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ABSTRACT 

Low frequency structural vibration is a common issue in engineering 

applications. In recent decades, the local resonant type metamaterial concept was 

proposed as a potential solution to the vibration control problems. In particularly, 

the membrane-type metamaterial (MemM) is widely studied for its extraordinary 

sound isolation performance. As a lightweight metamaterial, the related research 

works mainly focus on MemM’s acoustic property yet its structural vibration 

absorption capability is not fully investigated. Researches about some problems 

and research gaps, such as the development of analytical model for bandgap 

property prediction, investigation of bandgap formation mechanism, 

confirmation of key design parameters and the corresponding effect on bandgap 

property and development semi-active control algorithm, are still limited in the 

MemM research area. 

Therefore, to further investigate the MemM, the main research contents and 

novelty of this study are: 

1. Based on the local resonant phenomenon, this study proposes a novel 

design of elastic metamaterial (EM) for the purpose of investigating the 

bandgap formation mechanism. Modal analysis is conducted to help 

understanding the relationship between local resonant phenomenon and 

bandgap formation. Also, we study the tuning of bandgap properties 

through geometrical structure adjustment. The structural vibration 

absorption capability and bandgap tunability of the EM is verified 

through numerical simulation and experiment. 
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2. This study proposes a modified Plane Wave Expansion (PWE) model for 

predicting the bandgap property of MemM applied on a thin plate. 

Further modification is made to allow the bandgap calculation for bilayer 

MemM. The accuracy of the analytical model is verified by numerical 

simulation. It is the first analytical model derived specifically for the 

application of MemM. The tensile stress of membrane is contained in the 

model as an independent variable. In order to reveal the effect of the 

design parameters – such as tensile stress attached mass magnitude – on 

the bandgap property, parametric analysis can be conducted by using this 

analytical model. 

3. This study also proposes an analytical model that can predict the bandgap 

property and bandgap tunability of MemM equipped with polyvinylidene 

difluoride (PVDF) membrane. It is the first analytical model integrates 

the piezoelectric material properties into MemM model for bandgap 

prediction.  

4. The MemM’s thin plate vibration suppression performance is 

investigated experimentally.  

5. This study combines the analytical model of membrane-type resonator 

(MemR) with the thin plate – resonator coupling model. The integrated 

model allows the prediction and investigation of a thin plate structure’s 

vibration response when MemRs are attached. Different from the 

modified PWE model, this analytical model allows the adjustment of 

resonator settings individually. Therefore, optimisation of resonator 

allocation and distribution can be achieved through this model.    



3 

 

6. Preliminary derivation of semi-active control algorithm for the PVDF 

MemM is conducted. It provides solid concept proof and support for the 

future application of PVDF MemM and realisation of semi-active control 

MemM.  

In conclusion, this study has investigated the structural vibration absorption 

capability of metamaterial and examined the local resonant phenomenon’s effect 

on bandgap forming. It develops the bandgap property prediction method of 

MemM, constructs analytical model for the MemM that applied to thin plate 

structure and builds up the control system model for PVDF MemM’s semi-active 

control algorithm. It enriches the analytical foundation of the MemM, and will 

encourage the design, optimisation and application of MemM.  
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Chapter 1 

1. INTRODUCTION 

1.1 Research Background and Motivation 

Mechanical vibration is a widely acknowledged phenomenon that can jeopardise 

structures and human health by causing fatigue, noise pollution and structural 

failure. Different techniques have been developed for vibration control and 

suppression in different applications [1, 2, 3, 4]. A most traditional way of 

suppressing vibration is to apply passive damping layer that composed by 

viscoelastic materials to the primary system [5], and such measure is effective in 

eliminating high frequency (<2000 Hz) the vibration. However, the damping 

layer cannot effectively control the low frequency vibration. As a result, 

measures for controlling low frequency vibration are in demand. A commonly 

used method is by adding a tuned mass damper (TMD) to the primary system. 

The TMD is able to absorb the vibration kinetic energy of the primary system 

and dissipate it by transforming the kinetic into other forms of energy (heat, field 

energy etc.). Hartog [6] demonstrates in his book that a TMD comprised of a 

mass, spring and damper can effectively control the vibration of the primary 

structure that under harmonic excitation. However, the TMD also has assignable 

disadvantages: First, for the vibration absorption satisfactory, the TMD should 

have certain mass which is proportional to the primary structure; second, it 

brings extra difficulties in design and installation for the primary structure; third, 

it has a narrow operation frequency band [7]. In practical situations, the 

disturbance signal may have a wide frequency range. In order to achieve wide 

frequency range absorption, usage of multiple TMDs simultaneously is proposed 

for application [8]. Yet this solution leads to the first disadvantage and therefore, 
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a new effective solution for vibration control that with small mass and wide 

frequency range is needed.  

Phononic Crystal (PnC), which is a manually engineered composite material that 

has spatial periodicity, was proposed in 1993 [8, 9]. The concept of phononic 

crystal was originally developed from photonic crystal. In 1987, John [10] 

proposed the concept of photonic crystal, and pointed out that the refractive 

index within the material was designed artificially in a periodic pattern, so 

optical waves can propagate in an analogous way as electrons in real crystals. 

Such phenomenon can be described as possessing band structure characteristics. 

Similar to photonic crystals [11], PnC is able to attenuate or manipulate the 

elastic waves over certain frequencies, and such frequency regions are called 

bandgaps. The bandgap generating mechanism of PnC is based on the Bragg 

Scattering phenomenon [12]. When periodic structure of the PnC is in 

wavelength scale, interference to the acoustic wave in corresponding wavelength 

will be generated and as a result, the acoustic wave propagation can be 

manipulated [13, 14, 15]. However, since the lattice constant of the PnC needs 

to be in the same order as the affected wavelength, the application of PnC in low 

frequency range is limited by the size requirement. As the main noise and 

vibration facing in daily lives and industrial fields are in low frequency regions 

[16], and the low frequency waves have a better penetrating ability than the high 

frequency ones, therefore PnC is not the best choice for the low frequency 

vibration control.  

Acoustic metamaterials (AM), which can also generate bandgaps, are proposed 

later for attenuating of the elastic wave propagation. Different from PnC, AM 

bandgap mechanism is based on localized resonant phenomenon [17]. 
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Metamaterials are manually engineered structures that formed by one or several 

kinds of materials. They possess material properties that are not available in 

natural [18], such as negative Poisson’s ratio and negative modulus. AM is a 

subwavelength structure, which means it can affect the elastic waves that have 

larger wave lengths than the metamaterial structure’s size. It can thus work 

effectively in low frequency range without requiring a considerable space. While 

the main focus of AM’s function is on acoustic wave attenuation or control [19], 

elastic metamaterial (EM), the focus of which is the attenuation of elastic wave 

and structural vibration, has also come to researchers’ attention. The theoretical 

basis of AM and EM are similar to each other, so in this thesis, both will be 

mentioned and reviewed. Many different kinds of AMs/EMs have been designed 

and proposed in the past decades, yet the actual application are rare. Further 

researches about factors that influence metamaterial’s bandgap property, 

geometry structure optimisation and analytical models for rapid design are 

required to enable the application. In particularly, the broadening of bandgap 

width, investigation of controllable bandgap and a convenient method for 

metamaterial design in accordance with the application environment are 3 key 

elements that drive the metamaterial from labs to engineering fields.  

These deficiency in metamaterial’s research and its lack of engineering 

application motivate the author to conduct this study. The work mainly focus on 

the membrane-type metamaterial (MemM), though an elastic metamaterial is 

also designed preliminary for concept proof and study.  

The MemM consists a supporting frame that fixed with membrane decorated 

with mass. Tensile stress is applied to the membrane for the purpose of stiffening 

[20]. For deeper understanding of the metamaterial vibration absorption 
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mechanism, the author intends to find out the key factors that influence the 

bandgap property of metamaterial through the design of a new elastic 

metamaterial structure. Also, to make the bandgap prediction of MemM more 

convenient, a modified theoretical model needs to be constructed.  

The research can broaden the theoretical background of MemMs, and investigate 

the vibration control performance of a MemM under different conditions and fill 

the existing research gap. Otherwise, in this study, the feasibility of realising 

bandgap tuning through using piezoelectric material as the membrane is 

investigated. For a MemM with piezoelectric material membrane, the tuning of 

bandgap can be achieved through adjusting the applied electric field intensity 

[21] and thus allow the MemM to possess agile controllability. This work 

provides a detailed feasibility assessment for the usage of piezoelectric 

membrane and for the bandgap tuning ability. It demonstrates a potential 

development pathway for the MemM.  
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1.2 Aims and Objectives 

The main aims of the research are: 

Aim 1. Investigate the EM bandgap mechanism and possibility of forming a 

broad low frequency bandgap; 

Aim 2. Reveal the performance and effect of MemM in structural vibration 

control; 

Aim 3. Reveal the feasibility of enabling MemM to possess active tuning 

capability.  

To accomplish these aims, corresponding objectives are planned as stage-gates.  

For Aim1: 

(i). Study the bandgap forming mechanism, vibration absorption of metamaterial; 

(ii). Design a novel EM in accordance to the bandgap mechanism, and enable it 

to have broad bandgap; 

(iii). Investigate the key design factors of the proposed EM through numerical 

simulation and examine the accuracy by experimental work. 

For Aim 2: 

(i). Study the bandgap mechanism of MemM structures and the key factors that 

affect the bandgap properties; 

(ii). Study the vibration characteristics of membrane structures, develop a 

theoretical model for the estimation of MemM structure’s bandgap properties 

and examine the key factors’ effect; 
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(iii). Verify the accuracy of the model and effect of key factors through 

numerical simulation; 

(iv). Conduct experimental work to support the findings. 

For Aim 3: 

(i). Study the characteristics of piezoelectric material and its constitutive 

equations; 

(ii). Incorporate the proposed theoretical model for MemM structure with the 

piezoelectric constitutive equations and construct equations between applied 

voltage and MemM bandgap properties; 

(iii). Simulate the effect of using piezoelectric material in MemM and the 

vibration control performance.  
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1.3 Research Significance 

The general purpose of this research is to study the vibration absorption 

performance of metamaterial and to investigate the possibility of enhancing the 

metamaterial’s bandgap property. Conducted research works mainly focus on: 

the analytical model development, vibration control performance and 

adjustability of metamaterial. The main contributions of this research are:  

1. In this work, a novel elastic metamaterial (EM) structure that can generate low 

frequency bandgap in structural vibration is designed. The vibration absorption 

performance of the proposed EM when applied to a thin plate structure is 

investigated. This is different from the other EM researches which mainly focus 

on the vibration absorption of the EM structure itself, rather than applying it to 

a target structure. This research demonstrates the effectiveness of EM in 

vibration absorption for a thin plate, and thus encourage the actual application 

of EM.  

2. This study derives a new analytical mode based on Plane Wave Expansion 

(PWE) model for the prediction of MemM bandgap properties. It is the first 

analytical model that can estimate the bandgap location and width of MemM 

attached to a thin plate and can reveal the influence of the tuning of MemR’s 

design parameters – such as tensile stress and attached mass magnitudes – on 

bandgap properties.  

3. It modifies the PWE model and integrate it with the piezoelectric constitutive 

equations for the first time. The model allows the bandgap prediction of 

membrane-type metamaterial (MemM) with polyvinylidene difluoride (PVDF) 

membrane. The relation between applied electric field intensity and 
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corresponding tensile stress can be derived through constitutive equations. In 

addition, the vibration absorption capability of the MemM equipped with 

piezoelectric material membrane was investigated. The accuracy of the model 

and effectiveness of adjustability of MemM with piezoelectric material were 

verified through numerical simulation.  

4. It develops the semi-active control algorithm of the PVDF MemM. Based on 

the modified PWE model and thin plate – resonator coupling model, the basic 

analytical model of semi-active control system of the PVDF MemM attached on 

a thin plate structure is developed.  

This research has systematically studied the MemM’s structural vibration 

absorption performance and the feasibility of conducting bandgap tuning. 

Analytical models are developed to conduct bandgap prediction and to reveal the 

effect of design parameters. Numerical simulation and experimental works 

demonstrate the effectiveness of MemM in structural vibration control. Also, a 

design of EM that can generate a broad low frequency bandgap is proposed. The 

research outcomes can encourage the development and application of 

metamaterial in vibration control field. 
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1.4 Literature Review 

1.4.1 Origin of metamaterial concept 

Periodic structures can affect propagation of elastic waves, and the related 

researches about periodic materials’ corresponding functions can be traced back 

to Sir Isaac Newton’s work in 18th century, as illustrated by Brillouin [22]. The 

propagation of elastic wave in periodic structures then drew attention when 

researchers tried to find a way of assessing the laminated composite materials’ 

integrity through non-destructive evaluation (NDE) methods [23]. Continuum 

theory was then developed for the analysis of laminated composite [24] and the 

harmonic wave propagation in periodic structures’ formulations were given by 

Nemat-Nasser [25]. These works tried to find out the relationships among the 

stress, strain and displacement in the composite. By combining various layers’ 

dynamic characteristics, the wave dispersion and propagation properties are 

revealed, as well as the equivalent stiffness and mass properties of the whole 

laminated structure. The transfer matrix approach is one of the first methods used 

for wave dispersion and propagation properties analysing, for example the 

method introduced in the work by Fahmy and Adler [26]. For estimating 

equivalent properties, some researchers tried to use mixture theories [27]. These 

studies provide theoretical basis and methods for the study of PnC and AM. 

In 1968, Veselago first proposed a concept of metamaterial, in which it described 

a material having negative dielectric constant and permeability [28]. The 

validation of this concept demonstrates that through proper design, a manually 

created material can possessing properties that unavailable in nature. In 1993, 

Kushwaha et al. [9] proposed the concept of phononic crystal (PnC). As 

mentioned earlier, the PnC can form bandgaps within which the elastic wave 
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propagation will be attenuated or manipulated. Since PnC’s bandgap mechanism 

relies on Bragg scattering theorem, its lattice constant size should be in the same 

scale as the manipulated wavelength. Because of this characteristic, the 

dispersion relation of a PnC is sensitive to the lattice constant and therefore, a 

resonance cavity or waveguide pathway can be formed by creating a defect in 

the periodic structure [29]. However, because the necessity of relatively large 

structure size, utilisation of PnC in low frequency area is limited. Otherwise, the 

tuning of operation frequency of a PnC will require the changing of whole 

structure’s periodicity, so it causes extra difficulty in application.  

In 1995, the first experimental study of PnC material’s wave attenuation 

capability was conducted by Mártinez-Sala et al. [30]. In their work, the sound 

attenuation traits of a sculpture that consists of periodically arranged steel 

cylinders was measured and a bandgap is found. However, the measured 

bandgap is later proved to be a pseudo-gap, which means it is not related with 

the vanishing of density of states [31]. In the next year, de Espinosa et al. [32] 

accomplished the experiment that observed full bandgap in a 2D periodic 

structures. The structure is formed by an array of cylindrical holes in aluminium 

alloy plate, and filled with mercury [32].  These experiments provide solid proof 

for the PnCs’ bandgap existence. Since then, numerous studies have attempted 

to investigate the bandgap formation mechanism, key design factors and 

possibilities of PnC applications. 

In 2000, Liu et al. published their work in which they describe a sonic crystal 

that can attenuate elastic wave propagation in subwavelength scale. The sonic 

crystal (shown in Figure 1) was composed of silicone rubber coated lead spheres, 

and a rigid epoxy frame. The spheres are located in an 8 × 8 × 8 array whose 
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lattice constant is 1.55cm, and the spheres are fixed on the rigid epoxy frame. In 

such structure, each of the lead spheres can be equivalent to a resonator, and 

therefore it will experience resonant vibration when under certain excitation. 

Thus, when the incident wave frequency is near the resonance frequency, the 

sonic crystal can exhibit negative elastic constants, and attenuate the wave 

propagation. Instead of Bragg scattering theorem, the working mechanism of this 

sonic crystal is based on the localized resonant phenomenon [17]. According to 

the results, two obvious bandgaps are found at about 400Hz and 1400Hz 

[17].The sonic crystal is considered as the original AM. 

 

Figure 1. (a) Schematic figure of a sphere in the sonic crystal; (b)Sonic crystal in 8 × 8 × 8 array; (c) 

Band structure of the sonic crystal in 0-2000Hz frequency range [17, 33]. 

Actually, there is not yet a commonly acknowledged definition about 

metamaterial, and whether PnC can be considered as AM. Yet it is widely 

acknowledged that metamaterials are artificial designed structures made from 

normal materials, and possess negative physical properties [18]. Fok et al. 

defined all materials generating bandgap relying on localized resonant 

phenomenon as AM, and those based on Bragg theory as PnC [34]. For clarity 

of the bandgap mechanism, classification method of Fok et al. is adopted in this 

work.  
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Currently, there are several different kinds of metamaterials, such as acoustic 

metamaterials [35], elastic metamaterials [3], hyper-damping metamaterials [36] 

and electromagnetic metamaterials [37] [38]. Since both the AMs and EMs are 

focusing on the propagation of elastic wave and the bandgap mechanisms are the 

same, so both AM and EM are reviewed in this chapter.  

 

1.4.2 Research and development of acoustic metamaterial (AM) /elastic 

metamaterial (EM) 

1.4.2.1 Negative material properties of metamaterial 

A metamaterial is a subwavelength structure, which means the structure size is 

much smaller than the wavelength of the interfered waves, so the transmitting of 

elastic wave can be considered as travelling in a homogeneous medium.  

Therefore, effective material properties, such as effective bulk modulus, 

effective permittivity and effective mass density, are able to describe the 

characteristics of the metamaterial [39].  

In AM/EM, negative effective mass density and bulk modulus are the most 

common properties attribute to generate bandgap. To illustrate the negative mass 

density effect, a mass-in-mass model is introduced in [33]. As given in Figure 2, 

mass 𝑀2 is coupled with 𝑀1 through spring. The system is under a sinusoidal 

excitation force 𝐹 and the stiffness of the spring is 𝐾. Assume that there is no 

friction between 𝑀1  and 𝑀2  and consider the whole system as an effective 

mass 𝑀𝑒, then the equivalent mass is given by 𝑀𝑒 = 𝑀1 +
𝐾

𝜔0
2−𝜔2

, where 𝜔0 =

√
𝐾

𝑀2
 is the resonance frequency of 𝑀2. When tuning the frequency 𝜔 to a certain 
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value, the equivalent mass will become negative and therefore one can find 

negative effective mass density 𝜌𝑒. With negative mass density, the system will 

experience out-of-phase motion with the incident force, and therefore help 

stabilizing the system and prevent wave transmitting. More details can be 

referred to [40, 41]. 

 

Figure 2. A mass-in-mass model that possess negative effective mass density. 

The negative effective mass density is mainly attributing to the structures that 

allow relative displacements among components. In addition, for the motion in 

compression-extension mode, bulk modulus is adopted for description. The 

mechanism for negative bulk modulus derivation is similar, and more details can 

be reviewed at [42, 43].  

Otherwise, similar to the electromagnetic metamaterial with negative 

permittivity and dielectric, the negative material properties can exist 

simultaneously for elastic or acoustic wave as well. Although negative properties 

are not necessarily appearing simultaneously when defining a metamaterial, AM 

with double negative properties (negative bulk modulus and effective mass 

density) was theoretically demonstrated to be feasible [43]. Zhou and Hu [44] 

identifies that the negative dynamic mass was caused by dipolar resonance, a 

phenomenon in which the total momentum of the system is in opposite direction 

to the macroscopic velocity, and the negative bulk modulus is caused by 
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monopole resonance of microscopic structures. It is also verified by Ding and 

colleagues [45]. Instead of multiphase components, metamaterial made of solid 

materials was also reported to be able to achieve double negative properties [46]. 

Similarly, a structure shown in Figure 3 can reveal negative dynamic mass when 

the masses are performing translation motion and negative bulk modulus when 

performing centrifugal motions [47]. Therefore, the above introduced work 

demonstrate that the negative properties can be realised by geometric design.  

 

Figure 3. Microstructure model of metamaterial with double negative parameters [47] 

Huang and Sun [48] analysed the wave attenuation mechanism of a metamaterial 

with negative effective mass density. The results explain that the transmitting 

elastic wave energy within the metamaterial is first absorbed and stored by the 

unit cells, then taken out by the external force when negative effect occurred. 

Thus the transmission of elastic wave is attenuated. Actually, damping of the 

structure materials is also able to dissipate the energy and achieve wave 

attenuation [49, 50].  

Otherwise, negative bulk modulus can also be realized by Helmholtz resonator 

structure, as demonstrated by Fang et al. [42] . Instead of using combinations of 

different materials, the Helmholtz resonators creates a unique geometry structure 

that can allow the air/fluid within the resonator cavity to be simplified as mass-
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spring model [51]. The air/fluid in the neck is in small volume and thus assumed 

to be incompressible. It is considered as mass and the cavity provides equivalent 

stiffness [33]. The effective bulk modulus can be expressed as 
1

𝐵𝑒𝑓𝑓
=

1

𝐵
(1 −

𝛼𝜔𝑛
2

𝜔2−𝜔𝑛
2+𝑖𝜔𝛾

), where 𝐵 is the bulk modulus of the air/fluid within cavity, 𝜔 is the 

excitation frequency, 𝜔𝑛  is the resonant frequency of the resonator, 𝛼  is 

determined by 𝜔𝑛 < 𝜔 < 𝜔𝑛√1 + 𝛼, defining the bandgap width, and 𝛾 is the 

dissipation loss of resonating [52]. Therefore the effective bulk modulus can be 

negative under certain incident frequency.  

 

Figure 4. Configuration of Helmholtz resonator unit (upper) and the series of Helmholtz resonators 

connecter to a tube structure for wave absorption [33].  

Actually, Helmholtz resonators have been adopted for noise control in different 

systems for many years [53, 54]. The bandgap property of the Helmholtz 

resonator composed AM can be effectively tuned by the geometric parameters, 

such as the neck length [55] and shape of the neck orifice [56]. 

1.4.2.2 Different designs of AM/EM 

In the past two decades, AMs/EMs with various structure configurations have 

been proposed [33, 57, 58]. Most commonly used structures are reviewed. 
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The first kind is rigid inclusions wrapped by elastic materials and fixed onto 

square lattice structure. This is the first configuration of AM as proposed by Liu 

et al. [17]. Since then, numerous studies have been conducted to investigate the 

bandgap mechanism and key factors, such as periodicity, geometric size and 

shape of inclusions, that influencing the bandgap property of this structure. For 

example, Hirsekorn et al. conducted numerical simulation on a 2D sonic 

materials and concluded that the lattice constant has no effect on bandgap 

location, which means the bandgap frequency is entirely due to locally resonant 

phenomenon [59]. Another study published by Hirsekorn and Delsanto used 

finite element modal analysis (FEMA) to investigate the bandgap performance 

of a metamaterial with asymmetric inclusion [60]. The results demonstrate that 

the existence of bandgap is closely related with the resonant modes of the unit 

cell, and the break of symmetric in unit cell can lead to wider bandgap width. 

Otherwise, structure containing different inclusions were also studied by Qi et 

al. [61]. They reported a double local resonance mechanism, caused by two 

different types of rigid inclusion in the structure. It is found that the bandgap 

location and width are determined by the mass density, radius and elastic 

modulus of the inclusion bodies. The larger difference of the mass density and 

elastic modulus will lead to wider bandgap width.  

These research works illustrated the importance of unit cell structures in bandgap 

properties. However, the configurations of such type of AMs/EMs are normally 

simple and in two-dimensional structure, the space for optimisation and 

modification of inclusion/coating material is insufficient. As a result, the second 

type of AM/EM structure is proposed as a transformation of the first kind.  
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The locally resonant mechanism of the rigid-elastic structure is realised by using 

the mass-spring resonator or equivalent system.  

A metamaterial structure made by polyamide was reported as an innovative 

solution for noise and vibration problems in pipes [62]. As shown in Figure 5, in 

each of the unit cell, two relatively thin supporting beams are connected to the 

thick lump mass. The cell configuration can be simplified into a mass-spring 

system as the supporting beams are providing equivalent stiffness.   

 

Figure 5. The configuration of the metamaterial pipe (left) and a unit cell (right) [62]. 

As this type of structure is more similar to mass-spring resonator, the application 

is mainly targeted at structural vibration rather than acoustical aspect. A 

metamaterial with slot-embedded local resonator was reported by He and Huang 

[63]. The structure is able to generate a complete low-frequency bandgap when 

applied to a thin plate and parametric studies indicated that the changing of mass 

and stiffness of the resonator can directly change the bandgap location or even 

eliminate the bandgap. Similar conclusion is also given by Huang et al. [64]. 

They introduced a novel structure as shown in Figure 6(a). Through adjusting 

the total size and ratio of ℎ1/ℎ2 on the stub, the bandgap location can be tuned 

effectively, as shown in Figure 6 (b)-(d). These research works demonstrated 

that in a specific type of AM/EM, the bandgap property, especially the bandgap 
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location, can be tuned by adjusting the geometric structure. In practical, the 

external vibration or noise are normally combinations of waves in various 

frequencies, thus the AM/EM with a tunable and/or broad bandgap width is 

essential in application.  

 

Figure 6. (a) Top view (left) and side view (right) of the configuration of the unit cell designed by Huang 

et al. [64]. The different bandgaps when the stub size ratio ℎ1/ℎ2  is adjusted are given in (b) (c) and (d).  

The tuning of bandgap through geometric parameters are considered as a passive 

control method for bandgap. Matlack et al. constructed a tunable EM composed 

of elastic cubic lattice and rigid inclusion by 3D printing technique (Figure 7) 

[65]. By reducing the number of supporting beams for the steel cube, the 

equivalent stiffness of the unit cell is decreased simultaneously. As a result, the 

bandgap location will be changed accordingly, as shown in Figure 7(d). Similar 

works can be referred to [66]. 



23 

 

 

Figure 7. (a) Configuration of the cubic lattice and a unit cell of the metamaterial. (b) Locally resonant 

mode shapes of the unit cells with high, medium and low equivalent stiffness. (c) Sample of the designed 

metamaterial. (d) FEA simulation results (dashed red) and the experimental results (solid blue) for the 

high stiffness (upper) and low stiffness (lower) structure. [65]  

The third type of metamaterial is composed of Helmholtz resonator, details about 

this type of metamaterial can be found in [53]-[56]. [53] [54] [55] [56]. 

The fourth type is the MemM and it will be discussed in Section 1.4.3. 
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1.4.2.3 Bandgap property calculation methods 

In the study of AM/EM and PnC, the calculation methods for the band structure 

are developed. Band structure, which is also called dispersion relation, is 

originally a concept from solid state physics. It represents the relation between 

the energy and momentum of a system. For the elastic wave, the wave energy 

and momentum are directly proportional to the frequency and wave vector 

respectively. Therefore, the dispersion relation of elastic waves are revealed by 

the relation of frequency and wave vector [67]. Literature review have indicated 

that there are mainly 5 commonly used methods [68]: 

1. Plane Wave Expansion (PWE) [9, 69, 70]; 

2. Transfer Matrices Method (TMM) [71, 72]; 

3. Multiple Scattering Theory (MST) [73, 74, 75]; 

4. Finite-Difference Time-Domain (FDTD) [76, 77]; 

5. Lump-mass method (LMM) [78]. 

Among these methods, the PWE is one of the mostly used. It is feasible for 1D, 

2D and 3D periodical structures. Sigalas and Economous used PWE method for 

a 2D PnC applied on thin plate structure [69], and this method is extended to 3D 

structures [79]. In a periodical structure, by applying Bloch–Floquet theorem, 

the PWE method conducts Fourier series expansion of the displacement, density 

and modulus in the reciprocal lattice vector space and thus changes the 

dispersion relation problem into eigenvalue problem. Scan the wave vector on 

the Brillouin zone boundary of the structure, and work out the corresponding 

eigenfrequencies. The band structure can then be revealed by plotting the 

eigenfrequencies against the wave vector.  
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For example, the displacement 𝑢(𝑟, 𝑡)  of a periodic structure at any point 

𝑟(𝑥, 𝑦, 𝑧) can be expressed as [9]: 

 𝑢(𝑟, 𝑡) = 𝑒𝑖(𝑘𝑟−𝜔𝑡) ∑ 𝑢𝑘(𝐺)𝑒
𝑖𝐺𝑟

𝐺   (1-1) 

where 𝑘  is the wave vector, 𝐺  is the reciprocal-lattice, and 𝑡  is time. By 

submitting this equation into the governing equation of motion of the system, 

and scan 𝑘 along the area of the irreducible region, the equation of motion will 

become a set of equations for the eigenvectors 𝑢𝑘(𝐺)  and 

eigenfrequencies  𝜔(𝑘) . The solution of these equations will then give the 

dispersion relation of the system and reveal the band structures. Such as the 

example published in [9], the band structure is given in Figure 8. Each of the 

band curve along the wave vector is formed by the eigenfrequencies, and the 

resolution of the curve is decided by the step size of the wave vector whilst the 

number of plane waves is relying on the truncation number of the infinite 

expansion series [79].     

 

Figure 8. Band structure of a periodic array of aluminium alloy cylinders in a nickel alloy background 

[9].  
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There is research pointed out that the PWE method has the disadvantage of slow 

convergence because in order to ensure the accuracy, the truncation number 

needs to be relatively large for the Fourier series [80]. In addition, the PWE 

method cannot be applied to systems with complicated boundary conditions. 

Also, the Fourier series in the interface of different materials is slowing down 

the convergence. However, Cao et al. argued that the convergence problem is 

not caused by the interface but the inappropriate formulation that adopted for 

eigenvalue problem [81]. In the past few decades, PWE method was adopted in 

many research works that focused on photonic crystal and PnC, so its 

effectiveness is widely acknowledged [82, 83, 9, 84]. 

PWE method has the advantage that it has no assumption conditions introduced 

and the calculation programming is relatively simple. Therefore, in this work, 

PWE method is selected and modified for the calculation of bandgap structure. 

Detailed derivation and modification is presented in Chapter 2.  

Otherwise, the FEA method is also widely used in the studies of metamaterial. 

It is convenience for the complicated structures. According to the Bloch theorem, 

the FEA can calculate the band structure of a metamaterial by applying periodic 

boundary condition to one unit cell and therefore dramatically reduced the 

calculation quantity. Moreover, the FEA is also utilised for the numerical 

simulation of finite metamaterial structures and for examining the accuracy of 

band structure estimation through the infinite structures.  
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1.4.3 Development of membrane-type metamaterial (MemM) 

1.4.3.1 Study of MemM’s bandgap property 

In 2008, Yang et al. [85] introduced the design of MemM for sound reflection 

purpose for the first time. The MemM achieves a near total reflection of sound 

wave at 237Hz, and demonstrates the existence of negative dynamic mass. This 

result provides solid proof for the effectiveness of MemM in sound isolation. 

The proposed MemM consists of a circular elastic membrane with attached small 

mass, and a rigid grid the membrane is fixed on. Most of the MemMs have the 

same or similar configuration, therefore the MemMs have the advantages of easy 

manufacturing, low cost and lightweight. Especially, the thin thickness of the 

MemM makes it has relatively low requirement in space for installation and it is 

very suitable for application on plate structures.  

The study of MemM bandgap property mainly focused on the bandgap location 

and bandgap mechanism. Similar to other locally resonant type metamaterial, 

the unit cell of a MemM, or so-called membrane-type resonator (MemR), can be 

simplified as a mass-spring model. The stiffness is provided by the prestressed 

elastic membrane, as a result of the stress stiffening phenomenon [21]. It is 

normally the fundamental resonant mode of the MemR that can generate 

bandgap [86], so the estimation of MemM’s bandgap location relies on the 

membrane-with-mass system’s resonant frequency. Otherwise, although 

generating bandgaps by locally resonant type metamaterial depends on the unit 

cell structure, the revealing of bandgap still requires certain periodic structure. It 

is because in most cases, the size of one unit cell is relatively small and the 

energy dissipation is not sufficient. Hence, to predict the band structure, the unit 
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cell structure’s equivalent properties, such as equivalent stiffness, need to be 

obtained and then substitute into existing methods.  

Zhang et al. simplified a MemM beam as a beam structure with periodic 

resonator attached and established the equation of motion for the system based 

on the Kirchhoff theory [87]. Through this model, they calculated the bandgap 

location and the influence of membrane equivalent stiffness on effective mass 

density. However, instead of explaining the acquisition process of membrane 

equivalent stiffness, it is assumed directly in the study. Nouh et al. adopted the 

TMM and FEA method for the calculation of MemM formed beam and plate 

structures’ bandgap [88]. They also carried out experimental works to validate 

the prediction of the proposed finite element model and results are found 

consistent with each other. The configuration of the tested plate structures and 

corresponding experiment setting is shown in Figure 9. According to the results, 

the plate with MemRs effectively attenuated the vibration from the shaker.  

Dong et al. used FEA method to calculate the resonant frequencies of the 

membrane attached with mass model and explored the relation between resonant 

frequencies and membrane thickness under different level of tensile stress [89]. 

They found that with the same tensile stress applied, the increase of membrane 

thickness will reduce the resonant frequencies. Zhang et al. studied a beam 

structure composed of MemRs, and by using FEA software COMSOL 

Multiphysics, they revealed the bandgap property of the structure when applied 

with various tensile stress [90]. The resonant frequencies of the MemR are 

obtained directly in the FEA.  
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Figure 9. (a) Configurations of the tested plates. (b) Experiment setting for the testing of MemM Plate 4. 

(c) Mode shape of the MemM Plate 4 measured by Laser Doppler Vibrometer. (d) Frequency response of 

the MemM plate’s tip deflection as a ration of the base excitation measured by the accelerometer. [88] 

In these research works, the defining or acquisition method of the equivalent 

stiffness of the MemRs are not explained. The equivalent stiffness of the MemR 

system is either assumed directly [87] or calculated through FEA [90].  

Several papers have introduced the calculation process of membrane-with-mass 

system’s resonant frequency. Nagaya and Poltorak solved the boundary value 

problem of circular outer boundary membrane with eccentric circular inner 

boundaries that described by the Helmholtz equation [91]. It adopts the point-

matching approach representing the inner boundary. It presents an effective 

solution for the problem that similar to membrane-with-mass system, but as it is 

mainly focusing on the mathematical aspect, it’s usage in the physical field is 

not explored.  
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Kopmaz and Telli presented an analytical method of finding the 

eigenfrequencies of a rectangular plate carrying a uniformly distributed mass 

[92]. In their work, the area attached with mass is defined by the Heaviside 

function. It was mainly focusing on the plate structure. However, a membrane 

structure has similar equation of motion as a plate structure, but only ignored the 

bending stiffness of the membrane. Therefore, similar to this model, Zhang et al. 

proposed an analytical model for the fast calculation of sound transmission loss 

of MemM. In this model, they considered the inertia forces of the attached mass 

on membrane as a concentrated force, and with the application of Heaviside 

functions, the area of the attached mass was defined [93]. According to their 

work, the equation of motion of a membrane-with-mass system can be given by: 

 𝜌𝑠
𝜕2𝑤

𝜕𝑡2
+ 𝜌𝑚𝑎𝑠𝑠ℎ(𝑥, 𝑦, 𝑥0, 𝑦0, 𝑙𝑥, 𝑙𝑦)

𝜕2𝑤

𝜕𝑡2
− 𝑇∇2𝑤 = 0 (1-2) 

In this equation, 𝑤 is the displacement, 𝜌𝑠  and 𝜌𝑚𝑎𝑠𝑠  are the density per unit 

area of the membrane and mass respectively, 𝑇 is tension per unit length, and 

ℎ(𝑥, 𝑦, 𝑥0, 𝑦0, 𝑙𝑥, 𝑙𝑦) is a combination of four Heaviside functions that outlining 

the mass area. With incident sound wave, the equation of motion can then be 

changed to: 

𝜌𝑠
𝜕2𝑤

𝜕𝑡2
+ 𝜌𝑚𝑎𝑠𝑠ℎ(𝑥, 𝑦, 𝑥0, 𝑦0, 𝑙𝑥, 𝑙𝑦)

𝜕2𝑤

𝜕𝑡2
+ 2𝜌1𝑐1

𝜕𝑤

𝜕𝑡
− 𝑇∇2𝑤 = 2𝐴𝑒𝑖𝜔𝑡 (1-3) 

where 𝐴, 𝜌1 and 𝑐1 are the amplitude of the incident pressure, mass density and 

sound speed of the air. By using the superposition theory the mode function of 

the displacement 𝑤 can be expanded into series and the above equation will 

transfer into a matrix form. With a proper truncation of the mode number, the 

displacement amplitude can be derived, and therefore the transmission 



31 

 

coefficient. Also, the eigenfrequencies of the membrane-with-mass structure can 

be obtained by solving the eigenvalue problem.  

However, in this method, the bending stiffness of the membrane is ignored and 

the mass attached area is allowed to bend. In actual, the membrane’s bending 

stiffness is relatively small, however will still affect vibration of the system. In 

addition, the attached mass is normally a rigid platelet so the mass area is not 

able to bend. The allowing of bending will affect the accuracy of the mode 

function of assumption. Therefore, when the attached mass is relatively big or 

thick in geometric size if compared with the membrane area, the accuracy of this 

method may be weaken.  

Chen et al. used the Rayleigh method for the resonant frequency prediction of 

membrane-with-mass model [86]. According to their work, the maximum strain 

and kinetic energy of the membrane-with-mass model are given as: 

𝑈𝑚𝑎𝑥 =
1

2
∬𝐷{(

𝜕2𝑤

𝜕𝑥2
+
𝜕2𝑤

𝜕𝑦2
)2 − 2(1 − 𝑣)[

𝜕2𝑤

𝜕𝑥2
𝜕2𝑤

𝜕𝑦2
− (

𝜕2𝑤

𝜕𝑥𝜕𝑦
)2]}𝑑𝑥𝑑𝑦

+
1

2
∬𝑇[(

𝜕2𝑤

𝜕𝑥2
)2 + (

𝜕2𝑤

𝜕𝑦2
)2]𝑑𝑥𝑑𝑦 

 

 

(1-4) 

𝑇𝑚𝑎𝑥 =
𝜔2

2
{∬𝑚𝑠𝑤

2(𝑥, 𝑦)𝑑𝑥𝑑𝑦 +𝑀(𝑞, ℎ)𝑤2(𝑞, ℎ)} 

 

 

(1-5) 

where 𝐷 =
𝐸𝑡3

12(1−𝑣2)
 is the bending stiffness of the membrane, 𝐸, 𝑡 and 𝑣 are the 

Young’s modulus, thickness and Poisson’s ratio of the membrane respectively. 

𝑇 is the tension stress per unit length on membrane, 𝑀(𝑞, ℎ) is the mass located 

at coordinate (𝑞, ℎ). 𝑤(𝑥, 𝑦) and 𝑤(𝑞, ℎ) are the transverse displacement of the 

membrane and mass and 𝜔2 is the natural frequency. By solving the equations, 

the resonance frequencies of the system can be obtained. The dispersion relation 

was then worked out by using FEA method. In this method, the bending stiffness 
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of membrane, applied tensile stress, location of the mass, and membrane material 

properties are considered, but the mass attached was assumed to be a 

concentrated point mass rather than an area. Therefore certain error is expected 

when the size of mass is increased. However, when the attached mass size is 

small, the accuracy will be in an acceptable range.  

These research works have explained the method that calculating the resonant 

frequencies of membrane-with-mass system. The equivalent stiffness of the 

structure can be derived when the MemR is considered as a mass-spring model. 

However, in Chen et al.’s work, the dispersion relation is still worked out by 

FEA method and Zhang et al’s work did not focus on the dispersion relation but 

only the sound transmission loss spectrum.  

Calculation of band structure in FEA model is time consuming and especially in 

the optimisation process, repeating calculation is required for various parameter 

settings. Therefore, an analytical method that can directly relate the MemR’s 

properties with the bandgap property and provide capability of fast prediction 

will be very helpful in the design and optimisation of a MemM.  

Otherwise, most of the MemM related research works were focusing on the 

acoustic aspect, and its performance in the structural vibration control field was 

rarely paid attention to. Sun et al. experimentally investigated the MemR’s 

structural vibration control capability by attaching two dampers with 28mm 

diameter and 1.78g weight onto an aluminium beam [94]. The results (Figure 10) 

suggested that the two attached dampers can effectively reduce the host 

structure’s vibration.  
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Figure 10. (a) The schematic of the tested aluminium beam with attached MemRs. (b)  Normalized 

displacement 𝑢(𝜎) at the end of the beam. 𝜉 is the amplitude of shaker. Orange line represents the beam 

attached with damper and blue line stands for the bare beam. Circles are results tested from experiment 

whilst the solid line is from theoretical estimation. Adapted from [94]. 

Later on, Sun continued the research by experimentally investigating a 

membrane-type sample with multiple platelets attached on a rectangular 

membrane and found that it was able to achieve an average vibration reduction 

of 24.7dB in 100-1200Hz frequency range [95]. The configuration of the sample 

is presented in Figure 11. Four of the samples shown in Figure 11 were attached 

on a steel plate and the vibration control performance of the MemM was 

compared with a commercial rubber plate designed for vibration damping. The 

results indicated that the performance of the 4 stacked samples in vibration 

absorption was better than the commercial plate in relatively lower frequency 

range.  
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Figure 11. Sample of the MemM. [95] 

These research works demonstrate the effectiveness of MemMs in structural 

vibration control field and thus, further investigation and exploration of MemM 

is worth conducting.  

There were researches mentioned that compared with the Bragg type bandgap, 

the locally resonant type bandgap is normally narrow. Such phenomenon is also 

existing in the MemM. As a result, the exploration of possibility to broaden the 

bandgap of MemM is essential for motivating its actual application.  

Pai pointed out that the combination of resonators that have different resonant 

frequencies can create a relatively broad bandgap [96]. Similar effect can be 

achieved by stacking MemMs with different bandgap properties. So far, to the 

best knowledge of the author, there is no research work investigated the 

structural vibration control capability of MemM with multiple layers. Actually, 

the stacking of MemMs will not lead to a lot extra demand of space because the 

relatively thin thickness and multiple layers of membranes can be easily 

deployed in a certain area. Hence, the multiple layered MemMs have good 

potential for application.  
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Ma et al. studied a bilayer plate-type AM and its sound absorption capability 

[97]. Because of the cavity in-between the two layers of the plates, this AM was 

able to reveal negative bulk modulus whilst possessing negative effective mass 

density simultaneously. Also, the asymmetric plate layers were used and the 

results indicated that the effective parameters will shift to higher frequencies. It 

was reported that asymmetric platelet can achieve better curvature energy 

dissipation [98]. 

Gao el at. proposed a bilayer MemM with magnetic mass and experimentally 

tested its sound isolation performance [99]. The schematic description of the 

sample is given in Figure 12. The mass was able to be fixed on the membrane 

through the magnetic force. However, in this design, the membranes are clinged 

to each other because of the magnetic force. Therefore these two layers of 

membrane cannot be considered as two resonator respectively and as a result, 

only one bandgap is formed by locally resonant, as the dips shown in the sound 

transmission loss (STL) curve in Figure 12(b) and Figure 12(c). The research 

found that the sound absorption capability is better than the single layer MemM. 

Both of the works were closely or directly related with the multiple layered 

MemM, yet the investigated performance was in acoustic field. Aside from these 

research works, the bilayer or multiple layered MemMs were rarely explored in 

the structural vibration field. Therefore, an obvious research gap is found.  



36 

 

 

Figure 12. (a) The picture of the configuration of the bilayer MemM with magnetic mass. (b) STLs of 

sound insulation experiments and simulations results of bilayer MemM with 2mm membrane and (c) 

1.5mm membrane. Adapted from [99]. 

1.4.3.2 Different designs and tuning method of MemM 

In actual situation, vibration excitation normally involves waves in different 

frequencies. Therefore, aside from creating several bandgaps in various 

frequency ranges, the possessing of tunable bandgap location will also 

effectively enhance the vibration control performance of a MemM.  

There were research works have investigated the possibility tuning different 

types of AMs’ bandgap.  
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(a)                                                      (b) 

 

(c)                                                      (d) 

Figure 13. (a) The configuration of the PnC plate with stubs and piezo patches along the waveguide. (b) 

The model of the piezo patch attached block. (c)Field of wave amplitude when the incident wave is in the 

Bragg-type bandgap of the PnC at 117 kHz. The piezo patches did not influence the waveguide 

performance. (d) Frequency response spectrum of the wave filed along the white dashed line in (c). [100] 

Casadei et al. reported a tunable acoustic waveguides PnC that contained 

piezoelectric resonator arrays [100], as shown in Figure 13. Within the deflection 

of the stub array, a series of shunted piezo-ceramic (PZT) disks were placed. The 

red patch provided the excitation signal. The shunting of the piezo patches 

possessed resonant modes and by tuning the inductors the resonant frequencies 

will shift.  Figure 13(c) presents the wave guide effect of the proposed model. 

Wang et al. proposed to use harnessing buckling method to achieve bandgap 

tuning [101]. By applying strain to the metamaterial structure, the supporting 

beams of the rigid cores will be deformed and turn into buckling status. 
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Therefore the bandgap location and wave transmission capability is tuned. The 

configuration of the metamaterial is given in Figure 14.  

 

Figure 14. (a) The configuration of the metamaterial consists of metallic mass connected to the matrix 

through elastic beams. (b) The configuration of the metamaterial under a compressive strain. [101] 

From the above mentioned studies, the main tuning method of metamaterial is 

changing the resonator’s effective stiffness. Actually, the changing of mass is 

very difficult to be realised during the utilization of the metamaterial. Wang et 

al. proposed [102] a model that use electromagnet as the mass and thus achieve 

the tuning of bandgap by switching on and off the power supply. The structure 

is given in Figure 15. The two electromagnets will be attaching when the DC 

power is switched on and allow the transmission of the incident wave. Therefore, 

by programming the status of the unit cells, the metamaterial plate can either be 

a waveguide or stopping the wave propagation. However, this tuning method 

cannot change the bandgap location and it is not considered as fulfilling the 

demand of bandgap tuning.  
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Figure 15. (a) The metamaterial plate with 12×12 unit cells. (b) The configuration of a unit cell that 

comprises of two electromagnets, supporting beams and a square frame. (c) The detaching and attaching 

status of the electromagnetics when the power is turned off and on. (d) Experimental and (e) numerical 

results of wave propagation in the metamaterial with different unit cell setting. The black circles indicate 

the cells in attaching mode. [102] 

The above mentioned methods are tuning the bandgap by physically changing 

the unit cell in geometrical structure. In addition, the bandgap can also be tuned 

if there is measure manages to change the material properties. Nimmagadda and 

Matlack continued their work on the proposed metamaterial structure shown in 

Figure 7 and tried to use thermal field to realise the tuning of bandgaps [103]. It 

was pointed out that the modulus of 3D printed polycarbonate material will vary 

with the temperature. Thus, in the research it was revealed that by setting the 

metamaterial beam under partitioning thermal field, the various material 

modulus of the structure will lead to the appearing of various bandgap location 

and width. Other research works on thermal tuning can also be referred to: [104, 

105].   

However, there is difficulty when applying partial heating conditions on the 

structure and leads to extra energy cost in heating and temperature control. 

Energy consumption is also a common concern in many other control fields, 

such as the hydraulic system [106]. Therefore the thermal tuning of the 
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metamaterial has lower feasibility, even though it provides an enlightening 

solution for the active control MemM.  

Theoretically, the tuning of a MemM’s bandgap can be realised by changing the 

mass magnitudes, allocation of the mass blocks, and tensile stress on the 

membrane or the shape of the frames. In reality, the tuning of membrane stress 

has the highest feasibility since normally the mass is fixed on the membrane and 

cannot be moved easily.  

One of the method that proposed for active tuning a MemM’s bandgap is by air 

inflation [107]. The unit cell is composed of two layers of membranes attached 

with masses and sealed cavity in-between. Pressurized air is inflated into the 

cavity and therefore cause obvious deformation of the membrane structure. As 

shown in Figure 16(c), the sound transmission loss peak shifts to a higher 

frequency when the air pressure of the cavity is increased and brings a higher 

stiffness of the membranes.  

 

Figure 16. (a) The structure of the inflatable unit cell. (b) The cross-sectional view of the unit cell. (c) 

Experimental and theoretical normal sound transmission loss (STL) of the MemM at different pressure 

difference. [107] 

However, such method requires extra air inflation equipment, and sealing 

mechanisms for the unit cells. Hence, the cost for manufacturing and space 

requirement for deployment will be higher than common MemM.  
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Another method of tuning MemM is by controlling external electric field. As 

given in Figure 17, the unit cell contains a membrane-type resonator that 

attached with a metal electrode platelet, and a fishnet shape cover coated with 

gold film [108]. By applying DC power to the electrodes, the electrostatic force 

can be considered as the combination of a constant attractive force that shifts the 

equilibrium position of the membrane and an anti-restoring force. The 

transmission peak that attribute to the first eigenmode of the resonator is 

therefore shifted. With a 900V DC power, the transmission peak can shift from 

about 160Hz to 125Hz. Otherwise, if applying AC voltage to the electrodes then 

it is capable of generating the cancelling wave which has the same amplitude 

and out-of-phase with the incident wave. This model inspired the train of thought 

that affecting the characteristics of the membrane by applying external electric 

field, which is easier to be control and generated. However, the required voltage 

is relatively high and it did not considered the application for structural vibration 

control.  

 

Figure 17. Schematic of the active control MemM. [108] 

As shown in Figure 18, Ma et al. reported a type of membrane-type resonator 

consists of a membrane attached with a magnet, and an electromagnet at the top 

of the membrane [109]. When the power of the electromagnet is off, the 
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membrane is fixed at the outer range of the membrane, and the boundary 

condition will change into two fixed edges when turn on the power. The altering 

boundary condition can effectively make the sound transmission characteristics 

through this device different, but the bandgap location is not changed in a 

continuous and linear way, therefore the tuning capacity is not sufficient. 

  

Figure 18. The unit cell design and the status of the membrane when the electromagnet are in off- and on-

state. The corresponding mode shapes are shown at the right. [109] 

Aside from externally applied electric field, there was also study tried to use 

magnetic control method. Silicon rubber embedded with ferro ferric oxide 

particles were adopted for the membrane. The magnetic field gradient in the axial 

direction on the membrane was increased and the STL peak will move from 

about 230Hz to 380Hz [110].  

The above mentioned methods are focusing the tuning on the status of 

membranes in the MemMs. Instead of tuning membrane, Zhou et al. used elastic 

frame for the MemM and by applying strains to the frame, the tensile stress on 

membrane is elevated and the band structures were tuned [111]. This study 

demonstrates the feasibility of tuning frame of MemM, but also revealed that the 

frame tuning method has limit in application. The flexible frame makes the 
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fixation of MemM on the primary structure difficult and easy to generate 

unexpected deformation of the shape, results in the bandgap shift.  

A controllable and predicable bandgap tuning capability is essential if the 

MemM is deployed for application. Therefore, the utility of smart materials 

which are fully controllable by the external electric field in membrane 

fabrication is proposed and developed.  

Dielectric elastomer (DE) membrane was studied to be utilized for tunable 

MemM because of its fast and large deformation when excited by external 

voltage [112]. The DE membrane consist of a thin elastomer film and two 

electrodes on both surfaces of the film. As shown in Figure 19, when external 

high voltage is applied to the electrodes, it will cause an electrostatic pressure 

between the electrodes and thus squeeze the elastomer in the vertical direction 

[113]. As a result, the deformation of the elastomer will lead to the change of 

stress within the membrane and the resonance frequencies.   

 

Figure 19. Schematic structure of the DE when in (a) base mode and (b) squeezed by electrodes. [113] 

Lu et al. presented a lightweight DE acoustic absorber in their publication and 

reported that it can achieve effective noise reduction whilst possessing tunable 

resonance peaks [114]. The device consist of a circular DE membrane that fixed 

on a rigid frame, and a back cavity. Electrodes are attached at the middle of the 

membrane. The membrane is pre-stretched, so when applying external voltage, 



44 

 

the tensile stress within the membrane will decrease and shift the resonance 

peaks to lower frequency range. According to their study, when applied with 

different pre-stretched ratios, it required at least 3 kV voltage to achieve about 

20Hz resonance shift. Follow up studies from them can also be referred to: [115, 

116, 117]. 

 

Figure 20. The schematic of the DE acoustic absorber. The black area indicates the electrodes on the DE 

membrane. [114] 

The fast response and relatively low cost grant the DE membrane with 

advantages in the active controllable MemM. However, it also cannot be 

neglected that the high voltage required for the tuning of DE membrane.  

Another material that was used for the tunable membrane is piezoelectric 

material. Use shunted piezoelectric patches for the tuning of metamaterial has 

been studied vastly before [118, 119, 120]. However, using piezoelectric 

material to form membrane in MemM is rarely investigated.  Nouh et al. [21] 

proposed the MemM plate equipped with PVDF membranes and examined the 

bandgap tuning characteristics through the analytical mode they developed. The 

wave propagation surface of the proposed MemM under different external 

voltage is shown in Figure 21. With a relatively low voltage applied, the bandgap 
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properties are effectively changed. This study demonstrate the effectiveness and 

feasibility of using PVDF material for the fabrication of membranes in the 

MemM. However, the relation between the applied voltage and bandgap location 

is not related directly in the proposed analytical model. An equation that reveals 

the voltage and bandgap location numerically is essential for the controlling and 

tuning of bandgap. Therefore, further research work is required in this field.   

 

Figure 21. Propagation surfaces of the MemM equipped with PVDF membranes under different external 

voltages. Adapted and taken from: [21]. 

 

1.4.4 Research gaps 

As presented in the literature review, many researches about the AM/EM have 

been conducted. The potential application of AM/EM and PnC involves acoustic 

wave guide [13, 121], frequency filter [14, 15], sound absorption [122, 123], 

sound isolation [124], structural vibration control [125] and enhancing energy 

harvesting [126]. However, despite of these potential applications, to the best of 

author’s knowledge, the actual application of the AM/EM for vibration control 

are rare. Currently, most of the AMs/EMs are handcrafted in lab, therefore the 

samples are mostly high-cost and possess low accuracy [94]. Also, calculation 
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is required for the design and optimisation of the metamaterial. Currently the 

metamaterial related calculation method has a relatively low efficient and facing 

some difficulty in convergence [127].  

For MemM, similar research gaps also exist. In the design of MemM, factors 

such as the tensile stress level applied and the attached mass magnitude, are 

essential to control its bandgap properties. The design and optimisation process 

requires large quantity of calculation, especially for the MemM with multiple 

layers of membranes. Thus, a theoretical model for fast and convenient bandgap 

prediction is in demand.  

Otherwise, a main barrier of AM/EM application is the relatively narrow 

bandgap width, especially in the structural vibration control field. In the practical 

situation, the incident vibration normally consists of various frequencies. Hence 

the development of an EM that possess tunable and relatively broad bandgap is 

essential. With multiple layered MemMs, several bandgaps can be formed 

simultaneously. Such characteristic allow the multiple layered MemMs to 

possess great potential in actual application. However, the state-of-art 

development of the MemMs are focusing mainly on the acoustic field and to the 

best knowledge of the author, only limited number of studies have studied the 

MemM’s structural vibration control performance. Therefore, the study of 

multiple layered MemM’s vibration control capacity will fill the gap and further 

encourage the MemM towards application.  

At last, there were research works also investigating the tuning methods of 

bandgap. For MemM, the main tuning objects contain the applied tensile stress 

level, locations and magnitudes of attached mass. By using the piezoelectric 
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material for membranes, the tensile stress of the membrane can be tuned through 

the adjustment of the applied voltage. However the study of applied piezoelectric 

materials for membranes is few. As a result, explorations about the feasibility 

and effectiveness of piezoelectric membrane is desired for the filling of this gap. 

Also, the applied voltage will result in the tensile stress change on the membrane, 

therefore to achieve the accurate tuning of bandgap, the sensitivity of stress to 

voltage should be revealed. In addition, to establish the equation connecting the 

voltage and tensile stress will provide a theoretical basis for the design of active 

tuning MemM equipped with piezoelectric material membranes.  

In conclusion, the existing research gaps in MemM are explored and the filling 

of these blanks will effectively motivate the application of MemM.   
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1.5 Methodology and Pathway 

In this work, a technical pathway incorporated with various research methods is 

designed for achieving the research aims and objectives. The pathway is given 

in Figure 22. There are 6 stages of the research: 

Stage 1 

In the first stage, theoretical background research will be conducted, focusing on 

the vibration theory of relevant structure, such as plate and membrane structure. 

Also, the bandgap forming mechanism of metamaterial and the calculation 

methods for bandgaps will be reviewed. The understanding of basic theories will 

provide instructions to the design of novel EM. In addition, the literatures about 

using piezoelectric material membrane for MemM and the corresponding 

performance will be reviewed.  

Stage 2 

A new EM structure will be designed, for the purpose of providing concept proof 

of local resonant bandgap formation, and to reveal the EM’s structural vibration 

absorption capability. 

We intend to make the proposed EM possess a broad low frequency bandgap for 

structural vibration. Preliminarily, the bandgap properties of the designed 

models will be examined by numerical simulation which conducted through the 

commercial FEA software COMSOL Multiphysics. Numerical simulation will 

reveal the relation between bandgap formation and resonant modes of the EM. 

The effect of different parameters on bandgap properties will also be examined. 

Thus, the bandgap forming mechanism and guidance for EM design can be 
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obtained. We will also conduct numerical simulation and experiments to 

investigate the vibration absorption performance of the proposed EM.  

Through this stage, the local resonant bandgap mechanism and the key design 

parameters that affect the bandgap properties will be explored. The design 

principle and design intent of the propose EM are verified.  

Stage 3 

MemM’s analytical model will be developed in this stage.  

First of all, PWE model for metamaterial bandgap prediction is modified. Design 

parameters, such as the tensile stress and attached mass magnitude, is integrated 

into the PWE model, and thus allow the investigation of relation between 

parameters and bandgap properties.  

Secondly, piezoelectric constitutive equations are integrated with the MemR’s 

analytical model. So the relation between applied electric potential on the 

piezoelectric membrane and the membrane tensile stress is constructed. Then by 

incorporating with the modified PWE model, the applied electric field’s effect 

on MemM bandgap properties can be obtained directly.  

In addition, the vibration response of thin plate structure with resonator attached 

is modified to integrate the MemR model. This model can then reveal the 

vibration response of a thin plate structure attached with MemM.  

To the best knowledge of the author, it will be the first time to develop such 

analytical model for the MemM and allow the incorporation of piezoelectric 

material.  
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Stage 4 

Numerical simulation of the MemM with normal membrane will be carried out 

in this stage, for the purpose of verifying the developed analytical model and 

investigating the vibration control  

Finite structures will be constructed in COMSOL Multiphysics. The bandgap 

structure the vibration absorption performance of the MemM will be numerically 

simulated, and by comparing the results with the theoretical prediction, the 

accuracy of the proposed theoretical model can be verified.  

Also, through the simulation, the effect of design factors of a MemM, such as 

the applied tensile stress and mass magnitudes, will be explored. The simulation 

results provide verification of analytical model accuracy and help confirming the 

detailed dimension and other information for the experiment design and setup.  

Stage 5 

The effect of MemM with piezoelectric membranes will be investigated in this 

stage. By using similar finite models in previous stage, the effect of applied 

electric field intensity on the bandgap properties of the piezoelectric MemM will 

be simulated and the results will be compared with the analytical model’s 

prediction. Bandgap tunability and vibration absorption capability of the 

piezoelectric MemM is examined in this stage. In addition, the analytical model 

for control algorithm of the piezoelectric metamaterial applied on thin plate 

structure will be developed based on the thin plate vibration model. The work in 

this stage provides concept proof for the design and application of semi-active 

control MemM.  
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Stage 6  

Experimental test of MemM’s vibration characteristics and vibration absorption 

capability are conducted in this stage.  

First, membrane stretching mechanisms for MemR assembling will be designed 

and manufactured. The outer frame of the MemR can be produced by 3D printing 

technique, and through the stretching mechanism MemR will be manufactured. 

The prototypes will then be attached to thin aluminium plates for testing. 

The vibration absorption performance will be experimentally verified and 

validated. The bandgap property and vibration absorption performance of the 

structure when applied to a thin plate will be evaluated. 

 

Figure 22. Research pathway of the thesis 
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1.6 Thesis Content and Structure 

This thesis is constructed as follow: 

Chapter 2 introduces this study’s theoretical background and development of 

analytical model for the MemM and thin plate structure. 

Chapter 3 proposes design of an novel EM and examined its bandgap properties 

through numerical simulation and experiments.  

Chapter 4 presents the numerical simulation and experimental results of MemM 

with normal material membrane. The accuracy of the modified PWE method 

was examined by numerical simulation. A prototype of MemM attached on thin 

plate structure is experimentally tested. 

Chapter 5 introduces the constitutive equation of PVDF material and integrate it 

into the modified PWE model. Also, through numerical simulation, the tuning 

effect of bandgap by externally applied electric field is investigated.  

Chapter 6 presents the derivation of semi-active control algorithm of PVDF 

MemM. 

Chapter 7 is the conclusion of this study and introduced the potential future 

research work. 
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Chapter 2 

2. THEORETICAL BACKGROUND AND 

DEVELOPMENT 

 

In this section, the basic vibration theory and characteristics of the plate structure, 

membrane structure, membrane-mass model and plate with attached resonator 

model is introduced. The modified PWE method are introduced and derived 

specifically for the MemM attached to a thin plate structure. In addition, the thin 

plate – resonator coupling model is also presented as it can be considered as the 

simplified physical model of MemM on thin plates. 1 

 

 

 

 

 

 

 

 

                                                 
 1 Part of the content in this Chapter is published as: C. Gao, D. Halim and C. Rudd, "Prediction of bandgaps in 

membrane-type metamaterial attached to a thin plate," in INTER-NOISE and NOISE-CON Congress and 

Conference Proceedings, Madrid, 2019. 
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2.1 Vibration Theory of Related Structures 

The MemM is mainly applied to plate structure for vibration control purpose. 

Hence the vibration theory of plate structure and plate with attached resonator 

are closely relevant. Also, the derivative of membrane-type resonator’s resonant 

frequency depends on the membrane-mass model and the membrane structure 

vibration theory, therefore, the membrane structure’s equation of motion is also 

presented.  

 

2.1.1 Vibration of membrane structure  

For a rectangular membrane, an element and forces that applied on the edges of 

it can be represented by Figure 23.  

 

Figure 23: Unit element in a membrane that under tensile stress.  

According to Newton’s second law, the equilibrium equation of the membrane 

element is given as:  

𝑚𝑠𝑑𝑥𝑑𝑦
𝜕2𝑤(𝑥, 𝑦, 𝑡)

𝜕𝑡2
= (𝑇𝑠𝑖𝑛(𝜃1)𝑑𝑦|(𝑥+𝑑𝑥,𝑦) − 𝑇𝑠𝑖𝑛(𝜃2)𝑑𝑦|(𝑥,𝑦)) + 

(𝑇𝑠𝑖𝑛(𝜃3)𝑑𝑥|(𝑥,𝑦+𝑑𝑦) − 𝑇𝑠𝑖𝑛(𝜃4)𝑑𝑥|(𝑥,𝑦)) 

 

(2-1) 

 

where 𝑚𝑠 = 𝜌ℎ  is the mass per unit area, 𝑤(𝑥, 𝑦, 𝑡)  is the transverse 

displacement, 𝜌 , ℎ , 𝑤  are the mass density, thickness and transverse 
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displacement of the membrane, 𝑇 is the tensile force per unit length applied on 

membrane, 𝜃𝑛 are the angles between the tensile forces and x-y plain. As the 

angle is very small, 𝑠𝑖𝑛(𝜃) ≈ tan(𝜃) =
𝜕𝑤(𝑥,𝑦,𝑡)

𝜕𝑥
, the equation is transformed 

into: 

𝑚𝑠

𝜕2𝑤(𝑥, 𝑦, 𝑡)

𝜕𝑡2
= 𝑇𝑑𝑦 [

𝜕𝑤(𝑥, 𝑦, 𝑡)

𝜕𝑥
|(𝑥+𝑑𝑥,𝑦) −

𝜕𝑤(𝑥, 𝑦, 𝑡)

𝜕𝑥
|(𝑥,𝑦)]

+ 𝑇𝑑𝑥[
𝜕𝑤(𝑥, 𝑦, 𝑡)

𝜕𝑦
|(𝑥,𝑦+𝑑𝑦) −

𝜕𝑤(𝑥, 𝑦, 𝑡)

𝜕𝑦
|(𝑥,𝑦)] 

 

 

(2-2) 

→ 𝑚𝑠

𝜕2𝑤(𝑥, 𝑦, 𝑡)

𝜕𝑡2
− 𝑇𝛻2𝑤(𝑥, 𝑦, 𝑡) = 0 

 

 

(2-3) 

where 𝛻2 =
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
 is the Laplace operator. Equation (2-3) is the free 

vibration equation of rectangular membrane. If the membrane is under force 

vibration and excited by pressure that applied on its surface, an extra item 

𝑝(𝑥, 𝑦, 𝑡) that represents the external pressure should be added to the equation. 

In order to solve equation (2-3), assume the displacement in the following form: 

𝑤(𝑥, 𝑦, 𝑡) = 𝑊(𝑥, 𝑦)𝑒𝑖𝜔𝑡 
 

(2-4) 

where 𝑊(𝑥, 𝑦) is the amplitude of transverse displacement 𝑤(𝑥, 𝑦, 𝑡), 𝜔 is the 

natural frequency of the membrane, 𝑡  is the time and 𝑖2 = −1 . Substitute 

equation (2-4) into equation (2-3): 

−𝜔2𝑚𝑠𝑊(𝑥, 𝑦) − 𝑇𝛻
2𝑊(𝑥, 𝑦) = 0 

 

(2-5) 

→ (
𝜕2𝑊(𝑥, 𝑦)

𝜕𝑥2
+
𝜕2𝑊(𝑥, 𝑦)

𝜕𝑦2
) + 𝛽2𝑊(𝑥, 𝑦) = 0 

 

 

(2-6) 

where 𝛽2 =
𝑚𝑠𝜔

2

𝑇
=

𝜔2

𝑐2
. 𝑐 is the speed of wave transmission in the membrane.  

For convenience of solving equation (2-6), one can further assume the 

displacement amplitude 𝑊(𝑥, 𝑦) is composed by two separated functions of 

variable 𝑥 and 𝑦 respectively: 
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𝑊(𝑥, 𝑦) = 𝑋(𝑥)𝑌(𝑦) 
 

(2-7) 

Substitute equation (2-7) into equation (2-6): 

{
 
 

 
 𝑑

2𝑋

𝑑𝑥2
+ 𝛼2𝑋 = 0

𝑑2𝑌

𝑑𝑦2
+ 𝛾2𝑌 = 0

 

 

 

(2-8a) 

 

(2-8b) 

where 𝛼2 + 𝛾2 = 𝛽2. Equation (2-8) are two standard PDE that with the form 

of solutions as: 

{
𝑋(𝑥) = 𝐴1𝑠𝑖𝑛𝛼𝑥 + 𝐴2𝑐𝑜𝑠𝛼𝑥

𝑌(𝑦) = 𝐴3𝑠𝑖𝑛𝛾𝑦 + 𝐴4𝑐𝑜𝑠𝛾𝑦
 

 

(2-9a) 

(2-9b) 

Introduce equation (2-9) into equation (2-7): 

𝑊(𝑥, 𝑦) = 𝐶1𝑠𝑖𝑛𝛼𝑥𝑠𝑖𝑛𝛾𝑦 + 𝐶2𝑠𝑖𝑛𝛼𝑥𝑐𝑜𝑠𝛾𝑦 + 𝐶3𝑐𝑜𝑠𝛼𝑥𝑠𝑖𝑛𝛾𝑦 + 𝐶4𝑐𝑜𝑠𝛼𝑥𝑐𝑜𝑠𝛾𝑦 
 

(2-10) 

where 𝐶  are the constants determined by boundary conditions. For the 

rectangular membrane that all edges are clamped, the mode shapes of the 

membrane can be assumed as: 

𝑊(𝑥, 𝑦) = 𝐶1sin (𝛼𝑥)sin (𝛾𝑦) 
 

(2-11) 

where 𝐶1 is the amplitude of vibration that determined by the incident excitation. 

𝛼 and 𝛾 are the frequency coefficients. When the boundary of the membrane is 

clamped, the displacement at the edges will always be zero, thus:  

𝑠𝑖𝑛(𝛼𝑎) = 0 𝑎𝑛𝑑 sin(𝛾𝑏) = 0 

 

(2-12) 

So the parameters will be:  

𝛼𝑚𝑎 = 𝑚𝜋 𝑎𝑛𝑑 𝛾𝑛𝑏 = 𝑛𝜋,        𝑚, 𝑛 = 1,2,3… 
 

(2-13) 

 𝛼𝑚 =
𝑚𝜋

𝑎
 𝑎𝑛𝑑 𝛾𝑛 =

𝑛𝜋

𝑏
 

(2-14) 

As 𝛼2 + 𝛾2 = 𝛽2 =
𝑚𝑠𝜔

2

𝑇
, one can therefore obtain the natural frequencies of 

the clamped membrane by:  
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𝜔𝑚𝑛 = 𝑐𝜋√(
𝑚

𝑎
)
2

+ (
𝑛

𝑏
)
2

,          𝑚, 𝑛 = 1,2,3… 

(2-15) 

When considering the vibration of a circular membrane with radius 𝑎 , the 

equation needs to adopt the polar coordinate system, hence the displacement of 

membrane will be expressed as 𝑤(𝑟, 𝜃, 𝑡), and equation (2-5) will become: 

𝑇𝛻2𝑊(𝑟, 𝜃, 𝑡) = 𝑚𝑠

𝜕2𝑊(𝑟, 𝜃, 𝑡)

𝜕𝑡2
 

 

 

(2-16) 

where 𝛻2 =
𝜕2

𝜕𝑟2
+
1

𝑟

1

𝜕𝑟
+

1

𝑟2
𝜕2

𝜕𝑦2
. To solve equation (2-16), one can assume the 

displacement in the following form: 

𝑊(𝑟, 𝜃, 𝑡) = 𝑊(𝑟, 𝜃) 𝑒𝑖𝜔𝑡 
 

(2-17) 

𝑊(𝑟, 𝜃) = 𝑅(𝑟)𝛩(𝜃) 
 

(2-18) 

Substitute equation (2-17) and (2-18) into equation (2-16): 

{
 
 

 
 𝑑2𝛩

𝑑𝜃2
+ 𝑣2𝛩 = 0

𝑑2𝑅

𝑑𝑟2
+
1

𝑟

𝑅

𝑑𝑟
+ (𝛽2 −

𝑣2

𝑟2
)𝑅 = 0

. 

 

(2-19a) 
 

(2-19b) 

The solution of equation (2-19a) can be given as a standard form: 

𝛩𝑣(𝜃) = 𝐴1𝑣sin (𝑣𝜃) + 𝐴2𝑣cos (𝑣𝜃) 
 

(2-20) 

Equation (2-19b) is a Bessel equation. 𝑣 is an integer and represents the order of 

the Bessel function. 𝐴 are the constant decided by the boundary conditions. So 

the solution is given by [91]: 

𝑅𝑣(𝑟) = 𝐴3𝑣𝐽𝑣(𝛽𝑟) + 𝐴4𝑣𝑌𝑣(𝛽𝑟) 
 

(2-21) 

where 𝐽𝑣(𝛽𝑟) and 𝑌𝑣(𝛽𝑟) are the first and second kind of Bessel functions of 

order 𝑣. 

Assume the boundary conditions of the circular membrane is clamped, substitute 

equation (2-20) and (2-21) into equation (2-18), equation given as: 

𝑊𝑣(𝑟, 𝜃) = 𝐴1𝑣𝐽𝑣(𝛽𝑟)sin (𝑣𝜃) + 𝐴2𝑣𝐽𝑣(𝛽𝑟)cos (𝑣𝜃) (2-22) 
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According to boundary condition, the above equation can be transformed as: 

𝑊𝑣(𝑎, 𝜃) = 𝐴1𝑣𝐽𝑣(𝛽𝑎)sin (𝑣𝜃) + 𝐴2𝑣𝐽𝑣(𝛽𝑎)cos (𝑣𝜃) = 0 

 

(2-23) 

Therefore, either 𝐽𝑣(𝛽𝑎) = 0  or 𝐴1𝑣sin (𝑣𝜃) + 𝐴2𝑣cos (𝑣𝜃) = 0 . To avoid 

trivial solution, it requires: 

𝐽𝑣(𝛽𝑎) = 0 

 

(2-24) 

It means that to obtain solution for the equation, the independent variable 𝛽𝑎 

should be the zero points for the 𝑣th Bessel function of the first kind. As 𝛽𝑤
2 =

𝑚𝑠𝜔
2

𝑇
, and the number of zero points for each order of Bessel function is infinite, 

so for each order 𝑣, there will be a specific 𝜔𝑣𝑤 that corresponds to each of the 

zeros (𝑣,𝑤 = 1,2,3…). The 𝜔𝑣𝑤 is the corresponding natural frequency of the 

membrane. 

 

2.1.2 Vibration of thin plate structure 

For a thin rectangular plate, assume the transverse displacement of plate is much 

smaller than the plate thickness, then the free vibration equation of motion can 

be given as [128]:  

𝐷∇4𝑤(𝑥, 𝑦, 𝑡) + 𝑚𝑠

𝜕2𝑤(𝑥, 𝑦, 𝑡)

𝜕𝑡2
= 0 

 

(2-25) 

where 𝐷 =
𝐸ℎ3

12(1−𝑣2)
 is the flexural rigidity of the plate, 𝐸, ℎ, 𝑣 are the Young’s 

modulus, thickness and Poisson’s ratio of the plate, and ∇4= (
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
) (

𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
) =

𝜕4

𝜕𝑥4
+ 2

𝜕4

𝜕𝑥2𝜕𝑦2
+

𝜕4

𝜕𝑦4
.  

In a membrane structure, the thickness and modulus of the material are relatively 

small, therefore the flexural rigidity is ignored. Tensile stress is required in 
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membrane structure to avoid winkle. The stiffness of membrane structure is 

formed because of the stress stiffening effect. Therefore, in equation of motion 

the tensile stress is involved as a parameter. Compared with the membrane 

structure’s equation of motion (equation (2-3)), one of the obvious difference in 

the thin plate structure’s equation of motion is the involvement of flexural 

rigidity 𝐷. 

Similar to the solving procedure of membrane vibration equation, the same 

assumption of the displacement can be adopted and substitute into equation (2-

25):  

∇4𝑊(𝑥, 𝑦) − 𝜑4𝑊(𝑥, 𝑦) = 0 
 

(2-26) 

where 𝜑4 =
𝑚𝑠𝜔

2

𝐷
. With the assumption of a simple supported rectangular 

boundary condition, the solution of the equation can be expressed as [128]:  

𝑊𝑚𝑛(𝑥, 𝑦) = 𝐴𝑚𝑛 sin (
𝑚𝜋𝑥

𝑎
) sin (

𝑛𝜋𝑦

𝑏
) ,            𝑚, 𝑛 = 1,2,3… 

 

(2-27) 

where 𝑎, 𝑏 are the dimension of the rectangular plate. The natural frequency of 

the plate structure is then given as:  

𝜔𝑚𝑛(𝑥, 𝑦) = 𝜋2 [(
𝑚

𝑎
)
2

+ (
𝑛

𝑏
)
2

]√
𝐷

𝑚𝑠

,            𝑚, 𝑛 = 1,2,3… 

 

(2-28) 
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2.2 Vibration of Membrane-Mass Model 

The MemR’s resonant frequency is essential in predicting bandgap location 

frequency of the MemM it formed. For a MemR, it can be simplified as a 

membrane-mass model. In this study, there are two analytical models are 

investigated for the resonant frequency prediction of membrane-mass model. 

 

2.2.1 Superposition method 

A superposition method is proposed for the solution of membrane-mass model’s 

eigenvalue problem by Zhang et al. [93].  

Figure 24 presents a membrane-mass model that formed by a rectangular 

membrane attached with mass blocks on certain location. The equation of free 

vibration of this rectangular membrane-mass model can be given as [129]: 

𝑚𝑠

𝜕2𝑤(𝑥, 𝑦, 𝑡)

𝜕𝑡2
− 𝑇𝛻2𝑤(𝑥, 𝑦, 𝑡) +∑𝑚𝑖ℎ(𝑥, 𝑦, 𝑥𝑖,𝑦𝑖 , 𝑙𝑥𝑖 , 𝑙𝑦𝑖)

𝜕2𝑤(𝑥, 𝑦, 𝑡)

𝜕𝑡2

𝐼

𝑖=1

= 0 

 

 

(2-29) 

where 𝑚𝑠, 𝑇, 𝑤 are the mass density per unit area, tension stress per unit length 

and transverse displacement of the membrane, and 𝑚𝑖 is the mass density per 

unit area of the decorated mass. ℎ(𝑥, 𝑦, 𝑥𝑖,𝑦𝑖, 𝑙𝑥𝑖, 𝑙𝑦𝑖) represents a combination of 

4 Heaviside functions that identify the allocation of mass, given as:  

ℎ(𝑥, 𝑦, 𝑥𝑖,𝑦𝑖 , 𝑙𝑥𝑖 , 𝑙𝑦𝑖) = 𝐻(𝑥 − 𝑥𝑖 , 𝑦 − 𝑦𝑖) − 𝐻(𝑥 − 𝑥𝑖 − 𝑙𝑥 , 𝑦 − 𝑦𝑖) 

−𝐻(𝑥 − 𝑥𝑖 , 𝑦 − 𝑦𝑖 − 𝑙𝑦) + 𝐻(𝑥 − 𝑥𝑖 − 𝑙𝑥 , 𝑦 − 𝑦𝑖 − 𝑙𝑦) 
 

 

(2-30) 

where 𝑥𝑖, 𝑦𝑖 are the coordination of the left bottom point of the mass area, and 

𝑙𝑥, 𝑙𝑦 are the side lengths of the area with mass attached.  

For a Heaviside function, it has the property of: 

𝐻(𝑥 − 𝑥0, 𝑦 − 𝑦0) = {
0     𝑥 < 𝑥0 𝑜𝑟 𝑦 < 𝑦0
1    𝑥 ≥ 𝑥0 𝑜𝑟 𝑦 ≥ 𝑦0 

. 
 

(2-31) 
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Therefore, the area with mass attached can be marked out in the equation. 

Otherwise, the transverse displacement of membrane can be defined as:  

𝑤(𝑥, 𝑦, 𝑡) = ∑∑𝑊𝑛𝑚(𝑥, 𝑦)𝑞𝑛𝑚(𝑡)

𝑁𝑦

𝑚=1

𝑁𝑥

𝑛=1

 

 

 

(2-32) 

where 𝑊𝑛𝑚(𝑥, 𝑦) = sin (
𝑛𝜋

𝐿𝑥
𝑥) sin (

𝑚𝜋

𝐿𝑦
𝑦)  is the modal shape function, and 

𝑞𝑛𝑚(𝑡) = 𝑞̃𝑛𝑚𝑒
𝑗𝜔𝑡  is the generalized coordinates under simple harmonic 

excitation. 

 

Figure 24: Rectangular membrane with decorated mass [93] 

Substitute equation (2-32) into equation (2-29), multiply 𝑊𝑟𝑠(𝑥, 𝑦) to both side 

of the equation and conduct integration to both side of the equation, according 

to the modal orthogonality, equation (2-29) will become: 

−𝜔2𝑚𝑠∫ ∫ ∑∑𝑊𝑛𝑚

𝑁𝑦

𝑚=1

𝑁𝑥

𝑛=1

𝐿𝑥

0

𝐿𝑦

0

𝑊𝑟𝑠𝑞̃𝑛𝑚𝑑𝑥𝑑𝑦

− 𝜔2∑𝑚𝑖

𝐼

𝑖=1

∫ ∫ ∑∑𝑊𝑛𝑚𝑊𝑟𝑠𝑞̃𝑛𝑚𝑑𝑥𝑑𝑦

𝑁𝑦

𝑚=1

𝑁𝑥

𝑛=1

𝑥𝑖+𝑙𝑥

𝑥𝑖

𝑦𝑖+𝑙𝑦

𝑦𝑖

− 𝑇∫ ∫ ∇2∑∑𝑊𝑛𝑚

𝑁𝑦

𝑚=1

𝑁𝑥

𝑛=1

𝐿𝑥

0

𝐿𝑦

0

𝑊𝑟𝑠𝑞̃𝑛𝑚𝑑𝑥𝑑𝑦 = 0 

 

 

→ −𝜔2𝑚𝑠𝑀𝑟𝑠𝑞̃𝑛𝑚 − 𝜔
2∑𝑚𝑖

𝐼

𝑖=1

∑∑ 𝐼𝑛𝑚,𝑟𝑠
𝑖 𝑞̃𝑛𝑚

𝑁𝑦

𝑚=1

+ 𝑇

𝑁𝑥

𝑛=1

𝐾𝑟𝑠𝑞̃𝑛𝑚 = 0 

 

 

(2-33) 
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The 𝑀𝑟𝑠, 𝐼𝑛𝑚.𝑟𝑠
𝑖  and 𝐾𝑟𝑠 of the above equation are expressed as: 

𝑀𝑟𝑠 = ∫ ∫ 𝑊𝑟𝑠∑∑𝑊𝑛𝑚

𝑁𝑦

𝑚=1

𝑁𝑥

𝑛=1

𝐿𝑦

0

𝐿𝑥

0

𝑑𝑥𝑑𝑦 = {
0     𝑟 ≠ 𝑛 𝑜𝑟 𝑠 ≠ 𝑚

𝐿𝑥𝐿𝑦

4
     𝑟 = 𝑛 𝑎𝑛𝑑 𝑠 = 𝑚

 

 

(2-34) 

𝐾𝑟𝑠 = −∫ ∫ 𝑊𝑟𝑠∇
2∑∑𝑊𝑛𝑚

𝑁𝑦

𝑚=1

𝑁𝑥

𝑛=1

𝐿𝑦

0

𝐿𝑥

0

𝑑𝑥𝑑𝑦 = {

0                                           𝑟 ≠ 𝑛 𝑜𝑟 𝑠 ≠ 𝑚
𝐿𝑥𝐿𝑦

4
[(
𝑛𝜋

𝐿𝑥
)2 + (

𝑚𝜋

𝐿𝑦
)2]      𝑟 = 𝑛 𝑎𝑛𝑑 𝑠 = 𝑚 

 

 

(2-35) 

For 𝐼𝑛𝑚.𝑟𝑠
𝑖 , it is defined as: 

𝐼𝑛𝑚.𝑟𝑠
𝑖 = ∫ ∫ 𝑊𝑟𝑠𝑊𝑛𝑚𝑑𝑥𝑑𝑦

𝑥𝑖+𝑙𝑥

𝑥𝑖

𝑦𝑖+𝑙𝑦

𝑦𝑖

 

 

 

(2-36) 

Substitute the modal shape function of 𝑊𝑛𝑚 into it: 

𝐼𝑛𝑚.𝑟𝑠
𝑖 = ∫ ∫ sin (

𝑟𝜋

𝐿𝑥
𝑥) sin (

𝑠𝜋

𝐿𝑦
𝑦) sin (

𝑛𝜋

𝐿𝑥
𝑥) sin (

𝑚𝜋

𝐿𝑦
𝑦)𝑑𝑥𝑑𝑦

𝑥𝑖+𝑙𝑥

𝑥𝑖

𝑦𝑖+𝑙𝑦

𝑦𝑖

 
 

 

= ∫ sin (
𝑠𝜋

𝐿𝑦
𝑦) sin (

𝑚𝜋

𝐿𝑦
𝑦)∫ sin (

𝑟𝜋

𝐿𝑥
𝑥) sin (

𝑛𝜋

𝐿𝑥
𝑥) 𝑑𝑥𝑑𝑦

𝑥𝑖+𝐿𝑥

𝑥𝑖

𝑦𝑖+𝑙𝑦

𝑦𝑖

 

 

 

 

= ∫ sin (
𝑠𝜋

𝐿𝑦
𝑦) sin (

𝑚𝜋

𝐿𝑦
𝑦)𝑑𝑦∫ −

1

2
[cos (

𝑟𝜋

𝐿𝑥
𝑥 +

𝑛𝜋

𝐿𝑥
𝑥) − cos (

𝑟𝜋

𝐿𝑥
𝑥 −

𝑛𝜋

𝐿𝑥
𝑥)] 𝑑𝑦

𝑥𝑖+𝑙𝑥

𝑥𝑖

𝑦𝑖+𝑙𝑦

𝑦𝑖

 

 

 

 

=
1

4
∫ {cos [

(𝑠 + 𝑚)𝜋

𝐿𝑦
𝑦] − cos [

(𝑠 − 𝑚)𝜋

𝐿𝑦
𝑦]} 𝑑𝑦

𝑦𝑖+𝑙𝑦

𝑦𝑖

 

×∫ [cos (
𝑟𝜋

𝐿𝑥
𝑥 +

𝑛𝜋

𝐿𝑥
𝑥) − cos (

𝑟𝜋

𝐿𝑥
𝑥 −

𝑛𝜋

𝐿𝑥
𝑥)]

𝑥𝑖+𝑙𝑥

𝑥𝑖

𝑑𝑥. 

 

 

(2-37) 

For simplification, define the equation (2-37) as the product of two functions: 

𝐼𝑛𝑚.𝑟𝑠
𝑖 = 𝐴 × 𝐵 

 

(2-38) 

where:  

{
𝐴 =

1

2
∫ {cos [

(𝑠+𝑚)𝜋

𝐿𝑦
𝑦] − cos [

(𝑠−𝑚)𝜋

𝐿𝑦
𝑦]} 𝑑𝑦

𝑦𝑖+𝑙𝑦
𝑦𝑖

𝐵 =
1

2
∫ {cos [

(𝑟+𝑛)𝜋

𝐿𝑥
𝑥] − cos [

(𝑟−𝑛)𝜋

𝐿𝑥
𝑥]}

𝑥𝑖+𝑙𝑥
𝑥𝑖

𝑑𝑥
. 

 

 

(2-39) 

The values of 𝐴 and 𝐵 depend on the value of the parameters 𝑠, 𝑟, 𝑛 and 𝑚.   

For 𝐴, it can be expressed as: 

𝐴 =

{
 
 

 
 𝐴1 =

1

2
∫ {cos [

(𝑠 + 𝑚)𝜋

𝐿𝑦
𝑦] − cos [

(𝑠 − 𝑚)𝜋

𝐿𝑦
𝑦]} 𝑑𝑦     (𝑠 ≠ 𝑚) 

𝑦𝑖+𝑙𝑦

𝑦𝑖

𝐴2 =
1

2
∫ {cos [

(2𝑠)𝜋

𝐿𝑦
𝑦] − 1}𝑑𝑦                                     (𝑠 = 𝑚) 

𝑦𝑖+𝑙𝑦

𝑦𝑖

. 

 

(2-40a) 
 

(2-40b) 
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Similarly, for 𝐵: 

𝐵 =

{
 
 

 
 𝐵1 =

1

2
∫ {cos [

(𝑟 + 𝑛)𝜋

𝐿𝑥
𝑥] − cos [

(𝑟 − 𝑛)𝜋

𝐿𝑥
𝑥]}

𝑥𝑖+𝑙𝑥

𝑥𝑖

𝑑𝑥    (𝑟 ≠ 𝑛)

𝐵2 =
1

2
∫ {cos [

(2𝑟)𝜋

𝐿𝑥
𝑥] − 1}

𝑥𝑖+𝑙𝑥

𝑥𝑖

𝑑𝑥                                       (𝑟 = 𝑛)

. 

 

 

(2-41a) 
 

(2-41b) 

Therefore, 𝐼𝑛𝑚.𝑟𝑠
𝑖  is given as: 

𝐼𝑛𝑚.𝑟𝑠
𝑖 = ∫ ∫ 𝑊𝑟𝑠𝑊𝑛𝑚𝑑𝑥𝑑𝑦

𝑥𝑖+𝑙𝑥

𝑥𝑖

𝑦𝑖+𝑙𝑦

𝑦𝑖

= {

𝐴1 × 𝐵1     (𝑟 ≠ 𝑛 𝑎𝑛𝑑 𝑠 ≠ 𝑚)

𝐴1 × 𝐵2     (𝑟 = 𝑛 𝑎𝑛𝑑 𝑠 ≠ 𝑚)
𝐴2 × 𝐵2     (𝑟 = 𝑛 𝑎𝑛𝑑 𝑠 = 𝑚)

𝐴2 × 𝐵1     (𝑟 ≠ 𝑛 𝑎𝑛𝑑 𝑠 = 𝑚)

. 

 

 

(2-42) 

Equation (2-33) can be expressed in a matrix form as: 

{𝜔2{[𝑀] + [𝑄]} − [𝐾]}{𝑞̃} = 0 
 

(2-43) 

Then equation (2-43) can be solved as an eigenvalue problem, and the 

eigenfrequencies of the membrane with mass model can be. The equation (2-43) 

is composed of infinite series of equations because the superposition of resonant 

mode shapes of different orders. In actual calculation, a truncation of the 

resonant order number (𝑁𝑥 and 𝑁𝑦) will be taken and the results’ accuracy will 

not be largely affected when the truncation number is larger than a certain value. 

According to Zhang et al [130], when modal number is larger than 9, the results 

will be accurate enough. Also, as in this method, the Young’s modulus of 

membrane and material are ignored and the mass area is allowed to bend, so 

internal resonant of the area will occur if modal number is too large. 

The equation is solved to obtain the eigenfrequencies through Matlab. To 

examine the accuracy and feasibility of the method, the results are compared 

with the numerical simulation. The MemR’s configuration in the FEA software 

is shown in Figure 25 and the design parameters are given in table below: 

Table 1: Size parameter of membrane-type resonator components 
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 Membrane  Mass  Frame 

l (mm) 80 a 10 L 90 

Thickness  t (mm) 0.1 h 2 T 4 

Tension stress (Pa) 3.5×105  -  - 

 

 

Figure 25: Schematic diagram of membrane-type resonator 

By using the same parameters, both analytical and numerical simulation results 

are compared and given in Table 2. 

Table 2: Eigen frequency of the membrane-type resonator by using COMSOL and modal superposition 

method 

Order of frequency 

FEA 

method 

Superposition method 

Truncation in modal number 

8 9 10 11 12 13 14 20 

1 44.69 112.4 56.5 56.3 91.4 91.8 68.3 68.2 67.4 

2 152 224.28 246.2 244.6 242.3 245.3 245.6 244.5 247.9 

3 233 344.38 281.1 280.9 312.4 314.3 283.9 283.4 293.9 

4 269 475.09 491 486.8 473.3 484.5 488.2 484.7 495.7 

 

According to the table, the aforementioned modal superposition method reveals 

instability when changing the truncation modal number. The difference between 
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this method and the FEA results is large. Also, when running the corresponding 

Matlab codes of the analytical model, the time consuming is relatively long, 

because integration is conducted for each modal superposition process.  

Also, the inaccuracy of this model is predictable. The reasons are as follows:  

1. In this model, the Young’s modulus and Poisson’s ratio of membrane and 

mass is not considered. However, in reality, such property is also very important 

to the vibration property of the membrane. 

2. The membrane area on which the mass attached to is not assumed to be rigid 

and it is able to bend, which is very different from the real situation.  

 

2.2.2 Rayleigh method 

Another theoretical method for the prediction of MemR’s resonant frequencies 

is the Rayleigh method. For a MemR shown in Figure 26, assume the mass is a 

concentrated point mass, the coordinate of the point mass is (𝑞, ℎ).  

 

Figure 26: a. metamaterial beam with membrane-type resonator; b. unit cell of the membrane resonator. 

(Adapted and taken from [131]) 
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By using Rayleigh method, the strain energy and kinetic energy of the MemR 

can be expressed by [131]: 

𝑈𝑏,𝑚𝑎𝑥 =
1

2
∬𝐷{(

𝜕2𝑤

𝜕𝑥2
+
𝜕2𝑤

𝜕𝑦2
)2 − 2(1 − 𝑣)[

𝜕2𝑤

𝜕𝑥2
𝜕2𝑤

𝜕𝑦2
− (

𝜕2𝑤

𝜕𝑥𝜕𝑦
)2]}𝑑𝑥𝑑𝑦

+
1

2
∬𝑇[(

𝜕2𝑤

𝜕𝑥2
)2 + (

𝜕2𝑤

𝜕𝑦2
)2]𝑑𝑥𝑑𝑦 

 

(2-44) 

𝑇𝑚𝑎𝑥 =
𝜔2

2
{∬𝑚𝑠𝑤

2(𝑥, 𝑦)𝑑𝑥𝑑𝑦 +𝑀(𝑞, ℎ)𝑤2(𝑞, ℎ)} 

 

 

(2-45) 

where 𝐷 =
𝐸𝑡3

12(1−𝑣2)
 is the bending stiffness of the membrane, 𝐸, 𝑡 and 𝑣 are the 

Young’s modulus, thickness and Poisson’s ratio of the membrane respectively. 

𝑇 is the tension stress per unit length on membrane, 𝑀(𝑞, ℎ) is the mass located 

at coordinate (𝑞, ℎ). 𝑤(𝑥, 𝑦) and 𝑤(𝑞, ℎ) are the transverse displacement of the 

membrane and mass. 𝜔2 is the natural frequency.  

According to equation (2-44) and (2-45), it yields the natural frequency as: 

𝜔2 =
2𝑈𝑏,𝑚𝑎𝑥

∬𝑚𝑠𝑤
2(𝑥, 𝑦)𝑑𝑥𝑑𝑦 + 𝑀(𝑞, ℎ)𝑤2(𝑞, ℎ)

. 
 

(2-46) 

The modal shape function is assumed as: 

𝑤(𝑥, 𝑦) = 𝐴𝑚𝑛 sin (
𝜋𝑥

𝑎
) sin (

𝑚𝜋𝑥

𝑎
) sin (

𝜋𝑦

𝑏
) sin (

𝑛𝜋𝑦

𝑏
). 

 

(2-47) 

For membrane-type resonator, normally the fundamental resonant frequency is 

the one generating bandgap. Therefore, the shape function will become:  

𝑤(𝑥, 𝑦) = 𝐴11 sin
2 (
𝜋𝑥

𝑎
) sin2 (

𝜋𝑦

𝑏
). 

 

(2-48) 

Substitute equation (2-9) into equation (2-7), the fundamental resonant 

frequency of the MemR 𝜔11 (rad/s ) is given as: 

𝜔11 =
1

2𝜋
√

𝜋4𝐷
4𝑎3𝑏3

(3𝑏4 + 3𝑎4 + 2𝑎2𝑏2) +
3(𝑎2 + 𝑏2)𝑇𝜋2

16𝑎𝑏
9𝑎𝑏𝑚𝑠

64
+𝑀𝑠𝑖𝑛4(

𝜋𝑞
𝑎
)𝑠𝑖𝑛4(

𝜋ℎ
𝑏
)

. 

 

 

(2-49) 

As the MemR can be simplified as a spring-mass model, therefore the resonant 

frequency of the model is given as 𝜔11 = √
𝑘𝑅

𝑚𝑅
, where 𝑘𝑅  is the equivalent 
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stiffness of the resonator. Hence, the equivalent stiffness of the model can be 

obtained as: 

𝑘𝑅 =
𝑚𝑅

4𝜋2

𝜋4𝐷

4𝑎3𝑏3
(3𝑏4+3𝑎4+2𝑎2𝑏2)+

3(𝑎2+𝑏2)𝑇𝜋2

16𝑎𝑏
9𝑎𝑏𝑚𝑠
64

+𝑀𝑠𝑖𝑛4(
𝜋𝑞

𝑎
)𝑠𝑖𝑛4(

𝜋ℎ

𝑏
)

.  

 

(2-50) 

The accuracy of the model is examined by numerical simulation as well. With 

the same example used in section 2.2.1, the obtained resonant frequency by FEA 

simulation (42Hz) and Rayleigh method (44Hz) are found normally consistent.  

Otherwise, the accuracy of the Rayleigh method is further examined by FEA 

method. The tensile stress applied on the membrane is changed from 0.1MPa to 

2.0MPa, and the fundamental resonant frequency obtained through FEA and 

Rayleigh method is compared and presented in Table 3.  

Table 3: The fundamental resonant frequency of a MemR applied with different tension stress 

  Tensile stress (MPa) FEA Rayleigh's method 

1 0.1 27.02 24.68 

2 0.2 35.33 33.06 

3 0.3 41.84 39.71 

4 0.4 47.36 45.39 

5 0.5 52.25 50.44 

6 0.6 56.68 55.02 

7 0.7 60.75 59.26 

8 0.8 64.55 63.21 

9 0.9 68.12 66.92 

10 1.0 71.49 70.44 

11 1.1 74.70 73.80 

12 1.2 77.77 77.01 

13 1.3 80.72 80.08 

14 1.4 83.55 83.05 

15 1.5 86.29 85.91 

16 1.6 88.93 88.68 

17 1.7 91.49 91.37 

18 1.8 93.98 93.98 

19 1.9 96.41 96.52 

20 2.0 98.77 98.99 
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Figure 27: 1st resonance frequency of membrane-type resonator under various tension stress worked out 

by COMSOL and Rayleigh’s method 

According to the table, the Rayleigh method is able to predict the resonance 

frequency of the membrane-type resonator accurately. Small amount of error 

exist but within an acceptable range.  

In the simulation, it is also found that the error caused by the Rayleigh method 

is related with the size of mass block. In the model, the attached mass is assumed 

as a concentrated point mass. However, in reality, the mass block has a certain 

occupied area. Therefore, the existence of the mass block will somehow 

influence the mode shape of the MemR system. Inaccuracy of the mode shape 

function is thus occurred and leads to error.  

To investigate the influence of mass blocks’ size to deviation, the curve of size 

versus average error is obtained and shown in Figure 28. The size is changed 

from 6mm to 20mm. For each different size, the tensile stress applied to the 

membrane is changed from 0.1MPa to 1.0MPa, then the fundamental resonant 

frequencies of the MemR are obtained by the Rayleigh method ( 𝑓𝑅)  and 
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compared with the numerical simulation results ( 𝑓𝐶 ) respectively. The 

differences between 𝑓𝑅 and 𝑓𝐶  are summed and averaged, then plotted against 

the dimensionless length ratio of mass radius and membrane side length 𝑎/𝐿. 

The results are shown in Figure 28.  

It is found that along with the increase of dimension ratio, the average error is 

growing. It demonstrates that the increment of mass platelet size will affect the 

mode shape function accuracy in the assumption and thus amplify the error.  

 

Figure 28. Average of frequency difference between simulation and theoretical model results. 

In the Rayleigh’s method, the flexural stiffness of the membrane is also 

considered, which is different from the widely adopted membrane vibration 

model that ignore the flexural stiffness. The flexural stiffness is defined as a 

function of materials Young’s modulus. Actually, when applied with tensile 

stress, the membrane will have certain capability in preventing flexural vibration 

and therefore possess the bending stiffness. However, in the former method, such 

property is ignored. In order to illustrate the effect of modulus in resonant 

frequency, numerical simulation is conducted. With the same tensile stress and 

mass block applied, the Young’s modulus of the membrane is adjusted. As 

shown in Table 4, the increase of modulus will result in the elevating of 
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fundamental resonant frequencies. Hence the Rayleigh method is closer to the 

actual situation.  

Table 4: The fundamental resonant frequency of a MemR with various membrane material Young’s 

modulus 

Change membrane’s Young's modulus 

Young's modulus (GPa) Fundamental resonant frequency (Hz) 

1.5 107.85 

2.0 108.4 

2.5 108.89 

3.0 109.33 

3.5 109.74 

4.0 110.12 

4.5 110.48 

5.0 110.82 

5.5 111.14 

6.0 111.45 
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2.3 Plane Wave Expansion (PWE) Method  

 

2.3.1 Band structure of single layer MemM 

As the MemM can be simplified as combination of mass-spring resonators. If 

apply a single layered MemM to a thin plate structure, the system can be 

simplified as the model shown in Figure 29. To calculate the dispersion relation 

of this structure, the PWE method is employed and modified accordingly.  

 

Figure 29: The configuration of plate with periodically allocated spring-mass resonators 

For a thin plate with resonators attached, according to equation (2-25), the 

equation of motion of the system can be given as: 

{
𝐷(

𝜕2

𝜕𝑥2
+
𝜕2

𝜕𝑦2
)2𝑤1(𝑥, 𝑦) − 𝜔

2𝑚𝑠𝑤1(𝑥, 𝑦) = ∑𝑓1(𝑋, 𝑌)𝛿[(𝑥 − 𝑋, 𝑦 − 𝑌)]

𝑅

−𝜔2𝑚𝑅𝑤2(𝑋, 𝑌) = 𝑓2(𝑋, 𝑌)

, 

 

 

(2-51a) 

(2-51b) 

where (𝑥, 𝑦)  and (𝑋, 𝑌)  are the coordinates of points on the plate and the 

location of resonators,  𝑚𝑠 is the mass density of the plate per unit area and 𝑚𝑅 

is the mass of the resonator masses. 𝑤1(𝑥, 𝑦)  and 𝑤2(𝑋, 𝑌)  are transverse 

displacement of plate and resonator at different points, 𝑓1 and 𝑓2 are forces that 

applied on thin plate and resonator masses, and 𝛿 is Dirac function. Change the 

coordination into vectors of 𝑥 and 𝑦 [132]: 

{
𝑟 = (𝑥, 𝑦)

𝑅 = 𝑚𝑿 + 𝑛𝒀    𝑚, 𝑛 = 1,2,3…
, 

 

(2-52a) 

(2-52b) 
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where 𝑿 = (𝑎11, 𝑎12) = (𝑎1, 0)  and 𝒀 = (𝑎21, 𝑎22) = (0, 𝑎2).  Therefore 

equation (2-51) will transform into:  

{
𝐷(

𝜕2

𝜕𝑥2
+
𝜕2

𝜕𝑦2
)2𝑤1(𝑟) − 𝜔

2𝑚𝑠𝑤1(𝑟) =∑𝑓1(𝑅)𝛿[(𝑟 − 𝑅)]

𝑅

−𝜔2𝑚𝑅𝑤2(𝑅) = 𝑓2(𝑅)

. 

 

 

(2-53a) 
 

(2-53b) 

The force 𝑓1 and 𝑓2 are defined as:  

{
𝑓1(𝑅) = −𝑘𝑅[𝑤1(𝑅) − 𝑤2(𝑅)]

−𝜔2𝑚𝑅𝑤2(𝑅) = 𝑓2(𝑅)
, 

 

(2-54a) 

(2-54b) 

where 𝑘𝑅 is the equivalent stiffness of the resonator.  

Furthermore, as the resonators attached are allocated periodically, the thin plate 

with the resonators can form a periodic structure. According to Bloch theorem, 

the displacement of the plate can be expressed as:  

𝑤1(𝑟) =∑[𝑊1

𝐺

(𝐺)𝑒−𝑖(𝑘+𝐺)𝑟], 

 

 

(2-55) 

where 𝑘 = (𝑘𝑥, 𝑘𝑦)  is the Bloch wave vector and 𝐺  is the reciprocal-lattice 

vector, 𝐺 = 𝑚𝒃𝟏 + 𝑛𝒃𝟐. For the rectangular plate that shown in Figure 7, 𝒃𝟏 =

(
2𝜋

𝑎1
, 0) and 𝒃𝟐 = (0,

2𝜋

𝑎2
).  

Also, because of the periodicity, the displacements of the plate at the resonators 

attached points can be given as:  

{
𝑤1(𝑅) = 𝑤1(0)𝑒

−𝑖𝑘𝑅

𝑤2(𝑅) = 𝑤2(0)𝑒
−𝑖𝑘𝑅  

 

(2-56a) 

(2-56b) 

The Dirac function satisfies that [132]:  

∑𝑒−𝑖𝑘𝑅

𝑅

𝛿(𝑟 − 𝑅) = 𝑒−𝑖𝑘𝑟∑𝛿(𝑟 − 𝑅)

𝑅

. 

 

 

(2-57) 

Define 𝑔(𝑟) = ∑ 𝛿(𝑟 − 𝑅)𝑅 , and because of the periodicity, 𝑔(𝑟)  can be 

expanded as: 
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𝑔(𝑟) =∑𝑔̃(𝐺)

𝐺

𝑒−𝑖𝐺𝑟 . 
 

(2-58) 

And by definition of inverse Fourier transform: 

𝑔̃(𝐺) =
1

𝑆
∬𝑔(𝑟)𝑒𝑖𝐺𝑟

𝑠

𝑑𝑆 =
1

𝑆
 

 

 

 

(2-59) 

where 𝑆 is the area of the unit cell. In this case, 𝑆 = 𝑎1𝑎2. Substitute (2-54), (2-

56), (2-57), (2-58) and (2-59) into (2-53), one can obtain [132]:  

{
 

 𝐷[(𝑘 + 𝐺)𝑥
2 + (𝑘 + 𝐺)𝑦

2]2𝑊1(𝐺) − 𝜔
2𝑚𝑠𝑊1(𝐺) = (−

𝑘𝑅
𝑆
)[𝑤1(0) − 𝑤2(0)]

−𝜔2𝑚𝑅𝑤2(0) = 𝑘𝑅[∑𝑊1

𝐺

(𝐺) − 𝑤2(0)]
 

 

 

(2-60a) 

 
 

(2-60b) 

For equation (2-60a), it can be transformed into: 

𝐷𝑆 {[(𝑘 + 𝐺)𝑥
2 + (𝑘 + 𝐺)𝑦

2]
2
− 𝜔2𝑚𝑠𝑆}𝑊1(𝐺) + 𝑘𝑅∑𝑊1

𝐺

(𝐺) − 𝑤2(0) = 0 

 

 

(2-61) 

Equation (2-60b) can be transformed into: 

−𝑘𝑅 [∑𝑊1

𝐺

(𝐺)+𝑤2(0)] − 𝜔
2𝑚𝑅𝑤2(0) = 0 

 

 

(2-62) 

As equations (2-61) and (2-62) consist of infinite summation, a truncation of 

plane waves number is needed when conduction calculation. In order to obtain 

an accurate result, the number of plain waves should not be too small. Assume 

𝑚 = 𝑛 = (−𝑀,𝑀), then the plain wave number is 𝑁 × 𝑁 = (2𝑀 + 1)2 [132]. 

By adopting finite number of plain waves, the equation (2-61) and (2-62) can be 

expressed in matrix form as:  

([
𝐷𝑆[𝐾] + 𝑘𝑅[𝑈] −𝑘𝑅[𝑃]

−𝑘𝑅[𝑃
𝑇] 𝑘𝑅

] − 𝜔2 [
𝑚𝑠𝑆[𝐼] 𝟎
𝟎 𝑚𝑅

]) × [
𝑊1

𝑤2(0)
] = 𝟎 

 

(2-63) 

where:  
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[𝐾] =

[
 
 
 
 
 [ ∑ (𝑘 + 𝐺1)𝑗

2

𝑗=𝑥,𝑦

]2 ⋯ 0

⋮ ⋱ ⋮

0 ⋯ [ ∑ (𝑘 + 𝐺𝑁×𝑁)𝑗
2

𝑗=𝑥,𝑦

]2

]
 
 
 
 
 

 

 

 

 

𝑃 = [

1
..
.
1

]                 𝐼 =

[
 
 
 
 
1 0 … … 0
0
.
.

1 … …
… … …
… … 1

.

.
0

0 … … 0 1]
 
 
 
 

             [𝑈] = [𝑃𝑃𝑇] 

 

 

𝑊1 =

[
 
 
 
 
𝑊1,1

𝑊1,2
.
..

𝑊1,𝑁×𝑁]
 
 
 
 

 

 

 

The dispersion relation can be derived by solving the eigenvalue problem of 

equation (2-63). This is the commonly used PWE method for the calculation of 

bandgap property of phononic crystals. For the periodically attached membrane-

type metamaterial, the PWE method has not been applied to predict its bandgap 

before.  

In the PWE method, the equivalent stiffness and mass of the MemR are needed. 

Former researches that used PWE method for the MemM did not mention how 

to obtain the equivalent stiffness of the MemR, and also in the analytical model, 

the tensile stress that applied on the membrane is not included as an independent 

parameter. Therefore, the relation between tensile stress and bandgap location is 

not established directly.  

In this study, by combining the Rayleigh method with the PWE method, an 

analytical model is developed. The tensile stress applied to the membrane is 

included in the Rayleigh method, through which the equivalent stiffness of the 

MemR is obtained. Thus the modified PWE method can reveal the effect of 

tensile stress on the bandgap property.  
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2.3.2 Band structure of bilayer layer MemM 

Because of the unique structure characteristics of MemM, it can be stacked to 

each other and form a multi-layer MemM. The modified PWE method can also 

be used to calculate the bandgap property of the multi-layer MemM. Model 

modification for bilayer MemM is presented in this section. 

The bilayer MemM attached to a thin plate structure can be simplified as the 

model shown in Figure 30.  

 

Figure 30. Configuration of thin plate with periodically allocated spring-mass resonators. The two 

resonators in one unit cell are attached at the same point. 

With bilayer MemM, the equation of motion for the above model can be written 

as: 

{
 
 
 

 
 
 𝐷(

𝜕2

𝜕𝑥2
+
𝜕2

𝜕𝑦2
)2𝑤1(𝑥, 𝑦) − 𝜔

2𝑚𝑠𝑤1(𝑥, 𝑦) =∑𝑓1(𝑋, 𝑌)𝛿[(𝑥 − 𝑋, 𝑦 − 𝑌)]

𝑅

+

∑𝑓2(𝑋
′, 𝑌′)𝛿[(𝑥 − 𝑋′, 𝑦 − 𝑌′)]

𝑅

−𝜔2𝑚𝑅1𝑤2(𝑋, 𝑌) = 𝑓𝑚1(𝑋, 𝑌)

−𝜔2𝑚𝑅2𝑤3(𝑋
′, 𝑌′) = 𝑓𝑚2(𝑋′, 𝑌′)

 

 

(2-64a) 
 

 
 

 

 

(2-64b) 

(2-64c) 

 

where (𝑥, 𝑦), (𝑋, 𝑌) and (𝑋′, 𝑌′) are the coordinates of points on the plate and 

the location of resonators, 𝑓1  and 𝑓2  are forces that applied on thin plate by 

resonators, and 𝑓𝑚1 and 𝑓𝑚2 are forces that applied on the resonators.  

Similar to the single layer MemM, the equation of motion can be transformed to: 
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{
 
 
 
 

 
 
 
 

𝐷[(𝑘 + 𝐺)𝑥
2 + (𝑘 + 𝐺)𝑦

2]2𝑊1(𝐺) − 𝜔
2𝜌𝑝ℎ𝑊1(𝐺) =

−
𝑘𝑅1
𝑆
[∑𝑊1(𝐺) −𝑊2(0)]

𝐺

−
𝑘𝑅2
𝑆
[∑𝑊1(𝐺) −𝑊3(0)]

𝐺

−𝜔2𝑚𝑅1𝑤2(0) = 𝑘𝑅1[∑𝑊1(𝐺) −𝑊2(0)]

𝐺

−𝜔2𝑚𝑅2𝑤3(0) = 𝑘𝑅2[∑𝑊1(𝐺) −𝑊3(0)]

𝐺

 

 

(2-65a) 

 

 
 

(2-65b) 

 

(2-65c) 

 

Expressed in matrix form as: 

([

𝐷𝑆[𝐾] + 𝑘𝑅1[𝑈] + 𝑘𝑅2[𝑈] −𝑘𝑅1[𝑃] −𝑘𝑅2[𝑃]

−𝑘𝑅1[𝑃
𝑇] 𝑘𝑅1 0

−𝑘𝑅2[𝑃
𝑇] 0 𝑘𝑅2

] − 𝜔2 [

𝜌𝑝ℎ𝑆[𝐼] 𝟎 𝟎

0 𝑚𝑅1 0
0 0 𝑚𝑅2

]) × 

[

𝑊1

𝑤2(0)

𝑤3(0)
] = 0 

 

 

(2-66) 

For each given wave vector 𝑘, the eigen-frequency 𝜔(𝑘) can be derived through 

the solving of the eigen-problem in equation (2-66). Similar to the single layer 

MemM introduced in 2.3.1, the bandgap property of the bilayer MemM can be 

obtained through the modified PWE method, and the tensile stress applied on 

the membranes are included as independent parameters. 
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2.4 Vibration of Thin Plate Attached With Resonators 

An analytical model of a thin plate attached with spring-mass resonators is 

demonstrated in this section. Through this model the vibration response of the 

plate can be obtained conveniently.  

The configuration of the structure is shown in Figure 31. 

 

Figure 31. The configuration of a thin plate structure attached with spring-mass resonators randomly. 

Similar to the content introduced in section 2.3, equation of motion for the 

system indicated in Figure 31 are given as: 

{
 
 

 
 𝐷∇4𝑤(𝑥, 𝑦, 𝑡) + 𝜌ℎ

𝜕2𝑤(𝑥, 𝑦, 𝑡)

𝜕𝑡2
= 𝐹(𝑡)𝛿(𝑥 − 𝑥0, 𝑦 − 𝑦0) −∑𝑚𝑔

𝜕2𝑥𝑔(𝑡)

𝜕𝑡2

𝐺

𝑔

𝑚𝑔

𝜕2𝑥𝑔(𝑡)

𝜕𝑡2
+ 𝑐𝑔

𝜕𝑥𝑔(𝑡)

𝜕𝑡
+ 𝑘𝑔𝑥𝑔(𝑡) = 𝑐𝑔

𝜕𝑤(𝑥, 𝑦, 𝑡)

𝜕𝑡
+ 𝑘𝑔𝑤(𝑥, 𝑦, 𝑡)

 

 

(2-67) 

 

 

(2-68) 

 

where 𝜌 is the mass density of the plate, ℎ is the plate thickness, 𝑚𝑔, 𝑐𝑔 and 𝑘𝑔 

are the mass, damping and stiffness of the spring-mass resonator respectively. 

Define the displacement and applied force as:  

{
 
 

 
 𝑤(𝑥, 𝑦, 𝑡) =∑∑𝑊𝑛𝑚𝑒

𝑖𝜔𝑡Ф𝑛𝑚(𝑥, 𝑦)

𝑁

𝑛

𝑀

𝑚

𝑥𝑔(𝑡) = 𝑋𝑔𝑒
𝑖𝜔𝑡

𝐹(𝑡) = 𝐹𝑒𝑖𝜔𝑡

 

 

(2-69a) 

 

(2-69b) 

(2-69c) 

 

 

Substitute equation (2-69a) and (2-69b) into equation (2-68), one can obtain the 

expression of resonator displacement: 
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Otherwise, if there is no resonator attached on the plate and it undergoes free 

vibration, the equation of motion is given as:  

𝐷∇4∑∑𝑊𝑛𝑚Ф𝑛𝑚(𝑥, 𝑦)

𝑁

𝑛

𝑀

𝑚

− 𝜔𝑛𝑚
2 𝜌ℎ∑∑𝑊𝑛𝑚Ф𝑛𝑚(𝑥, 𝑦)

𝑁

𝑛

𝑀

𝑚

= 0 

 

 

→ 𝐷∇4∑∑𝑊𝑛𝑚Ф𝑛𝑚(𝑥, 𝑦)

𝑁

𝑛

𝑀

𝑚

= 𝜔𝑛𝑚
2 𝜌ℎ∑∑𝑊𝑛𝑚Ф𝑛𝑚(𝑥, 𝑦)

𝑁

𝑛

𝑀

𝑚

 

 

 

(2-71) 

where 𝜔𝑛𝑚 is the corresponding resonance frequency of each specific mode.  

Substitute equation (2-69a), (2-69b), (2-70) and (2-71) into equation (2-67): 

𝜔𝑛𝑚
2 𝜌ℎ∑∑𝑊𝑛𝑚Ф𝑛𝑚(𝑥, 𝑦)

𝑁

𝑛

𝑀

𝑚

− 𝜔2𝜌ℎ∑∑𝑊𝑛𝑚Ф𝑛𝑚(𝑥, 𝑦)

𝑁

𝑛

𝑀

𝑚

= 𝐹𝛿(𝑥 − 𝑥0, 𝑦 − 𝑦0) + 𝜔
2∑𝑚𝑔𝑋𝑔

𝐺

𝑔

 

 

 

 

→ 𝜔𝑛𝑚
2 𝜌ℎ∑∑𝑊𝑛𝑚Ф𝑛𝑚(𝑥, 𝑦)

𝑁

𝑛

𝑀

𝑚

− 𝜔2𝜌ℎ∑∑𝑊𝑛𝑚Ф𝑛𝑚(𝑥, 𝑦)

𝑁

𝑛

𝑀

𝑚

 

 

= 𝐹𝛿(𝑥 − 𝑥0, 𝑦 − 𝑦0) + 𝜔
2∑𝑚𝑔[

𝑖𝜔𝑐𝑔 + 𝑘𝑔

−𝜔2𝑚𝑔 + 𝑖𝜔𝑐𝑔 + 𝑘𝑔
∑∑𝑊𝑛𝑚Ф𝑛𝑚(𝑥, 𝑦)

𝑁

𝑛

𝑀

𝑚

𝐺

𝑔

] 

 

 

 

 

 
 

(2-72) 

For the purpose of simplification, define 𝑀 = ∑ 𝑚𝑔
𝑖𝜔𝑐𝑔+𝑘𝑔

−𝜔2𝑚𝑔+𝑖𝜔𝑐𝑔+𝑘𝑔

𝐺
𝑔  and 

substitute into equation (2-72). In the meantime, multiply Ф𝑟𝑠(𝑥, 𝑦) to both sides 

of above equation and integrate it over the plate surface, according to the 

orthogonality condition one can obtain: 

∬𝜔𝑛𝑚
2 𝜌ℎ

𝑆

∑∑𝑊𝑛𝑚Ф𝑛𝑚(𝑥, 𝑦)

𝑁

𝑛

𝑀

𝑚

Ф𝑟𝑠(𝑥, 𝑦)𝑑𝑆 −∬𝜔2

𝑆

𝜌ℎ∑∑𝑊𝑛𝑚Ф𝑛𝑚(𝑥, 𝑦)Ф𝑟𝑠(𝑥, 𝑦)

𝑁

𝑛

𝑑𝑆

𝑀

𝑚

 

 

=∬𝐹

𝑆

𝛿(𝑥 − 𝑥0, 𝑦 − 𝑦0)Ф𝑟𝑠(𝑥, 𝑦)𝑑𝑆 +∬𝜔2𝑀

𝑆

∑∑𝑊𝑛𝑚Ф𝑛𝑚(𝑥, 𝑦)Ф𝑟𝑠(𝑥, 𝑦)

𝑁

𝑛

𝑀

𝑚

𝑑𝑆 

 

 

 

−𝜔2𝑚𝑔𝑋𝑔 + 𝑖𝜔𝑐𝑔𝑋𝑔 + 𝑘𝑔𝑋𝑔 = 𝑖𝜔𝑐𝑔∑∑𝑊𝑛𝑚Ф𝑛𝑚(𝑥, 𝑦) + 𝑘𝑔∑∑𝑊𝑛𝑚Ф𝑛𝑚(𝑥, 𝑦)

𝑁

𝑛

𝑀

𝑚

𝑁

𝑛

𝑀

𝑚

 

 

 

→ (−𝜔2𝑚𝑔 + 𝑖𝜔𝑐𝑔 + 𝑘𝑔)𝑋𝑔 = (𝑖𝜔𝑐𝑔 + 𝑘𝑔)∑∑𝑊𝑛𝑚Ф𝑛𝑚(𝑥, 𝑦)

𝑁

𝑛

𝑀

𝑚

 

 

→ 𝑋𝑔 =
𝑖𝜔𝑐𝑔 + 𝑘𝑔

−𝜔2𝑚𝑔 + 𝑖𝜔𝑐𝑔 + 𝑘𝑔
∑∑𝑊𝑛𝑚Ф𝑛𝑚(𝑥, 𝑦)

𝑁

𝑛

𝑀

𝑚

 

 

 

(2-70) 
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 𝑊𝑛𝑚[𝜔𝑛𝑚
2 𝜌ℎ − 𝜔2𝜌ℎ−𝜔2𝑀]∬Ф𝑛𝑚(𝑥, 𝑦)

2

𝑆

𝑑𝑆 = 𝐹Ф𝑛𝑚(𝑥0, 𝑦0) 

 

 

(2-73) 

Assume the shape function of the structure as Ф𝑛𝑚(𝑥, 𝑦) = sin (
𝑛𝜋

𝐿1
𝑥)sin (

𝑚𝜋

𝐿2
𝑦), 

for simplification, define a =
𝑛𝜋

𝐿1
 and b =

𝑚𝜋

𝐿2
, then equation (2-73) will be 

transformed to: 

 

𝑊𝑛𝑚[𝜔𝑛𝑚
2 𝜌ℎ − 𝜔2𝜌ℎ−𝜔2𝑀]∫ ∫ sin(𝑎𝑥)2 sin(𝑏𝑦)2

𝐿1

0

𝑑𝑥𝑑𝑦
𝐿2

0

= 𝐹𝑠𝑖𝑛(𝑎𝑥0)sin (𝑏𝑦0) 
 

 

→  𝑊𝑛𝑚[𝜔𝑛𝑚
2 𝜌ℎ − 𝜔2𝜌ℎ−𝜔2𝑀]

𝐿1𝐿2
4

= 𝐹𝑠𝑖𝑛(𝑎𝑥0)sin (𝑏𝑦0) 
 

 

→  𝑊𝑛𝑚 =
4𝐹𝑠𝑖𝑛 (

𝑛𝜋
𝐿1
 𝑥0) sin (

𝑚𝜋
𝐿2

𝑦0)

[𝜔𝑛𝑚
2 𝜌ℎ − 𝜔2𝜌ℎ−𝜔2∑ 𝑚𝑔

𝑖𝜔𝑐𝑔 + 𝑘𝑔
−𝜔2𝑚𝑔 + 𝑖𝜔𝑐𝑔 + 𝑘𝑔

𝐺
𝑔 ]𝐿1𝐿2

 

 

 

 

 

(2-74) 

For a rectangular plate, the natural frequency can be given as:  

𝜔𝑛𝑚 = 𝜋2[(
𝑛

𝐿1
)2 + (

𝑚

𝐿2
)2]√

𝐷

𝜌ℎ
 

 

 

(2-75) 

Substitute equation (2-75) into equation (2-74):  

𝑊𝑚𝑛 =
4𝐹𝑠𝑖𝑛 (

𝑚𝜋
𝐿1
 𝑥0) sin (

𝑛𝜋
𝐿2
𝑦0)

{𝜋4[(
𝑚
𝐿1
)2 + (

𝑛
𝐿2
)2]2𝐷 − 𝜔2𝜌ℎ−𝜔2∑ 𝑚𝑔

𝑖𝜔𝑐𝑔 + 𝑘𝑔
−𝜔2𝑚𝑔 + 𝑖𝜔𝑐𝑔 + 𝑘𝑔

𝐺
𝑔 } 𝐿1𝐿2

 

 

 

 

(2-76) 

Therefore, the vibration response of the plate can be given as:  

𝑤(𝑥, 𝑦, 𝑡) = ∑∑𝑊𝑚𝑛𝑒
𝑖𝜔𝑡Ф𝑚𝑛(𝑥, 𝑦)

𝑁

𝑛

𝑀

𝑚

 

 

 

=∑∑
4𝐹𝑠𝑖𝑛 (

𝑚𝜋
𝐿1
 𝑥0) sin (

𝑛𝜋
𝐿2
𝑦0)

{𝜋4[(
𝑚
𝐿1
)2 + (

𝑛
𝐿2
)2]2𝐷 − 𝜔2𝜌ℎ−𝜔2∑ 𝑚𝑔

𝑖𝜔𝑐𝑔 + 𝑘𝑔
−𝜔2𝑚𝑔 + 𝑖𝜔𝑐𝑔 + 𝑘𝑔

𝐺
𝑔 } 𝐿1𝐿2

𝑒𝑖𝜔𝑡sin (
𝑚𝜋

𝐿1
𝑥)sin (

𝑛𝜋

𝐿2
𝑦)

𝑁

𝑛

𝑀

𝑚

 

 

 

 

(2-77) 

In reality, the above equation is an infinite summation of the resonance modes. 

However, during the calculation, a truncation of the mode number can be applied 

and the obtained results will be accurate enough. Normally, the first few modes 
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will contribute to the most of the mode shapes, so the truncation number does 

not need to be too large. For example, if define the mode number 𝑚 = 𝑛 = 2, 

the displacement function can be given as: 

→ 𝑤(𝑥, 𝑦, 𝑡)

=
4𝐹𝑠𝑖𝑛 (

𝜋
𝐿1
 𝑥0) sin (

𝜋
𝐿2
𝑦0)

{𝜋4[(
1
𝐿1
)2 + (

1
𝐿2
)2]2𝐷 − 𝜔2𝜌ℎ−𝜔2∑ 𝑚𝑔

𝑖𝜔𝑐𝑔 + 𝑘𝑔
−𝜔2𝑚𝑔 + 𝑖𝜔𝑐𝑔 + 𝑘𝑔

𝐺
𝑔 } 𝐿1𝐿2

𝑒𝑖𝜔𝑡 sin (
𝜋

𝐿1
𝑥) sin (

𝜋

𝐿2
𝑦) 

+
4𝐹𝑠𝑖𝑛 (

𝜋
𝐿1
 𝑥0) sin (

2𝜋
𝐿2
𝑦0)

{𝜋4[(
1
𝐿1
)2 + (

2
𝐿2
)2]2𝐷 − 𝜔2𝜌ℎ−𝜔2 ∑ 𝑚𝑔

𝑖𝜔𝑐𝑔 + 𝑘𝑔
−𝜔2𝑚𝑔 + 𝑖𝜔𝑐𝑔 + 𝑘𝑔

𝐺
𝑔 } 𝐿1𝐿2

𝑒𝑖𝜔𝑡 sin (
𝜋

𝐿1
𝑥) sin (

2𝜋

𝐿2
𝑦)

+
4𝐹𝑠𝑖𝑛 (

2𝜋
𝐿1
 𝑥0) sin (

𝜋
𝐿2
𝑦0)

{𝜋4[(
2
𝐿1
)2 + (

1
𝐿2
)2]2𝐷 − 𝜔2𝜌ℎ−𝜔2 ∑ 𝑚𝑔

𝑖𝜔𝑐𝑔 + 𝑘𝑔
−𝜔2𝑚𝑔 + 𝑖𝜔𝑐𝑔 + 𝑘𝑔

𝐺
𝑔 } 𝐿1𝐿2

𝑒𝑖𝜔𝑡 sin (
2𝜋

𝐿1
𝑥) sin (

𝜋

𝐿2
𝑦)

+
4𝐹𝑠𝑖𝑛 (

2𝜋
𝐿1
 𝑥0) sin (

2𝜋
𝐿2
𝑦0)

{𝜋4[(
2
𝐿1
)2 + (

2
𝐿2
)2]2𝐷 − 𝜔2𝜌ℎ−𝜔2 ∑ 𝑚𝑔

𝑖𝜔𝑐𝑔 + 𝑘𝑔
−𝜔2𝑚𝑔 + 𝑖𝜔𝑐𝑔 + 𝑘𝑔

𝐺
𝑔 } 𝐿1𝐿2

𝑒𝑖𝜔𝑡sin (
2𝜋

𝐿1
𝑥)sin (

2𝜋

𝐿2
𝑦) 

 

 

 

 

 

 

 

 

 

 

(2-78) 

Similarly, when change the mode number, equation (2-78) will vary accordingly, 

and the displacement amplitude of the plate can be obtained. The shape and 

vibration response of the plate can be revealed by plotting the displacement 

𝑤(𝑥, 𝑦, 𝑡) over the coordinate.  
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2.5 Chapter Summary 

The theoretical background of the study is introduced and development of 

analytical model for the MemM is presented in this chapter.  

The vibration theory of the membrane and thin plate structures, which are related 

with the membrane-type resonator and its target structure for vibration control, 

are introduced and explained.  

Two different analytical methods for the prediction of membrane-type 

resonator’s resonant frequencies were investigated and verified. The Rayleigh 

method is selected for further study because of the higher accuracy. Since 

concentrated point mass is assumed in the Rayleigh model, the high density 

material is recommended to be used in the simulation and experiment for the 

purpose of enhancing consistency with the analytical prediction.  

Otherwise, theoretical model development has been conducted. The PWE model 

that used for the metamaterial’s bandgap prediction was modified to be able to 

predict the bandgap property of MemM applied on thin plate structures. The 

modification allows the PWE model to include membrane-type resonator’s 

design parameters, such as material properties, dimension and tensile stress 

applied on membrane, to be included as independent variables in the model, and 

reveal directly the design parameters’ effect on bandgap properties. In addition, 

the PWE model is furtherly modified for the purpose of predicting the bandgap 

properties of multi-layer MemM.  

Moreover, the model for the vibration response of a thin plate structure attached 

with resonators is derived, and this analytical model allows a convenient 

prediction of vibration response. 
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Chapter 3 

3. DESIGN OF A NOVEL ELASTIC 

METAMATERIAL WITH BROAD LOW 

FREQUENCY BANDGAP 

 

In this chapter, the design process of a novel EM is presented and the detailed 

analysis procedures are introduced. The bandgap property of the proposed 

structure was investigated and the results indicate that the EM possess a 

relatively broad bandgap in low frequency region. The purpose of conducting 

this design and analysis was to make a concept proof for the local resonance 

bandgap and develop deeper understanding about bandgap forming mechanism 

and its relationship with resonant mode shapes. Numerical simulation is 

conducted to assist the design process and parametric analysis. Prototypes are 

manufacture and experimentally tested.2 

 

 

 

 

 

                                                 
2Part of the content of this chapter has been submitted to: [1] the INTER-NOISE 2020 Congress as a 

conference paper “Elastic metamaterial with hexagonal prism inclusion for flexural vibration control of a 

thin plate structure”; [2] the International Journal of Solids and Structures as a research article “Bandgap 

modification of an elastic metamaterial with a broad low-frequency bandgap”. 
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3.1 Structure Design of the Elastic Metamaterial (EM) 

The forming of a local resonant type bandgap depends on the resonant 

frequencies and mode shapes of the unit cells that compose the EM. Therefore, 

the bandgap performance of the metamaterial can be controlled and adjusted 

through structural design.  

To generate local resonant phenomenon, the EM unit cells normally consist of 

rigid mass wrapped or supported by elastic material, and matrix frame that holds 

the inclusions. The unit cell structure can be schematically simplified as mass-

spring models: the rigid inclusion and elastic wrapping provide mass and spring 

stiffness respectively [125]. The utilization of local resonance phenomenon 

distinguish the EM from PnC, even though the PnC is considered as a special 

type of AM/EM in many research works. The bandgaps will be formed when the 

incident wave frequency excites the corresponding resonant modes. Thus the 

wave energy will be contained within the unit cell and prevent the wave 

propagation. 

Based on this phenomenon, two different EM structures are designed and 

presented in Figure 32. The designed metamaterial unit cells are composed by 

three components: a hexagonal prism/cuboid rigid mass, elastic coating of the 

mass and a supporting frame.  The coating material has a hexagon/square cavity 

for the convenience of rigid mass installation, and six/four supporting beams 

connecting the inclusion to the frame. With the opening at the top, the hexagonal 

prism/cuboid mass can be inserted directly and replaced if needed.  

For both the designs, the outer side length and height of the unit cell frame are 

defined as 𝑎 (59mm), 𝑏 (66mm) and 𝐻 (12mm) respectively. The height of the 
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coating material is also 12mm, and the thickness of both the mass are 10mm. 

Other detailed size parameters are presented in the figure. The material selection 

for the mass, elastic coating and frame are copper, silicon rubber and epoxy 

respectively. The material or thickness of the rigid mass can be changed easily 

for the purpose of adjusting the resonator mass magnitude. The volumes of the 

hexagonal prism and cuboid are designed to be the same, so to ensure the 

resonator mass in both types are identical. In the cuboid design, there are four 

supporting beams connecting the inclusion with the frame, whilst there are six 

supporting beams in the hexagonal case. The system equivalent stiffness can be 

effectively tuned if the thickness of the supporting beams are changed. 

Otherwise, existence of several supporting beams in the unit cell may lead to 

higher possibility of revealing bending resonant modes and torsional modes in 

low frequency region.  

 

 

Figure 32. The configuration of the proposed EM unit cells (a) with hexagonal cylinder mass; (b) with 

cuboid mass. (c) The Brillouin zone of the metamaterial. 
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Material properties of the metamaterial are determined through Dynamic 

Mechanical Analysis (DMA) testing. The frame, elastic wrapping and rigid core 

materials are chosen as 3D printed epoxy, silicon rubber and copper respectively. 

The obtained material properties are given in Table 5.  

Table 5. Material properties of the proposed EM. 

 Epoxy Rubber Copper 

Young’s modulus  0.917GPa 3.45MPa 115GPa 

Poisson’s ratio 0.41 0.49 0.33 

Density (kg/m3) 1100 980 8890 
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3.2 Proposed EMs’ Band Structures and Modal Analysis 

The dispersion relation of the proposed structures can reveal the bandgap 

properties of metamaterials. When simplified as a spring-mass resonator, the 

governing equation of the unit cell is: 

(𝐾 −𝑀𝜔2)𝑈 = 0 
 

(3-1) 

where 𝐾 is the stiffness matrix, 𝑀 is the mass matrix and 𝑈 is the displacement 

of the structure. Theoretically, the unit cells should be allocated periodically and 

form an infinite structure. According to Bloch–Floquet theorem, in infinite 

periodic structure, all the physical parameter functions should satisfy this 

condition:  

𝑓(𝑥0 + 𝑟) = 𝑓(𝑥0)𝑒
𝑖𝑘𝑟 

 

(3-2) 

where 𝑟 = 𝑎𝑚 + 𝑏𝑛 is a lattice vector representing relative position of the point. 

𝑎 and 𝑏 as the unit cell sizes and 𝑚 and 𝑛 are integers, and  𝑘 is the wave vector. 

Therefore, the deformation of the metamaterial structure should also satisfy the 

Bloch–Floquet condition, and be expressed as: 

𝑈(𝑥0 + 𝑟) = 𝑈(𝑥0)𝑒
𝑖𝑘𝑟. 

 

(3-3) 

Thus, the displacement behaviour of the periodic structure can be derived 

through the calculation of a primitive unit cell in 𝑥0. By substituting equation (3-

3) into equation (3-1), the governing equation can be changed into a function of 

wave vector 𝑘 as: 

[𝐾(𝑘) −𝑀(𝑘)𝜔2]𝑈 = 0. 

 

(3-4) 

For each given wave vector𝑘 , the solutions of the equation represent the 

corresponding eigen-frequencies of the metamaterial unit cell.  
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By scanning the wave vector 𝑘 along the boundary of irreducible Brillouin zone, 

the dispersion relation between wave vector and eigen-frequencies can be 

obtained. This is the widely used 𝜔(𝑘) method for bandgap prediction [132]. 

Because the different symmetry properties of the two proposed design, the 

boundaries of the irreducible Brillouin zones for the cuboid and hexagonal prism 

designs are Г-X-M-Г and M-Г-X-M-Y-Г respectively. Due to the complexity of 

the structure, FEA method is adopted to solve the equation (3-4) and obtain the 

dispersion relation of the two structures. 

 

3.2.1 Hexagonal prism type EM  

The band structure of the metamaterial with hexagonal prism mass is presented 

in Figure 33. The dispersion relation is obtained through FEA method conducted 

by software, therefore it includes bending wave bandgap (Z mode) as well as the 

full bandgap. As a result, the bandgaps are overlapped and cannot be revealed 

directly. Analysis based on the resonant mode shapes is needed for fully 

understanding of the bandgap property.  

It is mainly the propagation of Lamb waves are concerned about when studying 

the vibration problem of a plate structure with finite thickness. Normally, the 

propagating Lamb waves contains three modes: waves in symmetric modes (S 

mode), in anti-symmetric modes (A mode) and shear-horizontal (SH mode) 

waves [133]. In addition, infinite overtones of these modes (such as mode An, Sn 

and SHn, where n is integer) can also propagate through. These wave modes can 

be identified in the dispersion relation as different band curves originate from 

point Г.  
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For the low frequency waves that possess relatively long wavelength, the 

metamaterial plate with periodic structure can be considered as homogeneous. 

So the behavior of the SH0 wave and S0 wave are similar and the corresponding 

curves in band structure are linear. The slopes of these lines originate from point 

Г represent the waves’ phase velocities [133]. Since the phase velocities of 

various wave modes are different, the wave modes can be identified through the 

slopes of the lines. As the flexural wave has the lowest phase speed, the first 

band is recognized as A0 mode.  

In the meantime, there are also six flat bands found in the band structure. These 

bands are labelled as A to F in the figure. They represent the local resonances of 

the metamaterial unit cell. The resonance of a unit cell are decided by the 

structural configuration but not affected by the external excitation, therefore the 

band curves are basically maintained flat over all the wave vector directions.  

Moreover, the so-called full bandgaps are the frequency regions where no band 

curve appears at. These regions are also called Lamb wave bandgap [134, 135]. 

It means any incident waves in these frequencies cannot propagate through the 

structure. The starting and cut off points of the full bandgaps are labeled as P1 to 

P4 on the band structures. As given in the figure, there are two full bandgaps that 

exist among the corresponding bands and are marked as shaded area in the figure: 

(1). 148.1Hz (4th band) – 152.4Hz (5th band); (2). 158.4Hz (5th band) – 176.4Hz 

(6th band).  
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Figure 33. Band structure of EM equipped with hexagonal prism mass and 12mm thick supporting 

beams. 

Aside from the full bandgaps, metamaterial will also be able to form bending 

wave bandgaps (Z mode) depending on different local resonant modes of the 

unit cell structure [135]. When the incident wave activate the local resonance of 

the unit cells, the wave energy will be transformed into the kinetic energy of the 

inclusion, and therefore prevent the wave energy from affecting the primary 

structure. Through analysing the mode shapes of local resonance, the bandgap 

forming mechanism and interaction between the incident wave and resonance 

can be revealed. Figure 34 presents the mode shapes of the proposed 

metamaterial unit cell in different bands, and also the corresponding mode 

shapes of the starting and cut-off points of bandgaps.  
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Figure 34.  The corresponding mode shapes of the proposed hexagonal prism type EM at different point 

in the band structure. The inlet presents the coordinate axis. 

As shown in the figure, mode A0 and A are bending mode that polarized in z- 

direction. Mode B and D are in-plane modes polarized in y- and x- directions 

respectively. Mode C, E and F are torsional modes of the inclusion, who twists 

around the z-, x- and y- axis respectively. Otherwise, the corresponding mode 

shapes at the full bandgaps’ starting points P1 and P3, are the same as mode D 

and E respectively. This is because they are the same local resonance modes 

which are only decided by the unit cell structure. At the cut-off points of the full 

bandgaps (P2 and P4), it is conspicuous that all the corresponding mode shapes 

have vibrating frames. Hence when the wave frequency approaches the cut-off 

points, the vibration mode of the metamaterial will shift into modes at P2 or P4, 

so bandgaps will be terminated as the vibration energy is no more contained 

within the unit cell.  

For the bending wave bandgaps, it is worth mentioning that in all the resonance 

mode shapes, the frame is stabilized and only the inclusion is vibrating, which 

explains the vibration control capability of the metamaterial beam. However, not 
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all the resonance modes can be activated, so only those who have strong 

interaction effect with the incident wave can form bandgaps. The width of the 

bending wave bandgaps are decided by the strength of interaction between the 

travelling waves and mode shape.   

As shown in Figure 34, mode A (at 84.6Hz) is polarized in z- direction so a 

bending wave with frequency that close to 84.6Hz is able to excite the resonance 

mode and a bandgap is expected to appear right above 84.6Hz. This bending 

wave bandgap may be connect with the first full bandgap and thus result in a 

relatively broad bandgap.  

For the full bandgap, as the mode P1 is an in-plane mode polarized in x- direction, 

so the first full bandgap will be formed by a transverse incident wave. This 

bandgap will be cut off when mode shape shift to P2 (152.4Hz), in which the 

frame is no longer static and vibration energy starts propagating through the 

whole structure. Moreover, bending waves can activate mode at P3 since it is a 

torsional mode twisting around the x-axis, and the second bandgap will be 

opened up right above 158.4Hz and stop at P4 (176.4Hz), due to the same reason 

that terminate the first full bandgap at P2. In addition, the counteracting force 

generated by torsional inclusion is mostly self-balanced and thus the 

counteracting force for vibration stopping is smaller than mode A. As a result, 

the bandgap performance in this frequency range (181.4Hz – 221.5Hz) is 

supposed to be weaker.  

It can also be concluded that the bandgap caused by the local resonance with 

negative mass always starts from the local resonance frequency and the bandgap 
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width is decided by the interaction strength between incident wave and 

corresponding resonance mode.  

 

3.2.2 Cuboid type EM 

Similar to the above section, the band structure of the EM with cuboid mass is 

presented in Figure 35.  

 

Figure 35. Band structure of cuboid type EM with 12mm thick supporting beams. 

According to the figure, there are three full bandgaps appeared at the shaded 

areas. Different from the hexagonal prism case, a small full bandgap is found 

between the 4th and 5th bands. The frequency ranges of three full bandgaps are: 

(1). 120.4Hz – 122.5Hz; (2). 124.4Hz – 133.9Hz; (3) 139.1Hz – 156.1Hz.  

The starting and cut-off points of the three bandgaps are labeled as P1 to P6 in 

the figure. Similar to the hexagonal prism case, there are also six flat bands in 

the band structure figure, labelled as A – F.  
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The total full bandgap width of this structure is a few hertz larger than the 

hexagonal prism case, as an extra bandgap is opened up between the 4th and 5th 

bands. However, the bending mode bandgaps also need to be considered when 

investigating the bandgap performance of the EM. 

The corresponding mode shapes of the structure are presented in Figure 36. 

 

Figure 36. The corresponding mode shapes of the proposed cuboid type EM at different point in the band 

structure. 

The mode shapes at point P1, P3 and P5 are the same as point D, E and F 

respectively. 

According to the figure, the mode at point A is a bending mode which can be 

excited by the bending wave easily. Mode B is an in-plane torsional type. Mode 

C and Mode D are polarized in y- and x- direction respectively so they has 

stronger interaction with the longitudinal and in-plane waves. Modes E and F 

are torsional modes that twisting around x- and y- axis respectively. These 
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characteristics of the mode shapes are closely related with the bandgap forming 

mechanism under various excitation.  

Otherwise, it is obvious that in all three cut-off points’ mode shapes, the frames 

are not static. The frames are drifted from the original location outlined by the 

solid black lines, especially the P6 mode. Therefore, the bandgap may be ended 

at these modes. Small vibration is revealed in P2 and P4 modes. In reality, 

materials possess damping characteristics. However in the simulation, damping 

is ignored. Therefore, the small amplitude of vibration in P2 and P4 modes may 

be compromised by the damping and allow the existence of continuous bandgap.  

 

3.2.3 Effect of design parameters on band structure 

The supporting beam thickness, geometrical symmetric and material properties 

of the proposed EMs are adjusted, and the change of band structure brought by 

these adjustment are investigated in this section. The proposed EMs’ feasibility 

and controllability through design parameter adjustment is revealed.  

3.2.3.1 Effect of supporting beam thickness 

Different thickness of supporting beams are adopted in the proposed EMs.  

Figure 37 presents the bandgap curves of the proposed metamaterials with 

supporting beams in different thicknesses (10mm, 7mm and 4mm respectively).  

The beam thickness is reduced from the bottom side. Since the beams are 

providing the equivalent stiffness, the thinner thickness shift the resonance 

frequencies to lower frequency regions accordingly. Also, as given in the figure, 

the mode shapes will be affected when the structure is adjusted. With the 

thickness adjusted from 12mm to 10mm, 7mm and 4mm, the first local 
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resonance frequency will shift from 84.6Hz to 74.1Hz, 58.1Hz and 36.3Hz 

respectively. It demonstrates that the adjustment of the supporting beam 

thickness can lead to about 50Hz bandgap shifting. 

 

 

Figure 37. Bandgaps of hexagonal prism type EM with different beam thickness: (a) 10mm; (b) 7mm; (c) 

4mm. The corresponding mode shapes at the specific points of the band structure are listed at the right 

sides.  

In addition, when the beam thickness is reduced, the full bandgaps’ widths are 

decreased gradually and both full bandgaps are disappeared if the thickness is 
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reduced to 4mm. This is a side effect caused by reducing supporting beam 

thickness. 

When the beam thickness is reduced to 10mm, as shown in Figure 37(a), the 

corresponding mode shapes at the 1st, the 4th and the 5th local resonances are not 

changed. The mode shape of the 2nd bandgap’s cut-off point on the 6th band is 

also the same. However, the first full bandgap disappeared. As an in-plane mode 

polarized in x-axis direction, the counteracting force of this mode is mainly 

generated by the compression of supporting beams. Yet the decrease of the 

thickness reduced the counteracting force and leads to the disappearing of the 

bandgap. According to Figure 37(b), the second bandgap is further shrunk when 

the thickness is reduced to 7mm, and the mode shapes are consistent with the 

10mm case. 

According to Figure 37(c), both full bandgaps are not revealed when the 

thickness is reduced to 4mm. The 4th local resonance mode shape changes to an 

in-plane torsional mode instead of the one polarized in x-direction. The torsional 

mode is difficult to be excited by Lamb wave, so the first full bandgap will not 

be formed. Moreover, because the smaller size of the beam, the counteracting 

force from the 5th mode is not enough to form a bandgap after most of the force 

self-balanced. Nonetheless, bending wave bandgaps are still expected because 

the first resonance mode is not changed. Numerical simulation is conducted in 

following subsection and reveal the existence of this bandgap.  
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Similar investigation is also conducted on the cuboid type EM.  

The band structures of the cuboid type EM with different supporting beam 

thickness are given in Figure 38. According to the figure, the decrease of 

supporting beam thickness will shift the resonant frequencies to lower 

frequencies. The mode shapes at the fundamental resonant modes are not 

changed in all cases. In 12mm case, the 4th mode shape is an in-plane mode 

polarized in x-axis. However, when the thickness is reduced to 10mm and 7mm, 

the 4th resonant mode shape contains both in-plane and bending motion. When 

the thickness is changed to 4mm, the 4th resonant mode shape becomes an in-

plane torsional mode. It demonstrates that the adjustment of supporting beam 

thickness will affect the unit cell’s mode shapes, hence the bandgap property will 

vary accordingly.  

The decrease of supporting beam thickness will constantly reduce the number of 

full bandgaps. At 4mm case, all full bandgaps disappear. The existence of 

bending wave bandgaps can be revealed through numerical simulation in finite 

metamaterial structure. The fundamental resonant frequency reduced from 

69.5Hz (12mm case) to 31.1Hz (4mm case). Therefore the starting frequency of 

bending wave bandgap is expected to be decreased accordingly.  

The reduction of beam thickness will weaken the counteracting force generated 

from the unit cell and thus, the bandgap width will shrink as well, especially the 

bandgap related with twisting modes.  
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Figure 38. Bandgaps of cuboid type EM with different beam thickness: (a) 10mm; (b) 7mm; (c) 4mm. The 

corresponding mode shapes at the specific points of the band structure are listed at the right sides. 

 

3.2.3.2 Effect of geometrical symmetric of unit cell 

As illustrated earlier, in the hexagonal type EM, the second full bandgap is 

mainly attributed to the twisting mode, whose force is mostly self-balanced 
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rather than used for counteracting the excitation force. However it is still the 

widest full bandgap that formed by the hexagonal type EM. Therefore, by tuning 

the beam thickness to break the asymmetric of the unit cell and maintaining the 

twisting mode shape, the second full bandgap may be further reinforced and 

enlarged. Two of the supporting beams in the unit cell is therefore reduced to 

7mm whilst maintaining the other four beams’ thickness as 12mm. After the 

adjustment, the structure is only symmetric to y-axis, the irreducible Brillouin 

zone will thus be enlarged to Y-Q-P-M. However, the scanning results of the 

former boundary (Г-X-M-Г-Y-M) is presented because the identical band 

structure characteristics.  

According to Figure 39, compared with the original unit cell, the 1st local 

resonance frequency of the asymmetric unit cell decreased from 84.6Hz to 

73.1Hz.  

The width of the second full bandgap increased from 18.1Hz to 23.3Hz. In 

addition, a new full bandgap is opened up between the 6th and 7th bands, as shown 

in the figure. It demonstrates that the adjustment of symmetric will lead to 

significant change in the bandgap property. 
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Figure 39. Bandgaps of hexagonal type EM with asymmetric beam design. The inlet presents the backside 

of the modified unit cell with asymmetric supporting beams. 

For the cuboid type EM, the second and third full bandgaps are related with the 

torsional modes as well. The two modes are twisting around x- and y-axis 

respectively. Therefore, two supporting beams’ thickness are adjusted as 7mm, 

as shown in Figure 40.  

According to the figure, different from the 12mm case, the first full bandgap is 

not revealed in the asymmetric case. The second and third full bandgaps, which 

are both formed by the torsional modes, are still existing in the asymmetric 

structure. The fundamental resonant frequency is about 56.7Hz, which is lower 

than the original unit cell.  
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Figure 40. Bandgaps of cuboid type EM with asymmetric beam design. The inlet presents the backside of 

the modified unit cell with asymmetric supporting beams.  

The second full bandgap width is 4.2Hz (111.9Hz – 116.1Hz), and the third full 

bandgap width is 18.4Hz (124.4Hz – 142.8Hz). The second bandgap width is 

5.3Hz smaller than the original symmetric case, but the third bandgap width is 

1.4Hz larger.  

The above results of both types of proposed EM demonstrate that the symmetric 

of the unit cell has significant effect on the bandgap property. Through 

adjustment of the geometrical structure, bandgaps may be opened up or 

eliminated. However, it is uncertain that the breaking of symmetric will enhance 

the full bandgap which is related with the torsional modes.  

The effect of the symmetric on bending wave bandgap is further examined in the 

finite structure, presented in later subsection.  
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3.3 Vibration Response of EM Beams 

For the purpose of investigating the vibration absorption performance of the 

proposed EM, metamaterial beam that composed of 8 unit cells is constructed. 

Thickness of supporting beams are adjusted in each EM beam, corresponding to 

the band structure analysis in section 3.2.3.  

The configuration of the simulation setting is shown in Figure 41. One end of 

the beam is fixed. Prescribed displacement boundary condition is applied to the 

other end of the beam. Excitation with frequency scanning is applied to the 

structure. The acceleration response of the metamaterial beam is picked up from 

point A and the input acceleration is detected from the right edge. The frequency 

response function (FRF) can be obtained by equation: 𝐹𝑅𝐹 = 20 log (
W𝑜𝑢𝑡

𝑊𝑖𝑛
) 

(dB).  

 

Figure 41. Simulation setup of the finite structure. 

 

3.3.1 EM beams under different incident wave 

In order to investigate the relation between bandgap and mode shapes, the finite 

structure of the proposed EMs with original supporting beam thickness (12mm) 
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are applied with bending, longitudinal and in-plane transverse waves. For the 

purpose of clarity:  the bending wave is vibration in z-axis direction, longitudinal 

wave is vibration in y-axis direction and the in-plane transverse waves is 

vibration in x-axis direction, referring to the coordinate in Figure 41. 

The vibration response of the hexagonal prism type EM beam under bending 

wave excitation is shown in Figure 42(a). According to the figure, when the 

structure is excited by bending wave, two bandgaps are observed. One is from 

82.4Hz to 152.8Hz, the other one is from 158.2Hz to 190.4Hz.  

The starting and cut-off frequencies of the first bandgap are consistent with the 

first local resonance and the cut-off point P2’s frequencies respectively. The 

mode shape of the unit cell in the first bandgap is shown as inlet labelled Z1. The 

bending mode shape can be easily excited by the incident bending wave.  

The strong interaction between the first local resonance mode shape and the 

incident bending wave enlarges the bandgap and makes it merge with the full 

bandgap. As a results, a large continuous bandgap is formed. Along with the 

increase of incident wave frequency, P2 mode will be activated and thus 

terminate the bandgap.  

Moreover, the starting frequency of the second bandgap is the same as the 

frequency of P3 mode (at 158.4Hz). Therefore it is believed that the P3 mode 

leads to the forming of this bandgap. The bandgap width predicted by numerical 

simulation is larger than the dispersion relation because of the strong interaction 

between corresponding mode shape and the incident wave. Otherwise, it is 

obvious that the transmission loss in the second bandgap is weaker, because the 

twisting mode shape has most force self-balanced, as explained before.  
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(a) 

 

(b) 

Figure 42. FRF curve of the hexagonal type EM beam under the excitation of (a) bending wave, (b) 

longitudinal (red-dashed) and in-plane transverse waves (solid black). The corresponding mode shapes 

at the points in the bandgap regions are shown in the inlet. 
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According to Figure 42 (b), when applied with a longitudinal incident wave, the 

metamaterial beam has one transmission dip at point Y1 (about 127.2Hz). The 

corresponding mode shape at this frequency is the mode B, as shown in the inlet. 

The mode is polarized in y-direction, thus can be excited by the longitudinal 

wave. However, other types of mode shapes cannot be excited by the 

longitudinal wave so there is no other obvious bandgap revealed in the FRF 

curve.  

Otherwise, when excited under a transverse wave, the bandgap region starts from 

point X1 at 133.1Hz and ends at about 248.6Hz. The first bandgap’s 

corresponding mode shape at labeled at point X1 is in-plane torsional mode 

twisting around z-axis. In the following bandgaps, the corresponding mode 

shape is mode D and F, which are an in-plane mode polarized in x-direction (X2) 

and a torsional mode twisting around y-axis (X3) respectively. Both modes are 

able to be excited by the transverse wave, however, compared with mode C, 

mode D and F have stronger interaction effect with the incident waves so a larger 

bandgap is formed (from 171.6Hz to 248.6Hz).  

To reveal the mode shapes’ effect in bandgap forming, the deformations of the 

hexagonal type EM beam at the labelled point in the FRF curves are presented 

in Figure 43. As shown in the figure, the shapes of the beams are consistent with 

the mode shapes. It is obvious that in the figure, the vibration energy is contained 

within the inclusion of the unit cells, so the wave transmission is attenuated and 

the frame is maintained static. 
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Figure 43. The corresponding shapes of the hexagonal type EM beams at the labelled points in the FRF 

curves.  

The same setup is adopted in the cuboid type EM beam. The FRF curve of the 

structure is shown in Figure 44.  
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Figure 44. FRF curve of the cuboid type EM beam under the excitation of (a) bending wave, (b) 

longitudinal (red-dashed) and in-plane transverse waves (solid black). The corresponding mode shapes 

at the points in the bandgap regions are shown in the inlet. 

According to Figure 44(a), there are two bandgaps formed and adjacent to each 

other. The frequency ranges of the bandgaps are about: (1) 67.5Hz – 122.5Hz; 

(2) 124.0Hz – 159.5Hz. The total bending wave bandgap width of the cuboid 

type is 90.5Hz, whilst the hexagonal type is 102.6Hz.  



108 

 

The starting frequency of the first bandgap is consistent with the fundamental 

resonant frequency of the structure. Point Z1 is located within the first bandgap, 

and its corresponding mode shape is shown in the figure inlet. According to the 

simulation results, the first bandgap is attribute to mode A as illustrated in Figure 

36. The bending wave can easily excite this mode and allows the bandgap to 

extend to the cut-off point of the first full bandgap. Mode P2 is a torsional mode 

twisting around x-axis and can be excited by the bending wave. So the first 

bandgap stopped.  

The mode shape at point Z2 demonstrates that the second bandgap is formed by 

mode P3. It is also a torsional mode that twisting around x-axis. The mode P4 is 

a torsional mode twisting around y-axis, so it may not be excited by the incident 

bending wave. Thus the second bandgap is extended through the second cut-off 

frequency. The cut-off frequency of the second bandgap is consistent with the 

frequency of mode P6 mode. Mode P6 is a bending mode therefore it can be 

excited by the incident wave. The second bandgap is thus ended.  

Figure 44(b) presents the FRF curves of the cuboid type EM applied with 

longitudinal and in-plane transverse excitation. When applied with a longitudinal 

wave, a very narrow dip in the FRF curve is found. This dip is caused by the in-

plane mode P3. There is no other modes that can be easily excited by a 

longitudinal wave, therefore, no other bandgap is found in the FRF curve.  

Otherwise, when applied with in-plane transverse excitation, the EM beam 

possesses relatively broad bandgaps below 300Hz, and reveals weaker vibration 

response in the higher frequency region. Similar phenomenon is also found in 

the hexagonal type EM. The bandgaps are attributed to the transverse mode P1 
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and P5 as shown in the figure, since the modes can be excited by transverse wave. 

The structural stiffness is higher when dealing with the in-plane transverse 

vibration because the frames that parallel with x-axis provides extra stiffness.  

The deformations of the cuboid type EM beam at the labelled points in the FRF 

curves are presented in Figure 45. Figure 45 

 

Figure 45. The corresponding shapes of the cuboid type EM beams at the labelled points in the FRF 

curves. 

As shown in the figure, the corresponding mode shape of the unit cells are 

exactly the same as predicted in the band structure.  

The results demonstrates that the bandgap property of the EM is decided by the 

resonant frequency and mode shape of the unit cell. The formation of bandgaps 

depend on the excitation of certain mode shapes. With strong interaction 
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between the incident wave and a mode shape, the corresponding bandgap width 

will be relatively larger.  

 

3.3.2 EM beams with different supporting beam thickness 

Similar to the original model with 12mm supporting beams, finite structures with 

thinner supporting beams are developed. The finite metamaterial structures are 

presented in Figure 46.  

As shown in the figure, the starting frequencies of the bandgaps are 74.4Hz, 

59.2Hz and 37.4Hz respectively for the 10mm, 7mm and 4mm samples. The 

bandgap widths are shrinking along with the decrease of supporting beam 

thickness. In addition, in the 10mm and 7mm cases, the existence of the second 

bandgaps can be observed. In both cases, the second bandgap regions revealed 

in the FRFs are formed by the second full bandgaps that shown in the dispersion 

relation figure. In the 4mm case, the metamaterial beam did not reveal the second 

bandgap.  

Moreover, the supporting beam thickness has influence on the transmission loss. 

In 10mm case, the FRF dip reaches -135dB, which means only 0.000018% 

vibration energy is transmitted through. However, in 4mm case, the dip 

increased to -107dB.  
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Figure 46. FRF curve of the hexagonal type EM beam with different elastic inclusion supporting beam 

sizes (4mm, 7mm and 10mm). The frequency resolution is 0.5Hz 

Figure 47 shows the FRFs of the cuboid type EM with varying supporting beam 

thickness. Similarly, the thinning of supporting beam shifts the bandgaps to 

lower frequency regions. In the 12mm case, the frequency is 67.5Hz. When the 

supporting beam thickness is adjusted, the starting frequencies of the bandgaps 

become 65.0Hz (10mm), 51.5Hz (7mm) and 31.1Hz (4mm), respectively. 

According to the figure, the bandgap widths are reduced when the supporting 

beams are thinner.  

In the 10mm case, two adjacent bandgaps are observed. The ending frequencies 

of the two bandgaps are consistent with the cut-off frequencies of the two full 

bandgaps predicted in the band structure.  In the 7mm case, there are three 

separated bandgaps revealed, and the starting frequencies are 51.5Hz, 73.0Hz 

and 94.3Hz, respectively. These frequencies are corresponding frequencies of 

the 1st, 2nd and 5th resonant modes, respectively. The mode shapes of the 2nd and 

5th ones are both torsional modes, rotating about the x-axis, so they can be easily 

excited by the bending wave.  
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Figure 47. FRF curve of the cuboid type EM beam with different elastic inclusion supporting beam sizes 

(4mm, 7mm and 10mm). The frequency resolution is 0.5Hz 

In 7mm case, three bandgaps that adjacent to each other are formed by the 1st, 

2nd and 5th resonant modes, respectively. The corresponding mode shapes of the 

2nd and the 5th are both torsional type rotating about the x-axis. In 4mm case, one 

continuous bandgap is form but within it, two different modes are revealed. The 

first one appeared at the resonant frequency of the 1st resonant mode, and the 

second mode shape starts at the second dip at about 55.0Hz.  

The above results demonstrate that the adjustment of the supporting beam 

thickness will lead to the shifting of bandgap location. The geometrical 

adjustment will affect the mode shapes of the structure and therefore has 

influence on the bandgap property. Reducing the thickness of supporting beams 

will shift the bandgap location to different frequency regions. However shifting 

the bandgap to a lower frequency will have to sacrifice bandwidth and vibration 

absorption performance in exchange.  
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3.3.3 EM beams with asymmetric configuration 

Figure 48 illustrates the FRF curve of the hexagonal type EM with asymmetric 

unit cell. The vibration response curve of the sample with 12mm supporting 

beams is also included for comparison.   

According to the figure, when two supporting beams’ thickness are decreased, 

the location of the first local resonance bandgap shifts to a slightly lower 

frequency because the stiffness of the structure is smaller. The starting frequency 

of the bandgap (74.8Hz) is basically consistent with the prediction in band 

structure (73.1Hz), and the corresponding mode is the same as predicted as well. 

Most importantly, if compared with the curve of metamaterial with 12mm thick 

symmetric supporting beams, the second bandgap width of the asymmetric 

sample is enlarged. Therefore the vibration isolation performance of the 

asymmetric metamaterial is enhanced. Such performance is consistent with the 

prediction in modal analysis.  

 

Figure 48. FRF curves of hexagonal type EM with asymmetric beams (black solid line) and 12mm 

symmetric beams (red dashed line).  
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Figure 49 shows the vibration response curve of the cuboid type EM with 

asymmetric supporting beam. The bandgap shifts to lower frequency. However, 

different from the hexagonal type, the second bandgap is not enhanced. The 

transmission loss of wave is reduced with the asymmetric structure.  

 

Figure 49. FRF curves of cuboid type EM with asymmetric beams (black solid line) and 12mm symmetric 

beams (red dashed line).  

Therefore, in the hexagonal type EM, breaking the symmetric condition of the 

unit cell can enhance the second bandgap width. However, the cuboid type EM 

does not possess such characteristics. The bandgap property tuning through 

symmetric condition adjustment is not reliable. Further investigation on the 

asymmetric structure is conducted through experiment.  

In addition, the bandgap width of the hexagonal type EM is always larger than 

the cuboid type EM with the same supporting beam thickness. Thus, the 

hexagonal type has better vibration absorption property and it is further 

investigated in the next subsection. 

 

-100

-80

-60

-40

-20

0

20

40

60

0 50 100 150 200 250 300

F
R

F
 (

d
B

)

Frequency (Hz)

Symmetric (12mm) Asymmetric



115 

 

3.4 Vibration Absorption of EM Applied on Thin Plate Structure 

In the above subsections, the bandgap property of the hexagonal type EM beam 

is investigated. In application for vibration control, the EM will be attached to 

the target structure for vibration absorption. Due to the common use of beam and 

plate structures in various engineering applications, the vibration absorption of 

such structures by metamaterial have received much attention [86, 136, 132, 

137]. So in this subsection, the performance of the proposed hexagonal type EM 

applied on a thin plate structure is investigated through simulation.  

The hexagonal type EM beam is applied to a thin plate. In engineering 

applications, the extra weight load on the target structure can affect the 

performance of functions. Normally, the lighter of the extra weight attached the 

better. Similarly, for the proposed EM, the vibration absorption performance 

when 1, 2 and 3 EM beams are attached on the plate structure are investigated. 

The configurations are shown in Figure 50. 
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Figure 50. The configurations a thin plate structure attached with (a) one; (b) two and (c) three 

hexagonal type EM beams. The excitation is applied at point A, and acceleration response is picked up 

from point B.   

Bending wave excitation is applied on the plate at point A, and the acceleration 

response is picked up from point B. The size of the plate is 240 × 700mm.  

The FRFs of these three cases are presented in Figure 51. For the purpose of 

comparison, the FRF of the 12mm hexagonal type EM beam is also included on 

the figure, represented by grey dotted line. 

 

Figure 51.FRF of a thin plate attached with 1, 2, and 3 hexagonal type EM beams.  

As shown in the figure, in all three cases, bandgaps are observed and starting 

from the same frequency. When 3 EM beams are attached, the bandgap width is 

41.0Hz, which is smaller than the bandgap revealed by an EM beam itself in 

Section 3.3.1.  The second bandgap of the EM beam is not found when attached 

on the plate structure. It demonstrates that the torsional mode cannot effectively 

control the plate vibration. Counteracting force generated from the torsional 
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beam is not sufficient to affect the plate vibration. When the thin plate is attached 

with 2 EM beams, the bandgap width continues decreasing to about 32.6Hz. 

According to the aforementioned modal analysis, when the excitation frequency 

is near the cut-off frequency of bandgap, the frame of the unit cell will start 

vibrating. The counteracting force from the mass inclusion is thus weakened. As 

a result, when the number of unit cell is decreased, the total counteracting force 

generated are smaller and not sufficient to provide effective vibration control, so 

the bandgap width narrowed. The bandgap width is further decreased to 19.6Hz 

when only 1 EM beam is attached.  

The results demonstrate that the proposed EM can form low frequency bandgaps 

and effectively control structural vibration. The decrease of unit cells applied for 

the purpose of avoiding extra weight will not eliminate the bandgap yet certain 

level of bandgap width will be sacrificed.  
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3.5 Experimental Study of Hexagonal Type EM 

As illustrated in formed subsection, when equipped with the same amount of 

mass, the hexagonal type EM can generate larger bandgap in low frequency 

region. Therefore, the hexagonal type EM has better feasibility and vibration 

absorption performance than the cuboid type. In this section, prototype of 

hexagonal type EM beams are manufactured for testing. Experiments are 

conducted on these prototype samples for the examination of vibration control 

performance and the accuracy of the structure design through FEA method.  

3.5.1 Experimental setup 

Three types of samples with different supporting beams are produced: 12mm 

beams, 7mm beams and asymmetric beams. These EM beams are designed to 

have 8 resonator units aligned in one line. The frame and the rubber inclusion 

are manufactured through 3D printing, and the metal mass platelet is 

manufactured by Computer Numerical Control (CNC) technique. Materials of 

the beam and elastic inclusion are epoxy and silicon rubber respectively. The 

material properties are tested and obtained through DMA, as illustrated in 

section 3.1.  

The parts are then manually assembled: the copper mass and rubber inclusion 

are designed with interference fit, so the mass magnets are directly inserted into 

the cavity, as shown in Figure 52(a). The inclusion are then glued to the frame.  

The schematic of experiment is presented in Figure 52(b). Similar to the 

simulation, the left side is fixed on the steel foundation, and the right side is fixed 

to a shaker that moves in vertical direction by a pair of clamps. The clamps 
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ensure the metamaterial beam can only move in the vertical direction but not 

conducting in-plane sliding, exactly the same as the setting within simulation.  

In order to pick up output and input signals, two accelerometers are attached to 

the left and right sides of the beam. The signal generator (Tektronix AFG1022) 

is connected to the shaker through a power amplifier (YMC LA-200). Signals 

from the generator and accelerometers are fed into the computer through signal 

analyser (SignalCal Ace). The experiment setup is shown in Figure 52(c).  

 (a)     (b)  

(c)   

Figure 52. The sample beam and the experiment measurement setup. (a) Assembly of rubber inclusion 

with 12mm thick supporting beam and a copper mass; (b) schematic arrangement of experiment; (c) 

photo of sample beam.  

To ensure the signals are picked up from the same location on all the samples, 

the output accelerometer is fixed at the middle point of the frame which is one 
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unit cell away from the left edge. The input accelerometer is put at the clamp of 

the shaker, right above the middle point of the frame on the right edge. The 

acceleration signals are obtained and the FRF is calculated.  

 

3.5.2 Results and discussion 

Figure 53 presents the FRF curves of the metamaterial beam samples obtained 

from experimental tests.  

The bandgap location shifts to lower frequency when the thickness of the 

supporting beams are reduced. The bandgap starting frequency of the 

asymmetric beam sample is higher than the 7mm sample, since in the 

asymmetric one only two supporting beams are reduced to 7mm and others are 

kept as 12mm. It is obvious that through adjustment of the supporting beams, 

the bandgap location of the proposed metamaterial can be tuned effectively.  

The bandgap starting frequency of 12mm sample is about 89.4Hz, and the 

bandgap ends at about 354Hz. When the thickness is adjusted to 7mm, the 

bandgap range is shifted to about 69.4Hz – 266.2Hz.  

On the other hand, the bandgap width of 12mm sample and asymmetric sample 

are similar because of mild difference. However, different from the estimation 

in simulation, the vibration absorption performance of the asymmetric sample is 

not obviously strengthened. Otherwise, compared with 12mm sample, the 

vibration absorption in 7mm sample is obviously weaker and the bandgap width 

is also decreased. Such phenomena demonstrate that in reality the forming of 

bandgap is not attributed to the twisting mode shape. Since the bandgap starting 

frequencies are close to the first band resonant frequencies in different designs, 
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the vibration attenuation is mainly contributed by the first resonant mode, in 

which the mass vibrate in out-of-plane mode.  

In all three samples’ experiment results, continuous large bandgaps are formed 

instead of two separated bandgaps as predicted in numerical simulation. Also, 

the bandgap widths of all three samples are much wider than expected. The 

merging and extension of bandgaps are caused by the damping property of the 

materials, as also mentioned and occurred in other research works [133, 138]. 

 

Figure 53. FRF curves of metamaterial beam samples with different supporting beams: 12mm thickness 

(black solid line), 7mm thickness (red dash double dotted line) and asymmetric beams (blue dotted line).  

The manually assembled samples will inevitably possess errors and cause 

inconsistency with the simulation. According to the experiment result, the 

bandgap starting frequency and the response peaks in low frequency region are 

all shifted to higher frequency. This is caused by the extra stiffness provided by 

boundary condition. In simulation, the fixation are applied at the vertical edges 

of two sides, yet in practical, part of the lengthwise direction of the structure are 
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clamped as well. Also, the drying and contraction of glue will also increase the 

stiffness of the rubber.   

The experimental results are not totally consistent with the numerical simulation 

results in the aspect of bandgap locations and widths. However, the variation 

tendency of samples’ bandgap characteristics when tuning geometrical 

parameters are consistent with the simulation. Hence it is believe that the 

simulation is able to provide precise design of the proposed metamaterial if 

supplied with improved manufacturing technique and more accurate material 

property data.   

 

 

 

 

 

 

 

 

 

 

 



123 

 

3.6 Chapter Summary 

Designs of two types of EM are introduced and the bandgap tunability is 

examined in this chapter.  

Modal analysis was conducted to reveal the local resonant phenomenon and 

bandgap forming mechanism of the proposed metamaterial structure. Through 

numerical simulation and experimental work, the proposed EM was found to be 

effective in structural vibration control. The bandgap forming mechanism of an 

EM is closely related with the mode shapes of EM unit cells. Strong interaction 

between mode shapes and incident wave can generate relatively broad bandgaps. 

Through adjustment of geometrical parameters of the EM unit cell structures, 

the bandgap property will be tuned accordingly. Remarkable tuning effect can 

be achieved with mild adjustment of the structure dimension. Also, aside from 

the dimension, breaking the symmetricity of the unit cell for the purpose of 

enhancing certain resonant modes’ corresponding local resonant bandgap is also 

a very useful tuning method for EM. However, compromise between the local 

resonant bandgap enhancement and total bandgap weakening needs to be 

seriously considered since the tuning of dimension will result in the system’s 

equivalent stiffness varying.  

Experiments are conducted upon the hexagonal type EM since it has revealed 

better bandgap property than the cuboid type. The results indicate that a broad 

continuous low frequency bandgap is found in all three types of samples, and it 

is wider than predicted in the numerical simulation. The findings in this chapter 

demonstrate the relation between the resonant mode shapes and bandgap 

forming mechanism of a metamaterial, thus it is considered an significant 

concept proof for the metamaterial design and optimisation.  
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Chapter 4 

4. PASSIVE VIBRATION CONTROL 

PERFORMANCE OF MEMBRANE-TYPE 

METAMATERIAL 

 

In this chapter, a MemM structure is designed and its structural vibration 

performance for a thin plate structure is investigated. The effect of MemM’s 

design parameters, such as the thickness of the membrane, location and 

configuration of mass attached on membranes, are studied. Investigation of the 

bandgap properties of the MemM under various design parameters are essential 

because the properties can directly reveal the feasibility and controllability of the 

MemM in application. Otherwise, bilayer MemM is formed by stacking one 

layer of the designed MemM on another for the purpose of generating two 

bandgaps. Corresponding modification for the analytical model is conducted for 

the multiple layer case as well. The passive vibration absorption performance is 

examined through numerical simulation and experimental work. Numerical 

simulation and experimental tests are conducted to verify the accuracy of the 

analytical model. 3 

 

                                                 
3
Part of the content in this Chapter is published as: [1] C. Gao, D. Halim and X. Yi, "Study of bandgap property 

of a bilayer membrane-type metamaterial applied on a thin plate," International Journal of Mechanical Sciences, 

2020; [2] C. Gao, D. Halim and C. Rudd, "Vibration absorption performance of membrane-type metamaterial on 

a thin plate," in INTER-NOISE and NOISE-CON Congress and Conference Proceedings, Madrid, 2019; [3] C. 

Gao, D. Halim and C. Rudd, "Prediction of bandgaps in membrane-type metamaterial attached to a thin plate," 

in INTER-NOISE and NOISE-CON Congress and Conference Proceedings, Madrid, 2019. 

 



125 

 

4.1 Structure Design of the MemM 

Generally, a MemM is composed of unit cells that called membrane-type 

resonators (MemR). A MemR consists of a prestressed membrane, a mass block 

attached on the membrane and a supporting frame that the membrane is fixed on. 

The MemR can be simplified as a spring-mass model when applied for vibration 

absorption. The equivalent stiffness is provided by the membrane under tensile 

tress as a results of stress stiffening phenomenon [20]. The MemM has the 

advantages of light-weight, space saving and low cost. When applied to a target 

structure for vibration control, it will be attached as an extra layer of MemRs. 

For the purpose of forming multiple operation frequency regions, multiple layers 

of MemRs can be stacked and no extra area is needed for the additional layers. 

The application of MemM in structural vibration control is not fully investigated 

as mentioned earlier. Therefore, in this work, the MemM’s structural vibration 

control capability when applied to thin plate structures are investigated.  

The designed MemR structure is described in Figure 54. The rectangular 

membrane is applied with tensile stress and fixed on the supporting frame. A 

circular mass block is attached at the middle point of the membrane surface. This 

structure is relatively simple and easy for manufacturing. The material of each 

component needs to possess different properties for the purpose of generating 

bandgap effectively. Material for supporting frame should have higher rigidity 

because it needs to ensure the fixation of the membrane. Elastic material with 

relatively lower modulus is chosen for the membrane because it is more sensitive 

to the applied tensile stress, and enabling the generation of low frequency 

bandgap. For the mass block, the selected material should have high mass 

density so to achieve the same weight with smaller volume if compared with 
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other materials. As mentioned in Section 2.2.2, the error between analytical 

model and numerical simulation will be larger if the dimension of the mass block 

is increased. Therefore, metal material is normally chosen for mass block.  

 

Figure 54. The configuration of designed MemR. 

Samples of the MemR is manually assembled for experimental tests. The 

supporting frame is made by 3D printing and the epoxy is selected as the frame 

material. Silicone rubber membrane is prestressed and glued on the frame, and 

copper mass block is glued at the middle of the membrane. Dynamic Mechanical 

Analysis (DMA) testing was conducted to confirm the material properties of the 

3D printed epoxy and silicone rubber. The material properties are given in Table 

6. For the purpose of accuracy, these property data are also used in numerical 

simulation. 

Table 6.Material properties of materials. 

 Epoxy Rubber Copper 

Young’s modulus  0.917GPa 3.41MPa 115GPa 

Poisson’s ratio 0.41 0.49 0.33 

Density (kg/m3) 1100 980 8890 

 

The dimension of the MemR is given in Table 7. The width of the frame is 5mm, 

this is designed for ensuring the strength of the frame in accordance with the 

manufacturing requirement of the 3D printing supplier. In the following 
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subsections, the thickness and side lengths will be adjusted to reveal the effect 

of these parameters on the bandgap property.  

Table 7. Dimension of the proposed MemR 

  Side length L(mm) Radius R (mm) Thickness/Height t (mm) 

Frame 60 - 5 

Membrane 50 - 1 

Mass - 6 2 
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4.2 Band Structure of the MemM and Influence of Design Parameters 

The bandgap property of a MemM can be predicted through the band structure 

figure. When MemRs are applied and form a periodic structure, the dispersion 

relation can be obtained through calculation of a primitive unit cell according to 

the Floquet-Block theory. As mentioned in García and Fernández-Álvarez’s 

paper [139], Floquet’s theory was first developed to solve the 1D partial 

differential equations with periodic coefficients, referring to [140]. Bloch 

broadened Floquet’s results to 3D periodic structures and “obtained the 

description of the wave function associated with an electron travelling across a 

periodic crystal lattice” [139].  

In the situation that considering the wave propagation in periodic mechanical 

systems, the theory is adopted to simplify the calculation. For an infinite 

structure, it can be considered forming by periodic unit cells that adjacent to each 

other. According to Floquet-Bloch theory, one of the periodic structure unit 

cell’s physical field values, such as displacements and velocities, can be equal 

to the corresponding physical field values of the adjacent unit cell multiplied by 

an evolution factor, described as: 

 𝑓(𝑥𝑛 + 𝐿) = 𝑓(𝑥𝑛−1)𝑒
𝑖𝑘𝐿 (4-1) 

where 𝑓(𝑥) is the physical field function, 𝐿 is the periodic of the structure, 𝑘 is 

the wavenumber that related with the structure dimension. The evolution factor 

𝑒𝑖𝑘𝐿 is also known as Floquet multiplier. 

Therefore, the physical field value outside a periodic can be expressed by the 

value inside a periodic with the multiplier. Thus, to reveal the physical field of 
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the infinite structure, computing over a primitive unit cell is sufficient. The 

function can be expressed as: 

 𝑓(𝑥𝑛 + 𝑛𝐿) = 𝑓(𝑥0)𝑒
𝑖𝑘𝑛𝐿 (4-2) 

where 𝑥0 is the coordinate of points within the primitive unit cell, and 𝑛𝐿 is the 

vector representing the location of the unit cell that outside the periodic. By 

substitute this equation into the equation of motion of the system, then it will 

become an equation series of wavenumber k.   

Therefore, to calculate the dispersion relation of the metamaterial by FEA 

method, only one unit cell applied with Floquet boundary condition is needed. 

Such characteristics allows the calculation to be effectively simplified. 

 

In the case of MemM, the dispersion relation of the structure formed only by 

MemRs can be obtained by the FEA software. Otherwise, as mentioned in 

Section 2.3, when applied to a thin plate structure, PWE method can be adopted 

for the dispersion relation. The main difference between these two pathways is: 

for the infinite structure formed by MemRs, the calculation reveals the MemM’s 

dispersion relation whilst the PWE method reveals the effect of MemM applied 

to a thin plate structure.  

According to the findings in Chapter 3, although the band structure of the 

metamaterial can represent the bandgap property, the band structure will still be 

different when the metamaterial structure is applied to a thin plate. Therefore, in 

the design process, the investigation of band structure of MemM is still necessary, 

however the band structure after it is applied for utilization also needs 

exploration.  
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In this section, the band structure of the MemR under different design parameters 

are investigated. In different application conditions, design of the MemM 

configuration may be adjusted accordingly to satisfy the demand, especially the 

operation frequency for vibration absorption. The design parameters of a MemM 

have influence on the bandgap property and it is essential to clarify their effect 

for the purpose of MemM design and application. 

  

4.2.1 Effect of membrane tensile stress on bandgap properties 

Normally, bandgap of a membrane-type resonator is formed by the fundamental 

resonant mode [86]. Hence by tuning the resonant frequency the bandgap 

location of the MemM can be changed. As a MemR can be considered as a 

spring-mass model, the resonant frequency is related with the mass magnitude 

and stiffness level. The tensile stress is the main cause of membrane flexural 

stiffness because of the stress stiffening effect. According to equation (2-49), the 

increase of tensile stress will shift the resonant frequency to higher frequency 

region.  

By using the FEA software, the effect of tuning tensile stress on bandgap 

location is examined. As shown in Figure 55, the MemM is assumed to be 

applied in an infinite surface and extending in two dimensions. Hence, the 

irreducible Brillouin zone is given as the inset. The band structure of the MemM 

is obtained through scanning the wave vector around the boundary.  
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Figure 55. 2D MemM structure and the corresponding Brillouin zone. 

The tensile stress of the membrane is changed from 0.10MPa to 2.00MPa. In the 

original design, the cross-sectional size of the membrane part is 50𝑚𝑚 × 1𝑚𝑚, 

so the area 𝑆 = 5 × 10−5𝑚2 . Thus the range of the required force 𝐹  for 

stretching the membrane is from 5N to 100N. Since the membrane is silicon 

rubber which has relatively lower strength, the stretching force should not be too 

large in case the membrane breaks during the assembly.  

Figure 56 presents the band structures of the proposed MemM when applied with 

different tensile stress. Since the study mainly focus on the low frequency region 

and the low order resonant modes, the first 10 frequency bands are presented in 

the figure. As indicated earlier, the bandgap of a MemM is mainly formed by the 

fundamental resonant mode, and the fundamental resonant frequency is the 

starting frequency of the corresponding bandgap. It is observed that the increase 

of tensile stress will shift the bandgap to higher frequency region, which is the 

same as predicted in the theoretical model.  
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When the tensile stress is 0.10MPa, the fundamental resonant frequency is 

78.2Hz and the corresponding resonant mode shape is a bending mode in which 

the polarized direction of the unit cell is in z-direction. According to the figure, 

when a bending wave is travelling along the structure and excite the fundamental 

resonant mode, the mass block will conduct out-of-plane vibration and stretch 

the elastic membrane, so the wave energy is stored in the unit cell as kinetic or 

potential energy. In addition, it can also generate counteracting force through 

this mode shape when the MemR is applied to a target structure for vibration 

control. The frequency bands increased gradually along with the rising of tensile 

stress. The fundamental resonant frequency increased to 299.7Hz when the 

tensile stress is adjusted to 2.00MPa. This is an effective change if compared 

with the 0.10MPa case.  
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Figure 56. Band structure of the proposed MemM applied with different tensile stress. 

To investigate the bandgap forming mechanism, the mode shapes of the MemR 

are revealed in Figure 57 as well. Since the bandgap is related with the 

fundamental resonant mode, considering of the first 6 resonant modes are 

sufficient. The first 5 resonant mode shapes are not changed along with the 

adjustment of tensile stress. However, the 6th resonant mode shape is changed 

when the tensile stress increased. When the tensile stress is 0.10MPa and 

0.25MPa, the 6th resonant mode is also possessing a bending mode shape in 

which the mass block is kept static whilst the membrane is conducting out-of-
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plane vibration. The bending modes have stronger interaction between the 

incident bending wave and the modes can be excited easily. However, bandgap 

is not supposed to be formed by this mode shape because compared with the 

fundamental mode, the kinetic energy of membrane is much less than the 

vibration of mass block. Also, the potential energy change caused by the 

membrane is smaller than the mass block as well. Hence, even though with 

bending mode, the 6th mode cannot form a bandgap. The existence of bandgap 

will be verified by the finite structure in the later section.  
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Figure 57. The first 6 resonant modes of the MemR when the applied tensile stress is (a) 0.10MPa, 

0.25MPa; (b) 0.50MPa, 0.75MPa, 1.00MPa, 1.25MPa and (c) 1.50MPa, 1.75MPa and 2.00MPa. 

Similar to the proposed EM introduced in Chapter 3, in the band structure 

analysis of the MemM, the full bandgap is not revealed yet local resonant 

bandgap is expected. The fundamental resonant mode shape is a bending mode 

which can be easily excited by the bending wave and there will be strong 

interaction between each other. Therefore, a local resonant bandgap will be 

found right above the fundamental frequency. However, the width of this 

bandgap cannot be revealed in the band structure. Finite MemM structure is 

needed for the purpose of investigating the bandgap widths and the bandgap 

widths’ changes when tensile stress is adjusted.  

4.2.2 Effect of mass magnitude on bandgap properties 

Mass magnitude can directly affect the resonant frequency, so its adjustment has 

essential effect on the bandgap property. In this section, the mass magnitude is 

changed from 1.0g to 5.0g. The tensile stress is maintained constant as 0.50MPa. 

The band structure of the MemM with various mass magnitude are given in 

Figure 58.  
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With 1.0g mass attached on the membrane, the fundamental resonant frequency 

is 201.0Hz. When the mass magnitude increases to 1.5g, the frequency bands 

slightly shift to lower frequency region, yet the shapes of the bands are not 

changing obviously. The fundamental resonant frequency becomes 173.4Hz. 

Along with the increasing of mass magnitude, the frequency bands gradually 

shift to lower frequency region whilst the shapes of the curves are constant. 

When the mass magnitude is increased to 5.0g, the fundamental resonant 

frequency decreased to 105.8Hz. Thus, by amplifying the mass magnitude 

fivefold, the MemM achieves operation frequency tuning of 95.2Hz. The 

fundamental resonant modes are identical in all cases, so the bandgap 

mechanism is not changed by the mass magnitude adjustment.  

The mass adjustment directly affect the equivalent mass of the MemR, so the 

resonant frequency is changed accordingly and the bandgap width should be 

enlarged when the mass magnitude increased. Such characteristic can be 

revealed in the finite structure study. Otherwise, the adjustment of mass 

magnitude can only be implemented during the manufacturing process and once 

applied in utilization, it is not changeable. Moreover, in application, designers 

will avoid extra mass load to the primary system if possible, thus the feasibility 

of tuning through mass magnitude is low. According to the author’s literature 

review so far, the bandgap tuning through mass magnitude was not studied 

before.  
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Figure 58. Band structure of the MemM applied with different mass magnitude. 
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4.2.3 Effect of membrane thickness on bandgap properties 

Membrane thickness is another design parameter that may affect the bandgap 

property of the proposed MemM, because the flexural stiffness of the membrane 

is closely related with the thickness. To reveal the effect of membrane thickness 

on bandgap property, the tensile stress applied is kept as a constant: 0.50MPa.  

The band structure of MemR with different membrane thickness are presented 

in Figure 59. The thickening of membrane will significantly increase the flexural 

stiffness of the membrane and the frequency bands are shifted to higher 

frequency region. When the dimension ratio of membrane thickness 𝑡  and 

membrane side length 𝐿   is increased from 0.004 to 0.04, the fundamental 

resonant frequency rose from 75.5Hz to 212.2Hz, and the fundamental mode 

shape does not change along with the tuning of thickness.  
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Figure 59. Band structure of the proposed MemM equipped with membranes in different thickness. 

The fundamental resonant frequency of the MemM with different membrane 

thickness are listed in Table 8. According to the theoretical model mentioned in 

Section 2.2.2, the resonant frequency is linear with the square root of the 

dimension ratio. The frequency is plot against the square root of dimension ratio 

as shown in Figure 60, and the equation of trend line is displayed as well. Thus, 

according to the trend line equation, when the dimension ratio is increased 0.004, 

the resonant frequency will shift about 63.2Hz. So the fundamental resonant 

frequency is very sensitive to the membrane thickness adjustment.   

Table 8. Fundamental resonant frequencies of MemM with different membrane thickness. 

Dimension ratio Frequency (Hz) Dimension ratio Frequency (Hz) 

0.004 75.5 0.024 171.1 

0.008 103.9 0.028 182.8 

0.012 125.3 0.032 193.5 

0.016 142.8 0.036 203.2 

0.02 157.8 0.04 212.2 
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Figure 60. The relation of fundamental resonant frequency of a MemR (black-solid line) when the 

membrane thickness is adjusted. The trend line is presented in blue-dashed line. 

In addition, the fundamental mode shape of the MemR is the same as those in 

Section 4.2.1. This characteristic ensure the MemR can form a local resonant 

bandgap when equipped with membranes in different thickness. 

The adjustment of membrane thickness is difficult to be implemented when the 

MemM is in utilization, though it has good effect on resonant frequency. 

Through using membrane made of smart material, such as DE material, the 

thickness of membrane can be tuned through the externally applied voltage [114]. 

However, because of the thickness change is relatively small in a single layer of 

DE membrane, stacking of membranes are required. Otherwise, high voltage is 

in demand to generate effect deformation of membrane [141]. Such requirements 

limit the utilization of DE material in MemM and the tuning of MemM through 

thickness adjustment.  
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4.2.4 Effect of mass configuration on bandgap properties 

The mass configuration or locations of the MemR will also change the bandgap 

property because the resonant mode shape and the resonant frequencies will be 

changed as well.  

In this section, three different types of mass configurations are proposed and 

studied.  

In the first type, the circular mass block is separated into two semicircle mass 

blocks for the purpose of maintaining the total mass of the MemR. The 

configuration of the MemR is shown in Figure 61.  

 

Figure 61. The configuration of the MemR with two semicircle mass attached. The distance between the 

semicircle mass blocks are defined as d.  

The masses are located in symmetry with respect to the middle axis of the 

membrane. The distance 𝑑 between the two masses is considered as the design 

for the location of masses.  

The corresponding band structures of the MemM with two semicircle mass 

blocks are given in Figure 62. In accordance to the symmetric characteristics of 

the structure, the irreducible Brillouin zone is different from the MemR 

mentioned in above subsections, and the wave vector is scanned along M-Γ-X-

M-Y-Γ, which is the same as Chapter 3, Section 3.2.2. 



143 

 

As shown in the figure, when the distance between the two mass blocks is 

increased, the resonant frequency bands are moving to higher frequency regions, 

while the shapes of band structure are barely changed. There are no obvious full 

bandgap revealed according to the band structure. However, the elastic wave 

travelling within the structure is still possible having interaction with the 

resonant. Therefore, similar to the other MemRs mentioned in above subsections 

in this chapter, local resonant bandgap may be revealed. Mode shape analysis is 

conducted for prediction of bandgap prediction.  

To explain the increase of resonant frequencies when the distance between the 

two mass blocks become further, one can consider the average mass density 

within the area highlighted by the red dashed circle in Figure 61. The circle 

contains the two mass blocks exactly and its radius is increased accordingly with 

the distance 𝑑. Therefore, when 𝑑 increased, the area of the circle is rising and 

the average mass density is reduced. According to the analytical model 

mentioned in Section 2.2.1, the decrease of average mass density attached on 

membrane surface will therefore results in the increase of resonant frequency. 

Thus, in such configuration, the resonant frequency of the structure can be 

adjusted through the changing of mass block distance.  
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Figure 62. Band structures of the MemM with two semicircle mass blocks attached. The distance between 

the mass blocks are adjusted.   

When 𝑑 = 2 mm, 3mm, 5mm, 7mm, 9mm and 12mm, the first 6 mode shapes 

of the resonator are depicted in Figure 63. According to the figure, the first 

resonant modes of the resonator in all distances are bending modes with the two 

mass blocks conducting out-of-plane vibration. It indicates that the resonator 

with two masses also has the potential to generate a local resonant bandgap by 

the fundamental resonant mode.  

However, when the distance is increased, the two mass blocks are more apart 

from each other and the mass allocation is not as concentrated as the short 
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distance case. The deviation of mass blocks from the centre of the membrane 

will lead to the decrease of vibration amplitude in the fundamental resonant 

mode. Otherwise, as shown in Figure 63, in the fundamental resonant mode, 

when the distance increased gradually, the two mass blocks will have small 

deflection angles between the plane of the membrane. So part of the stretching 

force in the membrane generated by the mass blocks will be in opposite direction 

of each other and cancelled out. Consequently, the MemR with larger mass 

blocks distance will generate smaller counteracting force to control vibration, 

therefore the local resonant bandgap may disappear when the distance is larger 

than a certain value.  

In addition, the higher order resonant modes are also changed when distance is 

adjusted. For example, when the distance d is 2 mm, in the 6th resonant mode, 

the two mass blocks are flipping symmetrically. However, when the distance is 

increased to 3 mm, the mass blocks are twisting in an asymmetric mode in the 

6th resonant mode. These resonant modes are not related with the local resonant 

bandgap formed by the fundamental mode and they are not supposed to be able 

to form local resonant bandgap because they are antisymmetric modes where the 

counteracting force generated from the MemR is mostly self-balanced because 

of the twisting, similar to the findings of the EM in Chapter 3. The existence of 

the bandgap will be further investigated in section 4.3.4.  
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Figure 63. First 6 resonant modes of the MemR with two semicircle mass blocks when the distance 

between the two blocks d are (a) 2mm; (b) 3mm; (c) 5mm; (d) 7mm; (e) 9mm and (f) 12mm.  



148 

 

 

In the second type, three circular mass blocks are attached on the membrane.   

 

The third type of configuration is a nested mass combination. The configuration 

is shown in Figure 64. A circular mass block with radius 𝑟𝑚1 is located at the 

middle point of a ring mass. For the convenience of conducting parametric 

analysis, the width of the ring mass 𝑤0 is fixed as 3mm, and the outer radius of 

the ring mass is defined as 𝑟𝑚2. Since the ring mass block requires more space 

for installation, the side length of the membrane 𝐿𝑚 is increased to 70mm. The 

outer side length of the frame 𝐿𝑜= 80mm.  

 

Figure 64.The configuration of the MemM with nested mass blocks. 

The detailed dimension of the configuration are given in Table 9. The radius of 

the circular mass block is fixed as 5mm and the radius of the ring mass is adjusted 

from 10mm to 20mm. The ratio of the two mass block radius 𝑅 =
𝑟𝑚2

𝑟𝑚1
 is adopted 

as the design parameter.  
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Table 9. Dimension data of the nested mass configuration. 

rm1(mm) 5 
Membrane thickness 

(mm) 
0.1 

rm2 (mm) 10-20 Lm (mm) 70 

w0 (mm) 3 Lo (mm) 80 

Frame 

thickness (mm) 
5 Tensile stress (MPa) 0.5 

 

As discussed in above subsections, the formation of local resonant bandgap is 

decided by the resonant mode shape. By designing the structure that possess 

multiple bending resonant mode shapes, it may lead to the existence of several 

bandgaps with only one layer of membrane. In the nested mass configuration, 

two mass blocks are used and both of their geometrical centres are overlapped 

and at the middle point of the membrane. For illustration, the first 9 resonant 

mode shapes of the MemR when 𝑅 = 4 are presented in Figure 65. Through the 

analysis, it is found that there are two resonant modes (the 1st and the 7th) in 

which the two mass blocks are vibrating in bending mode. Therefore, it is likely 

that there are two bending mode local resonance bandgaps being formed by this 

type of MemM.  
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Figure 65. The first 9 resonant mode shapes of the nested mass MemR when radius ratio R=4. 

However, when the ratio radius is reduced, which means the distance between 

the ring mass’s inner circle is closer to the circular mass, the mass system is more 

compact. Therefore, the resonant mode shape of the two mass vibrating in 

opposite direction (as the 7th resonant mode that mentioned in the R=4 case) will 

not appear.  

Since the band structure cannot effectively reveal the local resonant bandgaps, 

the bandgap property of this type of MemM are further analysed by FEA and 

presented in Section 4.3.4. 
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4.3 Wave Transmission in Finite Structure of MemM 

To investigate the wave transmission characteristics in a finite structure that 

formed by the proposed MemM, numerical simulation is conducted. The 

designed parameters’ adjustment is supposed to be affecting the bandgap 

property of the MemM, therefore the wave transmission within the structure with 

different parameters will be changed in accordance to the analysis of the band 

structure.  

In this subsection, finite structures of MemM plate are constructed for numerical 

simulation. The MemM plate consist of  8 × 8 MemRs, as shown in Figure 66 

 

Figure 66. The configuration of the MemM plate. 

Point excitation is applied at the middle point A of the plate by prescribed 

displacement. Frequency scanning is applied and the frequency response signals 

of the plate are picked up from the points labelled as B to E. The FRF is 

calculated by: 𝐹𝑅𝐹 = 20 log (
𝑎𝑜𝑢𝑡

𝑎𝑖𝑛
)  𝑑𝐵, where 𝑎𝑜𝑢𝑡 and 𝑎𝑖𝑛 are the output and 

input acceleration signal, respectively.  
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4.3.1 MemM applied with different tensile stress 

In section 4.2.1, the band structures of the MemM applied with different tensile 

stress are investigated and the results demonstrate that the increase of tensile 

stress will shift the bandgap to higher frequency regions. In this section, the 

existence of bandgap and widths are explored by the wave scanning conducted 

on the finite structure.  

The FRFs are obtained through the detected acceleration signals. Through 

comparison, the FRFs from points B to E are similar because the symmetric of 

the structure. Therefore, only the responses of the MemM with different tensile 

stress at point B are presented in Figure 67.  
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Figure 67. FRF of the proposed MemM plates applied with different tensile stress (a) 0.1MPa, 0.5MPa 

and 1MPa; (b) 1.5MPa and 2.0MPa. 

According to the figure, the bandgaps’ lower edges under these 5 different tensile 

stress are: 81.0Hz, 160.0Hz, 219.0Hz, 262.0Hz and 299Hz. In section 4.2.1, the 

corresponding bandgaps’ lower edges are predicted as: 78.2Hz, 157.8Hz, 

216.8Hz, 261.9Hz and 299.7Hz. Bandgap location shifted 270% when the 

tensile stress is increased from 0.1MPa to 2MPa. It is a significant change for 

the operation frequency tuning in vibration control application.   

Through the finite structure study, the bandgap existence is revealed and the 

bandgap width is relatively broad, even though compared with the EM proposed 

in Chapter 3 it is still narrower.  

 

It is noted that the bandgap starting frequencies revealed in the finite structure 

are slightly higher than the band structures’ prediction. Different boundary 

conditions contribute to the occurrence of error. In FEA, the band structure is 
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calculated through a unit cell applied with periodic boundary conditions. 

However, in the finite structure, fixed boundary conditions are applied. Thus, 

extra stiffness is supplied to the system and the resonant frequencies will be 

increased.  

In Figure 68, the bandgaps’ lower edge obtained by FEA and the finite structure, 

bandgaps’ cut-off frequencies and the bandgap widths are presented. It reveals 

that when the starting frequencies and bandgap widths increase along with the 

increase of tensile stress. Such characteristic allows the MemM to broaden the 

bandgap width without increasing mass load.  

 

Figure 68. Bandgap widths, lower edge and cut-off frequencies of the proposed MemM applied with 

different tensile stress. 

As shown in Figure 69, when the excitation frequency is inside the bandgap 

region, the fundamental resonant mode of the MemR is activated and the 
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resonator starts vibrating. Therefore the wave energy is used to support the 

vibration of the resonator mass and as a result, the vibration cannot transmitted 

through the finite structure. When the excitation frequency is outside the 

bandgap region, the local resonant of the MemRs cannot be excited so the 

bending wave can transmitted through the whole structure and leads to the 

vibration of the whole structure.  

 

 

Figure 69.Deformation of the MemM plate when the excitation frequency is (a) inside bandgap frequency 

region and (b) outside bandgap frequency region. 

Aside from the deformation under certain frequency, the transient status of the 

finite structure excited under different frequencies are also studied. The 

frequency response of the finite structure in different time spots when excited 

under different frequencies are presented in Figure 70. The excitation 

frequencies are chosen as 170.0Hz (insider bandgap) and 380.0Hz (outside 
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bandgap), respectively.  The time spots are expressed in the form of the 

excitation signal’s period T.  

As shown in Figure 70 (a), when the time is T, the MemRs around the excitation 

point is activated and vibrating in the unit cells around the excitation points. At 

5T and 8T, the vibration is still contained within the unit cells that around the 

excitation points, and the bending wave cannot transmitted through the plate 

structure. 

When the excitation frequency is outside the bandgap region, as shown in Figure 

70 (b), the wave is transmitted through the unit cells around the excitation point 

already at T. The vibration transmits through the whole structure later on and 

leads to the vibration of the whole finite structure. Because the similarity and 

symmetric characteristics of the finite structure, the wave also transmits 

symmetrically. The deformation in the transient status is consistent with the one 

revealed in Figure 69.  

 

Figure 70. Finite MemM structure’s vibration response at different time spots when excited under the 

frequencies: (a) 170Hz and (b) 380Hz.  
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4.3.2 MemM with different mass magnitude 

The FRFs of the finite MemM structures applied with different mass magnitudes 

are investigated and presented in Figure 71. The tensile stress is maintained at 

0.5MPa while the mass magnitudes are adjusted as 1.0g, 1.5g, 2.0g, 3.0g, 4.0g 

and 5.0g, respectively. When the mass magnitude is 1g, the starting frequency 

of the bandgap is 206.0Hz, and the bandgap width is 29.0Hz. As the mass 

magnitude increases, the bandgap starting location shifts to lower frequency 

regions accordingly. It is the same tendency predicted by the band structure 

analysis in section 4.2.2. The increase of mass magnitude makes the MemR 

system obtain larger equivalent mass and therefore the resonant frequencies 

decreased. Otherwise, in order to reveal the influence of mass magnitude, the 

starting and cut-off frequencies of the finite structure and bandgap widths are 

presented in Figure 72. 
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Figure 71. FRF of the proposed MemM plates applied with different mass magnitudes: (a) 1.0g, 1.5g, 

2.0g and (b) 3.0g, 4.0g, 5.0g.  

According to Figure 72, the bandgap width with 1.0g mass attached is 29.0Hz. 

When the mass magnitude increased the bandgap width grows as well. The width 

decrease from 38.0Hz to 36.0Hz when the mass magnitude increased from 3.0g 

to 4.0g, yet comprehensively, the bandgap width increased gradually when the 

mass magnitude is increased. The slop of the bandgap location change trend line 
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becomes subtle gradually when the mass magnitude is increased. The finding 

reveals similar effect as the adjustment of tensile stress. However, if the bandgap 

width is broadened by this way, the total attached mass will be increased and it 

may lead to the compromise of primary system’s functioning performance in 

application.  

 

Figure 72. Bandgap widths, lower edge and cut-off frequencies of the proposed MemM applied with 

different mass magnitudes.  

 

4.3.3 MemM with different membrane thickness 

To investigate the bandgap property of the MemM with different membrane 

thickness and side length ratio, the finite structure’s FRFs are obtained and 

presented in Figure 73. The ratios are selected as 0.008, 0.02, 0.032 and 0.04, 

respectively.  

The increase of size ratio can make the bandgap location to higher frequency 

regions. The bandgap starting frequencies are 105.0Hz, 160.0Hz, 196.0Hz and 
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216.0Hz, respectively. Growing membrane thickness increase the stiffness of the 

membrane and therefore the resonant frequency becomes higher.  

 

Figure 73. FRFs of MemM with different membrane thickness and side length size ratio. 

The existence of local resonant bandgap is not affected by the adjustment of 

thickness because the fundamental resonant mode is not changed. According to 

Figure 74, the bandgap widths are also increased along with the rising of the size 

ratio. As mentioned in Section 4.3.1, the rising stiffness will lead to the increase 

of bandgap width. Similarly, the increase of membrane thickness achieved the 

same effect.  

The results reveal that the tuning of membrane thickness can also affect the 

bandgap property of the MemM. However, similar to the mass magnitude, the 

tuning of membrane thickness can only be realised in the manufacturing process.  
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Figure 74. Bandgap widths, lower edge and cut-off frequencies of the proposed MemM applied with 

different mass magnitudes.  

4.3.4 MemM with different mass configurations and locations 

Semicircle mass 

Similar to the above mentioned subsections, finite metamaterial structures that 

composed of 8 × 8 unit cells are constructed. With a point excitation in the 

middle of the structure, the vibration response of the structure is detected.  

The FRFs of the finite structure with different distances are presented in Figure 

75. A local resonant bandgap of flexural wave is formed in the finite structure of 

the MemM formed by this type of MemRs. The location of the full bandgaps are 

consistent with the location of fundamental resonant frequencies mentioned in 

Section 4.2.4.  
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Figure 75. FRFs of MemM with two semicircle mass blocks. The distance between the mass blocks: (a) 

2mm, 3mm, 5mm and (b) 7mm, 9mm, 12mm. 

According to Figure 75, when the distance between the two mass blocks is 

increased from 2mm to 7mm, the existence of the local resonant bandgap is 

obvious, and the locations of the bandgap are shifting gradually. However, as 

shown in Figure 75 (b), when the distance is 9mm, the wave attenuation in 

around the fundamental resonant frequency region is not obvious anymore and 

the existence of bandgap disappeared when the distance is continuously 

increased to 12mm. Such phenomenon can be explained by the analysis 

indicated in Section 4.2.4 that the distance increment results in the decrease of 
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force generated by the MemR and therefore the suppression of the vibration is 

weakened. 

The result demonstrates that the MemR with two mass blocks can be tuned by 

the adjustment of distance between the mass blocks: the location of bandgap will 

shift to higher frequency regions when the distance is increased. However, the 

disadvantage of such configuration is also very obvious as well: the bandgap will 

disappear when the distance is larger than a certain value . It is therefore not an 

ideal configuration for application.  

Nested mass 

For the nested mass configuration, the bandgap property of the MemM and the 

effect of the configuration dimension on the bandgap are investigated through 

the finite structure. The setting parameters of the resonators are consistent with 

those introduced in Table 9.  

By defining the dimension ratio 𝑅 =
𝑟𝑚2

𝑟𝑚1
 (where 𝑟𝑚2 and 𝑟𝑚1 are the radius of 

the ring mass and circular mass respectively), the change of bandgap location is 

studied. The finite structure of the MemM is also an 8 × 8 MemR plate. 𝑅 is 

changed by tuning the value of 𝑟𝑚2 from 20mm to 10mm. The FRFs of the finite 

structure is given in Figure 76.  
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(c) 

Figure 76. FRFs of finite structure of MemM with nested mass configuration when mass radius ratio is 

(a) 4.0, 3.6, 3.2 and (b) 2.8, 2.4 and 2.0; (c) FRFs around the first bandgap starting frequency region. 

According to the figure, when the radius ratio is properly designed, two flexural 

bandgaps will be formed. The first bandgaps are broader than the second ones. 

The first bandgap widths are about 20.0 – 23.0Hz. The increase of the radius 

ratio has limited effect on the location of the first bandgap.  

When the dimension ratio is decreased, the location of the first bandgap is 

moving to lower frequency region slightly and the second bandgap changed 

evidently. When 𝑅 changed from 4.0 to 2.8, as shown in Figure 76, the location 

of the first bandgap shifts from 40.5Hz to 38.5Hz, and the location will fluctuate 

slightly when R continue decreasing. However the second bandgap increased 

from 86.5Hz to 122.0Hz. When R changed from Otherwise, as the radius of the 

ring mass block is reduced and the inner radius approaching the radius of the 

circular mass block, the second bandgap will gradually disappear because the 

two mass blocks are getting closer. The second bandgap disappeared when the 

ratio 𝑅 decreased to 2. The relatively small radius will make the two mass blocks 
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close to each other, and the membrane between the two mass is thus small. 

During vibration, the stretching of the membrane leads to the generate of force 

for suppressing the structural vibration. When the membrane area are too small, 

the force generated by the stretching membrane is small and not sufficient to 

suppress the vibration. 

In order to illustrate the forming mechanism of bandgaps, Figure 77 presents the 

corresponding deformation of the finite structure when excitation signal’s 

frequency is inside or outside of the bandgap regions. 
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Figure 77. Deformation of the finite structure of MemM with nested mass configuration when the 

excitation signal’s frequency is at the (a) outside of bandgap region (38.0Hz), (b) inside of the 1st 

bandgap region (45.0Hz) and (c) inside of the 2nd bandgap region (87.0Hz). The dimension ratio of the 

MemR is R=4. 

Figure 77 (a) shows the deformation of the finite MemM structure when the 

excitation signal is in 38Hz, which is outside the bandgap region, and it is found 

that the wave is not contained within the MemRs and transmitted through the 

whole structure. If the excitation frequency is within the first bandgap region, 

the vibration is constrained at the MemRs that adjacent to the input point, and 

the elastic wave is not transmitted through. The MemRs are vibrating in the 1st 

resonant mode as indicated in Figure 65. In addition, when the excitation 

frequency is within the second bandgap region, the resonator will conduct 

vibration in the 7th resonant mode. So the two mass blocks are experiencing 

vibration in opposite direction. Such vibration characteristics results in the 

smaller second bandgap width because the two mass blocks are moving in 

opposite, and the stretching of membrane will generate forces in opposite 

directions. As a result, the output force from the MemR used for suppressing 

vibration is reduced and thus, the width of the second bandgap is much smaller 

than the first one.  
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4.4 Bilayer MemM Attached to A Thin Plate Structure 

The existence of bandgap of the proposed MemM are verified in the previous 

section. However, similar to the EM introduced in Chapter 3, the band structure 

and vibration absorption performance of the MemM when applied to a thin plate 

structure may be different.  

As introduced in Chapter 2, PWE method is modified and applied to obtain the 

band structure of MemM attached to a thin plate. In previous research works, the 

PWE method was not adopted for the bandgap property study of a MemM, thus 

the PWE method did not include the membrane tensile stress as an independent 

variable. In this study, modification of the PWE method is conducted and it is 

able to predict the bandgap property of a MemM attached on a thin plate for the 

purpose of structural vibration control.  Compared with using the FEA software 

in Section 4.2, calculation of band structures through the PWE method is more 

convenient and time-saving.  

In this section, the band structure and vibration control performance of the 

bilayer MemM applied on a thin plate is investigated. The band structures of the 

bilayer MemM under different design parameters are obtained through the 

modified PWE method, and finite structure of bilayer MemM are constructed for 

FEA to examine the accuracy of the analytical method.  

4.4.1 Band structure of bilayer MemM 

Stacking of the single layer MemM can allow the existence of multiple bandgaps 

simultaneously while the occupied area of the MemM does not increased. In this 

section, the band structure of the bilayer MemM formed by stacking one layer 
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of MemM to another one is investigated through the proposed model introduced 

in Chapter 2.  

As mentioned in section 2.3.2, the modified PWE method can also be used to 

study the band structure of the bilayer MemM. Consider bilayer membrane-type 

resonators that are attached to a thin plate, forming periodic unit cells. The 

bilayer membrane-type resonators are considered as two separate spring-mass 

resonators.  The attached masses are denoted as 𝑚𝑅1  and 𝑚𝑅2 , whilst the 

effective stiffness are denoted as 𝑘𝑅1 and 𝑘𝑅2, respectively. 𝑘 is the stiffness of 

the plate. The section of a primary plate structure that the membrane-type 

resonator attached to is considered as the target mass 𝑚1. Assuming the plate is 

under excitation of a harmonic force with amplitude  𝐹 and frequency 𝜔, the 

governing equation of motion of the system can be described as:  

[
𝑚1 0 0
0 𝑚𝑅1 0
0 0 𝑚𝑅2

] {

𝑤̈1
𝑤̈2
𝑤̈3

} + [

𝑘 + 𝑘𝑅1 + 𝑘𝑅2 −𝑘𝑅1 −𝑘𝑅2
−𝑘𝑅1 𝑘𝑅1 0
−𝑘𝑅2 0 𝑘𝑅2

] {

𝑤1
𝑤2
𝑤3
} = {

𝐹
0
0
} 

 

 

(4-3) 

where 𝑚1 is the mass of the plate’s section; 𝑤1, 𝑤2 and 𝑤3 are the transverse 

displacements of the plate and resonators, respectively; and 𝑤̈1, 𝑤̈2 and 𝑤̈3 are 

the respective accelerations of the plate and resonator.  

To demonstrate the relationship between the resonant frequency and bandgap 

location, a particular case study is undertaken.  Define the masses attached to 

both membranes as 𝑚𝑅1 = 𝑚𝑅2 = 2𝑔, and the stresses applied to the upper and 

lower membrane layer as 0.6𝑀𝑃𝑎 and 0.8𝑀𝑃𝑎, respectively. For 𝑎 = 60𝑚𝑚 

and plate thickness of ℎ = 2𝑚𝑚, the mass of the bottom aluminium plate area 

is 𝑚1 = 19.4𝑔. The respective effective stiffness of the two resonators can be 

obtained as 𝑘𝑅1 = 217.4𝑁/𝑚 and 𝑘𝑅2 = 290.6𝑁/𝑚. 
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Assume the resonant frequencies of the two resonators 𝑚𝑅1 and 𝑚𝑅2 are 𝜔𝑛1 

and 𝜔𝑛2   ( 𝜔𝑛1 < 𝜔𝑛2 ), respectively. According to equation (4-3), the 

displacements of resonators can be described as:  

{
 
 

 
 𝑤2 =

1

1 − (
𝜔
𝜔𝑛1

)
2𝑤1

𝑤3 =
1

1 − (
𝜔
𝜔𝑛2

)
2𝑤1

 

 

 

     (4-4) 

As given in equation (4-4), the ratio of excitation frequency and resonant 

frequency determines the relative displacement of resonators. When the 

excitation frequency 𝜔 is smaller than 𝜔𝑛1, both displacements are positive so 

both resonator masses are mainly moving in-phase or the phase angle difference 

is smaller than 90o with 𝑚1. Therefore, in this frequency region, the resonators 

tend to increase vibration of the primary mass rather than suppressing it.  

When incident frequency 𝜔 is in the region of [𝜔𝑛1, 𝜔𝑛2), resonator attached 

with 𝑚𝑅1  will experience out-of-phase vibration with 𝑚1  or the phase angle 

difference with 𝑚1 is larger than 90o.  However, 𝑚𝑅2 is experiencing in-phase 

vibration with 𝑚1or the phase angle difference is smaller than 90o, thus the 

vibration reduction effect of 𝑚𝑅1 is weakened. When 𝜔𝑛2 < 𝜔, both resonators 

are vibrating in opposite direction to 𝑚1 and when damping is applied, the phase 

angle difference will be larger than 90o for both resonators,  so the vibration 

absorption performance of 𝑚𝑅2 will be reinforced by 𝑚𝑅1. Such enhancement 

leads to extension of 𝑚𝑅2’s corresponding bandgap width.  

 

Based on the developed model, an investigation on the bandgap property of an 

infinite membrane-type metamaterial structure is conducted. The parameters 
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used in the example are similar to those used in the effective mass calculation. 

Figure 78 shows that there are two clear full bandgaps at: (1) 52.5 – 54.3Hz; (2) 

60.7 – 64.5Hz. The location of these bandgaps are the same as the frequency 

region of negative effective mass. These two bandgaps are contributed by the 

fundamental resonant of the two membrane resonators. When the incident 

wave’s frequency lies within one of the bandgaps, the corresponding resonance 

of the resonator will be excited, leading to the attenuation of the propagated wave 

[98].  

 

Figure 78. The bandgap structure of a bilayer membrane-type metamaterial with membranes’ tensile 

stresses of 0.6MPa and 0.8MPa, respectively. Two full bandgaps (shaded areas) exist at 52.5 – 54.3Hz 

and 60.7 – 64.5Hz. 

As shown in the figure, the red curve separates the two full bandgaps, which is 

associated with the resonant frequency of the resonator with the higher 

membrane tensile stress at 0.8MPa. By applying different membrane tensile 

stress in the two resonators, a bilayer membrane-type metamaterial can thus be 

utilized to control structural vibration in two separated frequency ranges, albeit 

in relatively narrow operation frequency regions.   
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4.4.1.1 Effect of mass magnitude on bilayer MemM 

Figure 79(a) presents the change in the bandgap width and location for a bilayer 

metamaterial when the magnitudes of both masses 𝑚𝑅1  and 𝑚𝑅2  are 

simultaneously varied from 2.0g to 60.0g. 

Figure 79 (b) shows the bandgap as the magnitudes of the attached masses are 

varied. As the bilayer membrane-type resonators are composed by two single-

layer resonators, the bandgap structures of the single layer metamaterials are also 

depicted in Figure 79 (c) and Figure 79(d) for comparison.   

For clarity, the layer of membrane applied with lower tensile stress is denoted as 

the resonator 𝑚𝑅1  and the other is denoted as the resonator 𝑚𝑅2.  
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Figure 79. (a) The band structures of the bilayer metamaterial attached with different mass platelets and 

(b) the band structures of different mass magnitudes; (c) change of bandgap width of single-layer 

metamaterial applied with 0.6MPa and (d) 0.8MPa.  

According to the figure, when the mass magnitude is increased from 2.0g to 

60.0g, the bandgap width of 𝑚𝑅1 is enlarged from 2.6Hz to 9.8Hz, whilst the 

bandgap of 𝑚𝑅2 is also enlarged from 3.1Hz to 11.4Hz.  

For the bilayer resonator, the first bandgap’s lower edge shifts from 52.6Hz to 

9.7Hz, and the second bandgap location shifts from 60.7Hz to 11.2Hz. The width 

of the first bandgap, which is associated to 𝑚𝑅1, decreased from 1.7Hz to 0.65Hz. 

When the mass is increased to 60g, the first bandgap width of bilayer resonator 

is 93.4% smaller than the corresponding bandgap width of single layer resonator 

with the same mass. Meanwhile, the width of the second bandgap increased from 

3.8Hz to 16.8Hz, which is about 47.4% larger than the single layer resonator. 

Therefore, the bandgap behaviour of bilayer membrane-type resonator is not a 

simple combination of two independent single layer resonators. In a single layer 

resonator, the increase of attached mass magnitude will effectively amplify the 

bandgap width. In a bilayer resonator, however, for fixed membrane stress, the 

increase of mass magnitude will cause reduction of the first bandgap width and 

the increase of the second bandgap width.  

As elucidated in section 2.2, if the excitation frequency is within 𝑚𝑅1’s bandgap 

range, the counteracting force is partially eliminated by resonator 𝑚𝑅2. Thus, 

𝑚𝑅1’s vibration absorption performance is weakened, leading to the narrowing 

of the first bandgap. On the other hand, if the excitation frequency is within the 

second bandgap, the absorption capability of resonator 𝑚𝑅2 will be reinforced 

by the resonator 𝑚𝑅1 and the second bandgap is therefore broadened. Naify et 
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al. [142] demonstrated that the increase of mass loaded on membrane can 

broaden the frequency bandwidth for sound isolation applications. A similar 

effect is also found in structural vibration applications as discussed in this work. 

4.4.1.2 Effect of tensile stress on bilayer MemM 

Figure 80 exhibits the change of bandgaps caused by the tuning of the tensile 

stress applied to the membranes. Here, 2.0g and 4.0g mass platelets are attached 

to the upper and lower layer of membranes respectively. The tuning range of the 

applied stress on membranes is from 0.4MPa to 12MPa, with the results shown 

in Figure 80. As the magnitudes of attached masses are kept constant, the 

increased tensile stress will lead to higher equivalent stiffness and therefore the 

bandgap location will shift to higher frequency. In the bilayer resonator, the first 

bandgap’s starting edge changes from 30.5Hz to 166.7Hz, while the second 

bandgap’s starting edge increases from 42.9Hz to 234.7Hz.  

In a bilayer resonator, the first bandgap is produced by the membrane layer with 

heavier mass (4g). According to the figure, it can be observed that the increase 

of tensile stress can enlarge the bandgaps. As shown in Figure 80(c) and (d), 

when the stress is increased to 12MPa, the bandgap width of the single layer 

resonator attached with 2g mass rises from 2.2Hz to 12.1Hz. In addition, the 

other single layer resonator’s bandgap width rises from 3.0Hz to 16.6Hz. 

Meanwhile, in the bilayer case, the first bandgap width increases from 2.6Hz to 

14.3Hz and the second changes from 2.4Hz to 13.5Hz, respectively. Similar to 

the results in Section 2.4.1, when the tensile stress is 12MPa, the first bandgap 

is 18.7% smaller than the corresponding single layer resonator’s bandgap width. 

In contrast, when the tensile stress is 12MPa, the second bandgap is 18.2% larger 
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than the 0.4MPa case. The results indicate that the design parameters can be 

optimised to avoid weakening of the first bandgap.  

 

 

 

Figure 80. (a) The band structures of the bilayer metamaterial attached with 2.0g and 4.0g mass; (b) 

bilayer metamaterial’s bandgaps vary with tensile stress applied to membrane; bandgap of single layer 

metamaterial attached with (c) 2.0g mass and (d) 4.0g mass with varying tensile stress.  

 

4.4.1.3 Effect of periodicity of bilayer MemM 

The periodicity of membrane-type metamaterial is defined as the distance 

between the adjacent membrane-type resonators attached to the plate. The 

periodicity may be different in accordance to the application requirement. To 

control a relatively strong vibration, the number of resonators on the plate area 
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is required. On the other hand, in situations that have strict limitation on extra 

weight, the number of resonators should be as small as possible. In this section, 

the effect of periodicity of bilayer membrane-type metamaterial is investigated. 

The range of resonator’s periodicity is varied from 0.05m to 0.195m, with a 

0.05m resolution. The tensile stresses of the two membrane-type resonators are 

respectively defined as 2MPa and 4MPa, whilst the attached mass are 10g and 

5g respectively.  

As shown in Figure 81, the starting frequency of bandgap is maintained because 

the periodicity adjustment is not affected by the resonator’s resonant frequency. 

Otherwise, the increase of the metamaterial’s periodicity will significantly 

decrease the bandgap width. When the periodicity is increased, the bandgap 

width will decrease because the number of resonators is smaller, leading to a 

lower vibration absorption capacity. Theoretically, when the lattice constant is 

approaching infinity, it describes an infinite size plate with only one resonator 

attached so the bandgap will finally disappear.   

In practice, the bandgap will disappear when the lattice constant increases to a 

certain value. Figure 81(b) presents the bandgap change of the same bilayer 

resonator when the periodicity is adjusted from 0.05m to 0.4m. It is observed 

that the second bandgap, which is associated with a resonator with smaller mass, 

disappears when the periodicity is larger than 0.21m. In addition, the first 

bandgap disappears at about 0.34m.   
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Figure 81. The change of bandgap when the periodicity of attached resonators, a, is tuned from 0.05m to 

(a) 0.195m; (b) 0.4m.  

On the other hand, the magnitudes of attached masses are also closely related to 

the vibration absorption performance. To demonstrate the effect of attached 

mass and periodicity on bandgap property, three configurations are taken for 

comparison. In these cases, the periodicities are set as 60mm, 120mm and 

240mm, respectively. In addition, the masses on both membranes are adjusted 

as 2.0g, 8.0g and 32.0g correspondingly to ensure the total attached mass is the 

same in three cases. In the meantime, the stress is accordingly adjusted as well 

to maintain similar resonant frequencies.  

Figure 82 presents the bandgap location and widths of these cases. According to 

the results, both the first and second bandgaps’ widths are broadened when the 

periodicity, attached mass and the applied stress are simultaneously increased. 

In a unit area, the total attached mass of the resonator is the same, yet the one 

with larger mass and higher tensile stress will reveal larger bandgap if compared 

with the counterparts. It demonstrates that for the purpose of forming a broader 

bandgap, the membrane-type resonator’s tensile stress and mass should be 

designed as high as possible. However, it is also worth noticed that the high 

periodicity will cause high concentration of mass on the primary structure. Such 
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characteristic may lead to shifting of system’s centre of gravity or stability. 

Therefore, periodicity should be chosen carefully in accordance to the 

application conditions.  

Detailed data of bandgap locations and widths are given in Table 10.  

Based on this characteristics of the bilayer MemM, a good compromise is needed 

to solve the contradiction between resonator number and vibration performance.  

 

Figure 82. The bandgap location and width for 3 different periodicities. The red areas indicate the 

bandgap region. 

Table 10. Data of bandgap location and width for 3 different periodicities. 

 Periodicity 

Frequency 

(Hz) 

60mm 120mm 240mm 

Lower edge 1 95.97 95.56 95.56 

Upper edge 1 99.95 99.87 107.05 

Band width 1 3.98 4.31 11.49 

Lower edge 2 135.69 135.36 135.97 

Upper edge 2 143.16 143.58 170.21 

Band width 2 7.47 8.22 34.24 

 

4.4.2 Parametric analysis for bandgap property and optimisation 

The bilayer membrane-type resonator can be optimised by tuning the 

combination of design parameters. In this section, the total bandgap widths of 

the bilayer resonator with different mass and tensile stress settings are studied in 

comparison to those of single layer resonators’ bandgap widths.  
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The mass and tensile stress of the lower layer membrane are respectively defined 

as: 𝑚𝑅1=4.0g and 𝑇1=1MPa. The mass of the upper layer is changed from 0.8g 

to 8g and tensile stress is changed from 2MPa to 12.5MPa. Figure 83(a) presents 

the first bandgap width difference when the mass ratio and tensile stress ratio are 

adjusted. The differences of bandgap width between bilayer and single layer 

resonators are calculated and plotted against the mass ratio (𝑚𝑅2/𝑚𝑅1) and the 

tensile stress ratio (𝑇2/𝑇1). A negative value of the bandgap width difference 

indicates the bilayer bandgap width that is smaller than the corresponding single 

layer resonator’s bandgap width.  

As previously mentioned, the first bandgap width is suppressed in a bilayer 

membrane-type resonator. According to Figure 83(b), the increase of mass ratio 

will further suppress the first bandgap width. When the tensile stress ratio is 

relatively small, the increase of mass ratio will lead to rapid decrease of the first 

bandgap width although the effect is weakened if the tensile stress ratio is higher.   

Otherwise, according to Figure 83(c), when the mass ratio is small, the change 

of tensile stress ratio has no significant effect on the bandgap width. On the 

contrary, when the mass ratio is relatively large and the tensile stress ratio is 

increased, the bandgap width difference will first decrease rapidly before 

stabilizing. Thus if the mass ratio is large, higher tensile stress ratio is 

recommended in order to reduce the bandgap difference of the first bandgap.  
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Figure 83. (a) The lower bound bandgap width difference between bilayer and corresponding single 

layer resonators; (b) bandgap width difference vs. mass ratio; (c) bandgap width difference vs. tensile 

stress ratio. 

Figure 84 presents the change of the second bandgap width.  As shown in Figure 

84(b), in contrast to the first bandgap, the increase of mass ratio will enlarge the 

second bandgap width of the bilayer resonator, whose effect is stronger 

particularly when the tensile stress ratio is lower. In addition, according to Figure 

84(c), when the mass ratio is relatively low, the change of tensile stress ratio has 

no effect on the bandgap width difference. However, when the mass ratio is 

relatively high, the increase of tensile stress ratio will weaken the second 

bandgap. Therefore, for the purpose of widening the higher bandgap, the mass 

ratio should be adjusted to higher value whilst the tensile stress ratio being kept 

as low as possible.   

 

Figure 84. (a) The upper bound bandgap’s width difference between bilayer and corresponding single 

layer resonators; (b) bandgap width difference vs. mass ratio; (c) bandgap width difference vs. tensile 

stress ratio. 
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Figure 85 reveals that the total bandgap width of the bilayer resonator is slightly 

smaller than the sum of bandgap widths of two single layer resonators. Figure 

85(b) illustrates that the increase of mass ratio will enlarge the bandgap width 

difference. In addition, when the tensile stress ratio is higher, level of the 

reduction of the bilayer resonator’s total bandgap width will be larger under the 

same amount of mass ratio increase.  

Otherwise, in accordance to Figure 85(c), the bandgap width will only change 

with tensile stress ratio when the mass ratio is relatively large. The higher tensile 

stress ratio will make the total bandgap width of bilayer resonator even smaller.   

 

Figure 85. (a) The total bandgap width difference between bilayer and corresponding single layer 

resonators; (b) bandgap width difference vs. mass ratio; (c) bandgap width difference vs. tensile stress 

ratio. 

The results provide important design guidelines for the bilayer membrane-type 

metamaterial. The total bandgap width of bilayer resonator is only slightly 

smaller (less than 1Hz) than the sum of two single layer resonators. To maintain 

the first bandgap width of the bilayer membrane-type metamaterial, a small mass 

ratio should be used, and the location of bandgap can be tuned by adjusting the 

tensile stress ratio. By adopting this design parameter combination, the bilayer 

membrane-type metamaterial’s total bandgap width is only slightly suppressed.  
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However, the second bandgap can be widened by adopting a large mass ratio 

and a low tensile stress ratio. Such characteristics allow the bilayer resonator 

possesses more agile bandgap tuning capability whilst still keeping the same 

total bandgap width. Moreover, compromise is needed when choosing different 

design parameters. The utilisation of bilayer resonators also only requires 

smaller area than the combined utilisation of two single membrane-type 

resonators. As a result, the bilayer one can have better application potential and 

more agile tuning capability.   

4.4.3 Vibration absorption performance of bilayer MemM 

To examine the bandgap property of bilayer MemM attached to a thin plate, a 

240×600mm aluminium plate with attached bilayer MemM is constructed and 

shown in Figure 86. Otherwise, in order to simulate the real condition, 10% 

damping is incorporated to the imaginary part of modulus. The left edge of the 

plate is applied with fixed boundary condition, while the excitation input is 

applied at the right edge of the structure and pre-stress conditions are applied to 

the membranes.  

The thin plate’s vibration response is detected as the acceleration signal, and it 

is measured at point 𝐴, while the input acceleration signal is measured from the 

edge at which the excitation input is applied. The upper layer membrane is 

applied with 0.6 MPa stress, whilst the lower level membrane is applied with 0.8 

MPa stress. Each of membrane has a rigid mass block of 2.0g at its centre.  

Figure 87 shows the thin plate’s FRF when the incident excitation frequency is 

scanned from 30Hz to 90Hz.  
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Figure 86. The finite structure of a 4×6 units of bilayer membrane-type resonators attached to an 

aluminium plate. 

 

 

Figure 87. Frequency responses of the bare plate (dashed black) and the plate attached with the bilayer 

membrane-type metamaterial (solid red).  

The results show that the plate’s fundamental resonance has been shifted to a 

lower frequency when bilayer membrane-type metamaterial is attached, because 

the additional mass that metamaterial contributed to the plate. In addition, there 

are two bandgaps that appear at frequency ranges of 54.4Hz – 57.2Hz and 

63.2Hz – 67.6Hz. For the analytical model, the obtained bandgaps are located at: 

52.5-54.3Hz and 60.7-64.5Hz. So the analytical model indicates slightly lower 
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bandgap locations than the FEA results. Differences in boundary condition 

settings contribute to differences in the results. In the PWE model, the infinite 

periodic boundary conditions are used, in contrast to fixed boundary condition 

used for the finite structure model, contributing to higher structural stiffness for 

the finite structure. However, despite the small differences in bandgap prediction, 

the bandgap location and width estimation provided from the modified PWE 

model is consistent with the numerical simulation results, demonstrating the 

effectiveness of the model.   

It should be noted the frequency response in bandgap region has an asymmetrical 

shape. This is due to Fano interference effect that is generated by the periodically 

allocated resonators [143]. The travelling waves and scattering of the resonant 

modes of the periodic unit cells will cause the asymmetric dispersion curve. 

Otherwise, the resonant frequencies of the bare plate are higher than the one 

attached with membrane-type resonators, because the attached metamaterial 

increased the system mass. 

The deformation of the plate at different frequencies are shown in Figure 88. 

When the incident wave frequency is within the first bandgap range, the first 

resonant mode of unit cell will be excited and significant amount of wave energy 

will be absorbed and stored within the unit cells. In contrast, when the incident 

wave frequency is outside the bandgap range, the resonators movement will be 

mainly in phase with the plate, allowing the wave to propagate through the plate. 

Figure 88(c) presents the two vibration modes that generate bandgaps of the 

bilayer resonator. 
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Figure 88. The deformation of the structure when incident wave frequency is: (a) within bandgap and (b) 

outside bandgap; (c) the first and second vibration mode shapes of the bilayer membrane-type 

resonators. The attached mass magnitude is 2g. 

To further verify the accuracy of the proposed theoretical model, two other cases 

are used. Case 1 defines 𝑇1 = 𝑇2 = 2MPa and attached mass 𝑚𝑅1 = 2.0g and 

𝑚𝑅2 = 5.0g, respectively. Case 2 defines 𝑇1 = 2MPa and 𝑚𝑅1 = 2.0g, whilst 

𝑇2 =  4MPa and 𝑚𝑅2 =  5.0g.The setting and the corresponding bandgaps 

obtained through the proposed method and simulation are both presented in 

Table 11, while the frequency responses are shown in Figure 89. 

It is observed that the locations of bandgaps estimated by the proposed method 

are slightly different with the simulation results but the deviation is within a 

reasonable range as discussed earlier. In both examples, the second bandgaps, 

which start from 96.0Hz, are associated by the resonator with mass 𝑚𝑅1. As 

shown by the results, the second bandgap width will extend when the tensile 

stress ratio is increased and such results are consistent with the prediction 

described in section 4.4.2. 
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Figure 89. The frequency responses of the plate attached with bilayer membrane-type resonators with 

different stress and mass magnitudes.  

Table 11: The bandgap property of bilayer membrane-type metamaterial predicted by the modified PWE 

method and simulation. 

    
Membrane 

1 

Membrane 

2 

Membrane 

1 

Membrane 

2 

Setting 

Stress 

(MPa) 
2.0 2.0 2.0 4.0 

Mass (g) 2.0 5.0 2.0 5.0 

    
Modified 

PWE 
Simulation 

Modified 

PWE 
Simulation 

Bandgap 1 

Lower edge 

(Hz) 
61.0 62.0 86.3 89.2 

Upper edge 

(Hz) 
67.2 68.0 91.4 94.0 

Width (Hz) 6.2 6.0 5.1 4.8 

Bandgap 2 

Lower edge 

(Hz) 
96.0 101.0 96.0 99.8 

Upper edge 

(Hz) 
101.6 104.0 105.7 106.8 

Width (Hz) 5.6 3.0 9.7 7.0 
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4.5 Experiment on MemM 

4.5.1 Experiment setup, equipment and sample assembly 

In order to manually produce the MemR samples, a membrane stretching 

mechanism is designed and manufactured in advance. The structure of the 

mechanism is shown in Figure 90.  

The stretching mechanism is designed with an octagonal shape outer frame. A 

clamp connected by a screw rod is mounted on each side of the frame. The 

clamps can be tightened by the screws and thus fixed the membrane within the 

frame. A force sensor is connected with one of the screw rods to detect the force 

applied on the membrane. The sensor is connected with a display screen to show 

the current force value. Screw nuts are used to fix the screw rods on the frame, 

and the location of the clamps can be adjusted through rotating of the screw nuts, 

consequently, the tensile force applied to the membrane can be tuned accurately.  

When assembling a relatively small MemR, one can use only 4 clamps to 

simplify the process and for a larger MemR, all clamps can be used to ensure the 

stretching force is applied evenly.  

 

Figure 90. A photo image of the membrane stretching mechanism. 
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The frames of the MemRs are manufactured through 3D printing. The frame is 

exactly the same as the one used in the numerical simulation, including the 

material properties. The membrane is silicone rubber sheet purchased from 

supplier. The material properties are measure through DMA testing as 

mentioned before.  

The assembling process of a MemR is presented in Figure 91. The membrane is 

first tailored into required shape and dimension and fixed on the stretching 

mechanism. Through tuning the screw nuts, the tensile force applied on the 

membrane can be adjusted to the desired level. After the force on the membrane 

is stable, the frame can be glued onto the membrane. In this step, it is important 

to keep the pressure on the frame until the glue is dried for the purpose of 

maintaining the tensile stress within the membrane. The membrane can then be 

taken out from the stretching mechanism, and cut off the extra parts of the 

membrane.  

 

Figure 91. Assembling process of a membrane-type resonator by using the designed stretching 

mechanism. 

After fixing the membrane on the frame, the copper mass platelet can then be 

glued at the middle of the membrane. The location of the membrane’s middle 

point should be marked beforehand to ensure the accuracy of assembly. Since 

the MemR is manually manufactured, the error of the mass location and 
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membrane tensile stress will lead to the shifting of MemRs’ resonant frequencies. 

The manufactured MemRs are then glued on a thin aluminium plate for 

experimental testing.  

The experimental setup is shown in Figure 92. The test rig is put on an optical 

isolation platform to avoid the external vibration disturbance. The metamaterial 

structure is clamped on the right side, and the left side is fixed by a clamp that 

connected with a shaker. The incident excitation signal is detected by the 

accelerometer attached on the shaker clamp, and the vibration response signal of 

the plate structure is detected by the accelerometer attached on the other side. 

Sinusoidal excitation signal is generated from the signal generator and sent to an 

amplifier that connected with the shaker. Data analyser is connected with the 

signal generator and the two accelerometers.  The equipment are the same as 

those used in Chapter 3.  

 

Figure 92. A photo image of the experimental setup for MemM.  
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4.5.2 Results and discussion 

To reveal the effect of attached MemM, the vibration response of an aluminium 

thin plate (200 × 450 × 2mm) is tested first. Similar to the numerical simulation 

setting, one short edge of the plate is clamped and the other side is fixed onto the 

shaker, as shown in Figure 92. Sinusoidal excitation is used and the excitation 

frequency is scanned from 0Hz to 600Hz. The vibration transmissibility curve 

of the bare plate is obtained and presented in Figure 93. 

As shown in the figure, there is a resonant peak in 104Hz in the bare plate. The 

resonant frequency of the MemR is therefore designed as 104Hz, and then 

attached to the thin plate to examine whether the resonant peak is eliminated.  

The dimension of the MemR is 50 × 50 × 5mm, and attached mass is 2.0g. 

According to the analytical model introduced earlier, to make the resonant 

frequency as 104Hz, the tensile stress applied to the membrane should be 

0.27MPa. Therefore in the stretching mechanism, the stretching force should be 

tuned to 13.5N.  The MemRs are manually produced and then attached to the 

thin plate. The plate attached with the MemM is then tested with the same setting.  

The vibration transmissibility of the MemM is obtained and compared with the 

bare plate results in Figure 93. As revealed in the figure, the vibration 

transmissibility at 104Hz is reduced obviously as the resonant peak disappeared. 

However, the transmissibility decreasing is not as obvious as the ones shown in 

numerical simulation results. This is mainly because the resonant frequencies of 

the manually produced MemRs are not exactly the same. Error of resonant 

frequencies in each individual resonator is inevitable because the manual 

assembling. So not all the resonators are contributing to the vibration absorption 
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at 104Hz, and the frequency range in which the vibration transmissibility 

decreased is larger (97.5Hz – 113Hz). However, in numerical simulation, all the 

MemRs are exact the same and therefore the vibration absorption performance 

is much obvious than the experiment.  

In addition, the vibration transmissibility in the frequency regions of 243Hz – 

364Hz and 446Hz – 526Hz are also decreased when compared with bare plate. 

Instead of causing by bandgap, it is actually because the application of MemRs 

changed the vibration characteristics of the thin plate.  

 

Figure 93. Vibration transmissibility of the bare thin aluminium plate and plate attached with MemRs. 

In conclusion, the employment of MemM can achieve vibration suppression for 

a thin plate structure. However, the inaccuracy of the MemR assembling process 

weakens the bandgap performance in experiment. A more accurate 

manufacturing process of MemR should be developed in the future work.  
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4.6 Chapter Summary 

In this chapter, the bandgap properties of MemM is investigated through the 

developed PWE model, and the vibration absorption capability of the MemM is 

examined through numerical simulation and experiment.  

The design parameters’ effect on the bandgap properties is explored through the 

analytical model. It is found that the tensile stress applied on the membrane can 

affect the stiffness of the MemR directly and therefore change the bandgap 

locations. Increase of tensile will shift the bandgap to higher frequency region, 

vice versa. The bandgap width will be affected by the attached mass magnitude 

and tensile stress. To achieve a wider bandgap width, larger mass magnitude and 

tensile stress level should be employed. The PWE model is modified to enable 

the bandgap prediction for bilayer MemM and interaction between the two 

membrane layers are confirmed. Through parametric analysis, the optimisation 

and design guidelines of the design parameters of the bilayer MemM is obtained.  

Otherwise, MemMs with different configuration of mass blocks attached on 

membrane are investigated. The results demonstrate that the bandgap location of 

the two semicircle mass can be tuned by the adjustment of distance between the 

mass blocks. Meanwhile, MemM with a nested mass configuration can generate 

two bandgaps simultaneously and the bandgap property can be changed by the 

adjustment of the mass dimension. 

Numerical simulation and experiments are conducted to verify the vibration 

suppression performance of the MemM applied to a thin plate structure. The 

numerical simulation results are consistent with the PWE model prediction. 

Since the MemM prototype is manually manufactured, error is inevitable in each 



193 

 

MemR. Therefore the bandgap performance is not as perfect as in simulation. 

However, the results can still reveal the existence of bandgap and the vibration 

suppression effect caused by the attached MemM. 
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Chapter 5  

5. VIBRATION CONTROL PERFORMANCE OF 

TUNABLE MEMBRANE-TYPE METAMATERIAL 

 

In previous research works, the tuning method of MemM’s bandgap property 

were mainly focused on the adjustment of tensile stress and the main tuning 

target is the bandgap location. Actually, from the theoretical aspect, the 

realisation of bandgap tuning relies on the changing of tensile stress or mass. 

The adjustment of tensile stress can be realised through the change of mass block, 

frame and membrane. Mass block or frame that possess capacity of deformation 

can lead to the tensile stress variation accordingly. However, in application, the 

realisation of tunable mass block and frame are difficult. As a result, there are 

barely any studies have focused on tuning tensile stress through the mass and 

frame components.  

In this chapter, the tuning of membrane tensile stress through the application of 

piezoelectric material membrane in MemM is investigated. The PWE analytical 

model will be modified to allow external voltage input as a design parameter. 

The constitutive equation of piezoelectric material is included to connect the 

voltage with the stress applied in the piezoelectric membrane. Semi-active 

control of the piezoelectric membrane can thus be implemented with the 

equation connecting voltage and resonant frequency of the resonator.  

The passive vibration absorption performance of the piezoelectric membrane 

resonator is investigated since the material property is different from silicon 
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rubber. Otherwise, the operational bandgap location of the piezoelectric 

membrane resonator is explored and numerically verified through simulation. 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
4 Part of the content of this chapter has been submitted to the INTER-NOISE 2020 Congress as a conference 

paper “The modified Plane Wave Expansion method for membrane-type metamaterial equipped with 

piezoelectric material membrane”. 
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5.1 Constitutive Equation  

When some dielectric materials are loaded with external force and deformed, 

polarization phenomenon will occur internally and electric charge will be 

accumulated at the surfaces of the materials. Such phenomenon is called the 

direct piezoelectric effect [144]. Meanwhile, when the material is applied with 

certain electric field in the poling direction, deformation will appear 

correspondingly and it is called the inverse piezoelectric effect [144].  

 

Figure 94. (a)Deformation and poling direction P of dielectric material when applied with external force 

F. (b) Deformation of dielectric material when applied with external electric field. (Taken and adapted 

from [144])  

The piezoelectricity is a relation of the electromechanical couplings. According 

to IEEE Standard on Piezoelectricity [145], the polarized direction of the 

piezoelectric material z-axis is normally denoted as 3-axis, and the plane formed 

by the x- and y-axis is denoted as 12-plane [146]. The variables that normally 

used in describing piezoelectric material include: stress (𝑇), strain (𝑆), electric 

field intensity (𝐸), and electric displacement (𝐷). Constitutive equations are 

employed to describe the relation between the electric and mechanic physical 

quantity. Strain-charge form constitutive equation can be expressed as: 

𝑆 = 𝑠𝐸𝑇 + 𝑑𝐸 

𝐷 = 𝑑𝑇 + 𝜀𝑖𝐸. 

 

(5-1) 
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where 𝑠𝐸  is the compliance parameter, 𝑑  is the strain constant, and 𝜀𝑖  is the 

permittivity. The boundary conditions that influence the material properties 

include both electrical and mechanical. For a piezoelectric material, there are 

totally four different types of boundary conditions and in each situation, the 

independent and dependent variables are different. The detail information is 

presented in Table 12. 

Table 12. Boundary conditions and parameters of the piezoelectric material 

Type Boundary Condition Independent Variable Dependent 

Variable 

1 Mechanical free, electrical 

short circuit 
𝑇 and 𝐸 𝑆 and 𝐷 

2 Mechanical clamped, 

electrical short circuit 
𝑆 and 𝐸 𝑇 and 𝐷 

3 Mechanical free, electrical 

open circuit 
𝑇 and 𝐷 𝑆 and 𝐸 

4 Mechanical clamped, 

electrical open circuit 
𝑆 and 𝐷 𝑇 and 𝐸 

 

The explanation of the electric boundary conditions is as follow:  

Short circuit: the electric charge generated cannot accumulate on the electrode 

surface so the internal electric field intensity is not affected, 𝐸 is constant or zero. 

Open circuit: the electric charge generated will accumulate on the electrode, so 

the internal electric field is changing and the electric displacement 𝐷 is constant 

or zero.  

Since the piezoelectric membrane is fixed on the supporting frame of the 

membrane-type resonator, it is clamped on the boundaries, the strain 𝑆  is 

constant or zero, and the external voltage is applied to the membrane by a power 

source, therefore the electric filed in constant. So in a membrane-type resonator, 
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the piezoelectric material’s boundary condition is the second type, the 

corresponding constitutive equation is:  

𝑇𝑖 = 𝑐𝑖𝑘
𝐸 𝑆𝑘 − 𝑒𝑖𝑗

𝐸𝐸𝑗 

𝐷𝑖 = 𝑒𝑖𝑘
𝐸 𝑆𝑘 + 𝜀𝑖𝑗𝐸𝑗. 

 

 

  (5-2) 

where  𝑐𝑖𝑘
𝐸  is the coefficient of elastic stiffness,  𝑒𝑖𝑗

𝐸  is the stress constant and 𝜀𝑖𝑗 

is the permittivity constant. The strain 𝑆𝑘 and the electric field intensity 𝐸𝑗 are 

the independent variables under such boundary conditions, whilst the tensile 

stress 𝑇𝑖 and electric displacement 𝐷𝑖 are depend variables.  

With the given prestressed level of the membrane and the applied electric field 

intensity, the tensile stress on the membrane can be derived by the constitutive 

equations.  
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5.2 Modified PWE Model 

The PWE model is further revised to include the voltage applied to the PVDF 

membrane as an independent variable. The modified model can construct the 

connection between applied voltage and the bandgap properties of the PVDF 

MemM.  

For a prestressed PVDF membrane, assume the elastic constant 𝑐𝑖𝑘
𝐸  is an isotropic 

constant and equals to the Young’s modulus of the material, which is 3.8GPa for PVDF. 

The equation (5-2) can be expressed as:  

{

𝑇𝑥
𝑇𝑦
𝑇𝑧

} = {

𝑇𝑥0
𝑇𝑦0
𝑇𝑧0

} − {

0 0 𝑒𝑥𝑥
0 0 𝑒𝑦𝑦
0 0 𝑒𝑧𝑧

}{

𝐸𝑥
𝐸𝑦
𝐸𝑧

} 

 

 

  (5-3) 

where 𝑇𝑖0 is the initial tensile stress applied on the membrane in different directions, 𝑒𝑖𝑗 

is the stress constants and in this paper, the constants are assumed to be isotropic in the 

xy-plane, so 𝑒𝑥𝑥 = 𝑒𝑦𝑦 = 0.024 𝑁/𝑚𝑉.  𝐸𝑗 is the electric field intensity in x, y and z 

directions respectively. Normally the voltage is applied at the polarized direction only, 

therefore 𝐸𝑥 = 𝐸𝑦 = 0 , and 𝐸𝑧 =
𝑉

𝑡
, where 𝑉  and 𝑡  are the applied voltage and 

thickness of the membrane, respectively.  

In the Rayleigh model, the tensile stress applied to the membrane 𝑇 is used. When the 

tensile stress within the membrane  𝑇𝑥  and 𝑇𝑦  are not equal, the stress will be self-

adjusted and achieve uniform distribution over the membrane. In order to simplify, the 

stress constant of the tensile stress is assumed to be isotropic, so the tensile stress within 

membrane will be equal to the stress in x- and y-direction.  

Substitute 𝑇 = 𝑇0 − 𝑒
𝑉

𝑡
 into equation (2-50), the stiffness will then be expressed as a 

function that is related with the external applied voltage: 



200 

 

𝑘𝑅 =
𝑚𝑅

4𝜋2

𝜋4𝐷
4𝑎3𝑏3

(3𝑏4 + 3𝑎4 + 2𝑎2𝑏2) +
3(𝑎2 + 𝑏2)(𝑇0 − 𝑒

𝑉
𝑡
)𝜋2

16𝑎𝑏
9𝑎𝑏𝑚𝑠

64
+ 𝑀𝑠𝑖𝑛4(

𝜋𝑞
𝑎
)𝑠𝑖𝑛4(

𝜋ℎ
𝑏
)

. 

 

 

 

(5-4) 

Then by substituting the above equation into equation (2-63), the voltage can be 

integrated to the PWE model. Therefore, the relation between the external applied 

voltage and bandgap properties of the PVDF MemM attached on a thin plate structure 

can be obtained.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



201 

 

5.3 Tuning of PVDF MemM’s Bandgap Properties 

According to the equation (5-4), aside from the geometry design parameters and 

attached mass magnitude, the effective stiffness of the PVDF MemR is also 

influenced by the voltage and membrane thickness. Therefore, through the 

modified PWE method, parametric study is conducted to reveal the tunability of 

the PVDF MemM’s bandgap properties.  

To explain the mechanism of tensile stress tuning, a piezoelectric material pillar 

model is constructed, as shown in Figure 95. The top surface of the pillar is 

defined as fixed referencing surface, electric potential is applied to the surfaces 

of the pillar to reveal the deformation of the piezoelectric material whose 

polarization direction is assumed to be in positive z-axis. According to the figure, 

when positive electric potential is applied at the top surface, the piezoelectric 

material will be extended in z-direction and shrink in the xy-plane, thus increase 

the tensile stress. On the contrary, when the electric potential is applied at the 

bottom, the piezoelectric material will be compressed in the z-direction and leads 

to the extension in xy-plane, thus the in-plane tensile stress will decrease. Similar 

phenomenon will also appear in a piezoelectric membrane and results in the 

changing of resonant frequencies of the MemR.  
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Figure 95. (a) The model of a piezoelectric material pillar; deformation of the piezoelectric pillar when 

voltage is applied at (b) the top surface and (c) the bottom surface.  

The bandgap property of a thin plate attached with PVDF MemM under different 

voltage is investigated through parametric study.  

The PVDF membrane thickness is an essential parameter because the smaller the 

thickness, the higher the electric field intensity, thus the change of membrane 

stress will be larger as well. PVDF material requires high voltage polarization 

procedure before forming piezoelectric properties, and such procedure cannot be 

implemented in the vibration lab. Hence, suppliers are contacted to obtain the 

specific data and dimension of the PVDF membrane. The PVDF membrane 

product from TE connectivity is then selected and 6 different thicknesses are 

provided according to the product catalogue: 0.028mm, 0.04mm, 0.052mm, 

0.064mm, 0.11mm and 0.122mm.  

When the applied electric potential across the membrane is tuned from -1000V 

to 1000V, the tensile stress difference caused by the electric potential in PVDF 

membranes are given in Table 13. The stress constant of the PVDF material is 

assumed to be isotropic (𝑒31=𝑒32=0.075N/Vm) in the xy-plane to avoid the error 

caused by imbalance of stress in x- and y-direction. With the same magnitude of 

voltage applied, the tensile stress variation in the thinner membrane is larger. 

When the thinnest membrane is employed, applying 1000V voltage will result 

in ±2.679MPa tensile stress differences, which are able to cause bigger resonant 

frequency shifting in a MemR. As a result, the thinnest membrane thickness 

(0.028mm) is employed in the following study.  

Table 13. Data of tensile stress change when different voltage is applied to membranes with various 

thickness. 
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Thickness (mm) 0.122 0.11 0.064 0.052 0.04 0.028 

Voltage (V) 

Tensile 

stress 

variation 

(MPa) 

Tensile 

stress 

variation 

(MPa) 

Tensile 

stress 

variation 

(MPa) 

Tensile 

stress 

variation 

(MPa) 

Tensile 

stress 

variation 

(MPa) 

Tensile 

stress 

variation 

(MPa) 

-1000 -0.615 -0.682 -1.172 -1.442 -1.875 -2.679 

-900 -0.553 -0.614 -1.055 -1.298 -1.688 -2.411 

-800 -0.492 -0.545 -0.938 -1.154 -1.500 -2.143 

-700 -0.430 -0.477 -0.820 -1.010 -1.313 -1.875 

-600 -0.369 -0.409 -0.703 -0.865 -1.125 -1.607 

-500 -0.307 -0.341 -0.586 -0.721 -0.938 -1.339 

-400 -0.246 -0.273 -0.469 -0.577 -0.750 -1.071 

-300 -0.184 -0.205 -0.352 -0.433 -0.563 -0.804 

-200 -0.123 -0.136 -0.234 -0.288 -0.375 -0.536 

-100 -0.061 -0.068 -0.117 -0.144 -0.188 -0.268 

0 0.000 0.000 0.000 0.000 0.000 0.000 

100 0.061 0.068 0.117 0.144 0.188 0.268 

200 0.123 0.136 0.234 0.288 0.375 0.536 

300 0.184 0.205 0.352 0.433 0.563 0.804 

400 0.246 0.273 0.469 0.577 0.750 1.071 

500 0.307 0.341 0.586 0.721 0.938 1.339 

600 0.369 0.409 0.703 0.865 1.125 1.607 

700 0.430 0.477 0.820 1.010 1.313 1.875 

800 0.492 0.545 0.938 1.154 1.500 2.143 

900 0.553 0.614 1.055 1.298 1.688 2.411 

1000 0.615 0.682 1.172 1.442 1.875 2.679 

 

The vibration control performance of the PVDF MemR when attached to a thin 

plate will be investigated. The configuration of the PVDF MemR is shown in 

Figure 96. The dimensions of the PVDF MemR and material properties are given 

in Table 14. Compared with the rubber membrane used in Chapter 4, the PVDF 

MemR is 10mm bigger. This is due to the consideration of difficulty of PVDF 

membrane’s extra wiring assembly. Wiring and electrodes layer are applied to 

the membrane surfaces because the need of electric potential control. 

Table 14. Dimension and material properties of PVDF MemR 

  PVDF membrane Frame  Mass 

Side length/radius (mm) 60 70 6 

Thickness/height (mm) 0.028 5 2 

Young's modulus (GPa) 3.8 0.917 115 

Poisson's ratio 0.25 0.41 0.33 
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Density (kg/m3) 1780 1100 8890 

Stress constant (N/Vm) 0.075 - - 

 

According to the PVDF product catalogue, the electrode layers are very thin, the 

mechanics effect of the electrodes are therefore ignored in the analytical model 

and numerical simulation.  

 

Figure 96. Configuration of the PVDF MemR. 

In accordance with the modified PWE model, the MemR and the part of thin 

plate that the resonator attached on are considered as the unit cell. Dispersion 

relation of the structure when different electric potential applied is obtained and 

presented in Figure 97. The thickness of the plate attached under the resonator 

is 2mm, the mass attached on the membrane is 2.0g, and the initial tensile stress 

applied on membrane is 3.0MPa. Especially, it is essential to ensure the initial 

stress applied on the membrane is larger than the stress tuning range of voltage, 

or the membrane resonator will lose efficacy when the total tensile stress turns 

negative and become wrinkle. 



205 

 

 

 

Figure 97. (a) The band structure of the PVDF MemM applied on a thin plate when applied electric 

potential is tuned from -1000V to 1000V; (b) bandgap starting frequency vs. electric potential; (c) 

bandgap width vs. electric potential and (d) tensile stress on membrane vs. electric potential. 

As shown in the figure, when positive electric potential is applied at the top 

surface of the membrane, the tensile stress will be increased and thus leads to 

the rising of bandgap starting frequency. The tensile stress is changed from the 

initial 3.0MPa to 5.679MPa according to the modified PWE model. On the 

contrary, when the applied electric potential at the top surface is negative, the 

tensile stress will be decreased and will drop to 0.321MPa.  

The bandgap width become smaller when the tensile stress decreased, as also 

mentioned earlier in Chapter 4. The smallest bandgap width is only 1.1Hz and 
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the largest one is 4.3Hz when tensile stress is varied from 0.321MPa to 

5.679MPa.  

In the case shown in Figure 97, a 65.4Hz bandgap shifting (from 20.6Hz to 

86.0Hz) is achieved when the electric potential is changed from -1000V to 

1000V. Different from the MemM with normal material membrane that only 

possess fixed narrow bandgap, the PVDF MemM can be adjusted swiftly in 

accordance with the incident wave frequency and achieve a relatively broad 

range of vibration control.  

In addition, to investigate the effect of attached mass magnitude on the tunability 

of PVDF MemM, the bandgap location of attached mass increased to 4.0g, 8.0g 

and 12.0g are obtained as well. The change of bandgap location are presented in 

Figure 98. 

 

Figure 98. The band structures of the PVDF MemM applied on a thin plate with the attached mass 

magnitude as: (a) 4.0g; (b) 6.0g; (c) 8.0g and (d) 10.0g.  
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According to the figure, when the mass magnitudes are increased, the changing 

trend of the bandgap location and width are the same as the 2.0g case. However, 

the bandgap location shifts to lower frequency region because of the larger mass, 

and also similar to the findings in Chapter 4, the bandgap width also increased. 

To clearly describe the effect of mass magnitude on the bandgap property, the 

detailed data and location of bandgaps when the applied electric potential is 

1000V, which leads to the maximum tensile stress in membrane, are presented 

in Table 15 and Figure 99.  

Table 15. Data of bandgap shifting range and largest bandgap width of the PVDF MemM with different 

mass magnitude utilized when the externally applied voltage is tuned from -1000V to 1000V. 

Attached mass 

(g) 
2.0 4.0 6.0 8.0 10.0 

Bandgap 

shifting range 

(Hz) 

65.4 46.3 37.9 32.8 29.3 

Largest 

bandgap width 

(Hz) 

4.3 6.0 7.2 8.1 8.9 

 

 

Figure 99. Frequency regions of PVDF MemM’s bandgap starting frequencies when the externally 

applied electric potential is tuned from -1000V to 1000V. 
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It is clearly stated in the table that the bandgap shifting range will be broader 

when smaller mass magnitude is used but the corresponding bandgap width 

under each electric potential value will be narrower as well. However, with a 

broader tuning range, the 2.0g case can cover a wider frequency region.  

The finding demonstrates a design guideline for the PVDF MemM that thinner 

membrane thickness and smaller mass magnitude is preferred for the purpose of 

increasing the tunable bandgap range. However, compromise also needs to be 

considered since smaller mass magnitude may lead to the weakening of vibration 

suppression efficiency. Hence, finite structure is set up in FEA software and 

conduct vibration response analysis upon. 
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5.4 Vibration Control Performance of the PVDF MemM 

Firstly, the accuracy of the numerical simulation in PVDF membrane tensile 

stress calculation is examined. As shown in Figure 100, when the voltage is 

tuned from -1000V to 1000V, the change of tensile stress obtained by the 

analytical model and numerical simulation are mostly consistent with each other.  

 

Figure 100. Change of tensile stress in PVDF membrane when applied electric potential is adjusted. 

Similar to the MemM with silicone rubber membrane, the resonators are attached 

periodically on a thin plate. The configuration of the structure is presented in 

Figure 101. As described earlier, the voltage is applied at the upper surface of 

the membrane. The vibration response signal detection line is labelled with red 

solid line in the figure. The average acceleration on the line is used as the 

vibration response of the plate so to avoid influence of nodal points of the 

structure. The vibration transmissibility when voltage is defined as -1000V, -

500V, -300V, 0V, 300V, 500V and 1000V are shown in Figure 102. 
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Figure 101. Configuration of the finites structure of thin plate attached with PVDF MemM. 
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(b) 

Figure 102. (a) The vibration transmissibility of the PVDF MemM when the electric potential applied 

across the membrane is (a) -1000V, -500V, -300V and 0V; and (b) 0V, 300V, 500V and 1000V.  

According to the figure, bandgaps are formed by the attached PVDF MemM 

when the applied electric potential is tuned. From -1000V to 1000V, the bandgap 

location is shifted from 25.0Hz to 91.5Hz. The finite structure has a resonant 

peak revealed at 22.5Hz, and with -1000V electric potential applied, the resonant 

peak is eliminated effectively. The bandgap widths are relatively narrow in all 

cases, but the 1000V case has the largest bandgap width, which is consistent with 

the prediction by the modified PWE model.  

The starting frequencies of the bandgaps when different electric potential values 

are applied are obtained. The tensile stress under different electric potential 

values are previously calculated, and the corresponding resonant frequency of 

the MemR can be worked out through the modified Rayleigh method. The 

bandgap starting frequencies obtained from the transmissibility curves and the 

analytical model are presented and compared in Figure 103. According to the 
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figure, all the bandgap starting frequencies in the FEA analysis are about 5.0 – 

6.0Hz higher than the analytical results. The cause of the error is the same as the 

one mentioned in Chapter 4. The error is in an acceptable range so the modified 

model can still be used for the prediction of PVDF MemM bandgap properties.  

 

Figure 103. Bandgap starting frequency of the PVDF MemM obtained by analytical model and FEA 

analysis.  
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5.5 Chapter Summary 

The bandgap tunability and the vibration suppression performance of MemM 

equipped with PVDF membrane is investigated in this chapter. The constitutive 

equation of piezoelectric material is incorporated with the PWE model, thus the 

applied electric potential across the PVDF membrane is integrated in the 

modified PWE model. The influence of membrane thickness on the membrane 

tensile stress is revealed by the analytical model and it is found that for the 

purpose of increasing bandgap tunability, membrane with smaller thickness 

should be utilised. In addition, through the modified PWE model, the bandgap 

tunability of the PVDF MemM is predicted. When the electric potential is 

adjusted from -1000V to 1000V, the bandgap location of PVDF MemM with 

3MPa prestressed level can be tuned from 20.6Hz to 86.0Hz. Also, the increase 

of attached mass magnitude can increase the individual bandgap width of the 

MemM under certain electric potential. However, the heavier of the attached 

mass, the smaller of the bandgap tuning range when the same electric potential 

tuning range is employed.  

Through FEA of a finite metamaterial structure applied on a thin plate, the 

accuracy of the modified PWE model in predicting PVDF MemM’s bandgap 

performance is verified. The FEA and PWE model results are basically 

consistent with each other, despite the existence of some error that is in 

acceptable range.   

The bandgap range is increased significantly when PVDF membrane is 

employed in the MemM. The normal MemM normally has narrow bandgap 

width, and multiple layers of MemM can be applied for the purpose of forming 

multiple bandgaps and increase the bandgap width. However, in the PVDF 
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MemM, because the operation frequency can be tuned rapidly in accordance 

with the incident wave’s frequency, the bandgap width will be largely enhanced.  

The findings in this chapter demonstrates the feasibility of conducting semi-

active control in MemM through the application of piezoelectric membrane 

material. 
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Chapter 6  

6. DEVELOPMENT OF SEMI-ACTIVE CONTROL 

ALGORITHM   

 

In previous chapters, the vibration characteristics of a thin plate attached with or 

without MemM are investigated. The MemM is demonstrated to be effective in 

thin plate structure’s vibration suppression. The modified PWE model can 

accurately predict the bandgap location of the MemM when applied on a thin 

plate, and through numerical simulation, the frequency response is obtained. 

Results are consistent with the prediction in PWE model. However, FEA process 

is time-consuming and inconvenient, especially when conducting for parametric 

study that requires repeating calculation. Meanwhile, the PWE model can only 

predict the vibration suppression of periodically distributed MemM, and cannot 

allow the bandgap prediction for nonperiodic attached MemM, so it cannot 

conduct optimisation for the distribution of attached mass and the location of 

resonators on the structure. In addition, as mentioned in Chapter 5, the 

employment of PVDF membrane in MemR enables the tuning of MemR’s 

operational frequencies. If equipped with independent control circuit, each of the 

PVDF MemM’s unit cell can possess various resonant frequencies. Therefore, 

the operational frequencies of each resonator can be controlled precisely to 

achieve the optimum vibration suppression performance.  

Based on the above mentioned disadvantages of PWE model and actual need in 

PVDF MemM, a semi-active control algorithm for the PVDF MemM is 
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developed. The algorithm is based on the thin plate – resonator coupling model, 

and the effect of tuning electric potential applied to the PVDF is incorporated 

with this model by taking advantage of the modified PWE model.  
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6.1 Thin Plate – Resonator Coupling Model 

 

6.1.1 Model development 

Firstly, the analytical model of the thin – plate coupled with resonators is 

developed. The configuration of the structure is the same as the one shown in 

Figure 29. Based on the previous of Cheng Yang’s thesis [147], the equation of 

motion of the system can be written as: 

{
 
 
 

 
 
 𝐷∇4𝑤(𝑥, 𝑦, 𝑡) + 𝜌ℎ

𝜕2𝑤(𝑥, 𝑦, 𝑡)

𝜕𝑡2
= 𝐹(𝑡)𝛿(𝑥 − 𝑥0, 𝑦 − 𝑦0)

−∑𝑚𝑔

𝜕2𝑥𝑔(𝑡)

𝜕𝑡2
𝛿(𝑥 − 𝑥𝑔, 𝑦 − 𝑦𝑔)

𝐺

𝑔

𝑚𝑔

𝜕2𝑥𝑔(𝑡)

𝜕𝑡2
+ 𝑐𝑔

𝜕𝑥𝑔(𝑡)

𝜕𝑡
+ 𝑘𝑔𝑥𝑔(𝑡) = 𝑐𝑔

𝜕𝑤(𝑥𝑔, 𝑦𝑔, 𝑡)

𝜕𝑡
+ 𝑘𝑔𝑤(𝑥𝑔, 𝑦𝑔, 𝑡)

 

 

 

(6-1) 

 

 

 

 

(6-2) 

where 𝐷 =
𝐸ℎ3

12(1−𝑣2)
, 𝜌 is the mass density of the plate, ℎ is the plate thickness, 

𝑚𝑔, 𝑐𝑔 and 𝑘𝑔 are the mass, damping and stiffness of the resonator respectively. 

𝐹(𝑡) is the external force applied to the plate. Assume:  

{
 
 

 
 𝑤(𝑥, 𝑦, 𝑡) =∑∑𝑊𝑚𝑛𝑒

𝑖𝜔𝑡Ф𝑚𝑛(𝑥, 𝑦)

𝑁

𝑛

𝑀

𝑚

𝑥𝑔(𝑡) = 𝑋𝑔𝑒
𝑖𝜔𝑡

𝐹(𝑡) = 𝐹𝑒𝑖𝜔𝑡

 

 

 

(6-3a) 

 

(6-3b) 

(6-3c) 

Substitute equation (6-3a) and (6-3b) into equation (6-2): 

−𝜔2𝑚𝑔𝑋𝑔 + 𝑖𝜔𝑐𝑔𝑋𝑔 + 𝑘𝑔𝑋𝑔= 

 

𝑖𝜔𝑐𝑔∑∑𝑊𝑚𝑛Ф𝑚𝑛(𝑥, 𝑦) + 𝑘𝑔∑∑𝑊𝑚𝑛Ф𝑚𝑛(𝑥, 𝑦)

𝑁

𝑛

𝑀

𝑚

𝑁

𝑛

𝑀

𝑚

 

 

 

 

→ (−𝜔2𝑚𝑔 + 𝑖𝜔𝑐𝑔 + 𝑘𝑔)𝑋𝑔 = (𝑖𝜔𝑐𝑔 + 𝑘𝑔)∑∑𝑊𝑚𝑛Ф𝑚𝑛(𝑥, 𝑦)

𝑁

𝑛

𝑀

𝑚

 

 

 

→ 𝑋𝑔 =
𝑖𝜔𝑐𝑔 + 𝑘𝑔

−𝜔2𝑚𝑔 + 𝑖𝜔𝑐𝑔 + 𝑘𝑔
∑∑𝑊𝑚𝑛Ф𝑚𝑛(𝑥𝑔, 𝑦𝑔)

𝑁

𝑛

𝑀

𝑚

 

 

 

(6-4) 
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Otherwise, when the plate without resonators attached undergoes free vibration, 

the equation of motion can be given as:  

𝐷∇4∑∑𝑊𝑚𝑛Ф𝑚𝑛(𝑥, 𝑦)

𝑁

𝑛

𝑀

𝑚

− 𝛽𝑚𝑛
2 𝜌ℎ∑∑𝑊𝑚𝑛Ф𝑚𝑛(𝑥, 𝑦)

𝑁

𝑛

𝑀

𝑚

= 0 

 

→ 𝐷∇4∑∑𝑊𝑚𝑛Ф𝑚𝑛(𝑥, 𝑦)

𝑁

𝑛

𝑀

𝑚

= 𝛽𝑚𝑛
2 𝜌ℎ∑∑𝑊𝑚𝑛Ф𝑚𝑛(𝑥, 𝑦)

𝑁

𝑛

𝑀

𝑚

 

 

 

 

(6-5) 

where 𝛽𝑚𝑛 is the corresponding resonance frequency to each specific resonant 

mode of the bare plate.  

Substitute equation (6-3a) (6-3b) and (6-5) into equation (6-1): 

𝜌ℎ∑∑𝛽𝑚𝑛
2 𝑊𝑚𝑛Ф𝑚𝑛(𝑥, 𝑦)

𝑁

𝑛

𝑀

𝑚

−𝜔2𝜌ℎ∑∑𝑊𝑚𝑛Ф𝑚𝑛(𝑥, 𝑦)

𝑁

𝑛

𝑀

𝑚

= 𝐹𝛿(𝑥 − 𝑥0, 𝑦 − 𝑦0) + 𝜔
2∑𝑚𝑔𝑋𝑔𝛿(𝑥 − 𝑥𝑔, 𝑦 − 𝑦𝑔)

𝐺

𝑔

 

 

 

Multiply Ф𝑟𝑠(𝑥, 𝑦) to both sides of above equation and integrate over the surface 

of the plate: 

𝜌ℎ∑∑𝛽𝑚𝑛
2 𝑊𝑚𝑛Ф𝑚𝑛(𝑥, 𝑦)

𝑁

𝑛

𝑀

𝑚

Ф𝑟𝑠(𝑥, 𝑦) − 𝜔
2𝜌ℎ∑∑𝑊𝑚𝑛Ф𝑚𝑛(𝑥, 𝑦)Ф𝑟𝑠(𝑥, 𝑦)

𝑁

𝑛

𝑀

𝑚

= 𝐹𝛿(𝑥 − 𝑥0, 𝑦 − 𝑦0)Ф𝑟𝑠(𝑥, 𝑦)

+ 𝜔2∑𝑚𝑔𝑋𝑔Ф𝑟𝑠(𝑥, 𝑦)𝛿(𝑥 − 𝑥𝑔, 𝑦 − 𝑦𝑔)

𝐺

𝑔
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Integrate the above equation over the surface of the plate:  

𝜌ℎ

𝑆
𝛽𝑚𝑛
2 𝑊𝑚𝑛∬[

𝑆

Ф𝑚𝑛(𝑥, 𝑦)
2]𝑑𝑥𝑑𝑦 −

𝜌ℎ

𝑆
𝜔2𝑊𝑚𝑛∬[

𝑆

Ф𝑚𝑛(𝑥, 𝑦)
2]𝑑𝑥𝑑𝑦

= 𝐹Ф𝑚𝑛(𝑥0, 𝑦0)+𝜔
2∑𝑚𝑔𝑋𝑔Ф𝑚𝑛(𝑥𝑔, 𝑦𝑔)

𝐺

𝑔

 

 

 
 

(6-7) 

Define M𝑚𝑛 =
𝜌ℎ

𝑆
∬ [
𝑆

Ф𝑚𝑛(𝑥, 𝑦)
2]𝑑𝑥𝑑𝑦, divide the above equation by M𝑚𝑛: 

𝛽𝑚𝑛
2 𝑊𝑚𝑛 − 𝜔

2𝑊𝑚𝑛 = 𝐹
Ф𝑚𝑛(𝑥0, 𝑦0)

𝑀𝑚𝑛
+𝜔2∑

𝑚𝑔𝑋𝑔Ф𝑚𝑛(𝑥𝑔, 𝑦𝑔)

𝑀𝑚𝑛

𝐺

𝑔

 

 

(6-8) 

In addition, the damping term can be introduced to the equation directly as: 
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𝛽𝑚𝑛
2 𝑊𝑚𝑛 − 𝜔

2𝑊𝑚𝑛 + 2𝑖𝜔𝜉𝑚𝑛𝛽𝑚𝑛𝑊𝑚𝑛 = 𝐹
Ф𝑚𝑛(𝑥0, 𝑦0)

𝑀𝑚𝑛

+𝜔2∑𝑚𝑔

Ф𝑚𝑛(𝑥𝑔, 𝑦𝑔)

𝑀𝑚𝑛

𝐺

𝑔

𝑋𝑔 

 

(6-9) 

Substitute equation (6-4) into equation (6-9), the equation will be: 

(𝛽𝑚𝑛
2 − 𝜔2 + 2𝑖𝜔𝜉𝑚𝑛𝛽𝑚𝑛)𝑊𝑚𝑛

= 𝐹
Ф𝑚𝑛(𝑥0, 𝑦0)

𝑀𝑚𝑛

+𝜔2∑𝑚𝑔

Ф𝑚𝑛(𝑥𝑔, 𝑦𝑔)

𝑀𝑚𝑛

𝑖𝜔𝑐𝑔 + 𝑘𝑔

−𝜔2𝑚𝑔 + 𝑖𝜔𝑐𝑔 + 𝑘𝑔
∑∑𝑊𝑟𝑠Ф𝑟𝑠(𝑥𝑔, 𝑦𝑔)

𝑁

𝑠

𝑀

𝑟

𝐺

𝑔

 

 
 

(6-10) 

The subscript of the 𝑋𝑔’s expression are changed to 𝑟, 𝑠 because in 𝑋𝑔, all the 

corresponding displacement amplitude 𝑊  and Ф  are needed to form the 

summation, yet after the integration, the 𝑊 and Ф in other parts of the equation 

are designated to be a certain mode that can identified by 𝑚 and 𝑛. Therefore, 

subscript is changed to indicate the difference.  

The equation can then be transformed into this form depends on the value of r 

and s: 

[(𝛽𝑚𝑛
2 −𝜔2 + 2𝑖𝜔𝜉𝑚𝑛𝛽𝑚𝑛) − 𝜔

2∑𝑚𝑔

𝑖𝜔𝑐𝑔 + 𝑘𝑔

−𝜔2𝑚𝑔 + 𝑖𝜔𝑐𝑔 + 𝑘𝑔

𝐺

𝑔

Ф𝑚𝑛(𝑥𝑔, 𝑦𝑔)
2

𝑀𝑚𝑛

]𝑊𝑚𝑛

= 𝐹
Ф𝑚𝑛(𝑥0, 𝑦0)

𝑀𝑚𝑛

+𝜔2∑𝑚𝑔

𝑖𝜔𝑐𝑔 + 𝑘𝑔

−𝜔2𝑚𝑔 + 𝑖𝜔𝑐𝑔 + 𝑘𝑔

Ф𝑚𝑛(𝑥𝑔, 𝑦𝑔)

𝑀𝑚𝑛

∑∑𝑊𝑟𝑠Ф𝑟𝑠(𝑥𝑔, 𝑦𝑔)

𝑁

𝑠≠𝑛

𝑀

𝑟≠𝑚

𝐺

𝑔

 

 

 

 

 

 

(6-11) 

Define: 

{

𝐴𝑚𝑛 = 𝛽𝑚𝑛
2 −𝜔2 + 2𝑖𝜔𝜉𝑚𝑛𝛽𝑚𝑛

𝐵𝑔 = 𝑚𝑔
𝑖𝜔𝑐𝑔 + 𝑘𝑔

−𝜔2𝑚𝑔 + 𝑖𝜔𝑐𝑔 + 𝑘𝑔

 

 

 

(6-12) 

Substitute equation (6-12) into equation (6-11): 

[𝐴𝑚𝑛 −𝜔
2∑𝐵𝑔

𝐺

𝑔

Ф𝑚𝑛(𝑥𝑔, 𝑦𝑔)
2

𝑀𝑚𝑛

]𝑊𝑚𝑛

= 𝐹
Ф𝑚𝑛(𝑥0, 𝑦0)

𝑀𝑚𝑛

+𝜔2∑𝐵𝑔
Ф𝑚𝑛(𝑥𝑔, 𝑦𝑔)

𝑀𝑚𝑛

∑∑𝑊𝑟𝑠Ф𝑟𝑠(𝑥𝑔, 𝑦𝑔)

𝑁

𝑠≠𝑛

𝑀

𝑟≠𝑚

.

𝐺

𝑔

 

 

 

 

 

 

(6-13) 

The equation can be further simplified by defining 𝑃𝑚𝑛 = 𝐴𝑚𝑛 −

𝜔2∑ 𝐵𝑔
𝐺
𝑔

Ф𝑚𝑛(𝑥𝑔,𝑦𝑔)
2

𝑀𝑚𝑛
. Thus equation (6-13) is transferred to: 
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𝑃𝑚𝑛𝑊𝑚𝑛 = 𝐹
Ф𝑚𝑛(𝑥0, 𝑦0)

𝑀𝑚𝑛

+𝜔2∑𝐵𝑔
Ф𝑚𝑛(𝑥𝑔, 𝑦𝑔)

𝑀𝑚𝑛

∑∑𝑊𝑟𝑠Ф𝑟𝑠(𝑥𝑔, 𝑦𝑔)

𝑁

𝑠≠𝑛

𝑀

𝑟≠𝑚

𝐺

𝑔

 

 

 

(6-14) 

For each specific combination of 𝑚  and 𝑛 , an equation that includes other 

combinations of displacement 𝑊 will be formed. Therefore, the above equation 

can be expressed in the matrix form as:  

[𝐾][𝑊𝑚𝑛] = 𝐹[Ф] 
 

(6-15) 

where:  
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[ 𝐾
]
=

(           
𝑃 1
1

−
𝜔
2
∑

𝐵
𝑔

Ф
1
1
(𝑥
𝑔
,𝑦
𝑔
)Ф

1
2
(𝑥
𝑔
,𝑦
𝑔
)

𝑀
1
1

𝐺 𝑔

−
𝜔
2
∑

𝐵
𝑔

Ф
1
2
(𝑥
𝑔
,𝑦
𝑔
)Ф

1
1
(𝑥
𝑔
,𝑦
𝑔
)

𝑀
1
2

𝐺 𝑔

𝑃 1
2

⋯

−
𝜔
2
∑

𝐵
𝑔

Ф
1
1
(𝑥
𝑔
,𝑦
𝑔
)Ф

𝑚
(𝑛
−
1
)(
𝑥 𝑔
,𝑦
𝑔
)

𝑀
1
1

𝐺 𝑔

−
𝜔
2
∑

𝐵
𝑔

Ф
1
1
(𝑥
𝑔
,𝑦
𝑔
)Ф

𝑚
𝑛
(𝑥
𝑔
,𝑦
𝑔
)

𝑀
1
1

𝐺 𝑔

−
𝜔
2
∑

𝐵
𝑔

Ф
1
2
(𝑥
𝑔
,𝑦
𝑔
)Ф

𝑚
(𝑛
−
1
)(
𝑥 𝑔
,𝑦
𝑔
)

𝑀
1
2

𝐺 𝑔

−
𝜔
2
∑

𝐵
𝑔

Ф
1
2
(𝑥
𝑔
,𝑦
𝑔
)Ф

𝑚
𝑛
(𝑥
𝑔
,𝑦
𝑔
)

𝑀
1
2

𝐺 𝑔

⋮
⋱

⋮

−
𝜔
2
∑

𝐵
𝑔

Ф
𝑚
(𝑛
−
1
)(
𝑥 𝑔
,𝑦
𝑔
)Ф

1
1
(𝑥
𝑔
,𝑦
𝑔
)

𝑀
𝑚
(𝑛
−
1
)

𝐺 𝑔

−
𝜔
2
∑

𝐵
𝑔

Ф
𝑚
(𝑛
−
1
)(
𝑥 𝑔
,𝑦
𝑔
)Ф

1
2
(𝑥
𝑔
,𝑦
𝑔
)

𝑀
𝑚
(𝑛
−
1
)

𝐺 𝑔

−
𝜔
2
∑

𝐵
𝑔

Ф
𝑚
𝑛
(𝑥
𝑔
,𝑦
𝑔
)Ф

1
1
(𝑥
𝑔
,𝑦
𝑔
)

𝑀
𝑚
𝑛

𝐺 𝑔

−
𝜔
2
∑

𝐵
𝑔

Ф
𝑚
𝑛
(𝑥
𝑔
,𝑦
𝑔
)Ф

1
2
(𝑥
𝑔
,𝑦
𝑔
)

𝑀
𝑚
𝑛

𝐺 𝑔

⋯

𝑃
𝑚
(𝑛
−
1
)

−
𝜔
2
∑

𝐵
𝑔

Ф
𝑚
(𝑛
−
1
)(
𝑥 𝑔
,𝑦
𝑔
)Ф

𝑚
𝑛
(𝑥
𝑔
,𝑦
𝑔
)

𝑀
𝑚
(𝑛
−
1
)

𝐺 𝑔

−
𝜔
2
∑

𝐵
𝑔

Ф
1
2
(𝑥
𝑔
,𝑦
𝑔
)Ф

𝑚
(𝑛
−
1
)(
𝑥 𝑔
,𝑦
𝑔
)

𝑀
𝑚
𝑛

𝐺 𝑔

𝑃 𝑚
𝑛

)           
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[𝑊𝑚𝑛] =

[
 
 
 
 
𝑊11

𝑊12

⋮
𝑊𝑚(𝑛−1)

𝑊𝑚𝑛 ]
 
 
 
 

 

 

 

[Ф] =

[
 
 
 
 
 
 
 
 
 
Ф11(𝑥0, 𝑦0)

𝑀11

Ф12(𝑥0, 𝑦0)

𝑀12

⋮
Ф𝑚(𝑛−1)(𝑥0, 𝑦0)

𝑀𝑚(𝑛−1)

Ф𝑚𝑛(𝑥0, 𝑦0)

𝑀𝑚𝑛 ]
 
 
 
 
 
 
 
 
 

 

 

 

 

Theoretically, the vibration response of the structure is formed by infinite 

resonant mode shapes. However, in order to calculate the vibration amplitude of 

the structure [𝑊𝑚𝑛], a truncation in the resonant modes can be made by defining 

a finite number to 𝑚 and 𝑛, and the mode shape function can be assumed as: 

Ф𝑚𝑛(𝑥, 𝑦) = sin (
𝑚𝜋

𝐿1
𝑥)sin (

𝑛𝜋

𝐿2
𝑦). Thus, by substituting the function into the 

above matrix function, the vibration response of the structure can be calculated.  

For a thin plate structure with MemRs attached, the MemRs can be simplified as 

the spring-mass resonator model. As illustrated in former chapters, the effect of 

the design parameters of the MemR, such as tensile stress or applied electric 

potential across the piezoelectric material membrane, can be integrated into the 

model through the equivalent stiffness 𝑘𝑔.  

Thus, different from the original model, the MemR is integrated into the thin 

plate – resonator coupling model and it can then be utilised for the examination 

and investigation of the effect of MemR’s design parameters on the thin plate 

structure vibration suppression.  
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6.1.2 Optimisation of resonator distribution through the developed 

analytical model 

First of all, the vibration transmissibility of a bare aluminium plate is calculated 

by the developed analytical model and compared the results with the FEA for 

the purpose of verifying accuracy.  

As shown in Figure 104(a), the plate is defined as 0.55×0.4×0.002m, and simply 

supported on all the boundaries. In order to calculate the vibration response of 

the bare plate, the resonator mass is tuned to be zero and incident force with 1N 

amplitude is applied. The vibration transmission of the plate is compared with 

the FEA results. The curves are presented in Figure 104(b). According to the 

figure, the first 6 resonant peaks are highly consistent in both FEA and analytical 

model, and small deviation starts to appear in the higher frequency ranges yet 

still in an acceptable range. Thus, it is believed that the analytical model is 

accurate for the thin plate structure.  

 

(a) 
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(b) 

Figure 104. (a) Configuration of the thin plate; (b) Vibration transmissibility of a 0.55×0.4×0.002m 

aluminium plate obtained by analytical model and FEA calculation. 

Secondly, several case studies are conducted to find out the optimum distribution 

of MemR on a thin plate structure.  

The extra mass load caused by the vibration suppression mechanism is always a 

concern in the vibration control design process. For a tuned mass damper, to 

ensure the vibration suppression effect, the mass of resonators should be about 

10% of the target structure’s mass [148]. In this coupling model, the allocation 

of resonators can be designed and adjusted easily, with the attached mass varying. 

Therefore, investigation can be conducted to find out the optimum distribution, 

number of resonator and total attached mass for a certain type of thin plate.  

In this section, a 0.55×0.4×0.002m thin aluminium plate is used as an example. 

To reveal the different vibration suppression effect, the total attached resonator 

mass is defined and the number of the resonators is adjusted, and the 

corresponding vibration suppression performance is obtained for analysis.  
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The mass of the bare plate is 1.188kg, and the total attached mass is defined as 

0.2kg, which is 16.8% of the plate’s mass and it should be sufficient to achieve 

vibration control for the plate. Similar to the bare plate, the amplitude of incident 

force is still 1N, and applied at the point that located at the right side of the plate 

and signal detected from the left side. According to Figure 104(b), there are 

totally 14 resonant peaks revealed in the 0 – 1000Hz frequency region.  

Through FEA, the corresponding shape of the first 10 peaks are presented in 

Figure 105. Under forced vibration, the deformation shape of the plate will be 

different from the resonant modes. For the purpose of comparing the 

deformation extents of the plate under different frequencies, the same 

deformation ratio, which is 1000 times, is adopted. In low order of resonant 

peaks, the vibration deformation is larger and more concentrated, whilst the 

deformations in the higher frequency resonant peaks are smaller and distributed 

all over the plate. 
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Figure 105. Shape of the bare plate at the resonant peak frequencies. The unit of the legend on the right 

is mm.  

To maximise the vibration suppression effect of a resonator, it should be 

allocated at the point that has the largest displacement during vibration since the 

vibration energy density will be the highest at that point. Hence, when the total 

attached mass is the same, the number of resonator should be smaller and 

allocated as a cluster. Otherwise, for the higher order of resonant frequencies, 

the resonator should be distributed averagely and widely over the whole surface 

of the plate.  

In order to examine the actual influence of resonator distribution, comparison 

are made and analysed. When aiming for eliminating the 1st resonant peak in the 
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transmissibility curve, use 1 or 20 resonators respectively and the total resonator 

mass is defined as 0.2kg. The resonator mass for the 1 and 20 resonators cases 

are 0.2kg and 0.01kg respectively, and to ensure the resonant frequencies are the 

same in the two cases,  the tensile stress of the MemR in the model will be 

adjusted accordingly.  

When only 1 resonator with 0.2kg mass is employed, according to the 

deformation shape shown in Figure 105, it should be attached at the middle point 

of the plate since it is the largest displacement point. In addition, in the 20 

resonators case, the resonators are distributed over the surface of the plate 

averagely. The vibration transmissibility of both cases are obtained and 

presented in Figure 106.  

 

Figure 106. The vibration transmissibility curves of the 0.55×0.4×0.002m aluminium plate when 1 

resonator (black-solid) or 20 resonators (red-dashed) are attached respectively. The resonant frequency 

of the resonators are set the same as the 1st order resonant frequency. Total resonator mass is 0.2kg.  

As shown in the figure, when multiple resonators are attached, the vibration 

suppression in the 1st resonant peak is not obvious. On contrary, the resonant 
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peak is effectively suppressed when only 1 resonator is applied and two anti-

resonant peaks are revealed.   

When tuned the operational frequency of the resonator to the 7th resonant peak 

(488.5Hz) of the plate, the vibration suppression of the plate with 1 and 20 

resonators attached are also obtained and presented in Figure 107. The results 

indicate that for a higher resonant mode, the averagely distributed resonators can 

achieve better vibration suppression performance than the single resonator. The 

vibration energy in higher order resonant is distributed all over the plate rather 

than concentrating on one point.  

 

Figure 107. The vibration transmissibility curves of the 0.55×0.4×0.002m aluminium plate when 1 

resonator (black-solid) or 20 resonators (red-dashed) are attached respectively. The resonant frequency 

of the resonators are set the same as the 7th order resonant frequency. Total resonator mass is 0.2kg. 

Therefore, the proposed thin plate – resonator model can be utilized for the 

optimisation of membrane-type resonator allocation and design on the thin plate 

structure.  
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Also, since in this model, each of the resonator’s property can be defined 

individually, the non-periodic allocation of MemRs can also be utilised and the 

vibration suppression performance be revealed.  

Such function can be used for optimisation of the resonator location and resonant 

frequency tuning. It will be a promising direction in the future research. With 

different given incident frequencies, the model can analyse which resonators will 

experience the largest displacement. It means the vibration in that exact area is 

much fiercer than in the other parts. Therefore, the resonator’s resonant 

frequency can be adjusted to become the same as the incident frequency which 

makes the resonator experience the maximum displacement. Such setting will 

achieve the optimum vibration suppression performance. Also, in a semi-active 

control system, this algorithm will allow the system to rapidly decide the optimal 

voltage distribution to different resonators to achieve best vibration control 

performance.  
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6.2 PVDF MemM Control System’s Transfer Function and Algorithm 

To conduct semi-active control of the PVDF MemM, the control system model 

of should be constructed. If define the displacement of the resonator attached 

point on plate W as the output signal, and forces applied to the plate by the 

MemRs as input signal, a feedback control system can be constructed and the 

block diagram of the system is given in Figure 108.  

 

Figure 108. Block diagram of the PVDF MemM’s feedback control system. 

The derivation of the control system is stated as following: 

For the membrane-type resonators attached on a thin plate structure, if the 

number of resonators is R, the system’s equation of motion can be given as: 

{
 
 

 
 𝐷∇4𝑊(𝑟, 𝑡) + 𝜌ℎ𝑊(𝑟, 𝑡)" = ∑𝐹𝑟(𝑡)𝛿(𝑟 − 𝑅𝑟)

𝑅

𝑟

𝑚𝑟

𝜕2𝑋𝑟(𝑡)

𝜕𝑡2
= 𝑘𝑟[𝑊(𝑅𝑟 , 𝑡) − 𝑋𝑟(𝑡)]

 

 

 

(6-16a) 

 
 

(6-16b) 

where 𝐷  is the flexural stiffness of the plate, 𝑊(𝑟, 𝑡)  and 𝑊(𝑅𝑟 , 𝑡)  are the 

transverse displacements of the plate at point 𝑟 = (𝑥, 𝑦) and at the point where 

resonator 𝑟 is attached; 𝜌 is the mass density of the plate material; ℎ is the plate 

thickness; 𝑚𝑟 is the mass of the resonator 𝑟; 𝑘𝑟 is the equivalent stiffness of the 

resonator; 𝑋𝑟  is the resonator’s transverse displacement; 𝐹𝑟(𝑡)  is the force 

applied to the plate by the resonator 𝑟 and it can be expressed as: 

𝐹𝑟(𝑡) = −𝑘𝑟[𝑊(𝑅𝑟 , 𝑡) − 𝑋𝑟(𝑡)] 
 

(6-17) 

If assume the displacement as a series expansion:  
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𝑊(𝑟, 𝑡) =∑𝜙𝑗(𝑟)𝑞𝑗(𝑡)

𝐽

𝑗

 

 

(6-18) 

Substitute equation (6-18) into equation (6-17) and conduct Laplacian transform: 

𝐹𝑟(𝑠) = −𝑘𝑟 [∑𝜙𝑗(𝑅𝑟)𝑞𝑗(𝑠)

𝐽

𝑗

− 𝑋𝑟(𝑠)] 

 

 

(6-19) 

Substitute equation (6-18) into equation (6-16b) and conduct Laplacian 

transform: 

𝑚𝑟𝑋𝑟(𝑠)𝑠
2 = 𝑘𝑟 [∑𝜙𝑗(𝑅𝑟)𝑞𝑗(𝑠)

𝐽

𝑗

− 𝑋𝑟(𝑠)] 

 

→ 𝑋𝑟(𝑠) =
𝑘𝑟

𝑘𝑟 +𝑚𝑟𝑠
2
∑𝜙𝑗(𝑅𝑟)𝑞𝑗(𝑠)

𝐽

𝑗

 

 

 

(6-20) 

Substitute equation (6-20) into equation (6-19): 

𝐹𝑟(𝑠) = −𝑘𝑟 [∑𝜙𝑗(𝑅𝑟)𝑞𝑗(𝑠)

𝐽

𝑗

−
𝑘𝑟

𝑘𝑟 +𝑚𝑟𝑠
2
∑𝜙𝑗(𝑅𝑟)𝑞𝑗(𝑠)

𝐽

𝑗

] 

 

→ 𝐹𝑟(𝑠) = −
𝑘𝑟𝑚𝑟𝑠

2

𝑘𝑟 +𝑚𝑟𝑠
2
∑𝜙𝑗(𝑅𝑟)𝑞𝑗(𝑠)

𝐽

𝑗

 

 

(6-21) 

The above equation can be changed into matrix form as:  

[𝐹𝑟(𝑠)] = [𝐾𝑟][𝑊]  

where: 

[𝐹𝑟(𝑠)] = [𝐹1(𝑠), 𝐹2(𝑠), 𝐹3(𝑠), …… , 𝐹𝑅(𝑠)]
𝑇 

 

 

[𝐾𝑟] =

[
 
 
 
 
 
−𝑘1𝑚1𝑠

2

𝑘1 +𝑚1𝑠
2

0 0

0 ⋱ 0

0 0
−𝑘𝑅𝑚𝑅𝑠

2

𝑘𝑅 +𝑚𝑅𝑠
2]
 
 
 
 
 

 

 

 

[𝑊] = [𝑊(𝑅1, 𝑠),𝑊(𝑅2, 𝑠),𝑊(𝑅3, 𝑠), …… ,𝑊(𝑅𝑅, 𝑠)]
𝑇.  

 

Therefore the [𝐾𝑟]  matrix is obtained. Then for the transfer function [𝐺] , 

equation (6-16a) can be transformed into:  

𝐷∑ 𝜙𝑗(𝑟)
′′′′𝑞𝑗(𝑡)

𝐽
𝑗 + 𝜌ℎ∑ 𝜙𝑗(𝑟)𝑞𝑗(𝑡)

′′𝐽
𝑗 = ∑ 𝐹𝑟(𝑡)𝛿(𝑟 − 𝑅𝑟)

𝑅
𝑟 . (6-22) 
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Apply the orthogonally condition and integrate over the plate surface S, and 

conduct Laplacian transform, the above equation in changed into: 

𝐷∫∑𝜙𝑗(𝑟)
′′′′𝑞𝑗(𝑡)𝜙𝑖(𝑟)

𝐽

𝑗

𝑑𝑆

𝑆

+ 𝜌ℎ∫∑𝜙𝑗(𝑟)𝑞𝑗(𝑡)
′′

𝐽

𝑗𝑆

𝜙𝑖(𝑟)𝑑𝑆

= ∫∑𝐹𝑟(𝑡)𝜙𝑖(𝑟)𝛿(𝑟 − 𝑅𝑟)𝑑𝑟

𝑅

𝑟𝑆

 

 

 

→ (𝜔𝑗
2 + 𝑠2)𝑞𝑗(𝑠) =∑𝐹𝑟(𝑠)𝜙𝑗(𝑅𝑟)

𝑅

𝑟

 

 

 

→ 𝑞𝑗(𝑠) =∑
𝜙𝑗(𝑅𝑟)

𝜔𝑗
2 + 𝑠2

𝐹𝑟(𝑠)

𝑅

𝑟

 

 

 

(6-23) 

The displacement of the plate at the points where resonators are attached can be 

expanded as: 

𝑊(𝑅𝑟, 𝑠) =∑𝜙𝑗(𝑅𝑟)𝑞𝑗(𝑠)

𝐽

𝑗

 

 

 

(6-24) 

Substitute equation (6-23) into equation (6-24): 

𝑊(𝑅𝑟 , 𝑠) =∑𝜙𝑗(𝑅𝑟)

𝐽

𝑗

[∑
𝜙𝑗(𝑅𝑟)

𝜔𝑗
2 + 𝑠2

𝐹𝑟(𝑠)

𝑅

𝑟

] 

 

 

= 𝜙1(𝑅𝑟) [
𝜙1(𝑅1)

𝜔1
2 + 𝑠2

𝐹1(𝑠) +
𝜙1(𝑅2)

𝜔1
2 + 𝑠2

𝐹2(𝑠) +
𝜙1(𝑅3)

𝜔1
2 + 𝑠2

𝐹3(𝑠) + ⋯

+
𝜙1(𝑅𝑅)

𝜔1
2 + 𝑠2

𝐹𝑅(𝑠)] 

 

 

+ 𝜙2(𝑅𝑟) [
𝜙2(𝑅1)

𝜔2
2 + 𝑠2

𝐹1(𝑠) +
𝜙2(𝑅2)

𝜔2
2 + 𝑠2

𝐹2(𝑠) +
𝜙2(𝑅3)

𝜔2
2 + 𝑠2

𝐹3(𝑠) + ⋯

+
𝜙2(𝑅𝑅)

𝜔2
2 + 𝑠2

𝐹𝑅(𝑠)] 

 

 

  +⋯ 

 

 

+ 𝜙𝐽(𝑅𝑟) [
𝜙𝐽(𝑅1)

𝜔𝐽
2 + 𝑠2

𝐹1(𝑠) +
𝜙𝐽(𝑅2)

𝜔𝐽
2 + 𝑠2

𝐹2(𝑠) +
𝜙𝐽(𝑅3)

𝜔𝐽
2 + 𝑠2

𝐹3(𝑠) + ⋯

+
𝜙𝐽(𝑅𝑅)

𝜔𝐽
2 + 𝑠2

𝐹𝑅(𝑠)] 

 

(6-25) 

 

 

According to the above equation, the force terms can be extracted and thus 

transform the equation into: 
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𝑊(𝑅𝑟 , 𝑠) = 𝐹1(𝑠) [
𝜙1(𝑅𝑟)𝜙1(𝑅1)

𝜔1
2 + 𝑠2

+
𝜙2(𝑅𝑟)𝜙2(𝑅1)

𝜔2
2 + 𝑠2

+⋯+
𝜙𝐽(𝑅𝑟)𝜙𝐽(𝑅1)

𝜔𝐽 
2 + 𝑠2

] 

 

 

                   +𝐹2(𝑠) [
𝜙1(𝑅𝑟)𝜙1(𝑅2)

𝜔1
2 + 𝑠2

+
𝜙2(𝑅𝑟)𝜙2(𝑅2)

𝜔2
2 + 𝑠2

+⋯+
𝜙𝐽(𝑅𝑟)𝜙𝐽(𝑅2)

𝜔𝑗
2 + 𝑠2

] 

 

 

                       +⋯ 
 

 

                     +𝐹𝑅(𝑠) [
𝜙1(𝑅𝑟)𝜙1(𝑅𝑅)

𝜔1
2 + 𝑠2

+
𝜙2(𝑅𝑟)𝜙2(𝑅𝑅)

𝜔2
2 + 𝑠2

+⋯+
𝜙𝐽(𝑅𝑟)𝜙𝐽(𝑅𝑅)

𝜔𝑗
2 + 𝑠2

] 

 

(6-26) 

The above equation can be changed into matrix form: 

[𝑊]𝑅×1 = [𝐺]𝑅×𝑅[𝐹𝑟(𝑠)]𝑅×1  

where: 

[𝐺]= 

[
 
 
 
 
 
 
 
𝜙1(𝑅1)𝜙1(𝑅1)

𝜔1
2 + 𝑠2

+
𝜙2(𝑅1)𝜙2(𝑅1)

𝜔2
2 + 𝑠2

+⋯+
𝜙𝐽(𝑅1)𝜙𝐽(𝑅1)

𝜔𝑗
2 + 𝑠2

, … ,
𝜙1(𝑅1)𝜙1(𝑅𝑅)

𝜔1
2 + 𝑠2

+
𝜙2(𝑅1)𝜙2(𝑅𝑅)

𝜔2
2 + 𝑠2

+⋯+
𝜙𝐽(𝑅1)𝜙𝐽(𝑅𝑅)

𝜔𝑗
2 + 𝑠2

𝜙1(𝑅2)𝜙1(𝑅1)

𝜔1
2 + 𝑠2

+
𝜙2(𝑅2)𝜙2(𝑅1)

𝜔2
2 + 𝑠2

+⋯+
𝜙𝐽(𝑅2)𝜙𝐽(𝑅1)

𝜔𝑗
2 + 𝑠2

⋮

, … ,

𝜙1(𝑅2)𝜙1(𝑅𝑅)

𝜔1
2 + 𝑠2

+
𝜙2(𝑅2)𝜙2(𝑅𝑅)

𝜔2
2 + 𝑠2

+⋯+
𝜙𝐽(𝑅2)𝜙𝐽(𝑅𝑅)

𝜔𝑗
2 + 𝑠2

⋮
𝜙1(𝑅𝑅)𝜙1(𝑅1)

𝜔1
2 + 𝑠2

+
𝜙2(𝑅𝑅)𝜙2(𝑅1)

𝜔2
2 + 𝑠2

+⋯+
𝜙𝐽(𝑅𝑅)𝜙𝐽(𝑅1)

𝜔𝑗
2 + 𝑠2

, … ,
𝜙1(𝑅𝑅)𝜙1(𝑅𝑅)

𝜔1
2 + 𝑠2

+
𝜙2(𝑅𝑅)𝜙2(𝑅𝑅)

𝜔2
2 + 𝑠2

+⋯+
𝜙𝐽(𝑅𝑅)𝜙𝐽(𝑅𝑅)

𝜔𝑗
2 + 𝑠2 ]

 
 
 
 
 
 
 

𝑅×𝑅

 

→ [𝐺] =∑
𝑃𝑗
𝑇𝑃𝑗

𝑠2 + 2𝜉𝑗𝜔𝑗𝑠 + 𝜔𝑗
2 𝐹𝑟(𝑠)

𝐽

𝑗

 

 

 

(6-27) 

where 𝑃𝑗 = [𝜙𝑗(𝑅1), ] 

If define [𝑄(𝑡)] = [𝑞1(𝑡), 𝑞2(𝑡), … , 𝑞𝐽(𝑡), 𝑞1̇(𝑡), 𝑞2̇(𝑡), … , 𝑞𝐽̇(𝑡)]
𝑇 , then the 

state-space form of the transfer function can be written as:  

{
[𝑄̇(𝑡)] = [

𝟎 𝑰
𝑯 𝜣

] [𝑄(𝑡)] + [
𝟎

𝑷
] [𝐹(𝑡)]𝑇

[𝑊(𝑅𝑟, 𝑡)] = [𝑼 𝟎][𝑄(𝑡)]
 

 

 

(6-28a) 
 

(6-28b) 

where: 

𝑰 = [
1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 1

]

𝐽×𝐽

, 𝑷 = [

𝑃1
⋮
𝑃𝐽
]

𝐽×𝑅

 

 

 

𝜣 = 𝑑𝑖𝑎𝑔(−2𝜉1𝜔1, −2𝜉2𝜔2, … , −2𝜉𝐽𝜔𝐽)𝐽×𝐽, 

 

𝑯 = 𝑑𝑖𝑎𝑔(−𝜔1
2, −𝜔2

2, … , −𝜔𝐽
2)𝐽×𝐽, 
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[𝑊(𝑅𝑟, 𝑡)] = [𝑊(𝑅1, 𝑡), … ,𝑊(𝑅𝑅 , 𝑡)]1×𝑅
𝑇 , 

 

𝑼 = [

𝜙1(𝑅1) ⋯ 𝜙𝐽(𝑅1)

⋮ ⋱ ⋮
𝜙1(𝑅𝑅) ⋯ 𝜙𝐽(𝑅𝑅)

]

𝑅×𝐽

, 

 

 

[𝐹(𝑡)] = [𝐹1(𝑡), … , 𝐹𝑅(𝑡)]1×𝑅
𝑇 . 

 

 

The equation can be transferred into Matlab programme and be used to conduct 

fast frequency response analysis of the structure, which is useful in the 

optimisation of the allocation of MemM and design. Also, it provides the 

analytical foundation for the semi-active control algorithm, which can be further 

developed in future work.  
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Chapter 7 

7. CONCLUSIONS AND FUTURE WORK 

In this research, bandgap properties, key design parameters, structural vibration 

absorption capability and the corresponding analytical models of proposed 

metamaterial is investigated and developed. Conclusions can be drawn as below: 

1.  The proposed EM can suppressed the structural vibration of a thin plate 

structure effectively. The bandgap performance of the EM is consistent 

with the prediction based on the local resonant phenomenon and 

dispersion relation. The bandgap properties can be tuned effectively 

through geometrical structure adjustment. Broad low frequency bandgap 

is revealed in numerical simulation and the experimental results 

demonstrates even better vibration absorption performance. The results 

confirm the effectiveness of the local resonant phenomenon in bandgap 

formation. 

2. PWE model is modified to contain the MemR’s analytical model and can 

be used for the prediction of MemM’s bandgap property. Through further 

modification of the model, bandgap property of the multi-layer 

metamaterial can also be estimated, which is also a novelty in the MemM 

research field. The accuracy of the model is then verified by numerical 

simulation.  

3. Effect of MemM’s design parameters on bandgap properties is 

systematically studied by the modified PWE model. It is found that 

increase of MemR’s equivalent stiffness and attached mass magnitudes 

can increase the bandgap width. In bilayer MemM, interaction between 
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the two membrane layers will affect the bandgap width. In order to 

achieve maximum bandgap width or bandgap tunability, design 

guidelines for the bilayer MemM is concluded.  

4. Analytical model of PVDF MemM applied on thin plate is developed. 

The model constructs the relation between applied electric field intensity 

and PVDF MemM bandgap properties. The model reveals that the 

application of ±1000V electric potential across the PVDF membrane can 

cause a 65.4Hz bandgap location shift. In addition, the analytical model 

results are consistent with the numerical simulation. Therefore, the 

PVDF MemM possess a significant bandgap tunability, and 

demonstrates the feasibility of conducting semi-active control for the 

purpose of broadening bandgap width.  

5. Numerical simulation and experiment testing verify the effectiveness of 

MemM in thin plate vibration absorption. Vibration suppression of an 

aluminium thin plate is achieved obviously when attached with MemM. 

6. Analytical model of semi-active control system for PVDF MemM 

applied on a thin plate is developed. Based on the thin plate – resonator 

coupling model, the design parameters, such as tensile stress, mass 

magnitude, electric filed intensity and membrane thickness, can be 

adjusted freely and reveal their effect on bandgap performance.  

Several potential future work directions are recommended as below: 

1. Design and optimisation of MemR’s producing and assembling process 

and technique. In this research, the MemRs were mainly manually 

assembled. Hence, error occurred inevitably and leads to an unideal 

experiment results. The accurate and reliable manufacturing process can 
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ensure the effective of future research of MemM and encourage the   

actual application. 

2. Based on the derived semi-active control algorithm of the PVDF MemM, 

complete the derivation and construction of control system. Build up 

numerical simulation model for the algorithm and control model in 

Simulink to verify its controllability and robustness. Also, through the 

model, further study the vibration suppression performance of the PVDF 

MemM. T 

3. Study the multi-layer PVDF MemM’s bandgap property and vibration 

absorption performance based on the research outcome of this study. 

Since the utilization of PVDF MemM can achieve a considerable 

bandgap tuning range, the combination of multiple PVDF MemM can 

significantly increase the bandgap width. The corresponding control 

system and analytical model should also be developed and verified.  

4. Conduct experimental study on the PVDF MemM’s vibration absorption 

performance. Experimental testing is a compulsory step for the 

verification and application of PVDF MemM.  

5. Based on the analytical model proposed in Chapter 6, optimise the 

distribution, attached mass magnitude and total number of MemM. 

Current results have suggested that for different incident frequencies, 

there will be various optimal resonator allocations. As a result, 

optimisation guidelines should be concluded for the purpose of 

achieving the best vibration suppression performance whilst causing the 

smallest influence to the target structure.   
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