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Abstract 
Colorectal cancer is the second highest cause of cancer deaths in the UK. The 

transcriptional regulator c-Myc and transmembrane protein CD44 are reported 

to be associated with cancer stem cells and epithelial to mesenchymal 

transition, which have both been linked to poor outcomes. A cohort of 1000 

colorectal cancer patients was assessed by immunohistochemistry for 

expression of CD44, c-Myc and tumour stromal content. TMA blocks comprised 

of luminal, central and advancing edge cores were used to account for tumour 

heterogeneity. High nuclear c-Myc expression in tumour epithelial cells was 

associated with poor 5 year survival (p <0.001). Surprisingly, it was also 

associated with a lack of metastasis and low tumour stage. In contrast to 

previous studies, membranous CD44 expression was associated with low 

primary tumour stage (p 0.001) and metastasis (p 0.003). Cytoplasmic CD44 

staining was observed to follow two distinctive patterns, perhaps representing 

different variants. CD44 and c-Myc expression in the stroma were localised to 

lymphocytes and plasma cells, respectively. Both were associated with positive 

clinical outcomes, including low primary tumour stage and 5 year survival, 

consistent with previous studies regarding immune infiltration. Increased 

tumour stroma content was associated with worse outcomes, consistent with 

the “mesenchymal” consensus molecular subtype 4. CD44 expression and 

tumour stroma content were significantly correlated, supporting the role of 

CD44 in epithelial to mesenchymal transition. This study presented an 

opportunity to better understand the expression of c-Myc, CD44 and the 

tumour stromal content in colorectal cancer in a large number of patients. 

 

  

Key findings: 

• Positive nuclear c-Myc expression was associated with poor 

survival 

• MLH1 deficiency led to increased c-Myc expression 

• Stromal c-Myc expression was associated with improved survival 

• High CD44 expression was associated with good clinical outcomes 

• Stromal CD44 expression was associated with poor survival 

• c-Myc+/CD44+ patients showed positive clinical outcomes 

• Low stromal content was associated with high CD44 expression 

• High stromal content was associated with poor outcome 
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Introduction 

Colorectal cancer pathology  
Colorectal cancer (CRC) is the third most common cancer in men and women, 

and the fourth most common cancer in the UK overall [1]. 44% of patients 

diagnosed with colorectal cancer die from the disease, and 10 year survival is 

57%, with recurrence in 30% of patients [2]. Of those diagnosed with colorectal 

cancer, more than 95% of patients have adenocarcinoma, which originates in 

glandular cells within the colon or rectum. 75% are diagnosed at a local stage 

(I and II). Stage I tumours invade as far as the muscularis propria within the 

colon, and can usually be treated with surgery alone (85-95% of cases). Stage II 

tumours may infiltrate beyond the colon wall into adjacent organs, but not into 

the lymph nodes. Depending on the extent of invasion, 5 year overall survival 

rates can vary between 58-87%, and patients may be treated with surgery and 

fluorouracil (5FU)/leucovorin combination, although there is some debate as 

to the usefulness of chemotherapy at an early stage, when surgery alone has a 

reasonable success rate. Stage III tumours show some level of metastasis to the 

lymph nodes, and surgery and radiotherapy with adjuvant treatment has been 

recommended for these patients. This includes the use of fluoropyrimidine 

based chemotherapy (typically 5FU) in conjunction with oxaliplatin or targeted 

agents such as cetuximab [2]. 

The progression of normal colon into adenoma and eventually into an invasive 

adenocarcinoma occurs following a series of genetic and epigenetic changes. 

The three key pathways this follows in colorectal cancer are chromosomal 

instability (CIN), microsatellite instability (MSI), and CpG island methylator 

phenotype (CIMP). Chromosomal instability occurs in up to 70% of sporadic 

colorectal cancers, making it the most common pathway of genomic change. It 

leads to karyotypic changes in the cells, including loss of heterozygosity and 

aneuploidy [3]. The most common “canonical” sequence of changes was first 

described by Fearon and Vogelstein in 1990 [4] and has been expanded on over 

the last 30 years to show the genes and pathways involved (see figure 1). The 

initial change occurs when the APC tumour suppressor gene is mutated, 

typically by frameshift or nonsense mutation, leaving a truncated protein. APC 

usually blocks transition from G1 to S phase in the cell cycle, and disrupting this 

allows replication to progress unchecked. As APC regulates β-catenin, these 

mutations lead to constitutive overexpression of β-catenin and prolonged 

activation of the Wnt signalling pathway, important in determining cell fate and 

motility [5]. Mutations in β-catenin or hypermethylation of the APC promoter 

can also lead to this. The next canonical alteration occurs in KRAS [6] which is 

mutated in up to 50% of cases of colorectal cancer [7], typically at codon G12. 

After these mutations occur, loss of heterozygosity (LOH) at 18q is often 
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observed, particularly at 18q21, especially in advanced colorectal cancer. For 

loss of heterozygosity to occur, a minimum of one allele of a gene must be lost 

and the other is often mutated rendering it non-functional. One of the genes 

that is commonly lost in this step is DCC (Deleted in Colorectal Carcinoma), a 

tumour suppressor gene that is missing in approximately 70% of colorectal 

cancers, whose loss is negatively associated with survival [6]. However, DCC is 

rarely mutated and it is now considered that allelic loss of SMAD2 or SMAD4 is 

probably the more important target of LOH at 18q [8]. Mutations in PIK3CA 

occur late in the adenoma-carcinoma sequence. The final mutation that is 

associated with the adenoma-carcinoma progression is of TP53. The p53 

protein is involved in the control of the cell cycle and apoptosis, inducing arrest 

of the cell cycle between G1 and S phase to facilitate DNA repair prior to 

replication. The mutation is thought to occur at the time of transformation 

from an adenoma to a carcinoma. 

 

Figure 1: The adenoma-carcinoma sequence first described by Fearon and Vogelstein. An increase in 
mutations in APC, KRAS, TP53 and PIK3CA are accompanied by loss of heterozygosity at 18q. Tumour 
progression is associated with these changes. This image is taken from Pino et al, 2010 [3]. 

Up to 20% of colorectal cancers show an aberrant pattern of methylation 

associated with clinical outcomes. This subset of CRC is controversially 

described as molecularly distinct from other groups, including CIN, and is 

termed the “CpG island methylator phenotype” [9]. CIMP status can be 

determined by assessing the methylation of the promoter regions of the genes 

CACNA1G, CDKN2A, CRABP1, IGF2, MLH1, NEUROG1, RUNX3 and SOCS1. 

Patients with 5 or more of these promoters methylated are classified as CIMP 

positive [10]. CIMP tumours are associated with proximal colon disease and 

poor differentiation, much like MSI tumours.  

Tumours with microsatellite instability account for roughly 15% of sporadic 

colorectal cancer. Microsatellite instability was first observed by Ionov et al in 

1993, where they described the slippage of regions of the genome with tandem 

repeat sequences as an early event in colorectal cancer [11]. MSI tumours tend 

to carry more mutations than CIN tumours due to a failure to repair errors 

made by DNA polymerase during replication. MSI occurs in more than 95% of 
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patients with Lynch syndrome, a familial form of colorectal cancer that occurs 

due to faults in the mismatch repair genes. Tumours with microsatellite 

instability tend to be more frequent in female patients, the proximal colon, and 

may have mucinous histology [6]. They are often associated with a different 

mutation profile to that of tumour with CIN. There is a very strong association 

with genome wide hypermethylation and BRAF mutations (which can be seen 

in up to 60% of sporadic tumours with MSI). In addition, there are mutations 

within genes which contain repeat sequences in coding regions such as TGFBR2 

and BAX [12, 13]. 

Inherited colorectal cancer 
The vast majority of CRCs arise as sporadic tumours although it is thought that, 

even in these, there is a genetic contribution of 15% of risk [14]. There are 

however a number of family cancer syndromes in which germline mutations 

are associated with a high risk of CRC. 

Lynch syndrome, associated with the MSI changes described above, is the most 

common familial syndrome associated with colorectal cancer and accounts for 

3% of new cases. It is also associated with other cancers, the most frequent of 

which is endometrial cancer. Like spontaneous MSI tumours, phenotypically it 

is connected with cancer in the proximal colon, and is often poorly 

differentiated or mucinous. It is caused by germline deficiency in the mismatch 

repair (MMR) genes MLH1, MSH2, MSH6 or PSM2, or by deletion of EPCAM, 

which causes inactivation of MSH2. Colorectal cancer develops more rapidly in 

patients with Lynch syndrome due to the more frequent presence of polyps 

within the colon and poor mismatch repair ability [15]. As a result of this, 

patients under the age of 50 diagnosed with colorectal cancer are tested for 

Lynch syndrome. Testing for Lynch syndrome is performed by either 

immunohistochemistry (IHC), for loss of MMR protein expression or PCR, for 

the presence of MSI. Patients with MMR deficiency do not respond to 

treatment with 5FU [16], as they are insensitive to the mode of action used, 

but are more sensitive than MMR competent patients to drugs such as FOLFOX, 

a combination of folinic acid, fluorouracil and oxaliplatin [17].  

Other inherited syndromes leading to colorectal cancer include Familial 

Adenomatous Polyposis (FAP), attenuated FAP, and Turcot syndrome [6]. FAP 

is a rare disease that affects less than 1 in 10,000 people, but those diagnosed 

with it have an almost 100% risk of colorectal cancer by the age of 50. It is 

characterised by the formation of hundreds of adenomatous polyps in the 

colon at a young age, and is treated with colectomy and regular follow ups to 

reduce the risk of cancer. Familial adenomatous polyposis is caused by 

inherited mutations in the APC gene, one of the earlier mutations to occur in 
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the Vogelstein model of colorectal carcinoma, which is why the cancer occurs 

in young patients [18]. 

The consensus molecular subtype (CMS) classification of CRC 
Multiple groups have tried to categorise colorectal cancer into groups [19] [20] 

[21] [22] [23] [24] [25], in addition to characterisation by CIN, MSI or CIMP. The 

main subtyping that is currently observed is the system proposed by Guinney 

et al in 2015. They combined the data from 18 cohorts, normalised to reduce 

technical variation, and looked at the data using the subtyping of 6 different 

groups. They primarily focussed on transcriptomic data but also used 

proteomics, copy number variation and methylation data. They produced a 

system that split colorectal cancers into one of four molecular subtypes (CMS1-

4) [26]. CMS1 consists of an “MSI immune” type, including most MSI and CIMP 

high tumours, characterised by widespread hypermethylation and a high 

frequency of BRAF mutations. Like other MSI tumours, these are associated 

with right-sided lesions and are more common in females. They also showed 

expression of genes associated with immune infiltration. CMS2 is the 

“canonical” subtype, with high chromosomal instability, loss of tumour 

suppressor genes and gain in oncogenes. These tumours are associated with 

left-sided lesions and upregulation of the Wnt and MYC pathways, and have 

the best survival after relapse. The third molecular subtype is CMS3, 

“metabolic”. This subtype is associated with fewer somatic copy number 

alterations (SCNAs) and a high prevalence of CpG island phenotype. There is a 

high frequency of KRAS mutations and they are enriched for metabolic 

pathways. It shares similarities with the “metabolic” subtype described in 

gastric cancer, hence the name [27]. CMS4 is the “mesenchymal” subtype, 

which shows an upregulation of genes associated with the epithelial to 

mesenchymal transition (EMT). Epithelial to mesenchymal transition is 

important in altering the CRC cells from an organised epithelial type to a more 

mesenchymal type, allowing easier cell motility, leading to metastasis [28]. 

There is a high level of stromal infiltration and an overexpression of 

extracellular matrix proteins, and it is the group associated with the most 

advanced stages of diagnosis and the worst overall survival [26].  

c-Myc 
The MYC family of helix-loop-helix leucine zipper proteins consists of c-Myc, n-

Myc and l-Myc, which are involved in multiple cellular functions, including cell 

growth, proliferation, metabolism and more [29]. c-Myc is the best 

characterised of these proteins, and is thought to regulate approximately 15% 

of genes. The oncogenic function of c-Myc was first demonstrated in its role in 

Burkitt’s lymphoma in 1982. c-Myc is found on human chromosome 8q24, and 

in Burkitt’s lymphoma is translocated into the immunoglobulin µ chain gene 

[30]. The sequence of the c-Myc gene was determined along with its structure 
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in 1983. It contains three exons and two introns, and is located on chromosome 

8q24 [31]. This gene produces a 65 kDa, 439 amino acid phosphoprotein that 

is typically expressed in the nucleus [29].  

c-Myc usually acts in a heterodimer with the bHLH zipper protein, MAX, to 

perform its cellular functions. The heterodimerisation of c-Myc and MAX allows 

them to recognise Enhancer-boxes (E-boxes) on their targets, which c-Myc 

alone would not have the affinity for [32]. The canonical sequence of E-boxes 

is CACGTG, and is recognisable by c-Myc-MAX, although some non-E-box 

sequences can be recognised when c-Myc-MAX are at high concentrations, and 

this may be involved in the oncogenic overexpression of c-Myc targets [33]. 

These interactions are supported by the c-Myc binding protein TRRAP, to 

upregulate gene expression and recruit histone acetyltransferases. MAX is also 

able to dimerise with the MAD protein, forming the MAD-MAX complex, 

competing with c-Myc-MAX in order to repress transcription [34]. In addition 

to c-Myc and MAD, MAX can bind MNT and MGA proteins to control 

transcription in a contextual manner [32].  

c-Myc expression is associated with many different cellular processes (figure 

2), including the opposing functions of proliferation and apoptosis. It has been 

theorised that this may depend on a threshold of expression, where it switches 

from a proliferative function to an apoptotic one. Or, it may be dependent on 

its interaction with other molecules [35]. c-Myc is one of the most frequently 

amplified oncogenes seen in many different human cancers including CRC. In 

addition, in colorectal cancer it is stimulated by the dysregulation of the Wnt 

signalling pathway. Loss of functional APC occurs in more than 75% of CRC 

patients [36], resulting in unchecked expression of β-catenin and Wnt 

signalling. The accumulation of β-catenin leads to activation of the TCF/LEF 

family of transcription factors, which are responsible for the activation of c-Myc 

[37]. c-Myc is rarely mutated in CRC, and instead overexpression is induced by 

β-catenin and TCF4 in colorectal tumours [38]. The relationship between c-

Myc, LEF1 and nuclear β-catenin has been theorised to be important to 

maintain the prolific state of colorectal cancer cells [39]. The role of c-Myc in 

the Wnt signalling pathway is also connected to its purpose in maintaining a 

stem-state [40]. The polycomb protein BMI1 activates Wnt signalling, leading 

to upregulation of c-Myc. In turn, c-Myc binds to the E-box in BMI1, initiating a 

positive feedback loop of the Wnt signalling pathway [41]. 
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Figure 2: Pathways c-Myc is involved in in colorectal cancer. c-Myc plays a role in regulating approximately 
15% of genes, in a multitude of pathways, some of which are shown here.  

c-Myc in stem cell biology 

c-Myc expression is tightly regulated in normal tissues, but its functions in 

embryonic stem cells are such that loss of c-Myc leads to embryonic lethality. 

This is brought about by early differentiation into progenitor-like cells, via 

proteins such as Oct4 and Nanog. The reliance of c-Myc on MAX to enable 

binding to its targets means that when MAX is lost, the undifferentiated state 

of cells is also lost. Levels of Sox2, Nanog and Oct3/4 gradually decrease when 

MAX is lost, driven by the upregulation of the MAPK pathway, whereas 

differentiation markers of endoderm, ectoderm and trophoderm, such as 

Gata6, Sox17, Nestin and Cdx2, are upregulated [42]. When the first induced 

pluripotent stem cells (iPSCs) were produced, c-Myc, along with Oct3/4, Klf4 

and SOX2, was essential in inducing and maintaining the dedifferentiated state 

of the cells [43]. Chimeric mice from these iPSCs are prone to an increased risk 

of tumour formation, owing partly to the reactivation of c-Myc. Omitting c-Myc 

from the iPSC protocols reduces the efficiency of their generation, but greatly 

reduces the risk of tumourigenesis. It has been observed that l-Myc can be used 

to replace c-Myc in order to produce human iPSCs without increasing the risk 

of tumourigenesis [44].  

The role of c-Myc in colorectal cancer cell metabolism was demonstrated by 

Satoh et al in 2017, in the correlation between c-Myc expression and more than 

230 genes involved in metabolism. Many of these genes were upregulated, and 

involved in such pathways as purine/pyrimidine synthesis, glycolysis and the 
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MAPK pathway. Pathways that were downregulated in conjunction with 

decreased c-Myc expression included fatty acid oxidation and the citric acid 

cycle. The role of c-Myc in glycolysis suggests that it is a key player in producing 

the Warburg effect, where glucose metabolism is increased and fermented to 

lactate. When c-Myc was knocked out, the expression of many of the genes 

identified returned to normal. The role of c-Myc as a key regulator of metabolic 

reprogramming in CRC suggests that it has potential as a therapeutic target 

[45]. 

c-Myc has a role in the adaptation of cancer stem cells to a hypoxic 

environment, mediated by the Warburg effect [46]. PKM2 is an important 

driver of glycolysis, and plays an important role in the Warburg effect. Its 

expression is upregulated by c-Myc in cancer stem cells, and it activates 

hypoxia inducible factor 1 (HIF1) in a positive feedback loop. c-Myc also 

promotes glycolysis via glucose transporter type 1 (GLUT1), and pyruvate 

dehydrogenase kinase 1 (PDK1). The intracellular form of CD44 suppresses 

PKM2, promoting glycolysis and increasing the activity of the pentose 

phosphate pathway [46]. Triple negative breast cancer is heavily dependent on 

glutamine metabolism, mediated by amino acid transporters such as 

xCT/SLC7A11. The transmembrane glycoprotein CD44v stabilises this 

transporter in the cell membrane of cancer stem cells. CD44v increases the 

concentration of intracellular cysteine, aiding in the production of glutathione 

(GSH). GSH is involved in the elimination of reactive oxygen species, preventing 

apoptosis or differentiation of cancer stem cells [47]. The role of CD44 in 

colorectal cancer will be discussed further later in this thesis.  

The role of c-Myc in colorectal cancer 

c-Myc expression is associated with the canonical (CMS2) process of colorectal 

cancer development and better survival outcomes, including after relapse [26]. 

Overexpression of MYC mRNA is seen at all stages of CRC, from adenoma 

development to metastasis [38]. c-Myc has been observed to be linked to 

mismatch repair (MMR). In a study by Partlin et al, they demonstrated that c-

Myc and MAX bind to MLH1 and MSH2 both in vivo and in vitro [48]. They used 

coprecipitation to show that c-Myc is found when MLH1 and MSH2 are pulled 

down. In another study by Bindra et al, 2007, they discuss whether hypoxia is 

a controlling factor in mismatch repair. They initially suggest that hypoxia led 

to the downregulation of MLH1 and MSH2, as the protein HIF1α displaces c-

Myc from its binding site in a MAD-MAX like fashion. However, they then 

discussed the possibility that the downregulation of MLH1 and MSH2 occurs 

independent of HIF-1α expression, and relies only on the interaction of c-Myc 

and other MAX-associated proteins [49]. They also found that c-Myc was down-

regulated under hypoxic conditions. c-Myc has been related to epithelial to 

mesenchymal transition (EMT), where it enhances SNAIL expression [50]. EMT 

is involved in the development of metastasis, leading to cancer progression and 

poor prognosis [51].  
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Given the role of overexpressed c-Myc in colorectal cancer, it would seem a 

good choice for therapeutic targeting. In the past scientists were reluctant to 

target c-Myc directly, due to the large number of genes under its transcriptional 

regulation, including in normal tissues, and the homology to its family members 

[52]. Direct inhibitors of c-Myc such as Omomyc [53], which binds to c-Myc 

binding sites and to MAX, and bromodomain and extraterminal domain 

inhibitors (BETi) [54], which bind the c-Myc super enhancer and repress it, are 

examples of strategies that could prevent the oncogenic expression of c-Myc 

and stop the proliferation of tumour cells.  

CD44 
CD44 (also known as Hermes, PGP1, Indian blood group and HCAM) is a 

transmembrane glycoprotein associated with colorectal cancer. It has multiple 

variants due to alternate splicing, the most common of which is the standard 

form CD44s. The other variants are denoted by CD44v. These different variants 

are associated with different cell types and disease phenotypes. The main 

ligand of CD44 is hyaluronic acid (HA) which is an extracellular matrix protein.  

CD44 is found on chromosome 11p13 and has 20 exons. Alternative splicing of 

these exons in the pre-mRNA occurs to produce multiple isoforms. CD44s, the 

standard form of CD44, is found in lymphocytes and fibroblasts, and can also 

be known as CD44h (haematopoietic CD44). The structure of CD44 proteins can 

be seen in figure 3. It consists of an N-terminal domain at exons 1-5, which 

binds to the extracellular matrix via proteins such as hyaluronic acid (HA), its 

main ligand, and others such as fibronectin and laminin. There is then a stalk 

shaped structure which may be elongated to include the variable exons in 

CD44v proteins. At the C-terminal of the protein are a transmembrane region, 

associated with lipid raft binding, and a cytoplasmic tail [55]. This cytoplasmic 

tail contains important intracellular signalling motifs and mediates the 

interactions with the cytoskeleton. CD44 is commonly found at the basolateral 

end of polarised epithelial cells and on the leading edge of migrating cells.  

Alternative splicing and post-translational modification are key factors in 

producing CD44 proteins with distinctive functions. CD44s occurs when the 

variable exons are spliced out, leaving exons 1-5 and 16-20 (excluding exon 18) 

to form an 85 kDa protein [56]. Alternate forms of CD44 include CD44v6, 

commonly associated with colorectal cancer, CD44v3, seen in cancer stem cells 

in head and neck cancers, and CD44v8-10, associated with gastric cancer [57]. 

CD44 is prone to both N and O glycosylation [58], with O glycosylation in 

particular being associated with CRC. The addition of these glycosylate groups, 

as well as other post-translational modifications such as phosphorylation, 

contributes to the wide range of functions and high molecular weight of CD44 

[56]. Aberrant O-glycosylation of CD44 is associated with dysregulated 

expression and delivery, and a higher expression of CD44 being observed in 

exosomes [59]. 
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Figure 3: The structure and subcellular location of CD44. A shows the key domains in CD44, the amino 
terminal domain, the variable domain which consists of 10 exons that undergo alternate splicing to 
produce multiple proteins, the transmembrane and cytoplasmic domains. Key isoforms of CD44 in CRC 
include the common form of CD44 is CD44s, an epithelial form (CD44e), and CD44v6, which is associated 
with poor prognosis in adenocarcinoma. B shows the CD44 protein anchored into the cell membrane. The 
extracellular domains interact with HA, OPN and MET, whereas the intracellular domains interact with 
ERM and ankyrin. CD44 may undergo proteolytic cleavage by ADAM10, ADAM17 and MT1-MMP to 
release the extracellular or intracellular parts of the proteins into their environments. 

CD44 is expressed in multiple cell types, including epithelial, lymphocytic, 

granulocytes and neuronal cells [60]. The main ligand of CD44, hyaluronic acid, 

is a key component of the extracellular matrix (ECM). HA is a glycosaminoglycan 

(GAG) protein, which functions as a structural protein and plays a role in wound 

healing and inflammation, cell motility and proliferation [61]. The interaction 

of CD44 with HA is reflective of its involvement in cell motility, and may be 

conducive of cells moving through the extracellular matrix [55]. The N-terminal 

domain of CD44 contains other protein-binding domains that have led to the 

conclusion that CD44 binds other proteins in the ECM, including other GAG 

proteins, growth factors, cytokines and matrix metalloproteinases, although 

this has yet to be confirmed [60].  

Intracellular functions of CD44 

In addition to the interactions with hyaluronic acid and the extracellular matrix, 

CD44 may play a role in extravasation, by binding to E-selectin. It has been 

demonstrated that both CD44s and CD44v isoforms can mediate this 

interaction, on hematopoietic cells and colon cancer cells respectively [62]. 

Cellular migration of both leukocytes and cancer cells can be mediated by 

CD44-HA interaction. One important mechanism that allows this to occur is the 

proteolytic cleavage of CD44 by metalloproteinases as seen in figure 3. 

Okamoto et al (1999) have shown that this cleavage differs in mode of action 
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between leukocytes and cancer cells, but occurs in the same location 

regardless of CD44 isoform, and the difference is most likely due to post-

translational modifications. They found a 25 kDa protein that specifically 

reacted to their CD44cyto antibody but not their CD44ecto antibody. The 

expression of this protein was also increased in those cell lines that had a higher 

level of soluble CD44 in the supernatant [63]. In a later publication, they 

demonstrated the importance of cleavage in multiple tumour types, including 

colorectal carcinomas. They found that 90% of colon carcinoma tumours 

showed cleavage of CD44, where their matched normal partners did not [64].  

CD44 is subject to proteolytic cleavage, and therefore can exist in three forms, 

a full-length, membrane bound protein, a soluble extracellular cleavage 

product and an intracellular fragment (CD44ICD). Ectodomain cleavage of CD44 

is stimulated by membrane-associated matrix metalloproteinases and Ras 

proteins. CD44 ectodomain cleavage is dependent on ADAM10 Ca2+ stimulation 

or ADAM17 activation by Rac, and is associated with detachment from the 

ECM. Another metalloproteinase associated with CD44 ectodomain cleavage is 

MT1-MMP. This protein is expressed in many tumour types and is localised to 

the leading edge of the cell in the lamellipodia. Further cleavage of CD44 occurs 

and depends, as in many other type I transmembrane proteins, on γ-secretase. 

This releases the CD44 intracellular domain (ICD), which can migrate to the 

nucleus and activate gene transcription [65].  

The cytoplasmic domains of CD44 contain residues for binding to intracellular 

proteins. These include ezrin/radixin/moesin (ERM) proteins and ankyrin. The 

ERM proteins bind to long actin filaments, and ankyrin binds to the protein 

spectrin. The network of ankyrin, spectrin and other accessory proteins and 

short actin oligomers is thought to play a role in protein and lipid assembly for 

signalling and other intracellular functions. These interactions are not thought 

to play a part in the cell adhesion function of CD44, but may be important with 

regards to hyaluronic acid signalling [66]. The binding site of ankyrin (amino 

acids 304-318) is downstream of the ERM binding site (amino acids 292-300), 

and binding of these proteins is phosphorylation dependent via Rho A and PKC, 

respectively [55]. Ankyrin and ERM proteins facilitate clustering of CD44 within 

the cell membrane to optimise E-selectin interaction, important in cell rolling 

[66].  

CD44 in the colon and colorectal cancer 

Three CD44 isoforms are commonly studied in the gut epithelium. CD44s is the 

most commonly expressed isoform, found in lymphocytes and fibroblasts, in 

addition to epithelial cells and in colorectal cancer. It consists of the first five 

exons and the final five exons. CD44v6 and CD44v4-10 are also commonly 

expressed in the colon epithelium [67]. CD44v4-10 is highly expressed in colon 

stem cells, and is involved in the initiation of adenoma. CD44v is also associated 

with familial adenomatous polyposis in mouse models [68]. Given its 
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subcellular location and involvement in metastasis, it has been suggested that 

CD44 is under the influence of the Wnt signalling pathway. Wnt signalling is 

often upregulated in CRC, which may account for the high levels of CD44 seen 

in patients [67]. This pathway is important in epithelial to mesenchymal 

transition (EMT), as demonstrated by the increase of β-catenin in poorly 

differentiated tumour cells and cancer stem cells [69]. CD44 is described as 

being a marker of stem cells both in normal and in malignant colon [70]. Along 

with Lgr5 and EpCAM, it has been used to identify a CSC population that is 

responsible for increased EMT [71]. CD44 isoform switching has also been 

implicated in EMT. Studies have shown that CD44s is associated with 

mesenchymal-like cells, and CD44v associated with epithelial-like cells [72].  

CD44v6 is a particularly important isoform in CRC. It is known to be associated 

with metastasis and poor outcome of patients, and binds to hepatocyte growth 

factor receptor (MET) in the presence of hepatocyte growth factor (HGF) and 

osteopontin (OPN) produced in the tumour microenvironment [73]. OPN is 

involved in multiple biological processes including bone formation, 

inflammation, immune response and tumourigenesis. CD44v6 specifically has 

an OPN binding domain that allows the two proteins to interact, mediating 

metastasis. It exhibits pro-metastatic effects on tumours by enabling tumour 

cells to disseminate via hypoxia-induced angiogenesis and extracellular matrix 

remodelling. In addition, tissues which physiologically produce OPN may be 

targets for tumour homing, such as the bone or liver [74]. In a study by Todaro 

et al, they demonstrated that CD44v6 positive cancer stem cells led to a more 

aggressive and invasive phenotype both in vivo and in vitro. Expression of 

CD44v6 was increased in response to HGF, OPN and SDF-1 exposure, leading to 

enhanced migration and metastasis. These cells also showed constitutive 

activation of the PI3K/AKT pathway, and confirmed that CD44v6 expression 

correlates with Wnt/β-catenin pathway activation [73].  

CD44v6 clinical effect 

In many cancers, a high percentage of CD44v6 positive cells is indicative of a 

poor clinical outcome, likely due to the association with increased metastatic 

potential. CD44v6 overexpression has been shown to be related to stage and 

lymph node metastasis, as well as distant metastasis, and is particularly 

associated with lung and liver metastasis [67, 75]. The interaction with OPN 

may facilitate this, as described above. It has been suggested that p53 exhibits 

an inhibitor function on CD44, and that mutation of p53, common to CRC, 

allows the anti-apoptotic and proliferative activities of CD44v6 to run 

unchecked [76]. CD44v6 shows a stronger affinity for HA than CD44s, which is 

important for chemoresistance. Their interaction stimulates PI3K/Akt 

activation, which stimulates the production of P-glycoprotein, which allows the 

tumour cells to pump toxins, including therapeutic agents, out and into the 

lumen [77].  
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Project overview 
The aims of this project are to understand the importance of two biomarkers, 

c-Myc and CD44, in colorectal cancer. 1000 patients provided tumour samples 

from locations including luminal, central, advancing edge and normal colon. 

These samples were then stained immunohistochemically with c-Myc and 

CD44 antibodies, and the slides scanned. Those images were provided for 

histopathological analysis. Upon completion of the histological analysis, the 

two biomarkers were subjected to statistical analysis alongside the clinical 

data, to determine if c-Myc or CD44 may have prognostic value. Tumour stroma 

content was similarly assessed to determine if it impacted clinical outcomes. 

Finally, bioinformatic analysis was performed using the Cancer Genome Atas 

(TCGA) colorectal cancer data, to analyse the pathways and processes that 

these biomarkers are involved in.  

Methods 

Patient cohort 

This study was performed on a Tissue MicroArray created from a cohort of 1000 

sequential patients treated for CRC at the Nottingham University Hospitals 

between 2008 and 2014. Specimens were obtained from colorectal cancer 

tissues and normal colonic mucosa and the following data about the patients 

were retrieved: sex, age at diagnosis, survival data, cause of death, tumour site, 

tumour size, lymph node involvement, metastases, final stage, dukes, stage, 

grade, recurrence, vascular invasion, perineural invasion, lymphovascular 

invasion, peritumoral lymphocytes, tumour edge, tumour budding, 

MLH1/PMS2/MSH2/MSH6 expression and MMR status. The creation of the 

TMA and the retrieval of the clinic-pathological data was undertaken by a 

senior research assistant in the lab. 

Histopathology methods 

Materials 
Table 1: Materials used in IHC analysis 

Item Supplier Catalogue number 

Tissue Microarrayer Beecher Instruments MTA-1 

X-tra Slides Leica Biosystems 3800050 

Monoclonal Mouse Anti-
human CD44 Clone DF1485  
Concentration 1:50 

Agilent M7082201-2 

Recombinant Rabbit Anti-c-
Myc antibody clone Y69 
Concentration 1:20 

Abcam Ab32072 

Benchmark ULTRA IHC/ISH 
System 

Roche  N750-BMKU-FS05342716001 

Pannoramic Slide Scanner 3DHistech - 
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Methods 

Colorectal cancer Tissue MicroArray (TMA) blocks were prepared according to 

standard procedures as previously described [78]. Formalin fixed, paraffin 

embedded (FFPE) tissue blocks and their corresponding haematoxylin and 

eosin (H&E) slides were retrieved. Regions of interested were annotated on the 

H&E slides by a pathologist, to identify the areas to be cored. Tissue cores with 

a diameter of 0.6 mm were extracted from the original block and transferred 

to a recipient block by a Tissue Microarrayer (Beecher Instruments, US). Four 

cores were taken from 1000 colorectal cancer samples including three from the 

tumour (luminal, central and advancing edge) and one from the normal 

adjacent area, and split across 15 TMAs with controls. Three regions from the 

tumour were taken, to allow interrogation of intratumoural heterogeneity, 

common in colorectal cancer [79]. TMA blocks were cut at a thickness of 4 µm 

and mounted on slides (Surgipath X-tra Adhesive, Leica, Germany). These slides 

were then stained with CD44 (Agilent, US) and c-Myc (Abcam, UK) antibodies 

on a Benchmark Ultra (Roche, US) and imaged with a 3D Histech slide scanner 

producing .mxrs format files. Images were analysed in QuPath v0.2.0-m11. 

Immunostaining was undertaken by the Histopathology department of the 

Queen’s Medical Centre using standard techniques. Scanning was performed 

at X20 magnification. 

Image analysis 

QuPath Set up 

QuPath-0.2.0-m11 [80] was used to open and analyse the TMA images. This is 

a free software which allows the user to perform manual or automated scoring 

of tissue samples. In this case only manual analyses were done, due to the 

nature of the antigens targeted; their presence in multiple cellular 

compartments meant scoring by eye minimised conflicting results. The process 

for creating a project (to save all images from one biomarker into one analysis 

file) and opening images was performed using commands within the 

application as follows: 

Create new project > Select Folder > Add images > Choose files > Set image type 

> Rotate image > Import 

Images were rotated 180° (see command above) as the majority of TMAs were 

originally displayed upside down. Cores were labelled with a column label (1-

12) and a row label (A-Z) to facilitate accurate analysis and identification of the 

cores of interest within the slide. Core size was set to 0.75 mm for all TMA slide 

images. TMA segregation was performed using the following commands: 

TMA > TMA dearrayer > TMA core diameter (0.75mm) > Column labels (1-12) 

> Row labels (A-Z) > Run  

Labelling the TMAs in this way gave the advantage that the cores could be 

annotated for core presence/absence by selecting the cores by double clicking 
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until highlighted yellow, right clicking and selecting “Set core valid” to mark the 

core for analysis or “set core missing” to mark the core as missing or 

nonscorable. Where the software had not recognised the correct positioning 

of cores (for example due to faint staining), the TMA selection boxes could be 

moved to the correct location by double-clicking and dragging the box to the 

desired location. This allowed easier visualisation of the cores within the image. 

In addition, some cores were larger than the boxes (figure 4f), and placing the 

boxes over the cores meant that the same sized region was used for all 

analyses. To reduce bias from this process, the boxes were placed in the middle 

of the cores (where possible) and that area was then scored. 

Exclusion criteria 

Cores were excluded as seen in figure 4 if: 

• Cores were absent (figure 4 H) 

• Cores were rendered nonscorable by: 

o Folding or tissue lifting leading to insufficient epithelial content 

(figure 4 A & E) 

o Out of focus (blurry) images (figure 4 G) 

o Cores overlapped/were too close together to be discernible  

o Cores were jumbled and unassignable (figure 4 F) 

o Epithelial content was less than 15% (figure 4 B) 

o Unexpected tissue type was present e.g. normal colon present 

where cancer was expected and vice versa (figure 4 C & D) 
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Figure 4: Exclusion criteria for QuPath image analysis. Cores were excluded for a number of different 
reasons including folding (A), insufficient epithelial content (B), incorrect epithelial type i.e. presence of 
normal colon (C) where tumour is expected or presence of tumour (D) where normal colon is expected. 
Other reasons for exclusion included tissue lifting (E), cores being unassignable (F), out of focus images 
(G), or lack of tissue (H).  

Histoscore calculation 

The histoscore (H-score) is a widely used method of assessment of 

immunostaining which allows heterogeneity of staining to be incorporated into 

the final score. The method usually depends on identifying 4 bands of intensity 

staining i.e. 0 = no staining, 1=weak staining, 2 = moderate staining, 3 = strong 

staining. The percentage of cells in each band is multiplied by the value of the 
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band. The histoscores (H-score) for each region of interest were calculated as 

follows: 

Histoscore = (0 x (%0 cells)) + (1 x (% 1+ cells)) + (2 x (% 2+ cells)) + (3 x (% 3+ 

cells))  

This methodology allows for a minimum score of 0 and a maximum score of 

300. For this study, in the case of CD44 cytoplasmic staining, there was a 

maximum score of 200, because the staining was consistently low intensity. 

Histoscores for every core in the tumour regions of luminal tumour, central 

tumour and advancing edge tumour were calculated and averaged to account 

for intratumoural heterogeneity. The H-scores of each tumour core were 

averaged assuming they met the analysis criteria described above. The H-score 

of the normal tissue was kept separate for comparison. H-scores for each 

cellular compartment (i.e. nuclear, cytoplasmic, membranous) and for stroma 

were generated individually. Examples of typical staining for each biomarker 

can be seen in figure 5. Cytoplasmic scoring for c-Myc was assessed as 

percentage positive cells as the staining was homogeneous between samples. 

CD44 H-score assessment 

CD44 staining was assessed for the following conditions: 

• Cytoplasmic staining: scored from 0-2 

• Membrane staining: scored from 0-3 

• Nuclear staining: scored from 0-3 

• Stroma staining: scored from 0-3 

c-Myc H-score assessment 

c-Myc staining was assessed in the following conditions: 

• Nuclear staining: scored from 0-3 

• Cytoplasmic staining: percentage positive cells 

• Stromal staining: scored from 0-3 

Epithelial content assessment: 

The epithelial content of each tumour region was assessed prior to biomarker 

analysis. This was necessary to determine if the cores were suitable for 

biomarker analysis, and allowed the assessment of tumour epithelial content 

with clinical outcomes. In addition, it gave an opportunity to compare the two 

sets of slides, as epithelial content may vary from section to section as the 

tumour changes. 
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Figure 5: Examples of expression of c-Myc (A-F) and CD44 (G-O) in colorectal carcinoma (A-L) and normal 
colon (M-O). c-Myc: Negative epithelial staining can be seen in A. Cytoplasmic staining in c-Myc (B) was 
scored for percentage of positive cells. Plasma cells were positive for c-Myc as seen in the stroma of C. D-
F show nuclear c-Myc staining varying from 1 (low intensity) to 3 (high intensity). CD44: G shows a tumour 
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sample with no epithelial CD44 staining. Cytoplasmic staining of CD44 was represented as a homogenous 
stain (H) or as a granular stain (I). Nuclear staining (M) was rarely observed for CD44. Immune cells in the 
stroma were frequently stained as in J. CD44 membranous staining in tumour samples can be seen in K 
(low intensity 1) and L (high intensity 3), and in normal samples (M, moderate intensity, 2). . Epithelial 
staining in the normal colon showed a stratified pattern of staining for CD44 (N), with the lower part of 
the crypts being positive and the upper parts were negative. CD44 staining was also observed in the 
stroma, particularly in normal samples, as in O. 

Statistical analysis 
All statistical analyses were performed using IBM SPSS Statistics v26 licensed 

from the University of Nottingham.  

The H-score is prone to subjective variation, due to each pathologist scoring 

staining slightly differently. H-score reliability was assessed in two ways. First, 

the inter-observer reliability was assessed by an independent pathologist. Dr 

Abhik Mukherjee gave H-scores for several tumours for each biomarker. When 

compared to my scores, these were within 10% of each other. Traditionally, a 

variability in scores of 10% between pathologists is accepted as a high Kappa 

score. To ensure that intra-observer reliability was consistent throughout the 

analysis, the H-scores for a number of tumours were recalculated on another 

day, to calculate the Kappa statistic. For epithelial content and nuclear, 

cytoplasmic and membranous staining (where applicable) in both proteins, 

these were all highly correlated, above 0.8. 

Additional variables were computed from existing variables as presented in 

table 2. This was done using Transform>Recode into different variables. Clinical 

variables were re-coded in order to perform Chi-square analysis, or perform 

analyses that depended on bivariate or categorical variable input.  

 
Table 2: Variables computed from existing variables into categorical variables 

Name Values Cut-off 

Clinical variables 

Agedichotomised 1, young; 2, old Below/above 50 

GradeDichotomized 1, low; 2, high 1&2, 3 

Sitedichotomized 1, Rightside; 2, Leftside Right colon, other and left 
colon, rectum 

c-Myc variables 

NucAvHScoreMedianSplit 0, Below; 1, Above Below/above 54 

NuclearLowestTertile 1, low; 2, high Below/above 26.33 

NuclearHighestTertile 1, low; 2, high Below/above 85.33 

Nuclearpositive 1, negative; 2, positive 0, any other value 

Nuclearalltertiles 1, lower; 2, middle; 3, higher 0>26.33, 26.33>85.33, 
85.33>300 

CytoAvPositiveMedian None Below/above 2 

CytoAvPositiveonly None 0, any other value 

StromalAverageMediansplit 1, below; 2, above Below/above 6.67 

StromalAverageHscorePositiveOnly None 0, any other value 

Name Values Cut-off 
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StromalAverageHScoreLowtertile None Below/above 3.5 

StromalAverageHScoreHightertile None Below/above 10.3 

CombinedNuclMedCyto75th None See c-Myc results 

CD44 variables 

MembraneHScorePositivesonly None 0, any other value 

MeanMembraneHScore75thPerc None Below/above 57.5 

MeanCytoHScoreMedianSplit None Below/above 58.33 

MeanCytoHScoreTertilesSplit None 0<35, 35<80, 80<200 

MeanNuclearHscorePosNeg None 0, any other value 

MeanStromaHScoreMedialSplit None Below/above 47.5 

MeanStromaHScoreTerts None 0<35, 35<60, 60<300 

NuclearAverageHScore None Below/above 12.6 

LumMemHS75th None Below/above 85 

CentralMemHS75th None Below/above 75 

AEMemHS75th None Below/above 75 

Other variables 

AvTumEpiMedian None Below/above 53.33 

AverageStromaMedianSplit None Below/above 47.5 

cMycCD44combined None See “CD44 and c-Myc 
interaction” 

*continuous variables were split into categorical variables using cut-offs in the right-hand column of 
this table to allow analyses that could not be performed using continuous data 

 

In order to assess the distribution of the data, histograms were prepared using 

analyze>frequencies. The mean, median and mode were computed, as were 

the quartile and tertile splits of the data. Distribution of the data was assessed 

by eye, and correlation between the average H-score and individual tumour 

compartments or normal colon was assessed using Spearman’s or Pearson’s 

rank correlation (analyze>correlation>bivariate). The average scores of each 

cellular compartment were also assessed to see if increased expression in one 

compartment led to increased expression in another, using correlation 

analysis. Chi-squared analysis (analyze>descriptive statistics>crosstabs) was 

used, with adjusted residuals, to determine the relationship between the 

clinical variables and biomarker expression. Mann-Whitney U tests were used 

to assess the relationship between the biomarkers and tumour stroma content. 

Kaplan-Meier and Cox regression methods were used to determine the 

association of each biomarker with survival. Kaplan-Meier analysis was 

performed using 3 year survival, 5 year survival and death by colorectal cancer. 

Cox regression analysis was performed using biomarker status, and with 

multivariate analysis to determine if survival was truly associated with 

biomarker expression or if clinical variables were affecting the results.  

Chi-square analysis was repeated for each biomarker with the additional 

splitting of MMR status added, in the most biologically relevant cellular 
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compartments. This allowed for any confounding results from MMR status, 

which influences CRC outcomes, to be accounted for. 

Tumour epithelium content analysis 

In order to achieve the most representative figures to allow comparison of 

tumour epithelium content with the clinical variables, the mean tumour 

epithelium content was calculated in Microsoft Excel as follows: 

((luminal (CD44) x luminal (c-Myc))/2) x ((central (CD44) x central (c-Myc))/2) x 

((advancing edge (CD44) x advancing edge (c-Myc))/2))/3 

Where one value in one region of interest was not available, the value from the 

other slide would be used. Where both values were not available for a tumour 

region of interest, the mean would be calculated from the other regions of 

interest using the following formulae: 

Calculating average from individual region of interest:  

=IF(A2,IF(F2,AVERAGE(A2,F2),A2)IF(F2,F2,"")) 

Calculating average from multiple regions of interest: 

=AVERAGE(K2:M2) 

This prevented unequal weighting of values and gave a tumour epithelium 

content which was most representative of the true overall tumour content. 

Bioinformatic analysis 
The proteins used as biomarkers in this project may be associated with 

different pathways and known pathogenesis. By testing their association with 

other genes in a known dataset (the Cancer Genome Atlas (TCGA)), it should 

enable us to understand more about their roles in colorectal cancer. TCGA CRC 

differential expression data was provided by Nigel Mongan. The base mean 

expression, log2 fold change data, log fold change standard deviations, 

statistic, p values and adjusted p values were provided for 60,488 genes, 

labelled with Ensembl gene IDs. To look for biologically significant changes to 

gene expression, results were filtered for genes with: 

•  More than ±1 log2 fold change (to shown truly biologically relevant 

changes) 

•  p value below 0.05  

• adjusted p value below 0.05  

To interrogate the data for biologically important changes, the Ensembl gene 

IDs were inputted into WebGestalt [81]. Here, the pathways c-Myc and CD44 

are involved in were interrogated in KEGG, Panther and Reactome. Other 

analyses investigating chromosomal locations and gene ontology were alsp 

performed (data not shown).  
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Figure 6: Parameters used to interrogate differentially expressed genes associated with c-Myc or CD44 in 
WebGestalt. Pathways were analysed to understand and confirm which pathways were enriched when 
CD44 and c-Myc were over-expressed. Gene ontology and chromosomal were interrogated to understand 
what kind of relationships that these genes of interest had with those that were over-expressed in their 
presence. 

Results 

Patient cohort 

1000 patients were included in this analysis. The clinical features of these 

patients are described below. Over half (56.8%) were male, and the majority 

were over the age of 50 (93.7%). Site was re-coded into two variables, “left” 

and “right”. Left-sided tumours included “left” and “rectum” tumours, and 

right-sided tumours included “right” and “other” tumours. The location of 

tumours was split almost equally, with 49% of tumours being right-sided. 72.7% 

of patients survived for three years, but less than half (43%) survived to five 

years. 28.7% of patients experienced recurrence, and 11.9% of patients 

experienced metastasis. Most patients were in stage 2 (40.2%) or stage 3 

(31.9%) at the end of the study. A higher primary tumour stage was generally 

observed, with only 7.4% of patients at T1. Lymph node metastasis was present 

in less than half of patients (N0 57%). The majority of patients were 

experiencing grade 2 colorectal cancer (88.6%), meaning the tumours were 

moderately differentiated [82]. The grades were re-coded from 1 (well-

differentiated), 2 (moderately-differentiated) and 3 (poorly-differentiated) to 

(1 & 2) and 3, in order to classify differentiated and undifferentiated tumours 

more plainly. Vascular invasion was more or less equally split between absent 

or present (48.3%), and the presence of perineural invasion (18.3%) and 

intratumoural lymphovascular invasion (28.7%) were observed less often than 

not. Not all tumours were classified for tumour edge, but of those that were, 

39.5% were classified as a “pushing” tumour edge, meaning that the tumour 

grows outward in a uniform pattern, and 36.7% were classified as “infiltrative”, 

meaning that the tumour grows into the surrounding tissue in a diffuse pattern 

[83]. 2.2% of patients could not be classified for mismatch repair status, but 

most patients were proficient (81.8%) and just 16% were deficient.  
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Overall the frequencies of the clinical features match the published data 

showing that there is no bias in the cohort. There was slightly higher occurrence 

of primary tumour T1 disease than may be expected from an historical cohort 

but this is probably because the NHS Bowel Cancer Screening Program was 

introduced over the period of time of this cohort (2008-2014).  

Table 3: Patient stratification 

Clinical Variable Condition Number (%) 

Gender Female 432 (43.2) 
 

Male 568 (56.8) 

3 year Survival Alive 727 (72.7) 
 

Dead 272 (27.2) 

5 year Survival Alive 430 (43) 
 

Dead 570 (57) 

Synchronous metastasis No metastasis 881 (88.1) 
 

With metastasis  119 (11.9) 

Recurrence  No Recurrence 713 (71.3) 
 

Recurrence 287 (28.7) 

Cause of death  Alive 624 (62.4) 
 

CRC 178 (17.8) 
 

Other 118 (11.8) 
 

Unknown 80 (8) 

Survival Status Alive 624 (62.4) 
 

Dead 376 (37.6) 

Site  Right 461 (46.1) 
 

Left 363 (36.3) 
 

Rectum 147 (14.7) 
 

Other 29 (2.9) 

Final stage 1 161 (16.1) 
 

2 402 (40.2) 
 

3 319 (31.9) 
 

4 118 (11.8) 

Primary tumour T1 74 (7.4) 
 

T2 106 (10.6) 
 

T3 526 (52.6) 
 

T4 294 (29.4) 

Lymph node metastasis N0 570 (57) 
 

N1 243 (24.3) 
 

N2 161 (16.1) 

Metastasis No metastasis 881 (88.1) 
 

With metastasis 119 (11.9) 

Vascular invasion Absent 502 (50.2) 
 

Present 483 (48.3) 

Grade 1 20 (2) 
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Clinical Variable Condition Number (%) 
 

2 886 (88.6) 
 

3 93 (9.3) 

Perineural invasion Absent 783 (78.3) 
 

Present 183 (18.3) 

Intramural lymphovascular invasion Absent 641 (64.1) 
 

Present 287 (28.7) 

Tumour edge Infiltrative 395 (39.5) 
 

Pushing 367 (36.7) 

Tumour budding score Low 508 (50.8) 
 

High 243 (24.3) 

Peritumoural lymphocytes Inconspicuous 549 (54.9) 
 

Conspicuous 217 (21.7) 

MMR Status  Unknown 22 (2.2) 
 

Proficient 818 (81.8) 
 

Deficient 160 (16) 

Age dichotomised Young 63 (6.3) 
 

Old 937 (93.7) 

Grade dichotomised Low 906 (90.6) 
 

High 93 (9.3) 

Site dichotomised Right side 490 (49) 
 

Left side 510 (51) 

 

Statistical analysis of c-Myc 
Average c-Myc expression for nuclear and stromal staining was calculated by 

taking the mean of the H-scores of each region of the tumour (luminal, central 

and advancing edge) and cytoplasmic staining was calculated as percentage of 

positive cells. To ensure the maximum number of data points, means were 

calculated where possible, and where only one location was present, this 

measurement was included in the results.  

Nuclear staining 

All distributions of nuclear c-Myc staining showed a skew to the right as seen 

in figure 7, due to the high frequency of zeroes for c-Myc expression. Therefore, 

medians and interquartile ranges (IQR) were presented. The median of the 

nuclear average H-score was 54 (IQR 12.5-102.5), which did not differ greatly 

from the medians of the luminal, central and advancing edge nuclear H-score 

medians (55 (IQR 10-110), 53 (IQR 10-100) and 50 (IQR 10-105) respectively). 

The correlation of each tumour region with nuclear average H-score was 

assessed using Spearman’s rank correlation, which shows that the tumour 

regions were very strongly positively correlated (>0.9) with the average nuclear 

H-score (p <0.001).  
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Figure 7: Distribution of nuclear H-scores. All nuclear H-scores were right-skewed, and average nuclear 
H-score was representative of the individual tumour regions.  

Associations between c-Myc nuclear staining and clinical variables 

The primary functions of c-Myc are performed in the nucleus and this is where 

the most biologically relevant staining was expected to be observed. Nuclear 

average H-score was re-coded into new negative and positive expression 

variables by the median (54) cut-off. Due to the skewed distribution of the data, 

additional splits were also performed in order to increase the number of 

significant observations that could be made. These included nuclear lowest 

tertile, nuclear highest tertile, and nuclear positive. To establish which 

variables may be linked to expression of c-Myc, Chi-squared analysis was 

performed with the clinical variables described in table 4. 

When the data was split by the median expression, the variables 5 year survival 

and site dichotomised were significantly associated with nuclear average H-

score. 5 year survival was negatively associated with c-Myc expression (p 

<0.001), and patients with positive c-Myc expression were more likely to have 

died after 5 years. Tumour location was also significantly associated with c-Myc 

expression. Negative c-Myc expression showed an association with right-sided 

tumours (p 0.03).  

When the data was dichotomised by the lowest tertile (above and below 26.33) 

poor 5 year survival was significantly associated with positive c-Myc expression 

(p <0.001), as seen with the median split. The presence of intratumoural 

lymphovascular invasion was associated with positive expression of c-Myc (p 

0.015). Splitting the data by highest tertile (above and below 85.33) once again 

showed a negative association between c-Myc expression and survival (p 

<0.001), with positive expression of c-Myc being indicative of death. Primary 

tumour stage showed a negative association with c-Myc expression (p 0.006), 
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with positive c-Myc expression associated with T1-3. T4 was associated with 

negative nuclear c-Myc expression.  

Table 4: Chi-square analysis of nuclear c-Myc positive and negative samples 

Clinical variable Condition Negative Positive Total Adjusted 
residual 

Χ² (p 
value) 

3 year Survival Alive 353 (76.2) 329 (71.2) 682 (73.7) 1.7 -1.7 3.020 
(0.082)  

Dead 110 (23.8) 133 (28.8) 243 (26.3) -1.7 1.7 
 

 
Total 463 (100) 462 (100) 925 (100) 

   

5 year Survival Alive 240 (51.7) 166 (35.9) 406 (43.8) 4.8 -4.8 23.45 
(<0.001)  

Dead 224 (48.3) 296 (64.1) 520 (56.2) -4.8 4.8 
 

 
Total 464 (100) 462 (100) 926 (100) 

   

Synchronous 
met  

No metastasis 412 (88.8) 410 (88.7) 822 (88.8) 0 0 0.001 
(0.981)  

With 
metastasis 

52 (11.2) 52 (11.3) 104 (11.2) 0 0 
 

 
Total 464 (100) 462 (100) 926 (100) 

   

Recurrence  No 
Recurrence 

336 (72.4) 327 (70.8) 663 (71.6) 0.6 -0.6 0.304 
(0.581)  

Recurrence 128 (27.6) 135 (29.2) 263 (28.4) -0.6 0.6 
 

 
Total 464 (100) 462 (100) 926 (100) 

   

Cause of death  Alive 300 (64.7) 283 (61.3) 583 (63) 1.1 -1.1 6.899 
(0.075)  

CRC 69 (14.9) 92 (19.9) 161 (17.4) -2 2 
 

 
Other 53 (11.4) 59 (12.8) 112 (12.1) -0.6 0.6 

 

 
Unknown 42 (9.1) 28 (6.1) 70 (7.6) 1.7 -1.7 

 

 
Total 464 (100) 462 (100) 926 (100) 

   

Survival Status Alive 300 (64.7) 283 (61.3) 583 (63) 1.1 -1.1 1.147 
(0.284)  

Dead 164 (35.3) 179 (38.7) 343 (37) -1.1 1.1 
 

 
Total 464 (100) 462 (100) 926 (100) 

   

Final stage 1 70 (15.1) 83 (18) 153 (16.5) -1.2 1.2 2.610 
(0.456)  

2 200 (43.1) 178 (38.5) 378 (40.8) 1.4 -1.4 
 

 
3 142 (30.6) 150 (32.5) 292 (31.5) -0.6 0.6 

 

 
4 52 (11.2) 51 (11) 103 (11.1) 0.1 -0.1 

 

 
Total 464 (100) 462 (100) 926 (100) 

   

Primary 
tumour 

T1 26 (5.6) 44 (9.5) 70 (7.6) -2.3 2.3 6.934 
(0.074)  

T2 53 (11.4) 47 (10.2) 100 (10.8) 0.6 -0.6 
 

 
T3 241 (51.9) 249 (53.9) 490 (52.9) -0.6 0.6 

 

 
T4 144 (31) 122 (26.4) 266 (28.7) 1.6 -1.6 

 

 
Total 464 (100) 462 (100) 926 (100) 

   

Lymph node 
metastasis 

N0 274 (60.2) 261 (58.7) 535 (59.4) 0.5 -0.5 1.420 
(0.492)  

N1 105 (23.1) 117 (26.3) 222 (24.7) -1.1 1.1 
 

 
N2 76 (16.7) 67 (15.1) 143 (15.9) 0.7 -0.7 

 

 
Total 455 (100) 445 (100) 900 (100) 

   

Metastasis No metastasis 412 (88.8) 410 (88.7) 822 (88.8) 0 0 0.001 
(0.981) 
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With 
metastasis 

52 (11.2) 52 (11.3) 104 (11.2) 0 0 
 

 
Total 464 (100) 462 (100) 926 (100) 

   

Clinical variable Condition Negative Positive Total Adjusted 
residual 

Χ² (p 
value) 

Vascular 
invasion 

Absent 228 (49.6) 244 (54.1) 472 (51.8) -1.4 1.4 1.877 
(0.171)  

Present 232 (50.4) 207 (45.9) 439 (48.2) 1.4 -1.4 
 

 
Total 460 (100) 451 (100) 911 (100) 

   

Grade 1 9 (1.9) 9 (2) 18 (1.9) 0 0 0.574 
(0.751)  

2 421 (90.7) 412 (89.4) 833 (90.1) 0.7 -0.7 
 

 
3 34 (7.3) 40 (8.7) 74 (8) -0.8 0.8 

 

 
Total 464 (100) 461 (100) 925 (100) 

   

Perineural 
invasion 

Absent 364 (80) 360 (82.2) 724 (81.1) -0.8 0.8 0.699 
(0.403)  

Present 91 (20) 78 (17.8) 169 (18.9) 0.8 -0.8 
 

 
Total 455 (100) 438 (100) 893 (100) 

   

Intramural 
lymphovascular 
invasion 

Absent 297 (71.7) 301 (66.6) 598 (69.1) 1.6 -1.6 2.678 
(0.102) 

 
Present 117 (28.3) 151 (33.4) 268 (30.9) -1.6 1.6 

 

 
Total 414 (100) 452 (100) 866 (100) 

   

Tumour edge Infiltrative 155 (53.3) 210 (50.2) 365 (51.5) 0.8 -0.8 0.629 
(0.428)  

Pushing 136 (46.7) 208 (49.8) 344 (48.5) -0.8 0.8 
 

 
Total 291 (100) 418 (100) 709 (100) 

   

Tumour 
budding score 

Low 197 (69.9) 272 (65.1) 469 (67) 1.3 -1.3 1.745 
(0.187)  

High 85 (30.1) 146 (34.9) 231 (33) -1.3 1.3 
 

 
Total 282 (100) 418 (100) 700 (100) 

   

Peritumoural 
lymphocytes 

Inconspicuous 217 (73.8) 290 (69) 507 (71) 1.4 -1.4 1.905 
(0.168)  

Conspicuous 77 (26.2) 130 (31) 207 (29) -1.4 1.4 
 

 
Total 294 (100) 420 (100) 714 (100) 

   

MMR Status  
 

3 (0.6) 3 (0.6) 6 (0.6) 0 0 4.763 
(0.092)  

Proficient 399 (86) 373 (80.7) 772 (83.4) 2.1 -2.1 
 

 
Deficient 62 (13.4) 86 (18.6) 148 (16) -2.2 2.2 

 

 
Total 464 (100) 462 (100) 926 (100) 

   

Age 
dichotomised 

Young 25 (5.4) 31 (6.7) 56 (6) -0.8 0.8 0.712 
(0.399)  

Old 439 (94.6) 431 (93.3) 870 (94) 0.8 -0.8 
 

 
Total 464 (100) 462 (100) 926 (100) 

   

Grade 
dichotomised 

Low 430 (92.7) 421 (91.3) 851 (92) 0.8 -0.8 0.572 
(0.449)  

High 34 (7.3) 40 (8.7) 74 (8) -0.8 0.8 
 

 
Total 464 (100) 461 (100) 925 (100) 

   

Site 
dichotomised 

Right side 242 (52.2) 208 (45) 450 (48.6) 2.2 -2.2 4.716 
(0.03)  

Left side 222 (47.8) 254 (55) 476 (51.4) -2.2 2.2 
 

 
Total 464 (100) 462 (100) 926 (100) 

   

*Significant p values (<0.05) are highlighted in bold 
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Mismatch repair status 

Patients who were c-Myc positive showed a higher association with dMMR 

than pMMR. c-Myc expression has been known to interact with mismatch 

repair status [48, 49]. To ensure that MMR status was not confounding the 

results, the Chi-square analysis was repeated, with the data split into pMMR 

and dMMR. Some samples did not have MMR status available (data not 

shown). Repetition of the analysis with MMR status yielded additional results. 

5 year survival was significant as before, but the split demonstrated that 

patients who had negative nuclear c-Myc expression and were pMMR, were 

statistically more likely to survive (p<0.001) than those who were dMMR (p 

0.033). 3 year survival in MMR deficient patients was significantly higher in c-

Myc positive patients (p 0.039) but not in MMR proficient patients (p 0.426). 

Lower primary tumour stage was associated with positive c-Myc expression (p 

0.019), and right-sided tumours were associated with low expression of nuclear 

c-Myc (p 0.003). These results were previously masked in the general analysis.  

As c-Myc is believed to be regulated by MLH1 and MSH2, the relationship 

between c-Myc expression and the status of these two genes was investigated. 

Median expression of c-Myc in proficient MLH1 (pMLH1) patients was 50 

(interquartile range 89.67) and the median expression of MLH1 deficient 

(dMLH1) patients was 70.8 (interquartile range 80.2). Mann-Whitney U test 

was used to assess if the difference in expression of c-Myc between pMLH1 and 

dMLH1 patients was significant. dMLH1 patients were found to have higher 

expression of c-Myc than pMLH1 patients (p 0.012). MSH2 has been reported 

to be regulated by the c-Myc MAX complex, and so the nuclear average H-score 

for MSH2 proficient (pMSH2) and deficient (dMSH2) patients were compared. 

As only 9 patients were dMSH2, these results may not be truly representative 

of the population. The median expression of pMSH2 patients was 52.59 

(interquartile range 88.88) and the median expression of dMSH2 patients was 

75 (interquartile range 82.5). Mann-Whitney U analysis revealed that there was 

no significant difference between the two groups (p 0.731).  

Survival analysis of c-Myc expression 

In the Chi-squared analysis above, interestingly, 3 year survival was not 

significantly different between the two groups (p 0.082) whereas 5 year 

survival was (p <0.001). To understand the importance of c-Myc expression on 

overall survival, Kaplan-Meier survival analysis was performed as seen in figure 

8. Nuclear average H-scores split by median expression and tertiles were 

compared with 3 year survival and 5 year survival. When the data was split by 

median expression, 3 year survival was not significantly different (p 0.099) but 

5 year survival (p <0.001) and death relating to CRC (p 0.006) were. After 5 

years, c-Myc negative patients had a 51.7% chance of survival, whereas c-Myc 

positive patients had a 35.9% chance of survival. When death was related to 

colorectal cancer, there was an approximately 86% chance of survival in the c-

Myc negative group after 5 years, whereas the positive group had a worse 
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chance of survival of approximately 77%. Median survival could not be 

calculated as most cases either survived or death was not related to CRC. When 

the data was divided into three tertiles, 5 year survival was significant (p 0.001). 

The lowest tertile had a 53.2% chance of survival, whereas the middle tertile 

had a 42.7% chance and the highest expressing group had a 35.6% chance of 

survival.  

 

Figure 8: Kaplan-Meier analysis of nuclear c-Myc expression split by median (left) and tertiles (right). 5 
year survival was significantly associated with nuclear c-Myc expression (middle), as was death relating 
to CRC (bottom). 3 year survival was not significantly associated with nuclear c-Myc (top). 

In order to further understand the relationship between c-Myc nuclear 

expression and survival, Cox regression analysis was performed using c-Myc 

nuclear average median split, in a multivariate analysis with the variables that 

c-Myc had shown significant association with. This was to determine whether 

c-Myc expression was truly related to survival or whether one of the clinical 

variables was confounding the analysis. Primary tumour stage, lymph node 

metastasis, grade, intratumoural lymphovascular invasion, perineural invasion, 

tumour edge, grade dichotomised and site dichotomised variables were 

assessed alongside c-Myc nuclear expression. Death related to colorectal 

cancer was assessed. The hazard ratio of nuclear average H-score in univariate 
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analysis revealed that death was 1.346 times more likely in c-Myc positive 

patients (p 0.007). Multivariate analysis revealed an even stronger difference 

(hazard ratio 1.6, p 0.001). In addition to this, primary tumour size, lymph node 

metastasis, grade and perineural invasion were significantly associated with 

survival. T3 tumours were significantly associated with death relating to CRC (p 

0.001) as were N2 tumours (metastasis to >6 nodes) (p 0.003). Presence of 

perineural invasion (p 0.047) and pushing tumour edge (p 0.039) were 

indicative of increased risk of death by CRC. Intratumoural lymphovascular 

invasion and site dichotomised were not significantly associated with survival 

status.  

Table 5: Cox regression analysis of c-Myc nuclear expression and significantly associated variables 

Variable Hazard 
ratio 

95.0% CI p value 

Lower Upper 

Nuc Average H-Score Median Split 1.346 1.084 1.67 0.007 

Clinical variable Hazard 

ratio 

95.0% CI  

Lower Upper P value 

Primary tumour 1T1* - - - 0.000 

Primary tumour T2 1.451 0.397 5.304 0.573 

Primary tumour T3 2.607 0.817 8.325 0.106 

Primary tumour T4 7.077 2.194 22.830 0.001 

Lymph node metastasisN0 - - - 0.005 

Lymph node metastasisN1 1.050 0.763 1.444 0.765 

Lymph node metastasisN2 1.695 1.202 2.391 0.003 

Grade 1 - - - 0.003 

Grade2 0.756 0.235 2.429 0.638 

Grade 3 1.486 0.440 5.019 0.524 

Perineural invasion 1.384 1.004 1.909 0.047 

Intramural lymphovascular invasion 0.765 0.572 1.022 0.070 

Tumour edge 0.729 0.539 0.984 0.039 

Site dichotomised 0.883 0.679 1.149 0.354 

Grade dichotomised**    - 

Nuclear Average H-Score Median 

Split 

1.600 1.226 2.087 0.001 

*Significant associations (p <0.05) highlighted in bold  
**Could not be determined 

 

Cytoplasmic expression of c-Myc 

Luminal, central and advancing edge cytoplasmic percentage positive cells 

were averaged to produce the cytoplasmic average positive score. The data 
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was skewed to the right for all cytoplasmic data including normal samples, as 

seen in figure 9. Median expression of average cytoplasmic staining was 2 (IQR 

0-15). Luminal, central and advancing edge medians were all 0, with IQRs of 0-

15, 0-10 and 0-10 respectively. Spearman’s rank correlation was used to 

analyse the similarity of the average data to the individual tumour samples. 

Luminal, central and advancing edge samples were highly positively correlated 

with the averaged cytoplasmic data (>0.75, p<0.001). Average cytoplasmic 

percentage positive was split by positive/negative expression due to low 

median expression.  

 

Figure 9: Distribution of percentage positive cytoplasmic staining for luminal, central, advancing edge 
and average tumours. 

Association with clinical variables 

Chi-squared analysis was performed as for nuclear H-score data. When the data 

was split by negative versus positive cytoplasmic c-Myc expression, increased 

lymph node metastasis was associated with negative cytoplasmic c-Myc 

expression (p 0.003). The presence of perineural invasion (p 0.024) was again 

associated with negative cytoplasmic c-Myc. In addition, site dichotomised was 

also significantly associated with cytoplasmic c-Myc expression (p 0.026). 

Tumours that originated in the left side of the colon were associated with 

positive cytoplasmic c-Myc expression.  
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Table 6: Chi-squared analysis of cytoplasmic expression of c-Myc expression against clinical 
variables 

Clinical variable Condition Negative Positive Total Adjusted 
residual 

Χ² (p 
value) 

Gender Female 152 (42.8) 253 (44.3) 405 (43.7) -0.4 0.4 0.198 
(0.656)  

Male 203 (57.2) 318 (55.7) 521 (56.3) 0.4 -0.4 
 

 
Total 355 (100) 571 (100) 926 (100) 

   

3 year Survival Alive 258 (72.7) 424 (74.4) 682 (73.7) -0.6 0.6 0.330 
(0.566)  

Dead 97 (27.3) 146 (25.6) 243 (26.3) 0.6 -0.6 
 

 
Total 355 (100) 570 (100) 925 (100) 

   

5 year Survival Alive 146 (41.1) 260 (45.5) 406 (43.8) -1.3 1.3 1.727 
(0.189)  

Dead 209 (58.9) 311 (54.5) 520 (56.2) 1.3 -1.3 
 

 
Total 355 (100) 571 (100) 926 (100) 

   

Synchronous 
metastasis  

No metastasis  318 (89.6) 504 (88.3) 822 (88.8) 0.6 -0.6 0.378 
(0.539)  

With 
metastasis  

37 (10.4) 67 (11.7) 104 (11.2) -0.6 0.6 
 

 
Total 355 (100) 571 (100) 926 (100) 

   

Recurrence  No 
Recurrence 

253 (71.3) 410 (71.8) 663 (71.6) -0.2 0.2 0.031 
(0.86)  

Recurrence 102 (28.7) 161 (28.2) 263 (28.4) 0.2 -0.2 
 

 
Total 355 (100) 571 (100) 926 (100) 

   

Cause of death  Alive 216 (60.8) 367 (64.3) 583 (63) -1.1 1.1 2.336 
(0.506)  

CRC 65 (18.3) 96 (16.8) 161 (17.4) 0.6 -0.6 
 

 
Other 42 (11.8) 70 (12.3) 112 (12.1) -0.2 0.2 

 

 
Unknown 32 (9) 38 (6.7) 70 (7.6) 1.3 -1.3 

 

 
Total 355 (100) 571 (100) 926 (100) 

   

Survival Status Alive 216 (60.8) 367 (64.3) 583 (63) -1.1 1.1 1.103 
(0.294)  

Dead 139 (39.2) 204 (35.7) 343 (37) 1.1 -1.1 
 

 
Total 355 (100) 571 (100) 926 (100) 

   

Final stage 1 55 (15.5) 98 (17.2) 153 (16.5) -0.7 0.7 3.121 
(0.373)  

2 139 (39.2) 239 (41.9) 378 (40.8) -0.8 0.8 
 

 
3 124 (34.9) 168 (29.4) 292 (31.5) 1.8 -1.8 

 

 
4 37 (10.4) 66 (11.6) 103 (11.1) -0.5 0.5 

 

 
Total 355 (100) 571 (100) 926 (100) 

   

Primary 
tumour 

T1 26 (7.3) 44 (7.7) 70 (7.6) -0.2 0.2 0.704 
(0.872)  

T2 36 (10.1) 64 (11.2) 100 (10.8) -0.5 0.5 
 

 
T3 186 (52.4) 304 (53.2) 490 (52.9) -0.3 0.3 

 

 
T4 107 (30.1) 159 (27.8) 266 (28.7) 0.8 -0.8 

 

 
Total 355 (100) 571 (100) 926 (100) 

   

Lymph node 
metastasis* 

N0 192 (55.5) 343 (61.9) 535 (59.4) -1.9 1.9 11.43 
(0.003)  

N1 81 (23.4) 141 (25.5) 222 (24.7) -0.7 0.7 
 

 
N2 73 (21.1) 70 (12.6) 143 (15.9) 3.4 -3.4 

 

 
Total 346 (100) 554 (100) 900 (100) 
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Metastasis No metastasis 318 (89.6) 504 (88.3) 822 (88.8) 0.6 -0.6 0.378 
(0.539)  

With 
metastasis 

37 (10.4) 67 (11.7) 104 (11.2) -0.6 0.6 
 

 
Total 355 (100) 571 (100) 926 (100) 

   

Clinical variable Condition Negative Positive Total Adjusted 
residual 

Χ² (p 
value) 

Vascular 
invasion 

Absent 173 (49.4) 299 (53.3) 472 (51.8) -1.1 1.1 1.292 
(0.256)  

Present 177 (50.6) 262 (46.7) 439 (48.2) 1.1 -1.1 
 

 
Total 350 (100) 561 (100) 911 (100) 

   

Perineural 
invasion 

Absent 266 (77.3) 458 (83.4) 724 (81.1) -2.3 2.3 5.127 
(0.024)  

Present 78 (22.7) 91 (16.6) 169 (18.9) 2.3 -2.3 
 

 
Total 344 (100) 549 (100) 893 (100) 

   

Intramural 
lymphovascular 
invasion 

Absent 226 (70.2) 372 (68.4) 598 (69.1) 0.6 -0.6 0.308 
(0.579) 

 
Present 96 (29.8) 172 (31.6) 268 (30.9) -0.6 0.6 

 

 
Total 322 (100) 544 (100) 866 (100) 

   

Tumour edge Infiltrative 115 (51.3) 250 (51.5) 365 (51.5) -0.1 0.1 0.003 
(0.959)  

Pushing 109 (48.7) 235 (48.5) 344 (48.5) 0.1 -0.1 
 

 
Total 224 (100) 485 (100) 709 (100) 

   

Tumour 
budding score 

Low 141 (64.4) 328 (68.2) 469 (67) -1 1 0.987 
(0.321)  

High 78 (35.6) 153 (31.8) 231 (33) 1 -1 
 

 
Total 219 (100) 481 (100) 700 (100) 

   

Peritumoural 
lymphocytes 

Inconspicuous 158 (69) 349 (72) 507 (71) -0.8 0.8 0.663 
(0.415)  

Conspicuous 71 (31) 136 (28) 207 (29) 0.8 -0.8 
 

 
Total 229 (100) 485 (100) 714 (100) 

   

MMR Status  
 

2 (0.6) 4 (0.7) 6 (0.6) -0.3 0.3 0.066 
(0.968)  

Proficient 296 (83.4) 476 (83.4) 772 (83.4) 0 0 
 

 
Deficient 57 (16.1) 91 (15.9) 148 (16) 0 0 

 

 
Total 355 (100) 571 (100) 926 (100) 

   

Age 
dichotomised 

Young 16 (4.5) 40 (7) 56 (6) -1.6 1.6 2.405 
(0.121)  

Old 339 (95.5) 531 (93) 870 (94) 1.6 -1.6 
 

 
Total 355 (100) 571 (100) 926 (100) 

   

Grade 
dichotomised 

Low 321 (90.4) 530 (93) 851 (92) -1.4 1.4 1.948 
(0.163)  

High 34 (9.6) 40 (7) 74 (8) 1.4 -1.4 
 

 
Total 355 (100) 570 (100) 925 (100) 

   

Site 
dichotomised 

Right side 189 (53.2) 261 (45.7) 450 (48.6) 2.2 -2.2 4.969 
(0.026)  

Left side 166 (46.8) 310 (54.3) 476 (51.4) -2.2 2.2 
 

 
Total 355 (100) 571 (100) 926 (100) 

   

*Significant p values (<0.05) highlighted in bold 
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Survival analysis of cytoplasmic c-Myc expression 

3 year survival, 5 year survival and death related to colorectal cancer were 

assessed with cytoplasmic c-Myc staining. No significant difference could be 

observed between survival of positive or negative cytoplasmic c-Myc 

expressors, as seen in the Kaplan-Meier diagrams in figure 10. Cox regression 

analysis was done to assess whether 5 year survival stratified by cytoplasmic 

staining was affected by other variables. Perineural invasion, lymph node 

metastasis and site dichotomised were analysed with cytoplasmic staining. In 

the multivariate analysis, increased lymph node invasion led to increased 

survival (p <0.001), whereas the presence of perineural invasion was associated 

with increased risk of death (p 0.007), as were tumours that originated in the 

right side of the colon (p 0.026). Cytoplasmic staining was not significantly 

associated with survival outcome either in univariate or multivariate analysis.  

Table 7: Cox regression analysis of c-Myc cytoplasmic staining with significantly associated 
variables 

Variable Hazard ratio 95.0% CI p value  

Lower Upper 

Cytoplasmic average Positive only 0.937 0.755 1.164 0.558 

Clinical variable Hazard ratio 95.0% CI for Hazard ratio p value 

Lower Upper 

Lymph node metastasis N0* -   <0.001 

Lymph node metastasis N1 0.459 0.361 0.585 <0.001 

Lymph node metastasis N2 0.568 0.438 0.737 <0.001 

Perineural invasion 1.363 1.089 1.705 0.007 

Site dichotomised 0.816 0683 0.975 0.026 

Cytoplasmic average positive only 1.020 0.850 1.223 0.832 

*Significant associations highlighted in bold 
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Figure 10: Kaplan-Meier analysis of survival after 3 and 5 years, and death relating to colorectal cancer, 
stratified by c-Myc cytoplasmic average percentage positive cells. 
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Stromal expression of c-Myc 

The stromal H-scores were not normally distributed, as seen below in figure 11, 

and the median average expression of c-Myc in the stroma was 6.67 (IQR 2.5-

13.5). Luminal, central and advancing edge medians were all 5 (IQR 2-14, 1-13 

and 1-13.25 respectively). The luminal, central and advancing edge H-scores 

were strongly positively correlated with the average H-score (>0.75, p <0.001), 

demonstrating homogeneity of the staining.  

 

Figure 11: Distribution of c-Myc expression in the stroma. The data was not normally distributed, but 
was highly correlated between tumour regions and average H-score. 

Stromal c-Myc H-score Chi-squared analysis 

Chi-square analysis was performed with the clinical variables against the c-Myc 

stromal average H-score split by median (6.67) and by lowest and highest 

tertiles (data not shown). 3 year survival (p 0.012) and survival status (p 0.002) 

were associated with positive c-Myc stromal expression. Positive c-Myc stromal 

expression was associated with lower final stage (p 0.007), primary tumour 

stage (p 0.001) and lymph node metastasis (p 0.019). The absence of vascular 

invasion was associated with positive stromal c-Myc expression (p 0.018), as 

were conspicuous peritumoural lymphocytes (p <0.001).  

 

Table 8: Stromal average H-score median split 

Clinical variable Condition Negative Positive Total Adjusted 
residual 

Χ² (p 
value) 

Gender Female 212 (45.5) 193 (42) 405 (43.7) 1.1 -1.1 1.177 
(0.278)  

Male 254 (54.5) 267 (58) 521 (56.3) -1.1 1.1 
 

 
Total 466 (100) 460 (100) 926 (100) 

   

3 year Survival* Alive 326 (70.1) 356 (77.4) 682 (73.7) -2.5 2.5 6.334 
(0.012)  

Dead 139 (29.9) 104 (22.6) 243 (26.3) 2.5 -2.5 
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Total 465 (100) 460 (100) 925 (100) 

   

Clinical variable Condition Negative Positive Total Adjusted 
residual 

Χ² (p 
value) 

5 year Survival Alive 197 (42.3) 209 (45.4) 406 (43.8) -1 1 0.939 
(0.333)  

Dead 269 (57.7) 251 (54.6) 520 (56.2) 1 -1 
 

 
Total 466 (100) 460 (100) 926 (100) 

   

Synchronous 
metastasis  

No Metastasis 411 (88.2) 411 (89.3) 822 (88.8) -0.6 0.6 0.307 
(0.579)  

With 
metastasis 

55 (11.8) 49 (10.7) 104 (11.2) 0.6 -0.6 
 

 
Total 466 (100) 460 (100) 926 (100) 

   

Recurrence  No 
Recurrence 

322 (69.1) 341 (74.1) 663 (71.6) -1.7 1.7 2.882 
(0.09)  

Recurrence 144 (30.9) 119 (25.9) 263 (28.4) 1.7 -1.7 
 

 
Total 466 (100) 460 (100) 926 (100) 

   

Cause of death  Alive 271 (58.2) 312 (67.8) 583 (63) -3 3 11.62 
(0.009)  

CRC 91 (19.5) 70 (15.2) 161 (17.4) 1.7 -1.7 
 

 
Other 59 (12.7) 53 (11.5) 112 (12.1) 0.5 -0.5 

 

 
Unknown 45 (9.7) 25 (5.4) 70 (7.6) 2.4 -2.4 

 

 
Total 466 (100) 460 (100) 926 (100) 

   

Survival Status Alive 271 (58.2) 312 (67.8) 583 (63) -3 3 9.285 
(0.002)  

Dead 195 (41.8) 148 (32.2) 343 (37) 3 -3 
 

 
Total 466 (100) 460 (100) 926 (100) 

   

Final stage 1 58 (12.4) 95 (20.7) 153 (16.5) -3.4 3.4 12.23 
(0.007)  

2 193 (41.4) 185 (40.2) 378 (40.8) 0.4 -0.4 
 

 
3 160 (34.3) 132 (28.7) 292 (31.5) 1.8 -1.8 

 

 
4 55 (11.8) 48 (10.4) 103 (11.1) 0.7 -0.7 

 

 
Total 466 (100) 460 (100) 926 (100) 

   

Primary tumour T1 20 (4.3) 50 (10.9) 70 (7.6) -3.8 3.8 17.39 
(0.001)  

T2 48 (10.3) 52 (11.3) 100 (10.8) -0.5 0.5 
 

 
T3 248 (53.2) 242 (52.6) 490 (52.9) 0.2 -0.2 

 

 
T4 150 (32.2) 116 (25.2) 266 (28.7) 2.3 -2.3 

 

 
Total 466 (100) 460 (100) 926 (100) 

   

Lymph node 
metastasis 

N0 255 (55.8) 280 (63.2) 535 (59.4) -2.3 2.3 7.961 
(0.019)  

N1 115 (25.2) 107 (24.2) 222 (24.7) 0.4 -0.4 
 

 
N2 87 (19) 56 (12.6) 143 (15.9) 2.6 -2.6 

 

 
Total 457 (100) 443 (100) 900 (100) 

   

Metastasis No metastasis 411 (88.2) 411 (89.3) 822 (88.8) -0.6 0.6 0.307 
(0.579)  

With 
metastasis 

55 (11.8) 49 (10.7) 104 (11.2) 0.6 -0.6 
 

 
Total 466 (100) 460 (100) 926 (100) 

   

Vascular 
invasion 

Absent 221 (47.9) 251 (55.8) 472 (51.8) -2.4 2.4 5.604 
(0.018)  

Present 240 (52.1) 199 (44.2) 439 (48.2) 2.4 -2.4 
 

 
Total 461 (100) 450 (100) 911 (100) 
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Clinical variable Condition Negative Positive Total Adjusted 
residual 

Χ² (p 
value) 

Perineural 
invasion 

Absent 361 (79.5) 363 (82.7) 724 (81.1) -1.2 1.2 1.464 
(0.226)  

Present 93 (20.5) 76 (17.3) 169 (18.9) 1.2 -1.2 
 

 
Total 454 (100) 439 (100) 893 (100) 

   

Intramural 
lymphovascular 
invasion 

Absent 292 (69.4) 306 (68.8) 598 (69.1) 0.2 -0.2 0.036 
(0.85) 

 
Present 129 (30.6) 139 (31.2) 268 (30.9) -0.2 0.2 

 

 
Total 421 (100) 445 (100) 866 (100) 

   

Tumour edge Infiltrative 170 (54) 195 (49.5) 365 (51.5) 1.2 -1.2 1.404 
(0.236)  

Pushing 145 (46) 199 (50.5) 344 (48.5) -1.2 1.2 
 

 
Total 315 (100) 394 (100) 709 (100) 

   

Tumour 
budding score 

Low 203 (66.3) 266 (67.5) 469 (67) -0.3 0.3 0.107 
(0.743)  

High 103 (33.7) 128 (32.5) 231 (33) 0.3 -0.3 
 

 
Total 306 (100) 394 (100) 700 (100) 

   

Peritumoural 
lymphocytes 

Inconspicuous 254 (80.4) 253 (63.6) 507 (71) 4.9 -4.9 24.18 
(<0.001)  

Conspicuous 62 (19.6) 145 (36.4) 207 (29) -4.9 4.9 
 

 
Total 316 (100) 398 (100) 714 (100) 

   

MMR Status  
 

1 (0.2) 5 (1.1) 6 (0.6) -1.7 1.7 7.225 
(0.027)  

Proficient 402 (86.3) 370 (80.4) 772 (83.4) 2.4 -2.4 
 

 
Deficient 63 (13.5) 85 (18.5) 148 (16) -2.1 2.1 

 

 
Total 466 (100) 460 (100) 926 (100) 

   

Age 
dichotomised 

Young 27 (5.8) 29 (6.3) 56 (6) -0.3 0.3 0.106 
(0.745)  

Old 439 (94.2) 431 (93.7) 870 (94) 0.3 -0.3 
 

 
Total 466 (100) 460 (100) 926 (100) 

   

Grade 
dichotomised 

Low 427 (91.6) 424 (92.4) 851 (92) -0.4 0.4 0.174 
(0.677)  

High 39 (8.4) 35 (7.6) 74 (8) 0.4 -0.4 
 

 
Total 466 (100) 459 (100) 925 (100) 

   

Site 
dichotomised 

Right side 220 (47.2) 230 (50) 450 (48.6) -0.8 0.8 0.721 
(0.396)  

Left side 246 (52.8) 230 (50) 476 (51.4) 0.8 -0.8 
 

 
Total 466 (100) 460 (100) 926 (100) 

   

*Significant p values (<0.05) highlighted in bold  

 

Survival analyses of stromal c-Myc expression 

Kaplan-Meier analysis was performed using 3 year survival, 5 year survival and 

death caused by colorectal cancer as defining events, stratified by positive and 

negative stromal c-Myc H-score and by highest tertile. 3 year survival was 

significantly higher for positive stromal c-Myc (p 0.009), with negative stromal 

c-Myc expression having an approximately 70% chance of death after 3 years 

and c-Myc positive patients having a roughly 77% chance of survival. There was 

no significant difference between 3 year survival if the data was stratified by 
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highest tertile (p 0.094). There was no significant difference between survival 

at 5 years regardless if the split was by median (p 0.133) or highest tertile (p 

0.255). Death relating to CRC was significantly different when the data was 

stratified by highest tertile (p 0.026), with stromal c-Myc negative patients 

having a 79% chance of survival and stromal c-Myc positive having an 86% 

chance of survival. When split by median (p 0.062) there was no significant 

difference.  
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Figure 12: Kaplan-Meier analysis of stromal c-Myc expression. 3 year survival and death relating to 
colorectal cancer were significantly related to c-Myc stromal expression. 
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Table 9: Cox regression analysis of stromal c-Myc expression and significantly associated variables 

Variable Hazard 
ratio 

95.0% CI p value 

Lower Upper 

Stromal Average Median split 0.753 0.608 0.933 0.01 

Clinical Variable Hazard 
ratio 

95.0% CI p value 

Lower Upper 

Final Stage 1* 
   <0.001 

Final Stage 2 0.001 0 6.82E+20 0.807 
Final Stage 3 0.001 0 5.01E+20 0.798 
Final Stage 4 0.002 0 1.17E+21 0.822 

Primary tumour T1 
   <0.001 

Primary tumour T2 1.218 0.334 4.449 0.765 
Primary tumour T3 1550.767 0 1E+27 0.793 
Primary tumour T4 3135.546 0 2.03E+27 0.774 

Lymph node metastasis N0 
   0.004 

Lymph node metastasisN1 1.193 0.677 2.103 0.54 
Lymph node metastasis N2 2.017 1.138 3.577 0.016 

Vascular invasion 1.095 0.802 1.496 0.569 

Peritumoural lymphocytes 0.821 0.602 1.119 0.212 

Recurrence  2.971 2.168 4.072 <0.001 

MMR Status  
   <0.001 

MMR Status Proficient 1.165 0.161 8.4 0.88 
MMR Status Deficient 2.329 0.318 17.075 0.406 

Site dichotomised 0.88 0.675 1.148 0.345 

Stromal Average Median split 0.832 0.645 1.074 0.158 

*Significant associations highlighted in bold 

 

Cox regression analysis was performed with stromal c-Myc expression and in 

univariate analysis was significantly associated with 5 year survival (p 0.01). 

Increased primary tumour stage (p<0.001) and lymph node metastasis (p 

0.004) were associated with poorer survival, as was recurrence (p <0.001). 

Stromal c-Myc expression was not significantly associated with survival in the 

multivariate analysis (p 0.158), despite there being a higher risk of death in the 

c-Myc negative group in the univariate analysis (p 0.01). This suggests that c-

Myc stromal expression is confounded by other clinical variables.  

Does the staining intensity of one cellular compartment affect the staining in 

another area? 

c-Myc is expected to be expressed in the nucleus, as it plays an important role 
in controlling transcription and increasing expression of 15% of the genome. 
The analysis performed here however shows that c-Myc can also be expressed 
in the cytoplasm. It is important to understand if the expression of one cellular 
compartment is related to the expression in another, in order to be able to 
effectively use c-Myc as a biomarker. The scatter plot in figure 13 below shows 
that there is a moderate correlation between nuclear average H-score and 
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cytoplasmic average positive percentage. The Spearman’s rank correlation 
showed a moderately positive (0.429), significant (p<0.001) correlation. This 
suggests that patients who are nuclear c-Myc positive may also be positive for 
cytoplasmic c-Myc. The median H-score of 54 was used as the cut-off for 
nuclear expression as it showed a significant association with survival. The 75th 
percentile of positive cytoplasmic staining was used to avoid including non-
specific background staining. This is shown in the following groups: 
 

Table 10: Combination of c-Myc expression in the nucleus and in the cytoplasm 

 Nuclear (%) 

Below median Above median 

Cytoplasmic (%) Below 75th percentile 486 (48.6) 272 (27.2) 

Above 75th percentile 49 (0.49) 193 (19.3) 

 

 
Figure 13: Scatter plot showing the relationship between c-Myc nuclear and cytoplasmic H-scores. 
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Statistical analysis of CD44 

Membrane staining of CD44 

Average membrane H-score was calculated from luminal, central and 

advancing edge samples. 86 were excluded due to insufficient data for all three 

individual tumour regions. The distribution of all membrane H-scores showed 

a right-skew as seen in figure 14. The median expression of membrane average 

H-score was 15 (IQR 0-57.5), and the average H-score was highly correlated 

(Spearman’s rank >0.8) with all three tumour regions. Luminal, central and 

advancing edge samples all showed a median of 20 (IQR 0-85, 0-75 and 0-75, 

respectively). In the normal colon, expression of CD44 tended to be observed 

in the base of the crypts only (as seen in figure 5), associated with stem cells. 

This is expected given the role CD44 plays in colonic stem cell maintenance 

[68].  

 

Figure 14: Distribution of CD44 membrane staining in individual tumour regions and average H-scores.  

Membrane Chi-square analysis 

As the median H-score of CD44 was so low in the membrane, it is possible that 

any staining artefact present could influence the results. For this reason, the 

data was assessed with an average H-score cut-off of 57.5 (75th percentile). 

Mismatch repair status was very strongly associated with expression of CD44 

(p <0.001) and high CD44 expression was associated with MMR deficient 

tumours. Mismatch repair status is important in determining treatment of 

colorectal cancer [84], and may influence which pathways are involved in 

tumourigenesis. Because of this, the data were categorised into mismatch 

repair proficient and deficient prior to Chi-squared analysis. The results are 

displayed in the table below alongside the ungrouped data.  

The analysis returned a number of significant associations with high 

membranous CD44 expression without differentiating between mismatch 
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repair status, including with females, (p 0.009), poor 5 year survival (p 0.001) 

and no metastasis (p 0.003). Lack of recurrence was weakly associated with 

high CD44 expression (p 0.004), as were right-sided tumours (p 0.011). High 

final stage and primary tumour stage were associated with low CD44 

expression (p 0.001 and <0.001 respectively). High CD44 expression was 

associated with the absence of vascular invasion (p <0.001), and a pushing 

tumour edge (p <0.001), as well as showing weak association with conspicuous 

peritumoural lymphocytes (p 0.04).  

When the data were categorised by the MMR status into proficient (pMMR) or 

deficient (dMMR), several of the clinical variables showed differences between 

the two groups. In pMMR patients, 3 year survival was significantly higher in 

high expressors of CD44 than in patients with low CD44 expression (p 0.032), 

whereas it did not differ in the uncategorised data. 5 year survival was 

significantly higher in low expressors of CD44 (p 0.01), but less so than when 

the data was uncategorised (p 0.001). Metastasis (p 0.015) was significantly 

associated with low CD44 expression in pMMR patients, although less so than 

in the uncategorised data (p 0.003). The association between low primary 

tumour stage and high CD44 expression increased in the pMMR group 

compared to the uncategorised data (p <0.001). Vascular invasion (p <0.001) 

was associated with low CD44 membrane expression in the proficient patients, 

as was an infiltrative tumour edge (p 0.016).  

Only gender was specific to MMR deficient patients, with female patients 

having higher expression of membranous CD44 (p 0.013). Grade dichotomised 

showed a stronger association between high grade (poorly differentiated 

tumours) and low CD44 expression in dMMR patients (p 0.008) as opposed to 

pMMR patients (p 0.034). Some associations which were significant before 

distinguishing between MMR status were lost in this analysis. This includes 

recurrence, which although marginally significant without differentiating for 

MMR status (p 0.04), was not significantly associated with CD44 expression in 

pMMR (p 0.073) or dMMR (p 0.955) patients alone. Peritumoural lymphocytes 

also lost their significance after mismatch repair status was accounted for. 

Finally, right-sided tumours were significantly associated with high CD44 

membranous expression prior to MMR status split, at which point almost 

perfectly opposite expression could be observed in MMR proficient (p 0.348) 

and deficient (p 0.377) groups (see table 11). Only grade dichotomised was 

significantly associated with CD44 expression in the two MMR groups but not 

in the overall analysis. In pMMR patients, high CD44 expression was enriched 

in well differentiated tumours and low CD44 expression was enriched poorly 

differentiated tumours (p 0.034), whereas in dMMR patients high CD44 

expression was enriched in patients with low grade tumours and low CD44 

expression was enriched in high grade, poorly differentiated tumours (p 0.008). 

Age, tumour budding score, cause of death, lymph node metastasis, perineural 
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invasion and intratumoural vascular invasion did not show any association with 

CD44 membrane expression. 

Table 11: Chi-square analysis of membranous CD44 expression and clinical variables 

MMR 
Status 

Clinical 
variable 

Condition Low High Total Adjusted 
residual 

Χ² (p 
value) 

  MMR Status  Proficient 604 
(88.3) 

153 
(69.2) 

757 
(83.6) 

6.7 -6.7 44.421 
(<0.001) 

  
 

Deficient 80 
(11.7) 

68 
(30.8) 

148 
(16.4) 

-6.7 6.7  

  
 

Total 684 
(75.6) 

221 
(24.4) 

905 
(100) 

   

Proficient Gender Female 250 
(41.4) 

72 
(47.1) 

322 
(42.5) 

-1.3 1.3 1.605 
(0.205) 

  
 

Male 354 
(58.6) 

81 
(52.9) 

435 
(57.5) 

1.3 -1.3   

  
 

Total 604 
(100) 

153 
(100) 

757 
(100) 

  
  

Deficient Gender Female 33 
(41.3) 

42 
(61.8) 

75 
(50.7) 

-2.5 2.5 6.189 
(0.013) 

  
 

Male 47 
(58.8) 

26 
(38.2) 

73 
(49.3) 

2.5 -2.5   

  
 

Total 80 
(100) 

68 
(100) 

148 
(100) 

  
  

Total Gender Female 285 
(41.3) 

115 
(51.3) 

400 
(43.8) 

-2.6 2.6 6.919 
(0.009) 

  
 

Male 405 
(58.7) 

109 
(48.7) 

514 
(56.2) 

2.6 -2.6   

    Total 690 
(100) 

224 
(100) 

914 
(100) 

      

Proficient 3 year 
Survival 

Alive 434 
(71.9) 

123 
(80.4) 

557 
(73.6) 

-2.1 2.1 4.578 
(0.032) 

  
 

Dead 170 
(28.1) 

30 
(19.6) 

200 
(26.4) 

2.1 -2.1   

  
 

Total 604 
(100) 

153 
(100) 

757 
(100) 

  
  

Deficient 3 year 
Survival 

Alive 58 
(72.5) 

46 
(68.7) 

104 
(70.7) 

0.5 -0.5 0.260 
(0.61) 

  
 

Dead 22 
(27.5) 

21 
(31.3) 

43 
(29.3) 

-0.5 0.5   

  
 

Total 80 
(100) 

67 
(100) 

147 
(100) 

  
  

Total 3 year 
Survival 

Alive 497 
(72) 

171 
(76.7) 

668 
(73.2) 

-1.4 1.4 1.858 
(0.173) 

  
 

Dead 193 
(28) 

52 
(23.3) 

245 
(26.8) 

1.4 -1.4   

    Total 690 
(100) 

223 
(100) 

913 
(100) 

      

Proficient 5 year 
Survival 

Alive 275 
(45.5) 

52 
(34) 

327 
(43.2) 

2.6 -2.6 6.629 
(0.01) 

  
 

Dead 329 
(54.5) 

101 
(66) 

430 
(56.8) 

-2.6 2.6   

  
 

Total 604 
(100) 

153 
(100) 

757 
(100) 

  
  

Deficient 5 year 
Survival 

Alive 36 
(45) 

22 
(32.4) 

58 
(39.2) 

1.6 -1.6 2.467 
(0.116) 

  
 

Dead 44 
(55) 

46 
(67.6) 

90 
(60.8) 

-1.6 1.6   

  
 

Total 80 
(100) 

68 
(100) 

148 
(100) 

  
  

Total 5 year 
Survival 

Alive 316 
(45.8) 

75 
(33.5) 

391 
(42.8) 

3.2 -3.2 10.47 
(0.001) 
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Dead 374 
(54.2) 

149 
(66.5) 

523 
(57.2) 

-3.2 3.2   

    Total 690 
(100) 

224 
(100) 

914 
(100) 

      

MMR 
Status 

Clinical 
variable 

Condition Low High Total Adjusted 
residual 

Χ² (p 
value) 

Proficient Synchronous 
metastasis  

No metastasis 521 
(86.3) 

143 
(93.5) 

664 
(87.7) 

-2.4 2.4 5.882 
(0.015) 

  
 

With 
metastasis 

83 
(13.7) 

10 
(6.5) 

93 
(12.3) 

2.4 -2.4   

  
 

Total 604 
(100) 

153 
(100) 

757 
(100) 

  
  

Deficient Synchronous 
metastasis  

No metastasis 74 
(92.5) 

66 
(97.1) 

140 
(94.6) 

-1.2 1.2 1.494 
(0.222) 

  
 

With 
metastasis 

6 
(7.5) 

2 
(2.9) 

8 
(5.4) 

1.2 -1.2   

  
 

Total 80 
(100) 

68 
(100) 

148 
(100) 

  
  

Total Synchronous 
metastasis  

No metastasis 601 
(87.1) 

211 
(94.2) 

812 
(88.8) 

-2.9 2.9 8.586 
(0.003) 

  
 

With 
metastasis 

89 
(12.9) 

13 
(5.8) 

102 
(11.2) 

2.9 -2.9   

    Total 690 
(100) 

224 
(100) 

914 
(100) 

      

Proficient Recurrence  No 
Recurrence 

413 
(68.4) 

116 
(75.8) 

529 
(69.9) 

-1.8 1.8 3.210 
(0.073) 

  
 

Recurrence 191 
(31.6) 

37 
(24.2) 

228 
(30.1) 

1.8 -1.8   

  
 

Total 604 
(100) 

153 
(100) 

757 
(100) 

  
  

Deficient Recurrence  No 
Recurrence 

65 
(81.3) 

55 
(80.9) 

120 
(81.1) 

0.1 -0.1 0.003 
(0.955) 

  
 

Recurrence 15 
(18.8) 

13 
(19.1) 

28 
(18.9) 

-0.1 0.1   

  
 

Total 80 
(100) 

68 
(100) 

148 
(100) 

  
  

Total Recurrence  No 
Recurrence 

484 
(70.1) 

173 
(77.2) 

657 
(71.9) 

-2 2 4.202 
(0.04) 

  
 

Recurrence 206 
(29.9) 

51 
(22.8) 

257 
(28.1) 

2 -2   

    Total 690 
(100) 

224 
(100) 

914 
(100) 

      

Proficient Survival 
Status 

Alive 371 
(61.4) 

108 
(70.6) 

479 
(63.3) 

-2.1 2.1 4.412 
(0.036) 

  
 

Dead 233 
(38.6) 

45 
(29.4) 

278 
(36.7) 

2.1 -2.1   

  
 

Total 604 
(100) 

153 
(100) 

757 
(100) 

  
  

Deficient Survival 
Status 

Alive 49 
(61.3) 

38 
(55.9) 

87 
(58.8) 

0.7 -0.7 0.437 
(0.509) 

  
 

Dead 31 
(38.8) 

30 
(44.1) 

61 
(41.2) 

-0.7 0.7   

  
 

Total 80 
(100) 

68 
(100) 

148 
(100) 

  
  

Total Survival 
Status 

Alive 425 
(61.6) 

148 
(66.1) 

573 
(62.7) 

-1.2 1.2 1.449 
(0.229) 

  
 

Dead 265 
(38.4) 

76 
(33.9) 

341 
(37.3) 

1.2 -1.2   

    Total 690 
(100) 

224 
(100) 

914 
(100) 

      

Proficient Final stage 1 90 
(14.9) 

45 
(29.4) 

135 
(17.8) 

-4.2 4.2 20.40 
(<0.001) 
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2 230 
(38.1) 

51 
(33.3) 

281 
(37.1) 

1.1 -1.1   

  
 

3 202 
(33.4) 

47 
(30.7) 

249 
(32.9) 

0.6 -0.6   

  
 

4 82 
(13.6) 

10 
(6.5) 

92 
(12.2) 

2.4 -2.4   

  
 

Total 604 
(100) 

153 
(100) 

757 
(100) 

  
  

Deficient Final stage 1 4 (5) 7 
(10.3) 

11 
(7.4) 

-1.2 1.2 6.008 
(0.111) 

  
 

2 54 
(67.5) 

37 
(54.4) 

91 
(61.5) 

1.6 -1.6   

  
 

3 16 
(20) 

22 
(32.4) 

38 
(25.7) 

-1.7 1.7   

  
 

4 6 
(7.5) 

2 
(2.9) 

8 
(5.4) 

1.2 -1.2   

  
 

Total 80 
(100) 

68 
(100) 

148 
(100) 

  
  

Total Final stage 1 95 
(13.8) 

52 
(23.2) 

147 
(16.1) 

-3.3 3.3 16.93 
(0.001) 

  
 

2 287 
(41.6) 

89 
(39.7) 

376 
(41.1) 

0.5 -0.5   

  
 

3 220 
(31.9) 

70 
(31.3) 

290 
(31.7) 

0.2 -0.2   

  
 

4 88 
(12.8) 

13 
(5.8) 

101 
(11.1) 

2.9 -2.9   

    Total 690 
(100) 

224 
(100) 

914 
(100) 

      

MMR 
Status 

Clinical 
variable 

Condition Low High Total Adjusted 
residual 

Χ² (p 
value) 

Proficient Primary 
tumour 

T1 35 
(5.8) 

28 
(18.3) 

63 
(8.3) 

-5 5 30.51 
(<0.001) 

  
 

T2 65 
(10.8) 

24 
(15.7) 

89 
(11.8) 

-1.7 1.7   

  
 

T3 321 
(53.1) 

68 
(44.4) 

389 
(51.4) 

1.9 -1.9   

  
 

T4 183 
(30.3) 

33 
(21.6) 

216 
(28.5) 

2.1 -2.1   

  
 

Total 604 
(100) 

153 
(100) 

757 
(100) 

  
  

Deficient Primary 
tumour 

T1 1 
(1.3) 

3 
(4.4) 

4 
(2.7) 

-1.2 1.2 1.575 
(0.665) 

  
 

T2 4 (5) 4 
(5.9) 

8 
(5.4) 

-0.2 0.2   

  
 

T3 51 
(63.8) 

43 
(63.2) 

94 
(63.5) 

0.1 -0.1   

  
 

T4 24 
(30) 

18 
(26.5) 

42 
(28.4) 

0.5 -0.5   

  
 

Total 80 
(100) 

68 
(100) 

148 
(100) 

  
  

Total Primary 
tumour 

T1 36 
(5.2) 

31 
(13.8) 

67 
(7.3) 

-4.3 4.3 21.15 
(<0.001) 

  
 

T2 70 
(10.1) 

28 
(12.5) 

98 
(10.7) 

-1 1   

  
 

T3 376 
(54.5) 

112 
(50) 

488 
(53.4) 

1.2 -1.2   

  
 

T4 208 
(30.1) 

53 
(23.7) 

261 
(28.6) 

1.9 -1.9   

    Total 690 
(100) 

224 
(100) 

914 
(100) 

      

Proficient Metastasis No metastasis 521 
(86.3) 

143 
(93.5) 

664 
(87.7) 

-2.4 2.4 5.882 
(0.015) 
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With 
metastasis 

83 
(13.7) 

10 
(6.5) 

93 
(12.3) 

2.4 -2.4   

  
 

Total 604 
(100) 

153 
(100) 

757 
(100) 

  
  

Deficient Metastasis No metastasis 74 
(92.5) 

66 
(97.1) 

140 
(94.6) 

-1.2 1.2 1.494 
(0.222) 

  
 

With 
metastasis 

6 
(7.5) 

2 
(2.9) 

8 
(5.4) 

1.2 -1.2   

  
 

Total 80 
(100) 

68 
(100) 

148 
(100) 

  
  

Total Metastasis No metastasis 601 
(87.1) 

211 
(94.2) 

812 
(88.8) 

-2.9 2.9 8.586 
(0.003) 

  
 

With 
metastasis 

89 
(12.9) 

13 
(5.8) 

102 
(11.2) 

2.9 -2.9   

    Total 690 
(100) 

224 
(100) 

914 
(100) 

      

MMR 
Status 

Clinical 
variable 

Condition Low High Total Adjusted 
residual 

Χ² (p 
value) 

Proficient Vascular 
invasion 

Absent 280 
(46.7) 

90 
(63.4) 

370 
(49.9) 

-3.6 3.6 12.83 
(<0.001) 

  
 

Present 320 
(53.3) 

52 
(36.6) 

372 
(50.1) 

3.6 -3.6   

  
 

Total 600 
(100) 

142 
(100) 

742 
(100) 

  
  

Deficient Vascular 
invasion 

Absent 44 
(55) 

45 
(66.2) 

89 
(60.1) 

-1.4 1.4 1.915 
(0.166) 

  
 

Present 36 
(45) 

23 
(33.8) 

59 
(39.9) 

1.4 -1.4   

  
 

Total 80 
(100) 

68 
(100) 

148 
(100) 

  
  

Total Vascular 
invasion 

Absent 328 
(47.8) 

137 
(64.3) 

465 
(51.7) 

-4.2 4.2 17.73 
(<0.001) 

  
 

Present 358 
(52.2) 

76 
(35.7) 

434 
(48.3) 

4.2 -4.2   

    Total 686 
(100) 

213 
(100) 

899 
(100) 

      

Proficient Tumour edge Infiltrative 258 
(58.2) 

52 
(45.6) 

310 
(55.7) 

2.4 -2.4 5.856 
(0.016) 

  
 

Pushing 185 
(41.8) 

62 
(54.4) 

247 
(44.3) 

-2.4 2.4   

  
 

Total 443 
(100) 

114 
(100) 

557 
(100) 

  
  

Deficient Tumour edge Infiltrative 21 
(33.9) 

15 
(24.2) 

36 
(29) 

1.2 -1.2 1.409 
(0.235) 

  
 

Pushing 41 
(66.1) 

47 
(75.8) 

88 
(71) 

-1.2 1.2   

  
 

Total 62 
(100) 

62 
(100) 

124 
(100) 

  
  

Total Tumour edge Infiltrative 281 
(55.1) 

67 
(37.6) 

348 
(50.6) 

4 -4 16.08 
(<0.001) 

  
 

Pushing 229 
(44.9) 

111 
(62.4) 

340 
(49.4) 

-4 4   

    Total 510 
(100) 

178 
(100) 

688 
(100) 

      

Proficient Peritumoural 
lymphocytes 

Inconspicuous 336 
(76.2) 

80 
(69) 

416 
(74.7) 

1.6 -1.6 2.536 
(0.111) 

  
 

Conspicuous 105 
(23.8) 

36 
(31) 

141 
(25.3) 

-1.6 1.6   

  
 

Total 441 
(100) 

116 
(100) 

557 
(100) 

  
  

Deficient Peritumoural 
lymphocytes 

Inconspicuous 38 
(58.5) 

36 
(58.1) 

74 
(58.3) 

0 0 0.002 
(0.964) 
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Conspicuous 27 
(41.5) 

26 
(41.9) 

53 
(41.7) 

0 0   

  
 

Total 65 
(100) 

62 
(100) 

127 
(100) 

  
  

Total Peritumoural 
lymphocytes 

Inconspicuous 376 
(73.6) 

118 
(65.6) 

494 
(71.5) 

2.1 -2.1 4.207 
(0.04) 

  
 

Conspicuous 135 
(26.4) 

62 
(34.4) 

197 
(28.5) 

-2.1 2.1   

    Total 511 
(100) 

180 
(100) 

691 
(100) 

      

MMR 
Status 

Clinical 
variable 

Condition Low High Total Adjusted 
residual 

Χ² (p 
value) 

Proficient Grade 
dichotomised 

Low 572 
(94.7) 

150 
(98.7) 

722 
(95.5) 

-2.1 2.1 4.484 
(0.034) 

  
 

High 32 
(5.3) 

2 
(1.3) 

34 
(4.5) 

2.1 -2.1   

  
 

Total 604 
(100) 

152 
(100) 

756 
(100) 

  
  

Deficient Grade 
dichotomised 

Low 50 
(62.5) 

56 
(82.4) 

106 
(71.6) 

-2.7 2.7 7.128 
(0.008) 

  
 

High 30 
(37.5) 

12 
(17.6) 

42 
(28.4) 

2.7 -2.7   

  
 

Total 80 
(100) 

68 
(100) 

148 
(100) 

  
  

Total Grade 
dichotomised 

Low 628 
(91) 

208 
(93.3) 

836 
(91.6) 

-1.1 1.1 1.114 
(0.291) 

  
 

High 62 (9) 15 
(6.7) 

77 
(8.4) 

1.1 -1.1   

    Total 690 
(100) 

223 
(100) 

913 
(100) 

      

Proficient Site 
dichotomised 

Right side 251 
(41.6) 

70 
(45.8) 

321 
(42.4) 

-0.9 0.9 0.880 
(0.348) 

  
 

Left side 353 
(58.4) 

83 
(54.2) 

436 
(57.6) 

0.9 -0.9   

  
 

Total 604 
(100) 

153 
(100) 

757 
(100) 

  
  

Deficient Site 
dichotomised 

Right side 69 
(86.3) 

55 
(80.9) 

124 
(83.8) 

0.9 -0.9 0.779 
(0.377) 

  
 

Left side 11 
(13.8) 

13 
(19.1) 

24 
(16.2) 

-0.9 0.9   

  
 

Total 80 
(100) 

68 
(100) 

148 
(100) 

  
  

Total Site 
dichotomised 

Right side 321 
(46.5) 

126 
(56.3) 

447 
(48.9) 

-2.5 2.5 6.405 
(0.011) 

  
 

Left side 369 
(53.5) 

98 
(43.8) 

467 
(51.1) 

2.5 -2.5   

    Total 690 
(100) 

224 
(100) 

914 
(100) 

      

*Significant results (p <0.05) highlighted in bold 

 

Survival analysis of average CD44 membrane H-scores 

Kaplan-Meier analysis was used to measure survival status at 3 and 5 years, and 

in the case of death relating to colorectal cancer, as seen in figure 15. The data 

was dichotomised by 75th percentile and stratified by MMR status. 3 year 

survival was not significantly different (p 0.101) between patients with low and 

high expression of membranous CD44, even considering MMR status. Median 

survival could not be calculated but 71.9% of patients survived to three years 

with low CD44, and 80.4% with high CD44 in the pMMR group. Approximately 
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72.5% of patients survived with low CD44 and 68.7% survived with high CD44 

in the dMMR group. There was a significant difference in 5 year survival 

between high and low expressors of membranous CD44 (p 0.022). In pMMR 

patients, low expression of membranous CD44 led to improved 5 year survival 

(median 56.4 months, confidence intervals not computed) over high 

membranous CD44 expression (51.8 months 95% CI 49-55 months). In dMMR 

patients, 5 year survival was also higher in patients expressing low 

membranous CD44 (55.7 months 95% CI 48-64 months), than in patients with 

high membranous CD44 (51.3 months 95% CI 46-57 months). The 5 year 

survival curves in pMMR patients crossed over at approximately 40 months, 

casting some doubt on the reliability of true significance of the results. The 

statistical analysis was repeated using the Tarone-Ware method [85], instead 

of the log rank test used in previous analyses, and showed a non-significant 

relationship (p 0.102) between CD44 expression and survival. Death related to 

CRC was not significantly different between high and low CD44 membranous 

expression (p 0.615). Approximate 5 year survival for patients with low or high 

CD44 membrane expression in pMMR patients was 80.5% and 82.2% and in 

dMMR was 84.7 and 84.3 in dMMR.  
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Figure 15: Kaplan-Meier survival curves for CD44 membrane staining split by 75th percentile and stratified 
by MMR status, with MMR proficient patients on the left and MMR deficient patients on the right. 

Univariate and multivariate Cox regression analyses were performed on overall 

survival to assess whether average membrane CD44 staining was associated 

with survival or whether the effects on survival were due to other factors, as 

seen in table 12. All data was stratified by MMR status. Overall survival was not 

significantly related to increased membranous CD44 staining in univariate 

analysis (p 0.483) but was when included in multivariate analysis (p 0.035). 

Recurrence significantly increased the risk of death (p <0.001), as did increased 

primary tumour stage (p <0.001) and grade dichotomised (p <0.001). Pushing 

tumour edge led to a significantly lower hazard ratio (p 0.035) and better 

survival.  
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Table 12: Cox regression analysis of CD44 staining and significantly associated variables 

Variable Hazard ratio 95.0% CI  p value 

Lower Upper 

Mean Membrane H-Score 75th 
Percentile 

0.91 0.7 1.184 0.483 

 
Hazard Ratio 95.0% CI  p value 

Lower Upper 

Mean Membrane H-Score 75th 
Percentile* 

1.387 1.023 1.88 0.035 

Gender 1.174 0.904 1.524 0.228 

Synchronous metastasis 1.602 0.454 5.652 0.464 

Recurrence  2.715 1.982 3.718 <0.001 

Final Stage 
   

0.896 

Final Stage (1) 0.561 0.07 4.525 0.587 

Final Stage (2) 0.519 0.066 4.091 0.534 

Final Stage (3) 0.452 0.026 7.986 0.588 

Primary tumour T1 
   

<0.001 

Primary tumour T2 1.16 0.315 4.27 0.823 

Primary tumour T3 2.513 0.24 26.28 0.442 

Primary tumour T4 5.353 0.509 56.24 0.162 

Metastasis 1.595 0.151 16.867 0.698 

Vascular invasion 1.181 0.872 1.598 0.283 

Tumour edge 0.717 0.526 0.978 0.035 

Peritumoural lymphocytes 0.741 0.536 1.023 0.069 

Grade Dichotomised 2.221 1.497 3.295 <0.001 

Site Dichotomised 0.972 0.741 1.275 0.839 

*Significant results (p <0.05) highlighted in bold 

 

Independent tumour region expression: survival analysis 

5 year survival was analysed for individual tumour regions split at the 75th 

percentile to see if the crossing of survival curves observed in figure 15 was due 

to differences in the tumour regions. As seen in figure 16 below, the curves for 

the individual tumour regions still cross over. 5 year survival was not 

significantly different in luminal tumour samples, when assessed by Tarone-

Ware analysis (p 0.186). Advancing edge tumours showed an earlier crossover, 

around 46 months, and survival was not significantly different (p 0.543). In the 

central tumour region, high and low CD44 membrane expressors crossed over 

at multiple points (approximately 19 and 44 months) and survival was 

significantly different by Tarone-Ware analysis (p 0.034). Individual tumour 

regions did not show distinct survival patterns in Kaplan-Meier curves, 

reflective of the lack of heterogeneity shown in the correlation analysis. 
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Figure 16: Survival analysis of individual tumour regions. Membrane-specific CD44 staining was assessed 
in 3 year survival, 5 year survival and death relating to colorectal cancer. 
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Cytoplasmic staining of CD44 

Cytoplasmic staining was assessed by a H-score on a scale of 0-200, unlike other 

staining compartments, as the staining did not reach a high level of intensity. 

The distribution of the data was normal, and therefore the mean and standard 

deviation are presented in the table below. The data was split by median 

average cytoplasmic expression (58.33) in order to be consistent with other 

analyses and to ensure an equal split of positive and negative expressors.  

Table 13: Details of cytoplasmic CD44 expression  
 

Luminal 
Cytoplasm 

H-Score 

Central 
Cytoplasm 

H-Score 

Advancing 
Edge 

Cytoplasm 
H-Score 

Normal 
Cytoplasm 

H-score 

Mean 
Cytoplasmic 

H-Score 

Included 771 743 690 572 914 

Excluded 229 257 310 428 86 

Mean 50.26 45.76 43.01 30.07 61.88 

Median 40 40 35 20 58.3333 

Std. Deviation 43.15 40.09 38.71 33.82 43.63 

Interquartile range 70 60 60 50 70 

Pearson's 
correlation with 
average 
cytoplasmic H-
Score (p value) 

0.818 
(<0.001) 

0.799 
(<0.001) 

0.759 
(<0.001) 

0.51 (0.231) - 

 

Chi-squared analysis of cytoplasmic CD44 

After the average cytoplasmic data was split by the median, it was compared 

with the clinical variables to determine if there was any association. The results 

are demonstrated in table 14 below. 3 year survival was significantly associated 

with positive cytoplasmic CD44 expression (p 0.002), as was the lack of 

metastasis (p 0.001), no recurrence (p <0.001) and overall survival (p 0.001). 

Higher final stage was associated with negative cytoplasmic CD44 (p <0.001), 

as was primary tumour stage (p <0.001) and lymph node metastasis (p <0.001). 

Absence of metastasis (p 0.001) and vascular invasion (p <0.001) were 

associated with positive CD44 expression. Presence of perineural invasion (p 

<0.001) and intratumoural lymphovascular invasion (p 0.005) were associated 

with negative cytoplasmic CD44. “Pushing” tumour edge (p 0.001) and dMMR 

(p 0.005) were both associated with positive cytoplasmic CD44 expression. 

Poorly differentiated tumours were associated with negative cytoplasmic CD44 

expression (p <0.001). 
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Table 14: Chi-square analysis of cytoplasmic CD44 expression 

Clinical variable Condition Negative Positive Total Adjusted 
residual 

Χ² (p 
value) 

Gender Female 189 (41.8) 211 (45.7) 400 (43.8) -1.2 1.2 1.381 
(0.24)  

Male 263 (58.2) 251 (54.3) 514 (56.2) 1.2 -1.2 
 

 
Total 452 (100) 462 (100) 914 (100) 

   

3 year 
Survival* 

Alive 310 (68.6) 358 (77.7) 668 (73.2) -3.1 3.1 9.569 
(0.002)  

Dead 142 (31.4) 103 (22.3) 245 (26.8) 3.1 -3.1 
 

 
Total 452 (100) 461 (100) 913 (100) 

   

5 year Survival Alive 201 (44.5) 190 (41.1) 391 (42.8) 1 -1 1.043 
(0.307)  

Dead 251 (55.5) 272 (58.9) 523 (57.2) -1 1 
 

 
Total 452 (100) 462 (100) 914 (100) 

   

Synchronous 
metastasis  

1 386 (85.4) 426 (92.2) 812 (88.8) -3.3 3.3 10.68 
(0.001)  

2 66 (14.6) 36 (7.8) 102 (11.2) 3.3 -3.3 
 

 
Total 452 (100) 462 (100) 914 (100) 

   

Recurrence  No 
Recurrence 

301 (66.6) 356 (77.1) 657 (71.9) -3.5 3.5 12.37 
(<0.001)  

Recurrence 151 (33.4) 106 (22.9) 257 (28.1) 3.5 -3.5 
 

 
Total 452 (100) 462 (100) 914 (100) 

   

Cause of death  Alive 259 (57.3) 314 (68) 573 (62.7) -3.3 3.3 12.88 
(0.005)  

CRC 95 (21) 63 (13.6) 158 (17.3) 3 -3 
 

 
Other 56 (12.4) 52 (11.3) 108 (11.8) 0.5 -0.5 

 

 
Unknown 42 (9.3) 33 (7.1) 75 (8.2) 1.2 -1.2 

 

 
Total 452 (100) 462 (100) 914 (100) 

   

Survival Status Alive 259 (57.3) 314 (68) 573 (62.7) -3.3 3.3 11.11 
(0.001)  

Dead 193 (42.7) 148 (32) 341 (37.3) 3.3 -3.3 
 

 
Total 452 (100) 462 (100) 914 (100) 

   

Final stage 1 50 (11.1) 97 (21) 147 (16.1) -4.1 4.1 28.42 
(<0.001)  

2 177 (39.2) 199 (43.1) 376 (41.1) -1.2 1.2 
 

 
3 159 (35.2) 131 (28.4) 290 (31.7) 2.2 -2.2 

 

 
4 66 (14.6) 35 (7.6) 101 (11.1) 3.4 -3.4 

 

 
Total 452 (100) 462 (100) 914 (100) 

   

Primary 
tumour 

T1 20 (4.4) 47 (10.2) 67 (7.3) -3.3 3.3 28.59 
(<0.001)  

T2 40 (8.8) 58 (12.6) 98 (10.7) -1.8 1.8 
 

 
T3 232 (51.3) 256 (55.4) 488 (53.4) -1.2 1.2 

 

 
T4 160 (35.4) 101 (21.9) 261 (28.6) 4.5 -4.5 

 

 
Total 452 (100) 462 (100) 914 (100) 

   

Lymph node 
metastasis 

N0 241 (53.7) 287 (65.4) 528 (59.5) -3.6 3.6 17.05 
(<0.001)  

N1 115 (25.6) 101 (23) 216 (24.3) 0.9 -0.9 
 

 
N2 93 (20.7) 51 (11.6) 144 (16.2) 3.7 -3.7 

 

 
Total 449 (100) 439 (100) 888 (100) 

   

Metastasis No metastasis 386 (85.4) 426 (92.2) 812 (88.8) -3.3 3.3 10.68 
(0.001) 



Page 58 of 89 
 

 
With 
metastasis 

66 (14.6) 36 (7.8) 102 (11.2) 3.3 -3.3 
 

 
Total 452 (100) 462 (100) 914 (100) 

   

Clinical variable Condition Negative Positive Total Adjusted 
residual 

Χ² (p 
value) 

Vascular 
invasion 

Absent 197 (43.9) 268 (59.6) 465 (51.7) -4.7 4.7 22.13 
(<0.001)  

Present 252 (56.1) 182 (40.4) 434 (48.3) 4.7 -4.7 
 

 
Total 449 (100) 450 (100) 899 (100) 

   

Perineural 
invasion 

Absent 328 (74.2) 383 (87.2) 711 (80.7) -4.9 4.9 24.03 
(<0.001)  

Present 114 (25.8) 56 (12.8) 170 (19.3) 4.9 -4.9 
 

 
Total 442 (100) 439 (100) 881 (100) 

   

Intramural 
lymphovascular 
invasion 

Absent 266 (64.6) 320 (73.4) 586 (69.1) -2.8 2.8 7.738 
(0.005) 

 
Present 146 (35.4) 116 (26.6) 262 (30.9) 2.8 -2.8 

 

 
Total 412 (100) 436 (100) 848 (100) 

   

Tumour edge Infiltrative 189 (57.1) 159 (44.5) 348 (50.6) 3.3 -3.3 10.84 
(0.001)  

Pushing 142 (42.9) 198 (55.5) 340 (49.4) -3.3 3.3 
 

 
Total 331 (100) 357 (100) 688 (100) 

   

Tumour 
budding score 

Low 210 (64.8) 246 (69.5) 456 (67.3) -1.3 1.3 1.680 
(0.195)  

High 114 (35.2) 108 (30.5) 222 (32.7) 1.3 -1.3 
 

 
Total 324 (100) 354 (100) 678 (100) 

   

Peritumoural 
lymphocytes 

Inconspicuous 246 (74.5) 248 (68.7) 494 (71.5) 1.7 -1.7 2.892 
(0.089)  

Conspicuous 84 (25.5) 113 (31.3) 197 (28.5) -1.7 1.7 
 

 
Total 330 (100) 361 (100) 691 (100) 

   

MMR Status  Proficient 393 (86.9) 364 (78.8) 757 (83.6) 3.1 -3.1 9.814 
(0.002)   

Deficient 56 (12.4) 92 (19.9) 148 (16.4) -3.1 3.1 
 

 
Total 452 (100) 462 (100) 905 (100) 

   

Age 
dichotomised 

Young 34 (7.5) 30 (6.5) 64 (7) 0.6 -0.6 0.371 
(0.542)  

Old 418 (92.5) 432 (93.5) 850 (93) -0.6 0.6 
 

 
Total 452 (100) 462 (100) 914 (100) 

   

Grade 
dichotomised 

Low 399 (88.3) 437 (94.8) 836 (91.6) -3.5 3.5 12.56 
(<0.001)  

High 53 (11.7) 24 (5.2) 77 (8.4) 3.5 -3.5 
 

 
Total 452 (100) 461 (100) 913 (100) 

   

Site 
dichotomised 

Right side 204 (45.1) 243 (52.6) 447 (48.9) -2.3 2.3 5.095 
(0.024)  

Left side 248 (54.9) 219 (47.4) 467 (51.1) 2.3 -2.3 
 

 
Total 452 (100) 462 (100) 914 (100) 

   

*Significant associations (p<0.05) highlighted in bold 

 

Survival analysis of cytoplasmic CD44 

Survival relating to cytoplasmic CD44 staining was assessed using Kaplan-Meier 

curves and Cox regression analyses. The average H-scores were split by tertiles, 

in order to show the difference in the wide distribution of H-scores. 3 year 
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survival (p 0.001) was significantly associated with positive CD44 cytoplasmic 

staining status. Death relating to colorectal cancer (p 0.005) was negatively 

significantly associated with cytoplasmic CD44 expression, as shown in figure 

17, with more patients surviving CRC if they were positive for cytoplasmic 

CD44. Median survival was incalculable as more than 50% of patients survived 

beyond 3 years, and only a small proportion of patients died directly as a result 

of CRC. 66.9% of patients survived to 3 years with low cytoplasmic CD44, 

whereas 72.6% survived with medium cytoplasmic CD44 and 81.4% survived if 

they showed high expression. Death related to colorectal cancer showed a 

similar upward trend relating to increase in cytoplasmic CD44, with 77% of low 

expressing patients surviving to 5 years, 81.3% of medium expressing patients 

surviving to 5 years and 87% surviving with high cytoplasmic expression. 43.5% 

of low and medium expressors survived to 5 years, and 40.9% of high 

expressing cytoplasmic CD44 patients survived to 5 years. This is similar to what 

was observed in membrane-specific expression of CD44. 5 year survival was 

not significantly related to cytoplasmic CD44 (p 0.910), and the highest tertile 

crossed the other two at 50 months, similar to membranous CD44. 
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Figure 17: Kaplan-Meier survival analysis of low, medium and high expressors of cytoplasmic CD44 in 
relation to 3 year survival, 5 year survival and death relating to colorectal cancer.  
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Univariate Cox regression analysis revealed a significant association between 

increasing cytoplasmic H-score and survival (p 0.01). However, this trend was 

not present in multivariate analysis (p 0.945). Increased recurrence (p <0.001), 

primary tumour stage (p <0.001), lymph node metastasis (p 0.017) and grade 

dichotomised (p 0.013) were all associated with increased hazard ratios. 

Patients with MMR deficiency showed a worse survival than MMR proficient 

patients (p 0.01).  

Table 15: Cox regression analysis of cytoplasmic CD44 staining with significantly associated 
variables 

Variable Hazard Ratio 95.0% CI p value 

Lower Upper 

Mean Cyto H-Score Tertiles Split* 0.836 0.729 0.959 0.01 

Variables Hazard Ratio 95.0% CI p value 

Lower Upper 

Synchronous metastasis  1.405 0.41 4.813 0.588 

Recurrence  2.844 2.07 3.906 <0.001 

Final Stage 1 
   0.239 

Final Stage 2 0.815 0.101 6.588 0.848 
Final Stage 3 0.491 0.062 3.916 0.502 
Final Stage 4 0.519 0.029 9.218 0.655 

Primary tumour T1 
   <0.001 

T2 1.129 0.307 4.152 0.855 
T3 1.762 0.17 18.304 0.635 
T4 3.568 0.341 37.314 0.288 

Lymph node metastasis 1.393 1.061 1.829 0.017 

Metastasis 1.644 0.153 17.659 0.681 

Perineural invasion 1.37 0.991 1.894 0.057 

Intramural lymphovascular invasion 0.864 0.648 1.151 0.318 

Tumour edge 0.759 0.554 1.039 0.086 

MMR status  1.665 1.132 2.449 0.01 

Grade Dichotomised 1.721 1.122 2.638 0.013 

Site Dichotomised 0.946 0.72 1.244 0.693 

Mean Cyto H-Score Tertiles Split 1.006 0.845 1.199 0.945 

*Significant results (p <0.05) highlighted in bold 

 

Visual observations 

Different types of staining could be observed for cytoplasmic CD44. A blanket-

like staining was observed in some tumours, but in others a more granular 

pattern could be seen. Examples of the staining patterns are shown in figure 

18. Granular staining was typically observed close to the basolateral edge of 

the cells, where the cells interact with the stroma, as opposed to the apical 

edge, facing the lumen. Given that CD44 acts as a mediator between stromal 

and epithelial factors, this seems to be true staining. When the staining was 

observed in the granular pattern, it was difficult at times to discern if it was 
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membranous or cytoplasmic. For the purposes of this study all granular staining 

was counted as cytoplasmic.  

 

Figure 18: Cytoplasmic CD44 staining in colorectal cancer. The staining may be granular (A) or diffuse (B). 
Granular staining was often found near the basolateral edge of the cells near the stroma. 

Nuclear staining of CD44 

Nuclear CD44 staining was highly unusual and only occurred in four patients. 

No patients had nuclear staining in the normal-adjacent region. Because the 

number of patients with nuclear expression was so low, any statistical analyses 

would have been inconclusive and therefore were not performed.  

Stromal staining of CD44 

Stromal staining of CD44 was normally distributed. The mean average stromal 

H-score was 49.39 (standard deviation 27.72). The luminal, central and 

advancing edge samples were all strongly positively correlated with the 

average H-score (Pearson’s correlation above 0.75) as seen in table 16 below.  
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Table 16: Distribution of CD44 stromal H-score data 
 

Luminal Stroma 
H-Score 

Central Stroma 
H-Score 

Advancing Edge 
Stroma H-Score 

Mean Stroma 
H-Score 

Included 770 743 690 914 

Excluded 230 257 310 86 

Mean 49.85 49.64 47.73 49.39 

Std. Deviation 33.55 34.34 34.15 27.72 

Range 170 200 190 165 

Median 45 45 40 47.5 

Interquartile range 48 50 50 38.42 

Pearson's correlation 
with mean stromal H-
score (p value) 

0.796 (<0.001) 0.786 (<0.001) 0.791 (<0.001) - 

 

Chi-square analysis of stromal CD44 with clinical variables 

To perform Chi-squared analysis, the data were initially split by median 

expression, as in previous analyses. However this returned no significant 

associations with any of the clinical variables and therefore the average H-score 

data was split by tertiles (low 0-35, medium 35-60, high 60-300). The results 

are shown in the table below and demonstrate that 5 year survival increases 

with decreasing expression of CD44 (p 0.005). This was not the case for 3 year 

survival (p 0.367) or survival status (p 0.523). The presence of peritumoural 

lymphocytes was associated with increased stromal CD44 (p 0.001), confirming 

the expression of CD44 in lymphocytes. 

Table 17: Chi-square analysis of stromal CD44 expression with clinical variables 

Clinical variable Condition Low 
(%) 

Medium 
(%) 

High 
(%) 

Total 
(%) 

Adjusted 
residual 

Χ² (p 
value) 

Gender Female 145 
(46) 

122 
(39.9) 

133 
(45.4) 

400 
(43.8) 

1 -
1.7 

0.7 2.860 
(0.239)  

Male 170 
(54) 

184 
(60.1) 

160 
(54.6) 

514 
(56.2) 

-1 1.7 -
0.7 

 

 
Total 315 

(100) 
306 

(100) 
293 

(100) 
914 

(100) 

    

3 year Survival Alive 236 
(74.9) 

215 
(70.3) 

217 
(74.3) 

668 
(73.2) 

0.9 -
1.4 

0.5 2.005 
(0.367)  

Dead 79 
(25.1) 

91 
(29.7) 

75 
(25.7) 

245 
(26.8) 

-
0.9 

1.4 -
0.5 

 

 
Total 315 

(100) 
306 

(100) 
292 

(100) 
913 

(100) 

    

5 year 
Survival* 

Alive 158 
(50.2) 

119 
(38.9) 

114 
(38.9) 

391 
(42.8) 

3.3 -
1.7 

-
1.6 

10.69 
(0.005)  

Dead 157 
(49.8) 

187 
(61.1) 

179 
(61.1) 

523 
(57.2) 

-
3.3 

1.7 1.6 
 

 
Total 315 

(100) 
306 

(100) 
293 

(100) 
914 

(100) 

    

Synchronous 
metastasis  

No metastasis 280 
(88.9) 

263 
(85.9) 

269 
(91.8) 

812 
(88.8) 

0 -2 2 5.188 
(0.075)  

With 
metastasis 

35 
(11.1) 

43 
(14.1) 

24 
(8.2) 

102 
(11.2) 

0 2 -2 
 

 
Total 315 

(100) 
306 

(100) 
293 

(100) 
914 

(100) 

    

Recurrence  No 
Recurrence 

224 
(71.1) 

208 (68) 225 
(76.8) 

657 
(71.9) 

-
0.4 

-
1.9 

2.3 5.900 
(0.052) 
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Recurrence 91 

(28.9) 
98 (32) 68 

(23.2) 
257 

(28.1) 
0.4 1.9 -

2.3 

 

 
Total 315 

(100) 
306 

(100) 
293 

(100) 
914 

(100) 

    

Clinical variable Condition Low 
(%) 

Medium 
(%) 

High 
(%) 

Total 
(%) 

Adjusted 
residual 

Χ² (p 
value) 

Cause of death  Alive 202 
(64.1) 

184 
(60.1) 

187 
(63.8) 

573 
(62.7) 

0.7 -
1.1 

0.5 3.329 
(0.767)  

CRC 53 
(16.8) 

57 
(18.6) 

48 
(16.4) 

158 
(17.3) 

-
0.3 

0.8 -
0.5 

 

 
Other 31 

(9.8) 
41 

(13.4) 
36 

(12.3) 
108 

(11.8) 
-

1.3 
1.1 0.3 

 

 
Unknown 29 

(9.2) 
24 (7.8) 22 

(7.5) 
75 

(8.2) 
0.8 -

0.3 
-

0.5 

 

 
Total 315 

(100) 
306 

(100) 
293 

(100) 
914 

(100) 

    

Survival Status Alive 202 
(64.1) 

184 
(60.1) 

187 
(63.8) 

573 
(62.7) 

0.7 -
1.1 

0.5 1.296 
(0.523)  

Dead 113 
(35.9) 

122 
(39.9) 

106 
(36.2) 

341 
(37.3) 

-
0.7 

1.1 -
0.5 

 

 
Total 315 

(100) 
306 

(100) 
293 

(100) 
914 

(100) 

    

Final stage 1 45 
(14.3) 

47 
(15.4) 

55 
(18.8) 

147 
(16.1) 

-
1.1 

-
0.4 

1.5 9.509 
(0.147)  

2 128 
(40.6) 

118 
(38.6) 

130 
(44.4) 

376 
(41.1) 

-
0.2 

-
1.1 

1.4 
 

 
3 108 

(34.3) 
98 (32) 84 

(28.7) 
290 

(31.7) 
1.2 0.1 -

1.4 

 

 
4 34 

(10.8) 
43 

(14.1) 
24 

(8.2) 
101 

(11.1) 
-

0.2 
2.1 -

1.9 

 

 
Total 315 

(100) 
306 

(100) 
293 

(100) 
914 

(100) 

    

Primary 
tumour 

T1 19 (6) 22 (7.2) 26 
(8.9) 

67 
(7.3) 

-
1.1 

-
0.1 

1.2 5.764 
(0.45)  

T2 33 
(10.5) 

31 
(10.1) 

34 
(11.6) 

98 
(10.7) 

-
0.2 

-
0.4 

0.6 
 

 
T3 180 

(57.1) 
154 

(50.3) 
154 

(52.6) 
488 

(53.4) 
1.6 -

1.3 
-

0.3 

 

 
T4 83 

(26.3) 
99 

(32.4) 
79 

(27) 
261 

(28.6) 
-

1.1 
1.8 -

0.7 

 

 
Total 315 

(100) 
306 

(100) 
293 

(100) 
914 

(100) 

    

Lymph node 
metastasis 

N0 172 
(56.8) 

172 
(57.3) 

184 
(64.6) 

528 
(59.5) 

-
1.2 

-
0.9 

2.1 4.953 
(0.292)  

N1 76 
(25.1) 

79 
(26.3) 

61 
(21.4) 

216 
(24.3) 

0.4 1 -
1.4 

 

 
N2 55 

(18.2) 
49 

(16.3) 
40 

(14) 
144 

(16.2) 
1.1 0.1 -

1.2 

 

 
Total 303 

(100) 
300 

(100) 
285 

(100) 
888 

(100) 

    

Metastasis No metastasis 280 
(88.9) 

263 
(85.9) 

269 
(91.8) 

812 
(88.8) 

0 -2 2 5.188 
(0.075)  

With 
metastasis 

35 
(11.1) 

43 
(14.1) 

24 
(8.2) 

102 
(11.2) 

0 2 -2 
 

 
Total 315 

(100) 
306 

(100) 
293 

(100) 
914 

(100) 

    

Vascular 
invasion 

Absent 158 
(51) 

151 (50) 156 
(54.4) 

465 
(51.7) 

-
0.3 

-
0.7 

1.1 1.226 
(0.542)  

Present 152 
(49) 

151 (50) 131 
(45.6) 

434 
(48.3) 

0.3 0.7 -
1.1 

 

 
Total 310 

(100) 
302 

(100) 
287 

(100) 
899 

(100) 
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Clinical variable Condition Low 
(%) 

Medium 
(%) 

High 
(%) 

Total 
(%) 

Adjusted 
residual 

Χ² (p 
value) 

Perineural 
invasion 

Absent 250 
(82.5) 

237 
(80.3) 

224 
(79.2) 

711 
(80.7) 

1 -
0.2 

-
0.8 

1.096 
(0.578)  

Present 53 
(17.5) 

58 
(19.7) 

59 
(20.8) 

170 
(19.3) 

-1 0.2 0.8 
 

 
Total 303 

(100) 
295 

(100) 
283 

(100) 
881 

(100) 

    

Intramural 
lymphovascular 
invasion 

Absent 192 
(66.4) 

197 
(70.6) 

197 
(70.4) 

586 
(69.1) 

-
1.2 

0.7 0.6 1.466 
(0.481) 

 
Present 97 

(33.6) 
82 

(29.4) 
83 

(29.6) 
262 

(30.9) 
1.2 -

0.7 
-

0.6 

 

 
Total 289 

(100) 
279 

(100) 
280 

(100) 
848 

(100) 

    

Tumour edge Infiltrative 115 
(51.1) 

115 
(48.3) 

118 
(52.4) 

348 
(50.6) 

0.2 -
0.9 

0.7 0.825 
(0.662)  

Pushing 110 
(48.9) 

123 
(51.7) 

107 
(47.6) 

340 
(49.4) 

-
0.2 

0.9 -
0.7 

 

 
Total 225 

(100) 
238 

(100) 
225 

(100) 
688 

(100) 

    

Tumour 
budding score 

Low 154 
(69.7) 

153 
(65.4) 

149 
(66.8) 

456 
(67.3) 

0.9 -
0.8 

-
0.2 

0.983 
(0.612)  

High 67 
(30.3) 

81 
(34.6) 

74 
(33.2) 

222 
(32.7) 

-
0.9 

0.8 0.2 
 

 
Total 221 

(100) 
234 

(100) 
223 

(100) 
678 

(100) 

    

Peritumoural 
lymphocytes 

Inconspicuous 176 
(78.2) 

178 
(73.9) 

140 
(62.2) 

494 
(71.5) 

2.7 1 -
3.7 

15.14 
(0.001)  

Conspicuous 49 
(21.8) 

63 
(26.1) 

85 
(37.8) 

197 
(28.5) 

-
2.7 

-1 3.7 
 

 
Total 225 

(100) 
241 

(100) 
225 

(100) 
691 

(100) 

    

MMR Status  Proficient 262 
(84.2) 

266 
(87.8) 

229 
(78.7) 

757 
(83.6) 

0.4 2.4 -
2.8 

9.099 
l0.011  

Deficient 49 
(15.8) 

37 
(12.2) 

62 
(21.3) 

148 
(16.4) 

-
0.4 

-
2.4 

2.8 
 

 
Total 315 

(100) 
306 

(100) 
293 

(100) 
905 

(100) 

    

Age 
dichotomised 

Young 20 
(6.3) 

24 (7.8) 20 
(6.8) 

64 (7) -
0.6 

0.7 -
0.1 

0.553 
(0.759)  

Old 295 
(93.7) 

282 
(92.2) 

273 
(93.2) 

850 
(93) 

0.6 -
0.7 

0.1 
 

 
Total 315 

(100) 
306 

(100) 
293 

(100) 
914 

(100) 

    

Grade 
dichotomised 

Low 288 
(91.4) 

281 
(92.1) 

267 
(91.1) 

836 
(91.6) 

-
0.1 

0.4 -
0.3 

0.207 
(0.902)  

High 27 
(8.6) 

24 (7.9) 26 
(8.9) 

77 
(8.4) 

0.1 -
0.4 

0.3 
 

 
Total 315 

(100) 
305 

(100) 
293 

(100) 
913 

(100) 

    

Site 
dichotomised 

Right side 157 
(49.8) 

149 
(48.7) 

141 
(48.1) 

447 
(48.9) 

0.4 -
0.1 

-
0.3 

0.188 
(0.91)  

Left side 158 
(50.2) 

157 
(51.3) 

152 
(51.9) 

467 
(51.1) 

-
0.4 

0.1 0.3 
 

 
Total 315 

(100) 
306 

(100) 
293 

(100) 
914 

(100) 

    

*Significant associations (p <005) highlighted in bold 
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Survival analysis of stromal CD44 

Kaplan-Meier and Cox regression analyses were performed to further 

understand the relationship between stromal CD44 staining and survival. 

Kaplan-Meier analysis was performed with the CD44 stromal staining split into 

tertiles, looking at 3 year survival, 5 year survival and death related to 

colorectal cancer, as seen in figure 19. 3 year survival was not significantly 

associated with stromal CD44 expression (p 0.443), and neither was death 

relating to colorectal cancer (p 0.672). 5 year survival could not be calculated 

for patients expressing low levels of stromal CD44, and did not differ much 

between medium (53.9 months) and high expression (51.8 months) but was 

significantly different (p 0.022). Univariate Cox regression analysis did not show 

a significant association between stromal CD44 and overall survival (p 0.475). 

Multivariate analysis revealed a slightly stronger but still not significant 

association (p 0.363). MMR status was not significantly associated with survival 

(p 0.102) but the presence of peritumoural lymphocytes led to worse outcome 

(hazard ratio 0.569, p <0.001). 
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Figure 19: Kaplan-Meier analysis of stromal CD44 expression revealed a significant association with 5 year 
survival, but not with 3 year survival or death relating to CRC. 
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CD44 and c-Myc interaction 
c-Myc and CD44 are known to share common pathways and interactions in 

colorectal cancer. Chi-square analysis showed that the patients with the 

highest expression of CD44 are associated with the highest expression of c-Myc 

(p <0.001). The data of both were then combined (see the method used to 

combine c-Myc nuclear and cytoplasmic staining), using the median cut-off for 

nuclear c-Myc expression and the 75th percentile for CD44 expression. Good 5 

year survival was associated with c-Myc-/CD44- patients (p <0.001), whereas 

the lowest primary tumour stage was associated with c-Myc+/CD44+ patients. 

A lack of metastasis was associated with high CD44 expression, regardless of c-

Myc expression (p 0.018). The presence of vascular invasion was most strongly 

associated with patients who were c-Myc-/CD44- (p <0.001). Right sided 

tumours showed a high affiliation with cMyc-/CD44+, whereas left-sided 

tumours were associated with c-Myc+/CD44- expression (p 0.002). These 

associations reveal that although CD44 and c-Myc do share some common 

pathways, they also act independently, leading to different clinical outcomes. 

 

Table 18: Nuclear c-Myc expression and Membranous CD44 expression combined with clinical 
variables in Chi-square analysis 

Clinical 
variable 

Condition c-
Myc-
/CD4
4- 

c-
Myc-
/CD4
4+ 

c-
Myc
+/CD
44- 

c-
Myc
+/CD
44+ 

Total Adjusted residuals  Χ² (p 
value
) 

5 year 
survival* 

Alive 217 
(51.5
) 

35 
(50) 

126 
(40.9
) 

40 
(26) 

418 
(43.9
) 

4.3 1.1 -
1.3 

-
4.9 

32.26 
(<0.0
01)  

Dead 204 
(48.5
) 

35 
(50) 

182 
(59.1
) 

114 
(74) 

535 
(56.1
) 

-
4.3 

-
1.1 

1.3 4.9 
 

 
Total 421 

(100) 
70 
(100) 

308 
(100) 

154 
(100) 

953 
(100) 

     

Synchron
ous 
metastasi
s  

No 
metastasis 

366 
(86.9
) 

68 
(97.1
) 

267 
(86.7
) 

143 
(92.9
) 

844 
(88.6
) 

-
1.4 

2.3 -
1.3 

1.8 10.06 
(0.01
8) 

 
With 
metastasis 

55 
(13.1
) 

2 
(2.9) 

41 
(13.3
) 

11 
(7.1) 

109 
(11.4
) 

1.4 -
2.3 

1.3 -
1.8 

 

 
Total 421 

(100) 
70 
(100) 

308 
(100) 

154 
(100) 

953 
(100) 

     

Final 
stage 

1 56 
(13.3
) 

16 
(22.9
) 

47 
(15.3
) 

36 
(23.4
) 

155 
(16.3
) 

-
2.2 

1.6 -
0.6 

2.6 20.15 
(0.01
7)  

2 178 
(42.3
) 

33 
(47.1
) 

122 
(39.6
) 

56 
(36.4
) 

389 
(40.8
) 

0.8 1.1 -
0.5 

-
1.2 

 

 
3 132 

(31.4
) 

19 
(27.1
) 

99 
(32.1
) 

51 
(33.1
) 

301 
(31.6
) 

-
0.1 

-
0.8 

0.3 0.4 
 

 
4 55 

(13.1
) 

2 
(2.9) 

40 
(13) 

11 
(7.1) 

108 
(11.3
) 

1.5 -
2.3 

1.1 -
1.8 

 

 
Total 421 

(100) 
70 
(100) 

308 
(100) 

154 
(100) 

953 
(100) 
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Clinical 
variable 

Condition c-
Myc-
/CD4
4- 

c-
Myc-
/CD4
4+ 

c-
Myc
+/CD
44- 

c-
Myc
+/CD
44+ 

Total Adjusted residuals 
 

Χ² (p 
value
) 

Primary 
tumour 

T1 19 
(4.5) 

7 
(10) 

20 
(6.5) 

24 
(15.6
) 

70 
(7.3) 

-3 0.9 -
0.7 

4.3 26.27 
(0.00
2)  

T2 45 
(10.7
) 

11 
(15.7
) 

30 
(9.7) 

17 
(11) 

103 
(10.8
) 

-
0.1 

1.4 -
0.7 

0.1 
 

 
T3 222 

(52.7
) 

35 
(50) 

172 
(55.8
) 

77 
(50) 

506 
(53.1
) 

-
0.2 

-
0.5 

1.2 -
0.8 

 

 
T4 135 

(32.1
) 

17 
(24.3
) 

86 
(27.9
) 

36 
(23.4
) 

274 
(28.8
) 

2 -
0.9 

-
0.4 

-
1.6 

 

 
Total 421 

(100) 
70 
(100) 

308 
(100) 

154 
(100) 

953 
(100) 

     

Metastasi
s 

No 
metastasis 

366 
(86.9
) 

68 
(97.1
) 

267 
(86.7
) 

143 
(92.9
) 

844 
(88.6
) 

-
1.4 

2.3 -
1.3 

1.8 10.06 
(0.01
8)  

With 
metastasis 

55 
(13.1
) 

2 
(2.9) 

41 
(13.3
) 

11 
(7.1) 

109 
(11.4
) 

1.4 -
2.3 

1.3 -
1.8 

 

 
Total 421 

(100) 
70 
(100) 

308 
(100) 

154 
(100) 

953 
(100) 

     

Vascular 
invasion 

Absent 191 
(45.6
) 

48 
(70.6
) 

155 
(50.7
) 

89 
(61.4
) 

483 
(51.5
) 

-
3.3 

3.3 -
0.4 

2.6 21.54 
(<0.0
01)  

Present 228 
(54.4
) 

20 
(29.4
) 

151 
(49.3
) 

56 
(38.6
) 

455 
(48.5
) 

3.3 -
3.3 

0.4 -
2.6 

 

 
Total 419 

(100) 
68 
(100) 

306 
(100) 

145 
(100) 

938 
(100) 

     

Tumour 
edge 

Infiltrative 144 
(55.6
) 

18 
(37.5
) 

161 
(55.9
) 

49 
(37.7
) 

372 
(51.3
) 

1.7 -2 2 -
3.4 

17.65 
(0.00
1)  

Pushing 115 
(44.4
) 

30 
(62.5
) 

127 
(44.1
) 

81 
(62.3
) 

353 
(48.7
) 

-
1.7 

2 -2 3.4 
 

 
Total 259 

(100) 
48 
(100) 

288 
(100) 

130 
(100) 

725 
(100) 

     

Peritumo
ural 
lymphocyt
es 

Inconspicu
ous 

191 
(73.5
) 

38 
(77.6
) 

210 
(72.7
) 

80 
(61.1
) 

519 
(71.2
) 

1 1 0.7 -
2.8 

8.471 
(0.03
7) 

 
Conspicuo
us 

69 
(26.5
) 

11 
(22.4
) 

79 
(27.3
) 

51 
(38.9
) 

210 
(28.8
) 

-1 -1 -
0.7 

2.8 
 

 
Total 260 

(100) 
49 
(100) 

289 
(100) 

131 
(100) 

729 
(100) 

     

MMR 
Status  

Proficient 372 
(89.4
) 

46 
(66.7
) 

266 
(86.6
) 

107 
(70.4
) 

791 
(83.8
) 

4.2 -4 1.7 -
4.9 

46.54 
(<0.0
01)  

Deficient 44 
(10.6
) 

23 
(33.3
) 

41 
(13.4
) 

45 
(29.6
) 

153 
(16.2
) 

-
4.2 

4 -
1.7 

4.9 
 

 
Total 416 

(100) 
69 
(100) 

307 
(100) 

152 
(100) 

944 
(100) 

     

Site 
dichotomi
sed 

Right side 210 
(49.9
) 

45 
(64.3
) 

127 
(41.2
) 

81 
(52.6
) 

463 
(48.6
) 

0.7 2.7 -
3.1 

1.1 14.84 
(0.00
2) 
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Clinical 
variable 

Condition c-
Myc-
/CD4
4- 

c-
Myc-
/CD4
4+ 

c-
Myc
+/CD
44- 

c-
Myc
+/CD
44+ 

Total Adjusted residuals 
 

Χ² (p 
value

) 

 
Left side 211 

(50.1
) 

25 
(35.7
) 

181 
(58.8
) 

73 
(47.4
) 

490 
(51.4
) 

-
0.7 

-
2.7 

3.1 -
1.1 

 

 
Total 421 

(100) 
70 
(100) 

308 
(100) 

154 
(100) 

953 
(100) 

     

*Significant results (p <0.05) highlighted in bold 

 

Tumour stroma content as a biomarker 
Tumour stromal content is considered an important biomarker in colorectal 

cancer. Stromal content was determined as the percentage of the core 

occupied by stromal cells rather than epithelial cells. The consensus molecular 

subtype CMS4 tumours are characterised by a high stromal content [26]. 

Tumour epithelium content was assessed prior to evaluating CD44 and c-Myc 

staining, and stromal content was calculated by taking the percentage of 

epithelium away from 100. The average tumour stromal content was normally 

distributed as seen in figure 20, with a mean of 49.39 (standard deviation 27.7). 

The data was split by median expression (47.5) in keeping with the previous 

analyses of c-Myc and CD44 staining, and the association with clinical variables 

assessed by Chi-square analysis.  

 
Figure 20: Distribution of average stromal content in CD44 and c-Myc stained slides. Average stromal 
content was calculated from average epithelial content and shows a normal distribution. 

Chi-square analysis of tumour stroma content 

Tumour stromal content was compared to the clinical data using a median cut-

off. High tumour stromal content was associated with increased metastasis (p 

0.013), increased primary tumour stage (p <0.001) and increased lymph node 

metastasis (p 0.016). Increased final stage (p 0.002) was associated with high 

stromal content, and so it is unsurprising that alongside these associations, 
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recurrence (p <0.001), poor 3 year survival (p 0.015) and poor survival status (p 

0.005) are also observed. Death related to colorectal cancer was associated 

with high stromal content (p 0.013). Vascular invasion (p 0.003), perineural 

invasion (p 0.004) and an infiltrative tumour edge (p 0.002) were all associated 

with high stromal content, as seen in table 19. 

 

Table 19: Chi-square analysis of tumour stromal content with clinical variables 

Clinical variable Condition Low High Total Adjusted residual Χ² (p 
value) 

Gender* Female 239 
(48.4) 

182 (38) 421 (43.3) 3.3 -3.3 10.68 
(0.001)  

Male 255 
(51.6) 

297 (62) 552 (56.7) -3.3 3.3 
 

 
Total 494 

(100) 
479 
(100) 

973 (100) 
   

3 year Survival Alive 377 
(76.5) 

333 
(69.5) 

710 (73) 2.4 -2.4 5.961 
(0.015)  

Dead 116 
(23.5) 

146 
(30.5) 

262 (27) -2.4 2.4 
 

 
Total 493 

(100) 
479 
(100) 

972 (100) 
   

5 year Survival Alive 225 
(45.5) 

200 
(41.8) 

425 (43.7) 1.2 -1.2 1.422 
(0.233)  

Dead 269 
(54.5) 

279 
(58.2) 

548 (56.3) -1.2 1.2 
 

 
Total 494 

(100) 
479 
(100) 

973 (100) 
   

Synchronous 
metastasis  

No metastais 448 
(90.7) 

412 (86) 860 (88.4) 2.3 -2.3 5.180 
(0.023)  

With 
metastasis 

46 (9.3) 67 (14) 113 (11.6) -2.3 2.3 
 

 
Total 494 

(100) 
479 
(100) 

973 (100) 
   

Recurrence  No 
Recurrence 

380 
(76.9) 

315 
(65.8) 

695 (71.4) 3.9 -3.9 14.84 
(<0.001)  

Recurrence 114 
(23.1) 

164 
(34.2) 

278 (28.6) -3.9 3.9 
 

 
Total 494 

(100) 
479 
(100) 

973 (100) 
   

Cause of death  Alive 330 
(66.8) 

278 (58) 608 (62.5) 2.8 -2.8 10.77 
(0.013)  

CRC 72 (14.6) 101 
(21.1) 

173 (17.8) -2.7 2.7 
 

 
Other 60 (12.1) 57 

(11.9) 
117 (12) 0.1 -0.1 

 

 
Unknown 32 (6.5) 43 (9) 75 (7.7) -1.5 1.5 

 

 
Total 494 

(100) 
479 
(100) 

973 (100) 
   

Survival Status Alive 330 
(66.8) 

278 (58) 608 (62.5) 2.8 -2.8 7.969 
(0.005)  

Dead 164 
(33.2) 

201 (42) 365 (37.5) -2.8 2.8 
 

 
Total 494 

(100) 
479 
(100) 

973 (100) 
   

Final stage 1 95 (19.2) 63 
(13.2) 

158 (16.2) 2.6 -2.6 14.57 
(0.002)  

2 212 
(42.9) 

183 
(38.2) 

395 (40.6) 1.5 -1.5 
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3 142 

(28.7) 
166 
(34.7) 

308 (31.7) -2 2 
 

 
4 45 (9.1) 67 (14) 112 (11.5) -2.4 2.4 

 

 
Total 494 

(100) 
479 
(100) 

973 (100) 
   

Clinical variable Condition Low High Total Adjusted residual Χ² (p 
value) 

Primary 
tumour 

T1 47 (9.5) 25 (5.2) 72 (7.4) 2.6 -2.6 19.58 
(<0.001)  

T2 58 (11.7) 46 (9.6) 104 (10.7) 1.1 -1.1 
 

 
T3 274 

(55.5) 
241 
(50.3) 

515 (52.9) 1.6 -1.6 
 

 
T4 115 

(23.3) 
167 
(34.9) 

282 (29) -4 4 
 

 
Total 494 

(100) 
479 
(100) 

973 (100) 
   

Lymph node 
metastasis 

N0 303 
(63.5) 

257 
(54.7) 

560 (59.1) 2.8 -2.8 8.298 
(0.016)  

N1 100 (21) 131 
(27.9) 

231 (24.4) -2.5 2.5 
 

 
N2 74 (15.5) 82 

(17.4) 
156 (16.5) -0.8 0.8 

 

 
Total 477 

(100) 
470 
(100) 

947 (100) 
   

Metastasis No metastasis 449 
(90.9) 

411 
(85.8) 

860 (88.4) 2.5 -2.5 6.131 
(0.013)  

With 
metastasis 

45 (9.1) 68 
(14.2) 

113 (11.6) -2.5 2.5 
 

 
Total 494 

(100) 
479 
(100) 

973 (100) 
   

Vascular 
invasion 

Absent 272 
(56.3) 

222 
(46.7) 

494 (51.6) 3 -3 8.796 
(0.003)  

Present 211 
(43.7) 

253 
(53.3) 

464 (48.4) -3 3 
 

 
Total 483 

(100) 
475 
(100) 

958 (100) 
   

Perineural 
invasion 

Absent 398 
(84.5) 

361 
(77.1) 

759 (80.8) 2.9 -2.9 8.216 
(0.004)  

Present 73 (15.5) 107 
(22.9) 

180 (19.2) -2.9 2.9 
 

 
Total 471 

(100) 
468 
(100) 

939 (100) 
   

Intramural 
lymphovascular 
invasion 

Absent 322 
(69.2) 

302 
(69.1) 

624 (69.2) 0 0 0.002 
(0.964) 

 
Present 143 

(30.8) 
135 
(30.9) 

278 (30.8) 0 0 
 

 
Total 465 

(100) 
437 
(100) 

902 (100) 
   

Tumour edge Infiltrative 170 
(45.9) 

212 
(57.3) 

382 (51.6) -3.1 3.1 9.545 
(0.002)  

Pushing 200 
(54.1) 

158 
(42.7) 

358 (48.4) 3.1 -3.1 
 

 
Total 370 

(100) 
370 
(100) 

740 (100) 
   

Tumour 
budding score 

Low 253 
(68.9) 

240 
(66.3) 

493 (67.6) 0.8 -0.8 0.580 
(0.446)  

High 114 
(31.1) 

122 
(33.7) 

236 (32.4) -0.8 0.8 
 

 
Total 367 

(100) 
362 
(100) 

729 (100) 
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Clinical variable Condition Low High Total Adjusted 
residual 

Χ² (p 
value) 

Clinical 
variable 

Peritumoural 
lymphocytes 

Inconspicuous 270 
(72.4) 

260 
(70.1) 

530 (71.2) 0.7 -0.7 0.482 
(0.487)  

Conspicuous 103 
(27.6) 

111 
(29.9) 

214 (28.8) -0.7 0.7 
 

 
Total 373 

(100) 
371 
(100) 

744 (100) 
   

MMR Status  
 

5 (1) 12 (2.5) 17 (1.7) -1.8 1.8 7.006 
(0.03)  

Proficient 398 
(80.6) 

402 
(83.9) 

800 (82.2) -1.4 1.4 
 

 
Deficient 91 (18.4) 65 

(13.6) 
156 (16) 2.1 -2.1 

 

 
Total 494 

(100) 
479 
(100) 

973 (100) 
   

Age 
dichotomised 

Young 31 (6.3) 32 (6.7) 63 (6.5) -0.3 0.3 0.066 
(0.797)  

Old 463 
(93.7) 

447 
(93.3) 

910 (93.5) 0.3 -0.3 
 

 
Total 494 

(100) 
479 
(100) 

973 (100) 
   

Grade 
dichotomised 

Low 448 
(90.7) 

437 
(91.4) 

885 (91) -0.4 0.4 0.161 
(0.688)  

High 46 (9.3) 41 (8.6) 87 (9) 0.4 -0.4 
 

 
Total 494 

(100) 
478 
(100) 

972 (100) 
   

Site 
dichotomised 

Right side 253 
(51.2) 

220 
(45.9) 

473 (48.6) 1.6 -1.6 2.720 
(0.099)  

Left side 241 
(48.8) 

259 
(54.1) 

500 (51.4) -1.6 1.6 
 

 
Total 494 

(100) 
479 
(100) 

973 (100) 
   

*Significant associations (p <0.05) highlighted in bold 

 

Survival analysis of tumour stroma content 

Survival of patients relating to tumour stromal content was assessed using the 

median cut-off. 3 year survival was significantly higher (p 0.017) in patients with 

low stromal content, with 76.5% of patients surviving to 3 years and 69.5% of 

patients with high stromal content surviving to the same time. Deaths relating 

to CRC were significantly lower in patients with low stromal content (p 0.005), 

with an 84.7% chance of surviving versus a 77% chance of survival in patients 

with high stromal content. 5 year survival was not significantly associated with 

tumour stroma content (p 0.110) but showed the same trend, as shown in 

figure 21.  
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Figure 21: Kaplan-Meier analysis of tumour stroma with 3 year survival, 5 year survival and death relating 
to CRC. Only 5 year survival was not significantly associated with survival. 
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Association with biomarkers 

Mann-Whitney U analysis was performed to assess the relationship between 

tumour stroma content and c-Myc and CD44 staining. c-Myc showed no 

association with stromal content (p 0.342), and the mean stromal content was 

very similar between positive (62.22, 95% CI 57-67) and negative (64.92, 95% 

CI 60-70) nuclear expression groups. CD44 however showed a strong 

relationship with stromal content (p <0.001), with low stromal content 

associated with high CD44 membranous staining. The mean average stromal 

content for low CD44 staining was 42.26% (95% CI 38-47), whereas the mean 

stromal content in CD44 high tumours was 28.69 (95% CI 25-33). When 

compared via multivariate Cox regression analysis it was clear that CD44 was 

not significantly associated with survival (p 0.897) whereas low stromal content 

was (p 0.020). 

Bioinformatic analysis of c-Myc and CD44 in the Cancer Genome Atlas 

c-Myc analysis 

In order to further understand the importance of c-Myc expression in 

colorectal cancer, TCGA colorectal cancer data was assessed for differential 

expression of genes associated with c-Myc. The log2 fold change of all genes 

was assessed in conjunction with c-Myc. Of the 60488 genes included, 9984 

had a log2 fold change of ±1. 8247 genes were significantly changed (p<0.05), 

and of those, 7872 were changed with an adjusted p value <0.05. This equates 

to approximately 13% of the genome, and is similar to published figures 

concerning c-Myc regulation. 11 genes were significantly downregulated, and 

the other 7861 were upregulated, demonstrating the involvement of c-Myc in 

stimulating gene expression rather than repressing it. Pathways significantly 

associated with c-Myc expression are shown in figure 22.  

Pathway analysis was performed in WebGestalt using KEGG, Panther and 

Reactome databases, as described in figure 6. 169 unique genes were shown 

to be significantly upregulated as part of pathways across KEGG, Panther and 

Reactome databases. 34 histone genes were found to be upregulated in the 

presence of c-Myc, and were seen across multiple pathways including 

Reactome pathways “pre-NOTCH transcription and translation”, and 

“formation of the β-catenin:TCF transactivating complex”, or KEGG pathway 

“Systemic lupus erythematosus”. This is in accordance with the β-catenin:TCF 

interaction regulating c-Myc overexpression in colorectal cancer [39]. The 

Panther “Wnt signalling” pathway was also upregulated. In addition, multiple 

pathways associated with metabolic processes including the “Ionotropic 

glutamate receptor pathway” and “vitamin D metabolism” and pathway were 

associated with c-Myc expression, demonstrating the role of c-Myc in 

metabolism and glycolysis in colorectal cancer. The “Cadherin” pathway, which 

includes TCF/LEF, EGFR and Wnt, was also significantly associated with c-Myc 

expression. 25 olfactory receptor genes were upregulated, such as OR51B4 and 
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OR2C3, which have been associated with cancer in the past [86, 87]. Of the 11 

genes which were downregulated, EYA1 is known to be repressed by Wnt 

signalling [88], and SFTPC downregulation has been linked to increased 

proliferation and progression in lung cancer [89].  

CD44 analysis 

TCGA colorectal cancer data was assessed for differential expression of genes 

associated with CD44 in the same way as for c-Myc. All genes were assessed 

for the log2 fold change of their expression in conjunction with CD44. Of the 

60488 genes included, 2268 had a log2 fold change of ±1. 1851 genes were 

significantly changed (p<0.05), and of those, 1693 showed differential 

expression with an adjusted p value <0.05. 74 genes showed downregulation 

and the other 1619 were upregulated. The upregulated genes were analysed 

using WebGestalt to determine the number of pathways significantly 

upregulated.  

Out of the top 10 KEGG, Panther and Reactome pathways, 87 unique genes 

were found to be upregulated. No Panther pathways had a significant FDR 

score (<0.05), and only 4 KEGG pathways did. The pathways that were enriched 

were associated with cholesterol metabolism, bile secretion, and fat digestion, 

among others. These pathways are associated with general gut processes [90], 

but are also upregulated in colorectal cancer stem cells [91, 92]. The pathway 

“Transcriptional regulation of pluripotent stem cells” specifically was 

upregulated, demonstrating this. All of these pathways are reminiscent of CD44 

in stem cell initiation and maintenance [71, 73, 93]. The “Melanogenesis” 

pathway was also upregulated, and genes such as PRKACG and WNT7A, known 

to be upregulated in CRC, were overexpressed [94, 95]. Additional genes such 

as CALML5 and CREB3L3 were also upregulated in this pathway, but have not 

been associated with colorectal cancer before. 

Analysis of differential expression of genes in the presence of CD44 and c-Myc 

in colorectal cancer in this way allowed an additional opportunity to 

understand their functions in this disease, and how they can act as possible 

targets for therapeutic agents. For example, disrupting the proliferation of 

cancer cells via suppression of c-Myc.  
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Figure 22: Pathways upregulated with regard to CD44 (upper) and c-Myc (lower) expression. Expected 
numbers of genes are in blue, observed number of genes in orange. No upregulated pathways were shared 
between CD44 and c-Myc. A higher number of pathways upregulated in the presence of c-Myc than in 
CD44. 
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Discussion 
This project was an opportunity to assess a large cohort of patients for c-Myc 

and CD44 expression, as well as tumour stroma content. As the samples were 

in TMA form, it was possible to assess heterogeneity of CD44 and c-Myc in 

colorectal cancer. High correlation of both proteins between the tumour 

regions showed that they were homogenously expressed. Histological analysis 

is highly subjective, but performing inter and intra-observer comparisons 

demonstrated that the data were robust. CD44 and c-Myc are most commonly 

expressed in the tumour epithelial membrane and nucleus respectively, but 

this study did not stop at these cellular compartments. By interrogating analysis 

in all cellular compartments where staining was present, including in stromal 

cells, further understanding of the clinical significance of these biomarkers in 

colorectal cancer could be obtained. An additional limitation of this study was 

the confounding effects of MMR status. By separating the mismatch repair 

proficient and deficient patients, it was possible to see the clinical significance 

of each protein without interference. 

c-Myc tumoural expression 
c-Myc is a well-studied protein in colorectal cancer, with functions in multiple 

pathways that lead to increased pathogenicity. It is associated with the CMS2 

molecular subtype and overexpression of the Wnt signalling pathway. The 

staining was assessed using the Y69 clone antibody, which is specific to the N-

terminal domain of c-Myc and should not react with the paralogues n-Myc and 

l-Myc (alignments checked using Uniprot, 15th September 2020) [96].  

As c-Myc is involved in transcriptional regulation, its expression is expected in 

the nucleus. When the nuclear expression of c-Myc was split into positive and 

negative expression, positive c-Myc expression was associated with poor 5 year 

survival, which was emphasised in MMR proficient patients. Death relating to 

colorectal cancer was significantly higher in c-Myc positive patients, even 

accounting for clinical variables. Cytoplasmic staining was generally weak and 

only associated with low lymph node status, absence of perineural invasion and 

left-sided tumours. It is possible that much of the c-Myc cytoplasmic staining 

was artefact, as the associations found were not strongly significant and were 

consistent with the nuclear staining trends.  

Some studies relating to c-Myc and survival show a tendency to disagree with 

the consensus molecular subtypes, and show worse survival with increased c-

Myc expression [97]. Other factors in this analysis, such as c-Myc being highly 

expressed in left-sided tumours, and primary and lymph node stages, show an 

agreement with the CMS subtyping in MMR proficient patients, but not 

regarding survival [26]. It may be that the multiple functions c-Myc plays in 

colorectal cancer have contradictory clinical results that ultimately lead to poor 

outcomes. An example is the role c-Myc plays in cancer stem cell maintenance, 

which would lead to increased risk of recurrence and overall poor survival [98], 
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but is not necessarily associated with metastasis [99]. Another possibility is that 

c-Myc expression was interpreted differently in other studies which using 

different antibodies and methodologies. The association between MLH1 

deficiency and c-Myc expression is supported by the literature [48] and could 

be driving proliferation and giving c-Myc positive cells a selective advantage. 

Stromal c-Myc expression was observed in multiple patients and staining was 

localised to the cytoplasm of plasma cells. The strong association with 

conspicuous peritumoural lymphocytes supports the possibility that, as plasma 

cells tend to be associated more with normal colon stroma than tumour 

stroma, this shows the presence of immune response [100, 101]. Indeed, high 

stromal c-Myc was associated with lower stage, primary tumour stage and 

lymph node metastasis, and was indicative of improved survival. Increased c-

Myc staining in the stroma may be informative of an active immune response 

and improved outcome.  

This study of 1000 primary tumours from CRC patients has demonstrated an 

interesting association with clinical outcomes. Further work could be pursued 

in order to demonstrate precisely which pathways are responsible for the 

influence of c-Myc expression on survival. This could include 

immunohistochemical comparison with other markers such as β-catenin and 

other proteins involved in Wnt signalling, or markers of proliferation and 

metastasis. As increased c-Myc expression is associated with chemoresistance 

[102, 103], comparing c-Myc expression in matched pre and post treatment 

patient samples may help to devise better treatment strategies for patients.  

CD44 tumoural expression 
CD44 proteins play multiple roles in the normal and cancerous colon. Its 

function in the interaction between tumour epithelium and stroma make it an 

interesting protein and potential biomarker. The immunohistochemical 

staining of the TMAs was performed with the antibody clone DF1485, which is 

described as reacting to the whole protein. CD44 however, is not one single 

protein, but multiple variants which are predictive of different clinical 

outcomes [56, 104]. CD44 staining is expected in multiple cellular 

compartments, including the membrane, cytoplasm and nucleus. Very little 

nuclear staining was observed in this study and could represent a rare 

population of colorectal cancer patients. CD44 interacts with its main ligand 

hyaluronic acid on the cell surface, and this is the main cellular compartment 

where staining is expected [55]. The association between CD44 expression and 

survival was inconclusive due to the crossing of the Kaplan-Meier curves. High 

membrane-specific staining was associated with low stage, lack of invasiveness 

and tumours originating in the right side of the colon, especially in MMR 

proficient patients. CD44 positive tumours could represent a CMS2-like 

population, given the relationship between CD44 and the Wnt-signalling 

pathway. Bioinformatic analysis revealed an association between increased 
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CD44 expression and loss of expression at ch18q21, a recognised feature of the 

canonical adenoma-carcinoma pathway [6], enriched in CMS2 tumours [26].  

Expression of CD44 in the cytoplasm was represented by granular and diffuse 

staining, and in future analyses it would be interesting to split the two groups 

to see if there were differences in clinical outcomes. As the granular staining 

was generally localised to the basolateral edge of cells, it could be that this 

represents an intracellular form of CD44, involved in detaching tumour 

epithelial cells from the extracellular matrix and leading to invasion and 

metastasis [63]. Studying this interaction could demonstrate the method by 

which CD44 regulates metastasis. High cytoplasmic CD44 was associated with 

low primary tumour stage, lack of metastasis and invasiveness, as was 

membranous staining. This is surprising as previous studies have suggested that 

CD44 is implicated in metastasis, due to its interaction with the extracellular 

matrix. Intracellular forms of CD44 are associated with detachment from the 

extracellular matrix and maintaining a stem cell state [63, 65]. Studies have 

shown that while increased CD44v6 is associated with worse survival and 

metastasis [105], increased CD44s is associated with better survival and lower 

primary tumour stage [106], as seen in this study. If the antibody used here 

detects multiple isoforms of CD44, it may be that the effect of one isoform is 

confounding the effect of the other. Use of antibodies specifically targeting the 

different isoforms could improve the reliability of the results.  

Lymphocytes are known to express CD44 [107] and so it is unsurprising that 

CD44 staining was found in the tumour stroma. Increased stromal CD44 

staining was associated with peritumoural lymphocytes and worse 5 year 

survival, although Cox regression analysis showed that this effect was 

confounded by the presence of peritumoural lymphocytes. Given that CD44 is 

expressed in these lymphocytes, it is possible that CD44 could be used in 

colorectal cancer as both a marker of cancer stem cells and as a marker of 

tumour infiltrating lymphocytes.  

Both c-Myc and CD44 have been studied extensively for their roles in colorectal 

cancer. By looking at their joint expression in tumours, it has provided an 

opportunity to understand which clinical variables are influenced by both 

proteins, and their shared pathways. CD44 and c-Myc feature in initiating and 

maintaining a stem-like state in colorectal cancer cells [108, 109]. This study 

demonstrates that although this may be true, there appears to be no impact 

on tumour stage or overall survival when the two are expressed together. 

Furthermore, there is an association between the expression of both 

biomarkers with low primary tumour stage and metastasis, suggesting that this 

population of c-Myc+/CD44+ tumours may have a good outcome.  

Tumour stroma content 
Tumour stroma content has a prognostic role in colorectal cancer. Increased 

stromal content is associated with CMS4, a mesenchymal molecular subtype 
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associated with EMT and the worst overall survival of the consensus molecular 

subtypes [26]. A median cut-off of 46.6% was used to determine high and low 

stromal content, consistent with other studies using a 50% cut-off [110]. 

Clinical variables associated with metastasis, including vascular invasion, and 

increased primary tumour stage were associated with stromal content. High 

stromal content was associated with poor survival, consistent with previous 

analyses [111, 112]. c-Myc expression did not show any significant association 

with tumour stroma content, but CD44 did. There was a higher level of CD44 

expression in the patients with low stroma, suggesting that the presence of 

CD44 is indicative of better outcomes, in agreement with the independent 

biomarker analysis. When the two were analysed in a multivariate Cox-

regression analysis, it became clear that the tumour stroma content was 

confounding the effects of CD44 on survival. Improving the stromal analysis 

could include measuring the stroma directly, either using digital image analysis 

or using antibodies to assess the content of fibroblasts or lymphocytes. 

 

Bioinformatic analyses 
This project represented an opportunity to investigate the expression of CD44 and c-

Myc in archived colorectal cancer samples. The samples used here do not have RNA 

data and access to other biomarker data, to supplement this work, was limited. The 

use of TCGA data therefore represented a chance to extend this work and understand 

which genes these proteins interact with in CRC. The upregulation of genes associated 

with proliferation and stem-state in the c-Myc analysis confirms what was seen in the 

literature regarding its functions in CRC. This analysis also offered an opportunity to 

look for previously unobserved connections, such as that between CD44 and CALM5 

and CREB3L3, which both belong to the Melanogenesis pathway. This could have 

significant repercussions when selecting therapies for colorectal cancer, as the 

Melanogenesis pathway has been associated with resistance to oxaliplatin [113]. Time 

constraints meant that further analyses could not be performed to interrogate these 

data, but this is something that could be pursued as a future work to enable enhanced 

understanding of the roles of c-Myc and CD44 in colorectal cancer. 

Conclusion 
This study presented an opportunity to study three different biomarkers of 

colorectal cancer. By analysing the expression of CD44 and c-Myc in stroma as 

well as epithelial cells, additional information about patient outcomes could be 

inferred. Future analyses could include assessing the relationships of other 

biomarkers with CD44 and c-Myc, to find the combination with the most 

prognostic value. Looking at both c-Myc and CD44 expression in matched 

metastatic and lymph node samples could enable better understanding of how 

these proteins are involved in the metastatic process. The findings here 

regarding CD44 contrasted with the existing literature. This demonstrates the 

importance of using variant-specific antibodies to study CD44 expression. c-

Myc positive tumours were found to have worse survival that c-Myc negative 



Page 82 of 89 
 

tumours, knowledge which could be used to tailor treatment for patients of 

CRC. Finally, the analysis of tumour stroma content demonstrated the negative 

impact of stroma-rich tumours on clinical outcomes. 
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