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Abstract 
 

Lianas are woody vines that use the physical support of other plants to reach the forest 

canopy. They are a dominant and widespread feature of tropical forests and play an important role in 

tree and carbon dynamics. By strongly affecting the growth and survival of their host trees, lianas can 

significantly limit the ability of tropical forests to store and sequester carbon. Any increases in liana 

dominance, as has been observed predominantly in the Neotropics, may therefore further reduce 

the carbon sink function of tropical forests. However, studies assessing liana ecology and the impact 

on carbon storage have typically been conducted 1) in the Neotropics and 2) using ground-based 

measurements. This may limit our understanding of liana ecology for two reasons. Firstly, patterns of 

liana infestation and the effects on carbon storage may not be synonymous with that of the 

Neotropics. Secondly, ground-based measurements are restricted in the total area they can feasibly 

sample and are potentially biased towards areas which are more accessible and therefore they may 

not be representative of the wider landscape.  

Remote sensing may provide a solution to assess liana infestation over multiple spatial and 

temporal scales, based on differences in the spectral reflectance of trees and lianas. However, as 

liana chemistry and the spectral response converges with that of trees as precipitation increases, it 

remains unclear whether remote sensing technologies can assess the distribution of liana infestation, 

particularly in aseasonal forests. This thesis, therefore, aims to assess whether air- and satellite-

based remote sensing can accurately detect liana infestation in order to 1) assess patterns of liana 

infestation at varying spatial and temporal scales and 2) quantify the relationship between liana 

infestation and aboveground carbon stocks at a landscape-level. 

This research was carried out across a primary and selectively logged aseasonal tropical 

forest (~7500 ha) in Danum Valley, Sabah, Malaysia. In the selectively logged forest, certain areas 

have been actively restored, whilst the remaining area has been allowed to naturally regenerate over 

time. The research in this thesis uses a combination of airborne laser scanning (ALS) and 

hyperspectral data, satellite-based multispectral imagery and ground-based data sets of liana canopy 

cover and plot-level carbon estimates. Satellite-derived imagery were collected annually from 2016 

to 2019. Imagery collected from 2016 also aligned with the end of an El-Niño induced drought which 

was used to test the detectability of liana infestation under different climatic conditions. Neural 

network classifications were used to predict patterns of liana infestation in space and time.   

Chapter 2 aims to assess whether liana infestation can be detected using ALS and 

hyperspectral data in an aseasonal primary forest. Furthermore, this chapter focuses on overcoming 

discrepancies in spatial units in order to accurately map liana infestation at a landscape-level. Data 
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derived using remote sensing technologies are characterised by pixels, which are artificial units that 

do not correspond to natural features (i.e. tree crowns) on the ground. An object-based approach 

can be achieved by segmenting the hyperspectral data on a tree crown-level. Alternatively, liana 

infestation can be predicted at a pixel-level by spectrally unmixing pixels from a pure class, i.e. from 

either a completely-infested or liana-free tree crown. A pixel-based approach revealed a stronger 

relationship between predicted and observed liana infestation, most likely due to difficulties in the 

ability to accurately segment tree crowns in dense, closed canopy forests. This work therefore 

suggests that a pixel-based approach is more suitable for assessing liana infestation at a landscape-

level.  

Using the pixel-based approach devised in Chapter 2, liana infestation was predicted across 

the primary and selectively logged forest and related to estimates of aboveground carbon stocks 

(Chapter 3). Liana infestation was widespread across the landscape, however particularly dominant 

in canopy gaps. After accounting for variation in the size and frequency of canopy gaps, completely 

liana-infested areas were found to store, on average, 59.6 ± 11 Mg C ha-1 less than areas that were 

liana-free. However, the degree of carbon stock reduction relative to liana infestation varied within 

forest types, whereby completely liana-infested areas stored 14.8 ± 6.4, 32.8 ± 16.2 and 85.1 ± 12.8 

Mg C ha-1 less compared to liana-free areas in the actively restored, naturally regenerating and 

primary forests, respectively. This implies that liana infestation is a strong predictor of AGC, and that 

this relationship can be observed across forest types and after accounting for variability in carbon 

stocks across the landscape. 

In Chapter 4, satellite-based imagery were used to predict liana infestation across the 

landscape and over time using a neural network classification trained with the airborne-derived liana 

infestation output. This study is the first to show that liana infestation can be accurately detected 

across a closed-canopy forest using satellite-based multispectral imagery. Furthermore, evidence of 

the detectability of lianas across forest types and under different climatic conditions, suggests that 

these findings should apply to other tropical forest locations. Assessing liana infestation in imagery 

over time showed an increase in the percentage of severely (≥75%) liana-infested pixels from 12.9% ± 

0.63 in 2016 to 17.3% ± 2 in 2019. Liana infestation was also dynamic, with 2.66% ± 0.76 of pixels 

changing from low to severe and 1.22% ± 0.2 changing from severe to low liana infestation over the 

same three-year time period. These results show for the first time a potential forest-wide increase in 

liana infestation in a Palaeotropical forest and therefore suggests that an increase in liana dominance 

may not be confined to the Neotropics.  

The findings of this thesis suggest that 1) remote sensing approaches are effective at accurately 

detecting liana infestation and 2) lianas exert a strong control on carbon storage, in an aseasonal 

forest. This thesis also shows that liana infestation can be detected across forest types, under 
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different climatic conditions and over time, demonstrating that remote sensing techniques are a 

useful tool to assess patterns of liana infestation across tropical forests. This is likely to provide 

unique insights into the mechanisms that drive their distribution at multiple spatial and temporal 

scales. Furthermore, this will assist in predicting where liana infestation is likely to change and what 

global consequences this may have for carbon sequestration and storage. 
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Chapter 1: Introduction 

1.1. Tropical forests in a changing world 
 

Tropical forests are highly productive (Phillips et al. 1998; Malhi et al. 2004; Beer et al. 2010), 

biologically rich (Dirzo & Raven 2003; Gibson et al. 2011) and carbon dense (Luyssaert et al. 2008; 

Keith, Mackey & Lindenmayer 2009; Pan et al. 2011; Grace, Mitchard & Gloor 2014; McAlpine et al. 

2018), thus their protection is a fundamental aim of international strategies for conserving 

biodiversity and ecosystem services (Convention on Biological Diversity 2015). Tropical forests play 

an important role in the delivery of many important ecosystem services including biodiversity 

richness, water purification, climate regulation, disease control and carbon storage (Myers et al. 

2000; Ter Steege et al. 2003; Foley et al. 2005; Bradshaw, Sodhi & Brook 2009; Neary, Ice & Jackson 

2009; Giam 2017; Brock et al. 2019; Hubau et al. 2020). It is estimated that tropical forests store 

around 200-300 Petagrams (Pg) (1 Pg = 1015 g) of carbon (C) (Pan et al. 2011; Saatchi et al. 2011; 

Baccini et al. 2012; Avitabile et al. 2016) corresponding to around 118, 65 and 47 Pg C in tropical 

America, Africa and Asia, respectively (Baccini et al. 2012). Tropical forests are also very dynamic, 

with average levels of net primary productivity (NPP) estimated at around 17.8 Pg C per year (Field et 

al. 1998; see also, Malhi et al. 2009).  

However, tropical forests are undergoing significant modifications to their structure, 

diversity, function and extent (Lewis et al. 2004a; Phillips et al. 2008; Hansen et al. 2013; Lewis, 

Edwards & Galbraith 2015; Cusack et al. 2016; Baccini et al. 2017; Qie et al. 2017; Esquivel‐Muelbert 

et al. 2019; McDowell et al. 2020). Human-driven land-use change is one of the greatest threats to 

terrestrial biodiversity and ecosystem functioning globally, and nowhere is this more ubiquitous than 

across the tropics (Pimm & Raven 2000; Bunker et al. 2005; Lewis, Edwards & Galbraith 2015; Barlow 

et al. 2016; Venter et al. 2016; Cushman et al. 2017). Tropical forests are particularly vulnerable due 

to the high availability of suitable land for conversion combined with poor policies and weak 

governance (Laurance 1999; Geist & Lambin 2002; Lawson et al. 2014). The rapid conversion of 

tropical forests for agriculture, timber production and other natural resources has significantly 

increased the extent of human-modified landscapes (Tilman et al. 2001; Achard et al. 2002; Davis et 

al. 2020).  

In addition, large areas of intact tropical forest, free from significant anthropogenic 

influence, are also showing signs of impact from broad environmental changes as a direct or indirect 

response to increased CO2 concentrations. These include, higher temperatures, increased frequency 

of droughts and changes in precipitation (Malhi & Grace 2000; Malhi & Phillips 2004; Malhi & Wright 

2004; Phillips et al. 2008; Gloor et al. 2009; Lewis et al. 2009; Phillips et al. 2009; Sullivan et al. 2020). 
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This is of particular concern given the unique and important role intact forests play in the global 

carbon cycle (Watson et al. 2018; Maxwell et al. 2019). Long-term monitoring of field-plots has 

revealed an increase in above-ground biomass (Phillips et al. 1998; Baker et al. 2004a; Chave et al. 

2008a; Phillips et al. 2008; Lewis et al. 2009; Malhi 2010) and an increase in tree turnover rates 

(Phillips & Gentry 1994; Lewis et al. 2004a; Phillips et al. 2004), as assessed by tree recruitment and 

mortality. Such changes to forest growth and productivity may have profound implications on species 

diversity and tree community composition (Feeley et al. 2011).  

 

1.2. Forest loss 

 
Deforestation occurs globally and results in the complete removal of forest cover. As such, 

forest loss can be easily detected and monitored through earth-observing satellites (Asner et al. 

2005; Peres, Barlow & Laurance 2006). Using space-borne imagery it has been estimated that around 

1.1 million km2 of tropical forest were lost from 2000 to 2012 (Hansen et al. 2013) corresponding to 

an annual gross deforestation rate of ~0.09 million km2 yr-1 (Hansen et al. 2013; Achard et al. 2014). 

Subsequent global carbon emissions from tropical deforestation are estimated within the range of 

0.8 to 2.8 Pg C yr-1 (Pan et al. 2011; Harris et al. 2012; Rosa et al. 2016). However, the proportion of 

tropical forest disturbance may be underestimated as less intensive logging (i.e. selective logging) 

may be difficult to distinguish with satellite-borne imagery (Asner et al. 2004; Peres, Barlow & 

Laurance 2006). 

Selective logging is a common practice in tropical forests where only large trees (typically 

>40-60 cm DBH), often from a particular tree species, are removed, whilst disturbance to the rest of 

the forest is minimised (Asner et al. 2009a). Subsequently, studies have shown that selectively logged 

forests can retain similar levels of biodiversity and carbon stocks as unlogged forests (Cannon, Peart 

& Leighton 1998; Berry et al. 2010; Putz et al. 2012; Edwards et al. 2014). Tropical forests may be 

able to maintain high species diversity following selective logging due to the positive effects of 

disturbance. Species diversity has shown to be higher when disturbances are intermediate on the 

scales of frequency and intensity – similar to the ‘intermediate disturbance’ hypothesis (Connell 

1978) - owing to an increase in shade intolerant species (Bongers et al. 2009). 

Selective logging in tropical forests is spatially diffuse with around 20.3% of humid tropical 

forests allocated to selective timber harvests (Asner et al. 2009b). However, logging densities are 

known to vary considerably with the volume logged typically ranging between 5 and 180 m3 ha-1 

(Pinard & Putz 1996; Bertault & Sist 1997; Pereira Jr et al. 2002; Feldpausch et al. 2005; Medjibe, Putz 
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& Romero 2013; Bicknell et al. 2014; Pfeifer et al. 2015; Putz et al. 2019). Sist et al. (1998) reported 

average logging intensities of 86.9 m3 ha-1 (nine trees ha-1) in East Kalimantan (Indonesia), although 

volumes ranged between 9-247 m3 ha-1 (1-17 trees ha-1) (Sist et al. 1998). Subsequently, total carbon 

emissions from selective logging vary, however, are suggested to average around 35% of emissions 

resulting from deforestation (Maxwell et al. 2019). Additional estimates have suggested selective 

logging to be equivalent to around 12-25% of carbon emissions from deforestation (Huang & Asner 

2010; Pearson, Brown & Casarim 2014; Pearson et al. 2017), with emissions ranging from 6% to 68%, 

depending on logging densities (Pearson, Brown & Casarim 2014) and practices (Pinard & Putz 1996; 

Putz et al. 2008a; Laurance & Edwards 2014; Martin et al. 2015). 

Improved logging practices have also been shown to minimize forest damage and reduce 

carbon emissions, while maintaining timber production (Ellis et al. 2019). Reduced-impact logging 

(RIL) is one such technique which may help curtail the negative effects of logging (Putz et al. 2008a; 

Bicknell et al. 2014). While the techniques used may vary considerably, RIL typically includes: liana 

cutting prior to logging, maximum slope gradients on which to operate, felling trees in a direction 

that minimises damage to surrounding trees and effective planning and construction of roads and 

skid trails to minimize ground disturbance (Putz et al. 2008a). While the major source of carbon 

losses results from the felling of large trees, forests that employed RIL techniques were capable of 

retaining higher levels of biodiversity and carbon stocks (Pinard & Putz 1996; Cannon, Peart & 

Leighton 1998; Putz et al. 2008b; Putz et al. 2012; Edwards et al. 2014). On the other hand, forests 

subjected to conventional logging can lose much silvicultural value due to the impacts on the quality 

of soil (Pinard, Putz & Tay 2000; Asner, Keller & Silva 2004) and future crop trees (Pinard & Putz 

1996; Bertault & Sist 1997; West, Vidal & Putz 2014). In such cases, active restoration practices post 

logging have been employed to help recover carbon stocks and ecosystem functioning.   

 

1.3. Active restoration vs. natural regeneration 

 
Ecological restoration can be a critical strategy for reversing biodiversity and carbon losses 

following logging and degradation of tropical forests (Lamb, Erskine & Parrotta 2005; Shimamoto et 

al. 2018). Restoration can be achieved through either active (more intensive) or passive (less 

intensive) interventions to recover degraded forests (Chazdon & Guariguata 2016). Passive 

restoration simply involves protecting the forest from future degradation and allowing it to recover 

naturally through secondary succession. Active restoration may include the planting of trees, 

fertilisation or/and the removal of lianas in order to restore heavily degraded areas (Shono, 

Cadaweng & Durst 2007; Holl & Aide 2011; Chazdon & Guariguata 2016). While the role of active 
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restoration during recovery can significantly increase canopy cover and aboveground carbon storage 

(Lamb, Erskine & Parrotta 2005; Osuri et al. 2019), the restoration of biodiversity and vegetation 

structure has shown to be more successful in naturally regenerating systems (Berry et al. 2010; 

Crouzeilles et al. 2017; Shimamoto et al. 2018). However, naturally regenerating land is prone to 

arrested succession due to poor soil conditions (Chazdon 2014), increased fire frequencies (Cochrane 

2003) and increased liana infestation (Putz 1991; Gerwing 2006; Schnitzer & Carson 2010), which all 

hamper tree growth and carbon storage potential (Cochrane & Schulze 1999; van der Heijden, 

Powers & Schnitzer 2015). In such cases, active restoration, such as enrichment planting, has shown 

to be a promising method to increase vegetation cover and carbon stocks (Wu et al. 2020). 

Furthermore, liana cutting has been employed as a method to increase carbon storage and uptake in 

tropical forests (Pérez-Salicrup 2001; Marshall et al. 2017; Mangueira, D. Holl & Rodrigues 2019). For 

example, a liana removal experiment conducted in Panama found that lianas significantly affected 

tree growth and reduced forest-level aboveground carbon uptake by 2.43 Mg C ha-1 yr-1 (van der 

Heijden, Powers & Schnitzer 2015). Therefore, restoration efforts may provide a useful strategy for 

reversing biodiversity loss and enhancing carbon stocks in degraded tropical forests (Osuri et al. 

2019). 

 

1.4. Lianas 

 
Lianas (woody vines) are a dominant plant functional type in tropical forests, contributing up 

to 44% of the woody species (Appanah, Gentry & LaFrankie 1993; Pérez‐Salicrup, Sork & Putz 2001; 

Schnitzer & Bongers 2002) and 40% of the woody stems (Gerwing & Farias 2000; Chave, Riéra & 

Dubois 2001). Lianas share a common growth strategy; exploiting trees for physical support in order 

to reach the canopy for light (Putz 1984; Schnitzer 2005) (Figure 1.1). They differ from other parasites 

(such as epiphytes and hemiepiphytes) by remaining rooted in the ground throughout their life cycle 

(Schnitzer & Bongers 2002). By using the support of host trees to reach the canopy, lianas can focus 

energy into leaf production (Gerwing & Farias 2000; van der Heijden et al. 2013) and therefore can 

produce a disproportionately large canopy in comparison to the size of their stem (Cox et al. 2019). 

For example, it has been shown that lianas commonly constitute less than 5% of tropical forest 

biomass (DeWalt & Chave 2004), but up to 40% of leaf productivity (Hegarty & Cabelle 1991).  
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Figure 1.1 An example of a liana tangle on the forest floor (left) and a large liana climbing to the 

canopy (right). 

 

1.4.1. Liana-induced effect on trees and carbon storage 

 
Liana infestation within tree crowns can have a strong negative effect on tree growth (Grauel 

& Putz 2004; van der Heijden & Phillips 2009; van der Heijden, Powers & Schnitzer 2015; Estrada‐

Villegas et al. 2020), reproduction (Nabe-Nielsen, Kollmann & Peña-Claros 2009; García León et al. 

2018) and survival (Putz 1984; Phillips et al. 2005; Ingwell et al. 2010; Martínez‐Izquierdo et al. 2016). 

Additionally, lianas within canopy gaps have been shown to suppress the regeneration of trees 

(Schnitzer & Carson 2010; Schnitzer et al. 2014b) and even halt ecological succession following 

disturbance (Schnitzer, Dalling & Carson 2000; Tymen et al. 2016). The competitive effect of lianas 

can be experienced both above- and below-ground (Dillenburg et al. 1993; Pérez-Salicrup & Barker 

2000; Andrade et al. 2005; Schnitzer, Kuzee & Bongers 2005; Rodríguez‐Ronderos et al. 2016). Once 

lianas reach the canopy, they can produce a layer of foliage above the tree crown, thereby reducing 

the amount of light available to their host tree (Clark & Clark 1990; Avalos et al. 2007; Rodríguez‐

Ronderos et al. 2016). For example, van der Heijden and Phillips (2009) found that lianas, mainly by 

competing above-ground, were responsible for a 10% reduction in relative annual tree aboveground 

biomass growth. Meanwhile, below-ground, lianas reduce tree growth via competition for shared 

resources such as nutrients and water (Pérez-Salicrup & Barker 2000).  
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Lianas and trees differ in their response to water availability, such as during drought 

conditions, with lianas showing unimpeded growth whilst trees are temporarily stumped (Schnitzer 

2005; Cai, Schnitzer & Bongers 2009; Doughty et al. 2015; O'Brien et al. 2019; Schnitzer & van der 

Heijden 2019; Marimon et al. 2020). The ability of lianas to access and use water more efficiently 

than co-occurring trees (Chen et al. 2015; Maréchaux et al. 2017; Smith‐Martin et al. 2019; van der 

Sande et al. 2019) during dry periods gives them a seasonal growth advantage (Álvarez-Cansino et al. 

2015; Schnitzer & van der Heijden 2019). Therefore, it is expected that liana abundance may be 

greater in dry forests due to a greater availability of light (DeWalt et al. 2010) and higher 

evapotranspirative demand (Schnitzer 2005) resulting from a shorter forest stature and lower leaf 

area index (Kalácska, Calvo-Alvarado & Sánchez-Azofeifa 2005). However, despite the great 

abundance of lianas in dry forests, a stronger negative effect of lianas on carbon stocks has been 

observed in moist tropical forests (Durán et al. 2015) and in wet seasons (van der Heijden, Powers & 

Schnitzer 2019). This may be attributed to the ability of trees and lianas to more effectively partition 

resources in dry forests. Whereas, in wet tropical forests, and during wet seasons, where water 

availability is not as limited, competition for light may be more intense (Schnitzer & Bongers 2011; 

van der Heijden et al. 2013; Durán et al. 2015; van der Heijden, Powers & Schnitzer 2019). 

As liana-tree competition is much stronger than tree-tree competition (Tobin et al. 2012), 

lianas can have a significant impact on the ability of tropical forests to store and sequester carbon 

(DeWalt & Chave 2004; van der Heijden & Phillips 2009; Ingwell et al. 2010; Durán & Gianoli 2013; 

Schnitzer et al. 2014b; van der Heijden, Powers & Schnitzer 2015; Tymen et al. 2016). Several studies 

have highlighted the negative relationship between liana abundance and aboveground biomass 

(AGB) and carbon (AGC) stocks in Neotropical forests (van der Heijden et al. 2013; Schnitzer et al. 

2014b; van der Heijden, Powers & Schnitzer 2015; Ledo et al. 2016; Tymen et al. 2016). For example, 

using a large-scale liana removal experiment in Panama, van der Heijden et al. (2015) demonstrated 

that lianas significantly reduced net AGC uptake, by as much as 76% per year, mostly due to 

suppressed tree growth. Durán & Gianoli (2013) revealed a negative association between liana 

abundance and carbon stocks of large trees using a large pantropical dataset. Results revealed that 

areas with high liana abundance stored on average 146 Mg C ha-1 less than areas with low liana 

abundance. Other studies have also revealed a negative relationship between liana abundance and 

AGB (Laurance et al. 2001; Laurance et al. 2014). For example, Laurence et al. (2014) showed that an 

increase in liana abundance was associated with a reduction of ~60 Mg ha-1 in aboveground tree 

biomass. Further concern for the impact lianas on tropical forest carbon dynamics has also be 

intensified by evidence of increasing liana dominance (Schnitzer & Bongers 2011). 
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1.4.2. Increasing liana biomass and abundance 

 
Lianas may be favoured competitively by: ongoing disturbance (Lewis, Edwards & Galbraith 

2015), an increase in atmospheric CO2 concentrations (Condon, Sasek & Strain 1992; Granados & 

Körner 2002; Zotz, Cueni & Körner 2006), an increase in forest turnover and dynamism (Phillips & 

Gentry 1994; Phillips et al. 1994; Bongers et al. 2009), and longer and more intense drought periods 

(Cai, Schnitzer & Bongers 2009; DeWalt et al. 2010; Schnitzer & van der Heijden 2019). There is now 

compelling evidence that liana biomass and abundance are increasing in many seasonal forests in the 

Neotropics (Phillips et al. 2002; Benítez‐Malvido & Martínez‐Ramos 2003; Wright et al. 2004; Wright 

& Calderón 2006; Chave et al. 2008b; Foster, Townsend & Zganjar 2008; Ingwell et al. 2010; Laurance 

et al. 2014). Phillips et al. (2002) reported an increase in the abundance of large lianas (>10 cm 

diameter) that nearly doubled over the 20-year period. Similarly, in an old-growth forest in French 

Guiana, Chave et al. (2008b) found that liana abundance increased by 1.8%, and tree abundance 

decreased by 4.8% over a 10-year period. However, there is little evidence to suggest that the same 

is true of aseasonal forests (although see, Schnitzer & Bongers 2011). Furthermore, evidence 

suggests that the pattern of increasing liana dominance may be restricted to old-growth forests 

(Yorke et al. 2013) and may also not be a pantropical phenomenon. For example, studies have 

reported declining liana abundance in African forests (Caballé & Martin 2001; Bongers et al. 2020), 

and similar levels of liana infestation in tree canopies over time in Malaysian forests (Wright et al. 

2015). Nevertheless, evidence that lianas may be favoured by future climate change scenarios has 

driven an expansion of studies in recent years (Marshall et al. 2020) which have focused on 

understanding the mechanisms that drive spatial patterns of liana infestation and the impact on 

tropical forest functioning and carbon storage. 

 

1.4.3. Spatial distribution of liana infestation 

 
Lianas respond strongly to light availability and disturbance (Schnitzer, Dalling & Carson 

2000; Laurance et al. 2001; Schnitzer & Bongers 2011). They may therefore be more abundant in 

logged forests (Martin, Sherman & Fahey 2004; Magrach et al. 2016) and proliferate rapidly in 

treefall gaps and at forest edges (Laurance et al. 2001; Schnitzer & Carson 2001; Schnitzer & Carson 

2010; Schnitzer et al. 2014b; Campbell et al. 2018; Rocha et al. 2020) by forming highly clumped 

distributions by clonal stem recruitment (Schnitzer et al. 2012; Yorke et al. 2013; Ledo & Schnitzer 

2014).  
Studies have found a decrease in liana stem density from gaps to intact forests (Putz 1984) 

and with increasing stature (Gerwing & Farias 2000) related to lower light availability (DeWalt, 
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Schnitzer & Denslow 2000). As a result, lianas may become more dependent on tree fall gaps for 

establishment (Appanah, Gentry & LaFrankie 1993; Schnitzer, Dalling & Carson 2000; Schnitzer & 

Carson 2001). Liana proliferation in canopy gaps may also be associated with their ability to survive 

tree falls as well as the speed to which they can recruit via lateral growth along the forest floor from 

the intact understory (Schnitzer, Dalling & Carson 2000; Schnitzer, Parren & Bongers 2004; Yorke et 

al. 2013; Umaña, Manzané‐Pinzón & Comita 2020). Lianas dragged down in gaps during tree fall can 

quickly root and colonise the gap area taking advantage of the high light conditions, disturbed soil 

and reduced competition (Kennard 1998; Schnitzer & Bongers 2002; Schnitzer et al. 2014a). Indeed in 

larger canopy gaps, formed by multiple tree falls, liana abundance is often greater (Thompson et al. 

1998; Schnitzer, Dalling & Carson 2000; Gerwing & Uhl 2002; Londré & Schnitzer 2006), potentially 

due to the fact that light availability typically increases with increasing gap size (Babweteera, 

Plumptre & Obua 2000). Therefore, in small gaps, light levels may not be sufficient to promote the 

establishment and high growth rate of lianas (Denslow, Ellison & Sanford 1998).  

While lianas often show highly-aggregated distributions driven by treefall gaps (Schnitzer & 

Carson 2001; Schnitzer et al. 2012), they also often infest tree crowns in search of light (Ingwell et al. 

2010). In some Neotropical forests lianas are more frequently observed within tall, well-lit trees 

(Malizia & Grau 2006; van der Heijden, Healey & Phillips 2008; Sfair et al. 2016), suggesting in some 

habitats lianas require physical support in order to escape lower light conditions on the forest floor 

(Meyer et al. 2019). However, while the distribution of host trees is a key factor in controlling liana 

growth in the forest understory (Putz 1984), host trees show differential susceptibility and responses 

to liana infestation. For example, it has been shown that trees within the Dipterocarpaceae have a 

lower susceptibility to lianas (Campbell & Newbery 1993; Wright et al. 2015). Some species of 

dipterocarps (Parashorea tomentella and P. malaanonan) are known to have rapid growth rates 

which approach that of pioneer species (Ghazoul 2016). Other characteristics of dipterocarps include 

high branch-free bole heights, branch shedding, via monopodial growth, and smooth bark, which can 

all contribute towards a reduced susceptibility to liana infestation (Campbell & Newbery 1993; van 

der Heijden, Healey & Phillips 2008; Wright et al. 2015). Indeed the ability of trees to shed and/or 

tolerate lianas are important components in explaining variation in liana prevalence among tree 

species (Visser et al. 2018a). In addition, where the forest canopy is high and small-diameter 

branches (i.e. trellises) are scarce, lianas have been found to enter their host trees horizontally from 

neighbouring trees (Balfour & Bond 1993). However, large, emergent dipterocarp trees typically have 

more separated crowns which can reduce infestation by lianas from nearby trees (Campbell & 

Newbery 1993; Wright et al. 2015). 
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Trees may also differ in their response to liana infestation, but there is some debate. On one 

hand, it has been suggested that lianas have a stronger negative impact on slow-growing, shade-

tolerant tree species with high wood density, whilst not affecting or even indirectly promoting 

pioneer species (Campbell & Newbery 1993; Schnitzer, Dalling & Carson 2000; Laurance et al. 2001; 

van der Heijden, Healey & Phillips 2008). On the other hand, liana infestation may be more harmful 

for fast-growing tree species (Visser et al. 2018b). Visser et al. (2018b) proposed that this relationship 

is likely due to survivorship bias such that the observable sample is biased towards those trees that 

survived and are liana-free. If host trees were to have differential responses to liana infestation, then 

this could lead to changes in tree community composition with potential impacts on the forest-wide 

ability to store and sequester carbon (van der Heijden, Powers & Schnitzer 2015; di Porcia E Brugnera 

et al. 2019; Estrada‐Villegas et al. 2020). 

 

1.4.4. Spatial distribution of liana infestation at multiple scales  

 

The biomass and abundance of lianas have also been shown to relate with multiple abiotic 

variables which vary at different scales. For example, liana abundance has been shown to increase 

with decreasing precipitation and increasing seasonality at global- (Schnitzer 2005; DeWalt et al. 

2010) and regional-scales (Parolari et al. 2020) but not across the Neotropics (van der Heijden & 

Phillips 2008). Similarly, while some studies have shown a relationship between liana abundance and 

soil fertility on a local scale (Proctor et al. 1983; Putz & Chai 1987; DeWalt et al. 2006), there has 

been no compelling evidence for this across the Neotropics (DeWalt & Chave 2004; van der Heijden 

& Phillips 2008). 

Differences in the relationship between forest variables and liana abundance may be 

associated with a number of factors. Firstly, the numerous complex and often confounded variables 

that operate at multiple scales. For example, liana abundance may covary with soil fertility in areas of 

greater disturbance (Denslow, Ellison & Sanford 1998; Yee et al. 2019) or higher elevation (de 

Castilho et al. 2006; John et al. 2007; Körner 2007; Unger, Homeier & Leuschner 2012). Therefore, 

studies that are conducted at a local- versus a continental-scale may capture less variation relating to 

disturbance or elevation which could make it easier to assess the direct effect of soil fertility on liana 

abundance (cf. Sullivan et al. 2017).  

Similarly, studies which attempt to assess the relationship between liana abundance and 

carbon stocks may be challenged by high variability in carbon stocks driven by multiple scale-

dependant variables. For example, an increase in AGB has been related to an increase in soil fertility 



Chapter 1: Introduction 

14 
 

(Slik et al. 2010; Quesada et al. 2012), decrease  in temperature (Durán et al. 2015; Sullivan et al. 

2020) an increase in elevation (de Castilho et al. 2006), topography (Ferry et al. 2010; Taylor et al. 

2015; Muscarella et al. 2020), geologic substrate (Asner et al. 2010) and species composition (Baker 

et al. 2004b). Thus, studies at continental- or global-scales which do not account for variables that 

drive patterns in AGC stocks may make it difficult to disentangle the direct effect of liana abundance 

on carbon stocks. 

Secondly, differences in the relationships between forest variables and liana abundance may 

be related to the size of plots, which capture different levels of spatial heterogeneity (DeWalt et al. 

2010). For example, assessing the level of aboveground biomass density (AGBD) using small (0.1 ha) 

plots may result in large AGBD variability depending on whether large diameter trees, which explain 

much of the variation in AGB (Slik et al. 2013; Bradford & Murphy 2019), are present or absent within 

the plot. However, AGBD variability is likely to decrease with an increasing plot area (Zolkos, Goetz & 

Dubayah 2013; Rejou-Mechain et al. 2014) and may provide a more representative 1) estimation of 

forest-wide AGB and 2) relationship with liana abundance. Durán & Gianoli (2013) revealed a 

negative association between liana abundance and carbon stocks of large trees using a large 

pantropical dataset. However this study was confined to small (0.1 ha) forest plots which makes it 

difficult to disentangle the multitude of contributing processes at varying spatial scales. While some 

ground-based studies may not be limited in their geographical extent (e.g. Durán & Gianoli 2013), 

they are limited 1) to areas which are more easily accessible and 2) by the total area they can feasibly 

sample. As a result, ground-based studies may be biased (Powers et al. 2011) and are unlikely to be 

able to capture sufficient variation to fully assess the forest-wide relationship between liana 

abundance and carbon stocks. Assessing the distribution of lianas over large areas may provide 

unique insights into the mechanisms that drive their spatial patterns and the impact on carbon 

storage. 

 

1.5. Remote sensing of tropical forests 

 
Given the extent and complexity of tropical forests, remote sensing can provide a synoptic 

view and cover a much larger area than possible using field-based methods alone (Foody 2003). A 

variety of forest metrics have been obtained using remote sensing data, including canopy height 

(Lefsky et al. 2005; Lefsky 2010; Simard et al. 2011; Mielcarek, Stereńczak & Khosravipour 2018), 

forest structure (Drake et al. 2002; Palace et al. 2008; Bastin et al. 2018), tree density (Foody & 

Curran 1994), species composition/richness (Foody & Cutler 2006; Higgins et al. 2014) and functional 

diversity (Jetz et al. 2016; Durán et al. 2019). While remote sensing instruments cannot directly 
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measure AGB, properties of the forest canopy, such as radiance or canopy height, can be used as 

predictors of forest AGB. For biomass estimation, studies have utilised optical, radar and light 

detection and ranging (LiDAR) data acquired from space- (Foody et al. 2001; Castro, Sanchez-Azofeifa 

& Rivard 2003; Foody, Boyd & Cutler 2003; Lefsky et al. 2005; Cutler et al. 2012; Avtar et al. 2013; 

Bastin et al. 2014; Hu et al. 2016; Pfeifer et al. 2016), air- (Drake et al. 2003; Clark et al. 2011; 

Hernández-Stefanoni et al. 2014; Laurin et al. 2014b) and terrestrial-based sensors (Palace et al. 

2016; Gonzalez de Tanago et al. 2018). Each product presents advantages and disadvantages with 

respect to spatial extent, sensitivity to clouds and varying spatial, spectral and temporal resolutions 

(Lechner, Foody & Boyd 2020). Thus, fusion of two or more of each sensor have often been 

employed (Reiche et al. 2016) to produce detailed maps at regional (Saatchi et al. 2007; Asner et al. 

2010; Asner et al. 2018; Bazezew, Hussin & Kloosterman 2018; Urbazaev et al. 2018) and global 

scales (Saatchi et al. 2011; Baccini et al. 2012; Hansen et al. 2013; Avitabile et al. 2016; Hu et al. 

2016). Previous studies have shown that LiDAR data improves estimates of vegetation structure in 

comparison to optical remote sensed imagery which tend to saturate and therefore produce 

unreliable estimates of biomass and carbon stocks (Lu et al. 2012).  

 

1.5.1. LiDAR 

 
LiDAR is an active sensor (i.e. it transmits and receives its own signal). The signal emitted is 

capable of penetrating clouds and small openings in forest canopies to finely obtain tree dimensions 

and canopy structural properties at multiple scales. LiDAR data derived from space- or air-borne 

sensors will differ in the width of the laser beam (large or small footprint). Large footprint satellite 

LiDAR data (~65m), such as that provided by the Geoscience Laser Altimeter System (GLAS) (Abshire 

et al. 2005), have the potential to assess vegetation at local (Popescu et al. 2011), regional (Lefsky et 

al. 2005; Rosette, North & Suarez 2008) and global scales (cf. Saatchi et al. 2011, Baccini et al. 2012). 

Airborne LiDAR with a small footprint, also referred to as airborne laser scanning (ALS), can provide 

detailed measurements of vegetation structure and elevation, particularly useful in tropical forests 

with dense closed canopies and steeply sloping terrain. Forest structural characteristics derived from 

airborne LiDAR with larger (10-25m) footprints have also shown to be well correlated with field-

derived metrics (Drake et al. 2002). 

Most commercial airborne LiDAR systems deliver discrete return (DR) point data. In this 

system, each point is associated with high intensities in the back-scattered laser pulse and record 

multiple returns per laser pulse (1-5 returns). However, DR systems can only detect the surfaces 

which are separated sufficiently in space (Cao et al. 2016). In between each detected return there 
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are gaps in which no other surfaces can be detected. More recent developments in LiDAR technology 

can resolve this issue by using the full waveform (FW) which records the entire backscattered laser 

pulse. This can improve the detection of weak return echoes and also allows other metrics to be 

extracted from the waveform height and energy (Cao et al. 2014; Crespo-Peremarch & Ruiz 2020). 

The use of FW LiDAR and waveform metrics have been shown to provide more detailed information 

on vegetation structure (Alexander et al. 2015) and more accurate biomass estimates (Drake et al. 

2002; Nie et al. 2017; Shen et al. 2018; Luo et al. 2019) in comparison to traditional DR metrics. 

However, estimates of canopy height, elevation or the spatial arrangement of canopy gaps may not 

be significantly improved as the additional points from FW LiDAR mainly contribute to the internal 

structure of the forest (Chauve et al. 2009).  

The size and spatial arrangement of canopy gaps can describe the disturbance regime of a 

forest and may be particularly useful for understanding forest structural characteristics, spatial 

variation in AGC and other ecological processes (Hubbell 1986; Brokaw & Scheiner 1989; Asner, 

Keller & Silva 2004). ALS data have been used to distinguish canopy gaps at large spatial scales 

(Kellner, Clark & Hubbell 2009; Kent et al. 2015) which can be used to understand spatial and 

temporal patterns of gap dynamics. However, recognising that the size of canopy gaps may influence 

ecological processes in different ways  (Denslow 1987), canopy-gap size-frequency distributions 

(GSFD) have been used to account for variation in size and frequency (Asner et al. 2013; Boyd et al. 

2013). The frequency distribution of gap sizes often follows a power-law probability distribution and 

the exponent of this relationship (λ) can be used to provide a single metric to quantify the GSFD 

(Hubbell 1986; Asner et al. 2013). 

 

1.5.2. Optical imagery 

 
In contrast to LiDAR, optical remote-sensing can be defined as a passive technique that 

measures the solar energy reflected from the Earth’s surface. The intercepted spectral reflectance 

typically ranges from 400 to 2500nm which includes the visible, near-infrared and shortwave infrared 

wavelengths. Satellite-derived optical imagery are attractive for their ability to cover large extents 

and provide repeated measurements. However, spatial and spectral resolutions can be relatively 

coarse which can restrict their use at local- or fine-scales. Furthermore, optical data are sensitive to 

cloud cover which can be a challenge when acquiring imagery in tropical regions. Despite this, optical 

imagery has been used successfully in tropical forests to predict AGB (Steininger 2000; Foody, Boyd & 

Cutler 2003; Mutanga, Adam & Cho 2012; Singh, Malhi & Bhagwat 2014) and species diversity 

(Carlson et al. 2007; Féret & Asner 2014; Laurin et al. 2014a; Rocchini et al. 2016; Jha et al. 2019). 
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Variation in remotely sensed spectral reflectance (spectral heterogeneity, or spectral variability) has 

also shown to relate with environmental heterogeneity; which is considered to be a key factor 

associated with species diversity as heterogeneous environments have a greater number of available 

niches to support more species (Rocchini, Chiarucci & Loiselle 2004). Thus, variation in spectral 

reflectance can be a useful proxy of species diversity whereby an increase in spectral heterogeneity 

corresponds to areas that have the capacity to harbour greater levels of biodiversity (Spectral 

Variation Hypothesis) (Palmer et al. 2000; Rocchini et al. 2010).  

Advances in remote sensing technology, now include high spectral-resolution sensors, which 

can detect reflectance across a continuous spectrum, typically 200 or more spectral bands. 

Hyperspectral imagery can be used to detect fine spectral differences between species (Shen & Cao 

2017). However, the ability to discriminate plant species relies on 1) differences in their biochemistry 

and whether this difference is manifested in their spectral reflectance (Asner 1998) and 2) whether 

the spectral variability within species is lower that the variability among species (Price 1994; 

Cochrane 2000; Zhang et al. 2006; Ferreira et al. 2013). 

 

1.5.3. Information extraction 

 
Spectral reflectance derived from remotely sensed data can be extracted for land cover 

classification. Clark et al. (2005) performed a classification of seven species of emergent trees in 

Costa Rica. Classifications were performed at the leaf-, pixel- and crown-level and were able to 

detect species, based on differences in their spectral reflectance (Clark, Roberts & Clark 2005). At a 

leaf-scale, Clark et al. were able to classify species with 100% overall accuracy. However, at a pixel- or 

crown-scale the accuracy was reduced (≤87%) as spectral reflectance is known to be influenced by 

multiple properties including; branches, understory trees, fruits, flowers and lianas (Spanner et al. 

1990; Schlerf & Atzberger 2006; Zhang et al. 2006). Despite the high floristic diversity, studies have 

demonstrated the feasibility of mapping tree species in tropical forests (Carlson et al. 2007; Papeş et 

al. 2010; Féret & Asner 2012; Baldeck et al. 2015; Ferreira et al. 2016). However, the ability to 

generate observations from remotely sensed data at scales that align with ecological processes is 

often a challenge.   

Delineation of individual tree crowns (ITCs), referred to as segmentation, can afford the 

extraction of spectra from individual objects (tree crowns) (Zhang et al. 2016). Accurate ITC 

delineation can improve the classification of tree species as intraspecific spectral variation can be 

reduced (Marceau et al. 1994) and additional attributes such as texture and shape can be included 
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(Franklin et al. 2000; Warner, McGraw & Landenberger 2006; Yan et al. 2006; Voss & Sugumaran 

2008; Dalponte et al. 2012; Féret & Asner 2012; Immitzer, Atzberger & Koukal 2012; Ferreira et al. 

2016). However, an object-based approach may be compromised by errors caused by over- and 

under-segmentation (Chen et al. 2018). In dense tropical forests, tree crowns are often overlapping 

or lack a clear boundary. Similarly, logged forests are typically less structurally diverse which poses a 

significant challenge for the accurate detection and delineation of tree crowns.  

In contrast, a pixel-based approach does not require the detection of crowns and has been 

used effectively to map biodiversity (Féret & Asner 2014), species invasions (Amaral et al. 2015), 

species composition (Laurin et al. 2014a) and biomass (Laurin et al. 2014b). The choice of whether to 

adopt a pixel- or object-based approach may therefore depend on the resulting map. For example, 

mapping tree species, growth or mortality may benefit from an object-based approach as change is 

interpreted at the crown-level; whereas stand-level aboveground biomass or biodiversity must be 

mapped at the pixel-level. Other ecological processes such as liana infestation can be performed 

using either approach. Both approaches are able to generate results with spatial units that can 

provide meaningful interpretation for ecologists or forest managers.  

For an object-based approach, ground data on liana canopy cover can be associated with the 

spectral response of the same object. However, for a pixel-based approach, estimates of liana 

infestation cannot be collected at the same scale of the hyperspectral pixels when assessed from the 

ground. To overcome this, pixel-level endmember spectra can be derived from trees without lianas in 

their canopy (therefore ‘tree’) and trees with highly liana-infested canopies (therefore ‘liana’) 

(Bateson & Curtiss 1996). As such, each pixel represents a pure class of either tree or liana leaves. 

Then, by spectral unmixing of endmember spectra (Keshava & Mustard 2002) it is possible to obtain 

a percent estimate of liana infestation indicated by the strength of class membership to each 

endmember (Foody 1996; Foody 2002; Foody & Doan 2007). Alternatively, Unoccupied Aerial 

Vehicles (UAVs) can provide an approach to advance the remote sensing of individual plants (cf. 

Kellner et al. 2019). Optical sensors on UAVs can capture data at ultra-fine spatial resolutions (mm) 

which can provide spatially detailed imagery to clearly differentiate liana leaves from tree leaves in 

the canopy (Waite et al. 2019). Thus, UAVs may provide a useful tool to generate estimates of liana 

infestation at the pixel-level (airborne-derived data) which can then be scaled over larger areas. 
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1.5.4. Remote sensing of liana infestation  

 
Lianas and trees can be discriminated based on differences in their spectral response 

(Sánchez-Azofeifa et al. 2009). Many studies have shown that spectral differences are most 

pronounced in the visible- (400-690 nm) followed by the near infrared (NIR)-region (700-1340nm) 

(Castro-Esau, Sánchez-Azofeifa & Caelli 2004; Sánchez‐Azofeifa & Castro‐Esau 2006; Foster, 

Townsend & Zganjar 2008; Sánchez-Azofeifa et al. 2009; Marvin, Asner & Schnitzer 2016). Higher 

reflectance within the visible spectra and particularly in the green region has shown to be strongly 

related to the level of chlorophyll content, which is lower in liana leaves (Castro-Esau, Sánchez-

Azofeifa & Caelli 2004). Furthermore, NIR features are expressed more strongly in canopies with high 

leaf area (Asner 1998; Sims & Gamon 2002; Delegido et al. 2015). As lianas have greater leaf area in 

comparison to trees (Putz 1983; Sánchez-Azofeifa et al. 2009; Campanello et al. 2016), this can result 

in higher reflectance in the NIR region as well as in greenness indices (Sánchez-Azofeifa et al. 2009; 

Delegido et al. 2015).  

Subsequently, studies have shown that lianas can be spectrally distinguished from trees using 

hyperspectral imagery (Castro-Esau, Sánchez-Azofeifa & Caelli 2004). Studies have found that the 

spectral properties of lianas and trees were distinguishable at the leaf-level (Castro-Esau, Sánchez-

Azofeifa & Caelli 2004; Sánchez‐Azofeifa & Castro‐Esau 2006; Kalacska et al. 2007; Hesketh & 

Sánchez-Azofeifa 2012; Guzman, Rivard & Sánchez-Azofeifa 2018) and crown-level, when liana 

infestation was greater than 40% (Kalacska et al. 2007). Studies have also used UAVs to  clearly 

differentiate liana leaves from tree leaves in the canopy (Waite et al. 2019). UAVs fitted with thermal 

sensors have also been able to discriminate liana-infested and non-infested areas (Yuan et al. 2019) 

based on differences in the temperature of liana and tree leaves (Sanchez-Azofeifa et al. 2011; 

Guzmán et al. 2018). Furthermore, multispectral sensors combined with machine learning 

approaches have been utilised to effectively predict liana-infested and non-liana-infested trees in 

Costa Rica (Li et al. 2018). Liana infestation has also been detected in large canopy gaps using 

satellite imagery (Foster, Townsend & Zganjar 2008) and within tree canopies using airborne 

hyperspectral imagery in seasonal (Marvin, Asner & Schnitzer 2016) and aseasonal (Chandler et al. in 

review) forests.  

The approach by Marvin et al. (2016) benefitted from the fusion of hyperspectral and LiDAR 

data to detect liana canopy cover at the landscape-level. However, while the LiDAR data were used 

to mask canopy gaps, shadows, water and bare soil for accurate spectral data extraction, only the 

spectral data were used to train and predict the percentage cover of liana infestation in tree 

canopies. Lianas have shown to be significantly associated with both lower (Dalling et al. 2012) and 
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taller canopy heights (Meyer et al. 2019) suggesting that vertical vegetation structure could be a key 

driver of liana infestation. As a result, canopy height may provide a useful variable to assist in the 

prediction of liana infestation. 

In addition, a disagreement between the spatial units of remotely sensed data, characterized 

by pixels, with field estimates of liana canopy cover, characterised by individual tree crowns, may 

have led to a reduction in classification accuracy. In an attempt to overcome this, Marvin et al. (2016) 

removed all isolated groups of less than three pixels with predicted liana infestation. While this may 

have reduced the so called ‘salt and pepper’ effect, whereby individual pixels are classified differently 

from their neighbours, it is unlikely to have improved the accuracy of predicted liana infestation (Yu 

et al. 2006; Blaschke 2010; Liu & Xia 2010; Pu, Landry & Yu 2011). The ability to generate remotely 

sensed data with spatial units that align with ground observations is essential for the accurate 

prediction of liana infestation.  

Previous research on detecting lianas from trees has been mainly limited to dry forest sites 

where lianas and host tree spectra can be more easily separated (Castro-Esau, Sánchez-Azofeifa & 

Caelli 2004; Kalacska et al. 2007; Guzman, Rivard & Sánchez-Azofeifa 2018). As precipitation 

increases chlorophyll content is observed to simultaneously increase in liana leaves and decrease in 

tree leaves (Sánchez-Azofeifa et al. 2009). This change is also observed in their spectral response and 

therefore in wet, or aseasonal tropical forests, a low spectral contrast between lianas and trees 

(Castro-Esau, Sánchez-Azofeifa & Caelli 2004; Sánchez-Azofeifa et al. 2009) poses a significant 

challenge for detecting and mapping liana infestation. While trees and lianas have been 

discriminated across seasons at the leaf-level (Hesketh & Sánchez-Azofeifa 2012), currently no study 

has mapped liana infestation across an aseasonal tropical forest at a landscape-level. Furthermore, 

previous studies have heavily focused in the Neotropics and therefore our understanding of the 

spatial patterns of liana infestation in the Palaeotropics and the impact on carbon storage is currently 

lacking.  

Tree and liana biogeography differ markedly in the Palaeotropics, with low liana densities 

and a complex forest structure (Gentry 1991; Appanah, Gentry & LaFrankie 1993; Schnitzer & 

Bongers 2002; Banin et al. 2012). Differences in the spatial distribution of liana infestation and 

aboveground carbon may be driven by the high proportion of dipterocarp trees (Ashton & Kettle 

2012) which make these forest structurally unique and give rise to high aboveground carbon 

densities (Sullivan et al. 2017). Therefore, assessing whether the negative relationship between liana 

infestation and aboveground carbon (AGC) stocks holds in south-east Asian forests requires further 

attention. 



Chapter 1: Introduction 

21 
 

1.6. Study location: Sabah, Borneo 

 
South East Asia has the highest rate of lowland forest loss of any tropical region with 

deforestation for conversion to plantations as the primary driver (Flint 1994; Sodhi et al. 2004). As a 

result, mapping logged forests and their impact on carbon stocks has become a primary conservation 

concern. In recent years LiDAR has been heavily utilised for state-wide assessments of forest biomass 

and carbon stocks in the Neotropics and Africa (Asner et al. 2012; Asner & Mascaro 2014). However, 

the forests of south-east Asia are structurally and compositionally distinct from others pantropically 

(Banin et al. 2012). As a result, this structural anomaly fails to conform with generalised functions to 

predict carbon within tropical forests. To address this, regional calibration of models were required 

(Coomes et al. 2017; Jucker et al. 2018) in order to estimate carbon stocks from ALS in Sabah, Borneo 

(Asner et al. 2018). 

The Malaysian state of Sabah occupies an area of 73,371 km2 which constitutes around 10% 

of the island of Borneo (Marsh & Greer 1992). Sabah is still considered to be well forested by regional 

standards, however only a small percentage of primary lowland forest remains (Reynolds et al. 2011). 

In 1990, it was estimated that Sabah retained ca 500, 000 ha of primary lowland forest (Marsh & 

Greer 1992), however in 2010 this was reduced to less than 70,000 ha (Reynolds et al. 2011) with 

almost none outside protected areas. Over half (43,800 ha) of this is accounted for by the Danum 

Valley Conservation Area (DVCA) under the management of the Yayasan Sabah (Sabah Foundation) 

forest concession (Reynolds et al. 2011). Given the high levels of past and current deforestation, 

some of these degraded forests are now part of active restoration projects such as the Innoprise-

Forests Absorbing Carbon Emission (FACE) Foundation Rainforest Rehabilitation Project (INFAPRO). 

Rehabilitation projects such as these aim to improve the capacity of the forest to sequester carbon 

by enrichment planting of dipterocarps, liana cutting and fertilisation (Future 2011). The DVCA and 

surrounding landscape is therefore characterised by a mosaic of primary and recovering forests. 

These forests have been exposed to varying intensities of logging and post-logging restoration 

treatments and therefore provide an ideal location to study the distribution of liana infestation and 

the relationship with carbon stocks.  
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1.7. Thesis aims and objectives 

1.7.1. Thesis aim 

 
Assess spatial and temporal patterns of liana infestation and the relationship with 

aboveground carbon stocks across a primary and selectively logged tropical forest in Sabah, Malaysia. 

 

1.7.2. Thesis objectives 

 
Firstly, I will focus on whether airborne-derived hyperspectral and ALS data can be used to 

accurately detect liana infestation across an aseasonal primary tropical forest (Objective 1). Secondly, 

using this methodology, I will assess spatial patterns of liana infestation across primary and 

selectively logged forests and the relationship with aboveground carbon stocks at a landscape-scale 

(Objective 2). Lastly, using predicted landscape-level liana infestation, I will explore the ability to 

detect liana infestation in satellite-based multispectral imagery (Objective 3). Specifically this thesis 

aims to achieve the following objectives: 

Objective 1: Produce a methodology that is capable of accurately detecting liana infestation across 

an aseasonal primary forest  

1.1. Predict the spatial distribution of liana infestation across primary forest using airborne 

hyperspectral and LiDAR data; 

1.2. Utilise both pixel- and object-based approaches to overcome challenges associated with 

differences in spatial units, and compare the accuracies of predicted liana infestation outputs. 

Objective 2: Explore the relationship between liana infestation and carbon stocks at a landscape-

scale 

2.1. Assess spatial patterns of liana infestation across primary and selectively logged forest; 

2.2. Quantify the liana-induced impact on aboveground carbon stocks after accounting for variation 

in topography and the size and frequency of canopy gaps. 

Objective 3: Assess whether liana infestation can be detected in satellite-based multispectral imagery 

3.1. Determine whether liana infestation can be detected in satellite imagery; 

3.2. Quantify change in liana infestation over time using a time series of satellite imagery; 

3.3. Assess whether there is a larger contrast in spectral reflectance between lianas and trees in 2016 

in comparison to other years (2017-2019), as a result of the 2015/2016 El-Niño. 
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1.8. Thesis structure 
 

The chapters in this thesis have all been written for publication in the peer-reviewed 

literature. The structure of this work is therefore made up of individual, stand-alone chapters (Figure 

1.2, Table 1.1). Chapter 2 is a methodological paper and is under review at Remote Sensing in 

Ecology and Conservation. Chapter 3 utilises the methodology from Chapter 2 to predict liana 

infestation across the full landscape and assess the relationship with carbon stocks at a landscape-

level. This chapter is being prepared for submission to the Journal of Ecology. Chapter 4 uses the 

predicted liana infestation output from Chapter 3 to assess whether liana infestation can be detected 

in satellite-based imagery and how liana infestation varies over time. This chapter is being prepared 

as a submission to Remote Sensing of Environment. Chapter 5 provides a synthesis on the research 

conducted and discusses the implications of this research within a wider context. To avoid repetition 

of some common material, such as the methodology and references, each chapter has been slightly 

adapted. 

 

 

Figure 1.2 Thesis structure 
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1.9. Summary of papers 
 

Table 1.1 Summary of papers  

Paper 
No. 

Chapter 
No. 

Title Status 
Journal/Target 
Journal 

Page 
No. 

1 2 
Remote sensing liana infestation in an 
aseasonal tropical forest: addressing mismatch 
in spatial units of analyses 

In review 
Remote Sensing 
in Ecology and 
Conservation 

27 

2 3 
Lianas are strongly associated with areas of low 
carbon stocks at the landscape scale 

Final edits 
in progress 

Journal of Ecology 43 

3 4 
Spatial and temporal patterns of lianas 
detected in satellite-derived imagery 

Final edits 
in progress 

Remote Sensing 
of Environment 

63 
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Chapter 2: Remote sensing liana infestation in an aseasonal tropical 

forest: addressing mismatch in spatial units of analyses1 
 

2.1. Abstract 

1. The ability to accurately map liana (woody vine) infestation at the landscape-level is essential 

to quantify their impact on carbon dynamics and help inform targeted forest management 

and conservation action. Remote sensing techniques provide potential solutions for mapping 

liana infestation. However, their use so far has been limited to seasonal forests, where there 

is a high spectral contrast between lianas and trees. Additionally, a number of 

methodological issues require addressing, particularly the difference in spatial units between 

remotely sensed data and canopy observations of liana infestation. 

2. Airborne hyperspectral and LiDAR data were combined with a neural network machine 

learning classification to assess the distribution of liana infestation at the landscape-level 

across an aseasonal primary forest in Sabah, Malaysia. I tested whether an object-based 

classification was more effective at predicting liana infestation when compared to a pixel-

based classification.   

3. A stronger relationship was found between predicted and observed liana infestation when 

using a pixel-based approach (RMSD = 18.4%) in comparison to an object-based approach 

(RMSD = 20.4%). However, there was no significant difference in accuracy for object- versus 

pixel-based classifications when predicted liana infestation was grouped into three classes; 

Low [0-30%], Medium [31-69%] and High [70-100%] (McNemar’s χ2 = 0.211, p = 0.65). 

4. I demonstrate, for the first time, that remote sensing approaches are effective in accurately 

mapping liana infestation at a landscape scale in aseasonal tropical forests. These results 

indicate potential limitations in object-based approaches which require refinement in order 

to accurately segment imagery across contiguous closed-canopy forests. I conclude that the 

decision on whether to use a pixel- or object-based approach may still depend on the 

structure of the forest and the ultimate application of the resulting map. Both approaches 

will provide a valuable tool to monitor liana infestation and inform effective conservation 

and forest management.  

                                                            
1 Chandler et al. (in review). Remote sensing liana infestation in an aseasonal tropical forest: addressing 

mismatch in spatial units of analyses. Remote sensing in Ecology and Conservation. 
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2.2. Introduction 
 

Lianas (woody vines) are a dominant plant functional type in tropical forests. Lianas use the 

structural composition of trees to reach the forest canopy, where they strongly compete with trees 

for light (Putz 1984; Schnitzer 2005). Recent studies have indicated that the presence of lianas may 

have a strong negative effect on tree diversity (Schnitzer & Carson 2010), growth (van der Heijden & 

Phillips 2009), recruitment (Stevens 1987; Tymen et al. 2016), survival (Putz 1984) and the ability of 

these forests to store and sequester carbon (Durán & Gianoli 2013; van der Heijden, Powers & 

Schnitzer 2015). This is particularly relevant as tropical forests represent around 55% (471 ± 93 Pg C) 

of global carbon stocks (Pan et al. 2011) and thus are highly valued for their role in the global carbon 

cycle. Therefore, liana proliferation, such as that observed in Neotropical forests (Phillips et al. 2002; 

Schnitzer & Bongers 2011), may have global consequences for climate change. 

Growing concern for the impact of lianas on tropical forest carbon balance has led to an 

expansion of studies in recent years. However, the impact on tropical carbon budgets are usually 

studied from the ground (Ingwell et al. 2010; van der Heijden, Powers & Schnitzer 2015; Wright et al. 

2015) with spatial extents limited to the order of plot size (typically, 0.1 ha to 50 ha) (Ingwell et al. 

2010; Schnitzer et al. 2012). As the abundance and distribution of lianas may be influenced by 

processes that operate at multiple scales, field measurements that are constrained to small plots 

may restrict our understanding of the distribution and impact of lianas over larger areas. The ability 

to accurately assess liana infestation at a landscape-level is therefore essential to quantify their 

impact on carbon dynamics and monitor change over time, which will assist in targeting conservation 

and management actions focussing on climate change mitigation in tropical forests.  

Remote sensing may provide a solution to map liana infestation over larger areas than 

possible using field-based methods alone. Studies have shown clear differences in the spectral 

response of trees and lianas at the leaf- (Castro-Esau, Sánchez-Azofeifa & Caelli 2004; Hesketh & 

Sánchez-Azofeifa 2012; Guzman, Rivard & Sánchez-Azofeifa 2018) and canopy-levels (Kalacska et al. 

2007). Based on differences in the spectral response of trees and lianas, airborne-derived 

hyperspectral and LiDAR data have been used to effectively map liana canopy cover at a landscape-

level (Marvin, Asner & Schnitzer 2016). However, the use of remote sensing methodologies to map 

liana infestation at the landscape-level have so far been limited to seasonal forests in the Neotropics 

(Foster, Townsend & Zganjar 2008; Marvin, Asner & Schnitzer 2016). In aseasonal forests, a low 

spectral contrast between lianas and trees (Castro-Esau, Sánchez-Azofeifa & Caelli 2004; Sánchez-

Azofeifa et al. 2009) may pose an additional challenge for mapping liana infestation. Moreover, in the 

study by Marvin et al. (2016) a disagreement between liana infestation predictions at the pixel-level 
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(i.e., determined by the hyperspectral data) with field estimates at the object-level (i.e., per tree-

crown) may have led to a reduction in classification accuracy. Such discrepancies in spatial units have 

been noted in multiple studies that have suggested the need to account for meaningful image 

objects in order to produce accurate land cover maps (Yu et al. 2006; Blaschke 2010; Li & Shao 2014).  

The ability to align ground observations of liana infestation with remotely sensed data is 

essential for accurate classification. Liana infestation estimates at the pixel-level may be achieved by 

spectral unmixing of endmember pixels (Adam, Csaplovics & Elhaja 2016; Shao & Lan 2019). 

Alternatively, LiDAR data may be used to delineate individual tree crowns (Jakubowski et al. 2013; 

Jing et al. 2014; Nunes et al. 2017), which can be used to segment hyperspectral imagery for object-

based classification. However, the effectiveness of an object-based approach may be compromised 

by errors caused by over- and under-segmentation (Liu & Xia 2010; Chen et al. 2018).  

Here, I examine, for the first time, whether a combination of airborne hyperspectral and 

LiDAR data can be used to accurately map liana infestation across an aseasonal primary forest in 

Sabah, Borneo. By employing a neural network machine learning classification, I aim to predict liana 

infestation using both pixel- and object-based approaches and compare differences in their 

accuracies. I also discuss the potential benefits of pixel- versus object-based liana infestation maps 

and their suitability for informing effective conservation and land management. 

 

2.3. Methods 

2.3.1. Study area 
 

The study area is situated within the Danum Valley Conservation Area (DVCA), a primary 

lowland dipterocarp forest within the Yayasan Sabah (Sabah Foundation) forest concession (Reynolds 

et al. 2011) (Figure 2.1). The DVCA (117°48'15.641"E, 4°57'54.822"N) remains a large and intact 

lowland forest (438 km2). The climate is typical of the aseasonal tropics with an annual rainfall of 

>2800 mm (Marsh & Greer 1992) and a mean annual temperature of 26.7°C  (Walsh 1990).  
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Figure 2.1 Location of the Danum Valley Conservation Area (DVCA) in Sabah, Malaysia, showing the 

position of the 50 ha plot and remotely sensed imagery. SFMA, Sabah Forest Management Area.  

 

2.3.2. Occupied airborne data collection 
 

Occupied (or manned) airborne hyperspectral and LiDAR data were collected concurrently by 

the UK Natural Environmental Research Council’s Airborne Research Facility (NERC-ARF) in November 

2014. The data were captured from a Dornier 228-201, flying at 127-139 knots at an altitude of 2335-

2429m. In total 10 flightlines were flown, on bearings of 100 or 280 degrees, surveying an area of 

~2083ha of primary forest (Figure 2.1).  

LiDAR data were captured using a Leica ALS50-II with the capacity to record both Discrete 

(DR) and Full Waveform (FW) data. The dataset has a point density ranging between 2.80-3.16 per m2 

and a spatial resolution of 1 m2. The DR data were processed to produce a top-of-Canopy Height 

Model (CHM) based on the difference between the Digital Surface Model (DSM) and the Digital 

Elevation Model (DEM) using LAStools software (Isenburg 2014). 



Chapter 2: Remote sensing liana infestation in an aseasonal tropical forest 

31 
 

Hyperspectral imagery were collected using a FENIX sensor (Specim Spectral Imaging, 

Finland), which acquired high resolution data from a large spectral range (380-2500 nm). Data were 

collected across 448 contiguous channels at a spatial resolution of 3 m2. Spectral radiance measured 

in the visible-to-near infrared (VNIR) ranged from 380-970 nm with a spectral resolution of 3.5 nm; in 

the shortwave infrared (SWIR) spectra ranged from 970-2500 nm with a spectral resolution of 12 nm. 

Radiometric corrections were applied to the full hyperspectral dataset. Bands without data or those 

which were overly-saturated were removed. Data were atmospherically corrected using ENVI 

FLAASH (Fast Line-of-sight- Atmospheric Analysis of Spectral Hypercube) Atmospheric Correction 

(ENVI version 4.8, Exelis Visual Information Solutions, Boulder, Colorado). Post-correction quality 

checks revealed reflectance values varied between flightlines for the same individual pixels. As a 

result, all spectral values for individual flightlines were adjusted based on the difference in 

reflectance between overlapping pixels of adjacent flightlines (Taylor 2001). An average of all pixels 

from one flight line were compared with an average of all overlapping pixels from the adjacent 

flightline. The average difference was calculated and adjusted for each band across the full flightline. 

All flightlines were combined and the dimensions of the data were reduced using a Standardised 

Principal Component Analysis (SPCA). SPCA uses a correlation matrix which has the same effect as 

using normalised bands of unit variance (Chang & Yoon 2003). The first 8 principal components were 

retained, which explained more than 99% of the variation. Lastly, all values were scaled using a min-

max normalisation: 

𝑧 =
𝑥−min(𝑥)

max(𝑥)−min(𝑥)
    (1) 

 

2.3.3. Liana canopy cover survey 
 

Data on liana canopy cover were collected in 2017 and 2018 for training of a neural network 

classification (n=454 trees). The LiDAR data were uploaded to a tablet computer (Apple, California, 

USA) connected to a GPS receiver (Garmin GLO 2; GARMIN, USA) so individual tree crowns could be 

visually delineated in the field using the GeoEditor application (MapTiler). Thus error associated with 

GPS accuracies can be avoided. To minimise error associated with estimating liana canopy cover, 

effort was taken to ensure each tree crown was thoroughly and accurately assessed by; 1) only 

recording tree crowns that were identified on the canopy height model with a high degree of 

certainty, 2) making sure tree crowns were fully sun-lit and completely unobscured from above and 

3) having a minimum of two people independently estimating the percentage of a tree crown 

infested with liana to the nearest 5% and then mutually agreeing on a final estimate (sensu Marvin, 

Asner & Schnitzer 2016).  
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2.3.4. Tree crown segmentation 
 

The CHM was segmented using the meanshift in the Orfeo Toolbox (OTB) within QGIS v3.6.0 

(QGIS Development Team 2018). The segmentation output consisted of a set of contiguous and non-

overlapping objects. The meanshift algorithm was controlled by three main parameters: scale, radius 

and threshold. A grid-search was performed using four different values for each parameter (Table 

S1.1). A total of 64 segmentations were produced using each parameter combination (Table S1.2). It 

is not possible to know, prior to segmentation, which combination of values will produce the optimal 

segmentation, therefore a large range of values were chosen for each parameter to ensure the 

optimal parameter combination was captured. Following this, a second grid search was performed 

which inspected an additional 27 combinations (Table S1.3). Each segmentation result was submitted 

to a supervised accuracy assessment. Among the many methods available (Costa, Foody & Boyd 

2018) the Segmentation Evaluation Index (SEI) (Yang et al. 2015) was selected to provide an estimate 

of the accuracy of the segmentation. SEI is a strict measure as it requires a one-to-one 

correspondence between the segments and reference polygons. This is a desirable feature in the 

context of this study as one object should correspond to just one tree and vice versa. If not, the 

segmentation accuracy is penalised (Costa, Foody & Boyd 2018). The 91 segmentations were 

compared against a reference set of 124 tree boundaries across the study area manually delineated 

using the CHM. SEI values ranged from 0.276 to 0.818, corresponding to the best and worse results, 

respectively. The smallest SEI value was derived from the parameter combination: scale=15, radius=5 

and threshold=0.005 (Table S1.3). The segmentation produced with this parameter combination was 

used in the subsequent analysis. 

 

2.3.5. Hyperspectral data extraction 
 

When assessing liana canopy cover from the ground, it is only possible to estimate liana 

infestation for entire tree-crowns (objects). A more detailed assessment of liana infestation within a 

tree crown can be achieved by visually dividing the crown into quadrants (cf. Marvin et al. 2015). In 

either case, estimates of liana infestation when assessed from the ground cannot be achieved at the 

same scale of the hyperspectral pixels. To overcome this, end-member spectra were derived from 

trees without lianas in their canopy (therefore ‘tree’) and trees with highly liana-infested (≥75%) 

canopies (therefore ‘liana’) to explain the spectral range (Plaza et al. 2012). As such, each 

hyperspectral pixel within the object relates to a pure cover of either tree or liana leaves. To allow 

comparison with the object-based approach, end-member spectra were derived for both 

approaches. For the object-based classification, end-member spectra were extracted from the 
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segmented hyperspectral imagery for the same trees used in the pixel-based classification (n=267 

trees/8827 pixels; Table 2.1). This yielded a total of 7826 hyperspectral pixels (226 trees) with no 

liana infestation and 1001 hyperspectral pixels (41 trees) with highly liana-infested canopies (see, 

Table 2.1). 

Where the crown delineation derived from the CHM overlapped more than one object in the 

segmented hyperspectral imagery, a weight was assigned based on the proportion of each 

segmented object that made up the area as defined by the delineated crown boundaries. All weights 

were normalised to add up to one and used to calculate a weighted mean by multiplying the spectral 

values of a segmented object with the associated weight.  

 

Table 2.1 Data used for the training of neural network models and validation of predicted liana 

infestation maps. EMs, Endmembers; values within [ ] indicate proportional coverage of liana 

infestation in the tree crown. Balanced EMs contain an equal number of data points within each 

class.  

Approach Spatial 
Unit 

Training 
Data 

Total 
EMs 

EMs  
[0%] 

EMs 
[≥75%] 

Balanced 
EMs 
[0,≥75%] 

EMs 
(80%) 
training 
[0,≥75%] 

EMs (20%) 
verification 
[0,≥75%] 

Valid. 
data 
(#trees) 

Pixel 
Output P 

9m2 
Pixel 

14552 8827 7826 1001 2002 1602 200 168 

Object 
Output O 

Tree 
crown 

454 267 226 41 82 66 16 168 

 

2.3.6. Neural network  

 
Machine learning classifications such as neural networks often perform well when dealing 

with large datasets that include variables with non-linear, complex relationships. Unlike many other 

prediction techniques, they can learn hidden relationships without imposing restrictions such as fixed 

relationships in the data. A neural network model with resilient backpropagation and weight 

backtracking was used, which means that parameters such as learning rate are not required to 

achieve optimal convergence time (Yu & Liu 2002).  

The input variables consisted of the eight principal components and canopy height. Tree 

height was used as an input variable as it has shown to be a key driver in the spatial distribution of 

lianas (Dalling et al. 2012; Meyer et al. 2019). Each input class contained an equal number of data 

points, with pixels or objects removed in a random manner from those that had additional data 



Chapter 2: Remote sensing liana infestation in an aseasonal tropical forest 

34 
 

points (Table 2.1). Each input class was then split 80% for training and 20% for verification (Olson, 

Wyner & Berk 2018). The number of hidden layers and neurons were defined subjectively based on 

trial runs and the model’s performance with verification data (see Table S1.4.). The hidden layers 

refer to the internal structure of the network where the learning process is performed in order to 

separate classes non-linearly. The neurons within the hidden layer multiply the input data by a 

weight, add bias, execute an activation function and transfer to the next layer. The optimal model 

consisted of one hidden layer with 4 neurons, thus the architecture took the form of 9 : 4 : 2 for input 

: hidden : output units, respectively. A sigmoid activation function was applied and therefore 

predicted values were restricted to a range between 0 and 1, i.e. σ(x) ∈ (0, 1). 

I accounted for error in liana canopy cover estimates which may have changed during the 

time lag (2.5 – 3.5 years) between airborne data acquisition and liana canopy cover survey. Ingwell et 

al. (2010) showed that 5% of trees changed from no liana infestation to severely (≥75%) liana-

infested; and 11% of trees changed from severely liana-infested to no liana infestation over a nine 

year period. I estimated 6% of trees to change over a three and a half year period (approximately a 

third of the degree of change recorded by Ingwell et al. (2010) over nine years). Subsequently, I 

suggest 3% of all trees may have become severely (≥75%) liana-infested and vice versa. Taking 3% of 

the endmember data for each class used for training (see, Table 2.1) equates to 24 pixels, or one 

tree, (i.e. 3% of 801 pixels, or 33 trees).  As a result, I randomly selected 24 pixels, or one tree, from 

each class and replaced them with 24 pixels, or one tree, from the other class. One hundred neural 

networks were trained and applied to the study area. Averaging multiple models improves 

generalisation and also allows the calculation of uncertainty estimates based on the standard 

deviation of all predictions (Lu et al. 2008). To assess the level of uncertainty across predictions, I 

regressed the standard deviation for predicted values, from 100 iterations of the neural network, 

against liana infestation. 

 

2.3.7. Neural network classification for mapping liana infestation  
 

To predict liana infestation using data from end-members, a soft, or fuzzy, classification was 

employed. The neural network model was applied to the entire study landscape during each iteration 

at both an object- and pixel-level, to predict the occurrence of a ‘liana’ or ‘tree’.  The output from the 

neural network represents a measure of the strength of class membership, and so may be used to 

generate a soft classification output, in this case, the proportion of liana infestation cover (Foody 

1997; Foody 2000). A final predicted map was produced by averaging all 100 iterations. 
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2.3.8. Accuracy assessment of predicted outputs 
 

The final predicted liana infestation map was validated using a random selection of trees 

(n=168) from within the 50 ha plot (Figure 2.1; Table 2.1). A weighted mean approach was used (see 

section 2.3.5) to account for cases where tree crown boundaries of segmented objects did not match 

perfectly with crown boundaries delineated using the CHM in the field. To validate the pixel-based 

classification, predicted liana infestation values for individual pixels inside the delineated crown 

boundaries were averaged to derive liana canopy cover estimates at the tree-level. 

To assess the accuracy of predicted liana infestation maps, the root mean squared deviation 

(RMSD) was estimated as:  

𝑅𝑀𝑆𝐷 =  √
1

𝑛−1
 ∑ (𝑦̂𝑖 −  𝑦𝑖)2𝑛

𝑖=1       (2) 

which represents the mean deviation of predicted 𝑦̂𝑖 from observed values 𝑦𝑖  (i.e. with 

respect to the 1:1 line) (Piñeiro et al. 2008). Assessing the accuracy of model predictions imposes 

special interest in the 1:1 line of equality, Y = X.  Unlike the root mean squared error (RMSE) which 

estimates the mean deviation of predicted values from the regression line of predicted vs observed 

values, the RMSD calculates the deviation of each predicted value against the 1:1 line (Gauch, Hwang 

& Fick 2003). Subsequently, RMSE will always be smaller and thus an underestimation of the error 

between observed and predicted values (Piñeiro et al. 2008). The units of RMSD correspond to the 

same units as the model variable under evaluation, in this case the percentage of liana infestation. 

The final RMSD was an average of all RMSD values for each of the 100 iterations.       

I accounted for error associated with observational uncertainty in liana canopy cover 

estimates as well as temporal change applied in model training. Firstly, I quantified observational 

error such that 90% of trees contained a small error of 5% and 4% of trees were assigned a large 

error of 30%. Error derived from temporal change was also applied whereby 6% of trees had an error 

of 50%. Observed liana canopy cover values were entered into Monte Carlo simulations. Random 

values were generated with a variation that encompassed the three levels of error (i.e. 5%, 30% and 

50%). Using this approach 100 random values were generated which could be used to calculate mean 

and standard deviation values of liana canopy cover.   

Outputs were also degraded to an ordinal scale by partitioning predicted liana infestation 

into three groups as follows: neural network membership values equal to or below 0.3 were set to 

‘low’, values between 0.31 and 0.69 were set to ‘medium’ and values equal to or greater than 0.7 

were set to ‘high’. A confusion matrix was produced using predicted and reference liana infestation 
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grouped in three classes. Overall accuracy, specificity and Area Under the Curve (AUC) were used to 

assess the accuracy of predicted values. To test for significant differences between pixel- and object-

based approaches a McNemar test was used to assess the level of consistency between the two 

model outputs. A 0.05 significance level was used. All analyses were conducted in R v3.5.1 (R Core 

Team 2019). 

 

2.4. Results 

2.4.1. Spectral difference between liana-free and highly liana-infested trees 
 

Spectral differences were found between liana-free trees and trees severly infested with 

lianas for both pixel- (Figure 2.2a) and object-based approaches to the classification (Figure 2.2b). 

The spectral reflectance for severely liana-infested trees was greater across all spectral bands in 

comparison to liana-free trees (Figure 2.2c and d). 

 
Figure 2.2 Spectral reflectance of liana-free trees and trees severely (≥75%) infested with liana leaves 

using ground-based training data. a, b) Average reflectance values for pixel- and object-based 
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approaches, respectively. c, d) Standardised reflectance values for pixel- and object-based 

approaches, respectively. Standardised (μ = 0, σ = 1) reflectance shows the difference across all 

bands by removing the magnitude of reflectance. Lines are mean reflectance values for all trees 

(shading ± 1 SD). Blue lines represent liana-free trees (ntrees = 226, npixels = 7826), yellow lines 

represent trees highly infested with liana leaves (ntrees = 41, npixels = 1001).  

 

2.4.2. Predicted and observed liana canopy cover   
 

A scatterplot of observed and predicted liana infestation revealed a better fit with a pixel-

based approach (RMSD = 18.4%; Figure 2.3a; Figure S1.2a) compared to an object-based approach 

(RMSD = 20.4%; Figure 2.3b; Figure S1.2b). However, the accuracy of predicted liana infestation 

when partitioned into three classes [≤30%, 31-69%, ≥70%] did not differ between pixel- and object-

based approaches (McNemar’s χ2 = 0.211, p = 0.65, Table 2.2).  

 
Figure 2.3 Relationship between predicted and ground reference liana canopy cover for a) a pixel-

based approach and b) an object-based approach on a continuous scale. Black dashed line represents 

a 1:1 line. Coloured points correspond to the density of overlapping points. Horizontal error bars 

represent the standard deviation of 100 predicted values generated from multiple iterations of the 

neural network model. Vertical error bars represent the standard deviation of 100 randomly 

generated liana canopy cover values using Monte Carlo simulations.  
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2.4.3. Model outputs and uncertainty 
   
Table 2.2 Accuracy assessment of pixel- and object-based model outputs. AUC = area under the 

curve; RMSD = root mean squared deviation 

Model Output Classification AUC Accuracy (95% CI) Kappa Specificity RMSD 
       
Output P Pixel 0.88 0.79 (0.72-0.85) 0.54 0.92 18.4 
Output O Object 0.85 0.77 (0.70-0.83) 0.51 0.91 20.4 
       

 

Both pixel- and object-based approaches produced similar patterns of predicted liana 

infestation across the landscape (Figure 2.4). An increase in liana infestation was generally associated 

with a decrease in canopy height (Figure S1.1). The use of multiple neural network models allowed 

for a calculation of uncertainty around overall predictions (Figure 2.5). A pixel-based classification 

was found to predict liana infestation with less uncertainty in comparison to an object-based 

classification (Figure 2.5).  

 
Figure 2.4 Predicted liana infestation showing a) the frequency of predicted values across the 

primary forest using b) a pixel-based classification (Output P), and c) an object-based classification 

(Output O). Predicted liana infestation maps (b,c) are extracts from a small area within the primary 

forest. Change in colour from purple to yellow represents an increase in liana infestation percent (0-

100%) as shown by the scale bar.  
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Figure 2.5 Estimated uncertainty for both model outputs. Panel (a) shows the relationship between 

estimated uncertainty and predicted liana infestation, (b) and (c) show the scaled and unscaled 

frequency of uncertainty values across the study area, respectively.  Estimated uncertainty was 

calculated based on the standard deviation of predicted values over 100 neural network models. 

Fitted lines are produced using a local regression (loess) with 95% confidence intervals. Output P, 

pixel-based classification; Output O, object-based classification. 

 

2.5. Discussion 
 

Here, I show, for the first time, that despite a lower spectral contrast between liana-free and 

highly liana-infested tree crowns compared to seasonally dry forests (Castro-Esau, Sánchez-Azofeifa 

& Caelli 2004; Sánchez-Azofeifa et al. 2009; Marvin, Asner & Schnitzer 2016), airborne remotely 

sensed data and a neural network machine learning classification can be used to assess liana 

infestation at a landscape-level across an aseasonal tropical forest. This work therefore extends 

previous research using similar methodologies to predict liana infestation in seasonally dry forests 

(Foster, Townsend & Zganjar 2008; Marvin, Asner & Schnitzer 2016).  

Additionally, two different approaches were utilised in an attempt to overcome some of the 

methodological issues associated with a difference in scale between remotely sensed data and 
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canopy observations of liana infestation. A pixel-based classification approach revealed a stronger 

relationship with reference data (RMSD = 18.4%) in comparison with an object-based approach 

(RMSD = 20.4%; Figure 2.3; Figure S1.2). Furthermore, a pixel-based approach revealed less variation 

in predictions compared to an object-based approach (Figure 2.5). 

While the change in spatial units from pixels to objects reduced within-class spectral 

variation (Figure 2.2), error associated with under-segmentation, that is objects that cover more than 

one class, may have resulted in large differences in predictions for segmented objects (Liu & Xia 

2010). The overall effects of both over- and under-segmentation present a key limitation for object-

based classifications (Lee et al. 2016). Therefore, while utilising the entire tree canopy may offer a 

more attractive approach in theory, the success of this approach in dense tropical forests depends 

greatly on the segmentation process to accurately define objects. 

Several factors may have influenced the accuracy of predicted liana infestation in this study. 

Firstly, a noticeable over-prediction of liana canopy cover was found for observed estimates below 

50% infestation (Figure 2.3). I often observed tall, emergent dipterocarps to be liana-free. However, 

the accuracy of liana infestation estimates may be reduced when assessing tall canopy and emergent 

trees from the ground (Waite et al. 2019) due to the greater distance between the observer and tree 

crown. In such cases, or when trees are obscured, unoccupied aerial vehicles have proven to be an 

effective tool for accurate liana infestation assessment (Waite et al. 2019).  

Secondly, hyperspectral data were collected in 2014 whereas ground-based estimates of 

liana canopy cover were collected between 2017-2019. Data from Wright et al. (2015) indicated 

around 2% of all trees that had no liana infestation had become severely (≥75%) liana-infested, and 

vice versa, over a 12-year period. I therefore suggest liana canopy cover estimates may not have 

varied considerably over a 3.5-year period. Nevertheless, I propagated errors associated with 

temporal change and field estimates of liana canopy cover to quantify uncertainty in predictions of 

liana infestation. Accounting for this error did not substantially alter predicted liana infestation 

(Figure S1.3 and Table S1.5).  

This method shows that it is possible to identify tree crowns and pixels with liana infestation 

greater than 50% with a high degree of accuracy (Figure 2.3). Accurately identifying trees with more 

than 50% of their crown covered is essential as previous research has indicated that the impact of 

lianas on growth, survival and fecundity is greatest for those trees that have more than 50% of their 

crown covered by liana leaves (Ingwell et al. 2010; Wright et al. 2015). Information on the spatial 

distribution of high liana infestation may be particularly important for targeted conservation and 

restoration efforts, especially when geared toward increasing the carbon storage and sequestration 
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potential of tropical forests for climate change mitigation (Bongers, Schnitzer & Traore 2002; Addo-

Fordjour, Rahmad & Shahrul 2014). For example, one of the methods deployed to increase carbon 

storage and uptake in tropical forests is liana removal (van der Heijden et al. 2015, Marshall et al. 

2017). However, blanket liana cutting can be expensive, particularly when it needs to be carried out 

over large areas or more than once to be effective (Parren & Bongers 2001; Gerwing & Vidal 2002; 

Schnitzer & Bongers 2005). Being able to accurately locate areas with high liana infestation may 

therefore help target liana cutting to areas where it is most beneficial and inform efficient forest 

management and conservation action.   

These findings have demonstrated that remote sensing technologies are capable of 

accurately detecting liana infestation across an aseasonal tropical forest. As the spectral response of 

lianas in comparison to trees (Figure 2.2) closely resembled results derived from seasonal forests 

(Marvin, Asner & Schnitzer 2016), this method may be broadly applicable to other forest locations. 

The approaches used in this study also revealed limitations, suggesting certain approaches 

may be more suited to one environment over another. For example, the accuracy of segmentation is 

critical for an object-based approach, which may only be achievable in a primary forest, where there 

is greater heterogeneity in the canopy in comparison to logged forests (Numata et al. 2006). On the 

other hand, in selectively logged forests, where tree and canopy dimensions are typically more 

homogenous, a pixel-based approach may be more suitable.  

In addition, the requirement for a liana infestation map may guide the decision to adopt a 

pixel- or object-based approach. The use of an object-based liana infestation map may be more 

relatable for forest managers or conservationists that are interested in locating specific trees which 

are liana-free or heavily liana-infested. Similarly, monitoring change in liana infestation over time, or 

assessing tree mortality as a result of liana infestation, may favour an object-based approach as 

change is interpreted at the tree-level. However, relating liana infestation to an aboveground 

biomass map or species diversity may benefit from a pixel-based approach, to allow estimates to be 

generated at scales which can be aligned for meaningful comparisons.  

 

2.6. Conclusion 
 

The assessment of liana infestation at the landscape scale is essential to understand the 

mechanisms that drive spatial patterns of liana coverage, monitor changes over time and quantify 

the impact on carbon storage and sequestration. By combining airborne hyperspectral and LiDAR 

data with a neural network classification approach, I have demonstrated the ability to detect and 
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map liana infestation in an aseasonal tropical environment, where the spectral contrast between 

lianas and trees is low. Due to potential limitations in the accurate segmentation of tree canopies 

required for an object-based approach, a pixel-based classification revealed a higher accuracy in 

predicting liana infestation at a landscape-level. This study advances our ability to assess spatial 

patterns of liana infestation at the landscape-level, particularly for high (>50%) liana infestation 

where the impact on carbon storage and sequestration is more pronounced. Being able to detect 

liana infestation in a tropical forest landscape provides a valuable tool for targeted conservation 

action and effective forest management focused on liana assessment and control.  
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Chapter 3: Lianas are strongly associated with areas of low carbon 

stocks at the landscape scale2 
 

3.1. Abstract 
 

1. Lianas are a dominant component of many tropical forests, where they can dramatically 

reduce carbon uptake and storage. The negative effect of lianas on carbon stocks has been 

well documented at the plot-level and in the Neotropics. However, plot-based studies may 

not capture sufficient variation in forest variables to be able to fully assess the relationship 

between liana infestation and aboveground carbon (AGC) stocks. It is therefore essential to i) 

quantify the liana-induced effect on AGC stocks at a landscape-level and ii) understand 

whether this pattern is representative of Palaeotropical forests.  

2. Here, remote sensing techniques were used to assess the impact of liana infestation on AGC 

stocks across aseasonal primary and either actively restored or naturally regenerating 

selectively logged forests in Sabah, Malaysia. Full waveform airborne laser scanning (ALS) 

data were used to predict carbon stocks across the study area and related this to a 

landscape-level liana infestation map derived from airborne hyperspectral and ALS data.  

3. Liana infestation was widespread across the landscape, although average levels of infestation 

were greater within the logged forests (63.9% ± 7.9) in comparison to the primary forest 

(44.3% ± 7.9). Canopy gaps were particularly dominated by lianas, with 86.8% ± 4.2 of gaps 

being severely (≥75%) liana-infested. Across the landscape, areas completely infested with 

lianas stored, on average, 59.6 ± 11 Mg C ha-1 less than areas that were liana-free after 

accounting for the effect of canopy gaps. However, the degree of carbon stock reduction 

relative to liana infestation varied within forest types, whereby severely liana-infested areas 

stored 14.8 ± 6.4, 32.8 ± 16.2 and 85.1 ± 12.8 Mg C ha-1 less compared to liana-free areas in 

the actively restored, naturally regenerating and primary forests, respectively.  

4. Synthesis. These findings show that severely liana-infested areas store less carbon at a 

landscape-level. This implies that an increase in liana infestation in the future may reduce the 

carbon storage potential of tropical forests. Therefore, in order to provide effective climate 

change mitigation in the future, liana control may be required in areas with severe 

infestation. To this end, it is imperative that lianas and their effects are included in global 

vegetation models to accurately predict the effects of changing climatic conditions on the 

carbon sink function of tropical forests.  

                                                            
2 Chandler et al. (in prep). Lianas are strongly associated with areas of low carbon stocks at the landscape scale.   



Chapter 3: Lianas are strongly associated with areas of low carbon stocks 

44 
 

3.2. Introduction 
 

Tropical forests play a critical role in the storage and sequestration of carbon and therefore 

structural changes within them may have large implications on the global carbon cycle (Pan et al. 

2011). Lianas (woody vines) are an important component of tropical forests, contributing up to 40% 

of the woody stems (Gerwing & Farias 2000; Chave, Riéra & Dubois 2001). Lianas are non-self-

supporting structural parasites that use the physical support of trees in order to reach the forest 

canopy. Once in the canopy, lianas can produce extensive foliage above the tree canopy, thereby 

reducing the amount of light available to their host tree. Competition between lianas and trees is 

often more direct, and therefore stronger, than tree-tree competition (Tobin et al. 2012) and can 

severely reduce the growth and survival of their hosts (van der Heijden & Phillips 2009; Ingwell et al. 

2010). Lianas are therefore able to significantly limit the ability of tropical forests to store and 

sequester carbon (DeWalt & Chave 2004; van der Heijden & Phillips 2009; Ingwell et al. 2010; Durán 

& Gianoli 2013; Schnitzer et al. 2014b; van der Heijden, Powers & Schnitzer 2015; Tymen et al. 2016). 

Furthermore, changes in the biomass and abundance of lianas may impact the capacity of tropical 

forests to act as carbon sinks in the future. 

Several studies, predominantly based in the Neotropics, have reported a negative 

relationship between liana abundance and aboveground tree biomass (Laurance et al. 2001; Durán & 

Gianoli 2013; Laurance et al. 2014; Durán et al. 2015; Ledo et al. 2016). However, tree and liana 

biogeography differ markedly in the Palaeotropics, with liana densities reported to be lower and 

forest heights significantly higher compared to Neotropical forests (Gentry 1991; Appanah, Gentry & 

LaFrankie 1993; Schnitzer & Bongers 2002; Banin et al. 2012). Differences in patterns of liana 

infestation and forest structure may be related in part to the high proportion of dipterocarp trees 

which are typically tall, slender and support lianas less often than other tree species (Ashton & Kettle 

2012; Wright et al. 2015; Shenkin et al. 2019). Assessing whether the negative relationship between 

liana infestation and aboveground carbon (AGC) stocks holds in Palaeotropical forests therefore 

requires further attention.  

The relationship between lianas and AGC storage has often been explored using ground-

based plots (Laurance et al. 2001; Durán & Gianoli 2013; van der Heijden, Powers & Schnitzer 2015). 

However, ground-based studies are limited 1) to areas which are more easily accessible and 2) by the 

total area they can feasible sample. Subsequently, plot-based censuses may not cover a sufficiently 

large area to be able to disentangle the impact of lianas on carbon stocks. 

For example, liana abundance has been shown to increase with decreasing precipitation and 

increasing seasonality at global- (Schnitzer 2005; DeWalt et al. 2010) and regional-scales (Parolari et 
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al. 2020) but not across the Neotropical continent (van der Heijden & Phillips 2008). Differences may 

be attributed to the high variation in rainfall among and within regions (Malhi & Wright 2005). 

Furthermore, differences may also be attributed to the complex and often confounded forest 

variables (Currie, Pétrin & Boucher-Lalonde 2019). For example, an increase in AGB has also been 

related to an increase in soil fertility (Slik et al. 2010; Quesada et al. 2012; Vicca et al. 2012) an 

increase in elevation (de Castilho et al. 2006) and topography (Ferry et al. 2010; Taylor et al. 2015). 

However, liana abundance may covary with soil fertility (DeWalt et al. 2006) or above ground 

biomass  (Durán et al. 2015; Ledo et al. 2016), in areas of greater disturbance (Denslow, Ellison & 

Sanford 1998; Yee et al. 2019) and higher elevation (de Castilho et al. 2006; John et al. 2007; Körner 

2007; Unger, Homeier & Leuschner 2012). Additionally, variation in soil type may affect species 

distribution patterns and the structure of forest communities (Russo et al. 2005; John et al. 2007) 

which in turn may affect the distribution and abundance of lianas (Poulsen et al. 2017).  

Furthermore, the distribution of lianas is highly aggregated and often associated with 

disturbed or open-canopy patches within forests (Schnitzer, Dalling & Carson 2000; Laurance et al. 

2001; Schnitzer & Carson 2001; Schnitzer & Bongers 2002; van der Heijden & Phillips 2008; Schnitzer 

& Carson 2010). As forest plots that contain open canopy areas are likely to have lower values of AGB 

as well as higher liana abundance, the presence of gaps may therefore artificially amplify the 

relationship between liana abundance and tree carbon stocks, which may not be representative of 

the wider landscape. Ultimately, the variables that influence spatial patterns of both lianas and 

carbon stocks may be scale-dependant and vary across the landscape in response to forest type, 

topography and canopy gaps. Therefore, a landscape-level evaluation may allow variation in forest 

variables to be captured in order to fully assess the relationship between liana infestation and AGC 

stocks.  

Remote sensing techniques offer solutions to investigate AGC storage and liana infestation 

concurrently at multiple spatial and temporal scales (Lechner, Foody & Boyd 2020). However the 

ability to generate estimates of liana infestation at scales which align with estimates of carbon stocks 

may limit the use of certain systems. For example, the detection of lianas in satellite-based imagery 

has only been possible in large canopy gaps (Foster, Townsend & Zganjar 2008) where the 

relationship between liana infestation and carbon stocks is evident. Lianas have also been detected 

using UAVs (Waite et al. 2019), however UAV-derived data is captured at ultra-fine resolutions, i.e. at 

the scale of individual leaves, and therefore provides overly detailed information to assess the 

relationship between liana infestation and carbon stocks at a landscape level.  



Chapter 3: Lianas are strongly associated with areas of low carbon stocks 

46 
 

Airborne-derived data, on the other hand, can provide a middle ground to predict liana 

infestation at a scale which aligns with predictions of AGC stocks. Advances in technology now 

include high spectral-resolution sensors which can be used to detect fine spectral differences 

between species. Studies have shown that lianas and trees are distinguishable as groups based on 

their spectral response (Castro-Esau, Sánchez-Azofeifa & Caelli 2004; Sánchez‐Azofeifa & Castro‐Esau 

2006). As a result, studies have been able to detect lianas over landscape-scale areas from airborne 

platforms with hyperspectral and LiDAR sensors in seasonal (Marvin, Asner & Schnitzer 2016) and 

aseasonal tropical forests (Chandler et al. in review). So far, however, spatial patterns of liana 

infestation have not been linked to carbon dynamics at a landscape-level.  

The ability to assess the relationship between liana infestation and AGC stocks at a 

landscape-level may reveal patterns which do not emerge at the scale of field-based measurements. 

On the other hand, patterns revealed at the plot-level may be lost when assessed over larger areas. 

For example, at a landscape-level, variables relating to forest structure and topography are likely to 

affect the distribution of liana infestation and carbon stocks. Therefore, at a landscape-level, a more 

representative forest-wide effect of lianas on carbon stocks can be assessed and may also provide 

unique insights into the mechanisms that drive spatial patterns in the distribution and abundance of 

lianas. 

Here, I therefore assess the relationship between liana infestation and aboveground carbon 

storage in Sabah, Borneo using landscape-level predictions based upon full waveform airborne laser 

scanning and hyperspectral data. I relate carbon stocks to liana infestation across three areas of 

tropical forests, 1) unlogged primary forest and selectively logged forests that have been 2) actively 

restored or 3) allowed to naturally regenerate. More specifically, focusing within and across forest 

types, I aim to: 

1) Assess the distribution of liana infestation; 

2) Determine the relationship between liana infestation and the size and frequency of canopy 

gaps; 

3) Investigate the effect of liana infestation on carbon stocks after accounting for variation in 

canopy gaps and topography 
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3.3. Methods 

3.3.1. Study site 
 

The study was carried out in an aseasonal tropical forest in Danum Valley, Malaysia 

(117°48'15.641"E, 4°57'54.822"N). The climate is typical of the aseasonal tropics with an annual 

rainfall of >2800 mm (Marsh & Greer 1992) and a mean annual temperature of 26.7°C  (Walsh 1990). 

The study area contains a mix of primary and selectively logged lowland dipterocarp forest. Logging 

took place between 1972 and 1993, followed by a second round of logging from 1999-2010. The 

amount of timber extracted varied, but averaged 117 m3 ha-1. Active restoration was also 

implemented in some areas between 1993 and 2004 in the form of climber cutting and enrichment 

planting of indigenous dipterocarps, fast growing pioneers and fruit trees (Face the Future 2011). The 

remaining forest was left to regenerate naturally. The location of these three forest types in relation 

to the airborne-derived imagery are shown in Figure 3.1.  

 
Figure 3.1 Location of the Danum Valley Conservation Area (DVCA) and 50 ha permanent plot in 

relation to the airborne remote sensing data, in Sabah, Borneo. CHM, Canopy Height Model. Inset: 

the state of Sabah showing the location of the DVCA within the Yayasan Sabah Foundation 

Management Area. 
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3.3.2. Airborne hyperspectral and LiDAR data 
 

Hyperspectral and LiDAR data were captured in November 2014 by a Dornier 228-201 

aircraft from the Natural Environmental Research Council (NERC) Airborne Research Facility (ARF). An 

inbuilt AisaFENIX sensor (Specim Spectral Imaging, Finland) was used to capture hyperspectral data 

and a Leica ALS50-II system to capture small footprint airborne laser scanning (ALS) data. In total 

data were collected along 10 flightlines, flown at an altitude of 2335-2429 m and surveying an area 

covering ca. 7500 ha. 

The Leica ALS50-II sensor captured both Discrete (DR) and Full Waveform (FW) ALS data, with 

a point density ranging between 2.80 – 3.16 per m2 and a footprint of approximately 22 cm at 1000 

m altitude. The DR data were processed using LAStools software (Isenburg 2014) to produce a 

canopy height model (hereafter referred to as CHM) corresponding to the top-of-Canopy Height 

(TCH) with a spatial resolution of 1 m.  

Hyperspectral imagery were collected using a AisaFENIX sensor (Specim Spectral Imaging, 

Finland) which uses two parallel sensors to collect continuous spectral reflectance from the visible to 

short wave infrared (380-2,500 nm) with a spatial resolution of 3 m. The full hyperspectral dataset 

was radiometrically corrected and an ENVI FLAASH Atmospheric Correction (ENVI version 4.8, Exelis 

Visual Information Solutions, Boulder, Colorado) was applied. All flightlines were combined and the 

dimensions of the data were reduced to 10 principal components using a Standardised Principal 

Component Analysis (SPCA) in an attempt to reduce the computational demand. SPCA uses a 

correlation matrix which has the same effect as using normalised bands of unit variance (Chang & 

Yoon 2003). All values were scaled using a min-max normalisation thus ranging between 0 and 1. 

 

3.3.3. Landscape-level liana assessment  
 

Data on the degree of liana infestation in individual tree crowns, which were fully exposed 

from above, were collected during three field seasons from March 2017 to July 2019. The Canopy 

Height Model (CHM), pre-loaded on a tablet computer with a GPS connection (GARMIN GLO), was 

used to locate individual tree crowns to visually assess for liana infestation. If lianas were present, 

the infestation was classified as the proportion of the tree crown covered by lianas, to the nearest 

5%, otherwise, liana cover was set at 0%. The field team consisted of two people, with each person 

independently estimating the percentage of liana infestation in a tree crown. Each estimate was then 

discussed and a final estimate mutually agreed (sensu Marvin, Asner & Schnitzer 2016). Tree crowns 

were also manually delineated in the field on the CHM using the GeoEditor application (MapTiler). 
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A total of 724 trees were delineated with liana canopy cover estimates ranging from 0 to 

100%. The spectral values of pixels that were fully inside tree crown boundaries were extracted from 

the hyperspectral imagery, which yielded a total of 21822 pixels. However, hyperspectral data at the 

pixel-level do not correspond with liana canopy cover values collected at the tree-level. To overcome 

this, spectra from trees without liana canopy cover (i.e. tree) and trees with canopies severely 

infested (≥75%) with liana leaves (i.e. liana) were used. Therefore, each pixel reflects a pure cover of 

either tree or liana leaves and the spectra associated with either class represents either ends of the 

liana infestation range (also referred to as end-members). This yielded a total of 7832 pixels from 

tree crowns without liana infestation and 1979 pixels from those with severe liana infestation. 

Prior to training the neural network model, the liana-free and severely liana-infested data 

were balanced by randomly removing pixels without liana infestation to ensure there was an equal 

number of data points within each input class (i.e. 1979 pixels for each class). The pixels for each 

class were then randomly split into 80% for training (1583 pixels) and 20% for verification (396 pixels) 

of the model (cf. Olson, Wyner & Berk 2018). I accounted for error in liana canopy cover estimates 

which may have changed during the time lag (2.5 – 3.5 years) between airborne data acquisition and 

the ground survey of liana canopy cover estimates. Following the methodology used in Chandler et 

al. (in review), I reclassified 3% of all pixels selected for model training (47 pixels) from the liana-free 

class to the severely (≥75%) liana-infested class and vice versa. 

To predict liana infestation across the landscape, a neural network model with resilient 

backpropagation was used. Resilient backpropagation is often faster than regular backpropagation 

and doesn’t require parameters such as learning rate to be specified (see Appendix 4 for details on 

neural networks). The model architecture consisted of an input layer with 9 units, corresponding to 

the discriminating variables (e.g. principal components), one hidden layer with 6 units (neurons) and 

an output layer with 2 units which correspond to either a tree or liana class. The number of hidden 

layers and neurons are defined subjectively based on trial runs. A sigmoid activation function was 

used and therefore the predicted values were restricted to a range between 0 and 1, i.e. σ(x) ∈ (0, 1).  

However, rather than producing a single output value, the output from the neural network 

represents a strength of class membership that a pixel has to each class (Foody 1996). Therefore, the 

membership value can be used to generate a soft classification output, in this case, the proportion of 

liana infestation cover for each pixel. The neural network model was run 100 times and after each 

iteration the model was applied to the entire study landscape. With each iteration I randomly: 1) 

removed pixels from the no liana infestation class to ensure each input class was balanced, 2) split 

data for training and verification and 3) permuted 47 pixels into an incorrect class (as above). The 

final landscape scale liana infestation output is an average of all 100 neural network iterations.   
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This final liana infestation output (Figure S2.1a) was validated using ground reference liana 

canopy cover data assessed from a random selection of trees (n=168) inside a permanent 50 ha 

forest plot located in the DVCA (Figure S2.2a). I accounted for error in ground reference data 

associated with observational uncertainty and the fact ground data were collected 3.5 years after 

airborne data collection as follows. Firstly, I quantified observational error such that 90% of trees 

contained a small error of 5% and 4% of trees contained a large error of 30%. Secondly, I allowed 6% 

of trees to have an error of 50% which represents potential change in liana infestation during the 

time between the airborne and ground data surveys. Finally, I conducted a Monte Carlo simulation 

on the ground reference liana canopy cover data to generate random data with a level of variation 

that encompassed the three degrees of error (i.e. 5%, 30% and 50%). Using this approach 100 

random values were generated for each of the 168 trees which were used to compare with the 100 

predicted liana infestation outputs.  

As validation data were at the tree-level, predicted liana infestation values for individual 

pixels inside the delineated crown boundaries were averaged to derive tree-level estimates of liana 

canopy cover. To assess the accuracy of the predicted liana infestation outputs, the root mean 

squared deviation (RMSD) (Eq. 2) was estimated. The final RMSD was an average of all RMSD values 

for each of the 100 iterations.   

 

3.3.4. Landscape-scale above ground carbon stocks assessment  
 

Tree-level data were collected from a total of 68 permanent forest plots ranging in size from 

0.07 to 1 ha (mean size: 0.34 ha) across all three forest types to encompass the wide range of 

biomass and forest structure. While 1 ha plots may achieve highest accuracies for LiDAR model 

performance (Zolkos, Goetz & Dubayah 2013; Rejou-Mechain et al. 2014), a widely distributed array 

of plots were required in order to gain a better representation of the full landscape. Therefore, in 

addition to the use of already established plots of varying sizes, I settled on a plot size of 50x50 m for 

all new forest plots. Plot censuses were carried out between 2015 and 2018. In each plot, I measured 

the diameter and identified all trees >10 cm diameter at breast height (1.3 m or above the buttress). 

Trees were identified in the field where possible and, if not, voucher specimens were collected for 

identification at a later date. The locations of the plot corners and mid-point were recorded on a GPS 

(Garmin, Etrex). In addition, I walked the perimeter of a plot two times with tracking enabled on the 

GPS, because I observed that with this approach a decrease in positional accuracy did not impact the 

overall boundary to the same degree as by just recording individual corner points.  
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Using this GPS data, polygons were then drawn in ArcGIS and visually aligned to fit as best as 

possible to the corner points and tracked boundaries. For each plot, aboveground biomass (AGB, in 

Mg ha-1) was calculated using the BIOMASS package in R (Réjou‐Méchain et al. 2017), which provides 

a workflow to estimate AGB as well as a level of uncertainty in AGB estimates based on the error in 

allometric models and field measurements. AGB was calculated using the pantropical allometric 

model: AGB = 0.067*(H*D2 *WD)0.976 (Chave et al. 2014). Wood density (WD) values for individual 

trees were obtained from their taxonomy using the global wood density database (Chave et al. 2009; 

Zanne et al. 2009). For each taxon, a species-level average was obtained (39% of trees) where 

possible, or genus- (36% of trees) or family-level (3% of trees) averages when not. If no taxonomic 

information for the tree was available, a stand-level average (22% of trees) was applied. Tree height 

(H) was not measured in the field and was therefore estimated using tree diameter (D) and a region-

specific H-D model (Feldpausch et al. 2012). Using estimates of H and three different H-D models, 

three additional H-D curves were estimated. All H-D curves were compared and a ‘log1’ method i.e., 

log(H) = a+ b*log(D), (equivalent to a power model) was chosen as the best fit based on the 

relationship with 50 trees of known D (D>140 cm) and H (Figure S2.3).  

In addition, I propagated uncertainty in tree AGB estimates using Monte Carlo simulations 

(cf. Réjou‐Méchain et al. 2017), which uses, (i) uncertainty in the H-D allometric model (i.e. residual 

standard error of the model associated to tree height), ii) error associated with the WD estimate  (i.e. 

standard deviation at a given taxonomic level), which is known to influence the accuracy of carbon 

estimates (Phillips et al. 2019), and (iii) measurement error in D, where 95% of stems have a typical 

error of 0.27 cm and 5% of stems have a gross error of 4.63 cm (Chave et al. 2004). From this, I 

obtained 100 estimates of tree AGB for each plot following error propagation over 100 iterations, 

which represents uncertainty in plot-level AGB. Plot-level AGB was converted into aboveground tree 

carbon (AGC) stocks by applying a conversion factor of 0.47 (IPCC 2006). Lastly, I applied a correction 

factor estimated by Jucker et al. (2018) to compensate for carbon stored in tree stems with D < 10 

cm that were not recorded (Jucker et al. 2018).  

To predict AGC stocks using ALS data, two metrics, in addition to the canopy height model 

(CHM), were obtained which may provide useful information on the vertical structure of the canopy 

and therefore beneficial for the accurate prediction of AGC stocks. I obtained i) height of median 

energy (HOME), which is the distance from the waveform centroid to the ground, and ii) waveform 

distance (WFD), which is the distance from the beginning of the waveform to the ground (Drake et al. 

2002). While the WFD metric is often well correlated with LiDAR canopy height (Sun et al. 2008), I 

show variation in WFD values in comparison to CHM and HOME values which may provide additional 

information on the structural complexity of the forest (Figure S2.4).  
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From all three datasets (CHM, HOME and WFD), eight landscape-level variables at the plot 

scale (i.e. 50 x 50 m) were produced which can be used to predict AGC stocks at a spatial resolution 

of 2500 m2. Variables included: minimum, maximum, mean, median and standard deviation. I also 

derived variables relating to canopy cover, defined as the percentage of pixels above or below a 

given height within each 50 x 50 m area: canopy cover above 20 m (Cover20), canopy cover above 40 

m (Cover40) and canopy cover below 10 m (Cover10). Canopy cover above a given height is an 

effective metric for capturing variation in forest volume (Ni‐Meister et al. 2010; Coomes et al. 2017). 

In particular, studies have found that canopy cover above ca. 20 m was the optimal height for 

estimating plot-level basal area (Coomes et al. 2017; Jucker et al. 2018). In contrast to other ALS-

derived metrics which have complex nonlinear relations with AGC, that between canopy cover and 

AGC is linear, irrespective of forest type (Meyer et al. 2018).  

I accounted for the accuracy of field plot locations by allowing their position to vary by 5 m in 

any given direction. This process was repeated 100 times and ALS metrics were extracted from each 

new plot location to derive a geopositional uncertainty (δa). Data were used from 56 of the 68 field 

plots to fit a model for the prediction of AGC, with the remaining 12 plots used for model validation. 

Of the 24 variables derived from ALS data, an automated stepwise algorithm was used to identify the 

best input variables based on their Akaike Information Criterion (AIC) value. To identify variables 

which are also capable of forming a model that generalises well, I randomly chose 80% of the data to 

run the stepwise algorithm. This process was repeated ten times to obtain ten top-ranked variable 

selections. These variables were used in a multiple regression and assessed for their predictive 

performance by using a ten-fold cross validation (Table S2.2). The optimal model was then used to 

generate 100 predictions of AGB across the full landscape using the 100 estimates of plot-level AGB 

to derive uncertainty in predicted AGB (δb).   

To validate the model I used the 12 validation plots that were positioned across the 

landscape using an entirely random distribution in order to comply with good practices for accuracy 

assessment (Olofsson et al. 2014; Stehman & Foody 2019). The model used for the prediction of AGC 

was applied to ALS-derived variables for each of the 12 plots. Uncertainty derived from the 

geopositional error of forests plots (δa), plot-level AGB estimates (δb) as well as error in the model 

used to predict AGC stocks (δc) were propagated, i.e. 𝛿𝑄𝑎 = √(𝛿𝑎)2 + (𝛿𝑏)2 + (𝛿𝑐)2    to estimate 

an overall uncertainty (𝛿𝑄𝑎) in predicted AGC stocks (Figure S2.1b). The relationship between 

predicted and observed AGC was assessed using the RMSD (Eq. 2) (Figure S2.2b). I also calculated the 

relative bias, expressed as a percentage  

1

𝑛
∑

𝑃𝑟𝑒𝑑−𝑂𝑏𝑠

𝑂𝑏𝑠

𝑛
𝑖=1 ∗ 100         (3) 
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whereby, Obs and Pred denote observed and predicted AGC stocks. This gives an indication of the 

degree to which predicted AGC stocks may be over- or under- predicted relative to ground-derived 

plot-level AGC stocks. 

 

3.3.5. Relating liana infestation to above ground carbon stocks 
 

Predicted liana infestation across the full landscape was divided into the three forest types in 

order to compare differences in the degree of liana infestation. I also compared differences in the 

median and standard deviation of canopy heights to assess differences in forest structure between 

forest types. Statistical significance can often be an artefact of large sample sizes, such as when using 

remotely sensed imagery collected over large areas (Lin, Lucas Jr & Shmueli 2013). I therefore used 

Cliff’s delta, which is considered a robust measure of effect size (Cliff 2014; Marfo & Okyere 2019), to 

compare the magnitude of difference between groups. Cliff’s delta computes the probability that a 

randomly selected observation from one group is larger than a randomly selected observation from 

another group, minus the reverse probability, 
∑[𝑥>𝑦]−[𝑥<𝑦]

𝑚𝑛
 where x and y are pixel values from each 

group and m and n are the number of observations within each group (Cliff 2014). The magnitude of 

difference between groups is assessed using the thresholds provided in (Romano et al. 2006), i.e. 

Cliff’s delta values >0.474 are considered significant (Torchiano 2017).  

To assess the relationship between liana infestation and canopy gaps, the LiDAR-derived 

CHM and the R package ForestGapR (Silva et al. 2019) was used to detect canopy gaps across the 

landscape. Gap definitions vary widely, often due to differences in forest structure and techniques 

used to detect gaps (van der Meer et al. 1994). As the vegetation remaining within gaps after large 

tree falls can be up to 7 m tall (Lieberman et al. 1985), I defined a canopy gap as an area >10 m2 and 

a canopy height <10 m (cf. Hunter et al. 2015). I overlaid the CHM with a 2500 m2 pixel grid as this 

aligns with spatial resolution of predicted carbon stocks. I calculated the proportion of gap area, the 

frequency of gaps and the gap size frequency distribution (GSFD) within each 50x50 m pixel. The 

proportion of gap area was calculated as the number of pixels within a canopy gap divided by the 

total number of pixels within each 50x50 m area (i.e. 2500 pixels), expressed as a percentage. The 

GSFD was quantified using the parameter λ which relates to the negative slope (exponent) of the 

relationship between gap size and frequency on a log-log scale (cf. Asner et al. 2013).  

The relationship between liana infestation and AGC was also evaluated whilst accounting for 

variation derived from the size and frequency of canopy gaps. A generalised linear model was used to 

predict AGC as a function of liana infestation and the interaction between the proportion of gap area 
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and the frequency of canopy gaps. I subsequently used this model to predict values of AGC for each 

forest type allowing liana infestation to vary whilst holding gap area and frequency constant. 

Additional uncertainty in AGC due to error in the prediction of liana infestation (δd) was estimated by 

using the 100 predictions of liana infestation obtained in Chandler et al. (in review). Here, predictions 

of liana infestation were obtained over 100 neural network model iterations accounting for error 

associated with observational uncertainty in liana canopy cover estimates (Chandler et al. in review).  

Uncertainty derived from error in liana infestation (δd), error in the model used to predict AGC stocks 

(δe) as well as overall uncertainty (𝛿𝑄𝑎) in predicted AGC stocks (calculated previously) were 

combined using summation in quadrature (Bell 2001). 

 

3.4. Results  
 

I found average levels of liana infestation across the full landscape to be significantly higher 

in the logged forest (63.9% ± 8 SD) than the primary forest (44.3% ± 7.9). Furthermore, levels of liana 

infestation were significantly greater within the naturally regenerating forest (68.9% ± 8.1) than the 

actively restored forest (58.9% ± 7.8), suggesting active restoration, such as liana cutting, may have 

reduced the degree of infestation (Figure 3.2). Across the landscape, the areas most dominated by 

lianas were canopy gaps, with 86.8% ± 4.2 of gaps being severely (≥75%) liana-infested. Indeed, 

severe liana infestation in canopy gaps was observed across all forest types, with 85.8% ± 4.5, 90.7% 

± 3.5 and 83.9% ± 6.3 of gaps being severely liana-infested in the primary, actively restored and 

naturally regenerating forests, respectively. However, canopy gaps explained less than half of the 

total distribution of severe liana infestation pixels, with only 40.7% ± 1.5, 16.5% ± 1.2 and 50.8% ± 1.9 

of the severely liana-infested pixels falling within canopy gaps in the primary, actively restored and 

naturally regenerating forests, respectively. I found that liana infestation was strongly positively 

related to the proportion of canopy gap area (Figure 3.3a). Furthermore, liana infestation was 

negatively related to the gap size frequency distribution (λ: Figure 3.3b), indicating that liana 

infestation is more severe in larger gaps (Figure S2.6).   
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Figure 3.2 Frequency distribution 

(scaled between 0 and 1) of 

predicted liana infestation within 

each forest type showing the values 

in gap (darker shade) and non-gap 

areas (lighter shade). P, Primary; AR, 

Actively Restored; NR, Naturally 

Regenerating. 

 

 

  

 

 

Figure 3.3 Relationship between liana infestation and a) the proportion of canopy gap area per 50x50 

m pixel and b) gap size frequency distribution expressed as λ within each forest type. Solid black lines 

correspond to generalised linear models for each forest type. Grey shaded bands refer to 95% 

confidence intervals. Black dashed lines correspond to models fit on the data across all forest types. 

P, Primary; AR, Actively Restored; NR, Naturally Regenerating. 
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The optimal model for the prediction of AGC across the landscape included the variables; 

median of canopy height (TCHmed), canopy cover at 20 m canopy height (TCHcover20) and canopy 

cover at 20 m waveform distance (WFDcover20): 

AGC = 13.89+6.81*TCHmed + 0.59*TCHcover20-1.81*WFDcover20      (4) 

Predicted and observed AGC stocks showed good correspondence as indicated by an RMSD 

of 33.5 Mg C ha-1. In addition, I found no systematic over or under prediction of AGC stocks in 

relation to observed values (bias: 1.8%) (Figure S2.2b). Mean AGC stocks were significantly greater in 

the primary forest (164.2 Mg C ha-1 ± 40.1) than in the actively restored (141.6 Mg C ha-1 ± 12.3; Cliff’s 

d=0.44) or naturally regenerating (108.3 Mg C ha-1 ± 22.8; Cliff’s d =0.78) forests (Figure S2.5; Table 

S2.3). There was also a significant difference in mean AGC stocks between the actively restored and 

naturally regenerating forests (Cliff’s d =0.83) due to the lower variation in canopy height and a 

higher gap size frequency (i.e. smaller canopy gaps) in the actively restored forest (Figure 3.4, Figure 

S2.7, Table S2.4). Indeed, canopy height and variation in canopy height varied substantially between 

forest types (Figure 3.4d,e), with variation in canopy height being significantly greater in the primary 

forest (median σ: 14.5 m) in comparison to both selectively logged forest types (median σ: 11.3 m 

and 8.5 m, for naturally regenerating and actively restored forests respectively) (Figure 3.4e,f). 

Furthermore, canopy height (H) was significantly greater in the primary forest (median H: 33.2 m) 

than the naturally regenerating (median H: 20.5 m) but not the actively restored (median H: 29.7 m) 

forest (Figure 3.4d,f). 
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Figure 3.4 Differences in forest structure between the a) primary, b) active restoration and c) natural 

regeneration forests. Differences were assessed using d) median and e) standard deviation of canopy 

height with f) Cliff’s delta, used as an indication of effect size, for comparisons of canopy height (red; 

panel d) and standard deviation of canopy height (blue; panel e) values across the three forest areas. 

Dashed black line corresponds to a Cliff’s d of 0.474, which is considered significant. Forest areas: AR, 

active restoration; NR, natural regeneration, and P, primary. Letters in (d,e) indicate statistically 

significant differences between forest types as assessed using Cliff’s delta effect sizes (f). 

 

Liana infestation was negatively related to carbon stocks across all three forest types (Figure 

S2.8). After controlling for variation in canopy gaps and topography across the landscape, areas 

which were completely liana-infested stored on average 59.6 ± 11 Mg C ha-1 less than areas that 

were liana-free (Figure 3.5). The effect of liana infestation on AGC differed between forest types. In 

the primary forest, areas which were completely liana-infested stored on average 85.1 ± 12.8 Mg C 

ha-1 less than areas that were liana-free. This difference was smaller in the actively restored (14.8 ± 

6.4 Mg C ha-1) and naturally regenerating forests (32.8 ± 16.2 Mg C ha-1). However, carbon stocks in 

the severely liana-infested (≥75%) areas in the actively restored forest were significantly higher 

compared to both the primary and naturally regenerating forests (Figure 3.5). Changing the way in 

which canopy gaps were defined (Table S2.4) did not have a significant impact on the relationship 

between liana infestation and forest carbon stocks (Figure S2.9). 
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Figure 3.5 Relationship between liana infestation and aboveground carbon stocks (Mg C ha-1) within 

each forest type. Solid coloured lines refer to predicted carbon stocks derived using a generalised 

linear model controlling for variation in canopy gaps and topography in the primary (blue), actively 

restored (orange) and naturally regenerating (green) forests. Black dashed line corresponds to a 

model fit on all the data. Colour filled bands refer to 95% confidence intervals derived from 

propagating error at all stages of carbon estimation.  

 

3.5. Discussion 
 

This is the first landscape-level study assessing the impact of liana infestation on 

aboveground carbon stocks. These results indicate that within Danum Valley, Malaysia, areas of 

forest completely infested with lianas store on average 59.6 ± 11 Mg C ha-1 less than areas that are 

liana-free after accounting for variation in canopy gaps and topography. This corroborates with other 

studies that have shown a negative relationship between lianas and carbon stocks in tropical forests, 

whereby an increase in liana abundance is associated with a reduction in carbon stocks that ranged 

from ~30 Mg C ha-1 to 146 Mg C ha-1 across central Amazonia (Laurance et al. 2014) and the 

pantropics (Durán & Gianoli 2013), respectively. 

The liana-induced impact on forest-level carbon storage is caused by the effect of lianas on 

tree growth and mortality which reduces carbon uptake and increases carbon losses (van der 
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Heijden, Powers & Schnitzer 2015) thus reducing forest-level carbon storage. For example, the 

probability of mortality for liana-infested trees is two to three times greater than for trees that are 

liana-free (Phillips et al. 2005; Ingwell et al. 2010). However, there is also an alternative explanation 

for this relationship. Liana densities are known to increase in canopy gaps (Schnitzer & Carson 2001; 

Fig. 3.3) and therefore can be abundant in areas with low carbon stocks, whilst dipterocarp trees, 

which are tall and carbon-dense  (Slik et al. 2010), are less often infested by lianas (Wright et al. 

2015). Subsequently, the negative relationship between liana infestation and carbon stocks may be 

driven by lianas and/or by other processes. It may therefore be difficult to separate cause and effect 

when assessing the relationship between lianas and carbon stocks on a landscape level. 

Here, variation in canopy gaps was accounted for in the analyses and the results indicate that 

this negative relationship between lianas and carbon storage holds even in the absence of large 

mortality event (i.e. canopy gaps; Fig. 3.5). Furthermore, this relationship is still observed in areas 

where the targeted removal of large dipterocarps has occurred (Fig. 3.5). This provides some 

indication that lianas are responsible for the reduction in carbon storage on a landscape-scale.  

This work also demonstrates for the first time that lianas are negatively associated with 

carbon stocks in a Palaeotropical forest; a finding which supports previous studies in the Neotropics 

(Durán & Gianoli 2013; Laurance et al. 2014; van der Heijden, Powers & Schnitzer 2015). 

Furthermore, despite the greater abundance of lianas in dry forest sites, the negative effects of lianas 

on carbon storage has shown to be stronger in aseasonal forests (Durán et al. 2015). Therefore, 

theses finding that lianas are associated with a reduction in tree carbon stocks in an aseasonal 

tropical forest suggests that lianas are likely to have global consequences for carbon storage and 

sequestration.  

Although average levels of liana infestation were higher within the naturally regenerating 

(68.9% ± 8.1) and actively restored (58.9% ± 7.8) than the primary forest (44.3% ± 7.9), lianas seem to 

have a more pronounced effect on carbon storage in the primary forest (85.1 ± 12.8 Mg C ha-1) 

compared to the actively restored (14.8 ± 6.4 Mg C ha-1) and naturally regenerating (32.8 ± 16.2 Mg C 

ha-1) forests. There may be two, not necessarily mutually exclusive, explanations for this result.  

Firstly, the primary forest is characterised by a relatively high abundance of large emergent 

dipterocarp trees, which are carbon-dense (Slik et al. 2010) but less often infested by lianas due to 

branch shedding (Wright et al. 2015). This may have amplified the difference in AGC stocks between 

liana-free and severely liana-infested areas in the primary forests, compared to selectively logged 

forests where dipterocarps have been specifically targeted for removal (Reynolds et al. 2011).  
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Secondly, these tall dipterocarp trees typically have large, emergent crowns which mask liana 

infestation in tree canopies directly beneath. Liana infestation of the upper canopy, as assessed by an 

airborne platform, may therefore underestimate the amount of liana infestation in the forest canopy 

as a whole and artificially enhance the relationship between low liana infestation and high carbon 

stocks. The greater effect of liana infestation on carbon storage in the primary forest may therefore 

be driven by differences in the spatial distribution of carbon stocks and an underestimation of forest-

level liana infestation enhanced by the presence of emergent dipterocarps. 

Nevertheless, these results clearly show that, after removing the effect of canopy gaps, 

severe liana infestation has the potential to reduce tree above ground carbon. Furthermore, this 

relationship was examined across primary and selectively logged forests. Given the large alterations 

to the spatial distribution of aboveground carbon as a result of selective logging, it would be 

expected that a negative relationship between liana infestation and carbon stocks may be lost in 

selectively logged areas. Indeed, many variables which are responsible for driving spatial patterns in 

carbon stocks may have been influenced during selective logging such as a reduction in nutrient 

availability (Bowd et al. 2019; Swinfield et al. 2020). However, I show that, within each forest type, a 

significant reduction in carbon stocks in relation to an increase in liana infestation is still observed, 

which implies that liana infestation is a strong predictor of AGC (Table S2.5).  

These findings also indicate that liana infestation was particularly dominant in canopy gaps 

across the landscape. Liana infestation is often associated with disturbed or open-canopy patches 

within forests (Schnitzer, Dalling & Carson 2000; Laurance et al. 2001; Schnitzer & Carson 2001; 

Schnitzer & Bongers 2002; van der Heijden & Phillips 2008; Schnitzer & Carson 2010) and can 

significantly reduce tree growth and carbon storage potential (Toledo‐Aceves & Swaine 2008; 

Schnitzer & Carson 2010; Schnitzer et al. 2014b). While I found that lianas were positively associated 

with the presence of canopy gaps (Figure 3.3a), I also found that the severity of liana infestation 

increased with the size of canopy gaps (Figure 3.3b and Figure S2.6). Light availability typically 

increases with increasing gap size (Babweteera, Plumptre & Obua 2000) and therefore light levels 

may not be sufficient in smaller gaps to promote the establishment or high growth rate of lianas 

(Denslow, Ellison & Sanford 1998). Similarly, Gerwing & Uhl (2002) found liana cover to be 

substantially greater in conventional logging gaps in comparison to reduced impact logging gaps that 

had average gap areas of 260 m2 and 160 m2, respectively. Additionally, Schnitzer, Dalling and Carson 

(2000) found that low canopy height, liana-dominated gaps had almost four times greater total stem 

density in comparison to higher-canopy height gaps.  
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There are a number of limitations to the current study. Firstly, limitations in predicting liana 

infestation across the landscape may have contributed towards differences in the relationship 

between liana infestation and AGC stocks observed in the primary and logged forests. A large 

proportion of the training data used in the neural network modelling was based on data collected 

within the primary forest. Generally, spectral reflectance in primary forests is lower than in logged 

forests (Huete et al. 2008; Tangki & Chappell 2008). The structure of logged forests is often 

characterised by a single canopy layer, with relatively few canopy gaps, whereas undisturbed forests 

are characterised by a mix of tree sizes with multiple canopy layers and larger canopy gaps (Lamb 

2011; Baccini et al. 2012) (Figure S2.7, Table S2.4). Therefore, the greater structural heterogeneity in 

the primary forest increases tree shadow which decreases reflectance (Tangki & Chappell 2008), 

particularly in the SWIR bands (Cohen & Spies 1992; Baccini et al. 2004). This effect may also be more 

pronounced due to the higher proportion of tall, emergent dipterocarps. Subsequently, the 

application of the model across the logged forest may have over-predicted liana infestation, which, in 

turn, may have affected the strength of the relationship between liana infestation and forest carbon 

stocks. However, despite this, I show that predicted liana infestation in low (≤25%) and severe 

(≥75%) classes was 100% accurate in relation to ground reference data (Table S2.1). Therefore, even 

with a decrease in the accuracy of predicted liana infestation, it is unlikely that the difference in 

carbon stocks in relation to areas that are liana-free and severely liana-infested will have changed 

significantly.  

Secondly, as airborne-derived data contain both atmospheric and surface information, 

atmospheric corrections must be applied in order to allow accurate inference of Earth surface 

properties. However, atmospheric corrections are typically homogenous despite the fact that 

conditions vary across the landscape. As the spectral reflectance between trees and lianas varies only 

in the magnitude of reflectance and not within the shape of the spectra, differences in atmospheric 

conditions may lead to classification inaccuracies. However, I show good accuracy in predicted liana 

infestation in comparison to ground reference liana canopy cover. Therefore the severity of liana 

infestation appears to have a stronger effect than any potential atmospheric correction inaccuracies.  

Lastly, while airborne surveys can provide high spatial and spectral resolution data which 

may be unmatched in terms of their ability to capture the spectral and structural properties of the 

forest, a major limitation is the cost. This can be particularly prohibitive for monitoring where 

repeated surveys are required. Our ability to monitor change in liana infestation over time will be 

essential to accurately quantify the liana-induced effect on carbon storage as well as to target 

appropriate conservation action and prevent excessive losses to carbon and biological diversity.  
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3.6. Conclusion 
 

The ability to assess the relationship between liana infestation and above ground carbon 

stocks over large areas is essential to fully understand the impact of liana infestation on carbon 

storage. Data collected with field-based measurements may be biased by local conditions and may 

not capture sufficient variation to assess the forest-wide relationship between liana infestation and 

carbon stocks. However, all studies on liana-carbon relationships have been conducted at the plot-

level and the majority of these have been conducted in the Neotropics. Using remote sensing 

technologies I show that it is possible to accurately assess the distribution of liana infestation at a 

landscape-level. My findings show that liana infestation is a strong predictor of carbon stocks across 

primary and selectively logged forests in Sabah, Malaysia. I found that areas severely infested by 

lianas stored on average 59.6 ± 11 Mg C ha-1 less than areas that were liana-free. Understanding the 

distribution of lianas over large areas, and across areas which may be inaccessible on the ground, can 

provide unique insights into the mechanisms that drive their distribution, help to quantify the forest-

wide liana-induced effect on carbon storage, and provide a useful tool for conservation and forest 

management focused on liana control. It is currently unclear whether an increase in liana biomass 

and abundance is occurring pantropically (Schnitzer & Bongers 2011; Bongers et al. 2020). However, 

the strong control that lianas seem to exert on the carbon storage potential of aseasonal 

Palaeotropical forests, as well as Neotropical forests, indicates that any change in liana proliferation 

pantropically may impact on the storage of carbon with potential global implications for the rate of 

climate change.    
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Chapter 4: Detection of spatial and temporal patterns of liana 

infestation using satellite-derived imagery3 
 

4.1. Abstract 
 

1. Lianas (woody vines) play a key role in tropical forest dynamics because of their strong 

influence on tree growth, mortality and regeneration. Assessing liana infestation over large 

areas is critical to understand the mechanisms that drive their spatial distribution and to 

monitor change over time. However, it currently remains unclear whether satellite-based 

imagery can be used to detect liana infestation across closed-canopy forests and therefore if 

satellite-observed changes in liana infestation can be detected over time and in response to 

climatic conditions.  

2. Here, I aim to determine the efficacy of satellite-based remote sensing for the detection of 

spatial and temporal patterns of liana infestation across a primary and selectively logged 

aseasonal forest in Sabah, Borneo. I used predicted liana infestation derived from airborne 

hyperspectral data to train a neural network classification for prediction across four Sentinel-

2 satellite-based images from 2016 to 2019. 

3. Results showed that liana infestation was positively related to an increase in Greenness Index 

(GI), a simple metric relating to the amount of photosynthetically active green leaves. 

Furthermore, this relationship was observed in different forest types and during (2016), as 

well as after (2017-2019), an El Niño-induced drought. 

4. Using a neural network classification, I assessed liana infestation over time and showed an 

increase in the percentage of severely (≥75%) liana-infested pixels from 12.9% ± 0.63 (95% 

CI) in 2016 to 17.3% ± 2 in 2019. This implies that reports of increasing liana abundance may 

be more wide-spread than currently assumed. 

5. This is the first study to show that liana infestation can be accurately detected across closed-

canopy tropical forests using satellite-based imagery. Furthermore, the detection of liana 

infestation during both dry and wet years and across forest types suggests this method 

should be broadly applicable across tropical forests. This work therefore advances our ability 

to explore the drivers responsible for patterns of liana infestation at multiple spatial and 

temporal scales and to quantify liana-induced impacts on carbon dynamics in tropical forests 

globally. 

                                                            
3 Chandler, C.J., van der Heijden, G.M.F., Boyd, D.S & Foody, G.M. (in prep). Detection of spatial and temporal 
patterns of liana infestation using satellite-derived imagery.  
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4.2. Introduction 
 

Lianas (woody vines) are a pervasive component of tropical forests (Pérez-Salicrup 2001; 

Schnitzer et al. 2012). They are non-self-supporting structural parasites that use the architecture of 

trees to extend their leaves to the forest canopy (Schnitzer & Bongers 2002). As competition 

between lianas and trees is stronger that tree-tree competition (Tobin et al. 2012), lianas can 

negatively impact the growth (Grauel & Putz 2004; van der Heijden & Phillips 2009) and survival of 

their host (Phillips et al. 2005; Ingwell et al. 2010) and therefore suppress the ability of tropical 

forests to sequester and store carbon (van der Heijden, Powers & Schnitzer 2015).  

Lianas have been proliferating in some tropical forests (Phillips et al. 2002; Schnitzer & 

Bongers 2011), which may lead to a stronger negative impact on carbon storage and sequestration in 

these areas. Several putative mechanisms have been suggested for this increase, such as elevated 

atmospheric CO2, an increase in forest disturbance and an increase in the frequency and severity of 

droughts (Schnitzer & Bongers 2011). However, it is currently still unknown which driver(s) may be 

responsible for changes in liana biomass and abundance over time. Additionally, while there is 

compelling evidence that lianas are increasing in many Neotropical forests (Laurance et al. 2001; 

Phillips et al. 2002), this may not be a global phenomenon (Bongers et al. 2020). This suggests that 

liana proliferation over time may be driven by regional rather than global drivers. However, in order 

to provide insights into the mechanisms responsible for changes in liana abundance and to test 

whether these differ geographically, wide-spread monitoring of lianas over time and across large 

areas is essential.   

Most previous studies which have assessed temporal changes in liana abundance, biomass or 

infestation have been based on ground data collected from permanent sampling plots (Phillips et al. 

2002; Wright et al. 2004; Laurance et al. 2014). However, while field-based studies may not be 

limited in their geographical extent, they are limited by the total area that can be feasibly sampled. 

This may be particularly problematic if plot-based research is unable to capture sufficient variation in 

environmental variables through space and time to disentangle the driving forces behind change (cf. 

Di Vittorio et al. 2014; Espírito-Santo et al. 2014).  

Remote sensing technologies may provide a solution to extend field-based knowledge to 

larger spatial and temporal scales. However, they are dependent on the ability to detect liana 

infestation. Many studies have shown that lianas, as a plant group, can be distinguished from trees 

based on their spectral reflectance, particularly in the visible- (400–690 nm) and Near Infrared (NIR)-

region (700-1340 nm) (Castro-Esau, Sánchez-Azofeifa & Caelli 2004; Sánchez‐Azofeifa & Castro‐Esau 

2006; Kalacska et al. 2007; Hesketh & Sánchez-Azofeifa 2012; Guzman, Rivard & Sánchez-Azofeifa 
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2018), as well as thermal properties (Sanchez-Azofeifa et al. 2011; Guzmán et al. 2018). 

Subsequently, recent research has successfully detected lianas using data acquired from; UAVs, fitted 

with RGB (Li et al. 2018; Waite et al. 2019) and thermal (Yuan et al. 2019) sensors, satellite imagery 

(Foster, Townsend & Zganjar 2008) and airborne hyperspectral imagery in seasonal (Marvin, Asner & 

Schnitzer 2016) and aseasonal forests (Chandler et al. in review). While airborne sensors have the 

potential to provide high spatial and spectral resolution imagery which can be used to detect liana 

infestation at landscape-scales, satellite-based sensors can typically afford more frequent 

measurements across much larger geographical extents. However, there are a number of limitations 

which may pose challenges for assessing liana infestation with satellite-based remote sensing. 

Firstly, spectral reflectance derived from multispectral satellites can be limited in scope as 

data represent non-contiguous regions of the light spectrum. Thus, a single value for each band is 

associated with the spectral reflectance from large regions of the spectrum (Asner 1998). Crucially, 

however, some bands cover smaller regions than others and may align with areas of the spectrum 

that are important for the discrimination of lianas and trees. However, this may limit the accurate 

detection of liana infestation to specific satellite sensors, which have spectral bands that represent 

similar regions of the spectrum. For example, research by Foster et al. (2008) assessed the spatial 

distribution of liana infestation in large canopy gaps using satellite-based hyperspectral imagery (EO-

1 Hyperion: 220 10-nm bands covering 400-2500 nm). However, while Hyperion imagery was used to 

detect liana-dominated patches for training purposes, the prediction of liana infestation across 

Landsat imagery was achieved by using minimum values of brightness and greenness. The use of a 

simple vegetation index, such as greenness, which relates to the amount of photosynthetically active 

green leaves, is attractive for its ability to transfer across different sensors. However, as the study by 

Foster et al. (2008) was conducted in the dry season and the detection of lianas was limited to 

severely liana-dominated patches, it remains unclear whether multispectral satellite-based imagery, 

or a simple vegetation index, could be used to successfully detect liana infestation across a dense, 

closed-canopy aseasonal forest. 

Secondly, variation in spectral reflectance between forest types may restrict the detection of 

lianas over broad geographical-scales if the difference is greater than that of trees and lianas. For 

example, logged forests typically have higher spectral reflectance compared to primary forests 

(Huete et al. 2008; Tangki & Chappell 2008). Differences in spectral reflectance may be driven by the 

fact that the canopies of logged forests are typically more homogenous whereas those of primary 

forests contain a mix of tree sizes and multiple canopy layers (Lamb 2011; Baccini et al. 2012). This 

greater structural heterogeneity can result in an increase in tree shadow and a decrease in overall 
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reflectance in primary forests (Tangki & Chappell 2008) which in turn may affect predictions of liana 

infestation (cf. Pinter Jr et al. 1985). 

Thirdly, liana chemistry tends to converge with that of trees in aseasonal tropical forests or 

those with high annual precipitation (Asner & Martin 2012) and therefore reflectance spectra for 

lianas and trees are not as clearly separable (Castro-Esau, Sánchez-Azofeifa & Caelli 2004; Sánchez-

Azofeifa et al. 2009). Higher reflectance of liana leaves has been shown to be strongly related to the 

level of chlorophyll content (Castro-Esau, Sánchez-Azofeifa & Caelli 2004), which is known to be more 

similar in wet conditions or within aseasonal forests (Sánchez-Azofeifa et al. 2009). As a result, 

differences in satellite-derived spectral reflectance between lianas and trees is likely to be more 

difficult in aseasonal forests, particularly if spectral resolution is limited to relatively few wavebands. 

It is therefore essential to test whether lianas can be detected in aseasonal tropical forests using 

satellite-based remote sensing in order to advance our ability to assess the spatial distribution of 

liana infestation globally. 

Here, I therefore aim to determine the efficacy of satellite-based remote sensing for the 

detection of liana infestation across an aseasonal tropical forest in Sabah, Borneo. Additionally, I 

assess the detectability within primary and selectively logged forests as well as during and after a 

period of El Niño-induced drought. I therefore aim to test whether 1) liana infestation can be 

detected in satellite-based imagery using a neural network classification trained by airborne-derived 

liana infestation, 2) one single vegetation index is capable of detecting liana infestation, 3) a 

response to drought facilitates the differentiation in spectral reflectance for lianas versus trees and 

4) temporal changes in liana infestation can be observed using a time-series of satellite-based 

imagery.  

 

4.3. Methods 

4.3.1. Study area 
 

This study was based in an aseasonal tropical forest in Danum Valley, Malaysia which 

contains a mix of primary and selectively logged lowland dipterocarp forest (Figure 4.1). The Danum 

Valley Conservation Area (DVCA) represents a large swathe (438 km2) of intact primary tropical 

forest. The area surrounding the DVCA has been selectively logged at varying intensities between 

1972 and 1993 (Reynolds et al. 2011). The climate is typical of the aseasonal tropics with a mean 

annual temperature of 26.7°C and an average yearly rainfall of 2,900 mm (O'Brien et al. 2019). 

Borneo has one of the most aseasonal climates of any tropical region (Whitmore 1984), although 

droughts do occur infrequently and usually in association with an El Niño event (Walsh & Newbery 
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1999; Chapman et al. 2020). The vegetation within the primary forest is dominated by dipterocarps 

(Kettle, Maycock & Burslem 2012), whereas the logged forest has received targeted removal of larger 

dipterocarps and now has a higher proportion of fast-growing, early successional species (O'Brien et 

al. 2019). 

 

 

Figure 4.1 Location 

of the study area in 

Sabah, Malaysia, 

showing the extent 

of the air- and 

space-borne 

remotely sensed 

imagery across a 

primary and 

selectively logged 

tropical forest.  

 

 

 

4.3.2. Airborne-derived liana infestation assessment 
 

Hyperspectral and LiDAR data were captured in November 2014 by the Natural 

Environmental Research Council (NERC) Airborne Research Facility (ARF). An inbuilt AisaFENIX sensor 

(Specim Spectral Imaging, Finland) was used to capture hyperspectral data from the visible to short 

wave infrared (380-2,500 nm) with a spatial resolution of 3 m. A Leica ALS50-II system was used to 

capture both Discrete (DR) and Full Waveform (FW) airborne laser scanning (ALS) data with a spatial 

resolution of 1 m. Full details on the airborne data collection is provided in Chapter 2, Section 2.3.2.  

Liana canopy cover data were collected in the field over a three-year time period (2017-

2019). Individual tree crowns, which were fully exposed from above, were identified using a tablet 

computer connected to a GPS with a Canopy Height Model (CHM) preloaded. Tree crowns were then 

visually assessed, by a minimum of two people, to estimate the degree of liana infestation to the 

nearest 5%. Each estimate was discussed and a final estimate mutually agreed (sensu. Marvin, Asner 
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& Schnitzer 2016). Tree crowns were then manually delineated on the CHM using the GeoEditor 

application (MapTiler).  

A total of 724 trees were delineated with liana canopy cover estimates ranging from 0 to 

100%. This corresponded to 21,822 pixels from the hyperspectral imagery that were fully inside tree 

crown boundaries. Airborne hyperspectral data were used to train a neural network classification to 

predict liana infestation across the full extent of the airborne survey. I accounted for error in liana 

canopy cover estimates which may have changed during the time lag (2.5 – 3.5 years) between 

airborne data acquisition and the ground survey of liana canopy cover estimates. Following the 

methodology used in Chandler et al. (in review), I reclassified 3% of all pixels selected for model 

training from the liana-free class to the severely (≥75%) liana-infested class and vice versa. The 

neural network model was run 100 times and after each iteration the model was applied to the 

entire study landscape. The average of the 100 neural network outputs was used to produce a final 

landscape scale liana infestation map. Full details on the landscape-level liana assessment can be 

found in Chapter 2, Section 2.3.2. 

 

4.3.3. Satellite-derived liana infestation assessment 
 

Freely available bottom of atmosphere reflectance Sentinel-2 imagery were downloaded 

from the United States Geological Survey (USGS) Earth Explorer (https://earthexplorer.usgs.gov/). 

The earliest image with limited cloud cover to use in combination with airborne imagery (2014), was 

obtained in May 2016. This also aligned with the end of an El Niño-induced drought period in which 

there were higher temperatures (Thirumalai et al. 2017) and a significant reduction in precipitation 

between November 2015 and April 2016 in Danum Valley Conservation Area (DVCA) (Nunes et al. 

2019). Additional imagery were collected in approximately one-year time intervals, depending on 

when cloud-free images could be obtained (i.e. November 2017, June 2018 and April 2019). Areas 

contaminated by cloud and cloud shadow were manually delineated and removed from each image. 

As the spatial resolution of Sentinel-2 bands range from 10 m to 60 m all bands were resampled to a 

spatial resolution of 10 m so they could be aligned at the same scale. These images were then used 

to produce a time series in order to assess whether changes in liana infestation can be observed over 

time.   

To identify which spectral bands from Sentinel-2 imagery may be most important for 

discriminating lianas from trees, the difference in spectra derived from airborne hyperspectral 

imagery for liana-free and liana-infested (≥75%) trees specifically within the Sentinel-2 spectral band 

regions were assessed. I calculated the average difference in reflectance between the two infestation 

https://earthexplorer.usgs.gov/
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classes for all hyperspectral bands that aligned with Sentinel-2 spectral regions. This revealed that 

the green band was most important for discriminating between trees and lianas (Figure S3.1). 

A variety of vegetation indices were also calculated to assess whether one simple metric is 

capable of discriminating between liana-free and liana-infested pixels. As the green band was the 

most effective, I specifically calculated indices that may promote signals in the green spectrum such 

as, Greenness Index (GI) which has shown to outperform other indices when discriminating 

vegetation using the visible spectra (Woebbecke et al. 1995). I assessed which vegetation index was 

most effective at separating severely (≥75%) and low (≤25%) liana-infested pixels by comparing their 

effect size (Table S3.1). Cliff’s delta, which is considered to be a robust measure of effect size, was 

used to calculate the magnitude of difference between the two groups (Cliff 2014). Cliff’s delta 

computes the probability that a randomly selected observation from one group is larger than an 

observation from another group, 
∑[𝑥>𝑦]−[𝑥<𝑦]

𝑚𝑛
 whereby x and y are liana-free and severely liana-

infested pixels and m and n are the number of pixels within each group.  

To assess whether a single vegetation index could be used to detect liana infestation in 

satellite imagery over broad spatial scales I tested whether the vegetation index varied in response 

to forest type (i.e. primary and selectively logged forests) as well as during and after a period of El 

Niño-induced drought (i.e. across years). Subsequently, a linear regression model with an interaction 

term was used to allow the effect of airborne-derived liana infestation on the vegetation index to 

vary by forest type or year. A linear mixed effects model was also used to account for variation in 

forest type. I tested whether the relationship between the vegetation index and liana infestation 

differed across the four years by using a pairwise comparison of the slope coefficients.  

To predict liana infestation in satellite imagery a neural network classification was 

performed, trained using the airborne liana infestation output. To accurately predict liana infestation 

in satellite-based imagery as well as to test the efficacy of a single vegetation index liana infestation 

was modelled using three different sets of input variables: 1) vegetation index only, 2) all Sentinel 2-

bands and 3) all Sentinel 2-bands and the vegetation index.  

The same model construction and process was applied (as in the airborne-derived liana 

infestation assessment). As the spatial resolutions of the satellite (10 m) and airborne (3 m) imagery 

do not match, I degraded the resolution of the airborne imagery so both products had a resolution of 

10 m. Pixels from the airborne-derived liana infestation output classified as having no infestation or 

completely liana-infested were used as training data. Values greater than 95% were therefore 

classified as a ‘liana’ and values less than 5% were classified as a ‘tree’. This yielded a total of 3622 

pixels with no (<5%) liana infestation and 6128 pixels completely (>95%) liana-infested. Data were 



Chapter 4: Detection of liana infestation in satellite-derived imagery 

70 
 

balanced to ensure there was an equal number of data points within each input class (i.e. 3622 

pixels). Data were split 80% for training and 20% for verification. The neural network model was run 

100 times and after each iteration the model was applied to the entire study landscape. I propagated 

error associated with uncertainty in the airborne liana infestation assessment (Chapter 2, section 

2.3.6) by using each of the 100 airborne-derived liana infestation outputs to train the satellite-based 

models. With each iteration I repeated the following steps; 1) removed pixels that were completely 

liana-infested to ensure each input class was balanced and 2) split data for training and verificaiton. A 

final satellite-derived liana infestation map was calculated by averaging all of the 100 neural network 

outputs.  

To reliably assess a degree of change in predicted liana infestation over time, I focused on 

change between low [≤25%] and severe [≥75%] liana infestation classes within the primary forest. 

Individual neural network models were trained for each of the four years. The percentage of pixels 

classified as having either low or severe liana infestation were calculated for each year to indicate a 

level of change over time. Additionally, the percentage of pixels that changed from low to severe and 

vice versa from 2016 to 2019 were calculated. This process was repeated for each of the 100 

satellite-derived liana infestation outputs. This allowed for a calculation of uncertainty around 

estimates of change in liana infestation over the four years.   

 

4.3.4. Accuracy assessment 
 

To assess the accuracy of the satellite-derived liana infestation output a random selection of 

pixels (n=200) from both the airborne- and satellite-derived liana infestation outputs were used. This 

process was repeated 10 times and the relationship between the predictions were assessed after 

each iteration. To assess the accuracy of the predicted liana infestation outputs the root mean 

squared deviation (RMSD) (Eq. 2) and relative bias (Eq. 3) were calculated. 

To increase the level of confidence around estimates of liana infestation I also degraded 

outputs to an ordinal scale by partitioning predicted liana infestation into four groups as follows: 

neural network membership values equal to or below 0.25 were set to ‘low’, values between 0.26 

and 0.50 were set to ‘medium’, values between 0.51 and 0.74 were set to ‘high’ and values equal to 

or greater than 0.75 were set to ‘severe’. To assess the accuracy of liana infestation classes, I 

produced a confusion matrix using satellite-derived liana infestation (predicted) and airborne-derived 

liana infestation (observed) and calculated the overall accuracy, specificity, sensitivity, balanced 

accuracy and area under the curve (AUC). The accuracy assessment for the airborne-derived liana 

infestation output is detailed in Chapter 2, Section 2.3.8. 
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4.4. Results 
 

Satellite-based spectral reflectance in the visible spectrum, and predominantly in the green 

reflectance region, was most effective at separating low (≤25%) and severe liana infestation (≥75%) 

classes derived from airborne-hyperspectral data (Figure S3.1). Subsequently, I found Greenness 

Index (GI) to be the most effective vegetation index for discriminating between low and severe liana 

infestation (Table S3.1). I also found that average predicted greenness values derived from satellite 

imagery increased significantly in response to an increase in liana infestation and were significantly 

greater in the logged forest in comparison to the primary forest (Figure 4.2a, Figure S3.4). In addition, 

average predicted greenness values were positively related to liana infestation in all four years 

(Figure 4.2b; Figure S3.2). However, there was a greater increase in greenness relative to an increase 

in liana infestation in 2016 (drought year) in comparison to other years, as shown by significant 

differences in slope coefficients (Table 4.1). Slopes did not differ between the three non-drought 

years, except for a weak significant difference between 2017 and 2018 (Table 4.1).   

 
Figure 4.2 Satellite-derived predicted mean greenness a) combined for all years (2016-2019) across 

forest types (black) and within the primary (blue) and selectively logged (orange) forests in response 

to airborne-derived liana infestation classes and b) for each year in response to airborne-derived 

liana infestation percent cover. Liana infestation classes are defined as: Low [≤25%], Medium [26-

50%], High [ 51-74%] and Severe [≥75%]. Error bars are 95% confidence intervals based on error in 

model fit as well as uncertainity derived from error in airborne-derived liana infestation estimates. 
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Table 4.1 Pairwise comparison of linear regression slope coefficients (in Figure 4.2b). P values 

adjusted using Bonferroni correction. Significance level set at 0.05. 

Contrast (years) Estimate SE df t p 

2016 – 2017 
2016 – 2018 

0.01583 
0.01170 

0.00158 
0.00158 

34852 
34852 

10.038 
7.415 

<.0001 
<.0001 

2016 – 2019 0.01300 0.00158 34852 8.240 <.0001 
2017 – 2018 -0.00414 0.00158 34852 -2.623 0.0524 
2017 – 2019 -0.00284 0.00158 34852 -1.798 0.4330 
2018 – 2019 0.00130 0.00158 34852 0.825 1.0000 

 

A neural network classification using GI as the only input variable was not capable of 

accurately predicting liana infestation in satellite-based imagery (Figure 4.3a,d). While predicted 

mean greenness values showed a clear increasing trend in response to an increase in liana infestation 

(Figure 4.2), large variation in greenness values ultimately limited its use as a single predictor variable 

(Figure 4.3a,d; Table S3.2). Using all Sentinel-2 bands without GI increased the accuracy of satellite-

based predictions in the primary (AUC: 0.76) and logged (AUC: 0.7) forests (Figure 4.3b,e; Table S3.2). 

Furthermore, combining all Sentinel-2 bands and GI provided a further increase in accuracy within 

the primary (AUC: 0.8) and logged (AUC: 0.71) forests (Figure 4.3c,f; Table S3.2). In addition, I found a 

larger underestimation of satellite-derived liana infestation, relative to liana infestation obtained 

from airborne data, in the logged forest (bias = -15.5% and -14.8%) in comparison to the primary 

forest (bias = -9.5% and -6.2%) for the model using only Sentinel-2 bands and the model using 

Sentinel-2 bands and GI, respectively. 
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Figure 4.3 Relationship between airborne- and satellite-derived liana infestation using a, d) 

Greenness Index, b, e) all Sentinel-2 bands and c, f) Greenness Index and all Sentinel-2 bands as input 

variables in the primary and selectively logged forests, respectively. Dashed lines represent a 1:1 

lines. Solid black lines correspond to linear models. Coloured points correspond to the density of 

overlapping points ranging from purple to yellow with increasing density. Error bars represent ± 1 

standard deviation. 

 

To assess change in liana infestation over time I used the output from the model using 

Sentinel-2 bands and GI which revealed the greatest accuracy (AUC: 0.99) (Table S3.2). The 

percentage of pixels classified as severe liana infestation showed a sustained and significant increase 

over time, from 12.9% ± 0.63 (95% CI) in 2016 to 17.3% ± 2 in 2019 (Figure 4.4; Table S3.3). However, 

the low liana-infested pixels did not show a similarly consistent downward trend and instead 

remained more or less constant over the three year period (35.4% ± 3.6 in 2016 to 33.6% ± 3.2 in 

2019). Liana infestation at a pixel level was dynamic, with 2.66% ± 0.76 of pixels having changed from 

low to severe and 1.22% ± 0.2 having changed from severe to low liana infestation from May 2016 to 
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April 2019. Taken together, these results indicate a potential forest-wide increase in severe liana 

infestation. 

 
Figure 4.4 Predicted liana infestation in two classes, Low [≤25%] (purple) and Severe [≥75%] (yellow), 

derived from Sentinel-2 satellite imagery showing an extract from a) 2016, b) 2019. Grey areas 

correspond to liana infestation values not within low or severe classes (i.e. 26-74%). Panel (c) the 

percentage of pixels within each class for all four years (2016-2019). Letters in (c) indicate statistically 

significant differences between years as assessed using a least significant difference test with 

Bonferroni adjusted p values. Significance level was set at 0.05.     

 

4.5. Discussion 
 

This study provides evidence, for the first time, that liana infestation can be detected in a 

closed-canopy tropical forest using multispectral satellite-based imagery. Furthermore, satellite-

derived Greenness Index showed clear separation in response to airborne-derived liana infestation 

classes within both primary and selectively logged forests as well as during periods of wet and dry 

conditions (Figure 4.2). These results indicate that reflectance in the visible spectra (546-574 nm) was 

most efficient in distinguishing lianas from trees (Figure S3.1) and in particular Greenness Index (GI) 

was found to be an effective metric (Table S3.1). This corroborates results from other studies that 

found the visible spectral region to be the most important for spectrally discriminating between 

lianas and trees (Sánchez‐Azofeifa & Castro‐Esau 2006; Sánchez-Azofeifa et al. 2009; Marvin, Asner & 

Schnitzer 2016). Previous studies have shown higher reflectance of liana leaves in the visible region 

consistent with lower levels of chlorophyll content in lianas than in trees (Sánchez‐Azofeifa & Castro‐

Esau 2006; Sánchez-Azofeifa et al. 2009). Subsequently, an increase in liana canopy cover will result 

in higher values of greenness.  
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A significant positive relationship between GI and liana infestation was found across all four 

years for which imagery was obtained, however there was a greater increase in greenness relative to 

an increase in liana infestation for the year in which the El Niño-induced drought occurred (Figure 

4.2b). A greater increase in greenness in the drought year may be attributed to: 1) a reduction in tree 

greenness (i.e. at 0% liana infestation), 2) an increase in liana greenness, or 3) a combination of both. 

Lianas generally seem to experience less water stress due to their ability to access and use water 

more efficiently than co-occurring trees during seasonal or periodic droughts (Chen et al. 2015; 

Maréchaux et al. 2017; van der Sande et al. 2019). Evidence from dry forests show that the 

chlorophyll concentration of liana leaves is lower than for trees, and this difference results in an 

increase in reflectance in the visible spectra (Sánchez-Azofeifa et al. 2009). However, in wetter 

forests chlorophyll concentration is observed to simultaneously increase in liana leaves and decrease 

in tree leaves (Sánchez-Azofeifa et al. 2009), which leads to a lower spectral contrast between trees 

and lianas. 

A strong relationship between greenness and liana infestation also indicates that 

interpretation of forest-wide responses to environmental or climatic changes using satellite imagery 

may be problematic, if lianas are interpreted as tree canopies. Lianas are a particularly dominant and 

wide-spread feature of tropical canopies (Pérez‐Salicrup, Sork & Putz 2001; Ingwell et al. 2010) and 

therefore their presence may obscure or distort satellite-derived spectral reflectance of tree 

canopies. Furthermore, as the effect of increased liana infestation on greenness differed under 

different climatic conditions (Figure 4.2b), satellite-observed changes in spectral reflectance in 

response to climatic changes (e.g. Saleska et al. 2007) may be complicated (cf. Anderson et al. 2010) 

by the differential responses of lianas and trees. This highlights the importance of accounting for the 

effect of liana infestation on satellite-derived reflectance metrics to ensure the accurate 

interpretation of remotely sensed multispectral data, especially given evidence of increasing liana 

biomass and abundance.  

Based on a time-series of satellite-derived imagery, severely liana-infested pixels (≥75% 

infested by lianas) increased significantly over time from 12.9% ± 0.63  in May 2016 to 17.3% ± 2 in 

April 2019, whilst low (≤25%) liana infestation remained relatively constant 35.4% ± 3.6 to 33.6% ± 

3.2 over the same three-year period (Figure 4.4c). This degree of change is minimal compared to 

change in seasonal forests, where lianas show more rapid growth and have a significant growth 

advantage over trees compared with aseasonal forests (Schnitzer & van der Heijden 2019). For 

example, in a seasonal forest, an increase of 65% of trees with severe liana infestation was observed 

over a ten-year period (Ingwell et al. 2010) in contrast to an increase of around 3% of trees with 

severe liana infestation in Peninsula Malaysia over the same time period (Wright et al. 2015). In this 
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study we found an increase of 4.4% over three years, proportional to an increase of around 14.7% 

over a ten-year period. However, low liana infestation remained relatively constant over the same 

time period. This suggests that increases are limited to severe liana infestation which may not 

necessarily represent an increase in the overall percentage of infested trees. Furthermore, assessing 

the level of change in the severe liana infestation class over time is subject to error. While the 

accuracy of predicted liana infestation in low (≤25%) and severe (≥75%) classes revealed good 

accuracy (AUC: 0.99), accuracy was reduced when liana infestation was predicted across all 

infestation classes (Figure 4.3c; Table S3.2). Subsequently, error in the classification of severe liana 

infestation, due to misclassification of pixels in the high (50-74%) liana infestation class, may have led 

to an under- or over-estimation of change in liana infestation over time. Although I do not have 

ground data to support this, these results imply that, despite the proportion of low liana-infested 

pixels remaining relatively constant, severely liana-infested pixels may have increased by 4.4% over 

the three-year time period. If indeed true, this suggests that an increase in liana abundance may not 

be confined to the Neotropics, as indicated by previous studies (e.g. Schnitzer & Bongers, 2011; 

Wright et al. 2015). A possible driver of the increase in liana infestation may be that lianas tend to 

favour dry conditions and exhibit a dry season growth advantage over trees (Schnitzer & van der 

Heijden 2019). Whilst Borneo has one of the most aseasonal climates of any tropical region 

(Whitmore 1984), recent evidence has suggested that Borneo may be experiencing hotter and drier 

conditions driven by continued deforestation (McAlpine et al. 2018; Gaveau et al. 2019; Chapman et 

al. 2020), which is likely to provide favourable conditions for liana growth (Schnitzer & van der 

Heijden 2019; Marimon et al. 2020).  

However, similar to studies that assessed individual tree crowns (Ingwell et al. 2010; Wright 

et al. 2015), these results also indicate that liana infestation is dynamic, with 2.66% ± 0.76 of pixels 

changing from low to severe and 1.22% ± 0.2 changing from severe to low liana infestation over the 

three-year time period. This represents a total of 3.9% change between classes over a 3-year period. 

Available data from aseasonal and seasonal forests show that changes between low and severe liana 

infestation classes over time scales longer than three years range from 4% – 16.2% (Ingwell et al. 

2010; Wright et al. 2015). This represents around 1% - 4.8% over a three-year period. Results from 

this study imply that change in liana infestation is dynamic and is more closely related to the degree 

of change observed in a seasonal forest. A possible explanation for this relatively high change in liana 

infestation could be related to the El Niño-induced drought which occurred in 2016 (Nunes et al. 

2019). During this time, trees may have been temporarily stumped and lianas may have had a growth 

advantage which may have resulted in more dynamic changes in liana infestation over this period. A 

longer time-series is therefore needed to provide conclusive results of whether there is a temporal 
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increase in liana infestation and how this may impact on the ability of these forests to store and 

sequestration carbon. 

Evidence that lianas can be detected across closed-canopy forest using satellite imagery 

provides a substantial advance in our ability to monitor change in liana infestation over time. 

Furthermore, evidence of this relationship under different climatic conditions and across forest types 

suggests that this methodology should apply broadly. However, there are a number of limitations to 

the current study. First, satellite-based liana infestation predictions on a continuous scale seemed to 

underestimate liana infestation compared to airborne predictions. Although there was a small bias in 

predictions in the primary forests, underprediction was a particular problem in the selectively logged 

forests. However, a high classification accuracy (0.88) for predicted liana infestation for low (≤25%) 

and severe (≥75%) classes in the selectively logged forest was found (Table S3.2). Therefore, 

prediction within classes may be required in order to compare liana infestation between forest types. 

Second, satellite-based images were trained with the same airborne-derived liana infestation 

output, to assess temporal changes in liana infestation over time. This may be problematic given the 

dynamic nature of liana infestation (Ingwell et al. 2010; Wright et al. 2015). For example, changes 

across the landscape, such as the formation of canopy gaps, may have led to changes in liana 

infestation over time which are not reflected in the training data. This would have led to certain 

areas across the landscape being trained incorrectly, and therefore may result in an increase in error 

around liana infestation predictions over time. However, as change was assessed over a relatively 

short time period, it is unlikely that this would have affected a large area of the forest. Furthermore, 

a small degree of error in training data has shown to have little impact on the accuracy of predictions 

(Chandler et al. in review). Ultimately, I therefore think it is unlikely that these results are severely 

confounded by using the same training data. 

Third, the level of exposure to sun light may affect spectral reflectance, which, in turn, may 

make it more difficult to detect liana infestation. For example, large canopy gaps will be more 

exposed to light whereas smaller canopy gaps and some tree crowns may be affected by shadow 

from nearby tall trees. While the effect of shadow has shown to impact some vegetation indices, the 

effect has shown to be less on NDVI and Greenness Index (Zhang et al. 2015). Therefore, while 

Greenness Index, as a sole input variable, was unable to accurately predict liana infestation (Figure 

4.3a,d), it is possible that including Greenness Index assists in the detection of liana infestation in 

areas affected by shadow. Indeed, the inclusion of Sentinel-2 bands which cover the NIR- and SWIR- 

regions appear to be essential in order to discriminate between trees and lianas (Kalacska et al. 2007; 

Guzman, Rivard & Sánchez-Azofeifa 2018). The similarly of spectral coverage and resolution across 
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products including, Sentinel, Landsat and Aster suggests that the detection of liana infestation should 

be achievable across a variety of multispectral sensors. 

Lastly, while this methodology appears to provide an accurate assessment of liana infestation 

for the region to which it was trained, it may be limited in its broad applicability across forests in 

different regions. The accuracy of satellite-derived liana infestation is obtained relative to airborne-

derived predictions. However, this represents the same area in which the model was trained upon. It 

is therefore likely that there could be a reduction in classification accuracy for areas outside the 

training extent. The use of this current model with no additional training data may therefore only be 

accurately applied to nearby areas and may require a classification to be restricted to classes of low 

and high/severe liana infestation if being applied further afield. Future work should consider the 

feasibility to obtain a generalised model to predict liana infestation over regional- or continental-

scales. 

 

4.6. Conclusion 
 

I have shown, for the first time, that satellite-based imagery can be used to accurately 

predict liana infestation across a closed canopy tropical forest. Greenness Index showed a clear 

increase in response to airborne-derived liana infestation classes both during wet and drought years 

and across forest types, which suggests remote sensing methodologies should be capable of 

detecting liana infestation in tropical forests in other locations. The use of satellite remote sensing 

therefore advances our ability to assess the distribution of liana infestation over time and across 

forests globally. This in turn will assist in providing insights into the drivers responsible for the 

distribution and change in liana infestation at multiple spatial and temporal scales as well as quantify 

the liana-induced impacts on carbon dynamics in tropical forests. 
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Chapter 5: Conclusions  

5.1. Thesis synthesis 
 

This thesis investigates spatial patterns of liana infestation and the relationship with forest 

structure and aboveground carbon (AGC) storage across a primary and selectively logged tropical 

forest in Sabah, Borneo. I show, for the first time, that airborne and satellite-based remote sensing 

technologies can be used to accurately assess spatial and temporal patterns of liana infestation in an 

aseasonal tropical forest. Liana infestation can be detected using satellite-based multispectral 

imagery across forest types, under different climatic conditions and over time, which indicates that 

this remote sensing methodology may apply to tropical forests in other locations. My results also 

indicate an increase in severely (≥75%) liana-infested areas over time in Danum Valley. This is an 

important finding as completely liana-infested areas stored on average 59.6 ± 11 Mg C ha-1 less than 

areas that were liana-free. This implies that if this increase in liana infestation persists, lianas may 

cause a reduction in the carbon sequestered and stored in this area. Below I synthesize the key 

findings and conclusions of this thesis.  

 

5.1.1. Mapping liana infestation at a landscape-scale 
Chapter 2, Objectives 1.1 & 1.2 

 
This study is the first to successfully assess the spatial distribution of liana infestation in an 

aseasonal tropical forest at a landscape-scale. Despite liana chemistry and their spectral response 

converging with those of trees as precipitation increases  (Castro-Esau, Sánchez-Azofeifa & Caelli 

2004; Sánchez-Azofeifa et al. 2009), liana infestation was accurately detected in a primary tropical 

forest by combining a neural network classification with hyperspectral and LiDAR data. The use of 

spectra derived from pure classes, i.e. tree crowns that were either liana-free or completely liana-

infested, allowed the accurate detection of liana infestation at a pixel-level. The model over-

predicted liana infestation for tree crowns with liana canopy cover below 25%. However, as the 

impact of lianas on tree growth and survival increases exponentially for those trees with more than 

50% of their crown infested with lianas (Ingwell et al. 2010; Wright et al. 2015), it is most essential to 

accurately detect high (>50%) liana infestation for its application in conservation and forest 

management. Furthermore, a pixel-based approach revealed a stronger relationship between 

predicted and observed liana infestation compared to an object-based approach potentially due to 

the difficulties of successfully segmenting tree crowns in imagery across dense, closed-canopy 

tropical forests. This suggests that a pixel-based approach is more suited to tropical forest 
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environments and is therefore able to produce more accurate predictions of liana infestation at a 

landscape-level.  

 

5.1.2. Association of liana infestation with aboveground carbon stocks 
Chapter 3, Objectives 2.1 & 2.2 

 
My results show that although liana infestation was widespread across the landscape, it was 

particularly severe in canopy gaps. Accounting for the size sand frequency of canopy gaps, I found 

that aboveground carbon (AGC) stocks were negatively related to liana infestation both across 

primary as well as naturally regenerating and actively restored selectively logged forests. Areas that 

were completely liana-infested stored on average 59.6 ± 11 Mg C ha-1 less than areas that were liana-

free, however lianas had a more pronounced effect on carbon storage in the primary forest (85.1 ± 

12.8 Mg C ha-1) compared to the actively restored (14.8 ± 6.4 Mg C ha-1) and naturally regenerating 

forests (32.8 ± 16.2 Mg C ha-1). These findings show that the negative effects of liana infestation can 

be observed across forest types including selectively logged forests which have experienced large 

alterations to the spatial distribution of carbon stocks. Liana infestation therefore affects AGC stocks 

at a landscape-level, which implies that any increases in liana infestation may have a significant 

impact on the carbon storage potential of these forests in the future. 

 

5.1.3. Detection of liana infestation in satellite-imagery 
Chapter 4, Objectives 3.1, 3.2 & 3.3 

 
I show for the first time that satellite-based imagery is effective in detecting the spatial 

distribution of liana infestation across closed canopy tropical forest. The Greenness Index, a simple 

vegetation index derived from satellite imagery, in particular, was an effective metric for the 

separation of liana infestation classes. Results show a clear increase in the Greenness Index as a 

response to increases in liana infestation across forest types as well as during and after a period of El-

Niño induced drought. Furthermore, assessing satellite imagery over time showed a significant 

increase in the percentage of severely (≥75%) liana-infested pixels, from 12.9% ± 0.63 in 2016 to 

17.3% ± 2 in 2019. This study provides a first indication that liana infestation may have increased 

over a three-year period, although long-term studies are required to assess whether this trend 

continues over a longer time period. These results suggest that satellite-based remote sensing could 

be employed to detect liana infestation across tropical forests globally which will advance our ability 

to explore the drivers responsible for patterns of liana infestation at multiple spatial and temporal 
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scales as well as assist in quantifying the liana-induced impacts on carbon dynamics in tropical 

forests. 

 

5.2. Research Implications 
 

Tropical forests of South-East Asia comprise a significant proportion of the World’s 

biodiversity and carbon stocks. The dominance of dipterocarp species, particularly in Borneo, make 

these forests structurally unique and give rise to greater aboveground carbon densities than 

anywhere else in the tropics (Slik et al. 2013; Avitabile et al. 2016; Sullivan et al. 2017). However, 

structural changes, such as the distribution and abundance of lianas, may have severe implications 

on the diversity and carbon balance of tropical forests (Schnitzer & Carson 2010; van der Heijden, 

Powers & Schnitzer 2015). The remote sensing advances presented in this thesis extend field-based 

knowledge spatially and temporally and enhance our understanding of liana ecology as a whole, but 

particularly in the Palaeotropics. More specifically, this work 1) advances our ability to assess the 

spatial distribution of liana infestation across the wider landscape, 2) provides the first landscape-

level evaluation of their relationship with carbon stocks and 3) gives a first indication of the changes 

in the distribution and severity of liana infestation over time in Sabah, Malaysia.  

 

5.2.1. Relating liana infestation to aboveground carbon stocks 
 

Our knowledge of liana ecology has expanded substantially in recent years (Marshall et al. 

2020). However, typically, liana studies have been conducted at a plot-level (Ingwell et al. 2010; van 

der Heijden, Powers & Schnitzer 2015; Wright et al. 2015). While these studies have helped increase 

our understanding of the liana-induced impacts on tropical forest dynamics (Phillips et al. 2005; van 

der Heijden, Powers & Schnitzer 2015), their limited coverage and potential bias towards more easily 

accessible areas, restricts their ability to apply results over spatially large areas. This is particularly 

important as across forests worldwide, lianas exert a strong control over aboveground carbon 

storage and sequestration (Schnitzer et al. 2014b; van der Heijden, Powers & Schnitzer 2015; Chapter 

3). Being able to extend this relationship across space and time will assist in predicting which tropical 

forests are likely to be limited in the amount of carbon they can store and sequester and the 

implications that predicted changes in liana biomass and abundance may have on the ability of 

tropical forests to serve as carbon sinks in the future.  

Indeed, there is evidence of a long-term decreasing trend of carbon accumulation 

throughout the Amazon (Brienen et al. 2015) and a carbon sink saturation across the African 
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continent related to an increase in temperature and CO2 (Hubau et al. 2020). However, climate-

driven vegetation model simulations have not predicted a similar saturation in carbon uptake 

(Huntingford et al. 2013). Such discrepancies, in the Amazon, may be partly related to the pervasive 

increase of liana infestation and their negative effect on tree survival (Phillips et al. 2002; Schnitzer & 

Bongers 2011). However, evidence of a decline in liana infestation on the African continent (Caballé 

& Martin 2001; Bongers et al. 2020) suggests other changes may be response for the carbon sink 

saturation, such as changes in precipitation, frequency of drought events and changes in species 

composition (Malhi & Wright 2004; Malhi et al. 2013; Bonal et al. 2016). 

 

5.2.2. Increasing liana abundance in the Palaeotropics: implications for the tropical forest 

carbon cycle 
 

Compelling evidence exists for increasing liana dominance in seasonal forests in the 

Neotropics (Benítez‐Malvido & Martínez‐Ramos 2003; Wright et al. 2004; Wright & Calderón 2006; 

Chave et al. 2008b; Foster, Townsend & Zganjar 2008; Ingwell et al. 2010). However, so far, there is 

little evidence to suggest that the same is true of aseasonal forests or that this is a pantropical 

phenomenon (Caballé & Martin 2001; Wright et al. 2015; Bongers et al. 2020). Several mechanistic 

explanations have been suggested for the observed patterns of increasing liana biomass and 

abundance.  

Firstly, lianas may grow more rapidly under elevated CO2 concentration in comparison to 

trees (Granados & Körner 2002), and therefore continued increases in atmospheric CO2 should favour 

liana growth. Indeed, comparing tree and liana growth under experimental increases in CO2 have 

shown lianas to respond faster than trees (Zotz, Cueni & Körner 2006). However, as increasing liana 

abundance has not been observed pantropically (Schnitzer & Bongers 2011), this mechanism does 

not explain continental differences in liana proliferation over time.  

Secondly, lianas are known to increase in abundance, biomass and diversity in areas of 

greater disturbance (DeWalt, Schnitzer & Denslow 2000; Laurance et al. 2001; Schnitzer & Carson 

2001). As a result, lianas are particularly abundant in canopy gaps, forest edges and within selectively 

logged and secondary forests (Schnitzer & Carson 2001; Martin, Sherman & Fahey 2004; Addo-

Fordjour et al. 2009; Schnitzer & Carson 2010; Magrach et al. 2016; Rocha et al. 2020). As secondary 

forests, and the total area of old-growth forests impacted by selective logging, are increasing in area 

(Asner et al. 2005), lianas are also likely to increase in abundance due to their propensity to capitalise 

on disturbed areas. Furthermore, evidence suggests tropical forests are now more productive and 

have higher tree mortality and turnover (Phillips & Gentry 1994; Phillips 1996; Phillips et al. 2004; 
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Wright 2010), which may also provide favourable conditions for liana growth. In Phillips (1996), 

turnover rates were significantly higher in Neo- versus Palaeotropical sites. However, when census 

intervals were corrected, average turnover rates were not significantly different (Lewis et al. 2004b). 

Therefore, evidence of a pantropical increase in forest turnover does not explain the rapid increases 

in liana biomass and abundance in Neotropical old-growth forest sites. 

Lastly, liana abundance is reported to increase with decreasing rainfall (DeWalt et al. 2010; 

Parolari et al. 2020) and increasing temperature (Durán et al. 2015), therefore lianas are likely to 

experience a growth advantage over trees during dry seasons or drought periods (Schnitzer & van 

der Heijden 2019). Throughout the tropics there has been an overall decrease in rainfall and an 

increase in the extent and frequency of drought events driven by ongoing deforestation (Lean & 

Warrilow 1989; Shukla, Nobre & Sellers 1990; Malhi & Wright 2005; Hasler, Werth & Avissar 2009; 

Phillips et al. 2009; Lee & McPhaden 2010; Spracklen, Arnold & Taylor 2012; Spracklen & Garcia‐

Carreras 2015; McAlpine et al. 2018), which may lead to an increase in liana abundance globally. 

However, while changes in temperature may be relatively consistent over large areas, changes in 

rainfall are known to vary significantly among and within regions (Malhi & Wright 2005). For 

example, in contrast to others (e.g. Chapman et al. 2020) an increase in local rainfall has been 

observed over deforested areas (Negri et al. 2004). These site-specific changes in rainfall and the 

intensity of dry seasons may explain regional differences in patterns of liana infestation over time. 

Differences in rainfall and drought events at a continental-level may also provide some 

explanation for observed increases in liana abundance which have been confined to the Neotropics. 

In general, Amazonian forests are exposed to stronger climate impacts, including faster temperature 

increases and more regular and severe droughts, than African forests (Saatchi et al. 2013; Boisier et 

al. 2015; Jiménez-Muñoz et al. 2016; Garcia, Libonati & Nunes 2018). Precipitation changes have also 

been predicted to decrease in tropical Americas and increase in Africa and Asia in response to a 

warming climate (Zelazowski et al. 2011; Kooperman et al. 2018). These climatic changes may 

therefore favour liana proliferation in the Neotropics. Future research on long-term liana dynamics 

from tropical forests covering a range of environmental variation worldwide is required to determine 

the generality of increasing liana dominance as well as to assess which mechanisms may be 

responsible for change over time.  

The results from Chapter 4 provide some indication that the degree of liana infestation may 

be increasing over time across the landscape. Results revealed 1) a significant increase in the 

percentage of pixels classified as severely (≥75%) liana-infested and 2) that a significantly greater 

number of pixels had changed from low to severe infestation (2.66% ± 0.76 ) than vice versa (1.22% ± 
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0.2), over a three year period (2016-2019). These findings imply therefore that an increase in lianas 

may not be confined to seasonal forests in the Neotropics. However, these results only cover a three-

year period and as liana infestation is dynamic temporally, may not prove unequivocally that liana 

infestation is increasing in these forests. Nonetheless, this study (Chapter 4) makes an important 

contribution in highlighting that satellite-based remote sensing can be used to detect liana 

infestation and will provide a useful methodology to track changes in liana infestation in Danum 

Valley as well as other locations.  

 

5.2.3. Consequences of detecting liana infestation in satellite imagery  
 

The results from Chapter 4 suggest that the detectability of lianas in satellite imagery may be 

broadly applicable to other forests globally. While this can benefit our understanding of liana 

ecology, it may also be of concern for studies that utilise vegetation indices without accounting for 

the effect of lianas. As lianas can distort the reflectance of tree canopies, interpretation of popular 

vegetation indices such as the normalized difference vegetation index (NDVI) and leaf area index 

(LAI) could be erroneous if lianas are interpreted as trees. For example, it has been shown that lianas 

typically have higher values of LAI in comparison to trees (Putz 1983; Cai, Schnitzer & Bongers 2009; 

Sánchez-Azofeifa et al. 2009). Furthermore, higher reflectance of liana leaves is strongly related to 

the level of chlorophyll content (Castro-Esau, Sánchez-Azofeifa & Caelli 2004). As NDVI is sensitive to 

chlorophyll (Pettorelli et al. 2005) and canopy architectural features (Pinter Jr et al. 1985) it is likely 

that significant differences in NDVI will be observed for trees and lianas (see also Table S3.1). 

Therefore the use of spectral indices to assess ecological functions may be problematic if lianas are 

not accounted for. Future work should look to explore the impact of liana infestation in canopy-level 

trees on the relationship between spectral indices and ecological properties. 

 

5.2.4. Limitations of remote sensing: implications and solutions for assessing liana 

infestation over multiple scales 
 

Remote sensing techniques offer a solution to assess both changes in liana infestation and 

aboveground carbon stocks over larger areas than possible using field-based methods alone. 

However, there are a number of limitations which must be addressed or accounted for when using 

remotely sensed data.  
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5.2.4.1. Discrepancies in spatial units 

 
The ability to generate remotely sensed data with spatial units that align with ground 

observations is essential for the accurate prediction of liana infestation. However, as liana infestation 

is typically not homogeneous across a tree crown, data collected using airborne sensors that have 

high spatial resolutions (i.e. at a sub-canopy level), pose a challenge for assessing liana infestation at 

a pixel-level. Results from Chapter 2 indicate that, the prediction of liana infestation in airborne-

derived imagery can be achieved at the pixel-level by spectral unmixing of endmembers derived from 

tree crowns that were either severely (≥75%) liana-infested or liana-free. All pixels within a tree 

crown therefore represent the same class of infestation. This methodology highlights that the 

collection of ground data for training purposes need only focus on identifying the distribution of 

trees within either class of liana infestation. This can therefore reduce time and cost associated with 

ground surveys and potentially allow a greater sample size over a larger area. 

The use of Unoccupied Aerial Vehicles (UAVs) may also provide an approach to assess the 

degree of liana infestation for each pixel in airborne-derived imagery. UAVs can capture data at ultra-

fine spatial resolutions (mm) which can provide spatially detailed imagery to clearly separate liana 

leaves from tree leaves in the canopy (Waite et al. 2019). However, the success of this approach is 

entirely dependent on the ability to align airborne- and UAV-derived imagery (Hsu 2012; Lucier 

2018), whereby a slight misalignment could result in vastly different estimates of liana infestation at 

the pixel-level.  

Alternatively, an object-based approach can be achieved by the use of LiDAR data to 

segment hyperspectral imagery at the tree-crown level. However, the accuracy of an object-based 

classification revealed potential limitations (Chapter 2), which requires refinement in order to 

accurately segment imagery in dense, closed-canopy tropical forests. Accurate segmentation is 

critical for an object-based approach, however this may only be achievable in a primary forest, where 

there is greater heterogeneity in canopy structure in comparison to logged forests (Numata et al. 

2006). Therefore, as an object-based approach may be restricted to certain forest types, and require 

the use of airborne-derived LiDAR in order to accurately segment tree crowns, it may not be broadly 

applicable over larger areas. 

The use of satellite-derived imagery also poses a challenge for the accurate alignment with 

ground observations. As the spatial resolution of popular sensors such as Landsat and Sentinel are 

typically in the order of 10-30 m, training data collected on the ground at the tree crown-level may 

not align with the pixel size of satellite imagery. In Chapter 4, the predicted liana infestation output 

derived from airborne hyperspectral data was used to generate estimates of liana infestation at the 
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scale of a satellite image pixel. However, in the absence of airborne-derived data, plot-level average 

liana infestation data (for example per 1 ha) may provide a solution to relate with satellite-image 

pixels. An extensive and available global network of plot-level liana canopy infestation data 

(forestpots.net; Lopez‐Gonzalez et al. 2011) will likely provide a key step in our ability to assess liana 

infestation over larger areas. Future work should therefore focus on assessing whether plot-level 

data could be used to predict liana infestation over continental- or global-scales. Furthermore, while 

the prediction of liana infestation in Sentinel-2 imagery can be achieved at a resolution of 10 m 

(Chapter 4), assessing the relationship between liana infestation and variables relating to climate or 

carbon stocks at global- or continental-scales will most likely be conducted at resolutions ranging 

from 500m to 1km (e.g. Saatchi et al. 2011; Baccini et al. 2012; Fréjaville & Benito Garzón 2018). 

Future work should therefore consider whether estimates of liana infestation produced at coarse 

resolutions can be effective (cf. Belward & Lambin 1990) in order to  provide insights into the 

mechanisms that shape patterns of liana infestation at multiple scales.   

   

5.2.4.2. Future of remote sensing for assessing liana infestation 

 
The use of UAVs as a remote sensing tool for liana assessment is strengthened by new 

technologies which may improve the detection of liana infestation. For example, UAVs fitted with 

thermal sensors have found significant differences in the temperature of liana-infested and non-

infested areas (Yuan et al. 2019) based on differences in the temperature of liana and tree leaves 

(Sanchez-Azofeifa et al. 2011; Guzmán et al. 2018). Furthermore, UAVs fitted with multispectral (Li et 

al. 2018) as well as hyperspectral and LiDAR sensors (Sankey et al. 2018; Thomson et al. 2018) 

represent a powerful solution to provide spectral and structural characteristic at high resolutions for 

individual plant species identification. However, while imagery acquired from UAVs can cover a larger 

spatial extent that what can be achieved from ground-based data collection within the same time 

period, they do not provide a solution for regional- or state-wide assessments. Therefore, it’s critical 

that UAV- or ground-derived estimates can be combined with satellite-derived imagery to assess 

liana infestation over larger spatial, as well as temporal, scales.  

Advances in satellite hyperspectral sensors are likely to provide effective tools for the 

detection of liana infestation in space and time. For example, the Environmental Mapping and 

Analysis Program (EnMAP) satellite is capable of imaging the earth’s surface at a spatial resolution of 

30 m with a spectral range between 420 and 2450 nm (Guanter et al. 2015). Furthermore, EnMAP’s 

revisit time is in the order of 27 days and therefore can provide repeated yearly measurements. In 

Chapter 4, the Greenness Index was shown to be an effective metric for discriminating between 
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lianas and trees, however the inclusion of all Sentinel-2 bands was required to accurately assess the 

distribution of liana infestation. With a high spectral resolution (between 5 and 12 nm) across a large 

spectral range, EnMAP offers another solution to assess the distribution of liana infestation over 

large spatial extents. Additional advances in satellite-based remote sensing include four 

hyperspectral satellites as part of a new constellation (Zhuhai-1). Each satellite is able to obtain 

imagery at a spatial resolution of 10 m with 32 bands covering a spectral range from 400 to 1000 nm 

(Jiang et al. 2019). These satellites also sample a large area on the ground and therefore can achieve 

global coverage within 5 days. However, the broad use of such products is ultimately limited by their 

cost (Turner 2013). Therefore, evidence that liana infestation can be detected in freely available 

multispectral imagery (Chapter 4) provides an approach with broad applicability. Future work should 

focus on the use of Sentinel-2 and EnMAP as well as new satellites including Landsat 9 in 

combination with plot-level canopy infestation data to advance our understanding of liana 

infestation over large spatial and temporal scales. 

 

5.3. Summary 
 

This study shows for the first time that lianas are a strong forest-wide predictor of 

aboveground carbon stocks at a landscape-level, which, by confirming this pattern in the 

Palaeotropics, indicates that lianas exert a strong control on carbon storage in tropical forests 

worldwide. Both airborne and satellite-based remote sensing technologies are capable of accurately 

detecting liana infestation across primary and selectively logged aseasonal tropical forests. 

Furthermore, the accurate detection of liana infestation by satellite-based remote sensing 

technologies across forest types and under different climatic conditions suggests the methodologies 

employed in this thesis should apply broadly and can be used to assess liana infestation in other 

forests across the world. This will allow patterns of liana infestation to be assessed at multiple scales, 

which is imperative to explore the mechanisms that shape their distribution both spatially and 

temporally. Under predicted climate change scenarios it is likely that the severity of liana infestation 

will increase globally and therefore remote sensing will provide an effective tool to monitor change 

over time and assess  the impact these changes may have on the functioning and dynamics of 

tropical forests. 
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Appendix 1: Paper 1 
1.1. Tree crown segmentation 

 
A grid search was performed using four different values for each of the three parameters: 

Scale, Radius and Threshold. Scale refers to the spatial radius of the neighbour, Radius refers to the 

radius (expressed in radiometry unit) in the hyperspectral space and threshold refers to a value at 

which the algorithm will finish if the mean-shift vector is below a threshold. Following the first grid 

search, the values for each parameter were refined and a second grid search was performed. The 

values given to each parameter are shown in Table S1.1. Every combination of values for the first (64 

combinations, Table S1.2) and second (26 combinations, Table S1.3) grid searches were used and 

evaluated using the Segmentation Evaluation Index (Yang et al. 2015). 

  
Table S1.1 The first and second grid searches with meanshift parameters.  

  Scale Radius Threshold 

First grid search       

 5 3 0.005 

 10 5 0.01 

 15 10 0.1 

 20 15 1 

    
Second grid search       

 14 4 0.004 

 15 5 0.005 

 16 6 0.006 
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Table S1.2 All parameter combinations (n=64) within the first grid search and corresponding 

Segmentation Evaluation Index (SEI). The segmentation highlighted in orange was the optimal 

segmentation for the first grid search.  

File Scale Radius Threshold SEI 

meanshift_S05R03T0.005 5 3 0.005 0.557 

meanshift_S05R03T0.01 5 3 0.01 0.537 

meanshift_S05R03T0.1 5 3 0.1 0.473 

meanshift_S05R03T1.0 5 3 1 0.336 

meanshift_S05R05T0.005 5 5 0.005 0.390 

meanshift_S05R05T0.01 5 5 0.01 0.379 

meanshift_S05R05T0.1 5 5 0.1 0.355 

meanshift_S05R05T1.0 5 5 1 0.380 

meanshift_S05R10T0.005 5 10 0.005 0.499 

meanshift_S05R10T0.01 5 10 0.01 0.510 

meanshift_S05R10T0.1 5 10 0.1 0.545 

meanshift_S05R10T1.0 5 10 1 0.632 

meanshift_S05R15T0.005 5 15 0.005 0.628 

meanshift_S05R15T0.01 5 15 0.01 0.649 

meanshift_S05R15T0.1 5 15 0.1 0.727 

meanshift_S05R15T1.0 5 15 1 0.818 

meanshift_S10R03T0.005 10 3 0.005 0.456 

meanshift_S10R03T0.01 10 3 0.01 0.462 

meanshift_S10R03T0.1 10 3 0.1 0.446 

meanshift_S10R03T1.0 10 3 1 0.438 

meanshift_S10R05T0.005 10 5 0.005 0.332 

meanshift_S10R05T0.01 10 5 0.01 0.327 

meanshift_S10R05T0.1 10 5 0.1 0.334 

meanshift_S10R05T1.0 10 5 1 0.377 

meanshift_S10R10T0.005 10 10 0.005 0.404 

meanshift_S10R10T0.01 10 10 0.01 0.418 

meanshift_S10R10T0.1 10 10 0.1 0.545 

meanshift_S10R10T1.0 10 10 1 0.594 

meanshift_S10R15T0.005 10 15 0.005 0.558 

meanshift_S10R15T0.01 10 15 0.01 0.596 

meanshift_S10R15T0.1 10 15 0.1 0.660 

meanshift_S10R15T1.0 10 15 1 0.748 

meanshift_S15R03T0.005 15 3 0.005 0.357 

meanshift_S15R03T0.01 15 3 0.01 0.368 

meanshift_S15R03T0.1 15 3 0.1 0.366 

meanshift_S15R03T1.0 15 3 1 0.370 

meanshift_S15R05T0.005 15 5 0.005 0.276 

meanshift_S15R05T0.01 15 5 0.01 0.291 

meanshift_S15R05T0.1 15 5 0.1 0.300 

meanshift_S15R05T1.0 15 5 1 0.325 
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meanshift_S15R10T0.005 15 10 0.005 0.450 

meanshift_S15R10T0.01 15 10 0.01 0.455 

meanshift_S15R10T0.1 15 10 0.1 0.494 

meanshift_S15R10T1.0 15 10 1 0.557 

meanshift_S15R15T0.005 15 15 0.005 0.628 

meanshift_S15R15T0.01 15 15 0.01 0.628 

meanshift_S15R15T0.1 15 15 0.1 0.676 

meanshift_S15R15T1.0 15 15 1 0.743 

meanshift_S20R03T0.005 20 3 0.005 0.363 

meanshift_S20R03T0.01 20 3 0.01 0.363 

meanshift_S20R03T0.1 20 3 0.1 0.344 

meanshift_S20R03T1.0 20 3 1 0.348 

meanshift_S20R05T0.005 20 5 0.005 0.309 

meanshift_S20R05T0.01 20 5 0.01 0.315 

meanshift_S20R05T0.1 20 5 0.1 0.312 

meanshift_S20R05T1.0 20 5 1 0.347 

meanshift_S20R10T0.005 20 10 0.005 0.493 

meanshift_S20R10T0.01 20 10 0.01 0.593 

meanshift_S20R10T0.1 20 10 0.1 0.524 

meanshift_S20R10T1.0 20 10 1 0.593 

meanshift_S20R15T0.005 20 15 0.005 0.684 

meanshift_S20R15T0.01 20 15 0.01 0.676 

meanshift_S20R15T0.1 20 15 0.1 0.713 

meanshift_S20R15T1.0 20 15 1 0.710 
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Table S1.3 All parameter combinations (n=27) within the second grid search and corresponding 

Segmentation Evaluation Index (SEI). The segmentation highlighted in orange was the optimal 

segmentation for the second grid search, which did not differ from the first grid search. 

File Scale Radius Threshold SEI 

meanshift_S14R04T0.004 14 4 0.004 0.297 

meanshift_S14R04T0.005 14 4 0.005 0.291 

meanshift_S14R04T0.006 14 4 0.006 0.298 

meanshift_S14R05T0.004 14 5 0.004 0.279 

meanshift_S14R05T0.005 14 5 0.005 0.279 

meanshift_S14R05T0.006 14 5 0.006 0.285 

meanshift_S14R06T0.004 14 6 0.004 0.322 

meanshift_S14R06T0.005 14 6 0.005 0.322 

meanshift_S14R06T0.006 14 6 0.006 0.322 

meanshift_S15R04T0.004 15 4 0.004 0.283 

meanshift_S15R04T0.005 15 4 0.005 0.283 

meanshift_S15R04T0.006 15 4 0.006 0.283 

meanshift_S15R05T0.004 15 5 0.004 0.284 

meanshift_S15R05T0.005 15 5 0.005 0.276 

meanshift_S15R05T0.006 15 5 0.006 0.277 

meanshift_S15R06T0.004 15 6 0.004 0.309 

meanshift_S15R06T0.005 15 6 0.005 0.309 

meanshift_S15R06T0.006 15 6 0.006 0.309 

meanshift_S16R04T0.004 16 4 0.004 0.304 

meanshift_S16R04T0.005 16 4 0.005 0.297 

meanshift_S16R04T0.006 16 4 0.006 0.297 

meanshift_S16R05T0.004 16 5 0.004 0.285 

meanshift_S16R05T0.005 16 5 0.005 0.276 

meanshift_S16R05T0.006 16 5 0.006 0.277 

meanshift_S16R06T0.004 16 6 0.004 0.321 

meanshift_S16R06T0.005 16 6 0.005 0.321 

meanshift_S16R06T0.006 16 6 0.006 0.321 
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1.2. Neural network model parametrisation  

 
I ran neural network models with the number of neurons ranging between 1 and 7 and two 

different error threshold values. The threshold specifies a value for the partial derivatives of the error 

function as a stopping criteria. Thus, the model will continue to iterate until it reaches a point where 

the overall error of the model is not reducing by more than the given threshold value, i.e. with a 

threshold of 0.01, a change in error of less than 1% will stop further model optimization.  Results 

showed no decrease in classification accuracy, whilst also reducing convergence time, using a 

threshold of 0.05 in comparison to a lower threshold of 0.01. Models that exceeded 1000 seconds for 

convergence were excluded. Using a threshold of 0.05, I identified hidden neurons ranging between 

2 and 5 as optimal in terms of accuracy and convergence time (Table S1.4). Using these parameters I 

ran a 10 fold cross validation for each model. Metrics used for model accuracy highlighted the model 

with four hidden neurons to have the best performance (Table S1.4).     
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Table S1.4 Neural network model parametrisation and assessment of best performing model. Models 

highlighted in orange correspond to models with best performance. Models that required longer 

than 1000 seconds to converge were removed (highlighted in grey). 

Hidden 
neurons 

Threshold Accuracy CI Sensitivity Specificity F1 Convergence 
Time 

7 0.05 0.788 (0.7441, 
0.8266) 

0.82 0.755 0.7942 440.4 

6 0.05 0.786 (0.7441, 
0.8266) 

0.84 0.735 0.7981 160.6 

5 0.05 0.7875 (0.7441, 
0.8266) 

0.86 0.715 0.8019 94.5 

4 0.05 0.785 (0.7415, 
0.8243) 

0.845 0.725 0.7972 86.3 

3 0.05 0.788 (0.7441, 
0.8266) 

0.845 0.73 0.7991 31.63 

2 0.05 0.793 (0.7494, 
0.8312) 

0.845 0.74 0.8029 25.98 

1 0.05 0.7825 (0.7388, 
0.822) 

0.83 0.735 0.7924 9 

7 0.01           >1000 

6 0.01           >1000 

5 0.01           >1000 

4 0.01 0.788 (0.7441, 
0.8266) 

0.84 0.735 0.7981 748.05 

3 0.01 0.783 (0.7388, 
0.822) 

0.82 0.745 0.7904 457.2 

2 0.01 0.788 (0.7441, 
0.8266) 

0.825 0.75 0.7952 163.8 

1 0.01 0.79 (0.7468, 
0.8289) 

0.83 0.75 0.7981 23.5 

        

        

Cross-Validation     
(10-fold) 

      

5 0.05 0.787 0.779-
0.799 

0.805 0.769 0.79 
 

4 0.05 0.802 0.79-0.816 0.824 0.78 0.806   

3 0.05 0.794 0.78-0.812 0.821 0.768 0.799 
 

2 0.05 0.787 0.774-
0.802 

0.812 0.762 0.792 
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1.3. Relationship between liana canopy cover and canopy height 

Liana canopy cover data were collected in the field using a tablet computer with a Canopy 

Height Model pre-loaded. As such, estimates of liana canopy cover could be directly related to tree 

height. I found an increase in liana infestation corresponded to a decrease in canopy height for both 

the pixel- (Figure S1.1a) and object-based (Figure S1.1b) data. This pattern is also apparent in the 

predicted liana infestation map whereby low canopy heights are often associated with severe (≥75%) 

liana infestation.  

 

Figure S1.1 Relationship between liana canopy cover (%) and canopy height (m) for a) pixel- and b) 

object-based data. Red dashed lines correspond to fitted linear regression models. 
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1.4. Predicted and observed liana canopy cover 
 

The relationship between observed and predicted liana infestation revealed a better fit with a 

pixel-based approach in comparison to an object-based approach, as shown by the deviation of 

points with respect to the 1:1 line (Figure 2.3). However, fitting a linear regression to the observed 

and predicted liana infestation data allows a visualisation of the overall relationship between 

predicted and observed values with respect to the 1:1 line. I found a stronger relationship between 

predicted and observed liana infestation when using a pixel-based approach (R2=0.79) in comparison 

to an object-based approach (R2=0.64). A test of non-inferiority showed that there was a significant 

difference between the correlations of both pixel- and object-based predictions with observed values 

(Hotelling’s t(165) = 10.96, p < 0.001) suggesting that a pixel-based approach is significantly more 

accurate. 

 

Figure S1.2 Relationship between predicted and ground reference liana canopy cover for a) a pixel-

based approach and b) an object-based approach on a continuous scale. Black dashed line represents 

a 1:1 line, solid line corresponds to a linear regression line. Points with darker shades indicate 

multiple overlapping points. Horizontal error bars represent the standard deviation of 100 predicted 

values generated from multiple iterations of the neural network model. Vertical error bars represent 

the standard deviation of 100 randomly generated liana canopy cover values using Monte Carlo 

simulations. 
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Figure S1.3 Relationship between predicted and ground reference liana canopy cover for 168 trees 

inside the 50 ha plot for the first 10 of the 100 iterations of the modelling process. Black points 

represent the mean values over 100 iterations. Red points correspond to predicted and ground-

reference data that have changed with each iteration. Red solid line represents a linear model fitted 

to the data that has changed with each iteration (red points). During the training of the model I 

permuted 47 pixels into an incorrect class to represent temporal change (3.5 years) between ground 

and airborne data collection. I accounted for error in ground reference data associated with 

observational uncertainty and temporal change. Firstly, I quantified observational error such that 

90% of trees contained a small error of 5% and 4% of tress contained a large error of 30%. Error 

derived from temporal change was also applied whereby 6% of trees had an error of 50%. Root mean 

squared deviation (RMSD) was calculated for each iteration. 
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To assess whether the relationship between predicted and ground reference liana canopy 

cover for each iteration were significantly different (Figure S1.3), I compared the slopes of each linear 

model. To test for significant differences between slope coefficients I used a pairwise comparison 

(Table S1.5). A comparison of slopes indicated no significant differences between slopes. This 

suggests that error which may have occurred due to the time lag between ground and airborne data 

collection did not affect the overall relationship between predicted and observed liana canopy cover.   

  

Table S1.5 Pairwise comparison of linear regression slope coefficients in Figure S1.3.   

contrast estimate SE df t.ratio p.value 

1-2 -2.14983 5.842717 1660 -0.36795 0.999998 

1-3 -2.3617 5.819776 1660 -0.40581 0.999995 

1-4 -1.51804 5.803489 1660 -0.26157 1 

1-5 0.46969 5.664691 1660 0.082915 1 

1-6 2.147815 5.767518 1660 0.372398 0.999998 

1-7 0.697156 5.804069 1660 0.120115 1 

1-8 -5.8534 5.943731 1660 -0.9848 0.993113 

1-9 -0.49299 5.791518 1660 -0.08512 1 

1-10 -2.59642 5.867027 1660 -0.44254 0.99999 

2-3 -0.21187 5.869917 1660 -0.03609 1 

2-4 0.631792 5.853769 1660 0.107929 1 

2-5 2.619519 5.716193 1660 0.458263 0.999986 

2-6 4.297644 5.818109 1660 0.738667 0.999255 

2-7 2.846985 5.854344 1660 0.486303 0.999977 

2-8 -3.70357 5.992834 1660 -0.618 0.999827 

2-9 1.656839 5.841901 1660 0.283613 1 

2-10 -0.44659 5.916767 1660 -0.07548 1 

3-4 0.843662 5.830872 1660 0.144689 1 

3-5 2.83139 5.692742 1660 0.497368 0.999972 

3-6 4.509514 5.795071 1660 0.778164 0.998869 

3-7 3.058856 5.831449 1660 0.524545 0.999957 

3-8 -3.4917 5.97047 1660 -0.58483 0.999891 

3-9 1.86871 5.818958 1660 0.321142 0.999999 

3-10 -0.23472 5.894115 1660 -0.03982 1 

4-5 1.987728 5.67609 1660 0.350193 0.999999 

4-6 3.665852 5.778713 1660 0.634372 0.999785 

4-7 2.215193 5.815194 1660 0.380932 0.999997 

4-8 -4.33536 5.954595 1660 -0.72807 0.999337 

4-9 1.025047 5.802667 1660 0.176651 1 

4-10 -1.07838 5.878033 1660 -0.18346 1 

5-6 1.678124 5.639306 1660 0.297576 1 

5-7 0.227466 5.676683 1660 0.04007 1 

5-8 -6.32309 5.819403 1660 -1.08655 0.986027 
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5-9 -0.96268 5.66385 1660 -0.16997 1 

5-10 -3.06611 5.741038 1660 -0.53407 0.999949 

6-7 -1.45066 5.779296 1660 -0.25101 1 

6-8 -8.00122 5.919542 1660 -1.35166 0.941219 

6-9 -2.6408 5.766691 1660 -0.45794 0.999986 

6-10 -4.74423 5.842521 1660 -0.81202 0.998417 

7-8 -6.55056 5.95516 1660 -1.09998 0.984772 

7-9 -1.19015 5.803248 1660 -0.20508 1 

7-10 -3.29357 5.878606 1660 -0.56026 0.999924 

8-9 5.360412 5.942929 1660 0.901981 0.996431 

8-10 3.256985 6.016538 1660 0.541339 0.999943 

9-10 -2.10343 5.866215 1660 -0.35857 0.999998 
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Appendix 2: Paper 2 

 

 

Figure S2.1 An extract from predicted a) liana infestation and b) aboveground carbon stocks in Mg C 

ha-1. Spatial resolution for both maps is 2500 m2. 
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Figure S2.2 Relationship between predicted and ground reference a) liana canopy cover and b) 

aboveground carbon stocks (Mg C ha-1). I accounted for error at all stages of the mapping of both 

liana infestation and AGC and propagated these errors to obtain a robust level of uncertainty around 

predictions. Error bars in (a) represent standard deviation.  Error bars in (b) represent 95% 

confidence intervals following error propagation. Coloured points correspond to the density of 

overlapping points from black to yellow. Dashed line represents the 1:1 line. 
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Table S2.1 Accuracy assessment for predicted liana infestation in three and two classes. 95%CI, 95% 

confidence intervals for accuracy; Bal. Acc., Balanced Accuracy = (sensitivity + specificity)/2; F1, F1 

score or F-measure; AUC, Area under the curve. 

  Accuracy 95%CI Sensitivity Specificity Bal. Acc. F1 AUC 

3 Class: Low [0-25%], Medium/High [25-75%], Severe [75-100%]     

3 Class 0.84 0.77-0.89     0.91 

Class: L   0.85 1 0.92 0.92  
Class: M/H   0.85 0.84 0.84 0.45  
Class: S   0.77 0.99 0.88 0.83  
                

2 Class: Low [0-25%], Severe [75-100%]         

2 Class 1 0.97-1 1 1 1 1 1 
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The inclusion of height within allometric models is an essential parameter for accurate 

estimates of carbon stocks as variation in tropical forest tree height varies significantly across plots, 

regions and continents for a given diameter (Banin et al. 2012). However tree height can be 

extremely difficult to measure in dense closed-canopy forests and even laser rangefinder 

measurements can have large uncertainties (Larjavaara & Muller‐Landau 2013). Therefore, H 

estimates from regional H:D models can provide an efficient way to improve aboveground biomass 

estimates. Feldpausch et al. (2012) recommended the use of the region-specific Weibull-H model as 

it had the lowest error in biomass estimation. However, the power function (log 1) showed a better 

relationship with 50 trees (D>140 cm) of known D and H (Figure S2.3). I also show the location of the 

world’s current tallest tropical tree ‘Menara’ at 98.9m (Shenkin et al. 2019), which I suggest is not an 

outlier as multiple trees (canopy height >90m) were observed in ALS data in the surrounding area.  

 

 

Figure S2.3 Height – Diameter models 

and their relationship with 50 trees 

(D>140 cm) of known D and H as well 

as ‘Menara’ the World’s tallest 

tropical tree at 98.9m. Models used 

to estimate height include: weibull: H 

= a ∗ (1 − exp(−(D/b) c )), which is the 

same as the region-specific model 

used to estimate H; log 1, (log(H) = a + 

b ∗ log(D)) (equivalent to a power 

model); log 2, (log(H) = a + b ∗ log(D) 

+ c ∗ log(D) 2 ) and michaelis: H = (A ∗ 

D)/(B + D). 

 

 

 

 

 

 



Appendices 

130 
 

 

 

Figure S2.4 Relationship between three airborne laser scanning (ALS)-derived metrics: 1) height of 

median energy (HOME), 2) waveform distance (WFD) and 3) the top-of-canopy height derived from 

the canopy height model (CHM). 



Appendices 

131 
 

Table S2.2 Results from a ten-fold cross validation to identify the best model for the prediction of 

aboveground carbon stocks (AGC). The model with the highest R2 is highlighted in green.  

Run Var1 Var2 Var3 R2 

1 CHMmed CHMmin  0.426 

2 CHMmed CHMmin WFDmin 0.404 

3 CHMmean WFDcover20 HOMEcover20 0.463 

4 CHMmed CHMmin WFDcover20 0.448 

5 CHMmed WFDcover20 CHMcover20 0.494 

6 CHMmed CHMmin WFDcover20 0.454 

7 CHMmin WFDcover20 HOMEmed 0.421 

8 CHMmed WFDcover20 HOMEmin 0.475 

9 CHMmean CHMmin WFDcover20 0.454 

10 CHMmed WFDcover20 HOMEcover20 0.468 
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Figure S2.5 Predicted aboveground carbon stocks (Mg C ha-1) within the three forest types. Values 

correspond to pixels with a spatial resolution of 50 m. PR, primary; AR, actively restored and NR, 

naturally regenerating forest. 

 

 
Table S2.3 Tukey Honest Significant Differences between predicted levels of aboveground carbon 

(AGC) in the primary (PR), actively restored (AR) and naturally regenerating (NR) forests. Mean levels 

of AGC were 164.2 Mg C ha-1, 141.6 Mg C ha-1 and 108.3 Mg C ha-1 for the primary, actively restored 

and naturally regenerating forests, respectively. Cliff’s delta is a measure of effect size to indicate the 

magnitude of difference between levels of AGC. 

Comparison   Difference Upper 95% CI Lower 95% CI  p value Cliff's delta 

PR – AR  22.6 23.8 21.4 <0.0001 0.44 

PR – NR  55.9 59.2 52.6 <0.0001 0.78 

NR – AR  - 33.3 - 30 - 36.7 <0.0001 0.83 
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Figure S2.6 Relationship between canopy gap size and liana infestation. On average, a gap size of 

~400m2 was the size at which a gap was likely to be severely (≥75%) liana-infested. Red solid lines 

represents individual models fit to data for each forest type. The red dashed lines represent a model 

fit across all forest types. The colour of points correspond to the density of overlapping points 

ranging from purple to yellow with increasing density. 
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The parameters used to define canopy gaps vary considerably depending on the location and 

the study interest. For example, small gaps (2-4m2) have been detected in Neotropical. However, in 

South-east Asian forests, which have a high proportion of tall, emergent dipterocarp trees, canopy 

gaps may be larger. Here, I defined a canopy gap as having a maximum canopy height of 10 m and a 

minimum size of 10 m2, the same definition applied by Hunter et al. (2015). However, I also identified 

canopy gaps using a set of different parameters (Table S2.4, Figure. S2.7) to assess the effect of how 

gaps are defined on the relationship between liana infestation and aboveground carbon stocks. I 

found that parameter combination 2 and 3 (a change in canopy height) did not result in substantially 

different λ-values in comparison to parameter combination 1 (Table S2.4, Figure S2.7). However λ-

values derived from parameter combinations 4 and 5 (a change in canopy gap size) were noticeably 

different to parameter combination 1 (Table S2.4, Figure S2.7). 

 
Table S2.4 Different parameter combinations used for the detection of canopy gaps and the resulting 

power-law exponent (λ-value) representing the gap size frequency distribution. 

Par. Comb. Forest GapSize CanopyHeight λ N 

1 Primary 10 10 1.235 26770 

1 Active Restoration 10 10 1.241 13204 

1 Natural Regeneration 10 10 1.224 2554 

2 Primary 10 5 1.244 17430 

2 Active Restoration 10 5 1.25 7786 

2 Natural Regeneration 10 5 1.233 2742 

3 Primary 10 2 1.251 10879 

3 Active Restoration 10 2 1.26 4635 

3 Natural Regeneration 10 2 1.253 1965 

4 Primary 5 10 1.27 37685 

4 Active Restoration 5 10 1.28 18996 

4 Natural Regeneration 5 10 1.256 3481 

5 Primary 2 10 1.336 56013 

5 Active Restoration 2 10 1.35 29031 

5 Natural Regeneration 2 10 1.32 5127 

Par. Comb.: Parameter Combination; Gap size in m2; Canopy height in m; N, number of gaps 
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Figure S2.7 The gap-size frequency distributions represented by the power-law exponent (λ) within 

the primary (blue), actively restored (orange) and naturally regenerating (green) forests using a) five 

different parameter combinations b) 1, c) 2, d) 3, e) 4 and f) 5. Parameter combination values 

correspond with Table S2.4. 
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Figure S2.8 Relationship between liana infestation and aboveground carbon stocks (Mg C ha-1) within 

each forest type. The black solid line shows the generalised linear model fit to the data. The green 

line corresponds to same model after accounting for the effect of canopy gaps and topography. 

Dashed lines represent 95% confidence intervals. The colour of points correspond to the density of 

overlapping points ranging from purple to yellow with increasing density. 
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Table S2.5 Summary table showing the coefficients (log scale) from multiple regressions using a 

generalised linear model for each forest type and for all forests combined.  

  Estimate Std. Error t value Pr (>|t|) Sig 

Primary, n=7791           

Intercept (exp) 
5.454 
(233.6) 1.383e-02 394.205 < 2e-16 *** 

Liana Infestation -8.185e-03 1.602e-04 -51.088 < 2e-16 *** 

Elevation 1.967e-04 3.714e-05 5.296 1.22e-07 *** 

Slope 1.306e-03 2.923e-04 4.467 8.04e-06 *** 

Aspect -7.553e-05 2.951e-05 -2.560 0.0105 * 

Gap Area -4.591e-03 4.055e-04 -11.322 < 2e-16 *** 

Gap Freq. 2.307e-04 2.191e-04 1.053 0.2924  
Gap Area*Gap 
Freq. -8.043e-05 1.622e-05 -4.960 7.20e-07 *** 

      
Active Restoration, n=3714         

Intercept (exp) 
5.054 
(156.6) 9.972e-03 506.788 < 2e-16 *** 

Liana Infestation -1.48e-03 9.268e-05 -15.968 < 2e-16 *** 

Elevation -1.808e-05 2.483e-05 -0.728 0.4667  

Slope 2.043e-04 2.256e-04 0.905 0.3654  

Aspect 2.172e-05 1.969e-05 1.103 0.2700  

Gap Area -5.216e-03 3.943e-04 -13.230 < 2e-16 *** 

Gap Freq. 3.813e-04 1.698e-04 2.246 0.0248 * 
Gap Area*Gap 
Freq. -7.095e-05 1.596e-05 -4.445 9.05e-06 *** 

      
Natural Regeneration, n=524         

Intercept (exp) 
5.400 
(221.3) 6.775e-02 79.696 < 2e-16 *** 

Liana Infestation -3.471e-03 5.836e-04 -5.948 5.00e-09 *** 

Elevation -1.397e-03 1.866e-04 -7.489 3.04e-13 *** 

Slope 4.979e-03 1.196e-03 4.161 3.71e-05 *** 

Aspect -9.561e-05 1.226e-04 -0.780 0.436  

Gap Area -7.220e-03 1.167e-03 -6.187 1.25e-09 *** 

Gap Freq. -7.686e-04 6.500e-04 -1.182 0.238  
Gap Area*Gap 
Freq. -3.355e-05 3.656e-05 -0.918 0.359  

      
All, n=12029           

Intercept (exp) 
5.336 
(207.8) 1.127e-02 473.334 < 2e-16 *** 

Liana Infestation -7.467e-03 1.038e-04 -71.933 < 2e-16 *** 

Elevation 1.466e-04 2.915e-05 5.029 5.00e-07 *** 

Slope 2.849e-03 2.340e-04 12.175 < 2e-16 *** 

Aspect 3.507e-05 2.362e-05 1.485 0.138  
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Gap Area -3.132e-03 3.286e-04 -9.531 < 2e-16 *** 

Gap Freq. 1.124e-03 1.748e-04 6.430 1.32e-10 *** 
Gap Area*Gap 
Freq. -1.405e-04 1.343e-05 -10.464 < 2e-16 *** 

      

Sig, significance: . p<0.05; * p<0.01; ** p<0.001; *** p=0 
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It is expected that the gap size frequency distribution (GSFD) will change with different 

parameters for gap detection (i.e. canopy height and gap size). However, it is not clear how a change 

in GSFD may affect the relationship between liana infestation and AGC. I assessed the relationship of 

liana infestation and AGC accounting for canopy gaps detected using all parameter combinations. I 

found no significant differences in the amount of carbon reduction associated with an increase in 

liana infestation (Figure S2.9).  

 

Figure S2.9 The effect of different gap definitions on the change in aboveground carbon stocks in 

relation to areas that were completely liana-infested or liana-free. Error bars corresponds to the 95% 

confidence intervals. Gap definitions refer to the five parameter combinations in Table S2.4. 
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Appendix 3: Paper 3 
 

 

 

Figure S3.1 Airborne-derived standardised (μ = 0, σ = 1) hyperspectral reflectance of liana-free trees 

and trees severely infested with liana leaves. Lines are mean reflectance values for all trees (shading 

± 1 SD). Blue lines represent liana-free trees (ntrees = 226, npixels = 7826), yellow lines represent trees 

highly infested with liana leaves (ntrees = 41, npixels = 1001). Grey vertical bars represent the position of 

Sentinel-2 bands. Red vertical lines correspond to airborne hyperspectral bands that are within 

Sentinel-2 bands. The green vertical bar indicates the green region of the spectra that shows the 

greatest difference between liana-free and liana-infested trees. 
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Table S3.1 Comparison of vegetation indices for the seperation of low (≤25%) and severe (≥75%) 

liana infestation classes within the primary and logged forests and across the full landscape for each 

of the four satellite-derived images (2016-2019). Values correspond to Cliff’s delta effect sizes. 

Overall average corresponds to the average of the 4-year average for all locations.   

Year Metric All Primary Logged 
 Overall 
Average 

2016 Green 0.43 0.32 0.09  
2017 Green 0.27 0.14 0.1  
2018 Green 0.2 0.11 0.27  
2019 Green 0.07 0.15 0.08  
Average Green 0.2425 0.18 0.135 0.185833 

2016 Greenness 0.39 0.41 0.27  
2017 Greenness 0.32 0.26 0.4  
2018 Greenness 0.22 0.15 0.32  
2019 Greenness 0.3 0.22 0.3  
Average Greenness 0.3075 0.26 0.3225 0.296667 

2016 CLG 0.05 0.13 0.02  
2017 CLG 0.07 0.07 0.17  
2018 CLG 0.09 0.03 0.08  
2019 CLG 0.34 0.33 0.27  
Average CLG 0.1375 0.14 0.135 0.1375 

2016 CLRE 0.13 0.08 0.03  
2017 CLRE 0.21 0.1 0.13  
2018 CLRE 0.05 0.03 0.13  
2019 CLRE 0.22 0.28 0.23  
Average CLRE 0.1525 0.1225 0.13 0.135 

2016 CTVI 0.23 0.37 0.21  
2017 CTVI 0.12 0.12 0.37  
2018 CTVI 0.21 0.16 0.3  
2019 CTVI 0.39 0.36 0.37  
Average CTVI 0.2375 0.2525 0.3125 0.2675 

2016 EVI 0.37 0.39 0.15  
2017 EVI 0.17 0.09 0.25  
2018 EVI 0.22 0.14 0.31  
2019 EVI 0.23 0.14 0.31  
Average EVI 0.2475 0.19 0.255 0.230833 

2016 GEMI 0.36 0.36 0.15  
2017 GEMI 0.16 0.08 0.26  
2018 GEMI 0.21 0.13 0.31  
2019 GEMI 0.18 0.1 0.28  
Average GEMI 0.2275 0.1675 0.25 0.215 

2016 GNDVI 0.21 0.3 0.14  
2017 GNDVI 0.04 0.01 0.27  



Appendices 

142 
 

2018 GNDVI 0.18 0.11 0.26  
2019 GNDVI 0.25 0.21 0.3  
Average GNDVI 0.17 0.1575 0.2425 0.19 

2016 MNDWI 0.08 0.1 0.02  
2017 MNDWI 0.19 0.2 0.06  
2018 MNDWI 0.24 0.25 0.04  
2019 MNDWI 0.49 0.52 0.25  
Average MNDWI 0.25 0.2675 0.0925 0.203333 

2016 MSAVI 0.32 0.37 0.18  
2017 MSAVI 0.15 0.09 0.3  
2018 MSAVI 0.22 0.14 0.32  
2019 MSAVI 0.27 0.21 0.33  
Average MSAVI 0.24 0.2025 0.2825 0.241667 

2016 MSAVI2 0.35 0.37 0.16  
2017 MSAVI2 0.16 0.09 0.28  
2018 MSAVI2 0.22 0.13 0.31  
2019 MSAVI2 0.22 0.15 0.3  
Average MSAVI2 0.2375 0.185 0.2625 0.228333 

2016 MTCI 0.31 0.18 0.13  
2017 MTCI 0.42 0.32 0.2  
2018 MTCI 0.17 0.03 0.06  
2019 MTCI 0.22 0.14 0.07  
Average MTCI 0.28 0.1675 0.115 0.1875 

2016 NBRI 0.04 0.12 0.12  
2017 NBRI 0.14 0.21 0.25  
2018 NBRI 0.11 0.18 0.19  
2019 NBRI 0.18 0.25 0.03  
Average NBRI 0.1175 0.19 0.1475 0.151667 

2016 NDREI 0.08 0.13 0.01  
2017 NDREI 0.13 0.02 0.19  
2018 NDREI 0.02 0.07 0.16  
2019 NDREI 0.24 0.31 0.24  
Average NDREI 0.1175 0.1325 0.15 0.133333 

2016 NDREI2 0.13 0.08 0.03  
2017 NDREI2 0.21 0.1 0.13  
2018 NDREI2 0.05 0.03 0.13  
2019 NDREI2 0.22 0.28 0.23  
Average NDREI2 0.1525 0.1225 0.13 0.135 

2016 NDVI 0.23 0.37 0.21  
2017 NDVI 0.12 0.12 0.37  
2018 NDVI 0.21 0.16 0.3  
2019 NDVI 0.39 0.36 0.37  
Average NDVI 0.2375 0.2525 0.3125 0.2675 

2016 NDWI 0.21 0.3 0.14  
2017 NDWI 0.04 0.01 0.27  
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2018 NDWI 0.18 0.11 0.26  
2019 NDWI 0.25 0.21 0.3  
Average NDWI 0.17 0.1575 0.2425 0.19 

2016 NDWI2 0.13 0.2 0.14  
2017 NDWI2 0.11 0.16 0.21  
2018 NDWI2 0.05 0.1 0.24  
2019 NDWI2 0.21 0.26 0.06  
Average NDWI2 0.125 0.18 0.1625 0.155833 

2016 NRVI 0.23 0.37 0.21  
2017 NRVI 0.12 0.12 0.37  
2018 NRVI 0.21 0.16 0.3  
2019 NRVI 0.39 0.36 0.37  
Average NRVI 0.2375 0.2525 0.3125 0.2675 

2016 REIP 0.02 0.21 0.07  
2017 REIP 0.04 0.11 0.24  
2018 REIP 0.05 0.11 0.12  
2019 REIP 0.27 0.32 0.21  
Average REIP 0.095 0.1875 0.16 0.1475 

2016 RVI 0.23 0.37 0.21  
2017 RVI 0.12 0.12 0.37  
2018 RVI 0.21 0.16 0.3  
2019 RVI 0.39 0.36 0.37  
Average RVI 0.2375 0.2525 0.3125 0.2675 

2016 SLAVI 0.17 0.26 0.17  
2017 SLAVI 0.05 0.08 0.28  
2018 SLAVI 0.007 0.05 0.26  
2019 SLAVI 0.02 0.07 0.16  
Average SLAVI 0.06175 0.115 0.2175 0.131417 

2016 SR 0.23 0.37 0.21  
2017 SR 0.12 0.12 0.37  
2018 SR 0.21 0.16 0.3  
2019 SR 0.39 0.36 0.37  
Average SR 0.2375 0.2525 0.3125 0.2675 

2016 TTVI 0.23 0.37 0.21  
2017 TTVI 0.12 0.12 0.37  
2018 TTVI 0.21 0.16 0.3  
2019 TTVI 0.39 0.36 0.37  
Average TTVI 0.2375 0.2525 0.3125 0.2675 

2016 TVI 0.23 0.37 0.21  
2017 TVI 0.12 0.12 0.37  
2018 TVI 0.21 0.16 0.3  
2019 TVI 0.39 0.36 0.37  
Average TVI 0.2375 0.2525 0.3125 0.2675 

Green, Green reflectance; Greenness, Greenness Index; CLG, Green-band Chlorophyll Index; CLRE, 

Red-edge-band Chloropphyll Index; CTVI, Corrected transformed vegetation index; EVI, Enhanced 
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vegetation index; GEMI, Global environmental monitoring index; GNDVI, Green normalised 

difference vegetation index; MNDWI, modified normalised difference water index; MSAVI, modified 

soil adjusted vegeation index; MSAVI2, modified soil adjusted vegeation index 2; MTCI, MERIS 

terrestrail chlorophyll index; NBRI, normalised burn ratio index; NDREI1, normalised difference red 

edge index1; NDREI2, normalised difference red edge index2; NDVI, normalised difference 

vegetation index; NDWI, normalised difference water index; NDWI2, normalised difference water 

index2; NRVI, normalised ration vegetation index; REIP, red edge inflection point; RVI, ratio 

vegetation index; SLAVI, specific leaf area vegetation index; SR, simple ratio vegetation index; TTVI, 

Thiam’s transformed vegeation index; TVI, transformed vegetation index. 
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Table S3.2 Accuracy assessment for predicted liana infestation in satellite-based multispectral 

imagery using three different sets of input variables: 1) all Sentinel 2-bands, 2) Greenness Index 3) all 

Sentinel 2-bands and Greenness Index within the primary and selectively logged forests. 95%CI, 95% 

confidence intervals for accuracy; Bal. Acc., Balanced Accuracy = (sensitivity + specificity)/2; F1, F1 

score or F-measure; AUC, Area under the curve. 

Class Accuracy 95% CI Sensitivity Specificity Bal. Acc F1 AUC 

1) All Sentinel-2 bands           

 Primary       
2 classes: [0-25], [75-100]      

 0.99 0.976-1 1 0.97 0.98 0.99 0.98 

        
4 Classes: [0-25], [25-50], [50-75], [75-100]     

 0.45 0.44-0.462    0.76 

Class: L   0.56 0.78 0.67 0.3  
Class: M   0.55 0.53 0.54 0.54  
Class: H   0.32 0.87 0.6 0.42  
Class: S     0.24 0.98 0.61 0.32   

 Secondary      
2 classes: [0-25], [75-100]      

 0.84 
0.802-
0.875 1 0.82 0.91 0.61 0.91 

        
4 Classes: [0-25], [25-50], [50-75], [75-100]     

 0.35 0.34-0.361    0.7 

Class: L   0.38 0.86 0.62 0.08  
Class: M   0.59 0.51 0.55 0.41  
Class: H   0.28 0.75 0.51 0.37  
Class: S     0.2 0.96 0.58 0.29   

 
2) Greenness Index           

 Primary       
2 classes: [0-25], [75-100]      

 0.86 
0.798-
0.908 0.97 0.69 0.83 0.89 0.83 

        
4 Classes: [0-25], [25-50], [50-75], [75-100]     

 0.45 0.442-0.464    0.61 

Class: L   0.14 0.89 0.52 0.13  
Class: M   0.73 0.32 0.52 0.6  
Class: H   0.21 0.85 0.53 0.29  
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Class: S     0.1 0.99 0.55 0.16   

 

 
 
Secondary      

2 classes: [0-25], [75-100]      

 0.25 0.03-0.65 0 0.33 0.17 0 0 

        
4 Classes: [0-25], [25-50], [50-75], [75-100]     

 0.39 0.38-0.401    0.59 

Class: L   0 1 0.5 0  
Class: M   0.68 0.43 0.55 0.41  
Class: H   0.4 0.6 0.5 0.46  
Class: S     0 1 0.5 0   

3) All Sentinel-2 bands + Greenness 
Index         

 Primary       
2 classes: [0-25], [75-100]      

 0.99 
0.978-
0.996 1 0.98 0.99 0.99 0.99 

        
4 Classes: [0-25], [25-50], [50-75], [75-100]     

 0.48 0.473-0.495    0.8 

Class: L   0.61 0.79 0.7 0.32  
Class: M   0.51 0.64 0.58 0.54  
Class: H   0.43 0.84 0.64 0.5  
Class: S     0.39 0.96 0.68 0.4   

 Secondary      
2 classes: [0-25], [75-100]      

 0.88 
0.849-
0.914 0.947 0.874 0.91 0.7 0.91 

        
4 Classes: [0-25], [25-50], [50-75], [75-100]     

 0.37 0.359-0.38    0.71 

Class: L   0.36 0.86 0.61 0.08  
Class: M   0.58 0.52 0.55 0.41  
Class: H   0.32 0.75 0.53 0.41  
Class: S     0.21 0.97 0.59 0.3   
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Figure S3.2 Satellite-derived predicted mean greenness in response to airborne-derived liana 

infestation classes for a) 2016, b) 2017, c) 2018 and d) 2019. Liana infestation classes are defined as: 

Low [≤25%], Medium [26-50%], High [ 51-74%] and Severe [≥75%]. Error bars are 95% confidence 

intervals based on error in model fit as well as uncertainity derived from error in airborne-derived 

liana infestation estimates. 
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Figure S3.3 Predicted liana infestation across primary and selectively logged forests, showing the 

extent of the predictions in relation to the airborne lidar data (greyscaled). Missing values 

correspond to areas which were cloud covered. Inset shows an area with an open canopy structure 

as a result of selective logging and therefore a high coverage of severe liana infestation. 
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Figure S3.4 Difference in greenness between the primary and logged forest for imagery collected 

from 2016 to 2019. Statistically significant differences in greenness values between primary and 

logged forests are indicated with Cliff’s delta (d), as a measure of effect size, and a 2 sample Wilcox 

test. 
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Table S3.3 Change in the percentage of pixels classified as having low (≤25%) and severe (≥75%) liana 

infestation from 2016 to 2019 in the primary forest, Danum Valley.  

Year 
comparison Diff. Lower CI Upper CI p value Group % infested Tukey B. 

Change in low (≤25%) liana infestation             

2017 2016 -4.72 -11.2561 1.8158 0.2255 2016 35.4% ± 9.4 a a 

2018 2016 -0.518 -7.054 6.0175 0.9964 2017 30.9% ± 8.1 a a 

2019 2016 -1.9232 -8.4592 4.6127 0.85515 2018 35.4% ± 7.9 a a 

2018 2017 4.2017 -2.334 10.737 0.3196 2019 33.6% ± 8 a a 

2019 2017 2.7969 -3.739 9.33294 0.65617     

2019 2018 -1.4047 -7.9407 5.1312 0.9366         

          

Change in severe (≥75%) liana infestation           

2017 2016 0.997 -2.21724 4.2113 0.83726 2016 12.9% ± 1 a a 

2018 2016 3.209 -0.00508 6.4235 0.0504 2017 13.1% ± 3.6 ab a 

2019 2016 5.467 2.2534 8.682 0.0003 2018 15.4% ± 2 bc ab 

2018 2017 2.2121 -1.00214 5.426 0.2658 2019 17.3% ± 3.3 c b 

2019 2017 4.47072 1.2564 7.685 0.0033     

2019 2018 2.25857 -0.95572 5.472 0.24921         

Diff., Difference in the percentage of pixels between years; Lower CI, Lower 95% confidence interval; 

Upper CI, Upper 95% confidence interval; % infested, the percentage of pixels classified as low or 

severe liana infestation; Tukey, Tukey’s test for post-hoc analysis; B., least significant difference test 

with Bonferroni adjusted p values. Tukey and B. show significant differences between groups as 

indicated by letters. 
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Figure S3.5 Predicted greenness in response to liana infestation for each year (2016-2019) showing 

the distribution of data points. Linear lines are the same as shown in Figure 4.2. 
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Appendix 4 
4.1. Introduction 

 
An artificial neural network (ANN) is a type of machine learning inspired by the human brain, 

which, via a set of algorithms, is able to learn patterns and generalise. ANNs have considerable 

potential for supervised classifications in remote sensing (Heermann & Khazenie 1992; Foody 1997; 

Foody & Boyd 1999; Foody 2002). While a range of network types and constructions have been used, 

most common are simple layered feedforward network architecture (Foody 2000; Fine 2006). Other 

network types have also been employed, for example; Radial basis function (Chen, Cowan & Grant 

1991), Modular (Happel & Murre 1994) and Convolutional (Kalchbrenner, Grefenstette & Blunsom 

2014). However, often simple feedforward networks can achieve better classification results (Xie, Yu 

& Wilamowski 2011).  

 

4.2. Model architecture 

Such architectures can be visualised as units arranged in layers, which relate to the nature of 

the remotely sensed data and the desired classification. For example, there is usually an input layer 

with units that correspond to each discriminating variable (e.g. spectral bands in remotely sensed 

data) and an output layer with units that relate to each land cover class to be mapped (Figure S4.1). 

The number of hidden layers and units are defined subjectively based on trial runs and the models 

performance with a verification dataset. In general, the larger the network (i.e. more hidden layers 

and units) the more able the network is to recognise patterns in the training data, however at risk of 

overfitting and therefore reducing the capacity of the model to generalise. 
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Figure S4.1 Neural network architecture showing the input layer with nine variables, one hidden 

layer with four neurons and one output layer corresponding to each class to be predicted.  

 

Methods include starting with a small network and sequentially add additional hidden units 

and visualise the change in error until the point where adding an additional unit has no significant 

effect on error (Narasimha et al. 2008). Alternatively, the size of hidden layers can be achieved 

through pruning whereby a large network is trained and then units are removed while maintaining 

the networks accuracy (Watanabe & Shimizu 1993; Babaeizadeh, Smaragdis & Campbell 2016). 

Others suggest, as a rule of thumb, that the number of hidden units can be defined as: 

2

3
(#𝑖𝑛𝑝𝑢𝑡 𝑢𝑛𝑖𝑡𝑠 + #𝑜𝑢𝑡𝑝𝑢𝑡 𝑢𝑛𝑖𝑡𝑠) (see, Karsoliya 2012). 
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4.3. Model process  

In the process of training a neural network, data are fed into the neurons in the input layer. 

Each neuron performs a linear transformation by first computing the weighted sum of the input data 

then adding a bias (constant):  

𝑌 =  ∑(𝑤𝑒𝑖𝑔ℎ𝑡 ∗ 𝑖𝑛𝑝𝑢𝑡 ) + 𝑏𝑖𝑎𝑠 

The computed value (Y) is then fed into an activation function. Activation functions decide 

whether a neuron should be activated or not and then moves it to the next hidden layer where the 

process is repeated. This forward movement is known as forward propagation. Typically non-linear 

activation functions are used that allow the network to learn complex, non-linear data. Furthermore, 

non-linear activation functions allow the use of backpropagation, which means the training process 

can move back through the network and adjust weights and biases in order to decrease the error 

function (i.e. the difference between the actual output and desired output) (Che, Chiang & Che 

2011). Backpropagation using a linear activation function is not possible as the derivative of the 

function is a constant and has no relation to the input. Whereas non-linear activation functions have 

derivative functions which relate to the inputs. For example, the widely used sigmoid activation 

function, σ(𝑥) =
1

1+𝑒−𝑥 has the derivative, 
𝑑

𝑑𝑥
=

𝑒−𝑥

(1+𝑒−𝑥)2 which can be visualised (Figure S4.2). 

 

 

Figure S4.2 A sigmoid function (blue) and its derivative (orange). 
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Unlike other activation functions, the outputs of the logistic sigmoid function will be 

normalised and always within a range between 0 and 1, i.e. σ(x) ∈ (0, 1). Therefore, it can be 

particularly useful for models that want to predict probability as an output. Additionally, I used a 

resilient backpropagation with weight backtracking, algorithm=’RPROP+’, as appose to the more 

traditional (regular) backpropagation (Riedmiller & Rprop 1994). Regular backpropagation uses the 

magnitudes of the partial derivatives (gradient) to determine how much to adjust a weight value. 

However, this can result in weight values being wildly adjusted in different directions and taking a 

long time, or never being able, to find the weight with the minimum error. To overcome this, a small 

learning rate can be set to gradually change weights. This means the process is unlikely to overshoot 

the optimal value, however training will be very slow. The use of Rprop, on the other hand, does not 

use the magnitude of the gradient to determine a weight but instead uses the sign of the gradient 

and modifies the learning rate throughout the training process (Riedmiller & Rprop 1994). Via this 

approach, Rprop is often faster than regular backpropagation and doesn’t require parameters such 

as learning rate to be specified (Yu & Liu 2002).  

 

4.4. Over-fitting  

To avoid overfitting a neural network to the training data, additional arguments can be 

defined. For example, a threshold for the partial derivatives of the error function can be given as a 

stopping criteria. Therefore, the model will continue to train and find the best solution (i.e. ideal 

weight contributions from different variables) until it reaches a point where the overall error of the 

model is not reducing by more than a defined threshold. For example, a threshold set at 0.05, will 

continue to run until a change in error is less than 5%. Furthermore, by assessing the model using a 

verification data set (i.e. 20% of the training data), the accuracy can be assessed based on data not 

used to train the model. This verification dataset is also completely independent to the final 

validation data set.  

 

4.5. Output from a neural network 

In this thesis, the output from the neural network classification was made up of two classes, 

either ‘liana’ or ‘tree’. For a single pixel an output (membership) value is given for each class and, as a 

sigmoid activation function is used, the combined value for both classes will have a value of 1. In a 

case where a pixel may correspond to 50% liana leaves and 50% tree leaves the spectral reflectance 

is mixed and will not strongly relate to either class, therefore a membership value will be given to 
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each class. The output class with the greatest membership value can be chosen as the predicted 

class, or, a soft classification can be applied which uses the membership value as the final output. 

Therefore, the membership value for the liana class can be view as a proportion of liana infestation 

from 0 to 100%. For example, in Table S4.1, membership values are produced for each pixel. For pixel 

number four the model has strongly predicted the output as a tree. However, in pixel number five, 

the output is not clearly a liana or tree in which case a liana infestation value of 52% can be derived 

from a soft classification.  

 

 Table S4.1 Example of neural network output conducting a hard or soft classification 

Pixel Tree Liana Hard Soft  

1 0.4 0.6 liana 60% 

2 0.02 0.98 liana 98% 

3 0.1 0.9 liana 90% 

4 1 0 tree 0% 

5 0.48 0.52 liana 52% 

6 0.3 0.7 liana 70% 

7 0.8 0.2 tree 20% 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


