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“I may not have gone where I intended to go, but I

think I have ended up where I needed to be.”

- Douglas Adams



Abstract

Like many systems in nature, the brain is a highly organised unit of in-
teracting components. A natural way to study such systems is through the
lens of mathematics, from which we may attempt to delineate the mechanisms
that underlie seemingly unfathomable brain functionality using prescribed pa-
rameters and equations. In this thesis, we use large-scale neural mass network
models of the human cortex to simulate brain activity. Moreover, we utilise
techniques from graph, linear and weakly-coupled oscillator theory to describe
the network states that are exhibited by such models. In particular, we focus on
how the emergent patterns of synchrony (which are thought to be fundamental
to the function of brain), or so-called functional connectivity, are dependent
on the structural connectivity, which is the anatomical substrate for brain dy-
namics. Through large-scale network simulations and linear analysis we find
that the structure–function relationship is highly dependent on– and indeed,
predictable from– the dynamical state of individual nodes in the network, high-
lighting the role of dynamics in facilitating emergent functional connectivity.
We take this further to consider how network states are modulated by exter-
nal simulation and conduction delays, especially in relation to the influence of
transcranial magnetic stimulation (TMS) on the brain’s dynamics and, more
generally, its role as a neuromodulator. We describe a computational frame-
work using a recently developed next-generation neural mass model, by which
trains of simulated pulses are employed to drive network dynamics into differ-
ent states, which we believe may be adapted to be used to study the efficacy
of TMS and to test in silico different stimulation protocols that can be used
to treat neurological conditions. We then analyse more specific applications
to potential effects of TMS: neural entrainment and conduction delays (which
may be altered via TMS-induced plasticity). We use the theory of Lyapunov
exponents to study entrainment via external stimulation and use linear anal-
ysis, as well as structural eigenmodes, to predict emergent network states due
to conduction delays across long-range white matter projections.
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Chapter 1

Introduction

Deciphering the mechanisms which underpin the phenomenon of cognition is

one of the greatest challenges in science. Ironically, the main tool to study this

has, for much of history, been the brain, which itself has not been sufficient

enough to fully understand its own complexities. However, the last century has

seen remarkable advances in the way the brain can be studied. With the advent

of computing and precision neuroimaging techniques, researchers are now able

to collect and analyse vast amounts of data from the brain, accelerating our

understanding of how complex cognitive functions arise. This has, in turn,

inspired novel mathematical modelling techniques which aim to replicate some

of the phenomena observed in empirical studies and, moreover, attempt to

shed light on the mechanisms that underpin them.

In this thesis, we will analyse how existing models of neural activity can

be used as a tool to understand and predict brain dynamics. In particular,

we make use of the availability of structural connectome data to build com-

putational models of large-scale brain activity and explore ways to study how

emergent brain function arises from its underlying structure. Elucidating these

so-called structure–function relations is primarily achieved through calculating

properties of coherent behaviour between simulated activity of different brain

regions, known as ‘functional connectivity ’ (FC). We then specialise our study

to look at transcranial magnetic stimulation, an increasingly popular clinical

1



2 Chapter 1. Introduction

tool for treating neurological disorders, in order to investigate how its efficacy

arises. Specifically, we investigate localised stimulation strategies and their

effect on FC, entrainment of brain activity to a rhythm and modulation of

delays in neural signal transmission to induce oscillations.

In chapter 2 we introduce the biological processes underpinning the large-

scale activity of the brain that we accommodate within our models and further

explain how these are captured using neuroimaging methods. We then specify

the open biological questions that have motivated this research and why they

are ripe for treatment with mathematical methods. We review some of the

mathematical advances that have been made in the field of modelling neural

systems, as well as contributions from some other fields of applied mathematics

which prove useful in the analysis of such large-scale brain models.

Chapter 3 outlines the mathematical frameworks which are used to derive

results in the subsequent chapters, chiefly network properties, linear analysis

of dynamical networks and the theory of weakly-coupled oscillators.

Chapter 4 is the first of our technical chapters, in which we analyse how

the dynamic state of brain networks modulates the relationship between the

underlying physical, or ‘structural ’, connectivity (SC) and functional connec-

tivity of brain regions. We use mathematical theory to describe how these

arise from the linear instability of states, most notably the instability of the

synchronous network state.

In chapter 5 we continue looking at structure–function relations through

the introduction of a new network metric that describes the transitivity of

nodes. The novelty of our new metric, more generally referred to as a measure

of ‘clustering ’, is that we consider the functional and structural networks to

exist as two separate layers superimposed on one another in what is known

as a multiplex, allowing for the treatment of two or more interacting network

structures simultaneously.

Our focus moves in chapter 6 from looking at structure–function relations

in generality to describing how these may be manipulated by external forcing,
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with a particular focus on transcranial magnetic stimulation (TMS). We use

a newly developed neural mass model with a diverse dynamic repertoire to

explore how the network can be forced into different dynamic states and how

these may relate to the treatment of conditions such as depression.

In chapter 7 we take a more analytical approach to explore the effects of

TMS. We use linear theory at the network level to determine how conduction

delays between brain regions, which may be influenced by neuronal plasticity

resulting from TMS treatment, can modulate functional connectivity states.

We also explore the how periodic forcing at different frequencies can drive

entrainment.

We conclude with an overview of our main findings as well as the scope

for work to be done in furthering this research.



Chapter 2

Background

2.1 Biological background

The study of the brain is a complex subject due to the myriad chemical

and electrical signals that propagate within it and the diversity of spatial

scales over which neural activity occurs, from long range cortical relays at the

whole-brain scale to synaptic neurotransmitters at the sub-cellular scale. A

neurophysical background is essential to understand both the anatomy of large

scale brain networks and their emergent function that motivate the questions

we discuss in the following chapters. Moreover, the models we use relate

to real biological processes that are captured by coarse-grained neuroimaging

techniques. Here we provide a brief overview of the basis of electrochemical

activity and its propagation in the brain in order to describe how emergent

function is empirically measured.

2.1.1 Physiology of the brain

Brain cells

The cells present in the brain can be broadly categorised into two groups:

glia and neurons, both of which are estimated to number in the order of 1011

in humans (von Bartheld et al., 2016).

The function of glial cells is to offer a supporting structure to the neurons,

as well as aid with nutrient delivery, cell repair and myelination — the latter

4



Section 2.1. Biological background 5

refers to a process whereby the electrically active fibres of neurons are coated

in a fatty sheath for purposes of electrical insulation. While glial cells facili-

tate brain function in a variety of ways, they are not directly involved in the

electrochemical processes by which neurons provide a substrate for cognition

and other complex brain functions.

The neurons are the basic functional units of the central nervous system.

It is their collective behaviour that underpins the emergence of macroscopic

brain rhythms and is the primary focus of the work presented in this thesis.

The structure of a neuron can be generally described by 3 sub-units:

• The soma is the main cell body of the neuron containing the nucleus.

• The dendrites are projections of the soma which recieve input from other

nerve cells.

• The axon is a fibre along which electrical current flows from the soma

to other cells. It splits at the end into thousands of smaller fibres called

telodendria which have synaptic terminals at their tip. These terminals

form electrochemical connections with the dendrites of other cells, which

are known as synapses.

Figure 2.1: Structure of a neuron: A caricature of a typical neuron showing the
soma with dendritic appendages and axon fibre (taken from Microsoft 3D Library).

Neuron populations and functional regions

As well as the numerous electrochemical processes undergone by indi-

vidual neurons, the brain’s ability to exhibit a variety of complex behaviours
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simultaneously is undoubtedly facilitated by the sophistication of its architec-

ture. From neuronal microstructures to the macroscopic regions that encode

the properties of body and mind, it is vitally important that communication

in the brain happens on multiple spatio-temporal scales (Betzel and Bassett,

2017).

In order for electrical signals to propagate between neurons, chemical sig-

nals pass between the synaptic clefts that lie between axon terminals and the

dendrites of neighbouring cells. There are roughly 1014 of these connections

in the human brain, which highly specialised signaling molecules called neuro-

transmitters drift across. It is important to note that there are over 200 dif-

ferent neurotransmitters involved in chemical communication across synapses,

the specifics of which are beyond the scope of this thesis.

The fundamental mechanism behind electro-chemical communication in

the brain is the action potential, whereby the potential difference between

the cell membrane and main body is depolarized from rest (about −70mV)

through afferent inputs and other electro-chemical processes until it reaches

the threshold for action potential generation (around −55mV). At this point,

this presynaptic cell rapidly depolarises and a current passes down the axon

towards its terminals in the form of a travelling pulse. At axon terminals, the

action potential causes neurotransmitters to be released, which provoke spe-

cialised proteins in a neighbouring postsynaptic neuron, called ion channels,

to allow the passage of charged particles across the cell membrane. The most

common neurotrasmitters are GABA, which opens ion channels to decrease

post-synaptic membrane potential (hyperpolarisation) and glutamate, which

conversely opens ion channels to increase membrane potential (depolarisation),

which in turn may either inhibit or excite an action potential in the postsynap-

tic neuron’s soma respectively. In this way, electrical signals propagate locally

within neural populations and form the basis of their spatio-temporal activity

that underpins FC.
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Large-scale brain structure and activity

Although neural signalling can occur at at the micro-scale, it also takes

place over much greater distances in the brain. Indeed, white matter (highly

myelinated neurons) has a total length of the order of 108m in the human brain

and is capable of sending action potentials much further than the surface grey

matter (Wen and Chklovskii, 2005). The thick layer of myelin around an

axon acts as an insulator, allowing charge to jump via ionic exchange within

gaps called nodes of Ranvier, shown as small crevices in the axon’s coating in

Figure 2.1. Because of this efficient transfer of charge, conduction velocities

along myelinated axons are around 150ms−1 as opposed to around 0.5–10ms−1

for unmyelinated axons, commonly found in grey matter. Much of the surface

of the brain is grey matter, forming folds (gyri) and troughs (sulci) on the

surface, while much of the deeper volume is made up of white matter tracts.

Figure 2.2: Basic brain anatomy. Coarse division of the brain into its three
main components (taken from Microsoft 3D Library).

On the largest scale, the brain can be coarsely divided into three regions,

as shown in Figure 2.2:

• The cerebrum is the largest part of the brain which processes voluntary

actions and thought.
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• The cerebellum is located at the back of the brain and is largely respon-

sible for regulating motor function.

• The brainstem contains several sub-components required for maintaining

homeostasis and well as relaying sensory information between the brain

and the rest of the body.

The brain can further be divided into more refined subdivisions known

as parcellation atlases, wherein borders between neighbouring regions reflect

distinct functional or physiological differences between them. The density of

white matter connections between these parcellations is commonly refered to

as structural connectivity (SC). It is important to note here that there is no

perfect map of the brain for the simple reason that all brains are different.

Though many different parcellations exist, their usage is generally dependent

on the context of the study in which they are applied. An example is given

in Figure 2.3, which we also use in further chapters as a basis for many of our

large-scale brain dynamics simulations.

Figure 2.3: AAL atlas. Division of the brain into 78 regions of the Automated
Anatomical Labeling atlas described in Tzourio-Mazoyer et al. (2002).

Much of the activity observed in neuroimaging studies comes from activ-

ity near the surface of the cerebrum, the cerebral cortex, simply because it is

nearer the scalp and therefore more accessible for non-invasive imaging. The
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cortex is divided into vertical structures, which are around 500µm in diameter

and generally run perpendicular to the surface, called ‘columns’ (Mountcastle,

1957), which have horizontal projections to other columns (Hawkins et al.,

2017). Cortical regions that are described by parcellation atlases are typically

composed of thousands of these columns (Krueger et al., 2008).

Oscillation in cortical regions arises from intrinsic excitation within neu-

ral populations, as well as feedback loops between other cortical regions. They

are also governed by extra-cortical input, most notably from the thalamus

(Guillery and Sherman, 2002; Sherman, 2005), which delivers sensory input to

cortical regions but also forms a feedback loop which can synchronise firing

activity of the thalamus as well as several cortical regions. The nature of these

oscillations is highly dependent of the functional state of the brain (Hwang

et al., 2017). Indeed, certain parts of the brain that behave coherently can

act as a biomarker for a certain cognitive task (Uhlhaas and Singer, 2006).

The patterns arise from the correlated amplitude, phase or frequency of neural

activity, which are often noisy and highly transient (Bowyer, 2016). Together,

these correlations describe which parts of the brain are co-currently active, il-

lustrating a different kind of network that is explicitly linked to dynamic brain

function, hence why it is known as functional connectivity (FC).

Neural sub-networks

While the functional connectivity of the brain is in constant fluctuation

(Cabral et al., 2017; Hutchison et al., 2013b; Deco et al., 2017b), there are

several classes of well-categorised states that have been extensively studied.

Resting state networks (RSNs), which are functional networks recorded when

the brain is not task-focussed, have been one of the most well-categorised

of these, due to the ease of recording the brain without stimulation and the

ability to reproduce similar experimental conditions with a range of different

subjects. They are formed of a subset of brain regions that are found to be

concurrently active or inactive, so can be represented as sub-networks within

the wider whole-brain functional connectivity (FC) network. Yeo et al. (2011)
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identified two sets of these sub-networks (dividing the brain into a 17 network

as well as a coarser 7 network grouping within of the cortex). For more general

purposes, one can consider three so-called ‘core’ networks (Menon, 2011) that

form part of the 7 network structure:

• T he default mode network (DMN) is a highly correlated network that is

active during rest, while inactivity is often associated with task engage-

ment. It is also related to introspective thought and empathy.

• The salience network (SN) is involved with a diverse range of functions

including homeostasis and emotional processing. It is posited that this

network amalgamates sensory and emotional processes while acting as a

‘switch’ between the default mode network and attention-based networks.

• The central executive network (CEN) is involved in high-level mental

processing tasks such as focused problem solving and working memory,

where important recent experiences are recalled in order to coordinate

and complete a task.

These three networks are encapsulated in the parcellation in Figure 2.4

(Yeo et al., 2011), as red, green and orange coloured regions respectively.

In a healthy human brain, these networks can be harmoniously activat-

ed/deactivated at will, though disruption of these core networks is associated

with many neurological conditions (Putcha et al., 2016; Yu et al., 2017a; Chen

et al., 2019).

2.1.2 Relating structure and function

The underlying SC of the brain manifests itself as a complex circuit of

interacting brain regions which supports the dynamic FC. Though it is true

that strong structural connections correlate well with with strong functional

connections across long time-scales (Hagmann et al., 2008; Honey et al., 2009),

there is variability over short timescales, reflecting the rich dynamic repertoire

of the brain (Honey et al., 2007; Rubinov et al., 2009). These dynamic FC
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(a) Left hemisphere (b) Right hemisphere

Figure 2.4: Seven sub-network parcellation of human cortex. Here,
regions of the cortical surface are coloured depending on the functional sub-network
of which they are associated. This is a reproduction from Yeo et al. (2011) using
data made available through FreeSurfer. Going from top to bottom of the colourbar,
we have the following subnetworks: ventral attention in violet, somatomotor in blue,
limbic in cream, visual in purple, default mode (DMN) in red, frontoparietal (central
executive; CEN) in orange and dorsal attention (salience; SN) in green. The three
core networks are labelled on the figure.

patterns are widely believed to be significant in integrative processes underly-

ing higher brain function (Van Den Heuvel and Pol, 2010; van Straaten and

Stam, 2013) and disruptions in SC and FC networks are associated with many

psychiatric and neurological diseases (Menon, 2011; Braun et al., 2015).

However, the relationship between the brain’s anatomical structure and

the neural activity that it supports remains largely unknown (Fukushima et al.,

2018; Batista-Garćıa-Ramó and Fernández-Verdecia, 2018). The divergence

between dynamic FC and the relatively static structural connections between

populations is critical to the brain’s dynamical repertoire and may hold the

key to understanding brain activity in health and disease (Park and Friston,

2013).

Presently, one of the most controversial aspects in this field of research

is the role of criticality in explaining FC network transitions (Zimmern, 2020),

whereby the brain’s dynamics operate near to a ‘tipping point’ between differ-

ent global states. There is much debate, however, concerning the mechanistic

description of how this criticality manifests itself within the brain. Following

from the influential work of Beggs and Plenz (2003), it has been suggested that
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neural activity organises itself in the form of ‘avalanches’, where the activation

of neurons propagates through neural networks via a power law (Shriki et al.,

2013). However, this interpretation has been challenged due to evidence from

in vivo spiking activity which is not in agreement with this principle. Further

studies have suggested that the critical brain’s critical regime is poised at a

dynamic state at the edge stability and chaos (Boedecker et al., 2012; Ezaki

et al., 2020) or synchronisation (Di Santo et al., 2018; Palmigiano et al., 2017).

We treat this issue in chapters 4 by focusing on how the critical states of a

model’s dynamics organise the agreement between structural and functional

networks. Notably, we find that these organisational features can be related

to intrinsic nodal dynamics, without needing to understand the more com-

plex network interactions that the model supports. Furthermore, in chapter

5 we consider how network dynamics organise a novel network measure that

characterises the SC–FC relationship (see section 2.2.3).

2.1.3 Neuroimaging

There is a plethora of ways to visualise the brain on multiple spatial

scales, from measuring the ionic flow in individual cells using a patch clamp,

to measuring whole brain activity using electrodes and magnetometers. The

former is also more invasive, since it requires direct contact with a neuron,

while the others can be measured using devices placed outside the brain. Here

we outline a sample of these techniques from the latter end of this scale, which

are of most relevance to this thesis and we point the reader to Lowe et al.

(2016) for a recent comprehensive review of these methods.

Electroencephalography (EEG) and magnetoencepholography (MEG)

Due to its relatively low cost and high temporal resolution, EEG has

been a popular tool for research and medicine for decades. It measures the

voltage difference across electrodes placed on the scalp, caused by extracellular

ionic flow from many thousands of neurons. Excitatory synaptic connections

act as sources to increase positive ion flow across dendrites, while inhibitory
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synapses act as sinks. If neurons fire in a coherent way, electrical dipoles form

in macroscopic areas comprising thousands of columns (Nunez and Srinivasan,

2006), which is the source of the EEG potential.

Conversely, MEG detects the magnetic fields generated by post-synaptic

currents. This signal faces less interference from cranial tissue so is a better

tool for source localisation (da Silva, 2013), though it is also much weaker

than the EEG signal so requires superconducting magnetometers cooled using

liquid helium in order to be sensitive enough to obtain reliable measurements.

Magnetic resonance imaging (MRI)

MRI is an imaging technique developed by Sir Peter Mansfield and Paul

Lauterbur, for which they won the Nobel Prize in Physiology or Medicine in

2003. MRI exploits quantum properties of hydrogen atoms, present in water

and fat cells, in order to image the brain (Berger, 2002). Fundamentally, MRI

exploits the property of nuclear spin, which gives atoms a magnetic moment.

The moments are typically randomly oriented in the brain so produce a very

weak magnetic field due to destructive interference. MRI machines induce a

strong magnetic field B to align the moments. Radio waves incident on the

atoms causes their moments to spin about an axis in the direction of B, which

induces a current on a receiver. If all atoms induced the same current, source

localisation would not be possible. However, due to the quantised nature

of energy, radio waves of a particular frequency only resonate atoms with a

particular magnetic moment. A secondary magnetic field is applied with a

gradient that isolates atoms so that their position can be calculated. The

gradient field then constantly changes to scan across the entire spatial domain

of interest.

Functional MRI

Functional MRI (fMRI) is a mechanistically similar procedure to stan-

dard MRI except it specifically measures the contrast between the responses of

de-oxygenated and oxygenated haemoglobin, referred to as the blood-oxygen-

level-dependent (BOLD) signal (Glover, 2011). The premise is that areas of
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the brain undergoing high activity require more energy, so blood flow is higher

within these regions as highlighted in an fMRI scan that determines which ar-

eas of the brain are concurrently active and therefore functionally connected.

This is beneficial compared to other signals arising from neuronal activity

(EEG/MEG) because it has much higher spatial resolution. However, since

fMRI does not directly capture the ionic flow arising from spontaneous neu-

ronal activity it has poorer temporal resolution, since it takes time for blood

to be transported to areas where it is required. The BOLD signal is also fun-

damentally different because oxygen transport may be due to processes other

than neuronal firing (Hall et al., 2014).

Diffusion MRI

Diffusion MRI is a more specialised version of MRI used to map the

white matter structure of the brain (see Pujol (2015) for a detailed description

of the techniques involved). Water diffuses isotropically in grey matter, but

the myelin sheath of white matter tracts restricts the free movement of water,

causing ansiotropic diffusion that is dependent on the orientation of the fibre.

To track this diffusion, two additional magnetic field gradients are added to

the standard MRI protocol in what is known as diffusion weighted imaging

(DWI). The first non-uniform magnetic field is applied to a brain region in

order to cause incident atoms to align differently to each other. A corrective

field is then applied which has the effect of reverting them back to their original

state; if atoms have moved in the intervening period the receiver will detect a

reduction in current. This reduction is localised to the atoms whose moments

are not fully aligned, indicating that diffusion has taken place in the direction

of the applied gradient.

To build a map of the brain’s white matter connectivity, diffusion MRI

data is treated with post-processing techniques called tractography, which

works on the assumption that water diffuses in the direction of white mat-

ter tracts. A seed point is chosen from which tract paths are estimated from

directions of diffusion to construct a streamline traversing between points in
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the white matter domain called voxels, until it reaches some chosen termina-

tion point such as the grey matter/ white matter boundary. Single paths can

be estimated algorithmically, or many different paths can be calculated prob-

abilistically from different possible fibre orientations at each voxel (Hernández

et al., 2013).

2.1.4 Brain stimulation

With the advent of precision neuroimaging has come an increased use of

sophisticated ways to stimulate neural activity, both for clinical and research

purposes, since imaging offers a way to understand the neural mechanisms of

action (Bergmann et al., 2016; Horn, 2019). The purpose of brain stimulation

is to disrupt the natural activity of the brain to inhibit or excite some effect,

a process called neuromodulation.

Electrical stimulation

The first generation of brain stimulation came from electroconvulsive

therapy (ECT), which was invented in the early 20th century to treat schizophrenic

patients (Cerletti, 1950) but has since effectively treated Parkinson’s disease

(Popeo and Kellner, 2009; Fochtmann, 1988), depression (Pagnin et al., 2008;

Kellner et al., 2012) and obsessive compulsive disorder (Mellman and Gorman,

1984; Maletzky et al., 1994). ECT involves passing electrical current through

the brain via electrodes placed on the scalp. A more invasive version of this

is deep brain stimulation (DBS) (Perlmutter and Mink, 2006), which involves

planting electrodes into subcortical areas of the brain to deliver electrical in-

put to specific targets. DBS is typically used to treat severe motor-related

disorders such as Parkinson’s (Deuschl et al., 2006; Vingerhoets et al., 2002;

Benabid, 2003), Tourette’s (Shahed et al., 2007) and dystonia (Ostrem and

Starr, 2008), though due to its invasive nature, DBS is typically a last resort

after other medical practises have proved unsuccessful. While the exact mech-

anisms which underlie the efficacy of these procedures remains unknown, it is

clear that DBS and ECT do not elicit just a localised effect but also facilitate
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changes in large-scale brain network behaviour (Ashkan et al., 2017).

Both of these stimulation methods have disadvantages for the patient:

ECT can induce headaches and memory impairment (Gomez, 1975), while

DBS is highly invasive, requiring surgery that which carries risk of compli-

cations such as infection and seizure onset (Fenoy and Simpson, 2014). An

analogue to the aforementioned stimulation techniques using magnetic rather

than electrical stimuli addresses some of the drawbacks presented by brain

stimulation, which we discuss in the next section.

Magnetic stimulation

Transcranial magnetic stimulation (TMS) has gained popularity due to

the fact that it incurs much less discomfort for patients, yet has also proved

to be an effective treatment for many neurological disorders (Hallett, 2000).

TMS is a non-invasive therapeutic brain stimulation technique whereby strong

electromagnetic fields are used to induce a transient current pulse in the

brain, in order to influence neural activity, particularly in superficial regions of

cerebral cortex. TMS has potentially wide-reaching consequences for mental

health conditions, having provided positive outcomes for patients with Parkin-

son’s disease (Boggio et al., 2005; Shimamoto et al., 1999), schizophrenia (Lee

et al., 2005; Lett et al., 2014) and depression (Kolbinger et al., 1995; Loo and

Mitchell, 2005; George et al., 2000; Fox et al., 2012). Though its efficacy in

treating these conditions is evident in some cases, the precise neurological ef-

fects of TMS, in addition to DBS and ECT, are not understood. Previous

studies highlight that TMS can influence neural activity within populations

in a range of ways. Initial synchronous depolarisation, followed by longer-

lasting GABAergic inhibition (Siebner et al., 2009) impacts on neuronal ex-

citability (Lang et al., 2007) and the excitatory/inhibitory balance (Iwabuchi

et al., 2017), can drive neural plasticity (Fung and Robinson, 2014), and al-

ter patterns of coherence between brain regions, leading to the reorganisation

of functional connectivity networks (Tik et al., 2017; Iwabuchi et al., 2017).

In chapters 6 and 7 we use computational and analytical methods to study
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the effects of TMS on simulated FC networks to explore how these transitions

arise.

2.1.5 Shortcomings of neuroimaging

One of the main issues with the current state of neuroimaging is the trade-

off between spatial and temporal resolution (Babiloni et al., 2009). EEG, for

example, is able to record changes in electrical conductance over very short

timescales, with typical sampling rates in the order of 100 Hz, but due to the

currents being distorted by resistive matter, most notably the skull, it is not

possible to locate the source accurately. MEG and fMRI offer better spatial

resolution, but they suffer from requiring much more expensive equipment and

more technically demanding experiments. They also require the patient to be

stationary to achieve accurate data, since the final image depends on localised

cortical signals which will overlap and blur if the sources move during a scan,

which restricts task-based experiments and situations where movement is in-

voluntary such as for epilepsy sufferers (Ray and Bowyer, 2010). However,

a wearable MEG scanner has recently been developed that offers promise for

future research into motor-based disorders (Boto et al., 2018). This is a sig-

nificant step towards mapping human electrophysiology of people of all ages

and neurological conditions, where subjects are free to move and interact with

their environment.

Computational models are increasingly utilised in the field if neuro-

science; advanced computing facilities, more sophisticated models and greater

data assimilation are helping to reveal the relationship between the brain’s

structure and function (Breakspear et al., 2010; Stam et al., 2016) and the

origin of resting state networks (Deco et al., 2013). The major advantage

of computational methods is that the brain can be investigated without re-

course to expensive and sometimes invasive experimentation. Another benefit

of this style of research is that researchers have complete control over simu-

lated experimental conditions, side-stepping some of the real-world problems
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that hamper empirical studies; for instance, interference from external electro-

magnetic fields. This is especially useful in modelling brain stimulation, where

brain imaging instruments can be at risk of interference from the source of

stimulation itself (Ilmoniemi and Kičić, 2010). In a clinical setting, the com-

putational study of the brain is helping to provide new methods of treatment

in cases where a condition may be responding poorly to drugs (Kuhlmann

et al., 2015). For instance, in Wang et al. (2014) the authors identify and

analyse dynamical mechanisms for drug-resistant focal epilepsy, giving hope

that such research may be used to better inform clinical researchers to help

provide better treatment for patients.

With this in mind, we shift focus to a theoretical perspective of neu-

roscience and in the following section give an overview of the mathematical

ideas that reveal the underpinnings of the computational work pursued in the

technical chapters of this thesis.

2.2 Mathematical Background

2.2.1 Modelling neural activity

In this section we discuss a variety of models that have been instrumental

in the field of theoretical neuroscience. For a more detailed overview, we

refer the reader to Ashwin et al. (2016). These can be broadly divided into

two categories: those that aim to describe the action potential dynamics of

individual neurons and those that reduce the complex interactions of large

neural networks to state variables describing some average measure of activity.

In the pioneering work of Hodgkin and Huxley (1952), the authors pre-

sented one of the first models of neuro-electrical activity. Derived from voltage-

clamp experiments on the squid giant axon, their non-linear system of equa-

tions characterises the temporal evolution of sodium and potassium currents.

This work accelerated research into a family of models known as spiking neuron

models, since they can be used to simulate the rapid depolarisation/repolarisa-

tion spikes that takes place when a neuron fires an action potential. Although
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Hodgkin and Huxley’s model provides a detailed description of ionic conduc-

tion that aids in studying action potential generation, its complexity allays

practicality at the network level. Integrate-and-fire models simplify spiking

dynamics by introducing a discontinuous resetting at some voltage threshold

value (Lapique, 1907).

While this class of models has provided an excellent insight into neural

behaviour on the cellular level, their ability to explain the macroscale be-

haviour of millions of neurons that contribute to brain rhythms observed in

EEG recordings is limited, since the interactions that occur on the cellular

scale are too vast in number and complexity to be feasibly characterised by

such models. In the 1970s, there was much interest in developing models

to confront this issue, which tracked the behaviour of large neural popula-

tions and their interactions (Da Silva et al., 1974; Wilson and Cowan, 1972;

Freeman, 1978). The necessity of this was to develop models that could ac-

curately describe the higher functions of the brain, such as sensory processing

and memory, which could not be captured effectively by single-neuron mod-

els (Wilson and Cowan, 1972). Typically phenomenological in nature, these

so-called mean field models consider populations of neurons that exhibit ex-

citatory or inhibitory behaviour computed on a continuous spatial domain or

discrete points, which, in the latter case, are typically referred to as neural

mass models (NMMs). In general terms, NMMs take a population average

over the distribution of expectant states of neuronal populations (Deco et al.,

2008). Therefore, the main assumption made by NMMs is that neurons are

statistically identical, allowing for computational efficiency when simulating

the large-scale neural activity thought to be implicated in higher brain func-

tion (Breakspear, 2017). Due to the nature of this reduction, NMMs are

incapable describing behaviour on the level of neurons and neural ensembles

but, have been successful in replicating the EEG rhythms that they were orig-

inally designed to simulate (David and Friston, 2003). In this framework,

neurons preferentially activate synchonously and interactions are mediated by
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firing rates rather than action potentials (David and Friston, 2003). Crucially,

NNMs are beneficial for modelling large-scale brain networks, with which we

mostly concern ourselves in this thesis.

Wilson–Cowan model

Wilson and Cowan (1972) designed their model, one of the first and sim-

plest NNMs, on the assumption that cortical dynamics emerges from the in-

terplay between excitatory and inhibitory activity, discounting the role played

by subcortical structures. Nevertheless, it has been successful is describing

a range of neurological phenomena including visual hallucinations (Bressloff

et al., 2002; Bertalmı́o et al., 2020) and epilepsy (Wang et al., 2014).

The model describes the nonlinear interactions two populations (see Fig-

ure 2.5) with mean numbers of activated and quiescent excitatory and in-

hibitory neurons, given by u and v respectively, whose dynamics governed by

two first-order differential equations:

u̇ = −u+ s(c1u− c2v + P ),

v̇ = −v + s(c3u− c4v +Q).

(2.1)

In (2.1) c1,...,4 represent inter- and intra-population coupling strengths,

P and Q are extra-cortical input (from the thalamus, for example) and s is a

non-linear firing-rate function called a sigmoid that saturates asymptotically

at high levels of neural activity, e.g.:

s(x) =
1

1 + e−x
. (2.2)

E Ic1

c2

c3

c4

Figure 2.5: Wilson–Cowan node. Schematic for the two-population couplings
described by the system (2.1). Red/Blue colours indicate respectively excitatory/in-
hibitory populations and their efferent couplings.
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A key feature of the Wilson–Cowan model is its ability to produce os-

cillations, which can be viewed as a simple representation of brain rhythms

to simulate large-scale brain activity. We can deduce where oscillations are

stable in (2.1) via its bifurcation set, which is a map of qualitative changes in

the nature of the solution set, given over some range of parameter values. For

instance, Figure 2.6 shows two bifurcation sets: saddle nodes, by which the

number of fixed point solutions changes and super-critical Hopf bifurcations,

by which stable oscillations emerge. The oscillatory solution in stable in the

central region of the diagram bounded by these two sets. We discuss the nature

of bifurcations and how they are derived in greater depth in section 3.3.

-6 -4 -2 0 2 4 6
P

-12

-10

-8

-6

-4

-2

0

Q

Stable
oscillations

Figure 2.6: Wilson–Cowan bifurcations. Bifurcation structure of the system
(2.1) in (P,Q) parameter space. Blue lines indicate saddle nodes of fixed points
while red dashes are super-critical Hopf sets.

Jansen–Rit model

Following from the Wilson–Cowan model, which became a popular tool

for theoretical neuroscientists to investigate neural dynamics at a population

level, Jansen and Rit (1995) developed a model in a similar spirit. Their

model takes greater inspiration from the biophysical connectivity of neuronal

populations in order to replicate the rich dynamics of EEG activity associ-

ated with evoked potentials due to visual stimuli. The model was itself based

on a previous model by Da Silva et al. (1974) which attempted to amalga-

mate population level effects into state parameters, sometimes referred to as
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E I
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C1

C3C2

C4

External input

Figure 2.7: Wiring diagram for a Jansen-Rit network node. Excitato-
ry/inhibitory populations and synaptic connections are highlighted in red/blue re-
spectively. Interneurons (E, I) and pyramidal cells (PC) are interconnected with
strengths Ci for i = 1, . . . , 4.

a ‘lumped-parameter’ model.

While similar in spirit to the Wilson–Cowan model, the Jansen–Rit model

describes the evolution of the average post-synaptic potential (PSP) in three

interacting neural populations: pyramidal cells (y0), and excitatory (y1) and

inhibitory (y2) interneurons (see Figure 2.7). These populations are connected

with strengths Ci (i = 1, . . . , 4), representing the average number of synaptic

connections between each population. The Jansen–Rit model is mathemati-

cally described by a second order differential linear transform that converts

firing frequency into an electrical potential, which results in six first order

equations by adopting the notation (y0, . . . , y5) for the dependent variables.

The pairs (y0, y3), (y1, y4), and (y2, y5) are associated with the dynamics of the

population average of PSPs and their temporal derivatives:

ẏ0(t) = y3(t), ẏ1(t) = y4(t), ẏ2(t) = y5(t),

ẏ3(t) = AaSigm(y1(t)− y2(t))− 2ay3(t)− a2y0(t),

ẏ4(t) = Aa{P (t) + C2Sigm(C1y0)} − 2ay4(t)− a2y1(t),

ẏ5(t) = BbC4Sigm(C3y0(t))− 2by5(t)− b2y2(t).

(2.3)

The function f is a sigmoidal nonlinearity that can be viewed as an analogue
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of (2.2), which represents the transduction of activity into a firing rate:

f(v) =
νmax

1 + exp(r(v0 − v))
= νmaxs(r(v − v0)). (2.4)

This model is employed and discussed in greater depth in chapter 4.

Wendling model

A significant extension of the Jansen and Rit’s model came with the work

of Wendling et al. (2002). Again, with the aim of replicating EEG activity,

the authors were specifically interested in producing rhythms similar to those

observed from epileptic patients during, and between, seizure onset.

Their extension to Jansen and Rit’s model arises from the research sug-

gesting that GABAergic inhibition operates at two different timescales: a fast

one near the soma and a slow one near the dendrites (Miles et al., 1996).

Therefore, a second inhibitory neural population is added, again forming a

feedback loop between the pyramidal population (similarly to the other inter-

neuron populations in Figure 2.7) as well as receiving input from the other

inhibitory population. Mathematically, this adds four more first-order ODEs

to the system (2.3) to describe the PSPs of the fast inhibitory population y3 as

well as the PSPs of neurons connecting the inhibitory populations y4. These

are constructed in similarly to the the ODEs in (2.3):

ẏ0(t) = y5(t), ẏ1(t) = y6(t), ẏ2(t) = y7(t), ẏ3(t) = y8(t), ẏ4(t) = y9(t),

ẏ5(t) = AaSigm(y1(t)− y2(t)− y3(t))− 2ay5(t)− a2y0(t),

ẏ6(t) = Aa{P (t) + C2Sigm(C1y0)} − 2ay6(t)− a2y1(t),

ẏ7(t) = BbC4Sigm(C3y0(t))− 2by7(t)− b2y2(t),

ẏ8(t) = GgC7Sigm(C5y0(t)− y4(t))− 2gy8(t)− g2y3(t),

ẏ9(t) = BbC6Sigm(C3y0(t))− 2by9(t)− b2y4(t).

(2.5)

The added dynamic complexity of this model allowed the authors to repli-

cate a variety of biologically relevant rhythms related to epileptic-like activity.
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This was further utilised in Goodfellow et al. (2016) to develop a framework

to predict optimal surgical strategies to treat epileptic patients.

Next-generation neural mass model

A recent development in NNMs has been the development of a class of

models which describe exact mean-field descriptions of coupled neural oscil-

lators (Bick et al., 2020). An archetypal next-generation NMM, outlined in

(Coombes and Byrne, 2019), tracks the evolution of intra-population synchrony

of a population of quadratic integrate-and-fire neurons, Synchronous firing of

neurons is highly pertinent to neuroimaging since it can modulate the spectral

power of brain rhythms (Uhlhaas and Singer, 2006; Buzsáki et al., 2013). This

is achieved through a mean-field reduction of the phase density distribution via

the Ott-Antonsen ansatz (Ott and Antonsen, 2008), which provides a method

to derive a quantification of synchrony for globally coupled oscillatory systems

(via Kuramoto order parameters, which are described in section 2.2.2) in the

infinite-oscillator limit. This model is further discussed and implemented in

chapters 6 and 7 and we point the reader to Byrne et al. (2020) and Bick et al.

(2020) for recent reviews.

2.2.2 Coupled oscillators

The emergence of synchronisation in biology is ubiquitous, as exemplified

by the synchronised flashing of fireflies in southeast Asia (Strogatz, 2004), and

its mathematical basis is a rich area of research. Winfree (1967) was one of the

first to formulate a mathematical network model for the emergence of synchro-

nisation by pursuing a mean-field approach, whereby the complex interactions

of a large number of oscillating units, each given by a first-order ODE, could

be reduced to an average influence on the whole network. Through his model,

Winfree showed that synchronisation was a threshold phenomenon: when the

coupling strength of oscillators exceeded some critical value, oscillators spon-

taneously synchronised their frequencies (Ariaratnam and Strogatz, 2001).
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Kuramoto (1975) continued this line of research to develop a highly sim-

plified model of coupled phase oscillators,

θ̇i = ωi +
K

N

N∑
j=1

sin(θj − θi), (2.6)

for oscillatory units i = 1, . . . , N coupled with strength K, and with natural

frequency ωi and phase θi ∈ [0, 2π). When all units have the same natural

frequency, the convention of using a sinusoidal coupling function allows for

synchrony to be a fixed point of the system (θj − θi = 0). Kuramoto inves-

tigated synchrony by defining ‘order parameters’ r and ψ, pertaining to the

degree of coherence and average phase respectively:

reiψ =
1

N

N∑
j=1

eiθj . (2.7)

Using the order parameter representation of the model (2.6), Kuramoto (1975)

showed that, similarly to Winfree, there was a threshold K = Kc at which the

oscillators would (partly) synchronise. Moreover, for natural frequencies ωi,

chosen from a Lorentzian distribution g(ω), the r value could be derived exactly

as
√

1− (Kc/K), where Kc = 2γ and γ is the width of g(ω) at half maximum.

Substituting the sinusoidal coupling for different functions allows the

model to explore a greater dynamic repertoire. A review of the dynamical na-

ture of the Kuramoto model is presented in Acebrón et al. (2005) but briefly,

in different conditions, oscillators may phase-lock (have constant phase differ-

ence), frequency-lock (have constant frequency difference) or behave chaoti-

cally, where no uniform pattern emerges. This is particularly relevant in the

context of neural simulation since coherence patterns are important in describ-

ing emergent function of neural populations.

2.2.3 Network properties of the brain

Another area of mathematical research that is highly important for this

study is the field of network science. Analysis of structural brain networks
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has uncovered, perhaps unsurprisingly, a highly non-trivial organisation of

connectivity.

The human connectome (Sporns, 2011; Van Essen et al., 2013), which

reflects white matter tracts connecting large-scale brain regions, is divided

into two hemispheres with relatively few connections between them. Within

the hemispheres are densely connected intra-hemispheric ‘rich clubs’ of brain

regions (Van Den Heuvel and Sporns, 2011; Betzel et al., 2016), while only a

few highly-connected ‘hubs’ (van den Heuvel and Sporns, 2013; Oldham and

Fornito, 2018) link to other rich clubs. This fragmentation repeats within these

clusters and forms what is known as a hierarchical organisation (Meunier et al.,

2010; Sporns and Betzel, 2016).

It has also been shown that the connections of the brain are organised

in such a way so as to minimise path length between regions, known as small-

world achitecture (Bassett and Bullmore, 2006; Liao et al., 2017). The brain

does this through ‘economical wiring’ (Bullmore and Sporns, 2012; Betzel et al.,

2017), the efficient organisation of connections in order to minimise the amount

of white matter tracts required.

An emerging concept of the study of brain networks is delineating the

types of connections which exist in the brain by building networks with sev-

eral layers, called multiplexes (Battiston et al., 2014), with each layer con-

taining connections that characterise a single class of interaction. For exam-

ple, a method for determining a multiplex representation of FC where each

layer corresponds to temporal coherence in a particular frequency band was

recently described in Buldú and Porter (2018). The extension of network met-

rics to multiplexes can explain topological features unobtainable by standard

single-layer approaches. Indeed, multiplex descriptions of the brain have been

found to better explain the FC irregularities associated with schizophrenia

(De Domenico et al., 2016) and Alzheimer’s disease (Cai et al., 2020).

In Crofts et al. (2016), a two-layer approach is used to investigate struc-

ture function relations using a novel metric which determines the degree to
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which the functional layer improves the transistivity of the network, compared

to the monolayer structure. We will expand upon this work in chapter 5 and

generalise the metric to weighted SC and FC.

2.3 Aims and Scope

We have briefly introduced the ideas that are crucial to motivating the

research conducted in this thesis. Much of this work has been driven by the

abundance of neuroimaging data currently available which has deepened our

understanding of cognition and other complex brain functions but also posed

interesting questions for which large-scale brain modelling may be able to

provide an answer. Though there exists much structural and functional con-

nectivity data of large-scale brain networks, their relation is not entirely clear.

The brain’s ability to support a diverse range of functions from such a static

network has particular relevance when considering the challenges of under-

standing transcranial brain stimulation, in particular how it is so effective at

treating conditions associated with disrupted functional connectivity, while

operating within a much more static structural network. In this thesis, we

explore these issues through the lens of computational models with the hope

of shedding new light of the dynamical nature of the brain and the networks

that quantitatively describe it.



Chapter 3

Mathematical Methods

The work presented here, being theoretical in nature, has its basis in a variety

of mathematical methodologies. We therefore use this chapter to consolidate

and delineate the technical mathematical nomenclature and theory frequently

used throughout this thesis, which will serve as a toolkit that we will refer

back to during our research into dynamical neural networks.

3.1 Network analysis

3.1.1 Graph theory of networks

The discussion of brain networks in this thesis is highly reliant on nomen-

clature and notation used in graph theory, the field of mathematics which con-

cerns the theoretical study of network structure. We consider such network

approaches in chapter 5, but we give an overview of some of the key concepts

here.

A graph G(E, V ) is composed of a set of n vertices V = v1, . . . , vn and

m edges E = e1, . . . , em, where each edge ei represents a pair of vertices. If

the graph is undirected, this pair is unordered as a connection exists in both

directions between the vertices. Otherwise, the edge is an ordered pair vj, vk

which describes a directed path from vj to vk. The sum of the edges centred

on each node is its degree, D. If G is weighted, there is an associated function

w : E → Rm to supply weights for each edge. There exist a myriad different

28
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Figure 3.1: Three-node structures: We denote connected sets of three nodes,
centred on an arbitrary node i, as (a) open triads, where an edge may exist between
j and k and (b) closed triads, where we force the condition that an edge lies between
j and k so that the edges form a loop.

metrics by which to measure the connectivity of graphs to determine, for in-

stance, how efficiently connected the graph is or how robust its connectedness

is to having parts of the graph removed. Here, we introduce some commonly

used metrics that are employed in this thesis to evaluate the topology of brain

networks. These are standard concepts in network science and we refer the

reader to Newman (2018) for a comprehensive discussion of their formulation

and wider applications.

Clustering

Clustering is commonly used in the study of social networks; a motivating

question for this metric is to ask how likely a pair of mutual friends are also

friends with each other. In more general terms, this measures the proportion

of triadic structures (connected sets of three nodes) in a given network that

form a loop, which has consequences for feedback within a network. Moreover,

in the context of neural activity, the clustering coefficient is a biomarker for

the specialised processing that occurs within densely interconnected groups of

brain regions (Rubinov and Sporns, 2010b).

A schematic of triadic relationships is shown in Figure 3.1. For an ar-

bitrary node i, the ni nodes connected to i have a maximum of ni(ni − 1)/2

connections between them. The local clustering coefficient is simply the frac-

tion of these that exist. It is convenient to represent this in the form introduced
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in Battiston et al. (2014),

ci =

∑
j 6=i
∑

k 6=i aijajkaki∑
j 6=i
∑

k 6=i aijaki
, (3.1)

for an arbitrary undirected, unweighted network described by some binary

matrix A, with elements aij (= 1 if an edge exists between node i and j, = 0

if not), that is simple (i.e. without self-loops so aii = 0 for all nodes i).

Local clustering can reveal the presence of communities in a given net-

work, subsets of nodes which are strongly connected to other members but

much less so to nodes outside the community. This is particularly useful for

quantifying the modular hierarchy of the brain since it arises from these types

of network motif (Meunier et al., 2010; Sporns and Betzel, 2016; Boly et al.,

2012).

Centrality

In some networks, such as scale-free networks, certain nodes are much

more highly connected and thus exert much more influence on network dynam-

ics. This motivates the quantification of the relative importance of nodes in a

network, called centrality scores. However, ‘importance’ is a rather ambiguous

term with multiple interpretations. One definition is simply the nodal degree,

using the logic that more highly connected nodes will exert more influence,

though this does not capture the impact of higher-order interactions. Eigen-

centrality determines scores on the principle that nodes connected to important

nodes will themselves be more significant than if they were instead connected

to nodes of less importance. In this case, a node’s score xi is proportional to

the sum of scores from the set of efferently connected nodes, where components

of the binary adjacency matrix aij = 1:

xi =
1

λ

∑
j

aijxj, (3.2)



Section 3.1. Network analysis 31

where 1/λ is some constant of proportionality. By rearranging we form an

eigenvalue problem, Ax = λx, where x is a vector of centrality scores and λ is

chosen to be the dominant eigenvalue.

Connectivity

Like most real-world networks, especially in biology, brains are fallible

systems that are prone to lesions and degeneration. It is therefore of interest to

replicate this mathematically, and test the robustness of a network, by remov-

ing edges and nodes from a network to deduce the changes in connectedness.

A graph is said to be connected when there exists a path from one node to

every other, which means that every node can to some degree communicate

with all the others. Without this important property, two or more subsets

of nodes in a network will have completely independent dynamics, which is

not physically realistic for a network such as the brain whose function relies

on many integrated processes. Edge and vertex connectivity is the minimum

number of these that can be removed, respectively, to disconnect the graph.

3.1.2 Synchronisation of networks

One of the most well studied properties of dynamical systems is the pro-

clivity of networks to synchronise or, more generally, exhibit certain temporally

coherent behaviours. While we have discussed how synchronisation phenom-

ena is commonly studied with regards to Kuramoto networks in the form of

(2.6), we here discuss general analytical methods to predict coherence from

the graph structure, in the case where network dynamics are not necessarily

known.

Eigenmodes

The Kuramoto order parameters are useful for capturing the collective

behaviour of many oscillators, but they do not give information about the phase

relationships between individual units. The dynamics of complex networks of

oscillators can be decomposed to underlying elements called ‘eigenmodes’, a

term which arises from the natural modes of vibration exhibited by many real-
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world systems. The principle of eigenmode decomposition is that the response

of a system of coupled oscillators to external perturbation can be viewed as

the superposition of several eigenmodes, with each one corresponding to a

particular natural frequency of oscillation. Mathematically, the eigenmodes of

a coupled system can be represented as the eigenvalues and eigenvectors of its

associated connectivity matrix. Indeed, it has been shown that brain networks’

eigenstructures reflect both healthy function and pathological defects (Wang

et al., 2017).

In chapter 4 and 7 we will revisit the notion of eigenmodes to study

the emergent behaviour of large-scale brain networks using spectral methods

described by linear theory (see section 3.3).

Algebraic connectivity

The eigenstructure of networks has also been well-studied in relation to

‘synchronisability’, i.e. how amenable a network is to synchrony. This is

largely based on the topology of the network and its degree of heterogeneity,

since nodes with very different connectivity properties will be less likely to

exhibit similar dynamics. This is quantitatively encapsulated in the algebraic

connectivity of a network described by Fiedler (1973), which is derived from

the eigenvalues of an alternative representation of a network graph called a

Laplacian. For an adjacency matrix A, we define its corresponding Laplacian

as L = D − A, where D is the diagonal matrix of degrees of each vertex.

The algebraic connectivity α, defined by the second smallest eigenvalue of the

Laplacian, is a lower bound for the vertex connectivity ν, edge connectivity ν ′

and minimum degree δ of the graph: α ≤ ν ≤ ν ′ ≤ δ.

3.2 Neural network notation

Here we outline the notation that will serve as a basis for the models

we describe. In generality, we consider the dynamics of a set of N nodes

on a graph, governed by variables u(t) ∈ RM and coupled according to a

weighted adjacency matrix W ∈ RN×N with elements wij (i, j ∈ {1, . . . , N})
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characterising strength of connection from node j to i, which may be binary

or weighted. A simple coupling convention is additive coupling introduced in

Hopfield networks (Hopfield, 1982), where afferent inputs are summed. In this

case, we write the temporal evolution of state variable as a system of first-order

ODEs,

d

dt
ui(t) = F (ui(t)) +G(Lui(t)) +

∑
j

wijH(uj(t)), (3.3)

with the intrinsic intra-mass dynamics governed by F (u(t))+G(Lu(t)) ∈ RM ,

where L ∈ RM×M is a local coupling matrix, and some non-local inter-mass

coupling between nodes via a nonlinear interaction function H(uj(t)) ∈ RM .

Furthermore, in physical networks communication is not instantaneous

so we may consider the addition of delays, τij, characterising the time it takes

for the output of a node (i) to be received by another (j):

d

dt
ui(t) = F (ui(t)) +G(Lui(t)) +

∑
j

wijH(uj(t− τij)). (3.4)

In addition to providing a regime that is amenable to the modelling we

wish to pursue in this thesis, using ODE systems of the form of (3.3) and (3.4)

allow us to exploit a variety of well-established analytical methods.

Before we consider some mathematical methods for ODE systems, we

divert our attention to the networks whose dynamics they govern.

3.3 Linear theory

Dynamical systems modelling complex processes are often non-linear,

which normally means it is difficult, or impossible, to determine their solutions.

However, it is possible to analyse the nature of solutions near steady states,

which are time-invariant solutions, through linear theory. In this case, we seek

approximate dynamics for a general M -dimensional system of variables un and
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functions fn for n = 1, . . . ,M ,


u̇1

...

u̇M

 =


f1(u)

...

fM(u)

 , (3.5)

which is given by v̇ = Jv, where v = (v1, . . . , vM) is a set of small perturbations

from equilibrium and J is a Jacobian matrix that has the form


∂f1
∂u1

. . . ∂f1
∂uM

...
. . .

...

∂fM
∂u1

. . . ∂fM
∂uM

 , (3.6)

evaluated at steady state.

For networks of the form (3.3), with dynamics for each of N nodes de-

scribed by M ordinary differential equations (ODEs), we have Jacobians of

size MN ×MN , which can be very large for networks of composed of many

nodes, as is the case for the large-scale brain networks studied in this thesis.

In the following section we consider a method to reduce the problem so that

it is more amenable to our computational methods.

3.3.1 Linearisation of non-delayed systems

For the system described in (3.3), with M -dimensional node dynamics

such that ui = (u1i , . . . , uMi
) we have at steady state:

0 = F (u?i ) +G(Lu?i ) +
∑
j

wijH(u?j). (3.7)

We linearise around this state by writing ui(t) = u?i + vi(t) for some set

of small perturbations vi(t) ∈ RM for i = 1, . . . , N , with |vi(t)| � 1 ∀ i.

Substitution into (3.3) and expanding to first order gives:

dvi
dt

= [DF (u?i ) +DG(Lu?i )L] vi +
∑
j

DH(u?j)wijvj, (3.8)
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where DF,DG,DH ∈ RM×M are Jacobians. It is now useful to define DFi =

DF (ui) +DG(Lu?i )L and DGj = DH(u?j) so that DFi is the Jacobian which

describes the intra-mass dynamics of node i and DGj is the Jabobian for the

effect of the inter-mass interactions with node j. Then we may write (3.8) in

the form

d

dt
V =


DF1 0

. . .

0 DFN

V + (W ⊗ IM)


DG1 0

. . .

0 DGN

V, (3.9)

where V = (v1, . . . ,vN)ᵀ, and ⊗ denotes the tensor product. This system

can be simplified by considering the eigenvalues of the connectivity matrix

W ∈ RN×N (with components wij). We introduce a matrix of normalised

column eigenvectors, E, and a corresponding diagonal matrix of eigenvalues,

Λ = diag(µ1 . . . µN), such that WE = EΛ. Imposing the change of variables

Y = (E ⊗ IM)−1V transforms (3.9) to

d

dt
Y = (E ⊗ IM)−1


DF1 0

. . .

0 DFN

 (E ⊗ IM)Y

+ (E ⊗ IM)−1(W ⊗ IM)


DG1 0

. . .

0 DGN

 (E ⊗ IM)Y. (3.10)

Assuming a homogeneous system such that u?i is independent of i, which is nat-

ural for identical units with a network connectivity with a row-sum constraint

so that
∑N

j=1 wij is the same for all i, then we have a useful simplification

DFi = DF and DGi = DG for all i. It is simple to establish that for any

block diagonal matrix W of size NM×NM , formed from N identical matrices

of size M ×M , that (E ⊗ IM)−1W (E ⊗ IM) = W . Moreover, using standard

properties of the tensor operator, (E ⊗ IM)−1(W ⊗ IM) = (E−1W ) ⊗ IM =
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(ΛE−1)⊗ IM = (Λ⊗ IM)(E−1 ⊗ IM). Hence, (3.10) becomes

d

dt
Y =


DF 0

. . .

0 DF

Y +


µ1DG 0

. . .

0 µNDG

Y. (3.11)

The system (3.11) is in a block diagonal form and so it is equivalent to the set

of decoupled equations given by

d

dt
ξp = [DF + µpDG] ξp, ξp ∈ CM , p = 1, . . . , N. (3.12)

This has solutions of the form ξp = Ape
λt for some amplitude vector Ap ∈ CM .

For a non-trivial set of solutions we require E(λ; p) = 0 where

E(λ; p) = det [λIM −DF− µpDG] , p = 1, . . . , N. (3.13)

Solving E = 0 for λ produces a set of eigenvalues indexed by p which describe

the dynamic behaviour of the network near to steady state. Since local stability

requires the real part of all eigenvalues to be negative, if one of these eigenval-

ues crosses the imaginary axis the solution can undergo either a saddle-node

bifurcation (<(λ) = 0 = =(λ)) or a Hopf bifurcation (<(λ) = 0, =(λ) 6= 0).

3.3.2 Linearisation of delayed systems

In light of the conduction velocities that mediate the speed of travel of

action potentials down axons, it is appropriate to analyse how the addition of

these delays affect the stability of solutions.

Much of the linear analysis presented in section 3.3.1 carries forward to

the delayed system (3.4), although we must amend the linearised system (3.8)

to account for the delays of interactions due to the perturbation:

dvi
dt

= [DF (u?i ) +DG(Lu?i )L] vi(t) +
∑
j

DH(u?j)wijvj(t− τij), (3.14)
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Using the reduction techniques of the previous section, we recover the

same spectral equation as (3.13) with the substitution:

µp(λ) =
N∑
i=1

N∑
j=1

wije
−λτijvpi v

p
j , (3.15)

where vip is the ith element of the pth normalised eigenvector and we have

assumed the symmetry wij = wji and τij = τji.

3.4 Weakly-coupled oscillator theory

Homogeneous networks of oscillators, whereby all nodes are described by

the same dynamics, can be approximated to evolve on the same limit cycle

if coupling is sufficiently weak as to make interactions between nodes negligi-

ble compared to the intrinsic node dynamics. These small interactions can,

however, cause phase-shifts along the periodic orbit. In this case we can re-

duce the dynamics of a system to consider how its phase on the limit cycle

evolves, with interactions between nodes only dependent on the instantaneous

phase difference of connected nodes. These oscillator networks can therefore

be represented as a Kuramoto-style oscillator network model:

θ̇i = ω +
∑
j

wijI(θj − θi), (3.16)

where ω = 2π/T represents the natural frequency of an uncoupled oscilla-

tory node with period T and phase θi, and the second term determines phase

changes arising from pairwise interactions between nodes. I is called the T -

periodic phase interaction function which can be derived from the network

dynamics such as in equation (3.3).

The phase interaction function I is determined in terms of two quantities.

The first is the so-called phase response function Q ∈ RM , that describes the

response of an attracting limit cycle to a small perturbation. This can be

computed by solving the adjoint equation, whereby we write the dynamics for
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a single uncoupled node of the form (3.3) as u̇ = F(u), with F,u ∈ RM . Then

the adjoint is given by the T -periodic solution of

d

dt
Q = −DFᵀ(u(t))Q, 〈Q(0),F(u(0))〉 = ω and Q(t) = Q(t+ T ). (3.17)

Here u(t) is a T -periodic solution of the node model and 〈 , 〉 denotes a

Euclidean inner product between vectors. The second ingredient comes from

writing the physical interactions in terms of phases rather than the original

state variables. This is easily done by writing ui(t) = u(θi/ω). The phase

interaction function is then obtained as

I(t) =
1

T

∫ T

0

ds
〈
Q(s), H(u(s+ t))

〉
. (3.18)

The adjoint equation is readily solved numerically by backward integration

in time (Williams and Bowtell, 1997), whilst the integral in (3.18) can be

evaluated using numerical quadrature.

In order to analyse the stability of such functions, we note that when∑
j wijI(θj − θi) is constant for all nodes i, all nodes evolve on the limit cycle

with a fixed phase difference, known as phase-locking.

For a given phase-locked state θi(t) = ωt + φi (where φi is the constant

phase of each node), local stability is determined in terms of the eigenvalues

of the Jacobian of (3.16), denoted by Î(Φ) with Φ = (φ1, . . . , φN)ᵀ, with

components:

[Î(Φ)]ij = ε[I ′(φj − φi)wij − δij
N∑
k=1

I ′(φk − φi)wik]. (3.19)

The globally synchronous steady-state, φi = φ for all i, exists in a network

with a phase interaction function that vanishes at the origin (i.e. I(0) = 0), or

for one with a row-sum constraint,
∑

j wij = Γ = constant for all i. Note that

the emergent frequency of the synchronous network state is given explicitly

by ω + εΓI(0). Using the Jacobian in (3.19), synchrony is found to be stable
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if εI ′(0) > 0 and all the eigenvalues of the graph Laplacian of the structural

network,

[L]ij = −wij + δij
∑
k

wik, (3.20)

lie in the right hand complex plane. Since the eigenvalues of a graph Laplacian

all have the same sign (apart from, in this case, a single zero value) then

local stability is entirely determined by the sign of εI ′(0). For example, for

a globally coupled network with wij = 1/N then the graph Laplacian has

one zero eigenvalue, and (N − 1) other degenerate eigenvalues at −1, and so

synchrony is stable if εI ′(0) > 0.

3.5 Summary

In this chapter we have laid the foundations of the mathematical analysis

conducted in this thesis.

The constructs introduced here are touched upon in all chapters. Specif-

ically, the network theory will be highly useful for network measures discussed

in chapters 5 and 6. The linear theory techniques are applied in chapters 4

and 7 to investigate the dynamics of the Jansen–Rit and the next generation

neural mass models respectively. Finally, weakly coupled oscillator theory is

applied in the next chapter to determine the stability of phase-locking pat-

terns and synchrony and, moreover, how these relate to structure–function

relationships.



Chapter 4

The role of node dynamics in

shaping functional connectivity

As noted in chapter 2, the link between underlying structural connectivity and

emergent function is not fully understood. In this chapter, we present work

published recently in Network Neuroscience (Forrester et al., 2020) in which

we treat this issue by combining neural mass modelling with connectome data.

Previous theoretical studies deploying anatomically realistic structural

networks alongside neural mass models describing mean-field regional neural

activity have been used to investigate the emergence of large-scale FC patterns

(Honey et al., 2007; Rubinov et al., 2009; Crofts et al., 2016; Deco et al., 2013;

Ponce-Alvarez et al., 2015; Messé et al., 2015; Breakspear, 2017). These find-

ings suggest that through indirect network-level interactions, a relatively static

structural network can support a wide range of FC configurations, though cur-

rent models have not yet been able to accurately simulate the transitive states

underpinning cognition (Petersen and Sporns, 2015).

In the context of mean-field models, simulated (typically time-averaged)

FC has been found most strongly to resemble SC when the dynamical system

describing regional activity is close to a phase transition (Stam et al., 2016),

and strong structure–function agreement is reported near Hopf bifurcations

in Hlinka and Coombes (2012). Similarly, analysis of the dynamical systems

40
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underpinning neural simulations have shown to be a good fit to fMRI data when

the system is near to bifurcation (Deco et al., 2019; Tewarie et al., 2018). These

results provide a possible manifestation of the so-called critical brain dynamics

hypothesis (Shew and Plenz, 2013; Cocchi et al., 2017), which posits that the

brain operates in a regime poised at a near a critical point between an attractor

of complete inactivity another of high activity (Beggs and Timme, 2012).

Here we present a combined computational and mathematical study,

which significantly extends the related works of Hlinka and Coombes (2012)

and Crofts et al. (2016), to investigate how the detailed and rich dynamics

of the intrinsic behaviour of neural populations, together with structural con-

nectivity, combine to shape FC networks. We treat the issue of criticality by

investigating how bifurcations of model solutions and stability of synchrony

within the network organise features of emergent FC. Importantly, we find

that restricting our mathematical analysis to the node is sufficient to explain

some features of the structure–function relationship measured from simulations

of neural activity.

4.1 Data acquisition

The connectome data we use for these analyses was estimated using dif-

fusion MRI data recorded with informed consent from 10 subjects, obtained

from the Human Connectome Project (HCP) (Van Essen et al., 2013). Proba-

bilistic tractography, as described in section 2.1.3, was employed to determine

the paths of white matter tracts. The processing of the raw MRI data into

the connectivity matrix employed in this chapter was conducted by Glasser

et al. (2013), though we describe an overview of the techniques used here.

Briefly, 60,000 vertices on the white/grey matter boundary surface for each

subject were used as seeds for 10,000 tractography streamlines. Streamlines

were propagated through voxels with up to three fibre orientations, estimated

from distortion-corrected data with a deconvolution model (Jbabdi et al., 2012;

Sotiropoulos et al., 2016). The number of streamlines intersecting each ver-
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tex on the boundary layer was measured and normalised by the total number

of valid streamlines. This resulted in a 60,000 node structural matrix, which

was further parcellated using the 78-node AAL atlas by computing the mean

connectivity between all pairs of vertices within each region. This was used

to describe connections between brain regions, providing an undirected (sym-

metric), weighted connectivity matrix. To enable a meaningful comparison

between the network measures of SC and FC, the former reflecting the density

of tractography streamlines and the latter that of correlated neural activity, we

place them on a similar footing by thesholding and binarising, such that only

the top 23% of the weights (ordered by strength) are retained; see Figure 4.1.

Thresholding is a widespread technique for removing spurious connections that

may not in fact be a realistic representation of brain connectivity. We note

that our thresholding choice (that reduces the number of connections, while

ensuring that the overall modular structure is unchanged) is commensurate

with a recent study (Tsai, 2018), which employed DTI data averaged on the

same brain atlas as used herein to consider thresholding approaches suitable to

remove weak connections with high variability between (n = 30) different sub-

jects. This threshold level is also chosen for consistency with SC data employed

in a related study (Hlinka and Coombes, 2012). To generate nodal inputs with

commensurate magnitudes, the structural connectivity matrix was normalised

by row so that afferent connection strengths for each node sum to unity. This

normalisation process permits some of the analysis that we undertake to help

explain SC–FC relations in regards to stability of oscillations and synchroni-

sation (in particular, results arising from the weakly-coupled oscillator theory

outlined in section 3.4). The physiological consequence of normalisation is that

the relative number of connective white matter fibres is considered to be the

same for each node, though we justify this simplification by highlighting that

the results we present herein are not crucially dependent on such a choice and

so our conclusions generalise (see section 4.5.3).
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Figure 4.1: SC post-processing. The original structural matrix (a) is derived
from DTI data taken from the Human Connectome Project database and parcellated
on to a 78-region brain atlas. This is thresholded and binarised to keep the top 23%
strongest connections (b) and normalised by row so that

∑N
j=1wij = 1 for all regions

i) in (c).

4.2 Analysis of the Jansen-Rit Model

Introducing an index i = 1, . . . , N to denote each node in a network of N

interacting neural populations, we modify the m = 6 dimensional Jansen–Rit

system of equations introduced in (2.3) with notation of the form of (3.3):

ẏ0i = y3i , ẏ1i = y4i , ẏ2i = y5i ,

ẏ3i = Aaf (y1i − y2i)− 2ay3i − a2y0i ,

ẏ4i = Aa

{
Pi + ε

N∑
j=1

wijf
(
y1j − y2j

)
+ C2f (C1y0i)

}
− 2ay4i − a2y1i ,

ẏ5i = BbC4f (C3y0i)− 2by5i − b2y2i ,

(4.1)

where,

f(v) =
νmax

1 + exp(r(v0 − v))
. (4.2)

The model is identical to that presented in Jansen and Rit (1995) for a

single cortical column, but is completed by the specifying the network inter-

actions as a function of average membrane potential of afferently connected

pyramidal populations, encoded in a connectivity matrix with elements wij,

with an overall scale of interaction set by ε. The remaining model parame-
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ters, together with their physiological interpretations and values (taken from

Grimbert and Faugeras (2006), and Touboul et al. (2011)), are given in Table

4.1.

The model represents a population of pyramidal neurons receiving and

sending signals between populations of inhibitory and excitatory interneurons

(recalling the schematic for a single node in Figure 2.7), except that here

we explicitly define external input to the PC population, which consists of

an extracortical input Pi, as well as contributions from afferently connected

nodes.

The Jansen–Rit model, defined by equation (4.1), adds complexity in

relation to the similar study of Hlinka and Coombes (2012), in which the

Wilson–Cowan model was employed. It can support oscillations that relate

to important neural rhythms, such as the well known alpha, beta and gamma

brain rhythms, and also irregular, epileptic-like activity (Ahmadizadeh et al.,

2018). Moreover, the model is able to replicate visual-evoked potentials seen

in EEG recordings (Jansen and Rit, 1995), from which FC may be empirically

measured (Srinivasan et al., 2007).

4.2.1 Linear stability

A natural starting point to elucidate the nature of a mathematical model’s

solutions is through linear theory, which can be used to reveal the types of so-

lutions the model supports. Here, we pursue this analysis for both the single

node and network cases in order to deduce whether the network significantly

impacts the resultant dynamics of the model.

Single Node bifurcations

Bifurcations for a single node are readily computed using the software

package XPPAUT (Ermentrout, 2002), using A and B as the parameters of

interest. The result is a Hopf and saddle-node set in parameter space, which

bounds a region of oscillatory solutions. We also observe a region of bistability

bounded by fold bifurcations of limit cycles, in which the types of activity
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Parameter Meaning Value

C1, C2, C3,
C4

Average number of synapses between
populations

135, 108, 33.75,
33.75

Pi Basal extracortical input to main
pyramidal excitatory populations

120 Hz

A,B Amplitude of excitatory, inhibitory PSPs
respectively

[2, 14] mV,
[10, 30] mV

a, b Lumped time constants of excitatory,
inhibitory PSPs

100 s−1, 50 s−1

ε Global coupling strength 0.1

wij Coupling from node j to i [0, 1]

νmax Maximum population firing rate 5 Hz

v0 Potential at which half-maximum firing
rate is achieved

6 mV

r Gradient of sigmoid at v0 0.56 mV−1

Table 4.1: Parameters in the Jansen–Rit model. Parameters appearing in
equations (4.1) and (4.2) along with physiological interpretations and values/ranges
used in simulations, which were taken from Grimbert and Faugeras (2006) and
Touboul et al. (2011). In particular, the values of A and B, which modulate the
strength of excitatory and inhibitory responses respectively, were chosen as the key
control parameters for varying network activity.

described in Figure 4.2(a) and (c) can both exist. This is shown in Figure 4.3.

We refer the reader to Grimbert and Faugeras (2006) Touboul et al. (2011) and

Spiegler et al. (2010) for a comprehensive analysis of the bifurcation structure

of the Jansen–Rit model.

Network bifurcations

The corresponding diagram for the full network requires numerical anal-

ysis of a much higher dimensional system, described by N ×m = 78× 6 = 468

ODEs; this is computationally demanding, and so we adopt the quasi-analytic

approach of section 3.3 by linearising the full network equations around a fixed

point. The resulting equations can be block-diagonalised (equation (3.11)) in

the basis of eigenvectors of the structural connectivity, leading to a set of N

equations (equation (3.13)), each of which prescribes the spectral problem for

an m-dimensional system. Thus, each of these low dimensional systems can be

easily treated without recourse to high performance computing. Moreover, this

approach exposes the role of the eigenmodes of the structural connectivity ma-

trix in determining the stability of equilibria. We report the locus of Hopf and
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saddle-node sets for the network in Figure 4.5. Comparison of Figures 4.3 and

4.5 shows that the bifurcation structure of steady states for the full network is

practically identical to that of the single node. Indeed, the coupling strength

(ε = 0.1) is chosen such that network interactions are significant, demonstrated

by the weakly-coupled reduction being only marginally predictive of the full

model here (discussed later in this chapter in section 4.5.2), highlighting the

potential importance of single-node dynamics in driving SC–FC correlations.

4.2.2 False Bifurcations

In Figure 4.2 we consider in more detail the types of activity that the net-

work model (4.1) supports. In particular, we observe that under changes to pa-

rameter values within the oscillatory region (see highlighted parameter values

in Figure 4.3), the time-course of activity shifts from single- to double-peaked

waves, which could have consequences for synchronisation of oscillations and,

moreover, FC. The points of transition are known as false bifurcations since

there is a significant dynamical change that occurs smoothly rather than crit-

ically. False bifurcations in a neural context have previously been seen as

canards in single neuron models (Desroches et al., 2013) as well as in EEG

models of absence seizures (Marten et al., 2009). In the latter case the false

bifurcation corresponds to the formation of spikes associated with epileptic

seizures (Moeller et al., 2008). Indeed, the Jansen-Rit model has previously

been shown to exhibit transient shifts between absence and background activ-

ity states by exploiting its bistable solutions (Goodfellow et al., 2011).

As illustrated in Figure 4.2 the false-bifurcation transition is charac-

terised by the change from a double-peaked profile (a) to a sinusoidal-like

waveform (c) via the development of a point of inflection in the solution tra-

jectory (b). Since this transition is not associated with a change in stability of

the periodic orbit, these false bifurcations are determined by tracking param-

eter sets for which points of inflection occur. We refer the reader to Rodrigues

et al. (2010) for details on methods for detecting and continuing false bifur-
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cations in dynamical systems analytically. Here, however, we use a numerical

approach, whereby the single-node system was integrated to a stable oscilla-

tory orbit, then the number of local maxima in each period was measured.

This divided the domain into two segments, for one and two local maxima.

The interface between these regions gives the loci of false bifurcations. The

result of this computation is shown in Figure 4.3, where we observe the set

of false bifurcations arising from the breakdown of two branches of fold bifur-

cations of limit cycles. In the full network (not shown), this computation is

more laborious (and there is some delicacy in defining the bifurcation since

the network coupling leads nodes to inflect at marginally different parameter

values); however, we obtain very similar results to those obtained in Figure 4.3

for a single node.
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Figure 4.2: Activity profiles. Reporting y = y1 − y2, the potential of the main
population of pyramidal neurons for a node in the Jansen–Rit network (1) in the
absence of noise, with B fixed at 22 and (a) A = 9.0; (b) A = 7.7; (c) A = 7.0 and
other parameter values as in Table 4.1. Subfigures in the upper row are plots of the
time-series solution, whereas the bottom row shows the trajectories of stable orbits
in the (y, y′) plane. The chosen parameters lie at either side of the region where a
smooth transition between activity types occurs, corresponding to a false bifurcation
(see highlighted parameter values in Figure 4.3). In (b), an inflection point occurs
and is highlighted as a red star on the orbit.
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Figure 4.3: Two-parameter bifurcation diagram. Bifurcation sets in the
(A,B) plane for the single-node case of the Jansen–Rit system of equations (4.1).
Other parameter values are as stated in Table 4.1. Red dashes are Hopf bifurcations,
black dots are false bifurcations and blue lines represent saddle points. There is also
a region of bistability, highlighted in yellow, which is bounded by saddle nodes
and a set of fold bifurcations of limit cycles. The pink and yellow shaded regions
indicates parameter values for which there exist stable oscillatory solutions. The
three coloured dots at B = 22, A = 7.0, 7.7, 9.0 indicate parameter values at which
we observe distinctly different dynamics as shown in Fig. 4.2.

4.3 Computational methods

In this section we outline the numerical methods used to generate time-

series solutions of Jansen–Rit network dynamics and how these are used to

generate FC matrices.

4.3.1 Forward simulations

In what follows, we consider the patterns of dynamic neural activity that

arise under systematic variation of the model parameters A and B, these be-

ing chosen as the parameters of interest because they govern the interplay

between inhibitory and excitatory activity, which would typically vary due to

neuromodulators in the brain (Rich et al., 2018). It is known that a single

Jansen–Rit node can support multi-stable behaviour which includes oscilla-
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tions of different amplitude and frequency, for example in the yellow region

bounded by fold points in the bifurcation diagram of Figure 4.3. Moreover,

a network of these nodes can also exhibit various stable phase-locked states.

However, we showed in section 3.4 that a globally synchronous steady state

also exists in the network, which is physiologically unrealistic in terms of the

complex patterns of FC that we concern ourselves with. In order to drive the

system away from global synchrony and allow the system to explore a variety

of dynamical states, a small amount of white noise is added to the extracortical

input Pi on each node: Pi + dWi(t), where dWi(t) is chosen at random from

a Gaussian distribution with standard deviation 10−1 Hz and mean 0 Hz. For

direct simulations of the network we use an Euler–Murayama scheme,

Yn+1 = Yn + F(Yn)dt+ dW, (4.3)

where Yn is the vector of dependent variables at the nth timestep, F(Yn) is the

network dynamics given by the RHS of (4.1), dW is the vector of additive noise

and dt is the integration timestep. This numerical method was implemented in

Matlab®, with a fixed numerical time-step of 10−4, which we have confirmed

ensures adequate convergence of the method (Figure 4.4), and a total time

of 500 seconds (of which the first 40 seconds were omitted to remove initial

transients from the time series data).

4.3.2 FC network construction from time-series

In view of the non-linear oscillations supported by the network model

given by (4.1), functional connectivity networks are obtained by computing

the commonly-used metric of mean phase coherence (MPC; Mormann et al.

(2000)), which determines correlation strength in terms of the proclivity of two

oscillators to phase-lock, giving a range from 0 (completely desynchronised) to

1 (phase-locking). We choose yj = y1j − y2j as the variable of interest because

of its relation to the EEG signal, making it a good candidate to produce time-

series more readily comparable with empirical data. Pairwise MPC measures
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Figure 4.4: Convergence of the Euler–Maruyama scheme for integrating
the Jansen–Rit system. (a) Example trajectories of the solution yi = y1i − y2i

obtained from a single node under identical Brownian driving paths, for different
numerical timesteps, as indicated in the legend. (b) Convergence of the error in the
expectation of the solution y for different timestep choices, showing linear propor-
tionality between the change in the amplitude of oscillatory solutions ∆Amplitude
and change in timestep ∆t, indicating optimal convergence of the method.
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the average temporal variance of the phase difference ∆φjk(t) = φj(t)− φk(t),

between two time-series indexed by j and k, where here the instantaneous

phase φj(t) is obtained as the angle of the complex output resulting from

application of a Hilbert transform to the time-series, yj(t),

φj(t) =
1

π

∫ ∞
−∞

yj(τ)

t− τ
dτ, (4.4)

which is computed using Matlab®’s built-in hilbert function. The mean

phase coherence of the time-series comprising M time-points tl (l = 1, . . . ,M)

is defined as:

Rjk =

∣∣∣∣ 1

M

M∑
l=1

ei∆φjk(tl)

∣∣∣∣, (4.5)

which we computed as an average over the entire time series.

Structure–function relations are assessed by computing the Jaccard sim-

ilarity coefficient (Jaccard, 1912):

J(X, Y ) =

∑
i

∑
j min{xij, yij}∑

i

∑
j max{xij, yij}

, (4.6)

for two matrices X and Y of the same size, with elements xij and yij respec-

tively. When calculated for the non-diagonal entries of the binarised SC and

FC matrices, this describes the relative number of shared pairwise links be-

tween the two networks, providing a natural measure of structure–function

similarity, ranging from zero for matrices with no common links to unity for

identical matrices. The code for this computation is shown in Appendix A.

4.4 Weakly-coupled oscillator theory

In section 3.4 we showed that for networks with a row-sum constraint (as

we have imposed on the SC matrix in this chapter), there is a globally syn-

chronous steady state. Its linear stability, governed by the eigenvalues of the

reduced model’s Jacobian (3.19), is determined by the first derivative of phase

interaction function. Therefore εI ′(0) > 0 can be considered a natural prereq-
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uisite for a structured network to support high levels of synchrony (without

recourse to exploring the full Jacobian structure). Algorithm 1 outlines the

procedure for calculating I ′(0) for the Jansen–Rit model. For completeness,

however, the full Jacobian is also computed in order to account for the poten-

tial influence of detailed structure on the correspondence with the observed

SC–FC agreement measured in simulations. To do this, the system given by

(4.1) was integrated with ε = 0.001 to a (stable) phase-locked state, and rel-

ative phases computed. The eigenvalues of the Jacobian (eq. (3.19)) were

then computed, with the largest non-zero real value providing an indication of

solution attractivity. Note that although we do not characterise all possible

phase-locked solutions (of which there may be too many for feasible numerical

computation), we use this measure of stability of a single network state to serve

as a comparison to the more readily solvable single-node analytical measures

with which we mostly concern ourselves in this chapter.

It has been shown in Tewarie et al. (2018) that the eigenmodes of the

structural connectivity matrix are predictive of emergent FC networks arising

from an instability of a steady state. The largest non-zero eigenvalue, which is

related to the most unstable eigenmode (or closest to instability), was found to

be a good predictor of FC resulting from neural-mass time-series by computing

the tensor product of its corresponding eigenvector, v ⊗ v. Here we take this

further by considering instabilities of the synchronous state. In this case the

Jacobian (3.19) reduces to −εI ′(0)Lij and the phase-locked state that emerges

beyond instability of the synchronous state has a pattern determined by a

linear combination of eigenmodes of the graph Laplacian, since all eigenmodes

destabilise simultaneously. It is known that the graph Laplacian can be used

to predict phase-locked patterns (Chen et al., 2012) and has indeed been used

to predict empirical FC from SC (Abdelnour et al., 2018). Following from

this, the eigenmodes of the Jacobian in (3.19) can be used as simple, easily

computable proxy for the FC matrix when the system is poised at a local

instability.
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Algorithm 1 Algorithm to find I(0) as defined in equation (3.18)

1: procedure PhaseInteractionFunction(params)
. Where params contains the Jansen-Rit parameters.

2: dt = 0.01 . Set time-step

3: yi =rand(6) . Set random initial conditions for variables

4: [T ,Y]=orbit(params,yi,dt) . Solve to find orbit Y with period T .

5: if T = 0 then . Test for existence of orbit.

6: return

7: end if

8: total = 20T . Set total time for computing adjoint (equation (3.17)).

9: Qi =rand(6) . Random initial conditions for phase response function.

10: for total→ 0 do . Solve adjoint in backwards time.

11: solve Q̇=Adjoint(params, y, Qi, T )

12: end for

13: Q(t) = flip(Q(end− T : end)) . Isolate one period of (forward) time.

14: . Compute Ẏ, given by system (4.1) evaluated at Y.

15: inner = 〈Q, Ẏ〉dt/T . Computing time-averaged inner product.

16: Q = Q/inner . Normalising phase response function.

17: H = zeros(size(Q)), H5 = f(y1(t)− y2(t)) . Define interaction.

18: I(0) = 〈Q,H〉dt/T . Calculate interaction function.

19: end procedure
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4.5 Results

4.5.1 Structure-function similarity
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Figure 4.5: Structure–function analysis results. (a) Jaccard similarity coef-
ficient between SC and FC (measured by MPC in (4.5), averaged over the entire
460 second timeseries) when the Jansen–Rit network (4.1) supports an oscillatory
solution, averaged over 30 realisations of initial conditions chosen at random. Pa-
rameter values are given in Table 4.1. Warmer colours indicate greater SC/FC cor-
relation. Here we have superimposed the bifurcation diagram for the network steady
state, which shows the oscillatory region being bounded by Hopf/saddle-node sets
in solid/dashed white lines respectively; boxes are Bogdanov–Takens points. False
bifurcations in the single node case are indicated by a black line but, because of
its relative size, the bistable region is not shown (though can be seen for the sin-
gle node case in Figure 4.3). (b) The value of I ′(0) (see (3.16) and (3.19)) in the
A,B-plane. When this value is positive/negative, the globally synchronised solu-
tion is stable/unstable (if it exists). Crosses mark parameters where we inspect the
time-series in Figure 4.10. (c) The largest non-zero eigenvalue of the Jacobian for
the full weakly-coupled oscillator network (equation (3.19)), calculated at a stable
phase-locked state. More negative values indicate a stronger stability.

Figure 4.5 shows plots in the (A,B) parameter space highlighting our

studies on the combined influence of SC and node dynamics on FC. In all pan-

els, we report values in the region bounded by the bifurcation curves, obtained

via a linear instability analysis of the network steady state, where the network

model supports oscillations as well as phase-locked states. In Figure 4.5(a)

the Jaccard similarity between SC and FC is computed from direct numerical

simulations of the Jansen–Rit network model (4.1). Beyond the onset of os-

cillatory instability (supercritical Hopf bifurcation) the emergent phase-locked
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network states show a nontrivial correlation with the SC. This varies in a rich

way as one traverses the (A,B) parameter space, showing that the precise form

of the node dynamics can have a substantial influence on the network state.

The highest correlation between SC and FC appears just beyond a Hopf bi-

furcation of a network equilibrium (shown as a solid white line), whilst a band

of much lower correlation coincides with the fold bifurcations of limit cycles

and false bifurcations of a single node (in black), reproduced from Figure 4.3.

Indeed, it would appear that these mathematical constructs are natural for

organising the behaviour seen in our in silico experiments. We reiterate that

we have confirmed that the organising SC–FC features that we here identify

are not crucially dependent on the binarisation, thresholding and normalisa-

tion procedure, described in section 4.1 and are qualitatively similar under

variation of coupling strength (see section 4.5.3).

In Figure 4.5(b) we show a plot of I ′(0). Recall from our discussion

of weakly-coupled oscillator theory in section 3.4 that a globally synchronous

state (which is guaranteed to exist from the row-sum constraint) is stable if

εI ′(0) > 0. Comparison with (a), highlights that when synchrony is unstable

(εI ′(0) < 0), SC only weakly drives FC and we observe a low Jaccard simi-

larity relative to that in the rest of the explored parameter space. Moreover,

this instability region coincides with the region of bistability and the false bi-

furcation, stressing the important role of these bifurcations for understanding

SC–FC correlation. Where εI ′(0) > 0, we observe higher Jaccard similarity

when I ′(0) appears closer to 0, suggesting that operating close to criticality of

synchrony facilitates greater SC–FC correlation.

Of course, there is a much finer structure in Figure 4.5(a) that is not pre-

dicted by considering either the bifurcation from steady state, or the weakly-

coupled analysis of synchronous states, and so it is illuminating to pursue the

full weakly coupled oscillator analysis for structured networks. The eigenval-

ues of the Jacobian, corresponding to more general stable phase-locked states,

can be used to give a measure of solution attractivity. The largest eigenvalue
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is plotted in Figure 4.5(c). The most stable (non-synchronous) phase-locked

states occur in the neighbourhood of the false bifurcations, as well as in the

region of bistability and along the existence border for oscillations, defined

by a saddle node bifurcation. Furthermore, stronger stability of the general

phase-locked states corresponds with stronger stability of global synchrony (in

Figure 4.5(b)), apart from near false bifurcations, which again highlights their

importance in organising the observed SC–FC correlations. In correspondence

with Figure 4.5(b), we find that when the phase-locked solution is closer to crit-

icality, in accordance with the largest eigenvalue being closer to 0, we observe

higher Jaccard SC–FC similarity in Figure 4.5(a), which again emphasises the

role of critical dynamics in influencing patterns of FC.

4.5.2 Phase-locking and synchrony

To test the predictive power of the weakly-coupled theory, we compare

the emergent FC structure obtained from direct simulations of the Jansen–Rit

network model (4.1) against direct simulations of the weakly-coupled oscillator

network (3.16). In this case, MPC (4.5) is not ideally suited for our study

because it does not discern between phase-locking and complete synchrony, yet

we consider situations where stable phase-locking naturally arises. Therefore,

FC in the weakly-coupled network is computed via the new metric of mean

phase agreement (MPA), whereby patterns of coherence are determined by a

temporal average of relative phase differences:

R̂jk =
1

M

M∑
l=1

1

2

(
1 + cos(∆φjk(tl))

)
. (4.7)

In Figure 4.6, the phases required to compute (4.7) from simulations of (4.1)

are determined from each node’s time-series by a Hilbert transform; in the

weakly-coupled oscillator case, the phase variables from equation (3.16) are

employed directly. Since the weakly-coupled reduction of the Jansen–Rit

model is deterministic, these simulations were computed in the absence of

noise (dWi = 0 for all nodes), using Matlab’s built-in ode45 adaptive time-
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stepper (the model equations were integrated for a total time of 1000 seconds).

As expected, we find excellent agreement between the modular FC structure in

the case of very weak coupling, with this agreement reducing with increasing

ε, as quantified by a reduction in Jaccard similarity (from 0.98 in panel (a) to

0.65 in (c)). This is a manifestation of the network moving from a dynamical

regime that can be well described by the weakly-coupled reduction (3.16) to

one where stronger network interactions dominate. Since an analogous the-

ory does not exist for stronger coupling, we do not consider here how SC–FC

relations arise from network dynamics within a strongly–coupled framework.
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Figure 4.6: Comparison of FC patterns from averages of realisations of the weakly-
coupled oscillator model (3.16) with corresponding Jansen–Rit (4.1) simulations,
with no noise present, at A = 5, B = 19, computing averages over 600 realisations
with initial conditions chosen at random (other parameter values are given in Table
4.1). (a) ε=0.01; (b) ε=0.1; (c) ε=1. These results show how the weakly-coupled
theory becomes less predictive for stronger coupling strengths, resulting in matrices
with Jaccard similarity of 0.98, 0.76 and 0.65 (to 2 s.f.) respectively.
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Through the instability theory of the synchronous state we can construct

a proxy for the FC as described in section 4.4. In Figure 4.7 we compare

simulated FC with that predicted by R? using the tensor product sum,

R? =
N∗∑
i=1

λivi ⊗ vi (4.8)

of vk = (v1
k, . . . , v

N
k ), which denotes the kth eigenvector of the Jacobian for

the synchronous state. These are weighted by their corresponding eigenval-

ues, λk, and we include the N∗ unstable eigenmodes (i.e. using the unstable

eigenmodes of the Jacobian at synchrony), for parameter values that lie just

beyond the onset of instability of the globally synchronous state and near the

false bifurcation set (see Figure 4.5(a,b)). We observe that the key features of

the FC are captured by the eigenmode prediction; indeed the (weighted) Jac-

card similarity coefficient between predicted and simulated FC (both scaled to

[0, 1]) is calculated to be 0.82. We believe this to be a reasonable prediction

considering the high dimensionality and non-linearity of the model, though a

smaller network with dynamics operating closer to its linear approximation

would likely be better predicted by this method. This offers a convenient way

of predicting an emergent FC pattern, since it does not rely on brute-force

forward integrations of the full network model, which may take a long time

to converge. However, it does require, knowing the phase-locking solution to

the weakly-coupled oscillator model, though this is generally of a much lower

dimension since it consists of only one ODE for each oscillator.

4.5.3 Impact of SC post-processing on results

As described in secction 4.1, we process structural connectivity data ob-

tained from the HCP by thresholding, binarising and normalising by row. To

confirm that these procedures do not unduly influence our conclusions, or re-

strict their applicability, we performed the following tests. First, we check

that the results in Figure 4.5 hold under different levels of threshold. Then,
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Figure 4.7: (a) FC prediction given by the a linear combination of eigenmodes
of the weakly-coupled oscillator system, given by tensor products of eigenvectors of
the SC graph Laplacian (4.8), with N∗ = N . (b) Direct simulation of the Jansen–
Rit network model (4.1) with no noise present. Parameter values are chosen as
A = 6, B = 18, which lies near the existence border for stable synchronous solutions
(see Figure 4.5(b)); other parameter values are given in Table 4.1. The (weighted)
Jaccard similarity between the two FC networks (scaled to [0, 1] for comparability)
is calculated to be 0.82, indicating the predictive power of equation (4.8).

we confirm that we observe similar results for the unbinarised network.

Statistical checks on the distribution of unthresholded SC weights indi-

cate that node degree distributions have standard deviation of less than 10%

of the mean, and outliers differ from the mean by less than 25%. Therefore we

are confident that our thresholding and binarisation process does not unduly

influence the SC network structure, and thereby our results. We have also con-

firmed that the features of SC–FC correlation that we uncover in Figure 4.5(a)

are retained for different thresholds (namely: 20%, 30%, 40%, see Figure 4.8).

To ensure that binarisation of the SC matrix did not crucially influence

our findings, we recalculate equivalents of Figures 4.5(a) and (c) for a weighted,

un-normalised network, obtaining similar SC–FC structures (see Figure 4.9).

Inspection of node behaviour in the weighted un-normalised network, at pa-



60 Chapter 4. The role of node dynamics in shaping functional connectivity

rameter choices for which Figure 4.5(b) predicts stable or unstable synchronous

behaviour, shows that the predictive power of our linear analysis is retained in

the un-normalised case (see Figure 4.10).
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Figure 4.8: Jaccard similarity coefficient at different thresholds. Computed
in exactly the same fashion as in Figure 4.5(a), except in each case the structural
matrix was thresholded to (a) 20%, (b) 30% and (c) 40% of its strongest connections,
which were then binarised and normalised by row sum.

As noted in Hansen et al. (2015), variation in coupling strength can affect

SC–FC relations. In Figure 4.11, we show that the essential organising features

of the Jaccard similarity between SC and FC that we highlight in Figure 4.5(a)

are qualitatively unchanged for a range of choices of coupling strength ε.

These tests indicate that the steps taken to post-process the SC data, in

the interests of analytical tractability, do not unduly negate the significance of

the computational results. Specifically, in all network cases, we find that the

relatively low SC–FC agreement is observed when parameters are close to the

false bifurcation set.

4.6 Discussion

In this chapter, we investigated the degree to which the dynamical state

of neural populations, as well as their structural connectivity, facilitates the

emergence of functional connections in a neural-mass network model of the

human brain. We have addressed this by using a mixture of computational

and mathematical techniques to assess the correlation between structural and

functional connectivity as one traverses the parameter space controlling the

inhibitory and excitatory dynamics and bifurcations of an isolated Jansen–Rit
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Figure 4.9: Results for un-normalised network. (a) Jaccard similarity co-
efficient between SC and FC in numerical simulations of the Jansen–Rit network
model (4.1), when the network supports an oscillatory solution. Here the structural
connectivity is the original weighted, un-normalised data. Model parameters are
as in Figure 4.5. (b) The largest non-zero eigenvalue of the Jacobian for the full
weakly-coupled oscillator network (3.16), calculated at a stable phase-locked state
for the un-normalised SC matrix.

neural mass model. Importantly, SC has been estimated from HCP diffusion

MRI datasets. We did not record high levels of similarity (which ranged from

∼ 0.1 to ∼ 0.3 in Figure 4.5(a)), which reflects the fact that the model sup-

ports FC states that differ highly from the SC. Moreover, the focus here was to

investigate the degree to which emergent SC–FC similarity could be predicted

from the underlying node dynamics operating within the wider network, by

comparing the pattern of Jaccard similarity in relation to different analytical

measures (i.e. bifurcation sets and stability of phase-locking) within the ex-

plored parameter space. We find that SC strongly drives FC when the system

is close to a Hopf bifurcation, whereas in the neighbourhood of a false bifur-

cation, this drive is diminished. These results emphasise the vital role that

local dynamics has to play in determining FC in a network with a static SC.

In addition, we show that a weakly-coupled analysis provides insight into the
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Figure 4.10: Correspondence of synchrony stability in normalised versus
un-normalised network. time-series plots for the node activity in the unnor-
malised structural network for parameters A = 3.6, B = 24 (1), A = 5, B = 18.6 (2),
A = 12.4, B = 24 (3), which correspond to different levels of stability of synchrony
as labelled in Figure 4.5(b). In these simulations, ε = 0.01.

organisation of SC–FC correlation features across parameter space, and can

be exploited to predict emergent FC structure.

We note that modelling SC–FC relations is a well-studied field and we

outline some related studies which have reported relevant results to contex-

tualise our findings. Messé et al. (2014) considered statistical models to pre-

dict FC from SC (in particular, a spatial simultaneous autoregressive model

(sSAR), whose parameters can be estimated in a Bayesian framework) and

found, interestingly, that simpler linear models were able to fare at least as

well. More recently, Saggio et al. (2016) were also able to make predictions of

FC from empirical SC data (and vice versa) using a simple linear model. Since

the only free parameter of their model for SC is the global coupling strength,

results from this method are efficient and computationally inexpensive. We

have not attempted to reproduce empirical data here, but we have shown that

similar predictions can be made using bifurcation theory and network reduc-
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Figure 4.11: Jaccard similarity coefficient at different coupling strengths.
These were computed in exactly the same fashion as in Figure 4.5(a), except in each
case ε was set to (a) 0.01, (b) 0.1, (c) 1.0.

tion techniques; such an approach allows us to consider in more detail, and

explain, the influence of the rich neural dynamics supported by the Jansen–Rit

model on SC–FC relationships. Nevertheless, it is important to note that the

FC structures we are concerned with are averaged over long-time scales and

therefore represent a static FC state, as opposed to dynamic FC. Use of such

static FC networks as a clinical biomarker is widespread; however, subject vari-

ability in FC means that their predictive power is restricted to group analyses

(Mueller et al., 2013). To capture the rich dynamic FC repertoire exhibited in

empirical resting state data, for example the distinct hierarchical organisation

in switching between FC states (Vidaurre et al., 2017), will require alternative

approaches. One such approach is dynamic causal modelling, as employed in

Goulden et al. (2014) and Van de Steen et al. (2019) for empirical data.

The modelling work presented here is relevant in a wider neuroimaging

context—for example, epilepsy is often considered to be caused by irregularities

in synchronisation (Mormann et al., 2003; Netoff and Schiff, 2002; Lehnertz

et al., 2009). It is noteworthy that the changes in synchrony patterns that

we observe can be largely attributed to local dynamical considerations, with-
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out the need to concern ourselves with large scale structural topology. In the

Jansen–Rit model, the bifurcations organising emergent FC take the form of

Hopf, saddle, fold of limit cycle and false bifurcations. False bifurcations have

received relatively little attention in the dynamical systems community (a no-

table exception being the work of Marten et al. (2009)), although our results

indicate that they may be significant for understanding how ‘synchronisability’

of brain networks is reduced during seizures. This phenomena was reported

in Schindler et al. (2008), which also found that synchronisability increases as

the patient recovers from seizure state.

A natural extension to the work presented here would be the inclusion

of conduction delays, characterised by Euclidean or path-length distances be-

tween brain regions, which are certainly important in modulating the spa-

tiotemperal coherence in the brain (Deco et al., 2009). These would manifest

as constant phase shifts in the weakly-coupled reduction of the model (Ton

et al., 2014). For strongly coupled systems the mathematical treatment of

networks with delayed interactions remains an open challenge. Recent work in

this vein by Tewarie et al. (2019) focuses on the role of delays in destabilising

network steady states, and techniques extending the Master Stability Func-

tion to delayed systems (Otto et al., 2018) may be appropriate for treating

phase-locked network states. Though we do not pursue a direct extension to

the study presented in this chapter (which would ideally contain analogues of

all results with the inclusion of delay parameters), in chapter 7, we revisit this

issue to investigate delays in the context of neuromodulation, in particular how

delays arising from the topology of brain networks excite different FC patterns.

In summary, the findings reported here suggest that there are multi-

ple factors which give rise to emergent FC. While structure clearly facilitates

functional connectivity, the degree to which it influences emergent FC states

is determined by the dynamics of its neural sub-units. Importantly, we have

shown that local dynamics has a clear influence on SC–FC correlation, as does

network topology and coupling strength. Our combined mathematical and
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computational study has demonstrated that a full description of the mecha-

nisms that dictate the formation of FC from anatomy requires knowledge of

how both neuronal activity and connectivity are modulated and, moreover,

exposes the utility of bifurcation theory and network reduction techniques.

These together add to the wider study of SC–FC relations and their relevance

to the critical brain hypothesis (discussed in section 2.1.2). Moreover,our re-

sults demonstrate that this analysis may largely be conducted on the local level

of single-node dynamics, rather than the wider network, as an expedient way to

study properties of the emergent FC. This work is further extended to a more

complex neural mass model derived by Coombes and Byrne (2019) in chap-

ter 6, to explore the relationship between dynamics and structure–function

relations in externally stimulated neural networks, with particular focus on

applications to TMS. In the next chapter, we will again consider SC–FC re-

lations in a study less driven by understanding of the dynamical properties

of networks, but more focussed on the topology of networks. In particular,

we investigate whether the topological changes induced by thresholding and

binarising SC has a significant impact of SC–FC relations in an extension of a

multiplex network measure defined by Crofts et al. (2016).



Chapter 5

A weighted clustering measure

for multiplex brain networks

In this chapter, we deploy techniques from network science to further inter-

rogate structure–function relations in the brain. In chapter 4, we largely fo-

cused on the impact that nodal dynamics has on structure–function relations.

The Jaccard index proved a useful metric by which we could characterise the

structure–function relationship in the light of our mathematical results, al-

lowing us to perform an in-depth study of how the observed computational

results arose. However, as discussed in chapter 3, there are many network

measures we could use and it is of interest, in the context of neuroimaging, to

develop novel metrics to answer particular questions of connectivity data, be

they theoretical or empirical. Currently, there is growing interest in the use

of multiplex measures, where the edges within each layer represent different

types of interaction between the same set of nodes, to better understand the

relationships between brain networks.

Here we build upon the previous work of Crofts et al. (2016), in which a

multiplex clustering measure to treat binary SC and FC matrices is presented

to investigate the emergence of functional connections that are distinct from

the underlying cortical structure. Their study follows a similar computational

setup to the previous chapter, whereby the SC matrix used in forward sim-

66
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ulations of neural activity is thresholded, binarised and normalised by row.

While binarisation is useful to isolate strong connections to better expose the

modules and clusters in brain networks (Sporns, 2013), it comes at the cost

of losing information about relative connection strengths from which network

metrics may give a better characterisation of the network topology (Dimitri-

adis et al., 2017). Preserving mean node degree, for example, has been found

to be critical in simulating seizure states in a network model incorporating

epilepsy patients’ connectivity data (Petkov et al., 2014).

The aim of the work in this chapter is to establish a measure more widely

applicable to both simulated and empirical structure–function connectivity

data, therefore being more useful to the neuroscience community. In this

extension to Crofts et al. (2016), we generalise the metric presented therein

to treats weighted networks with any number of network layers. We evaluate

the impact of using this measure by conducting a companion computational

study to Crofts et al. (2016), to highlight qualitative differences in the results.

We go on to demonstrate the measure’s usefulness by calculating the multiplex

clustering of a 6 layer multiplex (formed of a SC layer and 5 frequency band-

filtered FC layers).

5.1 Multiplex description

i j

k

(a)

i j

k

(b)

Figure 5.1: Multiplex triads. (a) We consider a triad as being formed of a node
i with connections to two other nodes, j and k in the same (red) layer, which are
not necessarily connected to each other in that layer. (b) A multiplex triad, which
is closed by a connection between j and k present in a second (blue) layer.

A multiplex is a collection of several networks that overlap to comprise

the different types of connections that exist between nodes within the net-
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work. This is a special case of the more general multilayer network, which also

considers connections between layers (Kivelä et al., 2014).

We consider a graph G(V,E[1], . . . , E[M ]), where V is a set of vertices and

Eα is a set of edges appearing in layer α of M network layers. V is the same

for all network layers.

Each layer can now represent a different type of connection. In brain net-

works, the connectivity could constitute FC derived from correlated activity

in different brain rhythm frequency bands (Buldú and Porter, 2018; Tewarie

et al., 2016; Yu et al., 2017b), temporally varying networks measured across dif-

ferent epochs (Mucha et al., 2010; Sannino et al., 2017), or structure–function

network layers (Battiston et al., 2017; Crofts et al., 2016).

It is convenient to use the methodology of Battiston et al. (2014), whereby

standard nodal clustering, ci, represented by equation (3.1) is transformed its

multiplex analogue,

cmultiplex
i =

∑
α

∑
α′ 6=α

∑
j 6=i
∑

k 6=i a
[α]
ij a

[α′]
jk a

[α]
ki

(M − 1)
∑

α

∑
j 6=i
∑

k 6=i a
[α]
ij a

[α]
ki

, (5.1)

where a
[m]
ij represents a connection from node j → i in the mth layer. We

extend the definitions of open and closed triads introduced in 3.1.1 to multiplex

counterparts, composed of edges in different layers. Equation (5.1) is suitable

for treating multiple network layers simultaneously, with triadic structures in

the form of Figure 5.1, but for now we focus on the simplest two-layer case for

the purpose of structure–function analysis.

The novelty of the metric presented in Crofts et al. (2016) was to restrict

this clustering measure to only consider node triplets in the structural layer

S which do not form a closed triad (i.e. the edge weight between j and k in

Figure 5.1 is enforced to be 0) and asks what proportion of these open triads

are closed by an edge in the functional layer F . For a symmetric matrix, this

can be written as:
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cSFi =

∑
j 6=i
∑

k 6=i a
[S]
ij a

[F ]
jk a

[S]
ki (1− a[S]

jk )∑
j 6=i
∑

k 6=i a
[S]
ij a

[S]
ki (1− a[S]

jk )

=
(A[S](A[F ] · (E − A[S]))A[S])ii

(A[S](E − I)A[S] − A[S]3)ii
,

(5.2)

where I is the identity matrix, E is a matrix of ones and the bullet operator

(·) represents element-wise scalar multiplication of matrices.

It is important to note here that this new measure is a departure from

the network analysis posed in the previous chapter. While the aim there, using

the Jaccard index, was to determine the degree to which FC was inherited from

SC, the aim here is to understand where strong functional connections emerge

in presence of a weak structural counterparts. Specifically, the new measure

quantifies the degree to which the addition the functional layer improves the

transitivity of the network relative to the single layer SC. This serves as a tool

to continue to our research into structure–function relations from the previ-

ous chapter, since much of the variability in FC arises from strong functional

connections between anatomically unconnected regions (Honey et al., 2009).

5.2 Methodology

While (5.2) is a useful tool to study emergent SC–FC relations, it was

only employed in Crofts et al. (2016) for binary data with 2 layers. Here, we

generalise this measure to consider an arbitrary multiplex of weighted layers.

We also describe how we test that the inclusion of weighted data gives quali-

tatively different results using multiplexes formed of a connectomic structural

layer and FC layers derived from time series of a computational model. Fi-

nally, we report how we obtain preliminary results using FC data obtained

from MEG time series to highlight the usefulness of the metric and the scope

for further study.
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5.2.1 Weighted clustering coefficients

Before we proceed with discussing the specific multiplex measures, it is

important to note that there are several ways to define weighted clustering

measures. In binary networks, we can describe the (single-layer) clustering

coefficient for a node i as,

Number of closed triads centred on node i

Number of triads (open or closed) centred on node i
. (5.3)

In this case, the metric only concerns the existence of closed/open triads,

whereas in the weighted case each must have some value attributed to it. This

is discussed in depth in Opsahl and Panzarasa (2009), where several candidates

for the triadic values are analysed, chiefly the arithmetic and geometric mean

of weights as well as the maximum and minimum weights. However, the choice

of triad value is largely dependent on the type of network being studied and

the particular relationship between interacting nodes that is to be exposed by

the measure.

In this chapter, we use the product of weights as triad values, which

are equivalent to those employed in equation (5.1) when weights are binary.

This ensures that the extension of (5.1) to weighted networks quantifies an

analogous multiplex property.

5.2.2 Generalised multiplex clustering for M weighted

layers

Following on from the definition of triad values, we note that if we have

a set of undirected network layers, with edge weights described by matri-

ces W [m] for each layer m, we can substitute these connectivity weights for

binary strengths in the clustering coefficient (5.1). In this case, the metric

gives the proportionality between the sum of closed multiplex triad products

(w
[α]
ij w

[α′]
jmw

[α]
mi) and all α− layer triad products (w

[α]
ij w

[α]
mi).

As in equation (5.2), we wish to manipulate the clustering coefficient to
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give a notion of how much the secondary layers (α′; appearing blue in figure

Figure 5.1) contribute to the transitivity of the multiplex relative to the under-

lying (α; appearing red in figure Figure 5.1) layers. In (5.2), this is achieved

by only considering open triads that are not completed by a structural edge,∑
j 6=i
∑

k 6=i a
[S]
ij a

[S]
ki (1 − a

[S]
jk ). Assuming weights lie on [0, 1], we can similarly

consider weighted products of triads centred on node i to be inversely pro-

portional to connections between neighbours of i by multiplying by a factor

1 − w
[S]
jk . This ensures that the new metric is equivalent to (5.2) for binary

structure and function. The full generalised clustering coefficient is therefore

c̃i =

∑
Fn

∑
j 6=i
∑

k 6=iw
[S]
ij w

[Fn]
jk w

[S]
ki (1− w[S]

jk )

(M − 1)
∑

j 6=i
∑

k 6=iw
[S]
ij w

[S]
ki (1− w[S]

jk )

=

∑
Fn

(W [S](W [Fn] · (E −W [S]))W [S])ii

(W [S](E − I)W [S] −W [S]3)ii
,

(5.4)

for M undirected network layers, where the first layer denotes brain SC and the

layers Fn, n = 1, . . . ,M −1 are different FC network layers. For our particular

clustering definition we require the weights to lie on [0, 1], so we normalise each

layer m according to W̃ [m] = (W [m] −min(W [m]))/(max(W [m])−min(W [m])).

This scaling is applied to the rest of the networks we concern ourselves in this

chapter.

In order to ascertain the degree to which the clustering coefficient arises

from the specific topology of the multiplex, rather than solely the distribution

of weight values itself, it is helpful to normalise the coefficient by the mean

of corresponding results for random surrogate networks, c̃/〈c̃rand〉, for which

node number, row/column sums and connection density are preserved. In the

following we introduce the procedures for randomisation of networks, with

schematics provided in Figure 5.2.

The algorithm employed here for randomising binary networks is pre-

sented in Maslov and Sneppen (2002), whereby two pairs of connected nodes,

B → A and D → C, are chosen such that no edges exist from D → A and
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Figure 5.2: Randomisation algorithm schematics. An illustration of how
connections and associated weights change at each iteration of the randomisation
procedure for (a) binary thresholded, with aij = 1 if an edge exists from j → i
and 0 if not; (b) weighted thresholded, where wij is the weight of the edge from
j → i and w?CD = wCD − wAB, w?AD = wAD + wAB, w?CB = wAB; (c) weighted
all-to-all networks, with w?AB = wAB − X, w?CD = wCD − X, w?AD = wAD + X,
w?CB = wCB +X, X ∈ [0,min{wAB, 1− wAD, 1− wCB, wCD}].

B → C. The connections within the chosen pairs are then removed and new

connections are added to the pairs D → A and B → C. We extend this to

formulate our own comparable algorithms to treat weighted networks, which

may be all-to-all (where every node pair has an associated edge) or thresholded

(where only a subset of node pairs have edges between them). We note that

similar randomisation algorithms are employed in Opsahl et al. (2008), though

here we pursue algorithms more readily comparable to the method employed

in Crofts et al. (2016) in the interests of continuity with that study. We note

that since the original algorithm of Maslov and Sneppen (2002) was formalised

for directed networks, the following algorithms are also described in terms of

directed networks. It is simple to extend them to undirected networks, how-

ever, by repeating the procedure at each step with subscript indices reversed,

i.e wAB → wBA etc.
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For randomising thresholded weighted networks, we modify this algo-

rithm slightly. We again choose two pairs of connected nodes, where A → B

has the smaller of the two connection weights, but enforce the condition that

an edge exists from D → A, but not from B → C. Furthermore, we require

wAB < 1−wAD, in order to keep all edge weights within [0, 1]. If this is satisfied,

we assign new edge weights w?AB = 0, w?CD = wCD −wAB, w?AD = wAD +wAB,

w?CB = wAB. This ensures that in the 4-node subnetwork we have chosen, we

have 3 edges pre- and post-randomisation to preserve connection density.

When randomising all-to-all weighted networks, we can alter the algo-

rithm further. Again selecting four random nodes (we are now guaranteed that

edges exist between all pairs), we can choose a value X selected (randomly)

from a uniform distribution [0,min{wAB, 1 − wAD, 1 − wCB, wCD}] and again

assign new node weights w?AB = wAB −X, w?CD = wCD−X, w?AD = wAD +X,

w?CB = wCB +X.

In the following section, we pursue the extension of Crofts et al. (2016)

to multiplexes with weighted structural and functional layers.

5.2.3 Structure–function clustering

As proof-of-principle for the new clustering measure, we employ a com-

putational approach following the procedure presented in Crofts et al. (2016).

Briefly, we simulate time series for a network of nodes whose dynamics are gov-

erned by a system of Wilson–Cowan network equations, described in chapter

1:

u̇i = −ui + s(c1ui − c2vi + P + ε
∑
j

w
[S]
ij uj)

v̇i = −vi + s(c3ui − c4vi +Q).

(5.5)

Recall from section 2.2.1 that the cn are parameters governing the coupling

strength of within-node excitatory and inhibitory neural populations, which

have respective population-average activities ui and vi and basal inputs P and

Q; s is a sigmoidal function that represents the average firing rate of popula-

tions. Each node represents a brain region in the AAL atlas, with structural
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connectivity described by a weighted matrix with elements w
[S]
ij (scaled by the

parameter ε in the ODE system) describing the strength of connection be-

tween nodes i and j, informed using the same connectome data employed in

the previous chapter (described in section 4.1).

In the same spirit as the computational study presented in the previous

chapter, the system (5.5) is integrated using Matlab®’s built-in ODE45 solver

for 1000 seconds to produce time series solutions for each node. The Pearson

correlation is computed for pairs of time series for the excitatory populations

to produce a functional connectivity matrix with weights W
[F ]
jk = Rjk.

For comparison with Crofts et al. (2016), we report a global measure of

clustering using the mean value of (5.4), ĉi = 1/N
∑N

i c̃i, for a network of N

nodes. We normalise each value by an average of corresponding results for 100

random surrogate networks. These surrogates are constructed by running cor-

responding simulations for a randomised SC, with preserved node degree and

connection density, via 100,000 iterations of the algorithms described in sec-

tion 5.2. This number of iterations was chosen because the Jaccard similarity

between SC and random SC appeared to converge such that more iterations

did not make the matrices significantly more dissimilar (Figure 5.3).

Results for these computations are outlined in section 5.3.1.
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Figure 5.3: Convergence of Jaccard similarity between original and ran-
dom networks. Jaccard similarity between the structural matrix and its ran-
domised counterpart for different numbers of iterations of the algorithms for (a)
binary, (b) weighted thresholded and (c) weighted all-to-all network, averaged from
10 realisations.
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5.2.4 Frequency band-filtered FC

It is becoming increasingly clear that the brain operates across multiple

frequency bands (Deco et al., 2017a; Florin and Baillet, 2015; Furl et al., 2014),

with the activity of brain regions forming frequency-specific correlations with

other brain regions. Multiplex approaches are therefore of great interest to the

neuroimaging community to understand the complex functional connectivity

arising from oscillatory activity within different bands in order to reveal a

more complete picture of the brain’s functional behaviour (Brookes et al.,

2016; Buldú and Porter, 2018).

We exploit the applicability of (5.4) to several weighted layers by consid-

ering FC data derived from correlated activity from MEG data obtained for

the HCP’s MEG2 release (Van Essen et al., 2013), which contains the MEG

signals for 89 subjects (Larson-Prior et al., 2013). We use the post-processed

data employed in Tewarie et al. (2019), whereby the time courses for each

brain region are derived from covariance between signals in different frequency

bands, which is conveniently parcellated using the same 78-node parcellation

as the structural human connectome data we have applied in computations.

The bands selected correspond to the classical brain rhythms (Cannon et al.,

2014): delta (1–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta (13-30 Hz) and

gamma (30–48 Hz). The Hilbert transform is applied to each time course to

extract a phase signal and a Pearson correlation is calculated between every

pair of signals across the whole trial to form a static functional connectivity

matrix for each frequency band for all subjects. A thorough overview of the

techniques involved in acquiring this data is provided in Tewarie et al. (2016).

Using this data, we can perform calculations of the 2-layer structure–

function clustering metric as in the previous section, using each time-averaged

FC for each frequency band to give a qualitative comparison of the how each

layer contributes to the clustering of the multiplex compared to the single

structural layer. We can further determine how multiple frequency band FC
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layers cohesively act to facilitate multiplex clustering by computing (5.2) for

M > 2 to ascertain a more complete characterisation of the relationships that

exist between structure and function across different frequency bands.

5.3 Results

5.3.1 Structure–function duplexes

To validate that using the full, weighted SC (as opposed to threshold/bi-

nary networks) has an influence on structure–function multiplex clustering, we

follow the procedure of Crofts et al. (2016). In order to produce results that

are qualitatively comparable with those presented by the authors, we used an

identical computational setup, apart from the use of the new multiplex measure

and different connectomic data. We measure global clustering (as described in

section 5.2.3) between structure and function across a 2-dimensional parame-

ter space, P = [−6, 6] and Q = [−12, 0]. These parameters modulate inputs

to the excitatory and inhibitory neurons, thereby altering the relative output

of those populations, making them good candidates to study the dynamical

underpinnings of structure-function relations in the Wilson–Cowan model. We

note that this is a similar rationale to the choice of the Jansen–Rit model’s

{A,B} parameter space which was the chosen domain for exploring SC–FC

relations in the previous chapter, so P and Q may be considered as analogous

parameters for this study.

To test whether there are qualitative differences between the emergent

FC patterns arising from forward simulations of the model, we measure global

clustering when SC is processed in three different scenarios: unthresholded,

thresholded and binarised (Figure 5.4). The threshold level was set at 23% of

the strongest weights, as used for the SC dataset in chapter 4, which results

in 701 bidirectional connections.

We observe highly different organisation of SC–FC clustering relations

for the different forms of SC matrix, suggesting that the qualitative topological

information removed by the processes of thresholding and binarising have a sig-
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Figure 5.4: SC–FC clustering in the Wilson–Cowan model. We compute
the global clustering coefficient, which is the average of (5.4) over the 78 nodes of
the brain network, normalised by the mean result for 100 random surrogates for the
(a) binary, (b) weighted thresholded and (c) weighted all-to-all networks. We report
this over a domain in (P,Q) parameter space, which is uniformly discretised into a
500×500 grid, where the network time series exhibits oscillations. Other parameters
are set to c1 = c2 = c3 = 10, c4 = −2, ε = 0.01.

nificant effect on the resultant dynamics of the model, in particular the relative

phases of oscillation from which we determine FC. Note that the scale of nor-

malised clustering has a smaller range for the full-weighted SC (Figure 5.4(c)).

This is due to the surrogates having greater similarity to the original network

in this case, which we deduce from the higher Jaccard coefficient reported in

Figure 5.3(c), compared to (a) and (b).

It is noteworthy that in contrast with Crofts et al. (2016), the structures

observed in the P,Q domain (Figure 5.4) are more complex. This is due to

employing a more complex structure in the model (a higher node symmetric

human network as opposed to directed macaque), which reveals richer network

dynamics.

5.3.2 Application to MEG band-passed data

We here present preliminary results for the MEG-derived FC dataset

described in secion 5.2.4, where we compare local clustering for each node

in each of the five duplexes, formed of the SC layer and a layer representing
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time-averaged FC in a particular frequency band. Each clustering value is

normalised by its corresponding value taken from the mean of 100 surrogate

multiplexes, formed from randomised SC and FC layers. As in section 5.2.3,

these are randomised using 100,000 iterations of the appropriate randomisation

algorithm.
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Figure 5.5: Structure–function clustering in different frequency bands.
We record the clustering coefficient given by (5.4) for a duplex composed of a struc-
tural layer and a functional layer derived from each of the five frequency bands,
where the structure is given by (a) a binary, (b) a weighted thresholded, (c) a all-
to-all weighted connectivity matrix.

It is clear from this data that clustering using (5.4) reveals greatly dif-

ferent SC–FC relationships for different frequency bands, and that these dif-

ferences are accentuated by thresholding and binarising the matrices. Though

a general structure is preserved for all three network types, there are details

in the relative clustering between nodes that does not persist. The ranges of

values reported are highest for the binary SC and lowest for the all-to-all net-

work. Comparing (b) and (c), there appears to be a comparable organisation

of clustering values for the all-to-all and thresholded networks, suggesting that

the weaker connections’ topology contributes little to the clusteredness of the

multiplex. As alluded to at the start of this chapter, application to the binary

forms of the matrices isolates highly clustered nodes, but washes out some of

the richer relationships apparent in the weighted examples.
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5.4 Future work: Dynamic FC using sliding-

windows

One of the drawbacks of performing network measures on FC averaged

over a long time period is that these static networks lose the notion of tem-

poral variability which may reveal interesting transient relationships in the

MEG data (Hutchison et al., 2013a; Hansen et al., 2015). A sliding window

approach has the potential to address this (O’Neill et al., 2017; Preti et al.,

2017), whereby FC matrices measured over short epochs are concatenated into

a chronological sequence of FC evolution (Figure 5.6).

Sliding windows are particularly useful for exploring SC–FC relation-

ships in task-based datasets, whereby qualitative changes in the organisation

of FC are apparent during task state (Gonzalez-Castillo and Bandettini, 2018).

Furthermore, dynamically changing FC has also been extensively studied in

resting-state data (Allen et al., 2014; Hansen et al., 2015), whereby dynamic

transitions between different resting-state networks, such as those identified by

Yeo et al. (2011), are observed. We propose that the clustering metric (5.4) of-

fers a novel way to investigate these switching phenomena, since it offers a way

to measure the emergent behaviour of functional connections between struc-

turally unconnected regions, which show high variability over short timescales

(Honey et al., 2007).

The resulting FC matrices can then be investigated in the same way as

described in the previous section, where layers represent FC measured within

a window for different frequency bands and we report the evolution of multi-

plex clustering over time. However, it may also be of interest to construct a

multiplex where layers are defined as FC matrices calculated during different

epochs time series. In this case, we may consider substituting the underlying

structural layer and secondary functional layers in equation (5.4) for FC ma-

trices corresponding to consecutive windows of activity. The clustering metric

could then be used to quantify the degree to which the FC changes between
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Figure 5.6: Sliding-window dynamic FC. An example of overlapping windows
over portions of the time series, within which FC is measured in order to produce
a sequence of FC matrices, each representing a snapshot of the temporal coherence
for a single epoch.

epochs, which may possibly highlight biomarkers for the dynamic switching

observed in resting-state data.

5.5 Discussion

In this chapter we have developed a novel clustering measure to interro-

gate weighted brain networks. The measure is useful for quantifying the degree

to which edges in a multiplex layer increases clustering relative to the single-

layer measures. In the specific SC–FC case, it can tell us how strong functional

connections are likely to be between neighbouring nodes when SC connections

are weak. Extending the work of Crofts et al. (2016), we have produced ad-

ditional results for weighted brain networks, showing that by modulating the

dynamics of a neural mass network model we can achieve different SC–FC re-

lationships dependent on whether the underlying SC is weighted, thresholded

or binarised. We note the contrast to the previous chapter, where our interest

mainly lay in understanding how SC–FC relations emerged from dynamics at

the node level, here we use node dynamics as a convenient mechanism to show

how altering the structural topology affects network dynamics and, moreover,

the emergent temporal coherence that underpins the emergent FC matrices.

We have also described the potential of the metric (5.4) for use in un-
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derstanding empirical data and present preliminary results for FC computed

from MEG time series data. Figure 5.5 is presented as an example of how our

clustering coefficient can be used as a novel way to interrogate MEG data, or

indeed any brain network data that could be represented as a multiplex net-

work. Indeed, in the interests of learning more about the physiological basis

of the SC–FC relationship, the metric may be viewed as the influence of each

node on those functional connections that arise from mechanisms other than

direct white-matter fibre communication. This could have future benefits in

identifying the hub-structure of functional networks (Esfahlani et al., 2020).

Further to this, we have discussed the relevance to dynamic FC, whereby

our metric could help reveal transient switching behaviours in resting state

data. In the next section, we examine dynamic switching more fully, with a

particular focus on the relevance to TMS treatments.



Chapter 6

Computational methods for

simulating TMS protocols

Thus far, much of the technical work in this thesis has been concerned with

employing neural mass models to study the interplay between structure and

dynamics in shaping functional connectivity and analysing the emergent dy-

namic network states. Though we have discussed in part the nature of multi-

stability within these systems, we have not yet characterised how we can drive

the system between states. For instance, in Figure 4.5(a) in chapter 4, indi-

vidual realisations of Jaccard similarity were computed with different initial

conditions and noise distributions, allowing the system to explore a variety of

phase-locked states, from which we used an average of many realisations to

expose a pattern of SC–FC correlations. While characterisation of all phase-

locked states did not prove necessary for the analytical methods employed to

elucidate our findings, it would be illuminating to understand whether net-

works can be driven from one stable state to another with the inclusion of a

forcing term in the model. This has particular relevance for brain stimulation,

which we introduced in section 2.1.4, whereby we are interested in inducing a

transition from one network state to another. A motivating example for this

is the switching behaviour of the resting state (Hansen et al., 2015), whereby

spontaneous fluctuations in FC reflect the complexity of a brain’s function,

82
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even when it is not focused on a particular task. As introduced in chapter

2, this is exemplified by the mechanisms of the core networks; an unfocused,

daydreaming mind operating in default mode is presented with some environ-

mental stimuli such as a puzzle, which triggers the salience network to activate

in order to notice the change and thereby engage the central executive network,

which mediates the abstract thought required to solve the problem (Menon,

2011). Moreover, recent studies have shown that external brain stimulation

can alter resting-state FC in a comparable way (To et al., 2018; Alkhasli et al.,

2019).

This chapter concerns the nature of induced switching between network

states in the context of transcranial magnetic stimulation (TMS), a non-

invasive method of brain stimulation used for treating a range of psychiatric

disorders (see Bersani et al. (2013) for a review). The noninvasive approach

has the advantage of being safer and less distressing for patients. Clinical pro-

cedures can also be repeated easily because all apparatus is external to the

patient and any effects due to medication are more readily accountable (Najib

et al., 2011). We discussed in section 2.1.4 that TMS has had a substantial

impact on the treatment of neurological conditions, particularly in cases of

major depression that are unreceptive to medicine (Somani and Kar, 2019).

An issue facing the clinical use of TMS is finding the best stimulation

protocols for patient safety and treatment efficacy. There are several parame-

ters to consider such as pulse intensity, frequency and the target site or sites

(McClintock et al., 2018). The use of a large network of neural masses as an

in silico testing ground for ideas about the mechanism and control of brain

states is explored in this chapter. As well as using the model to probe the link

between structural and functional connectivity, we also explore the response of

networks to stimulation (for networks built using human connectome data) and

we demonstrate that this has major potential for the design and application

of TMS protocols.

In order to build a network model amenable to neuromodulation, we
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employ a so-called next-generation neural-mass model (Coombes and Byrne,

2019), which is derived from a spiking network model in the infinite population

limit. Populations are coupled according to the human connectome, allowing

us to interrogate whole-brain dynamics. The model is appropriate to our study

since TMS of the cortex has been found to increase the spectral power of oscil-

lations via local synchronisation of neural ensembles (Thut et al., 2011; Vernet

et al., 2019), which in turn propagates to other cortical areas to influence

global synchrony (Okazaki et al., 2017). This poses a multiscale problem that

is can be suitably treated with the next-generation model, since TMS can be

incorporated as an effect on the neuronal level, which then influences other

populations via long-range white matter coupling. This is more suitable than

the models used in chapters 4 and 5, where our focus was on exploring SC–

FC relations expediently using low-dimensional neural-mass models. Here, the

greater complexity of this model, and particularly its multistable solutions,

make it a more suitable candidate for exploring the FC states that emerge

from neuromodulation.

In this chapter, we first describe the model we implement, then describe

how the multistability of the model (in the simple case of one cortical area in

isolation) can be used as a simple analogue for neuromodulatory effects. We

pursue similar results on the network level to show that stimulation can reor-

ganise the dynamics of network activity dependent on propagation of stimuli

within the structural network. We then investigate the alteration of functional

networks due to TMS in the computational model, with particular interest

on how the specific topology of FC post-TMS differs depending on target

site. Moreover, we explore how stimulation to one cortical area can propagate

through the SC to influence global FC and, specifically, how it alters correla-

tion patterns centred on the insula, which is significant in the study of major

depression, as we will discuss in section 6.5.
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6.1 Next-Generation Neural-Mass Model

The full derivation of the NMM employed in this chapter is outlined in

Coombes and Byrne (2019), but we briefly explain the model’s formulation

here.

We consider a model for a population of neurons with global self-feedback

through a set of synapses with overall conductance g. The conductance evolves

according to the dynamical system,

Qg = κf(Z). (6.1)

Here κ is the strength of coupling and the differential operator Q is chosen

to best capture the temporal characteristics of synaptic response. f(Z) is the

average neuronal firing rate, dependent on the Kuramoto order parameter Z

that quantifies synchrony within the population. For the popular α-function

synapse, with shape α2te−αtΘ(t) (where Θ(t) denotes the Heaviside step func-

tion) following the arrival of an action-potential at time t = 0, we would choose

Q =

(
1 +

1

α

d

dt

)2

. (6.2)

In order to derive population dynamics from the underlying neuronal activity,

it is convenient to consider oscillatory neural dynamics governed by a special

class of oscillators for which a mean field reduction is known, via a mathe-

matical technique described in Ott and Antonsen (2008). Their dynamics are

described by the quadratic integrate-and-fire network model (Latham et al.,

2000),

T v̇i = ηi + v2
i + g(vsyn − vi), Qg =

κ

N

N∑
j=1

∑
m∈ZZ

δ(t− Tmj ), (6.3)

subject to reset (vi → −∞) whenever the neuron fires (vi reaches +∞ in finite

time). These firing events occur at times Tmi , where m indexes the mth time
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that neuron i fires. The background drives ηi are chosen from a normalised

Lorentzian distribution,

L(ν) =
1

π

∆

(ν − ν0)2 + ∆2
, (6.4)

with centre η0 and width at half maximum ∆, and vsyn corresponds to the

synaptic reversal potential of the neurons. In the limit N → ∞, the system

can be expressed as a reduced dynamical system using the the Ott–Antonsen

ansatz (Ott and Antonsen, 2008), whereby the description of a globally coupled

neuronal network with α-function conductance change is given by:

T Ż = F(Z; η0,∆) + G(Z, g; vsyn), (6.5)

where

F(Z; η0,∆) = −i(Z − 1)2

2
+

(Z + 1)2

2
[−∆ + iη0]

G(Z, g; vsyn) = i
(Z + 1)2

2
vsyng −

(Z2 − 1)

2
g,

(6.6)

and

f(Z) =
1

πT
Re

(
1− Z∗

1 + Z∗

)
. (6.7)

Equation (6.5) describes the evolution of the complex Kuramoto order param-

eter for synchrony and (6.1) describes how it governs the dynamics of synaptic

conductance.

In the same spirit as the Wilson–Cowan model described in 2.2.1, this

model can be extended to consider populations of interacting excitatory and

inhibitory neurons. In this case we must consider the dynamics of conductances

for multiple synaptic connections,

Qabgab = εκabf(Zb), Ta
d

dt
Za = Fa(Za; ηa0 ,∆a) +

∑
b

G(Za, gab; v
ab
syn), (6.8)

where a, b ∈ {E, I} represent labels for excitation (E) and inhibition (I), Qab

is obtained from (6.2) under the replacement α→ αab (so that the time course
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of synaptic responses can differ), ε scales the magnitude of coupling (set to

unity unless stated otherwise) and vabsyn is the reversal potential mediating the

current from population a to population b.

Further to this, in correspondence with other models employed in this

thesis, we wish to extend the model further to incorporate large-scale con-

nectomic data. To develop a large-scale model incorporating interconnected

neural populations across the whole brain, we generalise equation (6.8) to con-

sider N connected populations of excitatory and inhibitory neurons, denoted

E1, . . . , EN , I1, . . . , IN . Therefore, for each network node m we define popu-

lation order parameters Za → Za
m and synaptic conductances gab → gmnab for

a, b ∈ {E, I} and n ∈ N (m), where N (m) denotes the set of nodes connected

to node m (n = m represents within-node excitatory-inhibitory coupling). We

note that since long-range connections in the brain mainly project from exci-

tatory pyramidal cells (Gerfen et al., 2018), we restrict inter-mass coupling to

connections between excitatory populations. Constants are denoted similarly,

with (αab, κab, η
a
0 , ∆a, vabsyn, Ta)→ (αmnab , κ

mn
ab , η

a
0,m, ∆a

m, v
ab
mn, T am).

In the next section, we describe how the model is further extended to

accommodate TMS stimulation protocols.

6.2 TMS pulse simulation

TMS pulses are characterised by a rapidly changing magnetic field caused

by the fast discharge of capacitors, followed by a slow decay (Rothkegel et al.,

2010). Due to Faraday’s law (by which electromotive force is caused by a

change in magnetic flux) a strong electric field incident on the cortical surface

is induced, followed by a much weaker field of the opposite polarity. Pulses

may be delivered as singular bursts, or in high-frequency trains referred to as

repetitive TMS (rTMS). Pulses are accommodated in our neural mass network

model by modulating the average population drive on each node (see equation

(6.8)): ηa0 → ηa0,m + pam(t), and where a ∈ {E, I} and m ∈ {1, . . . , N}, where

the function pam(t) is chosen to reflect the particular delivery protocol. For
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simplicity, in the following we assume that the induced drive is identical for

both inhibitory and excitatory populations, with each pulse given by a damped

sinusoid (Triesch et al., 2015):

p(t) = Ipeak sin(ω(t− ti))exp((ti − t)/τ)Θ(t− ti), (6.9)

where ti denotes pulse times, Θ the Heaviside function, Ipeak = 100 µA is

the pulse amplitude, ω = 20 rad/ms is the angular frequency and τ = 0.08

ms characterises the pulse decay time (Rusu et al., 2014). This ensures that

the rise time and pulse duration are 50µs and 0.4ms respectively, which are

typical for TMS apparatus (Triesch et al., 2015). A plot of a single pulse is

shown in Figure 6.1.
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Figure 6.1: A TMS pulse. A simulated TMS pulse constructed from (6.9) with
ppeak = 100, ω = 20ms−1 and τ = 0.08ms.

In the following section, we present preliminary computation results in

order to demonstrate the applicability of this model to TMS via exploration of

its dynamic regimes in both a single-node and network case. We emphasise that

we concentrate here on providing results that demonstrate the rich dynamics

of the model, rather than pursuing results of specific biological relevance.
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Figure 6.2: Next-Generation NMM bifurcation diagram. Bifurcation sets
for (6.8) showing Hopf (H; blue), period-doubling (PD; black) and torus (T; green)
sets, as well as limit points of isoli of stable oscillations (I; red), which are regions
of oscillations which do not arise from instability of a fixed point (i.e. a Hopf
bifurcation). ηE0 and η0

I are used as bifurcation parameters. Other parameters:
TI = TE = 1, αEE = 1, αEI = 0.7, αIE = 1.4, αII = 0.4, κEE = 1.5, κEI = 2,
κIE = 1, κII = 3, vEEsyn = 10, vIEsyn = −vEIsyn = 8, vIIsyn = −12, ∆E = ∆I = 0.5.

6.3 Bifurcation analysis

In order to gain an insight into the dynamic repertoire of the next-

generation NMM presented in section 6.1, here we produce a bifurcation dia-

gram for a single node (constructed using XPPAUT (Ermentrout, 2002)) given

by (6.8), where we use the average drives for the excitatory and inhibitory

populations, ηE0 and ηI0 respectively, as bifurcation parameters (Figure 6.2).

This is primarily to inform us of the parameter sets that allow multistable

solutions. In the context of neuromodulation, we are particularly interested

in these solutions as these provide a simple paradigm by which to observe

switching between dynamic states.

6.4 Timeseries simulations

Poising the system at ηE0 = 20, η0
I = 25, we have two different types of os-

cillations, one arising from a Hopf bifurcation and one from the limit points of

an isola, a branch of oscillatory solutions that is closed in the parameter space
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(Dellwo et al., 1982). To demonstrate driving the system from one oscillatory

branch to another, we devised a hypothetical TMS protocol where the model

ran for 50 seconds, during which it converged to the smaller-amplitude oscil-

lations arising from the Hopf bifurcation. Then, after 50 seconds we applied a

periodic forcing governed by the function (6.9) at a frequency of 30 pulses per

second for 50 seconds, then removed the stimulus and let the system settle into

the higher-amplitude oscillations associated arsing from the isola (Figure 6.3).

While the choice of stimulation protocol is largely arbitrary, since we

only require a stimulation with a high enough magnitude to evoke a shift from

the basin attraction of one stable branch of oscillations to another, the pulse

frequency chosen has previously shown to induce long-lasting excitation in the

motor cortex (Goldsworthy et al., 2012).

Numerically, the system of equations (6.8) was integrated using ode45 in

Matlab®, which uses a dynamic time-stepping algorithm.

Figure 6.3: TMS in the single-node case. Timeseries solution for a single
next-generation model node (6.8) where the dynamical regime permits two different
branches of stable oscillations. We apply simulated TMS pulses at 30 Hz. Parame-
ters are the same as for Figure 6.2, with the addition of ηE0 = 20, η0

I = 25.

As this thesis mainly concerns the distributed brain states that exist

on the whole-brain scale, we considered a more relevant test to investigate

whether stimulating a single node would propagate via white-matter coupling

to force other nodes into different oscillatory regimes. In Figure 6.5, we show

an example of this when using the same human structural network employed in

previous chapters 4 and 5 and described explicitly in section 4.1. Apart from
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their connectivity, each node’s dynamics is governed by identical parameters,

i.e. αmnab , η
a
0,m, ∆a

m, v
ab
mn, T am are the same for all nodes m and node pairs

(m,n). The inter-node connectivity constants κmnab are given by the values of

the all-to-all, weighted connectivity matrix. The stimulation protocol is also

the same as for the single-node case, which we apply to the node with highest

cumulative efferent weights (node 21, the left angular gyrus, whose position is

visualised in Figure 6.4). This stimualtion site was chosen on the assumption

that its relatively strong connectedness would give it a high influence on the

network, resulting in prominent changes in dynamics. As a proxy for the

varied oscillatory states that could be exhibited by brain rhythms from different

regions, we gave each node different initial conditions so that their solution

trajectories may settle onto different limit cycles.

Figure 6.4: Visualisation of the left angular gyrus. This shows the size and
position in the human cerebrum of the ROI stimulated in the next-generation NMM
network, with results described in Figure 6.5.

In Figure 6.5, we illustrate the types of dynamical change that can be

induced via our simulated TMS protocol and highlight particular cases in panel

(a). In red, the solution shifts from non-uniform oscillations to regular periodic

activity, as illustrated in (b). In cyan, we observe similar a dynamic shift

between two branches of limit cycles, plotted in (c), as also shown for the

single-node case (Figure 6.3). Finally in magenta, the node’s relative phase
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is shifted due to stimulation, whereas other nodes are mostly synchronous

before and after TMS pulses are applied. These results provide an indication

of the suitability of our approach to investigate dynamical changes in neural

activity brought about by TMS, by demonstrating that periodic drive to a

node causes dynamic changes that propagate via structural couplings to give

rise to alterations of the wider network’s dynamics. In the following section,

we study how altering the target site of TMS can provoke changes in FC. In

particular, we consider the effect on the insula, which has been implicated as

a cause of major depression as discussed in the following section.

6.5 Case study: Non-direct stimulation of the

insula

The insula has been identified as a causal component of abnormalities

in (Liu et al., 2010; Horn et al., 2010; Avery et al., 2014), and interactions

between (Mayberg, 1997), functional networks implicated in depression. This

reflects its role as a component of the neurological switching mechanism which

allows the brain to transition between the core functional subnetworks (namely

the default-mode, salience and central executive networks) (Menon and Uddin,

2010; Sridharan et al., 2008). However, since TMS induces a current on surface

regions, sub-cortical regions such as the insula must be influenced indirectly

(Iwabuchi et al., 2017); the mechanisms by which this occurs, and ideal stim-

ulation protocols to achieve this remain unclear. In this section, we use the

next-generation model (6.8) to investigate how we can change the functional

connectivity of the insula via stimulation of non-local target sites, describing

the in silico experimental setup in 6.5.1, the stimulation protocol in 6.5.2 and

finally discussion of results in 6.5.3.

6.5.1 FC simulation and visualisation

Utilising the TMS modelling framework discussed earlier, we used an

SC described in (Abeysuriya et al., 2018), which is produced using the same
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(a)

(b)

(c)

Figure 6.5: TMS propagation in a network. (a) Time series for the average
firing rate of inhibitory neurons in each of 78 next-generation nodes, with connec-
tivity informed by human SC. We apply simulated TMS pulses at 30 Hz to node 21,
which has the highest sum of connectivity weights. We have highlighted time series
from other nodes that display switching between particular dynamics and present
these time series in panels (b) and (c). In red, the solution shifts from non-uniform
oscillations to regular periodic activity, as illustrated in (b). In cyan, we observe
similar a dynamic shift between two branches of limit cycles, plotted in (c). The
magenta box indicates a case where the solution settles to the original limit cycle
post-TMS.
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tractography processes described in chapter 4 but is parcellated onto the atlas

of Desikan et al. (2006), chosen for the readily available geometric data for

brain network visualisation. This atlas also has fewer regions than that used

in chapters 4 and 5, 68 as opposed to 78, so there is a benefit for computa-

tional efficiency when running forward simulations of network dynamics in the

next-generation network model, which contains more ODEs than the NMMs

employed in those chapters.

Functional connectivity is obtained, similarly to chapters 4 and 5, by

direct simulation of the next-generation neural mass network, and comput-

ing the pairwise synchronisation between time-series activity on each network

node, measured via mean phase coherence (Mormann et al., 2000), to provide

a matrix describing the strength of functional connection between each brain

region. Each node was given random initial conditions to facilitate varied dy-

namics across the network, thereby encouraging diverse temporal correlations

for richer FC patterns. Structure–function relations are assessed by computing

the Jaccard similarity coefficient (Jaccard, 1912) of the non-diagonal entries of

the binarised SC and FC matrices, which provides a natural measure of matrix

overlap, ranging from 0 for matrices with no common links to 1 for identical

matrices. The multiplex measure, discussed in the previous chapter, is not

considered here, since the Jaccard measure offers a more direct comparison

of structure–function as opposed to the more specialised multiplex clustering

coefficient. All simulations were performed in Julia (Bezanson et al., 2017)

using the DifferentialEquations package.

Results visualising both the structural and derived functional networks,

in absence of TMS, are shown in Figure 6.6; these show how FC patterns can

differ significantly from the underlying connectome structure that supports

neural population activity. We choose node degree as the metric of interest

in brain visualisations, since it presents a convenient medium through which

to compare nodes’ connectedness in different contexts. In the following, we

describe how the model and approaches described above can be employed
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to understand the influence of brain stimulation treatments on network be-

haviour.
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Figure 6.6: SC–FC visualisation. Visual representation of (a) the structural
network and (b) the simulated functional network for 68 nodes parcellated according
to the Desikan–Killiany atlas. The surface of the brain visualisations are coloured
depending on nodal degree, which was normalised by the highest element for easier
comparison between SC and FC. The upper surface plots highlight the strong differ-
ences between SC and FC patterns. The network graphs are shown on the bottom
row. Parameter values: αmnEE = 1, αmnIE = 1.4, αmnEI = 0.7, αmnII = 0.4, κmnEE = 1.5,
κnnIE = 1, κnnEI = 2, κnnII = 3, vEE = 10, vIEmn = 8, vEImn = −8, vIIsyn,mn = −12,

∆E
m = 0.5, ∆I

m = 0.5, ηI0,m = −20, ηE0,m = 20, T am = 1; values of κmnEE are obtained
from MRI data (see text), scaled by a global coupling strength ε = 0.025.

6.5.2 Stimulation protocol

We stimulated in turn each of the 14 nodes corresponding to cortical

brain regions. We computed the resulting FC network from simulated time-

series activity on each node (as described above), paying particular attention

to the influence on the right anterior insula. In each case, we employed an

rTMS stimulation protocol at 20 Hz, which has been used in a previous de-

pression study (George et al., 1995). TMS was applied for 50 seconds; func-

tional connectivity was computed after a delay of 50 seconds post-TMS. These
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timescales were chosen on the basis of computational considerations, since we

deemed these sufficient for to allow the solution trajectories’ transients to set-

tle to stable oscillatory states after the onset and termination of stimulation.

Moreover, this in silico protocol provides a computationally tractable way to

test whether the model is able to produce a variety of network states due to

targeting different nodes with external stimulation. Furthermore, as in 6.4,

we reiterate that the stimulation and measurement protocol adopted here was

chosen for illustrative purposes of proof of concept, rather than to mimic a

TMS experiment.

6.5.3 Results

Figures 6.7 and 6.8 summarise our results. Fig. 6.7 shows a representa-

tion of the functional network arising from stimulation of each cortical node,

interpolated onto brain meshes of the right hemisphere, together with the node

corresponding to the insula (right hemisphere). Here, the weighted degree of

each node in the FC graph was calculated and normalised by highest degree.

The global SC–FC similarity (measured by the Jaccard similarity coefficient)

is also shown. These results highlight the dramatic difference that stimulat-

ing distinct cortical sites can make to both the overall pattern of functional

connectivity, and the resulting influence on the insula, in particular. This is ex-

plored in more detail in Fig. 6.8, which shows the influence of each stimulated

region on some exemplar graph-theoretical properties (as discussed in Rubi-

nov and Sporns (2010a) and Newman (2016)) of the insula node (specifically,

the node degree, eigencentrality and clustering coefficient), together with the

path-length between the stimulation site and the insula. These results again

highlight the strong dependence of emergent FC on stimulation site indicated

in Fig. 6.7, both in terms of global SC–FC similarity, and specific influence on

the insula. Moreover, the efficacy of stimulation is not strongly predicted by

proximity (as measured by shortest path length connecting the stimulation site,

and the insula), highlighting a non-trivial dependence on macroscopic brain
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(b) L. Posterior cingulate
J=0.1556

(c) L. Isthmus Cingulate
J=0.1414

(d) L. Entorhinal
J=0.1328

(e) L. Caudal anterior cingulate
J=0.1701

(f) L. Lateral orbitofrontal
J=0.1467

(g) L. Medial orbitofrontal
J=0.1795

(h) L. Rostral anterior cingulate
J=0.1646

(i) R. Posterior cingulate
(ii) J=0.1418

(j) R. Isthmus Cingulate
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(k) R. Entorhinal
J=0.1611

(l) R. Caudal anterior cingulate
J=0.1443
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(n) R. Medial orbitofrontal
J=0.1536

(o) R. Rostral anterior cingulate
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Figure 6.7: Normalised node degree of FC networks under rTMS stim-
ulation of each cortical area. FC matrices are interpolated on brain meshes of
the right hemisphere. The node representing the right anterior insula is also shown
to depict the relative influence on stimulation of nodes on a specific sub-cortical
region. Also shown for each target region is J , the Jaccard similarity coefficient
between the SC and FC matrices. Figures created with BrainNet Viewer (Xia et al.,
2013). Parameters as in Fig. 6.6.
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network architecture. We have shown results from a range of target regions
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Figure 6.8: Graph properties of the right anterior insula in FC networks
obtained under rTMS stimulation of each cortical area. Shown is: the short-
est path length between the stimulated area and the right anterior insula; and the
eigencentrality, clustering coefficient, and node degree of the insula node. Parame-
ters as in Fig. 6.7.

to show the variability of simulated TMS-induced FC states. However, more

clinically relevant TMS protocols could be implemented such as stimulation

of the dorsolateral prefrontal cortex, which has frequently been the subject of

TMS studies related to the treatment of major depression (Noda et al., 2015;

Lan et al., 2016).

6.6 Incorporating of conduction delays

One of the most well-studied effects of TMS applied to the cortex is neu-

roplasticity (Siebner and Rothwell, 2003; Zrenner et al., 2018; Chung et al.,

2017; Freitas et al., 2013).The proposed mechanism for this is via TMS pro-

tocols that induce bursts of theta activity within the target area, which are

thought to modulate synchronisation between areas exhibiting neuronal activ-

ity (Vernet et al., 2013). While this is the subject of debate, it is an active

area of research, since it holds promise for providing a therapeutic procedure

to induce significant functional alterations in patients who suffer from a variety

of neurological and psychiatric conditions (Ridding and Ziemann, 2010).

Computationally, we may consider these plastic effects to manifest them-
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selves in the next-generation network model as changes in delays of synap-

tic conduction between neuronal populations (Knoblauch and Sommer, 2003),

which may be used to facilitate the emergence of preferable functional network

states (Madadi Asl et al., 2018). This is especially relevant in the context of

neurological disorders, since it has also been shown that normal brain activ-

ity is highly sensitive to conduction delays mediated by white-matter myelin

plasticity (Fields, 2008; Pajevic et al., 2014).

The specific case of TMS-induced plasticity has been studied as a home-

ostatic effect, whereby brain structures change as a regulatory response to the

external stimuli (Ziemann, 2004; Müller et al., 2007). Though algorithms have

been developed for this kind of plasticity and applied in mathematical models

(e.g. Nicola et al. (2018)and Hellyer et al. (2016)), we here tackle the more

fundamental question of how adding delays to the model construction affects

the neural mass network’s dynamics.

As described in chapter 3, modulation of dynamics via delays in neural

mass networks can be analysed using the eigenvalue spectra derived from linear

analysis, which is formulated for a general NMM in section 3.3. Moreover,

these have recently been shown to destabilise different eigenmodes to expose

particular FC patterns (Tewarie et al., 2019). We consider in greater depth the

analysis of such delayed systems in chapter 7, but we here present a motivating

computational test to demonstrate the influence of the inclusion of delays on

the dynamics of the next-generation NMM. Specifically, we wish to show that

it is possible to generate oscillations in the network via a delay-induced Hopf

bifurcation.

We construct delays based on pairwise euclidean distance between the

centres of mass of each brain region, divided by a uniform conduction velocity

of 10ms−1. This delay is applied to synaptic transmission between brain re-

gions, which is implemented in the model by altering the necessary equations in

(6.8), namely Qabgab(t) = κabf(Zb(t)) → Qabgab(t) = κabf(Zb(t − τab)), where

τab represents the conduction time between the excitatory populations of nodes
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a and b. We poised the system close in parameter space to a Hopf bifurcation,

then integrated the equations to steady state. Then, we set initial condi-

tions for the delayed counterpart by perturbing the solution from steady state

and integrate the delayed system using Julia’s DelayDifferentialEquations

package. The results for both of these computations is displayed in Figure 6.9,

showing that the inclusion of delays does indeed cause stable oscillatory dy-

namics to arise.
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Figure 6.9: Delay-induced oscillations. (a) Steady state of the system de-
scribed by 6.8, with parameters set to αmnEE = 0.12, αmnIE = 0.0254, αmnEI =
0.24, αmnII = 0.08, κmnEE = 5π( for m = n), κmnIE = 4π, κmnEI = 10π, κmnII =
15π, ηa0,E = 10, ηa0,I = −40, ∆E

m = 0.5, ∆I
m = 0.5, vEEmn = 6, vIEmn = 10, vEImn =

−10, vIImn = −10, T Em = 5, T Im = 5, which are the same for all nodes/node pairs
m and n. κmnEE for m 6= n (i.e. inter-node connectivity constants) are defined by
their corresponding value in the connectivity matrix. (b) The solution for the same
parameters when conduction delays are applied to coupled variables, governed by a
Euclidean distance dij divided by a uniform conduction velocity of 10ms−1.

6.7 Discussion

In this chapter, we have introduced a framework for modelling brain stim-

ulation using a recently developed neural mass model. Our results demonstrate

a range of uses for exploring several facets that may be useful for studying the

effects of different stimulation protocols, with particular emphasis on the ap-
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plication of TMS due to its growing popularity as a therapeutic treatment

for neurological diseases. We have shown that both oscillatory and functional

properties of network behaviour can be modulated via application of simulated

TMS pulses and have also provided a preliminary set of results to demonstrate

how these can be further modulated by investigating plastic effects induced by

TMS therapy and, moreover, its impact on conductivity in the brain.

While the particular dynamical regimes employed here present an expe-

dient way to demonstrate the model’s efficacy in providing results that exhibit

different types of neural ‘switching’, which we believe to be relevant in the

study of TMS, it leaves room for much more work to be conducted in order

to better understand the variation of network activity as a result of different

stimulation protocols. In particular, it would be interesting to fit the (func-

tion) data derived from simulated activity to real FC data from patients before

and after TMS treatment to give confidence that the model is capable of re-

producing empirical results. If there is sufficient confidence in the model’s

performance, a variety of protocols could then be tested to determine relative

efficacy and potentially inform better treatment practises.

From a theoretical perspective, there is much more analytical work that

may be conducted to better understand the network model’s behaviour. In

the next chapter, we study in greater depth two analytical questions arising

from this chapter. The first concerns how the rhythm caused by periodic

stimulation, such as in Figure 6.3, is related to the frequency and amplitude

of pulses. The second is to better understand the delay-induced oscillations

displayed in Figure 6.9 and how these arise from instabilities as revealed by

the spectra of linearised eigenvalues of the model steady state.



Chapter 7

Analytical methods for

exploring neuromodulatory

effects

7.1 Introduction

Chapter 6 consolidates initial studies into the applicability of the next-

generation NMM for studying TMS. The computational tests therein represent

preliminary groundwork that illustrate the versatility of the model in different

contexts related to TMS, i.e. mechanisms of switching between network states

and the potential modulation of white-matter conduction delays associated

with neural plasticity.

In this chapter, we aim to elucidate some of the mathematical underpin-

nings of the results presented in chapter 6, in order to better understand how

those results arose and also to gain insight into how the model could be further

manipulated in order to make it more applicable to current challenges in the

field of TMS study. The topics considered here can are relevant to the study of

neuromodulation more generally, which concerns how the plastic, oscillatory

and network properties of the brain can be affected e.g. by administering drugs

or employing electrical/magnetic stimulation. Specifically, we here treat the

102
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issues of entrainment and axonal plasticity by exploring the effects of simulated

periodic drive and conduction delays in the next generation NMM.

This chapter is split into two distinct parts. In the first we investigate

the nature of entrainment of oscillations by means of external forcing. We

have already discussed the importance of entrainment of neural populations’

activity (by rhythmic TMS) in relation to neural plasticity in section 6.6, but it

is also important in other neurological contexts. There has been considerable

focus on utilising TMS to reduce involuntary motor movement associated with

Parkinson’s disease (Brittain et al., 2013) and Tourette’s syndrome (Mantovani

et al., 2007; Le et al., 2013; Kwon et al., 2011). Of particular interest is the

spectral power of oscillations in the beta band, which has been used as a

biomarker for motor response due to the observed decrease in power during

movement (Armstrong et al., 2018). Since brain oscillations seen in EEG/MEG

are thought to reflect the underlying population synchrony of neuronal firing,

a relevant computational problem is to understand conditions for which model

neural oscillators can be entrained to a rhythm, with the expectation that such

techniques will inform clinical TMS techniques used to treat e.g. the abnormal

EEG signals correlated with tics (Schnitzler and Gross, 2005). For instance, it

has recently been shown in Maiquez et al. (2020) that entraining sensorimotor

mu-rhythms by delivering pulses of median nerve stimulation to the wrists

of Tourette’s syndrome patients significantly reduced the frequency of their

tics. A natural way to study such systems is through mathematical analysis of

driven oscillators, given by Lyapunov exponents and Arnol’d tongues, in order

to determine the stability and frequency of entrained rhythms, which may be

used to prime models for simulating neural entrainment.

In the second part of this chapter we return to the issue of how delays in

the network model influence emergent behaviour, such as oscillatory activity

and coherence, as introduced in the previous chapter (section 6.6). Here, we

pursue a similar methodology to Tewarie et al. (2019), whereby our main focus

is to use linear theory to explain how the modulation of conduction velocities
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along axons can cause instabilities of particular eigenmodes of the network

connectivity matrix, resulting in corresponding patterns of network activity.

Despite the complexity of the next-generation model relative to the other

NMMs employed in this thesis, we are able to generate our results by us-

ing straightforward implementations of well-established mathematical theories.

We explore possible further applications of the model in the discussion.

7.2 Entrainment of neural oscillators via peri-

odic forcing

The mathematical theory behind the response of forced oscillators is well

established and in this section we discuss and apply techniques appropriate

for the study of TMS. However, we point the interested reader to relevant

chapters of the book ‘Synchronisation’ (Pikovsky et al., 2003) for a compre-

hensive overview of the subject. Entrainment is defined here as exposing a

‘slave’ oscillator to a rhythmic ‘drive’ so that the slave’s dynamics converges

to a frequency-locked state, such that there is a fixed ratio between the period

of slave and the drive: the rotation number r.

Recall from chapter 1 (section 3.4) that we can study the effect of a small

perturbation on an oscillator using a phase response function. This theory

is suitable for weakly-driven oscillators, with a small deviation between the

intrinsic dynamics and drive . However, in the case of entrainment, the external

input must be of high enough magnitude in order for the slave to frequency-

lock with the drive, meaning that this weakly-driven theory is unsuitable in

this context (since frequencies are not necessarily similar). The analysis in

this section is instead based on the theory of Lyapunov exponents (see e.g.

(Pikovsky and Politi, 2016) for a recent survey) and Arnol’d Tongues (Boyland,

1986), which allows us to visualise, in a 2D domain of drive frequency and

magnitude, where entrainment occurs. In the following sections we outline the

mathematical theory and the computational method to generate such results

numerically.
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7.2.1 Lyapunov Exponents and Arnol’d Tongues

Lyapunov exponents characterise how quickly the distance between two

trajectories of a dyanmical system will grow. When a forced system converges

to a stable trajectory, it is defined to be entrained. Conversely, if the slave’s

frequency does not converge it will exhibit chaotic behaviour or aperiodicity (in

the case of a zero exponent). The dynamics of a chaotic system differ greatly

depending on initial conditions; a property known as sensitive dependence. To

illustrate this mathematically, we first take a generalM -dimensional dynamical

system represented by the flow,

U̇(t) = F(U(t)). (7.1)

Consider a trajectory along this flow, x(t), which is perturbed to a new trajec-

tory y(t) such that x(t) and y(t) are close enough so that their distance apart

evolves approximately linearly. At an infinitesimally small time ∆t later, the

difference between them can be written,

x(t+ ∆t)− y(t+ ∆t) ≈ x(t)− y(t) + ∆t(x(t)− y(t)) ·DF|x(t), (7.2)

where DF is the Jacobian of the flow. Our goal is to determine whether y(t)

stays close to x(t) by assuming the evolution of the trajectories’ difference is

given by,

|x(t+ ∆t)− y(t+ ∆t)| = eλ∆t|x(t)− y(t)|, (7.3)

where λ is a Lyapunov exponent. For systems of M dimensions, there is a cor-

responding set of M Lyapunov exponents, though for analysing whether the

oscillator will be chaotic/entrained it is sufficient to compute just the largest

Lyapunov exponent (LLE) because this will dominate the perturbation’s evo-

lution u(t). Therefore we only concern ourselves with how the solution changes
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in the most expanding direction, which from (7.2) is given by,

|x(t+ ∆t)− y(t+ ∆t)| ≈ |[I + ∆tDF|x(t)] · (x(t)− y(t))|, (7.4)

where I is the identity matrix. If the stretching |x(t) − y(t)| is normalised,

then we have by (7.3),

λ = ln(|x(t+ ∆t)− y(t+ ∆t)|)/∆t (7.5)

In this form we can make a further approximation using Birkhoff’s theorem

(Birkhoff, 1931), whereby the LLE asymptotically approaches the true value

λ? by recursively measuring (7.5) along the trajectory,

λ? = lim
T→∞

1

T

N∑
i=0

ln(|x(i∆t)− y(i∆t)|), (7.6)

where T is the total time and N = T/∆t. Note that we have outlined the

method for an autonomous system. For a driven, non-autonomous system,

we can augment this by including time as an extra dependent variable in the

system. The pseudocode in Algorithm 2 outlines the procedure, where we

define our initial pertubation to be a random normalised vector w.

Now consider F(U(t), t) = g(U(t)) + Ω(S, f, t), where g describes a

slave dynamical system and Ω(S, f, t) is some periodic drive of magnitude S

and frequency f . To construct Arnol’d Tongues, we determine points in (f, S)

parameter space where Algorithm 2 reports a negative LLE, indicating that

oscillations are stable. We also record frequency locking with rotation number

r, given by f × Period of slave oscillator.

7.2.2 Results

We applied Algorithm 2 to a single next-generation population model,

with dynamics governed by equations (6.1), (6.5) and (6.6). A sinusoidal drive,

filtered by the α-function (6.2), was added to the base input, η0 so that intrinsic
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Algorithm 2 Algorithm to find the LLE

1: procedure LargestLyapunov(F, U0, T init, ∆t, N)

2: for 0→ T init do

3: solve U̇(t) = F(U(t)), U(0) = U0 . Solve to time T init for
convergence to orbit

4: end for

5: U0 = U(T init) . New initial point

6: for 0→ N∆t do

7: solve U̇(t) = F(U(t)), U(0) = U0 . Recompute trajectory

8: end for

9: LLE = 0 . Initialising LLE

10: for i = 0→ N do

11: J = I + ∆tDF|U(i∆t) . Calculating flow matrix

12: ai = |Jw| . Calculate stretching of perturbation

13: w = w/ai . Re-normalise perturbation

14: LLE = LLE + ai . Update Lyapunov exponent

15: end for

16: LLE = LLE/((N + 1)∆t) . Time-averaging

17: end procedure
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population dynamics given by equation (6.6) becomes

F(Z; η0, A,∆) = −i(Z − 1)2

2
+

(Z + 1)2

2
[−∆ + i(η0 + A)] ,

QA =
S

2
(1 + sin(2πft)).

(7.7)

The magnitude S and frequency f were varied from 0 to 100 mA and 1 to

10 pulses/s respectively, using a mesh of 1000 uniformly distributed points in

parameter space. At each parameter value, Algorithm 2 was implemented in

Matlab® using random initial conditions. The driven model was integrated

using ode45 from 0 to 200 seconds, which we found sufficient for transients to

settle. The LLE was then averaged from 200s to 400s, with a fixed time step

∆t = 0.01s, using a random, normalised initial perturbation. Where the LLE

was found to be negative, we also reported the rotation number r = fP , where

P is the period of oscillation of the average firing rate.

The result of this computation is shown in Figure 7.1, which show a

complex organisation of Arnol’d tongues within the explored parameter space.

The tongues result in a range of rotation numbers, from 1 : 1 frequency ratio

between slave and drive to 1 : 7, demonstrating a broad range of frequencies

that the node can be entrained to using appropriate stimulation protocols.

With respect to TMS, these results can be viewed as a preliminary theo-

retical study of how modulation of stimulation protocols can be used to entrain

oscillations to different frequency bands. Since we chose parameters a priori,

without fitting the model to real data, there is scope to use the model to

replicate entrainment observed in empirical TMS experiments such as that

reported in Thut et al. (2011). Furthermore, it is possible the model could

be extended to incorporate synaptic plasticity, arising from the synchronised

firing caused by rhythmic TMS (Vernet et al., 2013), using a Hebbian learning

rule (Hebb, 1949), whereby entrainment encourages more synaptic connections

between neurons to strengthen self-coupling. As briefly discussed in section

6.6, it is also of interest to consider neuromodulation of axonal plasticity and
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Figure 7.1: Arnol’d Tongues for a periodically driven neural mass: (a)
Largest lyaponov coefficient and (b) rotation number for a single next-generation
neural mass node (described in section 6.1) with dynamics governed by (6.1) and
(6.5), with the addition of periodic forcing described by (7.7). Parameters used for
simulations were α = 1; κ = 14; vsyn = −5; ∆ = 0.5; η0 = 8; α = 5.6, T = 1.
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in the next section we return to the relationship between observed dynamics

on a neural mass network and the conduction velocities along axons, which

may be modified by promoting myelin production.

7.3 Using Delays to Excite Eigenmodes

In section 6.6, we discussed the importance of conduction delays in de-

signing models that can replicate physiological TMS-induced effects. Variation

in myelin thickness induced by TMS modifies axonal insulation, changing the

speed of electrical conduction (Fields, 2008). As a means to address this, we

here employ delay differential equations (DDEs), since they present a con-

venient mathematical framework to accommodate the modulation of axonal

conduction delays by TMS. Here, we focus on a next-generation NMM with

inter-regional axonal delays and, for simplicity, drop any external drive, and

show how these delays can contribute to network oscillation dynamics. More-

over, the pattern of coherence between nodes’ oscillations is predicted by the

structural eigenmodes that are destabilised. This is important for future TMS

modelling studies, since it shows promise that eigenmodes could be used as

a basis for in silico experiments (that aim) to predict how brain states are

altered by TMS-induced plasticity.

As a preliminary result, we showed in Figure 6.9 that the inclusion of

delays in the NMM can be used to destabilise a steady state to achieve a pattern

of oscillatory behaviour across the network. In this section we investigate the

influence of delays in finer mathematical detail to help understand how the

particular pattern of oscillations is related to the SC by using linear theory to

deduce which eigenmodes are excited when delays are incorporated into the

model.

7.3.1 Linear analysis

We described how to linearise general networks of neural masses in chap-

ter 3, in which we calculated the eigenvalue spectra λ about a homogeneous
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network steady state given by the zeroes of the characteristic determinant:

E(λ; p) = det [λIM −DF− µp(λ)DG] ,

µp(λ) =
N∑
i=1

N∑
j=1

wije
−λτijvpi v

p
j , p = 1, . . . , N,

(7.8)

where neural mass dynamics are governed by (3.4). DF and DG relate to the

Jacobians of the model, with a N ×N connectivity matrix W whose elements

wij sum to 1 along rows and have an associated conduction delay given by τij.

IM is an identity matrix of size M×M (M being the number of ODEs for each

node). Recall from chapter 4 that the row-sum condition allowed us to reduce

the linearisation problem to a decoupled set of N eigenvalue problems and we

have an analogous set in (7.8) for a delayed system. Under the row-sum condi-

tion, matrices DF and DG are the same for all nodes p = 1, . . . , N , while µp(λ)

encapsulates nodal differences due to the network topology. Importantly, hav-

ing decoupled spectral equations allows us to expose the role of the individual

eigenmodes of the network, described by the eigenvectors vp ∈ RN .

In practice, E(λ; p) = 0 is difficult to solve since µ(λ) is a transcendental

function, so we employ a quasi-analytic approach whereby we compute (7.8)

for a range of complex λ values and find local minima of |E(λ; p)|. These min-

ima were then used as initial guesses of the eigenvalue spectra for Matlab®’s

in-built fsolve numerical solver, which refined the eigenvalues to machine

precision if a solution to E(λ; p) = 0 existed in the neighbourhood of a local

minimum of |E(λ; p)| (the Matlab® code for running this procedure is shown

in Appendix A). In the following section we will describe the computational

set-up for our specific next-generation NMM network.

7.3.2 Model setup

In order for us to use the decoupled system of spectral equations (7.8),

we need to amend the delayed next-generation NMM employed in section 6.6

so it conforms to the generalised neural-mass equations (3.4). Specifically, we
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require synaptic coupling to be additive, rather than computing each synaptic

conductance via independent ODEs. This requires encapsulating the ODEs

governing synaptic conductivity (6.8) into a single equation by considering

afferent inputs to be described by,

Qextg
ext
a (t) =

∑
b

κabf(Zb(t− dab/c)), (7.9)

for each node a with synaptic conductance gexta , connected to nodes b =

1, . . . , N with strength κab. Conduction delays are computed from the Eu-

clidean distance between a and b, dab, divided by a conductance speed c. The

coupling strengths κab are taken from the same human 78-node SC matrix de-

scribed in 4.1, which are normalised by row sum and multiplied by a universal

scaling parameter ε, (κab = εwab/
∑

bwab). The α function is the same for all

inter-node couplings, given by,

Qext =

(
1 +

1

αext

d

dt

)2

, (7.10)

with a time-scale αext.

Using the new form of the next-generation network detailed above, we

employ linear stability analysis of the delayed system using (7.8) in the follow-

ing section.

7.3.3 Results

We first integrated the differential equation system described in section

7.3.2 without delays to find a steady state that, by inspection of the eigenvalue

spectra, we identified as being close to a Hopf bifurcation. Following the

quasi-analytical approach outlined in section 7.3.1, we confirmed that this

stable fixed point solution could be destabilised via a Hopf bifurcation by

adding delays, with conduction velocity chosen to be 9 ms−1, which is a typical

conduction velocity for white matter axons (Ingber and Nunez, 2011).

The linearised eigenvalue spectra was examined to determine whether
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there were complex conjugate pairs with positive real part, revealing which

eigenmodes were destabilised. The unstable eigenmodes are of interest be-

cause they are predictive of the emergent FC (as shown in Tewarie et al.

(2019)), which we treat later on in this section (see figures 7.3 and 7.4 and

their discussion).

In Figure 7.2(a) and (b), the set of model parameters chosen result in

two eigenvalue pairs crossing the imaginary axis when conduction delays are

incorporated. This results in the instability of the steady state and oscillations

are shown to emerge in Figure 7.2(c). Typically, dynamical systems at steady

state will exhibit low-amplitude oscillations when parameters are adjusted just

beyond a (super-critical) Hopf bifurcation, though the chaotic, high-amplitude

waves shown here suggest that the limit cycle arising from this (sub-critical)

Hopf point is in fact unstable. If this is the case, the oscillations observed

here correspond to a different stable oscillatory solution and therefore the

linear analysis of the initial steady state is incapable of capturing the resultant

dynamics. The sub-critical bifurcation that gives rise to this result may be

useful in certain neurological modelling contexts, since it could be interpreted

as a network evolving from a quiescent state to a high-activity state. However,

knowledge of the destabilised eigenvalues is not informative here since the

linear theory breaks down in this case.

In the interests of testing whether the oscillatory dynamics resulting from

an instability could be related to the network eigenstructure, the parameters

were poised close to a different Hopf bifurcation we believed to be super-critical

and the conduction velocity was chosen a priori so that only one complex con-

jugate pair crossed the imaginary axis, thus only destabilising a single eigen-

mode. An initial condition was then chosen for the delayed system, evaluated

to be the steady state plus a small perturbation on gaext for each node that was

given by vpa, the ath element of the eigenvector associated with the unstable

eigenmode. Integrating the equations with this initial condition, we found that

we induced low-amplitude oscillations, as shown in figure (Figure 7.3), which
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Figure 7.2: Delay-induced oscillations. Oscillations excited by the next gen-
eration NMM when conduction delays are applied. The top two panels show the
spectra, calculated by solving (7.8) for the system (a) in absence and (b) in pres-
ence of delays due to a conduction velocity of 9ms−1. The particular spectra for
eigenmodes p = 1, 7 are shown highlighted in blue and red respectively. Panel (c)
shows the resultant time series solution for the delayed system. The firing rate
of the each node’s excitatory population are plotted in different colours. Param-
eters used were: TI = TE = 1, αEE = 1, αEI = 0.7, αIE = 1.4, αII = 0.7,
αext = 0.9,κEE = 1.5π, κEI = 2π, κIE = π, κII = 3π, vEEsyn = 10, vIEsyn = −vEIsyn = 8,

vIIsyn = −12, ∆E = ∆I = 0.5, ηE0 = 25, ηI0 = −50, ε = 25.

would be expected from a super-critical Hopf bifurcation.

In order to deduce whether the observed oscillatory pattern was reflective

of the particular unstable eigenmode, we employed a similar methodology as

used in chapter 4, wherein we showed that the eigenmode mediated the relative

instantaneous phases of nodes’ oscillations, which was measured as an average

across the time series using the mean phase agreement (MPA) (4.7). We

applied this to both the time series (which was Hilbert-transformed to extract

phase via its imaginary parts) as well as the eigenvector itself. Since we posit
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Figure 7.3: Oscillations due to instability of the 7th eigenmode. (a) Spec-
tra showing the eigenvalue associated with the 7th eigenmode crossing the imagi-
nary axis; (b) 1 second portion of the timeseries, taken between 19-20 seconds to
give initial transients time to settle. The firing rate of the each node’s excitatory
population are plotted in different colours. Parameters used were: TI = TE = 5,
αEE = 0.2, αEI = 0.28, αIE = 0.14, αII = 0.08, αext = 0.09,κEE = 2.5π, κEI = 10π,
κIE = 3.5π, κII = 15π, vEEsyn = vIEsyn = −vEIsyn = −vIIsyn = 10, ∆E = ∆I = 0.5,

ηE0 = 20, ηI0 = −50, ε = 17.5.

that the phase differences between the nodes’ oscillations reflect the unstable

eigenmode, we used these as a basis to predict the average phase differences

between nodes. Noting that the normalised eigenvector has values vp ∈ [−1, 1],

we map these onto phases of a circle, θp ∈ [−π, π], via θp = πvp. The resulting

matrices for the MPA calculations are shown in Figure 7.4. Comparing the

two figures, we see that they share a similar modular structure. Also of note is

that many of the nodes show a high degree of coherence, whereas a select few

exhibit the opposite. This is expected, since from examining the time series

in Figure 7.3(b) we see that some nodes oscillate in anti-phase with others.

These nodes are exposed in Figure 7.4, whereby they show low MPA with other

nodes, thereby appearing as blue bands on the matrix plot. We observe these

bands on both the direct simulation and eigenvector prediction, suggesting that

the anti-phase network dynamics are inherited from the unstable eigenmode.

Moreover, the Jaccard similarity between the two matrices is 0.97 (to 2 s.f.),

further indicating the predictive power of this analytical method to determine

the dynamics of the model. Also of note is that in the linear approximation,

the magnitude of the imaginary part of the unstable eigenvalue, Im(v7), is

related to the period of oscillation in Figure 7.3(b) via 2π
Im(v7)

; calculating these
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two quantities reveals this to be accurate with both ∼ 37ms−1.

This method could therefore be used as a precursor to future simulations,

in order to test whether the model parameters are likely to produce patterns of

coherence that correspond to the eigenmodes of interest. Indeed, such modes

can reflect particular healthy/pathological states (Wang et al., 2017), so this

method may be used to better inform in silico simulations of specific brain

states.
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Figure 7.4: Comparison between MPA for the unstable eigenmode and
direct model simulation (a) Matrix of MPA measures for a phase distribution
dictated by the unstable 7th eigenmode’s eigenvector; (b) MPA for the entire time
series solution for the next-generation NMM, with parameters the same as in Fig-
ure 7.3. The Jaccard similarity between the matrices is 0.97 (to 2 s.f.)

7.4 Discussion

In this final technical chapter, we have presented methodologies for in-

vestigating neurological modulation using mathematical methods. In broader

terms, these results also represent novel analyses of a recently developed NMM

that contribute to understanding its dynamical nature, which may be useful

for researchers wishing to employ the model in a variety of neurobiological

applications.

In the context of our specific investigation, we have highlighted the rele-

vance of entrainment, discussed in section 7.2, to Tourette’s syndrome and we

have shown that the model is able to exhibit a wide range of frequency-locked
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states. In future work, it would be appropriate to investigate the effects of

entrainment on cortical excitability in simulations of irregular motor-related

activity (Orth, 2009). An effect of particular interest would be increased beta

power, which has been associated with reduced tic severity (Niccolai et al.,

2016). This may suppress the beta rebound effect related to motor movement,

whereby decreased beta power is observed during movement followed by a spike

immediately afterward. Indeed, this effect has previously been replicated using

the next-generation NMM (Byrne et al., 2017), suggesting that the model may

be suitable to simulate pathological motor function.

In the second half of this chapter, we analysed the model at the scale

of the whole brain. This revealed a highly non-trivial relationship between

SC and the emergent dynamics via delay-induced excitation of eigenmodes.

We did not attempt to replicate a particular TMS protocol here, but instead

demonstrated the rich dynamics that can arise from the modulation of delays,

which may arise from TMS-induced plasticity. Of particular interest was the

prediction of certain nodes oscillating in anti-phase with most other nodes.

This is significant in depression study since evidence has shown that sufferers

typically do not exhibit network activity anticorrelated with the DMN, which

are normally active during cognitive tasks (Chai et al., 2016). Moreover, it has

been shown that choosing TMS target sites that are anticorrelated with regions

of interest may provide more effective treatment (Fox et al., 2012). Though

further investigation is required, the work here gives a preliminary indication

that eigenmodes can be used in computation models to predict optimal target

sites for TMS.

Next steps in this research would include varying conduction delays het-

erogeneously via homeostatic plastic effects, such as mentioned in section 6.6.

The ability to modulate which eigenmodes are excited by the model also

presents a framework to fit the model to real FC data, such as reported in

Tewarie et al. (2019). Fitting the model to pathological brain states may not

only shed light on how those states reflect the underlying structure, but also



118 Chapter 7. Analytical methods for exploring neuromodulatory effects

provide a basis to scrutinise the efficacy of different TMS protocols in sil-

ico. Moreover, eigenmodes have been shown to reflect functional resting state

sub-networks (Atasoy et al., 2016), so it may be feasible to simulate dynamic

biologically realistic switching between brain states via excitation of different

eigenmodes.

In the next and final chapter, we will summarise the main findings of this

thesis and consolidate its contributions to the understanding of the function

of large scale brain networks.



Chapter 8

Conclusion

To conclude, we revisit some of the main findings of this thesis and offer an

evaluation of the scope for further study.

8.1 Summary of thesis

The aim of this thesis was to demonstrate a range of mathematical meth-

ods that describe the emergent behaviour of large-scale neural-mass networks.

This has taken the form of a series of theoretical studies, which together rep-

resent a toolkit to interrogate brain data, especially through analysis of math-

ematical models.

A crucial aspect of this was to attempt to understand dynamics on the

level of large-scale brain networks. After introducing some background to this

topic in chapter 1 and describing some of the key mathematical concepts in

chapter 3, we began the technical work of this thesis by conducting an initial

computational study focused on the emergence of FC via modulation of nodal

dynamics in chapter 4. We found not only that the relationship between FC

and SC depended on the underlying NMM’s dynamics, but that their network

similarity could largely be attributed to the bifurcation structure and stability

of global synchrony, both of which were independent of the SC topology (for

the particular row-normalised connectivity matrix employed therein). Further-

more, we found that linear analysis of a reduced oscillator model (via a phase

119
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response function) was predictive of the behaviour of the (original) Jansen-Rit

system. The main benefit of this is that it reduces the number of equations,

which may greatly reduce the computational power required to simulate neu-

ral activity while still providing enough complexity to generate complex FC

patterns.

In chapter 5 we focused on the nature of structure and function relations

with a greater emphasis on network topology. Moreover, we developed a met-

ric that gives a notion of how the FC contributes to the overall connectivity of

the structure–function duplex, the amalgamation of both structural and func-

tional connections, compared to the monolayer SC. This work extended the

study of Crofts et al. (2016) for the restricted case of binary networks, to gen-

eralise this measure for use in multiplexes of several layers that have weighted

connections. We showed that thresholding and binarising significantly alters

the observed pattern of multiplex clustering within a parameter space for the

Wilson–Cowan model. While thresholding brain networks is important to elim-

inate false-positive connections from data acquisition post-processing, the new

metric allows researchers the freedom to interrogate multiplexes in an analo-

gous way pre- and post-thresholding. We also offered some preliminary results

to demonstrate proof of concept that such a metric could have use for empirical

datasets, using frequency band-filtered MEG data as a motivating example.

Motivated by these structure–function experiments, we proceeded to

use neural-mass modelling techniques for a more specialised study concern-

ing TMS. Considering the myriad stimulation protocols that are available to

clinicians, our goal here was to develop a framework for in silico experimenta-

tion to study the effects of stimulation on whole-brain networks. Moreover, we

hoped that by doing so we could develop computational methods that may be

used to elucidate the mechanisms that underly TMS’s efficacy as a treatment

for neurological conditions, with a particular focus on depression.

In chapter 6 we set out the model and computational setup to perform

TMS simulations. Here, we were mainly interested in showing that such a
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model is amenable to producing changes in network dynamics, which is an

essential property for simulating TMS effects. Furthermore, we showed how

we could use the model to test different target sites and, by measuring various

network properties of the emergent FC, described how propagation of stimuli

throughout the network elicits different post-TMS network effects. We were

particularly interested about how we could indirectly stimulate the insula,

which is posited to be important in treating depression. This is embedded

deep in the cortex, below the reach of direct TMS which only induces current

close to the cortical surface. In the last part of this chapter, we noted that

TMS could encourage myelination of axons and that this could potentially

affect the conduction speeds between brain regions. To accommodate this,

we added delays to the model and, as a motivating example, we showed that

it was possible to induce oscillations by including conduction delays between

coupled nodes.

In the last of the technical work, chapter 7, we took some of the ideas

introduced in chapter 6 and outlined how these could be tackled from the

perspective of mathematical analysis rather than through brute-force compu-

tations. We focused on two aspects of the model relevant for the study of

Touettete’s syndrome and TMS-induced neural plasticity; the stability of os-

cillations due to external forcing and linear bifurcation analysis of the network

model with delays. In the former case, we revealed a rich pattern of different

frequency-locked states when stimulation frequency and intensity were varied.

In the latter case, we discovered that not only could we destabilise the model

by including delays but the resultant dynamics were reflective of the particular

unstable structural eigenmode. These findings warrant more thorough investi-

gation and we will briefly give a critical evaluation of their significance and the

next steps required to give clinical impact to the theoretical results presented

in this thesis.
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8.2 Discussion of further work

The results of this thesis are largely theoretical in nature and serve to

illustrate mathematical methods for the analysis and simulation of brain dy-

namics. We note, however, that much of this work was undertaken on the

presumption that such methods, while requiring further advancement, could

eventually be deployed for more direct clinical applications, i.e. to simulate

and/or analyse real brain data. We discuss some of these potential applications

in this chapter, as well as suggestions to augment the relevant mathematical

methods in order to establish computational tools sophisticated enough to

tackle clinical challenges.

In light of our results surrounding the structure–function relationship of

the brain and how this relates to the underlying dynamics, we pursued an

approach whereby we used linear theory to make predictions of the emergent

simulated FC in large-scale simulations. We have not, however, attempted to

explain real FC data using similar techniques. One of the main limitations of

our study is that we have only considered cortico-cortical interactions when,

in reality, the brain’s activity is mediated by a much more complex system

of different types of interaction, e.g. the relay cells that regulate thalamo-

cortical interactivity or the visual and auditory responses regulated by the

midbrain. By considering only cortico-cortical connections, the model we use

is limited in its ability to demonstrate how the structure of the brain acts as

a substrate for its function. Indeed, many EEG/MEG experiments attempt

to capture brain activity in the absence of sensory input to reveal the modes

of function that emerge from cortico-cortical networks at rest (Laufs et al.,

2003). However, the interactions between cortical and subcortical regions are

much less clear, though (as an example) it has been shown that interactions

between the cortex and midbrain occur on multiple spatio-temporal scales

(Stitt et al., 2015), which suggests subcortical structures may have a complex

role in facilitating brain function. A natural way to begin to integrate sensory
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information processing into the structure-function study would be to assimilate

mechanisms from the thalamo-cortical system into the neural mass model.

Such a model was used in Sotero et al. (2007) to simulate realistic EEG activity.

This was further extended to replicate the slow waves and spindles associated

with sleep (Cona et al., 2014), as well as uncovering the dynamic response

of the brain to structural neurodegeneration due to aging (Pons et al., 2010).

Noting the similarity of such models to that employed in chapter 4, the next

step in this research could be investigating how the predictive power of the

linear analyses and weakly-coupled oscillator theory techniques are altered

when considering both cortico- and thalamo-cortical interactions.

In chapters 4 and 5, we briefly discussed the importance of dynamic FC

in elucidating the brain’s structure–function relationship. Reviewers of the

paper adapted in chapter 4 (Forrester et al., 2020) were interested in how the

structure-function relationship evolves over time and whether our particular

study could be advanced to accommodate dynamic fluctuations of FC. A pri-

mary reason for not pursuing this in the paper was that we had not fully

categorised all of the phase-locked states of the network. We instead focused

on near-synchronous states that were more amenable to be studied via the

linear and weakly-coupled oscillator theories, as well as the most stable phase-

locked states for the system under each set of values in the explored parameter

space. Therefore, in simulations of the model, FC was measured over a long

time to expose the most stable state (under the assumption that the noise

driven system would be more inclined to the most stable phase-locked state

over others). Despite these mathematical considerations, we do not wish to un-

derstate the significance of dynamic FC to current brain research (Preti et al.,

2017). It has been shown, for instance, that function resembles structure less

over shorter timescales (Honey et al., 2007; Cabral et al., 2017). Moreover,

the brain exhibits metastability (Friston, 1997; Deco et al., 2017b), whereby

the brain constantly shifts between states that are unstable rather than con-

verging to a stable attractor. Moreover, it is thought that there exists a core
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of stable attracting states, comprising only a few regions, that facilitate FC

transitions by engaging other specialised brain areas in order to orchestrate a

particular cognitive task (Shine et al., 2019). Eigenmodes of structural con-

nectivity matrices may be a good candidate to characterise these states since

they have been shown to reflect neural subnetworks of the brain (Wang et al.,

2017). However, though we have shown in chapter 4 that the dynamics of the

Jansen-Rit network are partially reflective of the structural eigenmodes over

a long timescale, it is not clear whether there is dynamic switching between

states that arise from eigenmodes, or indeed if it is feasible to evaluate how

many phase-locked states are stable within the network. Mathematical limita-

tions notwithstanding, elucidating the non-trivial solutions of phase-oscillator

networks is a rich area of research (Pietras and Daffertshofer, 2019) and addi-

tional analytical work may reveal the full repertoire of NMM network states,

and how they may relate to dynamic FC. A more readily computable approach

could be found by applying a sliding window approach, such as described in

chapter 5, to treat simulated (or real) time series data. For instance, the time-

varying multiplex metric described in section 5.4 could be used as a method

of community detection to test the robustness of network clusters over time,

potentially revealing core subnetworks.

It has also been shown that conduction delays may be integral is me-

diating the transient nature of brain activity (Kutchko and Fröhlich, 2013).

The novelty of their work was to consider not only fast electrical conduc-

tion between cortical areas, as we considered in chapter 7, but also the slow,

unmyelinated neurons that account for about half of these long-range projec-

tions. Incorporating these slower connections into their model not only caused

the emergence of multistable states, but the model sporadically switched be-

tween these states in a manner that resembled real synchronisation patterns

observed in brain recordings. Particularly relevant for our research is that the

authors were able to use simulated transcranial alternating current stimulation

to modulate the dynamic state of the model. The model itself comprised two
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interacting populations of neurons, rather than pursuing a large-scale simu-

lation of mean-field cortical dynamics as we have employed throughout this

thesis. It will therefore be of interest in future work to consider incorporat-

ing structural connectivity with different scales of conduction speeds in our

model, both to test whether we observe a greater number of stable dynamic

states in the next-generation NMM and whether we can accurately simulate

FC metastability using induced noise to allow the system to explore the phase

space. Some of these may relate to pathological states, since Kutchko and

Fröhlich (2013) were able to simulate dynamics resembling epileptogenic ac-

tivity (Schevon et al., 2012). If it is possible to fit the next-generation NMM

network to a pathological network state, we could use this an initial condition

to prime the model for simulations of the application of therapeutic TMS to

pathologically affected networks.

Finally, it is important to note how the time series data we present in

this thesis relates to real physiological signals. The NMMs employed here use

average firing rates as a measure of electrical activity in the brain which can

be used as a suitable variable to describe EEG or MEG signals (David and

Friston, 2003). However, much of the data used to describe functional connec-

tivity on the brain comes from fMRI data. While both signals are related and

can be used as biomarkers for function (Freeman et al., 2009), if we wish to

extend the computational methods in this thesis to fit our model to real fMRI

data, it may be appropriate to transform the firing rate signals we simulate to

blood-oxygen dependent (BOLD) signals that are measured using fMRI. The

so-called Balloon model (Buxton et al., 1998) was devised for this purpose,

whereby BOLD signals are described by nonlinear functions of blood flow and

neural activity. Although more recent experimental results have shown that

this model does not account for all of the haemoglobic /metabolic responses

due to neural stimulus Buxton (2012), moving the modelling research in this

direction would be an important step in providing clinical impact, particu-

larly in light of recent results which have used fMRI studies to investigate the
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therapeutic mechanisms of TMS (Hartwigsen et al., 2020; Vink et al., 2018).
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nization in networks with heterogeneous coupling delays. Physical Review
E, 97(1):012311, 2018.



BIBLIOGRAPHY 143

George C O’Neill, Prejaas K Tewarie, Giles L Colclough, Lauren E Gascoyne,
Benjamin AE Hunt, Peter G Morris, Mark W Woolrich, and Matthew J
Brookes. Measurement of dynamic task related functional networks using
MEG. NeuroImage, 146:667–678, 2017.
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Martin Tik, André Hoffmann, Ronald Sladky, Livia Tomova, Allan Hummer,
Lucia Navarro de Lara, Henryk Bukowski, Jürgen Pripfl, Bharat Biswal,
Claus Lamm, and C Windischberger. Towards understanding rTMS mech-
anism of action: stimulation of the DLPFC causes network-specific increase
in functional connectivity. NeuroImage, 162:289–296, 2017.

Wing Ting To, Dirk De Ridder, John Hart Jr, and Sven Vanneste. Changing
brain networks through non-invasive neuromodulation. Frontiers in Human
Neuroscience, 12:128, 2018.

Robert Ton, Gustavo Deco, and Andreas Daffertshofer. Structure-function
discrepancy: inhomogeneity and delays in synchronized neural networks.
PLoS Computational Biology, 10(7):e1003736, 2014.

J Touboul, F Wendling, P Chauvel, and O Faugeras. Neural mass activity,
bifurcations, and epilepsy. Neural Computation, 23:3232–3286, 2011.

Jochen Triesch, Christoph Zrenner, and Ulf Ziemann. Modeling TMS-induced
i-waves in human motor cortex. In Progress in Brain Research, volume 222,
pages 105–124. Elsevier, 2015.

Shang-Yueh Tsai. Reproducibility of structural brain connectivity and network
metrics using probabilistic diffusion tractography. Scientific Reports, 8(1):
11562, 2018.

Nathalie Tzourio-Mazoyer, Brigitte Landeau, Dimitri Papathanassiou, Fabrice
Crivello, Olivier Etard, Nicolas Delcroix, Bernard Mazoyer, and Marc Joliot.
Automated anatomical labeling of activations in SPM using a macroscopic
anatomical parcellation of the MNI MRI single-subject brain. NeuroImage,
15(1):273–289, 2002.

Peter J Uhlhaas and Wolf Singer. Neural synchrony in brain disorders: rele-
vance for cognitive dysfunctions and pathophysiology. Neuron, 52(1):155–
168, 2006.

Frederik Van de Steen, Hannes Almgren, Adeel Razi, Karl Friston, and Daniele
Marinazzo. Dynamic causal modelling of fluctuating connectivity in resting-
state EEG. NeuroImage, 189:476–484, 2019.



148 BIBLIOGRAPHY

Martijn P Van Den Heuvel and Hilleke E Hulshoff Pol. Exploring the brain
network: a review on resting-state fMRI functional connectivity. European
Neuropsychopharmacology, 20(8):519–534, 2010.

Martijn P Van Den Heuvel and Olaf Sporns. Rich-club organization of the
human connectome. Journal of Neuroscience, 31(44):15775–15786, 2011.

Martijn P van den Heuvel and Olaf Sporns. Network hubs in the human brain.
Trends in Cognitive Sciences, 17(12):683–696, 2013.

David C Van Essen, Stephen M Smith, Deanna M Barch, Timothy EJ Behrens,
Essa Yacoub, and Kamil Ugurbil. The WU-Minn human connectome
project: an overview. NeuroImage, 80:62–79, 2013.

Elisabeth CW van Straaten and Cornelis J Stam. Structure out of chaos:
functional brain network analysis with EEG, MEG, and functional MRI.
European Neuropsychopharmacology, 23(1):7–18, 2013.

Marine Vernet, Shahid Bashir, Woo-Kyoung Yoo, Jennifer M Perez, Umer
Najib, and Alvaro Pascual-Leone. Insights on the neural basis of motor
plasticity induced by theta burst stimulation from TMS–EEG. European
Journal of Neuroscience, 37(4):598–606, 2013.
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Appendix A

Selected Matlab® codes

In this section we produce codes that were used in computing several re-
sults presented in this thesis. In the interests of brevity, we here include
two Matlab® codes that demonstrate a range of computational methods that
were critical in our simulation and analysis of NMM network dynamics. Since
portions of these codes were repurposed for several results throughout this
thesis, they appropriately summarise a large proportion of our computational
work. Other codes, including those used for XPPAUT and Julia simulations,
are available on GitHub (https://github.com/MichaelForrester/PhD-Codes/).

Function to calculate the Jaccard coefficient be-

tween SC and FC for the Jansen–Rit NMM net-

work

FC simulation is crucial to many of the results we present in this thesis.
The following code was used in constructing Figure 4.5(a), which shows the
Jaccard similarity between SC and simulated FC over a parameter space of
the Jansen-Rit model. It outlines the procedure to generate time-series, hilbert
transform to obtain instantaneous phases and then process this data via MPC
to an FC matrix. We simulated FC in this way to explore structure–function
relations in chapters 4 and 5, while we also use is as a basis to investigate the
neuromodulatory effects of TMS in chapter 6. The Jaccard similarity agree-
ment is also used in different ways: as a convenient metric to determine the
degree to which structure contributes to emergent FC (as in Figures 4.5(a) and
6.7), but also to qualify the accuracy of FC matrices predicted from weakly-
coupled oscillator theory (Figure 4.7) and linear theory (Figure 7.4).

function J=Jaccard(C,P)

%Function to calculate the Jaccard coefficient for

the SC matrix C and the FC matrix

%resulting from the MPC between each node 's
timeseries (transformed by the Hilbert function).

%Timeseries dynamics are governed by the Jansen -Rit

model with parameters P.
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% Inputs: C - Connectivity matrix where C(i,j) is

coupling strength from node j -> i.

% P - Structure containing Jansen -Rit

paramteters.

% Output: Jaccard - Jaccard coefficient between SC

and simulated FC.

N=length(C); % Number of nodes.

C_bin =1*(C~=0); % Binary SC.

% Setting time increments.

T = 500; dt = 0.001; N = T/dt;

% Preallocating variables.

y0=rand(N,1);

y1=rand(N,1);

y2=rand(N,1);

y3=rand(N,1);

y4=rand(N,1);

y5=rand(N,1);

% Preallocating saved variables.

y0save = zeros(N,1);

y1save = zeros(N,1);

y2save = zeros(N,1);

y3save = zeros(N,1);

y4save = zeros(N,1);

y5save = zeros(N,1);

ysave = zeros(N,N+1);

% Preallocating space for timeseries of variable y.

ysave (:,1) = y1-y2;

% Defining noise.

dW = normrnd (0,0.1,F,N-1);

% Implementing method.

for j = 1:N

y0save = y0 + y3*dt;

y1save = y1 + y4*dt;

y2save = y2 + y5*dt;

y3save = y3 + ...

(P.A*P.a*sigm(y1-y2) -2*P.a*y3 -(P.a^2)*y0)

*dt;

y4save = y4 + ...

(P.A*P.a*(P.p.P+P.e*(C*f(y1-y2))+P.C2*f(P

.C1*y0)) -2*P.a*y4 -(P.a^2)*y1)*dt+dW(:,N

-1);

y5save = y5 + ...
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(P.B*P.b*P.C4*f(P.C3*y0) -2*P.b*y5 -(P.b^2)

*y2)*dt;

y0 = y0save; y1 = y1save; y2 = y2save;

y3 = y3save; y4 = y4save; y5 = y5save;

ysave(:,j+1)=y1-y2;

end

ysave (: ,1:100000) =[]; % Removing inital transients.

U_trans = angle(hilbert(ysave ')); % Implementing

Hilbert tranform.

FC = zeros(N); % Preallocating FC.

% Calculating FC matrix.

for f = 1:F

FC(f,f+1:F) = abs ((1/ size(U_trans ,1))*sum(exp(1i

*( unwrap(U_trans(:,f+1:F))-repmat(unwrap(

U_trans(:,f)) ,1,F-f)))));

FC(f+1:F,f)=FC(f,f+1:F);

end

% Thresholding and binarising FC matrix.

R_bin=zeros(F);

[~,I]=sort(FC(:));

R_bin(I(end -cons +1: end))=1;

% Calculating Jaccard coefficient.

J = sum(sum(C_bin .* R_bin))/sum(sum(C_bin ==1| R_bin ==1)

);

end

Function to calculate eigenvalue spectra for un-

delayed and delayed next-generation NMM

Many of the analytical results in this thesis are underpinned by linear
methods, which are used to compute bifurcation sets for NMMs (Figure 4.3), as
well as predict the organisation of simulated FC matrices and to quantify their
stability (Figures 4.7 and 7.4). The following code computes the spectra for the
next-generation NMM with delays, as well as its undelayed counterpart, using
the spectral equations derived in chapter 3 (section 3.3). Importantly, this
method (for row-normalised matrices) allows us to have decoupled spectral
equations for each structural eigenmode. This not only makes solving the
eigenvalue problems easier when calculating bifurcation sets, but also allows
us to determine each eigenmode’s stability individually, from which we make
predictions about emergent network behaviour (see section 7.3).
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function [nodel_spectra ,del_spectra ]= CBdelplot(C,D,y0

,P,s)

% Calculates the spectra for an undelayed network

of next -generation neural masses with

paramters set in P, as well as spectra for the

same network with conduction delays with

distance matrix D and conduction speed s.

N=length(C); % Number of nodes.

M=length(y0); % Number of ODEs for each node.

% Calculating delay matrix (distance/speed).

tau=D/s;

C0=P.e*C; % Scaling coupling.

[EVec ,EVal]=eig(C0); % Eigenvectors and

eigenvalues of SC matrix.

% Defining solver options.

options = optimoptions (@fsolve ,'Display ','iter',
...

'Algorithm ','trust -region -dogleg ',...
'SpecifyObjectiveGradient ',true ,'

PrecondBandWidth ' ,0);

% Solving neural -mass network using next -

generation model and its jacobian defined in

NextGen , with initial conditions y0.

[~,~,~,~, jacobian] = fsolve (@(y) NextGen(y,P),y0 ,

options);

jacobian=full(jacobian); % Conversion from sparse

to full Jacobian.

% Setting DF (from equation 7.8).

DF=jacobian; DF(M,1:2) =0;

% Setting DG (from equation 7.8).

DG=zeros(M);

DG(M,1)=P.aext ^2*dfx(S(1),S(2),P.taue);

DG(M,2)=P.aext ^2*dfy(S(1),S(2),P.taue);

% Redefining options

options = optimoptions (@fsolve ,'Display ','iter',
...

'Algorithm ','trust -region -dogleg ',...
'SpecifyObjectiveGradient ',false ,'

PrecondBandWidth ' ,0);



154 Appendix A. Selected Matlab® codes

nodel_spectra=zeros(M*N,1); % Initialising

spectra for undelayed network.

del_spectra =[]; % Initialising spectra for

delayed network.

% Loop over each eigenmode n.

for n=1:N

% Spectra for nth eigenmode of undelayed

system.

nodel_spectra ((n-1)*M+1:n*M)=eig(DF+EVal(n)*

DG);

% Set upper and lower limits for real and

imaginary eigenvalues and make arrays with

1000 uniform intervals.

u_lim=[u_min u_max ]; v_lim =[ v_min v_max];

u=linspace(u_lim (1),u_lim (2) ,1001);

v=linspace(v_lim (1),v_lim (2) ,1001);

% Initialise plane in selected domain of real

/imaginary values.

UVplane=zeros(length(v),length(u));

% Calculate absolute value of characteristic

determinant for each complex value.

for U=1: length(u)

for V=1: length(v)

ig=u(U)+1i*v(V);

UVplane(V,U)=abs(del_det(l,C0 ,tau ,DF,

DG ,EVec(:,n)));

end

end

% Find local minima in UVplane

[X,Y]= meshgrid(u,v);

ix = find(imregionalmin(UVplane));

% Setting initial conditions for solver

X0=X(ix)+1i*Y(ix);

% Solving for each eigenvalue

for m=1: length(X0)

x0=X0(m);

[l,~,ef ,~] = fsolve (@(l) del_det(l,C0,tau

,DF ,DG,EVec(:,n)),x0,options);

if ef~=-2 && ef~=-3
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del_spectra =[ del_spectra;real(l),imag

(l),n];

end

end

end

end

% Defining df/dx and df/dy, where f is firing rate of

excitatory population , x and y are the real and

imaginary Kuramoto order paramters , respectively.

function X = dfx(x,y,tau)

X=-(1/(pi*tau))*2*(x.^2+2*x-y.^2+1) ./((1+2*x+x

.^2+y.^2) .^2);

end

function X = dfy(x,y,tau)

X=-(1/(pi*tau))*4*y.*(1+x)./((1+2*x+x.^2+y.^2)

.^2);

end

% Characteristic determinant.

function X=del_det(l,C,tau ,DF ,DG ,V)

X=det(eye(length(DF))*l-(DF+sum(sum(C.*exp(-l*tau

).*(V*V')))*DG));
end



Appendix B

List of Abbreviations

SC Structural connectivity
FC Functional connectivity
EEG Electroencephalography
MEG Magnetoencephalography
MRI Magnetic Resonance Imaging
fMRI Functional Magnetic Resonance Imaging
DWI Diffusion-Weighted Imaging
DTI Diffusion Tensor Imaging
ECT Electroconvulsive Therapy
DBS Deep brain stimulation
TMS Transcranial Magnetic Stimulation
NMM Neural mass model
PRC Phase Response Curve
MPC Mean phase coherence
MPA Mean phase agreement
LLE Largest Lyapunov exponent
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