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Resource saving has become an integral aspect of manufacturing in industry 4.0. (is paper proposes a multisystem optimization
(MSO) algorithm, inspired by implicit parallelism of heuristic methods, to solve an integrated production scheduling with
resource saving problem in textile printing and dyeing. First, a real-world integrated production scheduling with resource saving is
formulated as a multisystem optimization problem. (en, the MSO algorithm is proposed to solve multisystem optimization
problems that consist of several coupled subsystems, and each of the subsystems may contain multiple objectives and multiple
constraints. (e proposed MSO algorithm is composed of within-subsystem evolution and cross-subsystem migration operators,
and the former is to optimize each subsystem by excellent evolution operators and the later is to complete information sharing
between multiple subsystems, to accelerate the global optimization of the whole system. Performance is tested on a set of
multisystem benchmark functions and compared with improved NSGA-II and multiobjective multifactorial evolutionary al-
gorithm (MO-MFEA). Simulation results show that the MSO algorithm is better than compared algorithms for the benchmark
functions studied in this paper. Finally, the MSO algorithm is successfully applied to the proposed integrated production
scheduling with resource saving problem, and the results show that MSO is a promising algorithm for the studied problem.

1. Introduction

Industry 4.0, a new wave of industrialization, driven by smart
information and communication technology, sparks a trans-
formative view of framing process manufacturing and factory
management practice [1–3]. With the recent technical advances
in industry, such as sensor network, cloud computing, and
artificial intelligence, production manufacturing is becoming
hyperconnected because of the communication and control
between more components and parts than those in the past
[4–6]. So, the optimization and decision for manufacturing is
generally impossible with analytical mathematical tools or
traditional optimization methods [7, 8]. Meanwhile,
manufacturing involves multiple subsystems, with multiple
inputs, multiple outputs, multiple objectives, and multiple

constraints. Its optimization and decision cannot be simply
treated as a classic multiobjective optimization problem. We
treat suchmanufacturing as a complexmultisystem because it is
not merely a single optimization problem but is rather a
combination of several multiobjective optimization problems
[9, 10]. (at is, manufacturing is composed of multiple sub-
processes, and each subprocess can be considered as an in-
dependent subsystem. (ese subsystems are coupled with the
others, and they share some objectives or constraints with each
other, and others are unique to a particular subsystem but must
still be satisfied. (erefore, the optimization and decision for
manufacturing in industry 4.0 is a more challenging problem
than traditional multiobjective optimization in a single system.

In recent years, there are a few studies on the optimi-
zation of complex multisystem problems. Martins and
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Lambe [11] presented the multidisciplinary design optimi-
zation (MDO) method, which was a framework of opti-
mization methods for solving complex systems that involved
multiple disciplines or subsystems. (e basic principle of
MDO was that the solution of a complex system depended
not only on the solution of individual subsystems but also on
their interactions, and its disadvantage was that it was only a
framework that provided conceptual structures, but it did
not specify the details of the underlying algorithms within
that framework. (at is, depending on the specific complex
problem or the designer’s preference, MDO required the
designer to select particular optimization algorithms as the
kernel components of MDO, which itself was a difficult
problem. For the optimization of the complex multisystem,
many researchers preferred to translate it as a multiobjective
optimization problem and then adopted classical heuristic
methods to seek optimal solutions. Zhang et al. [12, 13]
proposed an efficient evolutionary optimization framework
based on decomposition, which decomposed a complex
problem into a series of single-objective optimization sub-
problems and then used the interactive information between
adjacent subproblems to accelerate the optimization of each
subproblem to obtain the optimal solution. Antonio and
Coello [14] proposed a coevolutionary optimization (CO)
method, inspired by biological coevolution and divided-
and-autonomous strategy, and it established multiple
competing or cooperating populations for evolving multiple
subsystems to achieve global optimization. Ong and Gupta
[15, 16] proposed a multiobjective multifactorial evolu-
tionary algorithm (MO-MFEA) for solving multiple tasks in
a complex system. Its basic idea was to unify the solution
space of different tasks into an extended solution space and
then performed implicit genetic transfer operation, which
could exploit the transferable knowledge between multiple
optimization tasks. (e simulation results showed that MO-
MFEA was competitive on multitask benchmarks. Recently,
Du and Simon [17, 18] proposed a new optimization
framework called BBO/Complex for solving the complex
system using biogeography-based optimization (BBO). Its
advantage was that it combined multipopulation architec-
ture with the low-level optimization strategy to obtain a
single method. (e experimental results showed that the
proposed BBO/Complex successfully solved four real-world
optimization problems.

(e aim of this paper is to propose and study a mul-
tisystem optimization (MSO) algorithm, combining the
multipopulation architecture of BBO/Complex with the
classical NSGA-II to establish within-subsystem evolution
and cross-subsystemmigration operators and then apply the
new MSO algorithm to solving the production scheduling
with resource saving problem in textile printing and dyeing
plants. (is paper shows how the multipopulation archi-
tecture can be integrated with popular heuristic methods to
extend the application scenario of optimization algorithms
and then presents a comparative study on multisystem
benchmark functions and a textile printing and dyeing
scheduling problem. (e method in this paper could also
serve as a template for the extension of any other heuristic
methods to multisystem optimization.

(e motivation of proposing MSO algorithm in this
research is twofold. First, we have observed that there widely
exist a large number of complex coupled systems in
manufacturing, as mentioned above, and their optimization
is more challenging and difficult than traditional multi-
objective optimization in a single system. Second, we have
observed that two main foundations of the MSO algorithm,
multipopulation and NSGA-II, have proven themselves to
be effective optimization architecture and method. Com-
bining these two observations leads us to propose multi-
system optimization, as a high-performing optimization
method.

(e original contributions of this paper include the
following. (a) A new real-world-based textile printing and
dyeing production scheduling problem considering resource
saving is formulated as a multisystem optimization problem.
(b) (e idea of multisystem optimization is proposed in the
heuristic computing field to establish the new optimization
paradigm. Results show that the MSO algorithm outper-
forms compared algorithms for most of benchmark func-
tions that we study. (c) (eMSO algorithm solves the textile
printing and dyeing production scheduling problem con-
sidering resource saving.

(e remainder of this paper is organized as follows.
Section 2 builds a mathematical model of textile printing and
dyeing production scheduling problem considering resource
saving. Section 3 realizes the MSO algorithm integrating
multipopulation and NSGA-II, and Section 4 verifies its
superiority with simulation results. Section 5 applies the
MSO algorithm to solve the proposed production scheduling
problem in textile printing and dyeing. Some concluding
remarks and directions for future work are provided in
Section 6.

2. Problem Descriptions and Modeling

(emultisystem optimization problem studied in this paper
is derived from a textile printing and dyeing plant. Its main
processes include dyeing, printing, and finishing, and each
process consists of multiple procedures. For example, the
dyeing process includes singeing, bleaching, mercerizing,
setting, and so on. According to raw materials and fabric
structures, the process flow is not a completely fixed model
for specific printing and dyeing requirements. Meanwhile,
with the rapid development of manufacturing, resource
saving and environmental protection have been increasingly
concerned. Textile printing and dyeing is an energy- and
resource-intensive manufacturing process and uses physical
and chemical methods to make products out of the raw
textile, with extensive electricity and water as the treatment
mediums. (erefore, it is urgent for manufacturers to im-
prove production efficiency while reducing electricity con-
sumption and water wastage.

In this section, we propose an integrated optimization
model for textile printing and dyeing by considering both
production efficiency and resource saving. Figure 1 shows a
workflow of textile printing and dyeing processes, where the
model includes a production scheduling subsystem based on
production orders and a resource saving subsystem based on
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environment protection standard. (ese two subsystems are
coupled with the other and share partial variables and
constraints. (e whole model is a hybrid flow-shop
scheduling problem with unrelated parallel machines, and it
is a nondeterministic polynomial hard (NP-hard) problem.
In the following, we will focus on a mathematical formu-
lation of this integrated optimization model. For conve-
nience, the symbols and notations used in the model are
shown in Table 1.

For a production scheduling subsystem in textile
printing and dyeing, its mathematic model is formulated as a
multiobjective optimization problem. Suppose the subsys-
tem schedules a set of jobs Ji􏼈 􏼉

n

i�1, and each job is completed
orderly by m procedures. Each procedure has Mm unrelated
parallel machines, and each job is worked on one machine in
a procedure. A set-up time is required before a procedure of
a job is processed on a machine. (e production scheduling
subsystem has two conflicting objectives of makespan and
production cost, which should be minimized, respectively.
(is subsystem is defined as follows:

minF1 � f11, f12( 􏼁, (1)

f11 � max
i∈1,2,...,n

Di􏼈 􏼉, (2)

f12 � 􏽘
n

i�1
􏽘

m

j�1
􏽘

Mm

k�1
wijkCijk. (3)

In equation (1), F1 denotes the production scheduling
subsystem, including makespan f11 and production cost
f12. In equation (2), Di is the finishing time of the ith job
through all procedures, which is iteratively calculated by

Dij � max
j∈1,2,...,m−1

Di(j−1) + Tijk, D(i−1)(j+1)􏽮 􏽯,

Di � Di(m−1) + Timk,

(4)

where Tijk is the processing time of the jth procedure of the
ith job running on the kth machine and Dij is the finishing
time of the ith job through the jth procedure. In equation

(3), Cijk is production cost of the jth procedure of the ith job
running on the kth machine. If the jth procedure of the ith
job is processed by the kth machine, then wijk � 1; other-
wise, wijk � 0.

For a resource saving subsystem in textile printing and
dyeing, electricity consumption, water wastage, and pro-
cessing cost caused by these components are the most
important factors, which vary with the process sequences.
(e mathematic model of this subsystem is also formulated
as a multiobjective optimization problem, including three
conflicting objectives of electricity consumption, water
wastage, and processing cost, which should be minimized,
respectively. (e subsystem is defined as follows:

minF2 � f21, f22, f23( 􏼁, (5)

f21 � 􏽘
n

i�1
􏽘

m

j�1
􏽘

Mm

k�1
wijkTijkP

PE
ijk + 􏽘

n

i�1
􏽘

m

j�1
􏽘

Mm

k�1
wijkT

SE
ijkP

SE
jk

+ 􏽘
n

i�1
􏽘

m

j�1
􏽘

Mm

k�1
wijkT

BE
ijkP

BE
jk

+ 􏽘
n

i�1
􏽘

m

j�1
􏽘

Mm

k�1
wijk Tijk + T

SE
ijk + T

BE
ijk􏼐 􏼑P

OE
jk ,

(6)

f22 � 􏽘
n

i�1
􏽘

m

j�1
􏽘

Mm

k�1
wijkTijkQ

PW
ijk + 􏽘

n

i�1
􏽘

m

j�1
􏽘

Mm

k�1
wijkT

SE
ijkQ

SW
jk , (7)

f23 � 􏽘
n

i�1
􏽘

m

j�1
􏽘

Mm

k�1
wijkTijkκijk. (8)

In equation (5), F2 denotes the resource saving subsystem,
including electricity consumption f21, water wastagef22, and
the corresponding processing cost f23. Electricity consumption
denoted by equation (6) is composed of four parts: processing
electricity consumption, set-up electricity consumption,
standby electricity consumption, and auxiliary electricity con-
sumption. (e first term in equation (6) represents processing
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Figure 1: Workflow of textile printing and dyeing.
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electricity consumption, where PPE
ijk is the unit processing power

of the kth machine when processing the jth procedure of the ith
job. (e second term represents set-up electricity consumption,
where TSE

ijk and PSE
jk are, respectively, the set-up time and unit

power of the kth machine when the (j − 1)th procedure
changes to the jth procedure for the ith job. (e third term
represents standby electricity consumption, where TBE

ijk and PBE
jk

are, respectively, the standby time and unit power of the kth
machine when the (j − 1)th procedure changes to the jth
procedure for the ith job. (e fourth term represents auxiliary
electricity consumption of the auxiliary equipments in the
machining process, which is relevant to the production time and
auxiliary power, with the former consisting of processing time,
set-up time, and standby time, and POE

jk is the auxiliary unit
power of the kth machine in the jth procedure.

Equation (7) denotes water wastage, which is different
from electricity consumption. It considers two types of water
wastage, including processing water wastage and set-up
water wastage, and water wastage for auxiliary equipments
and the standby stage of machines is neglected. In equation
(7), the first term represents processing water wastage, and
QPW

ijk is the unit water wastage of the kth machine when
processing the jth procedure of the ith job. (e second term
represents set-up water wastage, and QSW

jk is the unit water
wastage of the kth machine in the set-up stage of the jth
procedure.

Equation (8) denotes the total processing cost, including
raw material cost, electricity consumption cost, water
consumption cost, and so on. κijk is unit processing cost of
the jth procedure of the ith job running on the kth machine.

Furthermore, for the proposed integrated optimization
model of textile printing and dyeing, the solutions must
satisfy the following constraints.

Each machine handles exactly one procedure in a job:

􏽘
n

i�1
wijk � 1, for j ∈ 1, 2, 3, . . . , m{ }, k ∈ 1, 2, 3, . . . , Mm􏼈 􏼉,

(9)

and each procedure of each job is processed in only one
machine sometime:

􏽘

Mm

k�1
wijk � 1, for i ∈ 1, 2, 3, . . . , n{ }, j ∈ 1, 2, 3, . . . , m{ }.

(10)

In the above constraints, equation (9) is stand for as-
signment of one procedure in only one job to a machine, and
equation (10) is stand for assignment of each procedure of
each job to only one machine.

Now, an integrated optimization model for textile
printing and dyeing has been presented, and the following
section develops a multisystem optimization algorithm that
will be used to solve the proposed optimization problem.

3. Multisystem Optimization

(is section first presents a MSO framework, which can
serve as a template for extending any other heuristic
methods to the MSO algorithm. (en, it presents the
implementation of the proposed MSO algorithm.

Table 1: (e symbols and notations used in the proposed model.

Indices
I Job
J Procedure
k Machine
n Number of jobs
m Number of procedures
Mm Number of parallel machines

Variables
wijk � 1 if the jth procedure of the ith job is processed on the kth machine
Ji􏼈 􏼉

n

i�1 Job sequence J1, J2, J3, . . . , Jn􏼈 􏼉

Parameters
Cijk Production cost of the jth procedure of the ith job on the kth machine
κijk Unit processing cost of the jth procedure of the ith job on the kth machine
Di Finishing time of the ith job through all procedures
Dij Finishing time of the ith job through the jth procedures
Tijk Processing time of the jth procedure of the ith job on the kth machine

TSE
ijk Set-up time of the kth machine when the (j-1)th procedure changes to the jth procedure for the ith job

TBE
ijk Standby time of the kth machine when the (j-1)th procedure changes to the jth procedure for the ith job

PPE
ijk Unit processing power of the jth procedure of the ith job on the jth machine

PSE
jk Unit set-up power of the kth machine when the (j-1)th procedure changes to the jth procedure for the ith job

PBE
jk Unit standby power of the kth machine when the (j-1)th procedure changes to the jth procedure for the ith job

POE
jk Auxiliary unit power of the kth machine during the jth procedure

QPW
ijk Unit water wastage of the kth machine when processing the jth procedure of the ith job

QSW
jk Unit water wastage of the kth machine in the set-up stage of the jth procedure
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3.1. MSO Framework. A MSO problem in this paper
consists of multiple subsystems, which are coupled with the
others and share partial objectives or constraints.(at is, each
subsystem in a MSO problem has not only coupled objectives
and constraints but also independent objectives and con-
straints. (erefore, multisystem optimization is more com-
plicate than traditional multiobjective optimization.

Suppose that we have a complex system that consists of
several subsystems. Without loss of generality, all subsystems
are assumed to be minimization problems. Inspired by im-
plicit parallelism of multipopulation heuristic approaches
[19, 20], we first treat a subpopulation as a subsystem to
optimize a subsystem optimization problem by excellent
evolution operators. (en, we realize information sharing
between multiple subsystems by migration, based on the
relations of sharing variables and similarity levels between
objectives and constraints, to accelerate the global optimi-
zation of the whole system. Based on the above idea, each
subsystem is comprised of three sets of elements. (e first set
includes candidate solutions to the subsystem optimization
problem.(e second and third sets include the objectives and
constraints of the subsystem. (e MSO algorithm mainly
includes two steps: evolution within subsystems and sharing
information via migration across subsystems. We refer to
these two types of operators as within-subsystem evolution
and cross-subsystem migration. (e MSO framework is il-
lustrated in Figure 2, where a complex multisystem problem
includes multiple coupled subsystems, and each subsystem
includes multiple objectives and constraints. Within-sub-
system evolution is used in each subsystem, and cross-sub-
system migration is used between multiple subsystems.

3.2. Implementation of MSO Algorithm. In the proposed
MSO architecture, we use a modified version of NSGA-II
[21], initially designed for single systems with multi-
objectives, as a within-subsystem evolution operator. (e
modified NSGA-II employs solution ranks as selection
probabilities considering the relative performance of a
candidate solution because each subsystem has its own
set of candidate solutions, objectives, and constraints,
and the ranks assigned to the candidate solutions in a
subsystem denote the relative fitness of those solutions
only in that particular subsystem. (en, we recombine
the candidate solutions using any desired recombination
method in heuristic methods. Finally, we mutate the
child population and replace the parents with the
children.

Cross-subsystem migration is an important operator in the
MSO algorithm. For the development of heuristic methods in-
cluding the proposed MSO algorithm in this paper, we must
consider two challenges. One is to converge to the optimal so-
lutions. To address this challenge in the MSO algorithm, we
define similarity levels for both objectives and constraints. If two
subsystems have high similarity levels, the optimization problems
of those subsystems are similar to each other.(is alsomeans that
the features that are important in one subsystem have a similar
level of importance in the other subsystem. Migration between
subsystems with similar objectives and constraints is expected to

be helpful for all such subsystems.Another important challenge is
to maintain population diversity as the main factor that enables
the population to improve. If the population has a low diversity,
most of candidate solutions are similar to each other, and the
probability that a candidate solution improves after migration is
low. In this case, migration may not effectively contribute to
improvement in the population.

In cross-subsystem migration, we first use the similarity
levels of both constraints and objectives to find pairs of
subsystems that are suitable for migration. (e similarity
level calculation is based on the fast similarity level calcu-
lation (FSLC) [10] shown in Algorithm 1, where G andH are
the sets of objective costs or constraints of two solutions in
different subsystems. (e pair probability Psub between the
subsystems is calculated as follows:

Psub �
1
2

SL1
SL1,max

+
SL2

SL2,max
􏼠 􏼡, (11)

where SL1 and SL2 are, respectively, the objective and constraint
similarity levels between two solutions in different subsystems
and SL1,max and SL2,max are, respectively, themaximumobjective
and constraint similarity levels in the entire system.

(en, we use Euclidian distances between candidate
solutions in a pair of subsystems to decide which solutions
migrate between each other. In a multisystem problem,
subsystems typically have different candidate solution
structures, and the solution variables are at least partly
different between subsystems. Table 2 illustrates an example
about candidate solution structures in different subsystems.
In the table, the candidate solution in subsystem 1 has four
variables composed of Var-1, Var-2, Var-4, and Var-5, and
the candidate solution in subsystem 2 has three variables
composed of Var-1, Var-3, and Var-5. Apparently, these two
candidate solutions have two variables Var-1 and Var-5 in
common. To calculate their distances, we need to have
identical solution structures and use an N/A value to denote
a missing variable, shown as [1, 2, N/A, 0, 3] for the solution
in subsystem 1 and [3, N/A, 4, N/A, 5] for the solution in
subsystem 2.

Next, we use the partial distance strategy (PDS) [17, 22]
to calculate Euclidian distance between candidate solutions
in different subsystems, which is given as follows:

σikjl �
N

Iikjl

���

􏽘
N

s�1

􏽶
􏽴

yik(s) − yjl(s)􏼐 􏼑
2
Iikjl(s), if Iikjl > 0, 0, if Iikjl � 0,

⎧⎪⎪⎨

⎪⎪⎩

(12)

where

Iikjl � 􏽘

N

s�1
Iikjl(s),

Iikjl(s) �
0, if yik(s) � N/A oryjl(s) � N/A,

1, if yik(s)≠N/A andyjl(s)≠N/A.

⎧⎨

⎩

(13)

In equation (12), σikjl denotes the partial distance be-
tween candidate solution yik in subsystem i and candidate
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solution yjl in subsystem j, which quantifies the difference
level between each pair of solutions. N denotes the total
number of solution variable for the entire system, and yik(s)

denotes the sth solution variable of yik.
Finally, we perform migration between the immigrating

solution yik and the emigrating solution yjl cross the
subsystems. We use partial distance σ to calculate migration
probabilities and then use the roulette-wheel selection
method to probabilistically choose emigrating solution
based on the migration probabilities. Migration is defined as

yik(s)←yjl(s). (14)

Equation (14) states that a solution variable in the
emigrating solution replaces one in the immigrating solu-
tion. In cross-subsystemmigration, each solution variable in
each immigrating solution in a subsystem has a chance to be
replaced by a solution variable of an emigrating solution
from another subsystem. One generation of the proposed
MSO algorithm is shown in Algorithm 2.

4. Simulation Results

(is section presents the optimization performance of the
proposed MSO algorithm on the benchmark functions from
the literature [23]. (ese functions are originally to evaluate
the performance of MO-MFEA. Here, we take a task of a
function as a subsystem, and each subsystem includes a

multiobjective function. Multitask benchmark functions
naturally change to multisystem functions suitable for the
evaluation of the proposed MSO. (ese functions are built
considering intersecting degrees of solution variables:
complete intersection, partial intersection, and no inter-
section, and similarity degree of objectives: high similarity,
medium similarity, and low similarity. Accordingly, there
are nine combinations in total, and they are briefly sum-
marized in Table 3, where the functions are named as fol-
lows: the first capital letters “C,” “P,” and “N” denote
“complete,” “partial,” and “no,” respectively, the second
capital letter “I” denotes “intersection”, the third capital
letters “H,” “M,” and “L” denote “high,” “medium,” and
“low,” respectively, and the last capital letter “S” denotes
“similarity”. (e aim of such categories is to have a com-
prehensive evaluation of the proposed method. In addition,
sim(T1, T2) denotes the similarity coefficient between sub-
systems T1 and T2 in a benchmark function.

In this experiment, we use the proposed MSO algorithm
for solving simultaneously two subsystems of a benchmark
function. To show the benefits of the proposed method, the
results are compared with those of MO-MFEA and im-
proved NSGA-II [24]. MO-MFEA is a multifactorial evo-
lutionary algorithm [15], which is to simultaneously tackle
multiple optimization tasks. Improved NSGA-II uses mul-
tiple populations with different crossover operators to
separately solve each subsystem in a benchmark function. To
ensure a fair comparison, the parameter configurations of

Subsystem 1 
(multiple objectives and 

constraints)

Subsystem 2 
(multiple objectives and 

constraints)

Subsystem M 
(multiple objectives and 

constraints)

Evolution operator ……

Cross–subsystem 
migration 

Evolution operator Evolution operator

InteractionInteraction

Complex multisystem

Figure 2: (e MSO framework, mainly including within-subsystem evolution and cross-subsystem migration.

Set the objective or constraint similarity level SL� 0
For each g ∈G, where G is the set of objectives or constraints of one solution

For each h ∈H, where H is the set of objectives or constraints of another solution
If g � h, then
SL� SL + 1

End if
End for

End for

ALGORITHM 1: Similarity level calculation across subsystems.
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these algorithms are adjusted to be optimal through many
experiments to obtain the appropriate performance. (e
population size of NSGA-II is set to 100 for solving a single
subsystem, while the population size of the proposed MSO
algorithm and MO-MFEA is set to 200 for solving a
benchmark function with two subsystems. (e maximal
number of function evaluations on a subsystem is set to
100,000 for NSGA-II, while the proposed MSO algorithm
and MO-MFEA use 200,000 for a benchmark function since
they solve two subsystems in a function together at a time.
(at is, for each subsystem, their maximal number of
function evaluations is still 100,000. For all algorithms, we
use the same simulated binary crossover with a crossover
probability pc � 1 and use the same polynomial mutation
with a mutation probability pm � 1. To compare with
existing results, we use the inverted generational distance
(IGD) in the literature [23] to evaluate the performance on
each subsystem of the considered benchmark function. A
small IGD value means both good convergence and good
diversity for a minimization problem. Table 4 shows the
average and standard deviation of IGD values for the pro-
posed MSO algorithm, MO-MFEA, and NSGA-II, and all
results are computed from 30 independent simulations.

(e results shown in Table 4 lead to the following dis-
cussion. First, considering a similarity degree of objectives,
we take CIHS, PIHS, and NIHS as a group of high similarity,
CIMS, PIMS, and PIHS as a group of medium similarity, and
CILS, PILS, and NILS as a group of low similarity. From
Table 4, we observe that for high and medium similarity
groups, the proposed MSO algorithm performs better than
MO-MFEA and NSGA-II for all benchmark functions. For
the low similarity group, the proposed MSO algorithm
performs better than MO-MFEA and NSGA-II but worse
than MO-MFEA for two of the benchmark functions (CILS
and NILS). It indicates that objective similarity has a great
influence on optimization performance of the proposed
MSO algorithm, and it is an important factor composing
cross-subsystem migration in the MSO algorithm.

Second, considering intersection degree of solution
variables, we take CIHS, CIMS, and CILS as a group of
complete intersection, PIHS, PIMS, and PILS as a group of
partial intersection, and NIHS, NIMS, and NILS as a group
of no intersection. From Table 4, we observe that for partial
intersection, the proposed MSO algorithm is better than
MO-MFEA and NSGA-II for all benchmark functions. For
the complete intersection group and no intersection group,
the proposed MSO algorithm is better than NSGA-II but
worse than MO-MFEA for CILS and NILS. It indicates that
solution variable intersection has a certain effect on opti-
mization performance of the proposed MSO algorithm, and
it is another important factor composing cross-subsystem
migration in the MSO algorithm.

Furthermore, we also use symbol “†” to show statistically
significant differences between the proposedMSO algorithm
and compared algorithms based on the p value, which is
smaller than 0.05 regarded as the significance level. In Ta-
ble 4, out of 18 groups of data, there are 14 statistically
significant differences between the proposedMSO algorithm
and MO-MFEA and there are 16 statistically significant
differences between the proposed MSO algorithm and
NSGA-II. Based on this result, the probability that MSO and
compared algorithms are from the same distribution is low.
It indicates that the proposed MSO is an independent
algorithm.

Combining with the above observations, we find that as a
whole, the proposed MSO algorithm performs better than
the other algorithms used in this paper for the most of
benchmark functions. It implies that the MSO algorithm can
fully consider the inheritance of evolution information and
relationship between optimization environment and per-
formance, and migration between subsystems can effectively
utilize these factors to accelerate global optimization.

5. Application of MSO to
Manufacturing Optimization

In this section, we use the proposed MSO algorithm to solve
the integrated production scheduling with resource saving in
textile printing and dyeing described in Section 2. In the
traditional textile printing and dyeing industry, production
scheduling is conducted by workers. Manual scheduling is
very labor-consuming, and it usually leads to unsatisfactory
schemes. Moreover, resource consumption is rarely con-
sidered when workers schedule jobs. In this experiment, 10
instances with different procedures and number of machines
are investigated, which are shown in Table 5.(ese instances
are generated from a real textile dyeing and printing plant
located in Eastern China, and we use uniform distribution
for the range of model parameters based on manual
scheduling experience of workers because their real values
are difficult to obtain. (e job processing time in each
machine is uniformly distributed in [50 100] minutes, and
the set-up time and standby time of a machine are uniformly
distributed in [5 10] minutes. Production cost and unit
processing cost are uniformly distributed in [50 120] and [20
80], respectively, and various unit electricity consumption
and unit water wastage are uniformly distributed in [20 50]
and [2 10], respectively. (e tuning parameters of the
proposed MSO algorithm and the compared algorithms are
the same as those used in the benchmark functions. In
addition, the proposed integrated optimization model is a
combinatorial optimization problem. We use permutation
coding for each procedure, and the decoding includes the
sorting of jobs and the allocation of machines. For job

Table 2: Candidate solution structures in different subsystems.

Subsystem 1 Var-1 Var-2 Var-3 Var-4 Var-5
Solution 1 2 N/A 0 3
Subsystem 2 Var-1 Var-2 Var-3 Var-4 Var-5
Solution 3 N/A 4 N/A 5
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Calculate the similarity levels of objectives and constraints between each pair of subsystems
Calculate the rank of each solution yik in subsystem i
Calculate migration probability λik, which is linearly proportional to the rank of yik
For each subsystem i
Perform within-subsystem evolution using the modified NSGA-II

Find a suitable subsystem j to pair with subsystem i based on similarity levels of objectives and constraints
For each solution yik

Calculate partial distances {σikjl} between yik and each solution in subsystem j
For each solution variable s
Use λik to decide whether or not to immigrate to yik
If migrating, then

Select emigrating solution yjl using roulette wheel selection, and its probability is proportional to partial distances {σikjl}
yik (s)⟵ yjl (s)

End if
End for

End for
End for

ALGORITHM 2: One generation of the proposed MSO algorithm.

Table 3: Benchmark function sets.

Function Sim (T1, T2) Subsystem no. Pareto set Pareto front Properties

CIHS 0.97
T1

x1 ∈ [0, 1], f2
1 + f2

2 � 1, Concave, unimodal
xi � 0, i � 2: 50 f1 ≥ 0, f2 ≥ 0 Separable

T2
x1 ∈ [0, 1], f2 � 1 − f2

1, Concave, unimodal
xi � 0, i � 2: 50 0≤f1 ≤ 1 Separable

CIMS 0.52
T1

x1 ∈ [0, 1], f2 � 1 − f2
1, Concave, multimodal

xi � 1, i � 2: 10 0≤f1 ≤ 1 Nonseparable

T2
x1 ∈ [0, 1], f2

1 + f2
2 � 1, Concave, unimodal

(x2, . . . , x10)
T � scm2 f1 ≥ 0, f2 ≥ 0 Nonseparable

CILS 0.07
T1

x1 ∈ [0, 1], f2
1 + f2

2 � 1, Concave, multimodal
xi � 0, i � 2: 50 f1 ≥ 0, f2 ≥ 0 Separable

T2
x1 ∈ [0, 1], f2 � 1 −

���
f1

􏽰
, Convex, multimodal

xi � 0, i � 2: 50 0≤f1 ≤ 1 Nonseparable

PIHS 0.99
T1

x1 ∈ [0, 1], f2 � 1 −
���
f1

􏽰
, Convex, unimodal

xi � 0, i � 2: 50 0≤f1 ≤ 1 Separable

T2
x1 ∈ [0, 1], f2 � 1 −

���
f1

􏽰
Convex, multimodal

(x2, . . . , x50)
T � sph2 0≤f1 ≤ 1 Separable

PIMS 0.55
T1

x1 ∈ [0, 1], f2
1 + f2

2 � 1 Concave, unimodal
(x2, . . . , x50)

T � spm1 f1 ≥ 0, f2 ≥ 0 Nonseparable

T2
x1 ∈ [0, 1], f2 � 1 − f2

1 Concave, multimodal
xi � 0, i � 2: 50 0≤f1 ≤ 1 Nonseparable

PILS 0.002
T1

x1 ∈ [0, 1], f2
1 + f2

2 � 1 Concave, multimodal
xi � 0, i � 2: 50 f1 ≥ 0, f2 ≥ 0 Nonseparable

T2
x1 ∈ [0, 1], f2

1 + f2
2 � 1 Concave, multimodal

(x2, . . . , x50)
T � spl2 f1 ≥ 0, f2 ≥ 0 Nonseparable

NIHS 0.94
T1

x1 ∈ [0, 1], f2
1 + f2

2 � 1 Concave, multimodal
xi � 0, i � 2: 50 f1 ≥ 0, f2 ≥ 0 Nonseparable

T2
x1 ∈ [0, 1], f2 � 1 −

���
f1

􏽰
Convex, unimodal

xi � 0, i � 2: 50 0≤f1 ≤ 1 Separable

NIMS 0.51
T1

x1 ∈ [0, 1], x2 ∈ [0, 1], xi � 1, i � 3: 20 Concave, multimodal
􏽐

3
i�1 f2

1 � 1 fi ≥ 0, i � 1, 2, 3 Nonseparable

T2
x1 ∈ [0, 1], x2 ∈ [0, 1], f2 � 1 − f2

1 Concave, unimodal
xi � 0, i � 3: 20 0≤f1 ≤ 1 Nonseparable

NILS 0.001
T1

x1 ∈ [0, 1], x2 ∈ [0, 1], 􏽐
3
i�1 f2

1 � 1 Concave, multimodal
(x3, . . . , x25)

T � snl1 fi ≥ 0, i � 1, 2, 3 Nonseparable

T2
x1 ∈ [0, 1], x2 ∈ [0, 1], f2 � 1 − f2

1 Concave, multimodal
xi � 0, i � 3: 50 0≤f1 ≤ 1 Nonseparable
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sorting, it firstly develops job orders for the first procedure
based on the list scheduling principle and then determines
job sequences for the remaining procedures by a FIFO
manner. For machine allocation, we use the rule of the first
idle machine. (e performance metric is based on the values
of makespan, production cost, electricity consumption,
water wastage, and processing cost, and the goal is to achieve
the smallest values. (e optimization results and manual
scheduling results are summarized in Table 6.

It is seen from Table 6 that all optimization algorithms
including the proposed MSO, MO-MFEA, and NSGA-II
perform better than manual scheduling for all instances
based on the smallest makespan value, the smallest
production cost, the smallest electricity consumption
value, the smallest water wastage value, and the smallest
processing cost. (e proposed MSO algorithm performs
best for all of the instances except J4 and J8, for which
MO-MFEA is the best because the approach itself is an
excellent multitask evolutionary algorithm. Furthermore,
out of 50 groups of data in Table 6, there are 49, 34, and 43
statistically significant differences between the proposed
MSO and manual scheduling, the proposed MSO and
MO-MFEA, and the proposed MSO and NSGA-II. Based
on this result, the probability that the proposed MSO and
compared algorithms are from the same distribution is
low. (e overall optimization results indicate that these
optimization algorithms are high-efficiency ways, and the
proposed MSO is the most promising approach for
studied production scheduling with resource saving in
textile printing and dyeing. (e reason for the superior
performance of the proposed MSO algorithm is that it
increases interaction between subsystems and solution
diversity by effectively using cross-subsystem migration.

To further investigate the potential of the proposed
method in production scheduling with resource saving,
saving ratio of each objective in each instance is shown in
Table 7, which is got by, respectively, calculating the ratio of
the values obtained by each optimization algorithm to the
values obtained by manual scheduling. It is found from
Table 7 that using optimization algorithms, the effect of
production scheduling with resource saving including
makespan, production cost, electricity consumption, water
wastage, and processing cost is very significant for all in-
stances. Furthermore, Figure 3 provides the visual presen-
tation of mean saving ratio of all objectives of each instance.
It is seen that for the proposed MSO algorithm, MO-MFEA,
and NSGA-II, mean saving ratio is over 15%, 10%, and 6%,
respectively, for the most of instances. Figure 4 provides the
visual presentation of mean saving ratio of each objective for
all instances. It is seen that for makespan, mean saving ratio
is about 15%, 12%, and 6%, respectively, for the proposed
MSO algorithm, MO-MFEA, and NSGA-II. For production
cost, mean saving ratio is about 19%, 14%, and 7%, re-
spectively, for the proposed MSO algorithm, MO-MFEA,
and NSGA-II. For electricity consumption, mean saving
ratio is about 15%, 13%, and 6%, respectively, for the
proposed MSO algorithm, MO-MFEA, and NSGA-II. For
water wastage, mean saving ratio is about 17%, 15%, and 8%,
respectively, for the proposed MSO algorithm, MO-MFEA,
and NSGA-II. For processing cost, mean saving ratio is
about 17%, 15%, and 7%, respectively, for the proposedMSO
algorithm, MO-MFEA, and NSGA-II. It indicates that for
each performance metric for studied production scheduling
with resource saving in textile printing and dyeing, the
proposed MSO algorithm is better than other two compared
algorithms. (at is, the proposed MSO algorithm can not

Table 4: (e average and standard deviation of IGD values obtained by the proposed MSO algorithm, MO-MFEA, and NSGA-II. (e best
result in each row is shown in bold font.

Function Sim (T1, T2) Subsystem no.
IGD

MSO MO-MFEA NSGA-II

CIHS 0.97 T1 7.51E-05 ± 8.63E-06 4.16E-04± 2.67E-05† 2.17E-03± 4.32E-04†
T2 9.25E-05 ± 1.31E-05 5.64E-04± 3.28E-05† 5.31E-03± 1.66E-04†

CIMS 0.52 T1 7.36E-03 ± 5.14E-04 1.19E-02± 4.32E-02† 8.01E-01± 3.42E-02†
T2 3.42E-03 ± 7.10E-03 7.48E-03± 3.26E-02† 7.90E-02± 3.26E-02†

CILS 0.07 T1 9.58E-03± 7.51E-02 7.84E-04 ± 9.50E-05† 8.06E-01± 2.35E-01†
T2 3.47E-04± 3.85E-05 7.84E-04 ± 2.56E-06 7.65E-04± 2.29E-06

PIHS 0.99 T1 7.12E-04 ± 2.74E-05 4.16E-03± 3.24E-03† 7.35E-03± 4.26E-04†
T2 5.17E-03 ± 6.30E-04 5.37E-02± 7.71E-02† 5.17E-02± 8.92E-02†

PIMS 0.55 T1 3.28E-03 ± 3.52E-04 5.19E-03± 7.42E-03 6.45E-03± 4.33E-03†
T2 2.24E-02 ± 4.16E-03 9.63E+01± 2.47E-00† 1.58E-01± 3.65E-00†

PILS 0.002 T1 1.85E-04 ± 1.10E-05 5.32E-04± 1.15E-05 2.83E-04± 4.02E-04
T2 3.32E-02 ± 1.07E-04 8.54E-02± 2.33E-03 6.62E-01± 1.24E-04†

NIHS 0.94 T1 4.25E-02 ± 1.18E-02 8.45E-00± 3.74E-02† 7.90E-01± 5.88E-01†
T2 5.32E-05 ± 6.58E-06 6.70E-04± 5.39E-04† 3.51E-04± 4.27E-04†

NIMS 0.51 T1 6.37E-02 ± 5.89E-03 1.85E-01± 4.34E-01† 8.02E-01± 1.48E-01†
T2 3.24E-03 ± 6.35E-04 2.67E-02± 5.06E-02† 7.70E-02± 3.18E-02†

NILS 0.001 T1 7.17E-03± 8.24E-04 8.15E-04 ± 2.32E-05† 9.06E-04± 3.11E-05†
T2 4.46E-00± 3.29E-01 6.14E-01 ± 4.16E-04† 6.54E-01± 4.23E-04†
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only obtain better scheduling strategy but also reduce more
electricity consumption and water wastage.

(ese results show that the proposed integrated opti-
mization model and the corresponding solutions have a
great potential in production scheduling with resource

savings for textile printing and dyeing industry. Many
manufacturing industries, such as papermaking
manufacturing and glass manufacturing, are both energy-
intensive and material-intensive. Production in these
manufacturing often wastes a lot of energy and material, so

Table 6: Result comparisons between manual scheduling, the proposed MSO algorithm, MO-MFEA, and NSGA-II for the integrated
production scheduling with resource saving.

Instance Objective functions Manual scheduling
Optimization algorithms

MSO MO-MFEA NSGA-II

J1

Makespan 1.45E+ 03± 2.12E+ 01† 1.22E+ 03 ± 5.90E+ 01 1.31E+ 03± 2.86E+ 01 1.36E+ 03± 6.74E+ 01
Production cost 1.49E+ 06± 5.34E+ 04† 9.98E+ 05 ± 2.14E+ 03 1.05E+ 06± 5.71E+ 04† 1.40E+ 06± 7.58E+ 04†

Electricity consumption 6.11E+ 04± 8.22E+ 02† 5.01E+ 04 ± 3.27E+ 02 5.35E+ 04± 3.05E+ 02† 5.78E+ 04± 3.65E+ 02†
Water wastage 9.84E+ 03± 5.37E+ 02† 8.15E+ 03 ± 2.36E+ 01 8.61E+ 03± 4.49E+ 01† 9.25E+ 03± 1.18E+ 01†
Processing cost 1.41E+ 06± 5.36E+ 04† 1.12E+ 06 ± 1.75E+ 04 1.24E+ 06± 2.35E+ 04 1.29E+ 06± 2.36E+ 04

J2

Makespan 7.85E+ 02± 6.34E+ 01† 6.91E+ 02 ± 4.32E+ 01 7.05E+ 02± 1.18E+ 01† 7.10E+ 02± 4.16E+ 01†
Production cost 3.31E+ 05± 7.48E+ 03† 2.75E+ 05 ± 7.78E+ 03 3.03E+ 05± 5.21E+ 03† 3.12E+ 05± 5.42E+ 03†

Electricity consumption 2.74E+ 04± 4.02E+ 02† 2.29E+ 04 ± 6.63E+ 02 2.48E+ 04± 3.16E+ 02† 2.59E+ 04± 3.60E+ 02†
Water wastage 4.05E+ 03± 2.30E+ 01† 3.36E+ 03 ± 9.17E+ 01 3.56E+ 03± 7.06E+ 01† 3.80E+ 03± 8.82E+ 01†
Processing cost 3.05E+ 05± 6.32E+ 03† 2.51E+ 05 ± 2.64E+ 03 2.79E+ 05± 4.23E+ 03† 2.91E+ 05± 1.16E+ 03†

J3

Makespan 7.08E+ 02± 5.31E+ 01† 5.87E+ 02 ± 3.62E+ 01 6.04E+ 02± 7.18E+ 01† 6.50E+ 02± 5.42E+ 01†
Production cost 6.31E+ 05± 8.55E+ 03† 5.04E+ 05 ± 1.31E+ 03 5.51E+ 05± 5.56E+ 03† 5.71E+ 05± 3.18E+ 03†

Electricity consumption 7.54E+ 04± 4.60E+ 02† 6.28E+ 04 ± 3.47E+ 02 6.32E+ 04± 3.17E+ 02 6.95E+ 04± 4.29E+ 02†
Water wastage 9.31E+ 03± 8.66E+ 01† 7.93E+ 03 ± 6.36E+ 01 8.19E+ 03± 2.36E+ 01† 8.67E+ 03± 8.15E+ 01†
Processing cost 5.25E+ 05± 4.14E+ 03† 4.35E+ 05 ± 7.89E+ 03 4.61E+05± 4.42E+ 03† 4.73E+ 05± 6.63E+ 03†

J4

Makespan 1.76E+ 03± 7.12E+ 01† 1.53E+ 03± 4.35E+ 01 1.51E+ 03 ± 1.15E+ 01 1.60E+ 03± 7.24E+ 01
Production cost 8.12E+ 05± 8.56E+ 03† 7.05E+ 05± 6.69E+ 03 7.01E+ 05 ± 3.27E+ 03 7.35E+ 05± 3.28E+ 03†

Electricity consumption 4.51E+ 04± 6.10E+ 02† 3.94E+ 04± 3.78E+ 02 3.85E+ 04 ± 8.13E+ 02 4.00E+ 04± 6.12E+ 02
Water wastage 8.05E+ 03± 5.23E+ 01† 7.00E+ 03± 1.47E+ 01 6.90E+ 03 ± 9.74E+ 01 7.41E+ 03± 6.69E+ 01†
Processing cost 5.37E+ 05± 4.16E+ 03† 4.89E+ 05± 4.58E+ 03 4.78E+ 05 ± 6.32E+ 03 4.91E+ 05± 4.42E+ 03†

J5

Makespan 1.72E+ 03± 1.59E+ 01† 1.44E+ 03 ± 6.61E+ 01 1.56E+ 03± 1.18E+ 01 1.58E+ 03± 8.15E+ 01†
Production cost 9.96E+ 05± 8.44E+ 03† 8.21E+ 05 ± 3.64E+ 03 8.76E+ 05± 2.35E+ 03† 9.25E+ 05± 6.64E+ 03†

Electricity consumption 7.84E+ 04± 3.24E+ 02† 6.70E+ 04 ± 8.96E+ 02 6.92E+ 04± 4.43E+ 02† 7.30E+ 04± 2.01E+ 02†
Water wastage 1.22E+ 04± 1.10E+ 02† 9.81E+ 03 ± 7.78E+ 01 9.99E+ 03± 1.06E+ 01† 1.13E+ 04± 3.68E+ 02†
Processing cost 8.94E+ 05± 2.36E+ 03† 7.44E+ 05 ± 5.93E+ 03 7.63E+ 05± 4.45E+ 03† 8.32E+ 05± 1.17E+ 03†

J6

Makespan 1.07E+ 03± 4.41E+ 01 1.01E+ 03 ± 1.74E+ 01 1.04E+ 03± 7.78E+ 01 1.06E+ 03± 5.24E+ 01
Production cost 2.96E+ 05± 8.39E+ 03† 2.49E+ 05 ± 2.36E+ 03 2.65E+ 05± 5.36E+ 03† 2.75E+ 05± 3.32E+ 03†

Electricity consumption 2.62E+ 04± 7.45E+ 02† 2.15E+ 04 ± 4.47E+ 02 2.32E+ 04± 1.13E+ 02† 2.48E+ 04± 4.40E+ 02†
Water wastage 4.21E+ 03± 8.36E+ 01† 3.29E+ 03 ± 3.62E+ 01 3.66E+ 03± 7.58E+ 01† 4.01E+ 03± 3.65E+ 01†
Processing cost 1.56E+ 05± 9.60E+ 03† 1.29E+ 05 ± 1.18E+ 03 1.42E+ 05± 6.31E+ 03† 1.47E+ 05± 2.47E+ 03†

J7

Makespan 1.71E+ 03± 2.36E+ 01† 1.45E+ 03 ± 6.35E+ 01 1.51E+ 03± 6.35E+ 01 1.62E+ 03± 1.29E+ 01†
Production cost 1.11E+ 06± 6.03E+ 04† 9.31E+ 05 ± 9.68E+ 03 9.79E+ 05± 4.47E+ 03† 1.02E+ 06± 4.33E+ 04†

Electricity consumption 3.67E+ 04± 5.60E+ 02† 3.10E+ 04 ± 7.41E+ 02 3.23E+ 04± 1.18E+ 02† 3.45E+ 04± 9.54E+ 02†
Water wastage 1.18E+ 04± 8.15E+ 02† 9.73E+ 03 ± 3.26E+ 01 9.98E+ 03± 5.69E+ 01† 1.03E+ 04± 6.37E+ 02†
Processing cost 1.16E+ 06± 7.34E+ 04† 9.60E+ 05 ± 5.59E+ 03 9.98E+ 05± 6.37E+ 03† 1.07E+ 06± 2.50E+ 04†

J8

Makespan 1.53E+ 03± 8.56E+ 01† 1.32E+ 03± 5.23E+ 01 1.30E+ 03 ± 2.28E+ 01 1.42E+ 03± 4.31E+ 01
Production cost 4.16E+ 05± 2.33E+ 03† 3.58E+ 05± 1.82E+ 03 3.51E+ 05 ± 1.25E+ 03 3.82E+ 05± 7.89E+ 03†

Electricity consumption 5.53E+ 04± 6.34E+ 02† 4.87E+ 04± 4.34E+ 02 4.68E+ 04 ± 4.13E+ 02† 5.35E+ 04± 1.12E+ 02†
Water wastage 7.62E+ 03± 7.79E+ 01† 6.71E+ 03± 8.29E+ 01 6.45E+ 03 ± 8.75E+ 01† 7.02E+ 03± 5.36E+ 01†
Processing cost 3.91E+ 05± 4.18E+ 03† 3.37E+ 05± 1.44E+ 03 3.30E+ 05 ± 5.36E+ 03 3.63E+ 05± 8.92E+ 03†

J9

Makespan 1.56E+ 03± 6.40E+ 01† 1.33E+ 03 ± 2.54E+ 01 1.36E+ 03± 1.23E+ 01 1.40E+ 03± 1.23E+ 01
Production cost 2.28E+ 06± 8.23E+ 04† 1.78E+ 06 ± 1.98E+ 04 1.92E+ 06± 7.55E+ 04† 2.02E+ 06± 5.51E+ 04†

Electricity consumption 4.92E+ 04± 5.26E+ 02† 4.30E+ 04 ± 6.65E+ 02 4.37E+ 04± 1.34E+ 02 4.46E+ 04± 4.33E+ 02†
Water wastage 1.98E+ 04± 7.41E+ 02† 1.66E+ 04 ± 1.27E+ 02 1.77E+ 04± 9.25E+ 02† 1.75E+ 04± 7.75E+ 02†
Processing cost 1.89E+ 06± 2.35E+ 04† 1.52E+ 06 ± 3.65E+ 04 1.58E+ 06± 3.11E+ 04 1.72E+ 06± 8.24E+ 04†

J10

Makespan 2.21E+ 03± 5.01E+ 01† 1.83E+ 03 ± 4.42E+ 01 2.03E+ 03± 7.42E+ 01† 2.19E+ 03± 5.61E+ 01†
Production cost 3.30E+ 05± 8.42E+ 03† 2.74E+ 05 ± 1.12E+ 03 3.02E+ 05± 6.35E+ 03† 3.29E+ 05± 8.76E+ 03†

Electricity consumption 4.77E+ 04± 7.41E+ 02† 3.95E+ 04 ± 7.14E+ 02 4.19E+ 04± 8.17E+ 02† 4.67E+ 04± 5.32E+ 02†
Water wastage 9.21E+ 03± 8.56E+ 01† 7.66E+ 03 ± 8.23E+ 01 8.11E+ 03± 3.62E+ 01† 8.26E+ 03± 9.01E+ 01†
Processing cost 2.67E+ 05± 9.62E+ 03† 2.23E+ 05 ± 3.31E+ 03 2.44E+ 05± 4.28E+ 03† 2.66E+ 05± 5.27E+ 03†
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the decision makers tend to reduce them during the pro-
duction process. (is study can serve as a reference for these
manufacturers who are interested in improving energy and

material savings through production scheduling, and the
proposed MSO algorithm can be an attractive method for
solving these complex multisystem problems.

Table 7: Saving ratio comparisons between manual scheduling, the proposed MSO algorithm, MO-MFEA, and NSGA-II for the integrated
production scheduling with resource saving.

Instance Objective functions
Saving ratio (%)

MSO MO-MFEA NSGA-II

J1

Makespan 15.86 9.66 6.21
Production cost 33.02 29.53 6.04

Electricity consumption 18.00 12.44 5.40
Water wastage 17.17 12.50 6.00
Processing cost 20.57 12.06 8.51

J2

Makespan 11.97 11.08 9.55
Production cost 16.92 8.46 5.74

Electricity consumption 16.42 12.04 5.47
Water wastage 17.04 12.10 6.17
Processing cost 17.70 11.80 4.59

J3

Makespan 17.09 14.69 8.19
Production cost 20.13 12.68 9.51

Electricity consumption 16.71 16.18 7.82
Water wastage 14.82 12.03 6.87
Processing cost 17.14 12.19 9.90

J4

Makespan 13.07 14.20 9.09
Production cost 13.18 13.67 9.48

Electricity consumption 12.64 14.63 11.31
Water wastage 13.04 14.29 7.95
Processing cost 8.94 10.99 8.58

J5

Makespan 16.28 11.63 8.14
Production cost 17.57 12.05 7.13

Electricity consumption 14.54 11.73 6.89
Water wastage 19.59 19.36 7.38
Processing cost 16.78 14.65 6.94

J6

Makespan 5.61 2.80 0.93
Production cost 15.88 10.47 7.09

Electricity consumption 17.94 11.45 5.34
Water wastage 21.85 13.06 4.75
Processing cost 17.31 15.38 5.77

J7

Makespan 15.20 11.70 5.26
Production cost 16.13 11.80 8.11

Electricity consumption 15.53 11.99 5.99
Water wastage 17.54 15.42 12.71
Processing cost 17.24 13.97 7.76

J8

Makespan 13.73 15.03 7.19
Production cost 13.94 15.63 8.17

Electricity consumption 13.74 15.37 3.25
Water wastage 14.57 15.35 7.87
Processing cost 13.81 15.60 7.16

J9

Makespan 14.74 12.82 10.26
Production cost 21.93 15.79 11.40

Electricity consumption 12.60 11.18 9.35
Water wastage 16.16 10.61 11.62
Processing cost 19.58 16.40 8.99

J10

Makespan 17.19 12.67 0.90
Production cost 16.67 8.48 0.30

Electricity consumption 17.19 12.16 2.10
Water wastage 16.83 11.94 10.31
Processing cost 16.48 12.36 0.37
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6. Conclusions

In this paper, an integrated optimization model for textile
printing and dyeing is first built by considering both production
efficiency and resource saving, which is formulated as a mul-
tisystem optimization problem. It includes a production
scheduling subsystem and a resource saving subsystem, and
each of the subsystems contains multiple objectives. (en, a
multisystem optimization algorithm called the MSO algorithm,
composed of within-subsystem evolution and cross-subsystem
migration operators, is proposed to solve general multisystem
optimization problem.(e performance of the MSO algorithm
is investigated on a set of benchmark functions, and the nu-
merical simulations show that the proposed MSO algorithm is
better than MO-MFEA and NSGA-II for the most of the
benchmark functions.

Finally, the MSO algorithm is applied to the proposed
integrated production scheduling with resource saving

problem, and the results again show that the proposed MSO
algorithm is a competitive multisystem optimization
method. In particular, the MSO algorithm is better than its
constituent NSGA-II on all the test instances, and it is better
than MO-MFEA on 8 of 10 instances.

(e proposed MSO algorithm is a heuristic method for
complex multisystem optimization. (e complex multisys-
tem contains multiple subsystems, and each of the sub-
systems may contain multiple objectives and multiple
constraints. Compared to single-objective and multi-
objective optimization algorithms, the proposed MSO al-
gorithm has a more complex structure that is well-suited for
real-world problems. Based on the optimization tests in this
paper, the MSO algorithm can effectively solve multisystem
optimization problems, including real-world textile printing
and dyeing scheduling with resource saving. (e MSO
framework presented here could be extended for other types
of optimization algorithms. Moreover, real-world textile
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Figure 3: (e mean saving ratio of all objectives of each instance obtained by the proposed MSO algorithm, MO-MFEA, and NSGA-II for
the integrated production scheduling with resource saving.
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Figure 4: (e mean saving ratio of each objective for all instances obtained by the proposed MSO algorithm, MO-MFEA, and NSGA-II for
the integrated production scheduling with resource saving.
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printing and dyeing scheduling problem with resource
saving is formulated in a way that is amenable to the
multisystem optimization algorithm, which serves as a
reference for other manufacturing with similar production
processes to promote in resource saving.
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