee that it is possible to match between the high- and low-density

regimes consistently. We therefore address the problem numerically, to obtain the

solution to the full equations of motion Eq. (4.1.8), for n = 2, 3, 4 and Eq. (4.2.2)

for n = 3 across all regimes. For this task, we have developed the numerical code

ϕenics4 [125], building on the FEniCS library[132]–[134]. ϕenics applies the finite

element method to the solution of boundary-value problems relevant for screening,

and is able to compute the fields’ profiles, associated fifth force and high-order op-

erators accurately across the full simulation box, without restricting to the high-

and low-density regimes to which analytic understanding is generally confined. The

finite element method is well suited for the computation of the high-order operators

�(�π)n under study, for which traditionally employed finite-differencing techniques

are not sufficient.

For both theories, we compute the field profiles in the presence of a static spher-

ically symmetric compact source of mass MS = 1010MPl and radius rs = 1047MPl
−1,

following a smoothed top-hat profile:

ρ(r) =
MS

4π(−2w3)Li3(−er̄/w)

1

exp r−r̄
w

+ 1
(4.3.1)

where w = 0.02rs, Li3(x) is the polylogarithm function of order 3 and r̄ is chosen so

that 95% of the source mass is included within rs. In the limit w/rs → 0, this density

profile becomes the step function ρ(r) = 0.95 3MS

4πr3
s
Θ(t̄rs − r), where t̄−1 = 3

√
0.95 and

4https://github.com/scaramouche-00/phi-enics
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Θ is the step function.

For the UV theory, we take the masses of the light and heavy fields to be

m = 10−51MPl and M = 10−48MPl, with coupling constants α = 0.4 and λ = 0.7.

For the IR theory, we take Λ = 2.07 × 10−48 and ε = −1. Note that this choice

of parameters corresponds to different signs for α in the UV theory for n = 2, 3, 4.

For both theories, we impose that the fields be regular and asymptoting to the vac-

uum expectation value, which imposes the boundary conditions {φ(∞) = H(∞) =

0;∇φ(0) = ∇H(0) = 0} and {π(∞) = 0;∇π(0) = 0;∇[∇2πn](∞) = 0}. For the IR

theory, we supplement these conditions with the requirement {∇[∇2πn](0) = finite},

which is obtained from the numerical solution to the UV theory (n = 3). The latter

is applied for consistency with the requirement of UV completion.

We shall now give details of the settings used to solve the UV and IR theories.

For both, we use interpolating polynomials of order 5, and the following ϕenics

settings:

– UV theory, n = 3: ArcTanExpMesh of 150 points spanning a box r ∈ [0, 1010]×

rs, with parameters k = 8, a = 5 × 10−2, b = 3 × 10−2. Field rescalings:

µφ = 1013MPl, µH = 1012MPl;

– IR theory, n = 2: ArcTanExpMesh of 400 points, spanning a box r ∈ [0, 109]×rs,

with parameters k = 25, a = 5× 10−2, b = 3× 10−2 and declustering at rrm =

103rs with parameters Arm = 1, krm = 10. Field rescaling: µπ = 10−15MPl.

– IR theory, n = 3: ArcTanExpMesh of 700 points spanning a box r ∈ [0, 109]×rs,

with parameters k = 25, a = 5 × 10−2, b = 4 × 10−2. Field rescaling: µπ =

10−15MPl.

– IR theory, n = 4: ArcTanExpMesh of 600 points spanning a box r ∈ [0, 109]×rs,

with parameters k = 25, a = 5 × 10−2, b = 3 × 10−2. Field rescaling: µπ =

10−15MPl.

The mesh classes available in ϕenics are discussed extensively in [125]: they apply

a non-linear transformation to a mesh that is initially equally spaced in order to
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obtain a discretisation that is finer along the source-vacuum transition and coarser

everywhere else. All numerical settings reported here are similarly defined in [125]

and in the ϕenics documentation.

In Figure 4.0.1, we show the ratio of the scalar force to the Newtonian gravi-

tational force Fs/FN for the UV theory (n = 3) and the IR theory (n = 2, 3, 4),

around the compact object in Eq. (4.3.1). When a scalar field couples to matter

with a coupling strength MPl, the ratio is equal to 2 if there is no screening. We

can see that this is the case for the UV theory, where Fs/FN = 2 for r . 1/m,

(for r & 1/m the massive field decays exponentially and the scalar force is corre-

spondingly suppressed). The scenario is radically different for the IR theories, where

strong Vainshtein screening is displayed around the source. Here, the scalar force is

suppressed compared to the Newtonian force by a factor which can be as large as

109, confirming our expectations of Sec. 4.2.

To understand the absence of screening in the UV theory, and its apparent pres-

ence in the IR, we consider the neglected higher order terms for n = 3. Still under

the assumption � � M2, i.e. far from the Compton wavelength of H, we write

down the leading order term for each power of λ, and find them to be of the form:

Xj = (−1)j+1

(
3j

j

)
1

2j + 1
α2j+2

(
λ

3!

)j
�(�π)2j+1M−6j−2 (4.3.2)

with j ≥ 1. We might, at first, expect that the terms j > 1 are negligible when

compared to X1 ≡ O3 from Sec. 4.2. However, when evaluated on the full UV

solution, we find that actually these terms become important sooner than O3, and

all at roughly the same radius. We check this numerically, and compute the operators

Xj for j = 1, 2, 3, 4 in the UV theory (n = 3): the result is shown in Figure 4.3.1.

As expected, the hierarchy of the operators breaks down. We have verified that this

numerical result is independent of the specific source profile or theory parameters

used. Näıvely, we could consider the radius at which the higher-order operators

become important as a new scale at which we might expect the linear theory to

break down: however, this is not borne out by the numerical solution. It is therefore

clear that the operators we initially neglected, along with O3, resum to produce an
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operator that is negligible and unable to provide screening at macroscopic distances.

10 1 100 101 102 103 104 105 106

r/rs

10 180

10 153

10 126

10 99

10 72

10 45
X1

X2

X3

X4
rs
1/M
1/m

Figure 4.3.1: The operators Xj in Eq. (4.3.2), for the UV theory (n = 3); solid (dotted) lines

indicate positive (negative) values. The assumption Xj>1 � O3 ≡ �(�π)3

Λ8 (for Λ8 = 6M8/(λα4))

is clearly invalid. Figure produced by Daniela Saadeh.

4.4 Massive Wess-Zumino Galileons

The familiar Wess-Zumino (WZ) Galileons are a popular modified gravity theory,

first appearing in the context of DGP gravity [126], [135], giving rise to second-order

field equations and Vainshtein screening [122]. They are invariant under the standard

Galileon symmetry, up to a total derivative and coupled with the requirement of

second-order field equations, this restricts the action to a finite number of operators.

However, despite the many desired features WZ Galileons exhibit, they are impeded

from a standard Wilsonian UV completion by the existence of positivity bounds,

which restrict the form of low energy scattering amplitudes for scalar theories [50],

[130]. To avoid this limitation, one may deform the theory at low energies, satisfying

the bounds, while attempting to keep all other features of the theory intact.

Having shown in section 4.2 and 4.3 that a mass term acts unexpectedly in our

candidate theory, we ask whether this type of deformation is acceptable in the context

of WZ Galileons, in particular whether the Vainshtein mechanism is preserved. We

96



4.4. MASSIVE WESS-ZUMINO GALILEONS

consider the theory given in (4.1.1), coupled to matter via the usual πT
MPl

, and will

assume for simplicity that the mass term essentially plays no role in screening - its

role here is merely to evade the positivity bounds.

Having posited that simply adding a mass deformation preserves the Vainshtein

properties of the theory, while avoiding positivity bounds, we need to consider

whether this alteration induces other operators that spoil the screening. Thanks

to the Galileon non-renormalisation theorem, neither the mass or the Wess-Zumino

couplings receive radiative corrections [135]–[138]. However, higher order EFT cor-

rections are of a more general form, which can be written as,

(m2π2)a∂2b(∂∂π)c

Λ4a+2b+3c−4
(4.4.1)

where a, b, c are positive integers and we have treated m2 as a spurion. At the level

of the equation of motion, this operator yields a term of the form,

O ∼ m2a∂2(b+c)π2a+c−1

Λ4a+2b+3c−4
(4.4.2)

where for the moment we remain agnostic about where the derivatives are operating.

Again following the standard procedure, we evaluate the operator on the linearised

solution in the static spherically symmetric approximation, for r � m−1, resulting

in,

O
∣∣∣∣
πlin

∼ m2a

Λ4a+2b+3c−4
m2x1

r

2(b+c−x) (σS

r

)2a+c−1

(4.4.3)

where x ∈ [0, b + c] and its value depends on the number of �π insertions in O,

and σS ≡ MS/MPl as in Sec. 4.1. Let us now compare this against a standard WZ

operator, which looks like,

OWZ ∼
(∂∂π)L

Λ3(L−1)
(4.4.4)

where L = 2, 3, 4. Under the same assumptions, evaluating on the linearised solution

gives,

OWZ

∣∣∣∣
πlin

∼
( σS

r3Λ3

)L
Λ3 . (4.4.5)

Comparing the two operators, we obtain a ratio,

O
OWZ

∣∣∣∣
πlin

∼
(r∗
r

)2a+2b+3c−(1+2x+3L)

(4.4.6)

97



4.4. MASSIVE WESS-ZUMINO GALILEONS

where the radius r∗ at which the two operators become of comparable size, is given

by,

r∗ =
1

Λ

(
κ2(a+x)σ2a+c−L−1

S

) 1
2a+2b+3c−(1+2x+3L) (4.4.7)

where κ ≡ m/Λ as in Sec. 4.1.

We know that screening must be contaminated if O � OWZ at rV = σ
1
3
S Λ−1, the

Vainshtein radius of the WZ theory, as this would mean that when the WZ terms

are supposed to start screening, they would be in fact subdominant to the EFT

operators.

Setting σS ≡ κ−t, we obtain,

O
OWZ

∣∣∣∣
πlin(rV)

∼ κP (4.4.8)

where,

P =
2

3
(b+ 1)t+

2

3
a(3− 2t) +

2

3
x(3− t) . (4.4.9)

If t ≤ 3
2

then P > 0 and the EFT operators are suppressed relative to the WZ

terms. However, if t > 3
2
, then P can be made negative by a sufficiently large

choice of a. Incidentally, for the parameter values that correspond to the original

mass deformation, P is positive all the way up to t > 3, and so we see that EFT

corrections are in general more important.

The value of t is essentially dictated by the size of the source, with heavier sources

having a larger t. For the Sun, we can estimate σS ∼ 1039, m ∼ H0, Λ ∼ (1000km)−1,

which gives t ∼ 39
20

. We see that, even for a simple example, EFT terms can spoil

the screening of the WZ operators.

There is a loophole in the above discussion. If the Galileon symmetry is only

broken by the mass term, then Galileon loops will not generate Galileon breaking

operators and we do not obtain arbitrarily high values of a. A similar point was al-

ready made in [47]. However, the presence of a Galileon breaking interaction, beyond

the original mass term, should be enough to generate a full tower of interactions with

high values of a. Such terms might be expected if the breaking of Galileon symmetry

is truly inherited from the UV physics and is present in the couplings between light

and heavy fields.
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4.5 Discussion

In this chapter we have explored a class of UV complete theories of massive Galileons,

which at low energy are manifestly Galileon invariant, with the exception of the mass

term.

Taking candidate low energy theories, we have shown that operators of the form

(�π)n have the ability to result in Vainshtein screening. This was suggested by

our analytic approximations at small and large r. However, to show that the two

asymptotic regimes could indeed be connected to one another, we needed to use

numerics. It turned out that our asymptotic solutions could match and we did not

run into any obstacles involving inconsistent boundary conditions or branch cuts.

Generalising the example action [108] to an arbitrary power of self-interaction for

the heavy field H, we have seen that this class of theories exhibits a massive Galileon

symmetry in the light field π, and that integrating out H only generates terms that

respect the symmetry. However, it turns out operators that would normally be ne-

glected in a näıve analysis of the IR equation of motion, due to being suppressed

by large powers of the heavy mass M , play an important role in determining the

behaviour of the solution, and in fact become relevant at a larger radius than oper-

ators one might have considered leading order. Interestingly, although individually

relevant, these additional operators re-sum to produce a negligible effect, giving a

free field profile all the way up to the source radius. Although our candidate low

energy theory exhibits screening by virtue of a (�π)n operator, in making contact

with the UV we necessarily introduce additional operators that entirely disrupt this

effect. It is clear that when integrating out a heavy field, a simple truncation is

not always sufficient, and in some cases is catastrophically wrong, forcing a careful

consideration of all higher order operators being neglected.

With Ref. [108] having identified a mass term as a potential deformation to

avoid positivity bounds in Galileon theories, we investigated its consequences in the

context of Wess-Zumino Galileons. At first glance the deformation seems to leave

the standard screening picture for this theory unaffected, even when one considers
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loop corrections. However, if we try to connect it to some UV completion and view

it from an EFT standpoint, we must necessarily introduce operators that, for heavy

enough sources, can dominate over the standard Wess-Zumino terms. Whether this

would ruin the screening enjoyed by the deformationless theory or simply increase

the radius at which screening occurs is unclear, but the prior results of this chapter

tell us that the former could be more likely than one might näıvely expect.
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Chapter 5

Discussion and Future Work

The overarching theme of this thesis has been an analysis of whether a theory can

be considered a viable alternative to General Relativity, at the level of both observa-

tion and mathematical consistency. The topics that we have examined of screening

capability and vacuum decay stability all contribute to a holistic picture of a theory

as a sound attempt at modified gravity. The benchmarks that we have discussed are

in some sense an important selection of ‘base tests’ that one must pass in order to

approach a plausible model, preceding attempts to match specific data sets.

Chapter 2 presents a detailed discussion of the cosmological constant problem.

This issue is a significant hurdle for any attempt to extend gravity into the UV,

where generally a semi-classical approach results in a radiatively unstable vacuum

energy. We summarise how the standard model matter sector contributes to this

instability, which demands constant fine-tuning of the corresponding counterterm.

We proceeded to show that any theory attempting to prohibit the cosmological

constant from gravitating should have something to say about the global sector of

the GR field equations. This is a natural consequence of its unique feature as the

parameter that is fixed over the whole space-time. In chapter 3 we demonstrated a

mechanism to achieve this within a well-defined local field theory, firstly addressing

solely matter contributions, and then continuing to include virtual graviton effects.

These theories are known as sequestering models [82]–[84], [88]–[91], [95], [96], a

class of theories that utilise global constraints originating from a topological sector

to prevent the sourcing of curvature from the cosmological constant.

There are still however open questions that the sequester must face. For instance,

at the very least it is reasonable to expect that kinetic terms for the scalar and 4-

form fields may appear in the effective action. These terms will appear once higher
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order EFT operators are accounted for, and could also be generated by radiative

corrections, but this is not a guarantee. This is part of the overarching question

of whether the underlying structures of OS are stable with respect to corrections

coming from UV considerations. Let us estimate whether the inclusion of kinetic

energies invalidates the sequestering mechanism, by examining the following action,

S =

∫
d4x
√
−g
(
M2

Pl

2
R− Λ(x) + θ(x)RGB −

a1

2
(∂θ)2 − a2

2
(∂Λ)2 − a3

4!
F 2 − a4

4!
F̂ 2

)
+

1

4!

∫
d4x εµνλρ

(
σ

(
Λ

µ4

)
Fµνλρ + σ̂(θ)F̂µνλρ

)
+ Sm(gµν ,Ψ) (5.0.1)

where the ai are constants, some of which have dimension, with F 2 = FµνλρF
µνλρ

and similarly for F̂ as expected. This becomes the OS action in the limit ai = 0

for all i. Immediately apparent is the presence of terms containing the 4-forms now

enter the action minimally coupled to the metric. Consequently, the variation of

the 3-forms no longer constrains the scalars to be rigid on-shell. Rather, they set

?F − σ
2a3

and ?F̂ − σ̂
2a4

as constants. We see that the constraint on the space-time

averaged Gauss-Bonnet, pivotal to the cancellation of radiatively unstable vacuum

energy corrections in OS, now has a dependence on both the non-rigid scalar fields

and the metric. Recovering an exact cancellation in a theory including kinetic terms

in this way then necessitates some other method of fixing the scalar fields to be rigid

on-shell, or else sufficiently suppressing any space-time variation.

On the other hand, it is possible that the introduction of kinetic terms would

allow the sequester of the vacuum energy whilst affecting sources of finite wavelength,

permitting us to better probe OS via observational experiment. The version of OS

presented in chapter 3 is largely phenomenologically equivalent to GR by design,

and generally any experiment conducted at low energies will struggle to separate

the two. This barrier to observational testing further emphasises the need for a UV

completion or extension of the sequester, as this would at least allow us to further

examine its mathematical validity, which as we have demonstrated in this thesis is

an important component of any model-building endeavour.

Further applications of a sequester-like mechanism, involving a topological sector

independent of the metric that preserves gauge invariance, may include novel screen-
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ing mechanisms. We have demonstrated the importance of such methods in chapter

4, and alternative approaches to the suppression or decoupling of a fifth force would

be an exciting prospect.

In the second half of chapter 3 we considered how the OS theory handles phase

transitions, and whether any of the results therein are cause for mathematical con-

cern. The tunnelling between maximally symmetric vacua via the nucleation and

subsequent evolution of true vacuum bubbles was examined, and the tunnelling rates

for such transitions were determined. The generic functions σ and σ̂ that are present

in the OS action were further constrained by the requirements that tunnelling rates

should appear qualitatively similar to those of GR, and that importantly instabilities

be averted to maintain theoretical validity. Similarly to the local sequester, it was

found that a transition from a false de Sitter vacuum to a true de Sitter vacuum

with smaller curvature results in the insensitivity of the new vacuum to the size of

the jump, and a resulting residual cosmological constant which does not require fine

tuning. However, phase transitions are not an infinite wavelength source and so are

not fully suppressed by the sequester, but they do not effect our capability to satisfy

observational constraints. Nevertheless, this imperfect sequester may allow the the-

ory to be investigated experimentally, for instance [139] suggests that gravitational

effects caused by phase transitions could manifest in alterations to the mass-radius

correlation of neutron stars. The potential to experimentally distinguish OS from

GR, given that they are locally equivalent, is an exciting step on the road to solve

the cosmological constant problem.

The work in this chapter lead to a description of OS and its cosmological conse-

quences, but one could instead consider a broader class of sequestering models, as

introduced in [95]. The action for this ‘generalised sequester’ is given by,

S =

∫
d4x
√
−g
(
κ2(x)

2
R− Λ(x) + θ(x)RGB − Lm (gµν ,Ψ) + . . .

)
+

1

4!

∫
d4x εµνλρ

(
σ1

(
Λ

µ4

)
F1µνλρ + σ2

(
κ2

M2
Pl

)
F2µνλρ + σ3(θ)F3µνλρ + . . .

)
(5.0.2)

where the ‘. . .’ signifies additional terms that are compatible with the sequestering

103



mechanism. It would be interesting to undergo a similar analysis of this generalised

theory, and identify qualitative and quantitative similarities between sub-classes of

these theories. One may also be able to discern observational differences between

these theories, which would be essential were relevant experimental data to become

available.

In the final section of this thesis, chapter 4, we examined a generalised theory

of a massive galileon and its prospective UV completion, proposed to satisfy certain

positivity conditions. We considered its potential to match with experimental obser-

vation by directly studying the validity of the Vainshtein mechanism applied to the

theory and its high energy counterpart, an exercise that has so far been impossible

due to the lack of such a pair of theories in the literature. We provide evidence that

Vainshtein screening is present in the candidate low energy theories, and proceed to

examine the partner theory in the UV, for which we are able to show categorically

that Vainshtein screening does not survive the extension. This explicit case study

demonstrates that IR approximations of any high energy theory are not automati-

cally valid when moved into a non-perturbative regime. Though this might seem a

straightforward conclusion when one considers the full setup within a rigorous EFT

context, it is however an important result in a Vainshtein screening circumstance,

where large higher order operators are essential for the viability of the mechanism.

This direct example simply provides additional evidence of the theoretical invalidity

of the Vainshtein mechanism, independent of observational experiment.

Nevertheless, outside of the Vainshtein mechanism and the non-perturbative

regime we have the opportunity to study the UV completion of a well-known scalar

field theory, albeit with a slight modification, which could potentially provide in-

sights into the high energy extension of other topics in field theory. For instance

[140] draws parallels between galileon theories and GR, providing hope that one

may learn something about the UV completion of Einstein’s theory via this avenue.
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