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Abstract

Lie detection has always gripped mankind. Today, applications range from individual

employee screening to mass terror scenarios. Yet, signs of deception are still not well

understood and there is general agreement that humans are bad at detecting them. We

suffer from bias and subjectivity as well as a lack of stamina and observational acuity.

For this reason, hope is now being placed on automatic methods such as action unit (AU)

detectors, which detect facial muscle movements that can reveal affective states.

Automatic AU detectors are still in their developmental stage; they are proving, how-

ever, to be useful for both detecting and learning about deception. This thesis used

CNN-BLSTM and OpenFace AU detectors and decision trees in two different decep-

tion scenarios. In one of them, the game of poker, deception is integral and desirable.

Videos obtained from the University of Southern California showed pairs of players who

communicated over a network and behaved spontaneously in a laboratory setting. I as-

certained that players who were folding, as opposed to calling or raising, displayed sig-

nificantly more AU12 and AU5, action units associated with smiling and other emotions,

whereby CNN-BLSTM and OpenFace showed only limited overlap.

The study of deceit is hindered also by the lack of relevant datasets that simultaneously

have a ground truth. For that reason, the second part of my thesis was dedicated to build-

ing and researching such a dataset - the dice rolling experiment - where participants roll

a virtual die and decide themselves whether or not to lie to increase their earnings. This

dataset consists of over 1.7 million frames of good quality video along with concurrent

mouse tracking information and timestamps of events covering 373 different subjects. It

has a defined ground truth and also investigates the effects of cold water stress on de-

ceptive behaviour. This experiment revealed that males lied more than females and that

stress reduced lying. Low detection levels and distinct patterns of false positive facial

AUs lead me to use head pose estimators, which showed that under stress, deceptive

participants moved their heads significantly more than honest ones.

In summary, this study automatically detected scenario-specific clues of deception, ex-

plored the limitations of current AU detectors, and generated a large, novel data set

uniquely suitable for studying deception and its automatic detection.
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Chapter 1

Introduction - Exploring Deception

Using Automatically Detected

Facial Action Units

Human behaviour is rife with deception. If one takes deception to be an intentional

attempt to get others to believe something which is not true, then even the most upright

are often guilty of telling white lies. Accordingly, humans have made a huge effort to

detect when others are being deceitful in order to get to the truth. Examples range from

a person trying to find out if their spouse has been unfaithful, a judge or juror punishing

crime to commercial negotiators or diplomats needing to establish if their counterpart is

trustworthy. Detecting deception is a much sought after ability and whoever can do it is

believed to be at an advantage.

Attempts to detect deception are not new. In the Middle Ages, in criminal cases where

it was otherwise impossible to establish the facts, the judgement of God was frequently

called upon and Trial by Ordeal used. An accused person could agree to such a trial to

prove their innocence and risk serious injury, such as having their “hand boiled to rags”,

or worse (Leeson, 2012) . Nowadays, lie detection techniques have turned to seemingly

more scientific methods, although it is hotly disputed whether even the most common

modern method of lie detection, the polygraph, is effective or scientifically sound (Bell,

2012). The ambivalence concerning the polygraph can be seen by the fact that even

though the US Supreme Court has declared polygraph evidence to be hearsay, polygraphs

are still frequently used in legal as well as many other settings such as the government,

industry and the private sector, turning the polygraph into a booming multibillion dollar
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industry (Harris, 2018).

Nowadays, people come together in huge masses - at concerts, at malls and shopping

areas, in sports stadiums and in airports - to name a few examples. This makes them

vulnerable to terrorist attacks and they are aware of this. To deal with these situations, it

has become an urgent matter to come upwith lightweight methods of deception detection

that can be deployed on a large scale, for which the polygraph, which is very time inten-

sive and expensive, is not suitable. In the US, in the case of airports, the Department of

Homeland Security’s Transportation Security Administration has been training special-

ists called Behavioural Detection Officers (BDOs) whose job it is to visually "identify

passenger behaviors indicative of stress, fear or deception" (U.S. Government Account-

ability Office, 2013). These are considered to be indicators of mal-intent, which is intent

to harm. The program is called Screening of Passengers by Observation Techniques

(SPOT) and has an annual budget of $200 million (Weinberger, 2010). SPOT has been

heavily criticised by many, including the United States government’s own accountability

agency, the Government Accountability Office (GAO), which published a congressional

report recommending the program be discontinued until there is proof of its effectiveness

(U.S. Government Accountability Office, 2013). The GAO argued that human observa-

tion unaided by technology is not a reliable means for detecting deceit. One of the main

criticisms of programs like SPOT, is that humans detect deceit no better than chance,

that they are subjective and suffer from other shortcomings. The GAO did suggest that

automated technologies might overcome many human limitations regarding detecting

telltale signs of deception and mal-intent. They might solve problems of fatigue, bias

and subjectivity and they could perhaps notice things the naked human eye might miss.

While this approach shows promise, a RAND report (Davis et al., 2013) found that these

technologies were currently only in their infancy.

Computer vision and machine learning offer the promise of providing objective, repeat-

able, ubiquitous and inexpensive tools to study and detect human behaviour such as

deceit. Machine learning techniques are capable of detecting patterns in data that hu-

mans cannot discern, making it possible that automatic methods can discover unknown

behavioural markers, provided that the data they learn from is representative of the prob-

lem at hand (Kirkpatrick, 2017).

There are several supposed manifestations of deception, including body pose, voice tone

changes (DePaulo et al., 2003) and certain physiological markers like blood pressure
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1.1. Motivation

(ten Brinke et al., 2015). One of the most commonly studied sources of clues to deceit

is the face (Stel and van Dijk, 2018). As yet, there is no strong scientific link between

facial cues and a person’s intentions, though, and this needs to be explored. Systems

using automatic detection of facial expressions are a field of rapidly advancing research

with many applications in human computer interactions, gaming and advertising (Mar-

tinez et al., 2019; Cohn and De La Torre, 2015; Pantic and Bartlett, 2007), including a

burgeoning field of research into automatic detection of affective behaviour in medicine

(Valstar, 2014). It has long been recognized that human affect plays a decisive role in

human interactions, whether they be human-human or human-computer, and as the hu-

man face is one of the richest sources of affective information, efforts to capture and

automatically understand this will grow (Picard, 2000). In addition, facial expression

recognition systems are already being deployed at places like border controls and air-

ports to screen people to detect risks such as potential terrorist attacks (Rothwell et al.,

2006). Given these high stakes, it is thus important to establish whether these tech-

nologies are truly effective particularly concerning deceptive behaviours. The research

presented in this thesis aims to further our knowledge in this scientific area.

1.1 Motivation

This thesis is a study in automatic detection of deception based on visual cues of the

face. Up until now, there have only been a few such studies. This is primarily because of

a lack of real-life deception scenarios in a setting that is also appropriate for a computer

vision study. Also, due to ethical reasons, data involving deception is often not made

public and so not easily accessible to researchers. The motivation of this work is to

investigate the feasibility of using automatic detection of facial expressions to determine

if a person is being deceptive or not. Machine learning can potentially revolutionize

our understanding of human facial expressions and of human behaviour. Computers

and webcams are ubiquitous and we are already being analysed by them, although the

behavioural science behind it is still developing. Therefore, the purpose of this study is

to investigate the scientific basis and feasibility of automatic detection of deception.

3



1.2. Contributions

1.2 Contributions

This thesis

1. extends earlier works on automatic detection of deceit by investigating deceit in

more spontaneous settings than previous studies, namely, in poker game play and

dice rolling.

2. analyses automatically detected facial features and, to a lesser extent, head move-

ments with decision trees. Decision trees have a very clear structure and can pro-

vide an understanding of what is being classified and why.

3. presents a new dice rolling database in which the deceit displayed is not posed

and is solely the decision of the study subject. This is different from most other

databases where the subject displaying deceit has been instructed to do so. This

database was made in conjunction with behavioural economists to also be a gen-

uine investigation into human decision making and human-computer interactions.

It rigorously follows the methods of behavioural economics and to my knowledge

is the first such database.

4. presents a behavioural economics analysis of the dice rolling study.

5. presents an initial computer vision andmachine learning analysis of the dice rolling

database.

6. provides metadata from the new dice rolling database for future investigations.

1.3 Publication

Doratha Vinkemeier, Michel Valstar and Jonathan Gratch (2018). "Predicting Folds in

Poker Using Action Unit Detectors and Decision Trees." Proceedings of the 13th IEEE

International Conference on Automatic Face and Gesture Recognition, FG 2018, pages

504-511.
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1.4. Thesis structure

1.4 Thesis structure

This thesis is structured as follows:

Chapter 2 expounds basic concepts and tools that will be used in the thesis: a short his-

tory of deception detection, three models of facial expression frequently used in affective

computing and the tools for detecting facial muscle activity that are used in this thesis.

Chapter 3 reviews previously published related works on automatic detection of deceit.

Chapter 4 presents my research on detecting deceit in poker game play.

Chapter 5 introduces a new dice rolling database that is a behavioural economics study

of decision making and deceit involving human-computer interactions.

Chapter 6 presents an automatic analysis of the aforementioned dice rolling database.

Chapter 7 concludes the thesis with a discussion and interpretation of results and sug-

gestions for future research.
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Chapter 2

Background - Detection of Deceit

Figure 2.1: Cartoon from the New European (Bradford, 2020).

2.1 Description of deceit

Deceit is often defined to be an intentional attempt to cause someone to take as true

something which is false, usually for some sort of personal gain. There is a large spec-

trum of types of deceit from lies that swindle a person out of their life and possessions to

untrue flattery that people tell every day in social settings in order to be liked. Though

completely condemned by Aristotle (384-322 BC), deception was considered a legit-

imate tool of the state by Plato (ca. 424-344 BC) in his Republic (Roochnik, 2005).

He believed it could be justified in some cases. For instance, he posited that creating a

myth for people to believe in would make them live together more harmoniously. Machi-

avelli (1469-1527) advised in The Prince (Machiavelli, 2010, reprinted August 2018)
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2.2. Early methods of deception detection

that a ruler should be good at the art of deception and know when to apply it in order

to maintain power among immoral and vulgar people. On the other hand, a ruler must

simultaneously appear to his subjects to be virtuous and honest to inspire their esteem as

nothing could be more detrimental to his authority than to have his subjects despise him.

If deceit can be unconscious, then animals and plants, who for instance use camouflage

and mimicry, also practice it and it is most likely ingrained deep in our own biology. As

ubiquitous as deception is and as advantageous as it may seem to be, it has been looked

down upon by society going back as far as Aristotle, who condemned it as immoral and

damaging to society and oneself (Zembaty, 1993). Deceit remains a complex subject.

There are many forms of it and many opinions about it. While it might be condemned

socially, it is also considered by many to be an indispensable, pervasive part of everyday

life for everyone (DePaulo et al., 1996). This is based on the idea that as social animals

we fashion a version of ourselves for the purpose of creating an impression of ourselves

that we want the world to see (Goffman, 1990). This edited version of ourselves is not

the same as our true selves and is in itself an act of deception, even self-deception. To

keep our ‘face’ and to preserve the face of those we interact with, we have developed a

complex form of politeness (Brown and Levinson, 1987). This politeness requires the

occasional white lie, such as telling a friend a lie in order to spare their feelings or lying

in order to preserve one’s own social image, for instance as being a kind person. Thus,

deception is likely necessary for society to function.Despite any ambiguity about it, de-

ceit has been shown to have a corrosive effect on society and nowadays there are even

ways to quantify this (Gächter and Schulz, 2016).

2.2 Early methods of deception detection

As much as deception has been instrumentalized to gain advantage, so have the attempts

to crack it, among other things with lie detectors. Wouldn’t it be great to have a device,

like that in Figure 2.1, which simply tells you whether a person is lying or not? The

history of lie detection goes back at least 3000 years ago. In China, to determine if a

person was telling the truth or not, they had to fill their mouth with rice and then spit it

out some time later. If the rice was wet, they were deemed to be telling the truth. If it was

dry, they were deemed to be lying. This test was based on the physiological observation

that people who are nervous and afraid usually have drymouths (Vicianova, 2015). Since
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2.3. The polygraph and how to beat it

this physiological state was not very well understood at the time, and since it does not

follow from being nervous or afraid that one is being deceptive, it is likely that many

innocent people were found guilty and executed. In Europe in the Middle Ages, Trial

by Ordeal was used to extract the truth. In this case, the accused was put through some

test, usually very injurious or even deadly. If they passed the test, they were innocent

and whether or not they passed was viewed as God’s decision. For instance, a person

accused of a crime might be put through the water test in which they were dunked under

water. If they floated they were found guilty, if they sank they were innocent. Trials by

Ordeal continued until the 1700s (Vicianova, 2015).

In the 18th century the idea emerged that criminal behaviour, including lying and de-

ception, is an inherited trait. An early proponent was Franz Joseph Gall (1758-1828),

who examined the physiognomy of the human skull (Eberle, 2008). He correctly lo-

calized the brain region responsible for speech, and claimed that a person’s character

can be determined from their shape of the head. This area of research (Schädelkunde,

engl. phrenology) blossomed in the 19th century, and reached a peak with the theory of

anthropological criminology by the Italian physician Cesare Lombroso (1835-1909). It

stated that criminals and liars are born as such and could be identified by the head shape

and other physical traits (Tanner, 2019). Phrenology was popular into the 20th century,

see Figure 2.2, when it was recognized as pseudoscience and fell into disrepute (The

Editors of Encyclopaedia Britannica, 2018).

2.3 The polygraph and how to beat it

Today, the polygraph is the most common type of lie detector and its use is widespread.

It was invented by John Larson and Leonard Keele in 1921 and it measures physiological

changes in a person, such as their blood pressure, breathing rate and galvanic skin re-

sponse, which indicate stress (Marsh, 2019). These changes are deemed to be associated

with telling lies (APA Editorial, 2004). To measure these changes, a person is hooked up

to the polygraph machine and then they are asked a series of questions. These consist of

control questions and relevant questions. The purpose of the control questions is to de-

termine the subject’s normal respiratory and heart rates and galvanic skin pressure. The

relevant questions are those related to the crime or issue at hand that one wants to find

out the truth about. The assumption behind the efficacy of the polygraph is that a guilty
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2.3. The polygraph and how to beat it

Figure 2.2: Illustration advising how to detect a liar from Vaught's Practical
Character Reader (Vaught, 2010 (�rst published 1902).

person will find the relevant questions and lying about them stressful, and an innocent

person will not, and the polygraph will detect this difference. However, the physiological

changes measured by the polygraph are not unique to deception. It is possible that an

innocent person fails the test, as Floyd Fay did in 1978, receiving a life sentence for

murder and narrowly missing the death penalty (Kennedy, 2020). He was only acquitted

after the real murderers confessed. It is also possible that a guilty person passes the test,

as the infamous Russian spy Aldrich Ames did twice. Years later, Ames’ flamboyant

lifestyle aroused suspicion and he was put under FBI and CIA surveillance. This led to

his finally getting caught in 1994, after causing the deaths or imprisonments of several

CIA agents. When asked how he managed to pass the polygraph tests, he replied that his

Russian handlers, who understood the flaws of the polygraph, had simply told him, "Just

relax, don’t worry, you have nothing to fear" (Hart, 2020).

According to the British Psychological Society, the accuracy of the polygraph in detect-

ing guilty individuals is about 85 percent, that is, if you are guilty it will likely pick you

out. The accuracy of polygraphs in correctly detecting innocent people, in contrast, is

estimated to be as low as 50 percent, which means if you are innocent you have about

a 50 percent chance of being found guilty (Bell, 2012). If one were to apply the poly-

graph to 1000 people of which one had actually committed the crime, it would single

out around 500 as having failed the test. Perhaps it would also single out the one guilty
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2.4. Facial expressions and emotions

person, but even this is not guaranteed. Given that the polygraph is also time consum-

ing and expensive to administer, at over £500 each test, even using its results as a rough

guideline to narrow down a search from among a large number of suspects is infeasible

(UK Test).

In most courts in the US and the UK polygraph evidence is either not allowed at all

or is considered to be nothing more than hearsay (Ewaschuck, 1978; Rothwell et al.,

2006). Yet, it is a multi-billion dollar industry (Bittle, 2020). It is used by the FBI, CIA,

and police forces in the US and UK. Recently the UK government started a program

for subjecting paroled sex offenders to lie detector tests (Bowcott, 2020). There are also

plans to use them on people convicted of domestic violence (Grierson, 2019), or terrorist

offences (Grierson, 2020) on release from prison. There is also a large industry around lie

detector tests in the private sector, where they are used, for example, to screen potential

employees. Still, in settings like concerts, sports stadiums and airports where thousands

of people come together and are often pressed for time, lie detectors are too cumbersome

to be suitable for detecting deception related to mal-intent.

2.4 Facial expressions and emotions

It is widely believed that a person’s face can reveal many things about them, including

what they are thinking or feeling (Stel and van Dijk, 2018). Facial expressions are con-

sidered more reliable than words; when a person tells us how they are feeling, we often

look to their face for confirmation or even a clearer understanding of what they mean.

When they assert something and we fear it may be a lie, we look to their face for proof,

for while it is easy to manipulate words it is more difficult, so we believe at least, to ma-

nipulate one’s facial expression. The human face has been an object of scientific study

going back at least as far as the neurologist Duchenne de Boulogne (1806–1875), who

methodically studied the role of facial muscles in forming facial expressions (Duchenne

de Boulogne, 1990), and the biologist Charles Darwin (1809–1882), who studied human

and animal facial expressions in the context of the theory of evolution, (Darwin, 2009).

These two contemporaries collaborated with one another. Darwin believed that facial

expressions developed as part of evolutionary adaptation and that they were universal,

not only across cultures, but across species. He also believed that they served as visible

signals of communication. Duchenne systematically mapped facial muscles to facial ex-
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pressions to show that each emotion display corresponded to a specific combination of

stimulated facial muscles. He did this by electrically stimulating the facial muscles of

living human subjects to form facial expressions that could be recognized by an observer

as emotions such as happiness. The works of Darwin and Duchenne laid the scientific

basis for a theory of facial expressions and their link with emotions.

Darwin supported his idea of the universality of facial expressions by grounding it in

the theory of evolution and making many observations of the expressions of humans and

animals. To gather more evidence, he asked friends and acquaintances living in distant

lands questions about the facial expressions they observed among the natives where they

lived. He also used his five years travel on the Beagle to make observations. He is the

founder of the judgement study, which consists of showing an observer photos of human

facial expressions and asking them what emotion they think is being displayed (Ekman,

2003); Ekman (2009). Practitioners of the judgement study, such as Paul Ekman, claim

that the idea of the universality of facial expressions has been strengthened by these

studies. For references to some of these studies see Ekman and Friesen (2003), pages

32-33.

However, cross-cultural studies of the universality of expressions have drawn criticism,

too. It has been argued that the pictures used for displaying facial expressions were not

really valid as the facial displays were nearly always posed and exaggerated and taken

out of context. The possible answers the study subjects could give were also limited.

Furthermore, for some cultures emotional categories are foreign and the way that the

test were organized prevented the subjects from inferring non-emotional categories from

photos, such as social intent (Barrett et al., 2019). There are also theories that oppose

Ekman’s theories of basic emotions. One is the behavioural ecology view (BECV) that

facial displays do not reveal anything about a person’s internal emotional state, but rather

developed as tools for communicating social motives and intentions. They are learned

through social interactions, hence they are not biologically determined and immutable,

but flexible and can only be understood in the context in which they occur (Crivelli and

Fridlund, 2018). Most researchers agree, though, that there are some muscle movements

which are directly inherited, although they disagree over whether these are related to

emotions or other affective states (Parkinson, 2005). Concerning the question of univer-

sality, the studies here are restricted to fairly homogeneous groups: the first, poker, takes

place in the US. The second, dice rolling, takes place in the UK. Based on the literature,
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it is reasonable to assume similar behaviour in culturally homogenous groups.

Separate from theories of emotion, facial expressions have also been viewed in the con-

text of social signalling. Signalling is something done frequently throughout the animal

world to convey messages between members of a species and also between different

species. Examples of messages sent between members of a species are those conveyed

during courtship rituals to advertise the fitness of a potential mate, warnings sent to the

group about an outside threat of predators and messages indicating where food is to be

found (Laidre and Johnstone, 2013). These messaging systems can be very complex and

have been formed by the evolutionary process of adaptation. Deception is also a part of

these messaging systems, as sending a false message can give the deceiver an advantage.

This theory argues that important signals must, however, be fairly reliable, otherwise it

would be detrimental for the recipient of the signals to pay heed to them and so they

would simply be ignored. Different ideas have been put forward for how nature keeps

signals reliable. Some signals, for instance, the male peacock’s tail, require so much

energy to make that they are themselves an honest indication of fitness and health that

cannot be faked. Similarly, signals can be produced by specialized organs whose size

or shape determine the important qualities of the signal. Signalling can be costly, so

that they can be made by only those who can afford them (Searcy and Nowicki, 2005).

Dishonesty can damage the signaller’s reputation so that the deceptive party is penal-

ized by having their signals ignored in the future. There can also be severe penalties

for deception, such as being injured by other members of the group. These are some of

the mechanisms that serve to keep signals honest, on average at least, and maintain an

equilibrium of reliability. These also ensure that deception is difficult and costly (Laidre,

2009).

According to some, the signals humans send through various means, including that of

facial expressions, are not products of conscious effort alone, but also happen auto-

matically, or unconsciously. In Honest Signals, Sandy Pentland sets down a theory

of two channels of communication that humans have: one is conscious and the other

unconscious (Pentland, 2008). The two run parallel and largely independently of each

other. We are rarely aware of the second channel but if we learn how to read it we can

understand social situations better and use this understanding to our advantage. He terms

the unconscious signals honest and defines them similarly to Zahavi, as signals that “are

either so costly to make or so difficult to suppress that they are reliable in signalling
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intention”. Unconscious facial expressions belong to the honest signals. Humans are

capable of suppressing or masking their facial expressions but only at the cost of great

conscious effort (Pentland, 2008). This subconscious honest signal and the conscious

effort to control it could provide the key to detecting deception. Pentland also proposes

using technology to detect and study signalling to gain an understanding of people’s true

intentions in social interactions, and to use this understanding to gain an advantage.

Paul Ekman is one of the most steadfast and influential living proponents of Darwin’s

theory of facial expressions. His own theories of facial expressions and emotions de-

veloped directly out of those of Charles Darwin, who Ekman credited with being the

founder of the field of psychology. As facial expressions are imbedded in our biology

they are not really under our conscious control, without, as Pentland writes, making a

great effort. Ekman and Friesen argue that we can learn to understand ourselves and oth-

ers by understanding facial expressions (Ekman and Friesen, 2003). Even though we all

interpret the facial expressions of others constantly, whether consciously or not, we do

not really understand facial displays and the emotions they portray that well, even when it

comes to understanding our own. This point is especially relevant to deception. Though

a person might try and hide their true feelings by simulating an emotion or covering it

up, Ekman and Friesen claim that careful analysis of how the muscles are used to make a

faked facial expression can show that it is not genuine (Ekman and Friesen, 1974, 2003).

In addition to these patterns, there are also facial expressions, called microexpressions,

which are so brief that they are at “the threshold of recognition” (Friesen and Ekman,

1969). These occur when a genuinely felt emotion makes itself briefly visible before it

can be suppressed and these, so they claim, can also be used to recognize deception.

If the appearance of the human face can reliably help us understand a person’s behaviour

as many claim, then using computer vision to automatically analyse and interpret facial

expressions becomes feasible. This is currently a rapidly developing field with many

possible applications in affective computing. For example, automatic facial expression

analysis has been used to study depression (Scherer et al., 2014; Girard et al., 2013), auto-

matically recognize attention deficit hyperactivity disorder and autism spectrum disorder

(Jaiswal et al., 2017) and automatically measure pain (Egede et al., 2017). As described

above, deception might also make itself visible and there have been a few works on auto-

matically detecting this. These will be introduced in the next chapter.

Computer vision and machine learning have the potential to revolutionize the science of
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detecting and interpreting facial expressions. Computers can potentially pick up facial

movements that are too fast or too subtle for humans to notice. Also, they can process

details and patterns that only become apparent over a long period of time, which humans

cannot perceive so well. Computers can produce repeatable results and have the potential

to remove bias and subjectivity from the process of interpreting facial expressions. They

can process mass amounts of data, potentially very quickly, without suffering from fa-

tigue, as humans do. Perhaps they can help distinguish between the honest and dishonest

signals and help further study the scientific basis for facial expressions and emotions.

2.5 Three approaches to quantifying facial expres-

sions and their use in computer vision

Before automatically measuring facial expressions, one first needs a descriptive model

for quantifying them. There are three mainmodels which stand out because they lead to a

clear concept for quantifying facial expressions in ways that are useful for machine learn-

ing and computer vision. All three have been used as the underlying model of automatic

detectors for a person’s affective state. Two models, the basic emotions and the cir-

cumplex model of core a�ect, are message-based. This means that they interpret facial

expressions according to the message they are meant to convey without being concerned

with the physical means by which this is done. The basic emotions model categorizes

facial expressions as ‘happy’, ‘sad’, and so on; the circumplex model categorizes facial

expressions as coordinates in a two dimensional space of affect. The third model, the

facial action coding system (FACS), is sign-based as opposed to message-based. Its

intent is to provide an objective description of the state of a person’s face in terms of

which muscles are active, without assuming any underlying theory of emotions. Rather,

FACS can be used as a tool for exploring theories of emotion and affect.

Machine learning techniques use specialized datasets for each of the three models to

learn their detection algorithms. These datasets are annotated by humans in order to

form a so-called ground truth. The way in which devices detect is heavily dependent

upon the datasets that they learn from. This thesis focuses on the facial action coding

system because of its descriptive power and because it allows one to explore unknown

aspects of facial expression. However, as each of the three models can contribute to the
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Figure 2.3: Ekman's six basic emotions as displayed by the author's children,
Isabel and Bertrand, with their permission.

interpretation of facial expressions, I will now give a brief outline.

2.5.1 The basic emotions model

Paul Ekman developed a theory of basic emotions in the 1970s, which he based on the

ideas of Darwin and Tomkins (Darwin, 2009; Tomkins, 2008). This theory consists of

two main tenets. The first is that there exists a limited set of basic emotions which are

distinct from one another in important ways. The second is that these emotions were de-

veloped through the process of evolution to enable us to deal with certain interpersonal

tasks in life automatically and quickly, without having to make conscious decisions. Im-

portantly, emotions entail communicative signals most strongly involving and conveyed

through the face. Ekman also believed, like Darwin, that these signals were universal

to humanity. Ekman has discovered at least six basic emotions, anger, fear, sadness,

enjoyment, disgust and surprise, each of which has its own distinctive signal, or facial

expression (Ekman, 1992), see Figure 2.3. While there might be more basic emotions,

as yet there is not enough evidence for this.

While six basic emotions have been described, Ekman states that these are really six

distinct families of emotions. Each of these has many variations, which have not been

described thoroughly yet. The repertoire of facial expressions covers many more affec-

tive states than the six basic emotions. He also stated that, concerning the basic emotions,

there might be some threshold at which the emotion must be present in order to elicit a

display. Nonetheless, it is possible for an individual to consciously suppress an emotional

display. Still, according to Ekman, the central nervous system should always exhibit a

reliable pattern of activity for each individual basic emotion even if it is not able to af-
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fect the face, and this pattern should be detectable with modern technology like magnetic

resonance imaging (MRI) and electromyography (EMG). This was hypothesized but has

not yet been demonstrated.

Automatic detectors for basic emotions are trained on images of faces that have been

annotated by humans with the emotion they signal, similar to those shown in Figure 2.3.

However, since the six basic emotions cover only a small subset of affective states, they

are often not descriptive enough for real-life applications.

2.5.2 The circumplex model

The circumplex model had its origins in early studies on how accurately humans can

judge what emotions a face is expressing (Woodworth, 1938). Woodworth had observers

look at images of faces and then assign each image to a word that in their opinion best

described the emotion the face in the image was displaying. For instance, an observer

might assign an image of a smiling face to the word ‘happy’. The results of this exper-

iment suggested that human’s are not good at assigning the correct emotion to a given

photograph of a facial expression if one evaluates their performance only on the basis that

the assignment is ‘right’ or ‘wrong’. Woodworth discovered, however, that if he ordered

the words in the following linear fashion - (1) Love, Hapiness, Mirth; (2) Suprise; (3)

Fear; (4) Anger, Determination; (5) Disgust; (6) Contempt - the performance markedly

improved. It was found that when a person assigned a photo to the wrong emotion-word

they tended to assign it to an adjacent word, and hence got close to the correct answer.

He concluded that humans are indeed capable of correctly judging human emotions from

facial expressions given this linear arrangement.

Building on this linear set of words, which can be thought of as bins one to six, Schlos-

berg (Schlosberg, 1941) tested Woodworth’s method on a different set of photos, the

Frois-Wittmann pictures of facial expressions (Hulin and Katz, 1935). Schlosberg no-

ticed that people often assigned photos that belonged to bin 6 (contempt) to bin 1 (love,

happiness). An example of this is the image number 52 shown on the left of Figure 2.4.

Here, the facial expression for love is being displayed. However, Woodworth’s study sub-

jects occasionally classified this as contempt. This observation and other experiments

led to an important conclusion, namely that the scale was not linear but circular. It fol-

lowed that it should be possible to describe all facial expressions more accurately with
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Figure 2.4: Frois-Wittmann images 52 (left) and 10 (right).

two dimensions. Schlosberg created the axes of these two dimensions, namely Pleas-

antness – Unpleasantness and Attention – Rejection, which were each split into nine

numeric values as shown in Figure 2.5 (Schlosberg, 1952). Observers were asked to

look at each picture in the Frois-Wittmann picture set and assign it a value of 1 to 9 on

the Pleasantness – Unpleasantness scale and then the Attention – Rejection scale. Af-

terwards, he plotted each image according to the values it had been assigned onto the

two dimensional graph. As an example, I show image 10 of the Frois-Wittmann set, see

Figure 2.4 right side, plotted in the two dimensions in Figure 2.5, part A. The origin is

located at (5,5) and image 10, which displays “Pleased Surprise”, is located at (7,7). He

then placed the linearWoodworth set of words around the circumference of the graph and

projected each word onto the Woodworth scale by means of a ray centred at the origin.

He discovered that this method usually gave the correct Woodworth value. In the case of

image 10, this was 1.75, as shown in Figure 2.5 A. Using this method of projection, the

two dimensional model was able to identify the correct Woodworth bin for the images in

most cases. Schlosberg concluded that two dimensions were as descriptive as the linear

arrangement of Woodworth’s six categories and he proposed that all facial expressions

could be most accurately described by two dimensions alone (Schlosberg, 1952).

Schlosberg’s concept of a continuous spatial model for representing affective states was

further developed by James Russell, who also coined the term circumplex model to

describe it in 1980 (Russell, 1980). It is thus different from the basic emotions model as

it is continuous and not discrete. In the circumplex model, Russell replaced the concept

of emotions with the concept of core a�ect (Russell, 2003). The model describes some

affective states that are not emotions, such as sleepiness. Conversely, there are some

emotions such as fear, jealousy, anger and shame which are not distinct points in the

continuous space of core affect of the circumplex model, see Figure 2.5 B.

The circumplex model is appealing in its simplicity and the ease with which it can be
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Figure 2.5: Circumplex diagrams with a�ective states according to A, Schlosberg
(1952) and B, Russell (2003). In A, the encircled 10 indicates the position of
Frois-Wittmann image 10, which is shown in Figure 2.4, right.

represented. It, unlike discrete classes of emotions, can represent continuous and sub-

tle mental states, which encompass more affective states and facial expressions than the

discrete emotions described by Ekman. However, it also has descriptive limitations and

cannot, for instance, represent the two emotions ‘fear’ and ‘anger’ as being separate. The

two dimensional model can be extended to arbitrarily many more dimensions in order to

distinguish between more closely related emotions and other affective states. Fontaine

and colleagues proposed a four dimensional model but suggested that researchers should

design their dimensional model according to what they are researching as different mod-

els serve different purposes (Fontaine et al., 2007). The circumplex model is also chal-

lenging for observers to comprehend. Moreover, given two professional annotators, both

of whom have been trained to judge circumplex values for images of facial expressions,

the values they assign to the same images often don’t agree, making the inter-rater reli-

ability of the circumplex model lower. For this reason, it can be difficult to establish a

reliable ground truth for images, whether they be posed in a laboratory or spontaneous in

the wild. This, in turn can be problematic when designing datasets for machine learning

algorithms to train on (Gunes and Pantic, 2010a).

2.5.3 Facial action coding system - the FACS model

The third model of facial expressions is the facial action coding system (FACS), as pre-

sented in the FACS Manual (Ekman et al., 2002). The purpose of the FACS model is
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Action Unit Description Corresponding muscle group
AU1 Inner brow raiser frontalis (middle part)
AU2 Outer brow raiser frontalis (outer part)
AU4 Brow lowerer procerus, depressor and corrugator supercilii
AU5 Upper lid raiser levator palpebrae superioris, superior tarsal
AU6 Cheek raiser orbicularis oculi
AU9 Nose wrinkler levator labii superioris
AU12 Lip corner puller zygomaticus major
AU15 Lip corner depressor depressor anguli oris
AU20 Lip stretch risorius, platysma
AU25 Lips part depressor labii, mentalis, orbicularis oris
AU26 Jaw drop masseter
AU45 Blink levator palpebrae, orbicularis oculi

Table 2.1: The twelve Action Units used in this thesis and their associated muscle
groups.

to create a complete descriptive language for the visual appearance of the face in order

to provide a tool for studying facial expressions for many different disciplines. These

descriptors should ideally be well-defined, be built of the most basic units possible and

be capable of describing all possible facial expressions. They also should be repeatable,

objective and easy to understand, and rely only on external appearance to make them

accessible to a human or machine observer.

This ‘objective’ approach should describe facial expressions as a list of facial muscle con-

tractions alongwith their magnitudes without recourse to interpreting the emotions being

conveyed. This was the approach first systematically studied by Darwin and Duchenne

and the facial action coding system can be traced back to them. In FACS, the most basic

visual descriptor for facial expressions is the Action Unit (Hjortsjö, 1970; Ekman and

Friesen, 1978). There are currently about 100 of these and they correspond roughly to

the different facial muscles, see Figure 2.6, as well as some non-facial descriptors for

things like head pose and gaze direction. For instance, AU1, also known as inner brow

raiser, corresponds to the frontalis muscle. Some action units correspond to groups of

muscles, like AU4, brow lowerer, which corresponds to three face muscles, namely pro-

cerus, depressor and corrugator supercilii. See Table 2.1 for descriptions of the twelve

action units used in this thesis. The intensities of each of these action units was defined

in FACS in the order from A - trace, B - slight, C - marked, D - severe to E - maximum.

To make the results easy to understand and repeatable, the FACS manual gives detailed
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Figure 2.6: Anatomy of the muscles of the face. AU1 (inner brow raiser) cor-
responds to frontalis. AU4 (brow lowerer) corresponds to the procerus, depressor
(not shown in image) and corrugator supercilii muscles. Taken from Spence (1990),
page 193.

descriptions of how to evaluate the presence and intensity of each action unit (Ekman

et al., 2002). Visible traits such as changes of the positions of facial features, changes

of shape, the appearance or disappearance of bulges, furrows or wrinkles are used to

evaluate when an AU is activated and what its intensity is. The FACS Manual is used to

train FACS annotators, who annotate images of facial expressions with the action units

displayed in them. In addition, FACS describes the consecutive phases of activation of

Action Units in an intuitive way that reflects muscle functioning. For instance, in the

case of AU1, inner brow raiser, an occurrence consists of a neutral phase before the

corresponding muscle starts to contract, followed by the onset stage, when the muscle

becomes increasingly contracted, followed by the apex stage, where it reaches its max-

imum contraction as indicated by the eyebrow being maximally raised, followed by the

muscle gradually relaxing in the offset stage and then returning to the neutral stage, see

Figure 2.7.
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Figure 2.7: Model of (facial) muscle activation as sequence of neutral, onset, apex
and o�set stages.

Since FACS is theoretically capable of describing all facial configurations, including but

not limited to those related to emotions, it should be able to cover both the prototypical

facial expressions, see Figure 2.3, and the circumplex model of core affect. The proto-

typical facial expressions and some variations on these have been translated into action

units, for example, in Du et al. (2014). ‘Happiness’ is described there by the following

FACS formula: AU12 + AU25 + [possibly AU6] and ‘anger’ by: AU4 + AU7 + AU24

+ [possibly AU10, AU17 or AU23]. The circumplex model, in contrast, has not been

thoroughly translated into FACS formulas. Since there are currently nearly one hundred

action units there are a huge number of combinations, each of which represents a dif-

ferent facial expression. Of these, over 4,000 configurations have been reported in the

literature (Bartlett et al., 2014). Thus, FACS provides a highly effective tool for study-

ing the human face based on visual appearance, and it is fairly complete in its ability to

describe facial expressions. Datasets made for developing automatic detectors consist

of images that have been annotated for their action units. These annotations follow the

descriptions given in the FACS manual.

2.6 The two action unit detectors used in this re-

search

There are numerous different action unit detector systems. In this section, I describe

the two action unit detectors that were used in this thesis. One was recently developed

here at the University of Nottingham, Convolutional and Bi-directional Long Short-Term

MemoryNeural Networks (CNN-BLSTM). The other, OpenFace, is available andwidely

used in the research community. I shall begin with a discussion of the three databases
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they were trained on.

2.6.1 The databases from which they are constructed

FACS’s comprehensiveness and descriptivenessmakes it suited for computer vision tech-

niques. There is a large and ongoing effort to create detectors that automatically annotate

images of humans with their correct AU labels. Studying and detecting human behaviour

such as deception requires annotating large amounts of images and it takes a human hours

just to annotate a few minutes of video. Methods for automatically annotating video

with AU labels are now being developed by several groups. In this thesis, two such ac-

tion unit detectors are used and their performances compared. One, CNN-BLSTM, was

developed in the School of Computer Science at the University of Nottingham called

(Jaiswal and Valstar, 2016). The other one is a publicly available, open source tool,

called OpenFace (Baltrušaitis et al., 2016), which has been used for several published

studies. CNN-BLSTM attained the highest score on the FERA 2015 challenge (Val-

star et al., 2015), while OpenFace was never tested on this exact benchmark as it was

no longer available, making a direct comparison difficult. In addition, OpenFace was

tested on the DISFA dataset, where CNN-BLSTM was tested on BP4D and they also

used different metrics. A comparison of the results is shown in Table 2.2.

Both action unit detectors used here require no specialist equipment, only videos pro-

duced by webcams or similar devices. The two detectors were trained largely on the

same datasets, but were otherwise developed independently of one another using differ-

ent techniques. These detectors were chosen because of their high quality and because

they were designed to capture spontaneous behaviour. This provides an interesting com-

parison as the deceptive behaviour studied here is spontaneous as opposed to posed and

thus potentially difficult to detect. There are also commercial AU detection systems,

such as CERT and Facet. These have been excluded because they do not provide pub-

licly available details about how they were constructed and they are frequently not bench-

marked (Baltrušaitis et al., 2016).

There are also numerous databases for training AU detectors, most consisting of posed

behaviours. In contrast, the three databases used to train the CNN-BLSTM and Open-

Face detectors contain more spontaneous behaviours and consist of videos of people

responding to emotion-eliciting tasks. This is important, as spontaneous behaviour dif-
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Action Unit CNN-BLSTM OpenFace
AU1 0.64 0.28
AU2 0.50 0.28
AU4 0.70 0.34
AU5 0.67 not given
AU6 0.59 0.70
AU9 0.54 not given
AU12 0.85 0.78
AU15 0.39 0.20
AU20 0.22 not given
AU25 0.85 not given
AU26 0.67 not given
AU45 not given not given

Table 2.2: A comparison of CNN-BLSTM and OpenFace. Note that OpenFace
was tested on DISFA while CNN-BLSTM was tested on BP4D. The two have never
had their performance measures compared to each other in a uniform way. They
also used di�erent performance measures: OpenFace used Pearson Correlation
Coe�cient and CNN-BLSTM used F1 scores. Thus it is di�cult to foresee how
they might perform on unseen data. Also, the version of CNN-BLSTM I use has
developed since its publication in Jaiswal and Valstar (2016).

fers from posed behaviour in important ways and is more subtle and harder to detect.

These databases, called SEMAINE, BP4D and DISFA, were designed for researchers

to use for training automatic action unit detection systems. They each consist of frontal

videos of subjects’ faces that have been annotated frame by frame by human FACS an-

notators. Each database, also known as a corpus, contains sequences of images along

with their corresponding annotations. Some of these images have been annotated sep-

arately by more than one annotator to compare the accuracy of the annotations, usually

summarized by a value known as the inter-rater reliability (Cohen, 1988). SEMAINE is

annotated for six AUs, BP4D for 27 AUs and DISFA for 12 AUs, which partially overlap

between the databases. These annotations serve as the ground truth for the systems that

learn from them. In the following, I will briefly describe how these databases were de-

signed, as this understanding also sheds light on how the detectors that have been trained

on them work.

• The SEMAINE corpus (McKeown et al., 2010, 2012) consists of high-quality

videos together with audio of 20 participants each interacting separately with an

operator who is imitating four different stereotypical characters to produce four

different conversational interactions. The participant and operator communicate
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through cameras and screens. Videos are taken from a frontal view and, using

partially reflective mirrors, allow direct eye contact between the participant and

the operator. This corpus was designed to be used as a tool for studying human-

computer interactions and for advancing natural language processing. It focuses

on language and non-verbal social signals that accompany conversation. Although

the conversational pair is human-human, the operator tried to behave in a machine-

like manner in order to simulate computer-human interactions. The audio and

video were annotated by up to four separate annotators for the affective dimen-

sions valence, activation, power, anticipation and overall emotional intensity, sim-

ilar to the circumplex model, for the six basic emotions anger, disgust, amuse-

ment, happiness, sadness and contempt, see Figure 2.3, and also for the occur-

rence (present/not present) of six action units: AU2, AU12, AU17, AU25, AU28

and AU45. For the second Facial Expression Recognition and Analysis challenge

(FERA 2015), 130,695 frames of the SEMAINE database were used for training

detectors (Valstar et al., 2015).

• TheBP4D corpus (Zhang et al., 2014)was designed to provide spontaneous FACS-

annotated 3D images of facial expressions. The corpus contains 41 subjects per-

forming eight different emotion-eliciting tasks. Some of the tasks were conversa-

tional and involve communicating with a professional actor, others were not. The

role of the actor was to guide the subject through the tasks and make the inter-

action seem as natural as possible. The eight tasks were designed to evoke hap-

piness, sadness, surprise, embarrassment, nervousness, pain, anger and disgust,

which roughly correspond to the six basic emotions. After the sessions had been

run, a continuous 20 second segment was selected for each of the eight tasks and

each subject. This segment was chosen by FACS annotators to be the one that

had the highest level of expression. Therefore, this dataset focused on high ex-

pressivity as opposed to more subtle expressions. These 20 second segments were

then annotated by two professional FACS annotators for 27 different AUs: 1, 2, 4

- 7, 9 - 20, 22 - 24, 27, 28, 30, 32, 38 and 39. Their results were then compared

for accuracy. To ensure the correct emotions had been elicited, the subjects self-

reported on their own feelings, and images were shown to uninvolved observers to

get their impression of the emotion being shown on the subjects’ faces. Finally,

professional annotators checked to see if the AU annotations made for each seg-

ment corresponded to those associated with the targeted emotions. BP4D consists
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2.6. The two action unit detectors used in this research

of 368,036 annotated images.

• TheDISFA corpus (Mavadati et al., 2013)was especially designed to capture spon-

taneous behaviour. Unlike SEMAINE and BP4D, it does not involve conversation.

It contains videos of 27 adults viewing emotion-eliciting videos. The video ses-

sions were made on an individual basis; a subject sat alone in a room and watched

a video on a screen that had a stereo camera mounted on top which made a record-

ing of their face. A certified human FACS annotator then annotated the images

with 12 separate action units: AU1, AU2, AU4, AU5, AU6, AU9, AU12, AU15,

AU17, AU20, AU25 and AU26. These were annotated for occurrence (present/not

present) as well as for intensity on a scale of A-E as mentioned in Section 2.5.3.

These particular AUswere chosen byMavadati et al. as they were deemed to be the

most commonly occurring. Altogether, this dataset consists of 230,000 annotated

images.

In this study, twelve action units are used: AU1, AU2, AU4, AU5, AU6, AU9, AU12,

AU15, AU20, AU25, AU26 and AU45, see Table 2.1. These were chosen because they

are very relevant to deciphering frequently occurring facial expressions, they show a

high degree of overlap with the action units used in these three databases and they are

detected by both detectors studied in this thesis.

2.6.2 A comparison of di�erent machine learning approaches

for building the two AU detectors

This thesis investigates deception using two different ready-made action unit detectors.

They are really each a set of detectors, one detector for each action unit. Here, they are

collectively referred to as CNN-BLSTM detectors and OpenFace detectors, respectively.

The CNN-BLSTM detectors were designed for detecting AUs in spontaneous facial ex-

pressions in uncontrolled circumstances. They are made out of a combination of con-

volutional neural networks (CNNs) and bi-directional long short-term memory neural

networks (BLSTM) (Jaiswal and Valstar, 2016). To carry out the difficult task of de-

tecting spontaneous behaviour, the authors focused on geometrical facial features such

as the shape of the mouth, appearance features such as wrinkles, bulges, furrows and

the temporal dynamics of these features. For their machine learning model they used
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2.6. The two action unit detectors used in this research

convolutional neural networks (CNNs) to learn action units and they avoided intermedi-

ate handcrafted features as much as possible to allow these to be learned by the neural

network. In a preprocessing step, they first automatically located facial points in each

image and used these points to segment the face into rectangular regions, such as eyes

and mouth regions (Sánchez-Lozano et al., 2018). To capture geometrical features in

each of the regions, they used the facial points to create a binary mask of the target fea-

ture. This rendered the features into a simple geometrical shape without texture. To

capture appearance, they simply used the same rectangular regions as is. They reasoned

that dynamics are also important to determining action units, so the input into their neu-

ral network was the sequence of frames directly surrounding the frame that was to be

automatically annotated – the two images directly preceding the current image and the

two images directly following the current image. In addition to these dynamical features

from a small window around the current frame to be annotated, they also used a BLSTM

to capture dynamics spanning a longer time frame. A CNN-BLSTM was learned for

each action unit using only those rectangular regions associated with the action unit.

This was determined by the authors’ expert opinion. These detectors were trained on the

three datasets described in the previous section.

The open source toolkit OpenFace (Baltrušaitis et al., 2018) was also used in this thesis to

gain a further understanding of action unit detectors. OpenFace was designed to provide

researchers with a fast, easy to use and state of the art tool for studying facial expres-

sions. It has been used several times in behavioural studies and was designed differently

to Jaiswal and Valstar’s CNN-BLSTM detectors and thus provides an important com-

parison. Like the CNN-BLSTM, it takes into account geometric features, appearance

features and dynamic features of facial expressions, but in a much more different way

and using a different machine learning model, support vector machines (SVMs) (Bal-

trušaitis et al., 2015). The decision to use SVMs was taken partly to increase speed

allowing annotations to occur in real-time. This attention to speed is one characteristic

that distinguishes OpenFace from the CNN-BLSTM detectors. OpenFace is about thirty

times faster and uses less memory than CNN-BLSTM, possibly at the expense of accu-

racy, see Chapter 4 for details. Like CNN-BLSTM, in a preliminary step, facial points

were first detected and the face aligned. However, facial points were not used to segment

the face into geometrical regions, but they were kept intact along with information about

their non-rigid motion. For appearance features, the aligned image was segmented into

a regular grid and then histograms of oriented gradients (HOGs) were made for each
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region and these added to the vector. To reduce the number of dimensions, principal

component analysis (PCA) was used on these features.

To capture dynamic information and remove individual bias in the training samples,

the authors of OpenFace wanted to create a reference to the neutral face (Baltrušaitis

et al., 2015). Their assumption of a neutral face was based on the premise that in real

life people show the neutral face the majority of the time. Accordingly, the authors

calculated the statistical medians of all values in the feature vectors that were input to

the SVM for a given individual, and assumed that this represents the neutral face for that

person. For each individual, they then subtracted the median value from each feature

to obtain a new dynamic feature vector normalized around this estimate of the neutral

face. Subsequently, the authors applied the assumption that the neutral face is the most

frequently occurring face a second time, namely to the final output of the AU detectors.

They did this by subtracting the value of the nth percentile of the value of the action unit

from all its values for that particular individual. Thus, normalization was done twice for

each individual - once on the feature vector that was input to the SVM classifier and once

on the output of the detector. The authors note that for some action units this dynamic

representation works better while for others the static, unnormalized vector works better.

They also note that the dynamic model might not work well on low-level expressions

or in situations where the assumption does not hold that the most frequent expression

displayed is the neutral face. Like the CNN-BLSTM detectors, OpenFace was trained

on the three datasets described in the previous Section 2.6.1, plus some additional ones.
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Chapter 3

Related Work - Automatic

Detection of Deceit Using Facial

Action Units

There is a large and rising demand for methods of automatically detecting deceit using

facial action unit detectors, yet, there are relatively few studies so far in this emerging

field. Here, I briefly present the most important and fundamental works in this area

of research. In addition to exploring ways to automatically detect deceit, each of these

studies had to first grapple with the issue of eliciting deceptive behaviour in their study

subjects in such a way as to capture it on video for later experimentation and analysis.

3.1 Detecting deceit from the face

The first study presented, Who Can Catch a Liar (Ekman and O’Sullivan, 1991), did

not employ automatic action unit detectors or any other form of automatic detection of

facial expressions, as these had not yet been developed. Instead human FACS annotators

were used. These human annotators played the same role as the automatic annotators

would have. Otherwise, the study serves as a paradigm in many ways for later investiga-

tions of human deception using automation. Not least because the ideas of Paul Ekman

and the research associated with him permeate most later works on automatic detection

of deception.
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The objective of Paul Ekman and Maureen O’Sullivan’s 1991 groundbreaking study on

detecting deceit from facial expressions was to discover howwell human observers could

detect deception from facial and postural clues, and to find out which clues people used

in their attempt to uncover deceit. To do this, they needed a set of videos of people

displaying both deceitful and honest behaviour that they could then show to their hu-

man observers to find out how well they performed at distinguishing between the two

behaviours. In pursuing this aim, they were confronted with the same fundamental ques-

tions that would arise when trying to automatically detect deceit: How does one evoke

deceitful behaviour in humans and what kind of deceitful behaviour should it be? How

does one capture facial and body expressions of the study subjects? How can one be sure

of the ground truth?

Ekman and Sullivan used a dataset that had already been created for an earlier study by

Paul Ekman and Wallace Friesen (Ekman and Friesen, 1974). This dataset had been de-

signed to capture deceit where the deceiver was intentionally deceiving their counterpart

and where the deciever had a lot to lose if they were caught. The counterpart was also

intentionally trying to uncover acts of deception. To achieve this, Ekman and Friesen

created a scenario whereby nursing students were told they would be given an interview

during which they would watch four videos and then describe them to the interviewer.

Two of these videos were pleasant nature films and two were gruesome videos of burn

victims and amputations. The nursing students were told they were to lie about one of

the gruesome films and try and convince the interviewer, who had no knowledge of what

they were watching, that they were really watching a pleasant film. To make the de-

ception high stakes and motivate the nursing students to try and succeed in their deceit,

they were told that their success in the nursing profession depended on their ability to

successfully suppress expressions deemed negative such as those indicating anxiety and

disgust. To create further antagonism between the student and the interviewer, the inter-

viewer was told to actively try and discover when the nursing students were not being

truthful. In order to capture the behaviour so that it could be used for their experiment,

Ekman and Friesen secretly filmed the faces and bodies of the nursing students during

these interviews and obtained permission to use the video recordings after the experi-

ment. Two synchronized cameras were used, one to capture the face and one to capture

the whole body of the subjects. Since the order of the films was known the ground truth

was also known.
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3.2. Posed versus spontaneous smiles: The �rst work to automatically
distinguish posed from spontaneous behaviour

For their experiment, Ekman and O’Sullivan used ten short video segments from the

videos of 31 nursing students, five of them representing honest behaviour and five of

them dishonest behaviour, all of them containing both the face, body and audio. These

ten segments were selected by the authors because they contained physical signs of deceit

or honesty as measured by the FACS coding system. Ekman and O’Sullivan reasoned

that they could not penalize lie catchers for not being able to recognize deceit, if deceitful

and truthful behaviour was visually indistinguishable. Thus, the ten test videos were

chosen to contain measurable “differences between honest and deceptive samples” so

that their study could “focus on the question of howwell observers can detect deception”.

After their experiments were run, Ekman and O’Sullivan reached the conclusion that

none of the professionals tested, except for specially trained Secret Service agents, could

detect lies significantly better than chance. The Secret Service agents chose on average

64% correct when distinguishing between the two behaviours.

Ekman and O’Sullivan commented on weaknesses in their study. It is possible that the

type of deceit in this study, the concealment of strong negative emotions, is not in itself

very relevant and that it does not generalize to other deceit scenarios. The ground truth

is also not so certain; the nursing students had to persuade the interviewer they were

watching something pleasant even when they really were, therefore they might have even

been deceitful for the pleasant films. For this reason, Ekman and O’Sullivan referred to

the two behaviours as ‘deceitful’ and ‘less deceitful’. Also, the sample of behaviours of

size ten was perhaps also too small.

The rest of this chapter explores past efforts to see how well computers can detect de-

ceptive behaviour, sometimes directly comparing their abilities with those of humans.

As will be seen, the approaches they used and problems they encountered were similar

to those of Ekman and O’Sullivan (1991).

3.2 Posed versus spontaneous smiles: The �rst work

to automatically distinguish posed from spon-

taneous behaviour

Cohn and Schmidt (2004) were the first to automatically distinguish posed from spon-

30



3.2. Posed versus spontaneous smiles: The �rst work to automatically
distinguish posed from spontaneous behaviour

Figure 3.1: A, tracking of lips and four �ducial points in Cohn and Schmidt (2004).
B, tracking of eight �ducial points in Valstar et al. (2006).

taneous behaviour. As such their work can be considered to be the first work to auto-

matically distinguish deceptive from honest behaviour. The authors investigated whether

dynamics and morphology of facial features together could be used to distinguish posed

and genuine smiles. For examples of faked smiles, they used videos of 33 subjects who

had been instructed to smile. For examples of genuine and spontaneous smiles, they

used videos of 48 subjects watching comedy films. To capture shape and dynamics of

smiles, they tracked the lips, the left and right mouth corners, and the inner eye corners,

see Figure 3.1 part A. The authors found that in genuine smiles there is a consistent and

deterministic relationship between the amplitude of the smile and its duration whereas in

posed smiles this relationship is arbitrary. This characteristic, which captures dynamic

features of the smile, could be used to detect posed versus spontaneous smiles with 93%

accuracy. This work did not use action unit detectors, but the authors confirmed that the

facial tracking of features was concurrent with the activities of the underlying muscles

that correspond to AU6 (orbicularis oculi), AU12 (zygomaticus major), AU 15 (depres-

sor anguli oris) and AU 17 (mentalis).

31



3.3. Automatically distinguishing genuine from posed behaviour with eyebrow
dynamics

Spontaneous smiles Posed smiles
slow onset abrupt onset
multiple AUs involved involves primarily only AU12
multiple apexes a single apex
symmetrical asymmetrical

Table 3.1: Rules for distinguishing spontaneous from posed smiles according to
Valstar et al. (2006).

3.3 Automatically distinguishing genuine from posed

behaviour with eyebrow dynamics

In 2006, Valstar and colleagues presented one of the first studies of automatic detection

of deceit (Valstar et al., 2006). They investigated whether computers could automatically

detect the difference between posed and genuine, spontaneous expressions by means of

analysing the eyebrows alone. This was also an investigation into whether brow actions

differ between posed and spontaneous behaviour with special emphasis on the role of

facial dynamics in conveying meaning (Ambadar et al., 2005; Bassili, 1978). This ap-

proach was similar to that pursued with regard to smile dynamics (Cohn and Schmidt,

2004). This had, however, been done by humans, not automatically by computers. Val-

star et al. postulated that rules similar to those governing smiles might also govern other

facial actions such as brow actions. Spontaneous smiles tend to be slow to start (onset),

have multiple peaks (apexes), usually involve multiple AUs, not just AU12 (lip corner

puller), and are usually more symmetrical than posed smiles (Ekman and Friesen, 2003),

see Table 3.1. Therefore, the authors investigated if brow dynamics could be similarly

used to automatically discriminate between posed and spontaneous behaviour.

Their work centred around the concept of automatically detecting action units of the

FACS system, as opposed to most studies in automatic detection of facial expressions up

until then that sought to recognize prototypical expressions like the six basic emotions.

Valstar et al. considered only the movements of the eyebrows, which can be described by

the facial action units AU1 (inner brow lift), AU2 (outer brow lift) and AU4 (brow low-

erer). To investigate whether the characterisation for posed versus spontaneous smiles

could be applied to brow motion, they were particularly interested in the temporal dy-

namics of these AUs - the amount and speed at which positions of eyebrows changed over

time, the order in which the different AUs occurred and how symmetrical they were.
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dynamics

Figure 3.2: Process of selecting a database containing videos with posed (red) and
spontaneous (green) behaviours.

To carry out their study, Valstar et al. needed a dataset of videos exhibiting the relevant

behaviour. They composed a database out of three pre-existing databases: the MMI

facial expression database, which contains over 4000 videos of 52 adults performing

the six basic expressions on command (Pantic et al., 2005); the Cohn-Kanade facial

expression database containing over 2000 videos of 210 adults, also producing the six

basic expressions on command (Kanade et al., 2000); and the DS118 database consisting

of videos of interviews of 85 people with heart disease (Rosenberg et al., 1998). To

provide examples of posed behaviour, they extracted 60 sample videos from theMMI and

63 videos from the Cohn-Kanade facial expression databases, respectively. To provide

examples of spontaneous behaviour, they extracted 139 samples from the DS118 dataset.

See Figure 3.2 for a schematic representation.

As the basis of their automatic analysis, they computed eight fiducial facial points for

each frame in the videos. These points were two points on each brow, and for reference,

one point on the inner corner of each eye and one point on the outside of each nostril,

see Figure 3.1 part B. These eight points were tracked through the entirety of each

video sample to produce a time sequence of facial point positions. These points were the

source of all information that would be used from the videos in the process of creating a

classifier to distinguish posed from spontaneous behaviour. From this initial sequence of

facial point positions, a set of basic features was calculated. These basic features tracked

how each point was displaced from its original position and how distances between pairs

of facial points changed over time. These features were then used to learn three separate

detectors, one for each of AU1, AU2 and AU4.
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dynamics

Figure 3.3: Multilayer process of building a classi�er for distinguishing posed from
spontaneous expressions. The three beige panes represent separate applications of
boosting.

The basic features were then used in parallel with the AU detectors that had been made

out of them to segment the occurrences of the three AUs into their onset, apex and offset

phases, see Figure 2.7. After this step, any incorrectly segmented videos were removed.

This left 119 videos of posed behaviour and 70 of spontaneous behaviour, see Figure

3.2. Mid-level features were then computed for these segments. These consisted of fea-

tures that captured information about the speed and magnitude of eyebrow actions, their

symmetry, and the order in which the AUs occurred. An important part of their method-

ology was the application of boosting to their features, both basic and mid-level, in order

to determine which of the features were most relevant to the problem at hand. Boosting

in combination with SVMs had previously been shown to be an effective combination for

detecting facial expressions due to their speed and accuracy (Valstar and Pantic, 2006;

Bartlett et al., 2004; Schapire, 1999; Vapnik, 1995). See Figure 3.3 for the workflow of

their algorithm. The accuracy of the final classifier which classified behaviour as posed

or spontaneous was over 90 percent. The authors refer to this as semi-automatic classi-

fication of posed versus spontaneous behaviour. This is due to their occasionally having

to manually correct certain parts of the automatic detection. They emphasize that the

purpose of the study was to determine if it is possible and feasible to automatically dif-

ferentiate posed from spontaneous behaviour based on brow dynamics, not to present a

classifier with a specific accuracy. They concluded that it is possible to distinguish posed

from spontaneous behaviour based on browmotion alone. Their study confirmed that the

speed, magnitude and duration of eyebrow actions are important in distinguishing posed

from spontaneous behaviour. However, the authors did not find evidence that symmetry

of eyebrow actions was useful for distinguishing posed from genuine behaviour.
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3.4. Multimodal detection of posed versus spontaneous smiles

3.4 Multimodal detection of posed versus sponta-

neous smiles

After having established that it is feasible to automatically detect deception by means of

brow dynamics, Valstar’s group followed up with a study on automatically discriminat-

ing posed from spontaneous behaviour based on geometric features of smiles (Valstar

et al., 2007). This study used many of the same techniques as the brow study presented

in the previous section, but it was more exploratory and broader reaching. As in the pre-

vious study, they again investigated the role of dynamics in distinguishing posed from

spontaneous behaviour, however, they also investigated two other aspects of the prob-

lem: First, instead of using the single modality of the face they combined it with two

additional modalities — head pose and shoulder dynamics — to investigate which of

these modalities was most useful and whether these were more effective in combina-

tion or alone. Second, they compared three different ways of fusing features together

before final classification. They compared the effectiveness of three fusion strategies:

early, mid-level and late fusion. Their earlier brow study, described above, had used late

fusion.

The basis of their study was a subset of the MMI-facial expression dataset, see Section

3.3, which was one of the three datasets used in the previous 2006 study. For the posed

expressions, they used 100 near frontal view videos of individuals acting out a sequence

of emotional expressions. For the spontaneous expressions, they used 102 near frontal

view videos of individuals watching emotion eliciting cartoons or nauseating videos. In

the posed samples, only that section where the actor demonstrated the smile was selected.

In the spontaneous samples, only a single smile was selected. In both cases, the videos

were trimmed to only contain the duration of the smile, from the smile’s beginning to

its end. For the first modality, head pose, they tracked over all video frames rigid head

movement – horizontal, vertical and forward/backward – and three degrees of rotational

movement – yaw, pitch and roll, see Figure 3.4, part A. For the second modality, the

face, they tracked 12 facial points associated the action units AU6 (cheek raiser), AU12

(lip corner puller) and AU13 (cheek puffer), which are used to distinguish genuine smiles

from posed smiles – four points for each eye (left and right corners, top of upper lid and

bottom of lower lid), and four points for the mouth (left and right corner and top and

bottom of upper and lower lip respectively). For the third modality, the shoulders, they
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Figure 3.4: A, head pose yaw, pitch and roll. B, seventeen �ducial points tracked
for the two modalities: face, with twelve facial points in green, and shoulders, with
�ve shoulder points in red.

tracked five points – two on the left shoulder, two on the right and one in the middle to

account for rigid motion of the torso, see Figure 3.4, part B.

Three different methods of fusing the data for final classification as either posed or spon-

taneous were tested to determine which was the most effective: early, mid-level, or late

fusion. The different fusion methods represented different levels of abstractness in data

representation, developing progressively from least abstract (early fusion) to most ab-

stract (late fusion). For early fusion, basic features were computed over the tracked fea-

tures to obtain speed and displacement of the features over time in a low-level, frame-by-

frame fashion. Their 2007 paper continues along the lines of Cohn and Schmidt (2004)

and Valstar et al. (2006), the main difference being that now there were three modalities

instead of only one. This basic feature data for all three modalities was then fused into

a single vector, and the final SVM classifier built for classification as either posed or

spontaneous, see Figure 3.5. For mid-level fusion, the same type of mid-level features

were used as in the brow work; three classifiers were built out of the primitive features

that were used in early fusion, one for each of AU6, AU12 and AU13. Then the occur-

rences of AUs were segmented into onset, apex and offset phases, and the dynamics of

these segments were then computed. These mid-level features, which represent a higher

level of data abstraction and captured more dynamic and structural information than used

in early fusion, were then fused into a single vector across all three modalities, before

the final SVM classifier for these mid-level features was built. For late fusion, sepa-

rate classifiers were built for each modality over both the early and mid-level features.

These classifiers each classified behaviour as posed or spontaneous independently from
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Figure 3.5: Work�ow of early fusion (top), mid-level fusion (middle) and late fusion
(bottom). m1, m2 and m3 are the three separate modalities.

the other two modalities. These three classifications for the three modalities were then

fused using a sigmoid function into a single decision as to whether the behaviour was

posed or spontaneous (Platt, 2000).

In their results, Valstar et al. (2007) show that combining all three modalities – head,

face and shoulders - produces a better classifier than using any subset of these. In addi-

tion, due to its ability to join the results of specialized classifiers for each modality and

phase, late fusion delivers the best classifier. The authors rank the relative importance of

the three modalities, and, for the most part, head pose is more relevant for distinguish-

ing posed from spontaneous smiles. They also compared the relevance of static versus

temporal dynamics and concluded that temporal dynamics can better distinguish posed

from spontaneous behaviour. As in the brow paper, they did not find any evidence that

asymmetry is a good indicator of posed expressions. The accuracy of their best classifier

for distinguishing posed from spontaneous smiles was 94 percent.

3.5 Detecting real high-stakes deception

In 2015, Pérez-Rosas and colleagues did a study on detecting deception in videos of real-

life trials scenarios, which were collected from the internet (Pérez-Rosas et al., 2015).

This dataset differs from posed or acted datasets, or datasets where the study subject is

37



3.6. How well can a computer spot a counterfeit crank?

instructed to lie, as the stakes were very high for the accused testifying. This affected

their emotional state and arousal levels differently. The authors used the verdicts of the

trials to establish the ground truth as to what was a lie and what was the truth. Altogether,

there were 121 videos, each about 30 seconds long, 60 videos of ‘honest’ witnesses and

61 videos of ‘dishonest’ witnesses.

This was a multimodal study that involved verbal features as well as gestures, which

included those related to facial expressions. It is being presented here because the authors

extensively investigated the role of facial expressions, which they term ‘facial displays’.

They used theMUMIN coding system to describe eight displays involving face, head and

hands, (Allwood et al., 2007). These are general face, eyebrows, eyes, gaze, mouth, lips,

head movements, hands, and hand trajectory, leading to nine categorical values. Some

facial displays correspond to action units and are signal-like, describing basic physical

properties, such as ‘open mouth’ or ‘lip corners up’, ‘lip corners down’. More complex

actions can be described, though, such as ‘laughing’ to describe the general face, which

is also more message-like.

The videos used in that study were not automatically annotated, but by two human an-

notators, and in a very simple way. For each video, for the facial displays, the annotators

assigned the single value for each facial display that described the most prevalent state of

that display in the whole video sequence. For instance, to describe ‘mouth’ for a video,

the annotators had to choose one value, ‘open’ or ‘closed’, depending on which value in

their opinion characterized the majority of the video. For each video, these values, along

with verbal features, were used to build deception classifiers. The classifier models they

tested were decision trees and random forests. They also explored classifiers built using

individual features. They found that the best features for classifying deceitful behaviour

were the facial displays. Facial displays alone led to a classification rate of 70% using

decision trees and 76% using Random Forests.

3.6 How well can a computer spot a counterfeit

crank?

In 2014, Bartlett and colleagues addressed the automatic discrimination of deceptive

versus spontaneous behaviour in the context of physiological pain (Bartlett et al., 2014).
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They chose this aspect of human behaviour because physiological pain is universally

experienced by humans and it evokes a strong emotional response. There are also estab-

lished and ethically acceptable means to induce both genuine pain in a laboratory setting

as well as faked displays of pain. In their paper, they hypothesized that i) humans are bad

at distinguishing real from faked displays of pain and ii) computers can distinguish real

from faked pain significantly better than humans. To this end, they designed an exper-

iment whereby they pitted humans directly against computers by giving them the same

task of visually distinguishing real from faked pain. They then evaluated who performed

the best. They base their assumption that faked and genuine displays of pain can be dis-

tinguished on the idea that there is a basic physiological difference between genuine and

faked expressions of emotion because they are generated by two separate neuromotor

pathways (Rinn, 1984). Genuine, spontaneous expressions of emotion are generated by

the extrapyramidal pathway, which begins in subcortical regions of the brain. Faked, or

volitional expressions of emotion are generated by the pyramidal pathway, which begins

in the cerebral cortex. The extrapyramidal pathway is considered to be responsible for

involuntary, reflexive motion and the pyramidal pathway for voluntary motion. There-

fore, the question of visually distinguishing between deceptive and genuine behaviour is

a question of being able to distinguish between the behavioural fingerprints of these two

neuromotor pathways.

As in the previous three studies presented in this chapter, Bartlett et al. needed a dataset

suitable for investigating their hypotheses. They created a database by using 45 human

subjects, each of whom was given two tasks. For the first task, they were to submerge

their forearm up to the elbow for one minute in a bucket of water at a temperature of

20 degrees Celsius, which was deemed to be not painful. While doing this, the subjects

were instructed to make facial expressions that they believed could fool a professional

doctor into thinking that they were in real pain and to continue this for the full duration of

the minute. For the second task, the subjects were instructed to submerge their forearm

up to the elbow for one minute in a bucket of water at a temperature of 5 degrees Celsius,

the so-called cold pressor test, which is a commonmethod to induce pain in a laboratory

environment (Hines and Brown, 1932). While the subjects were performing these two

tasks, videos of frontal views of their faces were taken at 30 fps. The order in which

the experiments were done was the same over all participants: first, the faked pain (task

1) and then the real pain (task 2). The authors reasoned that, had the experiments been

made the other way around, their subjects might have used their real experience of pain
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to inform their fake expressions of pain, or might still experience residual pain from the

cold water treatment.

3.6.1 Evaluating human performance

To evaluate how well humans can distinguish real from faked pain, 170 observers were

chosen to watch videos of 25 of the 45 participants. The videos were randomly arranged

in a sequence so that none of the subjects’ pain videos and faked pain videos were directly

next to each other. This was to prevent the observers from making direct comparisons

between faked and real pain with the same subject. Using this setting, humans did not

perform better than chance guessing at the task of distinguishing real from faked pain.

To level the playing field between humans and computers a bit, the authors designed

another human experiment where 35 new observers, like the computer, were given a

training phase to try and improve their ability to distinguish real from faked pain. The

training phase they went through was as follows: they were shown the video pairs of 24

of the study subjects, but this time the real and faked pain videos of each subject were

shown next to each other, but in mixed order. The observers had to decide which of the

two videos for that subject exhibited the real pain and which exhibited the faked pain.

They were given immediate feedback on the correctness of their decisions, so that they

could inform their future decisions. After the training phase, their ability to evaluate

real from faked pain was tested by randomly choosing one video per subject from 20

remaining participants. The authors concluded that training did not significantly alter

human performance.

3.6.2 Evaluating computer performance

In addition to human observers, the 2014 study of Bartlett and colleagues also ran the

computer expression recognition toolbox (CERT) action unit detectors on their videos.

CERT is described in Bartlett et al. (2005). They used all 20 available action units. The

outputs of the CERT detectors, like those of CNN-BLSTM and OpenFace, which I use

in this study, estimate the presence or absence of each action unit in each frame of the

video as a real number. Each of these 20 outputs was then put through eight different

time-dependent filters ranging from three to 60 seconds to capture events at different

40



3.6. How well can a computer spot a counterfeit crank?

Figure 3.6: AU signal that has been put through one of the eight �lters. Areas be-
low curves representing actions (red) and areas above curves representing intervals
(blue) are calculated and then the correct bin (word) for the value of each curve
is incremented in the histogram dictionary, according to the `bag of words' model.

time resolutions. Hence, each video was converted into 160 signal sequences containing

1800 frames, one sequence for each AU and one for each filter. Each of these action

unit signal sequences was then segmented into ‘actions’ and ‘intervals’. An action was

defined to be the presence of the AU (section of the signal that had high values), while

an interval was defined to be the absence of the AU (section of the signal that had low

values).

To determine the size of each action, its area was calculated. These values were then

recorded into a histogram with five bins. A similar histogram was made for intervals, as

shown in Figure 3.6. These histograms were then treated as bags of words as done in

Demirdjian and Wang (2009). This was based on a method of characterizing events in

videos by different bags of features based on visual categorizations, taken over different

timescales in order to detect long term and short term characteristics (Niebles et al., 2008;

Laptev et al., 2008; Agarwal et al., 2004; Zelnik-Manor and Irani, 2001). In this way,

the original signal of real values was converted into discrete ‘words’ and the problem of

distinguishing between posed and spontaneous behaviour was converted into a ‘bag of

words’ problem. After each video had been converted into 20*8*2 = 320 histograms, a

feature selection method was used to build a final SVM classifier to distinguish posed

from spontaneous behaviour; the histogram that produced the SVM classifier with the
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best performance was then selected. The next histogram to be iteratively chosen was the

one that produced the biggest improvement in classification. This greedy process was

repeated until no more improvement could be obtained.

To compare the performance of their classifier with human performance, Bartlett et al.

(2005) used leave-one-out on 25 video pairs; they removed each subject’s pair of videos,

trained on the rest of the subjects and then tested on the left-out subject (Bishop, 2006,

page 33). They found that their classifier beat human performance and could distinguish

faked from genuine pain with an accuracy of 85%.

3.7 A polygraph-like interrogation framework using

computer vision

In 2018, Sen and colleagues presented an experiment with the aims to investigate dyadic

human deceptive behaviour and to build a detector to distinguish between honest and

deceptive behaviour (Sen et al., 2018). To carry out their experiment, they first needed

to build a dataset. Here they focused on two aspects. The first aspect was that the dataset

captures both deceptive and honest behaviour. The second aspect was that the video and

audio was high quality to allow computer analysis and there should also be a large quan-

tity of it to get statistical significance. They were particularly interested in investigating

two hypotheses regarding deceptive behaviour. The first, set out by Ekman (1985), is

‘duping delight’, which states that deceivers enjoy the act of deceiving and this enjoy-

ment might be revealed by their facial expressions, that is, they may smile more. The

second, set out in interpersonal deception theory (Burgoon and Buller, 1996), focuses

on the dynamics between the message sender and the message receiver. The theory

posits that the temporal dynamics between senders and receivers is different depend-

ing on whether the sender is being honest or they are being dishonest to the receiver.

Previous studies showed that synchronized head nodding between sender and receiver

indicated more truthful interactions (Yu et al., 2015).
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3.7.1 Creating a deception scenario

Sen et al. created a face-to-face interrogation scenario to be carried out by dyads commu-

nicating over a network. One member of each dyad was assigned the role of interrogator

and the other the role of witness. This assignment was random. After this assignment,

the witness was shown a picture and informed whether they were to be truthful or to

lie to the interrogator about what was in the picture. The interrogator should determine

whether the witness was lying or telling the truth. There were four phases of the interro-

gation, see Figure 3.7. In the first phase, the interrogator was instructed to ask a series

of fixed questions. This phase was similar to polygraph questioning and was designed to

get a snapshot of the witness’s behaviour under different emotional circumstances - nor-

mal behaviour, slight confusion, memory recall, analytic thinking and discomfort. In the

second phase, the interrogator was prompted to ask the witness a set of fixed questions

about the photo they had been shown. In the third phase, the interrogator was prompted

to ask the witness questions of their own choosing. After this, the interrogator made

their first of two decisions about the honesty of the witness, if they were lying or telling

the truth. In the fourth phase, the interrogator was given a hint about the photo the wit-

ness had seen and was then allowed to question the witness again. This last phase was

based on the guilty knowledge test (Lykken, 1959), in which questions are asked that

are designed to cause high levels of arousal in a person concealing knowledge. After

this phase the interrogator made their second and final decision as to whether the wit-

ness was telling the truth. For motivation, the witnesses were promised $10 for each

time they convinced the interrogator they were telling the truth. The interrogator was

promised $10 for every time they correctly guessed whether the witness was lying or

telling the truth.

3.7.2 Technical realisation

To carry out their experiment, the authors created the automatic dyadic data recorder

(ADDR), which they propose to be a general purpose tool. The ADDR was designed to

carry out their deception scenario while also allowing them to collect large amounts of

high quality, annotated video and audio. The ADDR is a network program that brings

dyads together over the internet. In this experiment, the researchers turned to two com-

mon sources for participants, Amazon’s Mechanical Turk (Downs et al., 2010), which is
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Figure 3.7: Interrogation work�ow scheme. The witness (W) and interrogator (I)
are randomly assigned. The witness is shown a picture and instructed to lie or tell
the truth (L/T). The interrogation is four phases long (I-IV), with the interrogator
guessing twice, D1 and D2, if the witnesses is truthful or not. One hint is given
between the third and fourth phase of interrogation.

an online crowdsourced workforce, and email blasts, in this case to students of the School

of Computer Science at their university asking them to participate (Sen et al., 2018). Par-

ticipants were required to have a computer capable of transmitting audio and video. The

ADDR first checked that potential participants had high enough quality equipment and

that they were motivated. If the participants passed, they were then paired up and a

session was scheduled.

The ADDR’s mediated the experiment through interfaces. It set up telecommunication

links between two participants, presented both participants with instructions through the

interfaces, guided the course of the game, and recorded data. As each dyad carried out a

face-to-face interrogation process over the internet in which they could hear each other

and see each other’s faces, the ADDR was able to capture clear video and audio of both

participants, timestamp the data and annotate it with its game state and the participants’

interactions, such as mouse clicks. Sen et al. collected data for 398 dyads, of which 151

were useable, thus fulfilling their aim of acquiring large quantities of data.

3.7.3 Experimental evaluation

To analyse their data, Sen and colleagues ran the action unit detectors of OpenFace on

their videos of the dyads. They also created a baseline version of each AU for each

witness as follows: from the first phase of baseline questioning, they took the segment

that was intended to elicit normal behaviour, took the average value of the AU over that

segment. They then subtracted this value from the rest of that witness’s values for that

AU in the following interrogation. This was intended to individually measure the change
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Figure 3.8: Diagram of a returned smile. Had the interrogator's smile begun
outside the 2.5-second window (red rectangle), the witness's smile would have
counted as `not returned'.

in the witness’s behaviour. They thus have both an original sequence of AU values as

well as a baselined version for each participant.

To test the duping delight hypothesis the authors focused on AU12, lip corner puller.

They looked to see if the average value of AU12 was significantly different between the

truth tellers and the deceivers. They did this for both the original and the baselined AU

values. They noticed that there was a tendency for the deceivers to show more occur-

rences of AU12 in the baselined AUs, but the difference was not significant. Thus, they

did not confirm the duping delight hypothesis. The authors consider that this may be due

to the fact that participants were informed before they were asked baseline questions as

to whether they would be lying or telling the truth, and hence might have already been

experiencing duping delight.

In a further set of experiments, the authors examined the temporal dynamics of AU12

between interrogator and witness to test interpersonal deception theory. They wanted

to examine the frequency with which the interrogator returned the witness’s smiles and

vice versa to see if, in either case, there was a significant difference between honest and

dishonest cases. They defined a smile, or more precisely an occurrence AU12, to be re-

turned if, within 2.5 seconds of its onset, the other member of the dyad also smiled, see

Figure 3.8. The authors found no significant differences in the rate at which the interroga-

tor’s smiles were returned based on whether the witness was telling the truth. However,

perhaps counter-intuitively, they found that the rate at which the witness’s smiles were

returned was significantly higher for witnesses who were being deceptive. The authors
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postulated that interrogators returned more smiles of deceitful witnesses than of honest

witnesses, most likely because they are picking up on an altered behaviour of the wit-

nesses that is not being detected by the AU detectors.

After investigating their twomain hypotheses, the authors then carried out an exploratory

investigation of the other action units computed by OpenFace, using both the raw and

baselined values. They compared the average values of AUs between the truth tellers

and the deceivers and looked for significant differences. The only statistically significant

difference they found was in the baselined data, where there was a significantly higher

occurrence of AU15, lip corner depressor, among deceitful witnesses than those telling

the truth. The authors hypothesized that the significantly higher amount of AU15 among

dishonest witnesses was probably caused by their simulating trying to recall details of a

photo they never saw (Sen et al., 2018).

3.8 Re�ning detection of deception by creating AU

contexts

A further study on the database presented in Sen et al. (2018) was done by Hasan and

colleagues (Hasan et al., 2019). They were particularly interested in looking into the

question, “Does looking into language patterns in light of facial expression contexts

reveal any meaningful insight in understanding deceptive behaviour?” To investigate

verbal patterns of deception they used the linguistic inquiry and word count (LIWC)

(Chung and Pennebaker, 2012). LIWC contains around 4,500 words that are considered

insightful to understanding a person’s psychology and behaviour. These words are in

turn partitioned into 64 categories such as ‘conceptual’ and ‘cognitive’. To differentiate

between deceptive and honest witnesses, Hasan et al. took counts of the number of LIWC

words that occurred in each of the 64 categories in the spoken answers of the honest and

deceptive witnesses and compared the two to see if there were any significant differences

in any of he categories. They found that there were significant differences between truth-

tellers and bluffers in the three LIWC categories ‘seeing’, ‘conceptual’ and ‘cognitive’.

They then looked at the values for the 17 AUs that were computed with OpenFace over

the corresponding set of videos of the witnesses responding, and compared the averages

of each of the AUs between honest and deceptive witnesses. Here, using the average AU
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values as features in place of the LIWC features, they found no statistically significant

differences between deceivers and truth-tellers.

To answer the question as to whether facial context can help reveal meaningful verbal

patterns, they used the action unit values generated by OpenFace to create facial context

for their LIWC features as follows. For each of the 17 action units computed byOpenFace

and for each segment of video corresponding to a witness’s answer they computed the

average value. Then, for each AU and from all its average values per segment, they took

the median. All segments that had an average value lower than the median were clas-

sified as low intensity occurrences of that AU, and all segments with an average value

higher than the median were classified as high intensity occurrences of that AU. They

thus partitioned their data into two groups - high and low intensity - and within each

group looked once again to see how well they could differentiate between deceptive and

honest witnesses using LIWC categories. They found that if they restricted their verbal

analysis to those answers that were classed as high intensity for AU5, upper lid raiser

(eyes wide open), the difference between average values in the ‘seeing’, ‘conceptual’

and ‘cognitive’ categories, which had already been statistically significant, increased.

The authors concluded that averaged LIWC features alone could distinguish between

deceivers and truth-tellers, however averaged facial features, as computed by OpenFace,

could not. They attributed this to the fact that micro-expressions, which occur in a frac-

tion of a second and could betray deception, are lost in averages that cover relatively long

periods of time. Concerning their main research question, Hasan and colleagues con-

cluded that facial context does sometimes strengthen signals when analysing linguistic

features.

3.9 Conclusions and gaps in current research

The studies presented in this chapter indicate that AU detectors are useful devices for de-

tecting and investigating human facial expressions in general. It is moreover becoming

apparent that facial expressions can be valid indicators also for deceptive behaviours.

There are, however, only a few works so far that apply AU detection of facial cues

to decipher deception in human communication. In addition to the general paucity of

knowledge in this area, my preceding review of the literature has identified several spe-

cific research gaps that pose obstacles to progress in the analysis of deceit using com-
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Figure 3.9: Selection of a single pattern from a sequence can introduce bias into the
interpretation of an event. Pattern 2 could be associated with honesty and pattern
5 with deceit. Depending on which one is selected (red or green) to represent the
whole sequence, the same event can be given opposing interpretations, namely
honest (top) or deceitful (bottom).

puter vision. Given this small sample size, one such gap is the obvious question of how

generalizable the current findings are, that is whether the deceptive cues that have been

detected using AUs so far also apply to other deception scenarios. Another is the na-

ture and quality of available data sets, such as the fact that most rely on posed rather

than spontaneous behaviours, which is especially problematic when it comes to decep-

tion. Only a few of the past studies investigate deceptive behaviour where people lie

without being instructed to do so and where they have an interest in not being caught

(Pérez-Rosas et al., 2015). Others have a well-defined ground truth (Valstar et al., 2006,

2007). But rarely is there a convincing combination of both. I address these important

limitations in Chapters 5 and 6, where I present a novel dice rolling experiment, which

I designed together with behavioural economists Professor Roberto Hernan Gonzales

and Professor Thorsten Chmura. This new experiment seeks to elicit genuine deceptive

behaviours while also having an unambiguous ground truth.

In addition, several of the past studies do not consider videos in their entirety but ex-

tract the segments that display the deceptive behaviour they want to study (Ekman and

O’Sullivan, 1991; Valstar et al., 2007). This method ensures that there is something

to detect, but has the potentially serious downside that one cannot really be sure that

the behaviour displayed reveals real-life deception. This problem is illustrated in Figure

3.9, which shows how a sequence of behavioural patterns can have two opposite inter-

pretations depending on which pattern one selects to represent it. Thus representing a

sequence based on a subsample is potentially erroneous. Looking at an entire sequence

of behaviours, and not first manually selecting a revealing extract makes the task harder
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of course, it becomes like finding a needle in a haystack. Sen and coworkers’ ADDR

takes this approach using the OpenFace detectors. But, as discussed in Section 3.7.3,

they are not able to detect a significant difference in AU values between deceitful and

honest behaviour (Sen et al., 2018). I address these problems in the next Chapter 4,

where I similarly try to detect deception in a scenario where it is buried under many

other behaviours in the context of the game of poker. However, I use a different ap-

proach to search for it, namely decision trees. Also, to gain a better understanding of the

robustness of automated deceit detection, I use and compare two different AU detection

systems, OpenFace and CNN-BLSTM.

49



Chapter 4

AUs and Decision Trees Identify

Facial Cues Associated with Game

Plays in Poker

4.1 Overview of how this chapter is organized

This chapter presents a computer vision study of the game of poker. It is organized as

follows: First, I address the motivation behind the study, namely, there are many types

of deception. I discuss what makes poker an interesting object of study. This is followed

by a description of the poker dataset which is used in this study, in particular, how it

was designed by the Institute of Creative Technologies at the University of Southern

California to provide videos that are especially suitable for using computer vision to

study human behaviour.

Next, I state my intentions to investigate this dataset using decision trees and discuss

how I split the data into two classes, folds versus non-folds, and search a large space of

different decision trees. The balanced classification rate is described, and I explain why I

have chosen this as a measure of performance for determining good decision trees. Since

there are two options for me to generate AU data, using CNN-BLSTM or OpenFace,

before building decision trees I do a straight forward statistical analysis to see if splitting

the data into folds versus non-folds (calls and raises) leads to any statistical differences for

either detector. This also provides an opportunity to see howwell the detectors agreewith
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one another which leads to a general statement about the performance of the current state-

of-the-art in AU detection on spontaneous behaviour. This is an important consideration

as AU detectors generally have difficulty in accurately detecting natural behaviour.

The results of the statistical analysis led me to use CNN-BLSTM for building decision

trees. Searching a temporal space of decision trees led to a tree that classified folds versus

non-folds with a balanced classification rate of 0.59. This tree also classified individual

video frames as opposed to whole events, which usually consist of multiple contiguous

frames. Applying a very simple and straightforward vote across all frames belonging to a

single event provided an efficient way to join these individual classifications into a more

intuitive single classification for an entire event and also improved the classification rate

to 0.61. As this is nevertheless somewhat low, although not lower than expected given

the nature of the problem, I once again compared OpenFace to CNN-BLSTM, mainly

for the purpose of validating the CNN-BLSTM results.

To further reduce unwanted noise from AUs that weren’t contributing to correct classi-

fication, I applied feature selection to another search for decision trees in order to find

associations between AU displays and fold/raise/call behaviours.

Finally, to better understand how well the classifiers perform I designed an experiment

to compare computer performance to human performance.

Thework in this chapter substantially expands a preliminary study that I presented at Face

and Gesture 2018 (Vinkemeier et al., 2018). This conference paper consisted roughly of

the database description given here in Section 4.3, the discussion of the decision tree

methodology and performance measure given in Section 4.4 and the initial decision

tree search results given in Section 4.6. The statistical analysis in Section 4.5, the

voting method in Section 4.7, the correlation test between OpenFace and CNN-BLSTM

in Section 4.8, as well as the feature selection in Section 4.9 and the test of human

performance on the poker dataset in Section 4.10 are new and appear for the first time

in this thesis.

51



4.2. Motivation for studying deception in the game of poker

4.2 Motivation for studying deception in the game

of poker

The first study carried out in this thesis is on the card game poker. Poker is well known

as both a game of skill and a game of chance and it is one of the few settings in which it

is socially acceptable to deceive. Poker is played for recreation, but it is also a gambling

game that can be played for high stakes where each player has a chance to win or lose

something of real value. Poker has grown into a multi-billion dollar industry with on-

line gambling, television shows and several prestigious tournaments, such as the annual

World Series of Poker (The Editors of The Economist, 2007).

As well as its entertainment and business aspects, there is also a lot of interest in poker

from the perspectives of mathematics and game theory, as well as from the perspective

of psychology. In 2015, the University of Alberta in Canada solved Texas Hold'em,

the most famous poker variant, with a game-theoretic approach (Bowling et al., 2015).

Shortly after, for the first time, two computer programs, DeepStack (Moravcik et al.,

2017) and Libratus (Brown and Sandholm, 2018), separately beat professional poker

players at Texas Hold’em. This represents a major advance in game theory and artificial

intelligence and has applications in other fields like security and finance. In psychology,

poker and other forms of gambling are considered to be “powerful tools for investigating

risk-taking, decision making, and how the brain responds to personal gains and losses”

(Jabr, 2010).

Poker is not only interesting to psychology, but psychology, like strategy and chance,

is part of the game of poker. There is a strong social component to poker and players

are constantly trying to guess whether their opponent’s hand, which is at least partially

hidden from them, is strong or weak. Among other things, players try to glean this

information from their opponent’s demeanour. Similarly, they themselves bluff and use

their own demeanour to try and hide the strength of their own hand. The role of the

appearance of a player’s face during poker was studied in Schlicht et al. (2010), where

it was discovered that a player deliberates more and makes more betting mistakes when

they conceive of their opponent’s face as trustworthy.

Slepian and colleagues tested the abilities of human observers to judge how strong a

professional poker player’s hand is (Slepian et al., 2013). The observers were not pro-
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fessional poker players. They compared three different modalities - the upper body, the

arms alone and the face alone. The observers were split into three separate groups and

tasked with watching videos of the poker players in play. All videos were silent and ap-

proximately two minutes long. The observers then judged how strong the players’ hands

were based on the videos alone. It was found that a first group, who had been shown

videos only of the upper body, performed as good as random but not better. A second

group, who had observed the players’ arms only, performed better than random, show-

ing that there was meaningful information conveyed by the arms that the players did not

manage to conceal. A third group of observers, who had relied on face-only cues, per-

formed significantly worse than random. This implies that the professional players had

successfully duped themwith their facial expressions. This, in turn, suggests that there is

meaningful information conveyed by the face but that, due to human subjectivity, human

observers are deceived and may misinterpret it.

Perhaps it is possible that an unbiased computer focussing on facial cues might be able to

detect deception in poker without falling into the trap of deceit. The study presented in

this chapter investigates this question. It focuses on automatically distinguishing between

when a player is about to ‘fold’ versus ‘call’ or ‘raise’ based on action units detected in

videos. To my best knowledge, this study is the first study to use computer vision to

analyse human behaviour in poker or any other card game.

4.3 Construction of a poker dataset for the pur-

pose of using computer vision

To carry out the study, I first needed an appropriate dataset. This dataset needed to

capture poker behaviour in such a way that good quality videos of the players’ faces were

provided for computer vision analyis. This study is based on such a set of videos of poker

games and their corresponding metadata, which was donated to the Computer Vision

Lab, UoN, by Professor Jonathan Gratch from the Institute of Creative Technologies of

the University of Southern California. The poker games depicted in it were designed to

produce a set of videos that could be used for machine learning analysis of dyadic human

behaviour with special emphasis on facial cues. At least one other dyadic experiment in

addition to poker was performed in the same video recording sessions, the Iterative
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Prisoner's Dilemma (IPD). It is not part of this study. So far, four studies have been

published on the IPD dataset, Stratou et al. (2015), Stratou et al. (2017a), Hoegen et al.

(2017) and Stratou et al. (2017b). These four works investigate emotions elicited while

playing IPD, a game where each member of the dyad can choose to either cooperate

or behave selfishly. On the poker dataset, in contrast, although preliminary experiments

were done on it (Lu and Pantage, 2015, unpublished), no other study has been completed

yet, except for that presented in this thesis and published as part of this PhD (Vinkemeier

et al., 2018).

4.3.1 The participants

The participants, whowere not professional poker players, were recruited throughCraig’s

List, which is a website that posts classified ads (Smith, 2019). They were offered a flat

fee of $30 to play poker and the IPD; they did not play poker for real money, but instead

they could win tickets for a lottery worth $100 if they played well.

4.3.2 Design of the poker game

The game played was a simplified version of poker. It consisted of ten rounds of poker,

where, in each round, the players were each dealt a single card on the screen whose value

was between 2 and 10 with the highest card winning in case of a showdown, also known

as a call. As is typical in poker, the participants did not get to see their opponents’ cards.

A player won if either a call occurred and their card was higher or if their opponent

folded, that is, conceded in order to avoid a bigger loss. Player A went first on odd

numbered rounds, player B went first on even numbered rounds. The game was slightly

complicated by the fact that the first bet in a round could be zero or positive, but a fold

was not possible. Otherwise, the players had the choice to either call, raise or fold with

the restriction that the total bet could not go over 25 and bet sizes were always multiples

of five (0, 5, 10, 25). These details became clear after examining the database. Figure 4.1

shows a screen shot of the interface the player interacted with. The player’s opponent

is shown in the right half of the screen, their card on the other. Although from each

player’s perspective the card order seemed random, the sequence of ten cards was fixed

according to Table 4.1. All A players saw the same ten cards as did all B players. This
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Figure 4.1: The poker game as seen by a player. On the left, they see their card
and details about the state of the game. On the right, they see their opponent
and a thumbnail of themselves in the lower left corner.

Player\Round R1 R2 R3 R4 R5 R6 R7 R8 R9 R10
A 2 7 9 3 4 9 6 4 8 10
B 7 6 10 2 8 4 3 5 10 4

Table 4.1: Fixed 10-round card order for players A and B. The player that goes
�rst in each round is highlighted in blue.

fact remained hidden from the players and was not a problem since no player played in

more than one game. After rounds three and seven, the players were given a briefmultiple

choice questionnaire about what they thought of their opponent’s betting strategy, which

lasted usually around 20 seconds. The entire game lasted around 5 minutes. A segment

of a game can be seen in Figure 4.2.

4.3.3 Data capture: collecting players' videos along with

their time stamped and annotated events

The players played in pairs, A versus B, over a local area network (LAN) where they

could see each other by means of a computer monitor. Their faces were videoed at

30 frames per second by a webcam embedded in the monitors where the games were

depicted and across which the players visually communicated with each other. Each

game thus produced two near frontal view videos, one of each player’s face, as they

were naturally focused on the monitor for most of the game, see Figure 4.3. In order to
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Figure 4.2: An excerpt from a game depicting rounds 1,2,3 and the beginning
of round 4, as well as the questionnaire, represented by a question mark in a
blue square, occurring between rounds 3 and 4. The upper sequence represents
the sequence of cards and moves of Player A (red), the lower sequence represents
those of Player B (green). Bet amounts are preceeded by `+'. The width of the
red and green boxes is proportional to the duration of the corresponding play.

elicit non-verbal communication and to avoid confounding facial expressions with facial

movement associated with speech, there was no audio and the players could not speak

to each other.

Since the games took place over a LAN and were controlled by computers, players made

bets by means of mouse clicks allowing many of the major events of the game to be auto-

matically timestamped. There were timestamps for the beginning of each round, when

each of the bets were placed, and when the two short questionnaires occurred. Time-

stamps for bets were activated by the players as they decided when to make their play by

mouse click. The beginning of the game, when the players were shown their cards and

when they were given the questionnaires were automatically generated by the program.

Bet amounts and the answers to the questionnaires were also recorded. There were no

other annotations to the database, nor were there later any added for this study, except

for those of the automatic action unit detectors which I ran on the database, see below in

Section 4.4.1. Therefore, the database as I received it, consisted only of the images of

the videos and the timestamps and bet values, all of which were created automatically.

We were given 104 videos by the Institute of Creative Technologies, although originally

there were more. This was because some participants had not given their permission to

share their videos. In an additional spreadsheet I had been given, forty more of the 104
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Videos of a pair playing poker, Institute of Creative Technologies

Player 522, Session 9ab Player 523, Session 9aa

Figure 4.3: Frames from a near-frontal view video of a pair playing poker.

individual participant’s videos were recommended by the Institute of Creative Technolo-

gies for possible removal. This was due to various reasons: they involved confederates,

the video quality was poor, there had been technical difficulties such as lags in the timing

that had bothered the participant, or the player did not understand the game. I removed

all forty of these in one go before carrying out this study. Therefore, this study includes

the remaining 64 videos. As a comparison, the four studies mentioned above that use

the related IPD dataset reported using many more videos, ranging from 186 participants

(93 pairs playing) to 604 participants (302 pairs playing). The poker set described here

provided a dataset which could be analysed by means of computer vision and machine

learning. The next step was to decide what methods and approaches to use for analysing

it.

4.4 Methodology -detecting folds using facial AUs

In this chapter, action unit detectors are used to study the facial expressions of partici-

pants playing poker in the poker database. The concrete question asked is, can a clas-
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si�er be built that automatically predicts if a person will fold or not based on their

facial expressions? The respective facial expressions are not known and they are likely

to be subtle and fleeting as they are spontaneous and associated with passing events. Dif-

ferent players may respond emotionally differently to the same situation and therefore,

there might not be a single facial expression associated with a decision to fold or not, but

rather a group of facial expressions. There will also likely be overlap with facial expres-

sions with some occurring in both classes, such as the neutral face. For these reasons

the baseline for detection is likely to be low.

To increase the likelihood of finding facial expressions associated with folds, calls and

raises, this study focuses on the time window immediately surrounding the player’s de-

cision to fold or not. Park and colleagues also focused on the time window surrounding

events for finding clues to negotiation outcomes (Park et al., 2015; Park et al., 2012). I

am searching this entire time window with multiple classifiers, each covering a different

subset of continuous video frames within this window. Individual frames of AU values,

corresponding to video frames, are used as inputs and not aggregates of these such as

averages, under which important information might get buried under multiple facial ex-

pressions or noise. Hence, I first approach the problem by classifying individual frames.

Later, these multiple per-frame classifications get fused together into a single classifica-

tion. This study focuses on static facial expressions as the time windows are short by

necessity, since game plays last only a few seconds. Therefore, it is not advisable to

collect data over long periods of time as these would span different events in the game.

There is a good chance that a static, or instantaneous, expression will carry a lot of use-

ful information as, according to Ekman, “any time slice within that apex (peak intensity

of the facial expression) carries information about which emotion is being signalled”

(Ekman, 2009).

The action unit detectors were combined with classifiers to discover if there is a facial

expression, or a small enough set of facial expressions, common to enough different

players in the dataset to make it possible to predict whether a player was going to fold

or not. I wanted to address the question of whether such expressions exist and when

and for how long their signals are strongest. Different classifiers were thus built to test

different temporal positions relative to the decision to fold, call or raise and also for

different spans of time. The idea is that if there is a common facial expression to detect

at a certain point, the classifier covering that area will classify well, whereas classifiers
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Action Unit Description Corresponding muscle group
AU1 Inner brow raiser frontalis (middle part)
AU2 Outer brow raiser frontalis (outer part)
AU4 Brow lowerer procerus, depressor and corrugator supercilii
AU5 Upper lid raiser levator palpebrae superioris, superior tarsal
AU6 Cheek raiser orbicularis oculi
AU9 Nose wrinkler levator labii superioris
AU12 Lip corner puller zygomaticus major
AU15 Lip corner depressor depressor anguli oris
AU20 Lip stretch risorius, platysma
AU25 Lips part depressor labii, mentalis, orbicularis oris
AU26 Jaw drop masseter
AU45 Blink levator palpebrae, orbicularis oculi

Table 4.2: The twelve action units used in this thesis and their associated muscle
groups.

covering areas where there is no such occurrence will perform close to random. In order

to increase the chances of detecting something, the searchwas centred around the player’s

mouse clicks, as presumably at this time they are thinking most intensely about the move

they are about to make. The next step would be to decide how to prepare the data to be

input into the chosen classifier.

4.4.1 Details of preparing the data for learning a classi�er

Altogether, in the 64 videos of the poker games used in this study, there are 675,432

frames of video. Each frame consisting of 640× 480 pixels. The twelve CNN-BLSTM

AU detectors were run on all frames in this dataset to extract information about the action

units. To gain a better understanding of the problem, which involved detecting low-level

and spontaneous facial expressions, I also ran the OpenFace detectors. The twelve action

units used are the same ones shown in Table 2.1 and repeated again here in Table 4.2.

This extracted the relevant information about facial expressions from the videos while

reducing the complexity of the frames and simplifying the problem. Each video frame

of 640 × 480 pixels was replaced with a vector of 12 real-valued numbers between 0

and 1, representing the intensity of the 12 action units. Figure 4.4 shows the action unit

intensities detected on a player at three instances, once when he folds, once when he calls

and once when he raises. The timestamps that mark when players make their decision

to fold, call or raise will be referred to as FCR-events.
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4.4. Methodology -detecting folds using facial AUs

Figure 4.4: This �gure shows video frames (top) with their corresponding action
unit intensities for all 12 action units as computed by CNN-BLSTM (bottom). The
three di�erent events are shown: the player folds, calls and raises as indicated.

To prepare input for learning a single classifier, two parameters had to first be deter-

mined, namely o�set, that is, when the search starts, and duration, that is how much

time it should encompass. Once this was determined, it was applied to all players. The

FCR-event timestamps are found for all players and used as the points of reference. The

question ‘when’ is answered by choosing an offset relative to the FCR-event, such as ‘one

second before’ the player moves (an offset of -30 as the videos are 30 frames per sec-

ond), and the question ‘how long’ is answered by assigning a duration, such as for ‘half

a second’ (duration = 15). Then the frames corresponding to this window are selected

for each player and labelled class 1, a ‘fold’, if the FCR-event was a fold or otherwise

class 0, ‘not a fold’, see Figure 4.5.

More precisely, let e be a video frame corresponding to a player’s choice to fold, call or

raise, meaning it is the one that is temporally closest to their mouse click. If the current

offset is o and the current duration is d, then the d contiguous frames from e + o to

e+ o+ d− 1 are individually labelled 1 if e refers to a fold and 0 if e refers to a call or a

raise. This labelled set of frames over all players and events is used to learn the current

tree. Classifiers differ from each other only in their offset/duration parameters. These

offset/duration values are always chosen so that all frames stay within a window of nine

seconds. Having checked the data, I ascertained that nine seconds was the longest period

for which no frame appeared in two sets simultaneously which would lead to it being an
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Figure 4.5: An illustration of which frames of each player's game are extracted for
�xed o�set/duration parameters in order to learn the corresponding tree. In this
case, the tree is the one corresponding to the parameters o�set = -7 and duration
= 4.

input twice, possibly even having different labels if the two events it was associated with

had different classes.

In order to find the period of highest detectability, the different classifiers generated by

different offsets and durations were tested in an exhaustive fashion and compared. This

is possible to do if the classifiers can be constructed quickly. The assumption is that

if there is a classifier that detects well, it is likely that it has found a facial expression

common among players associated with the decision to fold or not. For the first part

of developing such a classifier, I focused on optimizing classifiers built over individual

frames. Later, I looked to see if the classifications of the individual frames associated

with an FCR-event could be turned into a single classification for the whole event. It

turns out this could be done. In order to begin a concrete investigation, the next step was

to decide on what type of classifier to use.
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4.4. Methodology -detecting folds using facial AUs

Figure 4.6: An overview of the method by which decision trees were created show-
ing the FCR-event frames (blue and red rectangles) being extracted from the poker
videos, converted frame-by-frame into 12 action unit values each and then being
used to learn a decision tree. To approximate the performance of the tree, I used
leave-one-subject-out.

4.4.2 Decision trees: an appropriate classi�cation model for

the problem

I chose the decision tree model for this investigation because of its clear conception and

its ability to describe a configuration in terms of intervals. This corresponds to the way

facial expressions are described in terms of AU values, which is intuitive. Decision

trees can express any function and simultaneously can be built very quickly and they

are appropriate for smaller amounts of data with fewer features. Additionally, the purity

function, which describes the homogeneity of a set (to what extent its elements belong

to a single class) used in constructing a tree, is a good way to filter out noise generated

by the AU detectors. Decision trees are well established methods and explained in most

books onmachine learning, such asMitchell (1997). There are many variations. The one

used here is CART (classification and regressions trees) as implemented in MATLAB.

The design and analysis of CART is described in Krzywinski and Altman (2017) and is

laid down in detail in Breiman et al. (1984).

CART decision trees are recursively built. Starting with all the labelled training samples

at the root node, a splitting criterion is applied and the data split into two sets. The
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split that increases the purity of the child nodes the most is chosen. As a result, at each

training node the training data is partitioned into two sets. These become child nodes

and the splitting algorithm is then applied recursively to these. This continues until no

improvement in purity can be achieved or stopping criteria have been reached.

The tree used here was built using splitting questions of the form, "is the value of a

particular action unit greater than some threshold?", where a search is made over all

possible thresholds over all 12 action units to find the best overall threshold, or split of

the data, at the current node. The CART algorithm reduces the impurity at child nodes

by maximizing the decrease in impurity (or increase in purity). It uses the following

formula for calculating the change in impurity:

∆i(s, n) = i(n)− pL · i(nL)− pR · i(nR)

and calculates this over all possible candidate splits s. Here, the node which is being

split is denoted n. The proportion of instances that will go to the left child according to

split s is denoted pL, the proportion of instances that will go to the right child according

to s is denoted pR. The impurity of a node n is denoted by i(n). A node is pure if the

instances it contains all belong to one class and is maximally impure if the instances

it contains belong in equal proportion to both classes. The formal requirements for an

impurity function over a node n are defined in Breiman et al. (1984), page 32, as

• The impurity function over n can have only one maximum, and that is when n

contains equal proportions of both classes.

• The impurity function over n can have only one minimum, and that is when n

contains only one class.

• The impurity function over n is symmetric with respect to the classes.

MATLAB’s implementation of CART uses the Gini index of diversity to define the im-

purity of a node n. The Gini index fulfils the above requirements. It is defined as

i(n) = 2 · p(1|n) · p(0|n).
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Here, p(1|n) denotes the proportion of class 1 examples at node n and p(0|n) denotes

the proportion of class 0 examples at node n.

Therefore, the plan was to convert each of the video frames of the poker dataset into a

labelled vector whose attributes were 12 real values between 0 and 1. The offset and

duration parameters for each decision tree in the search space would then be applied and

the corresponding vectors over all players would be used to learn a decision tree. For an

overview of this, see Figure 4.6. Before actually beginning this experiment, however, I

wanted to compare the data generated with CNN-BLSTM and OpenFace to help decide

which would be better suited for the task.

4.5 Statistical look at the data

Before building the decision trees, I looked at some basic statistics of the data to get ideas

for guiding the search and also to becomemore familiar with basic properties of the data.

This was done to help decide which detector, CNN-BLSTM or OpenFace, to use, to de-

termine howwell they detect and also to look for any helpful patterns that might appear in

the data. In this thesis, statistics is approached from the perspective of machine learning.

To investigate basic statistics, I used the t-test, which is the most frequently applied test in

the literature when detecting human behaviour using action unit detectors. I considered

both the paired and the unpaired t-test. There is also an interdisciplinary aspect to the

studies and in psychology and behavioural economics many other tests are considered

in addition to the t-test such as ANOVA (analysis of variance) (Sirkin, 2006, Chapter

13) and regression models (Sirkin, 2006, Chapter 10) such as multilevel regression and

OLS (ordinary least squares). In addition, in the psychological sciences family-wise cor-

rections such as the Bonferroni correction are also used much more frequently than in

machine learning. These will be left to future publications on these aspects where ap-

propriate. Some of the t-test results, however, will be given as a full statistic in the style

common for publications of the American Psychological Association (APA). In that case,

I give the following parameters: The t degrees of freedom, which indicates how many

independent values there are in calculating the statistic; the t statistic, which indicates

how similar the data is to the null hypothesis; the p value, which describes how likely it

is that the data was generated by the null hypothesis; and Cohen’s d, which indicates the

size of the effect (Cohen, 1988). I will note when I am using this style.
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Game duration Round duration Play duration

Average 5 min 39 sec 34 sec 13.5 sec
Maximum 11 min 2 sec 3 min 14 sec 2 min 44 sec
Mininum 2 min 52 sec 6. 2 sec 1.3 sec

Table 4.3: Durations of game events.

When regarding the data in the poker dataset for statistical analysis, I organize it into

folds versus calls and raises as was planned for building the decision trees. Altogether

there are 64 included participants with each participant’s game consisting of 10 rounds.

Each round contains at least two plays. The number of FCR-events over the 64 players

is 481. These break down into 132 folds, 165 calls and 184 raises. I did not consider the

first play of each round in the analysis because the participant who took the first move

of the round did not have the choice to fold, but had to place a bet, a peculiarity which

was mentioned earlier in Section 4.2.2. This reduced the number of plays in the dataset

and might also have caused some confusion for the participants, especially those who

might have wanted to fold immediately. The data showing durations of games, rounds

and plays (fold, call or raise) is shown in Table 4.3. On average, the games lasted a bit

longer than 5 minutes, but could go up to 11 minutes. Rounds also had a large range

being as short as 6.2 seconds and as long as three minutes. A play, or decision to fold,

call or raise, could be as short as 1.3 seconds or as long as nearly three minutes. It

is likely that players who took much longer than the average 13.5 seconds to make their

play, such as the player who took 2minutes and 44 seconds, were trying to understand the

game or were distracted by something else, such as another person in the room as this did

occasionally happen. It therefore makes sense to focus on the time directly surrounding

the FCR-event as this is when the participant is concentrating on their decision.

Average values of the 12 AUs were computed using the CNN-BLSTM and OpenFace

action unit detectors. These are shown in Table 4.4 and in Table 4.5, respectively. The

mean value for each of the twelve AUs was computed, for all the data, for a fold set and

for a call/raise set. Fold and call/raise sets had to be defined before their averages could

be computed. To split the data into a fold set, I used those frames defined by an offset

-60 and duration 90 for the fold events of all 64 participants. So the AU values for a

particular fold include all those from the frames between two seconds before the fold

button is clicked and one second after. Each fold thus includes three continuous seconds

of data. This way the data should be relevant to the fold, but short enough to not overlap
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AU1 AU2 AU4 AU5 AU6 AU9

all 0.23 0.19 0.23 0.13 0.09 0.10
fold 0.24 0.22 0.17 0.16 0.10 0.09
c/r 0.22 0.19 0.25 0.12 0.09 0.10

AU12 AU15 AU20 AU25 AU26 AU45

all 0.10 0.12 0.08 0.18 0.09 0.08
fold 0.12 0.12 0.08 0.19 0.10 0.08
c/r 0.10 0.12 0.07 0.18 0.09 0.08

Table 4.4: Averages of all 12 AUs using the CNN-BLSTM detectors. First rows
(all) show averages over all data. Second rows (fold) show averages over folds only,
including two seconds before the fold to one second after. Third rows (c/r) show
averages over call/raises, also two seconds before the call/raise to one second after.
The larger value between fold and call/raise for each AU is highlighted in yellow.

AU1 AU2 AU4 AU5 AU6 AU9

all 0.0386 0.0167 0.0817 0.0090 0.0588 0.0141
fold 0.0366 0.0151 0.0764 0.0111 0.0645 0.0150
c/r 0.0394 0.0174 0.0836 0.0082 0.0566 0.0137

AU12 AU15 AU20 AU25 AU26 AU45

all 0.0575 0.0456 0.0278 0.0881 0.0872 0.0242
fold 0.0626 0.0414 0.0265 0.0926 0.0831 0.0216
c/r 0.0555 0.0472 0.0283 0.0864 0.0888 0.0252

Table 4.5: Averages of all 12 AUs using OpenFace detectors represented as in Table
4.4. Here, four decimal places are shown as there is very little change in the values
within an action unit. The larger value between fold and call/raise for each AU is
highlighted in yellow.

into other events. Call and raise data were made analogously. In both the Tables 4.4

and 4.5, the higher average between fold and call/raise is highlighted. The OpenFace

and CNN-BLSTM detectors agree on which value is larger for AU4, AU5, AU6, AU12,

AU15 AU25 and AU45. They disagree on which is larger for AU1, AU2, AU9, AU20

and AU26. This could be obtained if one or the other detector produced random results.

Since it was not clear which of the values are statistically significant, I looked into this

next.

It is difficult to come up with a clear and informative statistical test for the poker dataset

since the data for an individual participant are highly dependent, but still one wants to

distinguish between an individuals folds and non-folds and group them with the folds

and non-folds of the other participants. The most natural way to view the data set is to
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segment it into folds and call/raise events. This, however, produces a set of data that is

not fully independent and not fully paired, as some players both fold and call or raise.

On the other hand, giving each player a single averaged fold value and a single averaged

call/raise value is also not ideal, as some players either never folded and in this case

several players have to be thrown out and their data lost. For this reason, though neither

is ideal, I looked at both options.

Independent t test. To see if there is any significant difference in AU values between

fold and call/raise events, I first used an unpaired, two sided t-test on the data. The first

value I tried was for an offset of -60 and a duration of 90 (three seconds of values start-

ing two seconds before the fold, 90 frames of video). The average values of each of the

12 AUs were taken for each individual event and each of these values became a sample

input to a separate t-test testing that specific AU. Therefore, if a participant folded three

times and called/raised four times, they would produce three values for the fold sample

and four values for the call/raise sample for each AU. In this case, each of these val-

ues would be averages of the 90 frames chosen as detemined by the offset and duration

parameters. Averages were taken because individual frames that are neighbours in the

video are highly dependent. For each of the 12 AUs, there were thus 132 values for the

fold sample and 349 values for call/raise samples. For CNN-BLSTM detectors, the val-

ues for AU4 (brow lowerer) and AU5 (upper lid raiser) resulted in significant differences

between the two classes. The APA style reporting of the statistics for AU4 are t(479) =

2.87, p = 0.0043, d = -0.28 and the statistics for AU5 are t(479) = 3.24, p = 0.0013,

and d = 0.30. They are both significant at 5%, which means that there is a five percent

or lower chance of randomly achieving these values, the lower the p-value, the stronger

the evidence that the values are not random. In addition, their effect sizes are both small

to moderate. Having gotten this result, I looked to see how this significance changed

over different offsets and durations. The p-values were plotted for different offsets and

a duration of 60 frames, as shown in Figure 4.7, left. The significances of AU4 and

AU5 were fairly stable, but tended to be stronger near the FCR-event at offset 0. For

OpenFace, also shown in Figure 4.7, right, there were no significances, except for AU25

(lips part) nine seconds before the event, which is probably too early to be associated

with the event. The results obtained with the CNN-BLSTM detectors suggest that par-

ticipants who folded raised their eyebrows significantly more and lowered them less than

those who called/raised. The data generated by the two different detectors do not agree,

though, and do not corroborate each other.
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Figure 4.7: The p-values for the two sample unpaired t-test plotted according to
o�sets along the x-axis and duration of 60 frames (2 seconds). Higher p-values
indicate less signi�cance, lower p-values indicate higher signi�cance.

Paired t test. The two sample t-test might not produce accurate results for this data,

however, because the data are not normally distributed as seen by the histograms shown

in Figure 4.8, where values generated by the CNN-BLSTM detectors are shown on the

left and values generated byOpenFace are shown on the right. With 132 fold samples and

349 call/raise samples, there is enough data that this should not be a problem. However,

the two samples overlap with 56 of the 64 participants contributing to both the fold

sample and the call/raise sample, and eight participants being represented in only one of

the two sets. This contradicts one of the main assumptions of using the t-test, namely

that the data be either fully paired or fully unpaired, as the t-test for partially paired data

might give invalid results (Moore et al., 2017). For this reason, I decided to also use the

paired t-test.

To prepare the data for the paired t-test, those participants (eight in total) who did not

both fold and call/raise at least once were removed as there seemed no reasonable way

to split them into a pretreatment and treatment set, thus some of the data was lost. For

each of the remaining 56 participants and for the different offsets and duration of 60

frames, the average of each AU was taken over all their folds and added to the fold

sample and then taken over all their call/raises and added to the call/raise sample. This

created a paired t-test with 56 paired samples. The p-values for different offsets and a
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Figure 4.8: This �gure shows histograms of the data used for the unpaired t-test
for AU4. On the left is the data generated by CNN-BLSTM. On the right is
the data generated by OpenFace. Values that make up the fold samples are red.
Values that make up the call/raise samples are green. Each value is the average
of a single FCR-event. The data do not look uniformly distributed.

duration of 60 frames are shown in Figure 4.9 for both detectors, for comparison. I

also give a more thorough statistical picture of the data that is more in keeping with how

statistics in psychological studies are presented for an offset of -30 and a duration of

60 frames. Here, there was statistical significance for AU5 and AU12: AU5 resulted in

t(27) = 2.35, p = 0.02, d = 0.31. AU6 resulted in t(27) = 2.20, p = 0.03, d = 0.29. As the

other AUs did not give statistical significance, I will not compute their fuller statistics.

For AU5 and AU12, these statistics indicate they are both significant at the 5% level

and have a medium to small effect. To investigate whether the data follow a normal

distribution in order to determine how appropriate the t-test is, histograms were again

made for visualization. The data shown in the histograms are the differences between

each pair of values for each participant. Applying a one-sample Kolmogorov-Smirnov

test for the right scale and mean showed that the hypothesis that the data comes from a

normal distribution cannot be rejected. In Figure 4.10, one can see that the data look

normally distributed but not like the standard normal distribution. To get a good scale

for the standard deviation and to shift the mean, I subtracted the mean from both sets

and scaled the data to different values before using the test. Most AUs passed the test for

the right scaling factor, whereby the scaling factor was found by testing values linearly

between the mean and the outermost values that the AU took on. It seems plausible,
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therefore, that they have a normal distribution.

In conclusion, according to the paired t-test, the CNN-BLSTM detectors indicate that

AU5 (upper lid raiser) and AU12 (lip corner puller) are significantly more pronounced

when people fold, Figure 4.9, left. The results of OpenFace suggest something differ-

ent, namely that AU6 (cheek raiser) and AU25 (lips part) are more pronounced when

people fold, Figure 4.9, right. Although AU25 occurs very early. Here, I give the APA

style statistic for AU6 at offset -60 and duration 90 as t(27)=2.41, p=0.02 and d = 0.32.

Therefore, this is significant at 5% and has moderate to small effect.

It would have been a good confirmation of their ability to pick up subtle, spontaneous

behaviours if the two detectors had agreed more. That they don’t indicates that at least

one of them is likely to be unreliable at detecting the type of facial behaviour in the

poker dataset. I will return to this aspect again and compare the two detectors from a

different perspective in Section 4.8. Altogether though, the tests indicate that splitting

data according to folds and calls/raises might lead to results with CNN-BLSTM and that

AU5 and AU12 might be particularly reliable for these detectors.

Figure 4.9: The p-values for the paired t-test plotted according to o�sets along the
x-axis and duration of 60 frames (2 seconds).
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Figure 4.10: This �gure shows histograms of the data used for the paired t-test for
AU4. On the left, in blue, is the data generated by CNN-BLSTM. On the right,
in red, is the data generated by OpenFace. Each data value consists of a player's
fold-average minus their call/raise-average. The data look normally distributed.

4.6 Evaluation of �rst decision trees using CNN-

BLSTM

The first application of decision trees began with all the 12 AUs computed with CNN-

BLSTM even though only AUs 5 and 12 were significant in the tests of the previous

section. It would not be reasonable to restrict analysis to these two AUs as many be-

haviours are signified by groups of AUs occurring simultaneously. I searched a space of

decision trees To�sets,durations over different offset and duration pairs in order to dis-

cover if and when folds could best be detected. The distance between some FCR-events

was just over nine seconds. In order to avoid overlapping events I focused on decision

trees learned on frames that did not precede their corresponding FCR-event by more

than nine seconds (-270 frames). One second after a round ended with a fold or call,

the players were informed of the outcome (win or lose). Three seconds after this, they

were dealt their cards for the next round, or the game was over. Therefore, I restricted

the offsets to five seconds after the FCR-event as by then the participants were well into

the next round or the game was over. The search space hence was restricted to offsets

in the range of 9 seconds before the FCR-event to 5 seconds after and to durations of
1
30

of a second (one frame) to 9 seconds. This is a broad enough range, most likely still

encompassing too large a window, but it is not so large as to allow a single frame to be
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included in two events, which is problematic, as previously mentioned.

In order to evaluate the performance of each of the decision trees, I used a leave-one-

player-out protocol. So, for each offset/duration pair and for each of the 64 players p,

a decision tree was learned without the frames for that player, making that particular

decision tree independent of that player. This tree was then used to classify the left out

player’s frames. In this way, all the classifications for all the players were collected and

used to estimate the performances of each tree To�set,duration.

For the performance measure, I chose to use the classification rate R, which is defined

as

R =
C1 + C0

N
.

Here, C1 is the number of correctly labelled fold instances, C0 is the number of correctly

labelled call/raise instances, andN is the total number of instances. There are 481 FCR-

events in the database. Of these, 132 are folds, 184 are calls, and 165 are raises. The

ratio of fold events to call and raise events is therefore 1:2.65. This is also the ratio of

fold to call/raise instances used to learn and test any given tree, since the number of

instances used to learn a tree is just 481×duration, as individual frames are input to the

tree. Thus, the data is imbalanced. In this case, simply assigning every instance the class

0 (call/raise) gives a classification rate of 0.73. However, this only gives information

about the distribution of the data and not how well a classifier can distinguish between a

fold and a call/raise. Therefore, to get a more informative measure of this, the folds have

been scaled to have equal weight as the call/raises. This has led to a balanced version

of the classification rate, which can be interpreted as the classification rate in the case

that, in the test data, the number of folds equals the number of calls and raises combined

(Tharwat, 2018). The balanced classification rate Rb is defined as

Rb =
P1 + P0

2
.

Here, P1 is the proportion of correctly labelled class 1 (fold) examples to all class 1

examples, and P0 is the proportion of correctly labelled class 0 (call/raise) examples to

all class 0 examples. Similarly, the balanced precision, recall and F1-measure for the

trees were computed. For the precision, which measures the probability that an instance
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Regular Balanced

Classi�cation rate 0.6681 0.5938
Precision 0.4019 0.6398
Recall 0.4293 0.4293
F1-measure 0.4151 0.5138

Table 4.6: Performance values for decision tree T15,3.

classified as a fold is really a fold, the balanced version gives

Precisionb =
P1

P1 + (1− P0)
.

For the recall, which measures the probability that a fold will be returned by the classifier

as a fold, the balanced version is equal to the standard version and is given by

Recallb = P1.

The F1-measure is the average of the precision and recall and combines them into a

single value. The balanced version is given by

F1b = 2 · Precision
b ·Recallb

Precisionb +Recallb
.

The results for the best decision tree, T15,3, occur at o�set = 15 frames and duration =

3 frames, see Table 4.6. In the case of this tree, there are 1443 frames. The method

of leave-one-player-out labelled 170 of the 396 class 1 frames correctly and 794 of the

1047 class 0 frames correctly. The performance measures are listed in Table 4.6.

I also looked into the statistical significance of the results and compared the balanced

classification rate of the classifier with a fair coin, that is one that has a probability of
1
2
of landing heads, and used the binomial distribution with the statistical significance

level .99. Instead of using individual frames, which are clearly dependent, I considered

different FCR-events to be independent of each other, as they never overlap and usually

have a gap of several seconds between each other. There were altogether 481 such events.

Considering the decision tree with the best performance, which occurs at 15 frames (half

a second) after the player makes their choice to fold or not, and has a duration of 3 frames

(a tenth of a second), its balanced classification rate is .5938. If one were to classify 481

instances and get a .5938 proportion of these correct, then compared to random coin
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flipping this would be significant. However, the data is imbalanced with .73 instances

being classed as 0. This makes statements about significance difficult. If one considers

the worst classifier, which occurs just short of five seconds before the event and has

a duration of 3 frames, as a negative classifier, it has a balanced classification rate of

0.5651. Although this is lower than the classification rate of .5938 of the best classifier, it

is also statistically significant when compared to a fair coin. This points out the difficulty

of analysing spontaneous human behaviour data, which likely has a low baseline due to

individual differences, like personality, where there are strong interdependencies and

where the data is imbalanced as is the case here. It is worth noting that using a family-

wise error correction here would have removed any statistical significance as thousands

of trees were tested to find the best one.

I also created a heatmap of the decision trees, see Figure 4.11, with offset values increasing

along the x-axis and duration values increasing along the y-axis. This was done in order

to discover if there were consistent areas where the detectors could better pick up folds

versus calls and raises, which would indicate if and when there was a signal. The heat

map could also indicate if the performance of the detectors was clustered at or near the

FCR-event or if it was randomly distributed. Figure 4.11 shows that just more than four

seconds before the FCR-event the classifiers begin to perform better, the performances

then peak around half a second after the FCR-event and rapidly decline at 1.5 seconds

after the event.

In order to view this from a different perspective, a bar graph was created, see Figure

4.12, which provides a cross section of the heat map shown in Figure 4.11. It also depicts

the performance of the classifiers as time elapses, using the identical offset schema as

in Figure 4.11. But this time, for each offset i, I plotted the best performance ratio from

among the five classifiers made from durations of 1 to maximally 5 frames. This limit

was chosen as otherwise adjacent classifiers made with longer durations begin to contain

overlapping frames. Figure 4.12 thus shows nearly the same data as Figure 4.11, focused

on the best classifiers at each offset, but restricted to durations in the range of 1 to 5

frames. One can see from both representations that the ability to detect the fold versus

the call/raise increases four seconds before the event, peaks at half a second after and

decreases rapidly at 1.5 seconds after. At 9 seconds before FCR-events, the players are

once again in FCR-events. At 4 seconds after an FCR-event, the players are receiving

their next cards. Since the card order for the players is fixed, it could be that the decision
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Figure 4.11: Heat map of the performance ratios of di�erent classi�cation trees.
Each square in the heat map shows the balanced classi�cation rate of a decision
tree. Each entry represents a decision tree trained for a particular o�set (x-axis)
and window length (y-axis). The x-coordinate 0 represents the time of the FCR-
event. Left and right of this are o�sets in seconds (30 frames per second). The
y-axis represents di�erent durations, in seconds, increasing in ascending order. For
example, the white-framed rectangle at x = −71

3
and y = 5

6
gives the balanced

performance ratio of T−7 1
3
, 5
6
, which is 0.4856.

trees at these ends of the heat map are detecting other correlations between the games of

the players.

The best decision tree, T15,3, whose performance is given in Table 4.6, has been visual-

ized and is shown in Figure 4.19 in Section 4.9. It has been placed in this later section in

order to facilitate comparing it to the best tree found using feature selection. As shown in

Figure 4.19, the first split in the tree uses AU5 at a threshold of .185 which splits the tree

into two subtrees with larger AU5 values going right. The resultant right hand subtree

tree contains data that is 64% fold events and 36% call/raise events, showing that this

one split at the root already has good discriminative power. This also reflects the results

of the paired t-test which showed that there were significantly higher AU5 values present

when folding. The left subtree has high entropy and is only a bit better than maximum

entropy. It is not clear if AU12 plays a particularly important role in the right subtree.

In the left subtree, at a depth of three, high values of AU12 are associated with folding.

This is also aligned with the paired t-test. Altogether, it is not clear if AU12 plays as

important a role as AU5.

In summary, these analyses were an attempt to see if it was possible to detect, possibly

beforehand, a player’s objective actions in the game of poker from only their facial ex-
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Figure 4.12: Bar graph showing best performance of classi�ers over durations of 1
to 5 frames. The x-axis of this �gure is identical to the x-axis of Figure 4.11. A
single bar in the graph represents the best classi�cation rate from the �ve classi�ers
at that o�set with durations 1�5.

pressions. In particular, I wanted to see if folds could be detected. In the four seconds

leading up to the FCR-event, classifiers were obtained with classification rates that were

statistically significant at the 5% level; T−100,4, just over 3 seconds before the event, had

balanced classification rate 0.55, and T−70,1, just over 2 seconds before the event, had

balanced classification rate 0.57. However, the strongest detection obtained was half a

second after the event at T15,3 with a balanced classifiaction rate of .5938. Thus it seems

feasible to detect subtle and spontaneous facial actions of humans that indicate future de-

cisions using action unit detectors together with decision trees. The classifications thus

far are for individual frames instead of events. It would be more intuitive and direct to

classify a whole event rather than just its individual frames. This issue will be adressed

in the next section.

4.7 A simple voting method for converting multi-

ple frame classi�cations into single classi�ca-

tions

The classifiers made so far return a separate classification for each frame associated with

an event. It would bemore intuitive, though, to return a single classification for the whole

event. In order to obtain a single classification for a FCR-event, the classifications of the
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frames relating to that event were taken together in a vote and a cut-off value of 1/2 was

chosen, see Algorithm 1. This cut-off was chosen as it is the most straight forward

and simplest and it reflects the fact that the decision tree was trained using a balanced

classification rate. Voting was done by taking the classifications for the individual frames

of an event and summing them. If the sum of the frames was greater than 1
2
· (duration),

then the event was assigned the class 1, otherwise it was assigned the class 0. This voting

system altered the performance of the decision tree as shown in Table 4.7.

Data: input (c1, ...., cduration), ci ∈ {0, 1}}, classes assigned by decision tree to
frames corresponding to a FCR-event e

Result: A single classification C for the event e

1 if
∑

i ci >
1
2
· duration then

2 C = 1;

3 else

4 C = 0;

5 end

Algorithm 1: Find majority class.

Regular Balanced

Classi�cation rate (0.6681) 0.6840 (0.5938) 0.6079
Precision (0.4019) 0.4265 (0.6398) 0.6628
Recall (0.4293) 0.4394 (0.4293) 0.4394
F1-measure (0.4151) 0.4328 (0.5138) 0.5282

Table 4.7: Performance values for decision tree T15,3 after voting. Values for the
same tree before voting, see Table 4.6, are shown in red. At this point, all 12 AUs
have been used for the decision trees.

Comparing the values in Table 4.7 to those in Table 4.6 shows that voting and choosing

the majority class provides a straightforward way to classify the whole event. It further-

more improves all eight values used in evaluating the performance of the classifier. This

method of classifying a whole event as opposed to frames only also extends the previous

decision trees conceptually.
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4.8 Comparing the correlation of CNN-BLSTM and

OpenFace on the poker dataset

The best classifier found so far had a balanced classification rate of 0.61. To find it, an

extensive search had to be carried out that required calculating thousands of decision

trees. Given that the classification rate of 0.61 is somewhat low, this raises the question

of whether what is really being detected is dependent on noise. Watching the videos

on the poker dataset along with their concurrent AU values shows that the detectors are

indeed somewhat noisy for the subtle, low-intensity facial expressions that occur in the

poker dataset. This, together with the fairly low classification accuracy is a motivation

to take a closer look at the performance of the CNN-BLSTM detectors on this dataset.

There is however no ground truth for the action units in the data set, so there is no direct

way to evaluate this performance. For this reason, and also since OpenFace is freely

available and widely used in research (Agarwal et al. (2019) and Rudovic et al. (2018)

are recent examples), I did another comparison between OpenFace and CNN-BLSTM.

Here, I looked at how well the two were correlated over the same signal. If the two agree

with each other strongly, then it is likely that they both detect spontaneous behaviour

well. This is a confirmation that CNN-BLSTM detects well. If they disagree, then one

or the other or both might be unable to detect spontaneous behaviour well, but no strong

statement is possible. Therefore, I used the Pearson correlation coefficient to calculate

the linear correlation between the two detectors over the AU values they output for the

poker database.

Pearson’s correlation coefficient for samples is defined by

rxy =

∑n
i+1(xi − x̄)(yi − ȳ)√∑n

i+1 (xi − x̄)2
√∑n

i+1 (yi − ȳ)2
.

Here, xi is the AU value generated by CNN-BLSTM for the ith frame in the sequence and

yi is the the AU value generated by OpenFace for the same frame in the same sequence.

Outputs for all the players were concatenated into one input for calculating the correlation

coefficient. The computed correlation coefficients of the CNN-BLSTM and OpenFace

detectors are shown in Table 4.8 for each of the twelve AUs under study. The correlation
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coefficients, shown in column 1 of Table 4.8, were especially high for AU6 (cheek raise),

AU12 (lip corner puller) and AU25 (lips part). As expected, randomly shuffling the order

of the entire sequence of frames for one detector brought the correlation coefficients to

near zero (these values are not shown). Since OpenFace replaces low AU values with

zero as part of its normalization process to remove bias, I also tested the correlation

between CNN-BLSTM and OpenFace after removing these zero valued frames. The

results are shown in column 2, with the number of frames removed for each AU shown

in column 3. The correlation coefficients of AU6, AU12 and AU25 remained high and it

does not seem that OpenFace’s normalization (which happens twice, see Section 2.6.2)

had a large impact or caused the two detectors to deviate too much.

1 2 3 4 5
AUs plain zeros removed frames removed plyr shu�e plyr avg

AU1 0.2005 0.2554 362,943 0.0615 0.3030
AU2 0.1552 0.2764 231,618 0.0454 0.2290
AU4 0.1203 0.1162 395,243 0.0729 0.1835
AU5 0.1138 0.1413 196,392 0.0144 0.1434
AU6 0.5078 0.5364 330,699 0.1986 0.4497
AU9 0.0635 0.0769 251,412 -0.0142 0.1599
AU12 0.6698 0.6283 291,112 0.3044 0.5253
AU15 0.1334 0.1633 378,796 0.0620 0.1066
AU20 0.0494 0.0654 305,024 0.0189 0.0933
AU25 0.4869 0.5243 525,308 0.1424 0.4485
AU26 0.2585 0.3057 526,414 0.0963 0.2757
AU45 0.1085 0.1232 341,351 0.0012 0.1304

Table 4.8: Correlation coe�cients for OpenFace and CNN-BLSTM. Column 1
shows the correlation coe�cients for each AU over the whole dataset, where the
players' data has been concatenated together in sequence to form one input.
Column 2 shows the correlation between CNN-BLSTM and OpenFace when all
the frames were removed for which OpenFace assigned that AU a value of zero.
Column 3 lists, for each AU, the number of frames removed from the total of
675,432 frames in the calculation of the previous column. Column 4 gives the
correlation coe�cient when the frames of individual players have been permuted
among themselves. For column 5, the correlation coe�cients were computed for
each participant separately and the average taken. The three AUs with the highest
correlation coe�cients are constant across the columns and are highlighted red.

It is also possible that the detectors were correlating in their player biases and not in

frame-by-frame activity based on behaviour, as they frequently have person-dependent

bias (Baltrušaitis et al., 2018); the detectors could be agreeing in this as they change from

participant to participant, see Figure 4.13 for a graphical explanation of how this might
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look. Therefore, to investigate this possibility, for CNN-BLSTM, I shuffled the frames

within each player but left the sequence otherwise intact, see column 4 in Table 4.8.

The frame order for OpenFace was not altered. This generally reduced the correlation

coefficients strongly, suggesting the detectors do indeed correlate in their detection of

behaviour, but AU12 (lip corner puller) still remained quite high even after permuting a

player’s frames, indicating that bias might play some role in the correlation of the two

detectors for this particular AU. To get another view of how well the detectors agree, I

also computed the correlation coefficients for each player separately and then averaged

these, see column 5 in Table 4.8. The values for the top three AUs remained high. I draw

from this that both detectors detect these three AUs well even in the case of spontaneous

behaviour.

To further assess the basis of the correlation of the CNN-BLSTM and OpenFace detec-

tors, I made a bar graph of each of their outputs for an arbitrary participant, see Figure

4.14. I chose to visualize AU12 (lip corner puller) and AU45 (blink) because the first,

AU12, has a high correlation coefficient and the second, AU45, has a low correlation

coefficient, and, in addition, these two AUs are located in different parts of the face. To

the naked eye, the bar graphs of AU12 for OpenFace and CNN-BLSTM appear to cor-

relate well, similar to their coefficients in column 1 of Table 4.8. In contrast, the bar

graphs of AU45 to the naked eye do not appear to correlate very much, in line with their

low correlation coefficient in column 1 of Table 4.8. I therefore conclude that AUs 6,

12 and 25 are fairly reliable signals for both the OpenFace and CNN-BLSTM detectors.

It is not possible to reach such a conclusion about the other AUs, though.

Figure 4.13: Bar graph, for visualization purposes, depicting the possible e�ects
of person-dependent bias. The full signal used for calculating the correlation co-
e�cients is the concatenation of the signals of six individual players. It is known
that action unit detectors can have a strong subject speci�c bias. The signal on
the left is identical to the signal on the right, but on the right the signals of the
di�erent players are highlighted, making it clear that they have di�erent means, a
factor which could also dominate the correlation coe�cient. Black horizontal bars
indicate signal means, on the left over the whole signal, on the right means are
broken up per player.
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Figure 4.14: Comparison of a player's AU values. The top two bar graphs are of
OpenFace's and CNN-BLSTM's detection of AU 12, an AU for which they have a
strong correlation. The bottom two bar graphs are of AU 45 for which they have
a low correlation. The bar graphs are of a single, randomly chosen player.

In addition, the observed correlation could be due to non-behaviour related events. Of-

ten, when the subject turns their head, or makes sudden large movements, the detectors

lose track of their object. Figure 4.15, panels A and B, shows that the detectors react

differently in these situations. I thus conclude that the observed correlations are not due

to such non-behaviour related events.

I also examined the basic statistics for the two detectors over all the data in the videos.

This was done in order to see how similar they were and also whether OpenFace’s nor-

malization process resulted in too much information loss, or conversely, if there was too

much person-based bias in the CNN-BLSTM detectors. The statistics were computed

as follows: for min, the minimum value for each player was computed and then these

values plotted for all players. To calculate 1stQ for each of the 64 players, the value

of the first quartile was calculated and the 64 values thus obtained plotted. The same

method was applied to the other eight statistics: median, 3rd quartile, maximum, in-

terquartile range, mean, mode, variance and standard deviation. The results for AU5

and AU12 are shown as box plots in Figures 4.16 and 4.17, respectively. For AU5

(upper lid raiser), which has a low correlation coefficient between the two detectors, a

large difference between the statistics of OpenFace and CNN-BLSTM is found. Open-
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Figure 4.15: Detector responses to highly non-frontal views (A) and facial occlu-
sions (B). OpenFace (OF.) and CNN-BLSTM (CNN-B.) detectors are thrown o�
track by the participant looking to the side as in A, or putting their hand to their
face, as in B. The detectors give di�erent results in these cases. In A, CNN-BLSTM
gives a low value to AU12 (lip corner puller) and the maximum value 1 to AU45
(blink), while OpenFace assigns them both a value of zero. In B, the values output
by the two detectors also do not agree.
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Face shows very little activity with all statistics being near zero except for themaximum,

while CNN-BLSTM has a much larger spread and AU5 takes on a wider range of val-

ues. The flip side is that the median and the mode also take on so many values, which

may indicate a strong influence of person-specific bias. In contrast, for AU12 (lip corner

puller), an action unit for which the two detectors have high correlation, the two detec-

tors also demonstrate highly similar statistics. For box plots comparing the other ten

action units, see Appendix A. The two AU pairs shown here are typical of the types of

contrasts between the statistics of CNN-BLSTM and OpenFace.

Figure 4.16: For AU5 (upper lid raiser) a box plot was made of the min, mini-
mum; 1stQ, �rst quartile; med, median; 3rdQ, third quartile; max, maximum; iqr,
interquartile range; mean; mode; var, variance and std, standard deviation values
for each of the 64 players.

Figure 4.17: For AU12 (lip corner puller) a box plot was made of the min, mini-
mum; 1stQ, �rst quartile; med, median; 3rdQ, third quartile; max, maximum; iqr,
interquartile range; mean; mode; var, variance and std, standard deviation values
for each of the 64 players.
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From these comparisons, it seems clear that both CNN-BLSTM and OpenFace detect

well on AU12 and that their correlation is not due to subject bias alone or their behav-

ing similarly when the detectors get off track. It also appears that OpenFace might be

less sensitive to low-level facial expressions when compared to CNN-BLSTM, as some

of OpenFace’s statistics seem too low, such as those shown in Figure 4.17 for AU12.

On the other hand, OpenFace seems to suffer less from person-specific bias as there

are fewer outliers in its statistical values for the mean and median, values which often

give away a person specific bias. The experiments in this section shed more light on

how the different detectors work. They also indicate that, at least for AU6, AU12 and

AU25, CNN-BLSTM is picking up a meaningful and reliable signal representative of

human behaviour. Since CNN-BLSTM was picking up human behaviour it made sense

to continue trying to improve the classification rates of the decision trees. As a next step

towards this, I implemented feature selection.

4.9 Searching for better decision trees by imple-

menting feature selection

That CNN-BLSTM and OpenFace correlate so well over at least some AUs was encour-

aging. It is also counter-intuitive to expect that all action units should be equally impor-

tant when classifying facial expressions. Therefore I decided to look again at building

decision trees, this time using feature selection, which would help to weed out action

units that only contribute noise. Knocking out irrelevant action units prevents them from

interfering with classification. Although decision trees are considered good at ignoring

irrelevant attributes, this might not be so in the case of complex and subtle facial ex-

pressions, limited data and possible noise. Therefore, removing the unwanted attributes

altogether is a more absolute way of avoiding them. The idea of feature selection is

to create classifiers based only on subsets of the available attributes and find those that

classify best. In this case, the attributes are the values for the 12 different AUs. It is too

time consuming to build decision trees for each subset of the 12 attributes as there are

212 such subsets, so feature selection was done in the usual heuristic and greedy way.

Here, I began with the empty set and added each attribute in turn to see which led to the

best classifiers. From among these, the best were taken and in the next iteration, these

sets of attributes were extended by one attribute to get 2-tuples. Those leading the best
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classifiers were kept and out of them 3-tuples were built. This process was iterated until

the 12-tuple containing all attributes was reached. I therefore did not require that the new

set of tuples necessarily improved upon the old set, see Algorithm 2, but took the best

ones even if they did not lead to an improvement and continued to the next set. For the

following, I restricted the time window to be between two seconds before the FCR-event

and one second after, as this was large enough and had a much better runtime than if I

had used a larger window and thus calculated trees for many more different offsets.

Data: AU values for videos, list of 12 AUs (features)

Result: set of best subsets of features

1 initialization;

2 current_tuples← all
(
12
2

)
two element subsets of 12 AUs (2-tuples);

3 while current_tuples is not the tuple containing all 12 AUs do

4 for t ∈ current_tuples do

5 calculate set of decision trees over offset/duration using only attributes in t;

6 mark t with best b_classification rate over all offset/durations;

7 end

8 next_tuples← tuples t ∈ current_tuples with best b_classification rate;
9 best_tuples← best_tuples ∪ next_tuples;

10 current_tuples← {};
11 for ∀t ∈ next_tuples do

12 for ∀a ∈ AU, a /∈ t do
13 current_tuples← current_tuples ∪ (t,a);

14 end

15 end

16 end

17 return best_tuples;
Algorithm 2: Feature selection pseudocode. This is a simple variation on the

Feature Selection heuristic that is frequently used in the literature, for instance

Bartlett et al. (2014).

The best classification with feature selection was found at tuple (AU4, AU5, AU9, AU12,

AU15, AU25, AU45) with offset -30 and duration four. The balanced classification rate

was 0.6014. The voting scheme in Algorthm 1 was applied. This resulted in a balanced

classification rate of 0.6365.
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Regular Balanced

Classi�cation rate (0.6840) 0.7152 (0.6079) 0.6365
Precision (0.4265) 0.4803 (0.6628) 0.7096
Recall (0.4394) 0.4621 (0.4394) 0.4621
F1-measure (0.4328) 0.4710 (0.5282) 0.5597

Table 4.9: Performance values for the best decision tree with voting after feature
selection was performed. Values for the previous best classi�er, built over all
attributes, see Table 4.7, are shown in red for comparison.

Once again, all eight values for measuring performance were improved, as can be seen

in the comparison shown in Table 4.9.

There were altogether 82 feature selection tuples picked out by the feature selection algo-

rithm. Voting was done on all of these. For the best offset/duration of these tuples, voting

improved the balanced classification rate for 66 of the 82 trees (80%). Voting improved

the real classification rate of 80 of these trees (98%). If one chooses the offset/duration

parameters that maximize the balanced classification for the trees with voting, then the

best offset/duration parameters are the same ones chosen for trees without voting ap-

plied for 59 of the 82 tuples (72%). Therefore, voting generally improves results over

trees without voting. Detailed results for 82 tuples selected by feature selection are given

in Appendix A.

Figure 4.18: The left panel shows the frequency with which action units were
chosen by feature selection. Red (high frequency AUs, AU5 and AU12); light blue
(medium frequency AUs); dark blue (low frequency AUs). The right panel shows
the frequency with which o�sets produced best classi�ers. Red (high frequency
o�sets, -30 and 15); dark blue (low frequency o�sets).

To gain further understanding of the videos in the database, I looked at the features
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4.9. Searching for better decision trees by implementing feature selection

selected for the best classifiers by the feature selection search. The bar graph in Figure

4.18, left, was made to illustrate how many times each feature was selected. AU5 and

AU12 were selected with very high frequency and much more frequently than the other

features, suggesting they are important. These are also the two action units which were

significantly higher for folds versus calls and raises in the paired t-test done in Section

4.5, page 64. A bar graphwas alsomade of themost frequent offsets chosen, Figure 4.18,

right. The largest spike occurs at an offset of -30, with a second, smaller spike occurring

at an offset of 15 frames, suggesting that shared facial expressions are occurring at these

times. Of note, Section 4.5 also shows the statistical significance of AU12 and AU5

as occurring at -30 frames, or one second before the FCR-event. The tuple chosen by

feature selection was located at -30 and used both AU5 and AU12, implying once again

that people who fold have higher levels of AU12 (lip corner puller) and AU5 (upper lid

raiser).

To facilitate an understanding of how the best tree returned by feature selection works, it

is visualized in Figure 4.20. The parameters for this tree were offset -30, duration 4 and

AUs 4, 5, 9, 12, 15, 25 and 45. This figure has been placed next to Figure 4.19, which

was returned as the optimal tree in Section 4.6 where all 12 AUs were used and only the

influence of different offset and duration parameters were investigated. Even after feature

selection is performed, the first split in the tree is the same for both trees, and occurs at

AU5 with a threshold of .185. Despite the removal of 5 AUs during feature selection, the

topmost three levels of both trees are identical regarding what AU is chosen and what its

threshold is. The only exception is the leftmost split on the third level where, in Figure

4.19, the split is on AU6 with θ = .025, as opposed to Figure 4.20, where the split is

now on AU4 with θ = .61. It is only on the fourth level where the trees begin to differ

as AU3, AU6 and AU1 were removed by feature selection. One occurrence of these has

been replaced by AU4, the other three have been replaced by AU12. AU5 plays a large

role in both trees and appears therefore to be important and stable. Also, in the trees,

as in the paired t-tests, higher AU5 values are associated with folding. This is because

the split at the root produces a subtree, the right subtree, in which there is a higher

probability, .65, of an event chosen randomly from this subtree being a fold. While the

role of AU5 as being important for distinguishing fold from call or raise seems to be

upheld as it remains stable across the search, it is not so easy to understand the role of

AU12. It becomes much more prominent after feature selection was applied, implying it

is not as strong as AU5 and is confounded with noise more easily. The red arrows in the
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4.10. Comparing human performance to the performance of the classi�er

trees in both Figure 4.19 and Figure 4.20 indicate the branch to follow from the split

to increase certainty of a fold occurring in the subsequent subtree. All splits on AU12

but the one marked by an asterix point to larger AU12 values indicating folding, which

is also corroborative of the paired t-test results. Therefore, the trees can also be seen to

possibly indicate that higher AU5 and AU12 values are associated with folding.

4.10 Comparing human performance to the per-

formance of the classi�er

Figure 4.21: Example of the interface used to test how well humans can distinguish
between folds and call/raises in the videos of the poker dataset.

After having developed a classifier, it can be useful to compare it to human performance,

as was done by Bartlett et al. (2014). This can provide insight into howwell an automatic

detection method works and also whether there is a detectable ground truth. For this

reason, I created an experiment to test human performance at distinguishing folds from

calls and raises. The interface for this experiment was built by myself in MATLAB. The

experiment consists of, for each study subject, randomly selecting ten of the 132 videos

of a player folding, five of the 184 videos of players calling and five of the 165 videos of

their raising. These 20 videos are then shuffled before being presented to the test subject

by means of the interface shown in Figure 4.21. They are then asked to judge for each

short video segment (four seconds ending in a FCR-event) whether the poker player is
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4.11. Concluding remarks

folding, calling or raising in the video. They can replay each video as many times as

they want before making their decision and moving on to the next video. To evaluate

the subject’s performance in a way similar to the classifiers, they were not penalized for

confusing calls with raises, but only for failing to distinguish folds from calls or raises.

Funds were not available to carry out this experiment, so I did this informally by asking

friends and co-workers if they would participate. Although data collection was going

well, Covid-19 lockdown began shortly after I began running the experiment and I only

managed to get 14 subjects. The average performance of the 14 test subjects was .52,

with .50 being chance. This was not significantly different from chance, but the number

of participants is too low to reach a final conclusion. This trend suggests, however, that

the classifiers perform better than humans at detecting folds in this dataset.

4.11 Concluding remarks

I have searched a space of decision trees and attributes to find areas that lead to good

classification of facial expressions. The main assumption made here was to focus on the

event, the decision made per mouse click, as this is when the participant is most likely

to be considering their decision. The search space was thus focussed tightly around the

events. Originally, the search space encompassed nine seconds before the event and five

seconds after. Decision trees were built over individual frame values and not statistics

or aggregates over the values. This was to avoid losing small or fleeting signals. I next

added a voting method to combine the classifications of the individual frames associated

with an event into a single classification for the event as a whole. Aggregating the outputs

of the decision trees by a simple voting method improved the classification rates. After

this, to improve the classification rate further I performed feature selection on the AUs.

To cut down on the runtime during feature selection, which is very repetitive, I restricted

the search space to between two seconds before the event to one second after the event.

Feature selection resulted in better classification with fewer attributes. These results

were also improved by applying voting, including for the tree with the best set of features

returned by feature selection. The criterion used for driving the search throughout was

improving the balanced classification rate.

A comparison was made between CNN-BLSTM, detectors recently developed at the

University of Nottingham, and OpenFace, which are established detectors and frequently
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used in the literature. In the best case, the two detectors would have agreed. Statistical

tests seemed to indicate that CNN-BLSTM was better suited for this dataset therefore I

used these for constructing decision trees. After doing an initial search for a decision

tree classifier, I looked to see how well CNN-BLSTM and OpenFace correlated over the

dataset. Comparing the two detectors gave strong evidence that they are both good at de-

tecting AU6, cheek raiser, AU12, lip corner puller, and AU25, lips part. The behaviour of

the detectors on some of the other AUs differed strongly, however. This second compari-

son of CNN-BLSTMwith OpenFace wasmainly done to confirm that CNN-BLSTMwas

really detecting meaningful behaviour. For future reference, comparing the basic statis-

tics of the two detectors showed that OpenFace may not be as sensitive to low levels of

expression as the CNN-BLSTM detectors. That the OpenFace detectors might not work

well with low levels of expression or when the neutral face is not the most frequently

occurring face, is something that the authors have pointed out (Baltrušaitis et al., 2018).

Also, as I found while performing these experiments, the OpenFace detectors are about

30 times faster than CNN-BLSTM (it took OpenFace two minutes to run on a video,

but one hour for CNN-BLSTM). Some of the sensitivity of OpenFace might have been

sacrificed for speed.

The results shown here on the poker dataset indicate that combining decision trees with a

static representation of the face as computed by AU detectors provides a plausible way of

finding associations between facial expressions and actions in the game of poker. There

was consistent support throughout these experiments for the idea that players exhibit

more AU12 (lip corner puller) and AU5 (upper lid raiser) when folding than when calling

or raising. These two AUs stood out in the paired t-test analysis, in the feature selection

process, and figured prominently in the construction of the best trees, which were shown

in Figures 4.19 and 4.20. There is therefore evidence that higher levels of AU5 and

AU12 are associated with a person’s intention to fold.
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Chapter 5

A Virtual Dice Rolling Experiment

Reveals that Gender and Stress

Modulate Deception

5.1 Using the poker database design as a spring-

board for a new experiment

The poker database was a good preparation for designing my own study of deception.

Many of the ideas behind the design of the poker study were transferable to a new set-

ting and were therefore important to consider. First, an interface needed to be created

through which participants interacted with the experiment and the flow of the experi-

ment needed to be controlled by the computer. It should be designed in such a way that

there were many meaningful timestamped events in order to later segment the data into

events of interest. For this reason, important computer generated events and also events

generated by participant decisions needed to be annotated and timestamped to establish

a descriptive and accurate ground truth, much as was done in the poker data set. While

the interaction was being moderated and recorded by computer, a frontal view video of

each participant had to be made. It should be as good quality as the poker videos and

also have timestamped frames to allow for cross reference between frames and events for

correct segmentation. Given these similarities, I was free to create a new deception sce-

nario. My intent was to create a more antagonistic experiment than poker that might get
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closer to the idea of malintent by creating a situation in which it is not socially acceptable

to deceive.

This study in deception was designed together with behavioural economists Professor

Roberto Hernán-González, now at Burgundy School of Business, Dijon, and Professor

Thorsten Chmura, now at Nottingham Trent University (Corgnet et al., 2016; Chmura

et al., 2017). It approaches an important problem in behavioural economics with com-

puter vision and machine learning such that both schools of thought can benefit. To my

knowledge this is the first such study. There is a large overlap of interests between these

two fields and the study was designed in such a way that, seen from either perspective,

it should be valid and complete; it is an investigation into human decision making while

simultaneously allowing high quality digital data to be collected for computer analysis

and research.

5.2 The investigation

This study investigates the role of stress on decision making, in particular the role of

stress on human lying behaviour. Stress is considered to interfere with a person’s cogni-

tive abilities. It has been shown that stressed humans confronted with a task rely more

on habit to solve the task than their unstressed counterparts, who react instead in a goal-

directed way (Schwabe and Wolf, 2009; Valentin et al., 2007; Dickinson, 1985). Lying

is considered to be cognitively difficult (Zuckerman et al., 1981; Vrij et al., 2008). We

therefore hypothesize that stress alters the way people lie, both quantitatively, that is, how

much they lie, and qualitatively, that is, their physical behaviour when they lie. It follows

that we should be able to detect these both by recording their decisions and behaviours,

including facial expressions, while they are making their decisions.

According to standard economic theory, a person will always lie if it will lead to mate-

rial gain and there is no fear of punishment (Lewicki, 1984). These means that things

like moral behaviour, for instance, must be explained in terms of fear of punishment

or reprisal. In fact, the first to note this selfish behaviour was John Stuart Mill (1806-

1873) who coined the term homo economicus to describe this strictly rational wealth-

maximizing human (Persky, 1995). However, this seems to be an oversimplification. A

recent investigation found, contrary to expectations, that even when there is a profit to be
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made and no fear of punishment, people do not lie maximally (Fischbacher and Föllmi-

Heusi, 2013). In their experiments, participants privately rolled a die in such a way that

no one could know what they rolled. They then reported what they rolled to receive a

monetary reward. The size of the reward depended on what they rolled so they had an

incentive to lie. Simultaneously, since no one could know what they rolled, as it was a

blind experiment, they had no fear of punishment. Nonetheless, the researchers found

that the study subjects did not fully lie to maximize their rewards. After testing differ-

ent controls, they concluded that lying behaviour is robust and they formulated three

characteristics that define lying behaviour in their die rolling experiment:

1. There is a positive number of truly honest people who will report a pay-off of zero

if that is what they rolled.

2. There is a positive number of people who lie maximally and report the value with

the largest pay-off, even if they didn’t roll it.

3. There is a positive number of people who lie partially, that is, they lie but not to

the fullest and report a higher but not maximal pay-off.

Fischbacher and Föllmi-Heusi could explain point (1) by considering these participants

to have a preference for truth-telling and an aversion to lying, and (2) by considering

these participants to be cases of homo economicus. However, (3) seemed more elusive.

Perhaps these subjects did not lie maximally because they did not want to appear greedy,

or perhaps they were trying to disguise their lies. Because of its simplicity and powerful

hypothesis-testing possibilities, the Fischbacher and Föllmi-Heusi die rolling experiment

has become a paradigm for studying deceptive behaviour.

The study presented here follows their work, albeit with important modifications and

extensions. Here, participants virtually roll a die a sequence of times and report what

number they rolled. For each roll, they get a monetary reward that depends on the value

they report. Note that themaximum reward in this study is similar to the reward offered in

Fischbacher and Föllmi-Heusi (2013). Thus, participants likewise had an incentive to lie

as the different faces of the die were worth different amounts. While this was happening

they were being recorded, a fact that they were told. As another major extension to

the Fischbacher and Föllmi-Heusi experiment, here the participants were subjected to

physiological stress. For this, the participants had to submerge their hand in ice cold
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water (1–3◦) directly before carrying out the die rolling experiment. For the control, the

participants went through the exact same procedure except that they put their hand in

body-temperature water instead of ice water. The details of the experiment are given in

the next section.

5.3 Experimental design

5.3.1 Participant recruitment

Participants were University of Nottingham students who volunteered to participate in

experiments of the Centre for Decision Research and Experimental Economics (CeDEx)

laboratory for studying human decision making in the School of Economics. Their mo-

tivation was to contribute to science and also receive a monetary payment. They were

assured that data protection laws would be adhered to and that their decisions and any

other data kept on them would be only used in anonymized and aggregate form. CeDEx

keeps a database of volunteers and randomly chooses people from it for experiments. If

a person is chosen, they are sent an email inviting them to a session. If they accept, an

appointment is made for them and they are informed that they can withdraw at any time.

Very little is said about the nature of the experimental scenario before they show up for

their session. The ethics approval to perform this experiment was granted by the UoN’s

School of Economics.

5.3.2 Facilities

These experiments took place at the Cribs Laboratory for Experimental Behavioural

Economics, which is part of CeDEx and is located in the Yang Fujia building on Jubilee

Campus at the University of Nottingham, UK. The Cribs lab consists of an anteroom,

where a network controller is kept to manage the computers in the adjoining lab. The lab

contains 40 identical cubicles, see Figure 5.1, left, numbered 1 through 40, which are

each equipped with a desk, a chair and a personal computer (PC). All 40 computers are

connected to a network which can be controlled from the network controller in the ante-

room. As such, the network can be utilized to run software and collect data. In addition

to this standard set up, webcams were mounted on the monitors of the PCs. The room is
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illuminated by eight pairs of bright fluorescent lights. I put a layer of white tissue paper

over them as an inexpensive way to make the light more diffuse to reduce interference

with the AU detection. Only those cubicles directly under the lights were used for this

experiment to make the lighting as consistent as possible across all participants. A row

of chairs was put at the front of the room, see Figure 5.1, right, for the participants to

sit in when they did the water treatments. These were numbered the same as the PCs, so

each participant had a fixed seat (the one with the same number as their PC) for the water

treatment. The chair to the left of each seat held a bucket of water for the participant. It

was also given the same number to avoid any confusion. Thus, each participant had a

pair of chairs. Due to space limitations, only up to ten participants could take part in a

given session. Figure 5.2 shows a map of the lab setup.

Figure 5.1: The Cribs Lab. Left, the participants sat in their own cubicles while
doing the dice rolling experiment. Right, view from the anteroom. A row of
chairs was placed along a wall of the lab for participants to sit on for the water
treatments. Note the black water buckets on every other chair.

5.3.3 Stress treatment

Themain hypothesis of this experiment is that stress will alter a person’s lying behaviour.

To induce stress in participants before they carried out the die rolling part of the exper-

iment, a version of the the Socially Evaluated Cold Pressor Test (SECPT) described in

Schwabe and Schächinger (2018) was used, which is similar to the cold pressor test

(Hines and Brown, 1932) and is a simplified version of the Trier Social Stress Test

(Kirschbaum et al., 1993). The participants submerged their hands, including the wrist,

into cold water and held it there for three minutes. For this experiment, the temperature

was kept between 1-3◦ C. A researcher was in the room and controlled that the partici-
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Figure 5.2: Map of the Cribs Lab. The chairs used for the water treatment are
shown as red rectangles, water buckets as solid blue rectangles. Only the indi-
cated PCs were used as these were all located under the four rows of lights (white
rectangles). Cubicles are indicated by blue rectangles.

pants kept their hands in the water. When participants tried to take their hand out of the

water due to the discomfort, which happened occasionally, they were asked to try and

hold it in or return it to the water as soon as they could. The procedure for the control

group was the same, except that the temperature of the water was kept at 37-39◦ C. This

temperature range was chosen, as it is close to body temperature and should feel comfort-

able, whereas water at room temperature can be perceived as cold and uncomfortable.

Since the effects of the treatment might be small, I chose to stick strictly to these tem-

peratures with as little variation as possible. For details on how the temperatures were

kept constant, see Appendix B.1.

5.3.4 Die experiment software

The die rolling experiment was introduced by Fischbacher and Fölmi-Heusli as a way to

study honesty and deception. In their work, a real die was used by the participant. The

participant received a monetary reward in Swiss francs (1 CHF ∼ 0.84 GBP) based on

what they reported as follows: 1 dot = 1 CHF, 2 dots = 2 CHF, 3 dots = 3 CHF, 4 dots

= 4 CHF, 5 dots = 5 CHF and 6 dots = 0 CHF. Here, a similar reward system is used in

Sterling, see Table 5.1. In the Fischbacher and Fölmi-Heusli experiment, there was no

way for the experimenter to know what the participants had actually rolled. Instead, the
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researchers could only estimate from the cumulative results how much lying took place.

In this case, they knew there was lying because the distribution of reports did not match

the uniform distribution as would be expected from rolling a fair die. The experiment

presented here, the software for which I built using MATLAB, is conceptually similar

except that a video of a rolling die is used and also reports are made using the computer

interface such that the ground truth is known, making it impossible to disguise a lie.

Die face Reward Die face Reward Die face Reward

1 dot ¿0.05 3 dots ¿0.15 5 dots ¿0.25
2 dots ¿0.10 4 dots ¿0.20 6 dots ¿0.00

Table 5.1: Rewards associated with each face of the die. This follows the schema
in Fischbacher and Föllmi-Heusi (2013), with the maximum cumulative reward
over 20 rounds being comparable.

Due to the nature of the experiment, the software had to fulfil two main functions: The

first function, the game module, needed to present and moderate the experiment to each

participant while recording and timestamping the participant’s decisions made by mouse

clicks and dice roll outcomes. The second function, the video module, had to make a

timestamped recording of the participant’s face via the webcam mounted on the moni-

tor while the experiment was in progress. The mouse click events of the game module

interfered with the video recording in the video module causing gaps and delays in the

videos, so these two modules had to be built separately and run in two separate MAT-

LAB instances to parallelize them. The two modules communicated with each other and

coordinated their activities by writing and reading into a common directory. See Figure

5.3 for an overview of this system.

The video module

The video module consisted of a loop that waited for the game module to trigger it to

begin recording. Once triggered, it then moved into the recording phase which was a

loop that created a video one frame at a time together with the timestamp for that frame.

This loop repeated itself adding a frame and a timestamp with each iteration until the

game module informed it by means of a shared directory to stop recording. When this
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signal came, the video module quit recording and stored the video in an AVI (Audio

Video Interleave) file and the timestamps, given in epoch time, in an array in a .MAT

file. The number of frames in the video was the same as the number of timestamps and

the ith timestamp was the timestamp for the ith frame. For examples of videos made

during the experiments, see Figure 5.6, in Section 5.4.

Output of the video module.

• Avideo of the participant taken by a LogitechHD1080p at a resolution od 640X480

and an achieved frame rate of 30 frames per second stored as an AVI file.

• A .MAT file containing the array of timestamps for the video.

The game module

Figure 5.3: Flow chart of dice rolling experiment software. There are two modules,
the video module and the game module, which run in parallel and communicate
through writing and reading from a common directory.

After the participant returned from their water treatment, the game module greeted them

with a screen that prompted them to begin the experiment when ready by pressing a ‘start’

button. When this button was pressed, the game module informed the video module to

begin recording and showed the participant a screen that asked them to roll a die by

pressing a ‘roll die’ button. This button press was timestamped. The computer then
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selected and played a random video of a die being rolled. The number rolled in this

video was annotated and the end of the video was timestamped. The participant was then

prompted to report the outcome of their roll by pressing a report button. The timestamp

for this button press, along with what was reported, were also recorded. As in the video

module, timestamps were in epoch time. All values were stored as arrays in .MAT files.

Instead of a single roll as in the Fischbacher and Fölmi-Heusli study, in my experiment

the participant rolled the die 20 times, each time reporting what they got by pressing but-

tons in the computer interface. Therefore, the above procedure was repeated 20 times,

with the rolling of the real die being replaced by virtual die rolling. This sequence of in-

terfaces is shown in Figure 5.4. For more detailed images of the interface, see Appendix

B.2. After the twentieth and last role, the game module messaged the video module to

stop recording, informed the participant what their cumulative reward was and directed

them to fill out the questionnaire (on paper), which had been placed in the upper left

hand corner of their desk.

Figure 5.4: Game module. The �ow of the interface with which the participant
interacted. The �rst screen was 1) Start. After pressing `start', the video module
was informed to begin videoing and the next screen was 2) the roll die Screen.
After pressing the `roll die' button, the randomly chosen video was shown and the
participant prompted to report what they rolled on screen 3) Report Roll. After
this was repeated 20 times, the experiment ended, the video module was informed
to stop videoing, and the participant was taken to the �nal screen 4) Finish. Larger
images of the interface are shown in Appendix B.2.

In order to control the flow of the program, button activation and deactivation were used.
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The buttons for reporting what was rolled were deactivated when it was time to press the

‘roll die’ button. Upon pressing ‘roll die’ a random video was shown. The videos were

all the same length and ended when the die came to a standstill. When the video ended,

the report buttons were reactivated and the user prompted to report what they had rolled.

The participants were thus not able to report on the outcome of the round until the die

video came to an end. This was to prevent them from taking shortcuts to the rewards

instead of making twenty separate decisions. Once the participant had selected their

choice, the ‘roll die’ button appeared again as active along with the prompt to roll it and

the report buttons were deactivated. This controlled the flow of the experiment and also

helped keep the participants engaged as they activated many of the events themselves.

In addition to the data described above, the game module also collected mouse tracking

data. This was not part of the original design of the experiment, but I added it because the

opportunity presented itself and it did not negatively impact any of the other functions I

had built, such as video acquisition. Analysis of the mouse tracking data will be part of

a later study.

Output of the game module.

• A .MAT file containing

� 20 roll die timestamps in epoch time

� 20 values for the dice rolled (1–6)

� 20 values reported by participant (1–6)

� 20 timestamps for when the participant made their report, in epoch time

� 20 timestamps marking the ends of the 20 videos, in epoch time

• A text file (.txt) containing the x- and y-coordinates of the mouse positions along

with their timestamps in epoch time.

Die videos. Although it might not be important to the decision making process of the

participant, effort was made to make the die rolling seem as realistic as possible to keep

the participant engaged. This was done in the hope it might dampen their awareness of

their being surveyed, which otherwise might discourage deceptive behaviour. Therefore,

I recorded 120 separate videos of an actual die being rolled into a black box, so no video

needed to be shown twice to a participant. Also, the participants activated the events
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themselves to keep them engaged and paying attention, for instance, they had to press

the ‘roll die’ button to get the die to roll.

5.3.5 Questionnaires

After the dice rolling part of the experiment, the participants completed a questionnaire,

which, for practical reasons, was printed on paper. It consisted of the cognitive reflection

test (CRT), a modified self-assessment manikin SAM, the MACH-IV test of Machiavel-

lianism, and demographic questions. The CRT (Frederick, 2005) tests how well the

participant overrides the urge to answer intuitively in order to correctly analyse a prob-

lem. SAM asks a person to rate their emotional state using graphical representations of

the three fundamental emotional dimensions, pleasure, arousal and dominance (Bradley

and Lang, 1994). As we were especially interested in discovering how stressed the par-

ticipant felt, I invented a fourth manikin to represent stress, shown in Figure 5.5, and

added it to the three standard SAM manikins. Of note, the SAM test was only added to

the questionnaire half way through the experiment, so not every participant filled it out.

TheMACH-IV (Exline et al., 1970) tests to see to what extent the participant agrees with

the ideas stated by Machiavelli, namely that one should focus on achieving one’s ends

without heed to morality or empathy for others. The final part of the questionnaire con-

sisted of demographic questions. For the complete modified SAM and the demographic

questions, see Appendix B.3.

Figure 5.5: The fourth manikin for self-reporting stress. Numerical values associ-
ated with the conditions are located above.

5.3.6 Experimental protocol

An extended version with a detailed step-by-step description of procedures can be found

in Appendix B.1.
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Arrival

Upon arrival, participants waited outside the Cribs lab in the waiting area. There were

two experimenters and at the designated time, Experimenter 1 opened the door, greeted

them and checked their names and IDs against the list of participants enrolled for this

session. Experimenter 1 let the participants into the anteroom, see Figure 5.2, where they

were greeted by Experimenter 2, who was waiting at the door of the lab. Experimenter

2 asked them to draw a card from a cotton bag to ensure random seat assignment. The

participants were then told to go to the cubicle, see Figure 5.1, left, with their number

on it where they could read the consent form and the instructions, see Appendix B.4.

The participant’s cubicle contained a table with a PC, a keyboard and a webcam. There

were also a pen and an A4 envelope containing the questionnaire.

Induction

When everyone had arrived, Experimenter 1 explained to the participants that they were

there on a voluntary basis, that they would be recorded by the webcams mounted on

their computers and that images produced were for research purposes only; however, if

they were uncomfortable with this or anything else, they could leave at any time. The

webcams were clearly visible on the tops of their monitors, and their lights indicated

they were turned on, however, they were not yet recording at this time. Participants were

then given a few minutes to read and sign the consent forms.

Water treatment

After everyone had signed their consent form, they were told by the experimenter to

come to the front of the room and sit in the chair labelled with the same number as

their PC. The chairs formed a U shape, so the participants could all see each other, see

Figure 5.2. They were told they would need to submerge their hand, including their

wrist, in the bucket in the 1–3◦ C cold (stress) or the 37–39◦ C warm (control) water for

three minutes. Subsequently, after drying their hands, they were told to return to their

cubicles. They were told by the experimenter to now follow the instructions on their

computer screen and that if they needed any help, they should raise their hands. From

then on, the experimenter remained at the door of the room looking in in case anyone
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5.4. Outcome of the experiment

raised their hand with a question.

Die rolling

When the participants returned to their cubicles, the die game program had been maxi-

mized. The participants now interacted only with the computer. The computer program

asked the participants to confirm they had signed the consent form and were ready to

begin by clicking the ‘start’ button, which also started the video recording and mouse

tracking. The experiment consisted of rolling a die by pressing a ‘roll die’ button fol-

lowed by reporting what had been rolled. On the instruction sheet, see Appendix B.4,

the participants had been told there was a reward associated with each number of dots

and this was also shown on the computer interface. This was repeated 20 times in order

to be able to consider the rolls as independent while increasing the amount of data and

video we could collect. The die rolling part of the experiment usually took just over three

minutes. Details of the computer interface are given in Appendix B.2.

Questionnaires and payment

At the end of the die rolling experiment, the screen prompted the participant to fill out

the questionnaire on their table. When the questionnaires were filled out, Experimenter 1

called them one-by-one to get their payment (£3.50 participation fee + reward) in the an-

teroom. Experimenter 2 handed over payments in a sealed envelope. After a participant

received their payment and left, the next participant was called.

5.4 Outcome of the experiment

The experiment took place in 41 sessions spanning the time period of September 2018

to July 2019. I organized and carried out each session and was either Experimenter 1 or

Experimenter 2. Altogether there were 384 participants of which 11 did not complete

the experiments for various reasons and were therefore removed from the study. This

leaves 373 participants who completed this study. A video was made for each of these

as they carried out the dice rolling part of the experiment. Frames from three randomly

chosen videos are shown in Figure 5.6.
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5.4. Outcome of the experiment

Figure 5.6: Images from videos of three di�erent participants. The participants'
faces have been blurred and their eyes covered to conceal their identities.

A total of 16 hours of videos were made at 30 fps. Collectively, these videos consist of

1,716,711 timestamped frames at a resolution of 640 × 480. In addition to each video,

there are timestamps for when each participant rolled the die and reported what they

rolled. Furthermore, the mouse movements were recorded and timestamped over exactly

the same amount of time.

Figure 5.7: Distribution of rolls (left) versus reports (right).

In their study, Fischbacher and Föllmi-Heusi could only infer by means of analysing the

distribution of reports that both honest and dishonest behaviours had occurred. Here, in

contrast, the ground truth is available. In this experiment, 7460 rolls were recorded. In

Figure 5.7, left, one sees that there was a uniform distribution across all die faces, as

one would expect from a fair die. However, the distribution of reports is different, see

Figure 5.7, right. Altogether there were 1,016 misreports (13.6%) whereby the highest

paying face (five) is strongly over represented while the lowest paying (one and six) are

under represented.
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I next looked into the truthfulness of the 373 participants. The clear majority (249) was

entirely truthful, however, a sizeable minority (124) made at least one misreport, see

Figure 5.8, left. I also examined the number of misreports that the 124 misreporters

made. The most frequent value was one misreport (23 participants), see Figure 5.8,

right. This leaves 101 participants (27%) who repeatedly misreported. Among these,

there were 19 participants, which is only 5% of all, who exclusively reported the pay-

off-maximizing five. For detailed visual presentation of rolling and reporting data see

Appendix C.2.

Figure 5.8: Proportion of misreporters (left) and frequencies of the number of their
misreports (right).

5.4.1 The e�ects of the stress treatment on deception

Next, I looked at the effects of the stress treatment. Overall, 99 (32%) of the 308 par-

ticipants who received either the cold water treatment (stress) or warm water treatment

(control) entered at least one misreport, Figure 5.9, left. Only 308 participants received

a water treatment due to a change in experimental procedure which will be explained

later. Among the 151-strong control group, this was seen for 58 (38%) participants.

Remarkably, the proportion of misreporters dropped to 41 (26%) in the similarly sized

experimental group that had received the cold water stress treatment, see Figure 5.9,

middle and right. For completion, I note that there were an additional 65 participants

without water treatment, which had a very similar proportion of misreporters (38%)

compared to the control group. However, since the conditions were so different between
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the water-treated and untreated cohorts I do not include the latter in this comparison of

treatments. I examined if the observed treatment-associated reduction in misreporters

was statistically significant. To do this, I did a two sample t-test at a significance level

of 5% comparing warm and cold treatments. I only took into account whether a partici-

pant was a misreporter or not, that is, the test did not distinguish between a misreporter

who misreported only once and a misreporter who misreported a number of times. The

difference between the treatments was statistically significant. In the APA style, the

relationship between cold and warm water reporters is given by t(306)=-2.32, p=0.02,

Cohens d=-0.26.

Figure 5.9: Pie charts of misreporters showing cold water (middle) and warm water
treatment (right) and combined (left). Red sections represent the proportion of
people who misreported once or more. Blue sections represent the proportion of
honest people. Numbers in the pie are participant numbers. The green double
arrow indicates that the di�erence in proportions of misreporters and truth-tellers
was signi�cant for the two sample t-test with a signi�cance level of 5%.

In addition, I did a similar analysis to assess how the stress treatment affected the amount

of misreporting each participant did as opposed to just whether or not they had misre-

ported. Overall, 821 (13%) of the 6,160 reports in the combined treated and control

(warm water) groups were misreports, Figure 5.10, left. In terms of the impact of stress,

the same pattern emerged as above. Of the 3020 reports in the control group, 533 (18%)

constituted misreports, whereas in the stressed group with 3140 reports this was halved

to 288 (9%), see Figure 5.10, middle and right. Thus, not only were there fewer lies

in the stress group, but there were also fewer misreports per misreporter. In this case,

I also did a two sample t-test at a significance level of 5% as above, however, this time

I took into account how much a misreporter misreported, that is, each participant was

now represented by a number 0–20 according to the number of times they lied. Once

again, the difference between the treatments was significant. In the APA style, the rela-

tionship between cold and warm water lies told by misreporters is given by t(306)=-2.89,

p=0.004, Cohens d=-0.33.
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Figure 5.10: Pie charts of misreports according to treatment as in Figure 5.9.
Green sections represent the proportion of misreports. Gray sections represent the
proportion of truthful reports. Numbers in the pie give the exact number of mis-
reports and honest reports. The green double arrow indicates that the di�erence
in proportions of misreports and truthful reports per reporter was signi�cant for
the two sample t-test with a signi�cance level of 5%.

5.4.2 E�ects of gender on deception

I then differentiated reporting according to gender, as this has previously been found to

play a role in decision making and deception (Croson and Gneezy, 2009). As shown

in Figure 5.11, bottom left, 73 (42%) of the 173 male participants were misreporters,

whereas among the 200 females only 49 (25%) misreporters were found, top left, which

is significantly lower according to the two sample t-test with significance at 5%. For

this comparison, I included all 373 participants regardless of treatment as I was not in-

terested in treatment effects but gender effects. However, I did compare the effects of

gender within the different treatments. I found that, restricted to the cold water treat-

ment, the effects of gender were statistically significant, Figure 5.11, centre left, as they

were when restricted to the warm water treatment, Figure 5.11, centre right. Only the

‘no water’ treatment group showed no difference between males and females, Figure

5.11, right. Importantly, however, restricting the analysis to females only, the reduction

in misreporting between the cold (stress) and warm water treatments was not significant,

see Figure 5.11, top centre. The same observation was made for the male participants,

see Figure 5.11, bottom centre. This is not in line with results in the previous section,

where I found that cold water stress increased truthfulness. This discrepancy could be

explained by the lower participant numbers and/or an increased representation of females

in the cold water treatment. I therefore listed the distribution of males and females across

treatments and indeed found an over-representation of females especially in the cold wa-

ter treatment, see Table 5.2. This raised the possibility that the gender effect supersedes
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the stress effect. However, this was ruled out by an ordinary linear regression analy-

sis, performed by Professor Hernán-González, which confirmed that there was indeed a

gender effect, with females lying significantly less than males, but that even taking into

account the gender effect, the treatment effect remains strong with a p-value less than 5%

(results not shown). The analysis is similar to that done in Corgnet and Hernán-González

(2019).

I then did the same analysis taking into account how much people misreported, that is

I took into account the number of times a person misreported, not just whether they

did or didn’t ever misreport. The outcome was essentially identical to the above, with

males entering twice the number of misreports (18%) that females did (9%), see Figure

5.12, left. One notable difference to the comparison of misreporters is that now, when

restricted to the males alone, cold water treatment significantly reduced the number of

misreports compared to the control group, see Figure 5.12, centre bottom.

Gender Cold Warm No Water Total

Female 96 (61%) 80 (53%) 24 (37%) 200 (54%)
Male 61 (39%) 71 (47%) 41 (63%) 171 (46%)
All 157 151 65 373

Table 5.2: Percentages of males and females across the treatments.

5.4.3 E�ectiveness of the cold water treatment to induce

stress

To assess how effectively the cold water treatment induced stress in the participants, I

used the results of the manikin self-assessment questionnaire, which is used to rate a

person’s fundamental emotional state on a scale from 9–1. This was added to the in-

vestigation late and was thus only filled out by 170 people. The average values reported

by treatment for each of the four manikins are shown in Table 5.3. A two sample t-test

with a significance level of 5% showed that on the Happy—Unhappy and In control—

Controlled dimensions, participants reported no significant differences between treat-

ments. On the Relaxed—Stressed dimension I observed a shift towards ‘Stressed’ in the

cold water-treated cohort to 6.2 versus 6.6 in the control group, however this was not
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Figure 5.11: Proportions of female and male misreporters by treatment. Red
sections represent misreporters, blue sections truthful reporters. Double pointed
arrows indicate a t-test was performed, green signi�es signi�cance, red no signi�-
cance.

Figure 5.12: Comparison of gender e�ects on misreporting by treatment. Top,
misreports by females; bottom, misreports by males. Green sections represent
misreports, gray truthful reports. Double pointed arrows indicate a t-test was
performed, green signi�es signi�cance, red no signi�cance.

significant. On the Calm—Excited dimension, in contrast, the cold water-treated partic-

ipants self-assessed significantly more towards the ‘Excited’ pole (4.6) compared to the

control group (3.7). As the Calm—Excited dimension showed statistical significance

between the cold water treatment and the control group, I give the more detailed APA
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style t-test statistic as t(172)=-2.77, p=0.006, Cohens d=-0.42. I thus conclude that the

cold water treatment indeed resulted in the desired stress inducement, albeit weakly.

Happy Excited In control Relaxed

Control 5.9 ±1.8 3.7 ±2.2 5.4 ±2.3 6.6 ±2.0
Cold water 6.0 ±1.7 4.6 ±2.1 5.6 ±2.1 6.2 ±1.9

Table 5.3: Average values (± standard deviation) for each of the self-report
manikins for both the warm (control) and cold water treatments. Green high-
lighting indicates a statistically signi�cant di�erence.

5.4.4 Validity of the ground truth assumption

For all participants, what they rolled as well as what they claimed to have rolled are

known, as this was recorded by the computer program they interacted with. The assump-

tion being made in this experiment is that misreports, which can be easily verified, are

intentional lies. One can question whether this assumption is valid. Participants might

have misreported by accidentally mistyping or by misunderstanding the experiment. In

this case one would expect misreports to happen randomly, that is, without a preference

for profit or loss. To get an impression of the prevalence of intentional misreporting, aka

lying, I analysed the relationship between misreporting and profitability. The results are

summarized in Table 5.4.

Misreports Cold Control No water All sessions

All 288 533 195 1,016
Pro�table 283 (98.26%) 530 (99.44%) 193 (98.97%) 1,006 (99.02%)
Unpro�table 5 (1.74%) 3 (0.56%) 2 (1.03%) 10 (0.98%)

Misreporters

All 41 58 25 124
Accidental 1 (2.44%) 2 (3.45%) 0 3 (2.42%)

Table 5.4: Proportions of misreports and misreporters. Accidental misreporters
are participants who made one false report that led to a loss.
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Among a total of 7,460 reports across all treatments, I recorded 1,016 misreports. Only

ten of these (0.98%) were loss-making misreports, while 1,006 (99.01%) were prof-

itable misreports, whereby this figure did not significantly differ between the cold water,

control, and ‘no water’ treatments. If one assumes that non-profitable misreports were

accidental, then one could also estimate there were just as many profitable but accidental

misreports. This would then make under 2% of all misreports accidental. I thus con-

clude that at least 98% of all misreports were intentional and hence constitute incidences

of deceptive behaviour.

Table 5.4, bottom, lists the relationship between all misreporters, namely people who

misreported at least once, and accidental misreporters, which are people who made just

one misreport that did not lead to a profit. There were 124 misreporters among the 373

participants across all treatments. Of these, three are accidental (2.42%), whereby once

again this figure did not differ significantly across treatments. Thus, assuming the same

number of accidental misreporters who made profits, this would mean that at most 6

participants (5%) who misreported did not actually mean to.

Therefore, it is safe to say that the vast majority of misreports were intended to deceive

and the majority of misreporters were intending to be deceptive. I therefore think the

experiment successfully elicited real lying behaviour and it is reasonable to say with

high probability, that that which is recorded as a misreport is really a lie.

5.4.5 Mouse positions

Although it was not part of the original conception of the experiment, I built the die ex-

periment software to also record the mouse positions of the participants along with their

timestamps. Recording of mouse positions began when the start button was pushed and

ended when the final reward was displayed after the completion of the 20th round. As

this additional feature did not interfere with the other data collection, I incorporated it

into the final software design so that it could be used for future studies beyond analysis of

facial cues. The rationale for this is as follows: there has been considerable research into

the connection between cognitive states and movement trajectories such as mouse move-

ments. It has been shown, for instance, that a higher cognitive load influences mouse tra-

jectories when a study subject makes decisions that involve navigating with their mouse

to click buttons to log these decisions. Dale and Duran showed that mouse trajectories
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reveal cognitive stress in evaluating negative sentences (Dale and Duran, 2011); Free-

man and colleagues showed that mouse trajectories reveal a heavier cognitive load for

a study subject distinguishing the race of mixed race individuals if the subject had less

interaction with mixed races (Freeman et al., 2016); in a deception study, Monaro and

colleagues showed that mouse trajectories could be used to distinguish people who were

lying about their identities from those who were being truthful (Monaro et al., 2017).

These and similar studies have taken the view that “the dynamics of action have become

a valuable signature of ongoing cognitive activity, revealing finer-grained characteris-

tics of these processes”, (Dale and Duran, 2011). In analysing mouse trajectories, these

studies use such characteristics as curvature, speed, acceleration, distance from the short-

est path, x-flips and y-flips (changes in direction along the x- and y-axes respectively),

length of trajectory and reaction time, information that is contained in my database. Al-

ready a preliminary analysis of mouse trajectories shows distinctive patterns appearing

to emerge for honest participants, homo economicus, disguised and accidental liars, see

Figure 5.13. While this constitutes only an initial snapshot of research that is outside

the scope of the current thesis, this phenomenon nonetheless warrants further in-depth

research using the wealth of data that has been gathered in this study.

5.5 Concluding remarks

This experiment was successful at collecting a large amount of high quality data from 373

participants in the form of more than 1.7 million timestamped video frames (cumulative

duration of just under 16 hrs) and annotated button clicks, plus additional timestamped

mouse tracking data collected in parallel. The experiment also provided a thorough and

complete ground truth. About the video data, more will be said in the next chapter.

The experiment was also a successful investigation of human deception with several

interesting results. First, two-thirds of participants were totally honest (67%), see Table

5.5. The remaining third were liars (33%), the vast majority of which were partial liars

with just one misreport being the most frequent number of misreports for this group, see

Table 5.8. The abundance of maximal liars, in contrast, was very limited (5%). Homo

economicus, thus appears to be more an exception than the rule. Notably, this research

confirms the patterns of lying that Fischbacher and Föllmi-Heusi first observed in their

paradigmatic 2013 study. The same three patterns are present here too – maximal liars,
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Figure 5.13: Example mouse positions for four di�erent participants over the entire
course of their die rolling experiment. A red line indicates a path from the click
of the `roll die' button to the click of a report button that was a false report. All
other lines are blue. There are four potential `types' displayed here, 1) honest 2)
homo economicus 3) disguised liar and 4) accidental liar.
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partial liars and totally honest participants. The numbers and percentages with which

they occur in this experiment are given in Table 5.5. This was despite the fact that here

the interaction was mediated by a computer and despite the fact that the participants

knew they were being recorded.

Control Stress No water All

Honest 93 (62%) 116 (74%) 40 (62%) 249 (67%)
Maximal 10 (7%) 6 (4%) 3 (5%) 19 (5%)
Partial 48 (32%) 35 (22%) 22 (34%) 105 (28%)

Total 151 157 65 373

Table 5.5: Table classifying study participants as honest, maximal, and partial
liars according to Fischbacher and Föllmi-Heusi across treatments. See Appendix
C.2 for complete rolling data.

Studying the consequences of stress on deceptive behaviour is a major tenet of this study.

In fact, the study provided evidence that the cold water treatment successfully induced

stress in the participants. This study further indicates that the three types of lying be-

haviours are robust traits that are found irrespective of stress and the different treatments

used. Strikingly, it was shown that the cold water stress reduced the amount of lying.

Moreover, there was a clear gender effect, with there being significantly fewer female

misreporters than male, and the amount of lies per dishonest participant was lower for

females. Finally, the known ground truth of this experiment makes it conceivable to dis-

tinguish more types of lying, for instance, splitting the groups of partial liars into those

who disguise their lies and those who do not want to appear greedy. The concurrently

collected information onmousemovements might prove useful to refine such distinctions

in future research.
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Chapter 6

Results - Computer Vision Analysis

of the Dice Rolling Experiment

Links Head Pose to Deception

6.1 Investigating facial expressions in the dice rolling

experiment

The die experiment produced just over 1.7 million frames of video covering the experi-

ments of 373 different participants. The first thing I did was to run action unit software on

these videos for the 12 AUs for CNN-BLSTM andOpenFace. It took around twominutes

for OpenFace to process each of the 373 videos and around one hour for CNN-BLSTM

to achieve the same. As was observed before for the poker database, CNN-BLSTM is

also more difficult to run and requires frequent restarts, which added to the time required

to collecting the AU data over all videos.

The dice rolling experiment, unlike the poker study, does not mainly involve human-

human interaction. Instead, the participants only interact with the computer during the

experiment and so one might expect that this affected the types and intensities of emo-

tions displayed. After having watched several of the videos, I got the impression that

the level of facial expression was indeed generally lower than with the poker data set.

Several of the participants seemed to have very little expression, nonetheless, there were
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facial expressions occurring. It is hard to judge just by watching, as the poker dataset

also contains participants with low levels of expression. To get a more objective idea of

expressiveness in the dice rolling experiment, I computed the means and standard devi-

ations for the 12 AUs as detected by both CNN-BLSTM and OpenFace. I interpret the

mean as the strength of an AU and the standard deviation as the amount that AU changes

while producing different facial expressions. Table 6.1 shows the comparison between

the dice rolling experiment and poker for the CNN-BLSTM detectors. In line with visual

inspection, all of the values, except those of AU9 (nose wrinkler) and AU45 (blink), are

either lower for the dice rolling experiment or very close to equal. That AU9 and AU45

appear to be markedly higher for the dice rolling experiment was unexpected, given their

inconspicuous role in the poker data set. On the other hand, AU12 and AU5 that domi-

nate the detection of facial expressions in the poker experiment, were represented only

weakly in the dice rolling data set. This does, however, reflect the videos upon inspec-

tion, as it is obvious that there is much less smiling taking place than in the poker dataset.

The respective outcomes for the Openface detectors are shown in Table 6.2. As with

the poker data, the values are very low across all AUs, whereby no particular AUs were

detected particularly well. Although some of OpenFace’s AUs were marginally higher

for the dice rolling experiments compared to the poker data, including AU9 and AU45,

I do not consider these differences as meaningful detections of actual facial expressions.

Mean S.D.
Dice rolling Poker Dice rolling Poker

AU1 0.1702 0.2363 0.1855 0.2216
AU2 0.1748 0.1967 0.2094 0.2124
AU4 0.1047 0.2616 0.2281 0.3151
AU5 0.0957 0.1145 0.1160 0.1350
AU6 0.0498 0.1067 0.1068 0.1574
AU9 0.1413 0.1139 0.2253 0.1921
AU12 0.0573 0.1146 0.1213 0.1805
AU15 0.0671 0.1209 0.0632 0.1109
AU20 0.0729 0.0714 0.0588 0.0692
AU25 0.1551 0.1754 0.1644 0.1801
AU26 0.0737 0.0923 0.1189 0.1171
AU45 0.1489 0.0994 0.2124 0.1647

Table 6.1: CNN-BLSTM detectors: Comparing mean and standard deviation
(S.D.) of AU values for dice rolling and poker experiments.

Nonetheless, it was surprising that AU9 (nose wrinkle) and AU45 (blink) went up by

24% and 52% respectively for CNN-BLSTM, as these had not previously stood out in
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Mean S.D.
Dice rolling Poker Dice rolling Poker

AU1 0.0384 0.0386 0.0832 0.0847
AU2 0.0207 0.0167 0.0640 0.0486
AU4 0.0843 0.0817 0.1216 0.1226
AU5 0.0112 0.0090 0.0360 0.0247
AU6 0.0185 0.0588 0.0528 0.1074
AU9 0.0163 0.0141 0.0514 0.0378
AU12 0.0352 0.0575 0.0728 0.1079
AU15 0.0295 0.0456 0.0637 0.0811
AU20 0.0703 0.0881 0.1012 0.1250
AU25 0.0716 0.0872 0.1035 0.1089
AU26 0.0384 0.0242 0.0800 0.0506
AU45 0.1489 0.0994 0.2124 0.1647

Table 6.2: OpenFace: Comparing mean and standard deviation (S.D.) of AU
values for dice rolling and poker experiments.

the poker dataset. Therefore, I decided to manually check the dice rolling videos to see

if there might be an explanation for this. For each of AUs 9 and 45, I inspected the ten

videos of those participants who had the highest means for these values and made the

following observations. For AU9 (nose wrinkler), I did not note appreciable nose wrin-

kling. However, all ten participants were wearing large, dark rimmed glasses. Because

of this striking commonality I conclude that the high values for AU9 are false positive

signals and do not result from genuine nosewrinkling activity. Similar observations were

made concerning AU45 (blink). Here, the ten participants with the highest averages fell

into two categories; six did not display noticable blinking but had major occlusions (five

dark rimmed glasses and one baseball cap), while the other four were clearly blinking

and had their faces very close to the camera. Therefore, it is likely that for people sitting

at a normal distance to the camera, the detectors cannot detect blinks well but are prone

to reporting artefacts (glasses, hat), as, for instance people were in general sitting farther

away in the poker dataset and not necessarily blinking less. There were similar problems

with OpenFace regarding glasses, hands on the face, and hats causing occlusion, head

motion affecting the detection of action units involving eyes and eyebrows and higher

AU45 values for people with their faces closer to the webcam. Examples of participants

are not shown for the dice rolling experiment due to data protection requirements. In

order to better understand the difference between occlusions in the poker study and the

dice rolling study, I viewed all of the videos and counted the number of participants with

glasses and the number of participants who kept their hands on their face for at least 10%
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of the video. The results are shown in Table 6.3.

Glasses Hand on face

Dice rolling (373 participants) 169 (42%) 141 (38%)
Poker (64 participants) 14 (22%) 12 (19 %)

Table 6.3: The number of occlusions caused by glasses and hands on face in the
dice rolling and poker databases.

Here one can see that nearly double the percentage of participants of the dice rolling

game are wearing glasses. At 42%, this is approaching half of the participants, so there

will be considerable occlusion and interference particularly with AUs involving eyes and

brows (AU1, AU2, AU4, AU5, AU45) and also AU9 (nose wrinkler), where I have shown

that glasses can cause false positives. Additionally, the percentage of participants in the

dice rolling experiment who have their hands on the face for a longer period of time is

twice as high than for the poker data set. It is interesting to note that touching the face has

also been investigated as a possible sign of deceitfulness (DePaulo et al., 2003). As the

expressive levels detected by the AU detectors, both CNN-BLSTM and OpenFace, are

much lower for dice rolling than for poker, and as the occlusions are much higher for dice

rolling, I did not think that investigating this dataset with the 12 AU detectors used so

far was a very promising way forward. Yet, the dice rolling videos are notably different

from the poker videos in another regard. While there is less facial expressiveness, the

manual analysis suggested that some participants seem to display more head motions,

which is a property detected by OpenFace. I therefore decided to rather assess this aspect

of emotion detection.

6.2 Investigating head pose in the dice rolling ex-

periment

As part of its detection of facial action units, OpenFace 2.0 (Baltrušaitis et al., 2018)

computes head pose in terms of x-, y- and z-rotations (pitch, yaw and roll), as shown in

Chapter 3, Figure 3.4. In OpenFace, head pose is computed directly from the 68 facial

points that form the basis of the toolkit’s AU detection system (Zadeh et al., 2017). While

head pose has so far not been the primary focus of automatic emotion recognition (Gunes

and Pantic, 2010b; Ramirez et al., 2011) it has been recognized as a valuable source of
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information about a person’s emotions (Adams et al., 2015; Gunes et al., 2015; Tracy

and Matsumoto, 2008). To gain an understanding of whether head pose might reveal

behavioural differences in the dice rolling study, one might split the data of each partic-

ipant’s reports into two groups, lies and honest reports. I decided against this approach

because it may fail to reveal global behavioural differences between the different types of

reporters. Therefore, I decided to focus on an alternative approach, namely the idea that

truthful and dishonest reporters can be distinguished, and have assumed that even a dis-

honest participant’s truthful reports are part of their overall deceptive behaviour. To test

this possibility, I sorted participants into two groups according to their lying behaviour,

entirely honest and dishonest.

6.2.1 Preparing the data

In the poker study, I focused on FCR-events. Here, in the dice rolling experiment, I

similarly focused on the moments when the participant decides to tell the truth or lie, that

is when they report the face of the die. I extracted data from the time each participant

pressed the ‘roll die’ button to the time they pressed the button to log the number they

had rolled. For each participant there were 20 such segments. To characterize head pose

for each segment, I determined the x, y and z angles their head pose passed through

during each of their decisions. These values were computed as follows. For each of the

participant’s ith round, i = {1 . . . 20}, let fi,j represent the jth frame in the sequence

of frames j = {1 . . . n} recorded from the time they clicked the roll die button to the

time they click their corresponding report. For each image, OpenFace computes head

pose relative to the three axes x, y and z. Let x(fi,j) be the angle of the head around the

x-axis as computed by OpenFace. Then the maximum head angle for a round was taken

to be the absolute value of the difference between the maximum and minimum values

occurring in this range, or

max rotation around x-axis =| max
j

(x(fi,j))−min
j

(x(fi,j)) | , for j = {1, . . . , n}.

The values representing the angular rotation around the y- and z-axes were defined anal-

ogously. Additionally, I also defined general face motion to characterize head movement

by choosing a facial point, represented by (x, y) pixel coordinates, and computing the

length of the two-dimensional path it followed by using facial points detected by Open-
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Face. This is closely related to angle displacement, but captures the amount of movement

better as moving back and forth more might not increase the maximum angle, but will

increase the total length of the path the points traverse. To compute this, of the 68 facial

points computed by OpenFace, I selected a single one on the upper right hand cheek,

see Figure 6.1. I chose this point, facial point 3, because it was rarely occluded or off

screen. I used a straightforward definition of path length P of this point

length of path that P follows =
n−1∑
j=1

‖Pj − Pj+1‖2 .

So for each participant, four values were calculated for each of their twenty decisions: the

three angles their head poses spanned around the x-, y- and z-axes, plus the path length

that facial point 3 followed during their decision. Of these twenty sets of four values,

I tested the mean and maximum to look for significant differences between honest and

dishonest participants.

Figure 6.1: The 68 facial points computed by OpenFace. The green arrow points
to the third facial point, which is used for calculating the length of path that the
head traverses.

6.2.2 Basic statistics

Averaged participant features

To probe if there were significant differences between the average head motions of hon-

est participants and those of dishonest for the control and stress treatments, I looked at

three groups of dishonest participants: all dishonest participants, homo economicus and

partial liars and compared each of these groups to the truthful reporters. I also did sta-
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tistical tests on all but homo economicus to check if these differences were significant.

Homo economicus, although an interesting group, was left out of the statistical analysis

because of its small size (10 in the warm water treatment and 6 in the cold water treat-

ment). See Table 6.4 for the comparison of averages for the warm water controls and

Table 6.5 for comparison of averages for the stress (cold water) group.

Warm water pitch (x-axis) yaw (y-axis) roll (z-axis) path length

All (151) 7.6◦ ± 5.1◦ 7.3◦ ± 4.1◦ 5.8◦ ± 3.8◦ 71.9± 47.1
Honest (93) 7.2◦ ± 4.8◦ 7.7◦ ± 4.1◦ 5.6◦ ± 3.4◦ 69.8± 44.9
Liars (58) •8.1◦ ± 5.5◦ •7.3◦ ± 4.1◦ •6.2◦ ± 4.5◦ •75.3± 50.6
H. e. (10) 7.5◦ ± 6.6◦ 5.2◦ ± 3.3◦ 4.8◦ ± 3.1◦ 65.0± 27.3
Partial l. (48) •8.2◦ ± 5.4◦ •7.7◦ ± 4.1◦ •6.5◦ ± 4.7◦ •77.5± 54.2

Table 6.4: Warm water treatment. Average values for the four features pitch,
yaw, roll and path length. An unpaired t-test was performed for each of the four
variables, once comparing `honest' to `liars' and once comparing `honest' to `partial
liars' (partial l.). If the test was signi�cant, a dagger was placed in the cell for
`liars', or respectively, `partial liars'. If the test was not signi�cant, a bullet was
placed in the cell. The lowest value in each column is highlighted blue, the highest
red. H. e., homo economicus.

Cold water pitch (x-axis) yaw (y-axis) roll (z-axis) path length

All (157) 7.8◦ ± 7.2◦ 8.4◦ ± 5.4◦ 5.9◦ ± 5.0◦ 76.1± 54.0
Honest (116) 6.6◦ ± 4.5◦ 8.1◦ ± 5.2◦ 5.2◦ ± 3.3◦ 67.8± 34.6
Liars (41) †11.0◦ ± 11.5◦ •9.2◦ ± 6.1◦ †7.8◦ ± 7.8◦ †99.5± 84.8
H. e. (6) 10.8◦ ± 7.4◦ 8.0◦ ± 5.9◦ 7.9◦ ± 7.4◦ 69.3± 51.8
Partial l. (35) †11.0◦ ± 12.1◦ •9.4◦ ± 6.2◦ •7.8◦ ± 8.0◦ †104.6± 88.8

Table 6.5: Cold water treatment. Average values for the four features pitch, yaw,
roll and path length. Legend as described in Table 6.4.

From the tables, one can see that for the warm water treatment there were no statistically

significant differences between the honest group and either of the tested dishonest groups,

although there is a tendency for honest participants to have smaller values, that is they

move their heads less than dishonest participants. After cold water treatment, however,

this tendency clearly solidifies, and the separation of honest and dishonest groupswidens,

with honest participants tending to move less now than under control conditions before.

With the dishonest participants the opposite occurs, as their head movements tend to

be larger after cold water stress in comparison to the control conditions. As a result,

there are now significant differences between the honest and dishonest groups for most

variables except for ‘yaw’ (both ‘liars’ and ‘partial liars’) and ‘roll’ (‘partial liars’), which
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did not reach significance at the 5% level.

Maximum participant features

For each participant, the averaged features above capture information from all 20 of that

participant’s rounds. I also assessed each player’s maximum value feature over all 20

rounds. Here, the maximum value is kept and information about their other rounds is

disregarded. I interpret the maximum value as meaning the event happened at least once.

As for averaged features, I also determined if the maximum features differed between

‘honest’ and the various dishonest groups. The results of the comparison for the warm

water treatment are shown in Table 6.6, and for the cold water treatment in Table 6.7.

Warm water pitch (x-axis) yaw (y-axis) roll (z-axis) path length

All (151) 40.5◦ ± 48.5◦ 30.3◦ ± 23.0◦ 33.2◦ ± 49.1◦ 357.9± 619.7
Honest (93) 36.0◦ ± 41.6◦ 27.2◦ ± 20.5◦ 29.4◦ ± 39.8◦ 346.7± 685.3
Liars (58) •47.6◦ ± 57.7◦ †35.2◦ ± 25.9◦ •39.4◦ ± 61.1◦ •375.8± 502.0
H. e. (10) 35.6◦ ± 32.2◦ 26.7◦ ± 14.6◦ 29.3◦ ± 18.7◦ 264.6± 154.9
Partial l.(48) •50.1◦ ± 61.6◦ †37.0◦ ± 27.5◦ •41.5◦ ± 66.5◦ •399.0± 545.8

Table 6.6: Warm water treatment. Maximum values for the four features pitch,
yaw, roll and path length. An unpaired t-test was performed for each of the
four variables, once comparing `honest' to `liars' and once comparing `honest' to
`partial liars'(partial l.). If the test was signi�cant, a dagger was placed in the cell
for `liars', or respectively, `partial liars'. If the test was not signi�cant, a bullet
was placed in the cell. The lowest value in each column is highlighted blue, the
highest red. H. e., homo economicus.

Cold water pitch (x-axis) yaw (y-axis) roll (z-axis) path length

All (157) 37.0◦ ± 45.1◦ 30.3◦ ± 24.0◦ 29.3◦ ± 38.5◦ 326.1± 436.7
Honest (116) 28.5◦ ± 25.5◦ 25.6◦ ± 17.3◦ 22.9◦ ± 23.4◦ 237.2± 162.7
Liars (41) †60.9◦ ± 72.6◦ †43.7◦ ± 33.8◦ †47.2◦ ± 61.3◦ †577.5± 761.5
H. e. (6) 34.6◦ ± 23.4◦ 31.3◦ ± 24.9◦ 28.4◦ ± 20.1◦ 223.3± 188.4
Partial l. (35) †65.4◦ ± 77.3◦ †45.8◦ ± 35.0◦ †50.4◦ ± 65.5◦ †638.2± 806.8

Table 6.7: Warm water treatment. Maximum values for the four features pitch,
yaw, roll and path length. Abbreviations as in Table 6.6.

For the control (warmwater) group, the differences between ‘honest’ reporters and ‘liars’

and ‘honest’ reporters and ‘partial liars’ wereminor and not significant with the exception

of yaw, as seen before for the averaged values. Reassuringly, the cold water treatment
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again brought about significant differences between honest and dishonest participants in

all assessed features of head movements. Thus, both the averaged and maximum head

movements of dishonest participants were larger than of their honest counterparts. This

difference, however, required cold water stress treatment to become apparent.

Since the cold water values for maximum pitch, yaw, roll and path length were statisti-

cally significant, I made a table of the full APA style t-test statistics of each of the four

attributes comparing all liars to the honest participants, see Table 6.8. Here, one can see

that the p-values are small and the effect sizes are medium to large, with the effect size

for maximum path length being largest.

degrees of freedom p-value t-stat Cohen's d

max pitch 155 0.000054 -4.153336 -0.754616
max yaw 155 0.000022 -4.372364 -0.794411
max roll 155 0.000411 -3.611194 -0.656115
max path length 155 0.000011 -4.551033 -0.826873

Table 6.8: APA style t-test statistics comparing honest to dishonest participants
in the stress treatment according to each of the four attributes maximum pitch,
maximum yaw, maximum roll and maximum path length.

6.2.3 Decision trees

To research if these differences could be translated into a classifer, I investigated the data

with decision trees. As in Section 4.6, I used a leave-one-out procedure. Instead of

single frames as input as I had done in poker, I used the computed average and max-

imum features for each participant as input. This data was easy to glean from the die

rolling data set for a number of reasons. The head pose detectors are more accurate than

the AU detectors, there is enough time between dice rolling and reporting and there is

also a much lower level of distraction and irrelevant interaction. This is also in keeping

with the view that, in this experiment, a person is either dishonest or honest throughout,

which also contrasts with poker where the same participant can either fold, call or raise

at each turn. The first decision trees were built over all eight features (four average values

and four maximum values). Removing some of the features increased the performance.

To get a better understanding of the data, I made a scatter plot of the control group and

one of the stress group to see if there were any obvious visually evident differences, see

Figure 6.2. I chose two variables: maximum pitch and maximum path length. Maxi-
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mum values were chosen over averages because they differentiated between honest and

dishonest reporters most in the statistical tests. Among these, path length was chosen,

because it encapsulates information about head movement most completely - all head

motion causes the path length to increase. Combining path length with pitch, yaw or roll

produced similar results (not shown). Therefore, it is enough to show the scatter plots

for pitch versus path length in Figure 6.2.

Figure 6.2: Control group scatter plot, left. Treatment group scatter plot, right.
For both scatter plots, the x-axis is participant's maximum pitch in degrees, the y-
axis is their maximum path length in pixels. Red points are dishonest participants,
blue points are honest participants. A rectangle, which was chosen by visual
inspection, was placed around a region which is meant to correspond roughly to
low head motion and outside it to high head motion. The legends in the upper
left corners give the ratio of honest participants outside the rectangle to all honest
participants in the plot and dishonest participants outside the rectangle to all
dishonest participants in the plot, respectively. In the control group, 89% of honest
participants are positioned within the rectangle and 11% outside while 84% of
dishonest participants are positioned within the rectangle and 14% outside. In
the stress group, 92% of honest participants are positioned within the rectangle
and 8% outside while 73% of the dishonest participants are positioned within the
rectangle and 27% are positioned outside.

A rectangle, which was chosen by eye, was placed in the same position in each of the

scatter plots to demarcate an area of low head motion from a region of high head motion.

From the scatter plots one can see that between the two treatments, the dishonest subjects

tend to fall more frequently outside the rectangle after exposure to cold water stress —

27% lie outside the rectangle in the stress treatment, while only 16% lie outside the

rectangle in the control group. In contrast, the location of the honest subjects does not

change much between the two treatments, with 8% lying outside the rectangle in the

stress group and 11% lying outside the rectangle in the control group. Therefore, the

treatment does seem to separate honest from dishonest subjects. It seems that within
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the area of the rectangle there is not much chance that the data can be better separated

based on these variables and that here the majority class should be chosen. Any further

separation would appear to just cause noise effects. Although this rectangle was chosen

by eye, it suggests that when building a decision tree, it might be best to restrict the tree

to only two or three cuts. Using this strategy, I obtained the following decision trees

shown in Table 6.3, once for the control treatment and once for the stress treatment.

Here, one can see that, in the control group, the decision tree was only able to separate

a small sliver with the second attribute x2 (path length) being between 5.27 and 7.93

pixels, to be classified as dishonest, indicating that the data is not separable. In contrast,

in the cold water treatment, the decision tree was able to section off a rectangle defined

by x1 > 15.70 and x2 > 377.97, to classify as dishonest and the rest as honest. So in

this case, the behaviour between the two treatments is different and also leads to different

classification behaviour, which is not surprising given the previous statistics of Tables

6.6 and 6.7 and also Figure 6.2 where the classes look harder to separate in the control

group than in the stress group. To compare the rectangular areas found by the decision

tree with the hand chosen rectangle in Figure 6.2, scatter plots have been made again in

Figure 6.4, this time using the attributes roll and path length instead of pitch and path

length, together with the decision boundaries found by the decision trees.

Figure 6.3: Decision trees built using two attributes, roll, x1, and path length, x2.
Left is the tree built over the warm water treated group. Right is the tree built
over the cold water (stress) treated group. Trees were only allowed to make two
cuts. Thresholds for splits at split nodes are given by θ.

Viewing the performance measures of the trees for the different treatments, see Table

6.9, one can see that the performance measures for the stressed group are better than for
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Figure 6.4: Scatter plots for control (left) and stress (right) using two attributes,
roll and path length together with the decision boundaries found by the decision
trees in Figure 6.3. Blue dots represent honest subjects and red dots represent
dishonest subjects. Red shading indicates areas classi�ed as dishonest by the
corresponding decision tree. White areas are classi�ed as honest. In the control
group, left, the honest and dishonest groups overlap and the decision tree can
only make one narrow cut. In the stressed group, right, the two groups can be
better separated with a large rectangular area in the upper right hand corner being
classed as dishonest.

Warm water Cold water

Honest/All (naive cl.) (91/151) 0.6159 (116/157)0.7389
Classi�cation rate 0.6225 0.7962
Precision 0.5555 0.6364
Recall 0.0862 0.5122
b_class rate 0.5216 0.7044

Table 6.9: Performance values for decision tree built over all treatments using
three features, maximum yaw, maximum roll and maximum path length. Here,
`naive cl.' is the naive classi�cation of assigning the majority class to all instances.

the control group. The classification rate of 0.7962 for the tree built on the cold water

participants is better than the naive classification rate of 0.7389 obtained by just choosing

the majority class. As in the poker data set, the classes are imbalanced, with nearly

three quarters correctly reporting and one quarter misreporting. Given this imbalanced

data, I also looked at the confusion matrix, as this shows all the information about the

classifier’s performance and has been suggested as useful for such cases (Pantic, 2009).

This is shown in Table 6.10, where the rows represent the true class and the columns

represent the class returned by the classifier.

From the perspective of lie detection, the confusion matrix reveals that, given that the
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Cl. misreporter Cl. honest

Misreporter 21 20
Truthful 12 104

Table 6.10: Confusion matrix for the classi�er built from the participants who
underwent the stress treatment. Values along the diagonal (yellow) are the number
of correctly classi�ed instances. Numbers in white cells give incorrectly classi�ed
instances. Cl., classi�ers.

participants underwent a stress treatment, the decision tree would detect a liar correctly

about half of the time. It would correctly detect an honest person as honest about 90%

of the time. About 10% of honest people would, however, be falsely classified as liars

and about 50% of liars would be falsely classified as honest.

6.3 Concluding remarks

In this chapter, the CNN-BLSTM and OpenFace AU detectors were run on the dice

rolling videos. It was seen that detection levels were very low for both and that there

were many false positives caused by facial occlusions. This precluded the meaningful

detection of facial expressions present in the dataset. On the other hand, head pose is

an additional feature relevant for emotions and deception that is readily available as part

of the OpenFace detectors. Using statistical tests, this modality revealed that there were

significant differences in the behaviour of honest and dishonest subjects, which, however,

only became apparent after participants were subjected to the stress treatment. Here, for

maximum values, all four attributes, pitch, yaw, roll and path length were statistically

significant with a moderate to large effect size, see Table 6.8, the most discriminative

attribute being path length with t(155)=-4.1533, p = 0.000011 and Cohen’s d = -0.8269.

It was found that under stress the dishonest reporters displayed significantly larger head

movements in comparison to the honest participants, a finding that was corroborated us-

ing decision trees. In the stressed group I was able to obtain a classifier with an accuracy

of 80%. Inspecting the confusion matrix shows that it classifies a misreporter as a misre-

porter with 50% accuracy and a truthful person as truthful with nearly 90% accuracy. Of

those classified as misreporters, 36% are actually honest, and of those classified as hon-

est, 16% are liars. This supports the idea that people do lie differently when subjected

to stress than without it.
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Chapter 7

Discussion

This thesis is an investigation into affective computing and decision making using auto-

matic action unit detectors together with detectors for other AU-related features such as

head pose. The main question is, "can action unit detectors together with head pose de-

tectors detect deception?" I examined two different deception scenarios, and the answer

I found is, "yes, better than randomly choosing, if one applies similar standards to those

used for polygraph deception detection". This is because, as for the polygraph, there is no

proof that the behaviours and physical traits detected unambiguously indicate deception

and not stress, which may accompany deception. The first scenario, poker, was based

on a poker study designed at the Institute of Creative Technologies at the University of

Southern California. The second scenario was a dice rolling experiment for studying the

effects of stress on deceit which was designed and carried out here at the University of

Nottingham as part of my PhD. In both scenarios, poker and the dice rolling experiment,

action unit detectors together with head pose detectors were able to pick up signs of de-

ceit. In both cases, I used CNN-BLSTM and OpenFace, as they were built differently

and might have performance differences and also to see to what extent they corroborate

each other, which they partially did. I discovered that the type of deceitful behaviour I

detected in the poker dataset, which is a dyadic human-human interaction with a strong

social component, was different from that which I detected in the dice rolling experiment,

which was a non-dyadic human-computer interaction. In the poker dataset, participants

were more likely to exhibit AU12, lip corner puller, just before they folded than when

they called or raised. In the dice rolling experiment, which is much less a social inter-

action, participants who were deceptive exhibited significantly more head motion than
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honest participants. In this scenario, AU12, which is associated with social interaction

and was prominent in the poker study, nearly disappeared. The dice rolling experiment I

presented in this thesis constitutes a unique behavioural economics experiment to study

deception under stress. It came to a successful conclusion and showed that stress does

modify deceptive behaviour — participants under stress lied less and, simultaneously,

their deceptive behaviour proved to be more easily detectable by automatic means. This

experiment produced a sizeable database of good quality videos, at the same resolution

as the poker dataset, of 373 different individuals. These videos are very descriptively

annotated to provide a rich source for further research into the effects of stress on decep-

tion.

The two deception scenarios that I have studied here both evoke spontaneous behaviour.

In the first, poker, deception is socially acceptable and indeed expected to be part of the

game. It was obvious, when watching the videos, that between some participants there

was a lot of interaction with a plethora of different facial expressions. This made it seem

that it would be difficult to disentangle signs of deception from other social signals. This

dataset is most similar to that created with the automatic dyadic data recorder (ADDR) in

Sen et al. (2018). In their study, however, no statistically significant differences between

deceitful and honest participants were found for the AU12, which was unexpected, as

AU12 is an important action unit in Duping Delight, which was a focus of their study

that used OpenFace (Ekman, 1985). This outcome is in contrast to the poker study car-

ried out here, in which significant differences were found in the amounts of AU12 and

AU5 detected by CNN-BLSTM between people when they folded and when they raised

and called. However, I also used OpenFace and similarly did not detect statistically sig-

nificant differences with these detectors. Although CNN-BLSTM and OpenFace did not

agree in this respect, correlation between the two indicated that they were both detecting

AU12 correctly to some extent. Sen and colleagues attribute this absence of significant

differences for AU12 to a possible failure to elicit the intendedDupingDelight in their ex-

periment. This absence might also have been due to their having used OpenFace, which

I found lacked sensitivity and for which I also detected no statistically significant differ-

ences. Another reason for the failure to find signs of Duping Delight could have been

their having used average AU values over longer periods of time causing them to lose im-

portant information in the process of their search. Bartlett and colleagues also collected

aggregates in the form of histograms over long periods of time and could successfully

distinguish between expressions of faked and real pain, but for their study participants
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were required to make faked pain expressions for one full minute, which is probably not

realistic and differs from a spontaneous scenario (Bartlett et al., 2014). I, however, opted

to keep the values intact as time frames were short and behaviour was spontaneous. I

then fused individual classification together into a single classification in a late fusion

approach as was done in Valstar et al. (2007). I note that I did try aggregate values over

longer periods of time (up to nine seconds), as well as decision trees built using means

over different time windows. This caused detection rates to drop and significance to be

lost (data not shown).

In contrast to the highly social human-human interaction in the poker dataset, the dice

rolling experiment was designed to cut down on social signalling in order to focus on the

effects of the stress treatment on a form of deception closer to the concept of mal-intent.

Here, the participant was given the opportunity to lie to a computer in order to maxi-

mize their reward. It was not known in the beginning if the participants would lie to a

computer controlling the dice. However, as this experimental software was being built,

another work was published that also used computer controlled videos of dice, but in the

setting of group decision making (Kocher et al., 2018). In their experiment, which did

not involve computer vision or webcams, participants reported the results of dice rolling

individually and then in groups. It was found that when they reported individually, they

misreported just over 30% of the time (in groups they misreported more often). Partici-

pants in the study presented in this thesis were similarly dishonest just over 30% of the

time. This seems to be less than reported for the control group in the Fischbacher and

Föllmi-Heusi experiment, which used real dice, although in that experiment the propor-

tion of dishonest reporters had to be inferred from the aggregate results as the ground

truth was not known (Fischbacher and Föllmi-Heusi, 2013). Given the reduced social

interaction in the die experiment presented here, it was also not known what kinds of

facial expressions participants would exhibit beforehand. The participants did show a

variety of potentially deceptive behaviours and facial expressions, including examples

of what looked to me like Duping Delight, negative expressions and head ducking, pos-

sibly associated with guilt or shame. However, the level of facial expressions was much

lower than in the poker dataset while the level of occlusions was much higher than in the

poker dataset and the facial AU detectors, both CNN-BLSTM and OpenFace, did not

detect anything meaningful. For this reason, I turned to head pose detection which is

computed by OpenFace. To date, head pose has not been as much a focus of automatic

human behaviour understanding as facial expressions. It has, however, been shown to be
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a relevant source of information about affective states and there have been studies in the

past using head together with hand motion for deception detection. Lu and colleagues

presented a feasibility study in distinguishing between deceptive and honest subjects by

automatically detecting head and hand motion (Lu et al., 2005). They focused on three

types of motion to distinguish deceptive from non-deceptive behaviour. Natural motion,

which is smooth and relaxed, was associated with honesty; agitated motion, which is

abrupt and jerky, was associated with deceit; and over-controlled motion, where the sub-

ject moved little in their attempt to suppress signs of agitation, was also associated with

deceit. Meservy and colleagues built a deception detector based on the work of Lu and

colleagues. This study was also a feasibility study based on a small set of videos of stu-

dents acting out theft (Meservy et al., 2005). These studies were done 15 years ago when

head tracking was more difficult and less reliable. The current head pose estimator in

OpenFace is more advanced and, in this thesis, a confirmation of the idea that dishonest

people move differently was presented based on head motion alone. I thus propose to

give this means of automatic detection more attention when studying deception.

This latter point is given additional weight because it is clear from this and other stud-

ies that action unit detectors focused on facial muscles alone, presently have limitations.

OpenFace was not sensitive enough for the poker dataset, and much less so for the dice

rolling data set. CNN-BLSTM was more sensitive, but when it was used on the dice

rolling database, which has facial expressions, albeit very subtle ones, its performance

was dominated by false positives caused by glasses, hands on face and head rotations.

This was noted as a problem in (Jaiswal, 2018). There have been other works that in-

vestigated issues like this. Commercial detectors of basic emotions were investigated

in Dupré et al. (2018) and Dupré et al. (2020). Although this approach is slightly dif-

ferent from AU detectors, many of the issues are the same. The authors note that the

detectors did not perform as well on spontaneous or naturalistic facial expressions as

they did on posed expressions. They noted that detection of some facial expressions was

better than others, that the detectors had problems overcoming idiosyncrasies in a per-

sons appearance and that there was a need for more databases containing spontaneous

and naturalistic behaviour for expression-detection algorithms to learn from. Recently,

Ertugrul and colleagues evaluated how well AU detectors perform on datasets outside

the domain in which they were trained (Ertugrul et al., 2019). This is not information

that one can glean from the performance measures different AU detectors are reported

to have in the literature. That is because AU detectors are always trained and evaluated
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on the same dataset, or group of datasets. Therefore, the detectors might have a differ-

ent performance on a truly independent dataset and this performance on an independent

dataset better reflects how they will perform on real-life applications. To carry out their

study, Ertugrul and colleagues trained AU detectors on one dataset and then calculated

their performance measures on an independent dataset. The two datasets they used were

BP4D+ (Zhang et al., 2016), an extended version of BP4D, and GFT, which involves

social interaction between groups of three (Girard et al., 2017). As in this thesis, to gain

a more general understanding of AU detection, Ertugrul and colleagues compared the

performances of two types of classifiers, which they termed ‘deep’ and ‘shallow’. For

their deep classifier, they built their own convolutional neural network classifier, similar

to CNN-BLSTM which I use, and for their shallow classifier they used the SVM based

OpenFace 2.0, as I did. Hence their work is especially relevant to my thesis as their

results methodically affirm my impression about the differences between the behaviours

of CNN-BLSTM and OpenFace. Their study showed that action unit detectors perform

worse in domains that differ from the ones they were trained in and hence their per-

formance values are not as high as reported elsewhere. This decreased performance is

frequently below the threshold needed for behavioural research. Their comparison of the

two classifier types also led them to conclude that deep methods are more reliable and

generalizable than shallow methods, which could explain why CNN-BLSTM seemed to

perform better on the poker dataset than OpenFace. Altogether, my experiments and the

above mentioned works agree on the need for more varied databases exhibiting sponta-

neous behaviour to learn AU detectors and detectors of basic emotions. To create robust

AU detectors there is still a demand for databases to learn from that “include a large

sample of varying ethnic background, age, and sex, that includes people who have facial

hair and wear jewelry or eyeglasses, and includes both normal and clinically impaired

individuals” (Kanade et al., 2000).

There are possible alternatives to detecting weak, subtle or naturalistic facial signals

with out-of-the-box detectors that detect canonical AUs or basic emotions, which was

the approach used in this thesis. Interestingly, some of the facial expressions only be-

came apparent to me when viewing the videos in fast forward showing that many facial

expressions are hard for humans to detect. To deal with such subtle expressions that can-

not be easily spotted by the human eye and also aren’t picked up by current action unit

detectors, Wu and colleagues created classifiers to detect deception directly from low

level pixel information using the real life trial dataset of Pérez-Rosas and colleagues,
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which was introduced in Section 3.5 (Wu et al., 2018). They used the hand annotated

MUMIN labels that were provided by Pérez-Rosas and colleagues and combined these

with Improved Density Trajectory (Wang et al., 2016) to capture motion in videos in or-

der to train micro-expression detectors. The output of these micro-expression classifiers

took on the role of action unit detectors in my studies and was likewise used as high-

level input to their deception classifier. Their approach was multimodal, but they found

that visual micro-expressions, which included both facial muscle actions as well as head

motion, were the most effective at classifying deceit. One should, however, remember

that their ground truth was the trial verdicts and so not necessarily known with absolute

certainty. Additionally, the video segments were hand picked, which might introduce

bias as to what represents signs of deceit, as illustrated in Figure 3.9. In another recent

study using the same trial dataset, Ding and colleagues applied a deep learning approach

(Ding et al., 2018). They also used the three modalities – visual, audio and transcripts

– and found that facial expressions together with body motion were the most discrimi-

native. To deal with the small size of the dataset (121 videos) they used meta learning

(Santoro et al., 2017) and adversarial learning (Goodfellow et al., 2014) to augment their

data set. These methods could also provide ways forward with the dice rolling dataset.

The study by Ding and colleagues did not even rely on facial annotations. This points

to the interesting possibility of using deep learning to study deception in the dice rolling

experiment, which has a strong ground truth, and then using transfer learning to adapt

the classifier to new, but related domains. Perhaps it would be possible to augment cur-

rent AU detectors this way and circumvent the need for FACS coding, which is a major

obstacle that limits the datasets that are available for learning general purpose detectors.

In this work an automated method was used to detect the impact of stress on lying. This,

to my knowledge, is the first time such a technique was applied. I have found that stress

reduces lying and makes it more detectable, which also constitute novel and possibly

groundbreaking findings. There have, however, been numerous studies on the effects of

stress on decision making and it has been shown that the decision making parts of the

brain are sensitive to stress (Starcke and Brand, 2012; Youssef et al., 2012). Schwabe

and colleagues showed that the application of stress reduced their study subjects’ abil-

ities to think in a goal directed way and caused them to rely more on habit than their

unstressed counterparts (Schwabe and Wolf, 2009). Since lying is thought to be cog-

nitively difficult, it seems likely that stress can alter lying behaviour (Gombos, 2006).

Lying is also related to moral behaviour and it has been hypothesized that moral deci-
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sions are based on intuitive and fast moving emotion and affect which take place quickly

and automatically (Haidt, 2007). According to this theory, it requires effort to overcome

initial moral reactions and these automatic affective responses are in conflict with more

time-consuming reasoned considerations that take place later (Greene and Haidt, 2002).

Hence, it is reasonable to think stress might further interfere with this process and there

have been studies to this effect. It has been proposed that stress acts like a switch that

allows intuitive responses to bypass reasoning (Yu, 2016). The effects of stress on moral

decision-making are complex and depend on factors such as gender and types of stress,

such as chronic or acute, but the body of evidence suggests that stress leads to a lessen-

ing of what could be perceived as amoral behaviour, that is, it leads to behaviour that

is less utilitarian and more deontological (Zhang et al., 2018; Vveinhardt et al., 2020).

This could explain why stress treated participants in the dice rolling experiment lied less

as it might be their first intuitive reaction to be truthful (Abeler et al., 2019). Regarding

observable behaviour, it has been proposed that deception causes changes in arousal as

well as negative emotions associated with guilt and shame (Burgoon and Buller, 1996).

Therefore, subjecting participants to additional stress might increase their need to fidget

while decreasing their ability to conceal this, possibly resulting in increased head move-

ment, as detected here, as well as increased face touching which caused more occlusions.

Furthermore, I found a strong gender effect on lying behaviour with men submitting sig-

nificantly more misreports. Gender effects in lying behaviour are well-known, and the

results here are in line with current experimental evidence showing that women tend

to lie less than men, particularly when strategic, selfish lying is involved to maximize

personal benefit (Dreber and Johannesson, 2008; Erat and Gneezy, 2012; Conrads et al.,

2013; Chen et al., 2020). Of note, these findings are based on dyadic human interactions,

whereby the gender makeup of the dyad did not fundamentally change the overall out-

come, but influenced the amount of lying (Jung and Vranceanu, 2017). Here, in contrast,

humans are interacting with a computer. Importantly, these patterns seem to be robust

and persist in the presence of a human-computer interface. To my knowledge, this is

the first time gender effects have been linked to deceptive behaviour in computer-human

interactions.

There is more research left to do with the dice rolling dataset. Aside from the self as-

sessment manikin, the questionnaires have not been evaluated. The mouse tracking has

also not been investigated and the lying patterns need to be considered, too. There have
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been many studies based on the Fischbacher and Föllmi-Heusi experiment that represent

variations on their dice rolling paradigm, which study the nature of deceptive behaviour

(Gächter and Schulz, 2016; Conrads et al., 2013; Bucciol and Piovesan, 2011). The pre-

viously mentioned study by Kocher and colleagues uses computer controlled videos of

a die being rolled. They report in their paper that they expect less partial lying, meaning

the participants are expected to be either fully honest or maximally lying. They explain

that this is because the participants are aware of the experimental set-up and know that

the computer controls the dice rolling and that the experimenter knows their answers.

The paper does not give further detail on how the participants can know this. Partial

lying does actually occur infrequently in their experiments. In the dice rolling exper-

iment presented in this thesis a similar set-up was used. I have also explained how I

intentionally tried to make the dice rolling experiment feel realistic in the hope that then

the participants would lie more and partial lying took place. At present, the role the

computer interface plays in the process of decision making is poorly understood. Yet,

there are works that suggest that this aspect can have an important influence on the out-

comes of human deliberations when interacting with computers. One such work deals

with embodied conversational agents and another with immersive virtual reality systems.

They posit that part of how a person reacts to a computer is dependent on their own abil-

ity to suspend disbelief (McKeown, 2015) and part of it is the ability of the system to

share common ground with and include the participant while maintaining plausibility

(McKeown, 2015; Slater, 2009). While the experiment presented here did not involve

an embodied virtual agent or immersive virtual reality it was a human-computer interac-

tion where engagement was important. The interface, as well as the participant’s attitude

towards the computer interaction, might also play a part with respect to determining why

people decide to lie or not, so it might be important to consider this in the future. Con-

cerning another aspect of the experiment, as the participants each performed a series of

multiple rolls, which was not done in other dice rolling studies, interesting patterns of

lying can emerge in ways they might not have before, as some patterns suggest an attempt

to disguise lying while others suggest an aversion to appearing greedy. Through combin-

ing behavioural experimentation with computer vision approaches and mouse tracking

data, the die rolling experiment should therefore continue to be a valuable source for

further discoveries about human conduct and automatic detection of deceit.
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Appendix A

Poker study: Supplementary data

A.1 Feature selection

In Chapter 4, feature selection was performed on the decision trees. The following table

gives the complete list of tuples that the algorithm iterated through in its heuristic search

for the best tuple. The Column 1 gives the tuple over which the current decision trees

are made, Column 2 gives the tuple’s best balanced classification rate, Column 3 gives

the balanced classification rate of the tuple after voting, Column 4 gives the offset and

Column 5 the duration of the tree with the best balanced classification rate. In each

row, the largest value between the classification rate without voting and with voting is

highlighted. One can see that voting improves results in the majority of cases.

Table A.1: tuples chosen by feature selection along with their balanced classi�-
cation rate before and after voting, and o�set/duration parameters. The largest
balanced classi�cation rate, with or without voting, is highlighted blue.

AU tuples bal. class with voting o�set duration

(1,12) 0.5869 0.5982 -5 3

(5,12) 0.5790 0.6115 -30 3

(9,15) 0.5884 0.5972 5 3

(1,25) 0.5886 0.6163 30 3

(15,25) 0.5757 0.6026 -45 5

(25,26) 0.5750 0.5721 -35 3

Continued on next page
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A.1. Feature selection

Table A.1 � Continued from previous page

AU tuples bal. class with voting o�set duration

(1,2,12) 0.5765 0.5971 -5 3

(2,5,12) 0.5769 0.5954 10 3

(5,6,12) 0.5814 0.6103 -25 5

(5,9,12) 0.5808 0.6173 -30 4

(5,12,25) 0.5788 0.5921 -25 3

(9,15,25) 0.5765 0.6071 -35 5

(15,25,26) 0.5771 0.5850 -35 3

(1,2,12,45) 0.5829 0.5897 -5 3

(1,2,5,12) 0.5835 0.5948 0 4

(1,5,9,12) 0.5919 0.6117 0 5

(4,5,12,25) 0.6011 0.6193 -30 3

(5,9,12,20) 0.5836 0.5979 5 3

(5,9,12,26) 0.6114 0.6081 -30 4

(5,9,12,45) 0.5936 0.6053 -30 4

(1,4,5,12,25) 0.5848 0.5808 -30 3

(1,5,6,9,12) 0.5877 0.5828 -30 3

(1,5,9,12,45) 0.5948 0.6193 0 3

(2,4,5,12,25) 0.5904 0.6098 -30 3

(2,5,9,12,45) 0.5802 0.5841 -60 4

(4,5,6,12,25) 0.5810 0.5801 -10 3

(4,5,9,12,20) 0.5997 0.5941 -30 3

(4,5,9,12,45) 0.5818 0.6021 -30 3

(4,5,12,15,25) 0.5907 0.5865 10 3

(5,9,12,25,45) 0.5861 0.5986 -25 4

(5,9,12,26,45) 0.5939 0.6131 -25 3

(1,4,5,6,12,25) 0.5910 0.5997 -25 4

(2,4,5,9,12,20) 0.5996 0.6222 -30 4

(2,4,5,12,20,25) 0.5930 0.6227 -30 3

(4,5,6,9,12,25) 0.6012 0.6109 -30 5

(4,5,6,12,25,45) 0.5869 0.5892 -30 4

(4,5,9,12,20,26) 0.6014 0.6149 -30 3

(4,5,9,12,20,45) 0.6060 0.6079 -30 3

Continued on next page
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A.1. Feature selection

Table A.1 � Continued from previous page

AU tuples bal. class with voting o�set duration

(4,5,12,15,20,25) 0.5993 0.5987 10 3

(5,6,9,12,25,45) 0.6023 0.6026 -25 3

(5,9,12,15,25,45) 0.5905 0.5899 -30 4

(1,4,5,9,12,20,26) 0.5852 0.5877 -30 4

(2,4,5,6,9,12,25) 0.5885 0.5914 -30 5

(2,5,6,9,12,25,45) 0.5850 0.5786 -30 5

(4,5,6,9,12,15,25) 0.5931 0.6063 -30 5

(4,5,6,9,12,25,45) 0.6005 0.6119 -30 5

(4,5,6,12,25,26,45) 0.5869 0.5933 -10 3

(4,5,9,12,15,25,45) 0.6014 0.6365 -30 4

(4,5,9,12,20,25,45) 0.5905 0.6189 -30 3

(4,5,9,12,20,26,45) 0.5878 0.5960 -30 3

(4,5,12,15,20,25,45) 0.6049 0.6068 10 3

(5,6,9,12,15,25,45) 0.5869 0.5859 -30 5

(5,9,12,15,20,25,45) 0.5885 0.5947 -30 4

(1,4,5,6,9,12,20,26) 0.5876 0.5877 -25 3

(1,4,5,9,12,15,20,26) 0.5869 0.5980 -30 4

(1,4,5,9,12,15,25,45) 0.6042 0.6299 -30 4

(1,5,6,9,12,15,25,45) 0.5866 0.5714 -30 4

(2,4,5,6,9,12,20,25) 0.5862 0.5923 -30 5

(2,4,5,6,9,12,25,45) 0.5851 0.5938 -30 5

(2,4,5,9,12,15,25,45) 0.5926 0.5985 -30 4

(2,4,5,9,12,20,25,45) 0.5886 0.6122 -30 3

(4,5,6,9,12,15,25,45) 0.5855 0.6212 -30 3

(5,9,12,15,20,25,26,45) 0.5915 0.6032 -30 4

(1,2,4,5,9,12,15,20,26) 0.5893 0.5963 -25 5

(1,2,4,5,9,12,15,25,45) 0.5920 0.6009 -30 4

(1,4,5,9,12,15,20,25,26) 0.5802 0.5668 -40 3

(1,4,5,9,12,15,20,25,45) 0.5878 0.6067 -30 4

(2,4,5,6,9,12,20,25,45) 0.5884 0.5928 -30 5

(2,4,5,9,12,15,20,25,45) 0.5826 0.5863 15 3

(4,5,6,9,12,15,20,25,45) 0.5845 0.6111 -30 3

Continued on next page
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A.1. Feature selection

Table A.1 � Continued from previous page

AU tuples bal. class with voting o�set duration

(1,2,4,5,6,9,12,15,25,45) 0.5821 0.6022 15 3

(1,2,4,5,9,12,15,20,25,45) 0.5817 0.5872 -30 4

(1,4,5,6,9,12,15,25,26,45) 0.5888 0.5966 15 3

(2,4,5,6,9,12,15,20,25,45) 0.5896 0.6040 15 3

(1,2,4,5,6,9,12,15,20,25,26) 0.5926 0.6004 15 3

(1,2,4,5,6,9,12,15,20,25,45) 0.5817 0.5865 15 3

(1,2,4,5,6,9,12,15,25,26,45) 0.5834 0.6037 15 3

(1,2,4,5,9,12,15,20,25,26,45) 0.5943 0.5917 15 3

(1,2,5,6,9,12,15,20,25,26,45) 0.5801 0.5895 15 3

(1,4,5,6,9,12,15,20,25,26,45) 0.5824 0.5898 15 3

(2,4,5,6,9,12,15,20,25,26,45) 0.5809 0.5876 15 3

(1,2,4,5,6,9,12,15,20,25,26,45) 0.5938 0.6079 15 3
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A.2. Comparison of CNN-BLSTM and OpenFace statistics

A.2 Comparison of CNN-BLSTM and OpenFace

statistics

To explore the differences between CNN-BLSTM and OpenFace detectors, I looked at

their statistics. For each of the 64 players in the Poker database and for each of the 12

action units used in the poker study, I found the minimum, maximum, median, mean

and mode as well as their variance/standard deviation, first and third quartiles values

and interquartile range. These values were then plotted in a box plot.

(a) OpenFace (b) CNN-BLSTM

Figure A.1: Comparing statistics for OpenFace and CNN-BLSTM.
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A.2. Comparison of CNN-BLSTM and OpenFace statistics

(a) OpenFace (b) CNN-BLSTM

Figure A.3: Comparing statistics for OpenFace and CNN-BLSTM for AUs 2, 4
and 5.
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A.2. Comparison of CNN-BLSTM and OpenFace statistics

(a) OpenFace (b) CNN-BLSTM

Figure A.5: Comparing statistics for OpenFace and CNN-BLSTM for AUs 6, 9,
12.
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A.2. Comparison of CNN-BLSTM and OpenFace statistics

(a) OpenFace (b) CNN-BLSTM

(c) OpenFace (d) CNN-BLSTM

Figure A.7: Comparing statistics for OpenFace and CNN-BLSTM for AUs 15, 20
and 25.
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A.2. Comparison of CNN-BLSTM and OpenFace statistics

(a) OpenFace (b) CNN-BLSTM

Figure A.9: Comparing statistics for OpenFace and CNN-BLSTM for AUs 26 and
45.
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Appendix B

Die experiment: Supplementary

materials and methods

B.1 Protocol for running the experimental sessions

1. Set-up for a day of sessions. There were at most four sessions on one day. Each

session could accommodate up to ten participants.

(a) The night before experiments, check that there is enough free memory

on the computers. Make sure software is running. Check that the network

computer in the anteroom is detecting the experiment computers. For the

water experiments, move 20 chairs to the front of the room and tape numbers

on them in pairs so each PC used (ten from PCs 2, 5, 6, 9, 12, 15, 16, 19,

22, 25, 26, 29) has a pair of chairs, one for the participant to sit on, and one,

to the left, for the participant’s water bucket to sit on. Get questionnaires

ready for the next day, labelled by PC, and set first 10 on tables for the first

sessions of ten. Get PC card numbers ready in their cotton bag. If it is a

cold water treatment, fill the 14L-buckets just under half way with water and

set buckets on their chairs. The water is taken from a shower down the hall

and is warmer than room temperature. Doing this the night before allows the

water to cool down to room temperature (18◦C) overnight. Also, the buckets

should not be too full, otherwise, adding a 2kg bag of ice to it directly before

a session will not cool it down to 1-2◦C. If it is a warm water treatment,
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B.1. Protocol for running the experimental sessions

leave the buckets empty to be filled the next morning. Get 30-40 hand towels

and kitchen towels ready for participants to dry their hands. The number of

hand towels needed depends on how many sessions there will be on this day.

Towels were brought from home.

(b) At least 2hrs before the experiments, for cold water experiments

bring ice to the lab. For each participant a 2kg bag is required, bought from

local grocery store on the way to the lab. As a safeguard, a few extra bags

were bought. Keep them as cold as possible in cardboard boxes with bubble

wrap insulation. For all treatments, turn on ten computers and have them

waiting for the participants, with the dice rolling program minimized. Put an

information sheet and consent form on the keyboards of the PCs. Put a large

envelope with the questionnaires in the back left corner of the tables with

the 10 PCs. For warm water experiments, warm up shower water to about

45◦C as it takes a while to reach this temperature and fill buckets up over half

way to prevent them from cooling down too quickly. Set them on their chairs

and put thermometers in them and lids on them to slow their cooling down.

Using an electric kettle and a cup, keep their temperatures at 39-40◦C: when

the temperature drops in a bucket of water, scoop out a few cups of water,

boil them in the kettle and pour them back in.

(c) Just before the experiments the second of two experimenters arrives.

For cold water experiments, a 2kg bag of ice is dumped into each bucket and

stirred. Thermometers are checked to see that cold water is between 1-2◦C,

or warm water is 39-40◦C. Right before the experiments, ice is stirred and

removed with sieves for cold water (there might still be a few pieces in the

water) and put in an extra container out of sight. Thermometers are removed

for both treatments. Now, warm water should be 39-40◦C and cold water

should be <2◦C. This ensures that when the treatment begins approximately

15 minutes later the water will be 37-39◦C for warm water treatments and

<4◦C for cold water treatments.

2. Carrying out the experiment

(a) Seating the participants. Experimenter 1 opens the door of the anteroom

and greets the participants. They ask to see each student’s ID and compare

that to the list of participants and instruct the participants to go to the door of
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the lab, where Experimenter 2 is waiting. Experimenter 2 is holding a cotton

bag and asks each participant to draw a card out of the bag and go to the PC at

the table with the number of their drawn card. They are told they can read the

consent form and instructions (on paper, stapled together) on their keyboard,

but they should not do anything with their computer until they are instructed

to. They are told not to do anything with the PC at their table to prevent them

from starting the experiment before they undergo the treatment. At this point

their computer screen has the windows desktop visible, see Figure B.1.

(b) Giving the participants instructions. When all of the participants

have sat down, Experimenter 1 explains that

i. They will do an experiment on their computer.

ii. The computer will be recording them. The webcam is visibly mounted

on their monitor.

iii. Any images made of them are for research purposes only and won’t ap-

pear anywhere.

iv. They are there on a voluntary basis and can withdraw at any time.

v. They should read the instructions (Figure B.10 ) and consent form (Figure B.11)

and sign the consent form to continue.

vi. They are told if they have any questions during the experiment, they

should raise their hand.

(c) The water treatment

i. After 5-10 minutes when consent forms have been signed (which is 10-

15 minutes after the begin of the experiment), Experimenter 1 tells the

participants they need to come to the front and sit in the chair with the

same number as their PC. They should wait there until they are told to

put their left hand in the bucket of water to their left, unless they operate

their mouse with their left hand, then they should reach over and put

their right hand in the bucket to their left. They are told it is just water

with nothing added and it is not unhealthy.

ii. When they are seated, Experimenter 1 asks the participants to roll their

left sleeves or their right sleeve if they operated the mouse with their left

hand. When Experimenter 2 has the timer ready for three minutes, the

participants are told to submerge their hand including the wrist, into the
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water. At the signal, Experimenter 1 tells the participants to put their

hands in the water and leave them there until they are told to remove

them. During cold water treatments participants frequently try and re-

move their hand from the cold water. Experimenter 1 asks them to keep

it in the water. If they have to take it out they are instructed to put it back

in as soon as they can.

iii. The participants are not informed how long they have to keep their hands

in the water.

iv. During these three minutes, Experimenter 1 goes to the network con-

troller in the anteroom and maximizes the die rolling software so it is

waiting for the participants when they return.

v. When the three minutes are up, a beeper goes off. Experimenter 1 tells

the participants to remove their hands from the water, dry themselves

with the towel by their buckets, return to their desks and follow the in-

structions on their screen.

(d) The dice rolling experiment

i. When they return to their desks, the participants are instructed by their

screen, see Figure B.2, to press ‘start’ to confirm that they have read their

instructions and signed their consent form. The next screen, Figure B.3,

prompts the participant to roll the die by pressing the ‘Roll Die’ button.

One second after pressing the ‘roll die’ button, a randomly chosen video

of die being thrown is shown. When this short video (2.5 seconds) is

over, buttons become activated so the participant can report the number

the die has rolled, see Figure B.5. These two steps, roll and repeat roll,

is repeated until the participant has rolled 20 times, although they are

not told how many times this is.

(e) The questionnaires

i. After the 20th iteration of the dice rolling experiment, the final screen,

see Figure B.6, appears and informs the participant of their reward,

which is the sum of their individual rewards, and it instructs them to fill

out the questionnaires on their table. The experimenters can tell when

the dice rolling experiment is over since the clicking stops and they can

hear the envelopes that contain the questionnaires open. After about

ten minutes, Experimenter 1 checks to see if everyone is done with the
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questionnaires.

ii. While the participants are filling out the questionnaires, Experimenter 2

puts monetary payments (reward + participation fee) in envelopes which

are then sealed and marked with the corresponding PC number.

(f) End of experiment and reward collection

i. When everyone has finished filling out their questionnaires, Experimenter

1 tells the participants they will call out a PC number. The person sit-

ting at that number should collect their belongings, their questionnaire,

consent form and PC card and go to the front (anteroom) to collect their

payment.

ii. When the participant is called, they come into the anteroom, leave their

consent form, questionnaire and PC card and collect their payment. When

they have left, the next participant is called to collect their payment.

3. After session/between sessions

(a) Two full hours are needed between sessions. Software and memory need to

be checked, and software needs to be started up for the next sessions. Ques-

tionnaires and PC cards need to be prepared. In cold water treatments, excess

water from melted ice needs to be emptied out to keep the volume down. For

warm water treatments, water needs to be heated up in the kettle, just as in

part 1.(c) just before the experiments.

(b) If it is the end of a day of sessions, data needs to be copied and stored and

memory freed on the lab computers as they have memory limits. Everything

is cleaned up and shut down.
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B.2 Interface

Figure B.1: The screen when the participant arrived at their PC.

Figure B.2: When the participant returned to their PC after the water treatment,
this was on their monitor prompting them to begin the experiment.
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Figure B.3: After pressing start or reporting what they rolled, the participant was
prompted to roll the die. This happened twenty times.

Figure B.4: After pressing the `Roll Die' button, the participant was shown a
randomly selected video of a die being rolled.
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Figure B.5: After the video ended, the reward buttons were activated and the
participant was prompted to report what they rolled.

Figure B.6: After the participant had cycled through Figures B.3, B.4 and B.5
20 times, they were shown their reward and asked to �ll out the questionnaire on
their table.
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B.3 Questionnaires

The questionnaire consisted of four different parts: Parts 1) CRT and 2) MACH-IV are

as described (Frederick (2005); Exline et al. (1970)). Parts 3) (SAM), an extension of

Bradley and Lang (1994) and 4) demographic questions are shown below.

Figure B.7: SAM. Pole names for 1) - 3) are from (Lombard et al. (2000)). The
fourth manikin is new. Numerical values 9�1, left to right, as in Figure 5.5.
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Please answer the following demographic questions: 
 
What is your gender? 
  
   Male 
   Female 
   Other 
 
-------------------------------------------------------------------------------------------------------------------------- 
What is your age in years?  _____________________________________ 
 
What University School do you belong to?  ____________________________________________ 
 
How large was the community where you lived the most time of your life? 
 
  Up to 2,000 inhabitants  (1) 
  Between 2,000 and 10,000 inhabitants  (2) 
  Between 10,000 and 100,000 inhabitants  (3) 
  More than 100,000 inhabitants  (4) 
 
-------------------------------------------------------------------------------------------------------------------------- 
 
How do you see yourself: are you generally a person who is fully prepared to take risks or do you try 
to avoid taking risks? 
 
Please select a number on a scale, where the value 0 means: ‘not at all willing to take risks’ and a 
value 10 means: ‘very willing to take risks’. 
 
   0  –  not at all willing to take risks (1) 
   1  (2) 
   2  (3) 
   3  (4) 
   4  (5) 
   5  (6) 
   6  (7) 
   7  (8) 
   8  (9) 
   9  (10) 
   10  –  very willing to take risks (11) 
 
 
Which hand do you use to operate your computer mouse? 
   my right hand 
   my left hand 

Figure B.8: Demographic questionnaire page one of two.
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   either hand (ambidextrous) 
 
 
Which of the following religious denominations describes you better? 
   No religion  (1) 
   Catholic  (2) 
   Protestant  (3) 
   Muslim  (4) 
   Orthodox   (5) 
   Eastern Religion  (6) 
   other denomination  (7) 
 
 
How religious are you?? 
   extremely non-religious (1) 
   (2) 
   (3) 
   (4) 
   (5) 
   (6) 
   extremely religious (7) 
 
 
Would you describe yourself as politically on the “left” (e.g. a liberal) or on the “right” (e.g. a 
conservative)? 
 
   Very liberal  (1) 
   Liberal  (2) 
   Center  (3) 
   Conservative  (4) 
   Very conservative   (5) 
 
What country are you from? 
 
_________________________________________________________________________ 
 
Approximately how many Facebook friends do you have? 
 
_________________________________________________________________________ 
 
 
 
 

Figure B.9: Demographic questionnaire, continued, page two of two. The question
�What country are you from?� was added half way through the experiment.
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B.4 Instructions and consent form

The Instructions and Informed Consent Form were stapled together and sitting on the

keyboard of the PC when the participant arrived.
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Instructions 

Step 1. Consent 

Before proceeding with this experiment, please read these instructions and fill out the Informed 

Consent Form on the next page. 

 

Step 2. Water Treatment 

You will be asked by the organiser to come to the front and sit in the chair labelled the same 

number as your PC. He will indicate when you should submerge your left hand in the container 

of water to your left. However, if you use your left hand to operate your mouse, then submerge 

your right hand instead. After submerging your hand, wait again for the organiser to signal you 

to remove it. Then dry your hand and return to your PC. 

 

Step 3. Computer Experiment  

You can now begin the computer part of the experiment. You will be asked on your screen a 

number of times to roll a virtual die by means of pressing a ‘Roll Die’ button. Each time you roll 

the die, you will be shown a randomly selected video of a die being rolled. You will be asked to 

report the number of dots shown on the upward face of the die. There is a different monetary 

reward associated with each number of dots, as will be shown on the computer screen. The 

rewards are associated with the different faces of the die as follows: 

 1 dot   - £0.05 

 2 dots - £0.10 

 3 dots - £0.15 

 4 dots - £0.20 

 5 dots - £0.25 

 6 dots - £0 

You will be given the cumulative sum of these rewards in addition to your basic £3.50 

participation fee at the conclusion of this experiment. 

When you are ready to begin the experiment press ‘Start’ on your computer screen. 

 

Step 4. Questionnaire 

After the computer experiment, you will be prompted to fill out a questionnaire.  

 

Step 5. Payment 

When you have completed the questionnaire, you will be asked to come to the front desk to 

receive your payment. 

Figure B.10: Instructions sheet.
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Informed Consent Form 
  
  

Introduction 
This study attempts to collect information about how people make decisions.  
 
Procedures 
You will take part in a decision making study. Digital images of you will be recorded during 
this experiment. After this study, you will answer a number of questions on a variety of topics.  
  
Risks/Discomforts 
Risks are minimal for involvement in this study. Although we do not expect any harm to come 
upon any participant due to electronic malfunction of the computer, it is possible though 
extremely rare and uncommon. 
  
Benefits 
There are no direct benefits for participants. However, it is hoped that through your 
participation, researchers will learn more about human decision making. 
  
Confidentiality 
All data obtained from participants will be kept confidential and will only be reported in an 
aggregate format (by reporting only combined results and never reporting individual ones). 
All questionnaires will be concealed, and no one other than then primary investigators listed 
below will have access to them.  
  
Compensation 

You will receive a participation fee of £3 as well as the reward you earn during the 
experiment. 
  
Participation 

Participation in this research study is completely voluntary. You have the right to withdraw at 
any time or refuse to participate entirely. 
  
 

I have read and understood the above consent form.  

 

 

Name: ______________________________________ 

 

Signature: ______________________________________ 

 

PI’s 
Doratha Vinkemeier 
Thorsten Chmura 
Roberto Hernan Gonzales 

 

Figure B.11: Consent form sheet.
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Appendix C

Die experiment: Supplementary dice

rolling data

C.1 Digital data collected

In addition to the consent form and questionnaires, during the dice rolling experiment

additional digital data is collected. For each participant, this data is as follows:

• A video beginning when the participant presses the ‘Start’ button on screen B.2

and ending after their report of the 20th roll.

• Timestamps for each frame of the video above.

• 2D coordinates for the participant’s mouse positions along with their timestamps,

beginning when the participant presses the ‘Start’ button on screen B.2 and ending

after their report of the 20th roll.

• The twenty timestamps when the participant pressed the ‘Roll Die’ button.

• The twenty randomly chosen dice videos for that participant.

• The twenty timestamps when the videos ended.

• The twenty timestamps when the participant reported what they rolled.

• What the participant reported that they rolled.
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• The date and time of the experiment.

• The computer used.

• The sequential number of the participant at that computer.

C.2 Die rolling data

In this section, I present the die rolling data graphically represented in a compact form.

It is split into three groups by treatment: warm water, cold water and no water treatment.

This makes it easy to see what types of lying are taking place. The participant’s unique

ID (in column 1, part.) is represented by a pair of numbers on a blue background. Each

participant takes up two rows, the one with their ID and the one below, which begins with

a ‘∼’. The numbers on a dark grey background are what they really rolled. The numbers

directly below on a light grey background are what they reported. When what was rolled

does not match what was reported, this pair of numbers, what was rolled located directly

above what was reported, is highlighted in red if it lead to a profit or yellow if it lead

to a loss so that lies can be easily spotted. In the column ‘L’ is the number of lies that

participant made. A ‘*’ directly below this, means that this participant is possibly an

example of homo economicus, that is, they maximize their reward by always choosing

5.

C.2.1 Warm water treatment

Table C.1: Dice rolling data for the warm water treatment.

part. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 L

(12,10) 1 3 3 1 4 4 4 6 6 5 1 1 1 3 2 4 3 5 3 2 0

∼ 1 3 3 1 4 4 4 6 6 5 1 1 1 3 2 4 3 5 3 2

(12,15) 6 6 6 1 3 5 2 2 2 1 5 3 4 2 6 4 6 2 1 2 17

∼ 5 5 5 5 5 5 5 5 5 5 5 5 5 4 4 4 4 4 5 5

(12,16) 6 2 4 2 5 6 4 5 2 2 5 3 6 5 6 6 3 5 1 5 0

∼ 6 2 4 2 5 6 4 5 2 2 5 3 6 5 6 6 3 5 1 5

(12,17) 1 5 1 6 2 1 2 2 6 6 5 4 1 4 1 6 2 6 1 3 11

Continued on next page
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Table C.1 � Warm water treatment, continued from previous page

part. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 L

∼ 1 5 5 5 3 1 4 2 6 5 5 4 5 4 3 5 5 5 5 3

(12,24) 1 6 6 6 2 3 3 2 1 1 4 1 4 4 5 6 6 4 1 5 0

∼ 1 6 6 6 2 3 3 2 1 1 4 1 4 4 5 6 6 4 1 5

(12,25) 1 3 1 5 5 2 2 3 6 2 1 1 3 5 2 2 1 5 5 2 0

∼ 1 3 1 5 5 2 2 3 6 2 1 1 3 5 2 2 1 5 5 2

(12,26) 1 1 2 5 3 5 3 1 3 1 2 3 2 6 4 4 2 2 1 3 0

∼ 1 1 2 5 3 5 3 1 3 1 2 3 2 6 4 4 2 2 1 3

(12,27) 2 6 6 3 3 3 2 5 3 6 5 1 4 2 2 6 1 3 3 5 7

∼ 2 6 5 5 3 3 2 5 5 5 5 1 4 5 2 5 1 3 5 5

(12,28) 5 4 1 4 5 3 1 3 1 4 6 5 2 5 6 1 2 3 1 2 5

∼ 5 4 1 4 5 3 2 3 3 4 6 5 2 5 6 2 3 3 2 2

(12,29) 3 2 4 1 2 2 3 5 6 5 5 6 4 1 4 4 6 3 4 5 0

∼ 3 2 4 1 2 2 3 5 6 5 5 6 4 1 4 4 6 3 4 5

(12,30) 5 6 4 3 6 5 5 3 6 2 1 3 1 1 2 3 6 4 1 6 0

∼ 5 6 4 3 6 5 5 3 6 2 1 3 1 1 2 3 6 4 1 6

(12,31) 2 2 4 1 4 6 4 1 3 1 1 2 4 3 2 3 2 1 3 6 0

∼ 2 2 4 1 4 6 4 1 3 1 1 2 4 3 2 3 2 1 3 6

(12,32) 5 2 5 4 4 5 5 2 3 5 4 3 5 6 6 4 3 3 3 3 6

∼ 5 5 5 4 4 5 5 4 2 5 4 3 5 2 2 4 3 3 4 3

(12,8) 6 5 4 6 2 1 1 2 5 6 5 4 5 2 3 4 2 3 6 1 0

∼ 6 5 4 6 2 1 1 2 5 6 5 4 5 2 3 4 2 3 6 1

(12,9) 6 6 4 2 4 5 3 1 6 5 1 5 5 5 1 4 5 5 2 6 13

∼ 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 *
(15,10) 6 4 3 5 4 6 1 1 1 2 4 2 4 2 2 2 6 2 2 5 0

∼ 6 4 3 5 4 6 1 1 1 2 4 2 4 2 2 2 6 2 2 5

(15,11) 1 4 2 2 1 6 6 5 5 6 2 3 2 6 2 4 4 6 2 1 1

∼ 1 4 2 2 1 6 6 5 5 6 2 3 2 6 2 5 4 6 2 1

(15,15) 5 4 5 1 6 1 1 2 6 1 2 3 2 4 6 3 1 6 6 4 18

∼ 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 *
(15,16) 1 6 4 2 3 2 6 3 4 4 3 3 4 2 4 1 4 2 2 3 9

∼ 1 5 5 2 5 5 3 3 4 4 5 3 4 5 4 5 5 2 2 3

Continued on next page
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Table C.1 � Warm water treatment, continued from previous page

part. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 L

(15,17) 3 2 2 1 1 1 3 2 1 2 4 5 3 1 1 5 4 2 4 3 0

∼ 3 2 2 1 1 1 3 2 1 2 4 5 3 1 1 5 4 2 4 3

(15,7) 2 6 3 3 2 4 5 4 1 1 1 2 6 6 2 3 2 4 4 2 2

∼ 2 6 3 5 2 4 5 4 1 1 1 2 6 6 2 3 4 4 4 2

(15,9) 6 3 1 3 1 6 1 4 6 6 3 4 2 5 3 6 4 2 1 3 0

∼ 6 3 1 3 1 6 1 4 6 6 3 4 2 5 3 6 4 2 1 3

(16,10) 1 6 6 1 3 2 2 5 2 5 5 3 5 5 1 6 6 5 6 6 0

∼ 1 6 6 1 3 2 2 5 2 5 5 3 5 5 1 6 6 5 6 6

(16,11) 1 1 4 3 6 4 1 5 2 1 1 3 4 4 1 5 1 3 6 3 0

∼ 1 1 4 3 6 4 1 5 2 1 1 3 4 4 1 5 1 3 6 3

(16,16) 1 3 1 4 6 1 2 5 2 4 2 4 3 6 2 6 6 3 1 4 19

∼ 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 *
(16,17) 2 2 1 2 3 5 4 6 2 1 3 1 2 5 6 5 4 5 2 3 1

∼ 2 2 5 2 3 5 4 6 2 1 3 1 2 5 6 5 4 5 2 3

(16,18) 2 4 3 5 1 3 5 1 1 2 2 4 1 3 3 5 2 5 6 1 0

∼ 2 4 3 5 1 3 5 1 1 2 2 4 1 3 3 5 2 5 6 1

(16,25) 4 5 1 5 5 3 3 3 4 4 2 5 1 6 1 6 2 6 2 5 0

∼ 4 5 1 5 5 3 3 3 4 4 2 5 1 6 1 6 2 6 2 5

(16,26) 3 4 1 2 4 5 6 5 4 2 1 2 4 5 6 2 4 5 2 2 0

∼ 3 4 1 2 4 5 6 5 4 2 1 2 4 5 6 2 4 5 2 2

(16,27) 2 3 6 1 6 4 6 4 5 1 5 2 3 6 6 5 6 3 2 5 0

∼ 2 3 6 1 6 4 6 4 5 1 5 2 3 6 6 5 6 3 2 5

(16,28) 1 6 1 1 6 6 6 3 5 3 3 3 1 5 4 2 5 2 3 4 0

∼ 1 6 1 1 6 6 6 3 5 3 3 3 1 5 4 2 5 2 3 4

(16,29) 5 2 1 1 3 3 2 4 1 5 5 6 5 3 2 3 6 5 1 2 5

∼ 5 2 5 5 3 3 2 4 2 5 5 5 5 3 2 3 6 5 4 2

(16,30) 4 1 6 5 6 2 6 1 2 5 6 4 2 6 4 2 3 3 1 2 0

∼ 4 1 6 5 6 2 6 1 2 5 6 4 2 6 4 2 3 3 1 2

(16,31) 5 1 2 5 2 1 3 4 3 2 2 3 2 6 4 2 1 2 5 5 1

∼ 5 1 2 5 2 1 5 4 3 2 2 3 2 6 4 2 1 2 5 5

(16,32) 5 3 4 2 4 2 1 3 1 3 6 2 1 5 4 2 2 3 5 2 0

Continued on next page
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Table C.1 � Warm water treatment, continued from previous page

part. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 L

∼ 5 3 4 2 4 2 1 3 1 3 6 2 1 5 4 2 2 3 5 2

(16,7) 3 2 3 4 4 4 3 4 6 5 5 3 3 6 6 3 2 2 6 6 0

∼ 3 2 3 4 4 4 3 4 6 5 5 3 3 6 6 3 2 2 6 6

(16,9) 5 6 5 6 5 2 3 4 2 2 2 6 6 6 4 3 2 4 4 4 2

∼ 5 6 5 6 5 2 3 4 2 2 2 5 6 5 4 3 2 4 4 4

(19,13) 2 5 1 5 3 4 3 1 4 2 2 3 2 5 4 3 3 6 4 2 0

∼ 2 5 1 5 3 4 3 1 4 2 2 3 2 5 4 3 3 6 4 2

(19,14) 4 3 5 3 5 4 4 4 3 5 6 6 1 3 1 6 5 6 2 6 1

∼ 4 3 5 3 5 4 4 4 3 5 6 6 1 3 1 6 5 5 2 6

(19,15) 4 2 4 6 3 2 5 4 2 3 3 6 6 5 4 3 1 4 2 3 0

∼ 4 2 4 6 3 2 5 4 2 3 3 6 6 5 4 3 1 4 2 3

(19,22) 5 4 5 2 4 5 3 6 1 4 6 5 3 3 4 4 5 6 4 3 1

∼ 5 4 5 2 4 5 3 6 1 4 6 6 3 3 4 4 5 6 4 3

(19,23) 3 3 1 3 3 1 3 2 6 5 3 5 3 4 3 3 5 5 1 4 0

∼ 3 3 1 3 3 1 3 2 6 5 3 5 3 4 3 3 5 5 1 4

(19,24) 6 2 6 1 1 4 4 1 1 6 4 2 1 4 6 1 1 1 1 6 20

∼ 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 *
(19,25) 5 2 2 6 6 3 3 1 3 6 3 5 3 4 5 4 3 3 2 6 0

∼ 5 2 2 6 6 3 3 1 3 6 3 5 3 4 5 4 3 3 2 6

(19,26) 4 6 6 6 1 5 6 5 3 4 6 4 3 6 3 2 5 6 6 1 0

∼ 4 6 6 6 1 5 6 5 3 4 6 4 3 6 3 2 5 6 6 1

(19,27) 4 1 6 6 4 5 3 5 2 4 3 6 3 6 4 4 4 2 6 1 0

∼ 4 1 6 6 4 5 3 5 2 4 3 6 3 6 4 4 4 2 6 1

(19,28) 4 2 3 3 5 6 4 4 3 3 2 6 5 5 1 1 5 2 5 5 0

∼ 4 2 3 3 5 6 4 4 3 3 2 6 5 5 1 1 5 2 5 5

(19,29) 2 6 4 6 6 4 6 2 1 3 4 3 5 6 1 3 6 5 6 2 0

∼ 2 6 4 6 6 4 6 2 1 3 4 3 5 6 1 3 6 5 6 2

(19,6) 1 1 6 4 5 3 3 6 2 5 4 2 2 1 6 1 3 2 3 2 7

∼ 1 1 5 4 5 3 4 5 2 5 4 2 3 2 5 1 3 2 4 2

(19,7) 2 1 4 4 5 3 4 2 1 4 1 1 1 2 1 4 1 1 4 1 2

∼ 2 1 4 4 5 3 4 2 1 4 5 1 5 2 1 4 1 1 4 1

Continued on next page
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Table C.1 � Warm water treatment, continued from previous page

part. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 L

(19,8) 1 1 2 2 4 3 4 1 4 1 3 6 2 3 2 4 2 2 6 6 0

∼ 1 1 2 2 4 3 4 1 4 1 3 6 2 3 2 4 2 2 6 6

(19,9) 5 2 4 2 6 3 6 3 5 3 6 2 2 6 2 4 6 6 6 4 0

∼ 5 2 4 2 6 3 6 3 5 3 6 2 2 6 2 4 6 6 6 4

(22,12) 5 3 5 2 1 5 4 3 1 5 6 1 6 6 1 6 2 4 1 1 0

∼ 5 3 5 2 1 5 4 3 1 5 6 1 6 6 1 6 2 4 1 1

(22,13) 1 1 6 3 6 4 6 3 5 5 2 1 5 5 5 2 1 6 5 5 0

∼ 1 1 6 3 6 4 6 3 5 5 2 1 5 5 5 2 1 6 5 5

(22,14) 4 6 5 4 1 2 6 6 2 2 6 4 2 1 1 4 1 1 4 2 14

∼ 4 5 5 4 5 5 5 5 4 4 5 4 4 4 5 4 4 5 4 5

(22,20) 6 5 1 1 3 3 3 3 6 1 4 4 6 6 6 2 4 4 2 6 0

∼ 6 5 1 1 3 3 3 3 6 1 4 4 6 6 6 2 4 4 2 6

(22,21) 5 5 1 1 4 2 4 5 2 6 2 4 4 5 3 3 6 3 4 1 0

∼ 5 5 1 1 4 2 4 5 2 6 2 4 4 5 3 3 6 3 4 1

(22,22) 2 4 5 3 6 2 5 3 1 3 3 2 5 6 3 1 3 4 5 5 0

∼ 2 4 5 3 6 2 5 3 1 3 3 2 5 6 3 1 3 4 5 5

(22,23) 5 6 2 1 1 6 4 2 3 2 4 6 6 3 3 6 3 4 4 2 2

∼ 5 6 2 1 1 6 4 2 3 2 4 6 5 3 3 5 3 4 4 2

(22,24) 5 5 4 3 3 2 6 4 2 4 4 2 6 1 3 5 5 3 6 3 1

∼ 5 5 4 3 3 2 6 4 2 4 4 2 6 1 3 5 5 3 5 3

(22,25) 3 2 3 4 4 6 3 3 4 2 1 6 2 6 5 6 3 1 2 3 0

∼ 3 2 3 4 4 6 3 3 4 2 1 6 2 6 5 6 3 1 2 3

(22,26) 4 3 5 4 4 3 3 4 2 2 1 2 5 1 4 1 6 5 6 5 0

∼ 4 3 5 4 4 3 3 4 2 2 1 2 5 1 4 1 6 5 6 5

(22,27) 3 5 5 6 5 5 4 4 6 3 6 2 4 4 6 5 5 6 3 5 1

∼ 3 5 5 6 5 5 4 4 6 3 5 2 4 4 6 5 5 6 3 5

(22,7) 2 1 4 2 2 1 4 4 6 1 4 6 5 2 6 2 3 6 4 5 0

∼ 2 1 4 2 2 1 4 4 6 1 4 6 5 2 6 2 3 6 4 5

(22,8) 3 3 2 2 6 4 3 2 2 6 4 4 1 3 4 2 1 1 5 5 0

∼ 3 3 2 2 6 4 3 2 2 6 4 4 1 3 4 2 1 1 5 5

(22,9) 2 6 5 5 3 5 4 5 2 3 6 6 6 1 3 6 6 4 3 4 0

Continued on next page
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Table C.1 � Warm water treatment, continued from previous page

part. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 L

∼ 2 6 5 5 3 5 4 5 2 3 6 6 6 1 3 6 6 4 3 4

(25,13) 3 4 3 2 4 2 1 5 1 4 1 6 1 2 4 1 1 4 2 1 0

∼ 3 4 3 2 4 2 1 5 1 4 1 6 1 2 4 1 1 4 2 1

(25,14) 1 5 5 6 3 5 1 1 3 5 3 2 6 5 4 1 6 5 5 5 12

∼ 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 *
(25,21) 3 3 4 4 6 3 2 1 2 4 1 6 5 5 3 1 4 2 6 4 0

∼ 3 3 4 4 6 3 2 1 2 4 1 6 5 5 3 1 4 2 6 4

(25,22) 6 5 6 2 5 3 1 3 6 5 1 2 4 2 3 4 2 4 6 1 0

∼ 6 5 6 2 5 3 1 3 6 5 1 2 4 2 3 4 2 4 6 1

(25,23) 3 6 5 6 3 5 5 5 4 6 3 6 3 2 2 4 6 5 2 5 0

∼ 3 6 5 6 3 5 5 5 4 6 3 6 3 2 2 4 6 5 2 5

(25,24) 4 4 2 5 5 2 5 1 3 3 2 6 5 4 2 1 4 2 5 2 0

∼ 4 4 2 5 5 2 5 1 3 3 2 6 5 4 2 1 4 2 5 2

(25,25) 3 2 1 4 5 3 2 2 1 2 4 4 6 4 3 3 3 2 2 6 18

∼ 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

(25,26) 6 6 3 5 3 1 4 5 2 1 6 2 2 3 5 1 1 4 4 3 0

∼ 6 6 3 5 3 1 4 5 2 1 6 2 2 3 5 1 1 4 4 3

(25,28) 4 3 3 6 3 3 1 4 5 2 3 3 4 4 4 1 5 3 1 4 1

∼ 4 3 3 6 3 5 1 4 5 2 3 3 4 4 4 1 5 3 1 4

(25,4) 4 6 2 3 4 2 4 4 6 1 3 3 2 2 5 2 2 3 4 1 1

∼ 4 6 2 3 4 2 4 4 5 1 3 3 2 2 5 2 2 3 4 1

(25,6) 2 2 1 6 6 2 3 5 2 2 3 4 6 2 3 1 6 5 3 5 0

∼ 2 2 1 6 6 2 3 5 2 2 3 4 6 2 3 1 6 5 3 5

(25,7) 3 6 1 2 6 2 6 5 4 1 3 6 4 2 2 2 5 1 5 3 0

∼ 3 6 1 2 6 2 6 5 4 1 3 6 4 2 2 2 5 1 5 3

(25,8) 1 3 6 4 5 6 2 1 3 1 3 1 2 6 4 3 2 3 3 6 19

∼ 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 *
(26,14) 4 3 2 3 6 5 6 4 4 6 3 6 2 5 6 2 4 3 4 1 0

∼ 4 3 2 3 6 5 6 4 4 6 3 6 2 5 6 2 4 3 4 1

(26,15) 2 1 6 3 1 3 6 4 5 1 1 4 3 3 4 3 5 5 5 3 2

∼ 2 1 6 3 1 3 5 4 5 5 1 4 3 3 4 3 5 5 5 3
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C.2. Die rolling data

Table C.1 � Warm water treatment, continued from previous page

part. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 L

(26,16) 5 4 4 5 1 2 6 4 2 3 4 5 5 6 1 2 2 4 1 5 0

∼ 5 4 4 5 1 2 6 4 2 3 4 5 5 6 1 2 2 4 1 5

(26,17) 2 2 3 3 6 6 2 4 4 6 6 4 2 6 6 1 6 6 2 1 10

∼ 2 2 3 3 6 6 5 5 5 5 6 4 5 2 6 5 6 5 3 2

(26,18) 2 4 6 3 3 6 3 3 4 3 2 1 4 6 2 6 4 4 1 4 12

∼ 2 4 5 5 4 5 3 4 4 3 4 5 5 4 4 5 4 4 5 4

(26,19) 6 3 1 3 4 4 3 4 4 6 2 4 1 2 4 6 4 4 4 5 0

∼ 6 3 1 3 4 4 3 4 4 6 2 4 1 2 4 6 4 4 4 5

(26,20) 6 5 5 1 2 1 2 5 6 6 6 3 6 1 2 2 1 4 1 2 0

∼ 6 5 5 1 2 1 2 5 6 6 6 3 6 1 2 2 1 4 1 2

(26,21) 4 6 4 1 2 2 1 1 3 4 3 2 2 4 6 6 3 4 6 6 0

∼ 4 6 4 1 2 2 1 1 3 4 3 2 2 4 6 6 3 4 6 6

(26,22) 3 2 6 6 4 1 1 4 5 5 2 5 2 5 4 3 4 3 3 1 0

∼ 3 2 6 6 4 1 1 4 5 5 2 5 2 5 4 3 4 3 3 1

(26,23) 4 1 1 4 1 3 3 5 6 3 4 2 3 5 6 3 6 5 5 1 0

∼ 4 1 1 4 1 3 3 5 6 3 4 2 3 5 6 3 6 5 5 1

(26,6) 5 6 3 1 4 4 2 6 5 6 4 6 1 5 2 3 3 4 4 5 0

∼ 5 6 3 1 4 4 2 6 5 6 4 6 1 5 2 3 3 4 4 5

(29,12) 2 4 4 5 1 2 1 6 2 1 2 6 4 2 3 6 4 4 6 2 0

∼ 2 4 4 5 1 2 1 6 2 1 2 6 4 2 3 6 4 4 6 2

(29,13) 5 4 6 5 6 1 4 1 5 5 4 6 3 6 2 1 1 2 3 3 0

∼ 5 4 6 5 6 1 4 1 5 5 4 6 3 6 2 1 1 2 3 3

(29,14) 1 4 1 2 2 3 5 4 4 6 6 1 1 5 6 5 5 2 3 3 14

∼ 4 4 5 3 5 4 5 5 4 5 5 4 5 5 5 5 5 3 4 4

(29,21) 5 2 1 2 3 4 5 3 6 5 3 5 2 3 2 5 1 4 1 5 0

∼ 5 2 1 2 3 4 5 3 6 5 3 5 2 3 2 5 1 4 1 5

(29,22) 1 1 6 4 4 3 6 3 6 5 5 5 3 5 6 3 2 4 6 5 15

∼ 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 *
(29,23) 6 6 4 3 6 6 1 4 5 6 1 5 3 6 4 1 4 3 1 5 0

∼ 6 6 4 3 6 6 1 4 5 6 1 5 3 6 4 1 4 3 1 5

(29,24) 5 2 1 6 6 4 6 2 6 1 1 5 3 1 2 1 2 6 6 6 16
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C.2. Die rolling data

Table C.1 � Warm water treatment, continued from previous page

part. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 L

∼ 5 2 5 5 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5

(29,25) 6 1 4 6 5 6 6 5 4 5 6 5 4 2 1 2 4 1 1 6 0

∼ 6 1 4 6 5 6 6 5 4 5 6 5 4 2 1 2 4 1 1 6

(29,26) 3 5 3 1 5 1 5 4 2 3 6 6 4 6 3 6 4 1 1 6 0

∼ 3 5 3 1 5 1 5 4 2 3 6 6 4 6 3 6 4 1 1 6

(29,27) 4 6 4 3 5 6 3 3 5 6 2 1 4 4 6 1 1 2 4 5 7

∼ 4 5 4 3 5 5 3 3 5 5 2 5 4 4 5 5 4 2 4 5

(29,28) 5 3 6 2 6 3 2 2 5 1 1 5 1 5 4 2 2 6 1 2 0

∼ 5 3 6 2 6 3 2 2 5 1 1 5 1 5 4 2 2 6 1 2

(29,3) 2 2 4 2 4 5 5 3 6 2 6 6 4 3 3 2 1 4 6 4 18

∼ 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 *
(29,5) 5 1 5 6 5 1 3 6 4 5 4 3 5 5 6 6 5 5 2 2 12

∼ 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 *
(29,6) 3 3 3 1 1 5 5 5 4 2 5 5 6 2 5 5 5 2 3 4 9

∼ 3 3 5 5 4 5 5 5 4 4 5 5 5 4 5 5 5 4 4 5

(29,7) 4 6 2 1 1 1 1 4 6 6 1 3 5 1 3 2 1 5 1 2 17

∼ 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

(5,14) 3 5 3 5 6 6 4 3 3 5 4 4 5 4 6 2 3 4 4 6 0

∼ 3 5 3 5 6 6 4 3 3 5 4 4 5 4 6 2 3 4 4 6

(5,15) 1 6 3 4 4 2 6 1 5 4 2 4 5 1 1 1 3 3 6 5 1

∼ 1 6 3 4 4 2 6 1 3 4 2 4 5 1 1 1 3 3 6 5

(5,16) 6 2 5 4 3 2 6 5 1 4 6 6 2 2 6 5 6 3 6 4 0

∼ 6 2 5 4 3 2 6 5 1 4 6 6 2 2 6 5 6 3 6 4

(5,23) 2 2 3 4 1 5 4 5 3 2 3 3 2 6 3 5 1 3 3 5 0

∼ 2 2 3 4 1 5 4 5 3 2 3 3 2 6 3 5 1 3 3 5

(5,24) 2 6 2 3 1 3 2 2 3 5 4 2 3 1 2 2 2 6 2 6 3

∼ 2 5 2 3 1 3 2 2 3 5 4 2 3 1 2 2 2 5 2 5

(5,25) 2 1 6 5 2 1 2 1 2 2 2 4 6 4 6 6 6 5 4 5 9

∼ 2 5 5 5 2 5 2 5 2 2 5 4 5 4 5 5 5 5 4 5

(5,26) 2 5 1 1 4 2 5 2 2 3 2 6 4 6 2 4 3 4 4 1 0

∼ 2 5 1 1 4 2 5 2 2 3 2 6 4 6 2 4 3 4 4 1
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C.2. Die rolling data

Table C.1 � Warm water treatment, continued from previous page

part. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 L

(5,31) 2 2 4 2 6 4 4 3 2 3 6 3 1 5 4 3 3 1 3 6 0

∼ 2 2 4 2 6 4 4 3 2 3 6 3 1 5 4 3 3 1 3 6

(5,32) 1 3 5 3 1 4 6 2 6 2 3 3 2 4 3 1 6 6 1 5 15

∼ 1 5 5 5 5 4 5 5 5 5 5 5 5 4 5 5 5 5 5 5

(5,33) 2 3 1 6 5 4 4 6 2 1 4 6 1 2 5 1 5 1 1 5 10

∼ 4 3 5 5 5 4 4 4 5 5 4 6 5 2 5 5 5 4 5 5

(5,4) 2 6 5 6 4 1 2 3 6 4 2 2 6 1 1 2 3 6 6 2 18

∼ 5 5 5 5 5 5 5 5 5 5 4 4 5 4 5 4 3 5 4 4

(5,7) 4 4 1 4 3 5 4 2 3 4 1 4 6 3 4 2 3 4 5 2 0

∼ 4 4 1 4 3 5 4 2 3 4 1 4 6 3 4 2 3 4 5 2

(5,8) 5 1 4 2 4 2 1 5 5 6 2 3 4 2 6 2 1 6 6 3 0

∼ 5 1 4 2 4 2 1 5 5 6 2 3 4 2 6 2 1 6 6 3

(5,9) 4 3 4 3 4 2 4 2 2 1 4 4 3 2 3 6 1 5 6 4 11

∼ 4 3 4 5 4 5 4 5 4 4 4 4 5 4 5 5 4 5 5 4

(6,13) 5 4 4 6 2 2 2 4 2 4 6 6 6 6 6 3 3 4 5 6 14

∼ 5 4 5 4 5 3 5 4 5 4 3 3 5 5 4 3 4 5 5 3

(6,14) 4 2 2 5 5 1 4 1 1 6 5 1 3 5 3 3 3 3 4 5 9

∼ 4 3 5 5 5 3 4 3 4 5 5 4 3 5 3 3 4 4 4 5

(6,15) 4 1 6 2 5 3 1 5 4 5 6 6 6 4 5 3 1 6 5 6 10

∼ 4 5 5 2 5 3 5 5 5 5 5 5 6 4 5 5 5 5 5 5

(6,22) 1 5 6 2 3 2 2 6 4 3 4 2 2 2 3 5 3 2 6 4 0

∼ 1 5 6 2 3 2 2 6 4 3 4 2 2 2 3 5 3 2 6 4

(6,23) 5 3 4 2 2 1 5 2 1 4 5 2 5 2 6 1 2 6 1 2 0

∼ 5 3 4 2 2 1 5 2 1 4 5 2 5 2 6 1 2 6 1 2

(6,24) 5 1 5 5 5 3 5 3 5 3 5 4 4 3 2 2 6 2 1 4 0

∼ 5 1 5 5 5 3 5 3 5 3 5 4 4 3 2 2 6 2 1 4

(6,25) 5 2 1 5 6 4 5 2 2 5 4 2 3 6 5 5 5 1 3 1 0

∼ 5 2 1 5 6 4 5 2 2 5 4 2 3 6 5 5 5 1 3 1

(6,26) 5 5 6 5 4 1 3 2 4 2 2 3 5 2 6 1 4 3 4 2 0

∼ 5 5 6 5 4 1 3 2 4 2 2 3 5 2 6 1 4 3 4 2

(6,27) 4 4 6 1 4 1 3 3 6 3 1 5 3 6 6 3 1 4 4 1 0
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C.2. Die rolling data

Table C.1 � Warm water treatment, continued from previous page

part. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 L

∼ 4 4 6 1 4 1 3 3 6 3 1 5 3 6 6 3 1 4 4 1

(6,28) 1 4 6 2 3 6 1 1 6 6 5 6 1 3 2 4 4 1 1 3 0

∼ 1 4 6 2 3 6 1 1 6 6 5 6 1 3 2 4 4 1 1 3

(6,29) 6 1 2 2 5 1 3 6 6 6 2 6 5 6 6 1 5 5 1 1 0

∼ 6 1 2 2 5 1 3 6 6 6 2 6 5 6 6 1 5 5 1 1

(6,32) 5 4 1 3 3 1 5 3 4 2 1 2 4 4 6 2 6 5 3 3 0

∼ 5 4 1 3 3 1 5 3 4 2 1 2 4 4 6 2 6 5 3 3

(6,6) 1 3 2 5 2 6 6 5 1 6 6 6 3 2 2 4 2 2 1 2 0

∼ 1 3 2 5 2 6 6 5 1 6 6 6 3 2 2 4 2 2 1 2

(6,7) 4 4 2 3 6 6 5 2 1 1 4 4 4 2 1 2 4 4 1 6 0

∼ 4 4 2 3 6 6 5 2 1 1 4 4 4 2 1 2 4 4 1 6

(6,8) 4 2 3 1 4 4 3 1 2 6 3 1 5 4 5 6 2 2 1 1 0

∼ 4 2 3 1 4 4 3 1 2 6 3 1 5 4 5 6 2 2 1 1

(9,10) 1 6 3 6 6 6 6 6 4 3 6 5 6 1 6 5 5 1 3 3 1

∼ 1 6 3 6 6 6 6 6 4 3 5 5 6 1 6 5 5 1 3 3

(9,15) 1 1 3 4 2 4 1 4 1 1 4 3 4 6 6 6 3 3 3 5 0

∼ 1 1 3 4 2 4 1 4 1 1 4 3 4 6 6 6 3 3 3 5

(9,16) 5 3 6 3 3 6 6 3 3 3 6 5 4 5 6 2 4 5 2 3 0

∼ 5 3 6 3 3 6 6 3 3 3 6 5 4 5 6 2 4 5 2 3

(9,17) 4 6 3 5 5 5 4 2 1 1 4 2 4 1 6 4 6 6 5 3 0

∼ 4 6 3 5 5 5 4 2 1 1 4 2 4 1 6 4 6 6 5 3

(9,23) 5 6 5 1 4 5 2 2 1 4 5 3 1 4 6 3 1 3 5 4 0

∼ 5 6 5 1 4 5 2 2 1 4 5 3 1 4 6 3 1 3 5 4

(9,24) 5 5 4 6 5 1 4 2 5 2 1 3 2 2 3 6 4 1 3 5 0

∼ 5 5 4 6 5 1 4 2 5 2 1 3 2 2 3 6 4 1 3 5

(9,25) 3 6 3 4 6 2 6 4 2 5 5 4 3 3 1 4 2 3 6 1 18

∼ 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 *
(9,26) 6 3 3 6 1 6 6 6 4 2 4 2 6 5 4 4 4 1 3 3 6

∼ 5 3 4 6 2 5 5 6 4 2 4 3 6 5 4 4 4 1 3 3

(9,27) 5 2 4 6 1 1 1 4 4 2 5 5 2 3 1 3 3 3 3 1 0

∼ 5 2 4 6 1 1 1 4 4 2 5 5 2 3 1 3 3 3 3 1
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C.2. Die rolling data

Table C.1 � Warm water treatment, continued from previous page

part. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 L

(9,28) 6 4 1 2 5 2 5 1 3 3 2 6 1 6 1 5 1 4 6 2 14

∼ 5 4 5 5 5 5 5 3 4 5 2 5 4 5 5 5 4 4 5 3

(9,29) 2 2 6 4 2 1 6 4 4 5 4 6 4 2 3 2 4 1 5 5 0

∼ 2 2 6 4 2 1 6 4 4 5 4 6 4 2 3 2 4 1 5 5

(9,30) 4 2 3 6 6 4 1 2 2 1 3 1 3 5 3 2 3 1 1 2 0

∼ 4 2 3 6 6 4 1 2 2 1 3 1 3 5 3 2 3 1 1 2

(9,32) 4 3 1 5 6 3 6 1 4 6 2 3 4 4 6 6 1 3 4 5 13

∼ 4 4 4 5 5 4 5 4 4 5 4 4 4 4 5 5 4 4 4 5

(9,33) 6 1 6 4 3 4 4 5 4 2 3 5 1 6 6 6 1 6 4 1 9

∼ 6 1 5 4 4 4 5 5 4 2 4 5 5 4 5 6 5 4 4 1

(9,6) 1 6 5 2 3 2 5 4 1 2 1 6 4 2 2 4 6 1 1 3 12

∼ 1 6 5 5 4 5 5 4 4 2 4 5 4 3 4 4 5 2 4 5

(9,8) 3 6 5 4 4 3 3 5 2 2 2 6 3 2 6 2 6 5 3 3 0

∼ 3 6 5 4 4 3 3 5 2 2 2 6 3 2 6 2 6 5 3 3

(9,9) 2 1 4 3 2 4 3 2 1 4 1 4 1 1 3 2 1 5 3 6 11

∼ 2 4 4 3 5 4 5 2 4 4 1 4 5 3 5 4 2 5 5 5

C.2.2 Cold water treatment

Table C.2: Dice rolling data for the cold water treatment..

part. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 L

(12,11) 6 2 4 1 2 2 1 2 3 6 1 5 5 4 4 5 5 2 5 5 0

∼ 6 2 4 1 2 2 1 2 3 6 1 5 5 4 4 5 5 2 5 5

(12,12) 1 5 1 6 6 3 4 3 2 5 2 3 3 3 3 2 3 6 6 2 18

∼ 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 *
(12,13) 2 1 4 6 5 5 5 4 3 6 3 2 3 4 2 6 3 6 2 4 0

∼ 2 1 4 6 5 5 5 4 3 6 3 2 3 4 2 6 3 6 2 4

(12,14) 4 4 5 3 2 1 3 3 4 1 1 2 4 2 6 3 4 1 6 1 0

∼ 4 4 5 3 2 1 3 3 4 1 1 2 4 2 6 3 4 1 6 1

(12,21) 5 1 5 1 2 2 6 3 2 3 3 6 2 5 1 6 5 1 4 3 10
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C.2. Die rolling data

Table C.2 � Cold water treatment, continued from previous page

part. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 L

∼ 5 5 5 1 2 5 5 3 2 5 5 5 2 5 5 5 5 5 4 5

(12,22) 1 6 5 1 2 2 4 2 5 6 4 5 3 6 4 3 2 3 2 4 4

∼ 1 5 5 3 2 2 4 2 5 5 4 5 3 5 4 3 2 3 2 4

(12,23) 5 2 6 3 4 5 5 3 3 6 6 2 5 2 5 2 6 2 2 6 14

∼ 5 5 5 5 4 5 5 4 4 5 5 3 5 3 5 3 5 3 3 5

(12,33) 5 4 4 2 1 4 3 6 3 6 4 5 5 6 4 3 3 5 5 5 0

∼ 5 4 4 2 1 4 3 6 3 6 4 5 5 6 4 3 3 5 5 5

(12,34) 2 4 3 3 4 2 1 3 1 2 3 3 1 2 2 1 5 5 6 3 0

∼ 2 4 3 3 4 2 1 3 1 2 3 3 1 2 2 1 5 5 6 3

(12,35) 3 3 5 3 3 2 2 6 2 4 6 1 4 4 3 1 2 3 5 5 0

∼ 3 3 5 3 3 2 2 6 2 4 6 1 4 4 3 1 2 3 5 5

(12,37) 4 4 1 6 2 3 3 2 1 4 2 1 6 6 3 3 4 1 5 1 0

∼ 4 4 1 6 2 3 3 2 1 4 2 1 6 6 3 3 4 1 5 1

(12,38) 6 4 2 4 6 1 1 4 2 1 6 4 5 6 4 5 4 1 3 6 0

∼ 6 4 2 4 6 1 1 4 2 1 6 4 5 6 4 5 4 1 3 6

(12,40) 5 6 2 1 1 5 6 4 5 6 3 6 5 2 2 2 1 6 5 3 0

∼ 5 6 2 1 1 5 6 4 5 6 3 6 5 2 2 2 1 6 5 3

(15,12) 6 4 5 5 6 5 3 4 5 1 1 5 4 4 3 5 5 2 1 5 0

∼ 6 4 5 5 6 5 3 4 5 1 1 5 4 4 3 5 5 2 1 5

(15,13) 6 4 3 1 2 1 1 3 6 3 1 3 1 2 2 2 2 4 2 4 0

∼ 6 4 3 1 2 1 1 3 6 3 1 3 1 2 2 2 2 4 2 4

(15,14) 3 5 6 3 4 1 1 2 2 2 5 1 6 1 6 1 2 4 5 1 0

∼ 3 5 6 3 4 1 1 2 2 2 5 1 6 1 6 1 2 4 5 1

(15,21) 4 3 2 2 2 6 6 2 1 1 2 1 6 5 6 4 5 2 4 6 0

∼ 4 3 2 2 2 6 6 2 1 1 2 1 6 5 6 4 5 2 4 6

(15,22) 1 3 3 1 6 2 2 4 3 4 4 2 1 5 2 3 2 5 4 5 0

∼ 1 3 3 1 6 2 2 4 3 4 4 2 1 5 2 3 2 5 4 5

(15,23) 6 3 1 4 5 3 2 5 2 4 1 4 2 2 5 4 5 2 1 3 0

∼ 6 3 1 4 5 3 2 5 2 4 1 4 2 2 5 4 5 2 1 3

(15,25) 5 4 2 6 3 3 3 5 2 4 4 2 2 4 4 5 4 3 1 6 0

∼ 5 4 2 6 3 3 3 5 2 4 4 2 2 4 4 5 4 3 1 6
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C.2. Die rolling data

Table C.2 � Cold water treatment, continued from previous page

part. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 L

(15,26) 5 5 1 2 6 1 3 5 6 6 4 2 4 1 3 3 5 3 2 3 0

∼ 5 5 1 2 6 1 3 5 6 6 4 2 4 1 3 3 5 3 2 3

(15,27) 5 6 5 3 1 4 4 6 2 6 2 5 5 3 4 4 6 4 4 5 15

∼ 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 *
(15,28) 3 6 3 3 4 6 6 5 6 1 6 4 4 4 2 2 4 4 5 5 0

∼ 3 6 3 3 4 6 6 5 6 1 6 4 4 4 2 2 4 4 5 5

(15,29) 4 2 4 4 5 3 4 2 2 2 1 1 6 4 4 5 1 5 5 5 0

∼ 4 2 4 4 5 3 4 2 2 2 1 1 6 4 4 5 1 5 5 5

(15,30) 2 1 3 2 2 5 2 6 5 5 5 5 1 3 1 3 2 6 4 4 0

∼ 2 1 3 2 2 5 2 6 5 5 5 5 1 3 1 3 2 6 4 4

(16,12) 6 4 2 4 2 3 5 2 3 6 5 1 4 6 6 5 1 2 2 2 0

∼ 6 4 2 4 2 3 5 2 3 6 5 1 4 6 6 5 1 2 2 2

(16,13) 4 1 3 4 1 1 6 4 4 3 4 5 6 6 3 2 2 1 1 3 0

∼ 4 1 3 4 1 1 6 4 4 3 4 5 6 6 3 2 2 1 1 3

(16,14) 1 3 2 4 3 2 1 5 6 1 2 5 2 1 2 4 5 5 6 5 0

∼ 1 3 2 4 3 2 1 5 6 1 2 5 2 1 2 4 5 5 6 5

(16,15) 5 1 4 2 2 4 5 1 5 2 2 4 6 1 5 5 2 4 1 6 0

∼ 5 1 4 2 2 4 5 1 5 2 2 4 6 1 5 5 2 4 1 6

(16,22) 3 6 4 3 3 2 4 3 5 4 3 2 4 5 5 3 4 5 4 2 0

∼ 3 6 4 3 3 2 4 3 5 4 3 2 4 5 5 3 4 5 4 2

(16,23) 1 5 3 2 3 2 1 3 2 6 2 1 2 5 3 1 4 1 5 6 1

∼ 1 5 3 2 3 2 1 3 2 6 2 5 2 5 3 1 4 1 5 6

(16,24) 6 3 2 3 6 5 2 2 5 4 5 6 5 4 2 2 1 6 6 4 0

∼ 6 3 2 3 6 5 2 2 5 4 5 6 5 4 2 2 1 6 6 4

(16,33) 1 6 5 5 6 3 5 3 3 2 4 1 1 2 1 3 4 5 5 4 0

∼ 1 6 5 5 6 3 5 3 3 2 4 1 1 2 1 3 4 5 5 4

(16,34) 4 2 4 6 5 6 3 1 3 4 2 5 6 6 5 6 5 5 6 4 1

∼ 4 2 4 6 5 6 3 1 3 4 2 5 6 6 5 6 5 5 5 4

(16,35) 1 4 4 4 4 4 4 1 4 5 5 6 6 4 3 5 4 4 3 5 0

∼ 1 4 4 4 4 4 4 1 4 5 5 6 6 4 3 5 4 4 3 5

(16,37) 3 5 3 5 5 3 4 3 4 2 6 5 4 3 4 1 1 3 6 3 0
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C.2. Die rolling data

Table C.2 � Cold water treatment, continued from previous page

part. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 L

∼ 3 5 3 5 5 3 4 3 4 2 6 5 4 3 4 1 1 3 6 3

(16,38) 3 3 5 5 2 6 3 6 6 5 5 6 2 1 2 5 5 3 2 2 0

∼ 3 3 5 5 2 6 3 6 6 5 5 6 2 1 2 5 5 3 2 2

(16,39) 4 4 3 5 1 5 6 1 3 5 2 4 2 6 3 1 5 2 5 2 1

∼ 4 4 3 5 1 5 6 1 2 5 2 4 2 6 3 1 5 2 5 2

(16,40) 5 1 3 6 5 6 1 3 5 5 2 6 6 5 3 1 2 6 6 3 0

∼ 5 1 3 6 5 6 1 3 5 5 2 6 6 5 3 1 2 6 6 3

(16,41) 2 3 4 1 5 6 3 3 6 1 3 6 4 4 6 6 2 1 1 4 0

∼ 2 3 4 1 5 6 3 3 6 1 3 6 4 4 6 6 2 1 1 4

(19,10) 5 4 2 6 6 4 3 6 2 4 3 6 5 6 5 5 2 5 2 5 0

∼ 5 4 2 6 6 4 3 6 2 4 3 6 5 6 5 5 2 5 2 5

(19,11) 6 2 4 3 4 1 1 6 1 2 3 1 4 3 2 1 4 1 6 5 19

∼ 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 *
(19,12) 4 5 2 3 2 4 6 4 3 3 1 1 4 2 6 6 5 6 4 6 7

∼ 4 5 2 3 2 4 5 4 3 3 5 5 4 2 5 5 5 5 4 5

(19,19) 1 1 3 4 4 2 6 6 1 5 4 4 6 5 1 5 6 1 5 1 0

∼ 1 1 3 4 4 2 6 6 1 5 4 4 6 5 1 5 6 1 5 1

(19,20) 4 1 3 3 4 1 3 5 5 2 1 6 6 5 4 1 2 2 4 6 17

∼ 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 *
(19,21) 3 3 6 4 1 3 6 4 2 5 4 3 6 3 3 3 2 4 4 5 0

∼ 3 3 6 4 1 3 6 4 2 5 4 3 6 3 3 3 2 4 4 5

(19,30) 5 2 5 6 5 3 6 2 2 1 4 6 1 1 1 6 5 1 6 4 0

∼ 5 2 5 6 5 3 6 2 2 1 4 6 1 1 1 6 5 1 6 4

(19,31) 2 6 6 3 1 6 2 2 2 5 1 4 1 4 6 2 6 5 2 1 0

∼ 2 6 6 3 1 6 2 2 2 5 1 4 1 4 6 2 6 5 2 1

(19,32) 5 3 4 2 2 3 4 5 2 1 2 1 4 1 3 6 6 2 4 1 0

∼ 5 3 4 2 2 3 4 5 2 1 2 1 4 1 3 6 6 2 4 1

(19,34) 5 2 4 2 3 5 4 6 4 1 3 4 1 3 4 2 1 5 4 5 0

∼ 5 2 4 2 3 5 4 6 4 1 3 4 1 3 4 2 1 5 4 5

(19,35) 4 6 4 3 5 3 5 4 5 4 1 2 5 5 3 5 2 1 5 3 0

∼ 4 6 4 3 5 3 5 4 5 4 1 2 5 5 3 5 2 1 5 3
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C.2. Die rolling data

Table C.2 � Cold water treatment, continued from previous page

part. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 L

(19,36) 4 2 1 6 2 6 4 1 2 5 3 3 6 5 2 5 2 5 4 6 0

∼ 4 2 1 6 2 6 4 1 2 5 3 3 6 5 2 5 2 5 4 6

(19,37) 3 6 1 1 5 6 3 6 3 6 5 2 2 1 6 6 5 4 6 2 0

∼ 3 6 1 1 5 6 3 6 3 6 5 2 2 1 6 6 5 4 6 2

(19,38) 2 2 4 3 1 3 1 1 2 4 4 4 6 3 1 3 4 4 2 3 7

∼ 5 5 4 3 5 3 1 1 2 4 4 4 1 4 4 3 4 4 2 4

(19,39) 4 6 4 3 2 3 4 5 6 3 3 2 4 2 5 2 4 5 3 4 0

∼ 4 6 4 3 2 3 4 5 6 3 3 2 4 2 5 2 4 5 3 4

(22,10) 5 4 3 4 2 1 5 2 5 3 1 2 4 2 2 3 6 4 4 6 2

∼ 5 4 3 4 2 1 5 2 5 3 2 2 5 2 2 3 6 4 4 6

(22,11) 2 5 2 5 6 5 2 3 6 3 4 6 1 3 1 1 5 5 2 1 15

∼ 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 *
(22,17) 2 3 3 1 4 6 4 2 1 2 4 3 2 2 6 6 2 4 2 2 0

∼ 2 3 3 1 4 6 4 2 1 2 4 3 2 2 6 6 2 4 2 2

(22,18) 1 6 1 6 5 6 5 2 4 4 2 1 5 3 6 3 6 1 6 2 6

∼ 4 5 1 6 5 5 5 2 4 5 5 1 5 4 6 3 6 1 6 2

(22,19) 5 5 2 2 6 6 3 3 6 3 3 6 3 2 6 1 3 5 4 6 0

∼ 5 5 2 2 6 6 3 3 6 3 3 6 3 2 6 1 3 5 4 6

(22,28) 4 1 2 6 6 6 6 2 1 4 6 5 2 2 3 3 6 6 5 5 1

∼ 4 1 4 6 6 6 6 2 1 4 6 5 2 2 3 3 6 6 5 5

(22,29) 5 4 5 1 5 2 4 1 2 5 6 5 3 6 4 6 3 6 3 5 0

∼ 5 4 5 1 5 2 4 1 2 5 6 5 3 6 4 6 3 6 3 5

(22,30) 1 3 3 2 3 3 6 2 5 6 5 6 3 3 3 6 1 2 4 5 0

∼ 1 3 3 2 3 3 6 2 5 6 5 6 3 3 3 6 1 2 4 5

(22,32) 6 4 6 4 4 4 3 6 4 6 6 5 5 4 5 2 1 1 3 2 0

∼ 6 4 6 4 4 4 3 6 4 6 6 5 5 4 5 2 1 1 3 2

(22,33) 5 5 4 4 5 1 6 5 2 5 2 1 5 1 5 2 5 4 1 5 7

∼ 5 5 4 4 5 5 5 5 5 5 2 5 5 5 5 5 5 4 5 5

(22,34) 5 4 4 5 4 4 1 1 2 6 1 1 5 2 1 2 2 6 1 2 0

∼ 5 4 4 5 4 4 1 1 2 6 1 1 5 2 1 2 2 6 1 2

(22,35) 1 1 2 6 1 3 1 5 1 4 6 3 5 3 2 4 1 3 5 5 0

Continued on next page

177



C.2. Die rolling data

Table C.2 � Cold water treatment, continued from previous page

part. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 L

∼ 1 1 2 6 1 3 1 5 1 4 6 3 5 3 2 4 1 3 5 5

(22,36) 2 5 3 6 3 5 2 5 6 5 6 6 6 4 5 5 2 3 4 6 5

∼ 2 5 3 5 3 5 2 5 5 5 6 5 5 4 5 5 2 3 4 5

(22,37) 6 1 3 3 4 2 6 2 5 4 6 6 2 1 6 1 6 2 1 4 4

∼ 6 5 3 3 4 2 5 2 5 4 6 6 2 1 5 1 5 2 1 4

(25,10) 3 5 4 2 4 3 3 2 3 2 5 3 1 2 3 6 4 6 1 6 2

∼ 3 5 4 2 4 3 3 5 3 5 5 3 1 2 3 6 4 6 1 6

(25,11) 4 5 5 2 2 4 3 5 5 4 1 2 4 4 1 1 4 4 2 3 4

∼ 5 5 5 5 2 5 3 5 5 5 1 2 4 4 1 1 4 4 2 3

(25,12) 3 1 2 3 6 1 4 3 4 1 2 3 2 1 3 3 3 6 2 1 5

∼ 3 5 2 3 5 1 4 3 4 1 4 3 2 1 3 3 5 5 2 1

(25,18) 4 4 5 5 3 5 6 1 6 5 3 5 3 1 4 1 5 4 2 1 0

∼ 4 4 5 5 3 5 6 1 6 5 3 5 3 1 4 1 5 4 2 1

(25,19) 2 3 2 5 3 6 5 1 4 2 3 4 6 4 2 1 2 4 5 2 0

∼ 2 3 2 5 3 6 5 1 4 2 3 4 6 4 2 1 2 4 5 2

(25,20) 5 2 6 6 5 2 2 6 5 3 6 5 2 2 1 1 4 1 5 6 9

∼ 6 5 5 6 3 3 2 6 5 5 6 4 3 2 2 1 4 1 5 6

(25,29) 1 3 2 1 4 2 3 3 6 3 1 5 6 3 3 4 6 4 1 4 0

∼ 1 3 2 1 4 2 3 3 6 3 1 5 6 3 3 4 6 4 1 4

(25,30) 5 4 4 1 6 4 2 4 3 5 3 5 5 5 4 1 1 1 6 2 0

∼ 5 4 4 1 6 4 2 4 3 5 3 5 5 5 4 1 1 1 6 2

(25,31) 3 4 4 4 2 4 4 1 5 5 3 2 2 3 5 1 1 4 1 3 0

∼ 3 4 4 4 2 4 4 1 5 5 3 2 2 3 5 1 1 4 1 3

(25,33) 2 6 2 3 5 2 1 4 1 6 2 3 2 6 4 4 4 3 4 5 0

∼ 2 6 2 3 5 2 1 4 1 6 2 3 2 6 4 4 4 3 4 5

(25,34) 6 4 6 3 3 4 6 1 1 6 3 4 2 5 5 1 4 2 5 6 1

∼ 6 4 5 3 3 4 6 1 1 6 3 4 2 5 5 1 4 2 5 6

(25,35) 5 5 6 5 1 1 6 3 1 3 6 3 6 4 5 6 2 6 4 1 0

∼ 5 5 6 5 1 1 6 3 1 3 6 3 6 4 5 6 2 6 4 1

(25,36) 3 4 5 2 3 1 4 4 5 3 4 3 4 2 2 6 5 3 5 3 0

∼ 3 4 5 2 3 1 4 4 5 3 4 3 4 2 2 6 5 3 5 3
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C.2. Die rolling data

Table C.2 � Cold water treatment, continued from previous page

part. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 L

(25,37) 2 6 4 6 3 4 4 5 2 5 4 2 2 3 6 1 3 1 1 1 0

∼ 2 6 4 6 3 4 4 5 2 5 4 2 2 3 6 1 3 1 1 1

(25,9) 5 1 4 1 2 3 6 3 3 6 1 1 2 2 6 6 2 2 3 5 0

∼ 5 1 4 1 2 3 6 3 3 6 1 1 2 2 6 6 2 2 3 5

(26,11) 5 3 6 2 2 1 2 3 3 6 6 5 4 4 5 4 6 6 6 4 0

∼ 5 3 6 2 2 1 2 3 3 6 6 5 4 4 5 4 6 6 6 4

(26,12) 2 4 2 2 3 2 5 3 6 6 3 3 2 4 4 6 4 1 6 4 0

∼ 2 4 2 2 3 2 5 3 6 6 3 3 2 4 4 6 4 1 6 4

(26,13) 2 2 3 5 2 4 1 6 5 6 1 6 2 3 1 4 3 2 1 3 0

∼ 2 2 3 5 2 4 1 6 5 6 1 6 2 3 1 4 3 2 1 3

(26,24) 4 6 4 5 5 3 2 1 3 1 3 5 5 4 4 3 1 5 2 1 0

∼ 4 6 4 5 5 3 2 1 3 1 3 5 5 4 4 3 1 5 2 1

(26,25) 6 3 1 1 6 4 6 3 5 1 1 3 3 2 2 1 4 4 1 1 0

∼ 6 3 1 1 6 4 6 3 5 1 1 3 3 2 2 1 4 4 1 1

(26,26) 1 4 1 5 6 3 2 4 5 3 4 3 6 4 3 3 1 2 4 4 0

∼ 1 4 1 5 6 3 2 4 5 3 4 3 6 4 3 3 1 2 4 4

(26,28) 4 4 1 6 2 5 5 1 4 4 1 2 3 5 6 1 2 6 6 4 0

∼ 4 4 1 6 2 5 5 1 4 4 1 2 3 5 6 1 2 6 6 4

(26,29) 5 3 3 3 1 6 1 3 5 2 3 6 5 4 6 5 5 1 6 6 0

∼ 5 3 3 3 1 6 1 3 5 2 3 6 5 4 6 5 5 1 6 6

(26,30) 2 1 1 2 3 3 4 1 2 5 4 6 6 3 5 5 5 2 2 4 0

∼ 2 1 1 2 3 3 4 1 2 5 4 6 6 3 5 5 5 2 2 4

(26,31) 4 6 4 1 3 4 5 2 3 2 4 6 4 6 3 4 6 2 3 3 0

∼ 4 6 4 1 3 4 5 2 3 2 4 6 4 6 3 4 6 2 3 3

(26,32) 5 2 6 6 4 4 6 2 3 4 6 1 1 6 3 6 2 2 1 4 0

∼ 5 2 6 6 4 4 6 2 3 4 6 1 1 6 3 6 2 2 1 4

(26,33) 4 3 1 5 1 2 4 1 6 3 1 6 4 4 3 4 1 3 1 2 0

∼ 4 3 1 5 1 2 4 1 6 3 1 6 4 4 3 4 1 3 1 2

(26,8) 2 4 3 6 5 1 3 6 6 3 3 4 4 2 1 3 1 4 3 6 0

∼ 2 4 3 6 5 1 3 6 6 3 3 4 4 2 1 3 1 4 3 6

(29,10) 5 4 4 5 2 4 6 4 2 3 6 2 5 1 4 6 1 6 5 4 2
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C.2. Die rolling data

Table C.2 � Cold water treatment, continued from previous page

part. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 L

∼ 5 4 4 5 2 4 6 4 5 3 6 4 5 1 4 6 1 6 5 4

(29,11) 5 4 2 6 2 1 1 4 4 1 6 3 4 2 6 5 1 2 6 1 1

∼ 5 4 2 6 2 1 1 4 4 1 6 3 4 2 6 6 1 2 6 1

(29,18) 2 3 2 5 5 4 2 1 3 3 5 2 4 6 2 1 4 3 3 2 0

∼ 2 3 2 5 5 4 2 1 3 3 5 2 4 6 2 1 4 3 3 2

(29,19) 5 4 5 5 1 2 3 5 5 3 1 1 5 6 5 5 1 5 4 4 0

∼ 5 4 5 5 1 2 3 5 5 3 1 1 5 6 5 5 1 5 4 4

(29,20) 6 2 3 2 6 5 1 3 4 3 3 5 5 3 3 1 4 4 1 4 0

∼ 6 2 3 2 6 5 1 3 4 3 3 5 5 3 3 1 4 4 1 4

(29,29) 3 1 6 5 5 2 1 2 5 3 4 1 1 4 1 1 6 1 4 6 0

∼ 3 1 6 5 5 2 1 2 5 3 4 1 1 4 1 1 6 1 4 6

(29,30) 5 2 6 6 6 5 5 3 3 6 4 1 1 1 3 6 3 2 5 5 0

∼ 5 2 6 6 6 5 5 3 3 6 4 1 1 1 3 6 3 2 5 5

(29,31) 3 2 5 3 6 4 5 1 2 3 2 2 1 4 1 3 4 6 5 4 0

∼ 3 2 5 3 6 4 5 1 2 3 2 2 1 4 1 3 4 6 5 4

(29,33) 4 2 6 6 4 3 2 2 3 3 5 6 2 1 2 6 4 6 1 5 5

∼ 4 2 5 6 4 3 2 2 5 5 5 6 2 1 2 5 4 5 1 5

(29,34) 3 4 4 1 2 2 2 1 1 3 4 3 3 4 3 4 4 1 4 2 0

∼ 3 4 4 1 2 2 2 1 1 3 4 3 3 4 3 4 4 1 4 2

(29,35) 4 1 4 5 4 6 3 1 3 6 6 2 4 3 6 4 2 2 4 5 0

∼ 4 1 4 5 4 6 3 1 3 6 6 2 4 3 6 4 2 2 4 5

(29,36) 1 2 3 2 5 1 2 3 5 2 5 6 5 5 3 4 4 6 5 3 1

∼ 1 4 3 2 5 1 2 3 5 2 5 6 5 5 3 4 4 6 5 3

(29,37) 4 5 1 6 4 2 1 5 5 5 4 4 2 1 2 4 1 1 4 3 0

∼ 4 5 1 6 4 2 1 5 5 5 4 4 2 1 2 4 1 1 4 3

(29,8) 5 3 6 3 3 1 4 4 5 2 3 2 2 5 6 1 3 4 5 6 0

∼ 5 3 6 3 3 1 4 4 5 2 3 2 2 5 6 1 3 4 5 6

(29,9) 6 4 1 2 6 6 6 4 6 5 6 2 4 5 3 6 3 2 5 2 12

∼ 5 4 5 4 3 5 3 4 5 5 4 4 4 5 5 4 3 2 5 4

(5,10) 2 5 1 1 4 4 1 1 3 4 4 3 4 5 2 1 6 3 3 5 0

∼ 2 5 1 1 4 4 1 1 3 4 4 3 4 5 2 1 6 3 3 5
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C.2. Die rolling data

Table C.2 � Cold water treatment, continued from previous page

part. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 L

(5,12) 1 5 2 6 3 5 5 6 3 3 3 6 3 2 2 5 2 3 2 4 16

∼ 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 *
(5,13) 5 1 5 1 1 5 2 1 1 5 3 6 2 5 3 1 1 5 3 6 0

∼ 5 1 5 1 1 5 2 1 1 5 3 6 2 5 3 1 1 5 3 6

(5,20) 4 6 4 3 2 5 3 5 6 4 6 6 2 6 3 3 4 2 3 5 14

∼ 5 5 5 5 4 5 3 5 5 4 5 5 3 5 4 5 4 5 5 5

(5,21) 4 2 4 4 3 2 3 4 4 6 4 2 2 3 6 4 3 3 1 6 0

∼ 4 2 4 4 3 2 3 4 4 6 4 2 2 3 6 4 3 3 1 6

(5,22) 4 5 3 2 2 5 5 4 4 1 2 1 4 1 1 5 3 2 1 5 0

∼ 4 5 3 2 2 5 5 4 4 1 2 1 4 1 1 5 3 2 1 5

(5,34) 5 2 5 3 5 2 2 6 1 2 5 1 5 3 1 6 2 3 3 6 0

∼ 5 2 5 3 5 2 2 6 1 2 5 1 5 3 1 6 2 3 3 6

(5,35) 5 2 2 2 5 5 5 6 6 6 3 4 3 4 2 6 5 6 1 5 0

∼ 5 2 2 2 5 5 5 6 6 6 3 4 3 4 2 6 5 6 1 5

(5,36) 1 5 5 4 1 1 5 4 4 4 6 4 2 1 1 3 3 5 3 4 15

∼ 5 5 5 5 5 5 5 5 5 5 5 4 5 5 5 5 5 5 5 5

(5,38) 1 5 5 6 1 4 4 2 5 4 2 6 4 5 1 6 2 2 4 3 0

∼ 1 5 5 6 1 4 4 2 5 4 2 6 4 5 1 6 2 2 4 3

(5,39) 4 1 6 4 6 4 3 3 6 4 1 4 4 5 2 5 4 1 6 4 0

∼ 4 1 6 4 6 4 3 3 6 4 1 4 4 5 2 5 4 1 6 4

(5,40) 4 4 4 6 6 5 4 4 3 2 5 5 3 6 2 2 6 1 3 4 0

∼ 4 4 4 6 6 5 4 4 3 2 5 5 3 6 2 2 6 1 3 4

(5,41) 6 1 2 4 6 5 4 5 6 6 6 6 6 1 2 5 2 1 6 5 0

∼ 6 1 2 4 6 5 4 5 6 6 6 6 6 1 2 5 2 1 6 5

(5,42) 2 1 3 1 6 2 2 2 4 2 6 6 2 1 4 6 6 4 3 6 0

∼ 2 1 3 1 6 2 2 2 4 2 6 6 2 1 4 6 6 4 3 6

(5,43) 5 3 3 6 5 1 5 2 5 2 4 1 6 4 5 2 6 5 2 1 0

∼ 5 3 3 6 5 1 5 2 5 2 4 1 6 4 5 2 6 5 2 1

(6,10) 3 6 1 5 6 2 3 6 2 5 1 5 1 2 5 1 4 2 4 5 0

∼ 3 6 1 5 6 2 3 6 2 5 1 5 1 2 5 1 4 2 4 5

(6,11) 4 4 2 1 1 6 1 2 4 5 5 2 3 5 3 4 2 1 3 5 0
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C.2. Die rolling data

Table C.2 � Cold water treatment, continued from previous page

part. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 L

∼ 4 4 2 1 1 6 1 2 4 5 5 2 3 5 3 4 2 1 3 5

(6,12) 3 1 6 1 3 6 1 3 2 3 6 3 3 1 3 2 1 1 1 1 4

∼ 3 1 6 5 5 5 1 3 2 3 5 3 3 1 3 2 1 1 1 1

(6,19) 3 4 2 5 1 5 4 5 2 2 4 3 4 5 2 5 6 6 4 3 0

∼ 3 4 2 5 1 5 4 5 2 2 4 3 4 5 2 5 6 6 4 3

(6,20) 6 2 3 6 1 2 1 5 3 4 1 4 6 3 4 5 4 4 3 6 2

∼ 6 2 3 6 1 2 1 5 3 4 1 4 6 3 4 5 4 4 4 5

(6,21) 5 2 4 1 4 3 3 2 5 1 3 3 3 3 1 3 4 5 1 1 0

∼ 5 2 4 1 4 3 3 2 5 1 3 3 3 3 1 3 4 5 1 1

(6,34) 2 5 6 6 3 4 3 3 1 6 1 6 6 2 5 5 2 4 4 1 0

∼ 2 5 6 6 3 4 3 3 1 6 1 6 6 2 5 5 2 4 4 1

(6,35) 5 4 3 1 2 3 6 5 2 5 4 2 5 4 1 3 2 3 3 2 0

∼ 5 4 3 1 2 3 6 5 2 5 4 2 5 4 1 3 2 3 3 2

(6,36) 4 2 6 6 6 1 2 4 3 3 3 3 2 6 3 4 5 6 4 1 0

∼ 4 2 6 6 6 1 2 4 3 3 3 3 2 6 3 4 5 6 4 1

(6,38) 6 5 5 4 3 2 6 2 1 3 4 2 1 4 2 2 6 6 2 4 0

∼ 6 5 5 4 3 2 6 2 1 3 4 2 1 4 2 2 6 6 2 4

(6,39) 3 3 1 6 5 4 6 2 4 1 1 6 3 3 2 6 3 6 1 4 18

∼ 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 4

(6,40) 2 3 2 4 5 6 4 3 5 1 5 5 6 6 1 5 4 3 5 6 6

∼ 2 3 5 4 5 5 4 3 5 5 5 5 5 5 1 5 4 3 5 5

(6,41) 3 6 3 2 4 5 6 2 6 5 1 4 2 2 5 4 2 2 6 1 1

∼ 3 6 3 2 4 5 6 2 5 5 1 4 2 2 5 4 2 2 6 1

(6,42) 5 6 5 6 2 4 4 2 1 6 2 2 3 5 3 3 1 2 3 6 0

∼ 5 6 5 6 2 4 4 2 1 6 2 2 3 5 3 3 1 2 3 6

(6,43) 5 3 6 4 4 5 2 2 5 6 4 3 6 3 5 3 4 3 5 5 8

∼ 5 3 5 5 4 5 5 5 5 5 4 3 5 5 5 5 4 3 5 5

(6,9) 3 2 2 3 1 3 5 5 2 1 2 4 4 3 4 3 2 1 1 3 0

∼ 3 2 2 3 1 3 5 5 2 1 2 4 4 3 4 3 2 1 1 3

(9,11) 3 2 2 2 5 6 1 1 6 1 2 6 4 2 6 5 6 5 1 5 3

∼ 3 2 5 2 5 5 1 2 6 1 2 6 4 2 6 5 6 5 1 5
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C.2. Die rolling data

Table C.2 � Cold water treatment, continued from previous page

part. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 L

(9,12) 2 5 4 3 1 1 5 4 1 2 4 1 4 2 5 1 3 3 4 3 0

∼ 2 5 4 3 1 1 5 4 1 2 4 1 4 2 5 1 3 3 4 3

(9,13) 6 2 1 1 2 4 4 3 6 3 6 4 1 1 5 3 3 2 1 1 0

∼ 6 2 1 1 2 4 4 3 6 3 6 4 1 1 5 3 3 2 1 1

(9,14) 6 4 5 6 4 1 1 1 4 3 3 6 4 3 5 2 2 6 5 3 0

∼ 6 4 5 6 4 1 1 1 4 3 3 6 4 3 5 2 2 6 5 3

(9,20) 4 6 2 2 2 5 1 5 5 1 5 1 3 3 3 2 3 2 1 4 0

∼ 4 6 2 2 2 5 1 5 5 1 5 1 3 3 3 2 3 2 1 4

(9,21) 5 1 1 6 3 1 3 5 6 3 1 1 4 6 4 6 3 5 6 5 1

∼ 5 1 1 6 3 1 3 5 6 3 1 1 4 6 4 5 3 5 6 5

(9,22) 3 6 2 2 4 6 6 5 5 3 4 5 4 1 1 2 6 2 6 6 0

∼ 3 6 2 2 4 6 6 5 5 3 4 5 4 1 1 2 6 2 6 6

(9,34) 6 5 3 5 6 1 2 2 6 1 5 1 3 4 5 3 2 3 4 6 0

∼ 6 5 3 5 6 1 2 2 6 1 5 1 3 4 5 3 2 3 4 6

(9,35) 2 5 4 2 5 6 1 3 2 4 2 6 1 3 6 2 4 1 1 1 4

∼ 2 5 4 2 5 6 1 5 5 4 2 5 1 3 5 2 4 1 1 1

(9,36) 2 6 2 3 5 4 2 2 3 3 6 6 3 3 6 4 3 1 3 5 0

∼ 2 6 2 3 5 4 2 2 3 3 6 6 3 3 6 4 3 1 3 5

(9,38) 6 2 2 5 2 2 5 6 5 2 2 1 6 5 5 2 4 5 6 2 0

∼ 6 2 2 5 2 2 5 6 5 2 2 1 6 5 5 2 4 5 6 2

(9,39) 5 5 3 1 1 5 3 4 2 1 6 6 2 5 1 4 5 5 1 4 0

∼ 5 5 3 1 1 5 3 4 2 1 6 6 2 5 1 4 5 5 1 4

(9,40) 3 2 5 4 3 3 1 5 3 2 3 3 4 2 1 6 6 5 6 1 0

∼ 3 2 5 4 3 3 1 5 3 2 3 3 4 2 1 6 6 5 6 1

(9,41) 3 3 1 5 1 3 2 6 5 5 4 1 6 1 6 5 6 5 6 6 0

∼ 3 3 1 5 1 3 2 6 5 5 4 1 6 1 6 5 6 5 6 6

(9,42) 4 4 6 6 2 5 6 1 3 5 3 1 4 2 5 3 4 6 4 4 0

∼ 4 4 6 6 2 5 6 1 3 5 3 1 4 2 5 3 4 6 4 4

C.2.3 No water treatment
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C.2. Die rolling data

Table C.3: Dice rolling data for no treatment.

part. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 L

(12,18) 4 3 4 5 6 6 4 4 1 1 5 3 5 2 2 2 1 2 5 6 0

∼ 4 3 4 5 6 6 4 4 1 1 5 3 5 2 2 2 1 2 5 6

(12,19) 4 6 4 4 6 2 5 1 4 4 6 3 5 1 1 6 6 5 2 5 1

∼ 4 6 4 4 6 2 5 1 4 4 6 3 5 1 1 6 6 5 5 5

(12,2) 6 4 3 2 6 5 2 1 6 6 5 2 5 2 5 3 3 2 4 4 14

∼ 5 4 5 5 5 5 5 5 5 4 5 4 5 4 5 5 5 5 4 5

(12,20) 3 5 4 5 1 4 1 4 5 5 4 1 5 4 4 2 1 5 5 4 0

∼ 3 5 4 5 1 4 1 4 5 5 4 1 5 4 4 2 1 5 5 4

(12,4) 5 4 6 1 1 2 4 5 6 4 1 4 4 3 4 4 2 5 4 3 0

∼ 5 4 6 1 1 2 4 5 6 4 1 4 4 3 4 4 2 5 4 3

(12,5) 2 2 5 2 2 3 5 5 2 6 3 3 5 6 4 3 3 2 2 1 0

∼ 2 2 5 2 2 3 5 5 2 6 3 3 5 6 4 3 3 2 2 1

(12,7) 1 2 5 1 5 1 5 5 2 1 5 5 6 6 5 4 2 6 1 3 0

∼ 1 2 5 1 5 1 5 5 2 1 5 5 6 6 5 4 2 6 1 3

(15,18) 6 1 6 2 2 3 4 1 2 6 5 2 5 1 6 1 3 2 6 4 1

∼ 6 1 6 2 2 3 4 1 2 6 5 2 5 1 6 1 3 2 5 4

(15,19) 5 1 2 1 3 3 3 2 5 3 5 5 1 1 5 2 6 4 3 4 0

∼ 5 1 2 1 3 3 3 2 5 3 5 5 1 1 5 2 6 4 3 4

(15,2) 6 4 3 2 6 5 2 1 6 6 5 2 5 2 5 3 3 2 4 4 0

∼ 6 4 3 2 6 5 2 1 6 6 5 2 5 2 5 3 3 2 4 4

(15,20) 6 1 6 2 3 4 1 2 5 5 3 4 1 5 1 4 6 3 2 5 0

∼ 6 1 6 2 3 4 1 2 5 5 3 4 1 5 1 4 6 3 2 5

(15,4) 6 2 2 3 1 2 5 3 4 5 4 1 6 1 4 6 1 3 6 2 0

∼ 6 2 2 3 1 2 5 3 4 5 4 1 6 1 4 6 1 3 6 2

(15,5) 4 2 4 2 2 5 3 6 4 4 6 3 4 3 4 1 1 1 2 2 0

∼ 4 2 4 2 2 5 3 6 4 4 6 3 4 3 4 1 1 1 2 2

(15,8) 4 4 1 1 6 6 4 6 5 4 5 2 3 3 1 4 1 4 2 3 0

∼ 4 4 1 1 6 6 4 6 5 4 5 2 3 3 1 4 1 4 2 3

(16,19) 5 5 6 4 1 2 4 6 1 4 1 6 5 3 3 4 5 6 6 4 0

∼ 5 5 6 4 1 2 4 6 1 4 1 6 5 3 3 4 5 6 6 4
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C.2. Die rolling data

Table C.3 � No treatment, continued from previous page

part. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 L

(16,2) 6 4 3 2 6 5 2 1 6 6 5 2 5 2 5 3 3 2 4 4 16

∼ 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 *
(16,20) 3 6 3 6 2 6 6 2 4 1 5 6 5 6 4 5 6 4 1 2 0

∼ 3 6 3 6 2 6 6 2 4 1 5 6 5 6 4 5 6 4 1 2

(16,21) 2 6 4 4 6 1 1 5 1 6 2 6 2 5 2 2 4 3 3 5 6

∼ 2 6 4 4 6 1 1 5 1 6 2 5 3 5 3 3 4 4 4 5

(16,4) 4 3 3 1 3 6 3 5 4 3 1 3 1 3 1 1 4 3 5 6 0

∼ 4 3 3 1 3 6 3 5 4 3 1 3 1 3 1 1 4 3 5 6

(16,5) 4 6 4 5 3 4 4 3 4 6 3 3 2 2 5 6 2 5 6 6 0

∼ 4 6 4 5 3 4 4 3 4 6 3 3 2 2 5 6 2 5 6 6

(16,8) 2 2 3 6 1 4 2 2 3 5 2 6 5 2 5 1 4 3 5 3 6

∼ 2 5 3 5 1 4 5 2 3 5 5 5 5 2 5 5 4 3 5 3

(19,16) 2 5 2 3 2 5 2 6 4 1 6 1 5 2 5 3 3 2 5 2 6

∼ 2 5 2 3 2 5 2 5 4 2 5 3 5 2 5 3 5 2 5 3

(19,17) 1 4 4 4 2 6 2 1 6 1 5 2 2 1 2 2 6 6 1 4 0

∼ 1 4 4 4 2 6 2 1 6 1 5 2 2 1 2 2 6 6 1 4

(19,18) 3 2 3 4 3 3 5 5 1 3 6 6 5 5 2 2 6 5 2 5 0

∼ 3 2 3 4 3 3 5 5 1 3 6 6 5 5 2 2 6 5 2 5

(19,2) 6 4 3 2 6 5 2 1 6 6 5 2 5 2 5 3 3 2 4 4 13

∼ 5 4 5 4 5 5 4 5 5 5 5 5 5 5 5 4 5 5 4 4

(19,4) 5 6 5 4 5 1 5 1 5 2 5 1 4 3 5 5 1 2 3 6 12

∼ 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 *
(22,15) 5 2 5 3 2 6 3 4 6 3 1 1 3 1 2 4 3 6 4 2 0

∼ 5 2 5 3 2 6 3 4 6 3 1 1 3 1 2 4 3 6 4 2

(22,16) 5 6 6 6 6 1 3 1 6 1 5 3 1 5 1 4 2 2 1 2 0

∼ 5 6 6 6 6 1 3 1 6 1 5 3 1 5 1 4 2 2 1 2

(22,2) 6 4 3 2 6 5 2 1 6 6 5 2 5 2 5 3 3 2 4 4 5

∼ 6 4 4 2 5 5 2 3 6 5 5 2 5 2 5 3 3 3 4 4

(22,4) 3 5 5 3 5 5 1 3 3 4 4 4 6 5 2 5 4 2 4 2 0

∼ 3 5 5 3 5 5 1 3 3 4 4 4 6 5 2 5 4 2 4 2

(22,6) 6 4 2 5 5 3 2 2 1 4 5 3 2 6 3 6 4 4 4 5 0
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C.2. Die rolling data

Table C.3 � No treatment, continued from previous page

part. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 L

∼ 6 4 2 5 5 3 2 2 1 4 5 3 2 6 3 6 4 4 4 5

(25,15) 3 3 2 4 1 1 5 2 4 5 4 1 1 6 1 2 4 4 3 5 0

∼ 3 3 2 4 1 1 5 2 4 5 4 1 1 6 1 2 4 4 3 5

(25,16) 4 3 5 6 5 5 2 6 3 2 3 3 5 5 4 4 6 2 6 1 0

∼ 4 3 5 6 5 5 2 6 3 2 3 3 5 5 4 4 6 2 6 1

(25,17) 1 2 6 6 5 1 5 3 4 1 4 6 6 4 2 3 5 6 1 3 0

∼ 1 2 6 6 5 1 5 3 4 1 4 6 6 4 2 3 5 6 1 3

(25,2) 6 4 3 2 6 5 2 1 6 6 5 2 5 2 5 3 3 2 4 4 0

∼ 6 4 3 2 6 5 2 1 6 6 5 2 5 2 5 3 3 2 4 4

(25,5) 2 1 4 5 1 1 4 4 4 4 3 1 3 2 1 5 3 5 6 2 14

∼ 5 5 4 5 5 5 5 4 4 5 5 5 5 4 5 5 5 5 5 5

(26,10) 3 2 3 2 3 6 6 2 6 1 1 4 3 4 5 3 2 6 2 3 0

∼ 3 2 3 2 3 6 6 2 6 1 1 4 3 4 5 3 2 6 2 3

(26,4) 4 6 3 4 6 1 4 1 5 6 1 3 2 3 3 3 3 5 2 3 0

∼ 4 6 3 4 6 1 4 1 5 6 1 3 2 3 3 3 3 5 2 3

(26,7) 6 5 6 2 5 3 5 5 2 2 6 3 6 6 4 3 5 6 6 2 4

∼ 6 5 5 2 5 3 5 5 2 4 6 3 6 5 4 3 5 6 5 2

(26,9) 2 5 3 4 6 1 5 6 4 6 3 5 1 4 1 3 1 4 3 3 2

∼ 2 5 3 4 6 1 6 6 4 6 3 6 1 4 1 3 1 4 3 3

(27,2) 5 5 1 3 5 6 3 4 1 6 3 6 6 6 4 4 1 2 2 2 0

∼ 5 5 1 3 5 6 3 4 1 6 3 6 6 6 4 4 1 2 2 2

(29,15) 3 1 5 3 3 2 1 3 3 6 6 2 1 4 5 5 2 1 5 4 8

∼ 3 5 5 4 3 5 1 5 5 4 5 2 1 4 5 5 2 5 5 4

(29,16) 4 6 6 6 2 2 2 5 4 3 6 4 6 6 6 3 3 3 5 5 13

∼ 4 6 6 5 5 5 5 5 4 5 5 5 5 5 5 5 5 5 5 5

(29,17) 2 2 2 4 2 5 6 4 6 2 3 4 5 2 2 3 5 3 5 5 2

∼ 2 2 2 4 2 5 5 4 6 2 3 4 5 2 4 3 5 3 5 5

(29,4) 1 6 3 6 2 2 6 4 4 3 5 1 6 5 4 4 4 4 4 2 0

∼ 1 6 3 6 2 2 6 4 4 3 5 1 6 5 4 4 4 4 4 2

(2,10) 4 6 5 1 2 5 5 6 2 2 6 4 6 2 1 6 1 3 1 3 0

∼ 4 6 5 1 2 5 5 6 2 2 6 4 6 2 1 6 1 3 1 3

Continued on next page
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C.2. Die rolling data

Table C.3 � No treatment, continued from previous page

part. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 L

(2,4) 1 4 5 2 6 4 4 5 2 5 4 2 5 1 3 2 2 5 6 1 12

∼ 5 5 5 4 5 4 4 5 4 5 4 5 5 5 4 3 5 5 5 5

(2,5) 4 2 6 3 6 2 3 2 1 1 1 5 3 5 4 6 3 5 6 5 0

∼ 4 2 6 3 6 2 3 2 1 1 1 5 3 5 4 6 3 5 6 5

(2,7) 3 2 4 3 6 3 4 5 6 5 6 2 6 6 6 5 5 5 6 3 0

∼ 3 2 4 3 6 3 4 5 6 5 6 2 6 6 6 5 5 5 6 3

(2,9) 2 6 1 2 5 1 5 2 3 3 5 1 1 4 2 2 3 2 3 2 0

∼ 2 6 1 2 5 1 5 2 3 3 5 1 1 4 2 2 3 2 3 2

(5,17) 2 5 6 5 5 1 4 2 1 1 1 6 2 1 5 3 1 3 6 6 2

∼ 2 5 6 5 5 1 4 2 1 1 5 5 2 1 5 3 1 3 6 6

(5,18) 3 2 1 5 6 4 1 5 4 6 4 6 5 6 6 6 3 6 2 2 0

∼ 3 2 1 5 6 4 1 5 4 6 4 6 5 6 6 6 3 6 2 2

(5,19) 2 5 5 2 4 6 4 3 3 5 5 2 6 2 6 4 1 1 6 5 0

∼ 2 5 5 2 4 6 4 3 3 5 5 2 6 2 6 4 1 1 6 5

(5,5) 6 4 4 6 3 6 3 3 4 3 6 2 2 6 3 6 1 4 4 5 7

∼ 6 4 4 5 3 5 5 3 4 3 5 2 4 5 3 3 1 4 4 5

(6,16) 4 4 5 4 3 5 4 6 2 4 3 5 4 4 1 3 3 3 5 4 12

∼ 5 4 5 5 4 5 5 5 4 4 5 5 4 5 2 5 5 5 5 4

(6,17) 6 3 3 1 2 6 3 2 1 3 4 1 1 4 5 2 6 4 3 3 0

∼ 6 3 3 1 2 6 3 2 1 3 4 1 1 4 5 2 6 4 3 3

(6,18) 5 5 6 5 2 5 5 4 5 3 3 5 2 3 6 4 6 6 6 2 0

∼ 5 5 6 5 2 5 5 4 5 3 3 5 2 3 6 4 6 6 6 2

(6,3) 2 6 1 6 5 5 4 1 1 5 4 1 1 2 1 1 1 1 2 2 0

∼ 2 6 1 6 5 5 4 1 1 5 4 1 1 2 1 1 1 1 2 2

(6,5) 1 3 3 3 4 2 3 2 6 2 2 2 4 1 4 1 2 6 6 4 0

∼ 1 3 3 3 4 2 3 2 6 2 2 2 4 1 4 1 2 6 6 4

(9,1) 1 3 3 6 4 4 2 4 3 2 2 3 6 5 1 3 5 1 4 3 16

∼ 1 4 4 5 5 4 3 5 4 4 3 5 5 5 5 4 5 2 5 4

(9,18) 6 1 6 4 1 3 4 1 1 3 2 5 2 4 4 3 1 6 2 6 0

∼ 6 1 6 4 1 3 4 1 1 3 2 5 2 4 4 3 1 6 2 6

(9,19) 5 3 5 6 3 1 4 2 2 2 1 5 2 5 2 5 3 3 5 6 14

Continued on next page
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C.2. Die rolling data

Table C.3 � No treatment, continued from previous page

part. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 L

∼ 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 *
(9,3) 4 3 6 1 6 1 2 3 5 2 2 5 4 3 5 3 1 2 4 2 1

∼ 4 3 6 2 6 1 2 3 5 2 2 5 4 3 5 3 1 2 4 2

(9,4) 3 4 6 1 2 1 2 5 2 4 3 5 5 6 5 4 5 4 3 5 3

∼ 3 4 5 5 2 1 2 5 2 4 3 5 5 5 5 4 5 4 3 5

(9,7) 2 5 4 3 1 5 1 5 4 3 4 1 5 6 1 4 4 2 3 1 5

∼ 2 5 4 3 5 5 1 5 4 3 4 4 5 5 1 4 4 2 5 5
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