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Abstract

Stochastic epidemic models can offer a vitally important public health tool for

understanding and controlling disease progression. However, these models are of

little practical use if they are not supported by data or are not applicable to efficient

parameter inference methods. The peculiarities of the epidemic setting, where data

are not independent and epidemic processes are rarely fully observed, complicate both

model assessment and parameter inference for stochastic epidemic models. Methods

for model assessment are not well-established and methods for inference, although

more established, still remain inefficient for large-scale outbreaks.

This thesis is concerned with the development of methods for both model assessment

and inference for stochastic epidemic models. The methods are illustrated on

continuous time SIR (susceptible → infective → removed) models and it is assumed

that the available data consist only of the removal times of infected individuals with

their infection times being unobserved.

First, two novel model assessment tools are developed, based on the posterior

predictive distribution of removal curves, namely the distance method and the

position-time method. Both methods rely on the general idea of posterior predictive

checking, where a model’s fit is assessed by checking whether replicated data,

generated under the model, look similar to the observed data. The distance method

conducts the assessment by calculating distances between removal curves whereas the

iv



position-time method conducts the assessment pointwise, at a sequence of suitably

chosen time points. Both methods provide visual and quantitative outputs with

meaningful interpretation. The performance of the methods benefits from the

development and application of a time shifting intervention, that horizontally (time)

shifts each replicated removal curve by an appropriately chosen constant, so that the

stages of each replicated curve better correspond to those of the observed. Extensive

simulation studies suggest that both the distance and the position-time methods can

successfully assess the infectious period distribution assumption and the infection rate

form assumption of stochastic epidemic models.

Then, the focus is placed on developing methods to assess the population mixing

assumption of stochastic epidemic models, in the case that household information

is available. To this end, a classical hypothesis test is developed for which the null

hypothesis is that individuals mix in the population homogeneously. The test is

based on household labels of individuals and relies on the idea that, in the presence

of household effect, events of individuals belonging to the same household should

occur closer in time rather than further apart. The key behind developing the test is

that, under the null hypothesis of homogeneous mixing, the discrete random vector

of household labels has a known sampling distribution that does not dependent on

any model parameters. The test carries an ordinal interpretation, where the lower

the observed value of the test statistic and its corresponding p-value are, the more

the evidence against the null hypothesis and in favour of the hypothesis that there

is a household effect in the spread of the outbreak. The test exhibits excellent

performance when applied to both simulated data and to a widely studied real-life

epidemic dataset.

In the remainder of the thesis, attention is turned from model assessment to Bayesian

inference. The relevant aim is to develop Markov chain Monte Carlo (MCMC)

algorithms that can conduct more efficient updating of the unobserved infection
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times, than the currently existing algorithms. Initially, the problem of updating

one infection time at a time is considered and a new 1-dimensional update algorithm

is developed, namely the IS-1d MCMC algorithm. The main feature of the algorithm

is the use of individual-specific parameters in the proposal distributions for the

infection times. These parameters allow the proposal distributions to produce

patterns of nonhomogeneity (among individuals) which are in some cases present

in the target distribution. The IS-1d MCMC algorithm performs favourably when

compared to currently existing 1-dimensional update algorithms. Subsequently, the

more interesting problem of updating many infection times at a time is considered

and a novel block update MCMC algorithm is developed, referred to as the DIS-

block MCMC algorithm. Similar to the IS-1d algorithm, the proposal distributions

of the DIS-block algorithm also have individual-specific parameters but they also

have an additional parameter that induces dependency on the current state and

makes the algorithm perform a dependent in nature exploration of the target

space. The algorithm also benefits from another two features, parameter reduction

and an automated method for optimally specifying the number of infection times

to update. Simulation studies suggest that the DIS-block algorithm can offer a

substantial improvement in mixing compared to the current optimally performing

block update algorithm; for the considered datasets of the simulation study, the DIS-

block algorithm is from 1.41 up to 6.57 times more efficient than its comparator, and

3.35 times on average.
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Chapter 1

Introduction

1.1 Thesis motivation and aims

Stochastic epidemic models can offer a crucially important public health tool for

understanding and controlling disease progression. More specifically, such models

can be used to evaluate vaccination strategies (see e.g. Yuan et al. (2015); Nguyen

and Carlson (2016)) or assess the effectiveness of proposed control measures (see

e.g. Keeling (2001); Adrakey et al. (2017)). Also, it is typical that estimates of the

parameters of these models correspond to estimates of quantities of epidemiological

interest, such as the basic reproduction number, knowledge of which can determine if

there is a positive probability for a major outbreak to occur. The great importance

of these models is perhaps best highlighted by their role in the profound 2020 global

COVID-19 pandemic, where the results of such epidemiological modelling have been

used to estimate the basic reproduction number (see e.g. Kucharski et al. (2020b)),

assess the effectiveness of disease-control control measures (see e.g. Kucharski et al.

(2020a)) and inform policy making in the UK and other countries (see Ferguson et al.

(2020)).

Nonetheless, these models have little practical use unless they allow efficient
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estimation of their parameters and they provide adequate fit to real-life epidemic

outbreaks. Unfortunately, neither parameter inference nor model assessment for

stochastic epidemic models is straightforward. This is due to the fact that the

epidemic setting is endowed with inherent difficulties, with epidemic data not being

independent and epidemic processes being partially observed and realized once.

The biggest complication in parameter inference arises from the fact that epidemic

processes are usually partially observed. It is typical in practice that infection times

are not observed and that instead only case detection times are observed. This

is almost always the case for human diseases, when the appearance of symptoms

(case detection) is usually the first sign that an individual has been infected. Such

type of partial observation typically leads to intractable model likelihoods which in

turn handicap the ability to conduct inference for the model parameters of interest

using conventional methods, such as maximum likelihood estimation. A way to

overcome this problem is via data augmentation in a Bayesian framework, where

the unobserved data are treated as additional unknown variables and inference is

conducted by targeting the joint posterior distribution of model parameters and

unobserved data, using Markov chain Monte Carlo (MCMC) methods (O’Neill and

Roberts, 1999; Gibson and Renshaw, 1998). The challenge in the implementation of

such methods comes from the typically high dimension of the space of unobserved

data, which makes the inference procedure inefficient and affects its practical utility.

Various MCMC algorithms have been employed to address these issues, making use of

different ideas such as parameter reduction and non-centered parameterizations (see

section 1.4.2 and the references therein). Although some of these MCMC algorithms

have managed to mitigate the effect of the problem (see e.g. Neal and Roberts

(2005); Kypraios (2007); Xiang and Neal (2014)), the fundamental issues of high-

dimensionality still persist and more efficient algorithms are needed.

Even if parameter inference can be achieved for a model, moving then to assess the
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adequacy of its fit to the data in question is a challenging task. For example, since

epidemic data are not independent, simple and standard measures of model fit that

are constructed to suit independent data settings (such as chi-squared goodness-of-fit

statistics) are not directly usable. Also, the fact that epidemic processes are realized

once, means that there is a lack of replication and that the variability of a fitted

model can not be assessed. Due to such challenges, the area of model assessment of

stochastic epidemic models is somewhat underdeveloped and there is significant scope

and need for innovation (O’Neill, 2010; Gibson et al., 2018).

This thesis is concerned with the development of methods for both model assess-

ment and inference, for stochastic epidemic models. Specifically, regarding model

assessment, the aim is to develop new non-standard measures of model fit, that will

be suited to the epidemic setting. As far as inference, the aim is to develop novel

MCMC algorithms that can better address the issues of high-dimensionality, related

to the unobserved data, and allow more efficient inference for the model parameters.

The intent, is that the development of all methods is driven by practical utility and

by acknowledging the peculiarities of the epidemic setting.

1.2 Thesis layout

This thesis is structured as follows. The remainder of chapter 1 collects the

background related to the purposes of this thesis and reviews the relevant literature.

Chapter 2 is concerned with the development of two model assessment measures,

based on the posterior predictive distribution of removal curves. The development

procedure includes highlighting the peculiarities of the epidemic setting, describing

a procedure for distinguishing between minor and major outbreak realizations and

introducing a time shifting intervention to alleviate the undesired noise of simulated

removal curves. The performance of the model assessment measures, in assessing the
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infectious period, the infection rate form and the population mixing assumptions of

SIR models, is examined via thorough simulation studies.

Chapter 3 develops a classical hypothesis test for assessing the population mixing

assumption of epidemic models. The performance of the test is examined using an

extensive simulation study and by applying it to a widely studied real-life dataset.

Chapter 4 is concerned with the development of MCMC algorithms for more efficient

updating of unobserved data. The chapter consists of two main sections, section 4.2,

which considers MCMC algorithms based on updating one unobserved data point at

a time (in a 1-dimensional update step), and section 4.3, which considers MCMC

algorithms based on updating many unobserved data points at a time (in a block

update step). In both these sections, the layout is similar, with the development

process being guided by acknowledging the limitations of existing algorithms, and

the performance of the developed algorithms being compared to the existing ones via

simulation studies.

Finally, chapter 5 concludes by summarizing the work of this thesis, discussing its

general limitations and highlighting its main contribution.

1.3 Background

This section collects the background that is relevant to the purposes of this thesis.

1.3.1 Bayesian inference

This section describes the fundamentals of Bayesian inference. The literature on the

topic is enormous and the purpose here is simply to outline the key aspects, similar
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to Held et al. (2019, chapter 9). For a more detailed and rigorous approach the reader

is directed to more comprehensive references such as Robert (2007) or Lee (2012).

1.3.1.1 The Bayesian approach

The Bayesian approach to statistical inference goes as follows. Suppose that some

data have been observed, denoted as y, and a sampling model π(y | θ) has been

assumed for that data, where π(y | θ) is a probability density function (p.d.f.),

referred to as the sampling density of y (if y is continuous), or, a probability mass

function (p.m.f.), referred to as the sampling mass of y (if y is discrete), with

parameter θ; both y and θ are vectors in general. The inferential objective is to

find plausible values for the model parameter given the observed data, i.e. to learn

about θ given y. A fundamental feature of the Bayesian approach is that all unknown

quantities are considered random and the uncertainty about them is described by

probability distributions. Therefore, all Bayesian inference relies on the conditional

distribution of θ given y, which is known as the posterior distribution of θ given y.

The p.d.f. (if θ is continuous) or p.m.f. (if θ is discrete) of θ given y, denoted as

π(θ | y) and referred to as the posterior density (if θ is continuous) or the posterior

mass (if θ is discrete) of θ given y, is given according to Bayes’ theorem by

π(θ | y) =
π(y | θ)π(θ)

π(y)
∝ π(y | θ)π(θ). (1.1)

In the expression (1.1) above, π(θ) denotes the p.d.f. (if θ is continuous) or p.m.f. (if

θ is discrete) of the prior distribution of θ and it is known as the prior density (if θ

is continuous) or the prior mass (if θ is discrete) of θ. The term π(y | θ) is as above

the sampling density (if y is continuous) or the sampling mass (if y is discrete) of y

but is now regarded as a function of θ, therefore it is the likelihood of θ given the

observed data y. Finally, π(y) is a normalizing constant (i.e. does not depend on θ)

that ensures that π(θ | y) integrates (if θ is continuous) or sums (if θ is discrete) to

1, so that the posterior distribution is a probability distribution, and it is obtained
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by π(y) =
∫
π(y | θ)π(θ)dθ (if θ is continuous) or π(y) =

∑
π(y | θ)π(θ) (if θ

is discrete), where the integration (or summation) is over the set of all the possible

values of θ.

The prior distribution represents one’s uncertainty about the parameters before

observing the data while the likelihood represents the information from the observed

data. Therefore, as evident from equation (1.1) above, the posterior distribution

represents one’s uncertainty about the parameters after combining the information

from the prior distribution with the information from the observed data.

For ease of illustration, and since this thesis is mainly concerned with continuous

data and model parameters, any results presented in the remainder of section 1.3.1

and in sections 1.3.2 and 1.3.3, are concerned with the continuous case, i.e. data,

model parameters and any other random quantities are considered to take values in

continuous spaces; where relevant the corresponding results for the discrete case can

be obtained by replacing integration with summation.

1.3.1.2 Prior distributions

Since the prior distribution represents one’s initial belief about θ, before seeing

any data, it is inherently subjective and might be different for different users; in

fact the choice of the prior distribution has drawn considerable attention in the

Bayesian community (see e.g. Bernardo and Smith (1994)). In practice though, prior

distributions can broadly be divided into two types, informative and uninformative.

Informative prior distributions are typically used in situations where one may believe

that certain values of θ are more plausible than others. Such belief might be based on

information from previous studies, expert opinion or biological factors. For example, if

θ represented the mean time that an individual remained infectious from measles and

previous information on measles suggested a set of typical values of θ, π(θ) could be

assigned to reflect that information accordingly. On the contrary, uninformative prior
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distributions are typically used in situations where no information about θ is available

before observing the data. For instance, if θ represented a proportion, a uniform

prior distribution on [0, 1] (i.e. any value of θ being equally likely) would reflect one’s

lack of any information about θ prior to observing any data. Uninformative prior

distributions are also referred to as objective prior distributions in the sense that,

since they contain very little information about θ, they yield posterior distributions

for which the information about θ is driven almost entirely by the information in the

observed data rather than subjective prior beliefs.

1.3.1.3 Purpose and practical complications

Let θ|y be a random vector having the posterior distribution. Just about any aspect

of the posterior distribution that may be of interest can be written as an integral of

the form

E(g(θ) | y) =

∫
g(θ)π(θ | y)dθ, (1.2)

for some suitably chosen R-valued function g. For example, considering a 1-

dimensional θ, using g(θ) = θ and g(θ) = θ2 gives the mean and the variance of the

posterior distribution. Also, using g = 1A, where 1A denotes the indicator function of

the event A, gives the probability of any desired event A with respect to the posterior

distribution. That is, a probability of the type P (θ ∈ A | y); for instance, considering

a 2-dimensional θ = (θ1, θ2), A could be such that A = {a < θ1 < b} or A = {θ1 < θ2}

or A = {a < θ1
θ2
< b}, for some a, b ∈ R. Therefore, in most cases, the main purpose

of Bayesian inference comes down to calculating integrals as such of equation (1.2).

Although in theory the above task might appear rather simple, several complications

arise in practice. The first is that, as mentioned in section 1.3.1.1 above, the

normalizing constant π(y), required to know the posterior density π(θ | y), is

obtained by the integral π(y) =
∫
π(y | θ)π(θ)dθ, where the region of integration is

the set of all possible values of the model parameter θ. This integral is quite often
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analytically intractable, especially in problems where θ is high-dimensional, making

it impossible to derive an analytic expression for π(θ | y) and in turn impossible

to perform the integration of equation (1.2). The second complication is that the

likelihood π(y | θ), also needed to know π(θ | y) and make the integration of equation

(1.2) possible, might also be intractable (see section 1.3.5.2 below for an example).

A third problem is that, even in the cases that an explicit expression for π(θ | y) is

available, this in itself might not be that useful as integrations of the type of equation

(1.2) are still extremely challenging to perform, complicated by the form of π(θ | y)

or g(θ) or both.

1.3.2 Markov chain Monte Carlo methods

The present section describes the fundamentals of MCMC methods and reviews some

well known MCMC algorithms most relevant to the purposes of this thesis. As for

the material on Bayesian inference, the literature is vast and the purpose is simply

to explain the key concepts. Hence the approach taken is an intuitive one, similar to

Hoff (2009) and Held et al. (2019, chapter 9). For a more rigorous approach one is

referred to more comprehensive textbooks such as Gilks et al. (1996) or Robert and

Casella (2004).

1.3.2.1 Motivation

Let π(x) be a p.d.f., corresponding to a random vector x ∈ X , and suppose that

interest is in evaluating integrals of the form

E(g(x)) =

∫
g(x)π(x)dx, (1.3)

where g is some R-valued function, but analytic calculations are not possible. This

is exactly the problem that arises in Bayesian inference, described in section 1.3.1.3,

just formulated in a more general setting; the only difference being that the posterior

density π(θ | y) is replaced by a general p.d.f. π(x). Suppose for a while that one was
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able to directly and independently sample from π(x). Then, given an independent and

identically distributed (i.i.d.) sample, {x(1)
MC,x

(2)
MC, . . . ,x

(S)
MC}, from π(x), the strong

law of large numbers (SLLN) would ensure that for any integrable R-valued function

g, the sample mean of g would converge almost surely to the expected value of g

with respect to π(x), i.e. 1
S

∑S
s=1 g(x

(s)
MCMC)

a.s.→ E(g(x)) =
∫
g(x)π(x)dx, as S →∞,

provided that E(g(x)) exists. Therefore, for large enough sample size S, one would

be able to approximate, arbitrarily exactly, the required integral as

E(g(x)) =

∫
g(x)π(x)dx ≈ 1

S

S∑
s=1

g(x
(s)
MC). (1.4)

Approximation (1.4) above is referred to as Monte Carlo (MC) approximation and

is considered the ‘gold standard’ of this type of sample-based approximations in the

sense that knowledge about π(x) is represented by the most informative type of

samples, an i.i.d. sample.

Unfortunately, in most practical cases, direct and independent sampling from π(x) is

not possible and this approximation cannot be performed. MCMC methods provide

an alternative way for sampling from π(x) and approximating integrals as the above.

1.3.2.2 Overview

The idea of MCMC methods dates back to 1953 and originated from the particle

Physics literature and the work of Metropolis et al. (1953). It was later generalized

in a statistical context by Hastings (1970). Nonetheless it was not until the work

of Gelfand and Smith (1990) that the statistical community became aware of the

potential of MCMC methods for Bayesian inference. Since then, the use of MCMC

methods for applied statistical modelling has increased rapidly and has revolutionized

the way statistical models are fitted and in the process, dramatically revised the scope

of models which can be entertained.
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MCMC methods are a collection of computational techniques (algorithms) for

sampling from a non-normalized p.d.f. π(x), typically referred to as the target density.

More precisely, if π(x) is a p.d.f. known up to proportionality, corresponding to

a random vector x ∈ X , MCMC methods provide a way of obtaining a sample

{x(1)
MCMC,x

(2)
MCMC, . . . ,x

(S)
MCMC} from the target density π(x). The main idea behind

MCMC methods is based on ergodic Markov chain theory, and specifically on the fact

that if a discrete-time Markov chain is ergodic (i.e. satisfies some desirable properties

from an asymptotic standpoint; see e.g. Gilks et al. (1996, chapter 4) for details),

it then converges in distribution to a unique probability distribution, known as its

stationary distribution. MCMC methods utilize this fact as follows. Given a target

density π(x), corresponding to a random vector x ∈ X , they construct an ergodic

discrete-time Markov chain having as state space X and as stationary distribution the

distribution associated with the target density π(x). If this chain is then simulated,

and run long enough so that convergence to the stationary distribution can be

assumed, the post-convergence chain’s sample path {x(1)
MCMC,x

(2)
MCMC, . . . ,x

(S)
MCMC} is,

at least approximately, a sample from the target density π(x). In addition, and

most crucially, consistency of ergodic averages (see Gilks et al. (1996, theorem 4.3))

ensures that, although the sample {x(1)
MCMC,x

(2)
MCMC, . . . ,x

(S)
MCMC} is by construction

not independent (Markov property; each sampled value x
(s+1)
MCMC depends on the

previously sampled value x
(s)
MCMC), it can still be used as in the MC approximation

case and perform the desired integral approximations. More specifically, it is true that

for any integrable R-valued function g, the sample mean of g converges almost surely

to the expected value of g with respect to π(x), i.e. 1
S

∑S
s=1 g(x

(s)
MCMC)

a.s.→ E(g(x)) =∫
g(x)π(x)dx, as S →∞, provided that E(g(x)) exists. Therefore, for large enough

sample size S, it is true that

E(g(x)) =

∫
g(x)π(x)dx ≈ 1

S

S∑
s=1

g(x
(s)
MCMC). (1.5)
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Approximation (1.5) above is referred to as MCMC approximation and it is the

cornerstone of MCMC methods.

Before proceeding to the next section, a pause is taken to acknowledge how MCMC

methods can solve the practical complications of Bayesian inference mentioned earlier

in section 1.3.1.3. In a Bayesian context, the target density of interest π(x) is the

posterior density π(θ | y). The first complication, namely the calculation of the

normalizing constant π(y) in Bayes’ theorem (see equation (1.1)), is avoided since

MCMC methods only require knowledge of the target density up to proportionality.

In other words, to implement MCMC methods one only needs to be able to compute

π(y | θ)π(θ) and not π(y). The second complication, of an intractable likelihood, can

be addressed by introducing additional variables in a way that the resulting likelihood

becomes tractable. Then MCMC methods can be used to sample from the joint

posterior distribution of model parameters and additional variables. It is often the

case that such additional variables represent missing data, which are used to augment

the observed data, and thus such an approach is called data augmentation and was

originally developed by Tanner and Wong (1987); see sections 1.3.5.2 and 1.3.5.3 and

relevant parts of sections 1.3.5.5 to 1.3.5.7 for examples on how data augmentation

is employed in settings most relevant to the purposes of this thesis. The third

complication, the calculation of integrals of the type of equation (1.2), is dealt

by the MCMC approximation (approximation (1.5)), as explained in the preceding

paragraph.

1.3.2.3 MCMC diagnostics

As in section 1.3.2.2 above, let π(x), corresponding to a random vector x ∈ X , be the

target density of interest. As already discussed in sections 1.3.2.1 and 1.3.2.2, the main

task of MCMC methods (especially in the context of Bayesian inference) is to obtain

a sample {x(1)
MCMC,x

(2)
MCMC, . . . ,x

(S)
MCMC} from π(x) (by constructing and simulating

an ergodic discrete-time Markov chain with state space X and stationary distribution
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π(x)) and use it to calculate integrals as such of equation (1.3) using approximation

(1.5). Although the theory (see section 1.3.2.2) ensures that eventually, as S → ∞,

the chain will converge to its stationary distribution π(x) and in turn approximation

(1.5) will be exact, in practice the chain cannot be possibly run forever and the quality

of the obtained MCMC sample, in relation to performing the aforementioned task, is

not guaranteed. Therefore, the standard practice is to use diagnostic tools in order to

assess the quality of an obtained MCMC sample. Specifically, there are two properties

(not unrelated to each other) of an MCMC sample (chain) that determine its quality

and require assessment, referred to as stationarity and mixing.

Stationarity A chain that has reached stationarity is a chain that has converged to

its stationary distribution. In practice checking for stationarity translates to checking

if, from a chain iteration and onwards, the chain values can be assumed to be sampled

from π(x). To this end, it is typical for a user to discard the first SB values of the

chain, in the so-called burn-in period and start recording values from the (SB + 1)th

iteration; this is done as an attempt to allow the chain to be run long enough so

that it ‘forgets’ its initial state and settles to stationarity. However, choosing the

exact value of SB, and ultimately concluding that a chain has reached stationarity,

is fraught with epistemological problems. In general one cannot practically know for

sure if the chain has indeed converged. Nevertheless, there could be evidence that the

chain has not converged and thus one should at least investigate this latter possibility,

i.e. check for evidence of non-stationarity.

The most common diagnostic for non-stationarity is the visual inspection of MCMC

trace plots, that is, plots of some scalar function g of the MCMC sample against chain

iteration (see e.g. Gilks et al. (1996) or Robert and Casella (2004)). For example,

if for a given function g, chains that are initiated from different values of the state

space produce materially different trace plots, then convergence cannot be assumed.

Similarly, if for a given burn-in length SB, and some function g, the trace plot is
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evidently different along successive chain iterations (e.g. different for iterations 1

to 5000 compared to iterations 5001 to 10000) then again convergence cannot be

assumed and the burn-in needs to be run for longer. All results reported in this

thesis are based on chains that appear to have converged.

Mixing To understand the concept of chain mixing it might be helpful to think of

the sampled sequence of chain values as the trajectory of a particle moving around the

state space; a good mixing chain is one which the particle can quickly move between

different regions of the space and a poor mixing chain is one which the particle gets

stuck in some regions or moves very slowly. For example, a MC sampler for π(x),

that is a sampler that produces i.i.d. samples from π(x), has perfect mixing as

there is no correlation between the sampled values and thus it is possible to jump

between any two different regions of the space in one step. This is not the case for

an MCMC sampler, where by construction there is dependence among the simulated

chain values. Even if the chain starts at stationarity, high correlation among the

sampled values can cause the chain to have poor mixing as it will struggle to move

around the state space. In practice, the correlation among the sampled values can be

reduced by storing only every Lth iteration of the chain, while discarding the rest, in

a procedure called thinning. Algorithms with good mixing properties are considered

efficient, in the sense that they will require fewer number of iterations to adequately

explore the entirety of the target distribution. The above ideas are made more formal

by introducing measures that quantify and assess an algorithm’s efficiency.

Suppose that interest is in evaluating E(g(x)) =
∫
g(x)π(x)dx, for some R-valued

function g. As already explained in section 1.3.2.2, the task of MCMC methods is to

obtain a sample {x(1)
MCMC,x

(2)
MCMC, . . . ,x

(S)
MCMC} from π(x) and use 1

S

∑S
s=1 g(x

(s)
MCMC)

to approximate E(g(x)) =
∫
g(x)π(x)dx (MCMC approximation (1.5)). To this end,

the efficiency of an MCMC algorithm can be quantified by the precision of the above

approximation, that is, by the variance of f̂MCMC := 1
S

∑S
s=1 g(x

(s)
MCMC) regarded as
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an estimator of E(g(x)) =
∫
g(x)π(x)dx. Assuming that the sampled chain is in

stationarity, a few lines of algebra (see e.g. Kypraios (2007, section 1.10)) yield that

var(f̂MCMC) = var(f̂MC)

(
1 + 2

S−1∑
k=1

(
1− k

S

)
ρk

)
, (1.6)

where ρk = corr
(
g(x

(1)
MCMC), g(x

(1+k)
MCMC)

)
is the autocorrelation of the Markov chain at

lag-k and var(f̂MC) = var(g(x))
S

is the variance of f̂MC := 1
S

∑S
s=1 g(x

(s)
MC), the estimator

of E(g(x)) =
∫
g(x)π(x)dx based on the ‘gold-standard’ MC approximation (1.4),

with associated i.i.d. sample {x(1)
MC,x

(2)
MC, . . . ,x

(S)
MC}. Equation (1.6) reveals that the

variance of f̂MCMC is equal to the variance of f̂MC plus a generally positive term that

depends on the autocorrelation among the sampled values of the Markov chain. This

implies that the higher the autocorrelation in the chain, the larger the variance of

f̂MCMC and the less precise the MCMC approximation is; notice that quantifying

the efficiency of an MCMC algorithm via the variance of f̂MCMC is in line with

the intuitive description of algorithm efficiency with respect to mixing, given in the

paragraph above, in the sense that a chain with high autocorrelation not only yields

large variance for f̂MCMC but also has poor mixing.

In practice, to measure the amount of autocorrelation there is in the chain one can

estimate the autocorrelations at lag-k, ρk, by calculating the corresponding sample

autocorrelations at lag-k, denoted as ρ̂k. Typically this information is then presented

by a plot, referred to as an autocorrelation function (ACF) plot, of ρ̂k against k.

Another way to assess how much autocorrelation there is in the chain, is by the

effective sample size of an MCMC chain, which following Robert and Casella (2004)

and Gelman et al. (2013), is defined as Seff = S var(f̂MC)

var(f̂MCMC)
so that it is interpreted as

the number of i.i.d. MC sampled values required to give the same precision as the

MCMC sample in question. From equation (1.6), it can be seen that Seff = S
τ
, where

τ = 1 + 2
∑S−1

k=1

(
1− k

S

)
ρk, and in practice Seff can be estimated as Ŝeff = S

τ̂
, where τ̂
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is an estimate of τ based on the obtained MCMC sample (see Gelman et al. (2013,

section 11.5) for details on how τ̂ is calculated).

1.3.2.4 Algorithms

Recall from section 1.3.2.2 that, given a target density π(x), corresponding to a

random vector x ∈ X , the purpose of an MCMC algorithm is to construct an ergodic

discrete-time Markov chain having as state space X and as stationary distribution

the distribution associated with the target density π(x). In general, having chosen an

initial value for the chain, say x(1), an MCMC algorithm is defined by specifying the

mechanism with which the Markov chain transitions to the next state x(s+1), given

its current state x(s), i.e. an MCMC algorithm is defined iteratively by specifying

how x(s+1) is generated from x(s). The only requirement is that this is done is such

a way that the constructed Markov chain is ergodic and has the desired stationary

distribution. The two most commonly used MCMC algorithms, also the MCMC

algorithms used in this thesis, are the Gibbs sampler and the Metropolis-Hastings

(MH) algorithm, which are described right below.

Gibbs sampler

Idea and procedure Suppose that X is such that X = X1 × X2 × . . . × Xn
so that x ∈ X is decomposed into n components as x = (x1, x2, . . . , xn), xk ∈ Xk,

k = 1, 2, . . . , n. In the simplest of cases each component xk is 1-dimensional but in

general xk might itself be multidimensional. The idea behind Gibbs sampling requires

that one is able to sample from the full conditional distribution of each component

xk, k = 1, 2, . . . , n, that is, the conditional distribution of xk given the values of

all the other components. Let π(xk | x1, x2, . . . xk−1, xk+1, . . . , xn) denote the p.d.f.

associated with the full conditional distribution of xk, k = 1, 2, . . . , n. The Gibbs

sampler iteratively generates the next state, x(s+1), given the current state, x(s),

according to Algorithm 1.
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Algorithm 1 Gibbs sampler

1. Suppose the current state is x(s) = (x
(s)
1 , x

(s)
2 , . . . , x

(s)
n )

2. Sample x
(s+1)
1 ∼ π(x1 | x(s)

2 , x
(s)
3 . . . , x

(s)
n )

3. Sample x
(s+1)
2 ∼ π(x2 | x(s+1)

1 , x
(s)
3 . . . , x

(s)
n )

...

4.

5. Sample x
(s+1)
n ∼ π(xn | x(s+1)

1 , x
(s+1)
2 . . . , x

(s+1)
n−1 )

6. Set the next state as x(s+1) = (x
(s+1)
1 , x

(s+1)
2 , . . . , x

(s+1)
n ).

Why it works The intuitive explanation of why the Gibbs sampler constructs

Markov chains that have the desired stationary distribution π(x) = π(x1, x2, . . . , xn),

is based on the fact that knowledge of the conditional distributions is enough to

determine a joint distribution (Casella and George, 1992). To see this more clearly

consider the case that x = (x1, x2) is 2-dimensional and the desired stationary

distribution is π(x) = π(x1, x2). Suppose that (x
(s)
1 , x

(s)
2 ) is sampled from π(x1, x2).

To ‘convince’ ourselves that π(x1, x2) is indeed the stationary distribution of the

chain, (x
(s+1)
1 , x

(s+1)
2 ) must also be sampled from π(x1, x2). Since (x

(s)
1 , x

(s)
2 ) is a

value sampled from π(x1, x2), the joint distribution of (x1, x2), x
(s)
2 can be seen as

a value sampled from π(x2), the marginal distribution of x2. The Gibbs sampler

(see Algorithm 1) samples x
(s+1)
1 from π(x1 | x(s)

2 ), the full conditional distribution

of x1. Using the fact that π(x1, x2) can be expressed as π(x1, x2) = π(x1 | x2)π(x2),

the pair (x
(s+1)
1 , x

(s)
2 ) can be seen as a value sampled from π(x1, x2). In turn, x

(s+1)
1

can be seen as a sample from π(x1), the marginal distribution of x1. The Gibbs

sampler (see Algorithm 1) proceeds to sample x
(s+1)
2 from π(x2 | x(s+1)

1 ), the full

conditional distribution of x2. The fact that π(x1, x2) can also be expressed as

π(x1, x2) = π(x2 | x1)π(x1) implies that the pair (x
(s+1)
1 , x

(s+1)
2 ) can indeed be seen

as a value sampled from π(x1, x2). For a more rigorous treatment one is referred to
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the relevant ergodic results regarding the Gibbs sampler (see e.g. Robert and Casella

(2004, chapter 10)).

Metropolis-Hastings algorithm

Idea and procedure The idea of the MH algorithm involves a proposal

distribution according to which candidate moves are proposed. This proposal

distribution generally depends on the current state (although this is not necessary;

see the one after the next paragraph) and can be chosen arbitrarily as long as the

constructed Markov chain is ergodic and has the desired stationary distribution. More

specifically, the MH algorithm works as follows. Given a current state x(s), the

algorithm proposes a candidate next value x∗ from a proposal density q(x | x(s)).

Then, with probability 1 ∧ r, where r = π(x∗)

π(x(s))
× q(x(s)|x∗)

q(x∗|x(s))
is the acceptance ratio

and where a ∧ b denotes the minimum of a and b, x∗ is accepted and the next state

becomes x(s+1) = x∗, otherwise x∗ is rejected and x(s+1) = x(s), i.e. the chain does

not move. Algorithm 2 collects the steps of the above procedure.

Algorithm 2 Metropolis-Hastings algorithm

1. Suppose the current state is x(s)

2. Generate x∗ ∼ q(x | x(s))

3. Compute the acceptance ratio r = π(x∗)

π(x(s))
× q(x(s)|x∗)

q(x∗|x(s))

4. Set the next state as x(s+1) = x∗ with probability 1 ∧ r; otherwise set the next
state as x(s+1) = x(s).

Why it works An intuition on why the MH algorithm targets the density π(x)

as desired can be gauged from the expression of the acceptance ratio r = π(x∗)

π(x(s))
×

q(x(s)|x∗)
q(x∗|x(s))

. The first factor in the expression of r, namely the posterior ratio π(x∗)

π(x(s))
,

dictates that the more probable a proposed value is compared to the current value,
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with respect to π(x), the higher the probability of acceptance; therefore the sampler

explores the desired regions of the state space. The second factor, namely the proposal

ratio q(x(s)|x∗)
q(x∗|x(s))

, can be seen as a correction factor adjusting for the fact that, according

to the proposal distribution, some values might be more likely to be proposed than

others. Just like in the case of the Gibbs sampler, one is referred to the relevant

literature for a more rigorous description of the ergodic properties of the MH algorithm

(see e.g. Robert and Casella (2004, chapter 7)).

Different versions of the Metropolis Hastings algorithm Different forms

of proposal distributions lead to different versions of the MH algorithm. For example,

the Metropolis algorithm is a special case of the MH algorithm for which the proposal

distribution is symmetric, that is, the proposal distribution is such that q(x∗ | x(s)) =

q(x(s) | x∗) for all x(s) and x∗. For the Metropolis algorithm the acceptance ratio

reduces to r = π(x∗)

π(x(s))
. Another example is when the proposal distribution does not

depend on the current value, in which case q(x∗ | x(s)) = q(x∗) for all x(s) and x∗,

and the acceptance ratio is given by r = π(x∗)

π(x(s))
× q(x(s))

q(x∗)
. This algorithm is called the

independent sampler or the independence Metropolis algorithm.

Dependent and independent proposal distributions Although in principle

the proposal distribution can be chosen arbitrarily, only subject to satisfying the

required ergodic properties, in practice the specific choice of the proposal distribution

will determine chain mixing and algorithm efficiency. The task of choosing a good

proposal distribution (i.e. a proposal distribution that produces a good mixing chain

and an efficient algorithm) is problem-specific and not always a straightforward task;

in some instances designing a good proposal distribution is somewhat of an art form.

Nonetheless, there are some generally desirable features, that a proposal distribution

should have, which help guide this choice. These features are different for the case

that the proposal distribution depends on the current state (as it is for the general

MH algorithm and the Metropolis algorithm) and for the case that it does not (as it is
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for the independence Metropolis algorithm). To simplify wording, for the remainder

of this thesis, the former type of proposal distributions are referred to as dependent

proposals and the latter as independent proposals.

Dependent proposals typically work by centering themselves around the current value

x(s) and proposing moves around it. The simplest example is a Normal distribution,

N(x(s), σ2), with mean x(s) and some variance σ2. As explained in Gilks et al. (1996),

a dependent proposal should be designed so that the proposed steps are neither too

small (a proposal distribution generating too small steps will typically have a high

acceptance proportion but will nevertheless mix slowly as the chain will only transition

between nearby states), nor too large (a proposal distribution generating too large

steps will frequently get stuck in one location as it will often propose moves from

the body to the tails of the target density, which will typically be rejected). To

see this more clearly, consider the example of the Metropolis algorithm, where the

acceptance ratio is given by r = π(x∗)

π(x(s))
. If the step size is too small, i.e. x∗ is

very close to x(s), then π(x∗) ≈ π(x(s)) and r ≈ 1. Conversely, if the step size

is too large, such as when attempting to move from a state x(s) near a mode to

a state x∗ near the tails, π(x∗) � π(x(s)) and r ≈ 0. The step size of a proposal

distribution, or more generally its scaling, is often controlled by one of its parameters;

for the aforementioned N(x(s), σ2) example, the scaling parameter is the variance σ2.

Such parameters are referred to as tuning parameters as they essentially control the

efficiency of the algorithm. Roberts and Rosenthal (2001) showed that, for a class

of dependent proposal distributions (which include Gaussian proposal distributions),

optimal algorithm efficiency can be achieved for a certain acceptance proportion; 0.44

for 1-dimensional and 0.234 for multidimensional proposal distributions. Utilizing this

result, in practice, tuning parameters can be set so that the algorithm in question

yields acceptance proportion close to the reference optimal proportion.

Being not dependent on (and in particular being not centered around) the current
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value, independent proposals attempt to explore the target space in a fundamentally

different manner than dependent proposals. Independent proposals are in a sense

‘bolder’ than dependent proposals and can end up working very well or very badly.

More specifically, while a dependent proposal attempts a guided exploration of the

target space, an independent proposal attempts to move to any region of the space

in one jump ignoring where the chain is at the current time. This suggests that for

an independent proposal to work well it should resemble the target distribution and

in turn, since the acceptance ratio is given by r = π(x∗)

π(x(s))
× q(x(s))

q(x∗)
, that it should have

a high acceptance proportion; in fact the ‘ideal’ choice for an independent proposal

would be the (unknown) target density π(x) itself, in which case r = 1, and the

algorithm would reduce to i.i.d. sampling from π(x). However, as mentioned in Gilks

et al. (1996), it is safer if, in addition to being similar to, the proposal distribution

has heavier tails than the target distribution. To see this, consider the case that the

proposal distribution has lighter tails than the target distribution. The first problem

that might occur in such case, is that moves to the tails of the target distribution

are not proposed, during the finite number of iterations that the chain is run; thus

resulting to regions of the target space remaining unexplored. The second problem

is that, if and when the chain does visit the tails of the target distribution it will be

difficult for it to then leave; if the current state x(s) is at the tails of π(x), since a

proposed value x∗ will most likely not be at the tails of π(x), it will be typical that

π(x∗)
q(x∗)

� π(x(s))

q(x(s))
giving acceptance ratio r ≈ 0. Heavy-tailed independent proposals

help to avoid such problems at the expense of a lower acceptance proportion.

General MCMC algorithm Although the Gibbs sampler and the MH algorithm

are MCMC algorithms in their own right, in most practical cases they are used as

building blocks of more general MCMC algorithms. A general procedure for MCMC

implementation, followed typically in practice and for all MCMC inferences in this

thesis, is as follows. First, the state space X is written as X = X1 × X2 × . . . × Xn
so that x ∈ X is decomposed into n (in general multidimensional) components as
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x = (x1, x2, . . . , xn), xk ∈ Xk, k = 1, 2, . . . , n. The specific way that x is divided

into components is often naturally suggested by the model in question or motivated

by reasons of computational convenience. Then, a Gibbs sampler framework is set

up, so that in an MCMC iteration, components are updated one by one, according to

their full conditional distributions. Components which have standard full conditional

distributions are typically (although not necessarily) updated by directly sampling

from their full conditional distribution, in a so-called Gibbs step. Otherwise, if the full

conditional distribution is non-standard and direct sampling from it is not possible, a

MH algorithm (or some other MCMC algorithm) is used to target the full conditional

distribution and generate a value from it; when performed using a MH algorithm, such

step is referred to as a MH step. All steps of the procedure are depicted in Algorithm

3. Note that, this general MCMC algorithm is the same as a Gibbs sampler but more

general in the sense that individual components can be updated using any appropriate

MCMC algorithm and not necessarily using a Gibbs step.

Algorithm 3 General MCMC algorithm

1. Suppose the current state is x(s) = (x
(s)
1 , x

(s)
2 , . . . , x

(s)
n )

2. Generate x
(s+1)
1 according to π(x1 | x(s)

2 , x
(s)
3 . . . , x

(s)
n ) using a Gibbs step or a MH

step (or some other MCMC algorithm)

3. Generate x
(s+1)
2 according to π(x2 | x(s+1)

1 , x
(s)
3 . . . , x

(s)
n ) using a Gibbs step or a

MH step (or some other MCMC algorithm)

...

4.

5. Generate x
(s+1)
n according to π(xn | x(s+1)

1 , x
(s+1)
2 . . . , x

(s+1)
n−1 ) using a Gibbs step or

a MH step (or some other MCMC algorithm)

6. Set the next state as x(s+1) = (x
(s+1)
1 , x

(s+1)
2 , . . . , x

(s+1)
n ).
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Remarks This section concludes by collecting some useful remarks regarding

MCMC algorithms.

There is a sense that Gibbs sampling is preferable to MH since it uses additional

information about the target density, namely the full conditional distributions.

However, it is not always possible to use Gibbs sampling since the full conditional

distributions might be such that it is hard to sample from. Also, the Gibbs sampling

does not allow much control over the mixing of the Markov chain, unlike the MH

algorithm where the mixing can be adjusted by careful selection of tuning parameters.

It is also worth mentioning that the Gibbs sampling can be seen as a special case of

the MH algorithm where the proposal distribution is the full conditional distribution

and the acceptance probability is always equal to 1 (see e.g. Hoff (2009, section 10.4)).

As mentioned in Gilks et al. (1996), when components of x are highly correlated in the

target distribution, mixing can be slow. To this end, in an attempt to improve mixing,

one might choose to block such components into one higher-dimensional component

and update them together in a so-called block update step. It is also possible to repeat

the update step of a slow mixing component several times in an MCMC iteration and

only record the last value. This procedure is very similar in nature to thinning and

it is again done with the purpose of improving slow mixing by allowing the chain to

move around the target space.

When updating a component according to its full conditional distribution, as is

done in the Gibbs sampling and the general MCMC algorithm described above, it is

not necessary for its full conditional distribution to depend on all of the remaining

parameters, i.e. it could be the case that the component in question is conditionally

independent to some components given the rest of the components. For clarity, the

approach taken throughout this thesis is to drop such nominal dependencies in the

notation of full conditional distributions.
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1.3.3 Posterior predictive checking

1.3.3.1 Rationale, procedure and implementation

An essential part of any responsible data analysis is the assessment of the model’s fit

to the data in question. An intuitive, natural and potentially very useful way to assess

a model’s fit, within a Bayesian framework, is via posterior predictive checking. The

general idea of posterior predictive checking is that replicated data generated under

the model should look similar to the observed data, i.e. the observed data should look

plausible under the posterior predictive distribution (Gelman et al., 2013). Let yobs

denote the observed data, π(y | θ) the sampling density of an assumed model with

parameter θ (both yobs and θ are vectors in general) and π(θ | yobs) the posterior

density of θ. Formally, the replicated data yrep, are data that are generated from

the sampling density of the model π(y | θ), where θ is averaged over the posterior

density π(θ | yobs); that is the posterior predictive density, given by

π(yrep | yobs) =

∫
π(yrep | θ)π(θ | yobs)dθ. (1.7)

The aspects of the data for which assessment is desired can be represented by test

statistics. As in the classical case, a test statistic T is a scalar function of data

(observed or replicated) y. Plugging in y = yobs the test statistic assumes its observed

value T (yobs). For y = yrep ∼ π(yrep | yobs) the test statistic is a random variable,

under the posterior predictive distribution, called the replicated variable. To simplify

notation, let T obs := T (yobs) and T rep := T (yrep). Assessment, for the aspect of the

data represented by T , is conducted (quantitatively and visually) by comparing the

posterior predictive distribution of T rep to its observed value T obs.

Quantitatively, one can calculate the posterior predictive p-value (ppp-value) which

is the probability that the replicated variable T rep is more extreme than the observed
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value T obs and it is given by

ppp-value = P (T rep ≤ T obs | yobs)

= E(1{T rep≤T obs} | yobs) =

∫
1{T rep≤T obs}π(yrep | yobs)dyrep.

(1.8)

Extreme ppp-values (close to 0 or 1) imply evidence for lack of fit, whereas values

near 0.5 indicate good fit, for the aspect of the data in context (Gilks et al., 1996;

Gelman et al., 2013).

In most practical cases the posterior and the posterior predictive distributions

are not known analytically (see section 1.3.1.3) and thus simulations are used to

approximate the ppp-value. Suppose that a sample {θ(1),θ(2), . . . ,θ(S)} has been

drawn from the posterior distribution (using a method such as MCMC). For each

posterior value θ(s), a replicated dataset yrep
(s)

can be simulated from the sampling

density of the model π(y | θ(s)), s = 1, 2, . . . , S. It is clear from equation (1.7)

that {yrep(1)
,yrep

(2)
, . . . ,yrep

(S)} constitutes a sample from the posterior predictive

distribution; thus {T rep(1)
, T rep

(2)
, . . . , T rep

(S)} is a sample from the posterior predictive

distribution of T rep. Then the ppp-value can be calculated using MC approximation

as:

ppp-value =

∫
1{T rep≤T obs}π(yrep | yobs)dyrep ≈ 1

S

S∑
s=1

1{T rep(s)≤T obs}, (1.9)

which is simply the proportion of simulations for which a sampled replicated value

T rep
(s)

:= T (yrep
(s)

), s = 1, 2, . . . , S, does not exceed the observed value T obs. Visually,

the observed value T obs can be imposed on the histogram of sampled replicated values

{T rep(1)
, T rep

(2)
, . . . , T rep

(S)}; an observed value near the middle of the histogram would

indicate good fit (Gilks et al., 1996).
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1.3.3.2 Purpose and terminology

The purpose of doing model assessment using the posterior predictive distribution is

to assess if the model fits the data (Gelman et al., 2013). More precisely, the interest

is in assessing the practical usefulness of a model, by revealing settings where the

model’s predictions are inconsistent with observed data, and not testing whether the

model is true or not; in practice all models are wrong (misspecified) and would be

rejected given enough data (Gelman et al., 1996). Put simply, if a model is wrong,

but has a genuine ability to fit the data, then it is not desirable for the test to reject

(Gelman et al., 2013). Taking these into consideration, whenever terms such as ‘test’,

‘accept’, ‘reject’, ‘power’, ‘type I error’ and ‘type II error’ are used in the context of

posterior predictive checking, they would not have the same meaning as in the classical

setting; in the posterior predictive context, test would mean assess/assessment, accept

would mean failure to detect lack of fit, reject would mean detect lack of fit, power

would mean ability to detect lack of fit when there is lack of fit, type I error would

mean detecting lack of fit when there is not lack of fit, and type II error would mean

failure to detect lack of fit when there is lack of fit.

1.3.3.3 Test quantities and unknown variables

For some problems, it is difficult or unnatural to represent aspects of a model via

functions of the data alone, and it would be preferable to use functions of both

data and parameters (Gelman et al., 2013). In a Bayesian context, this is possible

by allowing dependence on model parameters (and any unknown quantities such as

unobserved data) under their posterior distribution; such functions are called test

quantities and they are the Bayesian generalization of classical test statistics. The

fact that test quantities allow dependence on any unknown quantity is very appealing

in theory, especially when unobserved data are present. However, test quantities that

depend largely on parameters or unobserved data are difficult to interpret and their
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power is greatly reduced by the amount of information that is imputed from the

model itself (Gelman, 2013).

1.3.3.4 Interpretating ppp-values

The interpretation of ppp-values follows from the purpose and philosophy of posterior

predictive checking. That is, ppp-values are interpreted directly as probabilities over

the posterior predictive distribution; although, as discussed in section 1.3.3.2 not as

P (model is true | oberved data) (Gelman et al., 2013). Extreme ppp-values (close to

0 or 1) imply that the discrepancy, between model and data, can not be reasonably

explained by chance and the model can not be expected to capture the aspect of the

data in context (Gilks et al., 1996; Gelman et al., 2013). A close to optimal ppp-

value (close to 0.5) should be interpreted as an indication that the model adequately

captures the specific aspect of the data being investigated. Two important comments

should be made regarding the last statement. First, it is not necessary that a good

ppp-value implies goodness of fit for the aspect of the data under assessment. One

such example is described by Gelman (2013), where the very noisy posterior predictive

distribution undesirably traps the sampling distribution of ppp-values around the

optimal value. In such cases, a good ppp-value is not an indication of a genuine ability

of the model to capture the underlying aspect of the data but rather a reflection of

the degraded power of the test to detect lack of fit. Second, even if a model fits a

specific aspect of the data, that does not necessarily mean that the model is a good fit

overall; there might be other aspects of the data, which might not even be assessed,

that the model fails to capture.

1.3.4 Stochastic modelling of epidemic data

This section provides a brief overview (types of models, types of data and inference

methods) of the area of infectious disease modelling while highlighting the specific

assumptions formulating the framework adopted in this thesis. Since epidemic
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modelling is a subject of an enormous and diverse literature, this overview is by

no means extensive and mostly follows the review of O’Neill (2010); for a more

comprehensive introduction see e.g. Daley and Gani (1999) or Andersson and Britton

(2000).

1.3.4.1 Types of models

Terminology Epidemic models are concerned with a population consisting of

individuals who can potentially transmit the disease to one another and are typically

defined at an individual level, by describing the health of each individual with respect

to the disease in question, using disease-development states. An individual who is at

risk of contracting the disease is referred to as susceptible, one who has the disease

but is not able to infect others (i.e. infected but not infectious) is called exposed, one

who can transmit the disease is called infective and one who can no longer transmit

the disease but is also not susceptible is called removed. The removal state might

correspond to different things in practice such as immunity, death or the appearance

of symptoms (case detection) which make an individual too ill to continue interacting

with the population as usual. Nonetheless, the common characteristic of all removed

individuals is that they play no part in the spread of the epidemic.

The basic states, susceptible (S), exposed (E), infective (I) and removed (R), along

with the order in which individuals transition between them, are used in abbreviation

to describe models. For example, an SIR (S→ I→ R) model assumes that individuals

progress from being susceptible to being infective without an exposed period and upon

the end of their infectious period they become removed. On the contrary, an SEIR

(S → E → I → R) model additionally assumes that an individual first goes through

an exposed period, before being infectious, whereas an SIS (S→ I→ S) model is one

which individuals are never removed and can become reinfected right after the end of

their infectious period. In this thesis, only SIR models are considered although most

of the methods developed could naturally be extended to SEIR models.
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Deterministic and stochastic models Mathematical models for infectious

disease transmission can broadly be divided into two categories, namely deterministic

models and stochastic models (Andersson and Britton, 2000). Modelling epidemics

deterministically, assumes that, given some initial conditions, the progression of the

outbreak is determined (i.e. the progression is not random). Such an assumption

might be useful to gain an understanding of the, loosely called, expected behaviour

of an epidemic and could be particularly effective in instances of large population

outbreaks, where, roughly put, the amount of stochasticity is reduced by law-of-large-

number-type behaviour (see e.g. Andersson and Britton (2000, chapter 5)). However,

as real-life outbreaks are inherently random, stochastic models are arguably more

naturally suited to capture their features e.g. they allow for the possibility to have

a minor outbreak, infecting only a few individuals, or a major outbreak, infecting a

fairly large proportion of individuals, and the calculation of the probability that each

of these two events occurs (see e.g. Andersson and Britton (2000, theorem 3.1)). This

thesis focuses only on stochastic epidemic models.

Homogeneity, heterogeneity and other modelling assumptions The most

basic models of disease transmission assume homogeneity at the population level,

meaning that all individuals in the population mix together at random Andersson

and Britton (2000, chapter 2). In terms of disease transmission, this means that a

given infective is equally likely to infect any of the currently susceptible individuals.

Such models typically assume homogeneity at the individual level as well, in the sense

that there is no variation between individuals in, for example, the distribution of

the time spent in the exposed or the infective state. In many contexts homogeneity

assumptions are unrealistic and more elaborate models are used which introduce

heterogeneity in the population. This can be done in various ways. For example, the

population mixing structure can be modelled explicitly by dividing the population

into groups such as households, schools or workplaces and assuming that individuals

mix at different rates within and between groups (see e.g. Ball et al. (1997); Britton
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et al. (2011)). Alternatively, heterogeneities might also be introduced by including

individual-level covariate information (see e.g. Kypraios (2007); Jewell et al. (2009))

or by incorporating the spatial structure of the population (see e.g. Jewell et al.

(2009); Retkute et al. (2018)).

Other assumptions include modelling in discrete time (for example using chain-

binomial models; see e.g. Andersson and Britton (2000) and the references therein)

or continuous time (see e.g. Bailey (1975); Becker (1989); Andersson and Britton

(2000)), modelling the outbreak after it has ceased or while it is ongoing (see e.g.

O’Neill and Roberts (1999)) and modelling closed or open populations, i.e. assuming

whether or not individuals may enter or leave the population via e.g. births, deaths

or migration (see e.g. O’Neill (1996); Clancy et al. (2001)). All models in this

thesis are continuous time, deal with closed populations and ceased epidemics and

are homogeneous at the individual level; in particular they make no use of covariates

and the infectious periods of individuals are independent and identically distributed.

Regarding the population mixing assumption, both homogeneous and heterogeneous

models are considered.

Infectious period distribution Individual infectious periods are typically as-

sumed to be independent and identically distributed. For the purposes of this

thesis three choices are considered for the infectious period distribution, namely

the Exponential distribution, the Gamma distribution and the constant distribution

(meaning that infectious periods of individuals are assumed to be constant and of

the same length). Along with the Weibull distribution (see e.g. Streftaris and

Gibson (2004a)), these choices are the most commonly used in the literature; for

the Exponential see e.g. O’Neill and Roberts (1999), for the Gamma see e.g. Xiang

and Neal (2014) and for the constant see e.g. Clancy and O’Neill (2008).

Using exponentially distributed infectious periods essentially means that there is no
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typical length for infectious periods; most of them are short, a few are long and fewer

are extremely long. Although this assumption is not very realistic for many diseases,

it still remains very appealing due to mathematical convenience e.g. it is a well

known result that by assuming Exponential infectious periods, one can approximate

the initial stages of a standard SIR model (see section 1.3.5.5 for the definition of

the standard SIR model) using a linear birth-death process (Kendall, 1956). The

Gamma distribution offers more flexibility and thus is more appropriate for most

practical cases but the caveat is that (unless one of its parameters is assumed known),

when fitted to data, it requires estimation of an additional parameter. Finally, the

constant distribution is in most cases employed to reduce the computational cost of

fitting the model; by assuming constant infectious periods, the unobserved infection

times (see sections 1.3.4.2 and 1.3.4.3 for when infection times are not observed and

how this complicates inference) are deterministically specified given removal times

and a constant value for the infectious period.

1.3.4.2 Types of data

Temporal data and final size data Broadly speaking there are two types of

epidemic data, namely temporal data and final size data (O’Neill, 2010; Britton et al.,

2011). Final size data only contain snapshot information at the start and at the

end of the epidemic but no temporal information regarding the disease propagation

throughout it, i.e. they can provide knowledge of which (or how many) individuals

were initially susceptible and which (or how many) of these individuals were infected

by the end of the outbreak. Temporal data provide information on the state of

individuals during the epidemic. Depending on the extent that they are observed

and the assumptions made (see paragraph below) temporal data might correspond to

infection times and/or removal times of individuals; data consisting of both infection

and removal times are referred to as complete temporal data and data consisting only

of removals times are referred to as partial temporal data. Typically, such data come

in aggregated form, for instance by day or week (i.e. as time series consisting the
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number of infections and/or removals per day or week) although for all methods

developed in this thesis it makes no difference to treat these times as continuous.

Partial observation In practice, the actual process of disease transmission is

rarely observed, which implies that infection times are typically not observed. More

precisely, the most commonly encountered type of data in practice, are case detection

times with the actual times of infection being unknown. In fact, this is almost always

the case for human diseases, when the appearance of symptoms (case detection) is

usually the first sign that an individual has been infected. By making the additional

assumption, that symptomatic individuals are removed, either because they are too

ill to continue interacting with the population, or via some other sort of isolation,

case detection times correspond to removal times.

Considering that the interest in this thesis is in the temporal aspects of outbreaks

(for both model assessment and inference purposes) and that such partially observed

temporal data are common in practice, the approach taken throughout this thesis is

to assume that observed data consist of removal times, with infection times missing,

unless otherwise stated. It is noted that such a framework is very common in the

stochastic epidemic modelling literature, being adopted in many classical references

such as Becker (1989); Andersson and Britton (2000); O’Neill and Roberts (1999).

Not independent data As at any point in time the health state of any given

individual depends on the health state of all other individuals in the population,

epidemic data are highly dependent, and any fitted models should take this into

account. Although one might consider any models that can incorporate dependencies

(such as time series models) the clear advantage of using disease transmission models

is that their parameters typically carry a meaningful epidemiological or biological

interpretation. On this account, disease transmission models are used throughout

this thesis.
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1.3.4.3 Inference methods

For a stochastic epidemic model (as for any stochastic model fitted to data) most

inferential methods rely on the likelihood.

Tractable likelihood In the cases of complete temporal data (i.e. both removal

times and infection times are observed) it is typical that the model likelihood

is tractable, meaning that it can be analytically derived (Rida, 1991). Given a

tractable likelihood, inference can proceed along conventional lines, either frequentist

or Bayesian, using tools such as maximum likelihood estimation and Markov chain

Monte Carlo (MCMC) methods (see e.g. Andersson and Britton (2000, chapter 9)

and Kypraios (2007)).

Intractable likelihood However, as discussed in section 1.3.4.2, in most practical

cases, only case detection times are observed (corresponding to removal times) and

infection times are missing. The complication that arises, in such a case of partial

observation, is that typically the associated likelihood (i.e. the likelihood based on

observing only removals and not infections) becomes intractable (see section 1.3.5.2

for more details).

Different remedies can be applied to the problem of intractable likelihoods, such

as resorting to various simplifying model assumptions (e.g. SIR models assuming

fixed and known infectious periods, so that removal data deterministically yield

infection data) or using approximate Bayesian computation (ABC) methods, which

are simulation-based methods that avoid likelihood calculation (see e.g. McKinley

et al. (2009); Kypraios et al. (2017); McKinley et al. (2018)). Arguably though, the

most well suited and widely used approach for dealing with intractable likelihoods,

due to missing data, is via data augmentation in a Bayesian framework (see section

1.3.2.2 and the references therein). In the present epidemic context this approach

is typically implemented by introducing the unobserved infection data as additional
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variables, in such a way that Bayesian inference for the model parameters can be

performed by computing an augmented likelihood based on removals and infections

(see sections 1.3.5.2 and 1.3.5.3 and relevant parts of sections 1.3.5.5 to 1.3.5.7 for

more details); for the development of the approach in the epidemic context see Gibson

and Renshaw (1998); O’Neill and Roberts (1999) and for adaptations and extensions

see e.g Streftaris and Gibson (2004b); Neal and Roberts (2005); Kypraios (2007);

Jewell et al. (2009); Xiang and Neal (2014).

Under the partially observed temporal data framework adopted in this thesis (see

section 1.3.4.2), all considered models have intractable likelihoods and all methods of

inference for model parameters are conducted via data augmentation in a Bayesian

framework, as outlined above.

1.3.5 Stochastic epidemic models considered in this thesis

This section introduces the stochastic epidemic models that are used in this thesis,

namely the standard SIR model, the non-linear infection rate SIR model and the

two-level-mixing SIR model. For clarity and ease of presentation the assumptions

and features shared by all considered models, as highlighted throughout section

1.3.4, are collected to place the models under a common framework, i.e. a class of

stochastic epidemic models is formulated, in which all three considered models belong.

Initially, notation, model definition, likelihood derivation and information on Bayesian

inference and MCMC methods, are provided under this general framework (i.e. for

a general model of the class). Afterwards, the standard, the non-linear infection rate

and the two-level-mixing SIR models are introduced as specific examples of the class;

MCMC algorithms are provided for each model and some relevant (for the purposes

of this work) model-specific features are presented.

It is noted that, the MCMC algorithms presented in this chapter are based on the
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MCMC algorithms for epidemic models initially proposed in the literature, such as

those in O’Neill and Roberts (1999); O’Neill and Becker (2001); Neal and Roberts

(2004). All these algorithms share the common feature that, whenever relevant (that

is whenever the infectious period distribution is not assumed to be constant in which

case all the infection times are deterministically updated given a constant value for

the infectious period), the infections are updated one at a time, typically using a MH

step and a model-inspired independent proposal distribution. Alternative MCMC

algorithms, having different proposal schemes for the infections, will be discussed in

chapter 4.

1.3.5.1 Definition

Consider a closed population (i.e. individuals cannot enter or leave the population)

consisting initially of N susceptible and m infectious individuals; for simplicity it

is assumed that m = 1 but this assumption can easily be relaxed. The health of

each individual, with respect to the disease in question, is described via a continuous

time SIR model (see section 1.3.4.1). Specifically, at each time point t, any given

individual belongs in one of three states, susceptible (S), infective (I) or removed

(R), and can only transition from being susceptible to being infective (S → I) and

from being infective to being removed (I → R); the transitions S → I and I → R

are referred to as the infection process and the removal process, respectively. Let

β and φ be the parameter vectors associated with the infection process and the

removal process, respectively. Let Xt and Yt respectively be the set of susceptible

and infective individuals in the population at time t. Consider also the number of

susceptible and infective individuals at time t, denoted as Xt and Yt, respectively.

Finally, let 1, 2, . . . , N + 1 be the labels of the N + 1 individuals in the population.

The model is defined by specifying the assumptions of the two possible transitions.
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S → I Each individual k, k = 1, 2, . . . , N + 1, at each time point t, is subjected

to contacts from the currently infective individuals Yt, at the time points of a non-

homogeneous Poisson process of rate hk(t;β); hk(t;β) is the all-to-one infection rate.

If a contacted individual is susceptible, at the time of contact, they instantly become

infective. These Poisson processes are assumed to be mutually independent. The

aggregation property of Poisson processes (see e.g. Ross (2009, proposition 5.4))

implies that overall infections occur according to a non-homogeneous Poisson process

of rate h(t;β) =
∑

k∈Xt hk(t;β); h(t;β) is the all-to-all infection rate.

I → R Upon infection an individual enters their infectious period, in which they

remain until they becomes removed. The infectious periods of the individuals are

assumed to be independent and identically distributed (i.i.d.) according to a random

variable TD, having distribution D(φ), with parameter vector φ. In principle, D(φ)

can be any arbitrary but specified distribution.

All of the Poisson processes involved are independent of the infectious periods. The

epidemic ends when no infectives are left in the population.

1.3.5.2 Likelihood

As mentioned in section 1.3.4.2, it is assumed that observed data consist only of

removal times, with the infection times being unknown. It is also assumed (see section

1.3.4.1) that the epidemic has ceased and thus the total number of infections, denoted

by n, is fixed and known and equals the total number of removals. The notation and

derivation of the likelihood mostly follows Held et al. (2019, chapter 9) and Kypraios

(2007) and is as follows. Individuals that are ultimately infected (ever-infected) are

labelled 1, 2, . . . , n and individuals that escape infection (never-infected) are labelled

n + 1, n + 2, . . . , N + 1. Although not essential, the n ever-infected individuals are

conveniently labelled according to the time-ordered removal times r1 < r2 < · · · < rn;

so that individual with label 1 is removed first, individual with label 2 is removed
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second and so on. For k = 1, 2, . . . , n, let ik be the (unknown) infection time of

individual k, that is removed at time rk and for k = n + 1, n + 2, . . . , N + 1,

set ik = rk = ∞. Let α be the label of the initial infective so that iα < ik

for all k 6= α and collect all removal times and all infection times, except iα, in

vectors as r = (r1, r2, . . . , rn) and i = (i1, . . . , iα−1, iα+1, . . . , in) = (i1, i2, . . . , in)\{iα},

respectively.

The purpose is to conduct Bayesian inference for the interesting parameters β and φ

(parameters controlling the infection and the removal process respectively), i.e. the

object of interest is the posterior density π(β,φ | r) ∝ π(r | β,φ)π(β,φ), where

π(r | β,φ) is the model likelihood (based on observing removal times r) and π(β,φ)

is the prior density. To this end, one would need to compute π(r | β,φ). However,

as mentioned in section 1.3.4.3, this likelihood is in all, but the simplest of cases,

intractable. To make this clearer consider the slightly simpler case, which α and iα

are known. Then the model likelihood is π(r | β,φ, α, iα) =
∫
π(r, i | β,φ, α, iα)di

and this integral is numerically intractable for all practically interesting cases, due to

the non-trivial region of integration; calculation of this integral requires integrating

over all possible configurations of infection times that do not cause the epidemic to

cease before rn, and this task is prohibitive unless the dimension of the infections is

unrealistically small.

Fortunately, by introducing the unobserved infection times i and the initial conditions

α and iα, one can construct and compute an augmented likelihood π(r, i | β,φ, α, iα)

(based on observing infection times i and removal times r). This augmented

likelihood, is constructed by considering the contribution of each individual (see e.g.

Britton and O’Neill (2002); Neal and Roberts (2005); Kypraios (2007)) as follows.

Since, unless already removed, individuals at any time point t are at risk of either

being infected or being removed (but not both), π(r, i | β,φ, α, iα) can be broken
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into the product of two parts, the infection process part L1 (describing the transition

S → I) and the removal process part L2 (describing the transition I → R).

Infection process part To construct the infection process part of the likelihood

one needs to consider how ever-infected and never-infected individuals contribute

to it. An ever-infected individual k, k = 1, 2, . . . , n, k 6= α, contributes by avoiding

infection until time i−k , where t− denotes the time just before t, and by getting infected

at time ik. A never-infected individual k, k = n+ 1, n+ 2, . . . , N + 1, contributes by

avoiding infection throughout the course of the epidemic (i.e. until time rn when the

epidemic ceases). Using survival analysis methodology, the infection process part can

then be written as

L1 =

(
n∏

k=1,k 6=α

hk
(
i−k ;β

))
× exp

(
−
∫ rn

iα

h (t;β) dt

)
, (1.10)

where
∫ rn
iα
h(t;β)dt is the total infection pressure applied, by infectives to susceptibles,

throughout the course of the epidemic.

Removal process part Since it is assumed that individual infectious periods rk−

ik are i.i.d. according to a random variable TD, having distribution D(φ), with

parameter vector φ (denoted as rk − ik
i.i.d.∼ D(φ)), k = 1, 2, . . . , n, the removal

process part is:

L2 =
n∏
k=1

fTD(rk − ik;φ), (1.11)

where fTD is the probability density function (p.d.f.) (if TD is continuous) or

probability mass function (p.m.f.) (if TD is discrete) of the random variable TD.

As mentioned in section 1.3.4.1, three choices are considered for the infectious period

distribution, namely Exponential, Gamma and constant. Depending on the choice

of the infectious period, the removal process part of the likelihood (equation (1.11))

assumes a different form.
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The Exponential distribution with rate parameter γ, denoted as Exp(γ), has a p.d.f.

given by f(x; γ) = γexp(−γx), x ≥ 0; γ > 0, and therefore, if the infectious period

distribution is assumed to be Exponential, φ = γ and the removal process part is

given by

L2 = γnexp

(
−γ

n∑
k=1

(rk − ik)

)
. (1.12)

If a Gamma distribution is used, parametrized by shape ν and rate λ, denoted

as Gamma(ν, λ), and described by its p.d.f. f(x; ν, λ) = λν

Γ(ν)
xν−1exp(−λx),

x ≥ 0; ν, λ > 0, then φ = (ν, λ) and the removal process part becomes

L2 =

(
λν

Γ(ν)

)n( n∏
k=1

(rk − ik)

)ν−1

exp

(
−λ

n∑
k=1

(rk − ik)

)
. (1.13)

Finally, if constant infectious periods are assumed, TD is a point mass at c (TD ≡ c),

where c > 0 the length of the infectious periods, and thus φ = c and the removal

process part is given by

L2 = 1{rk−ik=c, k=1,2,...,n}. (1.14)

Augmented likelihood The augmented likelihood of the model, based on observ-

ing data i and r, is given by multiplying the infection process part L1 and the removal

process part L2 as follows
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π(r, i | β,φ, α, iα) = L1 × L2

=

(
n∏

k=1,k 6=α

hk
(
i−k ;β

))
× exp

(
−
∫ rn

iα

h (t;β) dt

)

×
n∏
k=1

fTD(rk − ik;φ).

(1.15)

1.3.5.3 Bayesian Inference and MCMC algorithm

Relying on the fact that the augmented likelihood π(r, i | β,φ, α, iα) can be

computed, Bayesian inference for the interesting parameters β and φ is performed by

targeting the joint posterior distribution of β, φ and the augmented data (α, iα, i),

via an MCMC algorithm. Thus the object of interest is the augmented posterior

density

π(β,φ, α, iα, i | r) ∝ π(r, i | β,φ, α, iα)π(β,φ, α, iα), (1.16)

where π(r, i | β,φ, α, iα) is the augmented likelihood, constructed as above and given

by equation (1.15), and π(β,φ, α, iα) is the joint prior density of β, φ, α and iα.

MCMC algorithms for each considered model will be given separately (see relevant

parts of sections 1.3.5.5, 1.3.5.6 and 1.3.5.7 for the standard SIR model, the non-

linear infection rate SIR model and the two-level-mixing SIR model, respectively),

nonetheless since the update step for the infection component (α, iα, i) is in most

cases performed in the same manner (see the second paragraph in the beginning of

section 1.3.5) it is described under this general setting (i.e. for a general model of

the class). Recall that all MCMC algorithms used in this thesis follow the procedure

of the general MCMC algorithm (Algorithm 3), described in section 1.3.2.4, where

the vector of interest is decomposed into components which are updated in separate

steps, according to their full conditional distributions. Suppose that the chain is

transitioning from its sth to its (s+ 1)th value and that the update steps for the rest
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of the components, β and φ, have already been conducted so that β(s+1) and φ(s+1)

are the current values of β and φ. Following O’Neill and Becker (2001), (α, iα, i) can

be updated using a MH step and a model-driven independent proposal distribution,

as follows. First, choose one of the n ever-infected individuals, say k, according to

a discrete uniform distribution on {1, 2, . . . , n}, denoted as U[1 : n]; where U[1 : n]

is such that so that if X ∼ U[1 : n] then X has p.m.f. f(x) = P (X = x) = 1
n
,

x = 1, 2, . . . , n. Then, propose a candidate infection time for individual k, say i∗k,

by proposing an infectious period rk − i∗k ∼ D(φ(s+1)). Finally, calculate the MH

acceptance ratio and accordingly accept or reject the proposed move. Algorithm 4

depicts the above procedure.

Algorithm 4 Update step for the infection component in an MCMC algorithm for
a general SIR model

1. Suppose that the current value of the infection component is (α(s), i
(s)
α , i(s)) and

that the update steps for β and φ, have already been conducted so that β(s+1)

and φ(s+1) are, respectively, their current values.

2. Generate (α(s+1), i
(s+1)
α , i(s+1)) according to π(α, iα, i | r,β(s+1),φ(s+1)) using a MH

step as follows

(a) Choose one of the n ever-infected individuals, say k, as k ∼ U[1 : n]

(b) Propose a candidate infection time for individual k, say i∗k, as rk − i∗k ∼

D(φ(s+1))

(c) Calculate the acceptance ratio r = π(α∗,i∗α,i
∗|r,β(s+1),φ(s+1))

π(α(s),i
(s)
α ,i(s)|r,β(s+1),φ(s+1))

× q(rk−i
(s)
k )

q(rk−i∗k)
, where

q(x) is the p.d.f. of a random variable X ∼ D(φ(s+1))

(d) Set (α(s+1), i
(s+1)
α , i(s+1)) = (α∗, i∗α, i

∗) with probability 1 ∧ r; otherwise set

(α(s+1), i
(s+1)
α , i(s+1)) = (α(s), i

(s)
α , i(s))
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Some remarks are in order regarding the above update step. The proposal distribution

is referred to as model-driven as it essentially proposes to update infectious periods

according to the infectious period distribution of the assumed model; recall that the

model assumes that rk − ik
i.i.d.∼ D(φ), k = 1, 2, . . . , n.

In the above algorithm, note that, since only the infection time of individual k

is attempted to be updated, i(s) = (i
(s)
1 , . . . , i

(s)
k−1, i

(s)
k , i

(s)
k+1, . . . , i

(s)
n )\{i(s)α } and i∗ =

(i
(s)
1 , . . . , i

(s)
k−1, i

∗
k, i

(s)
k+1, . . . , i

(s)
n )\{i∗α} and thus (if k 6= α(s) = α∗) the only difference

between the vectors i∗ and i(s) is their kth entry; with all the rest entries being the

same. Note also that, when i∗k is proposed, α∗ and i∗α are proposed by default (which

could be the same as α(s) and i
(s)
α or different), since, given a set of infection times, the

minimum infection time and the label of the individual to which that corresponds to

are deterministically specified. What these imply is that, after choosing the individual

k whose infection time ik is to be updated, the target density of the infection step

reduces from π(α, iα, i | r,β(s+1),φ(s+1)) to π(α, iα, ik | r,β(s+1),φ(s+1), i
(s)
[−k]), where

if x = (x1, x2, . . . , xn) is a vector with n entries, x[−k] denotes the vector containing

all entries of x except xk, k ∈ {1, 2, . . . , n}.

In an MCMC scheme, in addition to the explicit terms of the infection component,

calculations also involve terms that are functions of the infection component. Such

terms must also be informed accordingly at each update step of the infection

component (reference to such terms will be made, when describing the MCMC

schemes for each model below).

In practice, it is typical to repeat the update step for the infection component several

times in an MCMC iteration. As already remarked in section 1.3.2.4, this is done to

allow the chain to move around the target space and improve mixing; in this case,
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if only one infection time is updated at each MCMC iteration, the full conditional

distributions of the other components, β and φ, will not change appreciably and their

sampled values will have high autocorrelation. There are different ways that this step

can be repeated. For example, having decided on the number of repetitions, say M ,

one may choose to sample (e.g. uniformly at random, as above) the label of the

individual, whose infection time is to be updated, at every repetition. Alternatively,

one may choose to first sample (e.g. again uniformly at random) the labels of the M

out of n individuals, to be updated, and then update their infection times according

to their sampled order. In any case, the infection times are updated one by one. In

this thesis, whenever the infection step is repeated, it is by using the latter of the two

methods.

1.3.5.4 Remarks

As mentioned in the beginning of section 1.3.5, all models considered in this thesis

(standard SIR model, non-linear infection rate SIR model and two-level-mixing

SIR model) follow the general framework described above. To define a particular

model one needs to explicitly specify the components of the infection process, β,

hk(t;β), h(t;β), and the parameter of the removal process, φ. The removal process

assumptions are identical for all three models, and as described in sections 1.3.5.1

and 1.3.5.2, and depending on whether TD ∼ Exp(γ), TD ∼ Gamma(ν, λ) or

TD ≡ c, the removal process parameter φ is specified as φ = γ, φ = (ν, λ)

or φ = c, respectively. What distinguishes the three models are the differences

in their corresponding infection process assumptions, which in turn yield different

specifications for β, hk(t;β) and h(t;β); details follow in sections 1.3.5.5 to 1.3.5.7.

Notice that, although i is part of the data augmentation scheme, it does not require

a prior distribution as evident from expression (1.16). Note also that, it is typical

to assume that parameters are a priori independent (see e.g. O’Neill and Roberts

(1999) or Held et al. (2019, chapter 9)) so that the joint prior density π(β,φ, α, iα) is

42



expressed as π(β)π(φ)π(α)π(iα) and the assignment of the prior distribution is done

marginally for each one of β, φ, α and iα.

According to the assumed framework, given removal data r = (r1, r2, . . . , rn), the

associated epidemic takes place in the time interval [iα, rn]. As seen from expression

(1.16), the unknown iα is an additional model parameter (random variable) and its

support is (−∞, r1); this is because the initial infection iα can only occur before the

first removal r1. To make the inference procedure consistent across removal data

from different outbreaks, in the remainder of this thesis, the removal vector is always

shifted to the left by r1, i.e. given removal data r = (r1, r2, . . . , rn), r1 is subtracted

from each rk, k = 1, 2, . . . , n, so that r1 = 0 and iα has support (−∞, 0), always.

Notice that such intervention has no impact on the inference for the parameters of

interest, β and φ, as by adding (or subtracting) a constant to the removal times, one

simply shifts the time interval in which the epidemic takes place without affecting

the dynamics of the process.

Notice that, in the case that TD ≡ c, where c > 0, although the length of the

infectious period c is fixed between individuals (i.e. rk− ik = c for all k = 1, 2, . . . , n),

it is still an unknown parameter to be estimated from the data.

In the case that TD ∼ Gamma(ν, λ), it is assumed throughout this thesis that the

shape parameter ν is known and thus, from an inference standpoint, the removal

process parameter reduces from φ = (ν, λ) to φ = λ. Although one can relax this

assumption, and treat ν as an additional unknown parameter to be estimated from

the data (see e.g. Xiang and Neal (2014)), it is more appropriate for some of the

purposes of this work to treat ν as known (see for example section 2.7.1.3).

It is a well known fact that the Gamma(ν, λ) distribution reduces to an Exp(λ)

distribution in the case that its shape parameter is ν = 1. This remark is particularly

43



relevant when it is of interest to distinguish between models having Exponential and

Gamma infectious periods (see section 2.7).

1.3.5.5 Standard SIR model

The standard SIR model (Andersson and Britton, 2000) is a simple model for the

spread of a disease, assuming homogeneity both in the population and the individual

level (see section 1.3.4.1). The model, in the case that the infectious periods are

assumed to be Exponential, is also referred to as the general stochastic epidemic, and

it is arguably the most well known and widely used stochastic disease transmission

model, originating from Bartlett (1949) and featuring in classical references such as

Bailey (1975).

Definition Consider the notation of section 1.3.5.1. As explained in the first remark

of section 1.3.5.4, to define the model one needs to describe the infection process

(S→ I) assumptions and in turn explicitly specify the infection process parameter β,

the all-to-one infection rate hk(t;β) and the all-to-all infection rate h(t;β).

S → I It is assumed that the population is homogeneously mixing (i.e.

individuals mix together at random) in such a way that any infective individual

makes contacts with any other individual at the time points of a homogeneous Poisson

process of rate β; β is the one-to-one infection rate. This specifies β as β = β. If a

contacted individual is susceptible, at the time of contact, they instantly becomes

infective. All Poisson processes describing infection contacts are assumed to be

mutually independent and independent of the infectious periods. The aggregation

property of Poisson processes specifies the all-to-one infection rate as hk(t; β) = βYt,

for individual k, k = 1, 2, . . . , N+1, and the all-to-all infection rate as h(t; β) = βXtYt,

where Yt and Xt are, as in section 1.3.5.1, the number of infectives and susceptibles

at time t, respectively.
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Likelihood and calculation of its terms Recall that in section 1.3.5.2 the

likelihood was derived under a general framework, which all models in this thesis

conform to. Recall also, from the first remark of section 1.3.5.4, that the models in this

thesis only differ in the infection process assumptions. Thus the augmented likelihood

of the standard SIR model is given by substituting its model-specific infection process

components, β = β, hk(t; β) = βYt and h(t; β) = βXtYt, to equation (1.15), which is

the equation of the augmented likelihood under the general framework. Specifically,

using the same notation as in section 1.3.5.2, the augmented likelihood of the standard

SIR model, based on observing data i and r, and for general infectious period TD, is

given by

π(r, i | β,φ, α, iα) = L1 × L2

=

(
n∏

k=1,k 6=α

βYi−k

)
× exp

(
−
∫ rn

iα

βXtYtdt

)

×
n∏
k=1

fTD(rk − ik;φ),

(1.17)

where, as in section 1.3.5.2, L1 and L2 are the infection process part and the removal

process part, respectively, and
∫ rn
iα
βXtYtdt is the total infection pressure applied, by

infectives to susceptibles, throughout the course of the epidemic. For the purposes

of this thesis, the standard SIR model is considered using all three infectious period

distribution choices, namely Exponential, Gamma and constant and denoted as Exp-

HM, Gamma-HM and Constant-HM, respectively. Note that, as described in section

1.3.5.2, the removal process part L2 (last line in equation (1.17) above) is given

by equation (1.12), (1.13) or (1.14), for each of the three aforementioned choices,

respectively.

The above likelihood (equation (1.17)) can be evaluated in practice as follows. The

removal process part L2 is easy to deal with as, for any of the considered choices

for the infectious period distribution, it comprises terms that are straightforward to
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calculate (see equations (1.12), (1.13) and (1.14)). The infection process part requires

calculating the term Yi−k
, for k = 1, 2, . . . , n, k 6= α, and the integral

∫ rn
iα
XtYtdt. Since

Yi−k
is the number of infectives in the population at time i−k (i.e. just before time ik),

Yi−k
is calculated by noticing that an individual j, j = 1, 2, . . . , n, j 6= k, is infective

at time i−k if and only if ij < ik < rj and then counting the number of infectives at

i−k as

Yi−k
=

n∑
j=1,j 6=k

1{ij<ik<rj}. (1.18)

The integral
∫ rn
iα
XtYtdt can be calculated by observing that

∫ rn
iα
XtYtdt is in fact

the total time for which infection pressure is applied, by infectives to susceptibles,

throughout the course of the epidemic. To see this, recall that
∫ rn
iα
βXtYtdt is the total

infection pressure applied, throughout the course of the epidemic, and that, for the

standard SIR model, an infective individual k contacts (i.e. exerts infection pressure

on) a susceptible individual j at a one-to-one rate β, which does not depend on

the considered pair (k, j) (see the definition of the model in the relevant paragraph

above). Considering that an initially susceptible individual j, j = 1, 2, . . . , N + 1,

j 6= α, receives infection pressure from an ever-infected individual k, k = 1, 2, . . . , n,

for a length of time rk ∧ ij − ik ∧ ij, the total time for which infection pressure is

applied, is given by summing over k and j as

∫ rn

iα

XtYtdt =
n∑
k=1

N+1∑
j=1,j 6=α

(rk ∧ ij − ik ∧ ij). (1.19)

Bayesian inference and MCMC algorithm For the purposes of this thesis,

MCMC inference is required for all three versions of the standard SIR model (see e.g.

section 2.7). First, the algorithm for the Exp-HM model is described and details are

provided where relevant. Then the algorithms for the Gamma-HM and the Constant-

HM models are described by drawing comparisons with the algorithm for the Exp-HM

model.
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Exp-HM model Recall from section 1.3.5.3 that, for the class of considered

models, the target posterior density of interest is given by expression (1.16). For the

Exp-HM model, β = β (see the model definition at the beginning of section 1.3.5.5)

and φ = γ (see the description of the removal process part in section 1.3.5.2), and

thus (see expression (1.16)) the target posterior density is

π(β, γ, α, iα, i | r) ∝ π(r, i | β, γ, α, iα)π(β, γ, α, iα), (1.20)

where π(r, i | β, γ, α, iα) is the augmented likelihood, and it is given by equation

(1.17) (with the removal process part L2 in equation (1.17) being given by equation

(1.12)), and π(β, γ, α, iα) is the joint prior density of β, γ, α and iα.

As remarked in section 1.3.5.4, it is assumed that parameters are a priori independent

and the assignment of the prior distribution is done marginally for each one of β, γ,

α and iα. Following O’Neill and Roberts (1999) this is done as follows.

β ∼ Gamma(νβ, λβ)

γ ∼ Gamma(νγ, λγ)

α ∼ U[1 : n]

− iα ∼ Exp(ξiα).

Above, Gamma(ν, λ) and Exp(γ) denote the Gamma and the Exponential distribution

respectively, both as described in section 1.3.5.2, and U[1 : n] denotes the discrete

uniform distribution on {1, 2, . . . , n}, as described in section 1.3.5.3. The prior

assignment of β and γ is to exploit a conjugacy result (see right below) while the

prior assignment of α is saying that, before observing the data, the initial infective

is equally likely to be any of the n ever-infected individuals. Note that the prior

assignment of iα ensures that iα has support (−∞, 0), which is sensible as the initial

infection must occur before the first removal, which is set to be 0 in all instances (see
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relevant remark in section 1.3.5.4).

Following the procedure of the general MCMC algorithm (Algorithm 3), described in

section 1.3.2.4, the vector of interest is decomposed into three components, namely β,

γ and (α, iα, i), which are updated according to their full conditional distributions. A

few lines of algebra reveal that β and γ have standard full conditional distributions,

and can thus be updated using Gibbs steps. Specifically,

π(β | r, α, iα, i) ≡ Gamma (n− 1 + νβ, A+ λβ)

π(γ | r, α, iα, i) ≡ Gamma
(
n+ νγ, B + λγ

) (1.21)

where A =
∫ rn
iα
XtYtdt and B =

∑n
k=1 (rk − ik). On the other hand, (α, iα, i) has a

non-standard full conditional distribution given by

π(α, iα, i | r, β, γ) ∝

(
n∏

k=1,k 6=α

Yi−k

)
× exp (−βA)

× exp (−γB)× exp(ξiαiα)1{iα<0},

(1.22)

and is updated using a MH step and a model-driven independent proposal distribu-

tion, as described in section 1.3.5.3 and illustrated in Algorithm 4; where β = β,

φ = γ and the proposal distribution is D(φ(s+1)) = Exp(γ(s+1)). Note that the

terms Yi−k
, A and B, appearing in the expressions above, all depend on the infection

times and hence their values must be informed accordingly at each update step

of the infection component. Algorithm 5 collects the steps for updating all three

components.

Gamma-HM model The MCMC implementation steps for the Gamma-HM

model are very similar to the Exp-HM model. The target posterior density of interest

is given, in general form, by expression (1.16). For the Gamma-HM model, β = β

(see the model definition at the beginning of section 1.3.5.5) and, since the shape
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Algorithm 5 MCMC algorithm for the Exp-HM model

1. Suppose the current state is (β(s), γ(s), α(s), i
(s)
α , i(s))

2. Sample β(s+1) ∼ π(β | r, α(s), i
(s)
α , i(s)) ≡ Gamma

(
n− 1 + νβ, A

(s) + λβ
)

using a
Gibbs step

3. Sample γ(s+1) ∼ π(γ | r, α(s), i
(s)
α , i(s)) ≡ Gamma

(
n+ νγ, B

(s) + λγ

)
using a Gibbs

step

4. Generate (α(s+1), i
(s+1)
α , i(s+1)) according to π(α, iα, i | r, β(s+1), γ(s+1)) using a MH

step as follows

(a) Choose one of the n ever-infected individuals, say k, as k ∼ U[1 : n]

(b) Propose a candidate infection time for individual k, say i∗k, as rk − i∗k ∼
Exp(γ(s+1))

(c) Calculate the acceptance ratio r = π(α∗,i∗α,i
∗|r,β(s+1),γ(s+1))

π(α(s),i
(s)
α ,i(s)|r,β(s+1),γ(s+1))

× q(rk−i
(s)
k )

q(rk−i∗k)
, where

π(α, iα, i | r, β, γ) is given by expression (1.22) and q(x) is the p.d.f. of a
random variable X ∼ Exp(γ(s+1))

(d) Set (α(s+1), i
(s+1)
α , i(s+1)) = (α∗, i∗α, i

∗) with probability 1 ∧ r; otherwise set

(α(s+1), i
(s+1)
α , i(s+1)) = (α(s), i

(s)
α , i(s))

5. Set the next state as (β(s+1), γ(s+1), α(s+1), i
(s+1)
α , i(s+1)).

parameter ν is assumed to be known (see relevant remark in section 1.3.5.4), φ = λ.

Therefore, the target posterior density for the Gamma-HM model is

π(β, λ, α, iα, i | r, ν) ∝ π(r, i | β, λ, ν, α, iα)π(β, λ, α, iα), (1.23)

where π(r, i | β, λ, ν, α, iα) is the augmented likelihood, given by equation (1.17)

(with the removal process part L2 in equation (1.17) being given by equation (1.13)),

and π(β, λ, α, iα) is the joint prior density of β, λ, α and iα.
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The prior assignment is nearly identical as for Exp-HM and it is done as follows.

β ∼ Gamma(νβ, λβ)

λ ∼ Gamma(νλ, λλ)

α ∼ U[1 : n]

− iα ∼ Exp(ξiα).

Following the general MCMC algorithm (Algorithm 3), described in section 1.3.2.4,

the vector of interest is decomposed into three components, namely β, λ and (α, iα, i),

which are updated according to their full conditional distributions. Straightforward

calculations yield that

π(β | r, α, iα, i) ≡ Gamma (n− 1 + νβ, A+ λβ)

π(λ | r, ν, α, iα, i) ≡ Gamma
(
νn+ νλ, B + λλ

)
.

(1.24)

The standard form of the above full conditional distributions, allows β and λ to be

updated using Gibbs steps. As for the Exp-HM model case, (α, iα, i) has a non-

standard full conditional distribution given by

π(α, iα, i | r, ν, β, λ) ∝

(
n∏

k=1,k 6=α

Yi−k

)
× exp (−βA)×

(
n∏
k=1

(rk − ik)

)ν−1

× exp (−λB)× exp(ξiαiα)1{iα<0},

(1.25)

and is updated using the MH step, described in section 1.3.5.3 and illustrated in

Algorithm 4; where β = β, φ = λ and the proposal distribution is D(φ(s+1)) =

Gamma(ν, λ(s+1)). Algorithm 6 collects the steps of the above procedure.

Constant-HM model The biggest difference in the MCMC procedure between

the Constant-HM model and the other two standard SIR models comes from the fact
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Algorithm 6 MCMC algorithm for the Gamma-HM model

1. Suppose the current state is (β(s), λ(s), α(s), i
(s)
α , i(s))

2. Sample β(s+1) ∼ π(β | r, α(s), i
(s)
α , i(s)) ≡ Gamma

(
n− 1 + νβ, A

(s) + λβ
)

using a
Gibbs step

3. Sample λ(s+1) ∼ π(λ | r, ν, α(s), i
(s)
α , i(s)) ≡ Gamma

(
νn + νλ, B

(s) + λλ

)
using a

Gibbs step

4. Generate (α(s+1), i
(s+1)
α , i(s+1)) according to π(α, iα, i | r, ν, β(s+1), λ(s+1)) using a

MH step as follows

(a) Choose one of the n ever-infected individuals, say k, as k ∼ U[1 : n]

(b) Propose a candidate infection time for individual k, say i∗k, as rk − i∗k ∼
Gamma(ν, λ(s+1))

(c) Calculate the acceptance ratio r = π(α∗,i∗α,i
∗|r,ν,β(s+1),λ(s+1))

π(α(s),i
(s)
α ,i(s)|r,ν,β(s+1),λ(s+1))

× q(rk−i
(s)
k )

q(rk−i∗k)
, where

π(α, iα, i | r, ν, β, λ) is given by expression (1.25) and q(x) is the p.d.f. of a
random variable X ∼ Gamma(ν, λ(s+1))

(d) Set (α(s+1), i
(s+1)
α , i(s+1)) = (α∗, i∗α, i

∗) with probability 1 ∧ r; otherwise set

(α(s+1), i
(s+1)
α , i(s+1)) = (α(s), i

(s)
α , i(s))

5. Set the next state as (β(s+1), λ(s+1), α(s+1), i
(s+1)
α , i(s+1)).

that, when the infectious periods are assumed to be constant, all infection times are

automatically determined given a value c for the infectious period; because in such

case rk − ik = c for all k = 1, 2, . . . , n. Therefore the update step for the infections is

different. Substituting the infection and removal process parameters corresponding to

the Constant-HM model, β = β (see the model definition at the beginning of section

1.3.5.5) and φ = c (see the description of the removal process part in section 1.3.5.2),

into equation (1.16) yields the target posterior density

π(β, c, α, iα, i | r) ∝ π(r, i | β, c, α, iα)π(β, c, α, iα), (1.26)
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where π(r, i | β, c, α, iα) is the augmented likelihood, given by equation (1.17) (with

the removal process part L2 in equation (1.17) being given by equation (1.14)), and

π(β, c, α, iα) is the joint prior density of β, c, α and iα.

Assuming that β and (c, α, iα) are a priori independent and noticing that, knowing

c, implies that α and iα are deterministically specified, the joint prior density can be

written as π(β, c, α, iα) = π(β)π(c, α, iα) = π(β)π(c)π(α, iα | c) = π(β)π(c). Thus

the prior assignment is fully specified by assigning marginal prior distributions for β

and c. This is done as follows

β ∼ Gamma(νβ, λβ)

c ∼ Exp(ψc).

As with all MCMC algorithms in this thesis, the updating scheme follows Algorithm 3.

In this case, the vector of interest (β, c, α, iα, i) is decomposed into two components,

β and (c, α, iα, i). This is done to utilize the aforementioned fact that, given a value

for the infectious period, the infection times are specified by default; thus when a

candidate infectious period value, say c∗, is proposed, candidate values, say α∗, i∗α

and i∗, are automatically proposed for the infection variables. Identically to the

other two standard SIR models, β has a standard full conditional distribution and is

updated using a Gibbs step. Specifically,

π(β | r, c, α, iα, i) ≡ Gamma (n− 1 + νβ, A+ λβ) (1.27)

52



On the other hand, (c, α, iα, i) has a non-standard full conditional distribution given

by

π(c, α, iα, i | r, β) ∝

(
n∏

k=1,k 6=α

Yi−k

)
× exp (−βA)

× 1{rk−ik=c, k=1,2,...,n} × ψc exp(−ψcc),

(1.28)

and is updated using a MH step and a dependent proposal as follows. Given a current

value of the infectious period, say c(s), a candidate value, say c∗, is proposed using

a Normal proposal distribution centered around the current value c(s) (in log scale),

as log(c∗) ∼ N(log(c(s)), σ2), where σ2 is the variance and plays the role of a tuning

parameter (see the relevant part of section 1.3.2.4 for more information on dependent

proposals and tuning parameters). Algorithm 7 collects the steps required to update

all components.

Algorithm 7 MCMC algorithm for the Constant-HM model

1. Suppose the current state is (β(s), c(s), α(s), i
(s)
α , i(s))

2. Sample β(s+1) ∼ π(β | r, c(s), α(s), i
(s)
α , i(s)) ≡ Gamma

(
n− 1 + νβ, A

(s) + λβ
)

using
a Gibbs step

3. Generate (c(s+1), α(s+1), i
(s+1)
α , i(s+1)) according to π(c, α, iα, i | r, β(s+1)) using a

MH step as follows

(a) Propose a candidate infectious period value, say c∗, as log(c∗) ∼
N(log(c(s)), σ2)

(b) Calculate the acceptance ratio r = π(c∗α∗,i∗α,i
∗|r,β(s+1))

π(c(s),α(s),i
(s)
α ,i(s)|r,β(s+1))

× q(c(s)|c∗)
q(c∗|c(s)) , where

π(c, α, iα, i | r, β) is given by expression (1.28) and q(x | y) is the p.d.f. of a
random variable X such that log(X) ∼ N(log(y), σ2)

(c) Set (c(s+1), α(s+1), i
(s+1)
α , i(s+1)) = (c∗, α∗, i∗α, i

∗) with probability 1 ∧ r;

otherwise set (c(s+1), α(s+1), i
(s+1)
α , i(s+1)) = (c(s), α(s), i

(s)
α , i(s))

4. Set the next state as (β(s+1), c(s+1), α(s+1), i
(s+1)
α , i(s+1)).
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The motivation for working in the log scale, rather than the actual scale (and propose

values as c∗ ∼ N(c(s), σ2)), is to avoid instances that negative values for c are proposed;

since the length of the infectious period has to be positive, negative proposed values

would automatically be rejected increasing the risk of poor chain mixing. Note that,

for similar reasons, the tuning parameter σ2 can be specified using burn-in so that the

acceptance proportion in the update step in question is close to its optimal reference

value of 0.44 (see the part regarding dependent proposals in section 1.3.2.4). One way

to do this in practice is to split the burn-in iterations into batches, and increase or

decrease the value of σ2 accordingly at the end of each batch, so that the acceptance

proportion gets closer to the optimal reference value; if the acceptance proportion is

lower (higher) than desired, then the value of σ2 should be decreased (increased) so

that the proposed steps become smaller (larger) and the chances of acceptance higher

(lower).

Threshold behaviour and the basic reproduction number R0 Epidemic

models frequently demonstrate threshold behaviour. Roughly speaking, this means

that during the course of an epidemic, either a few individuals are infected (minor

outbreak), or a fairly large number are infected (major outbreak). For the standard

SIR model, in the case that the population size is large, this threshold phenomenon

can be made precise, and the minor and major outbreak probabilities can be both

defined and calculated, by using a branching process approximation at the initial

stages of the epidemic; this result is typically referred to as the threshold limit theorem

for epidemics (see Andersson and Britton (2000, theorem 3.1) and Ball and Donnelly

(1995) for all the details). The intuition behind the branching process approximation,

is that during the initial stages of an epidemic, in a large population, we would

expect that, with high probability, individuals contacted by infectives are susceptible

(i.e. Xt ≈ N), so that the number of infectious individuals Yt follows some sort of

branching behaviour (Andersson and Britton, 2000); infections and removals in the

epidemic correspond to births and deaths in the approximating branching process.

54



The key parameter associated with the threshold limit theorem is the basic

reproduction number R0. Specifically, according to the theorem, in a population of

infinitely many susceptibles, the probability for a major outbreak to occur is positive if

and only if R0 > 1. Although the result is not directly applicable to finite populations

(as is the case in real-life applications), it is still broadly true that the value of R0,

and in particular whether it is greater or smaller than 1, will accordingly indicate

whether or not a major outbreak can occur. Consequently, R0 is a parameter with

great epidemiological interest and inference on R0 can determine the implementation

of disease control interventions and strategies.

Following Andersson and Britton (2000), the basic reproduction number R0 for the

standard SIR model is loosely defined as the average number of new infections caused

by a typical infective, during the early stages of the epidemic, in a large population,

and it is given by

R0 = NβE(TD). (1.29)

1.3.5.6 Non-linear infection rate SIR model

The non-linear infection rate SIR model (O’Neill and Wen, 2012) is an extension of the

standard SIR model (see section above) obtained by relaxing the linearity assumption

of the overall (all-to-all) infection rate. More precisely, whereas the standard SIR

model assumes that infections occur according to an overall (all-to-all) rate of βXtYt,

with β, Xt and Yt as in section 1.3.5.5 above, the non-linear infection rate model

modifies the overall (all-to-all) rate to have the form βXtY
p
t , where p ∈ [0, 1] is a

power parameter controlling the level of exposure of susceptibles to infectives. The

idea of modifying the infection rate in such a way dates back to the work of Severo

(1969) and it is based on the reasoning that the rate of new infections need not, in

all situations, simply increase linearly in Xt and Yt (O’Neill and Wen, 2012). For

example, it might be the case that as an epidemic progresses, susceptibles become
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more aware of the risk of infection and adjust their behaviour accordingly or it could

be the case that new infective individuals make increasingly less difference to the

overall infection pressure due to saturation effects (O’Neill and Wen, 2012). Such

type of phenomena can be captured by the introduction of the power parameter

p ∈ [0, 1], where the smaller the p the lesser the exposure of susceptibles to infectives.

Definition Using the notation of section 1.3.5.1 and following the remark of section

1.3.5.4, the model is defined by specifying the infection process assumptions (S→ I)

and its components β, hk(t;β) and h(t;β).

S → I Each individual k, k = 1, 2, . . . , N + 1, at each time point t, is subjected

to contacts from the currently infective individuals Yt, at the time points of a non-

homogeneous Poisson process of rate hk(t; β, p) = βY p
t , where β > 0 and p ∈ [0, 1].

This specifies β as β = (β, p) and the all-to-one infection rate as hk(t; β, p) = βY p
t , for

individual k, k = 1, 2, . . . , N + 1. If a contacted individual is susceptible, at the time

of contact, they instantly become infective. All Poisson processes describing infection

contacts are assumed to be mutually independent and independent of the infectious

periods. The aggregation property of Poisson processes specifies the all-to-all infection

rate as h(t; β, p) = βXtY
p
t .

Likelihood and calculation of its terms As for the standard SIR model (see

the corresponding paragraph in section 1.3.5.5), the likelihood of the non-linear

infection rate SIR model is given by substituting its model-specific infection process

components, β = (β, p), hk(t; β) = βY p
t and h(t; β) = βXtY

p
t , to equation (1.15),

which is the likelihood derived under a general framework, common for all considered

models. Using the same notation as in section 1.3.5.2, the augmented likelihood of

the non-linear infection rate SIR model, based on observing data i and r, and for

56



general infectious period TD, is given by

π(r, i | p, β,φ, α, iα) = L1 × L2

=

(
n∏

k=1,k 6=α

βY p

i−k

)
× exp

(
−
∫ rn

iα

βXtY
p
t dt

)

×
n∏
k=1

fTD(rk − ik;φ).

(1.30)

For the purposes of this thesis the non-linear infection rate SIR model is considered

only for the case that infectious periods are Exponential (see section 2.8 for how this

assumption serves the purposes of this thesis) and it is denoted as Exp-NL. Hence,

the removal process part L2 of the likelihood (last line in equation (1.30) above) is

given by equation (1.12).

Evaluating the above likelihood in practice involves computing the terms Y p

i−k
, for

k = 1, 2, . . . , n, k 6= α, and
∫ rn
iα
XtY

p
t dt. The former term is simply calculated by first

calculating Yi−k
(as already described in the corresponding paragraph in section 1.3.5.5;

see equation (1.18)) and then raising to the power of p. The latter term is a bit less

straightforward. Recall that for the case of the standard SIR model, the method for

calculating the corresponding term,
∫ rn
iα
XtYtdt, makes use of the fact that the model

specifies the assumptions under which one-to-one contacts occur (see corresponding

paragraph in section 1.3.5.5). However, the non-linear infection rate model is not

specified in such a way (see the definition in the beginning of section 1.3.5.6) and

therefore an alternative method is used to calculate
∫ rn
iα
XtY

p
t dt. Specifically, by

ordering all event (infection and removal) times as iα = t1 < t2 < · · · < t2n = rn and

noticing that both Xt and Yt are piecewise constant, changing values only at event

times, the integral
∫ rn
iα
XtY

p
t dt can be calculated as

∫ rn

iα

XtY
p
t dt =

2n−1∑
k=1

XtkY
p
tk

(tk+1 − tk). (1.31)
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Bayesian inference and MCMC algorithm In this thesis, the power parameter

p is treated as known, whenever the Exp-NL is fitted to data (see section 2.8.1.3 for

more details on how such an approach serves the purposes of this thesis). Therefore,

from an inference standpoint, the infection process parameter reduces from β = (β, p)

to β = β. Considering also that the removal process parameter is φ = γ (see relevant

paragraph of section 1.3.5.2), equation (1.16) implies that the target posterior density

for the Exp-NL model is

π(β, γ, α, iα, i | r, p) ∝ π(r, i | p, β, γ, α, iα)π(β, γ, α, iα), (1.32)

where π(r, i | p, β, γ, α, iα) is the augmented likelihood, and it is given by equation

(1.30) (with the removal process part L2 in equation (1.30) being given by equation

(1.12)), and π(β, γ, α, iα) is the joint prior density of β, γ, α and iα.

As can be gauged from the expressions of their respective target posterior densities

(see equations (1.20) and (1.32)), the MCMC procedure for the Exp-NL model (when

p is assumed to be known) is nearly identical to that of the Exp-HM model (see

relevant part in section 1.3.5.5). Specifically, the prior assignment is exactly as for

the Exp-HM model while the full conditional distributions for the three components,

β, γ and (α, iα, i), are the same as for the Exp-HM model with the only difference

being that the terms A =
∫ rn
iα
XtYtdt and Yi−k

, are now replaced by ANL =
∫ rn
iα
XtY

p
t dt

and Y p

i−k
, respectively. That is to say that,

π(β | r, p, α, iα, i) ≡ Gamma (n− 1 + νβ, ANL + λβ)

π(γ | r, α, iα, i) ≡ Gamma
(
n+ νγ, B + λγ

)
,

(1.33)
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and

π(α, iα, i | r, p, β, γ) ∝

(
n∏

k=1,k 6=α

Y p

i−k

)
× exp (−βANL)

× exp (−γB)× exp(ξiαiα)1{iα<0},

(1.34)

Algorithm 8 gives the step-by-step procedure for conducing MCMC inference for the

Exp-NL model.

Algorithm 8 MCMC algorithm for the Exp-NL model

1. Suppose the current state is (β(s), γ(s), α(s), i
(s)
α , i(s))

2. Sample β(s+1) ∼ π(β | r, p, α(s), i
(s)
α , i(s)) ≡ Gamma

(
n− 1 + νβ, A

(s)
NL + λβ

)
using

a Gibbs step

3. Sample γ(s+1) ∼ π(γ | r, α(s), i
(s)
α , i(s)) ≡ Gamma

(
n+ νγ, B

(s) + λγ

)
using a Gibbs

step

4. Generate (α(s+1), i
(s+1)
α , i(s+1)) according to π(α, iα, i | r, p, β(s+1), γ(s+1)) using a

MH step as follows

(a) Choose one of the n ever-infected individuals, say k, as k ∼ U[1 : n]

(b) Propose a candidate infection time for individual k, say i∗k, as rk − i∗k ∼
Exp(γ(s+1))

(c) Calculate the acceptance ratio r = π(α∗,i∗α,i
∗|r,p,β(s+1),γ(s+1))

π(α(s),i
(s)
α ,i(s)|r,p,β(s+1),γ(s+1))

× q(rk−i
(s)
k )

q(rk−i∗k)
, where

π(α, iα, i | r, p, β, γ) is given by expression (1.34) and q(x) is the p.d.f. of a
random variable X ∼ Exp(γ(s+1))

(d) Set (α(s+1), i
(s+1)
α , i(s+1)) = (α∗, i∗α, i

∗) with probability 1 ∧ r; otherwise set

(α(s+1), i
(s+1)
α , i(s+1)) = (α(s), i

(s)
α , i(s))

5. Set the next state as (β(s+1), γ(s+1), α(s+1), i
(s+1)
α , i(s+1)).

Remarks When the population size goes to infinity, similar to the standard SIR

model (see the part regarding threshold behaviour in section 1.3.5.5), the non-linear

infection rate SIR model can be approximated by a simpler process. Specifically,
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for the case that infectious periods are Exponential, the number of infectives in the

population, for a non-linear infection rate SIR process, is approximated by a non-

linear birth-death process (see O’Neill and Wen (2012) for more details). Although

this approximation provides useful insights as far as the threshold effect of the model

for the case that the population size is infinite, for finite populations (as it is the case

in real-life applications) it is not obvious how any such effect can be characterized

in terms of model parameters (O’Neill and Wen, 2012). In particular, there is not a

natural way to define a basic reproduction type of parameter (i.e. a parameter which

can characterize any threshold effect) for the non-linear infection rate SIR model.

In the case that the power parameter p ∈ [0, 1] is set to 1, the non-linear infection

rate SIR model reverts to the standard SIR model. This remark is particularly useful

when it is of interest to distinguish between the two models (see section 2.8).

1.3.5.7 Two-level-mixing SIR model

The two-level-mixing SIR model (Ball et al., 1997) is a generalization of the standard

SIR model (see section 1.3.5.5) obtained by relaxing the homogeneity assumption

at the population level. More specifically, rather than assuming that individuals

in the population mix homogeneously, as is the case for the standard SIR model

(see section 1.3.5.5), the two-level-mixing model introduces heterogeneities in the

population by partitioning the population into social groups, such as households,

schools or workplaces and assuming that individuals mix at different rates within

and between groups. The motivation for incorporating the population structure into

the model is based on the idea that, given a population partitioned into groups, one

should expect that the rate at which individuals contact each other will typically be

much higher within a group rather than between groups and thus the structure of

the population can play a crucial role in facilitating the spread of the infection (Ball

et al., 1997).
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Definition As in section 1.3.5.1 consider a closed population consisting of C =

N + 1 individuals of which initially N are susceptible and 1 is infectious. Assume

additionally that the population is partitioned into l households, labelled as 1, 2, . . . , l,

with each household m consisting of Cm individuals, m = 1, 2, . . . , l, so that

C =
∑l

m=1Cm. Similarly to the standard SIR model and the non-linear infection

rate SIR model, the two-level-mixing SIR model follows the general framework of

sections 1.3.5.1 to 1.3.5.4 and, as explained in the first remark of section 1.3.5.4,

to define the model one needs to describe the assumptions of the infection process

(S → I) and specify its parameter vector and the all-to-one and all-to-all infection

rates. However, unlike the former two models, the two-level-mixing model does not

assume that the population is homogeneously mixing and thus the infection process

can not be described only at a population level. Specifically, the overall infection

process is described by two independent infection processes, one modelling contacts at

the population level (i.e. contacts between individuals in the population), referred to

as the global infection process and one explicitly modelling contacts at the household

level (i.e. within household contacts), referred to as the local infection process.

Therefore, to define the model one needs to describe the assumptions and specify

the components (the parameter and the all-to-one and all-to-all infection rates), of

both the global and the local infection processes. Just like in section 1.3.5.1, let Xt
and Yt be the set and Xt and Yt the number of susceptible and infective individuals

in the population at time t, respectively. In addition, let X L,m
t and YL,mt be the set

and XL,m
t and Y L,m

t the number of susceptible and infective individuals in household

m, m = 1, 2, . . . , l, at time t, respectively. The model is defined as follows.

S→ I Any infective individual makes (global) contacts with any other individual

in the population at the time points of a homogeneous Poisson process of rate βG;

βG is the one-to-one-global infection rate. This specifies the parameter of the global

infection process to be βG. Additionally, an infective individual makes (local) contacts

with any other individual in their household at the time points of a homogeneous
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Poisson process of rate βL; βL is the one-to-one-local infection rate. This specifies

the parameter of the local infection process to be βL. If a contacted individual is

susceptible, at the time of (global or local) contact, they instantly become infective.

All Poisson processes describing (global or local) infection contacts are assumed to be

mutually independent and independent of the infectious periods. The aggregation

property of Poisson processes specifies all the required infection rates as follows.

For the global infection process, the all-to-one and the all-to-all rate, referred to

as all-to-one-global and all-to-all-global rate, is hGk (t; βG) = βGYt, for individual k,

k = 1, 2, . . . , N + 1, and hG(t; βG) = βGXtYt, respectively. Similarly, for the local

infection process, the all-to-one and the all-to-all rate, referred to as all-to-one-local

and all-to-all-local rate, is hLk (t; βL) = βLY
L,mk
t , for individual k, k = 1, 2, . . . , N + 1,

in household mk ∈ {1, 2, . . . , l}, and hL(t; βL) =
∑l

m=1 βLX
L,m
t Y L,m

t , respectively.

Notice that, the global infection process of the two-level-mixing SIR model is identical

to the (overall) infection process of the standard SIR model (see the definition of the

standard SIR model in section 1.3.5.5). From this point of view, it is easy to see how

the two-level-mixing SIR model extends the standard SIR model by considering an

additional infection process, the local.

To avoid any confusion, it is highlighted that the term global infections (contacts)

refers to infections (contacts) occurring from the action of the global infection process

(i.e. from the action of the Poisson process of one-to-one rate βG or its aggregations)

and the term local infections (contacts) refers to infections (contacts) occurring from

the action of the local infection process (i.e. from the action of the Poisson process of

one-to-one rate βL or its aggregations). Note that, for a global infection (contact) the

individual initiating the contact and the contacted individual could be in the same

or different household, while for a local infection (contact) both individuals, the one

initiating the contact and the contacted one, must be in the same household.
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Likelihood and calculation of its terms To derive a likelihood it is possible to

work as for the previous models (see the relevant parts in sections 1.3.5.5 and 1.3.5.6)

and introduce the unobserved infection times i = (i1, . . . , iα−1, iα+1, . . . , in) and the

initial conditions α and iα. However, it is preferable, from an MCMC inference

standpoint (see the part on Bayesian inference and MCMC algorithm that follows), to

additionally introduce the unobserved infection types b = (b1, . . . , bα−1, bα+1, . . . , bn),

where bk = 1 or bk = 0, in the instance that the type of infection of ever-infected

individual k, k = 1, 2, . . . , n, k 6= α, is global or local, respectively; simply put, b is an

(n− 1)-dimensional vector signifying the type of infection (global or local) for every

(excluding the initial infective α) ever-infected individual k, k = 1, 2, . . . , n, k 6= α.

Such data augmentation scheme consists of i, α, iα and in addition b. The derivation

of this further augmented likelihood follows along the lines of the general framework,

as set in section 1.3.5.2, with the only difference being that instead of one infection

process, there are two (independent) infection processes involved, the global and the

local (see the model definition above). As a result, the likelihood is the product of

three parts, the global infection process part, say LG1 , the local infection process part,

say LL1 , and the removal process part L2. The removal process part is given, as in all

other cases, by equation (1.11). The infection process parts, LG1 and LL1 , both conform

to the general infection process framework, described by equation (1.10), and as a

result each one is given by substituting its particular components (parameter, all-to-

one rate and all-to-all rate), specified in the definition section above, into equation

(1.10). Thus the augmented likelihood of the two-level-mixing SIR model, based on
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observing data i, b and r, and for general infectious period TD, is given by

π(r, i, b | βG, βL,φ, α, iα) = LG1 × LL1 × L2

=

(∏
k∈IG

βGYi−k

)
× exp

(
−
∫ rn

iα

βGXtYtdt

)

×

(∏
k∈IL

βLY
L,mk
i−k

)
× exp

(
−
∫ rn

iα

l∑
m=1

βLX
L,m
t Y L,m

t dt

)

×
n∏
k=1

fTD(rk − ik;φ),

(1.35)

where IG = {k ∈ {1, 2, . . . , n}, k 6= α : bk = 1} is the set of ever-infected individuals

for which their infection type is global and similarly IL = {k ∈ {1, 2, . . . , n}, k 6=

α : bk = 0} is the set of ever-infected individuals for which their infection type

is local. To serve the purposes of this thesis the two-level-mixing SIR model is

considered using Exponential and constant infectious periods (see sections 3.3 and

2.9, respectively) and is denoted as Exp-2L and Constant-2L, respectively. For each

of the aforementioned cases, the removal process part L2 of the likelihood (last line

in equation (1.35) above) is given by equation (1.12) and (1.14), accordingly.

Regarding the evaluation of the above likelihood in practice, recall (see the model

definition above) that the global infection process part (second line in equation (1.35)

above) is identical to the overall infection process part of the standard SIR model and

thus its calculation is also identical; see the corresponding part of section 1.3.5.5 and

equations (1.18) and (1.19). The local infection process part (third line in equation

(1.35) above) can also be computed in a similar manner. More specifically, the terms

Y L,mk
i−k

and
∫ rn
iα
XL,m
t Y L,m

t dt are calculated in the same way as Yi−k
(see equation (1.18)),

and
∫ rn
iα
XtYtdt (see equation (1.19)) respectively, with the difference that, instead of

considering (the contribution of) all individuals in the population, one only considers

(the contribution of) the individuals in the household in question.
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As mentioned above, it is also possible to derive a likelihood for the model by

augmenting only i, α and iα (and not b). Specifically, using a similar line of arguments

as above, one finds that the augmented likelihood of the two-level-mixing SIR model,

based on observing data i and r, and for general infectious period TD, is given by

π(r, i | βG, βL,φ, α, iα) =

(
n∏

k=1,k 6=α

(
βGYi−k

+ βLY
L,mk
i−k

))

× exp

(
−
∫ rn

iα

βGXtYtdt

)
× exp

(
−
∫ rn

iα

l∑
m=1

βLX
L,m
t Y L,m

t dt

)

×
n∏
k=1

fTD(rk − ik;φ),

(1.36)

The above likelihood (equation (1.36)), and the further augmented likelihood

(equation (1.35)) can be substituted into equation π(b | r, βG, βL,φ, α, iα, i) =

π(r,i,b|βG,βL,φ,α,iα)
π(r,i|βG,βL,φ,α,iα)

, to identify that the full conditional distribution of b, is that of

an (n − 1)-dimensional random vector, u = (u1, . . . , uα−1, uα+1, . . . , un), where its

components, uk, are mutually independent Bernoulli random variables, taking values

uk = 1 or uk = 0 in the instance that the type of infection of individual k is global

or local, respectively, with P (uk = 1) =
βGYi−

k

βGYi−
k

+βLY
L,mk

i−
k

, k = 1, 2, . . . , n, k 6= α;

note that this result can equivalently be deduced using the aggregation property of

Poisson processes (see e.g. Ross (2009, proposition 5.4)). The standard form of the

full conditional distribution of b (and in particular, the fact that it is easy to sample

from it) is utilized in the MCMC algorithm, that follows right below.

Bayesian inference and MCMC algorithm While both the Exp-2L and

Constant-2L models are considered in this thesis, only the latter is used for the

purposes of MCMC inference (see section 2.9). For the Constant-2L model, where

the infection process parameter is φ = c (see relevant paragraph of section 1.3.5.2),
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the target joint posterior density of parameters and augmented data is expressed as

π(βG, βL, c, α, iα, i, b | r) ∝ π(r, i, b | βG, βL, c, α, iα)π(βG, βL, c, α, iα), (1.37)

where π(r, i, b | βG, βL, c, α, iα) is the augmented likelihood, based on observing data

i, b and r, and given by equation (1.35) (with the removal process part L2 in equation

(1.35) being given by equation (1.14)), and π(βG, βL, c, α, iα) is the joint prior density

of βG, βL, c, α and iα.

Following along the same lines as for the Constant-HM model (see corresponding

part of section 1.3.5.5), and assuming in addition a priori independence between βG

and βL, the joint prior density can be written as π(βG, βL, c, α, iα) = π(βG)π(βL)π(c)

and is specified as

βG ∼ Gamma(νβG , λβG)

βL ∼ Gamma(νβL , λβL)

c ∼ Exp(ψc).

Following the general MCMC algorithm (Algorithm 3), described in section 1.3.2.4,

the vector of interest is decomposed into three components, namely βG, βL and

(c, α, iα, i, b), which are updated according to their full conditional distributions.

Similar calculations as for the previous MCMC schemes yield that βG and βL have

standard full conditional distributions, and can thus be updated using Gibbs steps.

Specifically,

π(βG | r, c, α, iα, i, b) ≡ Gamma (nG + νβG , A+ λβG)

π(βL | r, c, α, iα, i, b) ≡ Gamma

(
nL + νβL ,

l∑
m=1

AL,m + λβL

)
,

(1.38)
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where A =
∫ rn
iα
XtYtdt is as in section 1.3.5.5, AL,m =

∫ rn
ialpha

XL,m
t Y L,m

t , and nG and

nL are the numbers of local and global infections, respectively. On the other hand,

(c, α, iα, i, b) has a non-standard full conditional distribution given by

π(c, α, iα, i, b | r, βG, βL) ∝

(∏
k∈IG

Yi−k

)
× exp (−βGA)

×

(∏
k∈IL

Y L,mk
i−k

)
× exp

(
−βL

l∑
m=1

AL,m

)

× 1{rk−ik=c, k=1,2,...,n} × ψc exp(−ψcc).

(1.39)

This component is updated using a MH step in a procedure that involves two parts.

The first part, proposes values for (c, α, iα, i); this is done in an identical way to how

values for (c, α, iα, i) are proposed in the MCMC scheme of the Constant-HM model

(see algorithm 7 and relevant part of section 1.3.5.5). The second part, proposes values

for b, conditioned on the already proposed values for (c, α, iα, i). More precisely,

given a current value of the infectious period, say c(s), a candidate value, say c∗, is

proposed as log(c∗) ∼ N(log(c(s)), σ2); in turn, candidate values, say α∗, i∗α and i∗,

are automatically proposed for the infection variables. Then, given c∗, α∗, i∗α and i∗,

values for b are proposed, according to the full conditional distribution of b, utilizing

the fact that it has a standard form, making it easy to sample from (see discussion

in the likelihood section right above). Note that, all of the terms Yi−k
, Y L,mk

i−k
, A,

AL,m, nG and nL, appearing in the expressions above, depend on (c, α, iα, i, b) and

thus their values must be informed accordingly at each update step of (c, α, iα, i, b).

Algorithm 9 gives the step-by-step procedure for conducing MCMC inference for the

Constant-2L model.

In the above algorithm, the tuning parameter σ2 is specified, using burn-in, in the

same way as for the Constant-HM model (see the relevant part of section 1.3.5.5).
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Algorithm 9 MCMC algorithm for the Constant-2L model

1. Suppose the current state is (β
(s)
G , β

(s)
L , c(s), α(s), i

(s)
α , i(s), b(s))

2. Sample β
(s+1)
G ∼ π(βG | r, c(s), α(s), i

(s)
α , i(s), b(s))

≡ Gamma
(
n

(s)
G + νβG , A

(s) + λβG

)
using a Gibbs step

3. Sample β
(s+1)
L ∼ π(βL | r, c(s), α(s), i

(s)
α , i(s), b(s))

≡ Gamma
(
n

(s)
L + νβL ,

∑l
m=1A

(s)
L,m + λβL

)
using a Gibbs step

4. Generate (c(s+1), α(s+1), i
(s+1)
α , i(s+1), b(s+1)) according to π(c, α, iα, i, b |

r, β
(s+1)
G , β

(s+1)
L ) using a MH step as follows

(a) Propose a candidate infectious period value, say c∗, as log(c∗) ∼
N(log(c(s)), σ2)

(b) Given c∗, α∗, i∗α and i∗, propose a candidate infection type vector, say b∗, as

b∗ ∼ π(b | r, β(s+1)
G , β

(s+1)
L , c∗, α∗, i∗α, i

∗)

(c) Calculate the acceptance ratio r =
π(c∗α∗,i∗α,i

∗,b∗|r,β(s+1)
G ,β

(s+1)
L )

π(c(s),α(s),i
(s)
α ,i(s),b(s)|r,β(s+1)

G ,β
(s+1)
L )

× q1(c(s)|c∗)
q1(c∗|c(s))

q2(b(s)|c(s),α(s),i
(s)
α ,i(s))

q2(b∗|c∗,α∗,i∗α,i∗)
, where π(c, α, iα, i, b | r, βG, βL) is given by

expression (1.39), q1(x | y) is the p.d.f. of a random variable X such that

log(X) ∼ N(log(y), σ2) and q2(b | c, α, iα, i) = π(b | r, β(s+1)
G , β

(s+1)
L , c, α, iα, i)

(d) Set (c(s+1), α(s+1), i
(s+1)
α , i(s+1), b(s+1)) = (c∗, α∗, i∗α, i

∗, b∗) with probability 1 ∧
r; otherwise set (c(s+1), α(s+1), i

(s+1)
α , i(s+1), b(s+1)) = (c(s), α(s), i

(s)
α , i(s), b(s))

5. Set the next state as (β(s+1), c(s+1), α(s+1), i
(s+1)
α , i(s+1), b(s+1)).

If one performs the MCMC inference, not as above but instead using the likelihood

of equation (1.36), that augments only α, iα and i, and not i (see e.g. Alharthi

(2016)), the full conditional distributions of βL and βG do not assume a standard form

(unlike above) and MH steps are required for their update, which invoke additional

calculations for the acceptance ratios and require tuning for the proposal distributions.
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Threshold behaviour and the basic reproduction number R∗ As mentioned

previously (see corresponding paragraph in section 1.3.5.5), it is typical for epidemic

models to demonstrate threshold behaviour. For the two-level-mixing model, similar

to the standard SIR model (see corresponding paragraph in section 1.3.5.5), in the

case that the population size is large, this behaviour can be both made precise,

by approximating the epidemic process with a suitable branching process, and also

characterized, via a basic reproduction number type of parameter, denoted as R∗,

so that a global outbreak occurs with positive probability if and only if R∗ > 1 (see

Ball et al. (1997) for all the details). Unlike the case of the standard SIR model,

where the basic reproduction number R0 is defined at the individual-to-individual

level (see corresponding paragraph in section 1.3.5.5), for the two-level-mixing model

it is defined at the household-to-household level. More precisely, R∗ can be loosely

defined as the average number of households infected by a typically infected household

in a totally susceptible population.

In the particular case that all household are of equal size CH , that is Cm = CH

for all households m, m = 1, 2, . . . , l, and the population size C becomes large in

such a way that the number of households l becomes large but the household size CH

remains fixed, R∗ has a simple expression given by

R∗ = µRG, (1.40)

where µ is the expected number of ever-infected individuals, including the initial

infective, of the within household epidemic (i.e. the household epidemic in which

only local infections occur) and RG is the basic reproduction number for the model

which all households are of size 1 (i.e. the standard SIR model for which only global

infections occur). In practice, µ can be computed by solving a system of triangular

equations (see Ball (1986)), while RG, being the basic reproduction number of a

standard SIR model with one-to-one infection rate βG, is calculated (using equation
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(1.29)) as

RG = NβGE(TD). (1.41)

Remarks In the case that βL = 0 or Cm = 1 for all m, m = 1, 2, . . . , l, the two-level-

mixing SIR model reduces to the standard SIR model. This remark is particularly

relevant when it is desired to distinguish between the two models (see section 2.9).

1.4 Literature review

This section reviews the relevant literature regarding both, model assessment methods

and Bayesian inference methods, for stochastic epidemic models.

1.4.1 Model assessment methods for stochastic epidemic

models

As mentioned in O’Neill (2010), the literature on model assessment methods for

stochastic epidemic models is not extensive. For instance, two classical references

for stochastic epidemic modelling, Bailey (1975); Andersson and Britton (2000), do

not present a procedure for assessing the fit of models based on temporal outbreak

data. An approach for doing so, based on model deviance, is given in another

standard reference, Becker (1989). The drawback is that the data were modelled

using generalized linear models, rather than stochastic epidemic models, and it was

also assumed that the times of infection and removal were observed for all individuals,

something not adopted in the context of this work where the more realistic case of

observing only removal times is considered (see section 1.3.4.2). Existing approaches

can broadly be divided into two (overlapping) main categories. The first, is based

on the idea of analyzing some sort of residuals and the second is based on posterior

predictive checking. The literature related to each of these type of approaches is

reviewed below.
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1.4.1.1 Residual tests

The residual technique revolves around the idea of constructing a set of stochastic

residuals, whose sampling distribution is known and independent of model parame-

ters, and then assessing the posterior distribution of the ‘reconstructed’ residuals for

consistency under the reference sampling distribution.

Streftaris and Gibson (2012) used Bayesian latent residuals to assess the fit of an SEIR

model (see section 1.3.4.1). The authors utilized the Sellke construction (Sellke, 1983),

an alternative but equivalent procedure for defining stochastic epidemic processes,

to formulate the model. That is, each of the N initially susceptible individuals is

independently assigned a critical level of exposure to infection (threshold) Qk ∼

Exp(1) and becomes infected at time ik = inf{t ≥ 0 : Qk =
∫ t

0
βYudu}, k =

1, 2, . . . , N , where β is the one-to-one infection rate and Yu the number of infective

individuals at time u. The authors generalized the thresholds as Qk ∼Weibull(ν, λ),

to allow dependence on the history of accumulation of infectious pressure. Then the

latent Bayesian residuals were defined as τk = FQ(qk), where FQ is the (common)

cumulative distribution function of Qk, k = 1, 2, . . . , N . Under the assumption of

correct model specification, the sampling distribution of τk is uniform on [0, 1], i.e.

τk ∼ U(0, 1), k = 1, 2, . . . , N . As the residuals depended on unobserved quantities,

the authors used MCMC methods to sample from their posterior distribution and

tested if the distribution of τ (s) = (τ
(s)
1 , τ

(s)
2 , . . . , τ

(s)
N ), at each MCMC iteration s,

was U(0, 1) by conducting a Kolmogorov-Smirnov test and recording the associated

p-value. The resulting distribution of p-values was used as the basis for assessing

the model’s fit, where the more the mass on smaller values the worse the fit. The

idea of Bayesian residuals was also previously employed in the work of Gibson et al.

(2006), where the spread of disease in plant populations was studied using percolation

stochastic models.
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A similar approach was taken by Jewell et al. (2009) to assess models applied to the

2001 Foot and Mouth epidemic data. The difference in this case, was that the residuals

were defined by utilizing a non-centered reparameterization (Papaspiliopoulos et al.,

2003) of the model. More specifically, after specifying the infectious period TD, of

each farm k, to be TD = rk− ik ∼ Gamma(ν, λ), where ik and rk the time of infection

and notification and k = 1, 2, . . . , n, where n the number of farms, the authors

reparameterized the infectious period as uk = λ(rk − ik) ∼ Gamma(ν, 1) in order to

break the a priori dependence between ik and λ and thus to improve the efficiency of

the MCMC algorithm. Throughout the analysis, a known shape parameter ν = 4 was

assumed yielding a known sampling distribution for the variables uk, k = 1, 2, . . . , n.

Utilizing this fact, the authors defined uk as the non-centered residuals and assessed

the fit of the model by examining if the posterior distribution of the uk, achieved

using MCMC samples, was in line with the reference Gamma(4, 1) distribution.

The residual technique was also extended to the spatio-temporal epidemic setting

by Lau et al. (2014) in order to assess the fit of an SEIR model. In the spatio-

temporal setting, interest is usually placed in the form of the spatial transmission

kernel function, given its importance in designing ring-culling strategies (Gibson

et al., 2018). Thus, the residual test was designed to detect misspecification of the

kernel function. The procedure was similar as in the previously mentioned references,

where the posterior distribution of the residuals, obtained using MCMC samples, was

compared to a U(0, 1) reference distribution. It should be noted that this example is

of less relevance to our setting, as the models in this thesis do not assume a spatial

structure.

Approaches based on residuals have computational appeal, since the residuals are

calculated within each iteration of the MCMC algorithm with minimal additional

cost. However they have the considerable drawback of heavily relying on information

imputed from the model. More specifically, as discussed in section 1.3.3.3, since the
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missing information is imputed from the model itself the tests have low power to

detect lack of fit, as the imputed values reinforce the assumptions of the model being

tested (Gelman, 2013; Gibson et al., 2018). Also, as with any approach that does not

focus on the observed data, the choice of which residuals to use is somewhat arbitrary

(O’Neill, 2010).

1.4.1.2 Posterior predictive checking

Many researchers have used the general notion of posterior predictive checking (see

section 1.3.3 and the references therein) to assess the fit of epidemic models (Gibson

et al., 2018).

Lekone and Finkenstädt (2006) used the final size as a test statistic, in their attempt

to assess a discrete time SEIR model fitted to Ebola outbreak data in the Democratic

Republic of Congo in 1995, while Gardner et al. (2011) concluded that the length of

the epidemic (the time of the last removal time) was the preferred statistic to assess

the fit of spatio-temporal individual-level models. However, it can be argued that

neither of these statistics utilize all observed temporal data information and fail to

consider all the dynamics of the process.

Potentially a more informative statistic is the infection curve (curve of the cumulative

number of infections as a function of time) as it incorporates temporal aspects of

the data. Posterior predictive checking using infection curves is conducted in the

same manner as for removal curves (see section 2.2.4.2); visually, by benchmarking

the observed infection curve on an envelope of infection curves simulated from the

posterior predictive distribution of the model. For example, Parry et al. (2014)

employed infection curves as a way of assessing the fit of a range of a spatio-temporal

models for the spread of Huanglongbing (HLB) virus in citrus orchards. Although

infection curves are an appealing way of assessing the fit of an epidemic model, they

are of less interest under the framework of this thesis, where the more realistic case of
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observing only removal times (with infection times being unobserved) is considered

(see section 1.3.4.2).

An example of a statistic that is based on observing only removal times is given

in the paper of Boys and Giles (2007). There, the authors fit an SEIR model with

time-dependent individual removal rates to two datasets on outbreaks of smallpox

and a respiratory disease. To argue for the importance of using time dependence,

the authors contrasted the marginal posterior predictive distributions of the kth (in

time order) removal time, for some chosen values of k, of a time-dependent and a

time-homogeneous model and compared them with the observed data. However,

assessment was only visual (box plots) and not quantitative; although this might be

suitable for the specific problem of deciding between two models with homogeneous

and inhomogeneous removal rates, more informative quantitative measures of fit are

necessary for general goodness of fit assessment.

More recent, and the closest to our framework, is the work of Alharthi (2016);

similar to our work the approaches developed were based on partially observed

data (removal data) and the emphasis was put on the use of the removal curve.

Alharthi (2016) suggested a two stage procedure for assessing the goodness of fit

of epidemic models, that applies posterior predictive checking on both the final

size and the removal data. At the first stage, the final size is assessed by visually

inspecting whether the observed final size falls within the high density regions of its

posterior predictive distribution. If the fit of the final size is adequate, the procedure

progresses to the second stage, where the temporal aspects of the data are assessed

using different Bayesian model assessment tools. More precisely, conditioning on

the same final size as the observed, replicated epidemic realizations are generated

under the posterior predictive distribution of the model. Letting θ be the model

parameter vector and robs = (robs1 , robs2 , . . . , robsn ) and rrep = (rrep1 , rrep2 , . . . , rrepn )

denote the time-ordered, observed and replicated removal times respectively, the
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employed tools were the Bayesian residuals (see e.g. Gilks et al. (1996); Gelman

et al. (2013)), defined as dk = robsk − E(rrepk ), where the expectation is taken over the

posterior predictive distribution, and two discrepancies (test quantities), namely the

χ2 discrepancy (see e.g. Gelman et al. (2013)) and the Freeman-Tukey discrepancy

(see e.g. Freeman and Tukey (1950)), defined as Dχ2(r,θ) =
∑n

k=1
(rk−E(rk|θ))2

var(rk|θ)
and

DFT (r,θ) =
∑n

k=1(
√
rk −

√
E(rk | θ))2, respectively, where the expectations and

variances are taken over the sampling distribution of the model under θ, for data

(observed or replicated) r = (r1, r2, . . . , rn). Then the fit is assessed visually, by

imposing the observed removal curve on a pack of replicated removal curves (using

additionally the mean removal curve and removal curves corresponding to the 2.5th or

the 97.5th quantile of the posterior predictive distribution) and quantitatively using

the sum of the squared Bayesian residuals (SSR) and the ppp-values associated with

the discrepancy measures. The advantage of this approach is that it attempts to use

all observed removal data information. Simulation studies showed that the method

could distinguish the true model between epidemic models with different infection

mechanisms. Nonetheless, the approach also has important drawbacks. For instance,

the tools used were designed to be applied to independent data settings; as discussed

in section 2.2.2 Gelman et al. (2013, chapter 6) defines Bayesian residuals in the

context of regression modelling, as a generalization of classical residuals, and thus

directly applying them to the highly correlated epidemic data is questionable. Also,

calculation of the two discrepancy measures is computationally intensive; besides

the cost associated with conditioning on the same final size as the observed when

creating replicated epidemic realizations under the posterior predictive distribution,

there is increased cost required for calculating the terms E(rk | θ) and var(rk | θ),

as for each chosen posterior value θ(s) an additional collection of realizations must

be simulated from the model, conditioning on the same final size as the observed.

Moreover, although the SSR is a quantitative measure of model fit, it can only be

used relatively and it is rather uninformative on its own. For example, suppose that

two epidemic models, A and B, are considered and SSR for model A is 100 and for
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model B is 200. We may conclude that model A is a better fit than model B but

we can not be sure if any of the two models actually adequately fits the data, i.e.

SSR appears to be a measure more suited for model comparison rather than model

assessment. Lastly, a general limitation was that the simulations studies conducted,

to investigate the performance of the approach, were not extensive.

Based on the literature, it is evident that there is significant scope for innovation

and more informative measures of fit, that can be routinely used by practitioners in

the field, are needed.

1.4.2 Bayesian inference methods for stochastic epidemic

models

Bayesian inference methods have been widely used for statistical analysis of stochastic

epidemic models. One of the main reasons for this is that the Bayesian framework,

offers a natural way of dealing with the problem of partial observation (typically

encountered in stochastic epidemic models) by treating unobserved data as additional

unknown variables. Then Bayesian inference for the model parameters can be

performed by sampling from a posterior distribution consisting of both model

parameters and unobserved data, via an MCMC algorithm. As mentioned in section

1.1, the challenge in the implementation of such methods, and the relevant aim of this

thesis, is to come up with MCMC algorithms that can efficiently update components

consisting of unobserved data, as such components are typically of high dimension

and thus quite prone to mixing issues. To this end, the proceeding literature review

is focused on the different existing methods used to update unobserved data.

O’Neill and Roberts (1999) and Gibson and Renshaw (1998) were the first to use

data augmentation MCMC methods in the context of stochastic epidemic modelling.

In O’Neill and Roberts (1999), the methodology was developed and illustrated on
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the standard SIR model with Exponential infectious periods, with the unobserved

data being the infection times of individuals, a setting very similar as to the one of

this thesis (see for example section 1.3.5.5 further above). To update the infection

component, assuming the epidemic was still in progress, a MH step was used,

proposing to perform one of the following three moves, with equal probability. One,

to add an infection time. Two, to remove an infection time. Three, to change one of

the infection times. For any one of these moves, the associated individual was chosen

uniformly at random and for moves one and three, where an infection time must

be proposed, the proposed infection time was chosen from a uniform distribution

on the interval of all possible values. Note that, if the epidemic is known to have

ceased, only move three is possible. Essentially the same method for updating was

used in Gibson and Renshaw (1998), with the only minor difference being that it

was developed for an SEIR model, although again illustrated on an SIR model. This

proposal mechanism, or some variation of it, has since been employed in many cases

in the relevant literature (see e.g. Auranen et al. (2000); Britton and O’Neill (2002);

Cauchemez et al. (2004); Streftaris and Gibson (2004b); O’Neill and Wen (2012)).

O’Neill and Becker (2001) used an alternative procedure for proposing infection

times, based on a model-driven independent proposal distribution. This procedure

has already been described in detail for a general model of this thesis, in section

1.3.5.3 and Algorithm 4. In the relevant reference, the authors considered an

SEIR model featuring fixed and known exposure periods, Gamma(ν, λ) distributed

infectious periods and randomly varying heterogeneity among susceptibles. As in

the setting of this thesis and that of O’Neill and Roberts (1999) (see previous

paragraph), the unobserved data were the infection times of individuals. The

infection times were updated by choosing one of the ever-infected individuals, say

k, uniformly at random, and proposing a candidate infection time for k, say i∗k, as

rk − i∗k ∼ Gamma(ν(s+1), λ(s+1)), where rk the observed removal time of individual k

and ν(s+1) and λ(s+1) the current values of ν and λ in the MCMC algorithm. Such type

77



of proposal schemes, which update one unobserved data point at a time, using model-

driven proposal distributions (i.e. using as proposal distributions the corresponding

sampling distributions of the model), are very commonly employed in the stochastic

epidemic context (see e.g. Neal and Roberts (2004); Knock and Kypraios (2014);

Alharthi (2016); Stockdale et al. (2017); Kypraios and O’Neill (2018)). It is noted

that, proposal schemes that update one unobserved data point at a time, such as the

ones described in the present and previous paragraph, have the appeal of typically

being relatively easy to perform in practice. However, it is not hard to see how they

can become very inefficient in cases that the dimension of the unobserved data is large

(O’Neill, 2010).

Neal and Roberts (2005); Kypraios (2007); Jewell et al. (2009) utilized non-

centered parameterizations (Papaspiliopoulos et al., 2003) to update unobserved data

components. In a non-centered parameterization, the model is reparameterized so

that the a priori (structural) dependence between model parameters and unobserved

data, typically encountered in epidemic models, is broken. The intention behind

such an approach is to make the model parameters of interest, less susceptible to

inheriting mixing issues from components consisting of unobserved data. For example,

consider a standard SIR model with Gamma(ν, λ) distributed infectious periods,

based on observing individual removal times and not infection times, and let rk and

ik be the removal and infection time of individual k, k = 1, 2, . . . , n. Unlike the

usual (centered) parametrization, that expresses the infectious period of individual

k, k = 1, 2, . . . , n, as rk − ik ∼ Gamma(ν, λ), the non-centered parameterization

(see e.g. Jewell et al. (2009)), expresses the infectious period of individual k as

rk− ik = uk/λ, or equivalently writes uk = λ(rk− ik), where uk ∼ Gamma(ν, 1); thus

breaking the structural dependence between ik and λ. Under such formulation, all

infection times are updated at once, at the update step of λ, as updating λ (typically

via a MH step using a dependent Normal proposal distribution centred around the

current value) automatically updates all the infection times as well; this is because
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the model assumes that rk− ik = uk/λ. However such an updating scheme maintains

a given ratio between the infectious periods of individuals and therefore a partially

non-centered algorithm, where only some of the infection times are updated with

λ, was found to be more efficient (Neal and Roberts, 2005; Kypraios, 2007). This

partially non-centered algorithm, at each MCMC iteration, randomly partitions the

ever-infected individuals into two sets, say U and C. Then, for any individual k ∈ U ,

as for the non-centered algorithm, one writes uk = λ(rk − ik) ∼ Gamma(ν, 1) and

updates ik by updating λ, but for any individual k ∈ C, one updates ik according

to the model-driven proposal distribution used in O’Neill and Becker (2001) (and

described in section 1.3.5.3 and Algorithm 4) that proposes its candidate infection

time i∗k as rk− i∗k ∼ Gamma(ν(s+1), λ(s+1)), where ν(s+1) and λ(s+1) the current values

of ν and λ in the MCMC algorithm. Although, as already mentioned, the partially

non-centered algorithm was found to work well, as stated in Xiang and Neal (2014),

it is difficult to tune optimally in terms of how to partition individuals into U and C.

The MCMC algorithms in Neal and Roberts (2005); Kypraios (2007) also make use

of parameter reduction. In this context, parameter reduction refers to, when possible,

analytically integrating out parameters from the target posterior distribution in order

to make the target space smaller and less difficult to explore. For example, in the

case of the standard SIR model with Gamma(ν, λ) infectious periods, it is possible

to integrate out the one-to-one infection rate parameter β (see e.g. Neal and Roberts

(2005)) or β and in addition λ (see e.g. Xiang and Neal (2014)). The appeal of

these techniques is that they are easy to implement; samples from the posterior

distribution of an integrated out parameter can easily be achieved by sampling from

its respective known form full conditional distribution, conditioned on the already

sampled values of the remaining components. A drawback however, is that typically

the only parameters that can be analytically integrated out are model parameters

and not unobserved data. Therefore, the reduction in dimension is very small.
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Xiang and Neal (2014) developed an MCMC algorithm that updates many infection

times at a time, in a block update step. This algorithm plays an important role

for the purposes of this thesis and all of its features will be described in detail in

section 4.3.1. The fundamental idea according to which infection times are proposed

is the same as that in O’Neill and Becker (2001) (see section 1.3.5.3 and Algorithm

4 for a detailed description) where infection times are proposed using a model-driven

proposal distribution. The difference, is that in O’Neill and Becker (2001) infections

are accepted or rejected one at a time, whereas in Xiang and Neal (2014) as a block.

The algorithm of Xiang and Neal (2014) also makes use of parameter reduction and

a tuning procedure for optimally choosing the block step size (i.e. the number of

infections to block update). Arguably, the algorithm of Xiang and Neal (2014) has

shown to be the most successful in mitigating the mixing issues related to unobserved

data. However, the algorithm is not without limitations as the block step size is

typically chosen to be relatively small. For example, when the algorithm was applied

(Xiang and Neal, 2014) to a foot and mouth disease dataset of 1021 infections, optimal

algorithm performance was achieved for block step sizes around 16 and no proposed

moves were ever accepted for block step sizes larger than 64.

Overall, although some of the existing methods have managed to offer welcome

improvements, the mixing issues caused by the high-dimensionality of the unobserved

data still persist and more efficient MCMC algorithms are required.
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Chapter 2

Posterior Predictive Checking for

SIR Models Based on Removal

Data

2.1 Introduction

2.1.1 Chapter motivation and aims

Posterior predictive checking (see section 1.3.3 and the references therein) is an

intuitive, natural and potentially very useful way to assess a model’s fit within a

Bayesian framework. As seen in section 1.4.1.2, posterior predictive checking has

not been employed to its full potential within the stochastic epidemic context and

more informative measures of fit, that would allow routine use by practitioners in

the field, are needed. The main aim of this chapter is to use the posterior predictive

distribution and derive quantitative measures of fit based on partially observed data.

The focal point of the methods developed are disease progression curves (removal

curves), that utilize all the information in the observed data and are independent

of unknown quantities (see section 2.2.4.2). More specifically, the goal is to define

model assessment methods based on removal curves (the observed data) and examine
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their performance via simulations. The intention is to maximize the power of these

methods by acknowledging the peculiarities of the epidemic setting and tailoring the

methods around it.

All runs and plots in this chapter are produced using the statistical programming

language R Core Team (2019).

2.1.2 Chapter layout

Section 2.2 explains how the peculiarities of the epidemic setting can complicate

posterior predictive checking and motivates the need for their consideration.

Section 2.3 describes a procedure for distinguishing between minor and major

outbreak realizations, given the posterior predictive distribution of an epidemic model;

a task that can potentially help in substantially reducing the computational cost when

producing data from the posterior predictive distribution of the model.

Section 2.4 introduces an approach that aims to alleviate the undesired high

stochasticity of simulated removal curves and improve the performance of any model

assessent procedure that is based on removal curves. This is done by time shifting

each replicated removal curve by a suitably chosen constant.

Sections 2.5 and 2.6 define two novel posterior predictive checking methods, based

on removal curves. The first method (section 2.5) revolves around the natural idea

of defining a distance between removal curves and using it as a test statistic. The

second method (section 2.6) assesses the plausibility of the observed removal curve,

under its posterior predictive distribution, pointwise, at suitably chosen time points.

Sections 2.7, 2.8 and 2.9 examine the performance of the methods in assessing the
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infectious period, the infection rate form and the population mixing assumptions of

SIR models, respectively, via the use of three extensive simulation studies.

Finally, section 2.10 highlights the main accomplishments of this chapter, gives the

limitations and discusses general remarks and further work.

2.2 Preliminaries

Epidemic data are endowed with inherent difficulties which complicate any model

assessment procedure. As a result, before any methods for posterior predictive

checking of epidemic models are designed, implemented and interpreted, an un-

derlying appreciation of the peculiarities of the setting should be developed. This

section highlights these peculiarities and pinpoints, wherever relevant, how existing

approaches fall short in acknowledging them.

2.2.1 Partial observation

Under the framework assumed in this thesis (see section 1.3.4.2) large parts of the

epidemic process are not observed; removal times are observed while infection times

remain unobserved. Given this, there are two possible routes one can follow. The first

route is to choose to work only with the available removal data and use test statistics.

The second route is, as discussed in section 1.3.3.3, to impute the unobserved infection

times and use test quantities. Both of the approaches would inevitably be affected

by power issues; the first due to restricting to the information available from the

observed data while the second due to reinforcing the model being tested (Gibson

et al., 2018). Gelman (2013) recommends that measures that depend on unknown

quantities should be avoided unless the amount of imputed information contained in

them is very small; he illustrates this by a toy example where the imputation of a

high-dimensional unobserved variable completely discards any power from the test
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quantity in question to assess the fit, making the test essentially unusable. Taking

into account that, under the assumed framework, the infection times are of equal

dimension as the removal times, the approach taken in this work is to avoid test

quantities that depend on the unobserved infection times and restrict to the use of

test statistics that depend only on the observed removal times.

2.2.2 Not independent data

Epidemic data are highly correlated (see section 1.3.4.2). This means that model

assessment measures that are constructed to suit independent data settings are not

directly usable in the epidemic context. For example, Alharthi (2016) employed

two commonly used posterior predictive distribution measures as a way of assessing

the fit of epidemic models; Bayesian residuals (see e.g. Gelman et al. (2013)) and an

overall goodness of fit test quantity, the χ2discrepancy (see e.g. Gelman et al. (1996)).

Although these measures appear to work in practice, they are designed to be applied to

independent data settings; Gelman et al. (2013, chapter 6) defines Bayesian residuals

in the context of regression modelling, as a generalization of classical residuals. Hence

directly applying them to epidemic data is fundamentally questionable.

2.2.3 Single realization

Real-life epidemics are realized once, i.e. there is lack of replication. Consequently,

the variability of a fitted model can not be assessed; a model’s data generating process

could be more, less or as stochastic as the true data generating process but there is

no possible way of assessing that aspect of the data. Although there is little one can

do regarding this peculiarity, it is important to acknowledge the implications it can

have in the assessment of other aspects of the data.

To illustrate this, a single realization example is considered in the simplest of settings.

Let N(µ, σ2) denote a Normal distribution with mean µ and variance σ2. Suppose
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that a single data point yobs is observed, where the true data generating distribution

is N(10, 1). Two models are considered, M1 and M2, such that yobs ∼ N(µ, σ2
k),

where µ unknown and σ2
k known, and prior distribution µ ∼ N(0, s2

k), for each

Mk, k = 1, 2. Simple analytic calculations reveal that the posterior predictive

distribution of a replication yrep under Mk, is N(η, τ 2
k ), where η =

s2k
s2k+σ2

k
yobs and

τ 2
k = σ2

k+
s2kσ

2
k

s2k+σ2
k
, k = 1, 2. Suppose that the test statistic of choice is the sample mean,

which in this case (single observation) reduces to the identity function T (y) = y for

data (observed or replicated) y; hence the ppp-value for Mk (see equation (1.8)) is

Φ(y
obs−η
τk

), k = 1, 2, where Φ denotes the cumulative distribution function of a random

variable Z ∼ N(0, 1). Setting σ2
1 = s2

1 = 1 and σ2
2 = s2

2 = 50 yields that the posterior

predictive distributions for M1 and M2 are N(y
obs

2
, 1.5) and N(y

obs

2
, 75) respectively

and the corresponding ppp-values are Φ( y
obs

2
√

1.5
) and Φ( y

obs

2
√

75
). Comparing the posterior

predictive distribution of the two models with the true data generating distribution

one would perhaps expect that the ppp-values for the sample mean assessment would

be the same; the models have the same posterior predictive mean. However, model

M1 has a ppp-value very close to 1 and model M2 from 0.66 to 0.72 for all possible

yobs that can come from the true data generating distribution N(10, 1). This is a

typical example of what was discussed in section 1.3.3.4, that it is not necessary that

a good ppp-value implies goodness of fit for the aspect of the data under assessment.

More accurately, in this case the satisfactory ppp-value for M2 is not a real reflection

of adequate fit but rather an inability to claim lack of fit due to the high variance of

the model; for the less variable model M1 the test has enough power and detects lack

of fit. This weakened interpretation of the ppp-value is a direct implication of the

single observation setting; if instead of a single observation a sample of observations

was available, one would be able to assess the sample variance also and then the lack

of fit of M2 would be exposed.

Transferring this information to the epidemic setting, it should be expected that

misspecified models would be harder to discard the more stochastic they are (as long
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as the stochasticity of the posterior predictive distribution is inherited by the test

statistic in question).

2.2.4 Scalar and time-statistics

In the usual random variable setting one can work with test statistics (or test

quantities) which are scalar functions. However epidemic processes are stochastic

processes and hence it is sometimes more natural and informative to consider non-

scalar statistics that are functions of time; we refer to those as time-statistics.

2.2.4.1 Final size and duration

Final size and duration are the most commonly used scalar test statistics in the

literature (see e.g. Gardner et al. (2011); Lekone and Finkenstädt (2006)). Let

r = (r1, r2, . . . , rn) denote an n-dimensional time-ordered vector of (observed or

replicated) removal times. The final size of the epidemic is defined as the number

of initially susceptible individuals that ultimately become infected, Tfs(r) = n − 1

(Andersson and Britton, 2000, chapter 2). The duration of the epidemic is the time

elapsed between the first infection and the last removal (Andersson and Britton,

2000, chapter 4); to avoid dependence on unobserved infection times, we modify

its definition slightly to be the time between the first and the last observed event,

Tdur(r) = rn − r1. The obvious advantage of using these statistics (or any scalar

statistic T such that T : r ∈ Rn 7→ T (r) ∈ R) is that the usual posterior predictive

checking procedure (as described in section 1.3.3.1) can be implemented, allowing both

visual (histogram) and quantitative assessment (ppp-value). The drawback is that

although these statistics represent useful aspects of the data, their non dependence on

time prevents them from utilizing all the available temporal data information, such

as the progression dynamics of the process.

This can be illustrated by fitting a homogeneous Poisson process (HPP) model
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to removal data generated from a standard SIR model and conducting posterior

predictive checking using the final size and the duration. Let ρ denote the rate

of the HPP, according to which removal times are assumed to occur, and let [Ton, Toff]

denote the time window which the HPP takes place, and note that ρ, Ton and Toff are

unknown parameters that are estimated from the data (the definition, the likelihood

and the procedure to fit the HPP using MCMC methods is given in the Appendix

B.1). Note that, the HPP is a highly misspecified model for such data and it is only

used to make the point in question. More specifically, the HPP does not consider

infection events and assumes that removals occur at a constant rate ρ, unlike the

standard SIR model that assumes that removals occur at a rate that varies with

time; infections occur at an overall (all-to-all) rate of βXtYt, where β, Xt and Yt as

in section 1.3.5.5, and removals are an i.i.d. shift of the infections (see the remark

in section 2.2.4.2 right below). Despite these facts, the HPP typically captures final

size and duration quite accurately when fited to data generated from a standard

SIR model (see figure 2.1 for an example). This clearly suggests that final size and

duration are not adequate statistics for assessing overall lack of fit; if one was to

restrict overall model assessment to the assessment of final size and duration, they

would have no evidence at all to doubt the adequacy of the HPP fit to such data.

2.2.4.2 Removal curve

The removal curve is a frequently used time-statistic to assess disease progression

dynamics, when only removal data are available (Gibson et al., 2018). It is defined,

as the cumulative number of removals at time t, that is zt(r) =
∑n

k=1 1{rk≤t}, where

r, as above, is the removal times vector. The important thing to note is that, unlike

final size and duration, zt is not scalar. More precisely, zt : r ∈ Rn 7→ zt(r) ∈ L,

where L the space of right continuous, non-decreasing, Z≥0-valued functions of

t ∈ R. Assessment based on removal curves can be conducted visually by imposing

the observed removal curve on a pack of removal curves drawn from the posterior

predictive distribution of a fitted model (Gibson et al., 2018). The advantage of
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using the removal curve statistic is its higher power compared to scalar statistics. For

instance, unlike final size and duration, removal curves clearly expose the fit of a HPP

model to removal data for its inability to capture the disease progression dynamics

(see figure 2.1 for an example). The caveat though is that, unlike R, L is not an

ordered space and a quantitative measure of fit is not obviously defined; in the scalar

statistics case the ppp-value (tail-area probability) is defined by implicitly utilizing

the order of R (see equation (1.8)).

Elaborating on the point regarding the information that is contained in the removal

curve statistic, it is easy to see that given zt, for t ∈ R, one can fully retrieve the

removal data vector r; this is because the removal curve takes non-negative-integer

values, only has positive jumps of size 1 at each removal time point and remains

constant elsewhere. So the removal curve statistic can actually be seen as the data.

From a stochastic process point of view this makes perfect sense as the removal curve

zt is in fact a realization (sample path) of the removal process {Zt}t∈R, where for each

t, Zt is the number of removed individuals in the population at time t. This property

of the removal curves is vitally important and is what essentially establishes them as

the focal axis of the methods developed in this chapter.

A useful remark to be made concerns the relationship between the removal curve

and the infection curve, defined as the cumulative number of infections as a function

of time. Recall from section 1.3.5, that within our assumed framework, removal times

are an i.i.d shift of (the unobserved) infection times, i.e. rk−ik
i.i.d.∼ TD, k = 1, 2, . . . , n,

using the notation of section 1.3.5.2. This implies that the removal curve can be seen

as an i.i.d shift (proxy) of the (unobserved) infection curve with the amount of noise

that is introduced in the shift being higher, the more uncertain the infectious period

distribution is.
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Figure 2.1: Example of posterior predictive checking where the final size and the
duration fail to detect lack of fit and the removal curve does, for a clearly misspecified
model. Fitted model is a HPP to removal data generated from an Exp-HM model
(N = 250, R0 = 2 and γ = 0.1). Top left plot is the histogram of 500 replications from
the posterior predictive distribution of the final size T repfs with the observed value of

the final size T obsfs = 181 (black, dashed line) imposed. The ppp-value is 0.5. Top right
plot is the histogram of 500 replications from the posterior predictive distribution of
the duration T repdur with the observed value of the duration T obsdur = 110.3 (black, dashed
line) imposed. The ppp-value is 0.48. Bottom plot is the plot of 500 replications from
the posterior predictive distribution of the removal curve (conditioned on having the
same final size as the observed) zrept with the observed removal curve zobst (black, solid
line) imposed.

2.2.5 Matched and unmatched removal curves

When employing removal curves for posterior predictive checking it is not obvious if

one should allow replications of varying final size or condition on replications that have

the same final size as the observed data; replications that are conditioned on having

the same final size as the observed data are referred to as matched and replications of
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varying final size as unmatched. The decision should be made based on practitioner

preference and computational cost. For example, if a practitioner is interested in

checking if a model can reproduce the observed disease progression dynamics based

on the same final size, then matched removal curves should be used. Typically, this

is what is done in the literature; such a decision can be accompanied by assessing

the final size separately (see e.g. Alharthi (2016)). The drawback in this case is that

creating matched replications is computationally expensive as before matching occurs

many replications are discarded; to achieve matching rejection sampling is used. A

different practitioner might be more inclined to check if a model can reproduce the

observed disease progression dynamics while the final size is allowed to vary. The

obvious appeal of this approach is that the computational cost of creating matched

replications is avoided. Another potential advantage is that unmatched replicated

removal curves could also incorporate information for the final size in the assessment

and thus could be used as an omnibus goodness of fit statistic (that would assess the

final size and disease progression dynamics simultaneously). The caveat though is

that it is dubious if such information would be effectively incorporated; e.g. using

unmatched removal curves could potentially decrease power from assessing disease

progression dynamics.

Although the idea of using unmatched removal curves might appear too ambitious

it has appealing reasons to be considered. It is also interesting to compare if and

how any developed approaches differ when based on matched or unmatched removal

curves. Thus the methods of this chapter are intended to be applicable to both

matched and unmatched replications.

2.2.6 High stochasticity of removal curves

The intended derivation of assessment procedures based on removal curves is

obstructed by a feature that they possess. Loosely, the removal curve is determined by
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two components, its shape and its location in time. The issue arises from the fact that,

for epidemic models, the latter component is ‘very stochastic’, to the point that the

sampling or the posterior predictive distribution of the removal curve is clouded and

monopolized by this type of noise. This downgrades the ability to extract meaningful

conclusions in a visual or any potential quantitative assessment. More specifically, the

power to detect lack of fit for a misspecified model is low since the pack of replicated

removal curves is often too wide for the observed removal curve to appear implausible.

The phenomenon is apparent even in instances of clear misspecification, such as fitting

a standard SIR model to data generated from a HPP. Figure 2.2a illustrates one such

example; in this case the replicated removal curves have a different shape than the

observed (due to the misspecified process dynamics) but the (posterior predictive

distribution) noise, around their location in time, prevents that aspect from being

revealed. At the same time, this peculiarity has undesired implications in the cases

that the epidemic model is correctly specified as well. More precisely, even for large

datasets, it happens rather frequently that the fit of an epidemic model appears

dubious when fitted to data generated from itself. One such example is given in

figure 2.2b; in this instance the replicated removal curves have very similar shape

as the observed (due to the correctly specified process dynamics) but the (sampling

distribution) noise, around the location in time of the observed curve, places the

observed removal curve on the tails of the replicated pack. Currently, no approaches

in the literature acknowledge or adjust for this feature.

2.3 Cutoff for major outbreaks

A challenge in the attempt to use unmatched removal curves in posterior predictive

checking arises from the fact that epidemic models frequently demonstrate threshold

behaviour which, as already mentioned in section 1.3.5.5, roughly means that during

the course of an epidemic, either a few individuals are infected (minor outbreak), or

a fairly large number are infected (major outbreak). From an inference standpoint,
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Figure 2.2: Plots of 500 matched replications from the posterior predictive
distribution of the removal curve (conditioned on having the same final size as
the observed) zrept with the observed removal curve zobst (black, solid line) imposed.
(a) Example where the (posterior predictive distribution) noise around the location
in time of the replicated removal curves results in low power to detect a clearly
misspecified model. Fitted model is a Gamma-HM model (ν = 10) to data generated
from a HPP (ρ = 1, Ton = 0, Toff = 170). (b) Example where the (sampling
distribution) noise around the location in time of the observed removal curve results
in doubting the fit of a correctly specified model. Fitted model is a Gamma-HM
model (ν = 10) to data generated from a Gamma-HM model (N = 1000, R0 = 2.5,
ν = 10, λ = 1).

interest lies in major outbreaks and not epidemics that die out quickly, since for the

latter parameter estimation is far less informative. As a result, one can not simply

use the (unconditional) posterior predictive distribution when creating unmatched

replicated removal curves and a way to condition on major outbreaks is desired.

To this end, the purpose is to set a cutoff C such that replications with final size

smaller than C are classified as minor outbreaks (and the remaining replications as

major outbreaks). Explicitly defining minor and major outbreaks (and distinguishing

between them) is not obvious. The task would perhaps be simpler if it was

to be executed on the sampling distribution rather than the posterior predictive

distribution. For example, for the standard SIR model, where minor and major

outbreak probabilities can be both defined and calculated, using the threshold limit

theorem (see section 1.3.5.5), a natural approach would be to choose C such that the
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minor and major outbreak probabilities correspond to those implied by the theorem.

However, similar explicit results are not available for all epidemic models (see the

relevant remark in section 1.3.5.6 for the non-linear infection rate SIR model) and

more importantly, any such results concern the sampling distribution of a model and

not its posterior predictive distribution. Thus a different approach for choosing C is

required.

Suppose that an SIR model has been fitted to removal data robs and a sample

{T rep
(1)

fs , T rep
(2)

fs , . . . , T rep
(S)

fs }, from the posterior predictive distribution of its final size,

has been achieved. Denote as f̂T repfs
the empirical probability mass function (e.p.m.f.)

associated with the above sample. What seems as a sensible way to choose C, is to

start from the mode of the minor outbreak part at 0 and move to the right (i.e. make

steps to the right) until the e.p.m.f. first starts strictly increasing. To account for

the fact that in a given sample a strictly increasing step might occur by chance it

is required for the e.p.m.f. to be strictly increasing for more than one consecutive

steps; in practice two consecutive steps appear to suffice. That is, the cutoff is set

at C = min{trepfs ∈ {0, 1, . . . , N} : f̂T repfs
(trepfs + 1) − f̂T repfs

(trepfs ) > 0 and f̂T repfs
(trepfs +

2) − f̂T repfs
(trepfs + 1) > 0}. Then, unmatched (major outbreak) removal curves can

be generated form the posterior predictive distribution, conditioning on them having

final size greater or equal than C.

It is noted that, the same procedure can be repeated by requiring non-decreasing steps

instead of strictly increasing steps, i.e. by setting the cutoff to be equal to min{trepfs ∈

{0, 1, . . . , N} : f̂T repfs
(trepfs +1)− f̂T repfs

(trepfs ) ≥ 0 and f̂T repfs
(trepfs +2)− f̂T repfs

(trepfs +1) ≥ 0}.

This latter approach places the cutoff at the right tail of the minor outbreak part, as

opposed to the former approach, which places the cutoff at the left tail of the major

outbreak. In cases where the minor and major outbreak parts are well separated

there is not much difference, but in more ‘difficult’ cases, where the minor and major

outbreak parts are less clearly separated, it is preferable to classify the ‘in between’
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replications as minor outbreaks, in order to avoid any chance of introducing noise in

the assessment. For this reason, the first of the two cutoffs (i.e. the one requiring

strictly increasing steps) is used in this thesis. A visual appreciation on where the

two cutoffs typically lie, with respect to the posterior predictive distribution of the

final size, is given by the example in figure 2.3.

Our procedure for choosing the cutoff was inspired by Demiris and O’Neill (2006).

There, the authors used a similar way to separate minor from major outbreaks, in

the sampling distribution of the final size, as an attempt to assess the accuracy of

the branching process approximation (see section 1.3.5.5) regarding the calculation

of the minor outbreak probability in standard SIR models. More specifically, starting

from the mode of the minor outbreak part and moving to the right, the decision was

to choose C as the first value such that the next value had probability less than some

chosen ε > 0 (the choice was ε = 10−3). To avoid the potential sensitivity in the

choice of ε in datasets where the minor and the major outbreak part are not clearly

separated, and allow routine use in simulation studies our approach was modified as

described in the paragraph above.

2.4 Time shifting of removal curves

Given the issue with the high stochasticity around the location in time of a removal

curve (see section 2.2.6) any assessment based on removal curves could be rather

uninformative if not misleading. Thus, interventions capable of alleviating this

problem are required.

2.4.1 Theoretical heuristics

Before deciding on any such intervention it is important to develop a heuristic

understanding of the theory behind the cause of this feature. Consider the standard
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Figure 2.3: Example where cutoffs for major outbreaks are imposed on the histogram
of 5000 replications from the posterior predictive distribution of final size T repfs . Cutoff

C1 (red, dashed line) is given by C1 = min{trepfs ∈ {0, 1, . . . , N} : f̂T repfs
(trepfs + 1) −

f̂T repfs
(trepfs ) > 0 and f̂T repfs

(trepfs +2)−f̂T repfs
(trepfs +1) > 0} and cutoff C2 (black, solid line)

by C2 = min{trepfs ∈ {0, 1, . . . , N} : f̂T repfs
(trepfs + 1) − f̂T repfs

(trepfs ) ≥ 0 and f̂T repfs
(trepfs +

2)− f̂T repfs
(trepfs + 1) ≥ 0}. Fitted model is an Exp-HM model to data generated from

an Exp-HM model (N = 100, R0 = 2.5, γ = 0.1).

SIR model, as defined in section 1.3.5.5, and focus on the more interesting, from an

inference standpoint, case of major outbreaks. Once more, the well-known branching

process approximation result is called upon (see the relevant paragraph in section

1.3.5.5). As mentioned in section 1.3.5.5, this result tells us that for a population with

a large number of initial susceptibles N , at the initial stages of a major epidemic,

the number of infectives in the population is approximated by a branching process;

infections and removals in the epidemic correspond to births and deaths in the

branching process. Roughly stated, there is a time interval [iα, tbp] such that for

t ∈ [iα, tbp], the number of infectives in the population Yt is such that Yt ≈ Y ∗t where

Y ∗t denotes the number of individuals alive in the approximating branching process

and tbp is the time which the approximation breaks down. In turn, a standard result

of branching process theory (see e.g. Haccou et al. (2005, theorem 6.3)) tells us

that, for large t, Y ∗t ≈ Weat, where a > 0 the Malthusian parameter and W a non-

negative random variable which is trivial if and only if the branching process goes

extinct; since the considered epidemic is a major outbreak then the approximating
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branching process does not go extinct and thus W is non-trivial. Combining these

two results (and noting that if N becomes large then tbp becomes large also) we

get that, for t ∈ [iα, tbp], Yt ≈ Weat. Now, consider the first time point tε,N such

that εN infectives are present in the population (i.e. Ytε,N = εN), where ε > 0

can be appropriately chosen so that tε,N ∈ [iα, tbp]. Then by taking logarithms and

plugging in t = tε,N in the expression Yt ≈ Weat we get, after rearranging, that

tε,N = 1
a

(log(εN)− log(W )). This implies that the time tε,N is random; this is because

W is a non-trivial random variable. Loosely, this means that the initial stage of the

epidemic (where the branching process approximation holds) will progress randomly

and be completed at a random time, i.e. tbp is random. As a result the epidemic will

enter its following stage, where most of the events occur (the process takes off), at a

random time; this fact is what causes the randomness around the location in time of

the removal curves, that was discussed is section 2.2.6 and seen in figure 2.2.

2.4.2 Procedure and implementation

For the purposes of posterior predictive checking, where interest is in assessing the

similarity between observed and replicated data, what would be more appropriate and

informative is for all replicated removal curves, to exit their initial stage (and enter

the following stage where most of the events occur) at approximately the same time

as the observed; this can remove the undesired noise introduced from the initial stage

and allow a more informative assessment. The way this is done is by horizontally

(time) shifting each replicated removal curve by an appropriately chosen constant.

A formal definition of what is meant by shifting a removal curve by a constant, is

as follows. Let r = (r1, r2, . . . , rn) be a time ordered removal vector and zt(r) the

corresponding removal curve. For a constant c ∈ R, let r + c denote the vector

(r1 + c, r2 + c, . . . , rn + c), i.e. r+ c := (r1 + c, r2 + c, . . . , rn + c). Then r+ c is a shift

by c of the removal vector r and accordingly the removal curve zt(r+c) is a shift by c

of the removal curve zt(r). To implement the time shifting intervention one needs to
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specify the associated constant. Two different ways for doing so are described further

below.

Before proceeding to describe how the time shifting constant is chosen, it must

be noted that such an intervention is non-invasive for the purposes for which this

assessment is conducted. Recall, from section 1.3.3.2 that, in posterior predictive

checking, the concern is in obtaining a satisfactory posterior distribution. The

parameters that are of interest are those that describe the dynamics of the process.

For the general SIR model, as seen in section 1.3.5.5, these parameters are β

(parameter controlling the infection process) and φ (parameter controlling the

removal process). Hence, interest is on the marginal posterior density π(β,φ | r).

That being said, time shifting a replicated removal curve by a constant c ∈ R

is equivalent to time shifting the observed removal curve by −c and the marginal

posterior density π(β,φ | r) is invariant to time shifting of the observed data (see the

relevant remark in section 1.3.5.4), i.e. π(β,φ | r) = π(β,φ | r+ c) for any constant

c ∈ R.

2.4.2.1 Theoretical shifting

As mentioned in section 1.3.5.5, an outbreak from a standard SIR model, in a large

population, can be approximated at the initial stages by a branching process. In

particular, according to Ball and Donnelly (1995), the time until which a major

outbreak grows like a branching process, denoted as ti,
√
N , is about until

√
N of the

initial susceptibles become infected; that is tbp ≈ ti,
√
N . Suppose temporarily that

infection times iobs were observed and that the focal point of the assessment was

infection curves (curves of the cumulative number of infections as functions of time)

instead of removal curves. Let tiobs,
√
N be the time that

√
N of the initial susceptibles

become infected in the observed process. Suppose that a model has been fitted and

a sample of size S has been drawn from the posterior predictive distribution of the

model. Then one reasonable approach would be to pin all replicated infection curves
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at the point (tiobs,
√
N ,
√
N) so that the randomness of the initial stage is removed; that

is to shift each replicated infection curve so that the time t
irep

(s)
,
√
N

, for which
√
N

of the initial susceptibles become infected in replication s, is the same as that of the

observed, s = 1, 2, . . . , S. Of course, infection times are rarely observed and this can

not be applied. Nonetheless a similar approach can be implemented on the removal

curves. In general, since removal times r are an i.i.d. shift of the infection times i (see

the relevant remark in section 2.2.4.2), it should be expected that the branching type

growth in the removal curves breaks down about the time tr,
√
N , where

√
N of infective

individuals become removed. Thus, what appears reasonable is to shift each replicated

removal by a constant c(s) so that the time t
rrep

(s)
,
√
N

for which
√
N individuals are

removed in replication s, is the same as the corresponding time point trobs,
√
N of

the observed realization, s = 1, 2, . . . , S. That is, to set c(s) = trobs,
√
N − trrep(s) ,√N ,

s = 1, 2, . . . , S. We refer to this type of shifting as the theoretical shifting.

2.4.2.2 Distance shifting

In practice, pinning all removal curves at the time point trobs,
√
N appears to work

reasonably well. However, due to the fact that the choice of the pinning point is

based on an approximation, some information is still lost. More precisely, since the

time of exit from the initial stage is approximate, in some replications it might occur

at the time that some number around
√
N of individuals becomes removed, and not

necessarily at t
rrep

(s)
,
√
N

; so at time t
rrep

(s)
,
√
N

the epidemic of replication s might still

be in the initial phase or well into the next phase, s = 1, 2, . . . , S. Another drawback

is that SIR models with more general infection mechanisms do not exhibit the same

behaviour as the standard SIR model and for those the choice of the ‘pinning’ point

seems much less obvious; hence limiting the extensibility of the method to more

general models. What appears as a more direct and natural way of maximizing the

ability to compare disease progression dynamics, between any two removal curves, is

to choose the shifting constant, so that some appropriately defined distance between

them is minimized. Intuitively, if the two curves have similar (or different) shape, and

98



potentially different location in time, shifting one of them so that their distance is

minimized would reveal their similarity (or difference) in shape. More precisely, the

proposed approach shifts each replicated removal curve zt(r
rep(s)

) by a constant c(s),

so that its distance d from the observed curve zt(r
obs) is minimized, i.e. it chooses c(s)

so that c(s) = arg min
c∈R

d(zt(r
obs), zt(r

rep(s)
+ c)), for s = 1, 2, . . . , S. Since this type of

shifting is based on the use of some distance function it is called the distance shifting.

The discussion regarding the specific choice of the distance function is postponed until

section 2.5 where a quantitative model assessment method, based on calculating the

distance between removal curves, is developed.

Algorithm 10 conveniently collects the steps for applying both of the proposed time

shifting interventions.

Algorithm 10 Scheme for applying time shifting

Let robs be the time-ordered observed removal data and {rrep(1)
, rrep

(2)
, . . . , rrep

(S)} a
sample of replicated time-ordered removal data from the posterior predictive density
of the model π(rrep | robs).

1. • For theoretical shifting: Calculate trobs,
√
N = min{t ∈ R : zt(r

obs) = d
√
Ne} and

t
rrep

(s)
,
√
N

= min{t ∈ R : zt(r
rep(s)

) = d
√
Ne}, where N the number of initial

susceptibles, s = 1, 2, . . . , S. Calculate c(s) = trobs,
√
N−trrep(s) ,√N , s = 1, 2, . . . , S.

• For distance shifting: Calculate c(s) = arg min
c∈R

d(zt(r
obs), zt(r

rep(s)
+ c)), s =

1, 2, . . . , S.

2. Apply the time shifting on each replication by setting rrep
(s)

= rrep
(s)

+ c(s), s =
1, 2, . . . , S.

2.4.2.3 Examples

To appreciate the effect of time shifting, it is applied, following Algorithm 10, to the

examples of section 2.2.6, figure 2.2. Recall that these examples highlighted why such

an intervention was needed. It is noted that for visual aid, the mean removal curve,
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under the posterior predictive distribution, is also imposed. Similarly to the choice

of distance function, the mean removal curve is an integral part of the method that

is developed in section 2.5 and thus its definition is deferred.

Figure 2.4 shows that for the example of the correctly specified model, the application

of time shifting effectively removes the undesired noise around the time location of the

observed removal curve. This allows for the true ability of the model to capture the

data to be revealed. For both of the shifting applications the observed removal curve

is placed in the middle of the pack of replicated removal curves with the imposed

mean removal curve being on top of the observed. For the example where the

model is clearly misspecified, both shifting types increase the power to detect the

misspecification (see figure 2.4). However the power is higher for the distance shifting

than the theoretical; under the latter the pack of replicated removal curves is still

quite wide and the observed curve lies on top of it, while under the former it is placed

on the tails and even outside the pack.

The favourable effect of the time shifting interventions is further illustrated in the

simulation study of section 2.7.1 (where in addition the two time shifting methods

are compared). From this point on, all methods developed in this chapter make use

of time shifting.

2.5 Distance method

2.5.1 Rationale and procedure

The introduction of time shifting increases the amount of information in removal

curves but still assessment is only visual and quantitative metrics need to be

developed. A natural choice for a statistic on the space of removal curves is some

sort of distance function. Intuitively, if the distance function is efficiently carrying
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Figure 2.4: Plots of 500 matched replications from the posterior predictive
distribution of the removal curve (conditioned on having the same final size as the
observed) zrept with its mean removal curve z̄rept (red, dotted line) and the observed
removal curve zobst (black, solid line) imposed. For top row fitted model is a Gamma-
HM model (ν = 10) to data generated from a Gamma-HM model (N = 1000,
R0 = 2.5, ν = 10, λ = 1); correctly specified model. For bottom row fitted model
is a Gamma-HM model (ν = 10) to data generated from a HPP (ρ = 1, Ton = 0,
Toff = 170); clearly misspecified model. Left, middle and right columns correspond to
applying no shifting, theoretical shifting and distance shifting, respectively.

the information contained in removal curves, then smaller distance between removal

curves would imply higher similarity between the aspects of the data that are represent

by removal curves.

Let robs denote the nobs-dimensional, time-ordered, observed removal times and rrep

the nrep-dimensional, time-ordered, replicated removal times, generated under the

posterior predictive density π(rrep | robs) of an assumed model; note that nrep − 1

has the final size posterior predictive distribution. Then zt(r
obs) is the observed

removal curve and zt(r
rep) has the posterior predictive distribution of the removal

curve; to ease notation let zobst := zt(r
obs) and zrept := zt(r

rep). Also, let Ezrept denote

the mean of zrept (the definition of Ezrept follows in section 2.5.4). Define a scalar

statistic Td on the space of removal curves L such that Td(zt) = d(zt,Ezrept ), where
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L, as in section 2.2.4.2, is the space of right continuous, non-decreasing, Z≥0-valued

functions of t ∈ R. More precisely, Td : zt ∈ L 7→ d(zt,Ezrept ) ∈ R≥0, where d is a

distance function on L (the choice of d follows in section 2.5.3), i.e. d is such that

d : zt × z∗t ∈ L × L 7→ d(zt, z
∗
t ) ∈ R≥0. Plugging in zt = zobst the test statistic

assumes its observed distance Td(z
obs
t ) = d(zobst ,Ezrept ), which is the distance of the

observed removal curve zobst from the mean Ezrept . For zt = zrept ∼ π(rrep | robs)

the test statistic Td(z
rep
t ) = d(zrept ,Ezrept ) is a random variable, having the posterior

predictive distribution of replicated distance, which is the distance of zrept from the

mean Ezrept ; for simplicity let T obsd := Td(z
obs
t ) and T repd := Td(z

rep
t ). Then assessment

is conducted, quantitatively and visually, in the usual fashion of posterior predictive

checking (see section 1.3.3.1) by calculating the tail-area probability P (T repd ≤ T obsd )

and by imposing T obsd on a histogram of sampled replicated values of T repd . The idea

is that if a model fits the data, zobst must not be further from the mean Ezrept than

zrept is, i.e. T obsd must look plausible under T repd . Due to its relation to distances, this

method is referred to as the distance method.

2.5.2 Folded ppp-value and the assumption of symmetry

The distance method revolves around the idea of calculating distances from the

posterior predictive mean removal curve Ezrept . This section illuminates the precise

involvement that Ezrept has in the procedure and the assumptions that are imposed.

Just like in section 2.2.3, revert to the simplest of settings where one single realization

yobs is observed (as it is the case for epidemic data) and suppose that all random

quantities are random variables. Let yrep be a random variable having the posterior

predictive distribution of a posited model that is fit to yobs. Then, using as test

statistic the identity function T (y) = y, the ppp-value (see equation (1.8)) is

given by ppp-value = P (yrep ≤ yobs). Now, define also the folded ppp-value as

fppp-value = P (|yrep − E(yrep)| ≤ |yobs − E(yrep)|); owing its name to the fact that
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the random variable |yrep−E(yrep)| is a fold of the random variable yrep at its mean

E(yrep). Then, under the assumption that yrep has a symmetric distribution, it is easy

to see that fppp-value = 2|ppp-value − 0.5|; visually this means that the position of

|yobs−E(yrep)| on the histogram of |yrep−E(yrep)| implies two possible positions for

yobs on the histogram of yrep, which have the same distance from the mean E(yrep).

The simple deterministic relationship that connects the folded ppp-value with the

ppp-value, under the assumption of symmetry, implies that the former can also be

used as a sensible and interpretable measure of model fit. More specifically, folded

ppp-values near 0 indicate goodness of fit (since they correspond to ppp-values near

0.5) while extreme folded ppp-values near 1 imply evidence of lack of fit (since they

correspond to ppp-values near 0 or 1).

In settings as the above (where all random quantities are random variables and the

ppp-value is clearly defined by utilizing the order of R) working with the folded

ppp-value and requiring symmetry for the posterior predictive distribution seems

redundant. However, as discussed in section 2.2.4.2, in unordered spaces, such as

the space of removal curves L or the space of n-dimensional removal vectors Rn,

the ppp-value is neither defined nor it is obviously extendable. In these cases it

appears more straightforward to extend the definition of the folded ppp-value by

replacing the absolute value distance with a distance function d and by requiring

for the posterior predictive distribution to be symmetric (in some sense) around its

mean. Specifically, for the space of removal curves L, the extended folded ppp-value is

given by P
(
d (zrept ,Ezrept ) ≤ d

(
zobst ,Ezrept

))
where, as in section 2.5.1 d is a distance

function on L and Ezrept a suitably defined mean of zrept . From the definition of Td

above (see section 2.5.1), it is clear that the extended folded ppp-value coincides with

the tail area probability P (T repd ≤ T obsd ) of a posterior predictive check using the

statistic Td. That is, the tail-area probability P (T repd ≤ T obsd ) is actually a folded

ppp-value and, under the assumption that the posterior predictive distribution of the

removal curve is symmetric, can be interpreted as above; the closer the values are to

103



0 the higher the indication of good fit and the closer the values are to 1 the more the

evidence for lack of fit.

The connection between the (usual) ppp-value and the folded ppp-value in R is

achieved in the context of observing a single realization and for test statistic the

identity function. A subtle point that needs to be highlighted is that, when extending

to L, these conditions are not violated. More precisely, the observed data are still a

single realization and the test statistic is still the identity function, as the observed

removal curve can be seen as the observed data (see discussion in the last paragraph

of section 2.2.4.2).

For the folded ppp-value P (T repd ≤ T obsd ) to be interpretable it is required for the

posterior predictive distribution to be symmetric. In the space of removal curves L

it is not obvious how to explicitly define and verify symmetry; even if a definition is

derived, the posterior predictive distribution does not have a closed form and thus

analytically checking if it is symmetric might not be possible. A pragmatic approach

is taken and the assumption of symmetry is assessed by visually inspecting whether

the mean removal curve lies in the center of the pack of sampled replicated removal

curves.

2.5.3 Distance function

2.5.3.1 Distances on L

Let zt and z∗t be any two removal curves (i.e. zt, z
∗
t ∈ L where L is defined in section

2.2.4.2) with corresponding time-ordered removal vectors r = (r1, r2, . . . , rn) ∈ Rn

and r∗ = (r∗1, r
∗
2, . . . , r

∗
m) ∈ Rm, where n not necessarily equal to m (i.e. the removal

curves zt and z∗t are not necessarily matched). A natural way to calculate the distance,

between two removal curves, is to calculate the area between them. That is, define

the distance function dL1(zt, z
∗
t ) =

∫ rn∨r∗m
r1∧r∗1

|zt− z∗t |dt, where a∧ b and a∨ b denote the
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minimum and maximum of a and b, a, b ∈ R, respectively. The apparent advantage

of this choice is its intuitive interpretation. Another obvious choice is the Euclidean

distance on L, given by dL2(zt, z
∗
t ) =

(∫ rn∨r∗m
r1∧r∗1

(zt − z∗t )
2 dt
) 1

2
. The appeal in using dL2 ,

over dL1 , is that it integrates over squared differences between removal curves (rather

than absolute differences as dL1) and thus removal curves that are not consistently

close will be ‘penalized’ more; this could be more informative in the goal of assessing

disease progression dynamics.

It must be noted that for both, dL1 and dL2 , the region over which integration is

taken is chosen to be [r1 ∧ r∗1, rn ∨ r∗m]. This is the region over which not both zt

and z∗t are identically constant; zt = z∗t = 0 for t ≤ r1 ∧ r∗1 and zt = n, z∗t = m for

t ≥ rn ∨ r∗m. In the case of matched removal curves, that is when n = m, it is worth

mentioning that even if the region of integration is chosen to be the real line R, it

still reduces to [r1 ∧ r∗1, rn ∨ r∗m] as zt = z∗t = 0 for t ≤ r1 ∧ r∗1 and zt = z∗t = n for

t ≥ rn ∨ r∗m. However, in the instance that removal curves are not matched, that

is when n 6= m, choosing to integrate over R would cause the integral to become

infinity as zt = n 6= m = z∗t for t ≥ rn ∨ r∗m. This fact, besides being mathematically

undesirable, is also counterintuitive as it would imply that any two removal curves

that have different final size are given an infinite distance ‘penalty’.

2.5.3.2 Distances on Rn

Recall from the last paragraph of section 2.2.4.2 that one can choose to see the data

as a removal curve or as a removal vector. The mindset under which the approaches

of this work are developed, is choosing the former way. Nonetheless, it is useful to

consider the latter route also. More precisely, by choosing to work with removal

vectors, one can employ the Euclidean distance between vectors, denoted by dl2 .

This distance is the default choice in vector settings and often used in the epidemic
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literature, in the context of approximate Bayesian computation (see e.g. Kypraios

et al. (2017)). Hence, it would be very interesting to see how this choice compares

with dL1 and dL2 . Letting r = (r1, r2, . . . , rn) ∈ Rn and r∗ = (r∗1, r
∗
2, . . . , r

∗
n) ∈ Rn,

distance dl2 is defined as dl2(r, r∗) =
(∑n

k=1 (rk − r∗k)
2) 1

2 .

Note that the procedure for conducting the distance method (as described in section

2.5.1) remains unchanged, if one chooses to work with removal vectors rather than

removal curves. The difference is that zobst and zrept are replaced by robs and rrep

respectively, where zobst , zrept , robs, rrep are as in section 2.5.1 with the restriction that

the dimension of rrep must equal the dimension of robs, i.e. nrep = nobs = n. Then,

instead of defining Td as Td : zt ∈ L 7→ d(zt,Ezrept ) ∈ R≥0, where d such that

d : zt × z∗t ∈ L × L 7→ d(zt, z
∗
t ) ∈ R≥0 and Ezrept a suitably defined mean of

zrept , one defines Td to be Td : r ∈ Rn 7→ d(r,Errep) ∈ R≥0, where d such that

d : r × r∗ ∈ Rn × Rn 7→ d(r, r∗) ∈ R≥0 and Errep a suitably defined mean of rrep.

A limitation of working with removal vectors is that the usual distances on the space

of removal vectors are only defined for vectors of the same dimension, that is, of the

same final size (hence the imposed restriction nrep = nobs = n above). As a result

these distances (for example dl2) can not be applied to the computationally cheaper

case of unmatched data. Conversely, distances defined on the space of removal curves

(for example dL1 and dL2) are defined for both matched and unmatched data, as seen

earlier.

2.5.4 Mean removal curve

2.5.4.1 Matched case

In the case of matched replicated removal curves, an obvious choice for defining

the mean replicated removal curve is to evaluate the expected value of each time-

ordered replicated removal time, under its marginal posterior predictive distribution
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(see e.g. Alharthi (2016)). In more detail, let robs = (robs1 , robs2 , . . . , robs
nobs

) and

rrep = (rrep1 , rrep2 , . . . , rrep
nobs

) respectively denote the observed and replicated nobs-

dimensional, time-ordered removal data. Note that the mean removal curve is defined

after time shifting has been applied i.e. rrep are the replicated removal data after

time shifting. The posterior predictive mean removal curve Ezrept is defined as

follows. First define the posterior predictive mean removal vector, denoted as Errep,

by setting its components to be the expected values of the time-ordered replicated

removal times, under their respective marginal posterior predictive distributions, i.e.

as Errep := (E(rrep1 ),E(rrep2 ), . . . ,E(rrep
nobs

)), where E(rrepk ) =
∫
rrepk π(rrepk | robs)drrepk ,

k = 1, 2, . . . , nobs. Then the posterior predictive mean removal curve Ezrept is simply

the removal curve that results when the removal curve statistic zt is evaluated at

the mean removal vector Errep, i.e. Ezrept := zt(Errep) =
∑n

k=1 1{E(rrepk )≤t}. It is

easy to see that, as constructed above, Ezrept ∈ L and thus the required distances for

implementing the distance method (see section 2.5.1) are well defined.

2.5.4.2 Unmatched case

The above definition for the mean replicated removal curve does not extend to the case

of unmatched removal curves because the replicated removal data, unlike the matched

case, are of varying dimension and thus it is not meaningful to work with the expected

value of each time-ordered replicated removal time. Instead what appears as a sensible

alternative is to define the mean removal curve by taking the expectation, of the

posterior predictive distribution of the removal curve, pointwise, in an appropriately

chosen interval. More specifically, let robs = (robs1 , robs2 , . . . , robs
nobs

) denote the nobs-

dimensional, time-ordered, observed removal times and rrep = (rrep1 , rrep2 , . . . , rrepnrep)

the nrep-dimensional, time-ordered, replicated removal times, as in section 2.5.1.

Note that, as in the matched case, the mean removal curve is defined after time

shifting has been applied i.e. rrep are the replicated removal data after time

shifting. The posterior predictive mean removal curve Ezrept is defined as follows.

First observe that any removal curve zt ∈ L, with corresponding time-ordered
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removal vector r = (r1, r2, . . . , rn), is such that it is 0 before a time point and

plateaus after some other. That is, there exist time points tztL and tztR such that

tztL = min{t ∈ R : zt > 0} and tztR = min{t ∈ R : zs = zt for every s > t}; it

is easy to see that tztL = r1 and tztR = rn. The intention is for the mean removal

curve Ezrept to mimic this behaviour; thus time points tEL = min{t ∈ R : Ezrept > 0}

and tER = min{t ∈ R : Ezreps = Ezrept for every s > t} need to be specified. Let

t
zrept
L = min{t ∈ R : zrept > 0} and t

zrept
R = min{t ∈ R : zreps = zrept for every s > t} be

the corresponding time points for zrept ; again note that t
zrept
L = rrep1 and t

zrept
R = rrepnrep .

Then the default choice for specifying tEL and tER seems to be tEL := E(t
zrept
L ) = E(rrep1 )

and tER := E(t
zrept
R ) = E(rrepnrep). To complete the construction one needs to define the

values that Ezrept takes in the interval [tEL, t
E
R]. This is done pointwise. Fix a t ∈ [tEL, t

E
R]

and note that for that fixed t, zrept is a random variable. Then define the value of the

mean removal curve at t to be the expected value of the random variable zrept , i.e.

Ezrept := E(zrept ).

The unmatched mean removal curve, as constructed above, is rather artificial in

the sense that it does not behave exactly like a removal curve; instead of being

a step function that jumps by 1 at some time points, it can assume real values.

From a practical point of view, this is not a problem as the task assigned to the

mean removal curve is to provide a reference point so that the plausibility of the

observed removal curve, with respect to the replicated, can be assessed; as long as the

posterior predictive distribution of removal curves appears to be symmetric around

the mean removal curve then the approach can be carried out. However, reasons

for concern arise from a technical standpoint as the unmatched removal curve is not

strictly an element of L; although it is right continuous and non-decreasing, it is R≥0-

valued rather than Z≥0-valued. Thankfully, this can be addressed rather easily. To

accommodate for the unmatched removal curve, L can be extended to a more general

space, denoted as L̃, that additionally allows for R≥0-valued functions. Similarly,

the region of integration for the distance functions on the space can be generalized.
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Specifically, if zt and z∗t are any two removal curves on the extended space of removal

curves L̃, tztL and tztR are as above (with t
z∗t
L and t

z∗t
R the corresponding points for z∗t ),

then the interval of integration is chosen to be [tztL ∧ t
z∗t
L , t

zt
R ∨ t

z∗t
R ] and thus distances

involving the unmatched removal curve are well defined; in the cases that neither of

zt or z∗t is the unmatched mean removal curve (and thus tztL = r1, tztR = rn, t
z∗t
L = r∗1

and t
z∗t
R = r∗n) the interval [tztL ∧ t

z∗t
L , t

zt
R ∨ t

z∗t
R ] reduces to the originally defined interval

of integration [r1 ∧ r∗1, rn ∨ r∗m] (see section 2.5.3.1).

For clarity, all required distance calculations, for both matched and unmatched case,

are gathered in Algorithm 11.

2.5.5 Implementation

Having defined the distance function and the mean removal curve, all necessary

components are in order for implementing the distance method. Algorithms 12

and 13 describe the implementation steps, for the matched and the unmatched case,

respectively. For illustration purposes the method is applied to an example dataset.

Data are generated from an Exp-HM model and two models, namely, the Exp-HM

model (correctly specified model) and the Gamma-HM model with shape parameter

fixed at ν = 10 (misspecified model) are fitted (as described in Algorithms 5 and 6,

respectively) and assessed. The output of the assessment is given in figure 2.5. For

the matched case, the method behaves reasonably by yielding a large folded ppp-

value (0.95) for the misspecified model and a low one for the model that is specified

correctly (0.23); recall from section 2.5.2 that the closer to 0 the folded ppp-value

is, the stronger the indication of good fit, and the closer to 1 it is, the stronger the

evidence for lack of fit. In the unmatched case both folded ppp-values are lower,

0.71 and 0.09 respectively. This is a combined result of the facts that the posterior

predictive distribution is more uncertain, because the final size is allowed to vary

(see discussion in section 2.2.3), and that both models capture the final size quite
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Algorithm 11 Scheme for calculating distances

• Case 1: zt, z
∗
t ∈ L

Let removal curves zt, z
∗
t ∈ L with corresponding time-ordered removal vectors

r = (r1, r2, . . . , rn) ∈ Rn and r∗ = (r∗1, r
∗
2, . . . , r

∗
m) ∈ Rm, where n not necessarily

equal to m, i.e. data not necessarily matched.

1. Sort the elements of the set R = {r1, r2, . . . , rn, r
∗
1, r
∗
2, . . . , r

∗
n} in increasing order

as r1∧r∗1 = tztL ∧ t
z∗t
L = t1 ≤ t2 ≤ · · · ≤ tK = tztR ∨ t

z∗t
R = rn∨r∗m, where K = m+n.

2. Calculate the required distance as:

– dL1(zt, z
∗
t ) =

∫ tK
t1
|zt − z∗t |dt =

∑K−1
k=1 |ztk − z∗tk |(tk+1 − tk)

m=n
=
∑n

k=1 |rk − r∗k|,
where the last equality only holds for m = n, i.e. for matched data.

– dL2(zt, z
∗
t ) =

(∫ tK
t1

(zt − z∗t )
2 dt
) 1

2
=
(∑K−1

k=1

(
ztk − z∗tk

)2
(tk+1 − tk)

) 1
2
.

– dl2(r, r∗)
m=n
=
(∑n

k=1 (rk − r∗k)
2) 1

2 , where dl2 is only defined for m = n, i.e. for
matched data.

• Case 2: zt, z
∗
t ∈ L̃ and at least one of them /∈ L

Let removal curves zt, z
∗
t ∈ L̃ and at least one of them /∈ L.

1. Discretize the interval [tztL ∧t
z∗t
L , t

zt
R∨t

z∗t
R ] by choosing a collection of equally spaced

points as tztL ∧ t
z∗t
L = t1 ≤ t2 ≤ · · · ≤ tK = tztR ∨ t

z∗t
R with K large enough so that

the numerical approximation is accurate.

2. Calculate the required distance using numerical approximation as:

– dL1(zt, z
∗
t ) =

∫ tK
t1
|zt − z∗t |dt ≈

∑K−1
k=1 |ztk − z∗tk |(tk+1 − tk).

– dL2(zt, z
∗
t ) =

(∫ tK
t1

(zt − z∗t )
2 dt
) 1

2 ≈
(∑K−1

k=1

(
ztk − z∗tk

)2
(tk+1 − tk)

) 1
2
.

accurately (see figure A.1 in Appendix). Again this behaviour of the method is

desirable in the sense that in the unmatched case the final size seems to be effectively

incorporated in the assessment. More specifically, for the matched case assessment is

solely on disease progression dynamics, thus the 0.95 folded ppp-value for the Gamma-

HM model is interpreted as strong evidence of inability of the model to reproduce

the observed disease progression dynamics. On the contrary, recall from section 2.2.5

that for the unmatched case assessment is both on disease dynamics and the final size,
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thus the lower folded ppp-value is a fair representation of the combined assessment

of the model on these two aspects.

The results of this example suggest that the distance method might have the power to

detect misspecification of the infectious period distribution, for standard SIR models.

The validity of this speculation, as well as the performance of the method as a model

assessment tool for more general epidemic models, are more thoroughly investigated

in the simulation studies in sections 2.7.1, 2.8.1 and 2.9.1.

Algorithm 12 Scheme for implementing the distance method based on matched
replications

1. Sample from the posterior distribution: Given time-ordered observed
removal data robs = (robs1 , robs2 , . . . , robs

nobs
) fit an SIR model using MCMC methods to

obtain a sample {θ(1),θ(2), . . . ,θ(S′)} from its posterior density π(θ | robs), where
θ the model parameter vector.

2. Sample from the matched posterior predictive distribution: Choose
(either by thinning or uniformly at random) S ≤ S ′ posterior values and under each

chosen θ(s) simulate the model to generate matched (conditioning on nrep
(s)

= nobs)

replicated time-ordered removal data rrep
(s)

= (rrep
(s)

1 , rrep
(s)

2 , . . . , rrep
(s)

nrep
(s) ) using

rejection sampling, s = 1, 2, . . . , S. Then {rrep(1)
, rrep

(2)
, . . . , rrep

(S)} is a sample
from the posterior predictive density of the model π(rrep | robs) conditioned on

nrep
(s)

= nobs.

3. Apply the time shifting: Choose a shifting method and do as in Algorithm 10.
(For distance shifting: if d = dLp , p = 1, 2, c(s) is calculated using numerical

optimization and if d = dl2 as c(s) = 1
nobs

∑nobs

k=1(robsk − r
rep(s)

k ), s = 1, 2, . . . , S).

(To simplify notation let zobst := zt(r
obs), zrept := zt(r

rep) and zrep
(s)

t := zt(r
rep(s)

),
s = 1, 2, . . . , S).

4. Calculate the mean removal vector and the mean removal curve:
Calculate the expected value of each replicated removal time, under its
marginal posterior predictive distribution, using Monte Carlo (MC) approximation

as E(rrepk ) =
∫
rrepk π(rrepk | robs)drrepk ≈ 1

S

∑S
s=1 r

rep(s)

k = r̄repk , k =
1, 2, . . . , nobs. Then the mean removal vector is approximated as Errep :=
(E(rrep1 ),E(rrep2 ), . . . ,E(rrepnobs

)) ≈ (r̄rep1 , r̄rep2 , . . . , r̄rep
nobs

) =: r̄rep and the mean removal
curve as Ezrept := zt(Errep) ≈ zt(r̄

rep) =: z̄rept .
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Algorithm 12 Scheme for implementing the distance method based on matched
replications (continued)

5. Calculate the required distances: Set the distance d to be one of dL1 , dL2 , dl2 :

• For d = dLp , p = 1, 2 : Calculate the (approximate) observed value of Td as

T obsd := Td(z
obs
t ) = d(zobst ,Ezrept ) ≈ d(zobst , z̄rept ) and obtain an (approximate)

sample {T rep
(1)

d , T rep
(2)

d , . . . , T rep
(S)

d } from the posterior predictive distribution of

T repd = Td(z
rep
t ) = d(zrept ,Ezrept ), by calculating the (approximate) replicated

distances as T rep
(s)

d := d(zrep
(s)

t ,Ezrept ) ≈ d(zrep
(s)

t , z̄rept ), s = 1, 2, . . . , S.

• For d = dl2 : Do as above by replacing zobst with robs, zrept with rrep, zrep
(s)

t with

rrep
(s)

, Ezrept with Errep, and z̄rept with r̄rep.

(Distances are calculated as in Algorithm 11 Case 1).

6. Assess the model: Assess the model quantitatively by calculating

the folded ppp-value using MC approximation as P (T repd ≤ T obsd ) ≈
1
S

∑S
s=1 1{T rep

(s)

d ≤T obsd }
and visually by inspecting the histogram of replicated

distances {T rep
(1)

d , T rep
(2)

d , . . . , T rep
(S)

d } with T obsd imposed, as well as by inspecting

the plot of replicated removal curves {zrep
(1)

t , zrep
(2)

t , . . . , zrep
(S)

t } with zobst and z̄rept

imposed.
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Algorithm 13 Scheme for implementing the distance method based on unmatched
(major outbreak) replications

1. Sample from the posterior distribution: Do as in step 1 of Algorithm 12.

2. Sample from the posterior predictive distribution of the final size:
Choose (either by thinning or uniformly at random) S ′′ ≤ S ′ posterior values
and under each chosen θ(s) simulate the model (unconditionally) to generate

replicated time-ordered removal data rrep
(s)

= (rrep
(s)

1 , rrep
(s)

2 , . . . , rrep
(s)

nrep
(s) ) and

calculate the final size Tfs(r
rep(s)

) = nrep
(s) − 1 =: T rep

(s)

fs , s = 1, 2, . . . , S ′′. Then

{T rep
(1)

fs , T rep
(2)

fs , . . . , T rep
(S′′)

fs } is a sample from the posterior predictive distribution
of the final size.

3. Calculate the cutoff for major outbreaks: Calculate C = min{trepfs ∈
{0, 1, . . . , N} : f̂T repfs

(trepfs + 1) − f̂T repfs
(trepfs ) > 0 and f̂T repfs

(trepfs + 2) −
f̂T repfs

(trepfs + 1) > 0} where f̂T repfs
the e.p.m.f. corresponding to the sample

{T rep
(1)

fs , T rep
(2)

fs , . . . , T rep
(S′′)

fs }.

4. Sample from the unmatched (major outbreak) posterior predictive
distribution: Choose (either by thinning or uniformly at random) S ≤ S ′

posterior values and under each chosen θ(s) simulate the model to generate
unmatched (major outbreak) (conditioning on nrep

(s) ≥ C + 1) replicated time-

ordered removal data rrep
(s)

= (rrep
(s)

1 , rrep
(s)

2 , . . . , rrep
(s)

nrep
(s) ) using rejection sampling,

s = 1, 2, . . . , S. Then {rrep(1)
, rrep

(2)
, . . . , rrep

(S)} is a sample from the posterior

predictive density of the model π(rrep | robs) conditioned on nrep
(s) ≥ C + 1.

5. Apply the time shifting: Do as in step 3 of Algorithm 12 (by excluding the
choice d = dl2).
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Algorithm 13 Scheme for implementing the distance method based on unmatched
(major outbreak) replications (continued)

6. Calculate the mean removal curve:

Approximate the mean removal curve as Ezrept ≈ z̄rept , where z̄rept is constructed,

using MC approximation, as follows. Choose t
z̄rept
L = min{t ∈ R : z̄rept > 0} and

t
z̄rept
R = min{t ∈ R : z̄reps = z̄rept for every s > t} to be t

z̄rept
L := 1

S

∑S
s=1 r

rep(s)

1 ≈

E(rrep1 ) = E(t
zrept
L ) =: tEL and t

z̄rept
R := 1

S

∑S
s=1 r

rep(s)

nrep
(s) ≈ E(rrep1 ) = E(t

zrept
R ) =: tER

respectively. Then fix a t ∈ [tz̄
rep

L , tz̄
rep

R ] and set the value of z̄rept at t to be z̄rept :=

1
S

∑S
s=1 z

rep(s)

t ≈ E(zrept ) =: Ezrept .

7. Calculate the required distances: Do as in step 5 of Algorithm 12 (by

excluding the choice d = dl2).

(Distances are calculated as in Algorithm 11 Case 2).

8. Assess the model: Do as in step 6 of Algorithm 12.
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Figure 2.5: Example of posterior predictive checking using the distance method (dL2

distance shifting and dL2 distance function). Observed data are generated from an
Exp-HM model (N = 500, R0 = 2.5, γ = 0.1). Fitted models are the Exp-HM (left
column) and the Gamma-HM (ν = 10) (right column). Top two rows correspond to
matched replications and bottom two to unmatched. Rows one and three are plots
of 500 replications from the posterior predictive distribution of the removal curve
zrept with the mean removal curve z̄rept (red, dotted line) and the observed removal
curve zobst (black, solid line) imposed. Rows two and four are histograms of 500
replications from the posterior predictive distribution of the distance T repd with the
observed distance T obsd (black, dashed line) imposed and the corresponding folded
ppp-value stated. 115



2.6 Position-time method

2.6.1 Rationale and procedure

The distance method provides a quantitative measure of fit (the folded ppp-value)

via the use of a distance function that attempts to efficiently summarize (integrate)

over time. In a stochastic process setting though, it seems natural and informative

to also consider quantitative measures of fit that are functions of time. Once more

the goal is the same as in any posterior predictive check, to assess how plausible the

observed data are under the posterior predictive distribution, only this time this is

done at each time point t in an appropriately chosen time interval. More specifically,

let robs = (robs1 , robs2 , . . . , robs
nobs

) denote the observed time-ordered removal vector, with

associated removal curve zobst . Suppose that a model has been fitted to robs and zrept

has the posterior predictive distribution of the removal curve. Then, the plausibility

of zobst under the distribution of zrept can be assessed, pointwise, as follows. Fix a time

point t ∈ [robs1 , robs
nobs

], the ‘interesting’ interval in which zobst is not identically constant,

and note that for that fixed t, zrept is a random variable. Specify the position of zobst

with respect to the distribution of zrept by calculating the time-dependent (mid) ppp-

value given by ppp-value(t) = P (zrept < zobst )+ 1
2
P (zrept = zobst ); the modification from

the usual definition of the tail area probability (see equation (1.8)) is done to account

for the fact that zrept is a discrete random variable rather than continuous. Values

closer to 0.5 would provide indication for goodness of fit (as the observed curve would

lie in the middle of the pack of replicated curves) and values near 0 or 1 would imply

evidence against the fit (as the observed curve would lie on the lower or upper tail

of the pack of replicated curves, respectively). Owing to its nature, the method is

referred to as the position-time method.

Having acquired the value of ppp-value(t) for t ∈ [robs1 , robs
nobs

], there is flexibility for a

range of visual and quantitative assessments. Visually, one can plot a histogram
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of time dependent ppp-values calculated at a collection of equally spaced time

points of [robs1 , robs
nobs

]; more mass near 0.5 would indicate better fit and mass near

0 and 1 a bad fit. Another idea, and arguably more informative, is to plot the

function ppp-value(t) against time (a ppp-value(t) history plot); a good fit would

be indicated in the cases that the function is consistently close to 0.5 and a lack

of fit when the curve is consistently near 0 or 1. Quantitatively, statements for

any interesting event, with respect to the posterior predictive distribution, can be

made, by integrating the indicator function of the desired event over time e.g. what

proportion of time does zobst spend in a specified (inverse) quantile interval [p1, p2]

of zrept , where p1, p2 ∈ [0, 1], p1 ≤ p2; for example, choosing p1 = 0.4 and p2 = 0.6

gives the proportion of time that zobst spends in the (around the middle of the pack)

interval [0.4, 0.6]. This is given analytically by 1
robs
nobs
−robs1

∫ robs
nobs

robs1
1{ppp-value(t)∈[p1,p2]}dt.

A very informative summary follows by partitioning the space of (inverse) quantiles

[0, 1] into intervals of length 0.1 and finding the proportion of time that zobst spends

in each of these, i.e. creating a table of quantile intervals and the corresponding

proportions of time that zobst spends in each interval.

2.6.2 Differences with the distance method

The main difference between the distance and the position-time methods is that in

the latter there is no dimension reduction. Recall that in the distance method the

information from the multidimensional space of removal curves L (or removal vectors

Rn) is compressed into the one-dimensional space R≥0 via the use of a distance statistic

Td (see section 2.5.1). The effectiveness of the method relies on how efficiently Td can

carry out this transferring of information and on the assumption that the posterior

predictive distribution of the removal curve is symmetric around its mean (see section

2.5.2). Conversely, the position-time method does not use a statistic nor does it

require an assumption of symmetry (in fact it does not even need a mean removal

curve to be defined). Also, it allows for the possibility of determining whether the
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observed curve lies on the lower or the upper tail (this corresponds to a ppp-value(t)

near 0 or 1, respectively) and at which specific time points this happens; these types

of information are not available with the distance method.

Another important difference between the two methods is how the information from

each realization (observed and replicated) is handled. The distance method does not

combine the information from different realizations; for each realization, a distance

between the realization and the mean curve (or vector) is calculated, and then

assessment is based on comparing these distances. Conversely, the position-time

method is a pointwise approach and it gives the position of the observed curve,

with respect to the pack of replicated curves, by combining the information from

the replicated curves at each time point. The fact that the two methods manage this

information differently is perceived as useful, as the mindset is not to choose one of the

methods over the other, but rather, to utilize both in order to obtain complementary

information.

2.6.3 Implementation

The position-time method can be implemented in practice, for matched and

unmatched replicated data, as described by Algorithms 14 and 15, respectively. The

method is exhibited on the same dataset as the distance method (see section 2.5.5)

with the same two models being fitted (Exp-HM and Gamma-HM). Figure 2.6 and

tables 2.1 to 2.4 present the results of the assessment. Similarly to the distance

method, assessment appears to be reasonable. For the matched case, the Gamma-

HM model (misspecified model) spends a proportion of 0.6 of its time at the lower tail

interval [0, 0.1], giving strong reasons to doubt the adequacy of its fit to the data (see

table 2.2). On the contrary, the Exp-HM model (correctly specified model) spends a

proportion of 0.8 of its time in the around the middle interval [0.2, 0.8] (see table 2.1).

In the unmatched case, both models appear to be slightly more plausible compared
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to the matched case. This is in line with what occurred in the distance method and

it is due to the fact that the final size is incorporated in the assessment, an aspect

that both models capture (see figure A.1 in Appendix). This phenomenon is perhaps

made clearer if one compares the ppp-value(t) history plots, between the matched

and the unmatched cases, for both models. As seen in figure 2.6 the plots appear to

be very similar up until around the later time stages where all curves plateau at a

value equal to their final size (plus 1). The fact that the observed final size lies in the

middle of the major outbreak part of the posterior predictive distribution of the final

size, for both models (see figure A.1 in Appendix), implies that the observed removal

curve lies in the middle of the pack of replicated removal curves at the later stages of

the time period.

Just like the distance method, the performance of the position-time method in

detecting misspecified infectious period distribution for standard SIR models, as well

as in assessing the assumptions of more general epidemic models, is examined in the

simulation studies in sections 2.7.1, 2.8.1 and 2.9.1.
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Algorithm 14 Scheme for implementing the position-time method based on matched
replications

1. Sample from the posterior distribution: Do as in step 1 of Algorithm 12.

2. Sample from the matched posterior predictive distribution: Do as in step

2 of Algorithm 12.

3. Apply the time shifting: Do as in step 3 of Algorithm 12.

4. Calculate, pointwise, the position of the observed removal curve with

respect to its posterior predictive distribution: Discretize the interval

[robs1 , robs
nobs

] by choosing a collection of equally spaced points as robs1 = t1 ≤ t2 ≤

· · · ≤ tK = robs
nobs

with K large enough so that the numerical approximation

is accurate. For each tk calculate the time dependent ppp-value(tk) using

MC approximation as ppp-value(tk) = P (zreptk
< zobstk ) + 1

2
P (zreptk

= zobstk ) ≈
1
S

∑S
s=1 1{zrep

(s)

tk
<zobstk

}
+ 1

2S

∑S
s=1 1{zrep

(s)

tk
=zobstk

}
, k = 1, 2, . . . K.

5. Assess the model: Assess the model quantitatively by calculating the

proportion of time that zobst spends in specified (inverse) quantile intervals

[p1, p2] of zrept , where p1, p2 ∈ [0, 1], p1 ≤ p2, using numerical approximation as

1
robs
nobs
−robs1

∫ robs
nobs

robs1
1{ppp-value(t)∈[p1,p2]}dt ≈ 1

K

∑K
k=1 1{ppp-value(tk)∈[p1,p2]} and visually by

plotting the function ppp-value(t) against time t (a ppp-value(t) history plot), at

the time points tk, k = 1, 2, . . . , K, as well as by inspecting the plot of replicated

removal curves {zrep
(1)

t , zrep
(2)

t , . . . , zrep
(S)

t } with zobst imposed.
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Algorithm 15 Scheme for implementing the position-time method based on
unmatched (major outbreak) replications

1. Sample from the posterior distribution: Do as in step 1 of Algorithm 13.

2. Sample from the posterior predictive distribution of the final size: Do

as in step 2 of Algorithm 13.

3. Calculate the cutoff for major outbreaks: Do as in step 3 of Algorithm 13.

4. Sample from the unmatched (major outbreak) posterior predictive

distribution: Do as in step 4 of Algorithm 13.

5. Apply the time shifting: Do as in step 5 of Algorithm 13.

6. Calculate, pointwise, the position of the observed removal curve with

respect to its posterior predictive distribution: Do as in step 4 of Algorithm

14.

7. Assess the model: Do as in step 5 of Algorithm 14.
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Figure 2.6: Example of posterior predictive checking using the position-time method
(dL2 distance shifting). Observed data are generated from an Exp-HM model
(N = 500, R0 = 2.5, γ = 0.1). Fitted models are the Exp-HM (left column) and
the Gamma-HM (ν = 10) (right column). Top two rows correspond to matched
replications and bottom two to unmatched. Rows one and three are plots of 500
replications from the posterior predictive distribution (p.p.d.) of the removal curve
zrept with the mean removal curve z̄rept (red, dotted line) and the observed removal
curve zobst (black, solid line) imposed. Rows two and four are history plots of the
ppp-value(t) with the 0.1, 0.5 and 0.9 (inverse) quantiles (red,dashed lines) imposed.
The proportion of time that zrept spends at the (inverse) quantile intervals of zrept is
given in tables tables 2.1 to 2.4. 122



Table 2.1: Proportion of time that zrept spends at the (inverse) quantile intervals of
zrept from the position-time method (dL2 distance shifting) for the Exp-HM model,
based on matched replications, for the example dataset of figure 2.6 (observed data
are generated from an Exp-HM model (N = 500, R0 = 2.5, γ = 0.1)).

quantile interval [0,0.1] (0.1,0.2] (0.2,0.3] (0.3,0.4] (0.4,0.5]

time proportion 0.050 0.092 0.190 0.158 0.192

quantile interval (0.5,0.6] (0.6,0.7] (0.7,0.8] (0.8,0.9] (0.9,1]

time proportion 0.148 0.084 0.032 0.036 0.018

Table 2.2: Proportion of time that zrept spends at the (inverse) quantile intervals
of zrept from the position-time method (dL2 distance shifting) for the Gamma-HM
(ν = 10) model, based on matched replications, for the example dataset of figure 2.6
(observed data are generated from an Exp-HM model (N = 500, R0 = 2.5, γ = 0.1)).

quantile interval [0,0.1] (0.1,0.2] (0.2,0.3] (0.3,0.4] (0.4,0.5]

time proportion 0.610 0.106 0.044 0.030 0.020

quantile interval (0.5,0.6] (0.6,0.7] (0.7,0.8] (0.8,0.9] (0.9,1]

time proportion 0.016 0.018 0.014 0.040 0.102
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Table 2.3: Proportion of time that zrept spends at the (inverse) quantile intervals of
zrept from the position-time method (dL2 distance shifting) for the Exp-HM model,
based on unmatched replications, for the example dataset of figure 2.6 (observed data
are generated from an Exp-HM model (N = 500, R0 = 2.5, γ = 0.1)).

quantile interval [0,0.1] (0.1,0.2] (0.2,0.3] (0.3,0.4] (0.4,0.5]

time proportion 0.050 0.062 0.060 0.252 0.274

quantile interval (0.5,0.6] (0.6,0.7] (0.7,0.8] (0.8,0.9] (0.9,1]

time proportion 0.162 0.070 0.030 0.024 0.016

Table 2.4: Proportion of time that zrept spends at the (inverse) quantile intervals
of zrept from the position-time method (dL2 distance shifting) for the Gamma-HM
(ν = 10) model, based on unmatched replications, for the example dataset of figure
2.6 (observed data are generated from an Exp-HM model (N = 500, R0 = 2.5,
γ = 0.1)).

quantile interval [0,0.1] (0.1,0.2] (0.2,0.3] (0.3,0.4] (0.4,0.5]

time proportion 0.236 0.128 0.216 0.070 0.038

quantile interval (0.5,0.6] (0.6,0.7] (0.7,0.8] (0.8,0.9] (0.9,1]

time proportion 0.102 0.064 0.022 0.034 0.090

2.6.4 A scalar output for simulation studies

A desirable feature of the position-time method is that it is not restricted to a single

quantitative output but it rather allows for a range of numerical summaries (see

section 2.6.1 above). In simulation studies though, multiple datasets are considered

as interest is in conducting investigations such as checking the effect of the dimension

of the data, comparing results based on matched and unmatched data, comparing the
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results of a model across different level of (mis)specification and comparing between

the position-time and the distance methods. To conduct such investigations it appears

necessary to restrict the output of the position-time method to a single scalar output.

Note that restricting the output of the position-time method to a scalar is not a

general suggestion and it is only employed for manipulating the results from multiple

datasets in simulation studies; the rationale of the position-time method is based on

the ability to provide non-scalar quantitative outputs and advocating the use of a

single scalar output would be contradicting to the method itself.

Having clarified that, a sensible choice for a scalar output is to calculate the

square root of the mean square error (MSE) of the collection of time-dependent

ppp-values from the optimal value of 0.5. That is, to calculate
√

MSE =(
1
K

∑K
k=1 (ppp-value(tk)− 0.5)2

) 1
2
, where tk and ppp-value(tk) are defined and

calculated, respectively, as in step 4 of Algorithm 14, k = 1, 2, . . . , K. Some useful

reference values, that can help set a rough orientation, are
√

1
12
≈ 0.289, the value

of the
√

MSE in the case that the collection of time-dependent ppp-values follows a

uniform distribution in [0, 1] (i.e. the observed curve assumes positions with respect

to the replicated in a uniform way across time), and 0.5, the upper bound for the
√

MSE that occurs when the time dependent ppp-value is fixed at the least optimal

value of 0 or 1 (i.e. the observed curve lies outside of the pack of replicated removal

curves at all time points).

For reference, the
√

MSE values for the previous example (of section 2.6.3) are 0.22

and 0.19 for the Exp-HM model and 0.43 and 0.33 for the Gamma-HM model, for

matched and unmatched case, respectively.
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2.7 Application of the distance and the position-

time methods for assessing the infectious pe-

riod distribution assumption of SIR models

This section is concerned with the assessment of the infectious period distribution

assumption of SIR models using the distance and the position-time methods. To

conduct this assessment it makes sense to consider models that have the same infection

process and differ only on the infectious period distribution assumption. Specifically,

three widely used standard SIR models are considered, as defined and denoted in

section 1.3.5.5, the Exp-HM, the Gamma-HM and the Constant-HM. That is to

say, that the three considered choices for the infectious period TD are Exponential

(TD ∼ Exp(γ)), Gamma (TD ∼ Gamma(ν, λ)) and constant (TD ≡ c). Recall from

sections 2.5.5 and 2.6.3 that the distance and the position-time methods showed

promising results when used to detect misspecification of the infectious period. In

this section, this speculation is further examined via an extensive simulation study,

referred to as simulation study A, all details of which are described below.

2.7.1 Simulation study A

2.7.1.1 Purpose

The primary purpose of simulation study A is to examine the performance of the

distance and the position-time methods as tools of assessing the infectious period

distribution assumption for the three considered standard SIR models, the Exp-HM,

the Gamma-HM and the Constant-HM. More precisely, interest is in investigating:

• The results of the methods when applied to matched and unmatched data under

different simulation scenarios.

• The comparability of the results when methods are applied to matched and

unmatched data. To make this comparison it is useful to examine the performance
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of the models in capturing the final size (an examination interesting on its

own). This is because when applied to matched data, the methods assess disease

dynamics, whereas when applied to unmatched data, the methods simultaneously

assess disease dynamics and the final size (see discussion in section 2.2.5). In other

words, separately conducting posterior predictive checking for the final size can

help explain any differences between matched and unmatched results.

• The comparability between the distance and the position-time methods.

In addition the following secondary investigations are conducted:

• The effect of time shifting, i.e. comparison of the performance of the methods when

applying no shifting, theoretical shifting and distance shifting.

• The effect of the choice of the distance function on the distance method.

The sensible approach is to investigate all of the above under different cases of

(mis)specification, i.e. both under the case that a model is correctly specified as

well as when it is misspecified. Also, it is very interesting to examine if and how any

trends are affected by the dimension of the observed data.

2.7.1.2 Simulation conditions

To address the tasks of the simulations study all three models are fitted to data

generated under four simulation scenarios, for which the simulation conditions are

summarized in table 2.5. In scenarios 1-3, data are generated from the Exp-HM, the

Gamma-HM and the Constant-HM model, respectively. These three scenarios create

the cases of correct specification and misspecification due to the infectious period and

are tasked with addressing the main aim of the study, e.g. in scenario 1 where data are

generated from the Exp-HM, the Exp-HM is a correctly specified model whereas the

Gamma-HM and the Constant-HM are misspecified models. In scenario 4 data are

generated from a HPP. This is a complementary scenario which creates a case of clear
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model misspecification and serves for two purposes. First, it provides a way to check

the credibility of the methods in the sense that the methods should be expected

to detect lack of fit in such apparent cases of model misspecification before being

considered for any further use. Second, it adds another case of misspecification under

which the investigations of the simulation study can be conducted, therefore allowing

for more informative conclusions e.g. when investigating the effect of the time shifting

application it is interesting to do so not only under cases of correct specification and

misspecification of the infectious periods but under cases of clear misspecification

as well. We refer to the type of misspecification encountered in scenario 4 as clear

misspecification to distinguish it from the (less clear) case of misspecification due to

the infectious period distribution assumption, encountered in scenarios 1-3, which we

refer to it simply as misspecification. To examine the effect of the dimension of the

data, each scenario includes four rounds, where the number of initial susceptibles N is

set at 100, 200, 500 and 1000, respectively. For each round 24 datasets are generated;

this allows to capture sampling variability and to investigate the sampling properties

of the model assessment measures.

In scenarios 1-3, in all rounds, the basic reproduction number R0 is set at 2.5.

The fixed value of R0 allows for the investigation of the effect of the dimension

of the data to be examined via N (common R0 between rounds) and also ensures

that datasets between scenarios are comparable, in the sense that they only differ in

the infectious period distribution specification (common R0 between scenarios). The

mean infectious period E(TD) is fixed at 10 between the three scenarios (again this is

done for fair comparability reasons). This specifies γ = 0.1 and c = 10 for scenarios 1

and 3 respectively, while for scenario 2 the shape parameter ν is set at 10 (and thus the

rate λ at 1) so that TD in scenario 2 is ‘different enough’ from scenario 1; recall from

section 1.3.5.4 that if TD ∼ Gamma(ν, λ) with ν = 1 then TD ∼ Exp(λ). Note that

specification of R0 and E(TD) determines β in all instances (see equation (1.29)). The

24 datasets of each round are generated conditioned on being major outbreaks (the
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case of interest) using the approach described in section 2.3 for calculating the major

outbreak cutoff; the only difference is that the approach is applied to the sampling

distribution of the final size instead of its posterior predictive distribution.

In scenario 4, datasets are generated so that the number of events is around 0.85N

(similar to scenarios 1-3). This is done by fixing, for all rounds, the HPP rate

parameter as ρ = 1, the left time window as Ton = 0 and setting the right time

window as Toff = 0.85N , while conditioning that the number of events can not exceed

N + 1, as that would mean more events than the size of the population (see section

B.1 in the Appendix for a more detailed description of the parameters of the HPP).

Table 2.5: Simulation conditions for simulation study A. Each simulation scenario
consists of 4 rounds, where the number of initial susceptibles N is set at 100, 200,
500 and 1000, respectively. For each round 24 datasets are generated.

Data generating process Parameter values

Scenario 1 Exp-HM R0 = 2.5, γ = 0.1
Scenario 2 Gamma-HM R0 = 2.5, ν = 10, λ = 1
Scenario 3 Constant-HM R0 = 2.5, c = 10
Scenario 4 HPP ρ = 1, Ton = 0, Toff = 0.85N

2.7.1.3 Run conditions

The Exp-HM, Gamma-HM and Constant-HM models are fitted to each generated

dataset and a sample of size 10000, after a burn-in of 1000, is achieved from the

posterior distribution of the models using MCMC methods, following Algorithms 5,

6 and 7, respectively. Note that, in order to improve mixing, the infection update

step is repeated as many times as the number of infections in each MCMC iteration,

for all fitted models (see last paragraph of section 1.3.5.3). In all cases, the prior

distribution assignment is done as in section 1.3.5.5, with the prior parameters being

specified so that the uncertainty for all model parameters (except for the label of the
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initial infective α, which is assigned a prior distribution as α ∼ U[1 : n]) is expressed

via uninformative Exp(10−3) prior distributions. Next the distance and the position-

time methods are applied to each model, using matched and unmatched removal

data, under all possible permutations of choice of distance function and method of

shifting (including no shifting), following the relevant Algorithms 12, 13, 14 and

15. In all instances, replicated datasets are created by choosing 500 posterior values

using thinning (choosing every 20th value). When creating matched replications (a

computationally intensive process), a time limit of 15 hours is set; If 500 matched

replications have not been achieved by 15 hours of runtime the methods are only

applied to the unmatched case. All runs are conducted, in parallel for each dataset.

In all instances that the Gamma-HM model is fitted, the shape parameter ν is fixed

at the value of 10. This serves two purposes. First, it clearly separates the cases

for which the Gamma-HM model is correctly or wrongly specified and creates more

interesting simulation scenarios. More precisely, in the case where the Gamma-HM

model is fitted to data generated from the Exp-HM model (scenario 1), it prevents ν

from being estimated close to 1 (and for Gamma-HM to revert to Exp-HM; see section

1.3.5.4) ensuring that the Gamma-HM model is misspecified; note that when data

are generated from Gamma-HM (scenario 2) then it is ensured that Gamma-HM is

correctly specified as ν is fixed at its true value. Second, it allows for a more accurate

examination of the performance of the methods. More specifically, the Gamma-HM

model has mixing issues when ν is an unknown parameter to be estimated from the

data (see e.g. Kypraios (2007); Jewell et al. (2009); Alharthi (2016) where ν was

also treated as known) and as a result the quality of the posterior sample and any

posterior predictive check can be compromised. As interest in this simulation study

is to check the performance of the model assessment methods, it is sensible to fix the

shape parameter at a suitable value.
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2.7.1.4 Results

Removal curve behaviour Before proceeding with the investigations it is highly

important to acknowledge any similarities or differences between the removal curve

behaviour of the three models. More specifically, Gamma-HM and Constant-HM

produce very similar removal curves. This feature, also noticed and discussed

by Alharthi (2016), can be visually appreciated in figure 2.7. Practically, the

similarity between the removal curves of these two model means that the models

are indistinguishable under any removal curve based assessment; in particular our

methods cannot detect misspecification of the infectious period distribution when

one of these models is fitted to data generated from the other. This can clearly

be seen in figure 2.8; focusing on Gamma-HM (or Constant-HM) one notices that

the sampling distribution of the folded ppp-values of the model is more or less the

same irrespectively of which of the two models the observed data are generated from.

To appreciate why this feature appears, consider the Gamma-HM model for which

its infectious period TD has a Gamma distribution with shape ν and rate λ (i.e.

TD ∼ Gamma(ν, λ)) and note that E(TD) = ν/λ and var(TD) = ν/λ2. Suppose that

E(TD) is held fixed at a value, say c (i.e. E(TD) = ν/λ = c), as it is the case in

the present simulation study where a common mean infectious period is set between

scenarios, and, let ν → ∞. Since λ = ν/c, then λ → ∞ as well, and as a result

var(TD) = ν/λ2 = c/λ → 0. This means that the Gamma(ν, λ) distribution will

converge to a point mass at c (i.e. a constant distribution with parameter c) and,

in particular, that the Gamma-HM model will reduce to the Constant-HM model.

It appears that the value of ν = 10, used in the present simulation study, is large

enough to make this feature evident.

Conversely, the removal curve behaviour of the Exp-HM model is somewhat different.

More precisely, it is typical that the Exp-HM model produces removal curves for which

the time period, during which most of the events occur, lasts longer compared to the
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Gamma-HM and the Constant-HM models; a visual appreciation of this feature is

provided in the example of sections 2.5.5 and 2.6.3 (see the first row of figure 2.5 or

2.6).

In the light of these features, further investigations under the case of misspecification

will refer to the instances when Exp-HM is fitted to data generated from Gamma-HM

or Constant-HM and when Gamma-HM or Constant-HM are fitted to data generated

from Exp-HM.
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Figure 2.7: Plots of 500 matched replications from the posterior predictive
distribution of the removal curve zrept with the mean removal curve z̄rept (red, dotted
line) and the observed removal curve zobst (black, solid line) imposed. Observed data
is a typical dataset of round 3 (N = 500) in scenario 2 (data generated from a
Gamma-HM) of simulation study A. Left and right plots correspond to the Gamma-
HM and the Constant-HM models, respectively. For reference the folded ppp-value
(dL2 distance shifting, dL2 distance function) and the

√
MSE (dL2 distance shifting)

are (0.38, 0.24) and (0.37, 0.25) for the Gamma-HM and the Constant-HM models,
respectively.

Matching and posterior predictive checking for the final size To assess a

model’s ability to capture the final size one can follow the usual procedure of posterior

predictive checking, as described in section 1.3.3.1, and calculate the (mid) ppp-value

of the final size, defined as P (T repfs < T obsfs ) + 1
2
P (T repfs = T obsfs ); the modification from

the usual definition of the tail-area probability (see equation (1.8)) is to account for

the fact that the final size is a discrete random variable rather than continuous. It
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Figure 2.8: Folded ppp-value from the distance method (dL2 distance shifting, dL2

distance function), based on matched replications, against dataset index for the
Gamma-HM (black circles) and the Constant-HM (red crosses) models for round
3 (N = 500) of simulation study A. Left and right plots correspond to data generated
from the Gamma-HM and the Constant-HM model, respectively.

is noted that replications are conditioned on being major outbreaks, following the

procedure described in section 2.3; if instead the unconditional posterior predictive

distribution was used the final size ppp-value would be confounded by the mass on

minor outbreaks.

Correct specification and misspecification There were 864 (3 scenarios ×

4 rounds × 24 datasets × 3 fitted models) attempts to achieve matched replications

(each allowed 15 hours), when standard SIR models were fitted to data generated

from any standard SIR model, in scenarios 1-3. From those 864 attempts only 9 failed

to complete the matching process. This is a reflection of the fact that standard SIR

models accurately capture the final size, when fitted to data produced from a standard

SIR model, even if the infectious period distribution is not correctly specified; this

feature is also revealed in the work of other authors (see e.g. Alharthi (2016)). For

example, in scenario 2 (data generated from Gamma-HM) the median (95% quantile

interval) final size ppp-value (pooling all 96 datasets from the four rounds as trend

between rounds was similar) was 0.56 (0.45, 0.67) for Exp-HM, 0.49 (0.41, 0.60) for

Gamma-HM and 0.48 (0.35, 0.60) for Constant-HM. Clearly, final size ppp-values for
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all three models are around, with high precision, the optimal value of 0.5; results were

similar for scenarios 1 and 3.

Clear misspecification Conversely, when the three standard SIR models were

fitted to data from the HPP (scenario 4) there were 171 failed attempts, out of 288

(1 scenario × 4 rounds × 24 datasets × 3 fitted models) for achieving matching. In

this instance, this is a direct result of the inability of the models to capture the final

size when fitted to data generated from a process that is distinctively different than

an epidemic process. This time the final size ppp-values were much closer to the least

optimal value of 1, revealing that typically the observed final size was situated on

the right tail of its posterior predictive distribution. In addition, this effect becomes

more and more apparent as N increases (for a visual appreciation see figure A.4 in the

Appendix). For example, for the Exp-HM model the median (95% quantile interval)

final size ppp-value was 0.69 (0.55, 0.92) for N = 100 and 1 (0.96,1) for N = 1000.

Detailed results, for all scenarios and rounds, of the matching procedure as well

as median (95% quantile interval) ppp-values for the final size are given in tables A.1

to A.3 and tables A.4 to A.6 respectively, in the Appendix. Summarizing, simulations

have shown that the final size has no power to detect misspecification of the infectious

period distribution for standard SIR models. However, for clear misspecification cases,

such as in scenario 4, the final size could reveal lack of fit, especially as the dimension

of the data gets larger.

Effect of time shifting For investigating the effect of time shifting, the folded

ppp-values from the distance approach (dL2 distance function) are compared, for each

dataset, under the application of no shifting, theoretical shifting and distance shifting

(dL2). The effect is investigated under all cases of model (mis)specification. Under

correct specification and under misspecification (i.e. scenarios 1-3), since matching

was achieved for almost all instances, matched replicated data are used. In the case of
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clear misspecification (scenario 4), where matching procedure was not completed for

a lot of instances, unmatched replications are used. It is noted that, these numerical

investigations were also conducted for all permutations of choice of distance function,

matched or unmatched data, as well as for the position-time method, and conclusions

were similar.

Correct specification Since in this case models are correctly specified, the

desirable thing would be for the folded ppp-values to move closer to the optimal

value of 0 when applying time shifting, i.e. under the application of time shifting, to

move closer to the truth (reduce type I error). Indeed, both time shifting methods

have this effect; less obvious for smaller datasets (N = 100 or N = 200) but more

apparent for larger datasets (N = 500 or N = 1000). Figure 2.9 illustrates this

effect for the rounds where N = 1000. The choice of the round is intentional to

reiterate what was discussed in section 2.2.6, that if no shifting is applied the fit of an

epidemic model can appear dubious even when fitted to data generated from itself and

this phenomenon persists for large N . This is perhaps more obvious in the case of the

Constant-HM model (right plot of figure 2.9) where, under no shifting application,

the folded ppp-values are close to the least optimal value of 1 quite often. Comparing

between the two shifting methods, it appears that the distance shifting performs

better than the theoretical shifting, since the folded ppp-values are in general lower

under the application of the former.

Clear misspecification In this case, models are clearly misspecified and so

ideally the application of time shifting would move the folded ppp-values closer to

the value of 1, i.e. increase power (reduce type II error). Once again, both shifting

methods appear to have the desirable effect. It is noted that for larger values of N

the misspecification becomes increasingly obvious, even without applying any time

shifting and most folded ppp-values are already very close to 1. Hence the effect of

time shifting is not apparent in these instances in the sense that there is not much
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scope for improvement. The more interesting cases are for smaller values of N where

the information is less and hence there is potential for the time shifting to increase

power. Figure 2.10 illustrates this for the case of N = 200. As can be seen, if no time

shifting is applied, quite frequently, the folded ppp-values are far from the desirable

value of 1. As far as the comparison between the two shifting methods, the distance

shifting seems to perform slighlty more favourable than the theoretical shifting.

Misspecification Similar to above, since models are misspecified, the desirable

effect of the time shifting approaches would be to move the folded ppp-values closer

to 1. Just like in the clear misspecification case this seems to be the overall effect; it is

noted though that because the misspecification is less extreme in this case, the effect

is more apparent for larger datasets. Figure 2.11 highlights this for N = 1000. Just

like under the previous levels of (mis)specification, the distance-shifting application

appears to move the folded ppp-values closer to the truth than the theoretical shifting.

Under all cases of (mis)specification the application of time shifting has the desirable

effect; reducing type I and type II error accordingly. The two methods of shifting

are comparable but the distance shifting performs slightly better under all cases.

Considering also the fact that the distance shifting is readily extendable to more

general epidemic models, unlike the theoretical shifting (see discussion in section

2.4.2), all further investigations are conducted under the application of the distance

shifting.

Choice of distance function To compare the performance of the distance

functions a similar approach to that of the time shifting examination was followed;

folded ppp-values were compared, for each dataset, under each case of model

(mis)specification, with values closer to the truth implying better distance function.

Plots are given for the matched case, where comparison of all three distance functions

is possible; recall from section 2.5.3 that dl2 is only defined for matched datasets,
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Figure 2.9: Folded ppp-value from the distance method (dL2 distance function),
based on matched replications, against dataset index using no shifting (black circles),
theoretical shifting (green pluses) and distance shifting (dL2) (red crosses), under
correct specification, for round 4 (N = 1000) of simulation study A. Data are
generated from the fitted model. Left, middle and right plots correspond to the
Exp-HM, the Gamma-HM and the Constant-HM models, respectively.
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Figure 2.10: Folded ppp-value from the distance method (dL2 distance function),
based on unmatched replications, against dataset index using no shifting (black
circles), theoretical shifting (green pluses) and distance shifting (dL2) (red crosses),
under clear misspecification, for round 2 (N = 200) of simulation study A. Data are
generated from the HPP. Left, middle and right plots correspond to the Exp-HM, the
Gamma-HM and the Constant-HM models, respectively.

unlike dL1 and dL2 that are defined for unmatched as well.

Results showed that the performance of the distance functions was more or less

similar in all scenarios and most rounds, under all cases of (mis)specification. More

specifically, under clear misspecification (see figure 2.13) dL1 and dL2 appear to have

slightly lower type II error than dl2 , whereas under misspecification (see figure 2.14)

this trend is reversed. In any case, these differences are minor and not decisive.

Slightly better performance for dL1 and dL2 , compared to dl2 , was exhibited for

N = 1000 under correct model specification (see figure 2.12), that is, it appeared
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Figure 2.11: Folded ppp-value from the distance method (matched replications, dL2

distance function) against dataset index using no shifting (black circles), theoretical
shifting (green pluses) and distance shifting (dL2) (red crosses), under (less clear)
misspecification, for round 4 (N = 1000) of simulation study A. Data are generated
from the Exp-HM model. Left plot corresponds to the Gamma-HM model and right
plot to the Constant-HM model.

that dL1 and dL2 could result in lower type I error; folded ppp-values are in general

closer to the optimal value of 0 using dL1 and dL2 compared to dl2 .

Overall, the performance of dL1 and dL2 was almost identical and perhaps slightly

better compared to dl2 . Taking into account the fact that dL1 and dL2 can be used

for both matched and unmatched datasets, unlike dl2 , it is preferable to choose dL1

or dL2 . From this point and onwards all results are illustrated using dL2 .
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Figure 2.12: Folded ppp-value from the distance method (distance shifting), based
on matched replications, against dataset index using dl2 (black circles), dL1 (green
pluses) and dL2 (red crosses) distance function, under correct specification, for round
4 (N = 1000) of simulation study A. Data are generated from the fitted model.
Left, middle and right plots correspond to the Exp-HM, the Gamma-HM and the
Constant-HM models, respectively.
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Figure 2.13: Folded ppp-value from the distance method (distance shifting), based
on matched replications, against dataset index using dl2 (black circles), dL1 (green
pluses) and dL2 (red crosses) distance function, under clear misspecification, for round
1 (N = 100) of simulation study A. Data are generated from the HPP. Left, middle
and right plots correspond to the Exp-HM, the Gamma-HM and the Constant-HM
models, respectively.
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Figure 2.14: Folded ppp-value from the distance method (distance shifting), based on
matched replications, against dataset index using dl2 (black circles), dL1 (green pluses)
and dL2 (red crosses) distance function,under (less clear) misspecification, for round
4 (N = 1000) of simulation study A. Data are generated from the Exp-HM model.
Left plot corresponds to the Gamma-HM model and right plot to the Constant-HM
model.

Performance of the methods To assess the performance of the distance and the

position-time methods, folded ppp-values and
√

MSE values are examined for each

model, under all cases of mis(specification); recall that the interpretation of the folded

ppp-value is given in section 2.5.2 while the
√

MSE was defined in section 2.6.4, as

a way of summarizing the output of the position-time method for the purposes of

simulation studies. The desirable outcome is to have values close to the truth, i.e. in

general lower values under correct specification and higher under misspecification.
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Particular interest is given to the effect of N and whether it is sensible. More

specifically, under any case of misspecification, the sensible behaviour would be for

values to increase as N increases, i.e. more data should allow more power to detect

lack of fit. Under correct specification, it is desired for values to be either independent

of N (e.g. the p-value in the classical setting has a uniform sampling distribution,

when the model is true, independently of the dimension of the data) or get smaller

as N increases; in any case they should not move to the opposite direction of the truth.

For each model, results are summarized in tables that give the median (95% quantile

interval) folded ppp-value and
√

MSE, for each value of N , under all (mis)specification

cases (tables 2.6 to 2.17); these tables allow for the investigation of the effect of N

(by choosing a row and looking across columns). For completeness, all (for each

generated dataset) folded ppp-values and
√

MSE values, are plotted in the Appendix,

under each (mis)specification case (figures A.5 to A.10); these plots are particularly

useful in providing a visual appreciation on the effect of N (by choosing a column

and looking across rows) and on the comparison between matched and unmatched

assessment.

Correct specification: distance method Focusing on matched replications

assessment, it can be seen from tables 2.6, 2.8 and 2.10 that the folded ppp-values

appear sensible for all three models; generally the ppp-values are closer to 0 than 1

and indicate goodness of fit for the models. For Exp-HM (see table 2.6) and Gamma-

HM (see table 2.8), as N increases, it appears that the folded ppp-values move closer

to the optimal value of 0 whereas for Constant-HM (see table 2.10) the values appear

more or less independent of N ; in any case the effect of N is sensible.

For the unmatched results, the pattern is very similar with the only difference that

the folded ppp-values are in general lower as can be seen from tables 2.7, 2.9 and 2.11.

Once again this is sensible as it reflects the facts that (as discussed in section 2.5.5)
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the posterior predictive distribution is more uncertain and (as seen earlier in section

2.7.1.4) the models adequately capture the final size. For detailed results on each

dataset, under correct specification, see figure A.5 in the Appendix.

Correct specification: position-time method For the matched case, just

like the folded ppp-values, the
√

MSE values appear sensible (see tables 2.12, 2.14

and 2.16); the median (95% quantile interval) of the
√

MSE values (pooling over N

as trend was similar between rounds) was 0.21 (0.13, 0.35), 0.19 (0.13, 0.32) and

0.21 (0.13, 0.34) for the Exp-HM, the Gamma-HM and the Constant-HM model,

respectively, which is well below the least favourable value of 0.5. Unlike the distance

method, it appears that N does not have an effect on the results as the sampling

distribution of the
√

MSE values is very similar for all values of N .

For the unmatched case the same conclusions as for the distance method apply;

values are generally lower due to the incorporation of the final size in the assessment

(see tables 2.13, 2.15 and 2.17). Figure A.6 in the Appendix illustrates all
√

MSE

values for each dataset, under correct specification.

Clear misspecification: distance method Looking at tables 2.6, 2.8 and 2.10

it is obvious that, under clear misspecification (scenario 4), matched folded ppp-values

are as derised very close to 1, for all three models, revealing the clear lack of fit. The

effect of N on the results is not easily concluded for the matched case as folded ppp-

values are mostly available for the rounds of N = 100 and N = 200 and not for

larger N where matching could not be achieved due to the inability of the models to

capture the final size (see discussion above in section 2.7.1.4 and tables A.1 to A.3 in

the Appendix).

For the unmatched results, folded ppp-values are available for all values of N thus

making it possible to investigate the effect of the dimension of the data. It is clear
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from tables 2.7, 2.9 and 2.11 that as N increases the folded ppp-values move closer

to 1; in fact this behaviour is obvious from N = 200. For the rounds of N = 100 and

N = 200, where matched folded ppp-values are also available and comparisons can

be made, it is observed that the unmatched values are lower, reflecting the fact that

when N is smaller the final size is sufficiently captured by the models; the inability

of the models to capture final size becomes much more obvious for larger values of

N . Figure A.7 in the Appendix plots all matched and unmatched folded ppp-values,

under clear misspecification.

Clear misspecification: position-time method As can be seen in tables 2.12

to 2.17, results for the position-time method are very similar with the distance

method; values corresponding to matched replications are very close to the desired

value of 0.5, even for N = 100 and N = 200, and unmatched values behave as desired

as N increases. Figure A.8 in the Appendix illustrates the results of the position-time

method on all datasets, under clear misspecification.

Misspecification: distance method For matched replications, as seen in

tables 2.6, 2.8 and 2.10, the overall pattern under misspecification is similar as in

the clear misspecification case but a bit less evident, as one would expect. For

example, for N = 100, the median (95% quantile interval) matched folded ppp-value

of the Constant-HM model (see table 2.10) is 0.24 (0.01, 0.50), 0.52 (0.01, 0.90) and

0.83 (0.51, 1), under correct specification, misspecification and clear misspecification,

respectively. Appropriately, the values increase as the level of misspecification

increases. It is noted though that for such small population sizes, the folded ppp-

values under misspecification are not at the level that they would systematically raise

serious concerns for the fit of the model; as it is the case for the clear misspecification

case. Thankfully, and more importantly, as N increases the folded ppp-values, under

misspecification, become more extreme and the evidence of lack of fit more apparent,

i.e. the effect ofN is the desirable one. Specifically, the median (95% quantile interval)
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matched folded ppp-value for Constant-HM (see table 2.10), under misspecification,

is 0.58 (0.16, 0.92), 0.75 (0.28, 0.98) and 0.92 (0.70, 0.99) for N = 200, N = 500

and N = 1000, respectively. Similar conclusions hold for Exp-HM (see table 2.6) and

Gamma-HM (see table 2.8). One minor difference is that values for the Gamma-HM

model appear to be slightly lower than the Constant-HM model and in turn values for

the Exp-HM model are marginally lower than the Gamma-HM model; for example

for N = 1000 the median (95% quantile interval) folded ppp-value is 0.84 (0.43, 0.97)

and 0.75 (0.43, 0.97) for Gamma-HM and Exp-HM, respectively. This pattern is an

implication of the single realization setting and the fact that the more stochastic a

model is the harder it is to discard when misspecified (see the discussion and the

example in section 2.2.3).

As far as the results based on unmatched replications (see tables 2.7, 2.9 and 2.11),

a similar pattern as in all other cases holds; the effect of N is the same as in the

matched case but the values are in general lower (see figure A.9 in the Appendix for a

visual comparison of matched and unmatched results for each dataset). For instance,

the median (95% quantile interval) unmatched folded ppp-value for Constant-HM

(see table 2.11) is 0.30 (0.03, 0.58) and 0.57 (0.30, 0.98) for N = 100 and N = 1000,

respectively. In practice, this means that it is harder to clearly detect misspecification

of the infectious period distribution when using unmatched replications; one might

have indications of lack of fit but evidence will not be as severe and as systematic

(between datasets) as when using matched data. Note though that this does not

imply that the method underperforms. Given the fact that standard SIR models

accurately capture final size, even when the infectious distribution is misspecified,

and considering that unmatched approaches are simultaneously assessing disease

progression dynamics and the final size, the method performs as expected (see the

example and the discussion in sections 2.5.5 and 2.6.3). To make this clearer, consider

the unmatched folded ppp-values for a specific model (e.g. the Constant-HM) and a

specific large enough value of N (e.g. N = 500 so that the final size is not captured
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under clear misspecification) across all three levels of (mis)specification. Then the

median (95% quantile interval) under correct specification (both progression dynamics

and final size captured), misspecification (final size captured but progression dynamics

not adequately captured) and clear misspecification (neither progression dynamics or

final size captured) is 0.03 (0, 0.26), 0.37 (0.10, 0.85) and 1 (0.79, 1), respectively. All

folded ppp-values, under misspecification are collected in figure A.9 in the Appendix.

Misspecification: position-time method Tables 2.12 to 2.17 illustrate the

results for the position-time method, under misspecification. Conclusions and

comments are identical as in the distance method, for both matched and unmatched

data. For a visual overview on the output of the method for each dataset see figure

A.10 in the Appendix.

Table 2.6: Median (95% quantile interval) folded ppp-value from the distance method
(dL2 distance shifting, dL2 distance function) for the Exp-HM model, based on
matched replications, for simulation study A. The number of datasets that achieved
matching (and the median and quantile interval is taken over) is given in table A.1.
Simulation conditions for each scenario are given in table 2.5.

N = 100 N = 200 N = 500 N = 1000

Scenario 1 0.28 (0.04, 0.79) 0.23 (0.01, 0.65) 0.11 (0, 0.39) 0.13 (0, 0.51)

Scenario 2 0.21 (0.02, 0.57) 0.38 (0.09, 0.80) 0.49 (0.16, 0.77) 0.64 (0.14, 0.92)

Scenario 3 0.27 (0.04, 0.52) 0.36 (0.06, 0.78) 0.59 (0.25, 0.82) 0.75 (0.43, 0.97)

Scenario 4 0.97 (0.70, 0.99) 1 (0.93, 1) 1 (1, 1) -
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Table 2.7: Median (95% quantile interval) folded ppp-value from the distance
method (dL2 distance shifting, dL2 distance function) for the Exp-HM model, based
on unmatched replications, for simulation study A. Simulation conditions for each
scenario are given in table 2.5.

N = 100 N = 200 N = 500 N = 1000

Scenario 1 0.14 (0.01, 0.49) 0.07 (0.01, 0.39) 0.04 (0, 0.14) 0.03 (0, 0.20)

Scenario 2 0.12 (0.01, 0.43) 0.23 (0.04, 0.59) 0.25 (0.10, 0.52) 0.39 (0.05, 0.74)

Scenario 3 0.16 (0.03, 0.37) 0.23 (0.03, 0.51) 0.32 (0.09, 0.57) 0.50 (0.20, 0.78)

Scenario 4 0.72 (0.24, 0.94) 0.96 (0.46, 0.99) 1 (0.97, 1) 1 (0.99, 1)

Table 2.8: Median (95% quantile interval) folded ppp-value from the distance method
(dL2 distance shifting, dL2 distance function) for the Gamma-HM model, based on
matched replications, for simulation study A. The number of datasets that achieved
matching (and the median and quantile interval is taken over) is given in table A.2.
Simulation conditions for each scenario are given in table 2.5.

N = 100 N = 200 N = 500 N = 1000

Scenario 1 0.48 (0.03, 0.86) 0.54 (0.15, 0.90) 0.65 (0.10, 0.95) 0.84 (0.43, 0.97)

Scenario 2 0.18 (0.01, 0.69) 0.14 (0.01, 0.66) 0.11 (0.01, 0.37) 0.04 (0.01, 0.47)

Scenario 3 0.16 (0.01, 0.53) 0.15 (0.01, 0.51) 0.11 (0.01, 0.45) 0.19 (0.01, 0.66)

Scenario 4 0.98 (0.66, 1) 1 (0.80, 1) - -

145



Table 2.9: Median (95% quantile interval) folded ppp-value from the distance method
(dL2 distance shifting, dL2 distance function) for the Gamma-HM model, based
on unmatched replications, for simulation study A. Simulation conditions for each
scenario are given in table 2.5.

N = 100 N = 200 N = 500 N = 1000

Scenario 1 0.22 (0.01, 0.52) 0.21 (0.02, 0.48) 0.24 (0.03, 0.67) 0.40 (0.14, 0.69)

Scenario 2 0.08 (0, 0.32) 0.07 (0, 0.44) 0.03 (0, 0.15) 0.01 (0, 0.23)

Scenario 3 0.05 (0, 0.31) 0.07 (0, 0.28) 0.04 (0, 0.21) 0.05 (0, 0.42)

Scenario 4 0.82 (0.39, 0.94) 0.95 (0.69, 1) 1 (0.85, 1) 1 (0.85, 1)

Table 2.10: Median (95% quantile interval) folded ppp-value from the distance method
(dL2 distance shifting, dL2 distance function) for the Constant-HM model, based on
matched replications, for simulation study A. The number of datasets that achieved
matching (and the median and quantile interval is taken over) is given in table A.3.
Simulation conditions for each scenario are given in table 2.5.

N = 100 N = 200 N = 500 N = 1000

Scenario 1 0.52 (0.01, 0.90) 0.58 (0.16, 0.92) 0.75 (0.28, 0.98) 0.92 (0.70, 0.99)

Scenario 2 0.19 (0.04, 0.64) 0.15 (0.01, 0.60) 0.19 (0.02, 0.63) 0.15 (0.01, 0.60)

Scenario 3 0.24 (0.01, 0.50) 0.20 (0.01, 0.50) 0.14 (0.01, 0.52) 0.17 (0.02, 0.64)

Scenario 4 0.83 (0.51, 1) 0.99 (0.78, 1) - -
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Table 2.11: Median (95% quantile interval) folded ppp-value from the distance method
(dL2 distance shifting, dL2 distance function) for the Constant-HM model, based
on unmatched replications, for simulation study A. Simulation conditions for each
scenario are given in table 2.5.

N = 100 N = 200 N = 500 N = 1000

Scenario 1 0.30 (0.03, 0.58) 0.29 (0.03, 0.58) 0.37 (0.10, 0.85) 0.57 (0.30, 0.98)

Scenario 2 0.08 (0.01, 0.32) 0.07 (0, 0.33) 0.05 (0, 0.49) 0.03 (0, 0.24)

Scenario 3 0.07 (0, 0.30) 0.04 (0, 0.22) 0.03 (0, 0.26) 0.05 (0, 0.34)

Scenario 4 0.73 (0.26, 0.94) 0.93 (0.63, 1) 1 (0.79, 1) 1 (0.70, 1)

Table 2.12: Median (95% quantile interval)
√

MSE from the position-time method
(dL2 distance shifting) for the Exp-HM model, based on matched replications, for
simulation study A. The number of datasets that achieved matching (and the median
and quantile interval is taken over) is given in table A.1. Simulation conditions for
each scenario are given in table 2.5.

N = 100 N = 200 N = 500 N = 1000

Scenario 1 0.23 (0.14, 0.35) 0.22 (0.12, 0.34) 0.20 (0.13, 0.28) 0.22 (0.13, 0.35)

Scenario 2 0.21 (0.12, 0.32) 0.27 (0.15, 0.37) 0.30 (0.23, 0.39) 0.32 (0.22, 0.43)

Scenario 3 0.22 (0.14, 0.30) 0.26 (0.15, 0.39) 0.33 (0.23, 0.39) 0.37 (0.26, 0.43)

Scenario 4 0.44 (0.34, 0.47) 0.48 (0.43, 0.49) 0.49 (0.49, 0.49) -
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Table 2.13: Median (95% quantile interval)
√

MSE from the position-time method
(dL2 distance shifting) for the Exp-HM model, based on unmatched replications, for
simulation study A. Simulation conditions for each scenario are given in table 2.5.

N = 100 N = 200 N = 500 N = 1000

Scenario 1 0.19 (0.12, 0.26) 0.16 (0.10, 0.26) 0.14 (0.08, 0.19) 0.14 (0.08, 0.21)

Scenario 2 0.17 (0.09, 0.30) 0.23 (0.13, 0.35) 0.25 (0.18, 0.35) 0.29 (0.17, 0.38)

Scenario 3 0.19 (0.10, 0.28) 0.22 (0.12, 0.36) 0.29 (0.17, 0.35) 0.35 (0.23, 0.40)

Scenario 4 0.34 (0.26, 0.41) 0.41 (0.30, 0.45) 0.45 (0.42, 0.47) 0.47 (0.46, 0.48)

Table 2.14: Median (95% quantile interval)
√

MSE from the position-time method
(dL2 distance shifting) for the Gamma-HM model, based on matched replications, for
simulation study A. The number of datasets that achieved matching (and the median
and quantile interval is taken over) is given in table A.2. Simulation conditions for
each scenario are given in table 2.5.

N = 100 N = 200 N = 500 N = 1000

Scenario 1 0.28 (0.15, 0.39) 0.31 (0.21, 0.41) 0.35 (0.19, 0.43) 0.40 (0.29, 0.44)

Scenario 2 0.21 (0.13, 0.33) 0.19 (0.14, 0.32) 0.19 (0.14, 0.28) 0.18 (0.14, 0.31)

Scenario 3 0.19 (0.14, 0.30) 0.22 (0.13, 0.35) 0.21 (0.14, 0.31) 0.25 (0.15, 0.34)

Scenario 4 0.44 (0.32, 0.49) 0.48 (0.34, 0.49) - -
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Table 2.15: Median (95% quantile interval)
√

MSE from the position-time method
(dL2 distance shifting) for the Gamma-HM model, based on unmatched replications,
for simulation study A. Simulation conditions for each scenario are given in table 2.5.

N = 100 N = 200 N = 500 N = 1000

Scenario 1 0.20 (0.12, 0.26) 0.20 (0.13, 0.25) 0.22 (0.14, 0.30) 0.25 (0.17, 0.31)

Scenario 2 0.16 (0.10, 0.25) 0.16 (0.10, 0.29) 0.16 (0.10, 0.25) 0.13 (0.10, 0.24)

Scenario 3 0.15 (0.11, 0.24) 0.15 (0.11, 0.29) 0.17 (0.10, 0.26) 0.20 (0.10, 0.32)

Scenario 4 0.34 (0.26, 0.40) 0.41 (0.32, 0.45) 0.45 (0.42, 0.46) 0.47 (0.44, 0.48)

Table 2.16: Median (95% quantile interval)
√

MSE from the position-time method
(dL2 distance shifting) for the Constant-HM model, based on matched replications, for
simulation study A. The number of datasets that achieved matching (and the median
and quantile interval is taken over) is given in table A.3. Simulation conditions for
each scenario are given in table 2.5.

N = 100 N = 200 N = 500 N = 1000

Scenario 1 0.29 (0.16, 0.38) 0.31 (0.20, 0.42) 0.35 (0.23, 0.43) 0.42 (0.34, 0.45)

Scenario 2 0.19 (0.13, 0.31) 0.19 (0.13, 0.33) 0.20 (0.15, 0.32) 0.22 (0.15, 0.30)

Scenario 3 0.20 (0.13, 0.29) 0.21 (0.12, 0.35) 0.20 (0.13, 0.31) 0.23 (0.15, 0.35)

Scenario 4 0.38 (0.28, 0.49) 0.46 (0.33, 0.49) - -
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Table 2.17: Median (95% quantile interval)
√

MSE from the position-time method
(dL2 distance shifting) for the Constant-HM model, based on unmatched replications,
for simulation study A. Simulation conditions for each scenario are given in table 2.5.

N = 100 N = 200 N = 500 N = 1000

Scenario 1 0.22 (0.13, 0.28) 0.23 (0.13, 0.27) 0.25 (0.18, 0.39) 0.28 (0.23, 0.45)

Scenario 2 0.15 (0.10, 0.23) 0.16 (0.11, 0.26) 0.17 (0.11, 0.33) 0.18 (0.10, 0.23)

Scenario 3 0.16 (0.10, 0.24) 0.15 (0.10, 0.27) 0.15 (0.10, 0.24) 0.18 (0.12, 0.31)

Scenario 4 0.32 (0.22, 0.39) 0.40 (0.30, 0.44) 0.45 (0.38, 0.46) 0.47 (0.40, 0.47)

2.7.1.5 Conclusions

The conclusions from simulation study A, under the cases of correct specification,

misspecification (of the infectious period distribution) and clear misspecification (i.e.

fitting a standard SIR model to data generated from a HPP), are summarized as

follows.

Final size

• Under correct specification and under misspecification, the final size is accurately

captured by the models, i.e. in practice the final size can not be used to detect

misspecification of the infectious period distribution of the models.

• In the case of clear misspecification, the final size gives evidence of this misspec-

ification and its power increases with N ; for the specific choice of parameters in

the simulation study, a model would typically appear suspicious from N = 200 and

more clearly discarded for N = 500 and N = 1000.

Time shifting

• Under all cases of (mis)specification, the application of time shifting significantly

improves performance and appears to be essential.
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• Under correct specification, time shifting largely reduces type I error, that would

persist if no shifting was applied, even for large values of N (e.g N = 1000).

• Time shifting reduces type II error under clear misspecification (more evidently

for N = 100 and N = 200 when there is potential for improvement) and under

misspecification (more evidently for N = 500 and N = 1000).

• Between the two methods of time shifting, the distance shifting performs slightly

better than the theoretical shifting. Considering the fact that the distance shifting

is readily extendable to more general epidemic models, unlike the theoretical

shifting, it appears as the more attractive choice to use in practice.

Distance function Regarding the choice of distance function for the distance

method, overall performance of dL1 and dL2 is almost identical and perhaps slightly

better compared to dl2 . Taking into account the fact that dL1 and dL2 can be used

for both matched and unmatched datasets, unlike dl2 , it is preferable to choose dL1

or dL2 in practice.

Distance and position-time methods

• The distance and the position-time methods behave very similarly, under all cases

of (mis)specification and matching status (matched or unmatched data). The only

point that they appear to differ is on the effect of N , under correct specification.

More precisely, for the position-time method values appear to be independent of

N whereas for the distance method values seem to decrease as N increases; this is

the case for Exp-HM and Gamma-HM, as for Constant-HM values appear more or

less unaffected by N . In any case, the effect of changing N is sensible.

• The methods can easily detect lack of fit under clear misspecification, using both

matched and unmatched data, even for small values of N (roughly at N = 100 and

N = 200 for matched and unmatched data, respectively). As desired, this ability

increases with N . These results encourage the use of the methods as a sensible
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tool for model assessment. In addition, they suggest that, in such cases of extreme

misspecification, unmatched replications suffice to discard a model and thus the

computational cost induced by producing matched replications can be avoided.

• Under misspecification (of the infectious period) and using matched data, the

methods can provide indication for lack of fit when N = 100 and N = 200. The

power increases with N and the methods can more systematically detect lack of fit

when N = 500 and N = 1000. An exception is in the case that one of the Gamma-

HM model or the Constant-HM model is fitted to data generated from the other, as

their removal curves are very similar and the methods can not distinguish between

them. For the unmatched case the pattern is similar as for the matched case, with

the difference that the power is lower (as it should be) due the incorporation of the

final size in the assessment (which is accurately captured by the models). Just like

in the matched case, the power of the assessment increases as N increases. This

desirable effect of N is of high importance, since in real-life applications interest is

in larger rather than smaller population sizes.

2.8 Application of the distance and the position-

time methods for assessing the infection rate

form assumption of SIR models

This section is concerned with assessing the infection rate form assumption of SIR

models, using the distance and the position-time methods. For the purposes of such

assessment it is meaningful to consider models that have the same infectious period

distribution and solely differ on the form of the infection rate. More precisely, the

standard SIR model and the non-linear infection rate SIR model, with Exponential

infectious periods (TD ∼ Exp(γ)), are considered, defined in sections 1.3.5.5 and

1.3.5.6, and denoted as Exp-HM and Exp-NL, respectively. Note that, the choice of
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the Exponential infectious period, over the Gamma or the constant, is intentional

in order to create more challenging conditions for the methods to detect lack of fit.

More specifically, since we are assessing the infection mechanism of a model, an aspect

directly related with the (unobserved) infection curve, a more uncertain infectious

period will introduce more noise to the removal curve, which the assessment is based

on (see the remark in section 2.2.4.2). That is, if the methods can detect lack of fit

in the case of Exponential infectious periods, then they should also (and more easily)

be able to detect lack of fit for less uncertain infectious periods, where the loss of

information from the infection curve to the removal curve is less. To examine the

performance of the methods in assessing the infection rate form, a similar approach

as in section 2.7 is taken, and an extensive simulation study is conducted, referred to

as simulation study B.

2.8.1 Simulation study B

2.8.1.1 Purpose

Simulation study B aims to examine the performance of the distance and the position-

time methods in assessing the infection rate form assumption for the two considered

SIR models, namely the Exp-HM and the Exp-NL models. That is, the purpose is to

investigate:

• The results of the methods when applied to matched and unmatched data under

different simulation scenarios.

• The comparability of the results when methods are applied to matched and

unmatched data. As explained in section 2.7.1.1, to conduct this comparison it

is useful to examine the performance of the models in capturing the final size.

• The comparability between the distance and the position-time methods.

The above investigations are conducted both under the case that the infection rate

form is correctly specified as well as when it is misspecified. Also, just like in
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simulation study A (see section 2.7.1), great interest is given to any effect that the

dimension of the data, characterized by the number of initial susceptibles N , has on

the performance of the methods.

2.8.1.2 Simulation conditions

To carry out the aim of the simulation study the Exp-HM and the Exp-NL models

are fitted to data generated under two simulation scenarios, for which the simulation

conditions are summarized in table 2.18. In scenario 1 data are generated from Exp-

HM and in scenario 2 from Exp-NL; in scenario 1, the Exp-HM model is a correctly

specified model and the Exp-NL model is misspecified (due to the infection rate form),

and, in scenario 2, the roles of the two models are reversed. Each scenario consists of

four rounds, corresponding to the number of initial susceptibles N being set at 100,

200, 500 and 1000, and for each round 24 datasets are generated to capture sampling

variability.

In scenario 1 (data generated from Exp-HM), the simulation conditions are identical

as in scenario 1 of simulation study A (see section 2.7.1.2). That is, for all rounds, the

basic reproduction number R0 is set at 2.5 and the mean infectious period E(TD) is

set at 10, specifying γ = 0.1; having specified R0 and E(TD), β is given by β = R0

NE(TD)
,

using equation (1.29). In fact, to avoid unnecessary computational cost associated

with model fitting and creating matched replications, the same datasets as in scenario

1 of simulation study A are used; by doing so computational cost is only induced from

the Exp-NL model runs, since for the Exp-HM model, all outputs are readily available

to use from simulation study A.

In scenario 2 (data generated from Exp-NL) the key parameter to set is the power

parameter p ∈ [0, 1]. What seems reasonable is to choose p to be small enough so

that the generated data of scenario 2 are different enough from scenario 1 (recall from

the remarks in section 1.3.5.6 that for p = 1 the non-linear SIR model reduces to the
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standard SIR model) and large enough so that it is demanding for the methods to

detect lack of fit (the smaller the value of p gets the clearer the distinction between

the two models becomes). For example, Alharthi (2016), in a similar simulation

scenario, set p = 0.3. Our choice, motivated by encouraging results from provisional

simulations, is to set p at the more challenging value of 0.5, for all rounds. The

remaining parameters are chosen so that generated datasets are in a sense similar to

scenario 1 and fair comparability conditions (between scenarios) are ensured, i.e. the

goal is to establish some sort of parameter correspondence between the two scenarios.

The mean infectious period E(TD) is, just like in scenario 1, set at 10, yielding γ = 0.1.

The only parameter left to specify is β. Recall that in simulation study A (see

section 2.7.1.3), β was implicitly specified by choosing a common value for the basic

reproduction number R0 among all relevant scenarios. Since a basic reproduction

number parameter is not defined for the non-linear infection rate model (see the

relevant remark in section 1.3.5.6) a sensible alternative is to specify β so that, for

each round, the final size sampling distribution (conditioning on major outbreaks)

between the two scenarios peaks at similar values. Owing to the fact that there are

only four rounds to correspond, this is done by trial and error.

Table 2.18: Simulation conditions for simulation study B. Each simulation scenario
consists of 4 rounds, where the number of initial susceptibles N is set at 100, 200,
500 and 1000, respectively. For each round 24 datasets are generated.

Data generating process Parameter values

Scenario 1 Exp-HM R0 = 2.5, γ = 0.1
Scenario 2 Exp-NL p = 0.5, γ = 0.1,

βN = 0.85, 1.05, 1.35, 1.65

2.8.1.3 Run conditions

The Exp-HM and the Exp-NL models are fitted to each generated dataset via MCMC

methods, following Algorithms 5 and 8, respectively, to obtain a sample of size 10000,
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after a burn-in of 1000. For better mixing, in all cases, the infection update step

is repeated as many times as the number of infections, in each MCMC iteration

(see section 1.3.5.3). The prior distributions are assigned as in sections 1.3.5.5

and 1.3.5.6 with the prior parameters being specified so that the uncertainty for

all model parameters (except for the label of the initial infective α, which is assigned

a prior distribution as α ∼ U[1 : n]) is expressed via uninformative Exp(10−3) prior

distributions. Afterwards, the distance and the position-time methods are applied to

assess the fit of each model, using matched and unmatched removal data, as described

in algorithms 12 to 15. Note that, based on the findings from simulation study A (see

section 2.7.1.4), the chosen distance function is dL2 and the type of shifting applied

is distance shifting (dL2). Replicated datasets are created by choosing 500 posterior

values using thinning (choosing every 20th value). To achieve the required number of

matched replications a time limit of 15 hours is allowed, which if exceeded matched

assessment is not conducted. Runs are performed, in parallel for each dataset.

When fitting the Exp-NL model the power parameter p is taken to be known and

fixed at the value of 0.5 rather than being estimated from the data. Recall that the

same approach was followed in simulation study A for the shape parameter ν of the

Gamma-HM model and the motivation behind it is very similar in both cases (see

relevant discussion in section 2.7.1.3). More precisely, if p was allowed to be estimated

from the data then distinction between the two models would be compromised e.g.

in scenario 1 (data generated from Exp-HM) the posterior distribution of p would

simply support values near 1 in which case the Exp-NL model would reduce to the

Exp-HM model (see the relevant remark in section 1.3.5.6). Also, mixing issues arise

when p is unknown (see e.g. Alharthi (2016)) which in turn could cloud the results of

the model assessment methods and limit the ability to extract conclusions from the

simulation study.
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2.8.1.4 Results

The results of simulation study B are examined following the same procedure as

in simulation study A. That is, posterior predictive checking for the final size is

conducted by calculating its (mid) ppp-value P (T repfs < T obsfs ) + 1
2
P (T repfs = T obsfs ),

conditioning on major outbreaks, and the performance of the methods by analyzing

the folded ppp-values and the
√

MSE values, for each model, under all cases of

(mis)specification (see relevant parts of section 2.7.1.4 for more details).

As for simulation study A (see relevant parts of section 2.7.1.4), tables of median (95%

quantile interval) values are used to summarize the results of the methods (tables 2.19

to 2.26), while complete results are provided in the Appendix (figures A.13 to A.16).

Recall that, under correct specification, all results regarding the Exp-HM model have

already been examined in simulation study A (see section 2.7.1.4); as discussed in

section 2.8.1.2 the same datasets are used for scenario 1 of simulation study A and

simulation study B. Hence, when reporting results under correct specification, the

focus is on the Exp-NL model.

Matching and posterior predictive checking for the final size All results of

the matching procedure as well as median (95% quantile interval) final size ppp-values

for both models are given in tables A.7 and A.8, and tables A.9 and A.10 respectively,

in the Appendix.

Correct specification Recall from simulation study A (see section 2.7.1.4),

that for Exp-HM, matched replications are essentially achieved in all cases and the

ppp-value is typically close to the optimal value of 0.5, with small variance; pooling

all 96 datasets from the four rounds (as trend over N was similar), median (95%

quantile interval) ppp-value is 0.49 (0.43, 0.60).

157



For Exp-NL the behaviour is again sensible but somewhat different. More precisely,

the median ppp-value is, similar to Exp-HM and, as desired, around 0.5 for all rounds

but the variance is higher and it appears to increase with N e.g. for N = 100 the

median (95% quantile interval) ppp-value is 0.49 (0.37, 0.69) and for N = 1000 it is

0.44 (0.08, 0.99) (see table A.10 in the Appendix). As far as the matching procedure,

it was successfully completed for 95 out of 96 datasets in total (see table A.8 in the

Appendix).

Misspecification When the Exp-HM model is misspecified (i.e. when fitted to

data generated from the Exp-NL model) the final size is captured quite accurately

for smaller values of N but as the dimension of the data increases it becomes harder

for the model to produce outbreaks with the same final size as the observed. For

instance, the final size median (95% quantile interval) ppp-value for N = 200 is 0.52

(0.46, 0.66) and for N = 1000 is 0.81 (0.62, 0.99) (see table A.9 in the Appendix).

This means that for N = 1000 the observed final size typically lies closer to the

right tail, rather than the mode, of the final size posterior predictive distribution (see

figure A.11 in the Appendix for an example). This pattern is reflected in the number

of cases for which the matching procedure is achieved; up to N = 500, matching

was completed for 70 out of 72 datasets, whereas for N = 1000 for only 7 out of 24

datasets (see table A.7 in the Appendix).

Similar behaviour, as far as the effect of the dimension of the data, is exhibited when

the Exp-NL model is misspecified (i.e. when fitted to data generated from the Exp-

HM model), only in this case the evidence of lack of fit is more apparent. For example,

the final size median (95% quantile interval) ppp-value is 0.45 (0.34, 0.59), 0.09 (0.05,

0.20) and 0 (0, 0.05) for N = 100, 500 and 1000, respectively (see table A.10 in the

Appendix). This implies that, for N = 500 and N = 1000 the observed final size

lies on (and beyond) the left tail of the final size posterior predictive distribution (see

figure A.12 in the Appendix for an example). A result of this is that for N = 1000
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matched replications were achieved for only 2 out of 24 datasets (see table A.8 in the

Appendix).

To summarize, simulations suggest that when the infection rate form is misspecified,

the models accurately capture the final size for small values of N but as N

increases this ability deteriorates and lack of fit is revealed. The power to detect

misspecification appears to be higher for Exp-NL compared to Exp-HM (see tables A.9

and A.10 in the Appendix). These observations, particularly the effect of N , are

very interesting considering the fact that the general consensus in the literature is

that the ability of epidemic models to capture the final size is quite robust under

many types of model misspecification. For example in the work of Alharthi (2016),

which includes assessment for the Exp-HM and the Exp-NL models under the same

simulation scenarios of misspecification (i.e. when one of these models is fitted to data

generated from the other), no evidence of model misspecification was found using the

final size. The most likely reason for this was that the simulated datasets where of

(the same) relatively small dimension (N = 200). This highlights the importance of

considering the effect of the dimension of the data in such investigations, especially

as in real-life applications interest is in larger rather than smaller population sizes.

Performance of the methods

Correct specification: distance method For assessment based on matched

replications, as can be seen in table 2.21, the folded ppp-values are typically closer to 0

than 1 indicating, as desired, goodness of fit for the Exp-NL model. It appears that the

dimension of the data does not have any apparent effect on the sampling distribution

of the folded ppp-values, which is a sensible pattern under correct specification.

As final size is incorporated into the unmatched assessment, which is typically

captured by the Exp-NL model independently of N (see results on final size and table
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A.10 in the Appendix), folded ppp-values are on average lower than the matched case

and appear independent of N , as seen in table 2.22. Once more these results are

desirable as they suggest goodness of fit for the model. All folded ppp-values, under

correct specification, are illustrated in figure A.13 in the Appendix.

Correct specification: position-time method Tables 2.25 and 2.26 give

the Exp-NL model summary results for the position-time method, under correct

specification; complete results can be found in figure A.14 in the Appendix.

Comments regarding the results and the effect of N are similar to those for the

distance method, for both matched and unmatched data.

Misspecification: distance method First, results for the Exp-HM model are

reported. For matched replications, as seen in table 2.19, median (95% quantile

interval) folded ppp-value, under misspecification, is 0.23 (0.06, 0.82), 0.62 (0.27,

0.97), 0.94 (0.50, 1) and 1 (0.94, 0.1) for N = 100, 200, 500 and 1000, respectively;

for N = 1000 only 7 datasets achieved matching (see table A.7 in the Appendix)

but the consistency between the folded ppp-values on these datasets still allows for

meaningful conclusions. It is clear that as N increases the folded ppp-values move in

the desired direction; in fact, it appears that as N gets large the sampling distribution

of the folded ppp-value reduces to a point mass at the optimal value of 1, allowing

for systematic detection of lack of fit.

Regarding results based on unmatched replications, folded ppp-values are generally

lower than the matched case, for the smaller values of N , and more similar for

N = 1000 (see table 2.20). Considering the fact that, when applied to unmatched

data, the method simultaneously assesses disease progression dynamics and final size,

it performs sensibly (see the example and the discussion in sections 2.5.5 and 2.6.3);

recall that the Exp-HM model adequately captures the final size for smaller values of

N but struggles to do so as N gets larger (see results on final size and table A.9 in the
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Appendix). From a practical point of view, it appears that for large enough N (e.g.

around N=1000, with the parameters used in this simulation study) lack of fit for

the Exp-HM model, due to misspecified infection rate form, could be systematically

detected using unmatched replications (thus avoiding the cost of producing matched

replications).

The performance of the method for the Exp-NL model is very similar as for the Exp-

HM model, for both matched and unmatched case, in the sense that as N increases

power increases too. In fact, folded ppp-values are in general higher for the Exp-NL

model, particularly for smaller values of N , implying that lack of fit can be detected

even easier. For example, as seen in table 2.21, the median (95% quantile interval)

folded ppp-value, based on matched replications, is 0.70 (0.08, 0.86), 0.80 (0.28, 0.96)

and 0.97 (0.84, 0.99) for N = 100, 200 and 500, respectively; for N = 1000 only 2

datasets completed matching (see table A.8 in the Appendix) for which the folded

ppp-value was 1. As far as unmatched replications, once again the performance of

the model in capturing the final size is effectively incorporated into the assessment.

More precisely, as seen in table 2.22, for N = 100 and N = 200, where the final size is

relatively adequately captured by the model (see results on final size and table A.10

in the Appendix), the median (95% quantile interval) folded ppp-value is 0.54 (0.09,

0.80) and 0.54 (0.07, 0.90), while for N = 500 and N = 1000, where the model fails

to capture the final size (see results on final size and table A.10 in the Appendix), the

median (95% quantile interval) folded ppp-value is 0.90 (0.66, 0.97) and 0.99 (0.97, 1).

All folded ppp-values, under misspecification, are given in figure A.15 in the Appendix.

Misspecification: position-time method Tables 2.23 and 2.24 and ta-

bles 2.25 and 2.26 give median (95% quantile interval) folded ppp-values, for the Exp-

HM and the Exp-NL models, respectively, under the case of misspecification. Folded

ppp-values for all datasets can be seen in figure A.16 in the Appendix. Conclusions
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regarding the performance of the position-time method are essentially the same as

for the distance method, for both matched and unmatched cases.

Table 2.19: Median (95% quantile interval) folded ppp-value from the distance
method (dL2 distance shifting, dL2 distance function) for the Exp-HM model, based on
matched replications, for simulation study B. The number of datasets that achieved
matching (and the median and quantile interval is taken over) is given in table A.7.
Simulation conditions for each scenario are given in table 2.18.

N = 100 N = 200 N = 500 N = 1000

Scenario 1 0.28 (0.04, 0.79) 0.23 (0.01, 0.65) 0.11 (0, 0.39) 0.13 (0, 0.51)

Scenario 2 0.23 (0.06, 0.82) 0.62 (0.27, 0.97) 0.94 (0.50, 1) 1 (0.94, 0.1)

Table 2.20: Median (95% quantile interval) folded ppp-value from the distance
method (dL2 distance shifting, dL2 distance function) for the Exp-HM model, based
on unmatched replications, for simulation study B. Simulation conditions for each
scenario are given in table 2.18.

N = 100 N = 200 N = 500 N = 1000

Scenario 1 0.14 (0.01, 0.49) 0.07 (0.01, 0.39) 0.04 (0, 0.14) 0.03 (0, 0.20)

Scenario 2 0.13 (0.01, 0.42) 0.24 (0.07, 0.71) 0.64 (0.16, 0.98) 0.97 (0.68, 0.1)
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Table 2.21: Median (95% quantile interval) folded ppp-value from the distance method
(dL2 distance shifting, dL2 distance function) for the Exp-NL model, based on matched
replications, for simulation study B. The number of datasets that achieved matching
(and the median and quantile interval is taken over) is given in table A.8. Simulation
conditions for each scenario are given in table 2.18.

N = 100 N = 200 N = 500 N = 1000

Scenario 1 0.70 (0.08, 0.86) 0.80 (0.28, 0.96) 0.97 (0.84, 0.99) 1 (1, 1)

Scenario 2 0.31 (0.01, 0.67) 0.21 (0.01, 0.60) 0.28 (0.01, 0.63) 0.22 (0.03, 0.58)

Table 2.22: Median (95% quantile interval) folded ppp-value from the distance
method (dL2 distance shifting, dL2 distance function) for the Exp-NL model, based
on unmatched replications, for simulation study B. Simulation conditions for each
scenario are given in table 2.18.

N = 100 N = 200 N = 500 N = 1000

Scenario 1 0.54 (0.09, 0.80) 0.54 (0.07, 0.90) 0.90 (0.66, 0.97) 0.99 (0.97, 1)

Scenario 2 0.17 (0.02, 0.45) 0.11 (0.01, 0.38) 0.16 (0.04, 0.63) 0.16 (0.01, 0.84)

Table 2.23: Median (95% quantile interval)
√

MSE from the position-time method
(dL2 distance shifting) for the Exp-HM model, based on matched replications, for
simulation study B. The number of datasets that achieved matching (and the median
and quantile interval is taken over) is given in table A.7. Simulation conditions for
each scenario are given in table 2.18.

N = 100 N = 200 N = 500 N = 1000

Scenario 1 0.23 (0.14, 0.35) 0.22 (0.12, 0.34) 0.20 (0.13, 0.28) 0.22 (0.13, 0.35)

Scenario 2 0.24 (0.16, 0.39) 0.32 (0.23, 0.43) 0.42 (0.28, 0.48) 0.47 (0.44, 0.48)
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Table 2.24: Median (95% quantile interval)
√

MSE from the position-time method
(dL2 distance shifting) for the Exp-HM model, based on unmatched replications, for
simulation study B. Simulation conditions for each scenario are given in table 2.18.

N = 100 N = 200 N = 500 N = 1000

Scenario 1 0.19 (0.12, 0.26) 0.16 (0.10, 0.26) 0.14 (0.08, 0.19) 0.14 (0.08, 0.21)

Scenario 2 0.18 (0.13, 0.25) 0.20 (0.15, 0.29) 0.29 (0.18, 0.38) 0.37 (0.31, 0.41)

Table 2.25: Median (95% quantile interval)
√

MSE from the position-time method
(dL2 distance shifting) for the Exp-NL model, based on matched replications, for
simulation study B. The number of datasets that achieved matching (and the median
and quantile interval is taken over) is given in table A.8. Simulation conditions for
each scenario are given in table 2.18.

N = 100 N = 200 N = 500 N = 1000

Scenario 1 0.30 (0.16, 0.36) 0.34 (0.21, 0.43) 0.43 (0.34, 0.46) 0.42 (0.41, 0.43)

Scenario 2 0.24 (0.12, 0.33) 0.21 (0.11, 0.29) 0.21 (0.13, 0.30) 0.20 (0.13, 0.29)

Table 2.26: Median (95% quantile interval)
√

MSE from the position-time method
(dL2 distance shifting) for the Exp-NL model, based on unmatched replications, for
simulation study B. Simulation conditions for each scenario are given in table 2.18.

N = 100 N = 200 N = 500 N = 1000

Scenario 1 0.29 (0.16, 0.34) 0.32 (0.18, 0.42) 0.41 (0.32, 0.46) 0.43 (0.38, 0.46)

Scenario 2 0.19 (0.12, 0.30) 0.17 (0.11, 0.27) 0.21 (0.14, 0.25) 0.20 (0.13, 0.31)
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2.8.1.5 Removal curve behaviour

To better explain the results of the simulation study it is useful to gain an appreciation

on the removal curve behaviour of the two considered models. Figure 2.15 provides

a typical example that highlights the difference in the posterior predictive removal

curve behaviour between the models. More specifically, the Exp-NL model tends to

produce removal curves for which the majority of the events occur more spread out in

time, compared to the removal curves of the Exp-HM model; for the Exp-HM model

the curves peak faster. This difference in the behaviour of the removal curves is most

likely a key reason behind the ability of the methods to successfully detect lack of fit,

whenever one of these two models is misspecified.
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Figure 2.15: Plots of 500 matched replications from the posterior predictive
distribution of the removal curve zrept with the mean removal curve z̄rept (red, dotted
line) and the observed removal curve zobst (black, solid line) imposed. Observed data
is a typical dataset of round 3 (N = 500) in scenario 1 (data generated from an
Exp-HM) of simulation study B. Left and right plots correspond to the Exp-HM and
the Exp-NL models, respectively. For reference the folded ppp-value (dL2 distance
shifting, dL2 distance function) and the

√
MSE (dL2 distance shifting) are (0.31, 0.23)

and (0.99, 0.43) for the Exp-HM and the Exp-NL models, respectively.

2.8.1.6 Conclusions

An outline of the conclusions from simulation study B is given.

Final size
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• Under correct specification the final size is, as expected, accurately captured by

the models.

• When misspecified the models adequately capture the final size for small values of

N but as N increases this ability deteriorates and lack of fit is revealed. The power

to detect misspecification appears to be higher for Exp-NL compared to Exp-HM;

for the specific choice of parameters in the simulation study serious concerns for

the fit of Exp-HM are raised from N = 1000, while for Exp-NL from N = 500.

Distance and position-time methods

• The distance and the position-time methods behave very similarly, under all cases

of (mis)specification and matching status (matched or unmatched data).

• Under correct specification, the methods, as they ought to, suggest goodness of fit.

No apparent effect of N is observed, which is a sensible behaviour under correct

specification.

• Under misspecification, the methods enjoy increased power as N increases, for

both models and for matched and unmatched data. Note that, just like in

simulation study A (see section 2.7.1.5), this is the most encouraging conclusion,

because in practical examples, outbreaks in larger populations are of far greater

interest. Typically, for smaller values of N , unmatched assessment has less power

than matched, but for larger values of N power is similar; this is a reflection of

the final size performance under misspecification. For example, for the Exp-HM

model, systematic lack of fit can be detected around N = 500 and N = 1000

when using matched and unmatched replications, respectively. The ability to

detect misspecification is higher for the Exp-NL model than the Exp-HM model;

N = 200 and N = 500 suffice to raise serious concerns for the fit of the Exp-NL

model, using matched and unmatched replications, respectively. The fact that, for

large enough N , misspecification can be detected using unmatched replications is
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computationally appealing, since the cost of producing matched replications can

be avoided.

2.9 Application of the distance and the position-

time methods for assessing the population

mixing assumption of SIR models

This section is concerned with assessing the population mixing assumption of SIR

models using the distance and the position-time methods. For the purposes of

such assessment, models that have the same infectious period distribution and

different infection processes, distinguished by their population mixing assumption,

are considered. More specifically, the standard SIR model and the two-level-mixing

model, with constant infectious period (TD ≡ c), are considered, defined in sections

1.3.5.5 and 1.3.5.7, and denoted as Constant-HM and Constant-2L, respectively.

The choice of the constant infectious period, rather than Gamma or Exponential,

is to create more informative conditions for investigating the performance of the

methods. More precisely, since we are assessing the infection mechanism (depending

on population mixing assumption) of a model, an aspect directly related with the

(unobserved) infection curve, using constant infectious periods prevents any noise

from being introduced from the (unobserved) infection curve to the removal curve

(assessment is as if it is conducted on the infection curves) and allows for more

meaningful conclusions. That is to say, that the methods should first be able to

detect lack of fit in the case of constant infectious periods, before being considered

for the random infectious periods case, where there is the additional challenge of loss of

information from the infection curve to the removal curve (see the remark in section

2.2.4.2). To examine the performance of the methods in assessing the population

mixing assumption, the same approach as in sections 2.7 and 2.8 is adopted, and an

extensive simulation study is conducted, referred to as simulation study C.

167



2.9.1 Simulation study C

2.9.1.1 Purpose

The purpose of simulation study C is to examine the performance of the distance and

the position-time methods in assessing the population mixing assumption for the two

considered SIR models, namely the Constant-HM and the Constant-2L models. At

first instance, only matched replications assessment is considered; depending on the

results on matched data, final size performance and unmatched assessment might be

worth considering at a later point. In short, simulation study C aims to investigate:

• The results of the methods when applied to matched data under different simulation

scenarios.

• The comparability between the distance and the position-time methods.

The above investigations are conducted for both the case that the population mixing

assumption is correctly specified, as well as when it is misspecified. Similar to

simulation studies A and B (see sections 2.7.1 and 2.8.1), it is intended to investigate if

and how the dimension of the data, characterized by the number of initial susceptibles

N , affects the results. In addition, particular interest is given in examining the

performance of the methods on data of varying levels of two-level-mixing effect, that

is, on data of varying levels of difference between within and between household

infectivity.

2.9.1.2 Simulation conditions

For the purposes of this simulation study, the Constant-HM and the Constant-2L

models are fitted to data generated under different simulation scenarios, for which

the simulation conditions are summarized in table 2.27. In all scenarios data are

generated from the Constant-2L model, i.e. in all instances the Constant-2L model

is a correctly specified model, and the Constant-HM model is misspecified due to
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the population mixing assumption. To examine the performance of the methods,

on data of varying levels of two-level-mixing effect, four simulation scenarios (each

corresponding to a different level of two-level-mixing effect) are considered. Each

scenario consists of three rounds, corresponding to the population number C being

set at 100, 200 and 500, respectively, i.e. the number of initial susceptibles N is set at

99, 199 and 499, respectively. For each round, 24 datasets are generated to capture

sampling variability and in all cases the initial infective (and its household) is chosen

uniformly at random from the population.

The parameters for the four simulation scenarios are set as follows. For simplicity,

all households are taken to have equal size CH , where CH is set at 5; this value is

large enough to distinguish the two-level-mixing model from the standard SIR model

(recall from the relevant remark in section 1.3.5.7 that if CH = 1 the two-level-mixing

SIR model reduces to the standard SIR model) and at the same time small enough

to be practically relevant. The basic reproduction number R∗ is set at 2.5 and the

infectious period c at 10 for all scenarios and rounds; the fixed value of R∗ allows

for an investigation of the effect of the dimension of the data via N (common R∗

between rounds) and the effect of the level of the two-level-mixing evidence in the data

(common R∗ between scenarios). More precisely, the latter examination is achieved as

follows. Consider the notation of section 1.3.5.7 and recall from the relevant paragraph

of section 1.3.5.7 that R∗ = µRG (see equation (1.40)), where µ is the expected

number of ever-infected individuals of the within household epidemic, for which only

local infections occur, and RG is the basic reproduction number of the model for which

all households are of size 1 and only global infections occur. These three quantities,

R∗, µ and RG, can roughly be thought of as quantifying overall, within household

and between household infectivity, respectively. Given R∗ (and given E(TD), N and

CH), RG and µ are inversely proportional and the two-level-mixing effect in the data

becomes more apparent as µ increases (and RG decreases). To establish an orientation

on how to choose µ, for each scenario, we can naively consider the basic reproduction

169



number of the within household outbreak. More precisely, since the within household

outbreak can be seen as an outbreak from a standard SIR model, with one-to-one

infection rate βL and CH − 1 initial susceptibles, its basic reproduction number is

given (using equation (1.29)) by RH
0 = βL(CH − 1)E(TD); note that this definition is

naive, since the number of initial susceptibles CH − 1 is not large (see the relevant

paragraph in section 1.3.5.5), but it still suffices to establish a guideline for within

household infectivity. By specifying a value for RH
0 , βL is specified from the previous

equation. In turn, given βL, µ can be specified by solving a system of triangular

equations (see Ball (1986)). Finally, given µ and R∗, RG and βG are specified using

equations (1.40) and (1.41), respectively. To create scenarios of increasing two-level-

mixing effect (i.e. increasing within household infectivity), the value of RH
0 is set at

1, 2, 5 and 20, which in turn yields µ =1.65, 3.40, 4.95 and 5, for scenarios 1, 2, 3 and

4, respectively; scenario 1 (RH
0 = 1) creates data with a rather mild two-level-mixing

effect while scenario 4 (RH
0 = 20) represents an extremely apparent case of two-level-

mixing effect.

To facilitate a better appreciation of the extent of the two-level-mixing effect in

each scenario one can calculate, using simulations, the mean proportion of local

infections (from total infections) p̄L, under the sampling distribution of the model with

parameters as specified by the simulation scenario. As mentioned in section 1.3.5.7,

local infections refer to infections occurring from the action of the local infection

process (modelling only withing household contacts) and therefore the higher the

number of p̄L the higher the two-level-mixing effect (i.e. within household infectivity)

in the data. The calculated values of p̄L are 0.32, 0.60, 0.75 and 0.79 for scenarios 1,

2, 3 and 4, respectively, and they are included in table 2.27 for reference.

Note that a simulation scenario where data are generated from the Constant-HM

model is not considered. Under such a scenario, the local one-to-one infection rate

βL would be estimated to be very close to 0, causing the two-level mixing SIR model
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to essentially reduce to the standard SIR model (see the relevant remark in section

1.3.5.7 for the conditions under which the two-level mixing model reduces to the

standard SIR model) making the two models indistinguishable and the simulation

scenario uninteresting. One way to avoid this, would be to fix βL at a some strictly

positive value. Such an approach was taken in simulation studies A and B with the

shape parameter ν and the power parameter p for the Gamma-HM and the Exp-

NL models, respectively. However, unlike ν and p, fixing βL at a certain value is

not an approach that one would typically take in practice, as βL is one of the main

parameters for which inference is desired. Thus, such a simulation scenario is avoided.

Table 2.27: Simulation conditions for simulation study C. Each simulation scenario
consists of 3 rounds, where the number of initial susceptibles N is set at 99, 199
and 499, respectively. For each round 24 datasets are generated. The number of
individuals in each household is set as CH = 5, in all instances.

Data generating process Parameter values p̄L

Scenario 1 Constant-2L R∗ = 2.5, c = 10, RH
0 = 1, µ = 1.65 0.32

Scenario 2 Constant-2L R∗ = 2.5, c = 10, RH
0 = 2, µ = 3.4 0.60

Scenario 3 Constant-2L R∗ = 2.5, c = 10, RH
0 = 5, µ = 4.95 0.75

Scenario 4 Constant-2L R∗ = 2.5, c = 10, RH
0 = 20, µ = 5 0.79

2.9.1.3 Run conditions

The Constant-HM and the Constant-2L models are fitted to each generated dataset

via MCMC methods, using Algorithms 7 and 9, to obtain a sample of size 50000,

after a burn-in of 10000. The prior distributions are assigned as in sections 1.3.5.5

and 1.3.5.7 with the prior parameters being specified so that all model parameters

have uninformative Exp(10−3) prior distributions. Afterwards, the distance and the

position-time methods are applied to assess the fit of each model, using matched

replications, as described in algorithms 12 and 14. Based on the findings of simulation

study A (see section 2.7.1.4) the chosen distance function is dL2 and the type of
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shifting applied is distance shifting (dL2). Replicated datasets are created by choosing

500 posterior values using thinning (choosing every 100th value). To achieve the

required number of matched replications a time limit of 15 hours is allowed, which if

exceeded matched assessment is not conducted. Runs are performed, in parallel for

each dataset.

2.9.1.4 Results

The performance of the methods is examined as in simulation studies A and B (see

relevant parts of sections 2.7.1.4 and 2.8.1.4). That is, by examining the folded

ppp-values and the
√

MSE values, for each model, at each simulation scenario and

round. Recall that for the effect of the dimension of the data, quantified by N , to

be desirable, it is required that, under misspecification, more data should allow more

power to reveal lack of fit (see discussion in relevant parts of section 2.7.1.4 for more

details). Similarly, the methods should be expected to have more power in exposing

the fit of the Constant-HM model, when the two-level-mixing effect in the data (i.e.

the larger the value of RH
0 ) becomes more apparent.

Similar to simulation studies A and B (see relevant parts of sections 2.7.1.4 and

2.8.1.4), tables of median (95% quantile interval) values are used to summarize the

results of the methods (see tables 2.28 and 2.29), while detailed results for each

dataset are provided in the Appendix (see figures A.17 to A.20). In all tables and

figures, rows and columns conveniently correspond to the different scenarios (values

of RH
0 ) and rounds (values of N), respectively; this facilitates the appreciation of any

effect the two-level-mixing level (by choosing a column and looking across rows) or

the dimension of the data (by choosing a row and looking across columns) have on

the results of the methods.

Performance of the methods

172



Correct specification (Constant-2L model) Table 2.28 illustrates median

(95% quantile interval) folded ppp-values from the distance method, for all scenarios

and rounds, for the Constant-2L model (correctly specified model). As expected

ppp-values are typically closer to 0 than 1 suggesting goodness of fit for the model.

Regarding the effect of the dimension of the data, there does not seem to be any clear

trend, which under correct specification is a sensible behaviour. Likewise, the effect

of the two-level-mixing evidence in the data is sensible. More specifically, it appears

that that there is no definite pattern, besides a decrease in the values in scenario 4,

where the two-level-mixing effect in the data is quite extreme (RH
0 = 20, p̄L = 0.79).

For detailed results on each dataset, see figure A.17 in the Appendix.

Results for the effect of N and the effect of RH
0 are very similar for the position-

time method, as can be seen in table 2.29 and in figure A.18 in the Appendix.

Misspecification (Constant-HM model) As seen in table 2.30, the perfor-

mance of the distance method, under misspecification, is not the desirable one as

folded ppp-values are not typically large enough to detect lack of fit. In addition,

there does not appear to be any clear effect of N , implying that even for larger

datasets the method would not be able to expose the misspecification of the model.

As far as the effect of the two-level-mixing evidence in the data, it appears sensible, in

the sense that as RH
0 increases the power of the method increases too. However, this

increase is very slow and it must be emphasized that even for the extreme scenario

of RH
0 = 20 (p̄L = 0.79), where the level of the two-level-mixing effect in the data is

extremely evident, the method can not consistently detect lack of fit; median (95%

quantile interval) folded ppp-value (pooling over N) is 0.17 (0.01, 0.73), 0.29 (0.02,

0.94), 0.43 (0.02, 0.97) and 0.57 (0.09, 0.97) for RH
0 =1, 2, 5 and 20, respectively. For

a detailed visual appreciation on the results see figure A.19 in the Appendix.
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Conclusions are very similar for the position time method as illustrated in table

2.31 and in figure A.20 in the Appendix.

Table 2.28: Median (95% quantile interval) folded ppp-value from the distance method
(dL2 distance shifting, dL2 distance function) for the Constant-2L model, based on
matched replications, for simulation study C. The number of datasets that achieved
matching (and the median and quantile interval is taken over) is given in table A.11.
Simulation conditions for each scenario are given in table 2.27.

N = 99 N = 199 N = 499

Scenario 1 0.24 (0, 0.58) 0.36 (0.03, 0.68) 0.27 (0.04, 0.82)

Scenario 2 0.37 (0.02, 0.79) 0.28 (0.02, 0.89) 0.42 (0.05, 0.89)

Scenario 3 0.38 (0.03, 0.84) 0.37 (0.04, 0.89) 0.44 (0.03, 0.81)

Scenario 4 0.11 (0.01, 0.72) 0.15 (0.01, 0.48) 0.16 (0.01, 0.60)

Table 2.29: Median (95% quantile interval)
√

MSE from the position-time method
(dL2 distance shifting) for the Constant-2L model, based on matched replications, for
simulation study C. The number of datasets that achieved matching (and the median
and quantile interval is taken over) is given in table A.11. Simulation conditions for
each scenario are given in table 2.27.

N = 99 N = 199 N = 499

Scenario 1 0.19 (0.13, 0.30) 0.24 (0.14, 0.32) 0.23 (0.14, 0.37)

Scenario 2 0.25 (0.15, 0.39) 0.25 (0.13, 0.39) 0.26 (0.14, 0.40)

Scenario 3 0.23 (0.14, 0.38) 0.25 (0.11, 0.40) 0.25 (0.14, 0.33)

Scenario 4 0.19 (0.12, 0.32) 0.17 (0.10, 0.27) 0.20 (0.11, 0.30)
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Table 2.30: Median (95% quantile interval) folded ppp-value from the distance method
(dL2 distance shifting, dL2 distance function) for the Constant-HM model, based on
matched replications, for simulation study C. The number of datasets that achieved
matching (and the median and quantile interval is taken over) is given in table A.12.
Simulation conditions for each scenario are given in table 2.27.

N = 99 N = 199 N = 499

Scenario 1 0.16 (0, 0.51) 0.14 (0.02, 0.69) 0.18 (0.02, 0.81)

Scenario 2 0.29 (0.02, 0.88) 0.41 (0.05, 0.90) 0.20 (0.05, 0.95)

Scenario 3 0.39 (0.03, 0.94) 0.42 (0.07, 0.85) 0.45 (0.08, 0.98)

Scenario 4 0.60 (0.22, 0.95) 0.68 (0.08, 0.93) 0.55 (0.09, 0.99)

Table 2.31: Median (95% quantile interval)
√

MSE from the position-time method
(dL2 distance shifting) for the Constant-HM model, based on matched replications, for
simulation study C. The number of datasets that achieved matching (and the median
and quantile interval is taken over) is given in table A.12. Simulation conditions for
each scenario are given in table 2.27.

N = 99 N = 199 N = 499

Scenario 1 0.18 (0.13, 0.26) 0.20 (0.13, 0.34) 0.20 (0.13, 0.37)

Scenario 2 0.22 (0.13, 0.40) 0.25 (0.14, 0.38) 0.20 (0.15, 0.42)

Scenario 3 0.24 (0.13, 0.42) 0.25 (0.15, 0.35) 0.27 (0.15, 0.43)

Scenario 4 0.28 (0.19, 0.40) 0.29 (0.17, 0.39) 0.29 (0.18, 0.42)

2.9.1.5 Removal curve behaviour

In order to gain a better understanding about the results of the simulation study

(i.e. the inadequate power of the methods to detect lack of fit, the effect of N and

the effect of RH
0 ) an appreciation of the removal curve behaviour is in order. Four

typical datasets (generated from the Constant-2L model) from different scenarios
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and rounds (so that the effect of RH
0 and N can be highlighted) are picked and

the posterior predictive removal curves from the Constant-HM model (misspecified

model) are produced (see figure 2.16). Choosing a column (value of N) and looking

across rows (values of RH
0 ), in figure 2.16, it is evident that higher within household

infectivity leads to a jump effect in the observed removal curve. To understand this,

consider an extreme case of within household infectivity (such as RH
0 = 20) so that

an infection of an individual within a household is followed by an almost immediate

infection of all susceptibles in the household, i.e. all jumps of the removal curve are

roughly of size CH . This is exactly the feature that the methods attempt to make

use of, in order to expose the fit of the Constant-HM model when fitted to such

data, as removal curves produced from the Constant-HM model can not reproduce

this jump effect. To a small extent, the methods succeed as (for a given N) higher

values of RH
0 are associated with increased power. However the (non) effect of N is

what deprives the methods from systematically detecting lack of fit. More precisely,

by choosing a row (value of RH
0 ) and looking across columns (values of N), in figure

2.16, one notices that the jump effect in the observed removal curve becomes less

evident as the dimension of the data increases; this is because the effect is actually

relative to the dimension of the observed data (i.e. the effect is quantified by CH/N)

and since the number of individuals in a household CH is fixed, while N increases,

the effect deteriorates. At the same time, the uncertainty of the posterior predictive

distribution of the removal curves is naturally less for larger datasets (see figure 2.16)

meaning that there is potentially more power to expose model fit as N gets larger.

These two opposing trends of N (the jump effect in the observed removal curve and

the uncertainty of the posterior predictive distribution of the removal curves) appear

to cancel each other out and yield no apparent overall effect of N on the results;

for smaller datasets, where the jump effect is evident, the pack of replicated removal

curves is too wide to systematically expose model fit, and for larger datasets, where

the pack of replicated removal curves is narrower, the jump effect is not that evident

to be regularly detected.
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Figure 2.16: Plots of 500 matched replications from the posterior predictive
distribution of the removal curve zrept with the mean removal curve z̄rept (red, dotted
line) and the observed removal curve zobst (black, solid line) imposed. Fitted model
is the Constant-HM model. Observed data are four typical datasets from scenarios
(RH

0 ) and rounds (N) of simulation study C (data generated from the Constant-2L
model). Rows (top to bottom) correspond to RH

0 values of 2 and 20, respectively.
Columns (left to right) correspond to N values of 199 and 499, respectively. For
reference the folded ppp-value (dL2 distance shifting, dL2 distance function) and the√

MSE (dL2 distance shifting) are (0.33, 0.24), (0.29, 0.20), (0.50, 0.26) and (0.64,
0.28) for RH

0 and N values of (2, 200), (2, 500), (20, 200) and (20, 500), respectively.

2.9.1.6 Conclusions

The conclusions from simulation study C are summarized as follows.

Distance and position-time methods

• The distance and the position-time methods behave very similarly, under all

simulation scenarios.
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• Under correct specification (Constant-2L model), the methods indicate goodness of

fit as expected. No clear effect of N or RH
0 is evident, which is sensible behaviour

under correct specification.

• Under misspecification (Constant-HM model), the methods do not have enough

power to systematically detect misspecification of the population mixing assump-

tion. Undesirably, power does not increase as N increases (N does not appear to

have any effect on the performance of the methods). In practice, this pattern is

unwanted as it suggests that even if the dimension of the data is large, the methods

would not be able to reliably detect a misspecified population mixing assumption.

Methods do perform slightly better, as the evidence of the two-level-mixing effect

in the data becomes more apparent, but even in cases of extremely evident effect

their ability to detect lack of fit is not consistent.

2.9.1.7 Remarks

Following up on the results of the simulation study, final size assessment (as described

in section 2.7.1.4) was conducted for the Constant-HM model, in order to infer

whether the methods would perform better on unmatched replications. However,

the final size was accurately captured by the model in all instances (see table A.13 in

the Appendix), implying that assessment based on unmatched data would have even

less power to detect misspecified population mixing assumption.

As discussed in the beginning of section 2.9, using random, rather than constant,

infectious periods introduces a loss of information and makes the task of the methods

developed more challenging. This was verified with additional simulations, where

Exponential infectious periods were used, instead of constant, yielding again similar

conclusions; the methods could not systematically detect lack of fit.

To further investigate the (non) effect of N on the methods, and in particular the
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relative (to the dimension of the data) jump effect of the removal curve (see section

2.9.1.5), an alternative set-up was considered, where the number of individuals in a

household CH grows proportionally with N . This type of set-up ensures that the

relative jump effect CH/N remains the same as N grows (as opposed to our original

set-up where it deteriorates) and allows more power (since the posterior predictive

removal curve becomes less uncertain) to detect lack of fit. Provisional simulations

indicated that, under this set-up, misspecified models can systematically be detected

as N gets larger. However, more extensive simulation studies were not conducted as

such a set-up is not practically interesting. More specifically, in practice the more

interesting case is, as in our original set-up, where the population size gets large as

the number of households gets large (and number of individuals in a household is

fixed); as opposed to the alternative set-up where the population size gets large as

the number of individuals in a household gets large (and the number of households is

fixed).

An alternative, and in a sense natural, way to assess the population mixing

assumption is by assessing the posterior predictive distribution of the number (or

proportion) of local infections nL (see e.g. Alharthi (2016)). The simple idea of this

approach is that the higher the number (or proportion) of local infections, that the

model predicts, the more the evidence of two-level effect in the observed data; so one

can deduce the extent of the two-level mixing effect in the observed data by looking

at a histogram of nL and/or by making suitable probability calculations for nL (such

as P (nL < c) for some c > 0), under its posterior predictive distribution (see Alharthi

(2016) for more details).
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2.10 Discussion

2.10.1 Addressing chapter aims

The work of this chapter described two novel posterior predictive checking methods,

based on removal curves. The first method, referred to as the distance method

(see section 2.5), is based on the natural idea of measuring the similarity between

removal curves by calculating their distance, i.e. a distance function is used as a

test statistic. The quantitative end point of the method is the folded ppp-value, a

measure of fit that is deterministically connected with the usual ppp-value, under

the assumption of symmetric posterior predictive distribution, and thus can easily be

interpreted. The second method, referred to as the position-time method (see section

2.6), assesses the fit of the observed curve pointwise, by checking its plausibility under

its posterior predictive distribution at the time points that the observed curve is not

identically constant; this method is naturally suited for the stochastic process setting.

One attractive feature of the method is that it allows the calculation of summaries

(over time) of general events (with respect to the posterior predictive distribution)

by integrating (over time) the indicator function of the desired event in question. For

example, one can calculate the proportion of time that the observed removal curve

spends in any (inverse) quantile interval of its posterior predictive distribution.

Both of the methods enjoy increased performance by making use of a time shifting

intervention (see section 2.4). This shifting removes the undesired noise that exists

in the initial stage of the epidemic (where epidemic processes typically behave

like branching processes) and creates more informative conditions for assessing the

similarity between observed and replicated data. In addition, both the distance and

the position-time methods offer the possibility to be applied to unmatched (major

outbreak) replicated datasets; a procedure that is computationally much cheaper

than using only matched replicated datasets. This is made possible by a method (see
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section 2.3) that classifies each replication from the posterior predictive distribution

as a minor or a major outbreak and it is associated with the fact that epidemic models

typically demonstrate threshold behaviour.

Extensive simulation studies showed that both the distance and the position-time

methods perform very well as tools of assessing the infectious period and the infection

rate form assumption of SIR models (see sections 2.7.1 and 2.8.1, respectively).

Particularly appealing, is the fact that the methods enjoy increased performance

as the dimension of the observed data gets larger; this is very useful from a practical

standpoint as in real-life applications interest is in larger scale rather than smaller

scale outbreaks. In addition, simulations suggested that when the lack of fit is

more apparent (e.g. due to more clear model misspecification cases or due to less

clear model misspecification cases but with the dimension of the observed data

being large enough), misspecification can successfully be detected using unmatched,

rather than matched, replications; once again, this is of high practical importance

because avoiding the need to produce matched replications can substantially reduce

the computational cost associated with the implementation of the methods.

2.10.2 Limitations

A drawback of the methods is that they failed to detect misspecification of the

infectious period distribution when one of the Gamma-HM or the Constant-HM

models was fitted to data generated from the other (see section 2.7.1.4). What has

to be noted though, is that this should be expected to happen for large values of the

shape parameter ν, since as ν →∞ the Gamma-HM model reduces to the Constant-

HM model (see section 2.7.1.4).

Another drawback of the distance and the position-time methods, is that as seen

in section 2.9, they do not have enough power to detect lack of fit in the instances
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when the population mixing assumption is misspecified. It must be noted that the

methods can not systematically detect lack of fit, even in cases of extreme evidence

of two-level-mixing and in addition the performance of the methods does not improve

(it remains more or less the same) as the dimension of the observed data gets larger.

These observations imply that alternative methods are required to successfully assess

the population mixing assumption. This is the topic of chapter 3.

2.10.3 General remarks

Although the performance of the methods was examined via extensive simulation

studies, this is never the end of an investigation; there are always more simulation

conditions to be considered. Moreover, during the derivation process of the methods,

numerous decisions were involved, such as the specific choice of distance function

(and the regions of integration) or the choice of interval over which the mean removal

curve is not identically constant (in the unmatched case), among others. The decisive

factors behind making these decisions were intuition and rational thinking. Ideally,

one would be able to investigate the performance of the methods theoretically as well,

and base all decisions of the derivation process on mathematical rigor. However, the

complexity of the epidemic setting, and the fact that the closed forms of the posterior

and the posterior predictive distributions are unknown (if analytically tractable) make

this task very challenging, if not infeasible.

The methods developed in this chapter are to be used as tools of model assessment

and not model comparison. That is to say, that our interest is in assessing the fit of a

considered model without the need of comparing it with other models; if a practitioner

is satisfied with the assessment, they can proceed with the analysis. For example, it

is not of interest to compare the folded ppp-values from two models that have been

fitted to the same data; in fact, such a comparison is not advisable in the context

of the single realization setting (see discussion and example in section 2.2.3) as the
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more stochastic a model is, the harder it is to yield a large folded ppp-value when

misspecified e.g. see the results for the Exp-HM, Gamma-HM and Constant-HM

models, under misspecification, in simulation study A (see section 2.7.1.4). Instead,

it is much more interesting to compare the folded ppp-values of a given model when

fitted to two different datasets; for one dataset the model being correctly specified and

for the other being misspecified. This is the reason that the results of the simulation

studies (see sections 2.7.1.4, 2.8.1.4 and 2.9.1.4) were presented for a given model

under different scenarios rather than for different models on a given scenario.

2.10.4 Further work

Interestingly, some of the methods of this chapter can also be applied in the

context of approximate Bayesian computation (ABC) inference. Similarly to MCMC

methods, the object of interest of ABC methods is the posterior distribution, but the

distinguishing difference is that the latter are simulation-based methods that avoid

likelihood calculation (see e.g. Kypraios et al. (2017); McKinley et al. (2018)). The

basic idea of ABC is the following. Suppose that some data y have been observed. At

first, a candidate parameter θ is proposed from some prior density π(θ). Then, the

model is simulated using θ to produce a dataset y∗. If y and y∗ are sufficiently close,

say d(y,y∗) < ε, for some distance function d and some ε > 0, then θ is accepted;

or else it is rejected. The procedure is repeated until a desired number of accepted

values is achieved and thus its output is a sample of model parameters drawn from the

density π(θ | d(y,y∗) < ε). In the case that d is suitably chosen and ε is sufficiently

small, π(θ | d(y,y∗) < ε) is a good approximation to the posterior density of interest

π(θ | y). In practice, as suggested in O’Neill (2010), the choice of d is a non-trivial

matter and the quality of the above approximation largely depends on d. In the

context of stochastic epidemic modelling, the most commonly used distance function

is the Euclidean distance between aggregated (by days or weeks) removal vectors (see

e.g. Kypraios et al. (2017); McKinley et al. (2018)). Having, as part of the work
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in this chapter, defined distance functions to calculate the distance between removal

curves (2.5.3) it seems natural to assess whether their use improves the performance

of current ABC algorithms. In addition, it is also interesting to investigate whether

the application of time shifting (see section 2.4) can improve the efficiency of such

algorithms; intuition suggests that by applying time shifting one would be able to

achieve the desired number of accepted proposed values more quickly, since if no

shifting is applied a lot of proposed values are rejected simply because of the high

stochasticity of the simulated removal curves (see 2.2.6) which in turn might yield

inappropriately large distances between observed and simulated data. Finally, it is

also worth investigating if one should produce simulated data under the proposed

values unconditionally, or by imposing some condition on the final size, such as it

being the same as the observed or within some proximity to the observed. All these

investigations are the topic of research in progress, for which the initial indications

are encouraging.
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Chapter 3

A Classical Hypothesis Test for

Assessing the Population Mixing

Assumption of SIR Models

3.1 Introduction

3.1.1 Chapter motivation and aims

As seen in the previous chapter (section 2.9), the distance and position-time methods

cannot reliably be used as tools for assessing the population mixing assumption of SIR

models; these methods fail to systematically expose the lack of fit of the standard

SIR model when fitted to data with a two-level-mixing effect, even in cases where

the dimension of the data is large, and the evidence of two-level-mixing is extremely

apparent. Therefore, alternative ways to assess the population mixing assumption

are required. A key observation behind the methodology of this chapter is that in

the cases that the population structure is known (i.e. the household which each

individual belongs to is known), and individual event times are available (event times

could be either infection times or removal times), the observed data consist not only

of event times, but of the household labels which the event times correspond to as
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well, i.e. each individual event time is associated with the label of the household that

the individual belongs to. Recall that the distance and the position-time methods

do not make use of such household label data as they are based solely on removal

curves (see sections 2.5 and 2.6). Our speculation is that household label data can

be very informative in assessing the population mixing assumption; e.g. in cases

of data with two-level-mixing effect (that is, higher within household than between

household infectivity), one should expect that events of individuals belonging to the

same household would occur closer in time rather than further apart. The aim of this

chapter is to develop a method that assesses the population mixing assumption by

effectively utilizing the information in the household label data.

All runs and plots in this chapter are produced using the statistical programming

language R Core Team (2019).

3.1.2 Chapter layout

The remainder of this chapter is structured as follows. Section 3.2 defines the test,

describes its implementation procedure and explaines how is interpreted.

Section 3.3 examines the performance of the test in assessing the population mixing

assumptions of SIR models, via the use of an extensive simulation study.

In section 3.4 the test is applied to a widely used real dataset example and its results

are compared with what is supported by the literature.

Finally, section 3.5 highlights the main accomplishments of this chapter, gives the

limitations and discusses general remarks and further work.
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3.2 A classical hypothesis test based on household

label data

3.2.1 Setting, notation and rationale

Consider the setting and notation of section 1.3.5.7, where the C = N + 1 individuals

in the population, of which initiallyN are susceptible and 1 is infective, are partitioned

into l households, labelled as 1, 2, . . . , l, with each household m consisting of Cm

individuals, m = 1, 2, . . . , l, so that C =
∑l

m=1Cm. In addition, assume that in

each household m there is more than one individual, i.e. assume that Cm ≥ 2 for

all m = 1, 2, . . . , l (see the relevant remark in section 3.5.3 on how this assumption

can be relaxed to allow for the case that Cm = 1). Within this setting, consider

an epidemic outbreak of n events. Let e = (e1, e2, . . . , en) denote the time-ordered

event times and ge = (ge1 , g
e
2 , . . . , g

e
n) their corresponding (time-ordered according

to the events) household labels, such that individual k, with event time ek, belongs

to household gek ∈ {1, 2, . . . , l}, k = 1, 2, . . . , n. The events times could be either

infection times (in which case gk is the household of individual k, infected at

time ek, k = 1, 2, . . . , n), or removal times (in which case gk is the household of

individual k, removed at time ek, k = 1, 2, . . . , n) and where relevant a distinction

is made. In the instances that the time-ordered event times and their corresponding

household labels are random vectors, under some specified sampling distribution,

they are denoted as esam = (esam1 , esam2 , . . . , esamn ) and ge
sam

= (ge
sam

1 , ge
sam

2 , . . . , ge
sam

n )

respectively, whereas in the case they represent the observed data, they are denoted

as eobs = (eobs1 , eobs2 , . . . , eobsn ) and ge
obs

= (ge
obs

1 , ge
obs

2 , . . . , ge
obs

n ).

The main idea behind the methodology developed, is that if there is a two-level-

mixing effect in the data (in which case an infective individual is more likely to infect

susceptible individuals within his household rather than outside of it), then when

looking at the household labels corresponding to time-ordered event times, one should
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expect that same household labels will appear closer together (i.e. clustered) rather

that further apart. Conversely, if there is no two-level-mixing effect in the data (and

the population is homogeneously mixing) the labels of each household will typically

appear completely unpatterned. To make this idea clearer assume that the number of

events is n = 9, the population structure is given by l = 4 and Cm = 3, m = 1, 2, 3, 4,

and that the event times correspond to infection times. In the instance of extreme

two-level-mixing effect (where an infection of an individual in a household is followed

by an almost immediate infection of all susceptibles within the household) a typically

realized household label dataset would be ge = (3, 3, 3, 1, 1, 1, 4, 4, 4), whereas in the

instance of homogeneous mixing a realized household label dataset would typically

look like ge = (3, 1, 4, 2, 4, 4, 1, 3, 2). This idea of household label clustering is made

more precise via the construction of a classical hypothesis test based on household

labels, which is now described.

3.2.2 Procedure, null hypothesis and test statistic

In general context, one sufficient (but certainly not necessary) condition to facilitate

a classical hypothesis test for a null hypothesis H0 is via the use of a test statistic T

(a scalar function of the data; see section 1.3.3) whose sampling distribution, under

H0, is known and independent of any unknown parameters; the plausibility of H0

is then tested by examining the consistency of the observed value of T with respect

to its sampling distribution under H0. The test procedure is similar to a posterior

predictive check (see section 1.3.3), but the difference is that the plausibility of the

observed data is assessed with respect to the sampling distribution under H0, rather

than the posterior predictive distribution. More explicitly, and in the present context,

if, as denoted above in section 3.2.1, ge
obs

are the observed household labels and

ge
sam

is a random vector of household labels having the sampling distribution under

H0 (denoted as ge
sam ∼ H0), then T obs := T (ge

obs
) is the observed value of T and

T sam := T (ge
sam

) is a random variable having the sampling distribution of T under H0
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(denoted as T sam ∼ H0). The plausibility of the null hypothesis H0 is tested visually,

by imposing T obs on a histogram of sampled values from T sam, and quantitatively,

by calculating the p-value (the probability that T sam ∼ H0 is more extreme than the

observed value T obs), given by

p-value = P (T sam ≤ T obs | H0)

= E(1{T sam≤T obs} | H0) =

∫
1{T sam≤T obs}π(ge

sam | H0)dge
sam

.
(3.1)

The components of the test are constructed as follows. The null hypothesis H0 is

set to be the assumption of a homogeneously mixing population, that is, as H0: the

population is homogeneously mixing. The key is in recognizing that (given a number

of events n and a population structure l, Cm, m = 1, 2, . . . , l), under the assumption

of homogeneous mixing H0, the sampling distribution of the discrete random vector

ge
sam

is known and independent of any model parameters (only depends on n, l, Cm,

m = 1, 2, . . . , l). To see this, in the case where event times are infection times, note

that, under the assumption of homogeneous mixing, the probability that an infective

individual contacts (and infects) a susceptible one does not depend on which pair is

considered. In the case that event times are removal times, note additionally that

the time that an individual remains infective does not depend on the individual; a

common assumption of all models in this thesis, as well as most epidemic models,

is that infectious periods are i.i.d. according to a random variable TD (see section

1.3.5.1). Therefore, irrespective of whether the event times are infection or removal

times, a realization from the sampling distribution of ge
sam ∼ H0 is achieved, by

choosing uniformly at random a permutation of n out of the total C individuals (i.e.

choosing, without replacement and uniformly at random, a sequence of n out of the

total C individuals) and recording their corresponding household labels (see section

B.2 in Appendix for the analytic expression of the joint p.m.f. of the random vector
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ge
sam ∼ H0).

The challenge then lies in defining an appropriate test statistic T on the space of

the n-dimensional household label vectors Zn>0 (i.e. T : ge ∈ Zn>0 7→ T (ge) ∈ R) so

that the null hypothesis of homogeneous mixing H0 is effectively tested. To this end,

T is constructed to have an ordinal nature, where the higher (lower) the two-level-

mixing effect the lower (higher) the value of T . More specifically, given a realization

(observed or simulated) of household label data ge = (ge1 , g
e
2 , . . . , g

e
n), each household

m, m = 1, 2, . . . , l, is assigned a value s
(m)
ge , quantifying the two-level-mixing effect

associated with the labels of household m, so that the higher (lower) the effect the

lower (higher) the value of s
(m)
ge (details on the specification of s

(m)
ge to follow right

below). Due to the ordinal nature of s
(m)
ge , the total two-level-mixing effect in ge is

quantified by summing the s
(m)
ge of all households. That is to say, that T , defined as

T (ge) =
∑l

m=1 s
(m)
ge , has the desired ordinal nature.

What remains to be specified is s
(m)
ge , m = 1, 2, . . . , l. This is done as follows.

Let ν
(m)
ge denote the number of times that the label of household m appears in ge

and, assuming that ν
(m)
ge ≥ 1, let f

(m)
ge = (f

(m)
1 , f

(m)
2 , . . . , f

(m)

ν
(m)
ge

) denote the vector of

indices of ge at which the labels of household m appear; note that for ν
(m)
ge = 1,

f
(m)
ge reduces to a scalar, i.e. f

(m)
ge = f

(m)
1 where f

(m)
1 is the index of ge where the

first (and only) appearance of the label of household m occurs. For example, if

ge = (3, 1, 4, 2, 4, 4, 1, 3), then ν
(3)
ge = 2 with f

(3)
ge = (1, 8) and ν

(2)
ge = 1 with f

(2)
ge = 4.

Provided that the label of household m appears twice or more in ge (i.e. ν
(m)
ge ≥ 2),

so that measuring spread is possible, the idea of household label clustering, described

in section 3.2.1 (i.e. the idea that the higher (lower) the two-level-mixing effect in the

data the closer together (further apart) same household labels appear) is quantified

by defining s
(m)
ge as a measure of spread for the labels of household m that appear in

ge. More precisely, when ν
(m)
ge ≥ 2, s

(m)
ge measures the spread of the labels of household
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m that appear in ge by being set as s
(m)
ge = f

(m)

ν
(m)
ge

− f (m)
1 − (ν

(m)
ge − 1). For example, if

ge = (3, 1, 4, 2, 4, 4, 1, 3, 2, 5, 5, 5) then s
(1)
ge = 7−2−(2−1) = 4, s

(2)
ge = 9−4−(2−1) = 4,

s
(3)
ge = 8− 1− (2− 1) = 6, s

(4)
ge = 6− 3− (3− 1) = 1 and s

(5)
ge = 12− 10− (3− 1) = 0.

Notice that, as just specified, s
(m)
ge can be calculated by counting the number of non-

household m labels intervening between the first and last household m label of ge.

From this standpoint, s
(m)
ge can be thought of as ‘penalizing’ household m according

to the extent that it deviates from the most obvious realization of two-level-mixing

effect, where its labels appear in consecutive order (such as household 5 in the example

right above).

In the remaining cases that ν
(m)
ge = 0 and ν

(m)
ge = 1, since measuring the spread

of the labels of household m is not possible, s
(m)
ge is defined differently; although,

as mentioned above, the intention is still for s
(m)
ge to quantify the two-level-mixing

effect associated with the labels of household m in an ordinal nature (so that T

has an ordinal nature). For ν
(m)
ge = 0, considering that (given a realization ge of n

events) when there is a two-level-mixing effect in the data (in which case the epidemic

typically spreads within rather than between households), the label of less rather than

more households should appear in ge, it seems sensible to set s
(m)
ge = 0. In fact, if

one thinks a bit more carefully, setting s
(m)
ge = 0 (in the instance that ν

(m)
ge = 0)

appears to be the only sensible assignment. To see this, consider the case of the most

obvious two-level-mixing effect such as the example realization in section 3.2.1 with

n = 9, l = 4, Cm = 3, m = 1, 2, 3, 4, and ge = (3, 3, 3, 1, 1, 1, 4, 4, 4). For T to have

the desired ordinal nature (the higher (lower) the two-level-mixing effect the lower

(higher) the value of T ) such realizations must yield the minimum value of T (which

is 0) and for that to happen, households m for which ν
(m)
ge = 0 can only be such that

s
(m)
ge = 0 e.g. in the example above, ν

(1)
ge = ν

(3)
ge = ν

(4)
ge = 3, so (from the definition of

s
(m)
ge for ν

(m)
ge ≥ 2) s

(1)
ge = s

(3)
ge = s

(4)
ge = 0 and thus T (ge) =

∑4
m=1 s

(4)
ge can only be 0 if

household 2 for which ν
(2)
ge = 0 is such that s

(2)
ge = 0.
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Turning now to the specification of s
(m)
ge , when ν

(m)
ge = 1, consider the extreme case

that ν
(m)
ge = 1 for any household m which its label appears in ge; for example,

if n = 5, l = 6, Cm = 3 and m = 1, 2, . . . , 6, one such realization might be

ge = (1, 2, 3, 4, 5). This case, referred to as the most extreme case of negative

two-level-mixing effect, implies that the outbreak progresses only between and not

within households, a pattern that is exactly the opposite of what happens in the

case of two-level-mixing effect (where the epidemic is more likely to spread within

rather than between households). In order for T to have the required ordinal nature,

realizations of this type must produce the maximum value of T . To this end,

considering the fact that n ≥ f
(m)

ν
(m)
ge

in all instances, s
(m)
ge is specified as in the case

of ν
(m)
ge ≥ 2 (see above) with the difference being that f

(m)

ν
(m)
ge

is replaced by n, i.e. as

s
(m)
ge = n − f

(m)
1 − (ν

(m)
ge − 1) = n − f

(m)
1 . For example for ge = (2, 3, 3, 5, 3, 4, 4),

s
(2)
ge = 7− 1 = 6 and s

(5)
ge = 7− 4 = 3. Notice that, similar to the case of ν

(m)
ge ≥ 2 (see

above), s
(m)
ge , for ν

(m)
ge = 1, can be calculated by counting the number of non-household

m labels. The difference is that instead of counting the number of non-household m

labels from the first until the last household m label of ge (ν
(m)
ge ≥ 2 case), one

counts the number of non-household m labels from the first (and only) household m

label until the last index of ge (ν
(m)
ge = 1 case). This counting representation of s

(m)
ge

highlights how a household m, whose label first appears in ge at index f
(m)
1 , receives

the maximum value of s
(m)
ge in the instance that its label does not appear again (i.e.

in the instance that ν
(m)
ge = 1).

Note that from a practical point of view the notion of negative two-level-mixing

effect is less useful since it is not usually plausible for real-life epidemic outbreaks to

have higher infectivity between rather than within households. Nonetheless, ensuring

that T behaves sensibly under such cases is essential in providing it with the required

ordinal nature which, as will be shown below, is fundamental in interpretating the test.
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For clarity, the definition of T , along with the specification form of s
(m)
ge , for each

value of ν
(m)
ge , are collected in equation (3.2) below.

T (ge) =
l∑

m=1

s
(m)
ge , where s

(m)
ge =


0, if ν

(m)
ge = 0

n− f (m)
1 , if ν

(m)
ge = 1

f
(m)

ν
(m)
ge

− f (m)
1 − (ν

(m)
ge − 1), if ν

(m)
ge ≥ 2.

(3.2)

3.2.3 Implementation and interpretation

Since T is a deterministic function of ge (see equation (3.2)), and the distribution

of ge
sam ∼ H0 is known and independent of any model parameters (see section 3.2.2

above), the distribution of T sam ∼ H0 is also independent of any model parameters

and independent sampling from T sam can easily be achieved by first drawing an

independent sample {gesam
(1)

, ge
sam(2)

, . . . , ge
sam(S)

} from ge
sam ∼ H0 (following the

procedure described in the second paragraph of section 3.2.2) and then evaluating

T at each realization ge
sam(s)

, s = 1, 2, . . . , S, using equation (3.2). That is,

{T sam(1)
, T sam

(2)
, . . . , T sam

(S)}, where T sam
(s)

:= T (ge
sam(s)

), s = 1, 2, . . . , S, is an

independent sample from the sampling distribution of T sam ∼ H0. The procedure of

the test, as described in section 3.2.2, can then be implemented by imposing T obs on

the histogram of the sampled values {T sam(1)
, T sam

(2)
, . . . , T sam

(S)}, and by calculating

the p-value via Monte Carlo (MC) approximation as

p-value =

∫
1{T sam≤T obs}π(ge

sam | H0)dge
sam ≈ 1

S

S∑
s=1

1{T rep(s)≤T obs}. (3.3)

For convenience, all steps required to implement the test are listed in Algorithm 16.

To describe how the test is interpreted, its output from an example dataset, shown

in figure 3.1, is used as a visual medium. Given a histogram of sampled values from
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Algorithm 16 Scheme for applying the household label data test

1. Calculate T obs: Given observed time-ordered event times eobs =
(eobs1 , eobs2 , . . . , eobsn ) with corresponding (time-ordered according to the events)
household labels ge

obs
= (ge

obs

1 , ge
obs

2 , . . . , ge
obs

n ) calculate T obs := T (ge
obs

), using
equation (3.2).

2. Sample from T sam ∼ H0: For each s, s = 1, 2, . . . , S, generate a realization

ge
sam(s)

= (esam
(s)

1 , esam
(s)

2 , . . . , esam
(s)

n ) from the sampling distribution of ge
sam ∼

H0, by choosing uniformly at random a permutation of n out of the total
C individuals and recording their corresponding household labels. Then

{gesam
(1)

, ge
sam(2)

, . . . , ge
sam(S)

} is an independent sample from ge
sam ∼ H0.

Calculate T sam
(s)

:= T (ge
sam(s)

), for each s, s = 1, 2, . . . , S, using equation (3.2).

Then {T sam(1)
, T sam

(2)
, . . . , T sam

(S)} is an independent sample from T sam ∼ H0.

3. Apply the test: Calculate the p-value using equation (3.3) and impose T obs on the

histogram of the sampled values {T sam(1)
, T sam

(2)
, . . . , T sam

(S)} from T sam ∼ H0.

T sam ∼ H0, along with the minimum and maximum values of T (as in figure 3.1),

and considering the ordinal nature of T (see section 3.2.2 above), observed values of

T (along with their corresponding p-values; see equation (3.3)), are interpreted as

follows. Values that fall well within the support of T sam ∼ H0 (i.e. closer to the

mode rather than the tails of the histogram of T sam ∼ H0) are consistent with H0

and provide no evidence against it; in such cases the associated p-value is not too

close to the extreme values of 0 or 1. As values move to the left tail (and beyond) of

the histogram of T sam ∼ H0 and towards the minimum value of T (that represents

the most obvious case of two-level-mixing effect) they become inconsistent with H0,

and provide increasing evidence against it and in favour of the hypothesis HL, that

there is two-level-mixing effect in the data; the corresponding p-value is close to or

equal to 0. Similarly, as values move to the right tail (and beyond) of the histogram

of T sam ∼ H0, and towards the maximum value of T (that represents the most

obvious case of negative two-level-mixing effect), they become inconsistent with H0

and provide increasing evidence against it and in favour of the hypothesis HR, that
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there is negative two-level-mixing effect in the data; the associated p-value is close to

or equal to 1.

Tsam
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Figure 3.1: Example of assessing the population mixing assumption using the classical
hypothesis test for household label data. Observed data are generated from an Exp-2L
model (N = 199, CH = 5, R∗ = 2.5, RH

0 = 1.5 and γ = 0.1). The plot is the histogram
of 1000 realizations from the sampling distribution of T sam ∼ H0 with the observed
value (based on infections) T obsi = 594 (red, dashed line), the observed value (based
on removals) T obsr = 756 (blue, dashed line), the minimum value of T = 0 (black, solid
line) and the maximum value of T = 1197 (black, solid line) imposed. The p-values
are (based on infections) p-valuei = 0 and (based on removals) p-valuer = 0.002.

Note that, as already mentioned in section 3.2.2, cases of negative two-level mixing

effect are unlikely to ever be encountered in practice, but they are still useful for

providing an ordinal interpretation to the test. Notice also, that plotting a histogram

of T sam ∼ H0, with the minimum and maximum values of T imposed (as in figure

3.1), is more informative than merely calculating the p-value. For example, a p-value

of 0 might correspond to the observed value of T being very near to the left tail of

the histogram of T sam ∼ H0 (and far from its minimum value) or very near to the

minimum value of T (and far from the left tail of the histogram of T sam ∼ H0);

although the p-value is the same in these two cases, the amount of evidence against

H0 and in favour of HL is quite different.

An important property of T is that, in addition to the fact that its sampling
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distribution T sam ∼ H0 is independent of any model parameters, its values are also

independent of any model parameters (because T is a statistic, i.e. a function of

data only); such statistics (whose sampling distribution does not depend on model

parameters) are called ancillary statistics. What this implies, is that the test of H0 is

not just a test for the plausibility of a specific set of parameters of a considered model

(that has H0 as an assumption), but rather a more generic test for the plausibility of

the family of models that share H0 as an assumption, under any set of parameters.

Another implication, of the above property of T , is that the test implementation

involves no parameter estimation or simulations from the model; recall that the

distance and the position-time methods require model fitting via Markov chain Monte

Carlo (MCMC) methods and the simulation of replicated outbreaks from the model

(see sections 2.5 and 2.6). This is particularly appealing from a computational

standpoint, as avoiding the cost of parameter estimation or model simulation makes

the test very cheap to perform. What both of these implications suggest is that in

practice, it would be most meaningful to conduct the test before any model fitting is

done, using it as guide in choosing a model, and proceed after to parameter estimation

for the chosen model. For example, if the observed data are consistent with H0 one

may go on and analyze the data choosing a model that assumes homogeneous mixing,

such as the standard SIR model or the non-linear SIR model. In the instance that

the observed data provide substantial evidence against H0, and in favour of HL, one

should use this information accordingly and fit a two-level-mixing model to the data

in question.

Note that, the generic nature of the test, and in particular the fact that it does not

have an alternative hypothesis associated with a set of parameter values of a specific

model, does not exclude the possibility that a small value of T (smaller than expected

under H0) might occur by observing clustered label data due to different alternative

hypotheses and not necessarily due to HL. That is to say, that the interpretation of
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the test relies on the assumption that the test statistic assumes values according to

the ordinal interpretation provided above.

3.2.4 Infection based and removal based assessment

Notice that all steps of the test, from construction to implementation, were conducted

without needing to specify whether the event times referred to infection or removal

times. For example, as explained in section 3.2.2, the sampling distribution of

ge
sam ∼ H0, and thus also of T sam ∼ H0 (see section 3.2.3) is the same, irrespective

of whether the event times are infection or removal times. However, it must be

emphasized that the observed value of T , and thus the p-value of the test, will

generally be different, depending on whether it has been calculated based on observing

removals, or infections. This is because, as remarked in section 2.2.4.2, removal times

are an i.i.d shift of the infection times, and therefore the household label vector

corresponding to time-ordered infection times will generally be different than the

household label vector corresponding to time-ordered removal times. To distinguish

between infection based and removal based assessment, the observed household label

vector, the observed value of T and the associated p-value are denoted as gi
obs

, T obsi

and p-valuei when calculated based on observing infection times and gr
obs

, T obsr and

p-valuer when calcuated based on observing removal times. Notice that, in the

instance that the shift from infection to removals is constant (i.e. the infectious

period is constant) the ordering of individuals remains unchanged, so gi
obs

= gr
obs

and in turn T obsi = T obsr and p-valuei = p-valuer. In the instance that the shift

is random (i.e. the infectious period is random), any two-level-mixing effect in the

data will typically be less apparent under removal based assessment. That is, any

clustering effect of same household labels is likely to be, to an extent, clouded from

the amount of noise that is introduced in the shift. Hence, in the instances that there

is a two-level-mixing effect in the data, one should expect that T obsi will in general be

smaller than T obsr and in turn p-valuei smaller than p-valuer.
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Nonetheless, applying the test using removal times is still worthwhile (and the best

one can do under our assumed framework, where removal times are considered to be

observed whereas infection times are missing), since the variation that is introduced

from the shift is random and not systematic, i.e. any distortion caused in the order of

the households labels, when ordered according to removal times rather than infection

times, is not of systematic nature. An appreciation of the above is provided in

the example of figure 3.1, where the data are generated from the Exp-2L model.

More specifically, although the value of T obsr is slightly larger than the value of

T obsi , reflecting the fact that the two-level-mixing effect in the data becomes a little

less detectable under removal based assessment, it still is small enough to provide

substantial evidence against H0 and in favour of HL.

The performance of the test, based on both infection and removal data, is thoroughly

examined via a simulation study, referred to as simulation study D, which is described

in the following section.

3.3 Simulation study D

3.3.1 Purpose

Simulation study D aims to investigate the performance of the household label test in

assessing the population mixing assumption. The main interest is in removal based

assessment, since under our assumed framework removal times are observed while

infection times are missing (see section 1.3.4.2). Nonetheless, in order to quantify the

amount of distortion that is introduced in the household label data when conducting

removal rather than infection based assessment (see discussion in section 3.2.4),

both assessments are conducted and compared. Also of interest is comparing the
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performance of the household label test with that of the distance and the position-

time methods; recall from section 2.9 and simulation study C (see section 2.9.1), that

the distance and the position-time methods were also employed as tools of assessing

the population mixing assumption and their performance was not as desired. Lastly,

similar to simulation study C (see section 2.9.1), it is important to investigate how

the test behaves as the dimension of the data or the level of two-level-mixing effect

in the data changes.

3.3.2 Simulation conditions

The simulation conditions of simulation study D (see table 3.1) are very similar to

simulation study C (see section 2.9.1.2 for more details), in order to allow for direct

comparison between the performance of the household label test and the distance

and position-time methods, but there are also differences. More specifically, just like

simulation study C, in all instances, data are generated from the two-level-mixing

model and all households are taken to have equal size CH , where CH is set at 5.

The difference is that the choice of infectious period is Exponential (TD ∼ Exp(γ))

rather than constant (TD ≡ c), i.e. data are generated from the Exp-2L model rather

than the Constant-2L model. This choice allows for the comparison between removal

based and infection based assessment to be carried out, since if infectious periods

are constant (as in simulation study C), then gi
obs

= gr
obs

, T obsi = T obsr , p-valuei =

p-valuer, and the two assessments coincide (see section 3.2.4 above). Notice that,

direct comparability conditions with simulation study C are still maintained precisely

because p-valuei = p-valuer for constant infectious periods, and therefore, applying

the test on infection data can be seen as applying the test on removal data which

were generated from a model with constant infectious period (as in simulation study

C). Notice also, that by choosing the more uncertain Exponential infectious period,

over its Gamma counterpart, more challenging conditions are created for the removal

based assessment to raise evidence against H0 (see discussion in section 3.2.4 above).
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Following the same procedure as in simulation study C, the behaviour of the test,

as the dimension of the data or the level of two-level-mixing effect in the data

change, is examined by considering simulation scenarios of varying levels of two-

level-mixing effect, quantified by RH
0 , and by including different rounds in each

scenario, corresponding to different values of initial susceptibles N . More precisely,

the scenarios of RH
0 =1, 2, 5, 20 and the rounds of N=99, 199, 499, of simulation study

C, are again performed. In addition, utilizing the fact that the test is computationally

cheap to implement (see section 3.2.3), the scenario of RH
0 = 0.5 and the round

of N = 999 are considered; the scenario of RH
0 = 0.5 is a case of very mild

two-level-mixing effect and thus creates very challenging conditions for the test to

raise evidence against H0, while the round of N = 999 allows for more informative

conclusions on how the test behaves as N gets larger. For the same reason (test

being computationally cheap to implement), the sampling variability for each round

is thoroughly captured by generating 500 datasets, as opposed to the 24 generated

datasets of simulation study C. Note that, for all simulated datasets, the initial

infective (and its household) is chosen uniformly at random from the population.

Also note, that the generated datasets are conditioned on being major outbreaks,

using the approach described in section 2.3 for separating between minor and major

outbreaks; the only difference being that the approach is applied to the sampling

distribution of the final size instead of its posterior predictive distribution.

As in simulation study C (see section 3.3.2), to establish a better appreciation of

the extent of the two-level-mixing effect in each scenario, the mean proportion of

local infections (from total infections) p̄L, under the sampling distribution of the

model, is calculated. The calculated values of p̄L are 0.09, 0.27, 0.51, 0.70 and 0.78

for scenarios 1, 2, 3, 4 and 5, respectively, and they are given in table 3.1 for reference.
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Note that a simulation scenario for which the data are generated from a homoge-

neously mixing model (i.e. under H0) is not considered. This is because it is a well

known fact (probability integral transform) that, under the null hypothesis H0, the

sampling distribution of the p-value is uniform.

Table 3.1: Simulation conditions for simulation study D. Each simulation scenario
consists of 4 rounds, where the number of initial susceptibles N is set at 99, 199, 499
and 999, respectively. For each round 500 datasets are generated. The number of
individuals in each household is set as CH = 5, in all instances.

Data generating process Parameter values p̄L

Scenario 1 Exp-2L R∗ = 2.5, γ = 0.1, RH
0 = 0.5, µ = 0.61 0.09

Scenario 2 Exp-2L R∗ = 2.5, γ = 0.1, RH
0 = 1, µ = 1.32 0.27

Scenario 3 Exp-2L R∗ = 2.5, γ = 0.1, RH
0 = 2, µ = 2.44 0.51

Scenario 4 Exp-2L R∗ = 2.5, γ = 0.1, RH
0 = 5, µ = 3.88 0.70

Scenario 5 Exp-2L R∗ = 2.5, γ = 0.1, RH
0 = 20, µ = 4.75 0.78

3.3.3 Run conditions

Following the procedure described in section 3.2.3 (see Algorithm 16), the test is

applied to each generated dataset twice, once based on observing infection times and

once based on observing removal times (see section 3.2.4). More specifically, for each

dataset, an independent sample of size 10000 from T sam ∼ H0 is achieved, and then

the two observed values of T , T obsi and T obsr , and their corresponding p-values, p-valuei

and p-valuer, are calculated and recorded.

3.3.4 Results

The performance of the test is examined by analyzing the p-values, based on both

infection and removal data, from each dataset at each simulation scenario and round.

Since data are generated from the two-level-mixing model, the desirable effect of N

would be for more data (i.e. bigger N) to provide more evidence against H0 and in
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favour of HL. Similarly, the evidence against H0 and in favour of HL should also

increase as the two-level-mixing effect in the data increases (i.e. as RH
0 increases).

Tables of median (95% quantile interval) p-values provide summaries from each round

of each scenario (tables 3.2 and 3.3) while complete results of all p-values against

dataset index are given in the Appendix (figure A.21). Similar to simulation study

C (see section 2.9.1.4), to facilitate appreciation of the effect of N and RH
0 , in all

tables and figures, rows and columns conveniently correspond to the different scenarios

(values of RH
0 ) and rounds (values of N), respectively. That is, the effect of RH

0 on

the results can be gauged by choosing a column and looking across rows while the

effect of N by choosing a row and looking across columns.

3.3.4.1 Infection based assessment

First, infection based results are reported. Recall from section 3.3.2, that applying

the test on infection data can be seen as applying the test on removal data which

were generated from a model with constant infectious period (as in simulation study

C). Hence, the p-valuei of simulation study D, can be compared with the ppp-value

(distance method) or the
√

MSE (position-time method) of simulation study C (see

section 2.9.1.4). Table 3.2 below, and figure A.21 in the Appendix, show that infection

based results are sensible in all scenarios and rounds. Also, the effect of N and RH
0

is the desirable one, since larger values of N (RH
0 ) yield smaller p-valuei, for a given

RH
0 (N). For example, in scenario 1 (RH

0 = 0.5) the median (95% quantile interval)

p-valuei is 0.24 (0, 0.93), 0.17 (0, 0.85), 0.06 (0, 0.72) and 0.02 (0, 0.47) for N =

99, 199, 499 and 999 respectively, implying that even in the case of a very mild two-

level-mixing effect (where the mean proportion of local infections is only p̄L = 0.09)

the test would still provide adequate evidence against H0 and in favour of HL, if the

dimension of the data becomes large enough. The power of the test is also exhibited

in scenario 2 (RH
0 = 1), where the two-level-mixing effect in the data is still relatively

mild (p̄L = 0.27), but the sampling distribution of the p-valuei is concentrated near 0,
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even for the smaller values of N . It is also worth noting that for scenarios 3-5, where

the two level-mixing effect becomes increasingly apparent, the sampling distribution

of the p-valuei is consistently a point mass at 0, meaning that, as desired, the evidence

against H0 and in favour of HL would systematically be very strong.

Table 3.2: Median (95% quantile interval) p-value from the household labels test
based on observing infection times, p-valuei, for simulation study D. The number
of datasets that the median and quantile interval is taken over is 500. Simulation
conditions for each scenario are given in table 3.1.

N = 99 N = 199 N = 499 N = 999

Scenario 1 0.24 (0, 0.93) 0.17 (0, 0.85) 0.06 (0, 0.72) 0.02 (0, 0.47)
Scenario 2 0.01 (0, 0.43) 0 (0, 0.10) 0 (0, 0) 0 (0, 0)
Scenario 3 0 (0, 0) 0 (0, 0) 0 (0, 0) 0 (0, 0)
Scenario 4 0 (0, 0) 0 (0, 0) 0 (0, 0) 0 (0, 0)
Scenario 5 0 (0, 0) 0 (0, 0) 0 (0, 0) 0 (0, 0)

The performance of the test is in contrast with the performance of the distance and

the position-time methods which, as seen in section 2.9.1, did not have enough power

to discard the homogeneously mixing model, under similar simulation conditions.

Also in contrast is the effect of N and RH
0 on the results, since for the test the

power increases as N and RH
0 increase, whereas for the distance and the position-

time methods, N and RH
0 had no apparent effect on the results (see section 2.9.1.4);

for example, recall that even for the extreme scenario of RH
0 = 20, where the level

of the two-level-mixing effect in the data is extremely evident, the distance and the

position-time methods could not expose the lack of fit of the homogeneously mixing

model.

3.3.4.2 Removal based assessment

As can be seen in table 3.3 below and figure A.21 in the Appendix, removal based

results are very similar to the infection based results, with the difference being that
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p-valuer is typically a bit higher than p-valuei. More precisely, just like in the infection

based assessment, results are sensible in all scenarios and rounds and the effect of N

and RH
0 is the desirable one, since the larger the values of N (RH

0 ) the smaller the

p-valuer for a given RH
0 (N). As explained in section 3.2.4, the fact that p-valuer

is typically a bit higher than p-valuei for a given round of a given scenario, is to

be expected as the two-level-mixing effect in the data becomes less apparent when

the observed household labels correspond to removal times, rather than infection

times. Nonetheless, and more importantly, the p-valuer are still low enough to provide

evidence against H0 and in favour of HL, where appropriate. More specifically, it

is only in scenario 1 (RH
0 = 0.5) that the evidence against H0 and in favour of

HL is not systematic; median (95% quantile interval) p-valuer is 0.44 (0.02, 0.97),

0.41 (0.01, 0.94), 0.32 (0.01, 0.94) and 0.29 (0.01, 0.92) for N = 99, 199, 499 and

999, respectively. Considering the fact that scenario 1 represents conditions of very

mild two-level-mixing effect (where the mean proportion of local infections is only

p̄L = 0.09) and that some loss of information when using removals is inevitable (see

section 3.2.4), the results are sensible. As soon as the two-level mixing effect becomes

a bit less mild, for example as in scenario 2 (RH
0 = 1, p̄L = 0.27), it is successfully

detected by the removal based test; in scenario 2, median (95% quantile interval)

p-valuer is 0.09 (0, 0.76), 0.02 (0, 0.59), 0 (0, 0.17) and 0 (0, 0) for N = 99, 199, 499

and 999, respectively. Similar to the infection based results, for increasingly apparent

two level-mixing effect (scenarios 3-5), the sampling distribution of the p-valuer is,

as desired, consistently a point mass at 0.

It is worth pointing out that, even with the added challenge of using Exponential,

rather than constant, infectious periods (see section 3.3.2), the removal based

household label test greatly outperforms the distance and the position-time methods,

in assessing the population mixing assumption, under similar simulation scenarios

(see section 2.9.1); for example for RH
0 = 2 the median (95% quantile interval) folded

ppp-value from the distance method (with desired optimal value being 1) was 0.29
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Table 3.3: Median (95% quantile interval) p-value from the household labels test
based on observing removal times, p-valuer, for simulation study D. The number
of datasets that the median and quantile interval is taken over is 500. Simulation
conditions for each scenario are given in table 3.1.

N = 99 N = 199 N = 499 N = 999

Scenario 1 0.44 (0.02, 0.97) 0.41 (0.01, 0.94) 0.32 (0.01, 0.94) 0.29 (0.01, 0.92)
Scenario 2 0.09 (0, 0.76) 0.02 (0, 0.59) 0 (0, 0.17) 0 (0, 0)
Scenario 3 0 (0, 0.11) 0 (0, 0) 0 (0, 0) 0 (0, 0)
Scenario 4 0 (0, 0) 0 (0, 0) 0 (0, 0) 0 (0, 0)
Scenario 5 0 (0, 0) 0 (0, 0) 0 (0, 0) 0 (0, 0)

(0.02, 0.88), 0.41 (0.05, 0.90) and 0.20 (0.05, 0.95) (see table 2.30), for N = 99,

199 and 499, while the corresponding median (95% quantile interval) p-valuer (with

desired optimal value being 0) is 0 (0, 0.11), 0 (0, 0) and 0 (0, 0) (see table 3.3).

3.3.5 Conclusions

The conclusions from simulation study D are summarized as follows.

• The performance of the household label test, as a tool for assessing the population

mixing assumption, is excellent in all scenarios and rounds, for both infection and

removal based assessment. The test, as desired, enjoys increased power as the

dimension of the data (quantified by N) or the two-level-mixing effect (quantified

by RH
0 ) increases.

• Removal based assessment is slightly less powerful than infection based assessment,

reflecting the fact that some information is lost when ordering the household labels

according to removals times rather than infection times, but still very powerful to

consistently provide evidence against H0 in favour of HL whenever appropriate. In

the context of our assumed framework this is highly important, as only removal

times are observed while infection times are missing.
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• In assessing the population mixing assumption, the test clearly outperforms the

distance and the position-time methods which could not systematically discard a

homogeneously mixing model under similar simulation scenarios.

3.3.6 Remarks

In the context of a simulation study, where multiple datasets are considered, it is

infeasible to plot the histogram for each one of the datasets for which the test is

applied to. Therefore, for the purposes of simulation study D, the test was conducted

by considering only the p-value and not the histogram. In practice though, where

interest is in analyzing one dataset, the histogram should be plotted as it can provide

additional information to that of the p-value (see discussion in section 3.2.3).

All datasets of simulation study D were simulated so that the number of individuals

in each household was equal (see table 3.1). It must be noted though, that this

condition was not imposed by the test and was only used to replicate the simulation

conditions of simulation study C (see table 3.1) so that to allow direct comparisons

between simulation studies C and D. That is to say, the household label test can be

implemented for populations where the number of individuals in each household is

different (see section 3.4 below for an example).

3.4 Application of the test to the Abakaliki small-

pox data

3.4.1 Purpose

This section applies the newly derived household label test to a real dataset obtained

from a smallpox outbreak in Abakaliki, Nigeria, in 1967 (Bailey, 1975, page 125).

It is emphasized, that the intention here is not to conduct an extensive analysis
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that provides new insights into the outbreak, but rather to illustrate the use of

the test on a real-life example and assess its performance. The Abakaliki dataset

provides a good platform to do so for two reasons. First, it contains information

regarding the population structure which is necessary to apply the test. Second,

it is a widely studied dataset, either analyzed to understand the outbreak (see e.g.

Eichner and Dietz (2003); Stockdale et al. (2017)) or used to illustrate new data

analysis methodology (see e.g. O’Neill and Roberts (1999); Boys and Giles (2007);

Clancy and O’Neill (2008); Kypraios et al. (2017)), and can thus serve as a benchmark

for assessing the practical utility of the test.

3.4.2 Data description

The outbreak and the data are described in detail in Thompson and Foege (1968)

and Eichner and Dietz (2003). The total population of Abakaliki at the time of

the outbreak was 31200 individuals and the total number of smallpox cases was

32. The collected data contained information (to a lesser or greater extent) on

age, sex, vaccination status and membership status to a religious organization, for

all individuals. In addition, for 251 individuals of the population, information was

available on the compound which they belonged to; compound refers to one-storey

dwellings built around a central courtyard, capable of housing several families, and

indicate the group which individuals belong to (just like households did in the previous

sections of this chapter). All 32 ever-infected individuals belonged to a compound

and for each one of them the date of onset of rash (case detection) was recorded.

For the purposes of this analysis, a choice is made to ignore age, sex, vaccination

and membership status information, as such information are not utilized by the

test, and to restrict to the population of individuals that belong to a compound,

so that the considered population is partitioned into compounds and the test

can be implemented. Specifically, following the notation of section 3.2.1, a
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population of size C = 251 is considered, where the individuals are partitioned

into l = 9 compounds, labelled as 1, 2, . . . , 9, with each compound m consisting

of Cm individuals, m = 1, 2, . . . , 9, where (C1, C2, C3, C4, C5, C6, C7, C8, C9) =

(33, 15, 10, 33, 22, 43, 20, 42, 33), so that C =
∑l

m=1 Cm. Observed event times are

taken to be the n = 32 onset of rash (case detection) times and the corresponding

(time-ordered according to the events) observed compound label vector is given by

ge
obs

= (1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 4, 5, 1, 1, 1, 1, 5, 2, 1, 2, 6, 5, 2, 7, 4, 2, 2, 8, 3, 9, 5, 2) (see

Thompson and Foege (1968, table 1)).

3.4.3 Run conditions

Following the procedure described in section 3.2.3 (see Algorithm 16), the test is

applied to the Abakaliki dataset by drawing an independent sample of size 10000

from T sam ∼ H0 and calculating the observed value of the test statistic, T obs, and

the corresponding p-value. In addition, the plausibility of the null hypothesis H0 is

tested visually, by imposing T obs on the histogram of the sampled values from T sam.

3.4.4 Results and conclusions

Figure 3.2 gives the output of the test when applied to the Abakaliki outbreak data.

Having in mind how the test is interpreted (see section 3.2.3) the histogram and the

extreme (small) p-value = 0.004 suggest that the data are inconsistent with H0 (the

hypothesis of homogeneous mixing) and provide strong evidence against it and in

favour of HL (the hypothesis of two-level mixing). This conclusion is desirable in the

sense that it is in agreement with what is supported by the literature. For example,

in both Stockdale et al. (2017) and Eichner and Dietz (2003), where the outbreak

was thoroughly analyzed, taking into account all the information in the data, the

reported estimates of the basic model parameters suggest a compound effect in the

spread of the outbreak; with most infections occurring within rather than between

compounds. This is also supported by the epidemiological investigation reported in

208



Thompson and Foege (1968), which concluded that the spread within compounds,

and within families in particular, appeared to drive the epidemic.
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Figure 3.2: Application of the classical hypothesis test for compound label data on
the Abakaliki outbreak data. The plot is the histogram of 10000 realizations from the
sampling distribution of T sam ∼ H0 with the observed value T obs = 80 (red, dashed
line), the minimum value of T = 0 (black, solid line) and the maximum value of
T = 202 (black, solid line) imposed. The test p-value is p-value = 0.004.

3.5 Discussion

3.5.1 Addressing chapter aims

This chapter derived a novel hypothesis test based on household labels. The test

is based on the idea that events of individuals belonging to the same household

should occur closer in time rather than further apart, in the presence of a two-level-

mixing effect. The key in constructing and implementing the test relies on the fact

that, under the assumption of homogeneous mixing, the sampling distribution of the

discrete random vector of household labels is known and independent of any model

parameters. An attractive feature of the test is its ordinal interpretation; the lower

the observed value of the test statistic and its corresponding p-value are, the more

the evidence against the hypothesis of homogeneous mixing and in favour of the

hypothesis of two-level-mixing.
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A thorough simulation study demonstrated that the test performs desirably as a tool

for assessing the population mixing assumption, for both infection and removal based

assessment. The test, as desired, exhibits increased power as the dimension of the

data or the two-level-mixing effect increases. Considering that the distance and the

position-time methods cannot reliably be used as tools for assessing the population

mixing assumption, the household label test is an especially welcome addition to the

model assessment toolkit. The apparent edge of the household label test over the

distance and the position-time methods is most likely accounted for by the fact that

the latter methods do not make use of household label data which are evidently very

informative in assessing the population mixing assumption.

When applied to a real dataset, the test again performed well, reaching a conclusion

that was in agreement with previous analyses in the literature. Although the test

can not (and is not designed to) provide extensive information on all aspects of

an outbreak, the fact that it appears to effectively assess the population mixing

assumption, by taking minimal computational time and by being straightforward to

implement, is particularly appealing from a practical point of view.

3.5.2 Limitations

As discussed in section 2.10 of the previous chapter, although the examination of the

performance of a method via simulation studies might be extensive it can never be

exhaustive; there are always more simulation scenarios to be considered. For example,

it would be interesting to investigate how noisy the infectious period distribution has

to be, before all the two-level-mixing information is lost in the transition from infection

to removal based assessment (see section 3.2.4); nonetheless, the Exp(γ) infectious

period with γ = 0.1, used in simulation study D, has variance 100, which is larger

than what would one typically encounter in practice. Also, it would be interesting
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to extensively assess the performance of the test on data for which the number of

individuals in each household was not equal; although in principle, and as seen in the

Abakaliki data example, there do not appear to be any reasons to believe that the

performance of the test would be affected if applied to such data.

3.5.3 General remarks

Although one can sample directly from T sam ∼ H0 (see section 3.2.3), deriving

an analytic expression for its distribution is rather challenging. More precisely,

since T is defined as the sum of the household contributions s
(m)
ge (see section

3.2.2 and equation (3.2)), m = 1, 2, . . . , l, where l the number of households,

knowledge of the distribution of T sam ∼ H0 prerequisites knowledge of the joint

sampling distribution of the random vector (s
(1)

gesam
, s

(2)

gesam
, . . . , s

(l)

gesam
) ∼ H0, which

is complicated by the correlated nature of its components. The above complication

could potentially be avoided by opting to pursue an asymptotically (i.e. for large

data dimension) approximate, rather than an exact, result for the distribution of

T sam ∼ H0. For example, if the assumption of equal number of individuals in

each household is made, the random vector (s
(1)

gesam
, s

(2)

gesam
, . . . , s

(l)

gesam
) ∼ H0 becomes

interchangeable (meaning that the joint distribution of the vector is invariant to any

permutation of its components) and various central-limit-type of theorems, for the

sum of interchangeable random variables (or processes), exist in the literature, such

as Blum et al. (1958); Chernoff and Teicher (1958); Weber (1980). However, the idea

of pursuing an asymptotic result was not entertained further as, besides satisfying

mathematical curiosity, it would only incur additional challenges (e.g. none of the

results in the aforementioned references are directly applicable to our setting and

thus, before any such result could be used, one would probably need to modify and

then satisfy any theorem conditions in order to accommodate our setting) whilst

not having a practical contribution to the test implementation. More specifically,

since direct sampling from T sam ∼ H0 is possible (see section 3.2.3) and cheap to

211



perform (e.g. a sample size of 100000 takes less than a second of computer time

to achieve) the (exact) distribution of T sam ∼ H0, and thus the p-value of the test,

can be approximated (via Monte Carlo) arbitrarily accurately (independently of the

dimension of the data), by simply increasing the sample size. On the contrary, if

the test was to be implemented using an asymptotically approximate distribution for

T sam ∼ H0, although the p-value calculation would be analytic and not numeric, the

approximation, and the test p-value, would only be as accurate as the dimension of

the data was large. Based on the above, pursuing an asymptotic approximation result

would only be worthwhile in the case that direct sampling from T sam ∼ H0 was not

possible or too costly to perform; and neither of these apply in this case.

Notice that, in the test formulation (see section 3.2.3), the precise specification

of an alternative hypothesis was avoided. The reason for not conforming to the

traditional two-outcome hypothesis testing setting, was to prevent unnecessary loss

of information in the interpretation of the p-value. More precisely, if a traditional

null vs alternative hypothesis test is conducted, with the assumption of homogeneous

mixing H0 being the null hypothesis, and the assumption of two-level-mixing HL

being the alternative hypothesis, the ordinal nature of the test statistic T implies

that the test is one-sided with the evidence against H0 and in favour of HL being

considered substantial, in the instances that the observed value of T is smaller than

what would be produced if H0 was true, that is, when the p-value is small (close to 0).

Notice though, that under such formulation, a large p-value (close to 1) is interpreted

as merely not providing enough evidence against H0 whilst it fails to convey any

information as far as the plausibility of HL. This interpretation is less informative

than the one resulting when no single alternative hypothesis is specified, where a large

p-value (close to 1) is providing evidence against both H0 and HL and in favour of

the hypothesis HR, that there is negative two-level-mixing effect in the data, which

is the opposite direction hypothesis of HL (see section 3.2.3). Similar points, as the

aforementioned, were also made in Snijders (2001), where an example was used to
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highlight the limitations of the traditional two-outcome decision test formulation in

the case that a three-outcome decision is more natural.

Recall that throughout this chapter (see section 3.2.1) it was assumed that Cm ≥ 2

for all m = 1, 2, . . . , l. This is because the alternative case, that Cm = 1 for some

household m, is far less interesting due to the fact that when Cm = 1, the label of

household m can only appear zero or one times (i.e. ν
(m)
ge = 0 or ν

(m)
ge = 1), and

measuring spread in such cases is not possible. Nonetheless, the definition of s
(m)
ge

(and therefore of T ) can be extended for the case that Cm = 1 by making the only

sensible assignment for s
(m)
ge , which is s

(m)
ge = 0.

Recall from the previous chapter (see section 2.9.1.7) that a possible way to assess the

population mixing assumption is by looking at the posterior predictive distribution

of the number (or proportion) of local infections. Although, as already mentioned,

this is a rather natural way of conducing the assessment, it requires model fitting

via MCMC methods (see Alharthi (2016)) and thus it is much more computationally

expensive to implement, compared to the household label test.

It must be noted that classical tests, for assessing the population mixing assumption

of epidemic models, already exist in the literature. Particular reference should be

made to the tests in Britton (1997a); Britton (1997b); Britton (1997c); Britton

(1997d). The general features of the tests in the aforementioned references are the

following. First, the setting is the same as the one in this thesis, where the population

is partitioned into groups (say households) and information regarding the household

of each individual is available. Second, a certain epidemic model is considered that

assumes global infection contacts, described by a parameter λ > 0, and, in addition,

local (within household) infection contacts, described by a parameter δ > 0. The

model is formulated in such a way so that when δ = 0, only global contacts occur

and the model reduces to a homogeneously mixing model; for example, a model that
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highly features in these references is the Exp-2L model (see section 1.3.5.7) in which

case λ is the one-to-one global infection rate (denoted as βG throughout this thesis)

and δ is the one-to-one local infection rate (denoted as βL throughout this thesis).

Then a test of whether there is additional within household infectivity is conducted by

testing the null hypothesis H0 : δ = 0 against the alternative hypothesis HA : δ > 0.

A third feature of these tests is that they are likelihood ratio (LR) tests i.e. the

test statistic is the LR test statistic L(δ)
L(0)

, where L is the model likelihood function.

Since the LR depends on δ, testing uniformly over all values of δ is not possible

and, instead, the alternative hypothesis is restricted to values of δ close to 0. Then,

calculation of the observed value of the LR test statistic and derivation of its sampling

distribution under H0, are based on a Taylor approximation of the likelihood around

δ = 0, and, additionally, on the use of asymptotic results for the case that the

number of households is large (see e.g. theorems 2.1 and 3.1 in Britton (1997a)).

The advantage of these tests compared to the test developed in this chapter is that,

arguably, they are theoretically more justifiable, in the sense that the former rely on

the model likelihood (the test statistic is derived from the model) whereas the latter

is motivated by intuition (the test statistic is motivated by the natural structure of

household label data). On the other hand, these LR tests rely on approximations

(numeric and asymptotic), whereas the test of this chapter does not.

3.5.4 Further work

The household label test could be modified accordingly to assess other assumptions of

epidemic models. For example, it is sometimes of interest to understand the spatial

component of an outbreak (see e.g. Jewell et al. (2009)) and so it could be required

to assess if there is a spatial effect in the spread of an epidemic outbreak among a

population of individuals or farms whose location is known; spatial effect refers to an

outbreak being more likely to progress between individuals or farms of smaller rather

than larger distances. In such a case, by letting H0 to be the hypothesis of no spatial
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effect, HL the hypothesis of spatial effect and HR the hypothesis of negative spatial

effect (i.e. an outbreak being more likely to progress between individuals or farms

of larger rather than smaller distances), a test for assessing the plausibility of H0,

against HL or HR, can be implemented and interpretated similarly to the household

label test (see section 3.2.3), as follows. First, consider the time-ordered according to

event times (individual or farm) labels ge = (ge1 , g
e
2 , . . . , g

e
n), where n the total number

of (infection or removal) events. Second, define an ordinal statistic T , to quantify the

spatial effect (so that the smaller the value of T the higher the spatial effect), such

as T (ge) =
∑n−1

k=1 dgek ,gek+1
, where dgek ,gek+1

, k = 1, 2 . . . , n − 1, the distance between

individuals or farms, gek and gek+1, which experience the event consecutively. Finally,

utilize the fact that, under the assumption of no spatial effect H0, the sampling

distribution of the random vector of labels ge
sam

= (ge
sam

1 , ge
sam

2 , . . . , ge
sam

n ) ∼ H0

is, as in section 3.2.2, known and independent of model parameters and described

by choosing uniformly at random a permutation of n out of the total C individuals

or farms in the population and recording their corresponding labels. The closer the

p-value is to 0 (to 1) the more the evidence against H0 and in favour of HL (HR),

while p-values not too extreme (i.e. not too close to 0 or 1) do not provide enough

evidence against H0.
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Chapter 4

Efficient Bayesian Inference for

Partially Observed Stochastic

Epidemic Models

4.1 Introduction

4.1.1 Chapter motivation and aims

In recent years, there has been a significant progress in the area of Markov chain

Monte Carlo (MCMC) inference for stochastic epidemic models, fitted to temporal

data (see section 1.4.2 and the references therein). However, as discussed in O’Neill

(2010), challenges still remain, especially in high-dimensional settings where the

computational burden is increased. More precisely, as explained in sections 1.3.5.2

and 1.3.5.3, in order to conduct MCMC inference for the interesting parameters of

an epidemic model (i.e. the parameters that carry epidemiological interpretation

such as those controlling the infection and the removal processes), one usually

needs to introduce the unobserved infection data as additional unknown variables

and target the joint posterior distribution of model parameters and augmented

infection variables. The challenge in the implementation of such MCMC schemes
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is not in updating the components that consist of model parameters, as such

components are typically low-dimensional and possess no real difficulties (see e.g.

sections 1.3.5.5 to 1.3.5.7 and the MCMC algorithms therein), but in updating the

infection component, which is typically of much higher dimension (especially in cases

of large-scale outbreaks) and is far harder to update efficiently; the high dimension of

the infection space makes it very challenging for an MCMC sampler to move around it

efficiently. In turn, the intrinsic dependence between infections and model parameters,

typically encountered in epidemic models, implies that any mixing issues relating

to the infection component will most likely be inherited by the model parameters

of interest, thus affecting the practical utility of the inference. For example, it is

typical that the full conditional distributions of components consisting of the model

parameters depend heavily on the infections (see e.g. equations (1.21) and (1.24))

and therefore, if the infection component mixes very slowly the model parameter

components will mix very slowly as well. Various MCMC algorithms have been

employed to address these issues, making use of and sometimes combining different

ideas, such as parameter reduction and non-centered parameterizations (see section

1.4.2 and the references therein). However, one thing that has remained the same

among most of these algorithms is the fundamental idea according to which infections

are proposed to be updated. More specifically, based on the fact that epidemic

models typically assume that the infectious periods of individuals are i.i.d. from

a distribution D(φ), with parameter φ (see section 1.3.5.1), most of the currently

existing MCMC algorithms (see e.g. O’Neill and Roberts (1999); O’Neill and Becker

(2001); Neal and Roberts (2004, 2005); Kypraios (2007); Xiang and Neal (2014)),

directly or indirectly, propose infections according to a model-driven independent

proposal distribution that proposes a candidate infection time for individual k, say

i∗k, by proposing an infectious period rk − i∗k ∼ D(φ(s+1)), where rk is the removal

time of individual k and φ(s+1) is the current value of φ in the MCMC algorithm.

Although some of these MCMC algorithms have managed to mitigate the effect of

the problem, by for example attempting to update more than one infections at a time
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in a block update step (see Xiang and Neal (2014)), the mixing issues of the infection

component still persist and more efficient algorithms are needed. The aim of this

chapter, is to develop more efficient MCMC algorithms by introducing alternative

proposal mechanisms for the infection component.

Comparing the performance of different MCMC algorithms is an integral part of this

chapter and therefore, before proceeding any further, it is important to clarify how

algorithm performance is assessed. As mentioned in the paragraph above, the focus

throughout this chapter is placed on the update step of the infection component and

thus the performance of an MCMC algorithm is assessed by the level of efficiency with

which the infection step is performed, i.e. by the quality of mixing of the infection

component. Note that, in general, different MCMC algorithms are likely to be more

efficient for different components of a posterior vector (that is, a random vector

having the posterior distribution). However, in the present context, an optimally

mixing algorithm with respect to the infection component will most likely be optimal

for the other components as well due to the intrinsic dependence between infections

and model parameters (see the previous paragraph). For this reason, throughout

this chapter, measures of mixing and efficiency are only considered for the infection

component and not the other components.

It is noted that all MCMC algorithms used in this chapter were checked for evidence

of non-stationarity (see the part regarding stationarity in section 1.3.2.3) by visually

inspecting MCMC trace plots. Utilizing that the algorithms were applied on simulated

data, stationarity was also checked by assessing whether the posterior densities of the

algorithms appeared to be around the true values of the parameters. Trace plots

and posterior density plots are provided in the simulation studies for illustration.

Regarding initial values, again utilizing that the algorithms were applied on simulated

data, the approach taken throughout this chapter was to initiate all chains at states

that were far from the true values in order to better assess whether convergence
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appeared to be achieved. All results reported in this chapter are based on chains that

appear to have converged.

This chapter makes use of the notation and terminology introduced in sections 1.3.5.1

to 1.3.5.3. Since the focus is placed on the infection component, it is helpful

to recall that it is denoted as (α, iα, i), where α is the label of the initial

infective, iα is its corresponding infection time and i = (i1, i2, . . . , in)\{iα} are

all the remaining infection times, except iα. The notation (α(s), i
(s)
α , i(s)), where

i(s) = (i
(s)
1 , i

(s)
2 , . . . , i

(s)
n )\{i(s)α }, will be used to denote the current value of the

infection component at MCMC iteration s, while the notation (α∗, i∗α, i
∗), where

i∗ = (i∗1, i
∗
2, . . . , i

∗
n)\{i∗α}, will be used to denote candidate values. Note that i∗k,

k = 1, 2, . . . , n, could be different to i
(s)
k or the same, depending on whether an

infection time for individual k is proposed or not, respectively. Similar notation will

be used for terms that depend on the infection component. For example, the current

(at iteration s) values of the terms A =
∫ rn
iα
XtYtdt and B =

∑n
k=1 (rk − ik) (see

section 1.3.5.5), will be denoted as A(s) and B(s), and their candidate values as A∗

and B∗, respectively.

All runs and plots in this chapter are produced using the statistical programming

language R Core Team (2019).

4.1.2 Chapter layout

The remainder of this chapter is divided into three parts, two main parts and the last

part containing conclusions.

The first part, section 4.2, considers MCMC algorithms based on updating one

infection time at each update step, in what is referred to as a 1-dimensional update

step.
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The second part, section 4.3, proceeds to consider MCMC algorithms based on

updating multiple infection times at each update step, in a so-called block update

step.

The layout is similar in both main parts; initially, the limitations of existing

algorithms are acknowledged, then, new algorithms are developed, and finally,

the performance of the new algorithms is compared against the existing ones via

simulation studies.

The last part of the chapter, section 4.4, highlights the main accomplishments of

the chapter, gives the limitations and discusses general remarks and further work.

4.2 1-dimensional update steps for the infection

component

Ultimately, the intention is to develop MCMC algorithms that update many infection

times at a time, in a block update step, rather than one at a time, in a 1-dimensional

update step, as a block update step will most likely be more efficient than its 1-

dimensional counterpart (see e.g. Xiang and Neal (2014)). However, it is sensible

to start by considering the simpler problem of updating the infection component in

a 1-dimensional step, both because this is interesting in its own right and because

this allows for some of the ideas of this chapter to be introduced and illustrated in a

simpler setting.

Consider the setting of section 1.3.5.3, where the infection component is updated

according to its full conditional density π(α, iα, i | r,β(s+1),φ(s+1)), with β(s+1) and

φ(s+1) being the current values of β and φ in the MCMC algorithm. As explained
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in section 1.3.5.3 (see the second remark following Algorithm 4), having chosen the

individual k whose infection time ik is to be updated, all the remaining infection times

remain fixed at their current values during the update step and therefore the target

density in a 1-dimensional update step of an infection time ik is

π(α, iα, ik | r,β(s+1),φ(s+1), i
(s)
[−k]), (4.1)

where, if x = (x1, x2, . . . , xn) is a vector with n entries, x[−k] denotes the vector

containing all entries of x except xk, k ∈ {1, 2, . . . , n}.

4.2.1 Existing 1-dimensional update steps and their limita-

tions: standard 1-dimensional MCMC algorithms

As part of the process of developing new updating schemes, it is useful to acknowledge

the limitations of the existing ones. By doing so, the development of new schemes

can be guided accordingly. Recall from section 1.3.5.3, that the standard existing

method of updating the infection component, in a 1-dimensional step, is by using

a MH step and a model-driven independent proposal distribution, that proposes a

candidate infection time for individual k, say i∗k, by proposing an infectious period

rk − i∗k ∼ D(φ(s+1)), where D(φ) is the infectious period distribution of the assumed

model, φ is the parameter of D(φ), and φ(s+1) is the current value of φ in the

MCMC algorithm (see Algorithm 4). To simplify wording, this proposal distribution

will henceforth be referred to as the standard 1-dimensional (standard-1d) proposal

and MCMC algorithms that use the standard-1d proposal to update the infection

component will be referred to as standard-1d MCMC algorithms.

To reveal settings where the above updating scheme might underperform, the Exp-

HM model is fitted using the standard-1d MCMC algorithm (Algorithm 5) to

three datasets, generated from the Exp-HM model itself. Recall that (see section
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1.3.5.5), for the Exp-HM model, β = β, φ = γ and D(φ) = Exp(γ), and

thus the target density, in a 1-dimensional update step of an infection time ik,

is π(α, iα, ik | r, β(s+1), γ(s+1), i
(s)
[−k]) and the standard-1d proposal distribution is

D(φ(s+1)) = Exp(γ(s+1)). The three datasets are generated by setting the number of

initial susceptibles, N , to be 200 and the basic reproduction number parameter, R0,

to be 1.5, 2.5 and 5, and the resulting number of total infections, n, is 131, 179 and

200, respectively. The prior distribution assignment is done as in section 1.3.5.5 and

the prior parameters are specified so that the uncertainty for all model parameters

(except for the label of the initial infective α which is assigned a prior distribution

as α ∼ U[1 : n]) is expressed via uninformative Exp(10−3) prior distributions. The

algorithm is run for 20000 iterations, after a burn-in of 5000, by repeating the infection

component update step as many times as the number of infections so that, in each

MCMC iteration, all infection times are attempted to be updated (see last paragraph

of section 1.3.5.3).

Figure 4.1 shows the acceptance proportion for the update step of the infection time

ik, for each ever-infected individual k, k = 1, 2, . . . , n. Note that, as in section 1.3.5.2,

the n ever-infected individuals are labelled according to the time-ordered removal

times r1 < r2 < · · · < rn, so that individual with label 1 is removed first, individual

with label 2 is removed second and so on, i.e. the acceptance proportions are plotted

against individual labels corresponding to time-ordered removal times. Also notice,

that imposed on the plots is the effective sample size (see the part about mixing in

section 1.3.2.3) over the actual sample size and the proportion of times that proposed

values were inadmissible (meaning that the proposed configuration of infection times

would cause the epidemic to cease before rn; such values are automatically rejected),

relating to the update step of each ik, k = 1, 2, . . . , n. Looking at figure 4.1 one

can notice a ‘curvature effect’ on the acceptance proportions, with individuals being

removed closer to first or last, generally having lower acceptance proportions than

individuals having order of removal closer to the median order. The effective sample
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size proportions follow along this pattern, which is in line with what is known

for independent proposals, namely that the higher the acceptance proportion the

more efficient an independent proposal will be (see the part regarding independent

proposals in section 1.3.2.4). It is also worth noticing that, the inadmissibility

proportions are more or less similar across individuals, revealing that the reason

behind the curvature effect of the acceptance proportions is not because proposed

values for individuals being removed closer to first or last are more often inadmissible.
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Figure 4.1: Acceptance proportion (black circles), effective sample size over actual
sample size (green pluses) and inadmissibility proportion (red triangles) for the 1-
dimensional update step of the infection time ik, of the Exp-HM model, using the
standard-1d proposal, against individual label k, k = 1, 2, . . . , n. Columns correspond
to three different datasets, generated from an Exp-HM model (N = 200, γ = 0.1),
where R0 (left to right) is set at 1.5, 2.5 and 5, respectively.

To further investigate this curvature effect, the target density of the update step

of ik, as a function of ik, is plotted for k = 1, k = bn/2c and k = n, with all

remaining variables being fixed at their true (rather than their current) values, and

the standard-1d proposal density (using as parameter the true value of γ rather than

its current value) is imposed, for all three datasets (figure 4.2). Guidance on how to

interpret the plots of figure 4.2 can be gauged by recalling that for an independent

proposal density to work well it should resemble the target density (see the part

regarding independent proposals in section 1.3.2.4). Looking across columns (values

of k), in figure 4.2, one can see that the proposal density is much more similar to the

target density for k = bn/2c, compared to k = 1 or k = n, which helps explain the

curvature effect on the acceptance (and effective sample size) proportions, exhibited
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in figure 4.1. More precisely, it appears that, for all three datasets, the proposal

density overestimates the length of the infectious period of individual with label 1

and underestimates the length of the infectious period of individual with label n,

both with reference to the target density. Notice also that (by looking across rows in

figure 4.2), this pattern becomes more evident as the value of R0 becomes larger. To

appreciate this, consider an extreme case where R0 is very large so that all infections

occur almost instantaneously immediately after the first infection and before the first

removal r1 = 0, around a time point, say tI . In such a case, the target density of the

update step of ik, for all individuals k = 1, 2, . . . , n, irrespectively of their removal

time rk, would put most of its mass around tI ; this is because the target density of the

update step of ik is conditioned on the values of the remaining infection times, which

would all occur around tI (i.e. the target density would ‘know’ that all remaining

infection times occur around tI), and would therefore suggest that ik should occur

around tI too. Note that, precisely because individuals are labelled according to their

time-ordered removal times r1 < r2 < · · · < rn, the smaller (larger) the label of

individual k, k = 1, 2, . . . , n, the closer (further) from tI , its removal time rk would

be. That is to say that, according to the target density of ik, the smaller (larger)

the label of individual k, k = 1, 2, . . . , n, the shorter (longer) its infectious period

rk − ik would generally be. However, the standard-1d proposal scheme generates

candidate infectious periods rk − i∗k, from the same distribution, for all individuals

k = 1, 2, . . . , n (in this case rk − i∗k
i.i.d.∼ D(φ(s+1)) = Exp(γ(s+1)), k = 1, 2, . . . , n),

so in this case it would end up overestimating the length of the infectious period of

individuals with labels close to 1, and underestimating the length of the infectious

period of individuals with labels close to n.

A similar investigation as the above is also conducted using the Gamma-HM model,

leading to very similar conclusions. More specifically, the Gamma-HM model is

fitted (under the same run conditions as the Exp-HM model; using the same prior

assignment and running the chain for 20000 iterations, after a burn-in of 5000, by
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Figure 4.2: Target density (black, solid line) and standard-1d proposal density (blue,
dashed line) for the 1-dimensional update step of the infection time ik, of individual
label k, of the Exp-HM model. Imposed (vertical, black, solid line) is the observed
removal time rk (maximum value of ik). Rows correspond to three different datasets,
generated from an Exp-HM model (N = 200, γ = 0.1), where R0 (top to bottom) is
set at 1.5, 2.5 and 5, respectively. Columns (left to right) correspond to k values of
1, bn/2c and n, respectively.

repeating the infection component update step as many times as the number of

infections) using the standard-1d MCMC algorithm (Algorithm 6) to two datasets

generated from the model itself, by setting N = 200 and R0 to be 1.5 and 2.5,

respectively. Recall that (see section 1.3.5.5), for the Gamma-HM model, β = β, φ =

(ν, λ) (but reduces to φ = λ since ν is assumed known) and D(φ) = Gamma(ν, λ),

and thus the target density, in a 1-dimensional update step of an infection time

ik, is π(α, iα, ik | r, ν, β(s+1), λ(s+1), i
(s)
[−k]) and the standard-1d proposal distribution is

D(φ(s+1)) = Gamma(ν, λ(s+1)). Figure 4.3 shows the acceptance, effective sample size

and inadmissibility proportions for the update step of the infection time ik, for each
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ever-infected individual k, k = 1, 2, . . . , n. Just like for the Exp-HM model (see figure

4.1), one can notice a curvature effect on the acceptance (and effective sample size)

proportions. Figure 4.4 plots the target density of the update step of ik, as a function

of ik, for individuals k = 1, k = bn/2c and k = n, with all remaining variables being

fixed at their true (rather than their current) values, and imposes the standard-1d

proposal density (using as parameter the true value of λ rather than its current).

Again, similar to the Exp-HM model case (see figure 4.2), one can see, especially

as R0 gets larger, that the proposal density proposes quite accurately the infectious

periods of individuals with labels close to bn/2c, but tends to overestimate the length

of the infectious period of individuals with labels close to 1 and to underestimate the

length of the infectious period of individuals with labels close to n; a pattern that

helps explain the curvature effect exhibited in figure 4.3.
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Figure 4.3: Acceptance proportion (black circles), effective sample size over actual
sample size (green pluses) and inadmissibility proportion (red triangles) for the 1-
dimensional update step of the infection time ik, of the Gamma-HM model, using the
standard-1d proposal, against individual label k, k = 1, 2, . . . , n. Columns correspond
to two different datasets, generated from a Gamma-HM model (N = 200, ν = 2,
λ = 0.2), where R0 (left to right) is set at 1.5 and 2.5, respectively.

4.2.2 Individual-specific 1-dimensional MCMC algorithms

The above investigations, illustrate that (the performance of) the standard-1d

proposal for updating an infection time ik is not homogeneous across all individuals,
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Figure 4.4: Target density (black, solid line) and standard-1d proposal density (blue,
dashed line) for the 1-dimensional update step of the infection time ik, of individual
label k, of the Gamma-HM model. Imposed (vertical, black, solid line) is the observed
removal time rk (maximum value of ik). Rows correspond to two different datasets,
generated from a Gamma-HM model (N = 200, ν = 2, λ = 0.2), where R0 (top to
bottom) is set at 1.5 and 2.5, respectively. Columns (left to right) correspond to k
values of 1, bn/2c and n, respectively.

k = 1, 2, . . . , n, and there is a pattern according to the order which individuals are

removed. This pattern, suggests that, instead of using a proposal distribution that is

common for all individuals k = 1, 2, . . . , n (as is the standard-1d proposal), it might

be preferable to consider proposal distributions that are specific to each individual

k, k = 1, 2, . . . , n. More precisely, the following alternative 1-dimensional update

scheme, for the infection component (α, iα, i), is considered. First, choose one of

the n ever-infected individuals, say k, according to a discrete uniform distribution

on {1, 2, . . . , n}, i.e. as k ∼ U[1 : n]. Then, propose a candidate infection time for

individual k, say i∗k, using a MH step and an independent proposal distribution, as

rk − i∗k ∼ D(φk), where D(φ) is the infectious period distribution of the assumed

model, φ is the parameter of D(φ), and φk is a suitably specified parameter, specific

to individual k (the specification of φk is discussed below). Owing to their nature,

these proposal distributions are referred to as individual-specific 1-dimensional (IS-

1d) proposals and MCMC algorithms that use the IS-1d proposals to update the
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infection component will be referred to as IS-1d MCMC algorithms.

Note that, the above defined IS-1d proposal scheme is the same as the standard-1d

proposal scheme (mentioned in the first paragraph of section 4.2.1 and fully described

in section 1.3.5.3 and Algorithm 4) but with one fundamental difference. Specifically,

although the family of the proposal distribution of ik is the same for both schemes, and

is D(φ), the parameter of the proposal distribution is different, as for the standard-1d

proposal scheme it is the current value of φ, say φ(s+1), common for all individuals

k = 1, 2, . . . , n, whereas for the IS-1d proposal scheme it is the individual-specific

parameter φk, generally different for each individual k, k = 1, 2, . . . , n.

To specify the individual-specific parameters φk, k = 1, 2, . . . , n, a practical approach

is taken, where the φk’s are treated as tuning parameters (see the part regarding

dependent and independent proposals in section 1.3.2.4) and are specified using the

burn-in iterations. The intention for specifying the φk’s in such a way is to allow

for any information about the target posterior distribution, provided by the initial

burn-in iterations, to be incorporated into the proposal distributions. In this way,

the independent IS-1d proposal distributions for ik can be made more similar to their

associated target distributions of ik, which is what is desired from a good performing

independent proposal distribution (see the part regarding independent proposals in

section 1.3.2.4). Specifically, the φk’s are specified as follows. The first, say SB, chain

iterations, corresponding to the burn-in period, are run using an already existing

proposal scheme, such as the standard-1d scheme. Having obtained a sample of size

SB for each ik, say {i(1B)
k , i

(2B)
k , . . . , i

(SB)
k }, the IS-1d proposal distribution, D(φk), is

fitted to the sampled infectious periods of individual k, {rk− i(1B)
k , rk− i(2B)

k , . . . , rk−

i
(SB)
k }, and a method of moments (MOM) estimation is used to specify the parameter

φk, k = 1, 2, . . . , n. In the case that the assumed infectious period distribution

is Exp(γ), the IS-1d proposal for individual k is D(φk) = Exp(γk) and the MOM

estimation specifies γk as γk = 1/x̄k, where x̄k = 1
SB

∑SB
s=1(rk − i(sB)

k ), k = 1, 2, . . . , n.
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In the case that the assumed infectious period distribution is Gamma(ν, λ), the IS-1d

proposal for individual k is D(φk) = Gamma(νk, λk). In this latter case, one may

conduct MOM estimation for both νk and λk, yielding νk =
x̄2
k

s2k
and λk = x̄k

s2k
, where

s2
k = 1

SB−1

∑SB
s=1(rk − i(sB)

k − x̄k), or alternatively, since ν is assumed to be known for

inferences purposes (see section 1.3.5.4), set νk = ν for all k = 1, 2, . . . , n and conduct

MOM estimation only for λk, yielding λk = ν
x̄k

, k = 1, 2, . . . , n.

Recall that (see the part regarding proposal distributions in section 1.3.2.3) a proposal

distribution can be specified arbitrarily, as long as the required ergodic properties are

satisfied; in the present context this is ensured, since the φk’s are specified at the end

of the burn-in iterations and remain fixed henceforth, thus not altering the ergodic

properties of the chain. Nonetheless, whether or not a proposal specification is a good

one is ultimately determined by algorithm efficiency. To develop a visual appreciation

of how the IS-1d proposal scheme might perform, the simulated datasets of section

4.2.1 are again considered. First, the three datasets generated from the Exp-HM

model are considered. Using the SB = 5000 burn-in iterations from the standard-

1d MCMC run (i.e. the MCMC run using Algorithm 5) each parameter γk, of the

IS-1d proposal distribution Exp(γk), k = 1, 2, . . . , n, is specified as described in the

paragraph above. Figure 4.5 is a repetition of figure 4.2 (discussed earlier in section

4.2.1), with the addition that, besides the standard-1d proposal density, the IS-1d

proposal density is also imposed on the target density of ik. The plots show that the

IS-1d proposal density, more or less, corrects for the overestimation (underestimation)

of the length of the infectious period, exhibited by the standard-1d proposal density,

for individuals with labels close to 1 (close to n). This happens precisely because the

IS-1d proposals are allowed to have a different parameter for each individual k, and

because these parameters are specified according to the information about the target

posterior posterior distribution, provided by the initial burn-in iterations. Therefore,

they have the ability to capture the pattern sometimes (see the above paragraph)

exhibited in the target distribution, where the smaller (larger) the label of individual
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k, k = 1, 2, . . . , n, the shorter (longer) its infectious period rk − ik typically is. A

further appreciation of this ability, is given by figure 4.6, where the mean infectious

period according to the IS-1d proposal distribution, given by 1/γk, is plotted for each

individual k, k = 1, 2, . . . , n. Finally, a thing that is worth noticing in figure 4.5 is

that for individuals with label 1, the IS-1d proposal density appears to be optimal,

since it is almost the same as the target density, but for individuals with label n,

although it still improves upon the standard-1d density, it is not that similar to the

target density, particularly as R0 gets larger.
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Figure 4.5: Target density (black, solid line), standard-1d proposal density (blue,
dashed line) and IS-1d proposal density (red, dashed line) for the 1-dimensional
update step of the infection time ik, of individual label k, of the Exp-HM model.
Imposed (vertical, black, solid line) is the observed removal time rk (maximum value
of ik). Rows correspond to three different datasets, generated from an Exp-HM model
(N = 200, γ = 0.1), where R0 (top to bottom) is set at 1.5, 2.5 and 5, respectively.
Columns (left to right) correspond to k values of 1, bn/2c and n, respectively.
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Figure 4.6: Mean infectious period 1/γk, according to the IS-1d proposal distribution
Exp(γk), against individual label k, k = 1, 2, . . . , n. Imposed (horizontal, red, dashed
line) is the true infectious period. Columns correspond to three different datasets,
generated from an Exp-HM model (N = 200, γ = 0.1), where R0 (left to right) is set
at 1.5, 2.5 and 5, respectively.

As can be seen from figures 4.7 and 4.8, similar observations can be made for the

two datasets generated from the Gamma-HM model. It is noted that these plots

are produced by estimating both of the parameters, νk and λk, of the IS-1d proposal

distribution Gamma(νk, λk), k = 1, 2, . . . , n, and not only λk (see earlier in this section

on how νk and λk are estimated). Note also, that the SB = 5000 burn-in iterations,

according to which the parameters are calculated, are taken from the standard-1d

MCMC run (i.e. the MCMC run using Algorithm 6).

These observations suggest that it might be more efficient to conduct the 1-

dimensional update step of the infection component using the IS-1d proposals instead

of the standard-1d proposals i.e that IS-1d MCMC algorithms might be more

efficient than standard-1d MCMC algorithms. To further examine the validity of

this speculation, simulation studies are conducted. Since both proposal schemes are

tightly related to the infectious period distribution of the model in question (in the

sense that the family of the proposal distributions is the same as the infectious period

distribution assumed by the model; see section 4.2.1 and the earlier parts of this

section), two simulation studies are conducted, referred to as simulation study E and

simulation study F, one for the case that the infectious period is assumed to be Exp(γ),

and one for the case that it is assumed to be Gamma(ν, λ), respectively. Recall that
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Figure 4.7: Target density (black, solid line), standard-1d proposal density (blue,
dashed line) and IS-1d proposal density (red, dashed line) for the 1-dimensional
update step of the infection time ik, of individual label k, of the Gamma-HM model.
Imposed (vertical, black, solid line) is the observed removal time rk (maximum value
of ik). Rows correspond to two different datasets, generated from a Gamma-HM
model (N = 200, ν = 2, λ = 0.2), where R0 (top to bottom) is set at 1.5 and
2.5, respectively. Columns (left to right) correspond to k values of 1, bn/2c and n,
respectively.
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Figure 4.8: Mean infectious period νk/λk, according to the IS-1d proposal distribution
Gamma(νk, λk), against individual label k, k = 1, 2, . . . , n. Imposed (horizontal,
red, dashed line) is the true infectious period. Columns correspond to two different
datasets, generated from a Gamma-HM model (N = 200, ν = 2, λ = 0.2), where R0

(left to right) is set at 1.5 and 2.5, respectively.

for the other choice of infectious period distribution considered in this thesis, namely

the constant distribution, no infection step is needed since the infection times are
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automatically updated at the update step of the constant value of the infectious period

(see the part about Bayesian inference and MCMC algorithm for the Constant-HM

model in section 1.3.5.5).

4.2.3 Simulation study E

4.2.3.1 Purpose

The purpose of simulation study E is to compare the performance of the standard-1d

and the IS-1d MCMC algorithms, for the case that the infectious period distribution

is assumed to be Exp(γ). To perform this comparison, the relevant version of the

widely used standard SIR model (see section 1.3.5.5) is considered, namely the Exp-

HM model. Both from a methodological (see section 4.1.1) and a practical standpoint,

interest is mostly focused on large-scale outbreaks and so it is important to investigate

how the comparative performance of the two algorithms changes as the dimension of

the data increases. The dimension of the data is quantified by N . Also of interest

is to investigate the effect that R0 might have on the comparison, since as seen in

sections 4.2.1 and 4.2.2 above, the value of R0 may affect algorithm efficiency.

4.2.3.2 Simulation conditions

To address the tasks of the simulation study, datasets are simulated from the Exp-HM

model under all combinations of selected values of the parameters R0 and N . The

values for R0 are 1.5, 2.5 and 5 and for N are 200 and 1000. This yields six simulation

scenarios, one for each different pair of selected values of (R0, N). In all instances,

the mean infectious period E(TD) is set to 10, specifying γ to be γ = 0.1. Note that,

unlike previous simulations studies of this thesis (see for example simulation study A

in section 2.7.1.2), it is not currently of interest to capture sampling variability (and

investigate the sampling properties of some model assessment measure) and therefore

it is sufficient to consider one dataset for each simulation scenario. To ensure that

datasets are, in a sense, representative of their corresponding simulation scenario,
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they are simulated so that they have final size equal to the (major outbreak) mode

of the final size with respect to the sampling distribution.

4.2.3.3 Run conditions

The Exp-HM model is fitted to each generated dataset, using both of the MCMC

algorithms under comparison, namely the standard-1d MCMC algorithm and the

IS-1d MCMC algorithm. Recall that the standard-1d MCMC algorithm for the Exp-

HM model (Algorithm 5) was given in section 1.3.5.5. The IS-1d MCMC algorithm

differs from the standard-1d MCMC algorithm only in the update step of the infection

component, which is conducted as described in section 4.2.2 above. For clarity, all

steps of the IS-1d MCMC algorithm are listed in Algorithm 17 below. The run

conditions of the two algorithms are set to be identical, in order to ensure that the

runtime of the two algorithms is roughly equal so that performance can be compared

by looking only at the mixing and not the runtime. Note that, the computations

and random number generations involved, are the same for both algorithms with the

exception of the calculation of the individual-specific proposal parameters for the IS-

1d algorithm, which takes minimal computational time and is done only once in the

algorithm, after the burn-in period.

Specifically, both algorithms are run for 20000 iterations, after a burn-in of 5000,

by repeating the infection component update step as many times as the number of

infections, so that in each MCMC iteration all infection times are attempted to be

updated (see last paragraph of section 1.3.5.3), and the target space is sufficiently

explored. The burn-in iterations of the IS-1d algorithm, according to which the

proposal parameters are calculated (see section 4.2.2 for details), are run using the

standard-1d algorithm. The prior distribution assignment, for both algorithms, is as

in section 1.3.5.5, with the prior parameters being specified so that the uncertainty for

all model parameters (except for the label of the initial infective α which is assigned
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a prior distribution as α ∼ U[1 : n]) is expressed via uninformative Exp(10−3) prior

distributions.

Algorithm 17 IS-1d MCMC algorithm for the Exp-HM model

1. Suppose the current state is (β(s), γ(s), α(s), i
(s)
α , i(s))

2. Sample β(s+1) ∼ π(β | r, γ(s), α(s), i
(s)
α , i(s)) ≡ Gamma

(
n− 1 + νβ, A

(s) + λβ
)

using
a Gibbs step

3. Sample γ(s+1) ∼ π(γ | r, β(s+1), α(s), i
(s)
α , i(s)) ≡ Gamma

(
n+ νγ, B

(s) + λγ

)
using a

Gibbs step

4. Generate (α(s+1), i
(s+1)
α , i(s+1)) according to π(α, iα, i | r, β(s+1), γ(s+1)) using a MH

step as follows

(a) Choose one of the n ever-infected individuals, say k, as k ∼ U[1 : n]

(b) Propose a candidate infection time for individual k, say i∗k, as rk − i∗k ∼
Exp(γk), where γk is specified using the burn-in iterations, as described in
section 4.2.2

(c) Calculate the acceptance ratio r = π(α∗,i∗α,i
∗|r,β(s+1),γ(s+1))

π(α(s),i
(s)
α ,i(s)|r,β(s+1),γ(s+1))

× qk(rk−i
(s)
k )

qk(rk−i∗k)
, where

π(α, iα, i | r, β, γ) is given by expression (1.22) and qk(x) is the p.d.f. of a
random variable Xk ∼ Exp(γk)

(d) Set (α(s+1), i
(s+1)
α , i(s+1)) = (α∗, i∗α, i

∗) with probability 1 ∧ r; otherwise set

(α(s+1), i
(s+1)
α , i(s+1)) = (α(s), i

(s)
α , i(s))

5. Set the next state as (β(s+1), γ(s+1), α(s+1), i
(s+1)
α , i(s+1)).

4.2.3.4 Results

Before looking at the results and comparing algorithm performance, both algorithms

were checked for evidence of non-stationarity (see the part regarding stationarity in

section 1.3.2.3) by visually inspecting MCMC trace plots and by assessing whether

the posterior densities of the two algorithms appeared to be the same. For all

datasets, both algorithms appeared to have converged to the (same) desired posterior

distribution. As an illustration, the relevant plots are provided for one of the datasets,
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in figure A.22 in the Appendix.

As explained in the last paragraph of section 4.1.1, algorithm performance is assessed

by the level of efficiency with which the infection step is performed, i.e. by the quality

of mixing of the infection component. Following Xiang and Neal (2014), the sum of

the infectious periods, B =
∑n

k=1(rk − ik), is chosen as the key summary statistic

of the infection component and mixing and efficiency are assessed with respect to

B. As described in section 1.3.2.3 (see the part about chain mixing), this is done by

measuring the amount of autocorrelation in the sampled values of B; the higher the

autocorrelation, the slower the mixing and the less the efficiency. Again, following the

aforementioned part of section 1.3.2.3, the amount of autocorrelation in the sampled

values of B is quantified by calculating the sample autocorrelations at lag-k, denoted

as ρ̂k, and by producing an autocorrelation function (ACF) plot, of ρ̂k against k,

and additionally by calculating the effective sample size associated with the MCMC

sample of B, interpreted as the number of i.i.d. sampled values required to give the

same precision as the MCMC sample in question.

Table 4.1 and figure 4.9, respectively, give the effective sample sizes and the ACF

plots, for the two compared algorithms, for each of the six datasets of the simulation

study. As observed, from both table 4.1 and figure 4.9, the IS-1d algorithm, to a

lesser or a greater extent, exhibits improved mixing compared to the standard-1d

algorithm, for all considered datasets. The magnitude of this improvement for the

different simulation scenarios, as quantified by the effective sample size ratio of the

IS-1d algorithm over the standard-1d algorithm, ranges from 1.08 to 2.51.

As far as the effect of the dimension of the data on the comparison, quantified by

N , there is no evidence to suggest that the comparative performance of the two

algorithms changes as N increases. More precisely, by focusing on pairs of datasets

for which R0 is fixed and N changes (i.e. considering datasets 1 and 2, or, 3 and
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4, or, 5 and 6) it appears that the comparative performance of the algorithms is

not affected by N e.g. for dataset 3 (R0 = 2.5, N = 200) the effective sample size

ratio of the IS-1d over the standard-1d algorithm is 1122/540=2.08, and for dataset

4 (R0 = 2.5, N = 1000) is 868/361=2.40, suggesting that (when R0 = 2.5) for both

N = 200 and N = 1000, the IS-1d algorithm is more than twice as efficient than the

standard-1d algorithm.

Unlike N , R0 has an evident effect on the comparison of the two algorithms. More

specifically, as seen from table 4.1 and figure 4.9, the performance of the standard-

1d algorithm becomes worse as R0 increases, whereas the performance of the IS-1d

algorithm improves from R0 = 1.5 to R0 = 2.5, and becomes worse from R0 = 2.5

to R0 = 5. These patterns, and the driving reasons behind them, are made more

clear by figure 4.10, where the acceptance (and effective sample size) proportions for

the update step of the infection time ik, are plotted against the individual label k,

k = 1, 2, . . . , n, for both algorithms. Notice that, to highlight the effect of R0, datasets

2, 4 and 6 (i.e. the datasets for which N = 1000 and R0 is 1.5, 2.5 and 5, respectively)

of the simulation study are considered. Looking at the left column of figure 4.10,

which corresponds to the standard-1d algorithm, one can see the curvature effect (first

discussed in section 4.2.1), which becomes more apparent as R0 increases. As already

explained in section 4.2.1, this curvature effect reflects the tendency of the standard-

1d proposals to overestimate (underestimate) the length of the infectious period of

individuals with labels close to 1 (n), especially as R0 increases (see figure 4.2).

Looking at the right column of figure 4.10, corresponding to the 1S-1d algorithm, one

can see that the IS-1d proposals, more or less, improve the acceptance (and effective

sample size) proportions of individuals. As discussed in section 4.2.2, this is because

the IS-1d proposals are allowed to have a different parameter for each individual k,

and can thus accordingly adjust to having shorter or longer infectious periods. It is

noted though, that the performance of the IS-1d proposals is clearly better for labels

closer to 1, rather than closer to n, and this pattern becomes increasingly apparent
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as R0 increases. Looking at figure 4.5 in section 4.2.2 and recalling the discussion

on what happens in the case that R0 is extremely large in section 4.2.1, this is to be

expected, because for individuals with labels close to n, and for larger values of R0, it

becomes increasingly harder for any Exponential proposal distribution (irrespectively

of its parameter) to resemble the target distribution. This explains why the IS-1d

algorithm is less efficient for R0 = 5 compared to R0 = 2.5.

Table 4.1: Effective sample size for B =
∑n

k=1(rk− ik), for the two compared MCMC
algorithms, standard-1d and IS-1d, for each of the six datasets of simulation study
E. The simulation and run conditions are described in sections 4.2.3.2 and 4.2.3.3,
respectively.

Algorithm

standard-1d IS-1d

Dataset 1 (R0 = 1.5, N = 200) 763 1032

Dataset 2 (R0 = 1.5, N = 1000) 408 438

Dataset 3 (R0 = 2.5, N = 200) 540 1122

Dataset 4 (R0 = 2.5, N = 1000) 361 868

Dataset 5 (R0 = 5, N = 200) 284 715

Dataset 6 (R0 = 5, N = 1000) 257 626
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(b) Dataset 1 (R0 = 1.5, N = 200)
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(c) Dataset 2 (R0 = 1.5, N = 1000)
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(d) Dataset 2 (R0 = 1.5, N = 1000)
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(e) Dataset 3 (R0 = 2.5, N = 200)
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(f) Dataset 3 (R0 = 2.5, N = 200)
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(g) Dataset 4 (R0 = 2.5, N = 1000)
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(h) Dataset 4 (R0 = 2.5, N = 1000)
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(i) Dataset 5 (R0 = 5, N = 200)
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(j) Dataset 5 (R0 = 5, N = 200)
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(k) Dataset 6 (R0 = 5, N = 1000)
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(l) Dataset 6 (R0 = 5, N = 1000)

Figure 4.9: ACF plots for B =
∑n

k=1(rk − ik), for each of the six datasets of
simulation study E. The simulation and run conditions are described in sections 4.2.3.2
and 4.2.3.3, respectively. Left column corresponds to the standard-1d MCMC
algorithm and right column corresponds to the IS-1d MCMC algorithm.
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(a) Dataset 2 (R0 = 1.5, N = 1000)
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(b) Dataset 2 (R0 = 1.5, N = 1000)
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(c) Dataset 4 (R0 = 2.5, N = 1000)
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(d) Dataset 4 (R0 = 2.5, N = 1000)

●

●

●

●●

●
●

●
●

●

●

●

●

●
●
●

●

●
●

●
●

●

●●

●

●

●

●
●● ●
●●

●

●●
●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●●●
●

●

●

●

●

●
●● ●

●●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●
●

●

●

●

●
●

●

●

●

●

● ●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●
●

●
●

●
● ● ●●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●
●

●
●

●● ●

●
●●

●

●

●

●

●
●●

●

●●
●

●

●●
●

●

●
● ●

●

●●

●

●
●

●

●
●●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

● ●●
●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●

●
●

●

●

●

●

● ●

●●

●●
●

●

●

●●

●

●

●

●

●

● ●
●●

●

●
●

●
●

●

●
●

●

●

●
●

●
●●

●
●

●

●

●

●
●●●

●

●

●

●
●●

●
● ●

●
●

●●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

● ●
●

●

●

●

●

●●

●

●

●

●

●●●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●●
●

●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

●●● ●

●

●

●

●

●
●

●●●

●

●
●

●

●

●
●

●

●
●

●

●

●
●

●●●

●

●

●

●

●

●

●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

● ●
●

●

● ●
●●

● ●●
●

● ●
●

●●
●●●

●

●

● ●●

●

●

●

●

●
●●

●

●●

●

●
● ●

●●●

●

● ●
●

●

● ●

●

●

●
●

●
●

●

●

●

●

●

●

●
● ●

●

●

●
● ●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●
● ●●

●

●

●

●
●

●

●

●●
●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●● ●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●● ●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●●

● ●

●

●

●
●

●
●●●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

● ●

●
●

●

●●

●

●

●●

●

●
●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●● ●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●
●●

●
●

●

●
●

●

● ●●●

●

● ●

●
●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●●

●

●

●

●
●

●

●●

●

●

●
●

●
●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●●

●
●●

●
●
●

●
●●●

0 200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

individual

pr
op

or
tio

n

(e) Dataset 6 (R0 = 5, N = 1000)
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(f) Dataset 6 (R0 = 5, N = 1000)

Figure 4.10: Acceptance proportion (black circles), effective sample size over actual
sample size (green pluses) and inadmissibility proportion (red triangles) for the 1-
dimensional update step of the infection time ik, against individual label k, k =
1, 2, . . . , n, for datasets 2, 4 and 6 of simulation study E. The simulation and run
conditions are described in sections 4.2.3.2 and 4.2.3.3, respectively. Left column
corresponds to the standard-1d MCMC algorithm and right column corresponds to
the IS-1d MCMC algorithm.
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4.2.3.5 Conclusions

The conclusions from simulation study E are summarized as follows.

• For all scenarios of the simulation study, the IS-1d algorithm, to a lesser or a

greater extent, exhibits improved mixing compared to the standard-1d algorithm.

Specifically, for the considered datasets of the simulation study, the IS-1d algorithm

is from 1.08 times up to 2.51 times more efficient than the standard-1d algorithm.

• The dimension of the data, quantified by N , does not appear to have an evident

effect on the comparative performance of the two algorithms suggesting that for the

practically interesting cases of large-scale outbreaks, the comparative performance

of the two algorithms would be similar to small-scale outbreaks.

• The severity of the outbreak, quantified by R0, appears to have an effect on the

performance of the two algorithms suggesting that the IS-1d algorithm can handle

the cases that R0 is large better than the standard-1d algorithm, although the

performance of both algorithms will drop if R0 gets too large (around 5 for the

scenarios of this simulation study).

Overall, the IS-1d algorithm offers a not drastic but still welcome improvement in

mixing, compared to the standard-1d algorithm. Considering that the additional

computational complexity and cost associated with the 1S-1d algorithm is minimal,

there does not appear to be any reason not to use the IS-1d algorithm over the

standard-1d algorithm in practice.

4.2.3.6 Remarks

As seen from the results of the simulation study, the performance of the IS-1d

proposals is better for the infection times of individuals with labels closer to 1

rather than closer to n, and this pattern becomes increasingly apparent as R0

increases (see figure 4.10). As explained, this is because, for large values of R0,
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the Exponential family of the proposal distributions, can not capture the shape of

the target distribution, even if its parameter is specified optimally. A natural way

of dealing with this problem would be to consider different, more flexible families

of proposal distributions. For example, one choice that was considered was Gamma

proposal distributions. However, such a choice appeared to be problematic as the

proposal distribution was lighter-tailed than the target distribution creating an issue

of the sampler ever visiting or leaving the tails (see the part about independent

proposals in section 1.3.2.4).

Another solution would be to consider a Gibbs step for each infection time ik,

k = 1, 2, . . . n. More specifically, the full conditional distribution of an infection

time ik is actually known and is described by a piecewise Exponential distribution

in each interevent interval. That is, if all the rest (besides ik) 2n − 1 infection and

removal event times are ordered in time as t1 < t2 < . . . t2n−1, the full conditional

distribution of ik in the interval (tm, tm+1), m = 0, 1, . . . , 2n − 2, where t0 = −∞, is

described by an Exp(δm) distribution and a parameter pm, where pm is the probability

mass corresponding to the interval (with
∑2n−2

m=0 pm = 1 so that the full conditional

distribution of ik is a probability distribution). Although such a scheme would be in

a sense optimal for a 1-dimensional independent MH update step, as the acceptance

proportion would move to 1 for any infection time ik, practical implementation is

computationally too costly. More precisely, at each execution of the update step of

the infection component, before a candidate infection time could be proposed, one

would need to order all event times according to time, and calculate the likelihood of

the model 2n− 1 times, one for each interval (tm, tm+1), m = 0, 2, . . . , 2n− 2, so that

the parameters δm and pm, could be specified. Assuming that the infection step is

repeated n times in each MCMC iteration, a Gibbs step for each infection time would

require (2n−1)n calculations of the likelihood in each MCMC iteration. Considering

the computational cost associated with these calculations and how it grows with the
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number of infections n, it is easy to see why such a Gibbs scheme would be essentially

impossible to implement for any practically useful case.

4.2.4 Simulation study F

4.2.4.1 Purpose, simulation and run conditions

The purpose of simulation study F is the same as simulation study E (see section

4.2.3 right above) with the difference that the infectious period distribution is now

assumed to be Gamma(ν, λ) instead of Exp(γ). Therefore, the simulation and run

conditions for simulation study F are set almost identically as for simulation study

E.

More precisely, simulation study F aims to compare the performance of the standard-

1d and the IS-1d MCMC algorithms, for the case that the infectious period

distribution is assumed to be Gamma(ν, λ). As in simulation study E, it is of interest

to investigate the effect that N or R0 might have on this comparison. In addition, the

effect of the shape parameter ν, of the Gamma(ν, λ) infectious period distribution, is

also investigated.

For each combination of selected values of the parameters R0, ν and N , one dataset

is simulated from the Gamma-HM model conditioning on the final size being equal to

the (major outbreak) mode of the final size with respect to the sampling distribution.

The values for R0 are 1.5 and 2.5, for ν are 2 and 5 and for N are 200 and 1000,

yielding eight simulation scenarios in total, one for each different trio of selected

values of (R0, ν, N). Note that, the selected values of ν serve to investigate how

the algorithms compare when the Gamma distribution becomes increasingly different

than the Exponential (recall from section 1.3.5.4 that the Gamma(ν, λ) distribution

reduces to an Exp(λ) distribution in the cases that its shape parameter ν = 1). The

mean infectious period E(TD) is set at 10 in all cases, specifying λ as λ = 0.2 and
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λ = 0.5, for the instances that ν = 2 and ν = 5, respectively.

The Gamma-HM model is fitted to each simulated dataset, using both of the MCMC

algorithms under comparison, the standard-1d MCMC algorithm and the IS-1d

MCMC algorithm. Note that, for both algorithms, the shape parameter ν is assumed

to be known. This is done to avoid mixing issues that are induced in the instance

that ν is an unknown parameter to be estimated from the data (see e.g. Kypraios

(2007); Jewell et al. (2009); Alharthi (2016) where ν was also treated as known). The

standard-1d MCMC algorithm for the Gamma-HM model (Algorithm 6) was already

given in section 1.3.5.5. The IS-1d MCMC algorithm differs from the standard-

1d MCMC algorithm only in the update step of the infection component, which is

conducted as described in section 4.2.2. For reference, all steps of the IS-1d MCMC

algorithm are given in Algorithm 18 below. In all instances that the IS-1d MCMC

algorithm is run, both of the parameters, νk and λk, of the IS-1d proposal distribution

Gamma(νk, λk), k = 1, 2, . . . , n, are tuned and not only λk (see section 4.2.2 on how

this is done). The burn-in iterations of the IS-1d algorithm, according to which the

proposal parameters are tuned, are run using the standard-1d algorithm. Just like in

simulation study E, the run conditions of the two algorithms are set to be identical,

ensuring that the runtime of the two algorithms is roughly equal so that performance

can be compared by focusing only at the mixing and not the runtime. Specifically,

both algorithms are run for 20000 iterations, after a burn-in of 5000, by repeating

the infection component update step as many times as the number of infections, as

described in the last paragraph of section 1.3.5.3. The prior distribution assignment,

for both algorithms, is done as in section 1.3.5.5, with the prior parameters being set

so that the prior uncertainty for all model parameters (except for the label of the

initial infective α which is assigned a prior distribution as α ∼ U[1 : n]) is expressed

via uninformative Exp(10−3) distributions.
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Algorithm 18 IS-1d MCMC algorithm for the Gamma-HM model

1. Suppose the current state is (β(s), λ(s), α(s), i
(s)
α , i(s))

2. Sample β(s+1) ∼ π(β | r, ν, λ(s), α(s), i
(s)
α , i(s)) ≡ Gamma

(
n− 1 + νβ, A

(s) + λβ
)

using a Gibbs step

3. Sample λ(s+1) ∼ π(λ | r, ν, β(s+1), α(s), i
(s)
α , i(s)) ≡ Gamma

(
νn + νλ, B

(s) + λλ

)
using a Gibbs step

4. Generate (α(s+1), i
(s+1)
α , i(s+1)) according to π(α, iα, i | r, ν, β(s+1), λ(s+1)) using a

MH step as follows

(a) Choose one of the n ever-infected individuals, say k, as k ∼ U[1 : n]

(b) Propose a candidate infection time for individual k, say i∗k, as rk − i∗k ∼
Gamma(νk, λk), where νk and λk are specified using the burn-in iterations, as
described in section 4.2.2

(c) Calculate the acceptance ratio r = π(α∗,i∗α,i
∗|r,ν,β(s+1),λ(s+1))

π(α(s),i
(s)
α ,i(s)|r,ν,β(s+1),λ(s+1))

× qk(rk−i
(s)
k )

qk(rk−i∗k)
, where

π(α, iα, i | r, ν, β, λ) is given by expression (1.25) and qk(x) is the p.d.f. of a
random variable Xk ∼ Gamma(νk, λk)

(d) Set (α(s+1), i
(s+1)
α , i(s+1)) = (α∗, i∗α, i

∗) with probability 1 ∧ r; otherwise set

(α(s+1), i
(s+1)
α , i(s+1)) = (α(s), i

(s)
α , i(s))

5. Set the next state as (β(s+1), λ(s+1), α(s+1), i
(s+1)
α , i(s+1)).

4.2.4.2 Results and conclusions

The comparison of the algorithms is conducted identically to simulation study E (see

section 4.2.3.4 for more details). Initially, the stationarity of the algorithms was

checked (see the part regarding stationarity in section 1.3.2.3) by visually inspecting

MCMC trace plots and by assessing whether the posterior densities of the two

algorithms appeared to be the same. In all cases, both algorithms appeared to

have converged to the (same) desired posterior distribution. For reference, the

relevant plots are given for one of the datasets of the simulation study, in figure

A.23 in the Appendix. Then, mixing and efficiency were assessed with respect to

B =
∑n

k=1(rk − ik), specifically by producing ACF plots and calculating the effective
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sample size associated with the MCMC sample of B.

Table 4.2 and figure 4.11 respectively give the effective sample sizes and the ACF

plots, for the two compared algorithms, for each of the eight datasets of the simulation

study. Similar to simulation study E (see section 4.2.3.4), the IS-1d algorithm, overall,

has better mixing compared to the standard-1d algorithm, although the extent of the

improvement is less in the present simulation study compared to simulation study E.

Specifically, the effective sample size ratio of the IS-1d algorithm over the standard-1d

algorithm, ranges from 0.91 to 1.99; for three of the considered datasets the mixing

of the algorithms is essentially the same and for the remaining five datasets the IS-1d

algorithm has, to a lesser or a greater extent, better mixing.

The effect of N and R0 on the comparison is similar as in simulation study E (see

section 4.2.3.4). Specifically, the comparative performance of the two algorithms does

not systematically change with N (this can be seen by focusing on pairs of datasets

for which R0 and ν are the same and N changes), whereas regarding R0, the two

algorithms have similar mixing for R0 = 1.5 but the IS-1d algorithm has better

mixing for R0 = 2.5. The explanation behind the effect of R0 on the performance

of the algorithms is the same as in simulation study E (see section 4.2.3.4 for more

details) and can be gauged by looking at the acceptance (and effective sample size)

proportion plots (figure 4.12) and observing how the IS-1d algorithm corrects for the

curvature effect exhibited by the standard-1d algorithm, for the different values of R0.

As far as the effect of ν, it is evident (see table 4.2 and figure 4.11) that the quality

of mixing of both algorithms becomes worse as ν increases but there is no evidence

to suggest that the relative quality of mixing of the two algorithms changes with ν.

The main conclusion from simulation study F is the same as from simulation study

E (see section 4.2.3.5). In general, the IS-1d algorithm provides a welcome, although

not a radical, improvement in mixing, compared to the standard-1d algorithm. Since
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the computational cost and complexity of the two algorithms is essentially the same,

the IS-1d algorithm appears to be the better choice, between the two, in practice.

Table 4.2: Effective sample size for B =
∑n

k=1(rk− ik), for the two compared MCMC
algorithms, standard-1d and IS-1d, for each of the eight datasets of simulation study
F. The simulation and run conditions are described in section 4.2.4.1.

Algorithm

standard-1d IS-1d

Dataset 1 (R0 = 1.5, ν = 2, N = 200) 852 1192

Dataset 2 (R0 = 1.5, ν = 2, N = 1000) 346 316

Dataset 3 (R0 = 1.5, ν = 5, N = 200) 436 410

Dataset 4 (R0 = 1.5, ν = 5, N = 1000) 203 211

Dataset 5 (R0 = 2.5, ν = 2, N = 200) 407 810

Dataset 6 (R0 = 2.5, ν = 2, N = 1000) 359 697

Dataset 7 (R0 = 2.5, ν = 5, N = 200) 267 436

Dataset 8 (R0 = 2.5, ν = 5, N = 1000) 287 385
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(a) Dataset 1 (R0 = 1.5, ν = 2, N = 200)
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(b) Dataset 1 (R0 = 1.5, ν = 2, N = 200)

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

(c) Dataset 2 (R0 = 1.5, ν = 2, N = 1000)
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(d) Dataset 2 (R0 = 1.5, ν = 2, N = 1000)
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(e) Dataset 3 (R0 = 1.5, ν = 5, N = 200)
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(f) Dataset 3 (R0 = 1.5, ν = 5, N = 200)
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(g) Dataset 4 (R0 = 1.5, ν = 5, N = 1000)
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(h) Dataset 4 (R0 = 1.5, ν = 5, N = 1000)
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(i) Dataset 5 (R0 = 2.5, ν = 2, N = 200)
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(j) Dataset 5 (R0 = 2.5, ν = 2, N = 200)

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

(k) Dataset 6 (R0 = 2.5, ν = 2, N = 1000)
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(l) Dataset 6 (R0 = 2.5, ν = 2, N = 1000)

250



0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

(m) Dataset 7 (R0 = 2.5, ν = 5, N = 200)
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(n) Dataset 7 (R0 = 2.5, ν = 5, N = 200)
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(o) Dataset 8 (R0 = 2.5, ν = 5, N = 1000)
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(p) Dataset 8 (R0 = 2.5, ν = 5, N = 1000)

Figure 4.11: ACF plots for B =
∑n

k=1(rk − ik), for each of the eight datasets of
simulation study F. The simulation and run conditions are described in section 4.2.4.1.
Left column corresponds to the standard-1d MCMC algorithm and right column
corresponds to the IS-1d MCMC algorithm.
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(a) Dataset 2 (R0 = 1.5, ν = 2, N = 1000)
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(b) Dataset 2 (R0 = 1.5, ν = 2, N = 1000)
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(c) Dataset 6 (R0 = 2.5, ν = 2, N = 1000)
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(d) Dataset 6 (R0 = 2.5, ν = 2, N = 1000)

Figure 4.12: Acceptance proportion (black circles), effective sample size over actual
sample size (green pluses) and inadmissibility proportion (red triangles) for the
1-dimensional update step of the infection time ik, against individual label k,
k = 1, 2, . . . , n, for datasets 2 and 6 of simulation study F. The simulation and run
conditions are described in section 4.2.4.1. Left column corresponds to the standard-
1d MCMC algorithm and right column corresponds to the IS-1d MCMC algorithm.

4.2.4.3 Remarks

As mentioned above, in all instances that the IS-1d MCMC algorithm was run, both

of the parameters, νk and λk, of the IS-1d proposal distribution Gamma(νk, λk),

k = 1, 2, . . . , n, were tuned. The alternative approach (see section 4.2.2 for more

details) was to set νk = ν, for all k = 1, 2, . . . , n, where ν the known value of the

shape parameter, and tune only the rate parameter λk, k = 1, 2, . . . , n. As suggested

by later investigations (see the relevant discussion in section 4.3.2.2), in the cases that

R0 = 2.5, such individually tuned proposals perform optimally when the parameter
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tuning is done using the former approach (as done in the present simulation study),

but in the cases that R0 = 1.5, optimal performance is achieved when the tuning is

done using the latter approach. That is to say, that the performance of the IS-1d

algorithm, in the instances that R0 = 1.5, both in the simulation study above and in

general, could be further improved by tuning only the rate parameter, as opposed to

tuning both the shape and the rate parameter.

4.3 Block update steps for the infection compo-

nent

Section 4.3 turns attention from 1-dimensional update steps of the infection compo-

nent to block update steps. As already mentioned in the beginning of section 4.2,

developing MCMC algorithms that update many infection times at a time, in a block

update step, is the main intention of this chapter as such algorithms are in general

more efficient than their 1-dimensional counterparts (see e.g. Xiang and Neal (2014)).

All MCMC algorithms considered throughout section 4.3 are described and applied

to the Gamma-HM model, that is the standard SIR model with one-to-one infection

rate parameter β and Gamma(ν, λ) infectious periods (see section 1.3.5.5). There

are two reasons for choosing to focus on the Gamma-HM model. First, this is the

model also used to describe and apply the block update MCMC algorithm in Xiang

and Neal (2014) (see section 4.3.1 to follow for more details), the algorithm that

serves as a reference point and a comparator for a new algorithm to be developed

in this section; choosing to apply the to-be-developed algorithm on the same model

as the existing algorithm of Xiang and Neal (2014), creates more direct conditions

for comparison. Second, the Gamma(ν, λ) distribution is the most general choice for

the infectious period distribution, among the considered choices of this thesis (see

section 1.3.4.1); in fact, as remarked in section 1.3.5.4 the Exponential distribution is
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a special case of the Gamma distribution when the shape parameter ν is equal to 1.

It is noted that, similar to the 1-dimensional update step case and for reasons already

explained in section 4.2.4.1, the shape parameter ν of the Gamma(ν, λ) distribution

of the infectious periods, is assumed to be known for both algorithms, for all inference

purposes, throughout section 4.3.

4.3.1 Existing block update steps and their limitations:

standard block MCMC algorithm

There are many different existing MCMC algorithms that attempt to perform block

update steps for the infection component, using and sometimes combining different

ideas such as non-centered parameterizations and parameter reduction (see section

1.4.2 and the references therein). Arguably though, the optimally performing existing

MCMC algorithm, for block update of the infection component, is the algorithm of

Xiang and Neal (2014). This algorithm, plays an important part for the purposes of

section 4.3 as it first serves as a foundation, for the to-be-developed block update

MCMC algorithm to built upon, and then as a comparator to its performance.

Therefore, before proceeding any further, it is necessary to describe its features and

implementation procedure. The description of the algorithm is provided for the case

that the shape parameter ν is known, as assumed throughout section 4.3, but it is

noted that in the paper of Xiang and Neal (2014) the shape parameter ν is considered

unknown and is an additional parameter to be estimated from the data (see section

4.4.2 for a further discussion on this topic).

4.3.1.1 Features and implementation procedure

The first feature of the algorithm is parameter reduction. Recall from section 1.3.5.5

(see the part about Bayesian inference and MCMC algorithm for the Gamma-HM

model and in particular equation (1.23)) that the ‘default’ target posterior density

for the Gamma-HM model (when ν is assumed to be known) is π(β, λ, α, iα, i | r, ν).
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In the algorithm of Xiang and Neal (2014), β and λ are analytically integrated

out, reducing the target posterior density to π(α, iα, i | r, ν) (the expression for

π(α, iα, i | r, ν) is given further below). As argued in Xiang and Neal (2014), the

motivation behind this is twofold. First, it makes the target space of the algorithm

smaller, and therefore easier to explore. Second, it places the focus on the update of

the augmented infection component, rather than on model parameter components,

and thus allows more freedom in the exploration of the infection space; which, as

mentioned in the beginning of this chapter (see section 4.1.1), is by far the most

challenging part of the inference. Note that, since the target density is π(α, iα, i | r, ν),

the algorithm produces samples from π(α, iα, i | r, ν), the posterior density of the

infection component. However, given an MCMC sample from π(α, iα, i | r, ν),

samples from the marginal posterior distributions of the parameters of interest, β

and λ, can easily be achieved by sampling from their respective known form full

conditional distributions (see equation (1.24)), conditioning on the already sampled

values of the infection component (α, iα, i).

The second feature of the algorithm is that the infection component is updated using

a MH block update step, where many infection times are updated simultaneously.

This is done as follows. Suppose that the chain is transitioning from its sth to its

(s+1)th iteration so that the current state of the infection component is (α(s), i
(s)
α , i(s)).

Initially, one chooses the number of infection times to be updated, say m, referred to

as the block step size (the choice of m is discussed in the next paragraph). Given the

block step size m, one then chooses, uniformly at random, a set of m out of the total

n individual labels, say b = {b1, b2, . . . , bm}, for which their corresponding infection

times, are to be updated. Note that, b is chosen randomly at each iteration, and thus

depends on the iteration, however this dependence is suppressed in the notation for

visual clarity. Also note that, having chosen b, the infection times of individuals not in

b, remain fixed at their current values during the update step and therefore, to specify

the candidate state (α∗, i∗α, i
∗) of the chain, one proposes infection times only for the
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remaining individuals that are in b. A candidate infection time for each individual

k ∈ b, say i∗k, is proposed as rk − i∗k
i.i.d.∼ Gamma(ν, λ′), where λ′ is drawn from the

full conditional distribution of λ (equation (1.24)), conditioned on the current value

of the infection component, i.e. λ′ ∼ π(λ | r, ν, α(s), i
(s)
α , i(s)). Finally, one accepts or

rejects the proposed move from (α(s), i
(s)
α , i(s)) to (α∗, i∗α, i

∗) after calculating the MH

acceptance ratio. Note that, since λ′ is drawn from the full conditional distribution

of λ, conditioned on the current value of the infection component, the above proposal

distribution is essentially the same model-driven proposal distribution used in the

standard-1d update MCMC scheme of the model (see Algorithm 6) but with two

differences. The first and most obvious difference is that the proposed infection times

are now accepted or rejected as a block instead of one at a time. The second difference

is that the rate parameter of the proposal distribution is only introduced as an

intermediary (since λ has been integrated out it is not a part of the MCMC scheme),

to facilitate the proposal of the infection component, and is analytically integrated

out in calculating the proposal ratio (more details to follow below). Due to having

essentially the same proposal mechanism as the standard-1d scheme, this proposal

proposal distribution is henceforth referred to as the standard block (standard-block)

proposal and the block update algorithm of Xiang and Neal (2014) as the standard

block (standard-block) MCMC algorithm.

The third and final feature of the algorithm is that the block step size is specified using

the burn-in iterations so that the algorithm performs optimally. In general, at each

MCMC iteration, the block step size can be chosen according to a discrete random

variable, say M , taking values in {1, 2, . . . , n}, whose distribution is described by its

probability mass function (p.m.f.), fM(j) = P (M = j) = pj, j = 1, 2, . . . n. The

key in optimizing the performance of the scheme is in choosing the probabilities pj,

j = 1, 2, . . . n. Let aj be the acceptance proportion of the update step, corresponding

to block step size j, j = 1, 2, . . . n; e.g. a5 is the acceptance proportion of the update

step when a block of 5 infections is proposed to be updated. In general, the quality

256



of mixing of the chain, for each block step size j, j = 1, 2, . . . n, is quantified by

qj = jaj, where the higher the value of qj the better the mixing. To see this, notice

that the higher the value of j the larger the size of the attempted jump, and, the

higher the acceptance proportion aj the more often the jump is performed. To this

end, the idea of Xiang and Neal (2014) (can be modified depending on the application

in context e.g. on how big is n), and what is done in this thesis, is to run a batch

of burn-in iterations by setting pj = 1/n, for all j = 1, 2, . . . n (i.e. set M to have

a discrete uniform distribution on {1, 2, . . . , n}), and record the value of each aj,

j = 1, 2, . . . n. Then, to optimize mixing, in the case that the block step size is desired

to be random at each iteration, one runs the subsequent chain iterations, by setting

pj ∝ qdj , j = 1, 2, . . . n, for some d > 0. Alternatively, the block step size can remain

fixed, for all subsequent iterations, by setting pm = 1, for some m ∈ {1, 2, . . . , n}, and

pj = 0, for all j = 1, 2, . . . , n, j 6= m. The obvious choice of m that optimizes mixing

is the one such that qm ≥ qj for all j = 1, 2, . . . , n. Xiang and Neal (2014) argue that

there could be some benefits in allowing the block step size to be random, however

for simplicity and to ease the comparison between algorithms, in this thesis, only the

case that the block step size is fixed is considered.

Before giving the step-by-step implementation procedure of the algorithm, expressions

for the target posterior density and the proposal ratio, both necessary to calculate

the MH acceptance ratio, are given. The target posterior density of the scheme,

π(α, iα, i | r, ν), is such that π(α, iα, i | r, ν) =
∫∫

π(β, λ, α, iα, i | r, ν)dβdλ ∝∫∫
π(r, i | β, λ, ν, α, iα)π(β, λ, α, iα)dβdλ, where π(r, i | β, λ, ν, α, iα) (as previously

seen by equations (1.17) and (1.12)) is given by

π(r, i | β, λ, ν, α, iα) =

(
n∏

k=1,k 6=α

βYi−k

)
× exp(−βA)

×
(

λν

Γ(ν)

)n( n∏
k=1

(rk − ik)

)ν−1

exp(−λB),
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and π(β, λ, α, iα) (as previously described in section 1.3.5.5) is such that π(β, λ, α, iα) =

π(β)π(λ)π(α)π(iα) with π(β) ≡ Gamma(νβ, λβ), π(λ) ≡ Gamma(νλ, λλ), π(α) ≡

U[1 : n] and π(−iα) ≡ Exp(ξiα). This integration is straightforward to perform and

yields that

π(α, iα, i | r, ν) ∝

(
n∏

k=1,k 6=α

Yi−k

)
× (A+ λβ)−(n−1+νβ) ×

(
n∏
k=1

(rk − ik)

)ν−1

× (B + λλ)
−(νn+νλ) × exp(ξiαiα)1{iα<0}.

(4.2)

For the proposal ratio, consider first the forward proposal density, denoted as h(s→

∗), associated with the move from (α(s), i
(s)
α , i(s)) to (α∗, i∗α, i

∗). Based on the proposal

mechanism described above, it should be clear that h(s→ ∗) is such that h(s→ ∗) =∫ ∏
k∈b q(rk−i∗k | λ)π(λ | r, ν, α(s), i

(s)
α , i(s))dλ, where q(x | λ) is the p.d.f. of a random

variable X ∼ Gamma(ν, λ) and π(λ | r, ν, α, iα, i) is the full conditional density of

λ (equation (1.24)). A few lines of algebra (see Xiang and Neal (2014, page 244))

yield that h(s→ ∗) = Γ(νm+νn+νλ)
Γ(ν)mΓ(νn+νλ)

× (
∏
k∈b(rk−i∗k))

ν−1
(B(s)+λλ)νn+νλ

(B(s)+B∗λλ)νm+νn+νλ
. The expression for

the backward proposal density h(∗ → s), associated with the move from (α∗, i∗α, i
∗)

to (α(s), i
(s)
α , i(s)), is acquired by simply exchanging the role of current and proposed

values in the expression of the forward proposal density and therefore, the proposal

ratio is given by

h(∗ → s)

h(s→ ∗)
=

(
B∗ + λλ
B(s) + λλ

)νn+νλ
(∏

k∈b(rk − i
(s)
k )∏

k∈b(rk − i∗k)

)ν−1

. (4.3)

All implementation steps of the standard-block MCMC algorithm are collected in

Algorithm 19 below.

4.3.1.2 Run conditions

In all instances that the standard-block MCMC algorithm is run in this chapter, the

run conditions are the same. Therefore, for ease of reference, these conditions are
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Algorithm 19 Standard-block MCMC algorithm for the Gamma-HM model

1. Suppose the current state is (α(s), i
(s)
α , i(s))

2. Generate (α(s+1), i
(s+1)
α , i(s+1)) according to π(α, iα, i | r, ν) using a MH step as

follows

(a) Choose, uniformly at random, m of the n ever-infected individuals, say b =
{b1, b2, . . . , bm}, where m is specified using the burn-in iterations, as described
in section 4.3.1

(b) Sample λ′ from the full conditional distribution of λ as λ′ ∼ π(λ |
r, ν, α(s), i

(s)
α , i(s)) ≡ Gamma

(
νn+ νλ, B

(s) + λλ

)
(c) Propose a candidate infection time for each individual k ∈ b, say i∗k, as rk −

i∗k
i.i.d.∼ Gamma(ν, λ′)

(d) Calculate the acceptance ratio r = π(α∗,i∗α,i
∗|r,ν)

π(α(s),i
(s)
α ,i(s)|r,ν)

× h(∗→s)
h(s→∗) , where π(α, iα, i |

r, ν) is given by expression (4.2) and h(∗→s)
h(s→∗) by equation (4.3)

(e) Set (α(s+1), i
(s+1)
α , i(s+1)) = (α∗, i∗α, i

∗) with probability 1 ∧ r; otherwise set

(α(s+1), i
(s+1)
α , i(s+1)) = (α(s), i

(s)
α , i(s))

3. Set the next state as (α(s+1), i
(s+1)
α , i(s+1)).

collected in the present paragraph. As mentioned above, the standard-block MCMC

algorithm is implemented as in Algorithm 19. The prior distribution assignment

follows section 1.3.5.5 and the prior parameters are specified so that the uncertainty

for all model parameters (except for the label of the initial infective α which is assigned

a prior distribution as α ∼ U[1 : n]) is quantified via uninformative Exp(10−3) prior

distributions. The block step size m is specified using a batch of SB1 = 500n burn-in

iterations, as described earlier in section 4.3.1 (see the paragraph about the third

feature of the algorithm). Notice that, setting SB1 = 500n, ensures that, for each

block step size j, j = 1, 2, . . . n, more or less, 500 update steps are performed and

thus the corresponding acceptance proportions aj, needed to specify m, are accurately

estimated. Besides specifying m, these SB1 iterations are also used to specify L,

where L is the value according to which post burn-in iterations are thinned by. The
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value of L is specified so that, roughly a proportion of 0.8 of the infection times

are changed between consecutive values of the thinned chain; this is done by first

calculating the expected number of infection times that are successfully updated, at

a given iteration, based on a fixed block step size m, given by qm = mam, and then

setting L = 0.8n/qm. Using the specified values of m and L, the algorithm is run

for S = 20000L post burn-in iterations, keeping only every Lth iteration, following a

second batch of burn-in iterations, of length SB2 = 4500L.

4.3.1.3 Visualizing the movement of the sampler

Similar to the 1-dimensional case (see sections 4.2.1 and 4.2.2), the development

of a new block update scheme is guided by acknowledging the limitations of the

existing scheme. To this end, the Gamma-HM model is fitted using the standard-

block MCMC algorithm (Algorithm 19), under the run conditions of section 4.3.1.2,

to an example dataset. The dataset is generated from the Gamma-HM model itself

by setting N = 500, R0 = 2.5 and ν = 5, and results in n = 448 total infections.

Figure 4.13 shows the acceptance and the inadmissibility proportion, for each block

step size, associated with the initial SB1 = 500n iterations used to specify the optimal

block step size. Looking at figure 4.13, it is clear that the acceptance (inadmissibility)

proportion reduces (increases) as the block step size increases. Intuitively, this should

be expected, to lesser or greater extent, as the larger the block step size the larger

the size of the attempted jump and the higher the chance of rejection. However,

it is very interesting to notice how quickly the acceptance proportion drops to 0.

More precisely, if one considers a random block step size, distributed according to

a p.m.f. pj ∝ qj, j = 1, 2, . . . n, so that the mixing is optimized, where pj and qj

are as in section 4.3.1.1, then
∑25

j=1 pj = 0.54 and
∑50

j=1 pj = 0.80. That is to say,

that the majority, specifically 0.54, of the proposed moves favour proposing no more

than 25 infection times; the proportion increases to 0.8 if block step sizes up to 50 are

considered. Note that, if one considers a fixed block step size (following the procedure
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described in section 4.3.1.1), the block step size value that is found to optimize mixing

is m = 12, i.e. updating 12 infection times achieves optimal performance for the

algorithm. Also interesting, is that the low acceptance proportions for all, except

the relatively small block step sizes, can not be entirely accounted to the proposed

values being inadmissible (and thus being automatically rejected). For example, the

acceptance proportion corresponding to block step size 100 is 0 but the associated

inadmissibility proportion is 0.16, implying that the remaining 0.84 of the proposed

moves are admissible but are still rejected based on the MH acceptance probability.

These observations suggest that the standard-block MCMC algorithm struggles to

move around the target space, unless the block step size is relatively small, and the

reasons for this can not be solely accounted to inadmissibility. Note that, similar

observations were also made in Xiang and Neal (2014), when the authors applied

the algorithm to a foot and mouth disease dataset of 1021 infections; the optimal

performance of the algorithm was found to be achieved for block step sizes around 16

and no proposed moves were accepted for block step sizes larger than 64.
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Figure 4.13: Acceptance proportion (black circles) and inadmissibility proportion (red
triangles) for the block update step of the standard-block MCMC algorithm, against
block step size. The dataset is generated from a Gamma-HM model (N = 500,
R0 = 2.5, ν = 5) and the number of infections is n = 448.

To make the reasons behind the above limitations more precise, an attempt is made
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to develop a visual appreciation, on how the sampler moves around the target

space. To this end, the focus is placed on the target posterior density of the

scheme, π(α, iα, i | r, ν), given by expression (4.2). Looking carefully at expression

(4.2), one notices that, if any contributions from the prior distribution are ignored,

π(α, iα, i | r, ν) (in log scale) depends on the infection component only via four real-

valued terms, namely A =
∫ rn
iα
XtYtdt, B =

∑n
k=1 (rk − ik), C =

∑n
k=1,k 6=α log(Yi−k

)

and D =
∑n

k=1 log (rk − ik). That is to say, that the 4-dimensional vector (A,B,C,D)

is in this sense sufficient for π(α, iα, i | r, ν). What this implies, is that one can

produce density plots of (A,B,C,D) and gain a visual overview on the movement of

the sampler. More specifically, this can be done as follows. First, given a posterior

sample of the infection component from the run of the algorithm on some dataset,

the bivariate posterior density plots (contour plots) of (A,B,C,D) can be produced.

Then, given a current state of the chain and a block step size, one can follow steps

2(b) and (c) of Algorithm 19 and generate values from the proposal distribution,

thus producing a proposal sample of the infection component. Note that, the

proposed values of the infection component are generated under the condition of being

admissible as interest is in understanding why admissible moves are systematically

being rejected. Given a proposal sample of the infection component, the movement

of the sampler on the target space can be visualized, by imposing on the plotted

bivariate posterior density plots the corresponding bivariate proposal density plots.

Figure 4.14 illustrates these plots (with the exception of plots involving the term

D in order to reduce the number of plots and maintain visual clarity) for the example

dataset, considering three different block step sizes, 15, 100 and 250. The general

observation from figure 4.14 is that, as suggested above, the sampler struggles to move

around the target space, unless the block step size is relatively small. Specifically, as

the block step size increases, the sampler appears to increasingly suffer from a loss

of orientation and proposes to move to regions that are beyond the support of the

target density. Before more can be said, two useful remarks must be made.
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Figure 4.14: Bivariate target posterior densities (black, solid contours) and bivariate
standard-block proposal densities (blue, solid contours), for the vector (A,B,C).
Imposed (green, circle) is the current state. Columns (left to right) correspond to
block step size values of 15, 100 and 250, respectively. The dataset is generated from
a Gamma-HM model (N = 500, R0 = 2.5, ν = 5) and the number of infections is
n = 448.

The first remark is related to the value of the block step size and how it affects the

properties of the sampler. Recall that (see the first paragraph in section 4.3.1.1) the

target posterior density of the scheme is π(α, iα, i | r, ν). Note however, that when

transitioning from iteration s to s + 1, given a block step size m and having chosen

the set of individuals b, whose infection times are to be updated, the infection times

of individuals not in b, remain fixed at their current values during the update step.

That is to say, that the target posterior density reduces to

π(α, iα, i[b] | r, ν, i(s)[−b]), (4.4)
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where, if x = (x1, x2, . . . , xn) is a vector with n entries, x[A] denotes the vector

containing all entries of x whose index is in A ⊆ {1, 2, . . . , n} and x[−A] the vector

containing all entries of x whose index is not in A ⊆ {1, 2, . . . , n}.

The second remark, is related to the proposal parameter λ′ and to how it induces

dependency on the current state, with respect to the term B. Suppose that the

chain is transitioning from its sth to its (s+ 1)th iteration, so that B(s) is the current

value of B =
∑n

k=1(rk − ik), and assume that b = {b1, b2, . . . , bm} is the set of

individuals for which infection times are to be proposed. Consider the to-be-proposed

value of B, denoted as B∗. This is a random variable, with respect to the proposal

distribution, i.e. under the randomness induced by the to-be-proposed infection times

i∗k, k ∈ b, which are such that rk−i∗k
i.i.d.∼ Gamma(ν, λ′), λ′ ∼ π(λ | r, ν, α(s), i

(s)
α , i(s)) ≡

Gamma(νn + νλ, B
(s) + λλ) (see equation (1.24)). Taking into account the fact that

infection times are only proposed for individuals k ∈ b (see the remark in the previous

paragraph), and using the linearity of expectation, one can see that the expectation

of B∗ is given by E(B∗) =
∑

k/∈b(rk − i
(s)
k ) +

∑
k∈b E(rk − i∗k). Heuristically, based on

this expression, if the block step size m is much smaller than n, the value of E(B∗) is

roughly specified by the term
∑

k/∈b(rk − i
(s)
k ), which in that case is roughly equal to

B(s), and therefore E(B∗) is close to B(s). Alternatively, if the block step size m is

close to n, then the value of E(B∗) is roughly specified by the term
∑

k∈b E(rk − i∗k).

Noting that, E(rk − i∗k) = ν/λ′, k ∈ b, and E(1/λ′) = (B(s) + λλ)/(νn+ νλ − 1), and

using the law of total expectation, one can see that
∑

k∈b E(rk−i∗k) = νm(B(s)+λλ)
νn+νλ−1

, and

thus E(B∗) is again roughly close to B(s). What these suggest, is that the sampler

has a somewhat dependent nature in the exploration of the target space, in the sense

that it tries to centre itself around the current value of B and propose moves around

this value (see the part about dependent proposal distributions in section 1.3.2.4).

Turning attention back to figure 4.14, one can see how this last remark is reflected on

the relevant plots (i.e. the bivariate densities involving the term B), as the proposed
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moves appear to be, on average, around the current value, with respect to B; e.g. in

figure 4.14, B(s) = 5639, and E(B∗) is 5640, 5641 and 5644 for block step size 15,

100 and 250, respectively. This feature of the sampler appears to be desirable, in

the sense that proposed moves are in most cases within the support of the posterior

distribution, with respect to B. However, looking at figure 4.14, the same cannot be

said with respect to A and C. That is to say, that the proposal distribution does not

match the posterior distribution, in the sense that values of (A,B,C) that are very

plausible under the proposal distribution (i.e. typically proposed) are not supported

under the posterior distribution. This pattern becomes increasingly apparent as the

block step size increases and the first remark made above (see expression (4.4)), can

help explain why. When the block step size is small, most infection times remain fixed

at their current values. As a result, the area of the proposed region is small and also

there is less freedom for the proposal distribution of (A,B,C) to demonstrate any

differences that it might have with the corresponding posterior distribution. However,

as the block step size increases, fewer infections remain fixed at their current values,

the area of the proposed region becomes larger and the potential for the proposal

distribution of (A,B,C) to be dissimilar to the corresponding posterior distribution

increases.

Note that, the above offer an explanation on why for both the example dataset in

question, and the foot and mouth disease dataset in Xiang and Neal (2014), no

proposed moves are accepted for block step sizes larger than a certain value.

4.3.2 Dependent individual-specific block MCMC algorithm

The limitations of the standard-block MCMC algorithm, exhibited in section 4.3.1.3

above, guide the development of an alternative proposal scheme, for block updating

the infection component, which gives rise to a novel, block update MCMC algorithm.

For reasons soon to be made apparent, this new algorithm is referred to as dependent
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individual-specific block (DIS-block) MCMC algorithm and its associated proposal

distribution as DIS-block proposal. At first, section 4.3.2.1, describes the features and

the implementation procedure of the algorithm. Subsequently, section 4.3.2.2, collects

the conditions according to which the algorithm is run. Then, section 4.3.2.3, applies

the algorithm to the example dataset of section 4.3.1 and investigates how it moves

around the target space, while drawing comparisons with the standard-block MCMC

algorithm.

4.3.2.1 Features and implementation procedure

The DIS-block algorithm is designed to address the limitations of the standard-block

algorithm while also maintaining its good features. To this end, the first and third

feature of the standard-block algorithm, namely parameter reduction and specification

of the block step size using burn-in, are maintained in the DIS-block algorithm and

performed in an identical manner (see section 4.3.1.1 for all the details). Note that,

this means that the target density of the DIS-block algorithm is, as for the standard-

block algorithm, π(α, iα, i | r, ν), and it is given by expression (4.2). Note also that,

despite the fact that the block step size can in general be random, a similar approach

as for the standard-block algorithm is taken and only the case that the block step size

is fixed is considered. As already mentioned in section 4.3.1.1, taking this approach,

facilitates better conditions for comparison.

The difference between the two algorithms lies in the proposal mechanism of the

infection component and in particular on the parameters of the proposal distribution

of the infection times. More precisely, the DIS-block algorithm updates the infection

component using a MH step as follows. Suppose that the chain is transitioning from

its sth to its (s+ 1)th iteration, so that the current state of the infection component is

(α(s), i
(s)
α , i(s)), and let m be the block step size. First, choose, uniformly at random,

a set of m out of the total n individual labels, say b = {b1, b2, . . . , bm}, for which their

corresponding infection times, are to be updated. Then, propose a candidate infection
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time for each individual k ∈ b, say i∗k, independently, as rk− i∗k ∼ Gamma(νk, λkd
(s)),

where νk and λk are individual-specific parameters, specified using burn-in iterations,

and d(s) is a dependence inducing parameter, specified so that the expectation of

B, with respect to the proposal distribution, is equal to the current value of B

(the specification of νk, λk, k = 1, 2, . . . , n, and d(s) is discussed in detail below).

The proposed move from (α(s), i
(s)
α , i(s)) to (α∗, i∗α, i

∗) is accepted or rejected, after

calculating the MH acceptance ratio.

As mentioned right above, the difference between the two algorithms is in the

parameters of the proposal distribution of the infection times. Specifically, whilst

the standard-block proposal associated with the infection time of individual k,

k = 1, 2, . . . , n, was Gamma(ν, λ′) (see section 4.3.1.1 and steps 2(b) and (c) of

Algorithm 19), the corresponding DIS-block proposal is Gamma(νk, λkd
(s)). To

explain the rationale under which νk, λk, k = 1, 2, . . . , n, and d(s) are specified, note

that rk− i∗k ∼ Gamma(νk, λkd
(s)) is equivalent to (rk− i∗k)/d(s) ∼ Gamma(νk, λk), due

to the scaling property of the Gamma distribution. That is to say, that the procedure

of proposing infectious periods as rk−i∗k ∼ Gamma(νk, λkd
(s)), independently for each

individual k ∈ b, can equivalently be seen as a two-step procedure, where infectious

periods are first drawn from a Gamma(νk, λk) distribution, independently for each

k ∈ b, and subsequently scaled by a factor of 1/d(s). Parameters νk and λk, k =

1, 2, . . . , n, are associated with the first step and are tasked to address the limitations

of the standard-block sampler, described in section 4.3.1.3, by attempting to make

the proposal distribution more similar to the posterior distribution so that typically

proposed values do not fall beyond the support of the posterior distribution. To this

end, νk and λk, k = 1, 2, . . . , n, are set to have two characteristics. First, they are

individual-specific, so that they have the flexibility to capture the pattern sometimes

exhibited in the target distribution, where the infectious periods of individuals are not

homogeneous (see section 4.2.1). Second, they are specified using burn-in iterations,

in order to allow for information about the target posterior distribution, as the above,
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to be incorporated into the proposal distribution. Parameter d(s) is associated with

the second step and is tasked to induce dependency on the current state, with respect

to B =
∑n

k=1 (rk − ik), similar to what the parameter λ′ does for the standard-block

algorithm (see 4.3.1.3). The following two paragraphs give the details regarding the

specification of νk, λk, k = 1, 2, . . . , n, and d(s).

To specify the individual-specific parameters, νk and λk, k = 1, 2, . . . , n, a similar

approach as for the IS-1d algorithm is followed (see the third paragraph of section

4.2.2), where νk and λk are specified using a MOM estimation, based on a batch

of burn-in iterations. Note that, based on the investigations of section 4.2.2 and

the results of simulation studies E (see section 4.2.3.4) and F (see section 4.2.4.2),

specifying the proposal parameters in such a way, allows for the Gamma(νk, λk) IS-

1d proposal distributions to become more similar to their associated target posterior

distributions. The specification procedure is as follows. First, run a batch of burn-

in iterations, using a different MCMC algorithm (such as the standard-1d or the

standard-block algorithm), and store the sampled values of the infectious period of

each individual k, k = 1, 2, . . . , n, say {rk − i
(1B1

)

k , rk − i
(2B1

)

k , . . . , rk − i
(SB1

)

k }. Then,

for each k, k = 1, 2, . . . , n, fit a Gamma(νk, λk) distribution to {rk − i
(1B1

)

k , rk −

i
(2B1

)

k , . . . , rk − i
(SB1

)

k } and conduct a MOM estimation to specify νk and λk. Note

that, one can conduct MOM estimation for both νk and λk, yielding νk =
x̄2
k

s2k
and

λk = x̄k
s2k

, where x̄k = 1
SB1

∑SB1
s=1(rk − i

(sB1
)

k ) and s2
k = 1

SB1
−1

∑SB1
s=1(rk − i

(sB1
)

k − x̄k), or

alternatively, since ν is assumed to be known, one can set νk = ν for all k = 1, 2, . . . , n

and conduct MOM estimation only for λk, yielding λk = ν
x̄k

, k = 1, 2, . . . , n.

The dependence inducing parameter d(s) is specified as follows. Suppose that the chain

is transitioning from its sth to its (s+ 1)th iteration, so that B(s) is the current value

of B =
∑n

k=1(rk − ik), and assume that b = {b1, b2, . . . , bm} is the set of individuals

for which infection times are to be proposed. Consider the to-be-proposed value of B,

denoted as B∗, which is a random variable, with respect to the proposal distribution,
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i.e. under the randomness induced by the to-be-proposed infection times i∗k, k ∈ b,

which are such that rk − i∗k ∼ Gamma(νk, λkd
(s)), independently. The value of d(s)

is specified so that E(B∗) = B(s). Since E(rk − i∗k) = νk/(λkd
(s)), for k ∈ b, using

the linearity property of the expectation, it is straightforward to see that the value of

d(s), such that E(B∗) = B(s), is d(s) =
∑
k∈b(νk/λk)∑
k∈b(rk−i

(s)
k )

. As already mentioned, parameter

d(s) plays a similar role as parameter λ′ does in the standard-block algorithm, in the

sense that both induce dependency on the current state, with respect to B. Arguably

though, d(s) does this in a more direct and favourable way as it enforces E(B∗) to

be exactly equal to B(s) whereas λ′ only does this in an approximate sense (see the

second remark in secion 4.3.1.3).

Before giving the step-by-step implementation procedure of the algorithm, an

expression for calculating the proposal ratio is provided. Consider initially the forward

proposal density, denoted as g(s→ ∗), associated with the move from (α(s), i
(s)
α , i(s))

to (α∗, i∗α, i
∗). According to the proposal mechanism described above, it should be

evident that g(s → ∗) =
∏

k∈b qk(rk − i∗k | d(s)), where (as shown above) d(s) =∑
k∈b(νk/λk)∑
k∈b(rk−i

(s)
k )

and qk(x | d) is the p.d.f. of a random variable Xk ∼ Gamma(νk, λkd),

k ∈ b. Exchanging the role of current and proposed values, yields that the backward

proposal density g(∗ → s), associated with the move from (α∗, i∗α, i
∗) to (α(s), i

(s)
α , i(s)),

is g(∗ → s) =
∏

k∈b qk(rk − i
(s)
k | d∗), where d∗ =

∑
k∈b(νk/λk)∑
k∈b(rk−i∗k)

. That is to say, that the

proposal ratio is given by

g(∗ → s)

g(s→ ∗)
=

∏
k∈b qk(rk − i

(s)
k | d∗)∏

k∈b qk(rk − i∗k | d(s))
, (4.5)

where d(s), d∗ and qk(x | d), k ∈ b, are as above. The implementation steps of the

DIS-block MCMC algorithm are collected below, in Algorithm 20.
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Algorithm 20 DIS-block MCMC algorithm for the Gamma-HM model

1. Suppose the current state is (α(s), i
(s)
α , i(s))

2. Generate (α(s+1), i
(s+1)
α , i(s+1)) according to π(α, iα, i | r, ν) using a MH step as

follows

(a) Choose, uniformly at random, m of the n ever-infected individuals, say b =
{b1, b2, . . . , bm}, where m is specified using the burn-in iterations, as described
in section 4.3.2.1

(b) Propose a candidate infection time for each individual k ∈ b, say i∗k,
independently, as rk − i∗k ∼ Gamma(νk, λkd

(s)), where νk and λk are specified
using the burn-in iterations, and d(s) is specified so that E(B∗) = B(s), as
described in section 4.3.2.1

(c) Calculate the acceptance ratio r = π(α∗,i∗α,i
∗|r,ν)

π(α(s),i
(s)
α ,i(s)|r,ν)

× g(∗→s)
g(s→∗) , where π(α, iα, i |

r, ν) is given by expression (4.2) and g(∗→s)
g(s→∗) by equation (4.5)

(d) Set (α(s+1), i
(s+1)
α , i(s+1)) = (α∗, i∗α, i

∗) with probability 1 ∧ r; otherwise set

(α(s+1), i
(s+1)
α , i(s+1)) = (α(s), i

(s)
α , i(s))

3. Set the next state as (α(s+1), i
(s+1)
α , i(s+1)).

4.3.2.2 Run conditions

The present section collects the conditions according to which the DIS-block algorithm

is run in this thesis. The rationale is to set these conditions to be as similar as possible

as for the standard-block algorithm (see section 4.3.1.2), in order to ensure that the

runtime of the two algorithms is roughly equal and their performance can be compared

by focusing on mixing properties and not runtime.

As already mentioned, the standard-block MCMC algorithm is implemented as in

Algorithm 20. The prior distribution assignment is identical as for the standard-

block algorithm (see section 4.3.1.2). A difference in the run conditions of the two

algorithms, is that for the standard-block algorithm, two batches of burn-in iterations

are run, whereas for the DIS-block algorithm, an additional batch is required. This
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additional batch of burn-in iterations, is run first and it is used to specify the

individual specific parameters, νk and λk, k = 1, 2, . . . , n, required for all subsequent

iterations, following a MOM estimation procedure, as described in section 4.3.2.1

(the decision to estimate both νk and λk, in the procedure, or only λk, is discussed

in the next paragraph). This batch, is run using the standard-1d MCMC algorithm

(Algorithm 5), for a length of SB1 = 2250 iterations, by repeating the infection

component update step as many times as the number of infections so that, in each

MCMC iteration, all infection times are attempted to be updated (see last paragraph

of section 1.3.5.3). The second batch of burn-in iterations, of length SB2 = 500n, is

used to specify the optimal block step size m. As already mentioned in section 4.3.2.1,

the procedure to specify m is identical to the standard-block algorithm (see section

4.3.1.1 for details). Note that, as is the case for the standard-block algorithm, these

SB2 iterations can also be used to specify the value according to which post burn-

in iterations are thinned by, following the procedure described in section 4.3.1.1.

However, it is preferable for comparison purposes to conduct this procedure only

for the standard-block algorithm and then set the specified thinning value, say L,

to be the same for the DIS-block algorithm. Using the specified values of νk, λk,

k = 1, 2, . . . , n, m and L, the algorithm is run for S = 20000L post burn-in iterations,

keeping only every Lth iteration, following a third batch of burn-in iterations, of length

SB3 = 2250L.

Based on provisional runs of the algorithm on simulated data, it was indicated that,

in cases that R0 is relatively small (roughly around 1.5 or smaller), optimal algorithm

performance was achieved when estimating only λk, k = 1, 2, . . . , n, in the MOM

estimation procedure (after setting νk = ν, for all k = 1, 2, . . . , n, where ν the known

value of the shape parameter), whereas for larger values of R0 (roughly around 2.5

or larger) it was favourable to allow both νk and λk, k = 1, 2, . . . , n, to be estimated.

A possible explanation for this can be given by considering the effect that R0 has on

the posterior distribution of the infectious periods of individuals, where the larger the
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value of R0 the higher the deviation from homogeneity among individuals (see section

4.2.1 and in particular the discussion regarding what happens when R0 becomes

very large). Therefore, the larger the value of R0 the larger the need for flexibility

in the proposal distribution parameters, to help capture the trend in the posterior

distribution. According to the above, for all runs of the algorithm in this thesis, the

decision of estimating both νk and λk, or only λk, is based on the value of R0 under

which the dataset is simulated; more specifically for datasets such that R0 = 1.5 only

λk, k = 1, 2, . . . , n, is estimated and for datasets such that R0 = 2.5 both νk and λk,

k = 1, 2, . . . , n, are estimated. Note that, in practice, where the algorithm is applied

on real data and the true value of R0 is not known, one can accordingly make the

decision of estimating both νk and λk, or only λk, based on the sampled values of R0

from the first batch of burn-in iterations.

Note that, despite requiring an additional batch of burn-in iterations, compared to

the standard-block algorithm, the DIS-block algorithm does not require additional

runtime. This is because the total burn-in iterations can remain the same (in this

thesis the run conditions are such that the total burn-in iterations are 500n+ 4500L

and 2250n + 500n + 2250L, for the standard-block and the DIS-block algorithm,

respectively), only be split in three batches rather than two. Also note that, the

standard-block algorithm includes an additional random number generation, at each

MCMC iteration, as it needs to draw λ′, the parameter needed to facilitate the

proposal of the infections (step 2(b) in Algorithm 19). Although the additional

time related to this draw is very small, it is likely to make a difference in the

case that the number of MCMC iterations is very large. Conversely, the additional

calculations associated with the DIS-block algorithm, that is the calculations of νk,

λk, k = 1, 2, . . . , n and d(s), take minimal computational time as they are all based on

analytic expressions (see section 4.3.2.1). All things considered, for all instances that

the two algorithms were run in this thesis, runtime was found to be roughly equal and

therefore their performance is compared solely by examining their mixing properties.
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4.3.2.3 Visualizing the movement of the sampler

As mentioned in section 4.3.2.1, the DIS-block algorithm was developed to address

the limitations of the standard-block algorithm. To highlight how these limitations

are addressed, the present section provides a visual illustration on how the DIS-block

sampler moves around the target space and compares its movement with that of the

standard-block sampler. Recall that, a procedure that provided a visual overview on

the movement of the standard-block sampler, was described and conducted in section

4.3.1.3. More specifically, after applying the standard-block algorithm on an example

dataset, figures 4.13 and 4.14 were used to illustrate the nature and the properties of

the sampler. The present section, repeats this procedure for the DIS-block algorithm,

i.e. it applies the DIS-block algorithm on the same example dataset and repeats

figures 4.13 and 4.14, by including in addition the corresponding information from

the run of the DIS-block algorithm.

Figure 4.15 shows the acceptance and inadmissibility proportions, versus block step

size, for both algorithms, based on the batch of burn-in iterations used to specify

the optimal block step size. Recall from section 4.3.1.3, that for the standard-block

algorithm, the main observation was that the acceptance (inadmissibility) proportion

reduces (increases) quite rapidly, as the block step size increases. Although, as

expected, the acceptance (inadmissibility) proportion reduces (increases), as the block

step size increases, for the DIS-block algorithm as well, the rate at which this happens

is much lower. More specifically, whereas for the standard-block algorithm, the

acceptance proportion becomes essentially 0 (smaller than 0.001) for block step sizes

larger than 71, for the DIS-block algorithm, the acceptance proportion does not drop

below 0.07, even for moves where all infection times are attempted to be updated, i.e.

moves of maximum block step size (equal to the number of infections n = 448). Also,

as already mentioned in section 4.3.1.3, for the standard-block algorithm, mixing is

optimized for block step size values around 12, whereas the corresponding value for
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the DIS-block algorithm is 271. These observations are illustrative of the ability of

the DIS-block algorithm to perform moves of much larger block step size, compared

to the standard-block algorithm. What should be taken into account though, when

conducting such comparisons, is that the parameter λ′ of the standard-block proposal

is itself random (see Algorithm 19), unlike the parameters of the DIS-block proposal

which are not random, and therefore it should be expected that the area of the

proposed region of the standard-block algorithm will be larger compared to that of

the DIS-block algorithm, for a given block step size (see figure 4.16 below for a visual

appreciation).
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Figure 4.15: Acceptance proportion (black circles) and inadmissibility proportion (red
triangles) for the block update step, against block step size. Left column corresponds
to the standard-block MCMC algorithm and right column to the DIS-block MCMC
algorithm. The dataset is generated from a Gamma-HM model (N = 500, R0 = 2.5,
ν = 5) and the number of infections is n = 448.

Figure 4.16 presents the bivariate posterior density plots of the vector (A,B,C),

having imposed the corresponding bivariate proposal density plots, of both samplers,

for three different block step sizes, 15, 100 and 250 (the procedure to produce these

plots was described in section 4.3.2.1). What is evident in figure 4.16, is that the

DIS-block sampler, unlike the standard-block sampler, does not struggle to move

around the target space for larger block step sizes. More specifically, reflected in

the plots (see the bivariate density plots involving the term B) is the dependent
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manner according to which the DIS-block sampler performs the exploration of the

target space, that is, by centering itself around the current value of B and proposing

moves around it (see the discussions about d(s) in section 4.3.2.1). In this regard, the

two samplers are somewhat similar, as the standard-block sampler also tries to centre

itself around the current value of B and propose moves around it (see the second

remark in section 4.3.1.3 and the relevant bivariate density plots in figure 4.16).

This common feature results in both samplers proposing moves that are typically

within the support of the posterior distribution, with respect to B, for all block

step sizes. However, as the block step sizes increases, it is evident from figure 4.16,

that from the two proposal distributions of (A,B,C), that associated with the DIS-

block sampler and that associated with the standard-block sampler, only the former

is similar to the corresponding posterior distribution; in the sense that, typically,

proposed values of (A,B,C), under the DIS-block proposal, are supported under the

posterior distribution whereas proposed values of (A,B,C), under the standard-block

proposal, are not. What makes the two proposals, behave so differently in this regard,

is the effect of the individual-specific parameters, νk and λk, k = 1, 2, . . . , n, of the

DIS-block proposal (see the discussions about νk and λk in section 4.3.2.1).
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Figure 4.16: Bivariate target posterior densities (black, solid contours), bivariate
standard-block proposal densities (blue, solid contours) and bivariate DIS-block
proposal densities (red, solid contours), for the vector (A,B,C). Imposed (green,
circle) is the current state. Columns (left to right) correspond to block step size
values of 15, 100 and 250, respectively. The dataset is generated from a Gamma-HM
model (N = 500, R0 = 2.5, ν = 5) and the number of infections is n = 448.

The above suggest that the DIS-block MCMC algorithm might be more efficient than

the standard-block MCMC algorithm. To examine this speculation a simulation study

is conducted, referred to as simulation study G, where the performance of the two

algorithms is more formally quantified and compared. Before proceeding to simulation

study G, section 4.3.2 concludes by making some interesting remarks related to the

DIS-block algorithm.
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4.3.2.4 Remarks

The feature of parameter reduction carries particular importance in the DIS-block

algorithm. Specifically, in the context of the DIS-block algorithm, the biggest benefit

from integrating out β and λ, does not come from the fact that the target space

becomes smaller (although any such related benefit is still welcome, no matter how

small) but from the fact that it naturally suits with the way that the proposal

parameters νk and λk, k = 1, 2, . . . , n, are specified. As described in section 4.3.2.1,

νk and λk, k = 1, 2, . . . , n, are specified by fitting a Gamma(νk, λk) distribution to a

burn-in sample of infectious periods or equivalently of infection times, i.e. specified

according to a sample that is roughly (in the sense that it is a burn-in sample) from

the posterior density π(α, iα, i | r, ν). The intention of specifying these parameters in

such a way is to make the proposal density similar to its associated target density. The

subtle point to note here is that, this specification implicitly benefits from the fact

that, when β and λ are integrated out, the associated target density is π(α, iα, i | r, ν)

(see the first paragraph of section 4.3.2.1), which is the same density as the density

according to which νk, λk, k = 1, 2, . . . , n, are specified. That is to say, that the

proposal density is targeting the same density as the one it is made to resemble.

Notice though, that if β and λ were not integrated out, this would not be the case, as

the associated target density would then be π(α, iα, i | r, ν, β(s), λ(s)), where β(s) and

λ(s), the current values of β and λ in the algorithm, and therefore the specification of

νk, λk, k = 1, 2, . . . , n, would be in this sense suboptimal. This is also supported by

investigations based on simulated data.

The DIS-block algorithm relies on the combined effect of the individual-specific

parameters νk, λk, k = 1, 2, . . . , n, and the dependence inducing parameter d(s).

For example, if one considers a proposal scheme, say P1, that makes use only of d(s)

and not of νk, λk, k = 1, 2, . . . , n (i.e. the scheme that proposes infection times as

rk − i∗k ∼ Gamma(ν, d(s)), k = 1, 2, . . . , n, where d(s) such that E(B∗) = B(s)) the
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behaviour of the sampler will be similar to that of the standard-block sampler. To

see this, notice that the P1 proposal is the same as the standard-block Gamma(ν, λ′)

proposal, only that λ′ is replaced by d(s), and consider that the role of d(s) in P1 is

similar to that of λ′ in the standard-block scheme (see the second remark in section

4.3.1.3). A visual appreciation of this, using the example dataset of section 4.3.1.3, is

given by figure A.2 in the Appendix. Alternatively, if one considers a proposal scheme,

say P2, that makes use only of νk, λk, k = 1, 2, . . . , n and not of d(s) (i.e. the scheme

proposing infection times as rk − i∗k ∼ Gamma(νk, λk), k = 1, 2, . . . , n, where νk and

λk are specified as in section 4.3.2.1), although the effect of νk, λk, k = 1, 2, . . . , n,

might allow the proposal distribution to reproduce the structure of the posterior

distribution, the sampler could face issues of ever visiting or leaving the tails of the

target distribution, for large block step sizes. To see how this might happen, consider

the case that the block step size m is set at its maximum value n. Then, since there

is no dependence inducing parameter in the Gamma(νk, λk) proposal and since all

infection times are attempted to be updated (see the first remark in section 4.3.1.3),

Gamma(νk, λk) is strictly an independent proposal and unless it is heavier-tailed than

the target distribution it carries the risk of never proposing moves to the tails of the

target distribution or, if it does and the sampler moves there, of never leaving (see

the discussion about independent proposals in section 1.3.2.4). A visual appreciation

of this, using the example dataset of section 4.3.1.3, is provided by figure A.3 in the

Appendix.

4.3.3 Simulation study G

4.3.3.1 Purpose

Simulation study G compares the performance of the standard-block and the DIS-

block MCMC algorithms on datasets that are generated under different simulation

scenarios. The structure of simulation study G is very similar to that of simulation

study F, where again MCMC algorithms for the Gamma-HM model were compared;
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the difference is that simulation study F compared 1-dimensional update algorithms

(see section 4.2.4) while G compares block update algorithms. As in simulation study

F, it is of interest to investigate how the comparison of the algorithms might be

affected by the scale of the outbreak, quantified by N , the severity of the outbreak,

quantified byR0, and the value of the shape parameter ν, of the assumed Gamma(ν, λ)

distribution of the infectious periods.

4.3.3.2 Simulation and run conditions

The simulation conditions are the same as in simulation study F, except that in the

present simulation study an additional value of N is considered, namely N = 500.

Specifically, for each combination of selected values of the parameters R0, ν and N ,

one dataset is simulated from the Gamma-HM model under the condition that the

final size is equal to the (major outbreak) mode of the final size with respect to the

sampling distribution. As previously mentioned, this condition ensures that, in a

sense, the datasets are representative of their corresponding simulation scenario. The

values for R0 are 1.5 and 2.5, for ν are 2 and 5 and for N are 200, 500 and 1000,

resulting in twelve simulation scenarios in total, one for each distinct trio of selected

values of (R0, ν, N). The mean infectious period E(TD) is set to be 10 in all instances,

specifying λ to be λ = 0.2 and λ = 0.5, for the case that ν = 2 and ν = 5, respectively.

The Gamma-HM model is fitted to each simulated dataset, using both of the MCMC

algorithms under comparison, namely the standard-block MCMC algorithm and the

DIS-block MCMC algorithm. The run conditions for the two algorithms are described

in detail in sections 4.3.1.2 and 4.3.2.2, respectively. It is worth reiterating that (see

section 4.3.2.2) the run conditions of the two algorithms are set to be as similar

as possible, and therefore, in all instances, runtime is roughly equal and algorithm

performance is compared by focusing only at mixing properties and not runtime.
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4.3.3.3 Results

The comparison of the algorithms is conducted in the same way as for the previous

two simulation studies of this chapter, E and F (see sections 4.2.3.4 and 4.2.4.2).

First, before looking at the results, both algorithms were checked for evidence of

non-stationarity (see the part regarding stationarity in section 1.3.2.3) by visually

inspecting MCMC trace plots and by assessing whether the posterior densities of the

two algorithms appeared to be the same. For all datasets, both algorithms appeared

to have converged to the (same) desired posterior distribution. For reference, the

relevant plots are given for one of the datasets, in figure A.24 in the Appendix. Then,

following Xiang and Neal (2014), mixing and efficiency were assessed with respect to

B =
∑n

k=1(rk − ik). This was done by producing ACF plots and by calculating the

effective sample size associated with the MCMC sample of B, as described in section

1.3.2.3.

Table 4.3 and figure 4.17, respectively, give the effective sample sizes and the ACF

plots, for the two compared algorithms, for each of the twelve datasets of the

simulation study. Looking at table 4.1 and figure 4.9, one can see that the DIS-

block algorithm, to a lesser or greater extent, has better mixing compared to the

standard-block algorithm, for all considered datasets. Specifically, considering all

twelve datasets, the effective sample size ratio of the DIS-block algorithm over the

standard-block algorithm, ranges from 1.41 to 6.57 and it is equal to 3.35 on average,

i.e. the DIS-block algorithm is from 1.41 times up to 6.57 times more efficient than

the standard-block algorithm, and 3.35 times on average.

To examine the effect of each one of the factors, N , R0 and ν, one can compare

the effective sample size ratio (of the DIS-block algorithm over the standard-block

algorithm) over the different values of the factor. Regarding N , the average

(minimum, maximum) effective sample size ratio is 3.02 (1.50, 5.71), 3.40 (1.79, 6)
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and 3.64 (1.41, 6.57) for datasets for which N = 200, N = 500 and N = 1000,

respectively. Although there appears to be a slight increase with N , it is not enough

to suggest that the relative quality of mixing of the two algorithms changes with N .

As far as R0, the average (minimum, maximum) effective sample size ratio is 1.91

(1.41, 2.74) and 4.80 (3.19, 6.57) for datasets such that R0 = 1.5 and R0 = 2.5,

respectively. These values indicate that the advantage of the DIS-block algorithm,

over the standard-block algorithm, is larger for R0 = 2.5 compared to R0 = 1.5. A

possible explanation for this can be given by considering the effect that R0 has on

the posterior distribution of the infectious periods of individuals, where the larger the

value of R0 the higher the deviation from homogeneity among individuals (see section

4.2.1 and in particular the discussion regarding what happens when R0 becomes

very large). Since the DIS-block proposal scheme allows for nonhomogeneity among

individuals and the standard-block proposal scheme does not, it seems reasonable

that the advantage of the DIS-block algorithm is larger for R0 = 2.5 compared to

R0 = 1.5. Recall from simulation studies E and F (see sections 4.2.3.4 and 4.2.4.2)

that similar observations were made when comparing the IS-1d algorithm (whose

proposal scheme is also based on individual-specific parameters, similar to that of

the DIS-block algorithm) to the standard-1d algorithm (whose proposal scheme is

essentially the 1-dimensional version of that of the standard-block algorithm and is

based on parameters that are the same over individuals).

Regarding the effect of ν, the average (minimum, maximum) effective sample size

ratio is 2.65 (1.41, 3.83) and 4.05 (1.50, 6.57) for datasets for which ν = 2 and ν = 5,

respectively. Based on these values, it appears that the advantage of the DIS-block

algorithm increases for larger values of ν, however the evidence for this is not as

decisive as it is for R0.
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Table 4.3: Effective sample size for B =
∑n

k=1(rk − ik), for the two compared
MCMC algorithms, standard-block and DIS-block, for each of the twelve datasets
of simulation study G. The simulation and run conditions are described in section
4.3.3.2.

Algorithm

standard-block DIS-block

Dataset 1 (R0 = 1.5, ν = 2, N = 200) 689 1165

Dataset 2 (R0 = 1.5, ν = 2, N = 500) 546 1265

Dataset 3 (R0 = 1.5, ν = 2, N = 1000) 638 900

Dataset 4 (R0 = 1.5, ν = 5, N = 200) 439 660

Dataset 5 (R0 = 1.5, ν = 5, N = 500) 290 518

Dataset 6 (R0 = 1.5, ν = 5, N = 1000) 371 1016

Dataset 7 (R0 = 2.5, ν = 2, N = 200) 631 2011

Dataset 8 (R0 = 2.5, ν = 2, N = 500) 780 2707

Dataset 9 (R0 = 2.5, ν = 2, N = 1000) 848 3248

Dataset 10 (R0 = 2.5, ν = 5, N = 200) 446 2547

Dataset 11 (R0 = 2.5, ν = 5, N = 500) 620 3725

Dataset 12 (R0 = 2.5, ν = 5, N = 1000) 749 4918
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(a) Dataset 1 (R0 = 1.5, ν = 2, N = 200)
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(b) Dataset 1 (R0 = 1.5, ν = 2, N = 200)
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(c) Dataset 2 (R0 = 1.5, ν = 2, N = 500)
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(d) Dataset 2 (R0 = 1.5, ν = 2, N = 500)
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(e) Dataset 3 (R0 = 1.5, ν = 2, N = 1000)
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(f) Dataset 3 (R0 = 1.5, ν = 2, N = 1000)
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(g) Dataset 4 (R0 = 1.5, ν = 5, N = 200)
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(h) Dataset 4 (R0 = 1.5, ν = 5, N = 200)
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(i) Dataset 5 (R0 = 1.5, ν = 5, N = 500)
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(j) Dataset 5 (R0 = 1.5, ν = 5, N = 500)
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(k) Dataset 6 (R0 = 1.5, ν = 5, N = 1000)
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(l) Dataset 6 (R0 = 1.5, ν = 5, N = 1000)
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(m) Dataset 7 (R0 = 2.5, ν = 2, N = 200)
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(n) Dataset 7 (R0 = 2.5, ν = 2, N = 200)
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(o) Dataset 8 (R0 = 2.5, ν = 2, N = 500)
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(p) Dataset 8 (R0 = 2.5, ν = 2, N = 500)
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(q) Dataset 9 (R0 = 2.5, ν = 2, N = 1000)
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(r) Dataset 9 (R0 = 2.5, ν = 2, N = 1000)
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(s) Dataset 10 (R0 = 2.5, ν = 5, N = 200)
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(t) Dataset 10 (R0 = 2.5, ν = 5, N = 200)
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(u) Dataset 11 (R0 = 2.5, ν = 5, N = 500)
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(v) Dataset 11 (R0 = 2.5, ν = 5, N = 500)
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(w) Dataset 12 (R0 = 2.5, ν = 5, N = 1000)
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(x) Dataset 12 (R0 = 2.5, ν = 5, N = 1000)

Figure 4.17: ACF plots for B =
∑n

k=1(rk − ik), for each of the twelve datasets
of simulation study G. The simulation and run conditions are described in section
4.3.3.2. Left column corresponds to the standard-block MCMC algorithm and right
column corresponds to the DIS-block MCMC algorithm.
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4.3.3.4 Conclusions

The conclusions from simulation study G are summarized as follows.

• Under all scenarios of the simulation study, the DIS-block algorithm has better

mixing compared to the standard-block algorithm. Specifically, for the considered

datasets of the simulation study, the DIS-block algorithm is from 1.41 to 6.57 times

more efficient than the standard-block algorithm, and 3.35 times on average.

• The scale of the outbreak, quantified by N , does not appear to have an evident

effect on the comparative performance of the two algorithms suggesting that the

advantage of the DIS-block algorithm would be similar in small and large-scale

outbreaks.

• The severity of the outbreak, quantified by R0, appears to have an effect, suggesting

that the advantage of the DIS-block algorithm, over the standard-block algorithm,

would be greater for larger values of R0.

• The shape parameter, of the infectious period distribution ν, appears to have an

effect, in the sense that the advantage of the DIS-block algorithm appears slightly

increased for larger values of ν, but the evidence for this is not conclusive.

Overall, the DIS-block algorithm exhibits considerable improvement in mixing,

compared to the standard-block algorithm. Taking into account the fact that the

computational cost associated with the two algorithms is very similar (see the last

paragraph in section 4.3.2.2), the DIS-block algorithm appears to be a much more

preferable choice in practice.
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4.4 Discussion

4.4.1 Addressing chapter aims

This chapter developed two novel MCMC algorithms based on newly defined proposal

mechanisms for the infection component. The first algorithm, referred to as the IS-

1d algorithm, is based on an 1-dimensional update step of the infection component

whereas the second algorithm, referred to as the DIS-block algorithm, conducts a

block update step of the infection component. A key idea behind both algorithms,

is the use of individual-specific parameters in the proposal distributions for the

infection times. These individual-specific parameters, allow the proposal distributions

the flexibility required to capture the pattern sometimes exhibited in the target

distribution, where the infectious periods of individuals are not homogeneous (see

section 4.2.1).

Extensive simulation studies suggested that both of these algorithms are more efficient

than their analogue algorithms, found in the currently available published literature.

That is, the IS-1d algorithm is more efficient compared to the currently existing 1-

dimensional algorithms, and, the DIS-block algorithm is more efficient compared to

the currently existing block update algorithms. A particularly appealing fact, is that

the computational cost associated with the algorithms developed is very similar to

that of their analogue existing algorithms, i.e. the improvement in mixing does not

come with any additional computational cost. From a practical standpoint, more

impactful are the results regarding the DIS-block algorithm, since in general block

update steps are more efficient than their 1-dimensional counterparts. According to

simulation study G, the improvement in mixing offered by the DIS-block algorithm

is substantial, with the DIS-block algorithm on occasions being up to 6.5 times more

efficient than the standard-block algorithm.

288



4.4.2 Limitations

All MCMC algorithms in this chapter, when relevant (that is when the infectious

period distribution was assumed to be Gamma(ν, λ)), assumed that the shape

parameter ν was known, as opposed to it being an unknown parameter to be estimated

from the data. This is a limitation, because in a practical situation a user would

ideally want to allow all parameters to be estimated from the data, without worrying

about specifying values for unknown quantities. As mentioned in section 4.2.4.1,

the decision to treat ν as known was taken in order to avoid mixing issues that are

induced in the instance that ν is unknown. Note however, that this decision was

taken consistently for all compared algorithms and therefore it is unlikely that any

of the algorithms gained an advantage from it, i.e. it is unlikely that treating ν as

unknown would affect the comparative performance of the algorithms.

4.4.3 General remarks

The approach followed throughout this chapter was to compare like with like, namely

1d-update algorithms to other 1d-update algorithms and block-update algorithms

to other block-update algorithms. This is because block update algorithms have

inherently better mixing than their 1-dimensional counterparts; the latter only update

one infection time per update step, whereas the former update many. A good way

to put this into perspective is to look at the plots that visualize the movement

of a sampler, such as figure 4.14, and notice how small the area of the proposed

move is, when the block step size is 15, compared to 100 or 250; using this as

reference, it is not hard to appreciate how small the area of the proposed move is

when the block step size is 1. Nonetheless, it should be noted that, 1-dimensional

update algorithms could benefit from efficient coding, which updates the value of

the likelihood at each iteration rather than recalculating it from scratch, and can

therefore become computationally cheaper. However, even when taking into account

the reduced runtime, 1-dimensional update algorithms are still generally less efficient
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than block update algorithms.

The algorithms developed in this chapter use burn-in iterations to tune either

parameters in the proposal distributions or the block step size or both. In practice, it

is most sensible, to assess the quality of the burn-in sample in question before using

it to conduct such tuning. The general idea is that the tuning will be efficient, as long

as the associated burn-in sample provides a somewhat adequate representation of the

posterior distribution. To this end, in order to allow the chain to move away from its

initial state and closer to stationarity, it could be safer to discard a number of the first

burn-in iterations of the sample in question, or, equivalently, run an additional batch

of burn-in iteration and discard it, prior to running the burn-in sample iterations that

will be used to conduct tuning.

4.4.4 Further work

Recall from section 4.3.2.1, that the procedure to propose infections in the DIS-block

algorithm can be seen as having two steps. First, infectious periods are drawn from

a Gamma(νk, λk) distribution, independently, for each k ∈ b, where b the chosen set

of individuals for which infection times are proposed. Second, the drawn infectious

periods are scaled by a factor of 1/d(s), where d(s) is such that E(B∗) = B(s). Note

that, in this procedure, the infectious periods of individuals not in b remain fixed at

their current values. An idea worth pursuing, would be to modify the second step

of the above procedure and to scale, by a factor of 1/d(s) (where d(s) would again be

specified so that E(B∗) = B(s)), the infectious periods of all individuals, rather than

only those in b. It would be interesting to investigate if such a modification could

improve the ability of the proposal distribution to capture the pattern sometimes

exhibited in the target distribution, where the infectious periods of individuals are

not homogeneous (see section 4.2.1).
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Another interesting approach would be to make d(s) a random variable, as opposed

to being deterministically specified at each iteration s. For example, one could set

d(s) to have a Normal distribution, N(x(s), σ2), with mean x(s) and some variance σ2,

where x(s) would be specified, at each iteration s, so that E(B∗) = B(s) and σ2 would

be a tuning parameter. The motivation behind such an approach, would be to gain

more control over the area of the proposed move of the sampler, perhaps by tuning

σ2 in an optimal sense, in an attempt to further improve its efficiency.
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Chapter 5

Discussion

5.1 Addressing thesis aims

This thesis successfully developed novel methods for both model assessment and

inference for stochastic epidemic models, based on partially observed data. The

development of all methods took into consideration the peculiarities of the epidemic

setting, where data are partially observed and highly correlated, and epidemic

outbreaks are realized only once.

Chapter 2 developed two new model assessment methods, based on the posterior

predictive distribution of removal curves, namely the distance method and the

position-time method. The distance method (see section 2.5), assesses the plausibility

of the observed removal curve, under its posterior predictive distribution, by

calculating distances between removal curves. The position-time method (see section

2.6), conducts this assessment at a sequence of suitably selected time points.

Particularly appealing is the fact that, both methods provide visual and quantitative

assessment of model fit, with easily interpretable outputs. For example, the position-

time method allows for summaries (over time) of essentially any interesting event

(with respect to the posterior predictive distribution) to be calculated, such as
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the proportion of time that the observed removal curve in question spends in any

(inverse) quantile interval of its posterior predictive distribution. Also appealing,

is the fact that the two methods are different in the way that they utilize the

information from the removal curves, and thus they provide complementary types

of assessment regarding the fit of a model. The performance of both the distance

and the position-time methods highly benefits from the use of time shifting (see

section 2.4), an application that successfully removes the undesired noise exhibited

at the initial stages of an epidemic (where epidemic processes typically behave like

branching processes), and allows for a more informative comparison between removal

curves. A computational appeal of the methods is that, unlike most of the currently

existing methods (see e.g. Alharthi (2016)), they do not require the creation of

replications that have exactly the same final size as the observed; a procedure which

is computationally intensive to perform. More specifically, the methods can be applied

using matched replications (i.e. replications having exactly the same final size as the

observed) or unmatched (major outbreak) replications (i.e. replications that fall in

the major outbreak part of the posterior predictive distribution of the final size). This

is made possible by an automated procedure (see section 2.3) which classifies each

replication from the posterior predictive distribution as a minor or a major outbreak.

Extensive simulation studies suggested that both methods can successfully assess

important aspects of epidemic models, namely the infectious period assumption (see

section 2.7.1) and the infection rate form assumption (see section 2.8.1). Particularly

desirable, from a practical point of view, is that the simulation studies suggested that

the higher the scale of the outbreak the better the performance of the methods.

Chapter 3 developed a new classical hypothesis test for assessing the population

mixing assumption of epidemic models, in the case that population structure

information is available. The test is based on household labels of individuals and

utilizes the idea that, if there is a two-level-mixing effect (i.e. higher infectivity

within households than between households), then events of individuals belonging to
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the same household should happen closer in time rather than further apart. What

makes the development and implementation of the test possible, is the fact that,

under the assumption of a homogeneously mixing population, the discrete random

vector of household labels has a known sampling distribution that is independent

of any model parameters. The test has an easy ordinal interpretation, where the

lower the observed value of the test statistic and its corresponding p-value are, the

more the evidence against the hypothesis of homogeneous mixing, and in favour of

the hypothesis of two-level-mixing. The performance of the test was examined via

an extensive simulation study (see section 3.3) and by applying it to real data (see

section 3.4). In both cases, the test exhibited excellent performance; when applied to

simulated data (generated under various simulation scenarios) the test demonstrated a

systematic ability to succesfully assess the population mixing assumption and, when

applied to real data, the test yielded a conclusion that was in line with previous

analyses in the literature. Very appealing, from a practical standpoint, is the fact

that the test is computationally cheap and simple to perform, as it does not involve

any model fitting. What this suggests is that, in practice, it would be very useful to

conduct the test before any models are fitted to data, and use the result of the test

as a guide in choosing a suitable model for the data in question.

Chapter 4 developed two new MCMC algorithms, namely the IS-1d MCMC algorithm

(see section 4.2.2) and the DIS-block MCMC algorithm (see section 4.3.2), by

considering new proposal mechanisms for the update step of the infection component.

As the names suggest, the IS-1d MCMC algorithm is based on an 1-dimensional

update step of the infection component, while the DIS-block algorithm on a block

update step. Both algorithms benefit from the use of individual-specific parameters

in the proposal distributions for the infection times. By using individual-specific

parameters, the proposal distributions gain the ability to mimic the patterns of

nonhomogeneity, with respect to the infectious periods of individuals, sometimes

exhibited in the target distribution. The performance of both algorithms, as far
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as mixing and efficiency is concerned, was examined via extensive simulation studies

(see sections 4.2.3, 4.2.4 and 4.3.3), where each of the two algorithms was compared

to its analogue currently existing MCMC algorithm. In all comparisons, the newly

developed algorithm exhibited improvement in mixing compared to its existing

counterpart. More noteworthy were the results regarding the comparison of block

update algorithms, since block update steps are in general more efficient than their

1-dimensional counterparts. As suggested by the relevant simulation study, the DIS-

block algorithm can offer a substantial improvement in mixing compared to the

current optimally performing block update algorithm; for the considered datasets

of the simulation study, the effective sample size ratio of the DIS-block algorithm

over its comparator, ranged from 1.41 to 6.57 and was 3.35 on average. What must

be taken into account is that this improvement in mixing does not come with any

additional computational cost, since the cost associated with running the DIS-block

algorithm is very similar to that of its comparator.

5.2 Limitations

Limitations specifically related to the work of each of chapters 2, 3 and 4 have already

been discussed at the relevant sections of the chapters (see sections 2.10.2, 3.5.2

and 4.4.2, respectively). What might be considered as a general limitation of this

thesis is that the methods developed were mostly applied on simulated rather than

real data. Although, there is no doubt that there is a benefit in illustrating methods

on real datasets, the fact that the methods were mostly applied on simulated data

should not undermine their practical utility. For example, in the context of model

assessment, the use of simulated data served the purpose of determining whether

an assumed model was correctly specified or not and therefore allowed for effective

examination of the performance of the methods; in the sense that a model assessment

method works well if it detects misspecification when there is, or, does not detect

misspecification when there is not. This type of examination is hardly as effective
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when using real data, since in that case the true data generating process is typically

unknown and there is no natural way of telling whether a model assessment method

outputs what it is supposed to or not.

5.3 Contribution

The main contribution of this thesis is the development of novel methods, for both

model assessment and inference of stochastic epidemics models, that can readily be

applied by practitioners in the field. Regarding model assessment, the methods

developed, offer a much needed immediate addition to the rather sparse currently

existing toolkit. As far as inference, the block update algorithm developed, provides

substantial improvement in efficiency, compared to the currently existing algorithms.

A less immediate contribution, but perhaps equally important, is that, in the process

of developing these methods, it was revealed how and why the peculiarities of the

epidemic setting should be a matter of careful consideration, when designing new

methodology. What was also revealed, that was not clear before, was how and why

some of the currently existing methods underperform. The hope is that knowledge of

this kind can help guide the development of new methods in the future.
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Appendix A

Tables and Figures

A.1 Examples from chapter 2
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Figure A.1: Histograms of 2000 replications from the posterior predictive distribution
of the final size T repfs , with the observed final size T obsfs = 463 (black, dashed line)
imposed, for the example in sections 2.5.5 and 2.6.3, figures 2.5 and 2.6. Left and right
histograms correspond to the Exp-HM and the Gamma-HM models, respectively.
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A.2 Examples from chapter 4
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Figure A.2: Bivariate target posterior densities (black, solid contours), bivariate
standard-block proposal densities (blue, solid contours) and bivariate P1 proposal
densities (red, solid contours), for the vector (A,B,C). Imposed (green, circle) is the
current state. Columns (left to right) correspond to block step size values of 15, 100
and 250, respectively. The dataset is generated from a Gamma-HM model (N = 500,
R0 = 2.5, ν = 5) and the number of infections is n = 448.
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Figure A.3: Bivariate target posterior densities (black, solid contours) and bivariate
P2 proposal densities (red, solid contours), for the vector (A,B,C). The block step
size is m = 448. Imposed (green, circle) is the current state. The dataset is generated
from a Gamma-HM model (N = 500, R0 = 2.5, ν = 5) and the number of infections
is n = 448.
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A.3 Simulation Study A

Table A.1: Number of datasets for which the matching procedure was completed over
number of total datasets, for the Exp-HM model for simulation study A. For each
dataset, the number of required matched replications was 500 and the computational
time allowed for achieving them was 15 hours. Simulation conditions for each scenario
are given in table 2.5.

N = 100 N = 200 N = 500 N = 1000

Scenario 1 24/24 24/24 24/24 23/24

Scenario 2 24/24 24/24 24/24 23/24

Scenario 3 24/24 24/24 24/24 24/24

Scenario 4 24/24 18/24 3/24 0/24

Table A.2: Number of datasets for which the matching procedure was completed over
number of total datasets, for the Gamma-HM model for simulation study A. For each
dataset, the number of required matched replications was 500 and the computational
time allowed for achieving them was 15 hours. Simulation conditions for each scenario
are given in table 2.5.

N = 100 N = 200 N = 500 N = 1000

Scenario 1 24/24 24/24 24/24 24/24

Scenario 2 24/24 24/24 24/24 24/24

Scenario 3 24/24 24/24 24/24 24/24

Scenario 4 24/24 11/24 0/24 0/24
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Table A.3: Number of datasets for which the matching procedure was completed over
number of total datasets, for the Constant-HM model for simulation study A. For each
dataset, the number of required matched replications was 500 and the computational
time allowed for achieving them was 15 hours. Simulation conditions for each scenario
are given in table 2.5.

N = 100 N = 200 N = 500 N = 1000

Scenario 1 24/24 24/24 22/24 20/24

Scenario 2 24/24 24/24 23/24 24/24

Scenario 3 24/24 24/24 24/24 24/24

Scenario 4 24/24 13/24 0/24 0/24

Table A.4: Median (95% quantile interval) final size (mid) ppp-value for the Exp-HM
model for simulation study A. Simulation conditions for each scenario are given in
table 2.5.

N = 100 N = 200 N = 500 N = 1000

Scenario 1 0.52 (0.41, 0.61) 0.49 (0.43, 0.59) 0.49 (0.44, 0.55) 0.48 (0.44, 0.60)

Scenario 2 0.52 (0.44, 0.62) 0.55 (0.46, 0.69) 0.57 (0.49, 0.66) 0.60 (0.49, 0.71)

Scenario 3 0.51 (0.43, 0.60) 0.54 (0.45, 0.65) 0.59 (0.48, 0.67) 0.63 (0.53, 0.75)

Scenario 4 0.69 (0.55, 0.92) 0.84 (0.61, 0.99) 0.97 (0.79, 1) 1 (0.96, 1)
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Table A.5: Median (95% quantile interval) final size (mid) ppp-value for the Gamma-
HM model for simulation study A. Simulation conditions for each scenario are given
in table 2.5.

N = 100 N = 200 N = 500 N = 1000

Scenario 1 0.55 (0.41, 0.74) 0.57 (0.48, 0.71) 0.55 (0.45, 0.71) 0.61 (0.46, 0.67)

Scenario 2 0.51 (0.44, 0.63) 0.48 (0.41, 0.64) 0.49 (0.40, 0.56) 0.48 (0.44, 0.56)

Scenario 3 0.48 (0.40, 0.58) 0.49 (0.41, 0.59) 0.49 (0.42, 0.55) 0.50 (0.45, 0.58)

Scenario 4 0.75 (0.40, 0.96) 0.90 (0.35, 0.99) 1 (0.64, 1) 1 (0.37, 1)

Table A.6: Median (95% quantile interval) final size (mid) ppp-value for the Constant-
HM model for simulation study A. Simulation conditions for each scenario are given
in table 2.5.

N = 100 N = 200 N = 500 N = 1000

Scenario 1 0.47 (0.26, 0.74) 0.54 (0.32, 0.73) 0.54 (0.26, 0.79) 0.62 (0.02, 0.75)

Scenario 2 0.44 (0.38, 0.59) 0.48 (0.37, 0.58) 0.47 (0.12, 0.59) 0.50 (0.42, 0.59)

Scenario 3 0.45 (0.38, 0.57) 0.47 (0.38, 0.55) 0.45 (0.30, 0.54) 0.51 (0.45, 0.60)

Scenario 4 0.67 (0.25, 0.95) 0.90 (0.21, 1) 1 (0.34, 1) 1 (0.13, 1)
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Figure A.4: Histogram of 2000 replications from the posterior predictive distribution
of the final size T repfs of the Exp-HM model, with the observed final size T obsfs = 952
(black, dashed line) imposed, for a typical dataset of round 4 (N = 1000) in scenario
4 (data generated from a HPP) of simulation study A.
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Figure A.5: Folded ppp-value from the distance method (dL2 distance shifting, dL2

distance function) against dataset index using matched (black circles) and unmatched
(red crosses) replications, under correct specification, from simulation study A. Data
are generated from the fitted model. Columns (left to right) correspond to the Exp-
HM, the Gamma-HM and the Constant-HM models, respectively. Rows (top to
bottom) correspond to N values of 100, 200, 500 and 1000, respectively.
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Figure A.6:
√

MSE from the position-time method (dL2 distance shifting) against
dataset index using matched (black circles) and unmatched (red crosses) replications,
under correct specification, from simulation study A. Data are generated from the
fitted model. Columns (left to right) correspond to the Exp-HM, the Gamma-HM
and the Constant-HM models, respectively. Rows (top to bottom) correspond to N
values of 100, 200, 500 and 1000, respectively.
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Figure A.7: Folded ppp-value from the distance method (dL2 distance shifting, dL2

distance function) against dataset index using matched (black circles) and unmatched
(red crosses) replications, under clear misspecification, for simulation study A. Data
are generated from the HPP. Columns (left to right) correspond to the Exp-HM,
the Gamma-HM and the Constant-HM models, respectively. Rows (top to bottom)
correspond to N values of 100, 200, 500 and 1000, respectively.
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Figure A.8:
√

MSE from the position-time method (dL2 distance shifting) against
dataset index using matched (black circles) and unmatched (red crosses) replications,
under clear misspecification, for simulation study A. Data are generated from the
HPP. Columns (left to right) correspond to the Exp-HM, the Gamma-HM and the
Constant-HM models, respectively. Rows (top to bottom) correspond to N values of
100, 200, 500 and 1000, respectively.
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Figure A.9: Folded ppp-value from the distance method (dL2 distance shifting, dL2

distance function) against dataset index using matched (black circles) and unmatched
(red crosses) replications, under (less clear) misspecification, from simulation study
A. Left column corresponds to data generated from the Constant-HM and fitted
model being the Exp-HM, middle column corresponds to data generated from the
Exp-HM and fitted model being the Gamma-HM and right column corresponds to
data generated from the Exp-HM and fitted model being the Constant-HM. Rows
(top to bottom) correspond to N values of 100, 200, 500 and 1000, respectively.
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Figure A.10:
√

MSE from the position-time method (dL2 distance shifting) against
dataset index using matched (black circles) and unmatched (red crosses) replications,
under (less clear) misspecification, from simulation study A. Left column corresponds
to data generated from the Constant-HM and fitted model being the Exp-HM, middle
column corresponds to data generated from the Exp-HM and fitted model being the
Gamma-HM and right column corresponds to data generated from the Exp-HM and
fitted model being the Constant-HM. Rows (top to bottom) correspond to N values
of 100, 200, 500 and 1000, respectively.
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A.4 Simulation Study B

Table A.7: Number of datasets for which the matching procedure was completed over
number of total datasets, for the Exp-HM model for simulation study B. For each
dataset, the number of required matched replications was 500 and the computational
time allowed for achieving them was 15 hours. Simulation conditions for each scenario
are given in table 2.18.

N = 100 N = 200 N = 500 N = 1000

Scenario 1 24/24 24/24 24/24 23/24

Scenario 2 24/24 24/24 22/24 7/24

Table A.8: Number of datasets for which the matching procedure was completed
over number of total datasets, for the Exponential-NL model for simulation study
B. For each dataset, the number of required matched replications was 500 and the
computational time allowed for achieving them was 15 hours. Simulation conditions
for each scenario are given in table 2.18.

N = 100 N = 200 N = 500 N = 1000

Scenario 1 24/24 24/24 23/24 2/24

Scenario 2 24/24 24/24 24/24 23/24

Table A.9: Median (95% quantile interval) final size (mid) ppp-value for the Exp-HM
model for simulation study B. Simulation conditions for each scenario are given in
table 2.18.

N = 100 N = 200 N = 500 N = 1000

Scenario 1 0.52 (0.41, 0.61) 0.49 (0.43, 0.59) 0.49 (0.44, 0.55) 0.48 (0.44, 0.60)

Scenario 2 0.49 (0.35, 0.58) 0.52 (0.46, 0.66) 0.63 (0.53, 0.92) 0.81 (0.62, 0.99)
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Table A.10: Median (95% quantile interval) final size (mid) ppp-value for the
Exponential-NL model for simulation study B. Simulation conditions for each scenario
are given in table 2.18.

N = 100 N = 200 N = 500 N = 1000

Scenario 1 0.45 (0.34, 0.59) 0.33 (0.21, 0.54) 0.09 (0.04, 0.20) 0 (0, 0.05)

Scenario 2 0.49 (0.37, 0.69) 0.50 (0.36, 0.76) 0.43 (0.12, 0.96) 0.44 (0.08, 0.99)
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Figure A.11: Histogram of 2000 replications from the posterior predictive distribution
of the final size T repfs of the Exp-HM model, with the observed final size T obsfs = 936
(black, dashed line) imposed, for a typical dataset of round 4 (N = 1000) in scenario
2 (data generated from an Exp-NL model) of simulation study B.
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Figure A.12: Histogram of 2000 replications from the posterior predictive distribution
of the final size T repfs of the Exp-NL model, with the observed final size T obsfs = 860
(black, dashed line) imposed, for a typical dataset of round 4 (N = 1000) in scenario
1 (data generated from an Exp-HM model) of simulation study B.
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Figure A.13: Folded ppp-value from the distance method (dL2 distance shifting, dL2

distance function) against dataset index using matched (black circles) and unmatched
(red crosses) replications, under correct specification, from simulation study B. Data
are generated from the fitted model. Left and right columns corresponds to the Exp-
HM and the Exp-NL models, respectively. Rows (top to bottom) correspond to N
values of 100, 200, 500 and 1000, respectively.
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Figure A.14:
√

MSE from the position-time method (dL2 distance shifting) against
dataset index using matched (black circles) and unmatched (red crosses) replications,
under correct specification, from simulation study B. Data are generated from the
fitted model. Left and right columns correspond to the Exp-HM and the Exp-NL
models, respectively. Rows (top to bottom) correspond to N values of 100, 200, 500
and 1000, respectively.
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Figure A.15: Folded ppp-value from the distance method (dL2 distance shifting, dL2

distance function) against dataset index using matched (black circles) and unmatched
(red crosses) replications, under misspecification, from simulation study B. Left
column corresponds to data generated from the Exp-NL and fitted model being the
Exp-HM and right column corresponds to data generated from the Exp-HM and fitted
model being the Exp-NL. Rows (top to bottom) correspond to N values of 100, 200,
500 and 1000, respectively.
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Figure A.16:
√

MSE from the position-time method (dL2 distance shifting) against
dataset index using matched (black circles) and unmatched (red crosses) replications,
under misspecification, from simulation study B. Left column corresponds to data
generated from the Exp-NL and fitted model being the Exp-HM and right column
corresponds to data generated from the Exp-HM and fitted model being the Exp-NL.
Rows (top to bottom) correspond to N values of 100, 200, 500 and 1000, respectively.
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A.5 Simulation Study C

Table A.11: Number of datasets for which the matching procedure was completed over
number of total datasets, for the Constant-2L model for simulation study C. For each
dataset, the number of required matched replications was 500 and the computational
time allowed for achieving them was 15 hours. Simulation conditions for each scenario
are given in table 2.27.

N = 99 N = 199 N = 499

Scenario 1 24/24 24/24 23/24

Scenario 2 24/24 24/24 22/24

Scenario 3 24/24 23/24 21/24

Scenario 4 24/24 24/24 23/34

Table A.12: Number of datasets for which the matching procedure was completed over
number of total datasets, for the Constant-HM model for simulation study C. For each
dataset, the number of required matched replications was 500 and the computational
time allowed for achieving them was 15 hours. Simulation conditions for each scenario
are given in table 2.27.

N = 99 N = 199 N = 499

Scenario 1 24/24 24/24 24/24

Scenario 2 24/24 24/24 24/24

Scenario 3 24/24 24/24 24/24

Scenario 4 24/24 24/24 23/34
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Figure A.17: Folded ppp-value from the distance method (dL2 distance shifting, dL2

distance function) against dataset index using matched replications, under correct
specification for the Constant-2L model, from simulation study C. Data are generated
from the fitted model. Rows (top to bottom) correspond to RH

0 values of 1, 2, 5 and
20, respectively. Columns (left to right) correspond to N values of 99, 199 and 499,
respectively.
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Figure A.18:
√

MSE from the position-time method (dL2 distance shifting) against
dataset index using matched replications, under correct specification for the constant-
2L model, from simulation study C. Data are generated from the fitted model. Rows
(top to bottom) correspond to RH

0 values of 1, 2, 5 and 20, respectively. Columns
(left to right) correspond to N values of 99, 199 and 499, respectively.
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Figure A.19: Folded ppp-value from the distance method (dL2 distance shifting,
dL2 distance function) against dataset index using matched replications, under
misspecification for the constant-HM model, from simulation study C. Data are
generated from the constant-2L model. Rows (top to bottom) correspond to RH

0

values of 1, 2, 5 and 20, respectively. Columns (left to right) correspond to N values
of 99, 199 and 499, respectively.
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Figure A.20:
√

MSE from the position-time method (dL2 distance shifting) against
dataset index using matched replications, under misspecification for the constant-HM
model, from simulation study C. Data are generated from the constant-2L model.
Rows (top to bottom) correspond to RH

0 values of 1, 2, 5 and 20, respectively,
respectively. Columns (left to right) correspond to N values of 99, 199 and 499,
respectively.
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Table A.13: Median (95% quantile interval) final size (mid) ppp-value for the
constant-HM model for simulation study C.

N = 99 N = 199 N = 499

Scenario 1 0.44 (0.36, 0.51) 0.48 (0.36, 0.61) 0.52 (0.42, 0.61)

Scenario 2 0.50 (0.38, 0.64) 0.54 (0.36, 0.67) 0.52 (0.40, 0.64)

Scenario 3 0.47 (0.37, 0.65) 0.51 (0.39, 0.70) 0.54 (0.34, 0.74)

Scenario 4 0.45 (0.27, 0.68) 0.54 (0.33, 0.75) 0.54 (0.41, 0.91)
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A.6 Simulation Study D

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●●●

●

●
●

●●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

dataset index

p−
va

lu
e

●●
●

●

●●
●

●

●

●

●●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●
●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●●

●

●

●●
●

●

●

●

●

●●

●
●
●●

●

●

●

●

●

●

●

●

●●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●
●

●

●
●
●

●

●●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●●
●

●

●

●

●

●

●●●

●

●

●

●

●

●●●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●●

●
●

●
●
●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●
●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●●●
●
●

●

●●

●●
●

●

●

●
●

●

●
●

●●
●
●●

●

●

●

●

●

●

●

●●

●

●

●
●●

0 100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

dataset index

p−
va

lu
e

●
●

●●

●
●

●

●●
●

●

●

●

●●
●

●

●

●●
●

●

●
●
●

●

●●

●

●
●

●●
●●

●

●●●

●

●
●

●

●

●

●

●

●
●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●●

●
●
●●●

●
●

●●●

●

●

●

●●

●●

●

●
●
●
●

●

●
●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●
●●●●●
●
●

●

●

●

●●
●

●

●

●

●

●

●

●●

●
●

●
●

●

●●●
●

●

●

●●

●

●

●

●
●●
●

●

●

●

●
●

●

●

●

●

●

●

●
●
●
●

●

●

●

●●

●

●
●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●●

●●●

●

●

●●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●
●●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●●●●
●●

●

●

●

●

●●
●

●

●
●
●

●

●

●
●

●

●

●

●●●

●

●

●

●

●
●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●●

●

●

●
●
●
●

●●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●
●●●

●
●
●

●

●●

●

●●
●
●

●

●
●

●

●●

●

●●●●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●●●●●●

●
●

●

●
●●
●

●●

●

●

●
●
●●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

dataset index

p−
va

lu
e

●
●

●●●●●

●

●

●

●●●●●●●

●

●

●●●●

●

●

●

●

●

●
●●
●

●

●
●●●

●

●
●
●●
●

●
●

●
●●●

●

●●●●
●

●

●●

●

●●●
●●●

●

●
●

●

●●
●●

●

●

●

●

●

●●

●

●

●

●●●

●

●●●●

●

●

●●

●

●

●

●

●●●
●
●●

●

●

●

●●●●●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●●
●
●

●

●●●●●●●●●●●

●

●
●●
●
●●●●●●

●
●

●

●

●

●

●●
●
●●

●
●

●

●●

●

●
●●
●
●

●

●

●

●●●

●

●●●●

●●

●●
●

●

●●●●

●

●●

●●●

●

●●

●

●●
●
●

●

●
●
●
●●

●

●

●

●●●●●●●●
●
●

●

●

●

●

●
●●
●
●

●●●
●
●
●
●●●●

●

●

●

●●●
●
●

●

●●

●

●●

●

●

●
●
●●●●●
●
●●
●

●

●●

●

●

●

●

●

●

●●●
●
●●●

●

●

●

●

●

●

●

●

●●●

●

●●
●
●●●●●

●

●

●
●
●

●

●

●●

●

●

●●●

●

●

●●●●

●

●

●●●

●

●

●●

●●●
●

●

●●●

●

●●●

●

●●●
●
●
●

●
●

●●

●

●
●
●

●

●

●

●●●●●●●●

●

●

●

●●
●●●●

●

●●

●

●●●

●

●●●●
●
●●
●
●●

●

●●

●

●●

●

●●●

●

●●●●

●

●

●●●
●
●

●

●●●

●
●

●

●●●●●●

●

●

●●

●

●

●

●
●

●

●

●
●●●●●

●

●

●

●

●

●

●

●

●

●●
●●
●●
●●

●
●

●

●●●
●
●●

●

●●
●
●

●

●

●

●

●

●

●
●

0 100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

dataset index

p−
va

lu
e

●●
●

●

●●●

●

●

●

●●●

●

●
●
●
●

●

●●
●
●●●●●

●

●●●●●
●
●●

●

●●●
●

●

●

●

●●●●
●
●●
●
●●●

●

●

●

●●
●

●
●
●●
●
●●●
●
●●●

●

●●●
●
●●

●

●

●

●●

●
●
●

●

●●●

●

●
●

●

●●●●

●

●

●●
●

●

●●
●

●

●●
●
●

●

●

●●●●●●●●
●
●
●
●●

●●●●●
●
●
●●

●

●
●
●

●

●●

●

●

●

●●
●●●●●●●

●

●
●●●●●●●

●

●

●

●●

●●●●●●

●

●

●

●●●

●

●●

●
●

●

●●●

●

●

●

●●●●●●

●

●●●●

●

●●

●

●●

●●●●
●
●

●●●

●●

●●

●

●●●●

●

●●●●●

●

●

●●●
●●●●●
●
●●●●●●

●●

●

●●●●
●

●

●

●

●

●

●
●●●●
●

●

●●●●●●●●
●●●
●●●
●

●

●
●
●

●

●

●

●●●

●
●●●●●

●
●

●●●

●

●●●
●
●●●

●

●●●●

●

●●●
●
●●

●

●●●●●●

●

●

●
●●●
●

●

●●●●●●●●
●
●
●
●●

●

●

●●●

●●●

●●

●

●
●
●

●

●●
●●
●●●

●

●●●

●

●●

●

●●

●

●●●●●●●

●
●
●●●●●
●
●●●●●●●
●
●●●●●
●●

●

●
●

●

●●●●

●

●●●●
●
●

●●●

●

●●

●●

●

●

●
●
●

●

●

●

●●●●●●●

●

●
●●●

●

●●●●
●

●

●●

●

●●●●●

●

●

●

●●
●
●●●●●
●
●
●
●●●●

●●●
●

0 100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

dataset index

p−
va

lu
e

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●

●

●●
●
●●
●●●●

●

●

●

●●●●●●●●●●●●●●●●
●
●●●●●●●
●
●●●●●●●

●

●●●●●●●●●●●●
●
●●●●●

●

●●●●●

●

●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●
●
●

●

●

●

●●●●●●●●●●

●

●●●●●●●●●
●
●

●

●

●

●●●●●●●●●●●●●●●●●●●●
●●●●●

●

●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●

●●●●●●●●●●
●
●●

●

●
●
●●

●

●●●●●●●●●●●●●

●

●●●

●

●●●●●

●

●●●●●●●●●●●●●

●

●●●●

●

●●●
●
●●●●●●
●
●●●●●●●●●●●●

●
●●●●●●

●

●●●●●●●●●●●●
●●
●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●

0 100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

dataset index

p−
va

lu
e

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

dataset index

p−
va

lu
e

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

dataset index

p−
va

lu
e

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

dataset index

p−
va

lu
e

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

dataset index

p−
va

lu
e

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 100 200 300 400 500
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

dataset index

p−
va

lu
e

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

dataset index

p−
va

lu
e

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

dataset index

p−
va

lu
e

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

dataset index

p−
va

lu
e

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

dataset index

p−
va

lu
e

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

dataset index

p−
va

lu
e

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

dataset index

p−
va

lu
e

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

dataset index

p−
va

lu
e

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

dataset index

p−
va

lu
e

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

dataset index

p−
va

lu
e

Figure A.21: p-value from the household labels test based on observing infection
times, p-valuei (black circles), and based on observing removal times, p-valuer (red
crosses), against dataset index, from simulation study D. Rows (top to bottom)
correspond to RH

0 values of 0.5, 1, 2, 5 and 20, respectively. Columns (left to right)
correspond to N values of 99, 199, 499 and 999, respectively.
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A.7 Simulation Study E
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Figure A.22: MCMC convergence diagnostic plots for dataset 4 (R0 = 2.5, N =
1000) of simulation study E. The simulation and run conditions are described
in sections 4.2.3.2 and 4.2.3.3, respectively. Top plots are trace plots for B =∑n

k=1(rk − ik). Left plot corresponds to the standard-1d MCMC algorithm and right
plot corresponds to the IS-1d MCMC algorithm. Imposed (red, dashed, horizontal
line) is the true vale of B. Bottom plot is the posterior density of B, based on the
MCMC sample of the standard-1d MCMC algorithm (black, solid line) and the IS-1d
MCMC algorithm (red, dashed line). Imposed (black, solid, vertical line) is the true
vale of B.

335



A.8 Simulation Study F
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Figure A.23: MCMC convergence diagnostic plots for dataset 6 (R0 = 2.5, ν = 2, N =
1000) of simulation study F. The simulation and run conditions are described in
section 4.2.4.1. Top plots are trace plots for B =

∑n
k=1(rk−ik). Left plot corresponds

to the standard-1d MCMC algorithm and right plot corresponds to the IS-1d MCMC
algorithm. Imposed (red, dashed, horizontal line) is the true vale of B. Bottom
plot is the posterior density of B, based on the MCMC sample of the standard-1d
MCMC algorithm (black, solid line) and the IS-1d MCMC algorithm (red, dashed
line). Imposed (black, solid, vertical line) is the true vale of B.
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A.9 Simulation Study G
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Figure A.24: MCMC convergence diagnostic plots for dataset 12 (R0 = 2.5, ν =
5, N = 1000) of simulation study G. The simulation and run conditions are described
in section 4.3.3.2. Top plots are trace plots for B =

∑n
k=1(rk − ik). Left plot

corresponds to the standard-block MCMC algorithm and right plot corresponds to
the DIS-block MCMC algorithm. Imposed (red, dashed, horizontal line) is the true
vale of B. Bottom plot is the posterior density of B, based on the MCMC sample of
the standard-block MCMC algorithm (black, solid line) and the DIS-block MCMC
algorithm (red, dashed line). Imposed (black, solid, vertical line) is the true vale of
B.
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Appendix B

Supplementary Material

B.1 Homogeneous Poisson process

B.1.1 Definition

There are more than one (equivalent) ways for defining the homogeneous Poisson

Process (HPP); see any standard applied probability and stochastic process textbook

such as (Ross, 2009, chapter 5). Let X1, X2, ... be i.i.d. random variables, having an

Exp(ρ) distribution, corresponding to times between events that occur randomly in

time. Define Sn =
∑n

k=1Xk for n ≥ 1 and set S0 = 0, i.e. Sn is the waiting time until

the nth event. Let Nt = max{n : Sn ≤ t}, i.e. Nt is the total number of events up to

time t. Then the counting stochastic process {Nt}t∈R is a HPP of rate ρ.

B.1.2 Likelihood

Suppose that a HPP of rate ρ is realized in a time window [Ton, Toff] and the observed

time-ordered event times are r = (r1, r2, ..., rn). Then the likelihood of the HPP is

given by

π(r|Ton, Toff, ρ) = ρn exp
(
− ρ(Toff − Ton)

)
. (B.1)
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B.1.3 Bayesian inference and MCMC algorithm

In the case that the HPP is used to model removal times of an epidemic outbreak (as it

is used in the context of this thesis), the time window is unknown and thus Ton and Toff

are unknown parameters that must be estimated from the data. The target posterior

density is π(Ton, Toff, ρ|r) ∝ π(r|Ton, Toff, ρ)π(Ton, Toff, ρ), where π(Ton, Toff, ρ) is the

joint prior density of the parameters Ton, Toff and ρ.

Assuming prior independence for the three parameters, Exponential prior distribu-

tions are put on r1−Ton and Toff− rn. This ensures that Ton and Toff have the desired

support, i.e. Ton is before the first removal time r1 and Toff is after the last removal

time rn. For ρ, a Gamma prior distribution is used. More specifically, the prior

distribution assignment is done as follows.

r1 − Ton ∼ Exp(γTon)

Toff − rn ∼ Exp(γToff
)

ρ ∼ Gamma(νρ, λρ).

The specific choice of prior distributions results in conjugancy for the three full

conditional distributions and sampling from the target posterior distribution can

easily be achieved via an MCMC algorithm with three Gibbs steps, as in Algorithm

21 below.

Whenever the HPP model is fitted in this thesis, the prior distribution parameters

are set so that all three parameters have uninformative Exp(10−3) prior distributions,

i.e. the prior parameters are set as γTon = γToff
= λρ = 10−3, νρ = 1.
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Algorithm 21 MCMC algorithm for the HPP model

1. Suppose the current state is (T
(s)
on , T

(s)
off , ρ

(s))

2. Sample r1 − T (s+1)
on ∼ π(r1 − Ton | r, ρ(s)) ≡ Exp(ρ(s) + γTon) using a Gibbs step

3. Sample T
(s+1)
off − rn ∼ π(Toff − rn | r, ρ(s)) ≡ Exp(ρ(s) + γToff

) using a Gibbs step

4. Sample ρ(s+1) ∼ π(ρ | r, T (s+1)
on , T

(s+1)
off ) ≡ Gamma(n + νρ, T

(s+1)
off − T

(s+1)
on + λρ)

using a Gibbs step

5. Set the next state as (T
(s+1)
on , T

(s+1)
off , ρ(s+1)).

B.2 Probability mass function of ge
sam ∼ H0

Consider the notation of sections 3.2.1 and 3.2.2. The random vector ge
sam

=

(ge
sam

1 , ge
sam

2 , ..., ge
sam

n ) ∼ H0 has support ge
sam

k ∈ {1, 2, ..., l}, k = 1, 2, ..., n, and

for household label vector ge = (ge1 , g
e
2 , ..., g

e
n), corresponding to time-ordered event

times e = (e1, e2, ..., en), its joint probability mass function (p.m.f.) fgesam (ge) is

given by

fgesam (ge) = P (ge
sam

= ge) = P (ge
sam

1 = ge1 , g
esam

2 = ge2 , ..., g
esam

n = gen)

= P (ge
sam

1 = ge1 )P (ge
sam

2 = ge2 | He−2
) . . . P (ge

sam

n = gen | He−n
)

(B.2)

where, the first of the above terms (the marginal p.m.f. of ge
sam

1 ) is calculated as

P (ge
sam

1 = m) = Cm
C

, for m = 1, 2, ..., l, and the remaining terms (the marginal p.m.f.

of ge
sam

k , conditioned on He−k
, k = 2, 3, ..., n) as P (ge

sam

k = m | He−k
) =

Cm−ν(m)
H
e−
k

C−(k−1)
, for

m = 1, 2, ..., l, k = 2, 3, ..., n, where Ht− denotes the history of the process up to time

t− (where t− is the time just before time t) and ν
(m)
Ht−

denotes the number of times

that the label of household m appears in ge, up to time t−.
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