
Primordial Gravitational Waves
in the Cosmic Microwave

Background

Thomas James Clarke
Student ID: 14275185

Thesis submitted to the University of Nottingham
for the degree of Doctor of Philosophy

August 2020

i



Acknowledgements

— Adam Neely

First and foremost I would like to thank my supervisors, Adam and Ed.

Adam, you have devoted a great deal of effort and patience into the completion

of this work and I have learnt so much from you. Ed, you have been an excellent

guide throughout this project and I have enjoyed the mathematical rabbit holes

we have been able to dive down together. I would also like to think Tasos and

Dani for all their comments on this thesis, finding time to read it all (despite

current factors) and their help in improving it.

Thank you to everyone who I have been lucky enough to spend time with in

the Particle Cosmology and Astronomy groups at the University of Nottingham.

So many of you do so much to make it a brilliant place to spend a lot of time

and also to make it an environment conducive to discussion, learning and

creativity.

While in Nottingham I was lucky enough to live with two people who greatly

enriched my experience. Martha, I learnt so much from you about the world

and about myself. I think it was a year of great personal growth and I credit

your influence almost exclusively with that. It was also great fun and I hope

to continue to want to talk to you about every film I watch, even if they can’t

be viewed within the hallowed ground of Broadway. Finlay, my proof-reader

extraordinaire (among many other achievements), I had so much fun with you

and so much laughter. Thank you for persuading me to go to Wing Chun with

you and thank you for repeatedly punching me in the head until I got a bit

better at stopping it. I also had great fun climbing with you and seeing you

doing things that shouldn’t be possible. It was always nice having music round

the house (or the JA), whether that was a gruff American Boss or folk music

from our own hands.

ii



Thank you to my parents who have supported me so wholeheartedly in

myriad ways. Your efforts do not go unnoticed and I’m exceptionally grateful

for everything you do. Without a Dr. Clarke before me I probably would not

have thought this possible.

I am lucky enough to have friends willing to go far above and beyond the

level of support that I would expect. Special thanks must go to Charutha,

Malin, Sof́ıa and Hannah; thank you for being my still points in a turning

world. Thank you to Adrian and Fiona for your guidance.

Thank you to Elis and John for shining light in the dark, Deborah Frances-

White for just enough guilt to learn and laugh, and the Good Doctors, Kermode

and Mayo for some A-flight wittering.

To my partner, you have been truly extraordinary throughout my PhD

and I’m so grateful for you helping me through this. I’ll defer further, soppier

gratitude to a more direct mode of communication.

iii



Declaration

No part of this thesis has previously been submitted for a degree or other

qualification at this or any other university.

Chapters 3 and 4 are based on the following research:

• Thomas J. Clarke, Edmund J. Copeland and Adam Moss. Constraints on

primordial gravitational waves from the Cosmic Microwave Background.

Published in the Journal of Cosmology and Astroparticle Physics (JCAP),

DOI:10.1088/1475-7516/2020/10/002, arXiv:2004.11396, 2020.

Chapter 5 contains work currently being prepared for publication.

Supervisors: Dr. A. J. Moss

Prof. E. J. Copeland

Examiners: Dr. Daniel G. Figueroa (Universidad de Valencia)

Dr. Anastasios Avgoustidis (University of Nottingham)

Submitted: 18th August 2020

Examined: 29th September 2020

Final Version: 12th January 2021

iv



Abstract

The study of gravitational waves is one of the most exciting areas of modern

physics. As a relatively young observational field it promises a great deal of new

and important information about the Universe in which we find ourselves. This

thesis investigates the behaviour of gravitational waves in cosmology. As such,

it starts with details of: the standard model of cosmology, ΛCDM; relevant

observational techniques; techniques for data analysis and the theoretical and

observational details of cosmological gravitational waves.

The background details motivate further investigation of how best to con-

strain primordial gravitational waves using the cosmic microwave background.

I present reproductions and improvements on two existing techniques, valid for

short- and long-wavelength gravitational waves respectively, before developing

an approach applicable for all wavelengths. This new approach is thoroughly

explored, consistency checks are performed and a new constraint on primordial

gravitational waves in a previously unconstrained frequency region is presented.

As a result of calculations of the evolution of gravitational waves in the

new approach, attention then turns to the Hubble tension. I review existing

attempts to alleviate the Hubble tension before focusing on and constraining

the axion model which has emerged as one of the more successful models for

addressing the H0 problem. A model-independent approach is introduced that

can be used to determine which modifications to the background expansion of

the Universe are necessary to reduce the Hubble tension. This approach will

be useful for comparison of models that aim to alleviate the Hubble tension

by modifying the expansion history, such as the gravitational wave model

introduced here.
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Conventions

There are mathematical conventions used throughout Cosmology and an

understanding of Einstein’s general theory of relativity is assumed here (though

foregoing this and assuming the equations derived are correct should not greatly

reduce comprehension). The metric signature will be mostly positive, i.e.

(−,+,+,+).

Natural units are used where ~, c, kB = 1, where ~ is the reduced Planck

constant, c is the speed of light and kB is Boltzmann’s constant, such that all

quantities have dimensions of giga-electronvolts (GeV) and relevant powers. It

is often convenient in cosmology to work solely in megaparsecs (Mpc) using

the conversions, 1 GeV−1 → 6.58 × 10−25 s , 1 GeV−1 → 6.38 × 10−39 Mpc.

The gravitational constant G will not be set to unity. Conversions between

frequencies and wavenumbers are done using,

f = (1.55× 10−15 Hz Mpc)× k , (1)

where the numerical factor comes from the speed of light and the definition of

a parsec. Similarly,

H0 = 3.3× 10−4 hMpc−1 ≡ 3.2× 10−18 h s−1 . (2)

Latin indices are used to denote spatial 3-vectors, e.g. xi, while Greek in-

dices e.g. xµ, denote spacetime 4-vectors of the kind (t, ~x). Einstein summation

convention will be utilised unless stated otherwise.

Conformal time is strongly favoured over cosmological time. τ and t will

be used for conformal and cosmological time respectively. Dots will denote

differentiation with respect to conformal time throughout.

The Universe is assumed to be flat throughout. This is well justified by

Planck 2018 cosmic microwave background and Baryon Oscillation Spectro-

scopic Survey (BOSS) baryon acoustic oscillation data [1] which shows that

the curvature density parameter, ΩK = 0.001± 0.002.

It is common in the literature to see density parameters, Ωi as constants

that are evaluated today and as dynamical functions, e.g. Ωi(a). In this thesis
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all density parameters are evaluated at the current time.

The normalisation employed for Fourier transforms is,

f(~x) =
V

(2π)3

∫
d3k f(~k)ei

~k.~x , (3)

f(~k) =
1

V

∫
d3x f(~x)ei

~k.~x . (4)

such that the dimensions are the same for a function and its Fourier transform.

The volume factor, V can be thought of as being set to one for convenience.

The volume factor doesn’t enter into the integral definition of the Dirac delta

function. When going to Fourier space,

f(x)→ f(k) , ∂if(x)→ ikif(k) , ∂i∂
if(x)→ −k2f(k) . (5)
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BBN Big Bang nucleosynthesis

CDM cold dark matter

CMB cosmic microwave background
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GR general relativity
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ISW integrated Sachs-Wolfe
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MCMC Markov chain Monte Carlo

MIA model-independent approach
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Chapter 1

The Standard Model of
Cosmology

1.1 Introduction

One of the most fundamental philosophical debates emerges when we ask

how humanity has come to exist. Cosmology is the scientific discipline which

attempts to answer this question by looking at the evolution of the Universe in

which we find ourselves. Because of the wealth of work in the field of cosmology

we now have a rigorous understanding of the growth of the Universe from the

Big Bang through almost 14 billion years of evolution to the present day and

are able to make predictions about the future.

The cornerstones of Cosmology are Einstein’s theory of gravity [2], com-

monly called general relativity (GR), and Hubble’s observation of a propor-

tionality between the distance and redshift of galaxies1 [4]. This confirmed the

prediction of an expanding Universe made by Lemâıtre [5]. Together GR and

an expanding Universe imply the Big Bang model in which an initially dense

Universe expands and dilutes with time.

One of the greatest confirmations of the Big Bang theory is the observation

of the cosmic microwave background (CMB). This is the heavily redshifted

light from the edge of the observable universe and allows us to look back at the

Universe approximately 380, 000 years after the Big Bang. Before this time the

Universe was opaque to electromagnetic radiation and consequently the CMB

1The observation of an average redshift of galaxies was made earlier by Slipher, see Peacock
[3] and references therein.
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Chapter 1. Introduction 2

is the electromagnetic radiation from closest to the Big Bang that it is possible

to observe. The CMB is of very uniform temperature with anisotropies of order

one part in 105 on large scales. These anisotropies contain a wide variety of

interesting physics and tell us a large amount about the early universe from

which the CMB was emitted and the resulting universe through which the CMB

has travelled. Despite their very small amplitude, the temperature anisotropies

have been measured to remarkable precision by satellite experiments, with

COBE, WMAP and Planck offering increasingly high precision observations [6–

8]. This has enabled very stringent constraints to be put on models describing

the contents and history of the universe.

There has been a great deal of excitement in the scientific community fol-

lowing the first direct observation of gravitational waves (GWs) in 2015 [9].

This came almost a century after the theoretical prediction of GWs by Ein-

stein. The confirmation of the existence of GWs is particularly exciting for

cosmologists as the Big Bang is expected to produce primordial gravitational

waves (PGWs). These PGWs are not absorbed in the early universe like elec-

tromagnetic radiation and consequently allow us to look back to a time even

closer to the Big Bang.

One of the characteristic signatures of PGWs that cosmologists have inves-

tigated extensively is B-mode polarisation of the CMB [10–13]. This character-

istic circulating polarisation, similar in appearance to B-fields in electromag-

netism, is of particular interest because there is less contamination relative to

predicted signals than in the radial pattern, known as E-mode polarisation,

or the temperature anisotropies. The parameter most often constrained by

B-modes is the tensor-to-scalar ratio rk∗ . This is the ratio of the initial ampli-

tudes of tensor (gravitational wave) perturbations to scalar perturbations at

a specific value of the wavenumber k∗. Note that the units of k∗ are usually

Mpc−1 such that r0.05 is the tensor-to-scalar ratio when the reference scale,

k∗ = 0.05 Mpc−1. The current best CMB-only constraint comes from the BI-

CEP2/Keck Array analysis [14] and constrain r0.05 < 0.07 at 95% confidence
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level.

However, it is also possible to calculate the effects of gravitational waves

on the temperature anisotropies. This is useful because the temperature

anisotropies have been measured to very high precision and therefore pro-

vide a complementary probe to B-mode polarisation. There has already been

work done to model the contribution of short wavelength GWs to the CMB

anisotropies but long wavelength gravitational waves have also been shown

to have interesting and potentially important effects that will influence the

CMB and the expansion rate of the Universe. This thesis is primarily aimed

at calculating cosmological effects of PGWs and using these to constrain the

amount of gravitational waves that existed in the early universe.

This chapter is devoted to relevant background information on cosmology

with a particular focus on perturbation theory, the CMB and existing data.

Chapter 2 contains background information on cosmological gravitational waves

and details of existing constraints on their density. Chapter 3 details origi-

nal work constraining gravitational waves with wavelengths shorter than the

horizon size at recombination using the CMB, building on existing analyses.

Gravitational waves that do not satisfy the short wavelength condition are

constrained using polarisation and a new CMB approach in chapter 4. The

use of this new approach to reduce existing tensions in the determination of

the Hubble constant, H0 using gravitational waves is an interesting possible

application of this method and as such an investigation of the Hubble tension

is detailed in chapter 5. Chapter 6 contains conclusions and areas for future

work.

1.2 Modern cosmology

The cosmological principle states that, on large scales, the Universe is homoge-

neous and isotropic [5, 15]. Here homogeneous implies that the Universe looks

the same at all locations and isotropic implies that the Universe looks the same

in all directions. If the Universe is isotropic about two separate points then
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it is also homogeneous. More loosely the cosmological principle tells us that

observations of the Universe do not depend on your location.

Clearly the cosmological principle does not apply on all scales. The small

scale Universe has large density fluctuations (often called people, planets or

galaxies) but on very large scales the Universe has been shown to be homoge-

neous and isotropic [6, 16, 17].

The metric for an expanding homogeneous and isotropic universe is given

by the Friedmann–Lemâıtre–Robertson–Walker (FLRW) metric [5, 15, 18–21]

ds2 = −dt2 + a2(t)d~x 2 , (1.1)

where s is the spacetime separation or proper distance, t is the cosmological

time, ~x is the 3-vector position and a(t) is the scale factor which encodes

the expansion of the universe. The scale factor is an increasing function for

an expanding universe and consequently two objects staying the same co-

moving distance apart ∆x, will move away from each other. The scale factor

is normalised such that at the present time t0, a(t0) = 1 and at the Big Bang

a(t = 0) = 0.

Applying the Einstein equations to this metric for an energy–momentum

tensor for an isotropic fluid with density ρ and pressure p, diag[−ρ, p, p, p],

produces the acceleration and Friedmann equations [15],

1

a

d2a

dt2
=− 4πG

3
(ρ+ 3p) , (1.2)

1

a2

(
da

dt

)2

=
8πG

3
ρ , (1.3)

where G = (8.20× 10−20GeV−1)2 is the gravitational constant. If the contents

of the universe are specified via ρ(a), the evolution of the scale factor a(t) can

be found using the Friedmann equation.

The Hubble factor, H is defined to be,

H =
1

a

da

dt
. (1.4)



Chapter 1. Modern cosmology 5

The late time value is the Hubble constant H0 which is the constant of propor-

tionality between the recession velocity and distance of galaxies in Hubble’s

law, v = H0d [4].

While the acceleration and Friedmann equations completely specify the

evolution of the scale factor, another equation is commonly used which is a

combination of the two. Most often called the continuity equation,

dρ

dt
+ 3H(ρ+ p) = 0 , (1.5)

is particularly useful when considering the evolution of a single species. It can

be derived independently of the acceleration and Friedmann equations using the

conservation of the energy–momentum tensor, T µν;µ where the semicolon de-

notes covariant differentiation, and is sometimes called the energy conservation

equation as a result.

It is often convenient to split the contents of the universe into separate

species depending on their evolution with time (e.g. radiation, matter, cosmo-

logical constant). Thus we can write the density in the Friedmann equation,

ρ =
∑
i

ρi , (1.6)

where the subscript i labels the different components of the universe being

considered. The same approach is taken to the pressure. An important quantity

for each species is the equation of state parameter, which gives the ratio between

the pressure and density,

wi =
pi
ρi
. (1.7)

The density required for the universe to be flat is called the critical density,

ρcrit =
3H2

8πG
. (1.8)

The density parameter for each species is defined to be the ratio of the density
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in the species to the critical density today (i.e. at t0),

Ωi =
ρi,0
ρcrit,0

=
8πGρi,0

3H2
0

. (1.9)

The universe is assumed to be flat throughout this thesis due to strong

observational evidence [1] (see page vi). If curvature is included, the right hand

side of equation (1.2) has an extra term, −k/a2 where the curvature constant,

k = −1, 0, 1 for hyperbolic, flat and spherical universes respectively [22]. This

term can be treated as an effective density component which decays ∝ a−2.

Consequently it has an equation of state of −1/3.

Including the appropriate dependence on the scale factor, dictated by the

equation of state for each component, the Friedmann equation becomes,

H2 = H2
0

∑
i

Ωi

a3(1+wi)
. (1.10)

This takes a satisfyingly simple form at the present time,

∑
i

Ωi = 1 . (1.11)

1.2.1 Conformal time

A very useful and important concept in cosmology is the conformal time τ . It

is defined by

dt = a(τ)dτ . (1.12)

Using conformal time the FLRW metric becomes;

ds2 = a(τ)2(−dτ 2 + d~x 2) . (1.13)

Setting the integration constant in equation (1.12) such that the conformal

time is zero at the Big Bang, the conformal time gives the size of the particle

horizon at a given epoch. Put differently, the conformal time tells us about

the evolution of the past light cone.
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The conformal Hubble factor is given by,

H =
ȧ

a
= aH , (1.14)

where a dot denotes a derivative with respect to conformal time. In terms of

conformal time the three cosmological equations above become,

ä

a
= −4πGa2

3
(ρ+ 3p) , (1.15)

H2 =
8πGa2

3
ρ , (1.16)

ρ̇ = −3H(ρ+ p) . (1.17)

1.2.2 Inflation

Inflation [23–27] is a period of accelerated expansion early in the Universe’s

history. Referring to equation (1.15) (or equation (1.2)), accelerated expansion

(ä > 0) requires ρ + 3p < 0, so the Universe must have been dominated by

a species that has an equation of state parameter w < −1/3, for inflation

to occur. Inflation gained popularity as it solved two cosmological problems,

the horizon problem and the flatness problem and has since gained further

validation through the observations of the CMB anisotropies (see Weinberg

[28], Chapter 4 or Dodelson [22] Chapter 6).

The horizon problem refers to the fact that the Universe appears more

isotropic than expected when observed through the CMB. Regions of the CMB

separated by more than about two degrees on the sky are not expected to have

been in causal contact (and hence at approximately the same temperature) in

the standard Big Bang. Inflation solves this because small areas that are in

causal contact during inflation become very large and can cover the full range

of the sky observed in the CMB. This solution of the horizon problem can be

used to put a limit on the amount of inflation required of about 60 e-foldings2.

The flatness problem refers to the fact that the observed flatness of the

2An e-folding of N refers to the scale factor increasing by a factor of eN .
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Universe3 [1],
∑

i Ωi = 1 is an unstable solution in the standard cosmology.

Unless the curvature is exactly zero any small difference will be amplified

greatly as the Universe expands. Hence a large degree of fine-tuning is required

at early times for the Universe to be flat now. During inflation the curvature

density decreases and consequently the value of the curvature parameter is

forced towards zero. If inflation is exponential (w = −1) we require there to

have been approximately as much expansion during inflation as there has been

since for the flatness problem to be solved without requiring fine-tuning.

The final, and arguably most powerful evidence for inflation comes from

the anisotropies observed in the CMB. The basic idea of this is that quantum

fluctuations in the inflaton field sourcing inflation are imprinted on the other

species and give rise to the observed anisotropies. The nearly scale invariant,

adiabatic and Gaussian perturbations observed are predicted in a range of

inflation models.

It is useful to note that in our historical picture of the evolution of the

Universe, inflation must be succeeded by a period, commonly known as reheat-

ing, in which the inflaton decays into the constituents of the Universe that we

observe today (see [29–33] for details of this interesting area of cosmology).

1.2.3 ΛCDM

The current concordance model for our observable universe is often referred

to as ΛCDM and has been incredibly successful in explaining a wide range

of cosmological observables. It is primarily a specification of the contents

of the Universe and consequently what species make up ρ in the Friedmann

equation (1.16). The name comes from the two components added to the

model in addition to the species of the Standard Model of particle physics

which are the cosmological constant, Λ and cold dark matter (CDM). With

this the contents of the Universe in ΛCDM are;

Baryonic matter: consisting of protons, neutrons and electrons with density

3See conventions on page vi.
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parameter Ωb and an equation of state wb = 0.

Cold dark matter: some as yet undetected massive particle that is very

weakly interacting. The density parameter for CDM is Ωc and the equa-

tion of state wc = 0 as for baryonic matter. These are often grouped

together and simply called matter; Ωm = Ωc + Ωb.

Radiation: relativistic components consisting of photons and massless neu-

trinos. The density parameter for radiation is Ωr and for photons only

is Ωγ. The density of neutrinos is most commonly given in terms of the

effective number of relativistic degrees of freedom, Neff defined by;

ρr =

[
1 +

7

8

(
4

11

)4/3

Neff

]
ργ . (1.18)

In ΛCDM, Neff = 3.046 because of the three neutrinos in the Standard

Model of particle physics with a small correction due to the physics of the

decoupling of neutrinos. The density of photons is set by an observation

of the temperature of the CMB4 via the Stefan–Boltzmann law, ργ =

π2T 4/15. The current temperature of the CMB is 2.72548±0.00057 K [34].

The radiation components have equation of state wr = 1/3.

Cosmological constant: a term with constant energy density, ρΛ = ΩΛ

which has an equation of state, wΛ = −1.

Hence the Friedmann equation in ΛCDM can be written,

H2 = H2
0a

2(τ)

(
Ωm

a3(τ)
+

Ωr

a4(τ)
+ ΩΛ

)
. (1.19)

One of the attractive features of ΛCDM is that it depends on only 6 pa-

rameters. There is some freedom in the choice of which parameters to use but

the conventional set are,

{Ωbh
2, Ωch

2, θMC, τ, As, ns} . (1.20)

4This expression for the energy density of photons is used because the majority of photons
are CMB photons and consequently others can be neglected in the calculation of the energy
density.



Chapter 1. Modern cosmology 10

Ωb and Ωc are the density parameters for baryons and cold dark matter defined

above. They are multiplied here by a factor of h2 which is a dimensionless

parameter originally introduced because of the uncertainty in the Hubble pa-

rameter, H0 = 100h km s−1 Mpc−1.

θMC is the angular size of the sound horizon at last scattering in degrees.

It tells us about the wavelength of the oscillations of the perturbations in the

coupled matter–radiation fluid when the CMB was emitted.

τ is the optical depth to reionisation. When the first stars and galaxies

form they emit radiation that ionises neutral hydrogen. The electrons Thomson

scatter CMB photons which partially obscures the temperature anisotropies

and introduces extra CMB polarisation. The value of τ tells us the percentage

of CMB photons that last scattered at the reionisation redshift zre, e.g. τ = 0.1

implies that 10% of CMB photons last scattered at zre.

The final two parameters in equation (1.20), As and ns give the amplitude of

the initial scalar perturbations from inflation and their wavenumber dependence

via the scalar spectral index respectively. The initial conditions are usually

quantified through the primordial power spectrum,

Ps(k) = As(k∗)

(
k

k∗

)ns−1

, (1.21)

where k∗ is a pivot scale, usually taken to be 0.05 Mpc−1. The power spectrum

quantifies the distribution of the temperature anisotropies as a function of

wavenumber such that a large value of the power spectrum suggests larger

perturbations. Note that if the primordial power spectrum is independent of

k then it is said to be scale invariant, corresponding to ns = 1.

An illustrative set of parameters taken from Planck [1] is shown in table 1.1.

With a value of the Hubble constant of h ∼ 0.7 we see that the Universe is

made up of roughly 5% baryonic matter, 25% dark matter and 70% dark

energy. These 6 parameters tell us about the complete history of the Universe

since inflation. First, for the period above redshift ∼ 3600, the expansion is

dominated by radiation. This is followed by a transition into matter domination
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Table 1.1: Planck 2018 baseline parameters from ref. [1].

Parameter Ωbh
2 Ωch

2 100 θMC τ ln(1010As) ns

Value 0.02233 0.1198 1.04089 0.0540 3.043 0.9652

Error (±) 0.00015 0.0012 0.00031 0.074 0.0014 0.0042

and then finally into cosmological constant domination in which the Universe

expands exponentially. The present epoch is situated in the transition between

matter and cosmological constant domination as evidenced by ΩΛ ∼ 0.7.

We also see that the initial perturbations were of very small amplitude and

are nearly scale invariant. The sound horizon subtends an angle of approxi-

mately 1 degree on the sky and about 5% of CMB photons were last scattered

due to reionisation.

Parameters including Ωm, H0, the age of the Universe, the redshift of

reionisation and the redshift at which matter and radiation have equal densities

are called derived parameters as they can be calculated from those given in

table 1.1. There are a few common extensions to ΛCDM such as allowing for

curvature, variation in Neff, k dependence of the scalar spectral index and a

value of the dark energy equation of state different from −1. These are well

constrained by current observations.

It is common for the terms ‘dark energy’ and ‘cosmological constant’ to be

used quite interchangeably however there is a precise distinction between them.

Dark energy refers to any model that attempts to explain the accelerated

expansion of the Universe by including an extra component in the energy–

momentum tensor. The cosmological constant refers to a specific dark energy

model that has a constant energy density throughout the cosmological history

and an equation of state of −1.
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1.3 Cosmological perturbation theory

While the cosmological principle applies on very large scales and at early times,

it is of great interest to cosmologists to model how the cosmological principle is

broken and how structure in the Universe evolves. One of the primary tools for

this is perturbation theory5. The basic idea of this is that small perturbations

are added on top of the homogeneous and isotropic solution and their evolution

is calculated [36, 37]. In general relativity this involves adding a perturbation

to the metric,

gµν = g̃µν + δgµν , (1.22)

where g̃µν is the background FLRW metric, and δgµν is the perturbation metric.

We then add perturbations to the energy–momentum tensor and calculate the

relationship between these and the metric perturbations.

1.3.1 Gauges

There are many choices available for the perturbation metric that give the

same field equations and have the same background metric. This freedom

in the perturbations is related to the freedom in defining the coordinates of

the spacetime. The choice of the perturbation metric is commonly called a

gauge. The transformations between the gauges are given by small-amplitude

coordinate transformations,

xµ → x̃µ = xµ + ξµ , (1.23)

where ξµ is small compared to both of the two different coordinate systems, xµ

and x̃µ. As a result of this, different choices of the coordinates will result in

different perturbations. The two different sets of coordinates are thought of as

two different gauges of the metric in the linear perturbation theory that have

the same background metric.

5A range of approaches with non-perturbative validity use computational simulations
(see Vogelsberger et al. [35] for a recent review). Despite the large range of interesting results
available, simulations will not be covered here.
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The most general perturbed metric for linear perturbations is [22, 28, 38–

40],

ds2 = a2(τ)
{
− (1 + 2A)dτ 2 − 2(∂iB + B̂i)dx

idτ

+ [(1 + 2C)δij + 2(∂i∂j −
δij
3
∇2)E

+ 2∂(iÊj) + ĥij]dx
idxj

}
. (1.24)

Here there are four scalar degrees of freedom A,B,C and E, four vector

degrees of freedom, two each in B̂i, Êi and two tensor degrees of freedom in

ĥij. All hatted quantities are divergenceless (sometimes called transverse), e.g.

∂iB̂i = 0, and the tensor perturbation is traceless, ĥii = 0. Consequently the

ten degrees of freedom of the symmetric metric tensor have been decomposed

into scalar, vector and tensor components. This is advantageous because of

the decomposition theorem which states that, in linear perturbation theory,

scalar, vector and tensor perturbations evolve independently. As a result

these types of perturbation can be treated separately without having to worry

about tensors sourcing extra scalar perturbations, for example. Because of

this the perturbation equations for scalars are given in this section and tensors

are considered in the next chapter. Vector perturbations aren’t produced by

inflation and decay quickly due to the expansion of the Universe so will be

neglected.

It is possible to construct gauge-invariant variables from combinations

of the above variables, i.e. variables that do not change when there is a

coordinate transformation that preserves the background metric (as mentioned

above), called a gauge transformation [41]. These are commonly called Bardeen

variables and are given by,

ΦA = A+
ȧ

a
(B − Ė) + (Ḃ − Ë) , (1.25a)

ΦH = −C − ȧ

a
(B − Ė) +

1

3
∇2E , (1.25b)

Ψ̂i =
˙̂
Ei − B̂i , (1.25c)
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ĥij . (1.25d)

There are two advantages of using these; firstly, there are no non-physical

results coming from modes that only exist due to the choice of coordinates

(and hence the gauge) and secondly, the results are applicable inside and

outside the cosmological horizon. This second point is particularly important

because fixed gauges agree about sub-horizon behaviour but can disagree about

the super-horizon behaviour of the perturbations. Because of this, a gauge-

invariant approach is a necessity when the super-horizon behaviour is of interest.

To be precise we are defining the sub-horizon and super-horizon regimes as

kτ � 1 and kτ � 1 respectively. This allows us to refer to ‘short wavelength’

modes which have wavelengths shorter than the size of the horizon and ‘long

wavelength’ modes with wavelengths larger than the horizon.

It is worth noting that the decomposition into scalars, vectors and tensors

has picked out the gauge-invariant tensor part of the perturbations and conse-

quently these are the only tensor degrees of freedom that need to be considered

in a cosmological context (more details of this will be covered in the next

chapter).

The alternative approach is to fix the gauge by putting conditions on the

metric perturbations which eliminates the gauge freedom. The two most widely

used gauges are the synchronous gauge and the Newtonian gauge [42]. The

synchronous gauge is defined by,

ds2 = a2(τ)
{
− dτ 2 + [(1 + h)δij + (∂i∂j −

1

3
δij∇2)6η + ĥij]dx

idxj
}
, (1.26)

where the two scalar degrees of freedom h and η are equivalent to C and E of

equation (1.24) and the tensor component is unchanged. This gauge is specified

by setting A = B = B̂i = Êi = 0 but there is still gauge freedom which is

usually removed via an initial condition.
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The Newtonian gauge (sometimes called longitudinal gauge) is defined by,

ds2 = a2(τ)
{
− (1 + 2ψ)dτ 2 + [(1− 2φ)δij + ĥij]dx

idxj
}
, (1.27)

where ψ and φ are equivalent to A and C of equation (1.24) and the tensor

component is unchanged. This gauge is specified by setting B = B̂i = E =

Êi = 0. One of the advantages of the Newtonian gauge is that the potentials

are directly related to the gauge-invariant Bardeen variables, ΦA = ψ, ΦH = φ.

This gauge also has a well defined Newtonian limit.

It is important to be able to transform between gauges. The relations

between gauges can be found by requiring that the background metric is left

unchanged by a general coordinate transformation. Defining α via6,

α =
1

2k2
(ḣ+ 6η̇) , (1.28)

the transformations between the metric potentials in k-space are given by,

ψ = α̇ +
ȧ

a
α , (1.29a)

φ = η − ȧ

a
α . (1.29b)

While all gauge considerations so far have been concerned with the metric

side of Einstein’s equations, the energy–momentum components also depend on

the choice of gauge and the gauge can be fixed in the energy–momentum side

of Einstein’s equations, though this is less common. The relations between the

energy–momentum perturbations7 in the Newtonian and synchronous gauges

are,

δ(syn) = δ(Newt) + 3
ȧ

a
(1 + w)α , (1.30a)

θ(syn) = θ(Newt) − k2α , (1.30b)

σ(syn) = σ(Newt) , (1.30c)

where subscripts label the synchronous (syn) or Newtonian (Newt) gauge.

6Note that quantities are now in Fourier space.
7see next section for definitions.
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1.3.2 Perturbing Einstein’s equations

The previous section detailed how to perturb the metric; these metric perturba-

tions will result in perturbations in the Einstein tensor. Once the perturbations

to the Einstein tensor are calculated we also need to introduce perturbations to

the energy–momentum tensor that will be related to the metric perturbations

by Einstein’s equations.

For a viscous fluid species there are four perturbations,

T 0
0 = −ρ̄(1 + δ) , (1.31a)

T 0
i = ρ̄(1 + w)vi , (1.31b)

T ij = ρ̄w

(
1 +

δp

p̄

)
δij + Σi

j , (1.31c)

where ρ̄ and p̄ are the background density and pressure and δ is the density

contrast, vi is the velocity perturbation, δp is the pressure perturbation and

Σi
j is an anisotropic (i.e. Σi

i = 0) shear perturbation. As for the metric

perturbations, these perturbations are gauge-dependent.

When in k-space it is convenient to use an alternative velocity perturbation,

θ = ikjvj . (1.32)

It is also common to use the adiabatic sound speed, c2
s = δp/δρ = w, where the

change in the density, δρ is related to the density contrast by δ = δρ/ρ̄, to reduce

the number of perturbations to three8. Finally a scalar shear perturbation, σ

is defined via,

ρ̄(1 + w)σ = −
(
k̂ik̂j −

1

3
δij

)
Σi

j . (1.33)

This means the set of perturbations change as,

{δ, vi, δp,Σi
j} → {δ, θ, σ} . (1.34)

8The second equality for the sound speed is only true for species with constant equation
of state. Luckily the standard ΛCDM components all satisfy this condition.
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The perturbed Einstein equations in the synchronous gauge are;

k2η − 1

2

ȧ

a
ḣ = −4πGa2 ρ̄ δ(syn) , (1.35a)

k2η̇ = 4πGa2 ρ̄(1 + w) θ(syn) , (1.35b)

ḧ+ 2
ȧ

a
ḣ− 2k2η = −24πGa2 ρ̄w δ(syn) , (1.35c)

2k2α̇ + 4k2 ȧ

a
α− 2k2η = −24πGa2 ρ̄(1 + w)σ(syn) . (1.35d)

In the Newtonian gauge the perturbed Einstein equations are,

k2φ+ 3
ȧ

a

(
φ̇+

ȧ

a
ψ

)
= −4πGa2 ρ̄ δ(Newt) , (1.36a)

k2

(
φ̇+

ȧ

a
ψ

)
= 4πGa2 ρ̄(1 + w) θ(Newt) , (1.36b)

φ̈+
ȧ

a
(ψ̇ + 2φ̇) +

(
2
ä

a
− ȧ2

a2

)
ψ+

k2

3
(φ− ψ) = 4πGa2 ρ̄w δ(Newt) , (1.36c)

k2(φ− ψ) = 12πGa2 ρ̄(1 + w)σ(Newt) . (1.36d)

We also get an important set of equations for the energy–momentum per-

turbations using the conservation of the energy–momentum tensor. In the

synchronous gauge,

δ̇(syn) = −(1 + w)

(
θ(syn) +

ḣ

2

)
+ 3

ȧ

a
(w − c2

s )δ(syn) , (1.37a)

θ̇(syn) = − ȧ
a

(1− 3w)θ(syn) +
c2

s

1 + w
k2δ(syn) − k2σ(syn) . (1.37b)

In the Newtonian gauge,

δ̇(Newt) = −(1 + w)
(
θ(Newt) − 3φ̇

)
+ 3

ȧ

a
(w − c2

s )δ(Newt) , (1.38a)

θ̇(Newt) = − ȧ
a

(1− 3w)θ(Newt) +
c2

s

1 + w
k2δ(Newt) − k2σ(Newt) + k2φ . (1.38b)

In both cases a term in θ̇ that depends on ẇ has been dropped (when compared

with the expressions in Ma and Bertschinger [42]) because all the scalar species

considered in this thesis have a constant equation of state. A particularly

attentive reader will have noticed that these equations depend on the shear

perturbation σ but the evolution equation for σ is not given. This is usually
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found from the Boltzmann hierarchy, see Ma and Bertschinger [42] for details.

It should also be noted that the above equations can be applied for each

species but assume that there is no interaction with other species. If there

are interactions, the energy–momentum tensor of the individual species is no

longer conserved and the Boltzmann equations again need to be used.

1.3.3 Initial conditions

We now have a set of differential equations that govern how perturbations

evolve in the early universe. To solve these we need to set initial conditions on

each of the perturbations.

This is done by inserting series expansions in kτ for each of the perturbation

variables and matching coefficients that precede kτ terms of the same order.

These then give a set of coupled equations for the expansion coefficients of all the

perturbations. Solving these to a fixed order in kτ gives the initial conditions

and small kτ evolution of the metric and energy-momentum perturbations.

Explicitly the expansions take the form,

ζ =
∞∑
i=0

ζi(kτ)i , (1.39)

where ζ is a general perturbation variable. Hence, the aim is to calculate all

of the ζi’s up to some fixed order, to give series solutions of the perturbation

equations. For the expansion to be valid we require that the mode in question

is well outside the horizon (kτ � 1) such that the above series is valid to some

truncated order. The universe is assumed to be in the radiation dominated

phase of the expansion at this early time due to the observed density fractions

today.

As mentioned earlier the evolution of perturbations outside the horizon is

gauge dependent and consequently some care is necessary when considering

these initial conditions. We shall see that the behaviour in the synchronous

and Newtonian gauges is different.

In general there are two types of initial condition. Adiabatic initial condi-



Chapter 1. Cosmological perturbation theory 19

tions correspond to perturbations that compress and expand volume elements

adiabatically [42–44]. This results in all species having the same ratio of density

perturbation to equation of state δi/(1 + wi) . Adiabatic initial conditions are

a prediction of most inflationary models and we therefore expect (and have

observed) these to make up the majority of the perturbations observed in the

Universe. Isocurvature initial conditions correspond to perturbations to indi-

vidual species and do not affect all the species equivalently [45–48]. A general

perturbation can be constructed from a superposition of adiabatic and (often

many more than one) isocurvature perturbations.

Looking at the series for the synchronous gauge9 metric perturbation η,

η = η0 + η1kτ + η2(kτ)2 + ... , (1.40)

the adiabatic mode corresponds to a non-zero η0, with zeroth-order coefficients

of all other perturbations set to zero. Similarly the baryon isocurvature, CDM

isocurvature, neutrino density and neutrino velocity isocurvature modes cor-

respond to zeroth-order coefficients in the respective perturbation variables

only [48]. For example the neutrino density isocurvature mode has the zeroth-

order coefficient for the neutrino density, δν,0 non-zero, with all other zeroth-

order coefficients zero. This is what is meant by a mode in the context of initial

conditions for cosmological perturbations: it is the set of initial values and

there low-kτ evolution, when only the corresponding zeroth-order coefficient

is non-zero10. Note that, as suggested by the adiabatic mode, the distinctions

between isocurvature modes are only clear in the synchronous gauge. A general

set of initial conditions can be obtained from a sum of the separate modes,

which is usually done through an initial correlation matrix of all the differ-

ent modes. For example, for two modes, one with half the amplitude of the

other and no interdependence between the modes, the correlation matrix would

be ∝
(

2 0
0 1

)
. In reality the correlation matrix will be larger and can contain

9See section 1.3.1 for the definition of η and the synchronous gauge.
10Some more explicit expressions for this are given in the appendix though full under-

standing will also require reading of chapter 3.
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Table 1.2: Adiabatic initial conditions on perturbation quantities in synchronous
and Newtonian gauge given to lowest order in kτ .

Synchronous gauge Newtonian gauge

δγ, δν −1
3
k2τ 2 − 20

15+4Rν

δb, δc −1
4
k2τ 2 − 15

15+4Rν

θγ, θb − 1
36
k4τ 3 5

15+4Rν
k2τ

θν
23+4Rν
15+4Rν

θγ θγ

θc 0 θγ

σν
2

3(15+4Rν)
k2τ 2 2

3(15+4Rν)
k2τ 2

h 1
2
k2τ 2 −

η 1− (5+4Rν)
12(15+4Rν)

k2τ 2 −

ψ − 10
15+4Rν

φ − (5+2Rν)
5

10
(15+4Rν)

dependences between all the adiabatic and isocurvature modes.

As an example of the initial conditions, if the zeroth-order coefficient for η

is set equal to one, then the resulting series expansions of the perturbations in

synchronous and Newtonian gauges are given in table 1.2. Here the relativistic

fraction for neutrinos or photons is given by,

Ri =
ρ̄i

ρ̄γ + ρ̄ν
, (1.41)

for i = γ, ν.

Table 1.2 shows a few important features of cosmological perturbation

theory. We can see that at early times the only component not acting as a

perfect fluid and consequently having a shear contribution are the neutrinos.

We also see that the density perturbation to the matter species is related to

that for the relativistic species by a factor of 3/4 as stated above and as to

be expected from the equation of state parameters. Furthermore the density
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perturbations grow in the synchronous gauge but are constant in the Newtonian

gauge. This is an illustration of the fact that, outside the horizon perturbation

behaviour is dependent on the choice of gauge. Since it is the Newtonian

gauge which is directly related to the gauge-invariant variables, it is this gauge

we should use to compare to observation. The fact that θc is zero in the

synchronous gauge should not surprise us as this gauge is defined by attaching

observers to dark matter particles and therefore these observers should not see

a velocity perturbation for dark matter.

1.4 The cosmic microwave background

Analysis of the CMB temperature anisotropies is one of the most mature and

fruitful areas of cosmology. It was first proposed in the 1940s that the Universe

contains radiation obeying a black-body spectrum,

n(ω, T ) =
2

π

ω2

exp (ω/T )− 1
, (1.42)

where n is the photon number density, ω is the angular frequency and T is the

temperature [49]. The first observation [50, 51] came in 1965 and measured an

excess temperature of 3.5± 1.0 K. Since then the CMB temperature has been

measured at a large range of frequencies confirming its black-body nature.

To look at the temperature anisotropies in the CMB due to the physics

of the Universe this black-body spectrum is subtracted from the observed

radiation,

∆T = T − TCMB , (1.43)

where TCMB = 2.72548±0.00057K is the average CMB temperature [34]. When

this is done a dipole can be seen due to our movement relative to the CMB rest

frame. Once this is subtracted we see temperature anisotropies at one part in

10−5 [52]. A 2D projection of these anisotropies on the sky – usually called a

map – is shown in figure 1.1.
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Figure 1.1: Planck 2018 map of the temperature anisotropies in the CMB. Areas
colder than the average temperature can be seen in blue while hotter areas are yellow
or red. The regions enclosed by grey lines are masked and not used in the analysis
due to the large errors from galactic foregrounds.

1.4.1 Power spectrum

Because the CMB photons travel approximately the same distance to the

detector from all directions the temperature anisotropies can be deconstructed

in 2D spherical harmonics Y`m(θ, φ), where θ and φ are polar-coordinate angles

and ` and m are integers, instead of a more familiar 3D Fourier series [22]

(Chapter 8) [28] (Chapter 2). The spherical harmonics are functions of Legendre

polynomials, P`(cos θ). The temperature anisotropies,

∆T (θ, φ) =
∞∑
`=2

m=∑̀
m=−`

a`mY`m(θ, φ) , (1.44)

where the information about the temperature anisotropies is now contained in

the coefficients a`m. The integer ` can be thought of as the 2D analogue of the

wavenumber k and consequently small ` corresponds to large scales and large

` corresponds to small scales. ` runs from 2 → ∞ because the ` = 0 black-

body and ` = 1 dipole contributions have been subtracted11. The temperature

anisotropies average out over the whole sky such that 〈∆T (θ, φ)〉 = 0. The

11Though the relative velocity contributes primarily to ` = 2 it also has a small affect on
higher ` modes, see Weinberg [28], Chapter 2.4.
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Figure 1.2: The CMB power spectrum in units of µK2 as a function of both angular
scale in degrees and multipole moment `. The horizontal axis is logarithmic up to
` = 50 and is then linear to show more clearly the low-` behaviour. See section 1.4.2
for a discussion of the causes of the features seen here. Plot taken from ESA.

isotropy of the Universe results in a power spectrum that is independent of the

orientation of the function, given by m. This power spectrum is an interesting

quantity containing a large amount of cosmological information. The CMB

power spectrum is defined as the square of the expansion coefficients,

C` =
1

2`+ 1

m=∑̀
m=−`

|a`m|2 , (1.45)

and gives the variance of the expansion coefficients. The power spectrum

Cl can be computed from the observed temperature anisotropies and can be

predicted from theory making it one of the key observables of CMB physics.

The observed CMB power spectrum from Planck 2013 data [53] is shown in

figure 1.2.

It is worth noting that there is a fundamental limit on how accurately C`

can be measured due to cosmic variance [22, 28]. The theoretical prediction for

C` is an average of the coefficients over all the observations of the CMB from

different positions in the Universe whereas the average in equation (1.45) is

over the allowed values of m for each `. This results in a limit on the accuracy

https://sci.esa.int/s/wRVmdjw
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of the observed power spectrum,(
δC`
C`

)
cosmic variance

=

√
2

2`+ 1
. (1.46)

This effect is particularly pronounced at low-` and is represented by the green

band in figure 1.2.

To predict the power spectrum it is helpful to expand the Fourier transform

(denoted F) of the temperature anisotropy,

Θ(k, θ, φ, τ) = F
[

∆T

T

]
, (1.47)

in terms of Legendre polynomials,

Θ(k, θ, τ) =
∞∑
`=0

(2`+ 1)(−i)`Θ`(k, τ)P`(cos θ) . (1.48)

Θ` are called the multipole moments of the temperature anisotropies [22, 42,

54]. It is advantageous to separate out the evolution of the multipole moments

into initial conditions, ξ(~k) and the CMB transfer function12, T`(~k, τ0) such

that the multipole moments are given by the Fourier space multiplication of

the initial conditions and transfer function,

Θ`(~k, τ0) = ξ(~k)T`(k, τ0) , (1.49)

where τ0 is the conformal time today. The primordial power spectrum, P (k)

is the power spectrum of the initial conditions, ξ(~k). Consequently we can

calculate the CMB power spectrum as,

C` = (4π)2

∫
k2dk P (k)|T`(k, τ0)|2 . (1.50)

The problem of predicting the CMB power spectrum then becomes a case of

calculating the CMB transfer function and integrating it against the primordial

power spectrum which simply depends on the initial conditions from inflation.

12It is important to remember that this differs from the transfer function associated with
the matter power spectrum.
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Line of sight integral method

The CMB transfer function for relativistic species can be calculated through a

hierarchy of coupled differential equations for increasing ` [42, 44, 55]. Practi-

cally, this can involve solving and evolving several thousand differential equa-

tions. Seljak and Zaldarriaga [56] detail an approach that requires solving

considerably fewer differential equations and is therefore much faster to solve

numerically. Here the evolution equation for the photon perturbation Θ is

integrated along the past light cone, i.e. from τ = 0 to τ0. This results in,

Θ(k, τ) =

∫ τ0

0

dτ eikµ(τ−τ0)S(k, τ) , (1.51)

where µ = k̂.n̂ is the angle between the observation direction and the wavevector

and S(k, τ) is the source term. This source term is a gauge-dependent function

of perturbation variables. These perturbation variables are in general the

metric perturbations, matter density and velocity and moments of relativistic

species up to ` = 4. Hence the source term can be evaluated by solving the

coupled differential equations for the perturbations.

The CMB transfer function is then simply the integral of the source function

with a spherical Bessel function, j` which comes from expanding the plane wave

in equation (1.51) in terms of radial and angular eigenfunctions,

T`(k, τ0) =

∫ τ0

0

dτ S(k, τ)j`[k(τ0 − τ)] . (1.52)

The reason that this is so computationally advantageous, on top of the fact that

a much smaller hierarchy of increasing ` solutions is needed, is that the source

term contains all the cosmological information and has no dependence on `

while the geometrical part coming from the Bessel function depends on ` but

not the cosmology. As a result the Bessel functions can be calculated, stored

and then re-used whenever the cosmology is being changed e.g. in cosmological

parameter estimation, see section 1.5.2.

In summary, using the line of sight integral approach detailed in Seljak and
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Zaldarriaga [56] the CMB power spectrum can be found by first calculating

the source function from the solutions of the differential equations for low

multipole perturbation variables. Then this source function is integrated with

Bessel functions to get the CMB transfer function and finally the product of

the transfer function and the primordial power spectrum is integrated to obtain

the CMB power spectrum.

1.4.2 The different contributions to the CMB power
spectrum

One of the reasons the CMB is of such interest to cosmologists is that the CMB

power spectrum has a variety of different features that depend on a range of

different physical effects throughout the cosmological evolution of the Universe.

This subsection will detail these physical effects and the influence they have

on the CMB power spectrum.

Intrinsic temperature fluctuations

The CMB photons are emitted when the opacity of the Universe drops below

a critical value and photons are no longer tightly coupled. This happens when

protons and electrons combine to form neutral hydrogen, a process known as

recombination. This recombination will happen at slightly different times in

different regions of space, dependent on the temperature such that the intrinsic

temperature fluctuations of the plasma at last scattering are imprinted on the

CMB. These give rise to a temperature anisotropy,(
∆T

T

)
density

=
1

4
δγ . (1.53)

This contribution is shown schematically in figure 1.3.

The Doppler effect

As well as the density perturbations at the time of last scattering there are

also velocity perturbations in the plasma and these give rise to a temperature
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Figure 1.3: Left: a schematic plot of the effects of the intrinsic density (blue) and
velocity (red) perturbations on the temperature anisotropies. Right: The combined
effect of density and velocity perturbations. The negative sign in the Doppler term
causes the peaks to be out of phase and as a result the combined plot does not reach
δT/T = 0. Plot taken from notes by Pearson [57].

anisotropy, (
∆T

T

)
Doppler

= −n̂.~vγ , (1.54)

where n̂ is the unit vector along the line of sight. Simply, the perturbed

radiation fluid is moving relative to the background Hubble flow which changes

the temperature in different regions. This is shown in 1.3 along with the

combined effect of intrinsic density and velocity perturbations. Together these

account for most of the oscillatory features in the CMB power spectrum.

Gravitational redshift/the Sachs–Wolfe effect

CMB photons will also experience a gravitational redshift as they travel from

the last scattering surface to us. This is commonly called the Sachs–Wolfe

effect [58]. This gravitational redshift gives rise to a temperature anisotropy [28,

59], (
∆T

T

)
SW

=
1

3
ψe , (1.55)

where the subscript e denotes that the Newtonian potential ψ is evaluated at

last scattering. The anisotropy arises because the energy density, and therefore

the gravitational potential, is not constant across space. This gives rise to a

plateau in the CMB power spectrum at large scales.

The intrinsic temperature fluctuations and the gravitational redshift effect
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are often collectively referred to as the ‘SW term’. The distinction between

these two effects is gauge-dependent and consequently the distinction between

gravitational redshift and temperature fluctuation is not absolute.

The integrated Sachs–Wolfe effect

As CMB photons travel through the perturbed universe they fall in and out of

gravitational potentials. If these gravitational potentials are not changing with

time (gravitational potentials are constant in a matter dominated background)

then the photons will lose the same amount of energy as they leave the potential

as they gained when they entered and will therefore have no change in observed

energy. However, if the gravitational potential changes with time the photon

will leave a potential with a different magnitude to the one it fell into and as a

result the photon experiences a change in energy. This change in energy is the

integrated Sachs-Wolfe (ISW) effect and gives rise to an anisotropy,(
∆T

T

)
ISW

= −
∫ τe

0

(ψ̇ + φ̇) dτ , (1.56)

where τe is the conformal time of recombination.

Gravitational potentials change with time in both radiation and cosmologi-

cal constant dominated backgrounds. Hence there are both early- and late-time

ISW effects. The early-time ISW effect is due to the fact that recombination

happens not long after matter–radiation equality and consequently the gravi-

tational potential is still changing due to radiation. This primarily influences

the CMB power spectrum on scales slightly larger than the first peak. The

late-time ISW effect occurs because of cosmological constant domination and

causes an increase in power at very large scales.

Silk/diffusion damping

Before recombination, photons can only travel a very short distance before

being scattered off protons and electrons. The photons go on a random walk

and diffuse from the hot regions to the colder ones, reducing the temperature
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anisotropies and density perturbations on a characteristic length scale related

to the photon mean free path. As recombination occurs the mean free path

increases rapidly and smooths out inhomogeneities on a range of scales. This

is called Silk or diffusion damping [60] and is what causes the decay in the

CMB power spectrum for large-`.

All of these contributions are included in the source function of Seljak and

Zaldarriaga [56] (and section 1.4.1) and therefore contribute to the CMB power

spectrum.

The Sunyaev–Zel’dovich effect

CMB photons are scattered as they pass through galaxy clusters by high-

energy electrons [61–63]. This inverse Compton scattering increases the average

energy of CMB photons. This is considered as a small-scale contaminant to

the standard CMB signal but is itself an interesting observable (see Rephaeli

[64], Carlstrom, Holder, and Reese [65], and Rephaeli, Sadeh, and Shimon [66]

for reviews and Ade et al. [67] and Aghanim et al. [68] for Planck analyses).

1.4.3 Polarisation

Polarisation is a well known property of electromagnetic radiation and refers

to the orientation of the wave relative to the direction of motion. The CMB is

expected to be linearly polarised due to Thomson scattering of photons from

electrons during recombination. Thomson scattering only polarises radiation

with a quadrupole anisotropy and because photons are tightly coupled to the

photon–baryon fluid before recombination very little quadrupole anisotropy

is formed. Closer to recombination, as photons begin to travel further in the

plasma, a quadrupole is generated and the photons Thomson scattering off the

electrons that have not yet formed neutral hydrogen will become polarised [22,

28, 69, 70]. Because of these factors the polarisation anisotropies are expected

to be an order of magnitude smaller than the temperature anisotropies at about

1 part in 106. The CMB polarisation was first predicted by Rees [71] and first
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observed using the Degree Angular Scale Interferometer [72], closely followed

by the Wilkinson Microwave Anisotropy Probe (WMAP) [73].

The polarisation pattern can be decomposed into coordinate independent

E-mode and B-mode polarisation [74, 75]. Similarly to electromagnetic fields

the E-mode polarisation describes the divergence part of the polarisation while

the B-mode describes the curl part. The E-mode is the part of the polarisation

signal that is rotationally invariant about the direction of propagation, anal-

ogous to the rotational invariance of the electric field around a point charge.

The difference between E- and B-modes can also be seen from the fact that

for an E-mode polarisation pattern the orientation of the polarisation and the

direction of increasing polarisation strength are either parallel or perpendicular

whereas B-mode polarisation patterns have 45° between the orientation and

the polarisation strength.

E- and B-modes can also be differentiated by their parity (their behaviour

under an inversion of spatial coordinates). E-modes have parity (−1)` and B-

modes have parity (−1)`+1. There are six possible power spectra formed from

the combination of temperature (T ), E-modes and B-modes but because power

spectra are expected to be invariant under spatial inversions combinations

with different parity, TB and EB, have no contributions from cosmological

perturbations13. This is equivalent to the statement that B-modes are not

correlated with E-modes or temperature anisotropies. Hence we have four

observables, CTT
` , CTE

` , CEE
` and CBB

` with the only cross-correlation being

CTE
` .

The separation into E- and B-modes has important observational conse-

quences and CMB polarisation is now an important cosmological observable.

E-modes were observed first with the first significant measurement of B-mode

polarisation coming from the South Pole Telescope [77].

13Foregrounds and contaminants may produce non-zero CTB` and CEB` ’s and these cross-
spectra can consequently be used to constrain systematics [76].
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Sources of polarisation

An important advantage of the separation of the polarisation into E-modes and

B-modes is that scalar perturbations only produce E-mode polarisation. The

quadrupole photon perturbation only produces polarisation that is symmetric

about the direction of propagation; the same rotational symmetry as the E-

mode. Tensor perturbations produce E- and B-mode polarisation. Therefore

(neglecting vector perturbations which decay in the early Universe), B-mode

polarisation can be used to directly constrain tensor perturbations without

having to disentangle the scalar perturbations. In an idealised scenario with

no foregrounds or contaminants the B-mode spectrum would provide all the

information about the tensor perturbations and the tensor contribution to

the E-mode could be subtracted from the scalar E-mode and temperature

anisotropies to tightly constrain the scalar perturbations. In reality, disentan-

gling scalar and tensor perturbations is complex.

The separation of the tensor and scalar perturbations is also important

because a background of tensor perturbations is a prediction of inflation. Hence,

a detection of B-modes with the expected scale dependence would be a strong

confirmation of the inflationary paradigm.

So far we have been assuming that the only sources of polarisation happen

at, or before, recombination but there is an appreciable amount of polarisation

produced in the late Universe due to reionisation. When UV emission from

galaxies starts to reionise gas in galaxy clusters there are once again free

electrons for CMB photons to Thomson scatter from. As stated previously

CMB scattering from these electrons erases the temperature anisotropies at

small scales but also introduces E- and B-mode polarisation on large scales

(particularly `<∼ 10). This polarisation from reionisation is at large scales

because it is sourced by the CMB quadrupole (` = 2) which denotes scales close

to the horizon size, which itself has grown much larger than at recombination.

The four temperature and polarisation power spectra from scalar and tensor
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Figure 1.4: The predicted CMB temperature and polarisation power spectra for
scalar perturbations (left) and tensor perturbations (right) for a value of the tensor-
to-scalar ratio that was representative of constraints in 2009 [78], r0.002 = 0.22 and
for the baseline ΛCDM parameters. Current best constraints on the tensor-to-scalar
ratio are tighter by a factor of 2–3 (see section 1.4.5). The blue line in the left panel
is purely from CMB lensing and is discussed below. Taken from Challinor and Peiris
[79].

perturbations are shown in figure 1.4. The effects of reionisation are clear in

the low-` behaviour of the E- and B-mode spectra for scalars and tensors. The

contamination to the B-mode spectrum from lensing discussed in the next

section is also shown.

Polarisation as a cosmological probe

One of the main advantages of including polarisation data in cosmological anal-

yses is that it constrains reionisation well. Looking at temperature anisotropies

alone, there is a degeneracy between the initial amplitude As and the optical

depth to reionisation τ (see section 1.2.3 for definitions). Including E-mode

polarisation breaks this degeneracy and allows for independent constraints of

τ .
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The large scale signature of reionisation in the EE power spectrum was

first observed by WMAP [73]. In addition to the optical depth to reionisation,

the redshift of reionisation if reionisation is assumed to happen instantaneously,

zr is also constrained by polarisation measurements. This second parameter

is in general a poor approximation to the real physics of reionisation but can

be thought of as an average redshift of reionisation. WMAP measured these

parameters to be τ = 0.17 ± 0.04 and zr = 20+10
−9 . This implied that almost

one in five CMB photons were scattered at reionisation. This also implied a

higher reionisation redshift than expected from astronomical observations.

The current state of the art constraints come from Planck [1]. Here the

optical depth to reionisation τ = 0.0544+0.0070
−0.0081, considerably lower than the

WMAP value. Planck also finds zr = 7.68±0.79 as the mid-point redshift when

fitting a hyperbolic tangent function to the ionisation fraction. This lower value

is consistent with observations of quasars unlike the higher value from WMAP .

Because including the EE power spectrum breaks the degeneracy of the scalar

amplitude and the optical depth to reionisation, including polarisation allows

for tighter constraints on the initial amplitude of scalar perturbations.

The other main use of polarisation in cosmology is in constraining primordial

gravitational waves through B-mode polarisation. As mentioned previously

B-mode polarisation gives a direct constraint on tensor perturbations and a

background of gravitational waves is a prediction of inflation. Consequently a

detection of B-mode polarisation in the CMB would be further strong evidence

for inflation. Constraints are usually presented through the tensor-to-scalar

ratio rk∗ . This is defined as the ratio of the amplitude of the initial tensor

power spectrum, At(k∗) to the amplitude of the initial scalar power spectrum,

As(k∗) (as defined in equation (1.21)) at a reference scale k∗. The tensor power

spectrum is defined in equation (1.60).

In 2014 the BICEP2 experiment announced a 7.0σ detection of B-mode

polarisation corresponding to r0.05 = 0.20+0.07
−0.05 [80]. This was later reanalysed

using the Planck measurements of the foregrounds in the region observed by
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BICEP2 and the Keck Array which showed that the original BICEP2 signal

was due to dust contamination and there was no evidence for inflationary

gravitational waves [81]. Instead this analysis gives a constraint on the tensor-

to-scalar ratio of r0.05 < 0.12 at 95% confidence level. This is a good example

of the importance of accurately modelling foregrounds, particularly in CMB

polarisation experiments.

The BICEP2/Keck analysis has been redone more recently and gives the

tightest current constraint on the tensor-to-scalar ratio from CMB data of

r0.05 < 0.07 at 95% confidence [14].

As the errors on polarisation measurements have decreased, polarisation

has become more and more useful as a consistency check on other cosmological

parameters. So far there are no major discrepancies between polarisation and

temperature measurements and as a result these probes confirm the concor-

dance model and together put tight constraints on ΛCDM.

1.4.4 CMB lensing

The paths of photons are bent due to the distribution of matter in the Uni-

verse. This happens in much the same way as in optics with the lens replaced

by massive objects along the line of sight. This bending of light is called

gravitational lensing and is experienced by CMB photons travelling through

a universe with inhomogeneities [82, 83]. This changes the temperature and

polarisation anisotropies [84] primarily at low redshifts because the Universe

is least homogeneous at late times.

CMB lensing is a contaminant to the CMB temperature and polarisation

anisotropies and the removal of lensing from the CMB power spectrum is a

complex and well developed science. However, the CMB lensing is a tracer of

the large-scale structure of the Universe and can therefore act as an independent

probe of cosmological parameters [85, 86].
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Figure 1.5: The total lensed CMB power spectrum (black) along with the contribu-
tions from the ISW effect (blue), CMB lensing alone (red) and the unlensed power
spectrum (green dashed). The y-axis, ∆T =

√
`(`+ 1)C`/(2π) is the square root of

the conventionally plotted power spectrum. Taken from Challinor and Peiris [79].

Consequences for CMB observations

CMB lensing has three main effects on the CMB [85]. Firstly, it broadens the

acoustic peaks at a level of (1-10)% for the first few peaks (or more precisely for

`<∼ 2000) before dominating the power spectrum for large `. This is illustrated

in figure 1.5.

A similar contribution is given to the polarisation power spectra with an

important extra effect. CMB lensing converts E-mode polarisation into B-

modes, which come to dominate over the predicted primordial gravitational

wave signal for large `. This is important because B-mode polarisation is an

important observational target for observing primordial gravitational waves

(as discussed above). This can be seen in figure 1.4.

Finally, CMB lensing introduces non-Gaussianity into the power spectra.

The anisotropies from inflation as defined above are expected to be distributed
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as a Gaussian with zero mean to high precision. The introduction of non-

Gaussianity means the CMB power spectra no longer completely define the

statistics of the temperature and polarisation anisotropies. There is now a

non-zero bispectrum and trispectrum which are the Fourier transforms of the

correlation of three and four different points on the sky respectively [87].

Lensing reconstruction and delensing

Lensing has the same frequency spectrum as the unlensed CMB unlike most

other contaminants and as a result, can not be subtracted in the same way.

Instead it can be done by reconstructing the lensing potential and using this to

map points back to their unlensed values that tell us directly about the epoch

of last scattering.

The features discussed in the previous section are important for this recon-

struction of the lensing potential. Because lensing dominates the temperature

spectrum for large ` but is negligible for small ` we can consider these as

uncontaminated regions dominated only by lensing or the unlensed signal re-

spectively. This is similar for E- and B-mode polarisation with the added

advantage that we don’t expect there to be any large scale B-modes due to

lensing (see figure 1.4).

If the unlensed and lensing only perturbations are assumed to be perfectly

Gaussian then we can also use the trispectrum to find out information about

the lensing.

The above ways of gaining information about the CMB use only CMB

observations to try and disentangle the lensing effect but external tracers of

large-scale structure such as 21-cm hydrogen lines [88] or Planck cosmic infrared

background observations [89] can be used to improve the removal of the lensing

component.
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Lensing as a cosmological probe

Lensing has now been detected to high significance in the temperature and

polarisation data [89] and consequently can be used as an independent cosmo-

logical probe. Because lensing is primarily a late time effect it can give both

complementary and unique information to temperature and polarisation data.

Lensing can be used to constrain ΛCDM parameters, primarily H0 and

Ωm and also extended parameters such as the effective number of neutrino

species, the sum of the neutrino masses, the dark energy equation of state,

the curvature density parameter and the normalisation of the matter power

spectrum σ8 [86].

1.4.5 CMB parameters

Within the ΛCDM cosmological model there is a range of important parameters

that can be derived from the conventional six base parameters and there are

also parameters associated with interesting extensions to ΛCDM. Here I will

detail a few of these that are relevant in the remainder of the thesis.

The Hubble constant

The Hubble constant H0 gives the late-time rate of expansion of the Universe

and is one of the most important observables in cosmology. Positive values of

H0 correspond to an average redshifting of observed sources. It is a derived

parameter within ΛCDM and features in Hubble’s law and the Friedmann equa-

tion (see section 1.2.3). Even in models that explain the accelerated expansion

of the Universe using dynamical fields or modified gravity, the observed value

of the Hubble constant is an important constraint that these models have to

satisfy.

There is a large range of observational techniques that can be used to mea-

sure the Hubble constant including: the CMB, the local distance ladder (which

heavily relies on type 1a supernovae), weak lensing, baryon acoustic oscilla-

tions (BAO), Big Bang nucleosynthesis (BBN) and astronomical gravitational
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waves [28, 90].

The Hubble constant is difficult to measure precisely due to the large scales

over which accurate distance measurements need to be made. Because of this

the Hubble constant is often written as,

H0 = 100h km s−1 Mpc−1 , (1.57)

where h is defined so as to contain the uncertainty in the exact value of the

Hubble constant. A discussion of the current best values is given in section

1.4.6.

The inverse of the Hubble constant gives a rough estimate of the current

age of the Universe of ∼ 14 billion years for h ∼ 0.7.

Number of relativistic degrees of freedom

The number of relativistic degrees of freedom Neff is defined in equation (1.18)

14,

ρr =

[
1 +

7

8

(
4

11

)4/3

Neff

]
ργ . (1.18)

Here ρr is the total density of relativistic species and ργ is the energy density

of photons. In ΛCDM the only relativistic species are photons and neutrinos.

Hence Neff is sometimes referred to as the effective number of neutrino species.

The factor of 7/8 in equation (1.18) comes from the difference in the calcu-

lation of the energy density for fermions and bosons. This calculation requires

integration over the Fermi–Dirac distribution for the fermionic neutrinos and

over the Bose–Einstein distribution for the bosonic photons. The distinction

between these two results is a factor of 7/8.

The factor of (4/11)4/3 is a result of electron–positron annihilation which

heats the photons but leaves the neutrinos almost unaffected. The magnitude

is found by using entropy conservation during the annihilation process.

Shortly before electron–positron annihilation the neutrinos stop interacting

with the radiation fluid in a process known as decoupling. If this process was

14This equation is reproduced here for ease of reading.
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instantaneous such that all the entropy from electron–positron annihilation

goes to the photons then Neff = 3, corresponding to the three neutrino species

of the Standard Model of particle physics. However, neutrino decoupling is not

complete by the time of electron–positron annihilation and consequently some

entropy, and therefore energy, is transferred to the neutrinos. Furthermore,

the energy dependence of the weak interaction results in the neutrinos having

a spectrum slightly distorted from the Fermi–Dirac distribution. These two

effects result in the effective number of degrees of freedom having a slightly

larger predicted value [91–93]: Neff = 3.046.

The current best observations for constraining Neff are the CMB and BBN

(see section 1.5.3). From an analysis of Deuterium abundances combined

with Planck 2013 CMB data Neff = 3.28 ± 0.28 [53, 94]. From Planck 2018

temperature and polarisation data Neff = 2.92+0.36
−0.37 [1]. Both of these are

consistent with the ΛCDM prediction.

Increasing Neff above the Standard Model value has distinctive effects on the

CMB temperature power spectrum. Increasing the energy density of relativistic

species in the early universe moves matter–radiation equality later and also

alters the growth of perturbations, shifting the positions of the peaks [95].

Increasing Neff also increases the amount of Silk damping. This is shown in

figure 1.6.

There is a large range of possible sources of an increase in Neff including;

primordial gravitational waves [96], relic neutrinos [97], dynamical dark en-

ergy [98], light weakly interacting massive particles [99–101], dark radiation

and its matter interactions [102] and more (see Vagnozzi [103] references 745–

773 and Henrot-Versillé et al. [104] and references therein, for more examples).

A significant result of Neff > 3.046 would be evidence of extra physics in the

early Universe but would not by itself determine between any of these possible

sources. However, constraints on Neff can be converted into constraints on

these models of currently undetected physics.
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Figure 1.6: The CMB temperature power spectrum for Neff = 3.046 (orange) as in
ΛCDM and for Neff = 4.046 (blue), i.e. with one extra neutrino. This change in Neff

has characteristic effects on the heights and positions of the acoustic peaks.

Sum of the neutrino masses

In standard ΛCDM neutrinos are massless (as stated in section 1.2.3). How-

ever, it has been known that neutrinos are massive since the first observation

of neutrino oscillations [105]. Neutrino oscillation is the phenomenon by which

neutrinos change species, e.g. electron neutrinos changing into muon neutrinos.

This can only occur if at least one of the neutrinos is massive. The lepton num-

ber eigenstates15 (νe, νµ, ντ ) are not the same as the neutrino mass eigenstates

(m1, m2, m3). This effect can be quantified by the neutrino mass splittings,

∆m2
ij = m2

i −m2
j and mixing angles, θij.

A lower limit on the sum of the neutrino masses can be obtained if the

neutrino mass splittings are known. However, this depends on the hierarchy of

the neutrino masses. It is known from solar neutrino oscillation observations16

that m1 < m2 and ∆m2
21 � ∆m2

31. Hence there are two possible orderings of

15Here we assume that there are three active neutrino species and no sterile neutrinos [106].
16If the mixing angle θ12 is chosen to be in the positive quadrant, see Gariazzo et al. [107].
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the neutrino masses. The normal ordering has m1 < m2 < m3 and the inverted

ordering has m3 < m1 < m2.

HyperKamiokande’s observation of neutrino oscillations constrained the

sum of the neutrino masses,
∑
mν > 0.02 eV at 90% confidence [105]. The

current best lower limits are
∑
mν > 0.06 eV for normal ordering and

∑
mν >

0.11 eV for the inverted hierarchy (both from 95% confidence intervals on

∆m2
ij) [108–111]. The normal ordered value is used as the baseline model

for the Planck ΛCDM analysis instead of the assumption of zero mass used

elsewhere.

Cosmology is only sensitive to the sum of the neutrino masses which is

related to the energy density via [22],

Ων,mass h
2 ≈

∑
mν

94 eV
. (1.58)

Because massive neutrinos transition from being effectively massless when

the temperature is much higher than their mass to being non-relativistic at

late times they have unique effects on cosmology which allows strong upper

limits to be found. The tightest upper limit17 comes from Planck temperature,

polarisation and lensing data combined with BAO data (see section 1.5.3 for

details) from the Baryon Acoustic Oscillation Survey DR12 [112], 6dF Galaxy

Survey [113] and Sloan Digital Sky Survey ‘main galaxy sample’ [114],

∑
mν < 0.12 eV , (1.59)

at 95% confidence level. Note that these constraints come from a single param-

eter extension to ΛCDM and consequently have Neff fixed at 3.046.

Relativistic neutrinos affect the growth of structure due to free-streaming.

This reduces inhomogeneities on small scales. However, having massive neutri-

nos that become non-relativistic reduces this free-streaming effect and increases

the amount of structure on small scales. Therefore probes of the the large-

17The constraint tightens to 0.11 eV when including data from supernovae but these are
known to have major discrepancies with Planck (see section 1.4.6).
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scale structure, including weak lensing, 21-cm radio and galaxy surveys, offer

complementary insights to the neutrino mass constraint obtained from the

CMB [115].

A combination of knowledge gained from particle physics, nuclear physics

and cosmology have constrained the sum of the neutrino masses to a window

of less than one order of magnitude. The constraints are expected to improve

significantly in the near future with new CMB, weak lensing and radio surveys

coming online [109].

Tensor-to-scalar ratio

The tensor-to-scalar ratio quantifies the gravitational wave perturbations in

the early universe and is zero in Planck ’s baseline ΛCDM model [116]. Models

of inflation predict primordial gravitational waves and consequently a non-zero

tensor-to-scalar ratio so including this ratio in analyses is a well motivated

extension to ΛCDM.

As stated in section 1.4.3 the tensor-to-scalar ratio rk∗ gives the ratio

of the primordial tensor to scalar power spectra amplitudes at a reference

wavenumber, k∗. The primordial tensor and scalar power spectra are given by

power laws with the scalar spectrum being given by equation (1.21) and the

tensor spectrum by,

Pt(k) = At(k∗)

(
k

k∗

)nt

, (1.60)

where At is the tensor amplitude and nt is the tensor tilt. Because the scalar

amplitude is well determined but small (As ∼ 10−9) and the tensor amplitude

is unknown, it is convenient and conventional to consider the tensor-to-scalar

ratio,

rk∗ =
At(k∗)

As(k∗)
, (1.61)

instead of the tensor amplitude. Hence, if the power law assumptions are

correct18, there are four primordial power spectra parameters to determine,

18A common extension is to include ‘running’ of the spectral indices with k but this will
not be considered here.
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As, ns, rk∗ , nt. In models of inflation there is a consistency relation which

relates rk∗ and nt but this relation depends on the specific inflationary model.

Constraints on the tensor-to-scalar ratio therefore allow discrimination between

models of inflation.

Two different pivot scales are commonly used as tensor perturbations have

contributions that peak in different regions for the TT and the BB power

spectra (see figure 1.4). The temperature anisotropies receive the largest

contribution from tensor modes for large scales (`<∼ 100) and consequently

constrain r0.002. The predicted B-mode power spectrum peaks at ` ∼ 100 and

as a result these constraints are usually presented in terms of r0.05. It is easy to

convert between pivot scales but care should be taken not to directly compare

the constraints.

The current best constraint comes from a combination of Planck, BI-

CEP2/Keck Array and BAO data [1, 14, 81, 112–114],

r0.002 < 0.06 , (1.62)

at 95% confidence. The constraining power from Planck is primarily from

the TT power spectrum which combines well with the BICEP2/Keck B-mode

spectrum as a result.

Dark energy equation of state

ΛCDM explains the late-time accelerating expansion of the Universe with the

cosmological constant, a fluid component with constant energy density and

therefore an equation of state of w = −1. A vacuum energy that would behave

like a cosmological constant on large scales is predicted by quantum field theory

but the value of the energy density from these predictions is too large by many

orders of magnitude. This is called the cosmological constant problem [59,

117, 118]. Because of the cosmological constant problem, along with other

theoretical motivations, a large range of models have been developed to explain

the accelerated expansion. Models that introduce an extra component into the
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energy–momentum tensor are generally called dark energy. Perturbation-less

dark energy models can be quantified by their density, ΩDE and equation of

state, wDE(τ). Dark energy models with equations of state < −1 are usually

referred to as phantom dark energy and often have major theoretical problems

due to quantum instabilities (see Copeland, Sami, and Tsujikawa [119] and

references therein). The cosmological constant is the simplest case of a dark

energy model with ΩDE = ΩΛ ∼ 0.7 and wDE = −1.

Because there is now a large range of dark energy models, [119–121] and

references therein, it is beneficial to employ general parameterisations of the

dark energy equation of state. In the general case of wDE(a) the density evolves

as,

ρDE ∝ exp

[
3

∫ 1

a

(1 + wDE(a))

a
da

]
. (1.63)

The simplest case is a constant equation of state that is not equal to −1 for

which,

ρDE(a) ∝ a−3(1+wDE) . (1.64)

Going beyond this we can incorporate some time dependence by Taylor

expanding about the present time which can be done in several different ways.

As an example, expanding in the scale factor19,

wDE(a) = w0 + (1− a)wa , (1.65)

where we now have a two parameter model for the dark energy equation of

state using, w0 and wa.

A popular approach in the literature is to the use the parameterised post-

Friedmann (PPF) model of Fang, Hu, and Lewis [122]. This models the dark

energy as a general cosmological fluid with small perturbations, due to the

dark energy speed of sound being close to the speed of light, and no anisotropic

stress. The main advantage of this approach is that the equation of state of the

fluid can cross wDE(τ) = −1 while conserving energy and momentum. Hence

19If using a different expansion, such as one in the redshift, values of the constants will
not be directly comparable.
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it is well placed to test the observed region of parameter space either side of

the phantom divide.

Current observations are consistent with a cosmological constant causing

the accelerated expansion. For the constant equation of state parameterisation,

Planck [1], in combination with BAO and supernovae, [123] finds,

wDE = −1.028± 0.031 . (1.66)

When including the Taylor expanded dependence on the scale factor from

equation (1.65) the same Planck data set finds,

w0 = −0.957± 0.080 , wa = −0.29+0.32
−0.26 , (1.67)

which is also consistent with ΛCDM.

The equation of state of dark energy has degeneracies with: the matter

density, Ωm, the curvature parameter, ΩK and the Hubble constant, H0, and

consequently combinations of data that break these degeneracies are usually

used in parameter constraints [124].

Dark energy models predict specific values for the parameterisation con-

stants and can therefore be compared to data through this approach.

1.4.6 The H0 problem

There is now a large range of observational techniques that can measure the

Hubble constant, H0, up to ∼ 1% accuracy [125]. In recent years a tension

between these techniques has grown and now ranges from 3σ to 6σ 20 [126–128].

The tension can be broadly separated into ‘late-’ and ‘early-’ Universe probes

that disagree, with different late- and early-Universe probes being approxi-

mately consistent with each other.

Two important data sets that are in disagreement are Planck [1], with the

20σ estimates of the tension often come from combing errors on measurements in quadrature
and can be misleading, especially when probes are not independent. Here they are only
meant as an indication of the severity of the difference.
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2018 temperature, polarisation and lensing data giving,

H0 = (67.27± 0.60) km s−1 Mpc−1 , (1.68)

and the Riess et al. [129] local distance ladder observations giving,

H0 = (73.48± 1.66) km s−1 Mpc−1 . (1.69)

The distance ladder technique relies on measuring distances in the local Uni-

verse using sources of known luminosity such as Cepheids or Type Ia supernovae.

Multiple different calibrations have been used and agree with the higher value

of H0 found in Riess et al. [129], see figure 1.7. The main exception to this

is the distance ladder using the tip of the red giant branch [130] which found

an intermediate value, H0 = (69.8 ± 1.9) km s−1 Mpc−1. However, this analy-

sis has recently been called into question [131] and a higher value, consistent

with Riess et al. [129] is suggested. The Planck value has support from weak

lensing, BAO, BBN and independent CMB observations (from the Atacama

Cosmology Telescope) [132–134].

A variety of approaches to testing whether the Hubble tension is due to

systematics in either analysis have been done all failing to reconcile the data

sets. This solution is increasingly unlikely as more independent approaches

confirm the tension.

The H0 tension has been seen as evidence of new physics beyond ΛCDM.

Many possibilities have been put forward to explain the discrepancy including:

modified gravity (see Zumalacarregui [135] and Desmond, Jain, and Sakstein

[136] and references therein), non-standard interactions and early dark energy

(see Knox and Millea [137] for a review). The majority of these models fail

to completely resolve the tension, usually reducing it to ∼ 2σ and often do so

at the expense of worsening fits to other parameters or observables. Some of

the more successful theoretical approaches to alleviating the H0 problem by

modifying the cosmology will be detailed in chapter 5.

Improvements in future observations will allow for further verification of
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Figure 1.7: Values of the Hubble constant from a range of early and late Universe
measurements including: CMB, BAO, weak lensing, BBN, local distance ladder
(with different calibration methods) and strong lensing. Taken from Verde, Treu,
and Riess [127].

the validity of the Hubble tension and for tests of suitable extended models

that seek to explain the Hubble tension. Particularly exciting is the possibility

of independent determination of the Hubble constant from astrophysical gravi-

tational wave observations [90, 138]. Currently the error bars on gravitational

wave measurements are large but these are predicted to become competitive

in the next 5–10 years [139, 140].

There are some other less significant tensions in ΛCDM including disagree-

ment between CMB and large-scale structure measurements of σ8, which quan-

tifies the amplitude of fluctuations today, and Ωm (see Bhattacharyya et al.

[141] and Aghanim et al. [1] for recent discussions). There have also been

discussions of internal inconsistencies in the Planck results between the low-`
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and high-` data and also disagreements from consistency checks of the lensing

amplitude. Aghanim et al. [1] argues that the first of these is likely to be due

to statistical fluctuations but resolutions of both of these tensions, along with

the Hubble tension, could reveal physics beyond ΛCDM.

1.5 Data and analysis

There are now many cosmological observations taking place that produce a

very large amount of data. Processing this data and accurately comparing

to theoretical predictions requires advanced numerical codes and parameter

estimation techniques. This section will briefly outline the codes, techniques

and observables used in later chapters.

1.5.1 CAMB

The Code for Anisotropies in the Microwave Bacgrkound (camb) [142] is an

integrated python/fortran code that calculates observables given input values

of theory parameters. camb is based on cmbfast [56, 143, 144] which

was the first numerical code to compute the CMB power spectrum efficiently

enough to be used for parameter estimation.

The main observables calculated by camb are the CMB temperature and

polarisation power spectra, with the option to include lensing effects (see section

1.4) but camb can also be used to calculate the matter power spectrum (see

e.g. Dodelson [22] for details), the background expansion and cosmological

distance measures (among other observables).

The code solves the Friedmann equation for the background as well as the

perturbation equations using conformal time and relies on the line of sight

integral method detailed in section 1.4.1 to calculate the CMB power spec-

trum. camb incorporates all the CMB physics detailed in section 1.4 and has

dedicated modules to include the physics of recombination (using recfast,

which is based on Seager, Sasselov, and Scott [145]) and reionisation.

The baseline ΛCDM parameters are required as inputs with the option
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of including many extended parameters. These include: isocurvature initial

conditions via a correlation matrix approach (see Bucher, Moodley, and Turok

[48]), the number of relativistic degrees of freedom, the sum of the neutrino

masses, different parameterisations of the dark energy equation of state and

the tensor-to-scalar ratio (as detailed in section 1.4.5).

A similar code, class [146] is also popular amongst the cosmology com-

munity but camb is used throughout this work due to the ease of integration

with the parameter estimation code used in Planck analyses, cosmomc.

camb’s modularity makes it easy to modify and modified versions of camb

exist for calculations incorporating modified gravity, mgcamb [147] and

is itgr [148], and the effective field theory of cosmological acceleration, eft-

camb [149].

1.5.2 Cosmological parameter estimation, MCMC and
CosmoMC

Once accurate predictions of observables can be made using numerical codes it

is then important to be able to compare these to observations. In cosmology

this is often done using Bayesian parameter estimation [150].

The quantity of interest is the probability distribution of the values of our

parameters, θ given the model, M and the data d,

p(M(θ)|d) ∝ p(d|M(θ))p(M(θ)) , (1.70)

by Bayes’ theorem. p(M(θ)|d) is often called the posterior distribution of

the parameters, p(d|M(θ)) is the likelihood of the data given the parameters

of the model and p(M(θ)) is the prior, i.e. the existing information that is

known about the model parameters. Hence Bayesian parameter estimation

consists of accurately calculating the likelihood and appropriately choosing the

priors. Prior choice is important and will change the calculated distributions

of parameters but if the data is discriminatory enough then this change will

be small [22].
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For CMB analysis the data is reduced to the level of the C`’s
21, so the more

appropriate form is,

p(θ|Cobs
` ) ∝ p(Cobs

` |θ)p(θ) , (1.71)

i.e. the probability distribution of our parameters, θ, given the observed

C`’s [152]. Here we have assumed that the Universe is described by the ΛCDM

model so we are only interested in the parameter values of that specific model

but Bayesian approaches can be used to compare different models. The calcula-

tion of the likelihood is complex and requires advanced techniques (see Gerbino

et al. [153] for a recent review and Aghanim et al. [151]).

Once the likelihood can be calculated accurately, a process for determining

the probability distribution of the parameters is needed. The most obvious

process is to take a grid of the possible values of the parameters of interest and

calculate the likelihood and posterior for each value. However, the length of

time needed to carry out the computation scales very poorly with the number

of parameters used22 such that it quickly becomes prohibitive for cosmology.

As an example it would have taken nearly four years for WMAP to have carried

out their analysis in this way [154].

The most popular solution to this problem is to use Markov chain Monte

Carlo (MCMC) [150]. A Markov chain is a stochastic process that generates

a series of numbers where the step to the next number depends only on the

previous one. Put another way, for a Markov process, where you jump next

depends only on where you are.

The ‘Monte Carlo’ part of MCMC refers to the fact that at each point a

random number is generated that decides where the next point is. For a careful

choice of the algorithm used to make these jumps, the Markov chain will be a

representation of the underlying probability distribution. The most common

of these algorithms is the Metropolis–Hastings algorithm [150, 155].

21This is a very complex and in depth process, see Planck Collaboration, Ade, and others.
[53] and Aghanim et al. [151]. Here we will assume that this has been done and does not
introduce any significant errors.

22It scales as MN where N is the number of parameters and M is the number of steps
used in each dimension of the parameter space.
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MCMC starts off being quite inefficient if jumps are taken randomly with no

knowledge of the underlying distribution. This can be improved by using the

start of the Markov chains to approximate the covariance matrix which then

informs the directions in which jumps are more likely to maximise the likelihood

while also probing the lower likelihood regions an appropriate amount.

Metropolis–Hastings MCMC is greatly advantageous over a grid method as

it scales roughly linearly with additional parameters as opposed to exponen-

tially, making the computational cost much smaller [154, 156].

The result of MCMC is a likelihood hypersurface in the parameter space

which contains information on the probability distribution of each parameter

and how it depends on the other parameters. Consequently an important

operation for MCMC analysis is marginalisation. This refers to integrating

over the probability of parameters to leave lower dimensional hypersurfaces.

The most common way to use this is to marginalise over all parameters except

one, leaving the single probability distribution, but it is also used to generate

2D representations of the dependences between two different parameters.

One of the most widely used codes for performing parameter estimation

via MCMC is cosmomc [155]. cosmomc is a fortran code that uses the

Metropolis–Hastings algorithm to do an MCMC analysis and uses camb

to calculate the theoretical power spectrum for the relevant parameters. A

variety of different observational data can be used along with easy incorpo-

ration of extended parameters. Alternatives to cosmomc include mon-

tepython [157], which uses class to calculate the theoretical power

spectrum, cosmosis [158], which is highly modular allowing the use of

code in different languages and a variety of alternative sampling methods, and

cobaya [159], which allows for a range of sampling methods, optimisation

features and integration with different cosmological codes and likelihoods.
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1.5.3 Data

A range of different data sets are used in this work and as a result a brief

outline of the physics and particular methods of observation are detailed here.

The Planck cosmic microwave background satellite

The Planck satellite was launched and run by the European Space Agency and

observed the full CMB sky between 2009 and 2013. It replaced WMAP at the

cutting edge of CMB observation.

Planck observed the microwave sky in nine frequency bands between 30

and 857 GHz. The main contaminants are spinning dust [160], synchrotron

radiation and free–free emission for low frequencies, and thermal dust for high

frequencies [161]. The contaminants all have unique dependences on frequency

which allow the subdominant CMB signal to be deduced [162, 163].

There are three main observables coming from the Planck data. The

first is the temperature power spectrum, often denoted as TT . The second

is polarisation via the E mode and temperature E mode cross-correlation

power spectra, denoted EE and TE respectively (see section 1.4.3). The B

mode spectra are not used because Planck does not measure a BB power

spectrum inconsistent with zero power, due to foregrounds [151]. The third

is gravitational lensing (as described in section 1.4.4). This data is publicly

available23 and is most usefully presented for parameter estimation in the

Planck likelihood code.

The likelihoods are split into low-` (` < 30) and high-` (` ≥ 30) with

the low-` likelihood being reconstructed directly and the high-` likelihood

being approximated by a Gaussian to decrease the numerical cost. The low-

` TT , TT, TE,EE and lensing likelihoods have one nuisance parameter, the

absolute calibration. The high-` TT likelihood has 20 nuisance parameters that

incorporate various aspects of the data reduction and calibration. The high-`

TT, TE,EE likelihood has 47 nuisance parameters. The nuisance parameters

23https://pla.esac.esa.int.
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are marginalised over to estimate the uncertainty due to these parameters. See

the Planck likelihood wiki for more information on likelihood usage.

Planck had three main data analysis releases in 2013, 2015 and 2018 with a

set of verification papers released in 2011. These give the best ever determina-

tion of the parameters of ΛCDM. They show little evidence for extensions to

ΛCDM with the most prominent suggestion of a problem with ΛCDM coming

from the tension between Planck and distance ladder measurements of H0 (see

section 1.4.6).

The Planck temperature measurements are cosmic variance limited up to

` ≈ 1600 and consequently constitute the best possible determination of the

temperature anisotropies down to these scales [164]. However, the polarisation

and lensing measurements from Planck were limited by the determination and

subtraction of foregrounds, so the main focus of CMB observations in the future

will be on better determining the polarisation and lensing components. There

is a large range of planned and current ground-based, balloon and space-based

CMB observatories including; SPTpol, ACTPol, the BICEP Array, POLAR-

BEAR, CLASS, SPIDER, the Simons Observatory, CMB-S4, LiteBIRD, COrE,

PIXIE and PICO [165–178], which promise to greatly enhance our knowledge

of the CMB.

Baryon acoustic oscillations

The oscillations in the baryon–photon plasma24 before recombination that give

rise to the peaks and troughs in the CMB power spectrum (see section 1.4.2)

are also imprinted on the distribution of matter.

If we consider a single overdensity of dark matter, baryons and photons then

the baryon–photon fluid will be attracted towards the centre of this overdensity.

The photons provide a restoring pressure that pushes the fluid back out of the

overdensity before gravitationally collapsing again. The balance between the

photon pressure and the gravitational attraction give rise to acoustic oscillations

24Here the cosmological convention of calling protons, neutrons and electrons ‘baryons’ is
still being used.

https://wiki.cosmos.esa.int/planck-legacy-archive/index.php/CMB_spectrum_%26_Likelihood_Code
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in the plasma. The largest scale wave will be the one that is at rarefaction

at recombination. Hence recombination leaves a configuration with a shell of

overdense baryons around dark matter overdensities [179]. After recombination

there is only gravitational attraction and the dark matter and baryons fall into

each other’s potential wells. The dominance of dark matter over baryons (Ωc >

Ωb) means that more baryons fall into the dark matter well than vice versa,

but the acoustic scale is nonetheless imprinted in the distribution of galaxies25.

When considering acoustic waves of all possible frequencies and a multitude of

different sized overdensities, this effect can only be determined statistically in

the galaxy correlation function or galaxy power spectrum measured by large

surveys of galaxies. This was first done in 2005 by Eisenstein et al. [180]

and Cole et al. [181].

The acoustic scale at recombination is easily calculated from linear physics.

Therefore, how this scale changes with time probes the expansion history of

the Universe. Absolute distance scales are often called standard rulers as they

can be used to determine other distances in the Universe. Another advantage

of the BAO scale is that it is large enough (∼ 500 Mpc) that small-scale non-

linear effects do not dominate. The validity of the linearity has been verified

by perturbation theory and numerical simulations [182].

BAO are used in what is sometimes called the inverse distance ladder [112,

183]. The standard distance ladder uses combinations of increasingly high

redshift observations to build a ‘ladder’ of known distances. The inverse dis-

tance ladder has the same purpose but working down from the high redshift

observations of the CMB, BAO and Type Ia supernovae.

The main use of BAO in cosmology is to probe the expansion history. State-

of-the-art galaxy surveys accurately measure the BAO scale and consequently

the expansion rate up to a redshift of approximately 1. While the effects

of curvature and dark energy are difficult to disentangle, combinations with

other probes of the expansion history (e.g. the CMB) break these parameter

25This is illustrated in figure 1 of Eisenstein, Seo, and White [179].
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degeneracies.

The Planck collaboration use BAO data from multiple sources: BOSS

DR12 [112]; 6dFGS [113] and SDSS-MGS [114]. These combined sources will

generally be referred to as ‘BAO’ in data sets.

Big bang nucleosynthesis

Big Bang nucleosynthesis is the process by which nucleons are formed shortly

after the Big Bang. Between 10 seconds and 20 minutes after the Big Bang (z ∼

108), light elements26 were formed from the individual protons and neutrons by

nuclear reactions. During these very early times the Universe is very smooth so

light element abundances contain information about the background expansion

via the densities of baryons, photons and other relativistic species. Knowledge

of the species present in the early Universe and the nuclear reactions exactly

determine the relative abundances of the light elements and can consequently

be compared to observations [184, 185].

The light elements that are observable in the late Universe are hydrogen,

deuterium, helium, helium-3 and lithium-7. Hydrogen and helium are the most

prevalent, with the mass fraction of helium, Yp ≈ 0.24. The elements other than

hydrogen and helium have mass fractions orders of magnitude smaller [186].

It is difficult to accurately determine helium fractions as helium is produced

by stars. This necessitates observations of helium abundances in environments

known to have little star formation. This is not the case for deuterium which is

primarily produced by BBN but can have its fraction reduced by star formation.

Measurements of the other light elements are possible but have much less

constraining power on cosmology due to the large errors involved [1, 186].

Observations of the fractions of the light elements when combined with

knowledge of the baryon–photon ratio give direct constraints on the baryon

density parameter, Ωbh
2. This gave early evidence for the necessity of dark

matter as Ωbh
2 ∼ 0.02 measured from BBN was inconsistent with Ωm ∼ 0.3

26To be precise, light elements and their isotopes. I will adopt the standard approach of
referring to elements and isotopes as ‘elements’.
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from galaxy clusters and supernovae [28]. The light element abundances are

also sensitive to the density of relativistic species during BBN and as a result,

to Neff.

The current best data on the helium abundance comes from Aver, Olive,

and Skillman [187] and Peimbert, Peimbert, and Luridiana [188]. The best

constraints on the deuterium abundance come from Cooke et al. [94] and Cooke,

Pettini, and Steidel [189]. Their predictions are in good agreement with ΛCDM

and other cosmological probes [1].



Chapter 2

Cosmological Gravitational
Waves

2.1 Introduction

Over one hundred years after their prediction, the description of GWs is now a

well developed theoretical area. However, gravitational wave astronomy is still

in its infancy, only five years after the first observation of GWs (see Cervantes-

Cota, Galindo-Uribarri, and Smoot [190] for a historical perspective). Nonethe-

less, there is now a large range of experiments aimed at constraining and testing

GWs and a wide variety of possible gravitational wave sources.

This chapter will focus on cosmological GWs coming from early Universe

phenomena and will not deal with GWs produced in the late Universe by

astrophysical processes (see Christensen [191] for a review). It starts with

relevant details of the mathematical description of gravitational waves in flat,

FLRW and general curved spacetimes with a focus on the calculation of the

energy–momentum carried by GWs. This is followed by a description of the

main ways in which cosmological GWs are constrained experimentally before

a summary of some of the most relevant early-Universe phenomena that could

produce observable gravitational wave signals.

2.2 Linearised gravity and beyond

Tensor metric perturbations describe ripples in the curvature of spacetime.

These perturbations obey a damped wave equation and are consequently iden-

57
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tified as gravitational waves. They are most simply understood in linearised

gravity where the background is flat and the perturbations are linear, but

additional properties can be calculated by including curved backgrounds or

non-linearities. This introductory section closely follows Misner, Thorne, and

Wheeler [192] (Chapter 35).

2.2.1 Linearised gravity

In linearised gravity the metric is given by,

gµν = ηµν + hµν , (2.1)

where ηµν is the Minkowski metric and hµν is the linear perturbation met-

ric [193]. The 0 component is time; no definition of conformal time exists for

a Minkowski background. For this to be a well defined expansion we require

|hµν | � 1. In vacuum the perturbation satisfies the equation of motion1,

h α
µν,α = 0 , (2.2)

where a comma denotes partial differentiation. This permits a plane wave

solution where the wavevector is null, kαk
α = 0, so in general relativity gravi-

tational waves travel at the speed of light. More general solutions can be built

as superpositions of plane wave solutions, as in electromagnetism2.

Gauge freedom is an important property when considering gravitational

waves. The symmetric perturbation tensor, hµν has 10 degrees of freedom but

only two of these are physical gravitational waves. This can be seen in general

backgrounds from the scalar-vector-tensor decomposition (see below) or, in

spatially-flat, vacuum spacetimes, due to the gauge freedom. Considering the

second case, the most common fixed gauge for studying gravitational waves is

1Technically I am assuming that the perturbation is traceless here. This is allowed
due to the gauge freedom of general relativity and motivated by the scalar-vector-tensor
decomposition detailed in section 1.3.1 (see below).

2This analogy can often be used and is helpful for those well acquainted with electromag-
netism. Some care needs to be taken since the tensor nature of gravitational waves is not
replicated by electromagnetic waves.
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the transverse-traceless (TT) gauge defined by,

hµ0 = 0 , h k
k = 0 , h j

ij, = 0 , (2.3)

i.e. the perturbation tensor has only spatial components, vanishing trace and

the components are transverse to the direction of travel of the gravitational

wave.

Considering a wave travelling in the z-direction the TT conditions imply

that there are only two different non-zero components of the perturbation

tensor, h11 = −h22 and h12 = h21. Consequently the plane wave solution has

only two polarisations and the perturbation becomes,

hµν =



0 0 0 0

0 h+ h× 0

0 h× −h+ 0

0 0 0 0


cos[ω(t− z)] , (2.4)

where ω is the angular frequency of the gravitational wave and the two polarisa-

tion states have been written as h+ and h×. These two orthogonal polarisation

states represent the two degrees of freedom of gravitational waves3.

Gravitational waves are invariant under a rotation of 180° about the direc-

tion of propagation and therefore have helicity, λ = ±2 [28]. This dictates that

the two polarisations are oriented 45° apart, hence the labelling as ‘plus’, +

and ‘cross’, ×.

The orientation of the two polarisation states dictates the difference in

behaviour when a gravitational wave passes through a region of space. The

gravitational wave distorts spacetime in a characteristic pattern shown in

figure 2.1. This shows the behaviour of a ring of test masses in the x-y plane

when a gravitational wave travels through the ring in the z-direction with +

or × polarisation.

It is often convenient to work in Fourier space. In this case the gravitational

3The two degrees of freedom could also be decomposed into left and right circular polari-
sation analogously to electromagnetic waves.



Chapter 2. Linearised gravity and beyond 60

Figure 2.1: The effect of a gravitational wave passing through a ring of test masses
for one full cycle for the + an × polarisations. Taken from Li [193].

wave perturbation can be expanded as,

hij(~x, t) =
∑
λ=±2

∫
d3k

(2π)3
εij(k̂, λ)h̃(k, λ, t)ei

~k.~x , (2.5)

where the sum is over the helicity, λ, and the polarisation tensor εij represents

the +,× polarisations4 and depends only on the direction of propagation, k̂.

2.2.2 Beyond flat, vacuum spacetime

The approach detailed so far relies on the assumption of a flat, vacuum space-

time to define the TT gauge but the cosmology in which we live has curvature

and sources of perturbations. Consequently, the previous approach needs to

be revised to take this into account. However the two helicities, and hence

two polarisation states of gravitational waves, are an inherent feature of GR

and consequently we expect the conclusion of two gravitational wave degrees

of freedom to be true in general [194].

In this case the perturbed metric is decomposed into scalar, vector and

tensor components as5,

ds2 = a2(τ)
{
− (1 + 2A)dτ 2 − 2(∂iB + B̂i)dx

idτ

+ [(1 + 2C)δij + 2(∂i∂j −
δij
3
∇2)E

+ 2∂(iÊj) + ĥij]dx
idxj

}
, (1.24)

4Or right, left circular polarisations.
5Reproduced here for ease of reading.
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as detailed in section 1.3.1. Under the conditions, B̂i,i = Êi,i = ĥij,j = ĥii =

0 this constitutes the 10 degrees of freedom that would be expected for a

symmetric 4× 4 tensor.

Also as in section 1.3.1, it is helpful to consider infinitesimal coordinate

transformations and then construct gauge-invariant quantities from combina-

tions of the above perturbations, to verify if any of the existing degrees of

freedom are gauge artefacts. In doing so we are left with two scalar degrees

of freedom, two vector degrees of freedom and two tensor degrees of freedom,

for a total of six physical degrees of freedom in the metric perturbations. The

tensor, ĥij is itself gauge-invariant and consequently constitutes the two tensor

degrees of freedom in the perturbed metric.

Looking at the Einstein equations for these six metric degrees of freedom

(see for example ref. [194]), the only two obeying a wave equation are in the

tensor part, ĥij. Consequently these two degrees of freedom are identified with

gravitational waves as before and the TT gauge is seen to pick out the physical,

gauge-invariant perturbations that are radiative. Because of this, hats will be

dropped from now on and the two gravitational wave degrees of freedom will

be labelled by the symmetric 3× 3 tensor, hij.

While linearised gravity demonstrates many of the interesting properties of

gravitational waves and is sufficient for some detection calculations, it is also

missing important effects that can only be seen in the non-linear theory. Grav-

itational waves carry energy and consequently curve the background metric.

The gravitational waves have their properties changed by the curvature of the

background produced by their own energy density. Hence, a more advanced,

non-linear approach is necessary to calculate the full observable consequences of

gravitational waves for cosmology. Both the assumption of a flat background

and the assumption of linear perturbations will be relaxed in the following

discussion.

Allowing for a curved background and second order perturbations the metric
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to second order is,

gµν = g̃µν + hµν + jµν , (2.6)

where g̃µν is the background metric, hµν is the first order perturbation and jµν

is the second order perturbation. However, there is now an issue in clearly

separating the background and perturbations. In linearised gravity it was clear

that the background was the Minkowski metric and the gravitational wave per-

turbation existed in this background spacetime, but in curved space it is harder

to make such a distinction. The most common approach for implementing this

separation is detailed in the next section, however we first give expressions for

the Ricci tensor to second order under the above perturbation scheme;

Rµν = R̃ (g̃µν) +R(1)
µν (hµν) +R(2)

µν (hµν) +R(1)
µν (jµν) , (2.7)

where [192],

R(1)
µν (hµν) =

1

2
(− h|µν − h α

µν|α + h α
αµ|ν + h α

αν|µ ) , (2.8a)

R(2)
µν (hµν) =

1

2

[
1

2
hαβ|µh

αβ
|ν + h α|β

ν (hαµ|β − hβµ|α)

+ hαβ(hαβ|µν + hµν|αβ − hαµ|νβ − hαν|µβ)

−
(
hαβ|β −

1

2
h|α
)

(hαµ|ν + hαν|µ − hµν|α)

]
, (2.8b)

with an upright line denoting a covariant derivative with respect to the back-

ground metric and the trace of the perturbation, h = hii. R
(1)
µν (jµν) is func-

tionally identical to R
(1)
µν (hµν) such that it is given by equation (2.8a) and is a

second order quantity6. These expressions are valid in all cases where,

|jµν | � |hµν | � |g̃µν | (∼ 1) . (2.9)

It is worth noting the behaviour of the first order equation for a cosmo-

logical background. So far gravitational waves have only been considered in

vacuum, but the equation of motion can also include a source term. In an

6The superscript on the Ricci tensor labels the order the function is in its argument
irrespective of whether the argument is first or second order.
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FLRW background, using conformal time and considering the gauge-invariant

tensor perturbation, i.e. the TT part, the equation of motion coming from

equation (2.8a) is,

ḧij + 2Hḣij − h k
ij,k = 16πGa2Π

(T )
ij , (2.10)

where Π
(T )
ij is the anisotropic inertia tensor which is the transverse-traceless

perturbation part of the energy–momentum tensor7. The tensor metric per-

turbation, hij contains two degrees of freedom as before and the anisotropic

inertia tensor, Π
(T )
ij encodes the two degrees of freedom of the perturbed energy–

momentum tensor and hence the gravitational wave sources. The anisotropic

inertia tensor can often be neglected so the equation of motion can be solved

as in vacuum, though there is a correction to the gravitational wave evolution

due to the anisotropic inertia from neutrinos [28, 194, 195]. The dependence

on the metric in the Boltzmann equation for neutrinos results in the neutrino

shear being a functional of the derivative of the gravitational wave amplitude.

Consequently neutrino shear acts as an increase in the damping term for grav-

itational waves which can result in a ∼ 30% decrease in the amplitude of the

B-mode power spectrum8 [28, 195].

Gravitational waves can also be sourced by an anisotropic stress from a

variety of processes in the early Universe, see section 2.6.

2.3 The shortwave approximation

The shortwave approximation [192, 193, 196, 197] separates the background

and perturbation by requiring that the scale that the first order perturbation

fluctuates on, λ = λ/(2π) is much less than the scale that the background

varies on, R;

λ� R . (2.11)

7It is the tensor part of Σij in equation (1.31c). See Weinberg [28], equation 5.1.39.
8The equations are usually solved numerically and are an optional extension in cosmolog-

ical codes such as camb.
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There is a clear distinction between perturbation and background when the

gravitational waves have a ‘short’ wavelength compared to the background.

To proceed further, an averaging length scale l is introduced which satisfies,

λ� l� R . (2.12)

When averaging over volumes associated with l the perturbations will average

to zero whereas the background will be approximately constant. The smooth

part of the Ricci tensor is,

R(smooth)
µν = R̃µν + 〈R(2)

µν (hµν)〉l , (2.13)

where 〈...〉l denotes averaging over a volume with sides of length l. Therefore the

averaged second order perturbation on the Ricci tensor modifies the curvature

of the background. The fluctuating part is given by,

R(fluc)
µν = R(1)

µν (hµν + jµν) +R(2)
µν (hµν)− 〈R(2)

µν (hµν)〉l . (2.14)

In vacuum both of these expressions are required to be equal to zero. Conse-

quently equation (2.13) gives the Einstein equation,

R̃µν −
1

2
g̃µνR̃ = 8πGT (GW)

µν , (2.15)

where R̃ = R̃µ
µ and the gravitational wave effective energy–momentum tensor

is given by,

T (GW)
µν = − 1

8πG
〈R(2)

µν (hµν)−
1

2
g̃µνR

(2)(hµν)〉l , (2.16)

with the trace, R(2)(hµν) = g̃µνR
(2)
µν (hµν). It follows that, in the shortwave

approximation, we can define the energy–momentum carried by a gravitational

wave by averaging over many wavelengths. It is important to note that this

equation is independent of the averaging scale, l because of the hierarchy of

scales given in equation (2.12). This can be elucidated by considering the

simple model of a sinusoidal solution for hµν . In this case all the linear terms
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in equation (2.8a) will vanish under averaging because they enclose equal

positive and negative areas. For second order terms that depend on products

of derivatives of hµν the situation is more complicated, as some of these terms

will be in anti-phase and hence cancel out, and some will be in phase and

consequently reinforce each other. The separation of scales is vital so that the

average is over many wavelengths, such that the above statements are true,

and also so that the averaging scale is less than the background scale, such that

physical variations are not being averaged away. Consequently equation (2.16)

is an expression for a gravitational wave effective energy–momentum tensor

which is independent of l and which can be used in Einstein’s equations in the

same way any energy–momentum tensor can.

While this expression was derived assuming gravitational wave propagation

in vacuum, the gravitational waves can be treated in the same way in the

presence of matter and the right-hand side of the Einstein equations will then

just be a sum of the energy–momentum tensor for matter and the effective

energy–momentum tensor for gravitational waves [198].

The effective energy–momentum tensor for gravitational waves can be explic-

itly evaluated. In the TT gauge, using cosmological time and equations (2.8),

T (GW)
µν =

1

32πG
〈hαβ|µhαβ|ν〉l . (2.17)

This can also be derived from the Landau–Lifshitz pseudo-tensor (see Landau

and Lifshitz [199] and Su and Zhang [200] for details).

In spacetimes that are close to flat, covariant derivatives can be approx-

imated by partial derivatives and the equation of motion assuming zero an-

isotropic stress becomes,

h α
µν,α = 0 , (2.18)

for a gravitational wave propagating in the z- or 3-direction. This equation of

motion has solutions that depend on the retarded time, t − z. Consequently

spatial and temporal derivatives can be interchanged and the trace of the
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effective energy–momentum tensor,

T (GW) =
1

32πG

(
〈hij,3hij,3〉 − 〈hij,0hij,0〉

)
= 0 . (2.19)

The full solution is a sum of plane waves of positive and negative frequencies

along all three spatial directions (such that it is isotropic), but this argument

applies to each of these spatial directions separately. Therefore, under the short-

wave approximation, gravitational waves have an equation of state parameter,

wGW = 1/3, as for a massless radiation species.

The above argument holds in an FLRW background with the retarded time

depending on τ − z instead. Therefore cosmological gravitational waves are

expected to have the same background behaviour as massless neutrinos when

the shortwave approximation is valid [192, 193].

2.4 A non-shortwave approach

Mukhanov, Abramo, and Brandenberger [38, 201] calculate an effective energy–

momentum tensor for gravitational waves that is valid for all wavelengths. This

approach still requires the condition |hµν | � 1 that keeps the metric expansion

well defined but relaxes the condition on the length scales associated with the

curvature, allowing λ to vary on scales R or larger. The approach is formulated

using gauge-invariant cosmological perturbations where the background is fixed

to FLRW (see section 1.3.1). The averaging over many wavelengths of the

shortwave approximation is replaced with averaging over all space, defined by,

〈A〉x = lim
V→∞

1

V

∫
A dV , (2.20)

for a general function A. Under this averaging, linear perturbations average

to zero by definition, but terms quadratic in the linear perturbations do not.

Note that terms depending on the second order metric perturbation jµν vanish

under this averaging, as they do in the shortwave approximation.

Expanding the Einstein equations to second order and averaging over all
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space,

G̃µ
ν + 〈δ(2)Gµ

ν〉x = 8πG
(
T̃ µν + 〈δ(2)T µν 〉x

)
, (2.21)

where G̃µ
ν and T̃ µν are the background Einstein and energy–momentum tensors

respectively, and δ(2)Gµ
ν and δ(2)T µν are the second order perturbations to the

Einstein and energy–momentum tensor respectively. This allows the effective

energy–momentum tensor, T
(GW)µ

ν to be defined,

T (GW)µ
ν =

1

8πG

(
8πG〈δ(2)T µν 〉x − 〈δ(2)Gµ

ν〉x
)
. (2.22)

The gauge invariance is complicated for scalar perturbations but for tensor

perturbations it only requires that the perturbation is in the TT gauge. In

terms of cosmological time, the expanding TT metric is defined by9,

ds2 = −dt2 + a2(t)(δij + hij)dx
idxj , (2.23)

where a(t) is the scale factor as in the previous chapter and in comparing to the

previous section the tensor perturbation has changed from hij → a2hij. In this

case the evaluation of the effective energy–momentum tensor for gravitational

waves simplifies to evaluating the perturbed Einstein tensor,

T (GW)µ
ν = − 1

8πG
〈δ(2)Gµ

ν 〉x . (2.24)

Using equation (2.8b) and the equation of motion in vacuum for cosmolog-

ical time,

d2hij
dt2

+ 3H
dhij
dt
− 1

a2
h k
ij,k = 0 , (2.25)

the (00) and (ij) components of the effective energy–momentum tensor are,

T
(GW) 0

0 =
1

8πG

[
H

〈
dhij
dt

hij

〉
x

(2.26a)

+
1

8

(〈
dhij
dt

dhij
dt

〉
x

+
1

a2
〈hij,khij,k〉x

)]
,

9Abramo, Brandenberger, and Mukhanov [38] use a mostly negative metric, I have
changed this here to be consistent with other sections.
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T
(GW) i

j =
1

8πG

[
δij

(
3

8

〈
dhkl

dt

dhkl
dt

〉
x

− 3

8a2
〈hkl,mhkl,m〉x

)
(2.26b)

− a2

2

〈
dhik

dt

dhkj
dt

〉
x

− 1

4
〈hkl,ihkl,j〉x +

1

2
〈hik,lhjk,l〉x

]
.

The (0i) components of the effective energy–momentum tensor are zero under

the averaging of equation (2.20), assuming an isotropic source of gravitational

waves.

The (00) component of the effective energy–momentum tensor can be in-

terpreted as the effective energy density of gravitational waves, ρgw. However,

T
(GW) i

j is not simply related to the pressure because the effective energy–

momentum tensor defined in this way is not conserved, T
(GW)µ

ν|µ 6= 0. This

is linked to the problem of distinguishing the background from the gravita-

tional wave perturbation, or put another way due to the interactions of matter

and gravitational waves [200, 202]. This interaction between gravitational

waves and the background is seen in the conservation equation for the effective

energy–momentum tensor. The covariant derivative, T
(GW)µ

ν|µ , results in the

conservation equation,

dρgw

dt
+ 3H

(
ρgw +

[
−1

3
T

(GW) i
i

])
= 〈Γ(2)α

α0〉x (ρ̄+ p̄) , (2.27)

where the term on the right depends on the background and the gravitational

wave amplitude. To restore the required conserved nature of the background

fluid this extra term is incorporated into the pressure. When interactions

between gravitational waves and matter are not considered this term vanishes.

Alternatively this can be seen by considering the fact that it is the total

energy–momentum tensor that is conserved,

(T̃ µν + T (GW)µ
ν )|µ = 0 . (2.28)

Expanding this to second order, averaging the resulting equation and assuming

an isotropic background with no perturbations10, we see that there is an extra

10This is essentially assuming that the decomposition theorem is still valid. This is valid
under averaging at second order [203].
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term missing from the expression for the effective pressure, if just the effective

energy–momentum tensor is used, which depends on the background density, ρ̄,

and pressure, p̄ via the background equation of state parameter, w̄. Including

this term, the gravitational wave density and pressure satisfy the continuity

equation,

dρgw

dt
+ 3H (ρgw + pgw) = 0, (2.29)

where they are given by,

ρgw = T
(GW) 0

0 , (2.30a)

pgw = −1

3
T

(GW) i
i −

1

3H
〈Γ(2)α

α0〉x (ρ̄+ p̄) , (2.30b)

= −1

3
T

(GW) i
i +

1

8πG

1

2
H(1 + w̄)

〈
hij

dhij
dt

〉
x

, (2.30c)

and 2Γ
(2)α

α0 = −〈hij(dhij/dt)〉x is a summed component of the second-order

perturbed Christoffel symbol. The gravitational wave-matter interaction term

vanishes in the case that there are no matter interactions (ρ̄ + p̄ = 0) which

confirms the statement above; in the absence of matter the effective energy-

momentum tensor alone is needed. Su and Zhang [200] show that this extra

term is negligible for short-wavelength gravitational waves, for all cosmological

backgrounds since inflation.

It is worth noting that because of the averaging, the density and pressure

are total quantities for a homogeneous and isotropic background of gravita-

tional waves and consequently depend only on time, as one would expect for a

background density and pressure.

Abramo, Brandenberger, and Mukhanov [38] use these expressions for the

gravitational wave density and pressure to find the equation of state of gravita-

tional waves in the long- and short-wavelength limits11. They find the equation

of state in the short-wavelength limit similarly to how it was done in the short-

wave approximation in the previous section. In this regime a time average over

a period T � H−1 results in the terms with two time and two space deriva-

11Ref. [38] also details the application of this formalism to the backreaction of scalar
perturbations during inflation.
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tives being the same and hence the equation of state is 1/3, as a result of the

pre-factors in equations (2.26). As this is shown without considering a specific

background it is expected that short-wavelength gravitational waves behave

like radiation independent of the universe that the gravitational wave pertur-

bations are being considered in. This confirms the shortwave approximation

result for the gravitational wave equation of state.

Ref. [38] then details long-wavelength expansion solutions of the equation

of motion (equation (2.25)) for the gravitational wave perturbation, hij, for

de Sitter (i.e. cosmological constant) and radiation backgrounds. The long-

wavelength gravitational waves are defined by the condition k � aH. Putting

these expansions into the expressions for the density and pressure and taking

the long-wavelength limit gives an equation of state of −1/3 for both back-

grounds. Consequently the energy density of long-wavelength gravitational

waves decreases as a−2.

Brandenberger and Takahashi [203] revisited this methodology more re-

cently. They follow the above approach for calculating the gravitational wave

density and pressure but instead work in conformal time12. They extend the

work of ref. [38] by also giving the relevant expressions for the gravitational

wave density and pressure in Fourier space. Rewriting equation (2.5) in terms

of conformal time, the gravitational wave perturbation is written as,

hij(τ, ~x) =
∑
λ=+,×

∫
d3k

(2π)3
ελij(

~k)hλ(τ,~k)ei
~k.~x , (2.31)

where ελij(
~k) is the polarisation tensor with helicity λ and hλ(τ,~k) is the scalar

gravitational wave amplitude as before. This is advantageous as analytic

solutions to the helicity-independent equation of motion for the gravitational

wave amplitude (compare to the real-space, tensor equation of motion in terms

of cosmological time in equation (2.25)),

ḧ(τ,~k) + 2Hḣ(τ,~k) + k2h(τ,~k) = 0 , (2.32)

12This was also done in detail in appendix A of Giovannini [202].
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can be found for one-component cosmological backgrounds. It is also useful as

it allows for the standard approach of separating the initial conditions from the

time and space evolution and parameterising the stochastic average of these

initial conditions by the primordial power spectrum (see section 1.4.1) [28].

Therefore the gravitational wave amplitude,

hλ(τ, k) = Aλ(k)f(τ, k) (2.33)

where Aλ(k) is the initial condition and f(τ, k) describes the time evolution

and satisfies f(0, k) = 1. These quantities depend only on the magnitude k

due to isotropy. The total gravitational wave density and pressure are,

ρgw =
1

8πGa2

∫ kmax

kmin

d ln k ρ̃gw(k, τ)Pt(k) , (2.34a)

pgw =
1

8πGa2

∫ kmax

kmin

d ln k p̃gw(k, τ)Pt(k) , (2.34b)

where kmin is an infrared cutoff and kmax is an ultraviolet cutoff set by the

Hubble radius at the end of inflation and,

ρ̃gw(k, τ) =

[
1

8

(
k2f 2 + ḟ 2

)
+Hḟf

]
, (2.35a)

p̃gw(k, τ) =
7k2

24
f 2 − 5

24
ḟ 2 +

H
2

(1 + w̄)ḟf . (2.35b)

These are the analogous expression to equations (2.26) and (2.30) but for

conformal time and with the gravitational wave equation of motion solutions

in k-space.

Brandenberger and Takahashi [203] use the same argument for the short-

wavelength limit as ref. [38] – that time and space derivative terms are equiv-

alent – to show that the equation of state for short-wavelength gravitational

waves is 1/3. This is done using the real space expressions. They go on

to find the solutions of the equation of motion for de Sitter, radiation and

matter backgrounds and use these to give explicit expressions13 for ρ̃gw(k) in

13Ref. [203] uses a different definition of ρ̃gw to the one here. It differs only by a constant
factor of a stochastic average over the initial conditions, 〈|Aλ(k)|2〉Q (see section 4.2 for more
details of this averaging).
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the long-wavelength limit (kτ � 1). They then state that the pressure is

p̃gw(k) = −ρ̃gw(k)/3 in this limit, as in ref. [38].

The equation of state of gravitational waves that governs the time evolution

is wgw(τ) = pgw(τ)/ρgw(τ). However statements are often made about the

equation of state from the value of the spectral equation of state, w̃gw(k, τ) =

p̃gw(k, τ)/ρ̃gw(k, τ). These are equivalent if the spectral equation of state is

constant. In this case the integrals in equations (2.34) become,

ρgw =
1

8πGa2

∫ kmax

kmin

d ln k ρ̃gw(k, τ)Pt(k) , (2.36a)

pgw =
1

8πGa2

∫ kmax

kmin

d ln k w̃gwρ̃gw(k, τ)Pt(k) . (2.36b)

Clearly the constant w̃gw can be taken out of the second integral and wgw = w̃gw.

Therefore, if the spectral equation of state is shown to be constant, the ‘true’,

integrated equation of state is equal to the same constant. As a result wgw and

w̃gw will be used interchangeably in future chapters when the spectral equation

of state is constant.

The gravitational wave density in the long-wavelength limit is negative in

all the backgrounds considered. Because of this and the equation of state it is

concluded that the backreaction of long-wavelength gravitational waves has the

same effect as a change in the spatial curvature. It is important to note that

this is only valid for small gravitational wave perturbations and consequently

this approach shows that the backreaction of long-wavelength gravitational

waves reduces the total density in the same way as curvature, not that these

gravitational waves truly have a negative energy density.

The condition that the gravitational wave density is small,

ρgw � ρcrit , (2.37)

which is required to be valid at all times in the history of the Universe, can be

used to constrain the tensor-to-scalar ratio, rk∗ and tensor tilt, nt, assuming

a power-law initial spectrum [203]. This condition, that gravitational waves
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do not dominate the early universe, comes from the requirement that the

perturbation expansion is well defined, |hµν | � g̃µν . Note that ρcrit depends

on the background; this condition is required to be true regardless of the

background. The constraints found in this way are dependent on the model of

inflation.

2.4.1 Fluctuations

We have so far neglected the rapidly fluctuating component of the gravitational

wave perturbations as these have been shown to have no affect on the back-

ground evolution. The backreaction of this fluctuating component will change

the ‘perturbations’ i.e. the first order part of the Einstein equations [203].

This was done for the backreaction of long-wavelength scalar modes in an

inflationary background in ref. [204] but has not been considered for the tensor

perturbation or other cosmological backgrounds.

2.5 Detection

There is a range of different observational techniques that are currently being

used to constrain the density of PGWs. These are typically presented as

constraints on the gravitational wave density parameter, Ωgwh
2. The most

common observational methods are detailed in this section.

It is important to note that there are two main types of constraint, non-

integral and integral constraints [194, 205–207]. Non-integral constraints, are

constraints on the density as a function of frequency, f ,

Ωgw(f) =
1

ρcrit

dρgw

d log f
, (2.38)

in a specific frequency range determined by the sensitivity of the observational

probe used. Integral constraints are constraints on,

Ωgw =

∫ fmax

fmin

d (log f) Ωgw(f) , (2.39)

and therefore need to be treated carefully when comparing to frequency-
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dependent, non-integral constraints [208]. Here fmin is a low-frequency limit

coming from the experimental probe being used and fmax is a high-frequency

limit which is usually related to the energy scale at the end of inflation [209].

Because this energy scale is usually very high, and motivated by the high-

frequency dependence of gravitational wave backgrounds, this upper limit is

often taken to infinity, but it is important to emphasise that the lower limit

does not go to zero [194]. Integrated constraints only include contributions

from gravitational waves that have frequencies greater than fmin. Integral

constraints are often plotted as flat lines on constraint plots and are conse-

quently assuming a power-law spectrum across their range of validity. It is

possible that a very sharply peaked source of gravitational waves could violate

this constraint but such a source is not expected from any currently predicted

cosmological mechanism (see section 2.6). As mentioned above the integral con-

straints typically have limits set by specific considerations of the observational

methodology.

2.5.1 CMB B-modes

The reader is referred to section 1.4.3 for details of CMB B-mode constraints to

PGWs. However, it is important here to comment on the conversion between

constraints on the tensor-to-scalar ratio and the gravitational wave density

parameter, Ωgwh
2.

A constraint on the tensor-to-scalar ratio, rk∗ can be converted to the

gravitational wave density parameter [205, 210–212]. Assuming the initial

spectrum is described by a power-law, the gravitational wave density parameter

as a function of wavenumber is,

Ωgw(k)h2 =
3

128
Ωrh

2 rk∗As(k∗)

(
k

k∗

)nt
[

1

2

(
keq

k

)2

+
16

9

]
, (2.40)

where keq =
√

2H0Ωm/
√

Ωr is the wavenumber of a mode that enters the

horizon at matter–radiation equality and k∗ is the pivot scale (as in section

1.4). This is derived from considerations of the short wavelength transfer
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function of the tensor perturbations during and after slow-roll inflation and

assuming a power-law initial power spectrum [194]. However, here, and in many

existing applications, the short wavelength transfer function is not valid, as

the gravitational waves are super-horizon (or only slightly sub-horizon) at the

time of the observational probe, in this case CMB decoupling. Consequently,

it should be stressed that, while this conversion is prevalent in the scientific

literature, it is incorrect to use it for the B-mode constraint. Nonetheless

equation (2.40) is presented here due to its widespread usage for this conversion,

but should only be considered as a first approximation to the true conversion

between the tensor-to-scalar ratio and the gravitational wave density parameter

when the gravitational waves considered are not suitably sub-horizon.

2.5.2 CMB isotropy

One of the earliest constraints to the gravitational wave density came from

COBE measurements of the low-` multipoles [213]. A background of long-

wavelength gravitational waves results in an increase in the Sachs–Wolfe effect

at very large scales decreasing the isotropy of the Universe. Therefore, obser-

vations of the low-` multipoles tightly constrain the gravitational wave density

at low frequencies. The constraint is [206, 214],

Ωgw(f)h2 < 7× 10−11

(
H0

f

)2

, (2.41)

for the frequency range, 3× 10−18 Hz < f < 10−16 Hz [207]. Written instead in

terms of k this constraint is,

Ωgw(k)h2 < 3× 10−9

(
H0

k

)2

, (2.42)

for the k range, 2 × 10−3 Mpc−1 < k < 0.06 Mpc−1. This is tightest at the

upper edge of its validity where the gravitational wave density parameter is

constrained to ∼ 10−13. This is roughly the same frequency range probed

when including B-mode polarisation, which allows for tighter constraints and

consequently the CMB isotropy constraint is rarely presented anymore.
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2.5.3 Big bang nucleosynthesis

As detailed in section 1.5.3, BBN is highly sensitive to the number of neutrino

species. Because gravitational waves obeying the shortwave approximation have

the same equation of state as massless neutrinos they are expected to have

the same effect on the expansion history and therefore contribute to Neff [207,

214]. Therefore, assuming Neff has its standard model value, an observation

of Neff > 3.046 can be attributed to gravitational waves. Conversely when

there is no excess this can instead be used to constrain the gravitational wave

density14 via,

Ωgwh
2 =

∫ ∞
fmin

d (log f)h2 Ωgw(f)

' 5.6× 10−6 (Neff − 3.046) = 5.6× 10−6Ngw , (2.43)

where Ngw = Neff − 3.046, is the effective number of neutrino degrees of free-

dom contributed by gravitational waves. The constant in the second line of

equation (2.43) comes from the definition of Neff (equation (1.18)). Conse-

quently, the conversion factor between the density parameter and the number

of gravitational wave degrees of freedom is

7

8

(
4

11

)4/3

Ωγh
2 = 5.605× 10−6 , (2.44)

where the observed CMB temperature has been used to determine Ωγh
2. Round-

ing this gives the commonly presented value of 5.6× 10−6 as seen above.

This is an indirect integral constraint which is valid for all gravitational

wave frequencies which obeyed the shortwave approximation during BBN.

The frequency corresponding to the Hubble radius at the time of BBN is

fBBN ≈ 1.5 × 10−12 Hz [194]. Conseqently BBN constraints are typically as-

sumed to apply above fmin ≈ 10−10 Hz to give gravitational waves enough

14Any additional relativistic particle in the early Universe will increase Neff but constraints
apply to all of the possible species. In some ways this is preferable. If an excess was observed
there would be a huge range of possible candidates that would require other observations
to discern between them. In this case a constraint can confidently be put on gravitational
waves from the fact that Neff is close to 3.046.



Chapter 2. Detection 77

time to become oscillatory after coming inside the horizon and hence obey the

shortwave approximation [96, 215].

While BBN measurements of Neff were considered contentious around the

turn of the 21st century due to large systematic errors, they provided the

tightest constraint to gravitational waves at high frequencies even for the most

conservative upper limits on Neff [207, 216]. Recent BBN measurements have

reached stronger consensus and constrain,

Ωgwh
2 < 4.8× 10−6 , (2.45)

at 95% confidence [94, 217].

2.5.4 Shortwave gravitational waves in the CMB

Similarly to BBN, the CMB is also sensitive to the expansion history and

therefore Neff. Hence the CMB power spectrum can also be used to constrain

the density of short-wavelength gravitational waves. However, unlike BBN,

the CMB is also sensitive to the perturbations in the species present at recom-

bination. While the shortwave approximation justifies the assumption that

gravitational waves have the same background behaviour as massless neutri-

nos it makes no statement about the appropriate choice of gravitational wave

perturbations.

Smith, Pierpaoli, and Kamionkowski [96] assume that gravitational wave

perturbations obey the same fluid equations as neutrinos15,

δ̇gw +
4

3
θgw +

2

3
ḣ = 0 , (2.46a)

θ̇gw −
1

4
k2(δgw − 4σgw) = 0 , (2.46b)

σ̇gw −
2

15
(2θgw + ḣ+ 6η̇) = 0 , (2.46c)

and consider two choices of initial conditions for the perturbations, adiabatic

and homogeneous initial conditions. Adiabatic initial conditions are the same

15The fluid equations are given in the synchronous gauge for illustrative purposes. The
gravitational wave equations in any other gauge would also be identical to those for massless
neutrinos.
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as the initial conditions for neutrinos and in this case gravitational waves

contribute to the perturbations identically to neutrinos, such that a CMB con-

straint on Neff can be converted directly into a constraint on short-wavelength,

adiabatic gravitational waves via equation (2.43). This is the appropriate choice

if gravitational waves are a thermalised species produced by the decay of the

inflaton. However, most known sources of a cosmological gravitational wave

background, including quantum fluctuations during inflation, reheating and

cosmic strings, produce an unperturbed background (see Caprini and Figueroa

[194] section 4.1 or Maggiore [218] section 22.7.2). Consequently the second

choice of gravitational wave initial conditions, homogeneous initial conditions,

have no initial density perturbation (in the Newtonian gauge). In this case the

gravitational wave perturbations evolve differently to the neutrino perturba-

tions such that the degeneracy between Ωgw and Neff is broken. There are no

physical justifications for gravitational waves having adiabatic initial conditions

and they are only calculated here for comparison and as a first approximation.

A detailed calculation of the homogeneous initial conditions including trans-

lation into the synchronous gauge and into a form appropriate to input directly

into camb (see section 1.5.1) is given in appendix B of Smith [219]. The basic

idea is to solve the coupled perturbation equations (as detailed in section 1.3.3)

in the Newtonian gauge while requiring that δgw = 0. The homogeneous initial

condition calculated here makes the assumption that the zeroth order coeffi-

cients of the photons and the neutrinos are the same, δγ(τ → 0) = δν(τ → 0)

and that Rgw < Rγ, Rν so that the gravitational wave relativistic ratio can be

defined as Rgw = ρgw/(ρν + ργ).

The initial conditions for adiabatic and homogeneous gravitational waves

are given in the synchronous gauge in table 2.1. The adiabatic and homogeneous

modes are the same in the limit Rgw → 0 as one would expect.

Including short-wavelength gravitational waves in the CMB analysis affects

the background expansion as it does for the BBN constraint [194]. The redshift

of matter–radiation equality and the time of decoupling are shifted later by
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Table 2.1: Adiabatic and homogeneous initial conditions for short-wavelength grav-
itational wave perturbations in the synchronous gauge. For the adiabatic mode,
terms are given to lowest order in kτ . For the homogeneous mode, terms are given
to lowest order except where these terms vanish in the limit Rgw → 0. It is clear
that the homogeneous and adiabatic modes are the same in this limit.

Adiabatic Homogeneous

δγ, δν −1
3
k2τ 2 − 20Rgw

15+4Rν
− 1

3

(
1− 10Rgw

15+4Rν

)
k2τ 2

δb −1
4
k2τ 2 3

4
δγ

δc −1
4
k2τ 2 − 15Rgw

15+4Rν
− 1

4
k2τ 2

θγ, θb − 1
36
k4τ 3 − 5Rgw

15+4Rν
k2τ − 1

36

(
1− 10Rgw

15+4Rν

)
k4τ 3

θν
23+4Rν
15+4Rν

θγ − 5Rgw

15+4Rν
k2τ − 1

36

(
23+4Rν
15+4Rν

− 18Rgw

15+4Rν

)
k4τ 3

θc 0 0

σν
2

3(15+4Rν)
k2τ 2 2(1−Rgw)

3(15+4Rν)
k2τ 2

δgw −1
3
k2τ 2 20

15+4Rν

θgw
23+4Rν
15+4Rν

θγ
5

15+4Rν
k2τ

σgw
2

3(15+4Rν)
k2τ 2 4

3(15+4Rν)
k2τ 2

h 1
2
k2τ 2 1

2
k2τ 2

η 1− (5+4Rν)
12(15+4Rν)

k2τ 2 1− (5+4Rν)
12(15+4Rν)

k2τ 2

extra relativistic species and such a shift is well constrained by the CMB power

spectrum. The background change will also affect BAO observations.

The effect due to the gravitational wave perturbations is dependent on the

choice of initial conditions. For adiabatic initial conditions an increase in Ωgwh
2

is indistinguishable from an increase in Neff. The changes due to perturbations

with homogeneous initial conditions are more complex. Smith [219] illustrates

this by splitting up the contributions to the CMB power spectrum from the

Sachs–Wolfe (SW), Integrated Sachs–Wolfe (ISW) and Doppler (DOP) terms

in the line of sight integral (see section 1.4.1). This is done by separating the
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Figure 2.2: The contributions to the CMB power spectrum for homogeneous gravi-
tational waves. The contributions are separated into Sachs–Wolfe (SW), Integrated
Sachs–Wolfe (ISW) and Doppler (DOP) terms and there cross-correlations. Taken
from ref. [219].

transfer functions (compare to equation (1.50)) as,

CTT
` = (4π)2

∫
k2dk P (k)

[
T SW
` (k) + T ISW

` (k) + TDOP
` (k)

]2
. (2.47)

Consequently there are 6 different terms that contribute to the power spectrum

from the three effects and their cross-correlations. The change in the power

spectrum from each of these terms is shown in figure 2.2 for homogeneous

gravitational waves contributing an extra two neutrino degrees of freedom.

This shows that there is an increase in power at large scales due to changes

in the SW–ISW correlation and the ISW effect. There is also a significant

increase in the height of the first peak from the same two terms. The shift in

peak position for small scales is primarily due to the SW effect.
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As for BBN, this is an integral constraint. It has a range of validity that

also comes from consideration of when the shortwave approximation is valid.

However, the horizon size at decoupling is appreciably bigger than the horizon

size at the time of BBN; the frequency corresponding to the horizon size is

fCMB ≈ 7 × 10−18 Hz. To allow the shortwave approximation to be valid the

integrated gravitational wave constraint from the CMB is usually taken to

apply for f > fmin ≈ 10−15 Hz.

This constraint was first presented in Smith, Pierpaoli, and Kamionkowski

[96] where the gravitational wave density,

Ωgwh
2 < 3.9× 10−5 (adiabatic) ,

Ωgwh
2 < 6.9× 10−6 (homogeneous) , (2.48)

at 95% confidence using a combination of data from WMAP (among other

CMB data), SDSS and the Lyman-α forest [220]. This constraint is shown

in figure 2.3 along with comparisons to a variety of other cosmological data

sets, see ref. [96] for details. The CMB constraint is the only constraint on the

gravitational wave density in the frequency range 10−15 Hz < f < 10−9 Hz and

is comparable in magnitude to the BBN constraint.

These constraints have been updated using WMAP seven-year data, finding

Ωgwh
2 < 8.7 × 10−6 for adiabatic and Ωgwh

2 < 1.0 × 10−6 for homogeneous

gravitational waves at 95% confidence [221]. The adiabatic result has been

obtained for Planck 2013 data in combination with other CMB data and BOSS

DR9 BAO, finding Ωgwh
2 < 3.8 × 10−6 at 95% confidence [222]. This was

then updated using Planck 2015, BAO and BBN data by Pagano, Salvati, and

Melchiorri [223], finding Ωgwh
2 < 1.2×10−6 at 95% confidence. Henrot-Versillé

et al. [104] consider constraints on Neff from a range of Planck 2015 likelihoods

which can be converted easily to adiabatic gravitational wave constraints. The

homogeneous result has not been recently updated.
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Figure 2.3: Constraints on the gravitational wave density parameter Ωgwh
2. Short-

wave approximation integral constraints from BBN and the CMB are shown as
horizontal lines along with non-integral constraints from pulsar timing and grav-
itational wave interferometry via LIGO. There are also projected constraints for
CMBPol, upgrades to LIGO and from LISA. Taken from Smith, Pierpaoli, and
Kamionkowski [96].

2.5.5 Interferometers

Gravitational waves were first detected directly in 2015 by the Laser Interfer-

ometer Gravitational-Wave Observatory (LIGO) [9]. These were astrophysical

gravitational waves emitted from the merging of two black holes. The LIGO

collaboration utilises two laser interferometers, in Washington and Louisiana,

America, to detect tiny changes in propagation of the laser beams due to

gravitational waves. They work much like a normal interferometer with two

beams of light passing down long, perpendicular arms (∼ 4km long) before
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being combined together. The interference pattern is observed to detect any

shift in the length of the two arms due to a gravitational wave passing through

the detector [198, 207]. The length of the arms of the LIGO detectors set the

observable frequency range of 10 Hz . f . 10 kHz with peak sensitivity around

100 Hz [224].

The Virgo detector in Italy is very similar in design to the LIGO detectors

and the two groups now work together as the LIGO–Virgo collaboration [225].

A smaller detector in Germany, GEO600 also collaborates with LIGO [226].

The Kamioka Gravitational Wave Detector built underground in Japan started

its first observing run in 2020 and is also used in conjunction with LIGO [227,

228]. This international network of gravitational wave detectors allows for

concurrent verification of gravitational wave observations.

The main problem facing gravitational wave interferometers is discerning

the gravitational wave signal from background noise. A variety of techniques

have been developed to isolate and cool the mirrors and hence reduce the noise

as much as possible. Ground-based detectors are limited at low frequencies

(∼ 1 Hz) by seismic and environmental noise, in the intermediate region by

thermal effects and at f & 1 kHz the laser shot noise dominates [194, 207,

224]. These combined considerations give the sensitivity of each detector (and

therefore the shape of the LIGO projected constraint in figure 2.3).

Two detectors observing at the same time but separated by a large distance

(such as LIGO’s two detectors) should have uncorrelated noise. Consequently

combinations of the two data sets can be used to increase the confidence that

a signal is not caused by unknown local vibrations. Using multiple detectors

also has the advantage that it allows for triangulation of astrophysical sources.

The difference in arrival time between the detectors gives a region in space

that the gravitational wave originated from. This is what allowed for the first

multi-messenger observations of a neutron star binary merger16 [229].

16This observation put a tight constraint on the speed of gravitational waves, consistent
with gravitational waves travelling at the speed of light, as predicted by general relativity.



Chapter 2. Detection 84

While astrophysical gravitational waves from resolvable sources are of great

scientific interest, cosmological gravitational waves do not appear as point

sources but as an isotropic background of gravitational waves17. The observed

background will be made up of unresolved astrophysical gravitational wave

sources and cosmological gravitational waves [198, 230]. Therefore observation

of this gravitational wave background is an important target for gravitational

wave interferometers.

For a single detector, a gravitational wave background can only be observed

if it is above the level of the noise. However, observation with more than one

detector gives huge advantages in signal sensitivity. As an illustration, two

detectors with completely uncorrelated noise will improve their sensitivity

to a gravitational wave background by about five orders of magnitude when

combining together their data [194]. The signal from the gravitational wave

background grows faster with observational time than the signal from the noise

meaning long observations of the gravitational wave background will increase

the constraining power via this method [214].

Constraints on the gravitational wave background from interferometers are

often presented as integrated curves given a specific value of the tilt [194, 205,

208]. Cosmological gravitational waves are typically assumed to be independent

of frequency within the band observed by ground-based interferometers. The

most recent constraint comes from LIGO’s second observing run [231] giving,

Ωgw < 6.0× 10−8 , (2.49)

at 95% confidence, for f = 25 Hz. This corresponds to the tightest constraint on

gravitational waves in the LIGO frequency range, stronger than the integrated

constraints from BBN and the CMB.

With gravitational wave astronomy being such a young field there are a

large number of plans for future observatories. The next step for ground-

17The gravitational wave background is expected to be isotropic like the CMB, but this
requires experimental verification.
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based observations will be the Einstein Telescope [232]. This is expected to be

∼ 10 times more sensitive than existing interferometers and extend to lower

frequencies. The gravitational wave background will be probed to Ωgw ∼ 10−12

by the Einstein Telescope.

Space-based detectors are able to probe to much lower frequencies due

to the reduction in seismic and environmental noise and the ability to have

much longer arm lengths. The first such interferometer will be the Laser

Interferometer Space Antenna (LISA) [233]. This is planned to be launched in

2034. It will probe 10−4 Hz . f . 0.1 Hz which corresponds to gravitational

waves produced around the electroweak phase transition [191]. LISA is expected

to reach Ωgwh
2 ∼ 10−13 for the stochastic background. Further in the future the

DECi-hertz Interferometer Gravitational Wave Observatory (DECIGO) [234]

and the Big Bang Observer (BBO) [235, 236] aim to take observations even

further. They both aim to probe the frequency range 0.1−10 Hz with the goal of

reaching Ωgw ∼ 10−17 [194]. To do this they aim to detect all the astrophysical

foregrounds to the cosmological signal in much the same way Planck does for the

CMB. This would revolutionise observations of astrophysical and cosmological

gravitational waves.

2.5.6 Pulsar timing

Observations of neutron stars with large magnetic fields that emit beams of

radiation from their magnetic poles, referred to as pulsars, gave the first exper-

imental evidence for gravitational waves [237–239]. These early observations

supported the existence of astrophysical gravitational waves but pulsars can

also be used to detect a background of primordial gravitational waves. Because

of the rotation of these neutron stars the beams of radiation give regular pulses

of detectable radiation on Earth if aligned correctly [240].

Of particular use are msec pulsars which have rotational periods ∼ 10 ms.

The period of these pulsars is not perfectly constant but averaging over a

number of pulses gives a very consistent value which can allow pulsars to



Chapter 2. Detection 86

be used as a cosmic clock. These msec pulsars can be used to constrain

gravitational waves because a gravitational wave passing between the Earth

and the pulsar will change the arrival time of the pulse due to the warping

of spacetime [194, 206, 214]. The Earth–pulsar system acts like one arm

of an interferometer. The frequency of the gravitational waves that can be

constrained in this manner is linked to the observation time. Observing a

pulsar for a length of time T (typically ∼ 10 years) gives a bound strongest at

frequency, f ≈ 1/T . Consequently most constraints from pulsars are strongest

around 10−9 Hz. As observation times increase the bounds get stronger and

move to lower frequencies. As an example, the constraint from Thorsett and

Dewey [241] is,

Ωgwh
2 < 1.0× 10−8 , (2.50)

at 95% confidence for a frequency of 4.4× 10−9 Hz. The bound roughly scales

∝ f 2 above this frequency and gives no constraint below due to the way in

which pulsar arrival times are modelled [194, 207]. This frequency dependence

explains the wedge shaped msec pulsar constraint in figure 2.3 which uses the

bound from18 Lommen [242] and Kaspi, Taylor, and Ryba [243].

Better sensitivity and stronger discernment of the origins of a background

of gravitational waves can be obtained by combining observations of multiple

msec pulsars [240, 244, 245]. When this is done for a large number (∼ 20− 80

for current observations) it is referred to as a pulsar timing array. Similarly

to correlated data from multiple gravitational wave interferometers the pulsar

timing array can then look for correlated signals across a large set of pulsars

and therefore determine their origin. Three such observatories are currently

operational, the European Pulsar Timing Array (EPTA) [246], The Parkes

Pulsar Timing Array (PPTA) [247] and the North American Nanohertz Ob-

servatory for Gravitational Waves (NANOGrav) [248]. A pulsar timing array

observing across the sky allows for better subtraction of systematics than single

18The statistical analysis of [242] has been called into question, see ref. Caprini and
Figueroa [194] section 4.3, for a discussion. Regardless, it has been surpassed by more recent
constraints.
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observations and consequently tighter constraints. The current best constraint

comes from the PPTA19 [205],

Ωgw < 2.3× 10−10 , (2.51)

at 95% confidence for a frequency, f ≈ 4× 10−9 Hz.

Observations from pulsars give a non-integral constraint that applies over a

small range of frequencies. The constraint is usually dependent on the choice

of the tensor tilt. Pulsars constrain all sources of gravitational waves though

pulsar timing arrays are better at isolating astrophysical gravitational waves.

However, there is an appreciable foreground from mergers of supermassive

black holes (see [249] or [194] section 4.3), which are usually discerned from

primordial gravitational waves by the frequency dependence of the gravitational

wave background. However, primordial signals below the level of the signal

from supermassive black holes may be unobservable [194].

Pulsar timing constraints are expected to improve in the near future when

the EPTA, PPTA and NANOGrav arrays combine in the International Pulsar

Timing Array [250]. Further in the future the Square Kilometre Array will

improve the sensitivity to a gravitational wave background by 4–5 orders of

magnitude [194, 251].

2.6 Sources of primordial gravitational

waves

There is a range of Standard Model and beyond Standard Model mechanisms

that can produce gravitational waves in the early Universe. Consequently,

observation of a primordial gravitational wave background can open a window

on physics at energies that are currently inaccessible by other means.

This section will provide a few common examples of possible mechanisms

for primordial production of gravitational waves. It is not exhaustive and does

not contain any alternative cosmologies (see Caprini and Figueroa [194] for

19Note that this constraint doesn’t include the factor of h2 common to others.
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details of these).

A rough estimate of the characteristic frequency today, and the production

time, of gravitational waves produced by causal mechanisms20 can be found

using entropy conservation arguments [194, 207]. Because entropy is conserved

during matter and radiation domination the redshifting of gravitational waves

depends only on the production temperature, T∗ and the number of effective

energy degrees of freedom at that time, g(T∗). The effects of the particular

production mechanism are incorporated through a parameter,

ε = λ∗H∗ , (2.52)

where λ∗ is the wavelength of the gravitational waves at production and H∗ is

the Hubble factor at production. ε is expected to be less than or equal to one

from causality arguments. Consequently the frequency today of gravitational

waves produced at temperature, T∗ is,

f0 '
1.65× 10−7

ε

(
T∗

GeV

)( g∗
100

)1/6

Hz . (2.53)

The time of production can then be found from,

t∗ '
6.6× 10−21

ε2

(
Hz

f0

)2(
100

g∗

)1/6

s . (2.54)

This illustrates an important general point. Higher frequency gravitational

waves are produced at earlier times and at higher temperatures. If, assuming

ε ≈ 1, you want to probe gravitational waves produced at T∗ ' 6 × 106 GeV

(corresponding to lookback times of about 7 × 10−21 s), then the signal will

be strongest at a frequency of about 1 Hz [207]. While exact calculations

require a great deal more complexity and more consideration of the production

mechanism the above is illustrative of necessary considerations. Calculations of

the specific production mechanism will also be necessary to find the behaviour

of the full spectrum of gravitational waves.

20All of the mechanisms considered here are causal apart from inflation.
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2.6.1 Inflation

Tensor perturbations are produced by quantum mechanical fluctuations during

inflation rather than by an anisotropic stress (see equation (2.10)). These are

amplified by the expansion in the same way as the scalar perturbations. Conse-

quently this is not a causal process and the arguments of the previous section

about the characteristic frequencies of primordial gravitational waves do not

apply for inflationary gravitational waves. The quantum mechanical perturba-

tions have a constant amplitude after they become super-horizon. The expan-

sion of the Universe results in the quantum perturbations becoming stochastic

classical perturbations when they re-enter the horizon after inflation [252–254].

Therefore a background of these gravitational waves is a common prediction

of inflationary models [194].

The spectrum of gravitational waves is usually represented by a power-

law over a large range of frequencies. While this has been shown to be a

good approximation for most inflation models, recent studies including a k

dependence in the tilt21 show an error of ' 39% on high-frequency observations

from LIGO when ignoring this running [255]. Nonetheless, a power-law with a

constant spectral index is common throughout the literature.

Assuming exactly exponential inflation which transitions into a radiation

dominated universe, the power-law spectrum will be scale invariant, nt = 0.

The relaxing of both of these assumptions is required in more realistic models.

In slow-roll inflation the Hubble factor is no longer constant and the consistency

relation gives,

nt(k∗) = −rk∗/8 . (2.55)

The tensor-to-scalar ratio is constrained to small values so the gravitational

wave background is nearly scale invariant in this case. Including matter and

radiation in the universe results in the spectrum turning up at large scales. This

is because, after matter–radiation equality (corresponding to f ∼ 10−17 Hz)

21Commonly referred to as a ‘running’ of the spectral index.
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Figure 2.4: The gravitational wave background from inflation for r0.05 = 0.07, with
nt = −r0.05/8 from the slow-roll consistency relation (black dashed) and nt = 0.2
(black solid), along with observational constraints. The green constraint comes from
CMB B-modes and shows that the spectrum plotted is approximately the maximum
allowed by current observations [256]. Constraints from pulsar timing (PTA) and
interferometers (advanced LIGO and LISA) are also shown. Taken from Caprini and
Figueroa [194].

the differing dependence of the scale factor (∝ τ 2 instead of τ) results in a

dependence on f−2 in the gravitational wave density for frequencies below those

associated with matter–radiation equality [207]. Consequently the predicted

spectrum for slow-roll inflation has the form of the black dashed curve in

figure 2.4.

As mentioned in previous sections, the current best constraint on infla-

tionary gravitational waves comes from CMB B-mode observations from the

BICEP2/Keck Array combined with Planck temperature and E-mode obser-

vations and BAO [1]. This provides the constraint,

r0.002 < 0.06 , (2.56)

at 95% confidence, which can then be converted to a gravitational wave density

parameter using equation (2.40) (see section 2.5.1). The maximum allowed

inflationary spectrum is at the level of Ωgwh
2 ∼ 10−17 above f ∼ 10−16 Hz and
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consequently is well below the sensitivity of any other current (or near future)

observations but may be detectable by DECIGO or BBO (see section 2.5.5).

2.6.2 Particle production during inflation

Gravitational waves can be produced as a result of anisotropic stress coming

from the non-perturbative production of particles during inflation [257–260].

There are various models for the different types of particles that can result in

anisotropic stresses (see Caprini and Figueroa [194] section 6.1 and references

therein). One of the most promising mechanisms that can allow for a detectable

signal is the production of a gauge field. If this gauge field is coupled to the

inflaton appropriately then particles are produced continuously throughout

inflation, at scales close to the horizon size, and can therefore build up an

observable signal of tensor (and scalar) perturbations [261]. The appropriate

interaction term is possible in a range of inflationary models.

One of the advantages of this mechanism of gravitational wave production

is that it makes strong predictions for the shape of the gravitational wave

spectrum with the signal potentially becoming observable in interferometers

for large coupling strengths due to a (non-constant) positive tilt above the CMB

frequency. It also predicts a characteristic degree of non-Gaussianity which can

be used to constrain or confirm the model22 [258, 262–265]. LISA will be able to

improve on existing constraints coming from CMB non-Gaussianity [266–268].

2.6.3 Preheating

At the end of inflation almost all of the energy in the Universe is stored in the

inflaton field. Therefore a process is needed to convert this energy from the

inflaton into the Standard Model particles (primarily photons) that are known

to dominate the early Universe. If this proceeds through perturbative23 decay

of the inflaton it is referred to as ‘reheating’. If the process is non-perturbative

22The gravitational wave background would also be chiral (see Caprini and Figueroa [194])
which is also a distinctive signature of particle production.

23Here perturbative means that it can be treated by the first-order perturbation theory of
particle physics (not cosmology), see Amin et al. [30] or Allahverdi et al. [33].
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then it is referred to as ‘preheating’ [29–33, 194]. The focus here will be on

preheating, as the non-perturbative nature of these mechanisms produces a

background of gravitational waves.

The highly turbulent state of the Universe during preheating induces non-

zero anisotropic stresses and consequently sources gravitational waves (see

equation (2.10)). These gravitational waves will have a characteristic frequency,

given by equation (2.53), corresponding to a time shortly after the end of

inflation. Hence, gravitational waves from preheating probe the state of the

very early Universe, the model and energy scale of inflation and the couplings

of the particles produced by preheating.

There is a large range of different preheating mechanisms that have different

signatures in the gravitational wave background (such as large anisotropies

and specific frequency dependence) and the gravitational wave background

will also depend on the inflationary model (see Caprini and Figueroa [194]

for a review or Bassett [269] and Khlebnikov and Tkachev [270] for early

examples). In general these mechanisms produce gravitational waves at high

frequencies, at interferometer frequencies or above, dependent on the energy

scale of inflation and do so in a relatively narrow band, when compared to other

mechanisms [261]. Gravitational waves from preheating can have large density

parameters (∼ 10−10) but would be unobservable if produced at a frequency

above the LIGO range, corresponding to inflation at & 1011 GeV [207].

2.6.4 First-order phase transitions

Cosmological phase transitions can be thought of analogously to common phase

transitions such as changes of states of matter. In these, the lowest energy

state of the system changes due to a change in the temperature. Analogous

phase transitions are believed to have occured in the evolution of the Universe

as it cools (see ref. [271] for a review). The transition is said to be first order

if there is a discontinuous change in ground state or equivalently if the entropy

changes discontinuously and is second order if this happens continuously [191,
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272].

During a first-order phase transition the universe finds itself in a false

vacuum. Regions of space can then lower their energy by quantum tunnelling

into the true vacuum. This will give rise to bubbles of true vacuum that

expand very rapidly. These bubbles are typically spherical and therefore emit

no gravitational waves but when they collide with each other they do emit

gravitational waves in a complex process24 that is highly inhomogeneous and

consequently produces an anisotropic stress (see equation (2.10)) [273, 274].

The phase transition is required to be first order to produce a detectable

amount of gravitational waves. The two phase transitions predicted by the

Standard Model of particle physics – the QCD and electroweak phase tran-

sitions – are not expected to be first order but this can change in Standard

Model extensions such as supersymmetry. The order of the electroweak phase

transition is not constrained by measurements from the Large Hadron Collider.

Therefore, a background of gravitational waves from a first-order phase transi-

tion would probe physics beyond the Standard Model of particle physics that

is currently inaccessible [194, 207, 261].

The amplitude of the primordial gravitational wave background depends

on the strength of the phase transition, and the peak frequency depends on

the temperature of the phase transition, via equation (2.53). Therefore the

frequency dependence will depend on the specifics of the phase transition

and the particle physics motivating it. The most popular in the literature

is a first-order electroweak phase transition that can produce a measurable

background for interferometer experiments such as LISA [191, 261, 275, 276].

The gravitational wave density generally has a constant tilt up to a peak

frequency before decreasing more slowly to high frequencies.

24Which includes compression waves, turbulence and the effects of the background
plasma [191, 194].
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2.6.5 Cosmic strings

In some models of phase transitions topological defects are produced [277,

278]. Cosmic strings are one-dimensional examples of topological defects25.

They are predicted in the phase transitions of grand unified theories [279]

and consequently are produced at earlier times than the phase transitions

considered in the previous section. Cosmic strings can exist for a long time

after their formation.

Cosmic strings produce gravitational waves through two processes; a contin-

uous energy loss due to the evolution of the cosmic strings and the formation

and decay of cosmic string loops [280]. These give rise to a characteristic

spectrum of gravitational waves that is approximately scale invariant over a

large frequency range above a critical value [194].

A network of cosmic strings is characterised by its string tension26. This is a

dimensionless quantity given by the product of Newton’s constant and the the

mass per unit length, Gµ. Hence, constraints on the gravitational wave signal

from cosmic strings can be converted into constraints on the string tension.

The most recent LIGO constraints [231] give Gµ < 1.1×10−6 for the model

detailed in Blanco-Pillado, Olum, and Shlaer [281] and Gµ < 2.1×10−14 for the

model detailed in Lorenz, Ringeval, and Sakellariadou [282]. This illustrates

the fact that there is still a large amount of uncertainty in how best to model

cosmic strings and this can result in large differences in the amplitude of the

predicted gravitational wave spectrum. The disagreement from the pulsar

timing constraint is smaller, with Gµ < 1.6× 10−11 and Gµ < 6.2× 10−12 for

the same two models as the LIGO constraint [205, 231]. Consequently cosmic

string constraints will improve both as the modelling improves and with future

pulsar timing and interferometer observations.

25Two-dimensional topological defects are called domain walls but are not considered here.
26Assuming that the reconnection probability is one, as it is in field theories [261].
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2.6.6 Primordial black holes

Primordial Black Holes (PBHs) [283–287] are hypothesised black holes pro-

duced from scalar, large-amplitude, small-scale perturbations generated by

inflation and formed in the radiation-dominated era, which are a possible dark

matter candidate [288, 289]. Perturbations with these properties are possible in

various models of inflation including slow-roll models. To satisfy the large-scale

CMB constraints on the scalar tilt, ns but also generate large perturbations at

small scales the power-law spectrum must be broken due to a running of the

spectral index.

Gravitational waves are produced by; the backreaction of the large ampli-

tude scalar perturbations sourcing tensor perturbations during inflation, the

gravitational collapse that forms the PBHs in the radiation era and from the

mergers of PBHs in the matter-dominated era. These can produce a detectable

gravitational wave background if the curvature power spectrum of the scalar

perturbations has a large broad peak [194, 290]. The spectrum can peak at a

large range of frequencies depending on the average mass of primordial black

holes. One of the reasons PBHs have gained interest recently is because the

LIGO black hole merger observations come from black holes with intermediate

masses (∼ 30M�) which are not easily formed in simulations of stellar col-

lapse [290, 291]. If these were primordial black holes the gravitational wave

background could be detectable by LISA or future pulsar timing arrays [191,

290].



Chapter 3

Short-Wavelength Gravitational
Waves

This chapter details efforts to reproduce and update the CMB gravitational

wave constraint that uses the shortwave approximation (as detailed in section

2.5.4) with the most recent CMB data from Planck 2018. The main complica-

tion of this approach comes from finding appropriate initial conditions for the

gravitational wave perturbations.

3.1 Initial conditions

The initial conditions are calculated as in Bucher, Moodley, and Turok [48]

as detailed in section 1.3.3. The gravitational wave fluid equations are given

by equations (2.46a) and the gravitational wave perturbations enter into the

Einstein equations as for the other species (see section 1.3.2). The adiabatic

initial conditions are by definition identical to the ones presented previously

with the gravitational wave perturbation initial conditions being the same as

those of neutrinos. Note that baryon and cold dark matter perturbations are

not calculated here but can be simply calculated from those for the radiation

species using the tight coupling approximation for baryons and the standard

fluid and Einstein equations for dark matter [292].

96
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3.1.1 Homogeneous mode

The homogeneous mode is more physically motivated than the adiabatic mode

and consequently the use of this set of initial conditions is preferred over the

adiabatic initial conditions when constraining primordial gravitational waves.

There are three main differences between the approach to calculating the

homogeneous mode presented here and the approach in Smith [219]. Firstly,

in [219] the homogeneous mode is defined by the gravitational wave density

perturbation being zero in the Newtonian gauge at all orders considered in

the expansion. Here the gravitational wave density is only assumed to be zero

at lowest order so it is only the zeroth order coefficient of the gravitational

wave density perturbation that is zero in the Newtonian gauge. This allows

for the evolution of gravitational wave density perturbations from an initially

homogeneous state.

Secondly, the initial conditions are calculated in the synchronous gauge to

systematically find the possible isocurvature initial conditions1. When doing

this there is one unknown left in the system of coupled coefficients. This is fixed

by transforming to the Newtonian gauge using the standard relations given in

equations (1.30) [42] and enforcing the homogeneous condition described above2.

Consequently the isocurvature initial conditions that allow the homogeneous

gravitational wave condition are found as well as the ‘adiabatic’ one and these

isocurvature modes are detailed in the next section.

Finally, the gravitational wave density is not assumed to be sub-dominant

to the densities of the other species. Hence these initial conditions are valid

in the case that Rgw ∼ Rν , Rγ . While Rgw � Rν , Rγ from current constraints

this should be proved self-consistently before being assumed.

The explicit calculation of the homogeneous mode is given in the appendix.

The homogeneous modes found here and in ref. [219] are given in table 3.1.

1More detail of this can be found in the appendix.
2Mathematically this condition is, δ̃gw,0 = 0, where the tilde denotes the Newtonian gauge

and δgw,i is the coefficient of (kτ)i in the expansion of the perturbation.
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The initial conditions are given to the lowest order that is non-vanishing in

the limit Rgw → 0. It is clear from the table of initial conditions that both

homogeneous modes simplify to the adiabatic mode in the limit where there

are no gravitational waves.

The main difference between the homogeneous mode calculated here and in

[219] is in the initial conditions of the neutrino sector. The homogeneous mode

used in the current literature is a linear sum of the homogeneous mode here

and the neutrino density isocurvature mode (see below). These two modes can

be combined in the initial condition correlation matrix (as detailed in ref. [48]

and section 1.3.3) to get the homogeneous mode in ref. [219]. Schematically

this combination of the initial conditions (ICs) will look like,

Smith ICs = Homogeneous ICs + A× (Neutrino density ICs) , (3.1)

where A is a constant given by Rγ, Rν , and Rgw. Looking at the neutrino

density initial conditions in tables 3.1 and 3.2 it is clear that the necessary

value of the factor is,

A = − 20Rgw

19− 4Rγ

. (3.2)

It is easy to show that, when the homogeneous and neutrino density isocurva-

ture initial conditions given here are combined in this way, the homogeneous

mode of ref. [219] is recovered for all of the species3. This is the factor that

would be required in the correlation matrix to regain the homogeneous mode

used in Smith, Pierpaoli, and Kamionkowski [96] and Smith [219]. Hence, the

homogeneous mode given here that is the true independent homogeneous mode

for gravitational waves. Because these modes have noticeably different initial

conditions for the neutrinos different parameter constraints are expected when

comparing tot ref. [96] even if the same data was used.

The two modes also differ as the one calculated here relaxes the condition,

Rgw � Rγ, Rν . It is clear that the two modes agree in all but the neutrino

3The reader is reminded that the approach in ref. [219] assumes that gravitational waves
are subdominant to the photons and neutrinos, Rgw � Rγ , Rν . The modes do not agree
without this approximation.



Chapter 3. Initial conditions 99

Homogeneous - Smith Homogeneous

h 1
2
k2τ 2 1

2
k2τ 2

η 1− (9−4Rγ)

12(19−4Rγ)
k2τ 2 1− (9−4Rγ+4Rgw)

12(19−4Rγ+4Rgw)
k2τ 2

δγ − 20Rgw

19−4Rγ
−

1
3

(
1− 10Rgw

19−4Rγ

)
k2τ 2

− 20Rgw

Rγ(19−4Rγ+4Rgw)
−

1
3

(
1− 10Rgw

Rγ(19−4Rγ+4Rgw)

)
k2τ 2

δν − 20Rgw

19−4Rγ
−

1
3

(
1− 10Rgw

19−4Rγ

)
k2τ 2

−1
3
k2τ 2

θγ − 5Rgw

19−4Rγ
k2τ −

1
36

(
1− 10Rgw

19−4Rγ

)
k4τ 3

− 5Rgw

Rγ(19−4Rγ+4Rgw)
k2τ −

1
36

(
1− 10Rgw

Rγ(19−4Rγ+Rgw)

)
k4τ 3

θν − 5Rgw

19−4Rγ
k2τ −

1
36

(
27−4Rγ
19−4Rγ

− 18Rgw

19−4Rγ

)
k4τ 3

− 27−4Rγ+4Rgw

36(19−4Rγ+4Rgw)
k4τ 3

σν
2(1−Rgw)

3(19−4Rγ)
k2τ 2 2

3(19−4Rγ+4Rgw)
k2τ 2

δgw
20

19−4Rγ
20

19−4Rγ+4Rgw

θgw
5

19−4Rγ
k2τ 5

19−4Rγ+4Rgw
k2τ

σgw
4

3(19−4Rγ)
k2τ 2 4

3(19−4Rγ+4Rgw)
k2τ 2

δ̃γ −20(Rgw+1)

19−4Rγ
− 20(Rγ+Rgw)

Rγ(19−4Rγ+Rgw)

θ̃γ −5(Rgw−1)

19−4Rγ
k2τ 5(Rγ−Rgw)

Rγ(19−4Rγ+4Rgw)
k2τ

δ̃ν −20(Rgw+1)

19−4Rγ
− 20

19−4Rγ+4Rgw

θ̃ν −5(Rgw−1)

19−4Rγ
k2τ 5

19−4Rγ+4Rgw
k2τ

δ̃gw O(k3τ 3) O(kτ)

θ̃gw
10

19−4Rγ
k2τ 10

19−4Rγ+4Rgw
k2τ

Φ 14−4Rγ
19−4Rγ

14−4Rγ+4Rgw

19−4Rγ+4Rgw

Ψ 10
19−4Rγ

10
19−4Rγ+4Rgw

Table 3.1: Initial conditions for the homogeneous mode calculated in Smith, Pierpaoli,
and Kamionkowski [96] and Smith [219] (see section 2.5.4) and here. Initial conditions
are given in the synchronous gauge (top) and Newtonian gauge (bottom - with tildes).
Both reproduce the adiabatic mode (see table 2.1) in the limit Rgw → 0. The main
difference between the modes is that the homogeneous mode presented in [219]
is a linear combination of the homogeneous mode here and the neutrino density
isocurvature mode (presented in the third column of table 3.2). The shear is not
given in the Newtonian gauge as it is gauge-invariant and hence unchanged.
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sector if Rgw is dropped in the denominator of most of the terms. There is also

a change of Rgw → Rgw/Rγ in the density and velocity of photons.

3.1.2 Isocurvature modes

As stated previously, calculating the initial conditions in the synchronous gauge

and enforcing the homogeneous gravitational wave condition in the Newtonian

gauge allows for the systematic calculation of isocurvature initial conditions.

In the absence of gravitational waves there are two neutrino isocurvature

modes corresponding to zeroth order coefficients in the density and velocity

respectively [48]. These modes are modified in the presence of gravitational

waves. Both sets of neutrino isocurvature modes are shown in table 3.2.

The neutrino density isocurvature mode with gravitational waves only has

small differences when compared to the same mode without gravitational waves.

These are primarily due to the inclusion of Rgw in the total radiation density.

However, the neutrino velocity isocurvature mode is changed significantly by

the inclusion of homogeneous gravitational waves. There are no longer any

perturbations to the metric or the photons4.

There are new isocurvature modes when homogeneous gravitational waves

are included. These are given in table 3.3 and the choice of the zeroth order

conditions are stated in the appendix. The gravitational wave density isocur-

vature mode is a rescaled version of the neutrino density isocurvature mode

and as such is not independent. However, it does make clearer the relationship

between the photon, neutrino and gravitational wave initial conditions in this

case. The gravitational wave velocity isocurvature mode is very similar to the

neutrino velocity isocurvature mode (without gravitational waves) with the

gravitational waves playing the role of the neutrinos. In the Newtonian gauge

densities and potentials have terms that go as 1/(kτ). This is a consequence

of the Newtonian gauge being inadequate when there is a non-zero anisotropic

stress and does not mean that the perturbations diverge as kτ → 0 [48].

4See below for a discussion of the effects of this mode on the CMB.
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Neut. Dens. IC Neut. Vel. IC Neut. Dens. IC w/ GWs Neut. Vel. IC w/ GWs

h O(k3τ 3) O(k3τ 3) O(k3τ 3) O(k3τ 3)

η − Rν
6(19−4Rγ)

k2τ 2 − 4Rν
3(9−4Rγ)

kτ − Rν
6(19−4Rγ+4Rgw)

k2τ 2 O(k3τ 3)

δγ −Rν
Rγ

+ Rν
6Rγ

k2τ 2 4Rν
3Rγ

kτ − Rν(19−4Rγ)

Rγ(19−4Rγ+4Rgw)
O(k3τ 3)

θγ − Rν
4Rγ

k2τ −Rν
Rγ
k − Rν(19−4Rγ)

4Rγ(19−4Rγ+4Rgw)
k2τ O(k4τ 3)

δν 1− 1
6
k2τ 2 −4

3
kτ 1− 1

6
k2τ 2 −4

3
kτ

θν
1
4
k2τ k − 13−4Rγ

6(9−4Rγ)
k3τ 2 1

4
k2τ k − 3

10
k3τ 2

σν
1

2(19−4Rγ)
k2τ 2 4

3(9−4Rγ)
kτ 15+8Rgw

30(19−4Rγ+4Rgw)
k2τ 2 4

15
kτ

δgw - - 4Rν
19−4Rγ+4Rgw

4Rν
3Rgw

kτ

θgw - - Rν
19−4Rγ+4Rgw

k2τ −Rgw

Rν
k + 3Rgw

10Rν
k3τ 2

σgw - - Rν
15(19−4Rγ+Rgw)

k2τ 2 − 4Rν
15Rgw

kτ

δ̃γ −Rν(19−8Rγ)

Rγ(19−4Rγ)
16Rν

9−4Rγ
1
kτ

− Rν(19−8Rγ)

Rγ(19−4Rγ+4Rgw)
O(kτ)

θ̃γ − 19Rν
4Rγ(19−4Rγ)

k2τ − 9Rν
Rγ(9−4Rγ)

k − 19Rν
4Rγ(19−4Rγ+4Rgw)

k2τ O(k3τ 2)

δ̃ν
23−8Rγ
19−4Rγ

16Rν
9−4Rγ

1
kτ

23−8Rγ
19−4Rγ+4Rgw

O(kτ)

θ̃ν
15

4(19−4Rγ)
k2τ 5

9−4Rγ
k 15+8Rgw

4(19−4Rγ+4Rgw)
k2τ k

δ̃gw - - O(kτ) O(kτ)

θ̃gw - - − 2Rν
19−4Rγ+4Rgw

k2τ −Rgw

Rν
k

Φ − 2Rν
19−4Rγ

− 4Rν
9−4Rγ

1
kτ

− 2Rν
19−4Rγ+4Rgw

O(kτ)

Ψ Rν
19−4Rγ

4Rν
9−4Rγ

1
kτ

Rν
19−4Rγ+4Rgw

O(kτ)

Table 3.2: Initial conditions for the neutrino isocurvature (IC) modes with and with-
out homogeneous gravitational waves to second order in kτ in the synchronous gauge
(top) and Newtonian gauge (bottom - with tildes). When including homogeneous
gravitational waves the density mode changes only by extra terms that are dependent
on Rgw in the prefactors of the kτ expansion. The velocity mode does not have
metric or photon perturbations when homogeneous gravitational waves are included.
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GW Dens. IC GW Vel. IC GW. Shear IC

h O(k3τ 3) O(k3τ 3) O(k3τ 3)

η − 1
24
k2τ 2 − 4Rgw

3(9−4Rγ)
kτ O(k3τ 3)

δγ − (19−4Rγ)

4Rγ

4Rgw

3Rγ
kτ O(k3τ 3)

θγ − (19−4Rγ)

16Rγ
k2τ −Rgw

Rγ
k + 1

6

Rgw

Rγ
k3τ 2 O(k4τ 3)

δν
19−4Rγ+4Rgw

4Rν
O(k3τ 3) −2Rgw

3Rν
k2τ 2

θν
19−4Rγ+4Rgw

16Rν
k2τ 8Rgw

15(9−4Rγ)
k3τ 2 Rgw

Rν
k2τ

σν
15+8Rgw

120Rν
k2τ 2 − 16Rgw

15(9−4Rγ)
kτ −Rgw

Rν
+ Rgw

Rν
2
15
k2τ 2

δgw 1 −4
3
kτ 2

3
k2τ 2

θgw
1
4
k2τ k −k2τ

σgw
1
60
k2τ 2 4

15

(
1− 4Rgw

9−4Rγ

)
kτ 1− 2

15
k2τ 2

δ̃γ − (19−8Rγ)

4Rγ

16Rgw

9−4Rγ
1
kτ

O(kτ)

θ̃γ − 19
16Rγ

k2τ − 9Rgw

Rγ(9−4Rν)
k O(k3τ 2)

δ̃ν
23−8Rγ

4Rν

16Rgw

9−4Rγ
1
kτ

O(kτ)

θ̃ν
15+8Rgw

16Rν
k2τ − 4Rgw

9−4Rγ
k Rgw

Rν
k2τ

δ̃gw O(kτ) 16Rgw

9−4Rγ
1
kτ

O(kτ)

θ̃gw −1
2
k2τ Rgw(9−4Rγ−4Rgw)

9−4Rγ
k −k2τ

Φ −1
2

4Rγ
9−4Rγ

1
kτ

O(kτ)

Ψ 1
4

− 4Rγ
9−4Rγ

1
kτ

O(kτ)

Table 3.3: Initial conditions for the gravitational wave (GW) isocurvature (IC) modes
to lowest order in kτ in the synchronous gauge (top) and Newtonian gauge (bottom
- with tildes). The GW density IC mode is a rescaling of the neutrino density IC
mode. The GW velocity IC mode is analogous to the neutrino density IC mode.
The GW shear IC mode is a mode with previously unseen behaviour; the GW and
neutrino perturbations balance such that there is no perturbation to the photons or
to the metric.
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Finally, the gravitational wave shear isocurvature mode is a completely

new phenomenon that is not possible without gravitational waves. Because

there are now two components with shear, a new mode is possible where these

shears balance each other. As for the neutrino density velocity mode (with

gravitational waves) there are no perturbations to the metric or photon sectors

for the gravitational wave shear mode.

3.2 Effects on the CMB

The changes in the CMB power spectrum when including adiabatic or homo-

geneous gravitational waves are shown in figure 3.1. The contributions from

the Sachs–Wolfe effect (SW), integrated Sachs–Wolfe effect (ISW) and Doppler

shift (DOP) are shown separately, along with the cross-correlations between

them5. The homogeneous case can be compared to figure 2.2, taken from Smith

[219]. The homogeneous mode calculated here has different effects to the effects

presented in [219]. Most notably increasing the effective number of neutrino

degrees of freedom contributed by gravitational waves, Ngw, the homogeneous

mode here reduces the power whereas the one given in [219] increases it. This

change also has qualitatively different effects for different ` regions.

Comparing the modes calculated here, the most noticeable difference be-

tween the adiabatic and homogeneous initial conditions is that homogeneous

gravitational waves decrease the total power whereas adiabatic gravitational

waves increase the total power. This is because the homogeneous gravitational

wave and photon perturbations are out of phase with each other when inside

the horizon due to the initial conditions having opposite signs (e.g. δγ and δgw

in table 3.1).

Including adiabatic gravitational waves has a very small effect on the

Doppler term. Most of the change in the first peak of the power spectrum

is due to the SW effect and the SW-ISW cross-correlation. This is also true

for the homogeneous mode with the addition of a large change in the low-`

5As in section 2.5.4.
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Figure 3.1: The contributions to the CMB power spectrum for gravitational waves
with adiabatic (top) and homogeneous (bottom) initial conditions contributing the
equivalent of 0 and 2 effective neutrino degrees of freedom. The contributions are
separated into Sachs–Wolfe (SW), Integrated Sachs–Wolfe (ISW) and Doppler (DOP)
terms and there cross-correlations.

part of the spectrum, driven by the SW, SW–ISW and Doppler terms. The

enhancement of the first peak and the decrease at low-` is a background effect

(i.e. still observable when the gravitational wave perturbations are turned off).

For the neutrino velocity isocurvature mode and the gravitational wave

shear isocurvature mode the initial conditions for the neutrino and gravita-

tional wave sectors balance in such a way that the right-hand side of the relevant

Einstein equations are zero, e.g.
∑

iRiδi = 0. Consequently no metric per-

turbations are generated and the photon perturbations stay zero for all times.

Using the line-of-sight integral approach of Seljak and Zaldarriaga [56] (section
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1.4.1), it is clear that there is no contribution to the CMB power spectrum

from these two modes. As a result, both of these modes are unobservable from

the CMB.

Isocurvature modes are well constrained by current CMB observations with

the dark matter, neutrino density and neutrino velocity isocurvature modes all

constrained to less than 2% of the temperature variance [293], such that we

will only consider constraints to the adiabatic and homogeneous modes. The

baryon isocurvature mode is not calculated and baryon and cold dark matter

perturbations are not given here6.

3.3 Planck 2018 constraints

To update the CMB constraints Planck 2018 data [151] is used in combination

with BAO data from BOSS DR12 [112], 6dFGS [113] and SDSS-MGS [114]

(as detailed in section 1.5.3). The precise Planck likelihoods used are the TT,

TE and EE spectra at ` ≥ 30, the low-` likelihood using the Commander

component separation algorithm and the low-` EE likelihood from the SimAll

algorithm in combination with Planck 2018 lensing [163]. This corresponds to

the TT,TE,EE + lowE + lensing + BAO data-set used in Aghanim et al. [1].

The parameter estimation is done using modified versions of cosmomc

and camb (see section 1.5). The camb code modifications required duplicat-

ing the neutrino equations of motion and including the new initial conditions

detailed above. The analysis constitutes a one-parameter extension to ΛCDM7

due to the additional requirement to constrain Ωgwh
2. The 95% confidence

upper limits on the gravitational wave density parameter are,

Ωgwh
2 < 1.7× 10−6 (adiabatic) , (3.3)

Ωgwh
2 < 2.9× 10−7 (homogeneous) . (3.4)

6The matter perturbations are given for the adiabatic, homogeneous, neutrino density
isocurvature, gravitational wave velocity isocurvature and gravitational wave shear isocurva-
ture modes in [292].

7The sum of the neutrino masses is fixed to 0.06 eV as in Planck analyses.
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These constraints are plotted in figure 3.2 along with LIGO interferometer,

pulsar and BBN constraints for comparison [94, 217, 231, 241]. The adiabatic

constraint is a factor ∼ 2 tighter than the previous constraint using similar

data8 from Henrot-Versillé et al. [222]. The homogeneous constraint has not

been updated since before Planck and tightens by a factor ∼ 4 compared to the

constraint in Sendra and Smith [221]. The lower limit of the CMB constraint

is set by the validity of the shortwave approximation at decoupling and is

calculated in detail in section 4.2.4. The scale of matter–radiation equality, keq

is shown for comparison. Note that the limits from BBN and the CMB are

integrated constraints (as discussed in section 2.5).

3.3.1 Parameter dependencies

The parameter estimation code used to find the constraints on the gravitational

wave density can also be used to investigate the interdependence of cosmolog-

ical parameters. This is done for the baseline ΛCDM parameters along with

the gravitational wave density parameter and the Hubble constant. The grav-

itational wave density is parameterised by the number of effective neutrino

degrees of freedom contributed by gravitational waves,

Ngw =
Ωgwh

2

5.6× 10−6
. (3.5)

The dependencies for gravitational waves with adiabatic initial conditions

are shown in figure 3.3. None of the parameters differ significantly from the

Planck 2018 values [1] but a slight increase in Ωch
2, ns and H0 is favoured

for a non-zero gravitational wave contribution. The acoustic angular scale,

θMC favours a smaller value in this case. There are increases in Ωbh
2 and the

amplitude of the scalar power spectrum but these are of smaller magnitude

than for the other parameters. The optical depth to reionisation, τ shows no

change with increasing Ngw and is consequently not shown in figure 3.3.

The dependencies for gravitational waves with homogeneous initial con-

8It is not quite as tight as the adiabatic constraint from Pagano, Salvati, and Melchiorri
[223] mentioned in section 2.5.4, but this also included BBN data.
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Figure 3.2: CMB constraints on the gravitational wave density parameter for adi-
abatic (red solid) and homogeneous (orange solid) initial conditions calculated in
this work. Constraints from other observations are shown for comparison. The
LIGO interferometer constraint (blue) comes from Abbott et al. [231]. The BBN
constraint (black dotted) comes from Cooke et al. [94] which uses the Helium abun-
dance data of Izotov, Stasinska, and Guseva [217]. The pulsar constraint comes
from Thorsett and Dewey [241]. The vertical grey dot-dashed line denotes the scale
of matter–radiation equality and is shown for comparison to the lower-limit of the
CMB constraint.

ditions are shown in figure 3.4. Again parameter values are consistent with

Planck 2018 values. The strongest dependence Ngw has is with the acoustic

angular scale which favours a smaller value for an increased gravitational wave

density similar to the adiabatic case. Ωch
2 and the amplitude of the scalar

power spectrum favour very slightly increased values for non-zero Ngw. For

homogeneous gravitational waves Ωbh
2, ns, H0 and τ are all unchanged as the

gravitational wave density increases.

The similarity of the decrease in the acoustic angular scale in both these

cases is as expected as this is a background quantity and hence doesn’t depend

on the perturbations.
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Figure 3.3: 68% and 95% confidence contours for the standard ΛCDM parameters
plus Ngw and H0, for adiabatic gravitational wave initial conditions. The optical
depth to reionisation, τ is not shown as it has no dependence on Ngw.

3.4 Summary and outlook

In this chapter the methodology used for calculating gravitational wave con-

straints from the CMB using the shortwave approximation was reproduced. In

doing so, differences with the homogeneous mode initial conditions calculated

previously were found and the importance of favouring this homogeneous mode

over the adiabatic mode was stressed, due to considerations of possible gravita-

tional wave sources. New isocurvature modes were calculated and the behaviour

of these, along with the updated homogeneous mode, was investigated.

Existing constraints on gravitational waves with adiabatic and homogeneous
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Figure 3.4: 68% and 95% confidence contours for the standard ΛCDM parameters
plus Ngw and H0, for homogeneous gravitational wave initial conditions. The optical
depth to reionisation, τ is not shown as it has no dependence on Ngw.

initial conditions were updated using Planck 2018 data finding the tightest

current constraints from CMB+BAO data. These constraints are valid for

frequencies, f & 10−15 Hz. For adiabatic initial conditions, Ωgwh
2 < 1.7× 10−6

and for homogeneous initial conditions, Ωgwh
2 < 2.9 × 10−7 (both at 95%

confidence). The effect of including short-wavelength gravitational waves on the

ΛCDM parameters was also investigated finding significantly more parameter

interdependencies for the adiabatic mode than for the homogeneous mode and

that the ΛCDM best-fit values are not changed significantly by the inclusion

of gravitational waves.

These constraints are unlikely to improve significantly in the future. Planck
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2018 was the final data release and the Planck satellite was cosmic variance

limited up to ` ≈ 1600. Consequently measurements of the temperature

anisotropies are unlikely to improve appreciably. The observational emphasis

is shifting towards measurement of CMB polarisation. Improvements in the

measurement of the E-mode polarisation will improve the constraint slightly

but the main focus is B-mode polarisation which will primarily constrain

gravitational waves at lower frequencies than the validity of the shortwave

approximation allows.



Chapter 4

Low-Frequency Gravitational
Waves

This section details two CMB methodologies for constraining gravitational

waves with frequencies below that allowed by the shortwave approximation.

The first of these is an updated approach to the standard B-mode constraint

(see sections 1.4.3 and 2.5.1) that reconstructs the tensor primordial power

spectrum from the available data and hence does not rely on the power-law

assumption used elsewhere.

The second utilises the gauge-invariant formalism presented by Abramo,

Brandenberger, and Mukhanov [38] (see section 2.4) to define an effective

energy–momentum tensor and hence find the density and pressure of the ho-

mogeneous gravitational wave fluid. This shows a range of interesting physical

effects which are investigated. The validity of this approach is verified using

consistency checks and the effects on the CMB are compared with those found

when using the shortwave approximation (as detailed in the previous chapter).

This approach has not previously been applied to the CMB and there was

previously no constraint on gravitational waves in the two orders of magnitude

between the constraints from B-modes and the shortwave approximation. The

new constraint is presented and is competitive in magnitude to the constraint

from the shortwave approximation.

Some of the code and parameter estimation in this chapter was written or

performed by Dr. Adam Moss in preparation for a paper [292]. Where this is

111
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the case it will be explicitly stated in the footnotes.

4.1 B-mode constraint

Existing low-frequency constraints use the temperature and polarisation of

the CMB to look for the effects of gravitational waves. These are roughly

called the ‘B-mode constraint’ here, though it is stressed that temperature

and E-mode data is also used. The contribution of the gravitational waves is

dependent on the gravitational wave density, Ωgw(f) which is simply related

to the tensor primordial power spectrum by equation (2.40) [205]. As dis-

cussed in section 2.5.1 this equation is incorrect when applied to super-horizon

gravitational waves and hence to the B-mode constraint. However, due to

the prevalence of equation (2.40) in the literature it will also be used here to

convert from the tensor power spectrum to a gravitational wave density and

is treated as a first approximation to the super-horizon behaviour. The tensor

primordial power spectrum is assumed to be a power-law parameterised by the

tensor-to-scalar ratio, rk∗ and the tensor tilt nt, which can be related to rk∗

using the single field slow-roll inflation consistency relation,

nt = −rk∗
8
. (4.1)

An alternative approach is taken here, with the primordial power spectrum

being reconstructed directly from the CMB data. This is done in logarithmic

frequency bins across the range in which the CMB constraints are most sen-

sitive which corresponds to −3.5<∼ log10[kMpc]<∼ − 0.3 . The lower limit is

set roughly by the size of the horizon today and the range is approximately

centred on the horizon size at recombination. To accurately represent the

frequency dependence of the B-mode constraint without drastically increasing

the computational time required we use a bin size, ∆ log10 [kMpc] = 0.2, such

that there are 16 bins in total.

The constraint1 is obtained using Planck TT,TE,EE + lowE + lensing

1This constraint was obtained using cobaya by Dr. Adam Moss.
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+ BAO data as in chapter 3 [112–114, 151] along with B-mode data from

BICEP2/Keck [14]. The B-mode polarisation data is valid for 20 < ` < 330.

A standard ΛCDM model is used for the parameter estimation where the

neutrino sector is fixed to three neutrinos species, two of these massless and a

single massive neutrino with mass 0.06 eV. Planck and BICEP2/Keck nuisance

parameters are marginalised over and the other parameters have flat priors.

Four MCMC chains are run using a Metropolis–Hastings algorithm and the

chains are stopped and said to have converged when the Gelman and Rubin

R− 1 statistic is < 0.05.

The sampling is done on the power spectrum, PT (k). Ωgw(k)h2 is added as

a derived parameter using equation (2.40) which results in the gravitational

wave constraint including the variation of Ωbh
2 and Ωch

2. The effect of these

extra variations is small when compared to directly converting between the

power spectrum and the density parameter using best-fit values of parameters

in equation (2.40). As noted previously this conversion is not valid due to

equation (2.40) only being valid for short wavelength gravitational waves, but

the conversion is used here for consistency with existing results. It is however

stressed that it is only a first approximation to the ‘true’ constraint on Ωgw

because of this, but the constraints on PT (k) have no such problems as, until

the conversion to the density parameter, the approach is independent of any

short wavelength assumptions.

The posterior probabilities of the gravitational wave density parameter for

each of the 16 bins are shown in figure 4.1. The 2σ upper limits for each of the

16 bins are used as the low-frequency constraint and are shown in figure 4.2.

The maximal sensitivity gives Ωgwh
2<∼ 4×10−16 for log10[kMpc] ' −2.0, corre-

sponding approximately to the horizon size at recombination. Above this the

constraint weakens due to the decay of the gravitational wave amplitude once

they enter the horizon, becoming weaker than the shortwave approximation

constraints (though applying for lower frequencies) for f >∼ 10−16 Hz. Figure 4.2

also shows the gravitational wave density parameter for a power-law primordial
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Figure 4.1: Posterior probabilities of the gravitational wave density parameter for
each logarithmic k-bin used for the low-frequency polarisation constraint. This uses
equation (2.40) to convert the direct constraint on the tensor power spectrum into
a constraint on the gravitational wave density parameter and is consequently only
a first approximation to the true super-horizon behaviour. The bins are numbered
from log10 [kMpc] = −3.5 and increase in steps of 0.2. The final bin, with −0.5 ≤
log10 [kMpc] < −0.3, is unconstrained and is not shown. The 95% confidence limits
of each posterior are used for the constraint in figure 4.2.
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Figure 4.2: The constraint on the gravitational wave density parameter from recon-
struction of the tensor power spectrum using CMB temperature and polarisation
data (green). The homogeneous and adiabatic shortwave CMB results from chapter
3 are also shown for comparison along with the BBN constraint from Cooke et al.
[94]. The scale of matter–radiation equality is shown as an illustration of the scale
associated with the horizon at the time of CMB emission, which corresponds to the
peak in sensitivity of the B-mode constraint.

power spectrum from slow-roll inflation obeying the Planck and BICEP2/Keck

constraint on the tensor-to-scalar ratio, r0.002 < 0.056 [14]. The consistency

relation for this value of the tensor-to-scalar ratio implies that nt = −0.007.

These values of the tensor-to-scalar ratio and tensor tilt, like the power spec-

trum for the B-mode constraint, are converted to a gravitational wave density

using the short wavelength assumption of equation (2.40) and consequently the

comparison curve in figure 4.2 is also a first approximation to the behaviour

for super-horizon gravitational waves. A constraint was found using a similar

methodology to the power spectrum reconstruction detailed here, and a similar

maximal sensitivity of Ωgwh
2 ∼ 10−15 was found, in Namikawa et al. [294].
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4.2 Intermediate, non-shortwave approach

The shortwave approximation has been frequently used to constrain PGWs

from the CMB. However, gravitational waves that do not satisfy the shortwave

condition at CMB decoupling are only constrained by B-mode polarisation.

This constraint weakens significantly for f >∼ 10−16 Hz, therefore an alternative

CMB constraint in this region could provide a much stronger constraint. The

rest of this chapter will detail the approach that was developed to address

this. This has a range of interesting physical consequences and applications

and as a by-product, it can also be used to test the validity of the shortwave

approximation.

The core idea is to use the gauge-invariant, non-shortwave approach pre-

sented in section 2.4 [38, 201]. This allows for calculation of the density and

pressure of gravitational waves of all frequencies.

4.2.1 Calculating the density and pressure

The calculation of the perturbed Einstein tensor and consequently the effective

energy–momentum tensor for gravitational waves is a lengthy calculation that

was fully reproduced and verified. As a result, the methodology of this calcu-

lation will be presented in detail here and some of the notation in previous

papers [38, 203] will be clarified and made more explicit.

The calculation of the Einstein tensor from the metric proceeds as in stan-

dard general relativistic calculations, through the calculation of the Christoffel

symbols from the metric, the calculation of the Ricci tensor and then the Ein-

stein tensor. This is complicated in the perturbative calculation by the fact

that the zeroth, first and second order components of all these quantities con-

tribute to the proceeding quantity and hence all of these need to be calculated

to find the second order components of the Einstein tensor, G(2) 0
0 [202, 203,

295, 296].
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The transverse-traceless expanding gravitational wave metric is used,

ds2 = −a2(τ)dτ 2 + a2(τ)(δij + hij)dx
idxj , (4.2)

where jµν of equation (2.6) is implicitly neglected as it does not contribute to

the Einstein tensor under averaging. The metric is written as,

gµν = g̃µν + δgµν , (4.3)

such that g̃µν is the conformal time FLRW metric. The Christoffel symbols are

calculated as,

Γ
(0)α

βγ =
1

2
g̃αρ (g̃ρβ,γ + g̃ργ,β − g̃βγ,ρ) , (4.4a)

Γ
(1)α

βγ =
1

2
g̃αρ (δgρβ,γ + δgργ,β − δgβγ,ρ)

+
1

2
δgαρ (g̃ρβ,γ + g̃ργ,β − g̃βγ,ρ) , (4.4b)

Γ
(2)α

βγ =
1

2
δgαρ (δgρβ,γ + δgργ,β − δgβγ,ρ) . (4.4c)

From these the Ricci tensors are,

R
(0)
αβ = Γ

(0) ρ
αβ,ρ − Γ

(0) ρ
ρ,βα + Γ

(0) ρ
ρλΓ

(0)λ
αβ − Γ

(0) ρ
αλΓ

(0)λ
ρβ , (4.5a)

R
(1)
αβ = Γ

(1) ρ
αβ,ρ − Γ

(1) ρ
ρ,βα + Γ

(0) ρ
ρλΓ

(1)λ
αβ + Γ

(1) ρ
ρλΓ

(0)λ
αβ

− Γ
(0) ρ

αλΓ
(1)λ

ρβ − Γ
(1) ρ

αλΓ
(0)λ

ρβ , (4.5b)

R
(2)
αβ = Γ

(2) ρ
αβ,ρ − Γ

(2) ρ
ρ,βα + Γ

(0) ρ
ρλΓ

(2)λ
αβ + Γ

(1) ρ
ρλΓ

(1)λ
αβ

+ Γ
(2) ρ

ρλΓ
(0)λ

αβ − Γ
(0) ρ

αλΓ
(2)λ

ρβ

− Γ
(1) ρ

αλΓ
(1)λ

ρβ − Γ
(2) ρ

αλΓ
(0)λ

ρβ . (4.5c)

The components of the Christoffel symbols and Ricci tensors for the metric

given by equation (4.2) are presented in Appendix A of Giovannini [202]2.

Finally the Einstein tensor is given by [297],

G(2)
µν = R(2)

µν −
1

2
g̃µν

(
g̃αβR

(2)
αβ − δg

αβR
(1)
αβ + δgαρδg

ρβR
(0)
αβ

)
2Note that these are for the opposite metric signature and the (i0) components are ne-

glected. These equations were only found by the author during the writing of this document.



Chapter 4. Intermediate, non-shortwave approach 118

− 1

2
δgµν

(
g̃αβR

(1)
αβ − δg

αβR
(0)
αβ

)
. (4.6)

Applying all this to the cosmological gravitational wave metric the second

order components of the Einstein tensor are,

G(2) 0
0 =

1

4a2

(
1

2
ḣkmḣkm + 4Hhkmḣkm

− 2hkmh f
km,f + hkm,jhkj,m −

3

2
hkm,jhkm,j

)
, (4.7a)

G(2) 0
i =

1

4a2

(
− ḣkmhkm,i − 2hkmḣkm,i + 2hkmḣik,m

)
, (4.7b)

G(2) i
0 =

1

4a2

(
ḣkmh

km,i + 2hkmḣ
km,i

− 2hkmḣ
ik,m + 4Hhkmhkm,i − 4Hhkmhik,m

)
, (4.7c)

G(2) i
j =

1

4a2

(
− 2ḣikḣjk − 2hikḧjk +

3

2
δij ḣ

kmḣkm + 2δijh
kmḧkm

− 4Hhikḣjk + 4Hδijhkmḣkm − 2hjm,kh
ik,m

+ 2hjk,mh
ik,m − 2δijh

kmh j
km,j + δijhkj,mh

km,j

− 3

2
δijhkm,jh

km,j + hkm,ihkm,j + 2hkmh ,i
km j (4.7d)

− 2hkmh ,i
jk m − 2hkmhik,jm + 2hkmhij,km + 2hikh m

jk,m

)
.

These expressions agree with equations (8–11) of [203] except for the last two

terms of equation (4.7c). It does however agree with equation (2.30) of [296].

This could be due to an ambiguity in the notation, to be clear, ḣkm,i means

∂i∂0h
km here. All terms that can be written as total derivatives will vanish

under averaging and consequently this difference does not affect the background

behaviour.

Under spatial averaging defined (as in section 2.4) by,

〈A〉x = lim
V→∞

1

V

∫
A dV , (2.20)

for a general function, A, the second order Einstein tensor becomes,

〈G(2) 0
0〉x =

1

a2

(
H〈hkmḣkm〉x +

1

8
〈ḣkmḣkm〉x +

1

8
〈hkm,jhkm,j〉x

)
, (4.8a)
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〈G(2) 0
i〉x =

1

a2

(
〈hmkḣk[i,m]〉x −

1

4
〈ḣmkhmk,i〉x

)
, (4.8b)

〈G(2) i
0〉x =

1

a2

(
1

4
〈ḣmkhmk,i〉x − 〈hmkḣk[i,m]〉x

)
, (4.8c)

〈G(2) i
j〉x =

3

8a2
δij

(
〈ḣkmḣkm〉x − 〈hkm,nhkm,n〉x

)
+

1

2a2

(
−〈ḣikḣkj〉x −

1

2
〈hkm,ihkm,j〉x + 〈hik,mhkj,m〉x

)
, (4.8d)

where tensor anti-symmetrisation is denoted by hk[i,m] = (hki,m − hkm,i)/2.

These are consistent with the equations given in [203].

As in section 2.4, the effective energy momentum tensor for gravitational

waves is calculated from the Einstein tensor as3,

T (GW)µ
ν = − 1

8πG
〈G(2)µ

ν〉x . (2.24)

The (00) component of the effective energy momentum tensor gives the

effective energy density of gravitational waves, ρgw. However, the gravitational

wave pressure, pgw picks up an extra term from the interaction of gravitational

waves with matter which can be calculated using considerations of the conser-

vation of the full energy–momentum tensor, see section 2.4 and refs. [38, 200,

202]. The density and pressure rely on a stochastic average over the initial

conditions for the gravitational wave perturbation. This averaging is implicit

in previous analyses but is not stated. For example, in equation (93) of [38] and

equation (27) and (28) of [203] the angled brackets denote stochastic averaging

not spatial averaging4. This stochastic averaging is made explicit throughout

this work and is denoted by < ... >Q. The density and pressure are written,

ρgw =
1

8πG
〈δ(2)G0

0〉Q,x (4.9a)

pgw =
1

8πG

(
1

3
〈δ(2)Gi

i〉Q,x +
1

2a2
H(1 + w̃)〈hijḣij〉Q,x

)
, (4.9b)

where w̃ is the equation of state of the background cosmology containing the

3Reproduced here for ease of reading.
4The quantities in the angled brackets in these examples are independent of space such

that these averages cannot be spatial. This was clarified in a correspondence from Prof.
Robert Brandenberger.
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gravitational wave perturbations. Writing these expressions explicitly in terms

of the gravitational wave perturbation using equations (4.8),

ρgw =
1

8πGa2

(
1

8
〈(∇hij)2〉Q,x +

1

8
〈(ḣij)2〉Q,x +H〈hijḣij〉Q,x

)
, (4.10a)

pgw =
1

8πGa2

(
7

24
〈(∇hij)2〉Q,x −

5

24
〈(ḣij)2〉Q,x

+
H
2

(1 + w̃)〈hijḣij〉Q,x
)
. (4.10b)

These are the key equations of this approach. The equation of motion is

obtained from the first order equation, and gives5,

ḧij + 2Hḣij − h k
ij,k = 16πGa2Π

(T)
ij , (2.10)

where Π(T) is the anisotropic inertia tensor. This can be solved to give hij(~x, t),

if the anisotropic stress is known (or assumed zero), which can then be used to

calculate the density and pressure of gravitational waves using equations (4.10).

As in [203], this approach is reformulated in k-space. This results in so-

lutions of the equation of motion being calculable numerically and, for sim-

ple backgrounds, analytically. It also means the standard approach used for

separating and stochastically averaging the initial conditions can be closely

mirrored.

The Fourier transform of the tensor perturbation is given by equation (2.5)6;

hij(~x, t) =
∑
λ=±2

∫
d3k

(2π)3
εij(k̂, λ)h̃(k, λ, t)ei

~k.~x . (2.5)

In Fourier space the spatial averaging of a product of two general, polarisation-

dependent functions,

〈f ij(~x, τ)gij(~x, τ)〉x =

∫
d3k

(2π)3
f ij ∗(~k, τ)gij(~k, τ) , (4.11)

where the complex exponentials from the Fourier transforms have been rewrit-

ten as a Dirac delta function and the delta function has been used to do one of

5Reproduced here for ease of reading.
6Reproduced here for ease of reading.
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the wavenumber integrals. Here V = 1 as it is only included in the definition

of the averaging to keep track of dimensions (see conventions or [59] chapter

3). This integral can be done in spherical polar coordinates to find,

〈f ij(~x, τ)gij(~x, τ)〉x =

∫
d ln k

k3

π2
f̃ ∗(k, τ)g̃(k, τ) , (4.12)

where the products of the polarisation tensor have been evaluated using [28],

∑
λ

ε∗ij(q̂, λ)εjk(q̂, λ) = 2δ ki − 2q̂iq̂
k . (4.13)

Using this for the density and pressure of gravitational waves and dropping

the helicity dependence, we obtain,

ρgw(τ) =
1

8πGa2

∫
d ln k

k3

π2
ρ̃gw,Q(k, τ) , (4.14a)

pgw(τ) =
1

8πGa2

∫
d ln k

k3

π2
p̃gw,Q(k, τ) , (4.14b)

where,

ρ̃gw,Q(k, τ) =
k2

8
〈|h̃(k, τ)|2〉Q +

1

8
〈| ˙̃h(k, τ)|2〉Q

+H〈|h̃∗(k, τ) ˙̃h(k, τ)|2〉Q , (4.15a)

p̃gw,Q(k, τ) =
7k2

24
〈|h̃(k, τ)|2〉Q −

5

24
〈| ˙̃h(k, τ)|2〉Q

+
1

2
H(1 + w(0))〈|h̃∗(k, τ) ˙̃h(k, τ)|2〉Q . (4.15b)

The initial condition can be separated from the time evolution of the gravi-

tational wave amplitude as [28],

h̃(k, τ) = AkD(k, τ) , (4.16)

such that the primordial power spectrum,

Pt(k) =
k3

π2
〈|Ak|2〉Q , (4.17)

specifies the ensemble average of stochastic initial conditions mentioned previ-

ously.

The time evolution of the gravitational wave amplitude is now described by
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the function7 D(k, τ) which obeys the gravitational wave equation of motion,

D̈ + 2HḊ + k2D = 16πGa2Π(T) , (4.18)

where Π(T) is the Fourier transform of the anisotropic stress tensor decomposed

in terms of the gravitational wave polarisation [28]. The helicity dependence

of h̃(k, τ) was dropped earlier because this equation of motion is helicity inde-

pendent.

The final expressions for the density and pressure are,

ρgw(τ) =
1

8πGa2

∫ kmax

kmin

d ln k ρ̃gw(k, τ)Pt(k) , (4.19a)

pgw(τ) =
1

8πGa2

∫ kmax

kmin

d ln k p̃gw(k, τ)Pt(k) , (4.19b)

where the choice of kmin and kmax defines the range of gravitational waves

considered8,

ρ̃gw(k, τ) =

[
1

8

(
k2D2 + Ḋ2

)
+HḊD

]
, (4.20a)

p̃gw(k, τ) =
7k2

24
D2 − 5

24
Ḋ2 +

H
2

(1 + w̃)ḊD , (4.20b)

and the primordial power spectrum of equation (4.17) is conventionally param-

eterised via equation (1.60) 9,

Pt(k) = At(k∗)

(
k

k∗

)nt

. (1.60)

Consequently the methodology for calculating the density and pressure of

gravitational waves is as follows. The gravitational wave equation of motion

(equation (4.18)) is solved for a given background cosmology and anisotropic

stress and the solution for D(k, τ) is used to evaluate the k-space density

and pressure using equations (4.20). This is then integrated with the power

spectrum of equation (1.60) to get the total homogeneous density and pressure

7This function is called f(τ, k) in [203].
8These are essentially an ultraviolet and infrared cutoff to the equations for gravitational

waves and can be set from consideration of inflation, see [203] or by specific considerations
of the cosmology.

9Reproduced here for ease of reading.
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according to equations (4.19). As in previous cases the gravitational waves

are then treated as a cosmological fluid defined at the background level by its

density and pressure.

4.2.2 The equation of state

As shown previously, short-wavelength gravitational waves have an equation of

state of 1/3. Here it is verified that this is the case for single fluid backgrounds,

in the absence of anisotropic stress, using the above approach. The equation of

state for long-wavelength gravitational waves is also calculated from analytic

expressions for the gravitational wave amplitude D(k, τ).

While it is the integrated quantities, ρgw, pgw that give the equation of

state of gravitational waves, wgw, it is clear from equations (4.19) that if w̃gw =

p̃gw/ρ̃gw is a constant then wgw will be equal to the same constant. The equation

of state can be calculated analytically for single fluid backgrounds consisting

of radiation, matter or a cosmological constant [203]10. For convenience I have

defined x = kτ for this discussion of the equation of state for single fluid

backgrounds and an initial condition D(0) = B is used to eliminate decaying

modes. B is conventionally set to 1 to calculate the gravitational wave transfer

function.

Radiation:

For a radiation background, the equation of motion is,

Ḋ +
2

τ
Ḋ + k2D = 0 , (4.21)

with solution, D(x) = B sincx, where H = 1/τ and the equation of state of

the background is 1/3. Therefore,

ρ̃gw =
B2

4x2τ 2

(
− 7 + 2x2 + 7 cos 2x+ 6x sin 2x

)
, (4.22)

10The solutions of the equation of motion and the verification of the equation of state for
long wavelengths are presented in [203], however the explicit verification for short wavelengths
or the expressions for the density and pressure have not previously been presented in the
literature.
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p̃gw =
B2

12x2τ 2

[
3(7− 4x2) cos 2x+ 26x sin 2x+ 2x2 − 21

]
. (4.23)

Matter:

For a matter background, the equation of motion is,

Ḋ +
4

τ
Ḋ + k2D = 0 , (4.24)

with solution, D(x) = 3B(sincx − cosx)/x2, ȧ/a = 2/τ and the equation of

state of the background is 0. Hence,

ρ̃gw =
9B2

4x6τ 2

[
− 39− 28x2 + 2x4

+ (39− 50x2) cos 2x+ 6x(13− 2x2) sin 2x
]
, (4.25)

p̃gw =
3B2

4x6τ 2

[
− 117− 56x2 + 2x4

+ x(234− 68x2) sin 2x+ (117− 178x2 + 12x4) cos 2x
]
. (4.26)

Cosmological Constant:

Finally, for a cosmological constant (sometimes called de Sitter) background

the equation of motion is,

Ḋ − 2

τ
Ḋ + k2D = 0 , (4.27)

with solution,

D(x) = Bx
(

sinx+
cosx

x

)
+ Cx(sincx− cosx) , (4.28)

ȧ/a = −1/τ and the equation of state of the background is −1. Note that B

corresponds to an even term while C represents the odd part of D(x). In cases

of cosmological interest D(x = 0) is set to 1 and consequently C = 0. However,

the conclusions below about the equation of state are true with or without the

odd terms.
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The density and pressure are,

ρ̃gw =
k2

32πG

{
(B2 + C2)(−7 + 2x2)

+ (−7B2 + 7C2 + 12BCx) cos 2x

− 2 [7BC + 3(B − C)(B + C)x] sin 2x

}
, (4.29)

p̃gw =
τ−2

96πG

{
x2(B2 + C2)(7 + 2x2)

− x2
[
(7− 12x2)(B2 − C2)− 28BCx

]
cos 2x

− 2x2
[
(7− 12x2)BC + 7x(B2 − C2)

]
sin 2x

}
. (4.30)

Corresponding Equations of State:

For the above backgrounds the equation of state parameter w̃gw(x) is calcu-

lated in the super-Hubble, long-wavelength, regime (x� 1) by expanding in x

and evaluating the lowest order terms and in the sub-Hubble, short-wavelength

regime (x� 1) by averaging over many wavelengths, equivalent to averaging

trigonometric functions, e.g., 〈sin 2x〉x = 〈cos 2x〉x = 0. Doing this,

w̃gw =


−1

3
, if kτ � 1 ,

+1
3
, if kτ � 1 ,

(4.31)

for radiation, matter and de Sitter backgrounds. Therefore, the energy density

of long-wavelength gravitational waves decays as 1/a2, like curvature, and short-

wavelength gravitational waves behave like massless neutrinos, as concluded in

the shortwave approximation.

The equation of state for a general ΛCDM background can be solved nu-

merically, and is shown in figure 4.3 for Planck 2018 parameter values and

k = 0.05 Mpc−1. It starts at −1/3 when the mode is outside the horizon, then

goes through a transition period where it goes through large negative and

positive values before exhibiting stable oscillations about an average value of

wgw = 1/3.
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Figure 4.3: The equation of state of gravitational waves, wgw, as a function of
conformal time for a representative mode with k = 0.05 Mpc−1. It is −1/3 when
the mode is outside the horizon, goes through a transition region and then oscillates
about 1/3 when well inside the horizon. The conformal time at recombination (grey
dot-dash) is shown for reference. The small and large scale values of −1/3 and 1/3
are shown in orange (dashed) and the vertical orange (dashed) line shows where the
shortwave approximation becomes valid (see section 4.2.4).

Matter-Cosmological Constant Transition

We observed through numerical calculations that the equation of state of super-

horizon gravitational waves decreases during the matter-cosmological constant

transition in the late Universe. This phenomenon has not been mentioned

previously and is an interesting departure from the behaviour shown above

for single fluid backgrounds. This behaviour can be verified analytically using

solutions for early, intermediate and late times that are matched together at

the appropriate times. The details of these solutions are presented below.

In a matter and cosmological constant background the scale factor,

a(t) =

(
Ωm

ΩΛ

)1/3 [
sinh

(
3

2
H0

√
ΩΛt

)]2/3

. (4.32)
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So the gravitational wave equation of motion in terms of cosmological time

(compare to equation (4.18)),

d2D

dt2
(k, t) + 3H(t)

dD

dt
(k, t) +

k2

a2(t)
D(k, t) = 0 , (4.33)

becomes,

D′′(κ, x) + 2 cothxD′(κ, x) + κ2(sinhx)−4/3D(κ, x) = 0 , (4.34)

where,

x =
3

2
H0

√
ΩΛ t , κ =

(
ΩΛ

Ωm

)1/3
2k

3H0

√
ΩΛ

, (4.35)

and primes denote differentiation with respect to x. κ and x are reduced

wavenumber and time variables respectively and x is not equivalent to the

definition in the previous section.

The equation of motion is solved in a power series for κ2;

D(κ, x) = D0(x) + κ2D1(x) , (4.36)

because the modes of importance are super-horizon at current (and near future)

times such that κ� 1.

Background solution:

D0 is the solution of the simpler, zeroth order equation in the κ2 expansion,

D′′0(x) + 2 cothxD′0(x) = 0 . (4.37)

The general solution is D0(x) = D̄0−α cothx. Imposing that the gravitational

wave amplitude is finite as x→ 0,

D0(x) = D̄0 . (4.38)

This constant would be set to 1 for most physical applications.
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Perturbed solutions:

The equation of motion to order κ2 is,

D′′1(x) + 2 cothxD′1(x) + (sinh x)−4/3D̄0 = 0 . (4.39)

This can be solved in three separate regimes, low-x, intermediate-x and

high-x and these solutions and their first derivatives can be matched together

at xa and xb.

For small-x the equation of motion is,

D′′1(x) +
2

x
D′1(x) +

D̄0

x4/3
= 0 , (4.40)

with solution,

D1(x) = − 9

10
D̄0x

2/3 , (4.41)

where the initial condition is D1(0) = 0.

The intermediate solution is the most complicated and consequently new

variables are defined to simplify the solution. Expanding about the midpoint

of the intermediate region,

λ =
xa + xb

2
, (4.42)

the intermediate solution is valid for more of the intermediate region than if

either xa or xb was used. This results in the equation of motion becoming,

D′′1(x) + 2(α + βx)D′1(x) + D̄0(γ + ηx) = 0 , (4.43)

where,

α = cothλ− λβ , β = 1− coth2 λ ,

γ =
3 sinhλ+ 4λ coshλ

3(sinhλ)7/3
, η = − 4 coshλ

3(sinhλ)7/3
. (4.44)

Making the further definition,

x̄ =
α + βx√

β
, (4.45)
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to simplify the solution, the intermediate solution for D1(x) is,

D1(x) = D̄0

{
C1 +

C2

√
πeα

2/β erf x̄−
√
βηx

2β3/2
(4.46)

+
(βγ − αη)

4β3

[
2βx̄2

1F2

(
{1, 1}; {3/2, 2}; x̄2

)
− πβ erf x̄ erfi x̄

]}

where erf x is the error function, erfix is the imaginary error function, pFq

is the generalised hypergeometric function and the matching onto the low-x

solution at xa determines the coefficients C1 and C2.

For large x the equation of motion becomes,

D′′1(x) + 2D′1(x) + 24/3D̄0e
−4x/3 = 0 . (4.47)

The high−x solution is,

D1(x) = C3 −
C4

2
e−2x +

9D̄0

25/3
e−4x/3 . (4.48)

C3 and C4 are determined by matching onto the intermediate solution at xb.

GW equation of state parameter:

The gravitational wave equation of state parameter for a matter + cosmo-

logical constant background from the above analytics and from a numerical

computation can be seen in figure 4.4. The analytic solutions were matched at

xa = 0.35 and xb = 1.15 to get the best agreement with the numerics. They

confirm the fact that the equation of state departs from −1/3 for super-horizon

GWs during the matter-cosmological constant transition but returns back to

−1/3 when the cosmological constant comes to dominate. There are discon-

tinuities due to imperfect matching of the solutions. Effectively the solutions

are not of high enough order to fully encompass the behaviour in their specific

regimes. This could be improved by using the intermediate solution twice and

having four separate matched regimes but the analysis given here is sufficient

to verify the numerical behaviour.
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Figure 4.4: The equation of state for gravitational waves as a function of x for
κ = 0.045 (corresponding to k = 10−5 Mpc−1) from a numerical solution of the
gravitational wave equation of motion (blue) and from an analytic solution found
by matching solutions for small, intermediate and large x (orange). The analytic
solutions are matched together at xa = 0.35 and xb = 1.15 and verify the behaviour
observed in the numerical solution.

4.2.3 Code

For realistic backgrounds the gravitational wave equation of motion can only

be solved numerically. New code was written to do this and then calculate the

gravitational wave density, pressure and equation of state. This was integrated

into camb11 to allow for calculation of cosmological observables, primarily

the CMB power spectrum, in the presence of gravitational waves. To do this

the gravitational waves were incorporated into an effective dark energy fluid

that also included the cosmological constant. This dark energy fluid has an

equation of state corresponding to that of gravitational waves for most of the

cosmological history until cosmological constant domination occurs at late time

11see section 1.5.1.
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and the effective dark energy equation of state approaches −1. The density is

negative at early times when dominated by super-horizon gravitational waves

(as detailed in section 2.4 here and section 4 of ref. [203]) before transitioning

to an epoch dominated by sub-horizon gravitational waves and then by the

cosmological constant (dependent on the choice of kmin and kmax).

This modified version of camb can be used to test a range of physical

properties of the model. It can also be integrated into a parameter estima-

tion code to obtain constraints on the gravitational wave parameters. Here

cobaya is used12.

4.2.4 Validity of the shortwave approximation for
CMB constraints

As this approach allows observables to be calculated when gravitational waves

of super-horizon scales are included it can be used to calculate where the short-

wave approximation becomes valid. It is usually stated that the shortwave

approximation is valid if the gravitational wave can be averaged over a “suffi-

cient number of wavelengths” or in the language of section 2.3, if λ� l� R

where l is the averaging length scale. This has resulted in the lower limit for

the CMB shortwave constraint being imprecisely defined.

Using the approach developed in the previous sections the region for which

fixing a constant equation of state, wgw = 1/3 introduces small enough errors

into cosmological observables can be found. A cosmic variance limited CMB

experiment like Planck, measuring the CMB power spectrum up to a given `

requires a precision of approximately [298],

δC`
C`

=
3

`
, (4.49)

which corresponds to 0.1–0.2 % for ` = 2000.

The error in the CMB power spectrum was found when the gravitational

wave equation of state was fixed to 1/3 after different numbers of oscillations

12see section 1.5.2.
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to find the number of oscillations required to achieve the necessary precision.

This was done for different numbers of oscillations between 5 and 100 and then

compared to the case with 100 oscillations13. The gravitational wave source is

assumed to be delta-function-like for a given frequency. Note that the effect

of the shortwave assumption decreases for smaller values of Ωgwh
2. For this

test the density is fixed to the equivalent of one neutrino degree of freedom

in the shortwave approximation and hence Ωgwh
2 = 5.6 × 10−6. Hence the

gravitational wave source has approximately the largest allowed effect on the

background evolution at matter–radiation equality.

To satisfy δC`/C` < 0.2 % for all `, approximately 50 oscillations are

required by the epoch of equality. This corresponds to a lower limit of

k ' 1 Mpc−1 for the shortwave constraint as shown in figures 3.2 and 4.2.

Note that, from figure 2 of Smith, Pierpaoli, and Kamionkowski [96], previous

constraints use a factor of ∼ 20 wavelengths. This analysis suggests that a

slightly more conservative limit is required.

Figure 4.3 shows the oscillatory behaviour and also denotes the point at

which this k-mode (k = 0.05 Mpc−1) satisfies the shortwave approximation

as defined above. This is shown as a vertical, dashed, orange line. The

conformal time of recombination is also represented with a grey vertical line

and this shows that this k-mode does not have a sufficiently short wavelength

to contribute to the constraint despite the fact that it comes inside the horizon

before recombination. This is as one would expect as this k-value is less than

the 1 Mpc−1 shortwave limit.

4.2.5 Behaviour of density and pressure

The gravitational wave density and equation of state exhibit a range of interest-

ing physical behaviours. Figure 4.5 shows these for standard ΛCDM parameter

values as a function of k and t in the absence of neutrino anisotropic stress.

A smoothing has been applied to wgw to more clearly show the behaviour

13My integration code was modified by Dr. Adam Moss to do this analysis.
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Figure 4.5: Contour plots of the gravitational wave density, ρgw and equation of
state, wgw as functions of wavenumber and cosmological time for standard ΛCDM
parameter values without neutrino anisotropic stress. The transition between wgw =
−1/3 and wgw = 1/3 can be seen clearly. The plot of the equation of state also shows
an interesting feature in which super-horizon gravitational waves have an equation of
state which goes below −1/3 during the matter to cosmological constant transition.
The (red) long-dashed contour shows when each mode has undergone 50 oscillations,
and the (blue) short-dashed contour the epoch of matter–radiation equality.

when the gravitational wave amplitude is highly oscillatory. The super-horizon

and sub-horizon regimes can be seen clearly, along with the transition region

between the two. The epoch of matter–radiation equality is shown as a blue

dashed line. The shortwave approximation is valid for the region above the

red, long-dashed line. The pressure is not shown as it is simply related to the

density and equation of state.

When super-horizon the gravitational wave equation of state is −1/3 as

verified above, apart from at late times, during the matter to cosmological
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constant transition, when it goes below −1/3 as discussed in section 4.2.2.

This is just starting to happen to super-Horizon modes in our Universe, which

can be seen by closely inspecting the top-left of the lower panel of figure 4.5.

The integrated density of equation (4.19) and the subsequent equation of

state are shown in figure 4.6, for a representative primordial gravitational wave

source with nt = 3, kmin = 0.1 Mpc−1 and kmax = 1 Mpc−1. The lower cutoff

is chosen to be compatible with the low-frequency constraint, and the spectral

index must be relatively steep, nt & 3, to also satisfy this constraint. The

high-frequency cutoff is chosen as the shortwave approximation can be used for

frequencies above this. The sub- and super- Hubble regimes are clear in both

cases and the transition region between the two can also be seen. The equation

of state changes from −1/3 to 1/3 as shown for the un-integrated density and

pressure. Note that the integration over k acts to smooth the oscillations in

the equation of state to 1/3 when sub-horizon.

The energy density is negative for super-Hubble modes (denoted by a dashed

line in the top panel of figure 4.6), as stated in section 4 of [203] and section 2.4

here. Reiterating, since wgw = −1/3 the negative density can be interpreted as

additional positive curvature. This contribution can lead to a reduction in the

expansion rate, depending on the integration limits and primordial spectrum

in equation (4.19).

4.2.6 Neutrino anisotropic stress

So far anisotropic stress has been neglected in the equation of motion for

gravitational waves given in equation (2.10). Weinberg [195] showed that

anisotropic stress from free-streaming neutrinos has a non-negligible affect on

the gravitational wave evolution14. The neutrino anisotropic stress, Π
(T)
ν is a

functional of the time derivative of the gravitational wave amplitude so the

gravitational wave equation of motion becomes an integro-differential equation

for the gravitational wave amplitude (see [28] for details). The effect of this

14Damping of GWs by photons has been shown to be small but can in principle be
detectable via CMB spectral distortions [299].
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Figure 4.6: The gravitational wave density and equation of state as a function of
cosmological time after k-integration for a representative primordial gravitational
wave source with nt = 3, kmin = 0.1 Mpc−1 and kmax = 1 Mpc−1. The density has
two regimes, one where it goes as a−2 with a negative density (dashed) and one
where it goes as a−4 with a positive density (solid), with a transition in between. The
transition region has a positive density and consequently is also shown as a solid line
but the scale factor dependence is more complicated than ∝ a−4 here. These regimes
can be seen more clearly in the equation of state. There is some numerical noise as
the equation of state approaches 1/3 but this has no observable consequences.

is to increase the damping term in the equation of motion and reduce the

gravitational wave amplitude. This will change the analysis detailed above as,

for example, the gravitational wave density and pressure are quadratic in the

gravitational wave amplitude or its time derivative.

The numerical solutions for the gravitational wave amplitude and its con-

formal time derivative are shown in figure 4.7 for a ΛCDM background. The

oscillations in the amplitude are in phase which shows that the wavelength evo-

lution of gravitational waves is unaffected by anisotropic stress. The change in

the amplitude confirms the statement above that including neutrino anisotropic



Chapter 4. Intermediate, non-shortwave approach 136

Figure 4.7: The gravitational wave amplitude and its conformal time derivative as
a function of the scale factor when there is no anisotropic stress (orange) and when
neutrino anisotropic stress is included (blue) for k = 0.05 Mpc−1 (as in figure 4.3).
Including neutrino anisotropic stress acts as a damping to the gravitational wave
amplitude and its time derivative when the gravitational wave comes inside the
horizon.

stress acts as an increased damping. This effect is most prominent just after

each k-mode comes inside the horizon. Consequently, this is expected to alter

the behaviour of the gravitational wave density and pressure for the intermedi-

ate constraint but result in the shortwave approximation constraints still being

valid15. This is expected from the analysis of [195], where the sub-horizon am-

plitude is multiplied by a constant factor when including neutrino anisotropic

stress and is confirmed in figure 4.8, where the equation of state in the short-

wave regime is still 1/3 as the density and pressure both decrease by the same

factor.

The contour plots of the gravitational wave density and equation of state

in figure 4.8 gives the ratios of these quantities in the presence and absence of

anisotropic stress and shows other interesting effects. It is helpful to consider

figure 4.5 when comparing the absolute values of these quantities instead of

their ratios. The equation of state of super-horizon gravitational waves before

matter–radiation equality is ≈ −0.52 and therefore considerably more negative

than its value of −1/3 without anisotropic stress. This is due to the change in

15This is neglecting the changes in the degrees of freedom in the early Universe which
change the behaviour of the neutrino sector, see [212] for details of this which are valid in
the shortwave approximation.
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Figure 4.8: Top panel: The ratio of the gravitational wave densities with and
without neutrino anisotropic stress. Bottom panel: The ratio of the gravitational
wave equation of state with and without neutrino anisotropic stress. The density
roughly halves in the shortwave region but this is compensated by an equivalent
reduction in the pressure such that the equation of state is still 1/3. The equation of
state becomes more negative for super-horizon scales before neutrino free-streaming.
The absolute values in the absence of anisotropic stress are shown in figure 4.5.

the initial condition for the time derivative of the gravitational wave amplitude

when shear is included, which increases in magnitude by a factor of ≈ 1.1.

This change in Ḋ changes the density and pressure via the third terms16

(which depend on ḊD) in equations (4.20). The tensor initial conditions when

including anisotropic stress are calculated in [300] and show,

Ḋ = − 5

15 + 4Rν

k2τ +O(k3τ 2) , (4.50)

16The first terms (dependent on k2D2) are unchanged and the second terms (dependent
on Ḋ2) do not contribute for super-horizon modes at early times.
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Π(T)
ν =

4

15 + 4Rν

k2τ 2 +O(k3τ 3) . (4.51)

So the initial equation of state for super-horizon gravitational waves is,

wgw,init = −1

3

(
25 + 28Rν

25− 4Rν

)
. (4.52)

This gives wgw,init ≈ −0.52 for ΛCDM parameter values as seen in the numerical

calculation. The equation of state increases around matter–radiation equality

until the super-horizon gravitational waves have an equation of state of ≈ −1/3

after redshift ∼ 100. The change in the equation of state for super-horizon

modes during the matter-cosmological constant transition (see section 4.2.2) is

unaffected by neutrino anisotropic stress.

The neutrino anisotropic stress → 0 in the matter-dominated era which

results in the density of k-modes being nearly unchanged by the inclusion of

neutrino anisotropic stress. This can be seen above the blue-dashed line in the

top panel of figure 4.8 and was noted in [212].

4.2.7 Gravitational wave perturbations

The components of a general energy–momentum tensor at linear order, T µν

are given by equations17 1.31 (see section 1.3.2),

T 0
0 = −ρ̄(1 + δ) , (1.31a)

T 0
i = ρ̄(1 + w)vi , (1.31b)

T ij = ρ̄w

(
1 +

δP

P̄

)
δij + Σi

j . (1.31c)

Previously the density and pressure of gravitational waves have been calculated

via the backreaction of the perturbations at second order. The second order

fluctuating part (see section 2.3 and specifically equation (2.14)) of the gravita-

tional wave effective energy momentum tensor can be calculated by subtracting

the spatial average and assuming the second order perturbation jµν does not

17Reproduced here for ease of reading.
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contribute;

∆µ
ν = T (GW)µ

ν − 〈T (GW)µ
ν 〉x . (4.54)

Theoretically the gravitational wave perturbations can then be calculated us-

ing the perturbed Einstein tensor in equations (4.7) and using the fluctuating

part of the effective energy momentum tensor, ∆µ
ν as an effective first-order

perturbation energy–momentum tensor. However, the numerical prescription

required is more complicated than the background case as the components of

the effective perturbation energy–momentum tensor cannot easily be written in

terms of the initial spectrum of fluctuations. The development of a treatment

of the gravitational wave perturbations using the effective energy–momentum

tensor is a possible area of future research. Note that the difference in the

perturbed Einstein tensor found here when compared to [203] (where pertur-

bations are not considered) will result in a very different expression for the

velocity perturbation.

To proceed, a phenomenological approach to the gravitational wave pertur-

bations is adopted where gravitational waves are treated as an effective PPF

fluid18 through the model developed in Fang, Hu, and Lewis [122]. The PPF

framework is usually used in ‘smooth’ dark energy models, but has several

properties useful to model gravitational wave perturbations. Firstly, it is able

to cross the w = −1 divide, which occurs for gravitational wave oscillations

after entering the horizon. Secondly, it is designed to conserve energy and

momentum on large scales, where PGWs behave like positive curvature with

wgw = −1/3 in the absence of anisotropic stress. The gravitational wave den-

sity and pressure are constructed explicitly to conserve energy and momentum.

Finally, on small scales the PPF fluid is designed to be smooth compared to

cold dark matter, which one would expect for PGWs due to the pressure sup-

port with wgw = 1/3. In the approach used here the default PPF parameters

in camb are used.

18This model was introduced in section 1.4.5 when discussing the dark energy equation of
state.
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It is worth mentioning that in the shortwave approximation, PGWs are

modelled as an effective neutrino species, with a hierarchy of moments describ-

ing the perturbations. In the second-order method no such hierarchy exists,

and the fluid is described by its effective energy–momentum tensor. There is

no theoretical reason to expect a hierarchy of moments. There are therefore

two main observable differences expected for the treatment detailed here, when

compared to the shortwave treatment, due to the background evolution and

the treatment of perturbations. These are detailed in the next section.

4.2.8 Observables

The effects of short-wavelength gravitational waves on cosmological observ-

ables (see chapter 3) can be compared to the intermediate gravitational wave

analysis of this section. Figure 4.9 shows the CMB power spectrum for

Ωgwh
2 = 5.6 × 10−6, for gravitational waves obeying the shortwave approx-

imation with adiabatic and homogeneous initial conditions. The intermediate

gravitational waves are shown for the same density with representative param-

eters of nt = 3 and kmin, kmax = (0.1, 1) Mpc−1 without neutrino anisotropic

stress. The intermediate analysis changes the temperature anisotropies in simi-

lar ways to the adiabatic shortwave gravitational waves with a slightly smaller

magnitude. The homogeneous shortwave gravitational waves have markedly

different behaviour for low-`.

The fractional changes in the Hubble rate, H(z), and the scale of the sound

horizon, rs, are shown in figure 4.10. As expected, due to these quantities only

depending on the background and not the perturbations, the adiabatic and

homogeneous high-frequency gravitational waves have identical affects on these

parameters. The intermediate gravitational waves increase the Hubble rate

similarly to the SWA result when dominated by high-frequency, wgw = 1/3

modes but decreases the Hubble rate at high redshift when dominated by

wgw = −1/3 modes. The same effect is seen in the scale of the sound horizon

but with opposite sign and a small move to lower redshift.
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Figure 4.9: Top panel: The CMB temperature power spectrum for Ωgwh
2 = 5.6×10−6

with adiabatic shortwave approximation (SWA) initial conditions (blue dashed),
homogeneous SWA initial conditions (orange dotted) (as detailed in chapter 3) and
using the intermediate frequency method of this section (green dot-dash). Bottom
panel: the fractional difference in the CMB power spectrum due to gravitational
waves as described above when compared to the case where there are no PGWs.

The intermediate model shares some similarities with the axion model that

can potentially alleviate the Hubble tension (see chapter 5) [301]. In particular,

there is an early dark energy phase with wgw = −1/3 before a radiation phase

with wgw = 1/3 and a density that only contributes a small fraction of the

total density. Even though the energy density is negative when wgw = −1/3,

the sound horizon can still be reduced at the time of recombination. This

motivated the work of chapter 5 which details a model-independent approach

to alleviating the Hubble tension, which could be used in the future to compare

the effectiveness of models such as the gravitational wave model presented here

in reducing the Hubble tension.

This analysis assumes that the gravitational wave density is small enough

that it can be calculated as a perturbation on a ΛCDM background. As a
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Figure 4.10: Top panel: The fractional change in the Hubble rate as a function of
redshift. The shortwave approximation analysis of chapter 3 is used with adiabatic
(blue) and homogeneous (orange dashed) initial conditions. The effects due to
the intermediate frequency analysis of this section are shown in green. When the
equation of state of the intermediate frequency analysis goes negative a reduction
in the Hubble rate occurs in contrast to the increase at early times seen for the
shortwave analysis. Bottom panel: The fractional change in the size of the comoving
sound horizon with line styles as above.

consistency check, this was tested by iteratively recalculating the background

including gravitational waves. Repeating this procedure until convergence

shows an error of less than 0.01% in H(z) over all z, for the maximum value of

Ωgwh
2 allowed by data. It was concluded that this is a small enough error to

use the approximation that gravitational wave backreaction can be calculated

on a standard ΛCDM background.

Sources

The observable consequences of primordial gravitational waves depends on the

source function considered. Two source functions are considered here. So far

a steep primordial power spectrum with tilt, nt ≥ 3 has been used. This
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is motivated by the existing constraints and is used for frequencies between

∼ 10−16 Hz and ∼ 10−15 Hz. The second sources that will be considered are

delta-function sources for specific frequencies. These give constraints that are

independent of any assumptions about the spectrum of gravitational waves.

These sources therefore give the upper-limit dependent only on the data and

can be used as a consistency check on the steep sources as well as functioning

as an independent constraint.

4.2.9 Parameter constraints

To obtain limits on Ωgwh
2, the modified version of camb was integrated into

cobaya to perform an MCMC analysis. The Planck 2018 TT,TE,EE + lowE

+ lensing + BAO data set is used, as in chapter 3, with an otherwise standard

ΛCDM model. For the parameters of the PGWs, kmin = 0.1 Mpc−1 is chosen

as below this the low-frequency constraint dominates, and kmax = 1 Mpc−1 is

chosen as above this the shortwave approximation can be used. The tensor

spectral index, nt is marginalised over in the prior range 3 to 5, where the lower

limit is chosen to be compatible with the low-frequency constraint. The upper

limit is chosen to allow for non-negligible variation in the tilt. It is important

to note that no known sources of gravitational waves could give rise to such

a steep index in this frequency range and consequently this is a toy model

constraint representative of possible constraints allowed by this methodology,

not a constraint on known models (see section 2.6 and ref. [194] for details of

gravitational wave sources).

The 95% upper limit on the gravitational wave density parameter in the

absence of neutrino anisotropic stress is,

Ωgwh
2 < 8.4× 10−7 . (4.55)

When including neutrino anisotropic stress the constraint has almost the same

magnitude,

Ωgwh
2 < 8.6× 10−7 . (4.56)
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Figure 4.11: Constraints on the gravitational wave density parameter from the CMB
along with the constraint from BBN (black dashed) for comparison [94]. The B-mode
constraint from section 4.1 is shown in green along with the constraint from Planck
and BICEP2/Keck on the tensor-to-scalar ratio (green dashed) [14]. The constraint
using the intermediate approach of this section are shown for a steep source with
neutrino anisotropic stress (NAS) and for delta-function sources, also with NAS
(magenta stars). The steep source constraint is valid between k = 0.1 Mpc−1 and
k = 1 Mpc−1. The shortwave approximation integrated constraints of chapter 3 are
shown for adiabatic (red) and homogeneous (orange) initial conditions.

These are similar in magnitude to the shortwave adiabatic result and are tighter

than the B-mode constraint for most of the region where the constraints overlap.

These are integrated constraints and the constraint with neutrino anisotropic

stress is shown as a horizontal line in figure 4.11 for the frequency range

considered.

There are no strong interdependencies between the ΛCDM parameters and

the gravitational wave density parameter with or without neutrino anisotropic

stress. There is however a small preference for larger values of the CDM density

and the Hubble constant when the gravitational wave density is non-zero.
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Table 4.1: Constraints on the gravitational wave density for delta-function sources
with wavenumber, k. The corresponding value of the frequency, f is also shown. The
constraint weakens slightly for lower frequencies but is of a similar magnitude to the
adiabatic shortwave constraint for all k considered.

k/
(
Mpc−1

)
0.02 0.045 0.1 0.18 0.5

1017 × f/Hz 3.1 7.0 16 28 78

107 × Ωgwh
2 (95% upper limit) 4.3 7.7 4.9 6.1 9.3

Delta-function sources

The values of the constraint on the gravitational wave density parameter

for different wavenumbers in the range (0.02 – 0.5) Mpc−1 (or in terms of fre-

quency, ∼ (3 – 80)×10−17 Hz), when using delta-function sources and including

anisotropic stress, are shown in table 4.1. They are also plotted in figure 4.11

as stars. The constraint is extended to lower frequencies than the constraint

for a steep source and tightens slightly as the frequency decreases but is of

nearly the same magnitude for the region of overlap.

As for the steep source, there are minimal interdependencies of the ΛCDM

parameters with the gravitational wave density parameter when considering

delta-function sources. For the larger k-values (k = 0.18 Mpc−1 and k =

0.5 Mpc−1) there is a small favouring of an increase in Ωch
2 for non-zero Ωgwh

2.

For the smallest k considered, k = 0.02 Mpc−1, there is a small preference for

lower values of Ωbh
2 and H0 as the gravitational wave density is increased.

4.3 Summary and outlook

In this chapter constraints on low-frequency PGWs from the CMB have been

presented. This includes updated constraints from B-mode polarisation at the

lowest frequencies and a new intermediate constraint that bridges the region of

applicability of the two. These constraints are compatible with each other as

well as with the result using the shortwave approximation (see chapter 3) and

provide the tightest current constraints in their particular frequency ranges.
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Existing B-mode analyses use a short wavelength approximation to convert

constraints on the tensor-to-scalar ratio to constraints on the gravitational

wave density parameter despite this depending on super-horizon gravitational

waves. This was discussed and it was emphasised that using this conversion is

only a first approximation to the gravitational wave density. This conversion is

used as a first approximation and also for consistency with existing constraints

and in this case the direct constraint on the tensor power spectrum becomes

a constraint on the gravitational wave density. The constraint from low-`

polarisation shows that peak sensitivity occurs for scales close to the horizon

size at recombination, corresponding to f ∼ 10−17 Hz, with a gravitational

wave density Ωgwh
2 ∼ 10−16. These limits become much weaker for f &

10−16 Hz, and at f ∼ 3 × 10−16 Hz a stronger result comes from the second-

order backreaction of gravitational waves. This approach allows a limit of

Ωgwh
2 < 8.4 × 10−7 (at 95% confidence) to be placed for a steep source and

also allows limits to be obtained for delta-function sources, in a previously

unconstrained frequency region of 10−15 Hz & f & 3 × 10−16 Hz. The effects

of including neutrino anisotropic stress can be investigated and the constraint

is shown to be almost unchanged. This approach can also be used to find the

region of validity of the shortwave approximation used for higher frequency

gravitational waves.

These constraints will be tightened by future ground and space based

CMB observations from CMB-S4 and from polarisation via LiteBIRD, CORE

and PIXIE among others (see section 1.5.3) [175–178]. These will result in

an order of magnitude improvement in the measurement of extra relativistic

degrees of freedom and an even greater improvement in the tensor-to-scalar

ratio. Combining these with other cosmological observables promises to further

illuminate the early Universe.

There are several possibilities for future work. Due to the numerical chal-

lenges of calculating the fluctuations due to the second-order backreaction, in

this analysis we have treated them as an effective PPF fluid. In future work
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this could be done via an effective perturbation energy–momentum tensor and

the line-of-sight CMB formalism. It is worth noting though that, even in the

shortwave limit, differences are expected compared to modelling gravitational

waves as an effective neutrino species with a hierarchy of moments.



Chapter 5

Alleviating the H0 Problem

As seen in the previous chapter, gravitational waves change the background

expansion in a similar way to existing early dark energy (EDE) models that

aim to alleviate the H0 problem and as a result we investigate what properties

of EDE are required to reduce the Hubble tension. The observational details

of the H0 problem were presented in section 1.4.6. The reader is referred there

for details. This section will contain details of some of the theoretical models

aiming to reduce the Hubble tension and will also present work done to develop

a model-independent approach (MIA) that shows what kind of modifications

to the background evolution provide the best fit to observations.

5.1 Theoretical models for the Hubble tension

There are two basic approaches to explaining the Hubble tension. Either there

are systematic errors in the observations which bias the measurement of H0,

or new physics, not included in ΛCDM, is changing the value of H0 measured

using different observational probes. The focus here is on the latter of these

explanations but it is still possible that systematics are the cause and the

Hubble tension will go away with future observations [126, 302, 303].

One of the most popular models that reduces the Hubble tension involves

the addition of an oscillating scalar field (called the axion model here1), which

is presented in Poulin et al. [301, 304, 305]. Aghanim et al. [1] claim that the

1This model is more general than the axion model often considered as a dark matter
candidate.

148
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Hubble tension cannot be resolved by modifying dark energy in the late Uni-

verse but models of EDE that change the expansion at or before recombination

have the possibility of changing the scale of the sound horizon, and conse-

quently the CMB determination of H0, without negatively impacting the fit to

other parameters or observables (such as BAO). In the axion model the early

dark energy component acts as a cosmological constant, but with negligible

contribution to the overall energy density of the universe at early times, before

reaching a critical era around matter–radiation equality, when it becomes of

order 10% of the background density. After this the EDE component quickly

drops away with an equation of state which, around this time, transforms from

−1 to a positive value large enough that it decays faster than the dominant

background fluid. It is commonly assumed to decay at least as quickly as

radiation and hence have an equation of state ≥ 1/3. The parameters of the

model can be picked so that this happens before recombination, the effects only

occur for a small range of redshifts and so that the new field never dominates

the total energy density.

One of the key properties of this model is the choice of scalar field potential,

V (φ) ∝
(

1− cos
φ

f

)n
, (5.1)

where φ is the field value, f is the decay constant and n is a (not-necessarily

integer) constant. The choice, n = 1 corresponds to the standard axion poten-

tial whilst other choices of n constitute a generalisation of this [305]. As stated

above, the equation of state is −1 before the critical redshift and after oscillates

about an average value such that it behaves like a fluid with an equation of

state,

wn =
n− 1

n+ 1
. (5.2)

For n = 2 the fluid evolves with the same time dependence as massless neutrinos

or radiation. The cosmological effects were originally calculated using the above

fluid approximation when the Hubble parameter fell below a critical value,
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chosen to be close to the value during the transition regime [301]. More recently

a method solving the axion equation of motion throughout the evolution was

developed2 [305].

The axion model is implemented in camb (see section 1.5.1) using the

fluid approximation throughout the evolution. This is explained explicitly in

section 5.2.

The highest value of the Hubble constant obtained for the axion model is3,

H0 = 71.45+1.1
−1.4 km s−1 Mpc−1 [305] when solving the equation of motion of the

scalar field in full (instead of using a fluid approximation), marginalising over

the parameter controlling the potential, n and using Planck 2015 temperature

and polarisation, SHOES distance ladder, BAO, and Pantheon supernova data

(see ref. [305] for details). It is also shown that compared to ΛCDM, the fit to

CMB data is improved by the axion model with the above value of H0.

In ref. [305] it is suggested that the fit to the density fluctuation amplitude

parameter, σ8, is worsened by the axion model. Consequently an independent

group [306] have analysed the effects of this model on large-scale structure

(LSS) data. While the authors of ref. [306] reproduce the CMB only analysis4

the addition of LSS data weakens the detection of an EDE component to below

2σ and increases other tensions. Hence, they conclude that the axion model is

no better than ΛCDM and suggest that it will not solve the H0 problem.

Another approach to addressing the H0 tension is to suggest that dark

energy could cross into having a phantom equation of state (w < −1) at late

times [307]. This is modelled through an expansion of the energy density of

the dark energy component in terms of the scale factor, up to third order.

Using CMB and BAO data, the early-Universe value of the Hubble constant

found in this model is H0 = 71.0+2.9
−3.8 km s−1 Mpc−1, which is consistent with

the local measurements, primarily due to the increased errors. When including

2Both of these codes are publicly available. Using the fluid approximation and solving
the equation of motion.

3This and all future error bars in this chapter are at 68% confidence unless stated
otherwise.

4The code used is available at github.com/mwt5345/class ede.

https://github.com/PoulinV/class_EDE
https://github.com/PoulinV/AxiCLASS
https://github.com/PoulinV/AxiCLASS
https://github.com/mwt5345/class_ede
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data from local measurements and supernovae, the Hubble constant is H0 =

70.25 ± 0.78 km s−1 Mpc−1 with the phantom crossing happening at a scale

factor of 0.851+0.048
−0.031. This leaves a 2.3σ tension with Riess et al. [308] which,

coupled with the fact there are serious theoretical issues with having phantom

fields such as the nature of vacuum instabilities, leave this model somewhat

disfavoured.

Another attempt to solve the Hubble tension by changing the late-Universe

physics and hence the local determination of H0 was presented in Benevento,

Hu, and Raveri [309]. They argued that a change in the dark energy behaviour

at z � 0.1 when compared to ΛCDM can provide equally as good a fit while

resulting in values of H0 that agree with [308]. However, supernovae data

goes to redshifts well above the required transition redshift and these strongly

constrain the possible increase in the Hubble parameter from this model. The

value found when considering CMB, BAO, distance ladder and supernovae is

H0 = 69.17± 1.09 km s−1 Mpc−1 which only slightly reduces the tension.

The theoretical model which, to date, allows for the highest value of the

Hubble parameter is New Early Dark Energy (NEDE) [310, 311]. A dark sector

phase transition before recombination is suggested as a method for changing the

expansion before the CMB was emitted. This acts similarly to the axion model

as the phase transition results in a change in the value of the cosmological

constant which is analogous to a period where dark energy affects the expansion

at early times, before redshifting away faster than the background. Using data

from the CMB, BAO and supernovae, H0 = 71.4 ± 1.0 km s−1 Mpc−1. This

reduces the Hubble tension to 1.5σ using distance-ladder observations from

ref. [308].

5.2 CAMB axion model

The axion dark energy model first presented in ref. [304] (and introduced above)

is implemented in the default version of the code camb. As this is used for

the subsequent analysis some more detail of the exact implementation is given.
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For the axion model there are 4 theory parameters (n,Θi, µ, α) that control

the behaviour. Θi is the initial field value, n is the index of the potential

(see equation (5.1)), µ is the parameter controlling the mass of the axion and

α is the coupling parameter. The axion implementation in camb uses the

fluid approximation throughout. This fluid approximation is also governed

by 4 parameters, (ac,Ωa,0, wn, ω̄0). The first, ac is the critical value of the

scale factor at which the fluid transitions away from evolving as a cosmological

constant. Ωa,0 is the fractional density of the axion fluid at the present time.

It is more common in the literature to use Ωa(ac) to quantify the density

but the current value is more easily implemented into solving the background

evolution and is hence used in camb. The equation of state of the axion

fluid after the transition is given by wn and is related to n by equation (5.2).

Finally, ω̄0 governs the scale dependence of the effective sound-speed and is

consequently the parameter governing the perturbations [304]. The theory and

fluid parameters can be related under certain approximations and hence allow

the behaviour of the axion model to be solved under these conditions. This is

also important to be able to numerically calculate the evolution of the axion

model if the four fluid parameters are specified.

Given the initial value of the axion density the evolution is given by5,

Ωa(a) =
Ωa,0

(
a
−3(1+wn)
c + 1

)
(a/ac)

3(1+wn) + 1
. (5.3)

A critical time, xc is defined such that the field value at this time is given

by, Θ(xc) = FΘi, where F is an arbitrarily defined number that specifies the

fractional change in the field value. Numerical evolution suggests that F = 7/8

works best in calculations of ac [304]. The mass parameter, µ is given by [304],

µ =
1

xc

(1− cos Θi)
−(n−1)/2

√
(1−F)(6p+ 2)Θi

n sin Θi

, (5.4)

where p is a constant that is equal to 1/2 during radiation domination and 2/3

5This is equivalent to the expression in terms of Ωa(ac) given in ref. [304]. The conversion
is done by evaluating equation (15) of ref. [304] at the current value of the scale factor, a0.



Chapter 5. CAMB axion model 153

during matter domination. The constant, p is usually set to 1/2 as the initial

field value is set during the radiation epoch. In camb this is calculated via,

xc =
a2

c

2

√
8πGa2ρr

3
, (5.5)

where ρr includes photons and neutrinos. Consequently the theory parameter,

µ can be calculated from Θi and n for a given background cosmology. Note

that the expression for µ is only valid for Θi
<∼ π − 0.1 as the expansion used

for the potential breaks down above this limit [304].

Assuming that the fraction of the total density for the field at the critical

scale factor, fa(ac) � 1 the parameter controlling the perturbations, ω̄0 is

given by [304],

ω̄0 =µ(1− cos Θi)
(n−1)/2

√
πΓ[n+1

2n
]

Γ[1 + 1
2n

]
2−(n2+1)/2n 3( 1

n
−1)/2

a
− 6
n+1

+3
c

(
a6n/(n+1)+1

c

)( 1
n
−1)/2

, (5.6)

where Γ(x) is the standard gamma function.

Once the perturbation evolution equations are specified, the full evolution

of the axion fluid can be calculated. In the synchronous gauge (with potentials

h and η as defined in section 1.3.1) the equations for the density contrast, δa

and heat-flux ua, for the mode k, are of the form [312],

δ̇a = −
[
kua + (1 + wa)

ḣ

2

]
− 3H(c2

s,axion − wa)
(
δa + 3Hua

k

)
−3H ẇa

(1 + wa)

ua

k
, (5.7)

u̇a = −(1− 3c2
s,axion)Hua +

ẇa

(1 + wa)
ua + kc2

s,axion δa , (5.8)

where the heat-flux, ua ≡ (1 + wa)va is favoured over the velocity, va for

numerical stability when wa ≈ −1. The axion sound speed,

c2
s,axion =

2a(2−6wa)ω̄0(n− 1)2 + k2

2a(2−6wa)ω̄0(n+ 1)2 + k2
. (5.9)

Note that, for n→∞, wa → 1 and c2
s,axion → 1.

These equations together are all that is required to calculate the evolution
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of the axion model given the 4 model parameters, (ac,Ωa,0, wn, ω̄0). To reiterate

the equations are valid for Θi
<∼ π − 0.1 and fa(ac)� 1.

5.2.1 Results

We use Planck 2018 data [1] in combination with baryon-acoustic oscillation

(BAO) data from BOSS DR12 [112], 6dFGS [113] and SDSS-MGS [114]. The

Planck likelihoods used are the TT, TE and EE spectra at ` ≥ 30, the low-`

likelihood using the Commander component separation algorithm [163],

the low-` EE likelihood from the SimAll algorithm, and lensing [89]. We

refer to this TT,TE,EE + lowE + lensing + BAO combination as our base

data set. The local H0 measurement is included using data from [308]. We

refer to this as our base + H0 data set.

We do an MCMC analysis, using cobaya and the two data combinations

above, over the 6 ΛCDM baseline parameters, with Neff = 3.046 and the sum

of the neutrino masses fixed to 0.06 eV as before. The camb axion fluid is

constrained in two forms. One where the equation of state after the transition,

wn is free to vary and one where it is forced to be close to 1. In the second

case the sound speed, c2
s,axion is also close to 1 and the fluid approximation is

expected to describe this case more accurately. In both of these Θi = π/2

with (wn, ac, fa(ac)) as the extra parameters quantifying the axion models. We

assume flat priors on the ΛCDM parameters, and the log of the fractional

energy density of the axion models at the transition scale.

The mean and best-fit values of the ΛCDM and axion parameters, along

with the χ2, for the base + H0 data set are shown in table 5.1. The best-fit

value of the Hubble constant is increased for the axion models which confirms

previous conclusions that it can be used to reduce the Hubble tension [301,

304, 305]. The best-fit χ2 is decreased in the axion model, with δχ2 = −11.6,

which also supports previous analyses which showed that the axion model

fits the data better than ΛCDM. The same data (Planck 2018 and ref. [308]

distance ladder), fluid approximation and model parameters as the axion model
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Parameter ΛCDM Axion Axion (high wn)

log(1010As) 3.051 (3.053)± 0.012 3.063 (3.065)± 0.015 3.063 (3.073)± 0.015

ns 0.9696 (0.9695)± 0.0029 0.9826 (0.989)± 0.0075 0.9808 (0.983)± 0.0063

H0 68.23 (68.32)± 0.32 70.4 (70.9)± 1.0 70.22 (70.3)± 0.92

Ωbh
2 0.02253 (0.02255)± 0.00011 0.02284 (0.02290)± 0.00023 0.02287 (0.02291)± 0.00023

Ωch
2 0.11814 (0.11799)± 0.00070 0.1270 (0.1275)± 0.0038 0.1263 (0.1259)± 0.0033

τreio 0.0594 (0.0607)± 0.0060 0.0580 (0.0598)± 0.0074 0.0569 (0.0603)± 0.0074

wn - > 0.549 (0.536) > 0.915 (0.983)

log10(ac) - −3.65 (−3.74)+0.16
−0.097 −3.552 (−3.520)+0.071

−0.050

fa(ac) - 0.057 (0.055)+0.022
−0.020 0.063 (0.064)+0.025

−0.022

χ2 (2074.49) (2062.9) (2065.3)

Table 5.1: Mean (best-fit) values of the axion model parameters and the baseline
ΛCDM parameters for the axion model with 1σ errors. The axion fluid model is
considered along with an axion model in which the late-time equation of state is
constrained to be close to 1. The values in a ΛCDM run are shown for comparison
along with the χ2 for the full base + H0 data set which suggest that the axion
models fit the data slightly better than ΛCDM. The increased values of H0 support
the conclusion that the axion model reduces the Hubble tension.

considered here, have not been considered together in previous work, but the

decrease in χ2 appears to be smaller here than in ref. [305] where δχ2 = −20.33

and n is similarly free to vary. The change in χ2 for the high wn axion model

of −9.6 is similar to that quoted in ref. [301].

The density fraction and change in the CMB power spectrum for the two

best-fit axion models are shown in figure 5.1. The axion model when wn ≈ 1

has a narrower, taller peak in the energy fraction and peaks slightly later than

the normal axion model. The maximum values are both less than 1% and

hence the assumption that fa(ac) � 1 is satisfied. The changes in the CMB

power spectrum when compared to the best-fit ΛCDM model are O(1%).

The posterior probability for the Hubble constant for the ΛCDM model

with base and base + H0 data, along with the axion model for base + H0 data

are shown in figure 5.2. It confirms the fact that the axion model alleviates

the Hubble tension through a combination of increasing the best-fit value of
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Figure 5.1: Comparisons of the early dark energy fraction, fEDE(z) and the change
in the CMB power spectrum for the best-fit models from MCMC of the base + H0

data set for the axion fluid (blue dot-dash), axion fluid with wn ≈ 1 (orange dash)
and model-independent approach (MIA) (green solid).

H0 and increasing the width of the posterior, i.e. increasing the error bar.

5.3 Model-independent approach

As there are increasingly many theoretical models (for recent examples see

refs. [313–323]) seeking to reduce the Hubble tension through modifications of

the expansion history, it is important to understand what generic features of

these models are contributing to better fitting the observations.

With that goal in mind our idea is to use a set of basis functions that

categorise modifications to the cosmological background for different redshifts,

constrain the equation of state and energy density of the new dark energy

component in each redshift bin and then calculate which redshift regions are
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Figure 5.2: The posterior probability distribution for H0 for a variety of data and
models. The lowest value is for the base data set (black) with the second lowest for
base + H0 (red). The other three curves are all for base + H0 data for extensions
to ΛCDM aimed at alleviating the Hubble tension. In order of increasing mean
H0 these are: the model-independent approach (MIA) (magenta); axion fluid with
wn ≈ 1 (green) and the axion fluid with no constraint on wn (blue).

most important for alleviating the H0 tension.

We do this by including a set of N fluids with energy density, Ωi that are

relevant for different redshift regions. This could also be interpreted as a single

fluid with an effective equation of state that includes contributions from all of

the redshift regions (see equation (5.15) below). The set of fluids modify the

Friedmann equation as,

H2(a) = H2
0

[
Ω(a) +

N∑
i=1

Ωi(a)

]
, (5.10)

where Ω(a) is the total density in ΛCDM. We choose a functional form for the

equation of state of each fluid such that it scales like a cosmological constant

before a transition scale, ai and as a stiff fluid (w = 1) after, via,

wi(a) =
2

1 + (ai/a)β
− 1, (5.11)
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where β is a parameter that sets the speed of the transition between the two

regimes. The reason we choose a stiff fluid is that it provides the most rapid

decay of its energy density that is consistent with having a perfect fluid equation

of state. The equation of state implies that the energy density of the fluid has

the form,

Ωi(a) = Ωi(ai)

(
2aβi

aβ + aβi

)6/β

, (5.12)

where Ωi(ai) is the density at the transition scale. We parameterise this in

terms of the fractional density compared to a reference ΛCDM value at the

transition scale, i.e. fi = Ωi(ai)/Ω
ref(ai), where the reference model is chosen

to be the Planck best-fit. Note that if β = 6, this is the same scaling of density

and equation of state as in the fluid approximation to the axion model [304].

Consequently the model for each of the fluids is similar to the axion model but

allows for faster transitions between the two limits of the equation of state.

Perturbations are included via effective values for the total fluid found by

summing the contributions of the N separate fluids. Similarly to the axion

fluid model, the synchronous gauge equations for the density contrast, δ and

heat-flux u, for the mode k, are of the form [312],

δ̇ = −
[
ku+ (1 + weff)

ḣ

2

]
− 3H(ĉ2

s − weff)
(
δ + 3Hu

k

)
−3H ẇeff

(1 + weff)

u

k
, (5.13)

u̇ = −(1− 3ĉ2
s )Hu+

ẇeff

(1 + weff)
u+ kĉ2

sδ . (5.14)

where H = aH, ĉ2
s is the sound speed in the frame co-moving with the fluid,

and weff is the effective equation of state, given by

weff =

∑
i Ωiwi∑
i Ωi

. (5.15)

The heat-flux, u, is again favoured over v for numerical stability. The adiabatic

sound speed is

c2
a ≡

Ṗa
ρ̇a

= weff −
ẇeff

3(1 + weff)H
, (5.16)
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Figure 5.3: (Top) Density, Ω(a), for a 2-component model with transition scales
ai = 10−4, 10−2, each with an energy density of fi = 0.1 of the background at
the transition scale. The solid blue line is the total ΛCDM density (called Ω(a)
in equation (5.10)). (Middle) Effective equation of state of the 2-component fluid.
(Bottom) Relative change in the Hubble rate compared to ΛCDM with 2-components.
The case with β = 6 is given by the dashed line in the bottom two panels and β = 12
is the solid line.

and is bounded by −(1 + β/3) < c2
a < 1. For simplicity ĉ2

s will be set to 1 for

all applications considered here.

The set of fluids defined above can be thought of as a set of well-defined

basis expansions for δ(H2) as they obey −1 ≤ weff ≤ 1 by construction. The

basis expansion is capable of reconstructing any modification to δ(H2) that

satisfies −1 ≤ weff ≤ 1, for a sufficiently large number of components. We

choose β to be large enough such that the basis has a high temporal resolution

but remains numerically stable. 2-component models with β = 6 and β = 12

are illustrated in figure 5.3 showing the behaviour of the density of the fluids,
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Figure 5.4: (Top) The early dark energy fraction as a function of redshift for the
axion model (blue solid) and for the MIA with 4 fluids with their amplitudes matched
to give a similar early dark energy fraction (orange dashed). (Bottom) The fractional
change in the CMB power spectrum as a result of the two models.

the effective equation of state and the change in the Hubble parameter.

As an example of how this model is able to reproduce other specific models,

figure 5.4 shows the early dark energy fraction, fEDE(z) = ρEDE(z)/ρcrit(z)

for the baseline axion model used in ref. [306] and using four fluids close to

recombination in the MIA. The amplitudes of the fluids are chosen through

a least squares minimisation of the MIA early dark energy fraction with the

early dark energy fraction of the axion model. It is clear that the MIA model

is able to reproduce the effects of the axion model well, even when a small

number of fluids are used.

As a further illustration, figure 5.5 shows how the MIA can be used to

reproduce the best-fit axion fluid models from the previous section. The initial
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Figure 5.5: Comparisons of the early dark energy density fraction, fEDE(z) and the
fractional change in the CMB power spectrum, for the model-independent approach
matched to the best-fit axion models. Left: the axion model (blue solid) and fitted
MIA (green dashed) and right: the high wn axion model (orange solid) and fitted
MIA (green dashed).

amplitudes of the MIA fluid components are optimised using a least-squares fit

of the resulting energy density fraction, fEDE. The early dark energy fraction is

fit well in both cases as is the change in the CMB power spectrum at `>∼ 1000.

For smaller `, deviations between the axion models and the MIA can be seen

but the MIA fits the change in the CMB power spectrum better for the high

wn axion model. This is expected due to the assumption that ĉ2
s = 1 for the

MIA and the fact that c2
s,axion → 1 for wn → 1, i.e. the behaviour of the

perturbations are more similar for the high wn axion model than the normal

axion model.

5.3.1 Results

MCMC was carried out on the MIA as for the axion models in the previous

section. The base + H0 data set was used and we assumed flat priors on the
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log of the fractional energy densities at the transition scale. As mentioned

previously, the sound speed was set to 1 for simplicity.

The mean and best-fit parameter values for the MIA are shown in ta-

ble 5.2. The MIA parameters are the logarithms of the initial density ampli-

tude, log10(ρi) for each of the 30 fluids considered. These fluids are spaced

between z = 0 and z = 105 and the lowest and highest redshift fluids have their

amplitudes fixed to log10(ρ1,30) = −5.0. The MCMC results show that the 9th

and 10th fluid components have the largest amplitudes as one would expect as

they correspond to times just before recombination, close to where the best-fit

axion models contribute most to the density. The best-fit χ2 suggests that the

MIA fits the data better than the ΛCDM model, with δχ2 = −7.9, but not

quite as well as the axion models. The posterior on H0 shown in figure 5.2 also

suggests that the MIA does slightly less well at alleviating the Hubble tension.

The fractional energy density and change in the CMB power spectrum

for the best-fit MIA model is shown in figure 5.1. The MIA has the largest

contribution to the energy density and similar magnitude of change in the

CMB power spectrum to the axion models.

The energy density and equation of state of the total fluid in the MIA can

be reconstructed from the MCMC analysis. This gives the required evolution of

the early dark energy fluid to best-fit the base + H0 data. The reconstructions

of the full dark energy fluid (with cosmological constant) and just the MIA

fluid are shown in figures 5.6 and 5.7 respectively. These show that a density

of ∼ 10% is allowed just before recombination if the equation of state of

the dark energy fluid transitions quickly from a negative to positive value.

The equation of state then approximately tracks the background during the

matter era before transitioning to cosmological constant domination. When

the cosmological constant comes to dominate the MIA fluid equation of state

transitions to a large positive value suggesting a late-time equation of state of

the total dark energy fluid slightly above −1, is favoured, though the allowed

energy density of the MIA fluid at this point decreases to <∼ 0.5%. This is
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Parameter MIA: mean MIA: best-fit

log10(ρ2) < −3.00 −3.52

log10(ρ3) −3.33+0.83
−1.0 −4.50

log10(ρ4) < −3.68 −4.06

log10(ρ5) < −3.55 −4.75

log10(ρ6) −3.47+0.76
−0.91 −2.97

log10(ρ7) < −2.90 −2.81

log10(ρ8) −3.35+0.72
−1.4 −4.57

log10(ρ9) −1.86+0.31
−0.26 −2.05

log10(ρ10) −1.47+0.44
−0.38 −1.07

log10(ρ11) < −2.24 −3.75

log10(ρ12) < −3.46 −3.33

log10(ρ13) < −2.81 −4.55

log10(ρ14) −3.53+0.66
−0.87 −4.71

log10(ρ15) −3.58+0.56
−1.2 −3.55

log10(ρ16) −2.89+0.82
−0.71 −3.06

log10(ρ17) −3.45+0.74
−0.94 −4.88

log10(ρ18) −3.10+1.0
−0.66 −3.92

log10(ρ19) < −3.86 −3.39

log10(ρ20) < −2.94 −3.08

log10(ρ21) −3.38± 0.65 −4.55

log10(ρ22) −3.39± 0.81 −3.31

log10(ρ23) −3.30+0.93
−0.75 −4.42

log10(ρ24) < −2.82 −2.98

log10(ρ25) −3.43+0.74
−0.89 −4.04

log10(ρ26) < −3.13 −4.22

log10(ρ27) < −3.57 −3.94

log10(ρ28) < −3.70 −4.75

log10(ρ29) < −3.16 −4.60

log10(1010As) 3.067± 0.017 3.074

ns 0.9766± 0.0056 0.9790

H0 69.6± 1.0 70.3

Ωbh
2 0.02278± 0.00020 0.02281

Ωch
2 0.1255+0.0029

−0.0036 0.1285

τreio 0.0592+0.0088
−0.0071 0.0579

χ2 - 2067.0

Table 5.2: Mean (best-fit) values of the model-independent approach (MIA) ampli-
tudes (ρi), the baseline ΛCDM parameters and the χ2, with 1σ errors. The data
used is the base + H0 data set. There are 30 MIA fluids spaced from z = 0 (ρ1) to
z = 10−5 (ρ30) with these two fluids set to an amplitude of log10(ρ1,30) = −5.0.
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likely to be due to the fact that the latest-time fluid has its energy density

fixed to a low value which requires the fluid to decay quickly and is therefore

unlikely to be a physical effect. The favouring of a positive effective equation

of state at redshifts above matter-radiation equality is not understood and is

currently under investigation. The results are inconclusive at the moment and

a non-zero energy density is not favoured, but an understanding of what is

driving this transition offers a potentially interesting avenue for further work

and for verification with future data.

Because the allowed early dark energy model agrees qualitatively with

the expectations of tracking quintessence models we intend to investigate the

viability of known models for alleviating the Hubble tension by comparing to

the MIA in a future publication.

5.4 Principal component analysis

Principal component analysis (PCA) is a statistical methodology that can be

used to calculate which components of a data-set are contributing most to an

output variable. It can also be used for systematic dimensional reduction that

maintains information from the original data. PCA is an ideal tool for our

purposes as it can be used to quantify which modifications to the background

expansion (if any) are most important for alleviating the H0 tension.

PCA maps the original data to an uncorrelated and orthogonal basis. This

is done by calculating the data covariance matrix for the input parameters.

This covariance matrix has the individual parameters variances as the diagonal

elements and the covariance between parameters as off-diagonal elements and

is therefore symmetric. Then the eigenvalues and eigenvectors of the covariance

matrix are calculated. The largest eigenvalues correspond to the eigenvectors

in parameter space which specify the direction in which the data changes

most. When the eigenvalues are put in descending order they are called the

principal components (PCs) such that the largest eigenvalue and its eigenvector

correspond to the first principal component and so on.
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Figure 5.6: The fractional energy density and equation of state of the total MIA
fluid and cosmological constant reconstructed from the MCMC analysis. The pale
blue region is the 1σ allowed values and dark blue is the 2σ region.

To use this for dimensional reduction the variance ratio is calculated. This

is the fraction of the variance that is explained by each component. If a

requirement is chosen that x% of the information in the original data-set is

required, then the variance ratios of the principal components are summed

until the sum reaches or exceeds x%. All further principal components can be

dropped while only having a small impact on the accuracy of any conclusions

that are drawn from the lower dimensional data-set (dependent on the value

of x).
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Figure 5.7: The fractional energy density and equation of state of the total MIA
fluid (without the cosmological constant) reconstructed from the MCMC analysis.
The pale blue region is the 1σ allowed values and dark blue is the 2σ region.

It is worth noting that the principal components are a good basis for clearly

analysing the contributions to the variance of the data but are linear sums of

the input variables and are consequently less simply related to the underlying

physics. However, the correlation of the principal components with the physical

parameters can help to clarify their physical effects.

5.4.1 Results

A principal component analysis was carried out on the MCMC covariance

matrix for the initial amplitudes of the MIA fluids. This resulted in 28 principal
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Figure 5.8: The fractional energy density of the total MIA fluid for the first 12
principal components (PCs) for redshifts around matter–radiation equality. The
absolute amplitudes are arbitrary but the positions of the peaks suggest what physics
is most important in explaining the base + H0 data set.

components being found, the first 12 of which explained over 80% of the variance

in the data. This variance ratio is chosen somewhat arbitrarily but is expected

to be high enough for the current analysis. The resulting energy fraction of the

early dark energy component around matter–radiation equality, for these 12

principal components, are shown in figure 5.8. The change in the CMB power

spectrum when compared to the case with no MIA fluids is shown in figure

5.9. It is worth noting that the absolute normalisation of both of these figures

is arbitrary and PCs have not been modified dependent on their eigenvalues.

Also, the range of allowed features in the early dark energy fraction is large

and consequently the analysis does not give well defined behaviours for each
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Figure 5.9: The change in the CMB power spectrum, when compared to the same
cosmological parameters with no MIA fluids (i.e. just a cosmological constant), for
the first 12 principal components. The first principal component suggests an increase
in total power while the second principal component, along with the fifth, tenth and
eleventh, principal components suggest a tilt in the power spectrum towards more
power at large scales.

principal component. However, some general features do emerge. The first

principal components strongest correlation is with the scalar amplitude, As.

This can be seen in figure 5.9 where PC1 results in a positive δC` for all ` and

hence is an increase in power. Consequently, inclusion of the dark energy fluid

increases the homogeneities in the CMB. The second principal component has

strong correlations with the scalar amplitude, As and the scalar tilt, ns. The

conclusions from the change in As are similar to those for the first principal

component while the change in tilt favours more CMB power at large scales.
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This change in tilt is also seen in PC8 and PC11 and to a lesser extent in PC9

and PC10. The first two PCs, which together have a variance ratio of ≈ 30%,

have moderate correlations with σ8 which suggests that the conclusion in ref.

[305], that the axion model worsens the fit to σ8, may be true more generally in

EDE models. Figure 5.8 shows that these two principal components also have a

non-zero energy density for very low redshift but this is another manifestation

of the conditions set on the lowest redshift bin, as discussed above, and is not

expected to be a true physical effect.

The principal components with the strongest correlation with the Hubble

constant are PC3 and PC7. These both represent dark energy fractions that

peak strongly before recombination, which is the behaviour we expect to be

necessary for alleviating the Hubble tension from the axion model. This peak

in the early dark energy fraction before recombination is seen in nearly all of

the principal components. Figure 5.9 shows that PC3 and PC7 are primarily

shifts in the CMB peaks and troughs at intermediate and small scales and

resultingly this is tentatively suggested as the favoured change in the CMB

that alleviates the Hubble tension. In addition the first two principal com-

ponents have moderate correlations with the Hubble constant. As the first

three principal components, which explain ≈ 40% of the variance, all have

non-negligible correlations with the Hubble constant, the expectation - that

improving the fit to the Hubble constant is important for better explaining the

data - is confirmed.

5.5 Summary and outlook

This chapter detailed preliminary work to investigate the features of early dark

energy models that are believed to be necessary for alleviating the Hubble ten-

sion. As such it began with a brief overview of existing models with particular

emphasis on the axion model [304]. This was followed by details of an MCMC

analysis of the ΛCDM and axion models for CMB, BAO and distance ladder

data. The parameter values for the axion model were similar to those quoted
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in the literature. An axion model constrained to have a late-time equation

of state, wn close to one was also considered as the fluid approximation is

expected to describe this case better. This only produced small changes in the

best-fit parameters when compared to the normal axion model. Both cases

resulted in a reduction of χ2 when compared to ΛCDM suggesting a better fit

to the observational data, though the reduction in χ2 for the axion model is

less than those presented in the literature for similar analyses by about 3 or 4

[301, 305, 306].

After this, a model-independent approach was developed which uses a sum

of individual fluids that transition from an equation of state of −1→ 1 at dif-

ferent times. Setting appropriate amplitudes for a suitable number of fluids can

reproduce a large range of modifications to the expansion history. An MCMC

analysis was also carried out on this model finding an increase in the best-fit

value of the Hubble constant to H0 = 70.3 km s−1 Mpc−1. This is slightly lower

than the best-fit value for the axion model of H0 = 70.9 km s−1 Mpc−1 but the

same as the best-fit value for the high wn axion model. The fluids with the

largest amplitudes corresponded to times close to matter–radiation equality

as expected from the axion model. The density and equation of state of the

total MIA fluid were reconstructed from the data showing a clear peak and

transition period for z ≈ 3 × 103. The behaviour of the equation of state

suggested that existing models of dark energy, which track the background

equation of state, could have the required behaviour to alleviate the Hubble

tension. The study of these tracking dark energy models and their comparison

with the constraints given here, are an area for future research.

Finally, a principal component analysis was carried out based on the MCMC

analysis of the model-independent approach. This was done to show which

modifications to the background evolution were most important for alleviating

the Hubble tension and to find the effects the best-fit early dark energy model

has on the cosmological parameters. While the necessary background evolution

is difficult to discern directly from the data presented here, the correlations
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of the principal components with the cosmological parameters do show some

interesting effects. An increase in the amplitude of the CMB power spectrum

and also a tilt to larger values at large scales are induced by the best-fit early

dark energy model. In the future the principal component analysis could be

used to compare the effectiveness of different models aimed at reducing the

Hubble tension. New data constraining the background expansion will improve

this analysis and therefore allow for stricter comparison of theoretical models.

This promises to be increasingly important as more and more models are

proposed which aim to alleviate the Hubble tension.



Chapter 6

Conclusions

Since the first accurate measurements of the CMB, ΛCDM has established

itself as the standard model of cosmology and has been incredibly successful

in explaining a large range of cosmological observations. It describes almost

14 billion years of evolution from just after a predicted period of exponential

expansion via inflation, up to the present day. Inflation has become the most

popular explanation of the very early Universe due to its success in solving

observational problems and in predicting the initial conditions for the pertur-

bations of the contents of the universe that are observed in the CMB.

Recently, observations have been starting to point towards problems with

ΛCDM that might give hints to further physics which is not included in the

standard model of cosmology. There are also theoretical problems with the

nature of dark matter, dark energy and the cause of inflation. Gravitational

waves offer a new window to the last of these along with other phenomena in

the very early Universe. Because gravitational waves decouple at much higher

energies than photons they contain information about times much closer to

inflation than other observations do. As astrophysical gravitational waves have

now been observed experimentally [9], the interest in primordial gravitational

waves from the early Universe has increased. This has prompted both theo-

retical and experimental advances and consequently, accurate predictions of

gravitational wave observables are increasingly important.

The starting point for the original work detailed in this thesis is the short-

wavelength constraint on the primordial gravitational wave density parameter
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coming from the CMB temperature anisotropies [96]. Chapter 3 details our

attempt to update this constraint using the most recent data. In doing so,

some differences were found with the existing analysis, primarily in the initial

conditions of the most physically applicable mode, the homogeneous mode.

Isocurvature modes were considered for the first time in the context of a

gravitational wave analysis and new gravitational wave isocurvature modes were

presented. The constraint for homogeneous initial conditions from the Planck

2018 CMB data combined with BAO data was found to be Ωgwh
2 < 2.9×10−7 at

95% confidence, for f >∼ 10−15 Hz and is tighter than the previous best shortwave

constraint by a factor ≈ 4.

Consideration of this short-wavelength constraint motivated a methodology

that did not rely on the shortwave approximation and was therefore valid for

lower frequencies. This involved a thorough calculation of the effective energy–

momentum tensor introduced in Abramo, Brandenberger, and Mukhanov [38]

and is presented in Chapter 4. The energy–momentum tensor, when applied

to cosmological backgrounds simplifies to the one used in the shortwave ap-

proximation in the appropriate limit but is more generally applicable due to

careful consideration of gauge invariance. The equation of state of gravita-

tional waves has well defined low and high frequency limits of wgw = −1/3

and 〈wgw〉x = 1/3 respectively (where 〈...〉x denotes averaging over all space)

for single fluid background cosmologies when neglecting neutrino anisotropic

stress and this was shown analytically and numerically. Two regimes were

found where the above limits are not valid. The first of these is during the

matter-cosmological constant transition in the late Universe, where the equa-

tion of state of low-frequency gravitational waves decreases below −1/3 before

returning to −1/3 when the expansion is dominated by the cosmological con-

stant. The second is when neutrino anisotropic stress is included which causes

low-frequency gravitational waves to have an initial equation of state of ∼ −0.5

for current cosmological parameter values, before tending towards −1/3 around

matter–radiation equality. Both of these effects were investigated and verified.
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The physical effects of gravitational waves were determined with and with-

out neutrino anisotropic stress and the changes in the CMB power spectrum

along with the ability to shift the scale of the sound horizon and the Hubble

parameter were discussed. Constraints were found for 10−16 Hz<∼ f <∼ 10−15 Hz

for a steep power-law gravitational wave source finding Ωgw < 8.4 × 10−7 in

the absence of neutrino anisotropic stress and Ωgw < 8.6 × 10−7 when it is

included. Constraints were also found for 10−17 Hz<∼ f <∼ 10−15 Hz for delta-

function sources of similar magnitude. These are new constraints of compara-

ble sensitivity to the shortwave constraint but in a previously unconstrained

frequency regime.

Consistency checks were performed on this method which showed errors

that were below the requirement of current CMB experiments. A phenomeno-

logical approach was taken to the gravitational wave perturbations in this

approach and a more theoretically motivated calculation of gravitational wave

perturbations from the second-order Einstein tensor is the most obvious avenue

for further work.

This approach was also used to calculate the range of validity of the short-

wave approximation necessary for Planck CMB constraints, which had not

been calculated explicitly; qualitative arguments have been used previously.

To complete the frequency coverage of gravitational wave constraints, the

low-frequency constraint based on CMB polarisation was updated using a

method that reconstructed the tensor power spectrum directly from observa-

tional data. This was converted to a constraint on the gravitational wave

density parameter and applies for frequencies below that of the other two

constraints, 10−18.5 Hz<∼ f <∼ 10−16 Hz. The peak sensitivity is Ωgwh
2<∼ 10−16

at a frequency corresponding to the horizon-size at matter–radiation equality.

It was emphasised that this conversion from power spectrum to gravitational

wave density parameter is only a first approximation due to the conversion

equation used only being applicable for short wavelength gravitational waves.

This is relevant to existing constraints on Ωgw in the literature.
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The change in observables calculated for the intermediate gravitational

wave model motivated investigation of one of the observational problems of

ΛCDM, commonly called the H0 problem or Hubble tension. The effectiveness

of early dark energy for solving this problem was investigated in Chapter 5.

This started with a short review of models that aim to alleviate the Hubble

tension before focusing on the axion model [301, 304, 305]. An MCMC analysis

was carried out for CMB, BAO and distance ladder data, for two forms of the

axion model, using a fluid approximation, along with a baseline ΛCDM model

for comparison. The best-fit parameter values were consistent with those from

previous analyses. The axion model is effective in reducing the Hubble tension

to ≈ 2σ while also providing a better fit to the data than ΛCDM. However,

the reduction in χ2 was less than in previous analyses for the axion model in

which the late-time equation of state, wn was unconstrained.

A model-independent approach was developed that utilised a set of cosmo-

logical fluids that influence the background expansion at different times. The

data can then be used to find the modifications to the background expansion

that are most important for alleviating the Hubble tension and these modifi-

cations can be mapped onto models to allow them to be compared. A similar

MCMC analysis to that used for the axion model was carried out for the model-

independent approach. In this case the Hubble tension was reduced to ≈ 2.5σ

and the best-fit χ2 was also reduced. When reconstructing the background

density and equation of state from the data, a peak before recombination sim-

ilar to that for the best-fit axion model was favoured. This coincided with a

transition in the effective equation of state from negative to positive values.

After this the equation of state was consistent with the equation of state of

the cosmological background suggesting that tracking dark energy may be a

valid approach to alleviating the Hubble tension. This is an interesting area of

future research.

A principal component analysis was carried out using the results of the

MCMC for the model-independent approach. The correlations of the principal
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components with cosmological parameters showed interesting degeneracies such

as an increase in the amplitude and decrease in the tilt of the scalar power

spectrum. It was also confirmed that reducing the Hubble tension is important

for better fitting the cosmological data, as one would expect from the discrep-

ancy in measurements of H0 in the data set. Near future data will improve this

analysis. Model comparison using this approach promises to be increasingly

useful as more explanations for the Hubble tension are presented and this is

an interesting area into which the existing analysis could be developed.

This thesis contains important work that advances our understanding of

cosmological gravitational waves and the Hubble tension and suggests future

work that combines the two. The analyses presented here will be improved

by future experiments and offer the possibility of a large leap forward in our

understanding of the evolution of the Universe.



Appendix: Homogeneous
gravitational wave mode initial
conditions

To calculate the initial conditions for the shortwave approximation homoge-

neous gravitational wave mode the perturbed Einstein and fluid equations will

be solved using series solutions. Because we are considering super-horizon per-

turbations at early times, kτ � 1 and the Universe is radiation dominated such

that ȧ/a = 1/τ . The dark matter and baryon components will be neglected

here for simplicity1 so only photons, massless neutrinos and gravitational waves

are considered. In this case the Einstein equations in the synchronous gauge

given in equations (1.35) (see section 1.3.2 for notation) become,

k2η − 1

2τ
ḣ = − 3

2τ 2
(Rγδγ +Rνδν +Rgwδgw) , (A.1a)

k2η̇ =
2

τ 2
(Rγθγ +Rνθν +Rgwθgw) , (A.1b)

ḧ+
2

τ
ḣ− 2k2η = − 3

τ 2
(Rγδγ +Rνδν +Rgwδgw) , (A.1c)

k2

(
α̇ +

2

τ
α− η

)
= − 6

τ 2
(Rνσν +Rgwσgw) . (A.1d)

The reader is reminded that the synchronous gauge is used as it allows for clear

identification of the different modes (see below) and that Ri = ρ̄i/
∑
ρ̄i. The

fluid equations (see equations (1.37)) for the three radiation species are,

δ̇γ +
4

3
θγ +

2

3
ḣ = 0 , (A.2a)

θ̇γ −
1

4
k2δγ = 0 , (A.2b)

1The matter component perturbations can be easily calculated from the radiation com-
ponents, see ref. [292].
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δ̇ν +
4

3
θν +

2

3
ḣ = 0 , (A.2c)

θ̇ν −
1

4
k2(δν − 4σν) = 0 , (A.2d)

σ̇ν −
2

15
(2θν + ḣ+ 6η̇) = 0 , (A.2e)

δ̇gw +
4

3
θgw +

2

3
ḣ = 0 , (A.2f)

θ̇gw −
1

4
k2(δgw − 4σgw) = 0 , (A.2g)

σ̇gw −
2

15
(2θgw + ḣ+ 6η̇) = 0 . (A.2h)

These equations allow the calculation of the 10 metric and fluid perturbations

{h, η, δi, θi, σi} of the radiation species, i = γ, ν, gw.

To calculate the early time, super-horizon behaviour, series solutions of the

above equations are sought. Because kτ � 1 for the modes under consideration,

kτ is the natural variable to expand in and such an expansion can be stopped

at a specified order to calculate the initial conditions along with the low-

kτ evolution of each of the perturbations. The initial value and the low-kτ

evolution are often referred to simply as initial conditions in the cosmology

community, as opposed to just the value at kτ → 0, and this shorthand will be

taken here and where appropriate in the rest of this thesis. The kτ expansion

is given in equation (1.39) for a general perturbation2, ζ as,

ζ =
∞∑
i=0

ζi(kτ)i , (1.39)

where the coefficients, ζi now encode the information about the perturbations

initial value and their evolution.

Substituting series of the form of equation (1.39) for each of the perturbation

quantities into equations (A.1) and (A.2) results in the coupled differential

equations becoming coupled equations for the coefficients ζi. Therefore, finding

the initial conditions becomes the problem of solving the set of simultaneous

equations for the coefficients up to some fixed order in kτ . In doing so, special

2Reproduced here for ease of reading.



179

care needs to be taken when considering the zeroth order coefficients,

{h0, η0, δγ,0, θγ,0, δν,0, θν,0, σν,0, δgw,0, θgw,0, σgw,0 } . (A.3)

Not all of these can be found explicitly from the Einstein and fluid equations

and it is therefore possible to have multiple different non-zero zeroth order

coefficients. This is dealt with by considering each possible non-zero coefficient

separately and summing together the different modes found in each case. This

is usually done through a correlation matrix of the different modes, which

allows for cross-correlations between modes along with simple additive combi-

nation (see section 1.3.3). In the case considered here, the gravitational wave

perturbations do not need to have their zeroth order coefficients fixed as they

are instead fixed by the homogeneous condition. In the absence of gravitational

waves the most commonly considered mode is the adiabatic mode which has,

η0 = 1 , h0 = δγ,0 = θγ,0 = δν,0 = θν,0 = σν,0 = 0 . (A.4)

Isocurvature modes have η0 = 0 with non-zero coefficients in the fluid pertur-

bations. These are found systematically in Bucher, Moodley, and Turok [48].

There they find a neutrino density isocurvature mode (δν,0 6= 0) and a neutrino

velocity isocurvature mode (θν,0 6= 0). There are also baryon density and dark

matter density isocurvature modes which are found when the matter species

are also included.

The generalisation of the adiabatic mode to the gravitational wave case is

the homogeneous mode3 where,

η0 = 1 , h0 = θγ,0 = δν,0 = θν,0 = σν,0 = 0 . (A.5)

3There is also a gravitational wave adiabatic mode, where the gravitational wave pertur-
bations are identical to those for neutrinos, but this is less physically motivated, as discussed
in section 2.5.4 and chapter 3.
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The lowest order4 initial conditions in this case are,

h =
1

2
k2τ 2 , (A.6a)

η = 1 + η2k
2τ 2 , (A.6b)

δγ =
9− 4Rγ + 12(19− 4Rγ)η2

2Rγ

= δγ,0 , (A.6c)

θγ =
1

4
δγ,0 k

2τ , (A.6d)

δν = −1

3
k2τ 2 , (A.6e)

θν = − 1

60
k4τ 3(3 + 16η2) , (A.6f)

σν =
1

15
k2τ 2(1 + η2) , (A.6g)

δgw = − Rγ

Rgw

δγ,0 , (A.6h)

θgw = − Rγ

Rgw

1

4
δγ,0 k

2τ , (A.6i)

σgw = − 1

30
k2τ 2

(
−2− 24η2 −

Rγ

Rgw

δγ,0

)
, (A.6j)

where the zeroth order photon density perturbation has been written as δγ,0

to simplify notation for the other perturbations. The only unknown is the

second order coefficient in the expansion of the metric perturbation, η which is

denoted η2 and, as mentioned in section 3.1.1, this is fixed by transforming to

the Newtonian gauge and requiring that the density perturbation is zero. In a

radiation dominated background the gauge transformation of equation (1.30a)

for the gravitational wave density simplifies to,

δ̃gw = δgw −
2

k2τ
(ḣ+ 6η̇) , (A.7)

where δ̃gw is the perturbation in the Newtonian gauge and the right-hand side

contains only synchronous gauge quantities. Enforcing δ̃gw = 0,

η2 = − (9− 4Rγ + 4Rgw)

12(19− 4Rγ + 4Rgw)
. (A.8)

This is the value given in section 3.1.1 and specifically in table 3.1. Substi-

4All perturbations are given to lowest order except for η which has important evolution
properties at second order.
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tuting this value into equations (A.6) gives the rest of the homogeneous mode

quantities for the radiation and metric perturbations given in table 3.1.

There are three new modes found in chapter 3. The first of these, the gravi-

tational wave density isocurvature mode is found similarly to the homogeneous

mode by enforcing,

δgw,0 = 1 , h0 = η0 = θγ,0 = θν,0 = σν,0 = 0 , (A.9)

along with the homogeneous condition in the Newtonian gauge. The second, the

gravitational wave velocity isocurvature mode is found using the homogeneous

condition and the initial conditions,

θgw,0 = k , h0 = η0 = θγ,0 = δν,0 = θν,0 = 0 . (A.10)

The final new mode, the gravitational wave shear isocurvature mode uses the

initial conditions,

σgw,0 = 1 , h0 = η0 = δγ,0 = θγ,0 = θγ,0 = 0 , (A.11)

along with the homogeneous condition. The gravitational wave isocurvature

modes coming from these choices are presented in table 3.3. It should be noted

that these choices are not unique and other choices of the initial conditions

give rise to the same modes. This was done systematically considering all

combinations to guarantee that no modes were missed.
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