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Abstract

This manuscript presents a novel approach allowing damped ultrasonic wave prop-

agation analysis of textile composite structures modelled at a mesoscopic level

(i.e. modelling the yarns and matrix distinctively). Current modelling approach-

es rely on material homogenisation for analysis at a macroscopic scale and thus

overlook the effect of textile architecture on wave propagation. This work aims at

predicting wave propagation characteristics in damped textile composite struc-

tures and the induced complex phenomena for applications in structural health

monitoring.

The developed methodology involves mesoscale modelling of a textile compos-

ite structure period using a specialised textile modeller for pre-processing as well

as conventional finite element methods. This is combined with the periodic struc-

ture theory as well as a mode-based reduction method named Craig-Bampton al-

lowing for solving a reduced eigenproblem deriving from the equation of motion.

A multiscale approach is used throughout the thesis to enable the comparison of

standard wave propagation analysis of composite structures, using homogenised

properties, with the more complex analysis proposed in this thesis. The need for

this methodology is demonstrated as well as its validity.

The first axis of this thesis describes the methodology for undamped wave

propagation analysis in textile composites. Its advantages, such as the prediction

of complex phenomena and the possible applications, are thoroughly described

and issues discussed. Its increased accuracy over macroscale prediction meth-

ods is exposed. A second axis of the thesis is experimental validation of the

methodology by means of linear scans of waves measured by a laser vibrome-

ter and generated by a piezoelectric transducer in 3D woven composite samples.

It is shown that the numerical mesoscale methodology provides accurate pre-
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dictions. The third axis is the prediction of dispersion characteristics in large

layered assemblies of textile composites. An attempt toward homogenisation of

textile composites using a dispersion curves inversion technique based on genet-

ic algorithms is proposed for this purpose. It is concluded that complex textile

composites cannot be approximated by simple macroscale models. The last axis

of the thesis introduces a damping model to predict the frequency dependent loss

factor of waves propagating in these textile composite structures. The strong

influence of mesoscale architecture over loss factor is demonstrated.
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Chapter 1

Introduction

World air traffic is growing fast and has more than ever non-negligible impact

on the environment. Governments have set ambitious targets for a growth of

the industry in a safe and sustainable way using new technologies. Composite

materials are made of multiple constituent materials for customised mechanical

properties. Fibre reinforced polymers in particular are lightweight and thus are

key contributors for more sustainable flights. And even though the first motiva-

tion for using these materials lay in operational cost savings due to the reduced

fuel consumption, they serve both purposes well. Besides being lightweight, com-

posites also have excellent mechanical properties when compared with traditional

materials such as aluminium alloys etc. (e.g. typical tensile strength value for

Aluminium Alloy 6061-T6 is 310 MPa, while it can easily reach 600 MPa in the

direction of the fibres for a [0/90] carbon fibre fabric composite).

The interest in textile composites over laminates lies in their high resistance to

out-of-plane loading and impact where laminates are easily subjected to delami-

nation, such as low speed impact from a dropped tool or high speed hail impact.

Another advantage is that complex components are easier to manufacture using

a textile reinforcement than stacking multiple thin layers of laminates. However,

these new technological improvements do not come without challenges. Some

related to future developments, some other can be grouped as safety concerns.

One is intrinsic to the early age of composite structures in the aircraft industry.

Indeed, Non-Destructive Evaluation (NDE) techniques for these materials have

not yet reached their maturity. Another issue lies in the fact that composite
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Chapter 1. Introduction

materials may be affected by internal damage without showing evidence on the

surface, making visual inspection much less effective.

In order to provide safer flights, efforts need to be made on controlling and

monitoring techniques for composite structures. Structural Health Monitoring

(SHM) is the process of performing non-destructive testing, evaluation and in-

spection of the structure during flight for damage occurrence and evolution mon-

itoring . This is done by means of embedded sensors, possibly smart materials,

data transmission, computational modelling, and processing ability inside the

structures [1, 2]. It allows for reducing the operational costs by reducing the

aircraft ground handling time and allows for the earliest possible detection of

damage as well. For these reasons intensive research is being conducted on SHM

of composite structures. One inspection technique gaining in popularity for SHM

is ultrasonic guided waves spectroscopy [1, 2], these waves carry frequency that

generally exceeds 20kHz and are also designated as Lamb waves. Guided waves

are of interest because they can travel over long distances in a thin-walled struc-

ture. This ultrasonic inspection technique is already very popular for pipeline

monitoring for example [3, 4, 5]. Waves in thin-walled structure are dispersive, so

the velocity (and thus time-of-flight) of a wave depends on the frequency. These

primary characteristics of waves are called dispersion relations and need to be

known in order to apply guided wave techniques.

There exist many analytic and numerical models to obtain the dispersion re-

lations of homogeneous media [6]. However, considering textile composites as

homogeneous materials is an oversimplification for dynamical analysis as the in-

ternal geometries and mechanical properties influence the way waves propagate

and can even induce strange phenomena such as stop-bands (i.e. frequency ranges

at which a wave is not allowed to propagate). On the other hand, considering the

microstructure of a composite, i.e. considering its fibres independently, would be

prohibitive and useless as this scale is negligible in comparison to the wavelengths

induced by the frequencies of interest. The intermediate scale is called mesoscopic

and is of interest as it takes into account the yarns architecture embedded in the

matrix, thus the scale does not oversimplify the geometry nor produce overly ex-

pensive computations. Up to now, no methodology had been proposed to obtain

2



Chapter 1. Introduction

the dispersion characteristics in textile composites considered at a mesoscopic

scale. And while analytical solutions would be utterly complex to describe this

problem, neither it is possible to perform the analysis using a full transient Finite

Element (FE) methodology for such a complex problem and large structures.

A great advantage of textile composites is in their periodicity as it allows

for applying the Bloch-Floquet wave theory, also called the Periodic Structure

Theory (PST), to reduce the problem size to its smallest representative period.

Moreover, the inherent periodicity of textile composites has a great influence

on the way waves propagate such as constraining the direction of propagation or

creating stop-bands, thus considering a textile composite at its period level reveals

these phenomena. Semi-analytical methods that take advantage of these periodic

properties have been developed as alternatives to analytical or FE methods for

dispersion characterisation and often combine the advantages of both. The Wave

Finite Element (WFE) method in particular uses both the Bloch-Floquet wave

theory and existing FE libraries to simplify the analysis and obtain the dispersion

characteristics of complex periodic structures in a robust manner.

In this thesis, methodologies for the numerical simulation of elastic wave prop-

agation in textile composite structures are proposed. Chapter 2 is devoted to a

review of the literature, to provide the reader with enough material, context and

references to understand and tackle the methodologies and problems presented

in following chapters. Chapter 3 describes the methodology combining mesoscale

FE modelling of composites and the PST, leading to an investigation of disper-

sion characteristics in undamped textile composite structures. The mesoscopic

properties of the material are taken into account for the first time for this type of

analysis. It is shown that standard homogenised composite structure modelling

provides inaccurate predictions and that mesoscale modelling is needed. The fol-

lowing chapter (Chapter 4) applies and compares the numerical methodology to

experimental results for complex 3D woven composites. Chapter 5 attempts the

reconstruction of the elastic moduli of composite materials by inversion of their

dispersion curves in order to benefit from the accuracy of predictions provided

by the mesoscale methodology and to take advantage of the rapid computational

properties of macroscale methodologies. Chapter 6 introduces fast and accurate

3
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prediction of the damping properties associated with the dispersion characteris-

tics of these textile composites at a mesoscopic scale. Finally, chapter 7 provides

concluding remarks and reflections on possible future work.

Some of the results presented in this thesis have led to publications:

• Chapter 3: V. Thierry, L. Brown and D. Chronopoulos, ”Multi-scale wave

propagation modelling for two-dimensional periodic textile composites,”

Composites Part B: Engineering, vol. 150, pp.144-156, 2018.

• Chapter 4: V. Thierry, O. Mesnil and D. Chronopoulos, ”Experimental and

numerical determination of the wave dispersion characteristics of complex

3D woven composites,” Ultrasonics, vol. 103, p. 106068, 2020.

• Chapter 6: V. Thierry and D. Chronopoulos, ”The impact of mesoscale

textile architecture on the structural damping in composite structures,”

Composite Structures, vol. 249, p. 112475, 2020.
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Chapter 2

Literature review

2.1 Multiscale modelling of textile composites

Composite materials are engineered materials composed of more than one con-

stituent materials. Its constituent materials (or components) remain distinct at

a microscale level while forming a single material at a macroscale level. The con-

stituent materials have different characteristics and their assembly should form a

material with new or improved characteristics. The components of a textile com-

posite in particular are the fabric used as reinforcement and a binding polymer

used as matrix. A fabric is built up by a number of yarns assembled together in

a self-supporting architecture. The fabric is arranged in the desired shape and

the polymer is injected within the fabric. Once impregnated, pressure is applied

and the temperature is elevated in order to initiate and maintaining the chemi-

cal reaction (in case of a thermoset) which cures the binding polymer [7]. This

hardened material made of fabric and cured polymer is called a textile composite.

The yarns themselves are composed of an assembly of unidirectional fibres. Thus,

once the composite is cured, a yarn is considered as a composite as it contains

two types of components: the fibres and a matrix.

The diameter of a fibre is measured in micrometer (typical value for a carbon

fibre would be around 7µm). A yarn is composed of thousands of fibres (typically

1K, 3K, 6K or 12K) and the yarns assembly forms a textile reinforcement. The

most popular materials for aerospace composites are carbon fibres for the rein-

forcement and epoxy resin as binding polymer and as a whole are designated as

5



Chapter 2. Literature review

Carbon Fibre Reinforced Polymers (CFRPs). Some classical textile architectures

for composites are the braided, stitched, knitted, 2D woven and 3D woven fabrics

[8] (see Fig.2.1), all of which have found applications in the aerospace industry

(e.g. woven reinforcements have been used to manufacture rotor blades, fastener-

s, engine mounts and flaps [8], stiffened panels have been made with knitted and

braided reinforcements etc. [9]).

Figure 2.1: Textile patterns adapted from [10] and illustrations generated with
TexGen.

These structures are complex at different scale levels and thus the prediction

of their dynamic behaviour is complicated. Composite materials scale levels are

hierarchical, the nanoscale is the lowest and is the level at which the chemical

interface between the matrix and the fibres is studied. It is important as a

high-quality interfacing ensures an effective stress transfer from the matrix to the

fibres. In order to optimize the interfacial bonding, the fibre manufacturer applies

a sizing treatment which enhance the covalent bonding between the fibres and

the matrix, but also acts as an antistatic agent and a lubricant to ease textile

processing [11]. The higher level is the microscale model which comprises the

individual fibres (or filaments) in a matrix (see Fig.2.2). The next modelling

scale level is the mesoscale model, and its components are the yarns forming the

fabric and the matrix. At last, the highest level is the macroscale model which

represents the structure as a whole. Deducing the characteristics of a scale level

from its lower or higher scale level model is called a multiscale approach and it

has become a standard for composites modelling [12, 13, 14, 15, 16].
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Deducing the macroscale characteristics of a model from its lower scales mod-

els (‘bottom-up’ method) is called homogenisation. It presumes substitution of

the heterogeneous structure by a homogeneous medium of equivalent mechani-

cal properties. The concept of multiscale modelling is of the upmost importance

as it is practically impossible to run a finite element simulation of large-scale

structures other than using a macroscale model.

Figure 2.2: ‘Bottom-up’ multiscale appraoch adapted from [15].

A notion that is a cornerstone of multiscale approach is the Representative

Volume Element (RVE). A RVE must feature all the characteristics intrinsic to

a scale level so that it can be translated to a higher scale level. It should be

large enough to feature all the geometrical specificities and small enough to avoid

redundancies. If the medium is periodic, the RVE is called a unit cell and it

represents one period of the pattern.

2.1.1 Microscale to mesoscale homogenisation

The microscale model of a composite is used to study the interaction between

the numerous fibres and the matrix into which they are bounded. It aims at

describing the behaviour of the higher scale level by studying the behaviour of

the components. For a textile composite, this scale level is of interest in order to

obtain the mechanical characteristics of an individual yarn. It is usually assumed

that the fibres are of infinite length, straight, parallel to each other and have a

7
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circular cross-section [15]. The fibre material is often categorised as transversely

isotropic while the matrix material is assumed to be isotropic. The assembly

of fibre bundles oriented in more than one direction and embedded in a matrix

material often results in a material that is orthotropic. The relation between

stress (σ) and strain (ε), commonly known as Hooke’s law, defines the compliance

matrix S of a material: {ε} = [S]{σ}. The compliance matrix of an orthotropic

material requires nine independent variables (i.e. elastic constants) as shown in

Eq.(2.1). Transversely isotropic materials are orthotropic materials with one axis

of symmetry which reduces the number of independent variables necessary to

define their constitutive matrices to five [11].



ε11

ε22

ε33

ε23

ε31

ε12



=



1
E1

−ν21
E2
−ν31

E3
0 0 0

−ν12
E1

1
E2

−ν32
E3

0 0 0

−ν13
E1
−ν23

E2

1
E3

0 0 0

0 0 0 1
G23

0 0

0 0 0 0 1
G13

0

0 0 0 0 0 1
G12





σ11

σ22

σ33

σ23

σ31

σ12



(2.1)

There exist many models for predicting the homogenised mechanical properties of

a yarn composed of numerous fibres and a matrix, most of which give a set of five

elastic moduli of a transversely isotropic material as result. The first attempts

to correlate the mechanical properties of a composite and the properties of its

components were named Rule Of Mixtures (ROM) and were developed by Voight

[17] and later Reuss [18] in the early 20th centuries. In this approach, a perfect

bonding between the fibres and the matrix is assumed and the volume fraction of

each component is used as a contribution ratio (see Table 2.1) (the fibre volume

fraction of a textile composite is typically situated between 0.5 and 0.6 [14, 19, 20]

but is strongly dependent on the compression level). Voigt’s model assumes iso-

strain situation in the composite (fibres and matrix) along the fibre direction,

while Reuss model assumes iso-stress situation in the composite normal to the

fibre direction (see Fig.2.3).

However, these formulae do not provide a good agreement with experimental

results except for the Young’s modulus in the fibre direction (E11). The next
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(a) (b)

Figure 2.3: Voigt-Reuss ROM hypotheses (a) Isostrain method (b) Isostress
method.

attempt was made by Hashin and Rosen in 1964 [21], the fibre and matrix are

modelled as a concentric assembly (fibre at the core and matrix around). This

two phases model is called the Composite Cylindrical Assemblage Model (CCAM)

and it provides an improved formulation for the shear modulus G12 while being

still distant from the experimental data, Christensen and Lo [22] later developed

the Generalised Self Consistent Method (GSCM) which is a three phases model

(see Fig.2.4) and gives the same solutions than the CCAM for four of the moduli

but gives a better prediction for the transverse shear modulus G23.

Figure 2.4: Generalized Self Consistent Model.

The Halpin-Tsai model was developed after the CCAM in 1967 [23]. This is a

semi-empirical model that tends to correct the transverse Young’s modulus E22 as

well as the shear modulus G12 from the Voigt-Reuss model but uses its formulae

for Young’s modulus E11 and Poisson’s ratio ν12. Finally, another semi-empirical

model was provided by Chamis in 1989 [24]. It uses the Voigt-Reuss formulae for

E11 and ν12 as well but corrected the other moduli formulae in order to fit with

experimental results (see Table 2.1). It is still widely used for its simplicity and

relative accuracy.
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Voigt Reuss Chamis

E11 V fEf
11 + V mEm same same

ν12 V fνf12 + V mνm same same

E22
Ef

22E
m

V fEm+VmEf
22

Em

1−
√
V f (1−Em/Ef

22)

G12
Gf

12G
m

V fGm+VmGf
12

Gm

1−
√
V f (1−Gm/Gf

12)

G23
Gm

1−
√
V f (1−Gm/Gf

23)

ν23 V fνf23 + (1− V f )(2νm − ν12
E11
E22)

Table 2.1: Micromechanical models in the literature.

Another possibility is to use the FE method for the micromechanical analysis.

The main advantages are the reliability and accuracy of the method but some

disadvantages lie in the time needed for setting up the geometrical dimensions

and the meshing in comparison to analytical models. Different idealised fibre

arrangements were used in the first models, such as square, hexagonal or square

diagonal arrangements [25, 26, 27] (see Fig.2.5). Periodicity of the fibre arrange-

ment allows for micromechanical material characterisation by analysing its unit

cell. The analysis simulates the physical experiments that would be performed on

a real sample such as applying load cases and measuring the relative displacement

field, thus obtaining its effective material properties. This method can also be

used for mesoscale to macroscale homogenisation. The analysis requires properly

formulated boundary conditions applied to the unit cell as extensively described

by Li et al. [28, 29, 30]. This homogenisation method is referred as ‘static virtual

testing’ throughout the thesis and is detailed in Sec.A.1 in Appendix. Idealisation

of the fibre arrangement is a trade-off between computational cost and accuracy

as in reality the fibres are distributed randomly in the cross-section. However,

in 2008, Huang et al. [31] compared the idealised square and hexagonal arrange-

ments with a model of randomly distributed fibres (the moduli are computed for

the obtained statistical distribution of stresses) and concluded similar effective

material properties prediction for the three models.

2.1.2 Mesoscale to macroscale homogenisation

Textiles observed at a mesoscopic scale are a network of interwoven yarns forming

a self-supported architecture. A woven fabric in particular generally consists of

10



Chapter 2. Literature review

Figure 2.5: Fibre arrangement a) random b) square c) hexagonal d) square diag-
onal. Green dotted lines are used to justify the arrangement name. The periodic
unit cell is displayed within the red boundaries.

two sets of interlaced yarn components called warp and weft yarns and in the case

of a 3D weave an additional set of yarns called binder yarns. The different types

of yarn are defined by their orientations: warp yarns during the weaving process

are positioned longitudinally and held stationary in the weaving device while the

weft yarns are transversally threaded through them (see Fig.2.6). Binder yarns

are used in 3D weave to hold the layers together, their orientation is mainly out-

of-plane as they are threaded through-the-thickness. It is assumed from the lower

scale level modelling (microscale modelling described in Sec.2.1.1) that the yarns

are homogeneous, transversely isotropic and have known effective properties.

Figure 2.6: Textile warp and weft threading.

A textile is defined by its quantitative parameters (e.g. number of ends per

cm, yarn linear density, yarn spacing length) and its qualitative parameters such

as the pattern (see Fig.2.1).

A textile reinforcement together with a matrix material form a textile com-

posite. Thus, an accurate mesoscale model of a textile composite relies on the

accuracy of the reinforcement geometry modelling. For this reason, the literature

survey in this section features both mechanical modelling techniques and geo-

metric description methods. An interesting property of textile preforms and thus

textile composites is their periodicity. This means they can be visualised as an

assembly of identical unit cells and thus only one has to be modelled in order to

11
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obtain the effective mechanical properties of the whole structure.

Most of the models up to now were created for a characterisation of the

effective elastic mechanical properties by static loading testing. In that context

it was shown that the ability of a model to predict these characteristics lies in the

accuracy of the unit cell internal geometry modelling [32, 33] and Lei et al. [34]

reported that state-of-the-art modelling of the fabric architecture plays a crucial

role in solving dynamic problems as well. Valuable but not exhaustive reviews

can be found in [10, 33, 35, 36] on the prediction of the mechanical behaviour of

textile composites using various modelling strategies.

Peirce et al. [37] initiated the formalisation of textile geometry in 1937, with

idealised assumptions on yarn path and cross-sectional shapes (e.g. assuming

that tows had a circular cross-section). Later the first analytical models were

created based on the Classical Laminate Theory (CLT) to obtain the effective

mechanical characteristics: three of them are presented by Ishikawa et al. [38],

the ‘Mosaic’, ‘fibre undulation’ and ‘bridging’ models. ‘Mosaic’ does not take

into account the fibre continuity as the textile composite is considered as an

assembly of rectangular cuboids, each being an asymmetrical cross-ply laminate

but it still gives a useful rough estimation. This model uses constant strain and

stress assumption which gives upper and lower bound solutions for the effective

elastic constants of the structure. Later they proposed the ‘fibre undulation’

model which takes into account the fibres continuity and undulation and thus has

better prediction capabilities. The ‘bridging model’ was specifically developed for

satin composites (2D satin woven pattern is shown in Fig.2.1).

In 1986, Yang et al. [39] developed a methodology for predicting elastic prop-

erties within 3D textile composites based on the CLT and the fibre inclination

(also called orientation averaging (OA)) model. Later, in an article from Whitney

et al. [19], a unit cell of a braided composite was divided into micro-cells to define

individual yarn position and inclination within it. The CLT and the OA model

were also used to predict in-plane properties of 3D angle interlock composites.

However, it was concluded that the use of straight segments to model undulating

fibres was not suitable and it was shown in the literature a poor agreement with

experimental results in particular for satin weave.

12
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After that period, the FE method was gaining in popularity. Indeed some

advantages of the method are the possibility for a more accurate geometrical rep-

resentation of the reinforcement architecture and that the internal stress distri-

butions are computed in detail and thus the iso-strain or iso-stress assumptions

described by Reuss and Voight are rendered unnecessary. However, using FE

method for homogenisation also means constructing pertinent unit cell model-

s and applying appropriate periodic boundary conditions to it as suggested by

the virtual testing method briefly described in Sec.2.1.1. This could be seen as

difficulties and the reason why analytical models continued to be developed by

researchers.

Cox et al. [40] developed in 1994 the ‘binary model’ which is a FE model

where the yarns are simulated by bar elements and the effective matrix by brick

elements. The following year, Whitcomb et al. [41] developed a new method

using FE based on the ‘global/local methodology’. The local model consists of

a refined mesh of a unit cell and is used to compute homogenised engineering

properties to obtain global solutions. Periodic boundary conditions were applied

to the local model so that its behaviour is similar as if it was embedded in an

infinite array. The authors stated that this was a preliminary study and that

more realistic configurations needed to be studied.

In 1995, Naik [42] developed a code called TEXCAD to predict amongst oth-

er things mechanical properties in 2D woven and triaxial braided composites.

This code uses an analytical method in which each yarn of the unit cell of the

composite is discretised in slices and the stiffness matrix is computed for each

slice, transformed to the global coordinates, multiplied by the slice volume frac-

tion (volume averaging technique) and assembled all together to form the overall

effective stiffness matrix. Although it is based on restrictive assumptions, the

model provided good approximation of the stress-strain relation for plain weave

composites under axial tension.

In 1996, in Glaessgen et al. [32], a FE modelling is carried out at the unit

cell level. A Bezier curve (i.e. a parametric curve using Bernstein polynomials

as a basis [43]) represents the centre line of each yarn and allows for a realistic

modelling of the textile. Their cross-sectional shapes are elliptical and the con-
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stituent materials are defined as transversely isotropic for the yarns and isotropic

for the matrix.

In 1997, Kuo et al. [44] thought that FE methods, even though useful to

describe complex geometry and multi-material problems, are computationally

too expensive to obtain satisfactory results. Thus they developed the ‘iso-phase

model’, originally developed by the same authors for 2D woven composites, it

is extended to 3D woven composites in [44], in which the yarns are assumed

transversely isotropic, are spatially oriented and their undulation is described

using sinusoidal functions.

The following year, Tan et al. [45] compared two FE models of a 3D orthogo-

nal woven composite (respectively with rectangular and elliptical cross-sectional

shapes for the yarns) with four theoretical models in which the same unit cell is

divided by rectangular blocks of one or two homogeneous materials in four dif-

ferent ways, all have rectangular cross-sectional shapes for the yarns. The whole

set of effective mechanical properties is deduced for each of the four theoretical

models using a mixed iso-stress and iso-strain based analytical theory. The so-

called ‘XYZ model’ provided results closer to those predicted by the FE models

than the three others. A comparison between the FE models, the theoretical

method and experimental results from the literature was carried out and a good

agreement is observed for the in-plane Young’s moduli.

In 2000, Lomov et al. [46] stated that a good model relies on an accurate geo-

metric description and thus on cross-sectional observations under the microscope.

The same authors later developed a textile geometry pre-processor named ‘Wise-

Tex’ [47]. It provides opportunity to use manufacturer’s fabric and yarns data as

a starting point for modelling composite materials. It also gives solid foundation

for mechanical properties prediction of composite material. It is based on an

energy minimisation algorithm (i.e. minimise the bending and tension energy of

the yarns [48]) to determine the precise geometry of a textile in its relaxed state,

thus the geometry is based on physical properties.

In parallel, Robitaille et al. [49] developed an algorithm generating the geo-

metric definition of a repeated unit cell of a textile composite, following previous

works on the formalisation of the description of interlacing patterns by vectors
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[50] named ‘TexGen’. In this pre-processor, no energy minimisation algorithm is

involved so it has less geometrical restrictions and thus more flexibility. It is also

free and open source with a powerful Python scripting interface [51].

Nowadays most mesoscale modelling use these pre-processors to create a ge-

ometry to be exported on a FE software. This allows for creating still idealised

yet more realistic models. For example, Green et al. in [52] used Python scripting

to create a more realistic geometry of a complex orthogonal 3D woven compos-

ite within TexGen. Nevertheless, even if one period of the textile is modelled

according to microscopic observations of the yarns cross-sectional shapes or the

yarns nesting for example, in reality there will be variations as the period is re-

peated to form the textile. This can have a significant effect on the prediction of

the mechanical properties of the material and models incorporating these natural

internal variabilities are developed [53].

2.2 Numerical determination of the dispersion

characteristics of periodic media

In this section, a non exhaustive review on wave propagation modelling in contin-

uous and periodic media is proposed. Thin structures are of interest as they guide

waves with minimal loss in one or two directions. Structures that guide waves in

one or two directions are respectively called one- or two-dimensional waveguides.

The relation between the wavelength or wavenumber of a wave and its frequency

in a particular medium is called a dispersion relation. From that relation can be

derived the phase and group velocities. The phase velocity represents the rate

at which the phase of a wave propagates and the group velocity represents the

speed at which the amplitude envelop of a wave propagates.

2.2.1 Analytical models for wave propagation in isotropic

media

Wave propagation in simple waveguides can be investigated through analytical

models allowing for computing their dispersion characteristics [54, 55]. The an-
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alytical solutions of the wavenumber, the phase velocity, the group velocity etc.

for some simple structures such as rod or beam have been available for decades.

However, those analytical models often involve assumptions and/or approxima-

tions concerning the mechanical properties of the structure, and refined models

are required in the high frequency regime.

Analytical models for a thin isotropic beam

Longitudinal wave The governing equation of motion for a free longitudinal

wave is derived and given in [54] as

E
∂2u(x, t)

∂x2
− ρ∂

2u(x, t)

∂t2
= 0, (2.2)

where u(x, t) is the longitudinal displacement, x the position along the beam axis,

t the time, E the elastic modulus (or Young’s modulus) and ρ the density.

The wavenumber k is easily deduced from Eq.(2.2)

k =

√
ρ

E
ω. (2.3)

Torsional wave The governing equation of motion for a free torsional wave is

identical in form to that of longitudinal wave as shown in [54]

∂2Θ(x, t)

∂x2
− ρ

C

∂2Θ(x, t)

∂t2
= 0, (2.4)

where Θ(x, t) is the angular rotation (around Ox), C = Gγ
J

the torsional rigidity,

G the modulus of rigidity, J the polar moment of inertia and γ the torsional

constant estimated by Roark in [56].The wavenumber is deduced from Eq.(2.4)

k =

√
ρ

C
ω. (2.5)

Bending waves Free bending waves propagation in thin beams were firstly

described by the Euler-Bernoulli beam theory and by the Euler-Lagrange equation

in dynamics. By deriving this Euler-Lagrange equation, the following governing

equation for free transverse vibration can easily be obtained [57, 58] (for a beam
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of uniform cross-section):

EI
∂4v(x, t)

∂x4
+ ρA

∂2v(x, t)

∂t2
= 0, (2.6)

where v(x, t) is the transverse displacement, x the position along the beam axis,

t the time, E the elastic modulus, ρ the density, A the cross sectional area, and

I the second moment of inertia of the cross section.

Assuming a time and space harmonic motion:

v(x, t) = V (x) sin(ωt+ α). (2.7)

where V is the amplitude, x the position along the beam axis, ω the angular

frequency, t the time and α the phase.

The dispersion equation for the bending waves is given by

k = 4

√
mω2/EI. (2.8)

The equation has four roots. Each wavenumber describes a wave, two describe

the propagating ones and two describe the nearfield waves, whose amplitudes

decay rapidly with distance.

The Euler-Bernoulli theory only considers the effect of bending moment.

While this is sufficient to describe the behaviour of thin beams at low frequen-

cies, this theory oversimplifies the problem and thus provides wrong predictions

for thicker beams and higher frequencies. The Timoshenko beam theory was

formulated in 1921 [59, 60] to overcome these restrictions. It extends the Euler-

Bernoulli theory by taking account of shear deformation and rotatory inertia.

The Lagrangian equations of motion yield

ρI
∂2Θ(x, t)

∂x2
− EI ∂

2Θ(x, t)

∂x2
−KGA

(
∂v(x, t)

∂x
−Θ(x, t)

)
= 0, (2.9)

where Θ(x, t) is the angular rotation (around Oy for one bending mode and

around Oz for the other, given that Ox is the axis of the beam length), G the

modulus of rigidity and K a dimensionless quantity dependent on the shape

of the cross section used as a correction factor to account for the non-uniform
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distribution of the shear stress and strain over the cross section. Cowper [61] later

defined K for a beam of rectangular cross-section as independent of the aspect

ratio of the rectangle and dependent of the material Poisson’s ratio only (ν):

K =
10(1 + ν)

12 + 11ν
. (2.10)

The dispersion relation for the bending waves is then given as

k =

√√√√( ρ

2E
+

ρ

2GK

)
ω2 +

√(
ρ

2E
− ρ

2GK

)2

ω4 +
ρA

EI
ω2, (2.11)

and has four roots again.

Analytical models for a thin isotropic plate

Wave propagation in infinite plates was firstly studied by Rayleigh and Lamb [62].

A number of authors have worked on the Classical Plate Theory (CPT) after

that [54, 63] for various material categories. In isotropic plates, guided waves

propagating at low frequency are classified into three types: longitudinal (or

extensional), shear (or transverse) and bending (or flexural) and their governing

equations are given in the following paragraphs.

Longitudinal and shear waves Combining once again Newton’s second law

and the generalised Hooke’s law relations, one can establish the governing equa-

tion for in-plane motion [64]

E

(1− ν2)

(
∂2u

∂x2
+ (1 + ν)

∂2v

∂x∂y
+
(

1− ν
2

)
∂2u

∂y2

)
= ρ

∂2u

∂t2
, (2.12)

and
E

(1− ν2)

(
∂2v

∂y2
+ (1 + ν)

∂2u

∂x∂y
+
(

1− ν
2

)
∂2v

∂x2

)
= ρ

∂2v

∂t2
. (2.13)

The dispersion relation for the longitudinal wave is then given as

k =

√
ρ(1− ν2)

E
ω, (2.14)
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and the shear wave as

k =

√
ρ

G
ω. (2.15)

Bending wave For a plate whose thickness/wavelength ratio is smaller than

1/10, the bending wave equation in a plate of thickness h is

D

(
∂4w(x, y, t)

∂x4
+ 2

∂4w(x, y, t)

∂x2∂y2
+
∂4w(x, y, t)

∂y4

)
= −ρh∂

2w(x, y, t)

∂t2
, (2.16)

where D = Eh3

12(1−ν2)
is the flexural rigidity and w(x, y, t) is the out-of-plane dis-

placement.

The dispersion relation is written as [58]

k = 4

√√√√(ρh
D

)
√
ω. (2.17)

At higher frequency ranges, these guided waves are called Lamb waves. They

are classified according to their modeshapes as symmetrical (S) and antisymmet-

ric (A) modes and involve motion of the medium in the x-z plane only. The

modes that are nascent at a frequency of zero are the zero-order modes and are

written A0 and S0. A0 is equivalent to the bending mode at low frequency, and

S0 to the longitudinal one. The shear-horizontal wave modes involve motion

of the medium in the y direction only. They are complementary to the Lamb

wave modes classification and are written SH. These three modes (A0, SH0 and

S0) are commonly used for wave based damage detection methods in composite

structures [65].

With the dispersion relations k(ω) known, other characteristics of a wave can

be computed such as the phase or group velocity. The phase velocity is given by

the proportionality between the angular frequency ω and the wavenumber k:

cp =
ω

k
. (2.18)

The slowness is another characteristic that is often used and is the inverse of the

phase velocity

s =
1

vp
. (2.19)
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The group velocity is given as

cg =
∂ω

∂k
. (2.20)

2.2.2 Wave propagation in periodic structures

A periodic structure can be seen as an infinite assembly of identical elements

joined end-to-end in the case of a one-dimensional periodic structure (e.g. a

railway or a unidirectional composite) and also side-by-side when considering a

two-dimensional periodic structure (e.g. an aircraft fuselage or a textile composite

structure). Textile composites are two-dimensional periodic structures whose

representative period is called unit cell.

Floquet in 1883 [66] gives the first modern mathematical description of one-

dimensional periodic structures and proved a theorem that reveals itself to be cru-

cial for the study of infinite periodic media. Bloch [67] generalised the results of

Floquet by extending his theorem to multidimensional periodic structures, show-

ing that the wave field in those structures is also periodic up to a phase multiplier.

The Bloch-Floquet theorem thus allows for considerable analysis savings as only

a single unit cell needs to be considered to simulate wave propagation through

the entire periodic structure. The Bloch-Floquet theorem, also called PST, is

the foundation of modern research on wave propagation in periodic structures as

stated in two review publications [68, 69].

In 1946, Brillouin [70] traced the historical background of the mathematics

of wave propagation and diffraction in periodic structures. He also applied the

Bloch-Floquet theorem to analyse the elastic wave propagation in periodic net-

works and defined the reduced zones named the Brillouin zones in which the

dispersion behaviour is fully described. Indeed, in a periodic structure of period

∆, the dispersion relation k(ω) is periodic with a period of 2π
∆

and the disper-

sion behaviour is fully described in the fundamental period k ∈ [− π
∆
,+ π

∆
]. This

wavenumber range is called the first Brillouin Zone (BZ). The dispersion rela-

tions being symmetric about k = 0 it can be fully characterised in half on the

first BZ, i.e. k ∈ [0,+ π
∆

]. This further reduced wavenumber range is named the

Irreducible Brillouin Zone (IBZ).

Another interesting feature of dispersion relations of periodic structures is that
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they can exhibit wave filtering behaviours called ‘stop-bands’ or ‘band-gaps’. Lord

Rayleigh was the first to demonstrate their existence in 1887 [71] by considering

a string with a periodic variation of density along its length. Those special

wave phenomenon are generated by periodic impedance mismatch in the unit

cells. Indeed, a unit cell of a periodic structure can be a very heterogeneous

medium both in geometry and in material properties (see Fig.2.1 for examples)

and thus the assembly of these periodic elements can be seen as a set of periodic

discontinuities. Two types of stop-bands can be distinguished by their origin

mechanism. The Bragg stop-bands are due to the interactions between incident

and reflected waves that create destructive interference and are linked to the

length scale of periodicity (i.e. occurring at BZ limits, when the wavelength is

a multiple of the unit cell’s length), while the local resonant stop-bands usually

appear when the unit cell displays one or more resonant unit [72, 73, 74]. By

opposition are called pass-bands the remaining frequency ranges in which the

waves are allowed to propagate. While these phenomenon can be used to generate

frequency filters [72, 73, 75, 76, 77], waveguiding features [75] and other innovative

applications [69], they often cause complication to guided wave inspection as they

prevent the use of bandwidths for this application (i.e. the excitation frequency

should be selected in the frequency range of pass-bands) [78, 79] and thus it

emphasises the need for an accurate characterisation of the dispersion.

2.2.3 Analytical and semi-analytical methods for wave prop-

agation in composite structures

Analytical methods

Wave propagation in composite structures is highly dispersive due to the complex-

ity of the medium, and traditional analytical models such as the ones presented

in Sec.2.2.1 are too simplistic to accurately describe the dispersive behaviour of

such structures [80, 81] and thus more complex, often matrix based, methods

were developed.

One of the first analytical method is the Dynamic Stiffness Method (DSM)

widely developed by Banerjee [82] and applied on laminated composites in [83, 84].
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The section is divided into a number of elements whose differential equations ex-

act solution give the exact shape functions. The results of this method are mostly

independent from the number of elements chosen to describe the section. The

accuracy of the method depends on the analytical models used to define the gov-

erning equations. In 1950, Thompson [85] proposed the Transfer Matrix Method

(TMM) which allowed the analysis of laminated structures, by creating transfer

matrices that account for the stress and strain continuity between two adjacent

layers and multiplying them altogether to obtain the dispersion relations of the

laminate, but had the disadvantage of being computationally instable as poor

conditioning occurred at high frequencies. The Global Matrix Method (GMM)

uses a similar approach but concatenates the matrices instead of multiplying

them, hence forming a global matrix. Unlike the TMM where the equations for

the intermediate interfaces are eliminated (the fields in all layers are described

only in terms of the external boundary conditions), the GMM imposes boundary

conditions at the layers interfaces. Thus, in the GMM the equations at an inter-

face are influenced by the arrival of waves from the neighboring interfaces [86].

This technique is robust and easy to implement and is the basis of the Disperse

software developed at the Imperial College of London. However, a drawback of

that method is an expensive computation time for media with many layers.

It seems, however, that each of these analytical methods either came with

computational limitations or were not ideal for complex structures applications

such as composites. On the other hand, FE methods even though able to deal

with very complex geometry, often lead to prohibitive computational costs. To

counteract both these issues, semi-analytical methods were developed. It often

consists in describing the out-of-plan strain in a unit cell with a FE approach

while the in-plane wave propagation is described analytically.

Semi-analytical methods

There are many significant semi-analytical methods for computing wave disper-

sion characteristics of composites. The Semi-Analytical Finite Element (SAFE)

method and the WFE method are two semi-analytical methods that are widely

used for NDE and SHM applications on composites.
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SAFE The SAFE method was proposed by Dong and Nelson [87] in 1972 for

cylinders and plate structures and applied to laminates by Liu [88, 89]. Jezzine

[90] extended the SAFE method to compute the modal solution for waveguides

of any shape. Bartoli [91] extended the method to introduce wave propaga-

tion damping in laminates. The SAFE method uses a FE discretisation of the

waveguide cross-section (two-dimensional elements for beam-like structures) or

through-the-thickness of the waveguide (one-dimensional elements for plate-like

structures) as shown in Fig.2.7.a and thus is really efficient to describe wave

propagation in a laminate for example.

Figure 2.7: Cross-sectional view of a waveguide enhancing the model discretisa-
tion for (a) the SAFE method (b) the WFE method.

Assuming a plate-like structure as waveguide, a Cartesian system with x1 and

x2 two normal axis in the plan and x1 the considered direction of propagation.

x3 is the axis normal to the plate and h the thickness of the structure. The

FE discretisation is realised through-the-thickness as displayed in Fig.2.7.a. The

approximate time-dependent displacement of a point within the eth element u(e)

is described as:

u(e)(x1, x2, x3, t) = N(x2, x3)q(e)ei(ωt−kx1), (2.21)

with N the matrix of the shape functions and q(e) the vector of nodal displace-

ments. Applying Hamilton’s principle, the SAFE governing equation for a plate

is written as follows:

[k2K1 + kK2 + K3 − ω2M]U = 0, (2.22)

with k the wavenumber, ω the angular frequency, M the global mass matrix, U
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the global nodal displacement vector and K1, K2 and K3 are the global stiffness

matrices as shown in [78, 91, 92, 6]. For a given frequency, the equation forms

a quadratic problem, and the eigenvalue k and eigenvector U can be extracted.

This method is used in the CIVA software developed at the CEA List. While

the SAFE method is very time efficient when investigating a material that is

inhomogeneous in its thickness but homogeneous in the direction of propagation

(such as composite laminates), it encounters severe limitations when it comes to

materials that are periodic in the directions of propagation (such as metamaterial

or textile composites) [6].

WFE The WFE method was firstly introduced by Orris and Petyt in [93, 94].

In [95], Abdel-Rahman extended the method to different periodic structures. The

WFE method has been applied to various types of one-dimensional waveguides

such as beam-like structures [96, 97]. Since then, the method was extended to

two-dimensional waveguides by Manconi [98] and applied to various type of struc-

tures such as plates [99, 100], thin-walled structures [101], curved layered shells

[102] and more recently periodically ribbed panels [103]. The WFE combines

the Bloch-Floquet theorem (or PST) with the FE method. The finite element

discretisation is applied to a period of the structure (e.g. the period n of length

∆L in Fig.2.7.b), using three-dimensional elements, and thus is an efficient tool

to study wave propagation in periodic structures whose complex period can be

modelled with a commercial FE software. The method is further described in

Sec.2.3.

To fully understand the advantages and drawbacks of both the SAFE and

the WFE methods, some applications are detailed. Firstly, when considering

a plate-like waveguide whose material varies through-the-thickness (x3 direction

in Fig.2.7) but is continuous in the two other principal directions (x1 and x2)

e.g. a laminate, the WFE and SAFE methods both provide the same outputs

(dispersion relations and modeshapes) for a similar nodal discretisation in the

thickness. However, the SAFE method uses one-dimensional elements while the

WFE method uses three-dimensional elements, thus computational time is re-

duced in comparison to the WFE. Secondly, if the material is periodic in the
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x1 and x2 directions, the SAFE method cannot be used while the WFE method

is adequate. To summarise, the main advantage of the SAFE method over the

WFE method is its reduced computational time, while the main advantage of the

WFE method over the SAFE method is its wider range of application.

2.2.4 Wave-based homogenisation techniques

Inverting material constants from wave-based data using optimisation algorithms

is a popular technique as the dispersive characteristics of a material are direct-

ly dependent on its elastic constants. Bulk [104, 105, 106, 107, 108] and Lamb

[92, 108, 109, 110, 111, 112] wave data are both of interest and many different op-

timisation algorithm have been proposed in that context, such as the least-square

method [104, 105, 106], simulated annealing [112] or Genetic Algorithms (GAs)

[107, 109, 92, 110, 111, 108]. Balasubramaniam [107] was the first to employ GAs

for inverting unidirectional composite material elastic moduli with great success.

The advantages of GAs over other search algorithms are that they do not need an

initial guess but rather a valid search space, it is also robust and avoid entrapment

at local minima. Using Lamb wave data rather than bulk wave data is getting

more popular nowadays for its numerous advantages such as no need to immerse

the sample, direct applications for SHM work etc. [109]. The combination of

Lamb wave data and GA has been used for material characterisation in previous

research for isotropic [92, 110], transverse isotropic [108, 111] and orthotropic

materials [109, 110].

2.2.5 Damping characterisation of composite materials

Damping is an important parameter in the design and analysis of composite

materials, especially for engineering applications in which the dynamic response

often needs to be controlled. The attenuation of a propagating wave in a thin

structure can be caused by many factors, nonetheless this subsection focuses on

the material damping only.
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Damping characteristics of composite materials

Numerous analytical models have been developed throughout the years, at both

macro- and mesoscales. At macromechanical scale, the effect of the stacking se-

quence of the composites on the damping are studied, while at mesoscale, the

yarns arrangements are of concern. The damping capacity in composite struc-

tures is generally higher than in a traditional material, mostly because of the

viscoelastic properties of the matrix [113]. A viscoelastic material is a material

which has both viscous and elastic characteristics. Thus, its behaviour is defined

both by Hooke’s law of perfect elasticity whose component can be represented by

springs that store energy and by Newton’s law of viscosity whose component can

be represented by dashpots that dissipate energy [114].

This capacity can be used to enhance the uses of composite materials. In-

deed it is well known that composites can be tuned to fit particular stiffness and

strength properties, but damping properties can be tuned as well modifying con-

stitutive parameters such as the periodic sequence, the mesoscale arrangement

of the fibre etc. [113]. It is also known that the inherent damping of the com-

ponents of a composite is the main source of damping. Increasing the matrix

proportion (i.e. decreasing the fibre volume fraction) often results in a higher

damping [113, 115]. Damping of a propagating guided wave can result in a de-

creased propagation distance, thus a reduced inspection range. Therefore, it is

of the upmost importance to know these properties for NDE and SHM purposes

[116].

Numerous studies have been carried out on the effect of fibre properties on the

damping. Early work was performed experimentally: in [117], Wright compares

the loss factors of different fibre/resin combinations by a resonant beam method,

for glass and carbon fibres. Crane [118] investigated the effect of fibre and matrix

properties as a function of frequency on the damping of composites for glass and

graphite fibre composites. Ply orientation and stacking sequence are some other

fundamental factors and thus their effect on the damping have been thoroughly

investigated. At first, those investigations were mostly involving analytical and

experimental work. Adams and Bacon [119] studied the effect of fibre orientation

and laminate geometry on the dynamic properties of CFRP. They also stated, by
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separating the energy dissipations associated to the individual stress components,

that shear is the factor that can give high damping. Using this concept of energy

dispersion separation, Adams and Maheri studied the effect of stress level on

the damping variation in CFRP [120] and showed that the fibre orientation and

stacking has an effect on the damping in [121]. Berthelot [122] did a similar study,

comparing the effect of fibre orientation in glass and Kevlar fibre composites on

the damping. This subject has drawn a lot of experimental work since [123].

Thanks to the early work of Adams and Bacon and their damping criterion,

some theoretical models for predicting damping emerged. Ni and Adams [124]

developed a model both useful and accurate for predicting damping in composite

laminates. Yim compared some damping prediction models (including Ni and

Adams’) in [125] for laminated composite beams and stated that the fibre ori-

entation has a strong effect on the damping. Berthelot et al. [126] developed a

synthesis of damping analysis of laminate material, comparing analytic method

with experimental results. In [127] Maheri compared the damping in layered FRP

panel under different boundary conditions and using various stacking sequences.

It showed that yarn orientation has an influence on the modal damping.

Thanks to the enhancement of numerical methods in the last decades, the

effect of the fibre micromechanical arrangement could be thoroughly investigated,

using FEM for example. Hwang and Gibson [128, 129] utilised a FE approach for

characterising the effects of stress on damping in laminated composites. Tsai and

Chi [130] compared different fibre micromechanical arrangements in composites

with Finite Element Analysis (FEA). Chandra et al. [131] have investigated the

effect of fibre cross-section and fibre volume fraction on damping. FEM was used

as well for establishing damping model at macroscale. Mahi in [132] evaluates

the energy dissipation for different fibre orientations, for composite materials.

Guan and Gibson [133] used FEM to study the damping characteristics of woven

fabric-reinforced for the first time. The method was compared with a closed-form

solution and experiments in order to assess the validity of the method. However,

the effect of undulate fibre bundles on the damping properties is not considered in

that study. In [134], Yu and Zhou established a damping prediction approach for

woven composites, taking the undulation of the fibres into account. This study
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shows once again a correlation between the decreasing of the loss factor with an

increasing fibre volume fraction.

Damping modelling in FEA

There are several ways of modelling the damping using FE. The complex modulus

model is an approach which consists of allowing complex frequency independent

components in the material stiffness matrix. This approach is widely used for

modelling the damping in FE codes [91, 135, 136, 137] or within semi-analytical

models as well [138]. The stiffness matrix K is treated as complex [139] to make

up for the damping term in the equation of motion. This complex matrix is com-

posed of a real part that represents the storage modulus referring to the elastic

behaviour, while the imaginary part represents the loss modulus referring to the

dissipative behaviour of the material. The accuracy of this method was discussed

by Crandall in [140, 141] and it was pointed out that this representation does not

satisfy the causality requirement thus has serious physical limitations. Viscoelas-

tic behaviour of the constituent elements is not the only damping mechanism

occuring in composite materials: thermoplastic damping and Coulomb friction

damping in the fibre/matrix interface regions are two other mechanisms to name

a few. However, it has been identified as the dominant damping mechanism [142]

and thus is the one studied here. In this modelling method, the global stiffness

matrix K is given as in Eq.(2.23):

K = K′ + iK′′ =
n∑
k=1

(K′k + iK′′k), (2.23)

where n is the total number of solid elements used in the FE discretisation. K′k

and K′′k are respectively the real and imaginary stiffness matrix contributions to

the kth finite element of the global stiffness matrix K.

Another viscoelastic model is named Kelvin-Voigt [143, 144] and has been

widely used in the literature [138, 145]. It is similar to the complex modulus

model except that the added term is frequency dependent:

K = K′(1 + iωη). (2.24)
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The Kelvin-Voigt model has been compared along the complex modulus ap-

proach to experimental results for laminated composite samples in [138] and it

was concluded that the Kelvin-Voigt model provides more accurate predictions.

At last, the proportional damping model (also called Rayleigh) is the most

commonly used viscous damping model in FE methods [146, 147]. The damping

matrix C is expressed as a linear function of the mass M and stiffness K matrices:

C = αM + βK. (2.25)

where α and β are respectively the mass and stiffness proportionality coefficients.

Loss factor determination

A method for computing the loss factor is the strain energy method, which is an

approach proposed by Ungar and Kerwin in [148] in which they gave a formulation

for the loss factor in terms of energy. Using the fact that the dissipated energy

is the result of each component contribution (fibres and matrix in the case of

composite materials). They defined the loss factor as follows:

η =

∑n
k=1 ηkWk∑

Wk

, (2.26)

where n is the total number of solid elements used in the FE discretisation. η

is the loss factor of the system, ηi is the loss factor of the ith finite element in

the system. Wi denotes the strain energy stored in the ith element at maximum

amplitude. Which would give for a composite composed of only two materials:

η =
ηfWf + ηmWm

W
. (2.27)

ηf and ηm being respectively the loss factor of the fibre and matrix materials, and

Wf and Wm the strain energy of the fibres and matrix. This method has been

used in many studies [139, 142, 149]. In 1982, Johnson et al. [139] identified the

modal strain energy method as the most promising for large-scale applications.

Hwang et al. [142] stated that the method provides a convenient and efficient

approach for damping characterisation of composites. A drawback, however, lies
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in the need for a pre-determined loss factor for the constituent materials. In

[149], the strain energy method was used to predict the damping at microscale

of fibre reinforced polymers and reasonable agreement with experimental results

was observed.

2.3 The Wave and Finite Element method

The Wave Finite Element (WFE) method is used to study the dispersion char-

acteristics of continuous waveguides or periodic structures. In this method, only

a small segment of the waveguide or a unit cell of the periodic structure needs to

be modelled to obtain the dispersion characteristics of the whole structure using

the PST (also called Bloch-Floquet theorem). A great advantage of this method

is that a complex unit cell can be modelled with a commercial FE package, and

its stiffness and mass matrices can easily be obtained to solve the equation of

motion written as

Mq̈(t) + Cq̇(t) + Kq(t) = f(t), (2.28)

where M, C and K are the mass, damping and stiffness matrices and q and f

represent a vector of respectively the nodal DoFs and forces in the unit cell. Free

wave motion is considered so f only represents the nodal forces responsible for

transmitting the wave motion from one element to the next. When no damping

and time-harmonic behaviour (leading to q̈ = −ω2q) is assumed, Eq.(2.28) is

rewritten as [
K− ω2M

]
q = f . (2.29)

According to the PST [58, 70], when a free wave travels along a periodic

waveguide, the displacements between two opposite boundary sides of a unit cell

differ only by a propagation factor

qB = λqA and fB = −λfA, (2.30)

with qA and qB the nodal displacement on respectively a face named A of the

considered unit cell and B its opposite face, separated by the distance ∆. λ is
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the propagation factor such as

λ = e−µ∆e−ik∆, (2.31)

in which µ represents the change in amplitude and k represents the change in

phase. For models in which no damping is considered, the amplitude of a propa-

gating wave remains constant, which is given by µ = 0. The propagation factor

depends only of the wavenumber k and the length between opposite faces ∆:

λ = e−ik∆. (2.32)

Combining Eq.(2.29) with Eq.(2.30) and Eq.(2.32) gives an eigenvalue problem

whose form depends on the nature of the solution sought. The two following

subsections explore the different eigenproblem formulations for one-dimensional

and two-dimensional waveguides (meaning waveguides in which waves propagate

along one or two directions respectively). The third subsection introduces the

Craig-Bampton method for a further reduction of the problem size.

2.3.1 One-dimensional WFE

A one-dimensional waveguide is a medium in which a wave propagates in one

main direction of propagation (e.g. a beam or a rod). In 1D WFE, it is almost a

convention to consider the wave motion to be along the x direction, so Eq.(2.30)

can be written as [58]

qR = λxqL and fR = −λx fL, (2.33)

with qR and fR respectively the displacement and force on the right side of

the considered unit cell and qL and fL respectively the displacement and force on

the left side.

The nodal DoFs of the unit cell are partitioned in the following way: left, right

and internal DoFs, which gives q =
[
qT

L qT
R qT

I

]T
. In order to use the PST, it is

important to note that the considered unit cell needs to be meshed in a similar way

on its opposite boundaries (left and right sides for a one-dimensional waveguide),
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so that continuity in displacements and forces equilibrium is respected.

Different formulations of the problem exist, all leading to a different eigenvalue

problem. These are presented in the following subsections.

The wavenumber k is specified, µ = 0 and the angular frequency ω is

sought

In this first formulation, abbreviated ω(k), the frequency of a wave propagating in

the structure can be calculated from the standard linear eigenvalue problem for a

specified wavenumber. Using the PST (Eq.(2.33)), the nodal DoFs are rewritten

as [150, 151]


qL

qR

qI

 =


I 0

Iλx 0

0 I


 qL

qI

 = ΛR(λx)

 qL

qI

 . (2.34)

Equilibrium at the left side nodes gives:

ΛL(λx)


fL

fR

0

 = 0, (2.35)

with

ΛL(λx) =

 I Iλx
−1 0

0 0 I

 . (2.36)

Combining Eq.(2.29), Eq.(2.34) and Eq.(2.35), the following eigenvalue problem

appears

ΛL(K− ω2M)ΛR

 qL

qI

 = 0, (2.37)

with ΛL and ΛR depending on the specified wavenumber kx. The angular frequen-

cy ω and its corresponding modeshape q are sought. Iterating the calculation for

a set of specified wavenumbers gives a set of angular frequencies and their corre-

sponding modeshapes. An advantage of that formulation is that it keeps the full

set of nodal DoFs, its main disadvantage however relies in the assumption of no

attenuation [150, 152].
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The angular frequency ω is assigned, complex wavenumber k is sought

This formulation is abbreviated k(ω). The eigenvalue problem is polynomial, a

dynamic stiffness matrix D̃ needs to be constructed

D̃ = K− ω2M. (2.38)

Decomposing the matrix into left, right and internal DoFs and combining it with

Eq.(2.29) results in the following equation


D̃LL D̃LR D̃LI

D̃RL D̃RR D̃RI

D̃IL D̃IR D̃II




qL

qR

qI

 =


fL

fR

0

 . (2.39)

Using the third row of Eq. 2.39, the internal DoFs are eliminated [153]

qI = −D̃−1
II (D̃ILqL + D̃IRqR). (2.40)

This leads to

 D̃LL − D̃LID̃
−1
II D̃IL D̃LR − D̃LID̃

−1
II D̃IR

D̃RL − D̃RID̃
−1
II D̃IL D̃RR − D̃RID̃

−1
II D̃IR


 qL

qR

 =

 fL

fR

 , (2.41)

which can be written

 DLL DLR

DRL DRR


 qL

qR

 =

 fL

fR

 . (2.42)

The transfer matrix that depends only on the dynamic stiffness matrix of the cell

is sought [58, 154] as

T

 qL

fL

 = λx

 qL

fL

 , (2.43)

it follows from Eq.(2.42) that

T =

 −D−1
LRDLL D−1

LR

−DRL + DRRD−1
LRDLL −DRRD−1

LR

 . (2.44)
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Solving the eigenvalue problem presented in Eq.(2.43) gives a relation between the

wavenumber and the angular frequency and the associated modeshapes [ qL fL ]T.

The main disadvantage of this formulation is the condensation of the internal D-

oFs to the boundary.

Both formulations provide the same results as long as the medium is homoge-

neous in the direction of propagation. For a periodic medium, the condensation

of the internal DoFs performed in the second formulation alters the results.

2.3.2 Two-dimensional WFE

This method has been extended by Manconi and Mace in [98] for free wave prop-

agation in homogeneous structures in both the x and y directions but whose

properties may vary in the through-the-thickness (z) direction. The authors ap-

plied this method in particular to isotropic, orthotropic and composite laminated

plates and cylinders [98, 155]. In order to use the PST, it is important to note

that the considered unit cell needs to be meshed in a similar way on its opposite

boundaries (i.e. left and right sides; bottom and top sides; and every edges along

the z direction for a two-dimensional waveguide as seen in Fig.2.8), so that con-

tinuity in displacements and forces equilibrium is respected (i.e. qk,m+1
B = qk,mT

and fk,m+1
B = −fk,mT ) as shown in Fig.2.9.

As for the 1D WFE method, using the PST allows for reducing considerably

the number of variables [150]:

qR = λxqL; qT = λyqB

qRB = λxqLB; qLT = λyqLB; qRT = λxλyqLB.

(2.45)

The nodal DoFs of the unit cell are partitioned in the following way: bottom,

top, left, right, left bottom corner, right bottom corner, left top corner, right

top corner and internal DoFs, which gives Eq.(2.46) (bd subscript stands for

boundary).

q =
[
qT

B qT
T qT

L qT
R qT

LB qT
RB qT

LT qT
RT qT

I

]T
=
[
qT

bd qT
I

]T
.

(2.46)
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Figure 2.8: Partitioning of the degrees of freedom of a unit cell; ‘*’ side nodes:
bottom, top, left, right; ‘diamond’ corner nodes: LT (left-bottom), RB (right-
bottom), LT (left-top), RT (right-top); ‘o’ internal nodes. Adapted from [150].

Figure 2.9: Decomposition of a two-dimensional periodic structure in an assembly
of unit cells and presentation of the PST adapted from [96, 151].

In 2D WFE, the wavenumber k is expressed as follows:

kx = kcos(θ), ky = ksin(θ),

k =
√
k2
x + k2

y,

(2.47)

and the direction of propagation is written: θ = tan−1(ky/kx). The form of the
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eigenproblem depends once again on the problem type [152].

The wavenumber k(kx, ky) is specified, µ = 0 and ω is sought

The frequencies of the waves that propagate in the structure can be calculated

from the standard linear eigenvalue problem [156, 157]. Using Eq. 2.45, the nodal

DoFs can be rearranged as [150, 151]



qB

qT

qL

qR

qLB

qRB

qLT

qRT

qI



=



I 0 0 0

Iλy 0 0 0

0 I 0 0

0 Iλx 0 0

0 0 I 0

0 0 Iλx 0

0 0 Iλy 0

0 0 Iλxλy 0

0 0 0 I





qB

qL

qLB

qI


= ΛR(λx, λy)



qB

qL

qLB

qI


. (2.48)

Equilibrium at the right top corner nodes gives:

ΛL(λx, λy)

 fbd

0

 = 0, (2.49)

with

ΛL(λx, λy) =



I Iλy
−1 0 0 0 0 0 0 0

0 0 I Iλx
−1 0 0 0 0 0

0 0 0 0 I Iλx
−1 Iλy

−1 Iλ−1x λ−1y 0

0 0 0 0 0 0 0 0 I


. (2.50)

The following eigenvalue problem appears

ΛL(K− ω2M)ΛR



qB

qL

qLB

qI


= 0. (2.51)
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The frequency and one wavenumber, say kx, is specified. ky is sought

The eigenvalue problem is quadratic in λy [156, 157]. The inner DoFs are con-

densed, the explicit coefficients X(ω, λx),Y(ω, λx),Z(ω, λx) are given such that

the equation of motion is written as:

(λ2
yX + λyY + Z)


qB

qL

qLB

 = 0. (2.52)

The frequency and the direction of propagation are specified, k is

sought

The eigenvalue problem is polynomial or transcendental [98].

2.3.3 The Craig-Bampton method

Applying the WFE method to large models implies large computational cost.

Component Mode Synthesis (CMS) are standard methods to reduce the com-

plexity of structural dynamics models leading to reduced CPU cost. The Craig-

Bampton method introduced in [158] is one of them. This method has been

widely used in the literature and in particular alongside the WFE method [103,

157, 150, 151, 159, 160].

For free wave propagation, no external force acts on the internal nodes of the

structure, this leads to fI = 0. The equation of motion (Eq.(2.29)) of the unit

cell becomes:


 Kbdbd KbdI

KIbd KII

− ω2

 Mbdbd MbdI

MIbd MII



 qbd

qI

 =

 fbd

0

 . (2.53)

with qbd the boundary nodal DoFs, which vary according to the type of problem

(i.e. 1D WFE or 2D WFE).

The key to this method is the reduction of the internal nodal DoFs. qΦ is

the reduced set of the physical internal DoFs qI, whereas the boundary DoFs

qbd are kept as physical coordinates [158, 161]. Hence, a set of ‘fixed boundary’

modes, also called ‘component’ modes ΦC are selected amongst a subset ΦI of
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the local modes of the unit cell when the boundary DoFs are fixed and no force is

acting on the internal nodes. ΦI is obtained by solving the following eigenvalue

problem: [
KII − ω2MII

]
ΦI = 0, (2.54)

The modal selection is based on the lowest resonance frequencies of the clamped

model. A rule-of-thumb is to select all modes in ΦI whose resonance frequency is

situated within [0, 3fmax] to form the modal basis ΦC, with fmax the maximum

frequency of interest for the wave dispersion analysis [157, 151, 159].

Φbd represents the static boundary modes. It is called ‘static’ as it uses the

system equation describing the unit cell behaviour for a static analysis [158]:

Kq = F. (2.55)

This gives  Kbdbd KbdI

KIbd KII


 qbd

qI

 =

 fbd

0

 . (2.56)

And from the second row of Eq.(2.56), it can be written

KIbdqbd + KIIqI = 0, (2.57)

or

qI = −KII
−1KIbdqbd = Φbdqbd. (2.58)

Thus, the matrix of static boundary modes Φbd is written as proposed in [157,

158, 150, 151, 159] and displayed in Eq.(2.59):

Φbd = −K−1
II KIbd. (2.59)

Matrix inversion can be very costly when considering extra large problems. Using

the preconditioned conjugate gradients method allows for solving −KIIΦbd =

KIbd without inversion and is used in our methodology. The Craig-Bampton

transformation matrix B uses both ΦC and Φbd to reduce the internal nodal
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DoFs and keeps the boundary nodal DoFs identical as follows:

 qbd

qI

 =

 I 0

Φbd ΦC


 qbd

qΦ

 = B

 qbd

qΦ

 . (2.60)

The B matrix is the link between the physical coordinates and reduced ones. The

mass and stiffness matrix M and K are projected on this basis [157, 158, 150,

151, 159].

K̃ = BTKB, M̃ = BTMB. (2.61)

This provides an efficient and reduced basis allowing for describing the response

of the internal DoFs.

The WFE formulation (1D or 2D) dictates the boundary nodal DoFs that

need to be ‘clamped’ in order to obtain the appopriate ΦC. Combining the CMS

reduction method (Eq.(2.61)) and the 1D WFE method (Eq.(2.37)) gives

ΛLBT(K− ω2M)BΛR

 qL

qΦ

 = 0. (2.62)

When combined with the 2D WFE method (Eq.(2.51)), the eigenproblem to be

solved is given as follows

ΛLBT(K− ω2M)BΛR



qB

qL

qLB

qΦ


= 0. (2.63)

2.4 Conclusions

Textile composite materials are increasingly used in the aerospace industry. They

are composed of a fabric used as reinforcement and a binding polymer used as a

matrix. These materials are complex at different level and thus the prediction of

their dynamic behaviour is complicated. For these reasons, multiscale modelling

needs to be considered for simulations involving these materials.

For SHM and NDE purposes, being able to predict wave propagation char-
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acteristics in these materials is of the upmost importance. Various methods for

dispersion characterisation of homogeneous, layered or periodic structures have

been presented. WFE and in particular the formulation where the wavenumber is

specified and the frequency sought is the most adequate method to be applied to

a detailed model. Thus, attempts should be made to combine this method with

detailed mesoscale models of textile composites for dispersion characterisation. A

drawback of this formulation, however, lies in the assumption of no attenuation.

Therefore, an effort to formulate a damping model within this method is to be

made.
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Methodology for numerical

dispersion characterisation of

textile composites

In this chapter, a novel methodology for dispersion characteristics prediction of

textile composites is presented. The methodology combines mesoscale modelling

of the material with the WFE and CMS methods. In the first two sections, the

one- and two-dimensional WFE methods are used to compute the dispersion char-

acteristics for structures made of isotropic and laminated composite materials,

and are compared with other analytical, semi-analytical and numerical methods.

The aim is to display the wide range of application of the WFE method and to

verify its validity in comparison with other existing methods. The third section

presents the whole methodology developed to obtain the dispersion characteristics

of textile composites.

3.1 One-dimensional WFE: examples and com-

parisons

Comparisons involving the 1D WFE method are presented in this section. Analyt-

ical models are compared against the WFE method for a homogeneous isotropic

beam. Then, the WFE method is compared to a transient FEA for a laminated

composite beam.
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Chapter 3. Methodology for numerical dispersion characterisation of textile
composites

3.1.1 Comparison of analytical models and the WFE method

The dispersion characteristics are computed for a homogeneous beam made of

an isotropic material. Different methods are used: the analytical method whose

models are described in Sec.2.2.1 and the WFE method whose formulations are

described in Sec.2.3.1. Even though the WFE method is suited for layered or

periodic media, it can be applied to continuous media as well by introducing a

virtual periodicity. An example of a period of a homogeneous isotropic beam

modelled with Abaqus is displayed in Fig.3.1. Linear brick elements (C3D8) are

used and no boundary conditions are applied. The model dimensions are of 0.02×

0.1 × 0.5 mm and the beam is assumed to be of infinite length in the x direction.

Its mechanical properties are as follow: E=70 GPa, ν = 0.1 and ρ = 1600kg/m3.

Figure 3.1: Meshed unit cell model used to compute the dispersion characteristics
of the described beam structure by WFE.

Figure 3.2 displays the dispersion characteristics obtained with the analytical

models presented in Sec.2.2.1 as well as the results obtained with both eigen-

problem formulations of the 1D WFE presented in Sec.2.3.1 for relatively low

frequencies. A perfect agreement is observed between the dispersion curves ob-

tained through the three different methods as expected.

Figure 3.3 shows the dispersion characteristics of the two bending modes ob-

tained with the Euler-Bernoulli and Timoshenko analytical models presented in

Sec.2.2.1 as well as all modes obtained with the WFE method for a middle to high

frequency range. From around 0.2 MHz, the predictions from the Euler-Bernoulli
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Figure 3.2: Dispersion curves of the first four modes of a thin isotropic beam using
three different methods at low frequency: the analytical method whose models
are found in Sec.2.2.1 (–), the k(ω) WFE formulation (*) (see Eq.(2.37)), and the
ω(k) WFE formulation (+) (see Eq.(2.43)). From the lowest part of the figure
to the highest: the longitudinal mode, the torsional mode and the two bending
modes.

model start diverging from the two other methods. The Timoshenko model and

the WFE method, however, are showing a good agreement. These results were

expected as stated in Sec.2.2.1.

0 0.5 1 1.5 2 2.5 3

106

0

2000

4000

6000

8000

10000
Euler-Bernoulli
Timoshenko
k( )

Figure 3.3: Dispersion curves of the two bending modes of a thin isotropic beam
using three different methods at higher frequency: the Euler-Bernoulli analytical
model (black –), the Timoshenko analytical model(blue –) and the k(ω) WFE
formulation (*) for which all modes are plotted.

Comparing the WFE method with analytical models for validation shows lim-
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itations as the analytical models lack in robustness for inhomogeneous materials

and high frequencies.

3.1.2 Comparison of transient FEA and the WFE method

To ensure the numerical validity of the WFE method, a transient FEA is per-

formed for a laminated composite beam as an alternative to obtain the dispersion

relations using Abaqus. The beam is composed of five orthotropic layers of dif-

ferent moduli and a period is displayed in Fig.3.4. The mechanical properties of

the five layers can be found in Tables B.1-B.5 in Appendix.

Figure 3.4: Meshed unit cell model used to compute the dispersion characteristics
of the described laminated composite beam structure by WFE. The dimensions
of the modelled unit cell are 0.20 × 20 × 1.97 mm.

The modelled beam is 20 mm wide, 2750 mm long and has a thickness of

1.97 mm. No boundary conditions are applied, the elements are C3D8 and

Abaqus/Explicit solver is used. A signal is generated at one end side of the

beam and the displacements induced by the wave propagation along the beam

are measured and recorded over time at a set of discrete positions. The input

excitation signal is sinusoidal periodic and carries a wide frequency band. Two

cycles of the sinusoidal function (Eq.(3.1)) are modulated by a window function

(Hanning window here: Eq.(3.2)).

The equation for the sinusoidal function is as follows

f(t) = sin(ωt), (3.1)
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with ω the angular frequency and t the time. The Hanning window is written as

w(n) = sin2
(
πn

N

)
, 0 ≤ n ≤ N, (3.2)

L = N + 1 is the window length. N is calculated as follows

N = No.cycles
2πfs
ω

, (3.3)

with No.cycles the number of cycles and fs the sampling frequency.

These two functions as well as the result of the modulation are shown in

Fig.3.5. The discrete Fourier transform of the signal is plotted in Fig.3.6. It

can be observed that the signal has a wide frequency band around the central

frequency of 300 kHz. The interest in having a wide frequency band in the

excitation signal is that only one simulation is needed to obtain the dispersion

relations for a large frequency band.
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Figure 3.5: Example of an input signal (–) created using a 2-cycles sinusoidal
function with a central frequency of 300 kHz (- -), modulated by a Hanning
window (- o -).

The two-dimensional Fast Fourier Transform (FFT) [162, 163] is applied on

the displacements amplitude over time extracted at a set of discrete positions

along the beam to obtain the dispersion curves. These dispersion characteristics

are plotted in Fig.3.7 and a perfect agreement between this method and the WFE

method is observed.

A drawback of using the first formulation presented in Sec.2.3.1 comes from

the periodicity of the propagation constant function (λ = e−ik∆) which restricts

45



Chapter 3. Methodology for numerical dispersion characterisation of textile
composites

0 2 4 6 8 10

105

0

0.02

0.04

0.06

0.08

0.1

Figure 3.6: Discrete Fourier transform of the input signal presented in Fig.3.5.
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Figure 3.7: Dispersion characteristics of a laminated composite beam, whose
layers each are a different homogeneous orthotropic material. In the background
are the results from the transient FEA, the WFE results are plotted as yellow
+. A perfect agreement is observed. In this transient FEA, only the longitudinal
and out-of-plane displacements (respectively U1 and U3) were captured, thus the
flexural mode, whose principal displacement component is U2, is not observed.

the wavenumber study in the [−π/∆, π/∆] interval (called the BZ as detailed

in Sec.2.2.2) and when applied to a continuous medium, artificial aspects are

introduced due to this periodicity: the branches of the dispersion curves are

reflected at the limits of the BZ creating a confusing representation. In order

to obtain a clear dispersion curves representation, the aspect ratio of the unit

cell Ra = ∆/2b has to be chosen wisely (2b represents the thickness and ∆ the

cell length). Figure 3.8 shows the results obtained for a unit cell of aspect ratio

Ra = 0.1 and of Ra = 4. In the case of a continuous medium, the reflected

branches do not have a physical meaning as the periodicity of the material is
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only virtual and cannot be observed using transient FEA as seen in Fig.3.7. In

[164], the authors state that the aspect ratio should be below 0.2 to provide a

clear representation. While it is possible to wield the length of the unit cell

to provide a good aspect ratio in the case of a continuous medium, this is not

an option when considering a periodic medium as its period is definite and its

thickness cannot be changed either without altering the properties of the model.
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Figure 3.8: Dispersion characteristics of a laminated composite beam, whose
layers each are a different homogeneous orthotropic material, for two different
aspect ratios. Ra = 0.1 (+) and Ra = 4 (*). The horizontal red dotted line
defines the limit of the IBZ.

A method based on the computation of the correlation level between mode-

shapes allows for recovering results in a clear form (similarly to the results ob-

tained for Ra = 0.1 in Fig.3.8) from results obtained with a large Ra (similarly

to the results obtained for Ra = 4) by ‘unwrapping’ the modes branches. The

Modal Assurance Criterion (MAC) as defined in [165] is used to quantify the

correlation.

3.2 Two-dimensional WFE: examples and com-

parisons

Comparisons involving the 2D WFE method are presented in this section. The

analytical models are compared against the WFE method for a homogeneous
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isotropic plate. Then, the SAFE and WFE methods are compared for a laminated

composite plate.

3.2.1 Comparison of analytical models and the WFE method

The dispersion characteristics are computed for a homogeneous plate made of

an isotropic material. Different methods are used: the analytical method whose

models are described in Sec.2.2.1 and the WFE method whose formulations are

described in Sec.2.3.2. Even though the WFE method is suited for periodic media,

it can be applied to continuous media as well by introducing a virtual periodicity.

An example of a period of a homogeneous plate modelled with Abaqus is displayed

in Fig.3.9. No boundary conditions are applied and the elements are C3D8. A

convergence study was performed to ensure sufficient elements in the thickness.

Its dimensions are of 0.02 × 0.02 × 0.5 mm and the plate is assumed to be of

infinite length in both the x and y directions. Its mechanical properties are as

follow: E=70 GPa, ν = 0.1 and ρ = 1600kg/m3.

Figure 3.9: Meshed unit cell model used to compute the dispersion characteristics
of the described plate structure by WFE.

Figure 3.10 displays the dispersion characteristics obtained with the analyti-

cal model presented in Sec.2.2.1 as well as the results obtained with the 2D WFE

method for two of the eigenproblem formulations presented in Sec.2.3.2 for rel-

atively low frequencies. A perfect agreement is observed between the dispersion

curves obtained through all three different methods as expected.
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Figure 3.10: Dispersion curves of the first three modes of a thin isotropic plate
using three different methods at low frequency: the analytical method whose
models are found in Sec.2.2.1 (–), the k(ω) WFE formulation (*), and the ω(k)
WFE formulation (+).

Figure 3.11 shows the dispersion characteristics of the three first modes ob-

tained with the analytical model presented in Sec.2.2.1 as well as the dispersion

curves obtained with the WFE method for a middle to high frequency range. It

shows a divergence between the two models starting at around 50 kHz. There ex-

ist analytical models that provide better predictions for a higher frequency range

but this is not the topic of the thesis.
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Figure 3.11: Dispersion curves of the first three modes of a thin isotropic plate
using two different methods at higher frequency: the analytical method whose
models are found in Sec.2.2.1 (–), and the k(ω) WFE formulation (*).

Once again, comparing the WFE method with analytical models shows limi-
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tations as they lack in robustness for inhomogeneous materials and high frequen-

cies. Indeed, in the CPT, the displacement field is based on the three Kirchhoff

hypothesis [166] which encounter limitations for high frequencies.

3.2.2 Comparison of the SAFE and WFE methods

SAFE just like WFE is a semi-analytical method that is used in industry for sim-

ulating Lamb waves in inhomogeneous media such as laminated composites. The

output from the SAFE method (briefly presented in Sec.2.2.3) are the wavenum-

bers and the modeshapes similarly to one of the WFE formulations. The SAFE

method, however, has the advantage of being faster than the WFE method.

Nonetheless it bears a significant disadvantage over the WFE method in its lim-

ited range of application. Indeed while the WFE can deal both with periodic and

continuous laminated structures, the SAFE method only handles the latter.

Both methods are used to compute the dispersion relations of a laminated

composite plate, whose layer properties are orthotropic and of infinite dimensions,

for propagation in the x and y directions and displayed in Fig.3.12-3.13. An

excellent agreement between the two methods is observed for a wide frequency

band.
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Figure 3.12: Dispersion characteristics of a laminated composite plate composed
of five orthotropic layers in the x direction of propagation. Using the WFE
method (×) and the SAFE method (+). Excellent agreement is observed.
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Figure 3.13: Dispersion characteristics of a laminated composite plate composed
of five orthotropic layers in the y direction of propagation.Using the WFE method
(×) and the SAFE method (+). Excellent agreement is observed.

3.3 Dispersion characterisation of textile com-

posites

Numerical characterisation of the dispersion properties of a textile composite

structure begins with the mesoscale modelling of its unit cell. Firstly, the defini-

tion of the textile unit cell geometry is performed using a specialist pre-processor

such as Texgen [51, 167, 168, 169, 170] (see Sec.B.2 in Appendix). This open

source software is developed by the Composites Research Group at the Univer-

sity of Nottingham and is used for modelling the geometry of textile structures

such as 2D or 3D fabrics (see Fig.2.1). The mechanical properties are added to

the yarns and the matrix during the model definition process. Once the model

has been generated, it can be exported to a FE software, and finally the mass

and stiffness matrices M and K of the unit cell can be extracted, as shown in

Fig.3.14. The matrices are inserted in the equation of motion (see Eq.(2.29)), the

Craig-Bampton method (see Sec.2.3.3) is applied to reduce the size of the prob-

lem and finally the WFE method is applied to obtain the dispersion relations

for a one-dimensional or two-dimensional waveguide as presented respectively in

Sec.2.3.1 and Sec.2.3.2. In order to avoid a condensation of the internal DoFs to

the boundary of the unit cell, the eigenproblem formulation of choice is the one

where the wavenumber k is specified, µ = 0 and the frequency is sought.
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Figure 3.14: Step-by-step methodology of the mesoscale formulation for disper-
sion characterisation of composites.

This section focuses on the compatibility and interfacing between the textile

composite mesoscale modelling and the WFE and CMS methods as well as the

different issues it raises. The textile composite of choice for most case studies in

this section is a one layer 2D plain woven composite (whose unit cell is shown in

Fig.3.14) as it requires only a simple modelling while exhibiting characteristics of

textile composites such as yarn undulation and interlacing.

3.3.1 Element types

The FE software used in the study is Abaqus whose choices of 3D solid elements

are hexahedral, wedge or tetrahedral elements. TexGen on the other side offer-

s two types of discretisation that are compatible with Abaqus: either a voxel

discretisation with a hexahedral mesh or a conformal discretisation with a tetra-
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hedral mesh [167]. The voxel mesh proposes a coarse but robust discretisation

of the geometry and greatly simplifies the automated mesh generation while a

tetrahedral mesh provides much better geometrical description but possibly de-

generated elements (e.g. disproportionate elements with one edge considerably

larger than another).

When considering a linear brick element (e.g. C3D8 in Abaqus) and a linear

tetrahedral element (e.g. C3D4 in Abaqus), the linear brick element is of better

quality. The use of linear tetrahedral elements is often discouraged unless used

in great quantity for an extremely fine mesh as they are overly stiff. Another

possibility is to use quadratic tetrahedral elements (e.g. C3D10 in Abaqus),

however, these greatly increase the number of nodes without increasing the quality

of the geometrical discretisation.

It is important to note that in order to obtain accurate results, a requirement

of using at least six to ten elements per wavelength [58] has to be applied. Also

in the cross-sectional plan, the number of elements has to be high enough to

describe the geometrical and mechanical properties of the material but also to

characterise the modeshapes. Finally the shape of the elements should comply

with requirements of conventional FE modelling.

Three mesh convergence studies are performed on a 2D plain woven compos-

ite model, whose unit cell is displayed in Fig.3.15. One uses linear hexahedral

elements (i.e. C3D8), the second uses linear tetrahedral elements (i.e. C3D4)

and the last uses quadratic tetrahedral elements (i.e. C3D10). An example of

each mesh with approximately the same number of nodes is displayed in Fig.3.16

for comparison. The materials properties are given in Tables B.6 and B.7 in

Appendix.

A convergence study is performed by comparing the effective mechanical prop-

erties obtained by static virtual testing (see Sec.A.1 in Appendix). For simplic-

ity, this type of convergence study is named ‘static convergence study’ in the

manuscript. The mesh is gradually refined and each new mesh is composed of

around twice as many nodes as the previous mesh. The relative error for a mesh

is computed relatively to the next finer mesh. Detailed illustrations displaying

the mesh refinement of the models are shown in Fig.B.4-B.6 and their effective
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Figure 3.15: 2D plain woven composite and its unit cell.

Figure 3.16: C3D8, C3D4 and C3D10 mesh models comparison for the same unit
cell of a 2D plain woven composite. All three models contain approximatively
the same number of nodes.

mechanical properties in Tables B.8-B.10 in Appendix.

Figure 3.17 displays the results for a static convergence study performed for

the linear hexahedral mesh models. It is observed that the effective material

properties tend to converge only for very a fine mesh (see Fig.B.6 in Appendix)

when using a voxel discretisation and linear hexahedral elements. This can easily

be justified by the lack of accuracy in the geometry representation induced by

the voxel discretisation and can be quantified by observing the matrix and yarn

volume fraction in the model (see Fig.3.18).

On the other hand, a standard discretisation using tetrahedral elements pro-

vides an accurate geometrical representation and thus a steady yarn volume frac-
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Figure 3.17: Convergence study, using the engineering constants as comparing
parameters for the models discretised using a linear hexahedral mesh.
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Figure 3.18: Yarn volume fraction within the different models discretised using
voxel elements (in blue). The red horizontal line gives the theoretical TexGen
value.

tion and a ‘fast’ convergence of the effective material properties as observed in

Fig.3.19 and in [171].

A technique to correct the inaccurate yarn volume fraction in the voxel models

is to reflect the error on the fibre volume fraction contained in a yarn, e.g. if the

effective yarn volume fraction in the FE model is lower than the theoretical yarn

volume fraction, increasing the fibre volume fraction within the yarn increases the

actual fibre volume fraction in the whole composite and thus provides a faster

convergence as shown in Fig.3.20.
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Figure 3.19: Convergence study, using the engineering constants as comparing
parameters for the models discretised using a linear tetrahedral mesh.
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Figure 3.20: Convergence study, using the engineering constants as comparing
parameters for the models discretised using a linear hexahedral mesh and adjusted
volume fractions.

However, since the dispersion characteristics are of interest, a second con-

vergence study is performed by comparison of the dispersion curves obtained

using the different meshes. It should be noted that most studied mesoscopic

structures in the thesis are complex composite plates whose cross-sections are

non-homogeneous, thus the propagating modes are not pure Lamb modes but

rather quasi Lamb modes. For the sake of briefness, the quasi Lamb modes will

simply be referred as Lamb modes throughout the thesis. In Fig.3.21.a are dis-

played the flexural modes obtained for linear tetrahedral meshes of the 2D plain
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Figure 3.21: Convergence study based on the dispersion characteristics of the
linear tetrahedral mesh models. (a) flexural mode dispersion curve for models
with different number of nodes (b) convergence of the wavenumber parameter.
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Figure 3.22: Convergence study based on the dispersion characteristics of the
quadratic tetrahedral mesh models. (a) flexural mode dispersion curve for models
with different number of nodes (b) convergence of the wavenumber parameter.

woven composite model and in Fig.3.21.b the relative error for the three first

modes dispersion curves. It is deduced that a great number of elements would be

needed for a linear tetrahedral mesh to converge to a solution. As it was stated

before, the C3D4 elements are overly stiff and do not converge unless using a very

fine mesh.

The following two figures (Fig.3.22.a and 3.22.b) display the results from the

same study using quadratic tetrahedral elements. The convergence in that case

is very fast as the model with 10625 nodes is converged. While performing this

convergence study, it occurred that meshing using tetrahedral elements is not

robust as many degenerated elements were created and in many cases it prevented

the dispersion characterisation of the model to be performed.

The following two figures (Fig.3.23.a and 3.23.b) are showing results from the
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Figure 3.23: Convergence study based on the dispersion characteristics of the
linear hexahedral mesh models. (a) flexural mode dispersion curve for models
with different number of nodes (b) convergence of the wavenumber parameter.
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Figure 3.24: Convergence study based on the dispersion characteristics of the
linear hexahedral mesh with adjusted volume fraction models. (a) flexural mode
dispersion curve for models with different number of nodes (b) convergence of the
wavenumber parameter.

same convergence study. However, in that case a voxel discretisation with a mesh

made of linear hexahedral elements is studied. The meshing process is robust

and the convergence is fast as well. The model with 7436 nodes is converged,

while using quadratic tetrahedral elements, 10625 nodes were needed. It can be

concluded that using a voxel discretisation and linear hexahedral elements means

a more robust discretisation process at lower CPU cost for obtaining converged

dispersion characteristics.

Finally, this study is performed once again with the same models (i.e. voxel

discretisation and C3D8 elements) but with adjusted fibre volume fractions. The

results are displayed in Fig.3.24 and it occurs that adjusting the fibre volume

fraction has little effect on this dispersion characteristics based convergence study.

58



Chapter 3. Methodology for numerical dispersion characterisation of textile
composites

From this subsection, it is concluded that a hexahedral mesh is robust and

accurate for obtaining dispersion characteristics in textile composites. Also re-

calculating the fibre volume fraction according to the yarn volume fraction in the

model helps for a faster convergence of the static effective material characteristics

but has no incidence on the convergence of the dispersion characteristics. Thus

this meshing methodology will be used for the next case studies in this thesis.

3.3.2 Choice of the representative period

The choice of the unit cell to study in order to obtain the dispersion character-

istics of a textile composite is of importance. One wants to have a cell with the

smallest dimensions while still containing all of the features that defines the tex-

tile composite, that is per definition of the unit cell. However, the fact that the

unit cell needs to be discretised has to be taken into consideration when choosing

it.

A voxel discretisation infers brick elements whose edges are directed towards

the x, y and z directions. A textile composite on the other hand often has two

main fibre orientations, perpendicular to each other. In that case it is advanta-

geous to choose the unit cell accordingly, e.g. choosing the unit cell number one

instead of number two on Fig.3.25 allows for avoiding a sawtooth mesh pattern

on the edge on the yarns while increasing its dimensions by only a small fac-

tor. Another rule-of-thumb is to try to keep each yarn as one piece instead of

two as shown on Fig.3.25 with unit cell number three as it creates undesirable

discretisation effects.

These rules-of-thumb should be respected in order to provide a faster and more

robust mesh convergence for the models. However, any of these choices, given

that the mesh is converged should provide the exact same results. In Fig.3.26

the dispersion curves for waves propagating in the x direction computed for the

three unit cells highlighted in Fig.3.25 can be observed. The figure shows indeed

that the dispersion curves are similar for all models with some slight differences

at relatively high frequencies originating from the use of non-converged meshes.
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Figure 3.25: Different choice of unit cell for a 2D plain woven composite on the
left, the yarns discretisation with the same number of total elements in each
representations.

0 0.5 1 1.5 2 2.5 3 3.5 4

105

0

500

1000

1500

2000

2500

3000
Unit cell #1
Unit cell #2
Unit cell #3

Figure 3.26: Dispersion curves for different unit cells of the same 2D plain woven
composite for waves propagating in the x direction.

3.3.3 Influence of the CMS reduction method

In order to apply the WFE method to textile composites, a fine mesh is needed

for an accurate mesoscale description. This implies a large number of DoFs and

therefore large computational cost. Thus the Craig-Bampton method detailed in

Sec.2.3.3 is used to reduce the complexity of the textile composite models. In

this short subsection, the impact of the CMS reduction method on the results is

studied. Two methodologies are compared, the ‘classical’ one shown in Fig.3.14,

and the same one omitting the CMS reduction step, both applied on the same

model of a 2D plain woven composite. The comparison is performed in the
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frequency range [0, 0.4MHz] as displayed in Fig.3.27. Thus, to apply the CMS

method, a reduced set qΦ of modes has to be selected based on the lower resonance

frequencies of the clamped model in the range [0, 3fmax] as a rule-of-thumb. In

this case, it means that at least all the modes situated in [0, 1.2MHz] are selected.

The results are displayed in Fig.3.27. It can be seen that the CMS reduction

method shows negligible error (mean relative difference of 0.06% for the flexural

mode, 0.27% for the shear mode and 0.13% for the extensional mode). Moreover,

a Bragg stop-band is present around 200 kHz in the flexural mode and is predicted

by both models.
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Figure 3.27: Dispersion curves of the flexural, shear and extensional modes for a
same model but different reduction methods; (- -) using both the CMS and WFE
methods and (–) using only the WFE method. The complete overlapping of the
curves shows a great agreement.

3.3.4 Mesoscale and macroscale methodologies compari-

son

In this subsection, dispersion curves computed for two different textile composites

considered at mesoscopic scale and their equivalent macroscale models are com-

pared. Mechanical parameters of the macroscale models are obtained by static

virtual testing of the mesoscale model as described in Sec.A.1 in Appendix. Using

a macroscale instead of a mesoscale model allows for reducing the complexity of

the problem. An advantage is the enhancing of the calculations speed, a draw-

back, however, lies in the possible oversimplification of the problem and thus a
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lack of accuracy in the results. A laminate composite usually is homogenised

with each layer considered independently, resulting in an assembly of orthotropic

layers (each modelled at a macroscopic scale), whereas a textile composite cannot

be divided into individual layers in a straightforward way as the yarn assembly is

more complex (e.g. through-the-thickness binder yarns, interwoven yarns etc.).

To solve this issue, textile composites with many yarns in the thickness direc-

tion are homogenised following two distinct methods. Both methods are shown

in Fig.3.28 and involve static virtual testing. The first tests the unit cell as a

whole, this gives a model made of a single material considered at a macroscopic

scale. The second gives a model that is similar to a laminate composite, with

a single homogenised material per layer and where each layer is considered at

a macroscopic scale. Throughout the thesis, these two homogenisation methods

are respectively denoted ‘static macroscale’ and ‘static macroscale per layer’ for

simplicity.

It is clearly observed in Fig.3.28 that using the static macroscale per layer

method threatens the integrity of some yarns that are ‘chopped down’ and this

justifies why both macroscale methods are employed, whereas textile composites

with only a little number of yarns in the thickness direction (such as 2D woven

composites) are homogenised using only the static macroscale method.

A detailed example is provided in Fig.B.8-B.9 in Appendix for a 3D woven

composite model for more clarity. Figure B.8 shows that the homogenised prop-

erties are extracted for the unit cell as a whole, thus only one set of orthotropic

moduli is obtained. Figure B.9 displays the decomposition in layers and their

homogenised properties. In this case, the 3D woven composite is decomposed in

five layers, resulting in five sets of orthotropic moduli.

Case study: 2D plain woven composite

The first comparison is made for a 2D plain woven composite plate model, also

used in the previous subsections (see Fig.3.15). The dimensions of the unit cell

are 2 × 2 × 0.2 mm. The FE model is composed of 6250 elements (25 × 25

× 10). The materials properties are given in Tables B.6 and B.7 in Appendix.

The dispersion curves for the flexural mode of both the mesoscale and the stat-
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Figure 3.28: Unit cell homogenisation: two methods are presented. One is the
homogenisation of the unit cell as a whole, which results in one set of orthotropic
properties (named ‘static macroscale’). The second considers an independent ho-
mogenisation for each layer of the unit cell, resulting in as many sets of orthotropic
properties as the number of layers (named ‘static macroscale per layer’).

ic macroscale models are displayed in Fig.3.29. The first important difference

between both curves is the Bragg stop-band exhibited by the mesoscale mod-

elling while the dispersion curve from the macroscale model shows none. The

stop-band occurs when the curve reaches a limit of the BZ. It is an effect of the

periodicity of the structure thus is not predicted by the macroscale model. The

second important difference lies in the strong mismatching of both curves. Using

the static macroscale method to describe the dispersion characteristics of a textile

composite not only overlooks the stop-bands but also predicts different dispersion

relations.

Case study: 3D woven composite

The second comparison is made for a plate structure made of the 3D woven

composite represented on Fig.3.30 using the presented mesoscale methodology

and both its static macroscale and macroscale per layer models. The materials

properties are given in Tables B.6 and B.7 in Appendix for the mesoscale model

and the discretised model is shown in Fig.B.7 in Appendix. The dimensions of the

unit cell are 2 × 1.5 × 0.6 mm. This FE model is composed of 15625 elements (25
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Figure 3.29: Dispersion curve of the flexural mode of the 2D plain woven com-
posite mesoscale model and the static macroscale model; presenting a stop-band
(grayed area) for the the mesoscale model; (- -) mesoscale model and (–) static
macroscale model.

× 25 × 25). The homogenised properties obtained for both macroscale models

are displayed in Fig.B.8-B.9 in Appendix.

Figure 3.30: 3D woven composite model and its unit cell.

The dispersion curves of the first two modes are displayed in Fig.3.31-3.32.

Similar observations to the 2D plain woven composite can be made for the flexural

mode comparison (see Fig.3.31) with again a strong mismatch between the static

macroscale and mesoscale models and a Bragg stop-band is predicted by the

mesoscale model at a BZ limit. The results from the static macroscale per layer

and mesoscale models are, however, very similar. The main difference being again

the lack of stop-band prediction by the static macroscale per layer model.

However, the dispersion curves of the shear mode (see Fig.3.32) for the mesoscale
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and static macroscale models are in agreement for low frequency range until the

mesoscale model predicts a Bragg stop-band, then a mismatch between the curves

appears. The mesoscale and static macroscale per layer models provide different

results for the shear mode for any frequency range.

Both the static macroscale and static macroscale per layer models provide

wrong dispersion characteristics predictions in comparison to the mesoscale model

for the 3D woven composite.

Figure 3.31: Dispersion curve of the flexural mode of the 3D woven composite
mesoscale model and static macroscale model; presenting a stop-band (grayed
area) for the the mesoscale model; (- -) mesoscale model, (–) static macroscale
model and (+) static macroscale per layer model.

3.3.5 Numerical comparison of the 1D WFE mesoscale

methodology with transient FEA

The dispersion relations of a textile composite structure can be obtained by tran-

sient FEA as detailed in Sec.3.1.2. Due to the high computational costs induced

by mesoscale modelling, the numerical comparison is performed only for the 1D

formulation (beam-like structure). In this subsection, this method is used to

provide for comparison with the WFE/CMS mesoscale methodology. The com-

parison is performed for two textile composites.
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Figure 3.32: Dispersion curve of the shear mode of the 3D woven composite
mesoscale model and static macroscale model; presenting a stop-band (grayed
area) for the the mesoscale model; (- -) mesoscale model, (–) static macroscale
model and (+) static macroscale per layer model.

Case study: triaxial braided composite

The first comparison is performed on a beam made of a triaxial braided composite,

whose unit cell is displayed in Fig.3.33. The dimensions of the beam modelled

for the transient FEA are of 100 × 0.6 × 0.4 mm while the period modelled for

the WFE analysis is of 2 × 0.6 × 0.4 mm. A similar discretisation is used for

both models, leading to 600 000 elements for the transient analysis and to 12

000 elements (40 × 20 × 15) for the WFE. The results from the WFE/CMS

mesoscale model (plotted in red in Fig.3.34) are only computed over the IBZ and

mirrored over its boundary to provide the results for the next BZ and so on. The

dispersion relations obtained by transient FEA are shown in the background of

Fig.3.34. A perfect agreement between the main branches of the modes for both

the WFE/CMS mesoscale and the transient FEA models is observed.

An effect of the textile composite periodicity is observed in the transient FEA

results and is highlighted in Fig.3.34 (circled in yellow). Indeed, for a periodic

material, any point outside the first BZ can also be expressed as a point inside

the zone. These effects are predicted by the WFE/CMS mesoscale model too.

In Sec.3.1.2 it was shown that the WFE method induced artificial aspects due to

the continuous material being considered as virtually periodic. On a real peri-
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Figure 3.33: Triaxial braided composite model.

odic medium, however, the repetition of the main branches into less discernable

branches over the different BZs has been observed for periodic photonic crystals

[172, 173] and is observed in this model (repetition of period 2π/∆ as well). It

is interesting to note that for the first modes the maximal intensity of their first

branch lies within the first BZ, and likewise their second, third, forth and fifth

branches attain their maximal intensity in the second, third, forth and fifth BZs

respectively, while their intensity is lesser outside of their respective BZs, as high-

lighted by the yellow circles in Fig.3.34. The same phenomenon was observed in

photonic crystals in [174, 173] as a consequence of the Umklapp scattering. This

scattering process happens when two ingoing phonons result in a phonon whose

wave vector falls outside the first BZ.
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Figure 3.34: Dispersion curves computed for a beam made of a triaxial braided
composite using the WFE/CMS mesoscale methodology (red dots) and transient
FEA (results in the background). The IBZ and the limit of the higher order BZs
(green horizontal lines) are displayed. Periodic effects are highlighted (circled in
yellow).
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The dispersion characteristics are computed by the static macroscale method

as well and are plotted in yellow in Fig.3.35. A strong mismatch with the dis-

persion relations obtained by transient FEA is observed. The results obtained by

transient FEA also display stop-bands that are circled on the figure for emphasis.

It is observed once again that the mesoscale modelling can predict them while

the macroscale model cannot. As detailed in Sec.2.2.2 there are two types of

stop-bands, the Bragg stop-bands are circled in green and the local stop-bands

in yellow in Fig.3.35. Using a mode sorting algorithm based on the MAC, the

dispersion characteristics obtained by the WFE/CMS mesoscale methodology are

unwrapped and plotted in Fig.3.36 for a clearer overview.
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Figure 3.35: Dispersion curves computed for a beam made of a triaxial braided
composite using the WFE/CMS mesoscale methodology (red dots), the static
macroscale methods (yellow –) and transient FEA (results in the background).
The IBZ and the limit of the higher order BZs (green horizontal lines) are dis-
played. The stop-bands are highlighted (Bragg stop-bands circled in green, local
stop-bands circled in yellow).

The computational cost for the transient FEA (whole textile composite beam

structure modelled at a mesoscopic scale) is situated around twenty hours on

a standard desktop computer (4 cores and 8 GB of RAM). In the case of a

plate structure, the computational cost would be utterly expensive. However,

using the WFE/CMS mesoscale methodology allows for obtaining the dispersion

characteristics in less than an hour for both a beam or plate structure.
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Figure 3.36: Dispersion curves computed for a beam made of a triaxial braid-
ed composite using the WFE/CMS mesoscale methodology and mode sorting
algorithm based on the MAC criterion (+) and transient FEA (results in the
background).

Case study: 2D plain woven composite

Similarly to the comparison provided in the previous subsection, a second com-

parison is performed on a beam made of the 2D plain woven composite, presented

in Fig.3.15, modelled both with the mesoscale and the static macroscale methods.

The dimensions of the beam modelled for the transient FEA are of 100 × 2 ×

0.22 mm while the period modelled for the WFE analysis is of 2 × 2 × 0.22 mm.

A similar discretisation is used for both models. The resulting dispersion curves

are plotted for the mesoscale and static macroscale models in red and yellow re-

spectively in Fig.3.37. The dispersion relations obtained by transient FEA are

shown in the background of the figure. A strong mismatch between the disper-

sion relations obtained for the mesoscale and macroscale models is observed once

again. A great agreement, however, is provided using the WFE/CMS mesoscale

methodology and the transient FEA. Stop-bands are observed once again in the

dispersion curves obtained by mesoscale modelling.

3.3.6 Artefacts induced by the presented mesoscale method-

ology

It is stated in Sec.3.1.2 that the RVE must be chosen carefully so that its aspect

ratio (Ra = ∆/2b) is small enough to provide clear results. However, when
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Figure 3.37: Dispersion curves computed for a beam made of a 2D plain wo-
ven composite using the WFE/CMS mesoscale methodology (red +), the static
macroscale methods (yellow ×) and transient FEA (results in the background).

having a small aspect ratio is not an option, the high aspect ratio can generate

some branches in the dispersion curves that are artefacts. This phenomenon is

studied in the section.

Case study: homogeneous orthotropic material

As an example, Fig.3.38 shows the dispersion curves for a homogeneous orthotrop-

ic plate structure for a set of different aspect ratios. The thickness (2b) is the

same in all cases so that it does not change the properties of the structure of

interest, only the length of the unit cell (∆) can vary. The horizontal dotted

lines represent the limit of the IBZ for each model. For the smallest aspect ratio

(Ra = 0.4) used as a reference, the IBZ limit is too high to be represented on

the figure and thus no folding of the branches is observed, thus providing a clear

set of five dispersion curves (three zero-order modes and two first-order modes

whose cut-off frequencies are around 2.1MHz). It can be observed from the fig-

ure for the three other aspect ratios dispersion curves that once their branches

are unfolded over the IBZ, they would overlap each other to form the flexural,

shear and longitudinal modes and the two first order modes are observed as well,

overlapped to each others. However, once these branches unfolded, it is observed

that ‘uncategorised’ modes remain. These modes are designated by arrows in the

lower part of Fig.3.38. These modes do not have a physical meaning and thus are
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categorised as ‘artefacts’.

Figure 3.38: Dispersion curves computed for a homogeneous orthotropic plate
structure using different aspect ratios. Artefacts modes are shown using arrows
pointing at their cut-off frequency.

Case study: 2D plain woven composite

The aspect ratio cannot be controlled when considering a textile composite as

it is directly linked to the period of the textile composite and therefore can be

way over the recommended value of 0.2. In the case of the unit cell of a 2D

plain woven composite, the smallest aspect ratio is of Ra = ∆/2b = 6.4 for

the unit cell displayed in Fig.3.39 and cannot be reduced and thus it is difficult

to uncover which branches amongst the dispersion curves are artefacts. The

aspect ratio, however, can be augmented using a larger period of the textile

composite (Ra = 9.1) or by considering multiple periods (Ra = 18.2) as displayed

in Fig.3.39.

Figure 3.40 shows the dispersion curves for these three different aspect ratios.

It is clear that the green curve representing a mode whose cut-off frequency is

around 47 kHz for a model whose aspect ratio is very large (Ra = 18.2) is an

artefact as it does not appear in the results from the two other models. Another

mode appears at a the cut-off frequency of 165 kHz and is visible for all models.

Even though it might be an artefact, it is not possible to conclude, and thus one

must be aware of these effects when using this methodology.
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Figure 3.39: Different representative periods of the same textile composite and
their aspect ratios.
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Figure 3.40: Dispersion curves computed for a 2D plain woven composite plate
structure using different aspect ratios. Artefacts modes are observed.

3.4 Conclusions

In this chapter, a methodology that allows for dispersion characterisation of pe-

riodic textile composites is presented. It combines the computational advantages

of both the CMS reduction method and the WFE method with the accuracy of

a mesoscale modelling.

Different modelling options such as the choice of the representative period, the

meshing options etc., are considered and compared. The methodology is applied

to three different textile composites: a 2D plain woven, a 3D woven and a triaxial

braided composites and the 1D WFE/CMS mesoscale formulation is compared to

transient FEA with great success. The complex dispersion phenomenon induced
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by the periodicity and the strong anisotropy of textile composites are identified

and discussed. It is shown that the presented methodology is needed for increased

prediction accuracy in comparison to macroscale modelling used traditionally.

It can be concluded that:

• Discretisation of textile composite mesoscale models using linear hexahedral

voxel mesh provides very robust results for a relatively low number of nodes.

• Any representative period of a unique textile composite provides the same

dispersion predictions. However, some rules-of-thumb should be followed

for its selection.

• There are significant differences in the dispersion relations predictions re-

sulting from the presented mesoscale methodology and macroscale mod-

elling.

• Complex phenomenon such as stop-bands cannot be predicted by macroscale

modelling and the mesoscale methodology is needed.

• Numerical comparison between the WFE/CMS mesoscale methodology and

transient FEA at a mesoscale level shows perfect agreement. The presented

methodology is verified.

• Computational times for the presented textile composite models are reason-

able while obtaining the dispersion relations for a textile composite plate

structure by transient FEA would be very costly.
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Experimental and numerical

schemes comparison

In the previous chapter, the mesoscale methodology has been introduced and

compared with results obtained by transient FEA for validation. This chapter

aims at comparing the numerical mesoscale methodology to experimental results.

For this study, 3D woven composite samples have been manufactured and tested.

The first section gives details on their architectures and on the manufacturing pro-

cess used. The subsequent section explains how the samples were tested to obtain

the dispersion characteristics. The next section details the realistic modelling of

the composite samples. Finally, a section is dedicated to the comparison between

numerical and experimental approaches for all 3D woven composite samples.

4.1 Manufacturing of the 3D woven composite

samples

Six samples composed of a total of three different architecture reinforcements

(from Carr Reinforcements Ltd.) [20] were manufactured for this study. Their

architectures are briefly described here, and further illustrated in Fig.4.1 as the

details are of the utmost importance when it comes to geometrical modelling

(definitions of the nomenclature relative to 3D woven fabric can be found in

Sec.2.1 and in [175]).
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• Three 250 × 250 × 1.97 mm plates using a classic (off the shelf) through-

the-thickness angle interlock (γ = 25.6°) weave architecture reinforcement

(Fabric 1), all of them infused with IN2 epoxy resin from easycomposites™.

Fabric 1 comprises two layers of 2 × 12K tows in the warp direction; three

layers of 12K tows in the weft direction and 6K binder tows, alternating

with the warp tows.

• Two 250 × 250 × 1.95 mm plates using a less conventional (custom ex-

perimental architecture [20]) angle interlock (γ = 23.9°) weave architecture

reinforcement (Fabric 2), all of them infused with the PRIME™20LV epoxy

resin from Gurit. Fabric 2 comprises two layers of 4 × 12K tows in the

warp direction; three layers of 12K tows in the weft direction; 6K binder

tows, alternating with the warp tows and 6K tows in the warp direction,

interwoven with weft layers on the surfaces of the fabric.

• One 250 × 250 × 4.98 mm plate using an orthogonal weave architecture

reinforcement (Fabric 3), infused with the IN2 epoxy resin for the matrix.

Fabric 3 comprises six layers of 12K tows in the warp direction; seven layers

of 2 × 6K tows in the weft direction; 1K binder tows, alternating with the

warp tows.

A through-the-thickness angle interlock weave architecture reinforcement means

the binder yarns travel in a fixed pattern (at a certain angle) from top to bottom.

An orthogonal weave architecture reinforcement means the binder yarns are either

at top or bottom travelling vertically through layers (classical reinforcements are

illustrated in Fig.2.1).

Liquid Composite Moulding (LCM) comprises all the composite manufactur-

ing processes that involves the injection of a liquid resin into a dry fibre preform.

There exist various LCM technologies, amongst them the Resin Transfer Mould-

ing (RTM), Vacuum-Assisted RTM (VARTM), Vacuum Infusion (VI) etc. The

VARTM technique was chosen because it is consistent, easy to control, it allows

for a high rate of production and most importantly for having two smooth sur-

faces. The VI and VARTM techniques respectively create a sample with one or

two smooth and glossy sides. At least one smooth surface is necessary as it will
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(a) Material 1 (b) Material 2 (c) Material 3

Figure 4.1: Unit cells of the three studied textile composites, (a) Material 1
is a classic 3D through-the-thickness angle interlock composite, (b) Material 2
is a less conventional 3D through-the-thickness angle interlock composite, (c)
Material 3 is a classic 3D through-the-thickness orthogonal interlock composite -
the dimensions are in mm.

be the surface of reflection for the laser vibrometer used for the experimental

measurements. Two smooth surfaces are preferred as it simplifies the geometry

of the composite and thus the geometrical modelling. VARTM uses a closed

metallic mould. A metallic frame, whose thickness gives the final thickness of

the samples (2 mm and 5 mm in our cases), is placed in between the two sealing

parts of the mould, each having a flat surface on one side. The 250 × 250 mm

piece of the preform is placed in the frame as depicted in Fig.4.2. A limitation

of this manufacturing technique is that the dimension of the plates is defined by

the frame and mould sizes which in our case are rather modest.

Figure 4.2: Photography showing the two halves of the mould, with the frame
placed on one half and the pre-form fabric sheet fitted inside the frame.
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The mould is closed, sealed and four outlets located at each corner of the square

mould are placed under vacuum as depicted in Fig.4.3. The homogeneous resin

mixture is degassed by a vacuum pump and placed inside the resin injector. The

resin is then transferred from the resin injector to the mould through the central

inlet. The resin will flow from the centre of the mould to the four corner outlets,

filling the internal void space of the mould. It takes about 30 minutes for the

resin to fill all the free spaces and to impregnate the fibres deeply. The four

outlets are connected to a vacuum pot to make sure all the air is sucked out of

the mould. At 25°C, the resin pot life is of 80 to 100 minutes for the IN2 resin

and of 1 hour for the PRIME LV20 resin. The plates made of IN2 resin are left

to cure at 25°C for 24 hours and then post-cured in an oven at 60°C for about 6

hours. The plates using PRIME LV20 resin are left to cure at 50°C for 24 hours.

Figure 4.3: Picture depicting the resin flow from the injector to the sealed mould.
The resin is injected from the resin injector to the closed mould through the
central inlet. A vacuum is created in the vacuum pot. As the air is sucked out
from the mould through the four corner outlets, the resin flows from the centre
of the mould to the corner exits and fills the mould’s free space with resin.

Figure 4.4 shows a photography of the setup. However on this picture the inlet

is connected to a barometer as the leak proofing was taking place. It is then

disconnected from the barometer and connected to the infusion pot where the

resin is situated and from where it will be flowing.

In order to proceed to a validation of the methodology, several samples composed

of the same preform and same resin were manufactured and tested to ensure

repeatability.
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Figure 4.4: Photography depicting the sealed mould with the different connected
in- and outlets.

4.2 Experimental determination of the disper-

sion curves

Three steps are necessary in order to experimentally obtain the dispersion curves

in the plate samples. Firstly, a disk Piezoeletric Transducer (PZT) ceramic is

glued to the plate. It is used to generate the guided waves in the plate. Secondly,

a laser scan is performed on the plate to measure the displacement as a function

of time at different discrete positions on the plate. At last, these measurements

are post-processed to obtain the results in the frequency-wavenumber domain

corresponding to the dispersion curves. These steps are further described in the

next paragraphs. To visualise the guided wave propagation, a laser scan of a 2D

surface (C-scan) of a plate sample can be performed to obtain the time-dependant

displacement of a signal generated by a transducer.

For the dispersion characterisation, a broadband excitation signal is transmitted

to the studied structure (simply supported woven composite plate samples in

our case) by means of a PZT bounded to it. The input excitation signal is

sinusoidal, its central frequency is of 100kHz but it carries a wide frequency band

as detailed in Sec.3.1.2. Two cycles of the sinusoidal function are modulated by

a window function (Hanning window here) as shown in Fig.3.5. The interest in

having a wide frequency band in the excitation signal, is to obtain the dispersion

relations for a large frequency band, performing only one linear scan per direction

of interest.
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The set-up (displayed in Fig.4.5) is composed of a waveform generator that

is used to generate the electrical waveform transmitted to the PZT. Before it is

transmitted to the PZT, the signal is amplified as the waveform generator can

only provide a tension of 10Vpp maximum. The high speed bipolar amplifier

allows for reaching a higher tension (70Vpp) which then allows the signal to

propagate further and with a higher amplitude.

The transducer (13 mm diameter) is glued on the surface of the tested tex-

tile composite sample. The Laser Doppler Vibrometer (LDV) is programmed to

measure the displacement at a set of discrete positions on a straight line (B-scan)

originated at the PZT. The PZT element has to be placed in the continuity of

that line. One B-scan provides the dispersion relations in one direction, therefore

multiple B-scans of various orientations are required to capture the anisotrop-

ic behaviour of the materials. In our study, five directions of propagation are

investigated (0°, 30°, 45°, 60°, 90°). The laser vibrometer measures the out-of-

plane displacement (U3) or velocity component which greatly limits the ability to

measure the S0 mode.

For each position, the amplitude over time is measured with a sampling fre-

quency of 10 Msamples/s for a duration of 0.5 ms (thus sample size is of 5000

time points). This relation is measured every 20 ms for two hundred times and

then is averaged and recorded by the oscilloscope. The scanning head is then

moved to the next discrete position (step of 0.5 mm) and is connected to a pass

band filter which filters out high frequency noise and low frequency vibrations.

For illustration purposes, the results of a B-scan, i.e. the out-of-plane displace-

ments measured by the laser as a function of time and for a set of discrete posi-

tions, are shown in Fig.4.6.a. The progress and dispersion of the forward going

wavepacket can be observed as well as some reflected waves. The almost verti-

cal line, whose magnitude is weak, on the left-hand side of the figure shows the

pressure mode (S0) that is the fastest to propagate, while the second line with a

smaller slope and a higher magnitude shows the flexural mode (A0). The flexural

mode is more clearly observed as the laser measures the out-of-plane component

which is strongly solicited by this mode.

One of the difficulties associated with the measurement of the dispersion re-
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Figure 4.5: Experimental set-up for B-scan measurements. A signal is generated
by the waveform generator, amplified and transmitted to the PZT. The PZT
transmits the vibrations to the composite plate. The LDV measures the out-of-
plane displacements which are filtered by the low noise preamplifier. The input
and measured signals are recorder by the oscilloscope.

lations in a thin structure (beam or plate for example) is that at least two modes

can exist and propagate for any given frequency. Thus the 2D FFT [162, 163] is

applied to obtain the dispersion curves.

In the dispersion curves displayed in Fig.4.6.b, the A0 mode can be clearly

observed, while the S0 mode is barely visible. To highlight the visibility of the

S0 mode, a 15° angle (with the z axis normal to the plate, and x the axis of

laser inspection, the 15° angle is given relatively to z and around the y axis) was

given to the laser beam so that a small portion of the U1 component could be

captured as well, and S0 observed. Also, the resolution on the figure is of poor

quality, this is explained by the rather small size of the sample plates limited by

the manufacturing equipment used. Indeed, a pixel height (in the wavenumber

direction) is inversely proportional to the scanned length. In our case, the small

plate length (250 × 250 mm) results in large pixels and thus a low wavenumber

resolution.
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Figure 4.6: Type of results that can be obtained from measurements from the
Laser Doppler Vibrometer performed on a textile composite plate.(a) Out-of-
plane displacement magnitude (U3) measured by the scanning laser Doppler vi-
brometer as a function of space x and time t. Two propagating modes (circled
in red) can be observed (S0 and A0). (b) Dispersion curves obtained by 2D FFT
of the experimental data. A0 can be observed. The central frequency of the si-
nusoidal signal is of 100kHz thus it is hard to observe the mode for frequencies
higher than 200kHz.
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4.3 Realistic modelling of a textile composite

This section describes how the actual composites presented in Sec.4.1 are mod-

elled. The mechanical characteristics of the components (i.e. matrix and yarns)

as well as the geometrical properties of the woven composites are sought (process

described in Fig.4.7). Their wave dispersion properties are then computed using

the WFE/CMS methodology.

Figure 4.7: Determination of the mechanical properties with a multiscale ap-
proach. The textile is modelled at a mesoscopic scale. A microscale model is
used to calculate the yarns effective mechanical properties. These properties are
used in the mesoscale model alongside the matrix properties.

4.3.1 Mechanical characteristics determination

As thoroughly described in Sec.2.1, a yarn is a bundle of aligned fibres (also

called filaments) and once the resin is infused, the yarns are composed of fibres

packed in a matrix of cured resin (see Fig.4.7 under microscale). In reality the

fibres are randomly distributed in the cross-sectional view but the distribution

is considered regular and periodic as the elastic moduli predictions are similar

[31]. To determine the yarn properties, a mechanical analysis based on idealised

hexagonal fibre arrangement model can be performed [31, 10, 176].

In the following subsection, the mechanical characteristics of the individual

matrix and fibres materials composing a yarn are described. A second subsection
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explains how the mechanical properties of a yarn are obtained from the ones of

the matrix and fibres materials.

Microscale: Matrix and filaments materials

The tensile modulus, the density and the average superficial density of the fabric

are provided by the supplier, as well as for the resin tensile modulus and density.

These mechanical properties are displayed in Table C.1 in Appendix. While it

is quite straightforward for the manufacturer to establish the static mechanical

properties for an isotropic thermoset material such as epoxy, it is hard to provide

the full set of transverse isotropic moduli for a bundle of fibres. Indeed, tensile

properties of the yarn, are tested using a tensile testing machine [177] and thus

only in the direction of the fibre. The transverse elastic modulus of the fibres

can be measured by Raman spectroscopy or, for example, by nanoindentation.

However, these methods are difficult to apply and the convergence is not assured

[178, 179, 180]. This is not the only property that is neither given by the sup-

plier, nor straightforward to measure, e.g. G12,13 is measured via the torsional

pendulum test [179, 181]. For these reasons, some hypothesis need to be done for

the other parameters. Firstly, the matrix material is considered isotropic, while

the fibres and thus the yarns are considered transverse isotropic materials. For

the matrix material, the missing engineering constant is the Poisson ratio, while

for the filaments, the transverse modulus E2,3, the in-plane shear modulus G12,13

and the Poisson ratios ν12,13 and ν23 are missing. All these missing properties are

selected from the literature (Table C.2 in Appendix), and a sensitivity study is

performed to observe the impact of these constants on the final result.

From the literature, it is observed that E2,3 ranges from 10 to 17 GPa, G12,13

from 9 to 28 GPa, ν12,13 and ν23 from 0.2 to 0.25 for carbon fibres, while ν is

around 0.35 for epoxy resin. For our study, E2,3 is set to 15 GPa, G12,13 to 18

GPa, ν12,13 to 0.2 and ν23 to 0.25 for the filaments. As a filament is considered a

transverse isotropic material, G23 can be calculated using Eq.(4.1).

G23 = E2,3

2(1+ν23)
, (4.1)

ν is set to 0.35 for the matrix material.
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From microscale to mesoscale: Yarn mechanical properties

A mesoscale model of a yarn considers it as a homogeneous component made of

an orthotropic material. Its properties are derived from the microscale model

characteristics as explained in Sec.2.1.1. For a yarn of aligned filaments, the fibre

volume fraction V yarn
f is calculated using [20]:

V yarn
f =

nfilAfil

Ayarn
=

nfilπR
2
fil

Ayarn
, (4.2)

with nfil the number of filaments in the yarn, Afil the cross-sectional area of a

filament, Rfil the radius of a filament and Ayarn the cross-sectional area of the

considered yarn.

The density is calculated using:

ρyarn = ρfV
yarn
f + ρm(1− V yarn

f ), (4.3)

with ρf the density of the fibre material, ρm the density of the matrix material.

The homogenisation by virtual testing from microscale (fibres & resin) to

mesoscale (yarn) gives us the properties for the different yarns of each material

(Table C.3 in Appendix). It is important to note that, since a voxel mesh is coarse,

the yarn and matrix volume fractions in the models are slightly different from

their theoretical values and thus the overall fibre volume fraction is inexact. An

inexact fibre volume fraction in the model has an effect on the elastic properties

of the entire textile. In order to avoid that, the error on a yarn volume fraction

is reflected on the fibre volume fraction in this yarn, as detailed in Sec.3.3.1.

As the homogenisation is performed by virtual testing, it implies that the

microstructure has no effect on the dispersion properties of the mesostructure for

low to middle range frequencies. A quick calculation is realised on a unit cell of a

bundle made of an hexagonal arrangement of filaments to confirm the hypothesis.

The unit cell is displayed in Fig.4.8.a.

The dispersion curves are computed for this unit cell using the method pre-

sented in Sec.3.3 and compared with a unit cell made of a homogeneous material

whose properties are acquired by virtual static testing homogenisation. The re-

sults are displayed in Fig.4.8.b for one direction of propagation. It is observed
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Figure 4.8: (a) Unit cell of the microscale structure of an hexagonal arrangement
(b) Dispersion curves comparison between micro and mesoscale models of a unit
cell of a fibre bundle.

that for low to middle frequency ranges, the internal architecture of the bundle

has little effect on the dispersion properties. The hypothesis is considered valid

for these applications.

Sensitivity analysis of the unknown microscale mechanical properties

In Sec.4.3.1, the ‘unknown’ mechanical properties of the fibres and the matrix

are chosen from the literature (see Table C.2 in Appendix). To ensure that the

selection of the properties from the literature does not have a strong impact on

the final results, a sensitivity study is performed on a simple 2D plain woven

composite model composed of four yarns as displayed in Fig.4.7. Its fibre volume

fraction is of 0.5, similarly to the studied experimental materials.

One by one all the parameters are set to a minimum and a maximum [min,

max] (inspired from the literature) while the others remain constant (for the fibre

material, E2,3 are set to [10,20] GPa, G12,13 are set to [8,28] GPa, ν12,13,23 are set to

[0.2,0.3] and for the matrix material νmatrix is set to [0.3,0.35]), and the dispersion

curves are computed using the WFEM/CMS methodology. The value from the

[min, max] couple that gives the lowest and highest wavenumbers function of

the frequency for a mode are respectively indexed. All indexed parameters are

then used to form respectively the lowest and highest dispersion curves possible

(the extreme opposite scenarii). The curves that have the lowest wavenumbers

are obtained for the following set of parameters: E2,3 = 20 GPa, G12,13 = 28

GPa, ν12,13,23 = 0.2 and νmatrix = 0.35. The highest curves are obtained for
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E2,3 = 10 GPa, G12,13 = 8 GPa, ν12,13,23 = 0.3 and νmatrix = 0.3. The difference

between the dispersion curves obtained with these two extreme sets of parameters

is of 4.15% for the flexural mode, 4.46% for the shear mode and of 4.38% for the

pressure mode. These two extreme opposite scenarios do not provide considerable

differences in the dispersion curves. Thus by choosing intermediate values for the

missing parameters, the error is limited to a few percents.

4.3.2 Geometric modelling of the yarns arrangement

The geometric modelling of a unit cell is done using TexGen, which allows for

modelling complex internal geometry enabling to describe even the nesting of the

yarns for example [10, 176, 169, 182, 183]. However, an accurate modelling of the

geometric shapes requires to make observations from optical microscopy scans

of the material [183, 184] such as the ones shown in Fig.4.9. In this figure, it

can be observed the effort made toward an accurate geometric modelling of the

textile composite as a good agreement between the photo/micro-graphies and the

TexGen models captures is noted. The unit cells defining the geometry of the

three studied textile composites are displayed in Fig.4.1.

Knowing the number of fibres and thus the fibre volume fraction in each yarn,

the total fibre volume fraction can be calculated for the three numerical models

as shown in Table 4.1. This is in adequation with the results from [20].

Material Material 1 Material 2 Material 3
Fibre volume fraction 0.41 0.42 0.55

Table 4.1: Fibre volume fraction in each of the three materials, in adequation
with [20].

A trade-off needs to be found between the sufficient number of elements to

represent the geometrical features of the unit cell and a low enough number of

nodes to facilitate the computation. This will be further discussed in Sec.4.4.1.
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(a) Top view of Material 1 (b) Cross sections of Material 1

(c) Top view of Material 2 (d) Cross sections of Material 2

(e) Top view of Material 3 (f) Cross sections of Material 3

Figure 4.9: Left: photography of the actual composite [20] and the geometrical
TexGen [167] model are compared - Right: micrographic scans of the actual
composite [20] and the geometrical TexGen [167] model are compared.
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4.4 Schemes comparison for 3D woven compos-

ites

This section aims to compare the dispersion characteristics obtained experimen-

tally (see Sec.4.2) and numerically using the WFE/CMS mesoscale methodology

(see Sec.3.3) for the three different studied textile composites. The results for

each of the three materials are presented in separate subsections.

4.4.1 Material 1: classic 3D through-the-thickness angle

interlock composite

The tested plate samples are made of Material 1 which is a classic 3D through-

the-thickness angle interlock fabric infused with epoxy resin. The geometrical

attributes of Material 1 can be visualised in Fig.4.9.a-.b. The plates measure 250

× 250 × 1.97 mm as presented in Sec.4.1. A unit cell of this composite as been

modelled in Sec.4.3.2 and is shown in Fig.4.1.a.

Mesh convergence study

A quick convergence study is performed on the unit cell of Material 1 to ensure the

validity of the mesh used. Five models, each with a different number of elements

are created (40 × 22 × 10: 8800 elements; 50 × 30 × 12: 18000 elements; 60 ×

40 × 15: 36000 elements; 70 × 50 × 20: 70000 elements; 80 × 60 × 30: 144000

elements). The convergence is obtained for the model 70 × 50 × 20 which displays

less than 1% of relative difference with the next model, containing twice as many

elements, for any mode in the five studied directions of propagation.

Experimental validation

In Fig.4.10.a, it can be observed the experimental and numerical dispersion curves

for the first modes propagating in the x direction. The picture resulting from the

2D FFT applied on the experimental data has a low resolution due to the length

of the composite samples used (250 × 250 mm) as explained in Sec.4.2. Three

types of numerically obtained dispersion curves are also displayed. One is a result
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of the mesoscale methodology presented in Sec.4.3.2, while the last two are results

of the two static macroscale modelling approaches as depicted in Fig.3.28.

It has to be noted that only the A0 and S0 can be observed on the dispersion

curves obtained through experimental data. The first reason is that the studied

frequency range is below the first cut-off frequency, so only the A0, S0 and SH0

could be observed. The SH0 mode is not measured by the laser vibrometer used

for that study as it measures displacements in the direction normal to the surface

(U3 direction). Thanks to the 15° angle (relatively to the normal and around the

y axis) given to the laser beam, U1 can be captured and S0 can be observed.

The mesoscale model provides a really good agreement with the experimental

results for both the S0 and A0 modes, while the A0 mode given by the stat-

ic macroscale model has a relative difference of 11.6% when compared to the

experimental results (in the x direction of propagation). It is however hard to

conclude whether the mesoscale model or the static macroscale per layer gives

more accurate results as the picture resolution is low. Similarly to Fig.4.10.a,

Fig.4.10.b-d. and 4.12.a display dispersion curves of Material 1, only this time

different directions of propagation are studied.

In directions other than x and y (Fig.4.10.b-.d), the S0 mode is not seen. This

phenomenon can be explained by the energy focusing of Lamb waves. It is analog

to the phonon focusing effect unveiled by Maris in [185], in which the energy flux

is more intense in some directions. It can be predicted using the focusing (or

Maris) factor [186, 187]

A(θ) =

[
s2 +

∂s

∂θ

2
]− 1

2

|Ks|−1 , (4.4)

where s is the slowness surface and Ks its curvature and θ the propagation angle.

Figure 4.11.a shows the slowness curve in Material 1 for the S0 mode for a

propagation angle (θ) ranging from 0° to 90°. At low frequency-thickness prod-

ucts, the S0 mode is non dispersive and for that reason no frequency is given

here. From the slowness curve, the focusing factor is computed and shown in

Fig.4.11.b. It can be seen that the focusing is very intense in the fibre directions

(x and y directions) and is very low in the other directions, especially at a 45°

direction of propagation. This was observed in [186, 188] as well and it indicates
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Figure 4.10: Dispersion relations for Material 1: (results in the background)
experimentally obtained, (×) obtained with the mesoscale method, (magenta
dots) obtained with the static macroscale per layer method and (yellow dots)
obtained with the static macroscale method. (a) Waves propagating in the x
direction. (b) Waves propagating at a 30° angle to the x direction. (c) Waves
propagating at a 45° angle to the x direction. (d) Waves propagating at a 60°
angle to the x direction.
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Figure 4.10: Dispersion relations for Material 1: (results in the background)
experimentally obtained, (×) obtained with the mesoscale method, (magenta
dots) obtained with the static macroscale per layer method and (yellow dots)
obtained with the static macroscale method. (a) Waves propagating in the x
direction. (b) Waves propagating at a 30° angle to the x direction. (c) Waves
propagating at a 45° angle to the x direction. (d) Waves propagating at a 60°
angle to the x direction.
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Figure 4.11: (a) Slowness curve in s.km−1 in Material 1 for S0 mode (b) Focusing
factor A for the S0 mode computed using Eq.(4.4).

the difficulty of energy propagation in non-fibre directions.

In Fig.4.12.a, which displays the experimental and numerical dispersion curves

for the modes propagating in the y direction, A0 and S0 modes are observed as

usual, but another less conventional mode can be seen. Displaying the green

horizontal lines indicating the BZ boundaries k = nπ/∆, an hypothesis can be

formulated. This material being periodic, we could be observing the same phe-

nomenon as seen in Fig.3.34. The S0 mode is plotted again but in a different

colour (white) for k = k + 2π/∆ and it shows a good agreement with this ‘third’

experimentally observed mode. However, it is hard to explain why this mode

does not appear in the other directions of propagation. In the numerical tran-

sient FEA performed for another textile composite (Fig.3.34) only a few modes

are indeed repeated at k = 2π/∆, it is not clear either why these ones are and

not the others.

Another phenomenon is observed in all experimental dispersion relations: the

curves are discontinuous. These discontinuities are mainly justified by PZT fre-

quency transduction effects and other experimental choices. Indeed, a simple

equation gives the ability of a PZT to detect a wave according to the PZT diame-

ter (�PZT ), the frequency and the wave dispersion characteristics. This ability is

called frequency filtering or tuning (written fPZT ) and expressed as a normalised
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Figure 4.12: (a) Dispersion relations obtained for Material 1 for waves propa-
gating in the y direction; (results in the background) experimentally obtained,
(×) obtained with the mesoscale method, (magenta dots) obtained with the
static macroscale per layer method and (yellow dots) obtained with the stat-
ic macroscale method. The green lines indicate the BZ boundaries k = nπ/∆
(b) Frequency filtering operated by the PZT for the A0 and S0 modes in the y
direction (PZT diameter of 13 mm) computed using Eq.(4.5).

displacement [2, 189, 190]

fPZT =

∣∣∣∣∣J1

(
π

�PZT

λ(ω)

)∣∣∣∣∣ , (4.5)

where λ(ω) is the wavelength as a function of the angular frequency and J1 the

Bessel function of the first kind and first order.
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It is observed in the flexural mode in Fig.4.12.a a very low magnitude at

100 kHz, that is an effect of the frequency filtering operated by the PZT (see

Fig.4.12.b) in the y direction. The high magnitude captured for the same mode

at 37 kHz is an effect of the frequency filtering again, it corresponds to the

frequency at which the PZT transmits the most energy for that mode [1, 190].

Even though this model is valid for predictions in isotropic media only, it provides

some hints of explanation on the observed amplitude.

4.4.2 Material 2: less conventional 3D through-the-thickness

angle interlock composite

The tested plate samples are made of Material 2 which is a less conventional

3D through-the-thickness angle interlock fabric infused with epoxy resin. The

geometrical attributes of Material 2 can be visualised in Fig.4.9.c-d. The plates

measure 250 × 250 × 1.95 mm as presented in Sec.4.1. A unit cell of this com-

posite has been modelled in Sec.4.3.2 and is shown in Fig.4.1.b.

The same study is performed on this material. This model unit cell is discre-

tised in 70 × 50 × 25 elements, totalising 87500 elements. In Fig.4.13 can be ob-

served the comparison between the experimental and numerical dispersion curves

for different directions of propagation. The mesoscale results are in good agree-

ment with the experimental results, except for A0 in the y direction (Fig.4.13.d)

where the predictions are slightly higher from 80 kHz. The predictions from the

macroscale per layer model for A0 in the same direction of propagation are slight-

ly lower in comparison to the experimental curve as well. In this case, it seems

that the macroscale model is the only one to provide an accurate prediction of

the A0 dispersion curve in the y direction. This, however, does not make it a

better prediction model as it is strongly off for at least two other directions of

propagation (x and 45°).

For the first time, it is observed in Fig.4.13.c that the mesoscale and static

macroscale per layer models provide dispersion curves of the flexural mode that

are significantly different. The mesoscale model gives results that are in good

agreement with the experimental ones while the flexural modes given by both

static macroscale models are lower. In Fig.4.13.d, the same phenomenon as in
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Figure 4.13: Dispersion relations for Material 2: (results in the background)
experimentally obtained, (×) obtained with the mesoscale method, (magenta
dots) obtained with the static macroscale per layer method and (yellow dots)
obtained with the static macroscale method. (a) Waves propagating in the x
direction. (b) Waves propagating at a 45° angle to the x direction. (c) Waves
propagating at a 60° angle to the x direction. (d) Waves propagating in the y
direction.
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Figure 4.13: Dispersion relations for Material 2: (results in the background)
experimentally obtained, (×) obtained with the mesoscale method, (magenta
dots) obtained with the static macroscale per layer method and (yellow dots)
obtained with the static macroscale method. (a) Waves propagating in the x
direction. (b) Waves propagating at a 45° angle to the x direction. (c) Waves
propagating at a 60° angle to the x direction. (d) Waves propagating in the y
direction.
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Fig.4.12.a is observed: the A0 and S0 modes are seen as usual, but another less

conventional mode can be observed. Displaying the BZ boundaries k = nπ/∆ (in

green) and plotting the predicted S0 mode for k = k+ 2π/∆ (in white) shows an

agreement and thus suggests that the same phenomenon is seen once again.

4.4.3 Material 3: 3D through-the-thickness orthogonal in-

terlock composite

In this subsection, the tested plate sample is made of Material 3 which is a

classic 3D through-the-thickness orthogonal interlock fabric infused with epoxy

resin. The geometrical attributes of Material 3 can be visualised in Fig.4.9.e-.f.

The plate measures 250 × 250 × 4.98 mm as presented in Sec.4.1. A unit cell

of this composite as been modelled in Sec.4.3.2 and is shown in Fig.4.1.c. The

same study as for the two previous materials is performed on this material. This

FE model is composed of 35 × 35 × 60 elements, which means a total of 73500

elements and 237168 DoFs.

In Fig.4.14, the dispersion curves of the five first modes propagating in the

x direction are plotted. For each mode, a modeshape is represented for a side

only of the considered unit cell (bottom side in this case, see Fig.2.8). This

allows to identify that the two higher-order modes present on the figure at cut-off

frequencies of around 150 kHz and 153 kHz are respectively SH1 and A1.

In Fig.4.15, it is observed that the mesoscale, the static macroscale and the

static macroscale per layer models provide dispersion curves that are similar for

A0 and S0. A significant difference can be observed between the mesoscale and

static macroscale per layer models for the shear mode in the x and y directions (see

Fig.4.15.a and .d), unfortunately this mode could not be observed experimentally.

Also the forth (SH1) and fifth (A1) modes appear to be predicted differently

with the static macroscale model in Fig.4.15, but performing this test for higher

frequency ranges resulted in a highly damped signal that could not propagate at

sufficient distance and we were not able to observe these modes experimentally.

SH1 could not have been be observed using this set-up as it is not measured

(similarly to SH0). This material did not allow us to conclude which model gives

the best prediction.
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Figure 4.14: Dispersion curves of the five first modes of Material 3 in the x
direction of propagation, modelled at mesoscale. For each mode, a modeshape
associated to a frequency point is plotted.

The computation times for all three models presented in this section are dis-

played in Table 4.2. The computations for the mesoscale models were run on the

HPC of the University of Nottingham, it used 6 cores in parallel, each needing

around 60 GB of RAM. The times shown are the elapsed times for calculating

the dispersion relations in five different directions of propagation. To obtain the

dispersion relations in another direction would be relatively costless timewise.

Indeed, the most consuming task is to project the stiffness and mass matrices

of the unit cell on the B basis obtained through the Craig-Bampton method to

reduce the size of the set of internal DoFs (see Eq.(2.61)). The computation

time is mainly driven by the number of boundary DoFs of the unit cell. While

these 3D woven composites are quite complex, and thus require a large number

of nodes and elements to be described accurately, they are relatively thin mate-

rials (around 2 and 5 mm) with only five to thirteen yarn layers. Performing the

same type of computation on materials with many more layers would dramati-
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Figure 4.15: Dispersion relations for Material 3: (results in the background)
experimentally obtained, (×) obtained with the mesoscale method, (magenta
dots) obtained with the static macroscale per layer method and (yellow dots)
obtained with the static macroscale method. (a) Waves propagating in the x
direction. (b) Waves propagating at a 30° angle to the x direction. (c) Waves
propagating at a 45° angle to the x direction. (d) Waves propagating in the y
direction.
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Figure 4.15: Dispersion relations for Material 3: (results in the background)
experimentally obtained, (×) obtained with the mesoscale method, (magenta
dots) obtained with the static macroscale per layer method and (yellow dots)
obtained with the static macroscale method. (a) Waves propagating in the x
direction. (b) Waves propagating at a 30° angle to the x direction. (c) Waves
propagating at a 45° angle to the x direction. (d) Waves propagating in the y
direction.
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cally increase the computational time. Also, the difference in computational cost

between a macroscale and a mesoscale model is enormous. One should consider

using the static macroscale per layer methodology for a rough but quick estima-

tion of the dispersion curves if knowledge of the stop-bands and modeshapes is

not primordial. However, if this information is important, the costly part of the

mesoscale computation has to be performed only once for a particular composite.

Elapsed time (6 cores) CPU time (1 core)
Material 1 mesoscale 23 hours around 3 days
Material 2 mesoscale 31 hours around 4 days
Material 3 mesoscale 2 days around 6 days
Any material macroscale - 40-80 seconds

Table 4.2: Computation time for all the models presented in this chapter.

4.5 Conclusions

In this chapter a multiscale approach allowing for predicting the dispersion re-

lations of 3D woven composites is presented and compared with experimental

results. Three different materials are studied and three levels of modelling are

presented. The static macroscale model resolves less structure details and is

shown to be inaccurate in its predictions of the dispersion relations for the first

and second presented materials.

While chapter 3 showed that static macroscale and macroscale per layer mod-

els provide wrong predictions in comparison to mesoscale models, experimentally

it is hard to conclude which model amongst the mesoscale and static macroscale

per layer is more accurate as we were not able to compare more than two modes

(S0 and A0). It would have been possible to observe more modes at higher fre-

quencies, however, the damping in the plates was too high. Another reason is

the lack of resolution provided by the experimental results. It would be possible

to have a higher resolution with larger plates as the inspected length defines the

wavenumber resolution. This limitation comes from the manufacturing equip-

ment used.

It is shown that the computation times, even though relatively long for the

mesoscale approach, are feasible. It should be noted that even though the static
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macroscale per layer model is much faster to compute, the geometrical modelling

step is the same for both models and it does take some time to complete as well.

However in both cases, once this costly calculation is finished, the dispersion

relations and their modeshapes are obtained for any direction of propagation at

a minimal cost.

It can be concluded that:

• Macroscale models using material properties obtained by static virtual test-

ing provide inaccurate dispersion relations predictions.

• Both the static macroscale per layer and mesoscale methods have provided

good predictions for A0 and S0 in comparison to experimental results. This

study, however, does not allow to conclude which gives the best predictions.

• The computational times are feasible even when considering a real compos-

ite structure.
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Chapter 5

Accounting for periodic textile

composite structures within

continuous wave propagation

schemes

It has been established in chapters 3 and 4 that the dispersion characteristic-

s of textile composites cannot be computed accurately using static macroscale

models. For this reason, methods such as the SAFE or some formulations of

the WFE while extremely time efficient, cannot be used to obtain the dispersion

relations of such complex materials. The methodology presented in Sec.3.3 was

introduced to mitigate this issue by using a mesoscale model of the composite, ac-

curately representing the yarns and matrix geometries. This methodology, while

revealing itself to provide accurate dispersion characteristics predictions, needs

much more computational resources than a macroscale one. That is an importan-

t drawback when multilayered composites are of interest. Indeed the dispersion

characteristics have to be computed for the composite as a whole and since the

computational cost are directly dependent to the number of boundary nodes of

the discretised unit cell, this implies that the more layers, the bigger the size of

the problem, e.g. doubling the number of layers squares the size of the problem

to solve.

On the other hand, methods such as SAFE or WFE using macroscale mod-
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elling are extremely efficient to compute the dispersion relations of laminates as

long as the elastic moduli are known for each individual layer. The approach

proposed in this chapter takes advantage of the accuracy of the methodology for

computing dispersion relations in complex textile composites from Sec.3.3 and

the efficiency of the SAFE method to compute the dispersion characteristics of

macroscale laminate models.

In this chapter, the Lamb wave dispersion characteristics of textile compos-

ites modelled at a mesoscopic scale are inverted by the mean of a GA in order to

obtain their approximated effective elastic constants to be used in a macroscale

model. The GA iteratively uses the SAFE method to update the dispersion curves

for a set of candidate solutions. In the first section (Sec.5.1), the homogenisa-

tion methodology is thoroughly described. In the second section (Sec.5.2), the

methodology is validated using a simple orthotropic plate structure. The follow-

ing sections (Sec.5.3-5.5) are case studies of three different textile composites.

5.1 Homogenisation methodology based on GA

GAs are widely used for error optimisation problems. These algorithms are search

algorithms based on the mechanics of natural selection described by Darwin [110].

They are conceptually simple and useful in problems where no analytical model

exists or when the search space is too complex for other search algorithms such

as simulated annealing or gradient based methods. These characteristics make

GA a good candidate for determining the elastic moduli of a material from its

dispersion relations. A schematic representation of the elastic moduli identifica-

tion framework based on the GA method is shown in Fig.5.1. The input to the

method are the mesoscale dispersion characteristics of the material computed us-

ing Sec.3.3 in a few directions of propagation. The objective function is built on

the relative discrepancies between the dispersion characteristics computed using

a macroscale model along with the SAFE method for a tentative set of elastic

moduli and the mesoscale ones. The GA procedure iteratively updates the sets of

elastic moduli in the SAFE formulation in order to minimise the objective func-

tion as presented in [110]. The iteration terminates when a stopping-condition is
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fulfilled, it can be when the value of the objective function for a tentative set of

elastic moduli overcomes a threshold or after a pre-defined number of iterations

for example.

Figure 5.1: Schematic representation of the elastic moduli (Cij) identification
framework based on the GA method.

In this GA study, a chromosome is a set of nine elastic moduli (also called Cij)

describing the stiffness matrix of an orthotropic material. Each individual moduli

is a gene. A set of multiple chromosomes is called a population, as depicted in

Fig.5.2.

Figure 5.2: GA terms used in this chapter for a chromosome representing the
elastic constants of an orthotropic material.

5.1.1 Initialisation

Even though it is not necessary to attain convergence, using an initial guess allows

for speeding up the process, given that the initial guess is close to the solution.
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Since the material is modelled to obtain its mesoscale dispersion characteristics,

it is convenient to use its effective elastic moduli obtained by static virtual testing

(method detailed in [29, 30] and explained in Sec.A.1 in Appendix) as initial guess

but not necessary. A small set of chromosomes of the initial population is set equal

to the initial guess while the rest of the population is randomly generated from

a narrow neighbouring interval whose median value is the initial guess.

5.1.2 Objective function

The objective function defines discrepancy between the mesoscopic dispersion

relations computed for a textile composite and the macroscopic dispersion char-

acteristics computed for a tentative set of elastic moduli. The identification of the

optimal set of elastic moduli is realised through the minimisation of this objective

function. The mesoscale dispersion relations are inputs to the GA procedure and

are not updated while the macroscale dispersion curves are computed iteratively

using the SAFE method for each updated set of elastic moduli. Different type-

s of dispersion characteristics can be used for comparison: the wavenumber or

the group velocity (defined in Eq.(2.20)) displayed in Fig.5.3 are two possibili-

ties. While the group velocity parameter is traditionally used [92, 109, 111] for

GA-based homogenisation methods (for the simple reason that this parameter is

straightforward to obtain experimentally), the wavenumber parameter is also a

good candidate. Both approaches are investigated in this chapter.

The error function to be minimised is the Mean of the Relative Error (MRE)

for each point of an individual dispersion curve and is written as follows:

MRE(θ) =
n∑
i=1

∣∣∣∣∣λmeso
i (θ)− λmacro

i (θ)

λmeso
i (θ)

∣∣∣∣∣ /n. (5.1)

with λ the dispersion parameter for the considered mode, θ the angle of propa-

gation of consideration and n the number of compared data points.

The relative error function is computed separately for the three fundamental

modes (S0, SH0 and A0) and in a few directions of propagation. The objective

function is set to the maximum of any of these values, thus minimising all modes

simultaneously. All modes have to be considered as it would be useless to obtain a
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Figure 5.3: Dispersion relations (group velocity plotted in blue and wavenumber
in red) of the three first modes in the x direction of propagation for a plate
constituted of an orthotropic material. Comparisons on the sensitivity of both
parameters are provided in Sec.5.2 to determine which is best for this application.
(–) A0, (- -) SH0, (..) S0.

set of moduli that reconstructs one mode only. Using the sum of all relative errors

has been considered but revealed itself to slow down the optimisation process.

5.1.3 Selection

The fitness function is directly derived from the objective function and determines

the likeliness of a chromosome to be selected for the next generation [109]. The

selection process can be visualised as a roulette wheel in which each chromosome

covers an area of the wheel proportional to its probability to be selected. The

chromosomes for the next generation are selected one by one by turning the

wheel. All generations population contain an equal number of chromosomes thus

a chromosome with a high probability of selection might be selected more than

once to be passed onto the next generation.

5.1.4 Creep

A creeping operation is performed on each new candidate solution. A threshold

is established and a random number is generated. If the random number exceeds

the threshold then the considered set of elastic moduli is randomly scaled in the

range of [1-δcreep, 1+δcreep], δcreep being the creep amount. Using that method
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allows for a search outside the search space [109] (e.g. if a gene of the candidate

solution is close to the high limit of its search space, after the creep operation,

the gene might be scaled up to 1+δcreep thus be outside the initial search space).

5.1.5 Crossover

Some of the selected chromosomes mate to create new offspring whose genes are

a combination of its parent genes, this is the crossover process. The crossover

rate defines the number of parent chromosomes to be selected for crossover. Two

parent chromosomes are ‘cut’ at a single random crossover point and their genes

are interchanged [109].

5.1.6 Mutation

Finally some of the chromosomes are mutated to avoid stagnation of the solution

to a local minima. The mutation rate defines the number of genes to be mutated

and their positions across the chromosomes are selected randomly. The genes

selected for mutation are each replaced by a newly generated one [109].

5.2 Implementation method

To show its applicability, the method is first performed on a simulated orthotropic

plate whose theoretical elastic moduli are known. Its dispersion characteristics

are computed using the WFE method. In the following subsections, the elastic

moduli are approximated using two different approaches to validate and compare

them. The first approach, named ‘brute-force’ in this chapter in reference to

search techniques that are not the most clever and computationally expensive

[107], tries the ambitious task of reconstructing all nine parameters at once. The

second uses the sensitivity of each modes to the different parameters to optimise

a reduced number of parameters at once.
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5.2.1 Brute-force

The thickness of the plate and the density of the material are fixed (0.5 mm and

3212 kg/m3) because known and the nine elastic moduli presented in Table 5.1 in

the ‘theoretical’ column are sought. These moduli represent a unidirectional car-

bon fibre reinforced polymer composite whose fibre arrangement makes it slightly

non-transverse isotropic. Table 5.1 shows the results obtained for five different

and independent runs of the GA and the percentage of error to the theoretical

value. In order to validate the method, no initial guess was used. The crossover

and mutation rates are both set to 0.1, the creep amount is set to 0.3 and the

generated population size is of 50 chromosomes. The algorithm is launched con-

sidering the wavenumber dispersion relations for five runs and the group velocity

dispersion relations for five other runs to provide for comparison.

Theoretical #1 #2 #3 #4 #5
C11 (GPa) 147.36 146.18 147.61 146.93 147.39 148.12
error (%) 0.80 0.18 0.29 0.02 0.52
C12 (GPa) 3.43 2.46 2.93 3.85 3.63 8.64
error (%) 28.23 14.49 12.18 5.68 151.65
C22 (GPa) 9.51 8.68 8.21 8.34 9.31 10.11
error (%) 8.71 13.70 12.29 2.15 6.30
C13 (GPa) 3.47 1.11 0.73 1.18 1.77 5.88
error (%) 67.84 78.84 65.85 48.83 69.59
C23 (GPa) 4.02 1.49 1.31 1.01 1.89 4.87
error (%) 63.04 67.49 74.94 52.98 21.17
C33 (GPa) 11.66 5.77 5.19 5.53 4.80 12.89
error (%) 50.52 55.49 52.54 58.85 10.54
C44 (GPa) 3.19 3.18 3.36 3.30 3.20 3.21
error (%) 0.20 5.44 3.44 0.31 0.56
C55 (GPa) 5.58 5.60 5.69 5.72 5.48 5.59
error (%) 0.35 1.99 2.52 1.88 0.22
C66 (GPa) 4.16 4.13 4.14 4.10 4.13 4.09
error (%) 0.72 0.41 1.51 0.57 1.54
Generations - 103 118 286 222 222
Time (h) - 25 30 59 49 46

Table 5.1: Results of the GA for five independent runs for the reconstruction of
the elastic moduli of an orthotropic material whose real moduli are displayed on
the left-hand side, when k(ω) is considered.

The results are firstly displayed for the wavenumber approach in Table 5.1.

It can be observed that this methodology, while providing a realistic order of
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Figure 5.4: Value of the objective function as a function of the generation for
the five GA independent runs for the reconstruction of the elastic moduli of the
orthotropic material. (a) k(ω) is considered. Convergence is observed for all
runs after 290 generations. 100 generations were needed for at least one run to
converge. The horizontal red line is plotted at 1% of error. (b) cg(ω) is considered.
After 300 generations, the objective function is smaller than 1% for only two runs,
all three other runs struggle to converge.

magnitude for the elastic moduli, yields strong relative error for many of them

(> 10%). Some elastic moduli such as C11 and C66 however, are in all five runs

guessed with a very low relative error (< 2%), C44 and C55 are guessed with a

tolerable error (< 6%). One can conclude that these parameters are extremely

sensible in comparison to the others.

Trying to optimise nine coefficients at once is a very ambitious task and the

convergence is obtained after many generations (at least 100) as seen in Fig.5.4.a,

and thus is time consuming. Moreover, only two elastic moduli are reconstructed

with a good accuracy and two more only with a relatively low error. One can

conclude that this approach is neither time efficient, nor yields accurate results.

However, the objective function value is smaller than 1% at convergence for each

run. This indicates that even though the correct solution was not found, at least

a solution exists.

For the sake of comparison, the exact same methodology is applied once more

with the only difference that group velocity (cg(ω)) curves are compared for min-

imisation in the objective function, instead of the wavenumber (k(ω)) relations.

Figure 5.4.b shows the evolution of the objective function at each new generation.

In comparison to the k(ω) approach, it is observed that three out of the five runs

do not reach the threshold of 1% of error in less than 300 generations. It seem-

s that the algorithm is more efficient to find solutions when k(ω) relations are
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considered rather than cg(ω) relations. This is logical as cg(ω) is a derivative of

k(ω) (see Eq.(2.20)), thus cg(ω) is less sensitive. The solutions for both converged

runs (using cg(ω)) are displayed in Table 5.2 and it is observed that no greater

accuracy is obtained for the parameters in comparison to the elastic moduli ob-

tained in Table 5.1. In conclusion, comparing k(ω) relation instead of cg(ω) in

the objective function of the GA allows for faster convergence while providing a

similar accuracy.

Theoretical #2 #5
C11 (GPa) 147.36 146.73 151.30
error (%) 0.43 2.68
C12 (GPa) 3.43 2.13 3.75
error (%) 37.96 9.23
C22 (GPa) 9.51 10.00 10.68
error (%) 5.17 12.25
C13 (GPa) 3.47 3.54 8.24
error (%) 2.04 137.61
C23 (GPa) 4.02 4.76 5.91
error (%) 18.46 46.87
C33 (GPa) 11.66 12.70 14.62
error (%) 8.90 25.43
C44 (GPa) 3.19 3.19 3.25
error (%) 0.14 1.80
C55 (GPa) 5.58 5.61 5.66
error (%) 0.49 1.38
C66 (GPa) 4.16 4.15 4.08
error (%) 0.30 1.81
Generations - 224 200
Time - 49h 41h

Table 5.2: Results of the GA, for the unique run to converge before 300 iterations,
for the reconstruction of the elastic moduli of an orthotropic material whose real
moduli are displayed on the left-hand side, when cg(ω) is considered.

5.2.2 Sensitivity

The brute-force approach showed that the dispersion relations have a very low

sensitivity to some of the moduli if considered altogether. A sensitivity study is

performed in order to uncover the effect of each parameters to be optimised on

the dispersion relations. This step is of the upmost importance as the sensitivities

of the unknown parameters are different and this strongly affects the performance
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of the GA as stated in [109]. Each individual moduli is alternatively increased

by a coefficient, and the relative difference induced on the dispersion curves is

computed for the first three modes for a discrete set of directions of propagation

ranging from 0° to 90°. Figures 5.5-5.7 display this information and the relative

difference is shown in logarithmic scale to emphasise the order of magnitude of

effect of each coefficient. Each sensitivity study is both performed considering

the wavenumber and the group velocity as outputs.
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Figure 5.5: Sensitivity of the A0 mode to the different elastic moduli at a fre-
quency of 50kHz (a) when k(ω) is considered (b) when cg(ω) is considered.
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Figure 5.6: Sensitivity of the SH0 mode to the different elastic moduli at a
frequency of 50kHz (a) when k(ω) is considered (b) when cg(ω) is considered.

First of all, it can be observed that the sensitivities are similar when consid-

ering either the wavenumber or the group velocity as reference data. In Fig.5.5

and 5.7, it can be observed that at 50kHz, C11 and C55 have a significant impact

on the A0 and S0 modes dispersion curves in the x direction of propagation (0°),

while the effect of the other moduli in comparison is considered insignificant. This

is logical as the main strain component involved in the S0 mode in the x direction
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Figure 5.7: Sensitivity of the S0 mode to the different elastic moduli at a frequency
of 50kHz (a) when k(ω) is considered (b) when cg(ω) is considered.

of propagation is εxx and the main strain components involved in the A0 mode

in the x direction of propagation are εxx and εxz which are respectively strongly

related to C11 and C55. The homogenisation methodology is launched, with C11

and C55 being the two unique genes of the chromosome and the other moduli

being arbitrarily fixed. Only two modes (S0 and A0) are compared in only one

direction of propagation (0°), which makes every iteration much faster than in

Sec.5.2.1. Tables 5.3 and 5.4 present the results for the k(ω) and cg(ω) approaches

respectively for five separate launches of the process each using different random

values for the fixed Cij. The algorithm converges in a low number of iterations

and provides excellent solutions (less that 1% of relative error in every case).

Theoretical #1 #2 #3 #4 #5
C11 (GPa) 147.36 148.16 148.02 147.76 146.92 147.50
error (%) 0.54 0.45 0.28 0.30 0.10
C55 (GPa) 5.58 5.61 5.62 5.60 5.58 5.52
error (%) 0.46 0.67 0.33 0.02 0.99
Generations - 8 9 5 2 10
Time - 30min 34min 19min 7min 38min

Table 5.3: Results of the GA for five independent runs for the reconstruction of
two elastic moduli (C11 and C55) of the orthotropic material whose real moduli
are displayed on the left-hand side, when k(ω) is considered.

It can be observed that both approaches (comparing k(ω) or cg(ω) in the

objective function) provides very accurate results in a low number of iterations.

Even though it seems that the cg(ω) approach requires more iterations to con-

verge, the sample size (five runs in each case) is small and the number of iterations

is too low to conclude whether the k(ω) or cg(ω) approach is the most efficient.
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Theoretical #1 #2 #3 #4 #5
C11 (GPa) 147.36 147.41 147.67 146.73 147.87 147.19
error (%) 0.03 0.21 0.43 0.34 0.11
C55 (GPa) 5.58 5.58 5.55 5.62 5.59 5.59
error (%) 0.07 0.48 0.68 0.24 0.23
Generations - 13 11 10 12 24
Time - 46min 39min 38min 42min 84min

Table 5.4: Results of the GA for five independent runs for the reconstruction of
two elastic moduli (C11 and C55) of the orthotropic material whose real moduli
are displayed on the left-hand side, when cg(ω) is considered.

Figures 5.5 and 5.7 also show that C22, C23, C33 and C44 have a significant

impact on the A0 and S0 modes dispersion curves in the y direction of propagation

(90°). The homogenisation algorithm described in Sec.5.1 is once again launched

in five separate runs. Only two modes (S0 and A0) are compared in a sole direction

of propagation (90°) and the results are displayed in Tables 5.5 and 5.6 for both

the k(ω) and the cg(ω) approaches. It can be seen that the algorithm needs

more iterations to converge than in the previous case where only two elastic

constant were reconstructed. Excellent solutions are provided for the coefficients

once again, in particular for C22 whose approximated values all contain less than

1% of error in comparison to the theoretical constants. One again, both the

wavenumber and the group velocity approaches have an equivalent accuracy and

number of iterations and one can not conclude on which is more suitable.

Theoretical #1 #2 #3 #4 #5
C22 (GPa) 9.51 9.51 9.45 9.48 9.47 9.42
error (%) 0.10 0.69 0.34 0.42 0.93
C23 (GPa) 4.02 4.15 3.96 3.97 3.92 3.90
error (%) 3.23 1.62 1.18 2.48 2.98
C33 (GPa) 11.66 11.92 11.69 11.56 11.52 11.51
error (%) 2.26 0.24 0.81 1.16 1.27
C44 (GPa) 3.19 3.23 3.20 3.20 3.24 3.25
error (%) 1.11 0.27 0.23 1.46 1.90
Generations - 21 30 39 64 27
Time - 80min 115min 149min 245min 103min

Table 5.5: Results of the GA for five independent runs for the reconstruction of
four elastic moduli (C22, C23, C33 and C44) of the orthotropic material whose real
moduli are displayed on the left-hand side, when k(ω) is considered.

Figure 5.6 shows that only C66 has a significant impact on the SH0 mode
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Theoretical #1 #2 #3 #4 #5
C22 (GPa) 9.51 9.59 9.49 9.40 9.41 9.47
error (%) 0.88 0.19 1.16 1.02 0.37
C23 (GPa) 4.02 4.03 3.93 3.92 3.81 3.99
error (%) 0.33 2.31 2.50 5.10 0.87
C33 (GPa) 11.66 11.54 11.46 11.51 11.23 11.57
error (%) 1.00 1.69 1.26 3.67 0.80
C44 (GPa) 3.19 3.19 3.29 3.25 3.25 3.21
error (%) 0.01 2.99 1.93 1.93 0.51
Generations - 25 34 3 68 8
Time - 96min 130min 11min 260min 31min

Table 5.6: Results of the GA for five independent runs for the reconstruction of
four elastic moduli (C22, C23, C33 and C44) of the orthotropic material whose real
moduli are displayed on the left-hand side, when cg(ω) is considered.

dispersion curves in both the x and y directions. Again, this was expected as the

main strain component involved in the SH0 mode in both the x and y directions

of propagation is εxy which is related to C66 according to Hooke’s law. Thus

the GA compares only the SH0 mode in two directions of propagation (x and y,

respectively at 0° and 90°) and the results are displayed in Tables 5.7 and 5.8.

The convergence is attained after a low number of iterations with a good precision

on the results (less than 1%). Figures 5.5-5.7 show that, in this case study, C12

and C13 variations have negligible effects on the dispersion of any modes in any

direction of propagation and thus are not considered.

Theoretical #1 #2 #3 #4 #5
C66 (GPa) 4.16 4.12 4.12 4.12 4.11 4.12
error (%) 0.91 0.96 0.91 1.10 0.91
Generations - 5 1 4 3 4
Time - 9min 2min 7min 5min 7min

Table 5.7: Results of the GA for five independent runs for the reconstruction of
one elastic moduli (C66) of the orthotropic material whose real moduli is displayed
on the left-hand side, when k(ω) is considered.

Using the sensitivity of each mode to the different elastic moduli allows for

dividing the problem and thus considerably reduces the computation time. It also

provides very accurate approximations in comparison to the method employed in

Sec.5.2.1. One must however be aware that the sensitivity study in that case is

straightforward to execute as the parameters to be found are known. Both in

Sec.5.2.1 and in the current section, no advantages of using the group velocity
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Theoretical #1 #2 #3 #4 #5
C66 (GPa) 4.16 4.13 4.13 4.14 4.13 4.13
error (%) 0.62 0.76 0.49 0.79 0.83
Generations - 1 3 1 2 1
Time - 2min 6min 2min 4min 2min

Table 5.8: Results of the GA for five independent runs for the reconstruction of
one elastic moduli (C66) of the orthotropic material whose real moduli is displayed
on the left-hand side, when cg(ω) is considered.

data over of the wavenumber data were raised. Thus the wavenumber data, being

direct outputs from the WFE method, are the one used for the next case studies

in this chapter.

5.3 Case study: 2D plain woven composite

Textile composite’s dispersion characteristics show complex behaviour (such as

stop-bands) that cannot be described by a macroscale substitution model. How-

ever, for low to middle frequency ranges, before any cut-off frequencies or stop-

bands, the dispersion relations seem rather approachable. In this section, a 2D

plain woven composite, whose unit cell is displayed in Fig.3.15, is approximated

using different macroscale substitution models.

Its dispersion characteristics are computed using the mesoscale model as de-

tailed in Sec.3.3. In Fig.5.8, on the left-hand side are displayed the slowness

surfaces at a fixed frequency for the three first propagating modes, on the right-

hand side the same slowness surfaces for a random orthotropic material. It is

observed that the shape of these slowness curves are comparable and thus a first

hypothesis is made: an orthotropic macroscale model is an adequate substitution

for the 2D plain woven composite mesoscale model.

5.3.1 Approximation with one orthotropic layer

In this first subsection, the textile composite is approximated by a single layer

material whose properties are orthotropic. A first attempt is made using its static

macroscale substitution model as described in Sec.3.3.4. The resulting stiffness

matrix describes a transverse isotropic material and is given in Eq.(5.2) (in GPa).
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Figure 5.8: Slowness surfaces at a frequency of 8 kHz for the first three modes
for the direction of propagation range of [0,90] for the 2D plain woven composite
on the left-hand side and for an orthotropic material on the right-hand side (in
s.km−1). (a) S0 and SH0 for the 2D plain woven composite (b) S0 and SH0 for
an orthotropic material (c) A0 for the 2D plain woven composite (d) A0 for an
orthotropic material.
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[C] =



49.33 13.24 4.36 0 0 0

13.24 49.33 4.36 0 0 0

4.36 4.36 1.52 0 0 0

0 0 0 3.69 0 0

0 0 0 0 3.69 0

0 0 0 0 0 5.41


. (5.2)

Using the SAFE method, the dispersion curves for a plate structure made of this

material (described in Eq.(5.2)) are computed, and plotted for the x direction of

propagation in Fig.5.9 along with the dispersion curves of the reference composite

described at a mesoscopic scale. It can be seen that even though the dispersion

curve in the x direction of propagation for the S0 mode is accurately predicted

using the static macroscale model, it is inaccurate for the A0 and SH0 modes.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

104

0

200

400

600

800

1000

1200

1400

1600
mesoscale (using WFE/CMS)
static macroscale (using SAFE)

Figure 5.9: Dispersion curves (k(ω)) of the first three modes of the reference
mesoscopic model and of its approximated static macroscale model for a 2D plain
woven composite, in the x direction of propagation. A strong mismatch between
the curves from both models is observed, except for the S0 mode. The static
macroscale model does not predict the dispersion curves accurately.

Making the assumption that the elastic parameters of this textile compos-

ite can indeed be approximated by a single layer orthotropic material, the GA

approach, thoroughly described in Sec.5.1, is applied to solve this problem in a

second homogenisation attempt. The thickness of the plate and the density of

the material are fixed (0.22 mm and 3212 kg/m3) because known and the nine
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elastic moduli describing an orthotropic material are sought. The brute-force

method is firstly employed to obtain the homogenised orthotropic set of elastic

moduli displaying the same dispersion characteristics than the 2D plain woven

composite. The GA compares the first three modes (S0, SH0 and A0) in three

directions of propagation (0°, 45° and 90°).

Figure 5.10 shows the objective function value for each iteration for five in-

dependent runs. After 300 iterations, the objective function does not show any

sign of a convergence to come as it stays around 20% of error. It seems that

no convergence is possible. A possible explanation is that since the material has

fibres in two different principal directions ([0/90] as seen in Fig.3.15), it cannot

be approximated by a material composed of a single orthotropic layer. Of course

it is possible to find a set of orthotropic moduli that would fit the solution for

one direction of propagation. However, the solution that is sought here should fit

all investigated directions at once.
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Figure 5.10: Value of the objective function as a function of the generation for
the five GA independent runs for the reconstruction of the elastic moduli of the
2D plain woven composite. Convergence is not observed after 300 generations.

5.3.2 Approximation with two identical orthotropic layers

In this second subsection, the textile composite is approximated by a two or-

thotropic layers laminate whose sequence is [0/90] to emulate the fibres oriented

in these directions in the 2D plain woven composite material, as shown in Fig.5.11.
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A first attempt to solve this problem is again performed by static virtual test-

ing. This can however not be carried out in a straightforward manner due to

the interweaving yarns, thus an intermediate step has to be observed: the yarns

are straightened out so that the composite can be divided in the out-of-plane

direction in two independent layers whose material constants are obtained using

the static macroscale per layer homogenisation method described in Sec.3.3.4

Figure 5.11: 2D plain woven composite model breakdown for approximation by
a static macroscale per layer model.

From Fig.5.12, it can be observed that using these static macroscale per layer

properties, the dispersion curves in the x direction of propagation are not in a-

greement, for any of the three modes. Thus the GA homogenisation methodology

is performed in order to obtain the elastic moduli that correspond to these dis-

persion curves using a two orthotropic layers laminate as surrogate model. The

approach is firstly tested on a model whose layers are effectively orthotropic and

the converged results displayed in Table 5.9 for only one run. C11 and C66 are

reconstructed with great accuracy, while the others are very far from the reference

moduli. It seems that using this method does not allow for reconstructing the

parameters whose sensitivity to change is not as great as C11 and C66.

Figure 3.15 and Eq.(5.2) show that the material presents a symmetry along

the 45° axis and thus holds the same dispersion characteristics on each side of that

symmetry axis. The assumption that both orthotropic layers have the same elas-

tic properties is made and both thicknesses are set to 0.11 mm for a total of 0.22

mm, only their local material orientations are different. The brute-force method

is applied, comparing the first three modes in four directions of propagation (0°,

18°, 30° and 45°).

For the initialisation step of the GA, the chromosomes are set to random values

in order not to bias the results. The results are displayed in Table 5.10 and it
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Figure 5.12: Dispersion curves (k(ω)) of the first three modes of the reference
mesoscopic model and of its approximated static macroscale per layer model for
a 2D plain woven composite.

Theoretical Reconstructed by GA Relative error
C11 (GPa) 114.92 115.67 0.65%
C12 (GPa) 2.35 3.04 29.55%
C22 (GPa) 6.41 7.65 19.37%
C13 (GPa) 2.79 3.72 33.35%
C23 (GPa) 1.93 3.44 78.05%
C33 (GPa) 6.71 9.44 40.73%
C44 (GPa) 2.24 2.28 1.53%
C55 (GPa) 2.77 2.32 16.21%
C66 (GPa) 2.60 2.61 0.31%
Generations 62

Table 5.9: Results of the GA for the reconstruction of the elastic moduli of a two
layers (sequence [0/90]) composite material whose properties are orthotropic and
real moduli are displayed on the left-hand side, when k(ω) is considered.

can be seen that relatively good estimations of C11 and C66 are found as their

standard deviation is rather small (< 5%). The standard deviation for the other

parameters however is high (> 25%), and while the sample size is too small (N=5)

to conclude on whether the means and standard deviations represent meaningful

statistical values, it shows that no convergence is observed. The dispersion curves

for the parameters found and presented in Table 5.10 are shown in Fig.5.13. It

can be seen that the reconstructed solutions seem in good agreement with the

mesoscopic model and that they provide a much better approximation than the

ones obtained by static virtual testing following the method described in Fig.5.11.

However, the objective function converges at a relatively high value of around
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1.7% for each of the runs. This likely indicates that no exact solution can be

found.

#1 #2 #3 #4 #5 Mean SD
C11 (GPa) 73.19 79.30 73.45 70.69 72.11 73.75 2.9 (4.0%)
C12 (GPa) 10.09 16.87 8.96 9.59 17.37 12.58 3.7 (29.7%)
C22 (GPa) 3.89 11.65 4.46 9.71 51.53 16.25 17.9 (110.1%)
C13 (GPa) 6.01 8.19 2.82 3.01 1.43 4.29 2.46 (57.2%)
C23 (GPa) 5.50 8.86 8.11 12.62 7.86 8.59 2.31 (26.9%)
C33 (GPa) 12.50 7.99 19.83 19.73 1.24 12.26 7.11 (58.0%)
C44 (GPa) 1.22 12.57 4.04 1.20 2.29 4.26 4.28 (100.4%)
C55 (GPa) 4.72 1.96 7.01 3.32 2.01 3.80 1.90 (49.8%)
C66 (GPa) 2.92 2.98 2.94 2.97 2.92 2.95 0.03 (0.85%)
Obj.fun (%) 1.72 1.95 1.82 1.67 1.62
Generations 115 62 70 84 49
Time (h) 64 34 38 45 27

Table 5.10: Results of the GA for five independent runs for the reconstruction of
the elastic moduli of the 2D plain woven composite material when k(ω) is consid-
ered. The mean and standard deviation are computed for each parameters and
displayed on the right-hand side. The value of objective function at convergence
for each run is displayed in the ‘Obj.fun’ row. ‘SD’ stands for standard deviation.

5.3.3 Applications

When considering a laminated composite, if the elastic moduli are known for

the different layers, then the dispersion characteristics can be computed for the

assembly in a fast and straightforward way using SAFE or WFE methods. Since

the approximated elastic moduli obtained in Sec.5.3.2 provide similar dispersion

characteristics to the reference material, they are used in the next subsections to

predict the results for different configurations and arrangements of this material.

Firstly, they are used to compute the dispersion characteristics in a plate that

is an assembly of multiple layers of this material and in the secondly in a beam

configuration.

Plate configuration

In this section, the ‘reconstructed’ material constants displayed in Table 5.10

are used to compute the dispersion characteristics for three different plate con-

figurations (infinite length in the x and y directions, finite thickness in the z
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(b) 45° direction of propagation

Figure 5.13: Dispersion curves (k(ω)) of the first three modes of the reference
mesoscopic model, its approximated static macroscale per layer model and using
the results (displayed in Table 5.10) from all five runs for a 2D plain woven
composite.

direction): an assembly of two layers of 2D plain woven composite material, an

assembly of three layers of the same material and finally an assembly of five layers

of this material as displayed in Fig.5.15.a. Figure 5.14 shows the dispersion curve

for the first two configurations (two and three layers assemblies), and Fig.5.15.b

for the five layers assembly configuration. It can be seen that the dispersion

curves are considerably diverging from the ones obtained for the mesoscale mod-

el, and in particular the A0 mode. The dispersion curves obtained using the

static macroscale and macroscale per layer models are plotted in Fig.5.14-5.15

too. Table 5.11 displays the error of the computed A0 curves for the different

runs to the reference mesoscale dispersion curve. It is clear that the dispersion
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curves obtained for any of the substitution models can not predict the dispersion

characteristics in any of the three configurations. One can assume that lower er-

ror (objective function was situated around 1.7% at the end of every run) should

be obtained for accurate prediction of the dispersion curves or more features of

the dispersion curves should be compared such as the higher-order modes. Ob-

servation of the predictions for the two, three and five layers assemblies using the

set of moduli obtained with run number five (yellow curves) show relatively good

agreement with the mesoscale predictions. This bolsters the idea that a solution

could be found given attaining a lower error in the search algorithm.

#1 #2 #3 #4 #5 macro macro/layer
2 layers - A0 5.0% 3.2% 5.3% 6.5% 1.6% 9.4% 8.6%
3 layers - A0 5.7% 5.2% 8.8% 7.9% 1.7% 9.2% 7.3%
5 layers - A0 6.9% 8.0% 13.7% 10.0% 2.6% 11.24% 5.8%

Table 5.11: A0 mode wavenumber prediction relative error to the reference
mesoscale model for the different stacking configurations.

Beam

In this subsection, the ‘reconstructed’ material constants displayed in Table 5.10

are used to generate the dispersion curves for a beam configuration (infinite length

in the x direction, finite width and thickness respectively in the y and z direc-

tions). All dispersion curves are plotted in Fig.5.16, and it is observed that the

predictions from the ‘reconstructed’ material constants are in a good agreement

with the reference mesoscale dispersion curves. The relative errors are displayed

in Table 5.12. The first flexural mode’s dispersion curve has a relative error to

the reference lower or equal to 4% for any of the five runs, which is far better

than for the static macroscale models (macroscale and macroscale per layer both

have an error larger than 15%). This is true for the second flexural mode, the

shear mode and the pressure mode too. Once again, one can assume that accu-

rate predictions could be obtained given a lower error in the objective function is

attained (objective function was situated around 1.7% at the end of every run).
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Figure 5.14: Dispersion curves (k(ω)) in the x direction of propagation of the
first three modes of the reference mesoscopic model, its approximated static
macroscale model, its approximated static macroscale per layer model and us-
ing the results (displayed in Table 5.10) from all five runs for different stacking
configurations of the 2D plain woven composite. (a) Two layers [0/0], (b) Three
layers [0/0/0].

125



Chapter 5. Accounting for periodic textile composite structures within continuous
wave propagation schemes

(a)

0 2 4 6 8 10 12

104

0

200

400

600

800

1000

1200
mesoscopic
static macroscale
static macroscale per layer
run #1
run #2
run #3
run #4
run #5

(b)

Figure 5.15: (a) Unit cell of a five layers assembly of the 2D plain woven compos-
ite. (b) Dispersion curves (k(ω)) in the x direction of propagation of the first three
modes of the reference mesoscopic model, its approximated static macroscale
model, its approximated static macroscale per layer model and using the result-
s (displayed in Table 5.10) from all five runs for a five layers laminated plate
configuration of the 2D plain woven composite.
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Figure 5.16: Dispersion curves (k(ω)) of the first four modes of the reference
mesoscopic model, its approximated static macroscale model, its approximated
static macroscale per layer model and using the results (displayed in Table 5.10)
from all five runs for a beam configuration of the 2D plain woven composite.

#1 #2 #3 #4 #5 macro macro/layer
Mode 1 3.9% 1.8% 3.3% 4.0% 1.3% 25.7% 15.4%
Mode 2 2.7% 4.7% 4.3% 2.8% 5.8% 28.2% 12.5%
Mode 3 4.3% 5.8% 5.2% 4.6% 5.3% 16.2% 9.9%
Mode 4 8.0% 4.3% 6.2% 8.6% 11.1% 10.0% 29.2%

Table 5.12: First four modes wavenumber prediction relative error to the reference
mesoscale model for a beam configuration.
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5.4 Case study: 2D twill woven composite

The same two orthotropic layers substitution model is used along the GA to

obtain the elastic moduli for the 2D twill woven composite displayed in Fig.5.17.

The thickness dimensions are the same as in Sec.5.3.2 and the density is of 3280

kg/m3. The dispersion curves computed for the approximated elastic moduli

found from five independent runs (whose results are displayed in Table 5.13) in

the x direction of propagation are plotted in Fig.5.18 and it provides significantly

better approximations than both static macroscale models. Table 5.13 shows

once again that C11 and C66 seem to be predicted with a good accuracy as the

standard deviation is low. However, the objective function attains 2.45% of error

after a low number of iterations (around generation 50) for each of the runs as

can be observed in Fig.5.19 but stays around this value even after a large number

of iterations as can be seen in Table 5.13.

Figure 5.17: 2D twill woven composite and its corresponding unit cell.

The results from these five runs are used to compute the dispersion relations in

a different configuration: a composite made of two layers of 2D twill weave. The

dispersion curve for this composite in the x direction of propagation are displayed

alongside the approximated ones in Fig.5.20. Similarly to the observations made

in Sec.5.3.3, the dispersion characteristics predictions for this two 2D twill weave

layers model are inaccurate especially for the A0 mode. Once again, one could

assume that accurate predictions could be obtained given a lower error in the

objective function is attained (objective function was situated around 2.45% at

the end of every run). However, despite the mechanisms avoiding the objective

function to be trapped at a local minima (e.g. creep and mutation), it seems that

it does get trapped anyway (see Fig.5.19). In Table 5.13, the value of the objective
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#1 #2 #3 #4 #5 Mean SD
C11 (GPa) 77.55 79.67 79.06 79.20 78.62 78.82 0.72 (0.91%)
C12 (GPa) 14.58 15.48 15.27 16.56 15.60 15.50 0.64 (4.11%)
C22 (GPa) 5.35 5.94 5.45 9.18 6.91 6.57 1.42 (21.61%)
C13 (GPa) 1.75 7.79 3.62 2.73 5.21 4.22 2.12 (50.16%)
C23 (GPa) 2.04 3.75 1.46 8.08 5.79 4.22 2.45 (57.95%)
C33 (GPa) 16.50 19.82 10.08 14.39 16.51 15.46 3.20 (20.72%)
C44 (GPa) 1.37 1.14 2.05 1.29 1.01 1.37 0.36 (26.31%)
C55 (GPa) 2.49 1.87 1.55 15.27 3.09 4.85 5.23 (107.84%)
C66 (GPa) 3.03 2.90 3.11 3.13 2.92 3.02 0.09 (3.13%)
Obj.fun (%) 2.44 2.45 2.44 2.45 2.44
Generations 414 343 460 533 494
Time (h) 128 101 122 154 135

Table 5.13: Results of the GA for five independent runs for the reconstruction of
the elastic moduli of the 2D twill woven composite material when k(ω) is consid-
ered. The mean and standard deviation are computed for each parameters and
displayed on the right-hand side. The value of objective function at convergence
for each run is displayed in the ‘Obj.fun’ row. ‘SD’ stands for standard deviation.
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Figure 5.18: Dispersion curves (k(ω)) of the first three modes of the reference
mesoscopic model, its approximated static macroscale model, its approximated
static macroscale per layer model and using the results (displayed in Table 5.13)
from all five runs for a 2D twill woven composite plate.

function at which the algorithm is trapped for each run is almost the same (around

2.45%), while the moduli are quite different (high standard deviation). This could

indicate that no exact solution can be found. The lack of solution could be a

consequence of the strong assumption that the 2D twill woven composite can be

substituted by a two orthotropic layers material.
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Figure 5.19: Value of the objective function as a function of the generation for
the five GA independent runs for the reconstruction of the elastic moduli of the
2D twill woven composite. Convergence is not observed after 500 generations as
the error is of more than 2.4% for any generation. This very likely indicates that
no exact solution can be found.
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Figure 5.20: Dispersion curves (k(ω)) of the first three modes of the reference
mesoscopic model, its approximated static macroscale model, its approximated
static macroscale per layer model and using the results (displayed in Table 5.13)
from all five runs for a two layers laminated plate configuration of the 2D twill
woven composite.

5.5 Case study: triaxial braided composite

It was shown in Sec.5.3 that in order to approximate the elastic moduli of a

textile composite, the model of substitution might need to be multilayered. In

that section, it was rather obvious that the material could be approached by a two
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identical layers laminate whose sequence is [0/90]. In this section, the material of

consideration is a triaxial braided composite (shown in Fig.3.33) and the definition

of the model of substitution is not obvious. While it seems rather safe to assume

that the model can be approximated by a laminate composed of three layers,

whose sequence is [-60/0/60] (which are the three yarns orientations), similarly

to [191], and whose first and third layers (representing the braider yarns) have the

same elastic moduli, it is difficult to assume more. Having a substitution model

composed of two different materials means that twice as many elastic moduli

are to be guessed using the GA, this means chromosomes composed of eighteen

genes, which is very ambitious to solve. Another less realistic but more convenient

hypothesis can be made: all three layers are composed of the same material, they

however have different thicknesses in order to retain a realistic fibre count per

orientation. Taking into account the braider yarns versus axial yarns ratio, one

gets in this particular case a layer thickness repartition as follows [0.1472 , 0.1056,

0.1472 ] mm. The density is of 3266 kg/m3.

Once again, five runs are launched. It can be seen in Fig.5.21 that after

more than three hundred iterations, no convergence is acquired as the objective

function does not even reach below 7% of error. This indicates that no exact

solution can be found using these parameters.
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Figure 5.21: Value of the objective function as a function of the generation for
the five GA independent runs for the reconstruction of the elastic moduli of the
triaxial braided composite. Convergence is not observed after 300 generations as
the error is of more than 7%.

130



Chapter 5. Accounting for periodic textile composite structures within continuous
wave propagation schemes

Another GA simulation was launched, with ten genes instead of nine in the

chromosome. The last gene being the thickness h of the intermediate layer so

that the layer thickness breakdown is as follows [ (0.4-h)/2 , h, (0.4-h)/2]. It did

not converge as the error represented by the objective function remained higher

than 7%.

5.6 Conclusions

In this chapter, a characterisation method for the homogenisation of textile com-

posite models using multiscale modelling of their dispersion characteristics and a

genetic algorithm is presented. It can be concluded that:

• Using the dispersion curves and genetic algorithm allows for reconstructing

the elastic properties of orthotropic materials in a straightforward way.

• As observed in previous chapters, macroscale models using elastic moduli

obtained by static virtual testing do not provide a good approximation for

textile composites.

• Elastic moduli are not straightforward to obtain by inverting dispersion

curves using a GA for 2D woven composites. The approximations they

provide however are better than using static macroscale models.

• C11 and C66 in particular are two elastic moduli whose inversion is performed

with a low error or standard deviation in this study.

• Some more complex textile composites, such as a triaxial braided composite,

appear not to be approachable by simple multilayered macroscale models.

• While this homogenisation procedure is efficient to characterise an orthotrop-

ic material from its dispersion relations or at least to find a possible solution,

the lack of convergence or the high converged relative error to the reference

model when a textile composite is considered indicates that these complex

materials cannot be approximated by simple macroscale models.
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• When considering a textile composite, even if the elastic moduli of a close

substitution macroscale model are found, this does not mean that this so-

lution can be successfully used in laminated assembly or in different config-

urations of the same material for dispersion characteristics predictions.
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Chapter 6

Effect of the mesoscale

architecture of composites on

structural damping

In the previous chapters, no damping was assumed in the models for simplicity.

However, composite materials usually present high damping properties due to the

viscoelastic characteristics of the matrix, thus damping is an important param-

eter to consider in the analysis of composite structures. Therefore, a damping

model is proposed in this chapter. In the first section, damping is introduced in

the mesoscale WFE/CMS methodology. It is followed by sections that present

numerical examples and validations.

6.1 Damping modelling and loss factor calcula-

tion methods

A complex modulus damping model (see Eq.(2.23) in the literature) is introduced

in the equation of motion of the problem (Eq.(2.29)). The imaginary part K′′ of

the global stiffness matrix K in the case of a textile composite composed of two

component materials (yarn and matrix) is written as follows

K′′ = ηyarnK
′
yarn + ηmatK

′
mat, (6.1)
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with ηyarn and ηmat respectively the yarn and matrix loss factor. K′yarn and K′mat

being respectively the stiffness matrix of the yarn and matrix elements. It should

be noted that in this method, the loss factor data for the constituent elements

must be pre-determined.

Once the damping has been modelled, the mesoscale WFE/CMS methodology

can be applied to the problem. Several formulations of the WFE scheme, all

leading to a different eigenvalue problem (see Sec.2.3), can be employed. In this

chapter, the adopted formulation is the same as the one employed throughout

the thesis, meaning it involves specified real wavenumber as shown in Sec.3.3 and

the frequency set of the propagating waves is calculated from the standard linear

eigenvalue problem. The equation of motion is thus solved for complex angular

frequencies ω = ωre+iωim (re subscript stands for real and im for imaginary). As

depicted in [113], the ratio between the imaginary (representing the dissipated

energy) and real coefficients (representing the stored energy) gives the loss factor

of the material. The loss factor associated with a propagating wave is calculated

as proposed in [137, 192]. The squared angular frequency is given

ω2 = (ωre + iωim)2 = 2iωreωim + ω2
re − ω2

im, (6.2)

The loss factor η is the ratio between the imaginary and real coefficients, which

gives:

η(ω, θ) = 2
ωreωim

(ω2
re − ω2

im)
. (6.3)

The loss factor is dependent on both the considered direction of propagation θ

and the angular frequency ω.

In the following sections, four case studies using the method displayed here

are presented. In the first section, a macroscale model of a laminate composite is

studied, an eigenproblem formulation comparison is provided as well as a numer-

ical validation. The next three sections present three different textile composites

modelled at a mesoscopic scale and a numerical validation is proposed for the last

model.

134



Chapter 6. Effect of the mesoscale architecture of composites on structural damping

6.2 Case study: macroscale modelling of a com-

posite laminate for damping prediction and

numerical validation

6.2.1 Comparison of two eigenvalue problem formulations

The methodology presented in this chapter is compared to the one presented in

[137] for a simple case of a composite laminate made of two layers of the same

lamina stacked in the following sequence [0/90]. The lamina is considered at

a macroscopic scale, its orthotropic elastic properties are given in Table D.1 in

Appendix. The model is a beam of 0.5 mm thickness and 1 mm width, it has ten

elements in the thickness, twenty in the width and one element only is needed in

the length to describe a section of the beam.

The adopted formulation for solving the eigenvalue problem shown in E-

q.(2.29) involves known and real wavenumber and the associated complex an-

gular frequency vector is sought (ω(k)), this is the standard linear eigenvalue

problem used in Sec.3.3 for textile composites. The damping characteristics are

computed using Eq.(6.3). Another available formulation is a polynomial eigen-

value problem and it involves real prescribed frequency (k(ω)). The associated

complex wavenumber vector is sought as presented in [98, 137]. A disadvantage of

this second approach compared to the first is that the considered unit cell whose

dispersion characteristics are sought cannot display a complex internal structure

similarly to a textile composite. It can however deal with laminate composites

described at a macroscopic scale and thus is used here for comparison.

This numerical example compares the loss factor computation methodology

that uses the ω(k) formulation with the k(ω) formulation presented in [137].

Using the second formulation methodology, η(ω, θ) is computed as follows:

η(ω, θ) =
V∗j K

′′(ω)Vj

V∗j K
′(ω)Vj

(6.4)

where * denotes the conjugate transpose and Vj is the modeshape.

This particular comparison is not made to show the advantages of the mesoscale

methodology over the macroscale one but rather to verify that both methodolo-
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gies provide identical results for a same model. In Fig.6.1 are displayed the

dispersion characteristics and the loss factor for both methodologies. The results

are in excellent agreement.
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Figure 6.1: Comparison of the loss factor computed for the four first modes using
the k(ω) and ω(k) formulations. An excellent agreement is observed.

6.2.2 Numerical validation using guided waves in a lami-

nated composite beam through transient FE analy-

sis

In order to validate the method used in this chapter, the dispersion relations and

the loss factor of a longitudinal wave are investigated in a beam structure made

of a composite laminate material by transient FEA.

Transient FEA

A beam made of a two layers laminated composite is modelled. Its width is of 1

mm, while its thickness is of 0.5 mm and its length, which should be long enough

to avoid wave reflection on the far end side, is of 200 mm.

Longitudinal waves are chosen for the study as they are straightforward to

induce to a beam model. A force envelope is applied on one end side of the

beam (on every nodes of that surface) in the direction of the beam length. The

magnitude of the load is variable over time so that the signal can carry a narrow
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band frequency, and has a short time pulse. To avoid the coupling of various

modes, displacement in directions of the beam width and thickness are set as

null independently of time (U2 = U3 = 0). This is also allowing for shorter

computation time.

The signal is composed of a signal carrying the frequency of interest, mixed

with a Hanning window function to ensure a narrow frequency band (see Fig.6.2)

and no leaking. The carrier signal is sinusoidal and composed of eleven cycles.

The displacement in the length direction is measured over time at a large set

of positions along the length of the beam. Using these displacement amplitudes

over time data, the damping can be observed (see Fig.6.3) and the loss factor

calculated for each studied frequency.
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Figure 6.2: Discrete Fourier transform of the narrow frequency band input signal
(carrying a frequency of 250 kHz).

As stated in [147], the attenuation of propagating waves in a thin structure

is mainly caused by four factors. One factor is the geometric spreading of the

wave, which describes the loss of amplitude due to the growth of the wave front

length spreading in all directions from a localised source. However, unlike in a

plate-like structure, guided waves in a beam-like structure propagate in a single

direction (i.e. along the beam length), thus geometric spreading does not occur.

Another factor is the wave dispersion, which does not occur either in our case as

the carrier signal has a very narrow frequency band and is lower than the cut-

off frequency. Another is the dissipation of the energy into an adjacent media,

which does not occur here as there are no adjacent media. Lastly, the fourth
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Figure 6.3: Wave propagating along the length of the damped laminated beam (x
direction), the wavepacket carries a narrowband frequency of 250 kHz. The dis-
placement in the length direction is measured for two points situated respectively
at x= 50 mm and 60 mm distance function of time. A zoom of the maximum
amplitude of the envelop of the two wavepackets shows damping.

factor of attenuation is the material damping which is introduced here using the

pre-determined materials loss factors. This last factor should be the only source

of damping in this model.

For an accurate comparison, the model mesh size should be the same for the

two compared methods (transient FEA and WFE/CMS). In this FE model, the

viscous damping is modelled using Rayleigh’s proportional damping as proposed

in [146, 147], but neglecting the mass damping in order to obtain the same damp-

ing model than used within the WFE/CMS approach (see Sec.D.1 in Appendix),

thus

ξ =
βω

2
. (6.5)

β coefficient is calculated as follows

β =
2ξ

ω
=
η

ω
. (6.6)

For each frequency point for which the attenuation is sought, β has to be

recalculated and it differs as well for each material component of the structure
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(since they have different loss factors η).

Once the damping has been introduced in the FE model, the transient FEA

can be performed for the different frequency points. The loss factor is computed

by studying the attenuated amplitude of a traveling wave at different positions

along the considered structure. The method for computing the damping ξ from

the transient FEA is presented here. The amplitude Ap at a selected point p on

the beam can be expressed as

Ap = Aei(ωt−kxp), (6.7)

with xp the position of the point p along the length of the beam. The ratio of

amplitude of two points placed at different positions is thus written

A2

A1

= ei(kx1−kx2), (6.8)

it follows

ln
(
A2

A1

)
= −ikδx, (6.9)

with δx the distance between the two considered points.

Assuming k = kre+ikim and that the dissipation is only due to the imaginary

part

kim =
ln
(
A2

A1

)
δx

. (6.10)

ξ is calculated as proposed in [193]

ξ =

∣∣∣∣∣kimkre
∣∣∣∣∣ . (6.11)

Combining Eq.(6.10) and Eq.(6.11), ξ is given by

ξ =

∣∣∣∣∣∣
ln
(
A2

A1

)
kreδx

∣∣∣∣∣∣ . (6.12)

The maximum amplitudes A1 and A2 are calculated using the envelope of the

displacement amplitude over time at respectively the positions x1 and x2 of the
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beam.

Results

The loss factor is calculated by comparing the displacement amplitude over time

at different positions along the beam (at least a thousand points). The transient

analysis is firstly performed for a small set of five frequencies ranging from 300kHz

to 500kHz with a unique loss factor for both layers of the laminate (η = 0.003).

Using an identic loss factor for every constituents of the material should produce

an equal and constant loss factor for the whole material, independently of the

frequency. However, a difference is observed in the transient FEA (see Fig.D.1 in

Appendix) as the resulting loss factor is equal to 0.003 at low frequency but ever

slightly increasing as the frequency grows, which the model formulation should

prevent. It is believed that this difference is induced by the FE software in use

that does not allow to model structural damping in the conventional way but

only allows to use the Rayleigh damping formulation in explicit analysis, and

these results are used to adjust the determination of the β coefficient for later

computations.

The simulation is performed once again, this time using different input loss

factor for the different layers orientations (see Table D.1 in Appendix) and the

adjusted β coefficient (see Table D.5 in Appendix). The mean and mean-squared

error of the computed loss factor using Eq.(6.12) (for the thousand points) are

plotted on Fig.6.4 along with the results from the presented methodology (the

mean-squared error is shown with error bars).

A good agreement between the loss factor curve (plotted against frequency)

computed with the damped WFE/CMS methodology and the one computed from

the transient FEA is observed.
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Figure 6.4: Loss factor in a two layers laminate beam, function of the frequency,
propagating in the x direction, associated to the pressure mode. (+) the disper-
sion curve, (×) the loss factor computed with the methodology introduced in this
chapter, (o) the loss factor computed from the transient FEA.

6.3 Case study: mesoscale modelling of a 2D

plain woven composite for damping predic-

tion

As a first textile composite example, a unit cell of a 2D plain woven composite

(Fig.3.15) is modelled at a mesoscopic scale and the loss factor is calculated as

a function of the propagation angle and the frequency. The dimensions of the

unit cell are 2 × 2 × 0.2 mm. This FE model is composed of 6250 elements (25

× 25 × 10), 3336 elements are yarn elements while the 2914 remaining elements

are matrix elements. This gives a fibre volume fraction of 0.5338. ηyarn = 0.0001

and ηmat = 0.02 are used as pre-determined loss factor for the yarns and matrix

constituents respectively. The materials properties are given in Tables D.2 and

D.3 in Appendix.

Thanks to the method presented in Sec.6.1, the loss factor associated to the first

flexural mode can be calculated, as a function of the wave direction of propagation

and the frequency, as shown in Fig.6.5. A mirror symmetry to the 45° direction of

propagation plane can be observed for the loss factor values. This is in agreement

with the geometry of the unit cell, itself presenting a symmetry to the 45° axis.
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Figure 6.5: Loss factor in a 6250 elements model of a 2D plain woven fabric,
function of the wave direction of propagation and the frequency, associated to
the flexural mode of the composite plate.

In Fig.6.6, the loss factor, associated to the flexural mode, function of the

frequency, propagating in the x direction is displayed for a larger frequency range.

The dispersion curve for this mode is shown as well on the figure allowing for

comparison. A Bragg type stop-band is present in the dispersion curve (for details

on the difference between Bragg and local stop-bands, the reader is referred to

Sec.2.2.2), and the loss factor seem to have an asymptotic behaviour next to it.

For the loss-factor to reach extreme values for frequencies around a stop-band

where the signal is fully attenuated seems logical. It can be observed that the

loss factor is lower at higher frequencies (after the stop-band), this has previously

been observed in [137] for laminates.
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Figure 6.6: Loss factor in a 6250 elements model of a 2D plain woven fabric,
function of the frequency, propagating in the x direction, associated to the flexural
mode of the composite plate.

Three parametric studies are subsequently presented. The first compares the
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effect of the fibre volume fraction. The second shows the impact of different

pre-determined component loss factors values and lastly the effect of the wave

direction of propagation on the loss factor is demonstrated.

6.3.1 Effect of the fibre volume fraction

Two new models have been created based on the one described above. The

difference between these models is the width of the yarns (and thus the number

of fibres), which has an impact on the fibre volume fraction (see Fig.6.7), and

therefore on the structural damping performance. The external dimensions of

the unit cells are the same for these three models.

Figure 6.7: Parametric study: change of the yarns width (the model in the middle
of the figure is the reference model used in the previous part of the subsection).

The results of this study are displayed in Fig.6.8-6.10. As expected, the lower

the fibre volume fraction is, the more effective the model is in dissipating energy,

and this is true for the first flexural, shear and pressure modes. All three models,

however, present similar loss factor curve shapes for the three first modes.

The loss factor curves of the three models present an asymptotic behaviour around

the Bragg stop-band for the first flexural mode (see Fig.6.8). The loss factor

has a lower value on the higher frequency part of the figure, after the stop-

band. While the loss factor intensity of the curves is shifted as a function of fibre

volume fraction, the stop-band occurs at the same frequency range for all three

models. Indeed, Bragg stop-bands are due to the interactions between incident

and reflected waves that create destructive interference and are linked to the

length scale of periodicity. For all three models shown in Fig.6.7, the yarn widths

are different but the unit cell lengths (and thus the periodicity) remain the same,

thus the stop-bands occur at the same frequency range. Two small bumps can
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be seen in the curves around 360 and 390 kHz. These are due the interaction

between the flexural mode and two other modes that are crossing when observed

in the IBZ (details about this phenomenon are given in Sec.6.4 and illustrated in

Fig.6.16).
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Figure 6.8: Loss factor displayed for three 6250 elements models of a 2D plain
woven fabric composite as a function of frequency, associated to the flexural mode
of the composite plate (angle of propagation null: x direction): structure with
larger fibres (- -), reference structure (–), thinner fibres (-.).

In Fig.6.9, the dissipative characteristics slightly decrease until reaching a

frequency of around 300 kHz. The loss factor then increases and it seems to tend

to a high value. This is because a local stop-band is present in the dispersion

curve. Unlike what was observed in Fig.6.8, the frequency at which the stop-

band starts is slightly different for the three models. Indeed a shift in frequency

is observed: the higher the fibre volume fraction, the higher the frequency of the

stop-band. This shift is justified by the properties of the stop-bands, indeed,

local resonant stop-bands usually appear when the unit cell displays one or more

resonant unit and thus depend on the internal architecture of the cell. The

internal architecture is slightly changed by the different yarns width, thus the

stop-bands are different as well.

The loss factor associated to the first pressure wave slightly grows (see Fig.6.10),

then the growing rate suddenly increases and the loss factor seems to tend to a

high value around the stop-band. On the right side of the stop-band, the same

phenomenon can be observed. It seems to tend to a high value around the local

stop-band and then settles after the frequency of 350 kHz. The loss factor at

500 kHz is more than the double of the loss factor at 50 kHz. Similarly to what
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Figure 6.9: Loss factor displayed for three 6250 elements models of a 2D plain
woven fabric composite as a function of frequency, associated to the shear mode
of the composite plate (angle of propagation null: x direction): structure with
larger fibres (- -), reference structure (–), thinner fibres (-.).

was observed in Fig.6.9, the stop-band frequency range is slightly different for the

three models. Once again, a shift in frequency is observed: the higher the fibre

volume fraction, the higher the frequency range of the stop-band location. The

stop-bands in Fig.6.10 also are local resonant stop-bands, thus a change in the

internal architecture changes the stop-bands as well. Also, at around 446 kHz,

two small peaks are observed. They appear when the wavenumber of the pres-

sure mode curve reaches a limit of the IBZ (k = π/∆), they are the consequences

of a small Bragg stop-band. If plotted with a finer wavenumber resolution, the

asymptotic behaviour of the loss factor would be observed around the stop-band.
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Figure 6.10: Loss factor displayed for three 6250 elements models of a 2D plain
woven fabric composite as a function of frequency, associated to the pressure
mode of the composite plate (angle of propagation null: x direction): structure
with larger fibres (- -), reference structure (–), thinner fibres (-.).
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As expected, this parametric study clearly shows that the fibre volume fraction

has an impact on the structural damping, and it also shows the strong influence

of the frequency over this same parameter. Another interesting result is the effect

of a change in yarn width on the frequency of a local stop-band.

6.3.2 Effect of the pre-determined components loss factor

Another parametric study has been conducted on the original model of the 2D

plain woven fabric, by altering the pre-determined loss factor of the matrix (ηmat)

and yarn (ηyarn) components. The loss factor function of the frequency is dis-

played in Fig.6.11.a. It appears that a relation of proportionality exists between

the loss factor of the assembly and the pre-determined loss factors of the con-

stituent components and that this relation is independent from the initial loss

factors chosen for each components.
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Figure 6.11: Loss factor displayed for a 6250 elements model of a 2D plain woven
fabric (with changing components loss factor), function of frequency, associated
to the flexural mode of the composite plate (propagation along the x direction).
WM stands for weigthed mean.

In Fig.6.11.b is displayed the same parametric study with the loss factors

adjusted to a scale going from the yarn loss factor as the low limit to the matrix

loss factor as the high limit using feature scaling:

ηscaled(ω) =
η(ω)− ηyarn
ηmat − ηyarn

. (6.13)

It can be observed that all curves are superposed, and it is the case also for the
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loss factors of the other two first modes. This shows that the structural damping

curve shape of the structure is mostly independent from the initial choice of the

constituent components loss factors.

6.3.3 Effect of the direction of propagation

Finally, the effect of the direction of propagation is studied. As the model presents

a symmetry axis, the dispersion curves and loss factors are symmetric as well.

The directions of propagation with an angle superior to 45° will not be stud-

ied. However, directions of propagation such as [0°, 30°, 45°] can be studied (see

Fig.6.12). The results of this study are displayed in Fig.6.13.

It can be observed that the higher the angle of propagation (amongst the

studied ones), the higher the first flexural wave attenuation, and yet, both values

of the loss factor for the 30° and 45° angles of propagation start decreasing for

a frequency around 100 kHz until reaching and following the curve representing

the loss factor at an angle of propagation of 0°. In the right-hand part of the

figure, the same order is followed. The angle of propagation which impose the

most damping is of 45°, followed by 30° and then 0°. From 500 kHz, the damping

curves for the 0° and 30° angle of propagation seem to be crossing and the order

is changed: the angle of propagation which impose the most damping is of 45°,

followed by 0° and then 30°. It can be concluded that the damping is clearly

affected by the direction of propagation in a complex textile composite. Small

peaks can be observed in the loss factor curves around 450 kHz, these are due to

a light coupling of the flexural mode with other modes in the IBZ. An in-depth

study of this phenomenon is presented in Sec.6.5.
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Figure 6.12: Angles of propagation in the unit cell of a 2D plain woven composite.
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Figure 6.13: Loss factor displayed for a 6250 elements model of a 2D plain wo-
ven composite (with changing direction of propagation), function of frequency,
associated to the flexural mode of the composite plate.

6.4 Case study: mesoscale modelling of a 3D

woven composite for damping prediction

The second example of a textile composite is a 3D woven composite which is

modelled at a mesoscopic scale using TexGen (see Fig.3.30). The dimensions of

the unit cell are 2 × 1.5 × 0.6 mm. The loss factor was calculated as a function

of the propagation angle and the frequency. This FE model is composed of

15625 elements (25 × 25 × 25), 7834 elements represent the yarns while the 7791

remaining elements are matrix elements. ηyarn = 0.0001 and ηmat = 0.02 are used

as pre-determined loss factor for respectively the yarns and matrix constituents.

This gives a fibre volume fraction of 0.5014. The materials properties are given

in Tables D.2 and D.3 in Appendix.
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In Fig.6.14, the loss factor, associated to the flexural mode in the y direction, is

shown as a function of frequency. The dispersion curve for this mode is shown as

well on the figure allowing for comparison. The results obtained here are compara-

ble to the ones obtained with the 2D weave model. The dispersion curve presents a

Bragg stop-band and the loss factor has an asymptotic behaviour around it once

again. The loss factor curve is also mostly situated in the [ηyarn, ηweightedmean]

range.
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Figure 6.14: Loss factor in a 15625 elements model of a 3D woven fabric compos-
ite, function of the frequency, propagating in the y direction, associated to the
flexural mode.

Figure 6.15 shows the loss factor, associated to the shear mode in the y direction,

as a function of frequency. The dispersion curve for this mode is shown as well

on the figure allowing for comparison. The dispersion curve presents a Bragg

stop-band and the loss factor has an asymptotic behaviour around it.

At 380 kHz, a light peak is observed. This is caused by the interaction of this

shear mode with another mode, provoking both modes to veer away.

A parametric study showing the dispersion curves veering away for low pre-

determined components loss factors and crossing for higher ones is presented in

Fig.6.16 for the same model. Only the bending and the pressure modes in the

x direction are plotted, in a restrained frequency range where a local stop-band

is present. The modes dispersion curves and their assigned loss factor curves are

displayed for four couples of pre-determined components loss factors. It can be

observed that when the modes veer away, their loss factors are joined, while this

does not happen when they cross. When they cross, a peak in the loss factor
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Figure 6.15: Loss factor in a 15625 elements model of a 3D woven fabric compos-
ite, function of the frequency, propagating in the y direction, associated to the
shear mode.

curve can be observed but the higher the pre-determined components loss factors

are, the more faded this local peak will be. This phenomenon is known and other

examples where veering is influenced and sometimes suppressed by the effect of

damping are presented in [116] and [194].
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Figure 6.16: Loss factor in a 15625 elements model of a 3D woven composite, func-
tion of the frequency, associated to the flexural and pressure modes propagating
in the x direction for four different configurations of pre-determined components
loss factors. (+) dispersion curves, (×) loss factors.

Figure 6.17 shows the loss factor, associated to the pressure mode in the y

direction, is shown as a function of frequency. It is presented for both this 3D

weave model and for the triaxial braided fabric model from the next section as

well. The dispersion curves for this modes are shown as well on the figure allowing
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for comparison. It can be observed that the loss factor for the braid fabric is higher

than for the 3D weave, even though the fibre volume fraction is higher for the

braid fabric model. This is surprising as it is the matrix material that has the

highest component loss factor. It shows that the mesoscale architecture of yarns

within the textile composite has a strong effect on the damping.
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Figure 6.17: Comparison of the loss factor in a 15625 elements model of a 3D
woven composite and in a 12000 elements model of a triaxial braid fabric, function
of the frequency, propagating in the y direction, associated to the pressure mode.

6.5 Case study: mesoscale modelling of a triax-

ial braided composite for damping predic-

tion and numerical validation

As a third textile composite case study, a unit cell of a triaxial braided composite

is modelled (Fig.3.33) and the loss factor of the flexural wave is calculated as

a function of the propagation angle and the frequency. The dimensions of the

unit cell are 2 × 0.6 × 0.4 mm. This FE model is composed of 12000 elements

(40 × 20 × 15), 6665 are yarn elements while the 5335 remaining elements are

matrix elements. This gives a fibre volume fraction of 0.5554. ηyarn = 0.0001 and

ηmat = 0.02 are used as pre-determined loss factor for respectively the yarns and

matrix constituents. The materials properties are given in Tables D.2 and D.3 in

Appendix.
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In Fig.6.18, the loss factor, associated to both the flexural and the shear

modes propagating in the x direction, function of the frequency, is displayed.

The dispersion curves for these modes are shown as well on the figure allowing for

comparison. Both are displayed on the same figure as there is a strong coupling

between these two modes (around 150 kHz and again around 750 kHz). The

coupling is creating local stop-bands (circled in yellow) as the dispersion curves

veer away (when displayed in the BZ) instead of crossing. This is the result of

the two eigenvalue loci approaching closely and it causes the properties of the

two modes to be swapped, including eigenvectors or the loss factors [194, 195]

as can be seen on this same figure. Other stop-bands can be observed around

300 kHz and 850 kHz for the flexural mode and around 600 kHz and 1.1 MHz

for the shear mode. These are Bragg stop-bands (circled in green), intrinsic to

the periodic properties of the structure. Around these stop-bands, the loss factor

has an asymptotic behaviour once again. Finally, it can be noted that the loss

factor curves are largely located below the loss factor weighted mean, which would

indicates that the loss factor of the yarns has a stronger influence on the final loss

factor in that direction of propagation. The same phenomenon does arise with

the pressure mode as well which is displayed in Fig.6.19.
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Figure 6.18: Loss factor in a 12000 elements model of a triaxial braid fabric,
function of the frequency, propagating in the x direction, associated both to the
flexural and shear modes. The Bragg stop-bands are circled in green and the
local stop-bands are circled in yellow.

In Fig.6.19 are displayed the loss factors, associated to the pressure modes of

the triaxial braided composite, propagating in both the x and the y directions.

It can be observed that the loss factor is lower for the pressure wave propagating
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in the y direction until it reaches 800 kHz and takes over on the loss factor of

the pressure wave propagating in the x direction. This shows again direction

dependency of the loss factor.
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Figure 6.19: Comparison of the loss factor in a 12000 elements model of a tri-
axial braid fabric, function of the frequency, associated to the pressure mode,
propagating in the x direction and in the y direction.

In order to provide for numerical validation, a beam made of a triaxial braided

composite is modelled, its width is of 0.6 mm, its thickness is of 0.4 mm and its

length is of 200 mm. The nodal displacements in the y and z directions are fixed

as null. The WFE/CMS method allows for computing the dispersion relations

and the loss factor over frequency and it is used for the described beam model

as shown in Fig.6.20. A transient FEA computation is performed once with a

broadband signal and the displacement is measured for a set of positions along the

length of the beam (B-scan). Post-treating these results with the 2D FFT allows

for obtaining the dispersion relations as displayed in Fig.6.20. The comparison

is made with the dispersion curves obtained with the WFE/CMS on the same

figure. A very good agreement is observed, the loss factors can now be compared.

It can also be noted that symmetries and translations in the different BZs, effects

of the periodicity, appear in the dispersion curves computed from the transient

FEA as previously observed in Sec.3.3.5.

Finally, a numerical validation using the transient FE method presented in

Sec.6.2.2 is performed for 13 frequency points ranging from 200 to 800 kHz.

From the transient FEA performed with a narrow band input signal at different

frequencies, the β coefficients are adjusted as shown in Table D.7 in Appendix
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Figure 6.20: Dispersion curves for the triaxial braided composite beam with
blocked displacement in the second and third directions. The background pix-
elised image results from the two-dimensional Fast Fourier Transform of the B-
scan, while the red dots result from the WFE/CMS methodology presented in
Sec.3.3. A perfect agreement is observed. Yellow lines are plotted at BZ limits
(k = π/∆, k = 2π/∆ and k = 3π/∆).

and the loss factor is computed using Eq.(6.12). The maximum amplitudes are

calculated using the envelope of the displacement amplitudes over time. The loss

factor is calculated by comparing the displacement amplitude over time at more

than two thousand points along the beam. The mean is plotted on Fig.6.21 along

with the results from the presented methodology. The mean-squared error is,

however, not plotted because extremely low and thus barely visible.

A very good agreement between the loss factor curve computed with the

methodology presented in this chapter and the one computed from the transient

FEA is observed once again. The calculation of these dispersion and damping

properties using the WFE/CMS methodology took 30 min on a 1 core and 8GB

RAM system for a wide frequency range, while it took around 5 hours on a 8

cores and 160 GB of RAM on a HPC system to get the loss factor for only one

frequency point using transient FEA.
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Figure 6.21: Loss factor in a triaxial braided composite beam, function of the fre-
quency, propagating in the x direction, associated to the pressure mode. (+) the
dispersion curve, (×) the loss factor computed with the methodology introduced
in this chapter, (o) the loss factor computed from the transient FEA.

6.6 Conclusions

In this chapter a method allowing for prediction of the structural damping in

textile composites at a mesoscopic scale is presented. Four composite models are

presented: a laminate, a 2D plain woven composite, a 3D woven composite and

a triaxial braided composite. For all four models, the dispersion relations are

computed as well as the variation of the loss factor versus the frequency for the

first three modes.

The damping predictions are compared for waves propagating in different

directions of the same composite and for varying fibre volume fraction. The

damping is also studied around complex phenomena such as stop-bands.

It can be concluded that:

• The damping is strongly affected by the direction of propagation of the

waves and dependent on the frequency in a textile composite.

• The damping is affected by the fibre volume fraction of the textile. But even

though the numerical values of the damping loss factor change, the shape

of the curves remain quite similar if the mesoscale architecture is similar as

well.
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• When a textile dispersion curve shows stop-bands, the damping loss factor

has a characteristic behaviour depending on the stop-band type. Asymp-

totic in the case of a Bragg stop-band and either strongly increasing or

decreasing on both sides of a local stop-band.

• The shape of the loss factor curves is mostly independent from the pre-

determined loss factors of the components.

• The mesoscale architecture of the textile composite has a strong influence

over the damping.
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Concluding remarks

7.1 Summary

In this thesis, numerical methodologies for the simulation of elastic waves in tex-

tile composites have been proposed, applied to numerous structures and validated.

A mesoscale WFE/CMS methodology has been presented, its one-dimensional

formulation numerically validated by transient finite element analysis, its two-

dimensional formulation experimentally validated and the limitations and issues

were discussed. A multiscale approach was proposed for comparison and it was

demonstrated that mesoscale modelling is needed for dispersion characterisation

as well as for damping predictions when considering textile composites.

Two macroscale modelling approaches were presented alongside the mesoscale

methodology. The first method uses a virtual static testing approach to obtain

one set of effective mechanical properties for a textile composite, and is called in

this thesis ‘the static macroscale’ approach. The second method divides a textile

composite into individual layers, against its own integrity, and obtains an indi-

vidual set of moduli for each layer by virtual static testing. The resulting model

is equivalent to a laminate whose layers are homogeneous and is named ‘static

macroscale per layer’. It was shown that both macroscale modelling approach-

es provide dispersion characteristics that are very different in comparison to the

ones obtained by the introduced mesoscale approach, yet the static macroscale

per layer performs reasonably well. Neither were able to predict for the complex
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phenomena (e.g. stop-bands) uncovered by the mesoscale approach.

In comparison to experimental results, both the static macroscale per layer and

mesoscale approaches have provided accurate predictions for A0 and S0. While

it is not possible to conclude whether the mesoscale methodology provides more

accurate predictions than the static macroscale per layer on the experimental

level, as no more than two modes (S0 and A0) could be compared, it is expected

to perform better at unveiling stop-band phenomenon and in higher frequency

ranges. It would have been possible to observe more modes at higher frequencies

but the damping in the composite plates is too high and thus the waves do not

propagate far enough. Another reason that prevents concluding is the lack of

resolution provided by the experimental results.

However, in reality, if the effective moduli for a textile composite were to be

extracted by static experimental testing instead of virtual testing, only one set

of moduli would be obtained, characterising a macroscale model. It is imprac-

ticable to obtain experimentally the effective mechanical properties necessary to

construct our macroscale per layer model. This model can be constructed using a

numerical approach and a mesoscale modelling is needed to compute the effective

properties for each individual layers.

Only the introduced mesoscale WFE/CMS methodology provides excellent ac-

curacy in comparison to the results obtained by transient finite element analysis

and allows for predicting stop-bands. This methodology shares the same unit cell

modelling step with the macroscale approaches but the dispersion characterisa-

tion step is more costly while still feasible.

Of course, other homogenisation methodologies exist and one in particular has

been considered in the spirit of reducing the computation time, especially for

large layered assemblies of textile composites. Indeed, while the computation of

a mesoscale model is feasible timewise for a textile composite whose geometry is

complex, it becomes less viable when considering a layered material composed of

a large assembly of textile composites. Macroscale models cannot describe com-

plex phenomena implied by the periodicity of a structure but are very efficient to

compute dispersion relations of large assembly. In that context, a homogenisa-

tion method based on dispersion curves inversion by the mean of an optimisation
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algorithm was introduced. It was shown again that no simple macroscale model

can act as substitute for a complex textile composite.

At last, a damping model was presented within the mesoscale WFE/CMS method-

ology and it was demonstrated that internal architecture of a textile composite

has a strong effect on wave attenuation, and thus a mesoscale approach is needed.

7.2 Future work

The exhibited work has shown the need for mesoscale modelling to investigate

the wave properties of textile composite waveguides. The proposed methodology

is reliable and has a lot of potential applications. In this section, possible future

research related to this methodology are proposed:

• Extending the mesoscale WFE/CMS methodology to various applications

such as curved structures for dispersion characterisation of pipelines made

of textile composites for example.

• A set of experimental dispersion characterisations performed on textile com-

posite structures of large dimensions would provide results with acceptable

resolution and thus a more robust experimental validation of the method-

ology. Measurements of higher-order modes would also be most useful for

validation of the model. These experimental results could be used for cor-

relation of the measured damping with the presented prediction model as

well.

• Building a robust homogenisation technique for reduction of the compu-

tation time for structures composed of large layered assemblies of textile

composites is in order.

• A next step toward early damage detection in textile composite structures is

the building of prediction scheme for guided wave interactions with damage

such as fibres breakage or delamination in order to build a complete forward

model.
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mulation for the vibro-acoustic analysis of 2d periodic structures,” Journal

of Sound and Vibration, vol. 363, pp. 285–302, 2016.

176



Bibliography

[158] R. R. Craig Jr and M. C. Bampton, “Coupling of substructures for dynamic

analyses,” AIAA journal, vol. 6, no. 7, pp. 1313–1319, 1968.
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Appendix: chapter 2

A.1 Static virtual testing

A macroscale model is defined by its homogenised mechanical properties. Tra-

ditionally, material characterisation refers to material testing as a way to obtain

the material properties. The establishment of a unit cell is an alternative for

acquiring those properties, even though it does not replace a physical testing

completely. This method can be seen as virtual testing of the material. The

analyses are conducted on the mesoscale model in order to evaluate the effective

material properties of the macroscale model. Some basic assumptions are that the

macroscale model is effectively homogeneous (in this case the periodicity of the

structure at the mesoscale can justify this assumption) and the stress and strain

states imposed to it are uniform [30]. It is important to note that according to

the periodic pattern, the boundary conditions are different for an identic unit cell.

The periodic boundary condition equations are generated based on the method

developed by Li et al. in [29, 196, 197, 30]. The considered periodic pattern is

formed by translational symmetries of the unit cell along x - and y-axis.

A.1.1 Displacement boundary conditions for unit cells

The boundary conditions must be given for each pair of faces of the unit cell.

The considered textile can be seen as a simple cubic packing of cells as described

in [29], only without periodicity along the z -axis in our case. 2bx, 2by and 2bz

(see Fig.A.1) give the dimensions of the unit cell in the x, y and z directions
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respectively. This implies that any point P’(x’,y’,z’) in the textile outside the

considered unit cell has an image P(x,y,z) in the unit cell:

(x′, y′, z′) = (x+ 2ibx, y + 2jby, z) (A.1)

where i and j are the number of unit cells separating P ′ from P in the x and y

directions, respectively.

The relative displacement between P and P ′ in the mesoscale unit cell (displace-

ment noted as (u, v, w)) must be the same as the relative displacement between

those same points in the macroscale unit cell (displacement noted as (U, V, W ))

[30], i.e.,


u

v

w



∣∣∣∣∣∣∣∣∣∣∣
P ′

−


u

v

w



∣∣∣∣∣∣∣∣∣∣∣
P

=


U

V

W



∣∣∣∣∣∣∣∣∣∣∣
P ′

−


U

V

W



∣∣∣∣∣∣∣∣∣∣∣
P

=


∆U

∆V

∆W


(A.2)

The relative displacement field in the macroscale model can be written as [30]:


∆U

∆V

∆W


=


∂U
∂x

∂U
∂y

∂U
∂z

∂V
∂x

∂V
∂y

∂V
∂z

∂W
∂x

∂W
∂y

∂W
∂z




∆x

∆y

∆z


(A.3)

In order to eliminate rigid body motions, the displacement at an arbitrary point

(we choose O whose coordinates are (0,0,0)) are suppressed and the rotations of

the x -axis about the y- and z -axis, respectively, and that of the y-axis about the

x -axis are constrained at that same point O as follows [29, 196, 197, 30]:

∂V

∂x
=
∂W

∂x
=
∂W

∂y
= 0 (A.4)

It is important to clarify that this is not a unique expression for constraining
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the rigid body rotation, there are multiple ways as presented in [30]. This is,

however, the most convenient and thus the one used here. Finally, the relative

displacement field becomes


u

v

w



∣∣∣∣∣∣∣∣∣∣∣
P ′

−


u

v

w



∣∣∣∣∣∣∣∣∣∣∣
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0 ∂V
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0 0 ∂W
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∆z


=


ε0x ε0xy ε0xz

0 ε0y ε0yz

0 0 ε0z




∆x

∆y

∆z


(A.5)

ε0x, ε
0
y, ε

0
z, ε

0
xy, ε

0
yz, ε

0
zx being the macroscopic strains.

As a result, the faces of the unit cells in this packing configuration are defined

by the following translational symmetry transformations: for the parts of the

boundary normal to the x -axis (see faces A and B in Fig.A.1), the translation is

given as 
∆x

∆y

∆z


=


2bx

0

0


(A.6)

Using Eq.(A.5), the relative displacement boundary conditions is obtained

(
u|x=bx

− u|x=−bx

)
= 2bxε

0
x(

v|x=bx
− v|x=−bx

)
= 0(

w|x=bx
− w|x=−bx

)
= 0

(A.7)

Similarly for the pair of faces normal to y-axis (faces C and D),


∆x

∆y

∆z


=


0

2by

0


(A.8)

and hence
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(
u|y=by

− u|y=−by

)
= 2byε

0
xy(

v|y=by
− v|y=−by

)
= 2byε

0
y(

w|y=by
− w|y=−by

)
= 0

(A.9)

Finally, the conditions can be written similarly for the pair of faces normal to

z -axis, (
u|z=bz − u|z=−bz

)
= 2bzε

0
xz(

v|z=bz − v|z=−bz
)

= 2bzε
0
yz(

w|z=bz − w|z=−bz
)

= 2bzε
0
z

(A.10)

Some redundancies emerge for pairs of edges that are on complementary faces.

On faces A and B for example are found respectively edges 1 and 2 which use

the same conditions as in Eq.(A.7). However, edges 1 and 3 for example have a

special set of boundary conditions. The translation is given by


∆x

∆y

∆z


=


2bx

2by

0


(A.11)

and hence

(
u|y=by

− u|y=−by

)
= 2bxε

0
x + 2byε

0
xy(

v|y=by
− v|y=−by

)
= 2byε

0
y(

w|y=by
− w|y=−by

)
= 0

(A.12)

It is of utmost importance that the mesh is similar for each pair of faces or edges.

A.1.2 Effective material properties

The macroscopic strains ε0x, ε
0
y, ε

0
z, ε

0
xy, ε

0
yz and ε0zx appearing in the boundary con-

ditions Eq.(A.7-A.12) are physical entities and are called key DoFs [197], e.g. con-

sidered as six individual nodes, each having a single DoF. Six independent load

cases Fx, Fy, Fz, Fxy, Fyz and Fzx are applied successively to the key DoFs, these
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Figure A.1: Unit cell faces and edges numbering.

concentrated forces are related to the macroscopic stresses σ0
x, σ

0
y , σ

0
z , σ

0
yz, σ

0
zx and σ0

xy

and the volume of the unit cell. This is performed in order to build the com-

pliance matrix [S] of the macroscopic material by using the generalized Hooke’s

law: {ε} = [S] {σ} (see Eq.(A.13)).

The material of the textile composite is considered orthotropic in its principal

axes once homogenised, which makes the evaluation of the coefficients straightfor-

ward. Indeed, an orthotropic material is characterised by nine engineering elastic

constants only.



ε1

ε2

ε3

ε23

ε31

ε12



=



1
E1

−ν21
E2
−ν31

E3
0 0 0

−ν12
E1

1
E2

−ν32
E3

0 0 0

−ν13
E1
−ν23

E2

1
E3

0 0 0

0 0 0 1
G23

0 0

0 0 0 0 1
G13

0

0 0 0 0 0 1
G12





σ1

σ2

σ3

σ23

σ31

σ12



(A.13)

For example, the first equation would be:

1

E1

σ1−
ν21

E2

σ2−
ν31

E3

σ3 = ε1 (A.14)

which gives in our case and when Fy = Fz = Fxy = Fyz = Fzx = 0:
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σ0
x

E0
x

=
Fx

VtotE0
x

= ε0x (A.15)

The density for the macroscale model is calculated using the volume ratio of each

material in the mesoscale model (weighted average formula), as follows

ρmacro =
ρfVf + ρmVm

Vtot
(A.16)
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B.1 Material properties

C11 (GPa) C12 (GPa) C22 (GPa) C13 (GPa) C23 (GPa) C33 (GPa)
8.27 2.90 74.40 3.57 3.33 7.27
C44 (GPa) C55 (GPa) C66 (GPa) density (kg/m3) height (mm)
2.42 2.14 2.46 1351 0.395

Table B.1: Stiffness parameters defining the orthotropic material of layer 1 (bot-
tom layer) in Sec.3.1.2, its density and its height.

C11 (GPa) C12 (GPa) C22 (GPa) C13 (GPa) C23 (GPa) C33 (GPa)
114.87 2.75 9.59 3.33 3.86 8.64
C44 (GPa) C55 (GPa) C66 (GPa) density (kg/m3) height (mm)
2.58 3.96 3.26 1461 0.410

Table B.2: Stiffness parameters defining the orthotropic material of layer 2 in
Sec.3.1.2, its density and its height.

C11 (GPa) C12 (GPa) C22 (GPa) C13 (GPa) C23 (GPa) C33 (GPa)
7.71 3.10 85.88 3.59 3.17 7.29
C44 (GPa) C55 (GPa) C66 (GPa) density (kg/m3) height (mm)
2.46 2.15 2.43 1352 0.380

Table B.3: Stiffness parameters defining the orthotropic material of layer 3 in
Sec.3.1.2, its density and its height.
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C11 (GPa) C12 (GPa) C22 (GPa) C13 (GPa) C23 (GPa) C33 (GPa)
115.12 2.78 9.49 3.33 3.86 8.64
C44 (GPa) C55 (GPa) C66 (GPa) density (kg/m3) height (mm)
2.56 3.96 3.23 1459 0.410

Table B.4: Stiffness parameters defining the orthotropic material of layer 4 in
Sec.3.1.2, its density and its height.

C11 (GPa) C12 (GPa) C22 (GPa) C13 (GPa) C23 (GPa) C33 (GPa)
8.40 3.01 79.74 3.59 3.32 7.33
C44 (GPa) C55 (GPa) C66 (GPa) density (kg/m3) height (mm)
2.47 2.18 2.51 1387 0.375

Table B.5: Stiffness parameters defining the orthotropic material of layer 5 (top
layer) in Sec.3.1.2, its density and its height.

E1 (GPa) E2 (GPa) E3 (GPa) ν12 ν13

200 10 10 0.3 0.4
ν23 G12 (GPa) G13 (GPa) G23 (GPa) density (kg/m3)
0.4 5 5 5 4600

Table B.6: Elastic properties of the yarn material used in Sec.3.3.

E (GPa) ν density (kg/m3)
3 0.2 1600

Table B.7: Elastic properties of the matrix material used in Sec.3.3.

B.2 Texgen interface

Figure B.1: 2D textile weave properties.
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Figure B.2: 2D textile weave pattern.

Figure B.3: 2D textile weave model.

B.3 Mesh convergence study

B.3.1 Convergence study: linear tetrahedral mesh
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Figure B.4: Linear tetrahedral discretisations of the 2D plain woven model with
different degrees of mesh refinement.

Model size (nodes) E1 (GPa) E2 (GPa) E3 (GPa) ν12 ν13

7164 48.5 48.5 5.71 0.148 0.370
ν23 G12 (GPa) G13 (GPa) G23 (GPa)
0.370 2.93 2.31 2.31

16764 E1 (GPa) E2 (GPa) E3 (GPa) ν12 ν13

48.6 48.6 5.72 0.150 0.370
ν23 G12 (GPa) G13 (GPa) G23 (GPa)
0.370 2.94 2.31 2.31

44179 E1 (GPa) E2 (GPa) E3 (GPa) ν12 ν13

48.6 48.6 5.72 0.152 0.370
ν23 G12 (GPa) G13 (GPa) G23 (GPa)
0.370 2.93 2.30 2.30

92503 E1 (GPa) E2 (GPa) E3 (GPa) ν12 ν13

48.6 48.6 5.72 0.152 0.370
ν23 G12 (GPa) G13 (GPa) G23 (GPa)
0.370 2.93 2.30 2.30

Table B.8: Effective elastic properties of the different meshes. Used for the static
convergence study in Sec.3.3.1

B.3.2 Convergence study: quadratic tetrahedral mesh
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Figure B.5: Quadratic tetrahedral discretisations of the 2D plain woven model
with different degrees of mesh refinement.

Model size (nodes) E1 (GPa) E2 (GPa) E3 (GPa) ν12 ν13

3864 39.2 38.7 5.31 0.109 0.370
ν23 G12 (GPa) G13 (GPa) G23 (GPa)
0.360 7.62 2.19 2.18

6359 E1 (GPa) E2 (GPa) E3 (GPa) ν12 ν13

42.8 42.1 5.61 0.114 0.319
ν23 G12 (GPa) G13 (GPa) G23 (GPa)
0.312 8.77 2.30 2.30

10625 E1 (GPa) E2 (GPa) E3 (GPa) ν12 ν13

43.9 45.1 5.83 0.114 0.313
ν23 G12 (GPa) G13 (GPa) G23 (GPa)
0.318 9.36 2.41 2.41

18873 E1 (GPa) E2 (GPa) E3 (GPa) ν12 ν13

45.7 46.4 5.89 0.118 0.321
ν23 G12 (GPa) G13 (GPa) G23 (GPa)
0.325 9.03 2.45 2.45

36357 E1 (GPa) E2 (GPa) E3 (GPa) ν12 ν13

46.3 48.0 5.89 0.117 0.324
ν23 G12 (GPa) G13 (GPa) G23 (GPa)
0.329 10.5 2.45 2.44

Table B.9: Effective elastic properties of the different meshes. Used for the static
convergence study in Sec.3.3.1
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B.3.3 Convergence study: linear hexahedral mesh

Figure B.6: Linear hexahedral discretisations of the 2D plain woven model with
different degrees of mesh refinement.
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Model size (nodes) E1 (GPa) E2 (GPa) E3 (GPa) ν12 ν13

726 37.3 37.3 6.05 0.136 0.362
ν23 G12 (GPa) G13 (GPa) G23 (GPa) Vyarn
0.362 2.54 2.43 2.43 0.448

3564 E1 (GPa) E2 (GPa) E3 (GPa) ν12 ν13

45.9 45.9 5.89 0.140 0.361
ν23 G12 (GPa) G13 (GPa) G23 (GPa) Vyarn
0.361 2.93 2.37 2.37 0.528

7436 E1 (GPa) E2 (GPa) E3 (GPa) ν12 ν13

46.1 46.1 5.84 0.138 0.358
ν23 G12 (GPa) G13 (GPa) G23 (GPa) Vyarn
0.358 2.94 2.34 2.34 0.533

15376 E1 (GPa) E2 (GPa) E3 (GPa) ν12 ν13

46.0 46.0 5.77 0.146 0.363
ν23 G12 (GPa) G13 (GPa) G23 (GPa) Vyarn
0.363 2.85 2.31 2.31 0.521

26896 E1 (GPa) E2 (GPa) E3 (GPa) ν12 ν13

47.6 47.6 5.84 0.143 0.365
ν23 G12 (GPa) G13 (GPa) G23 (GPa) Vyarn
0.365 2.96 2.35 2.35 0.541

46818 E1 (GPa) E2 (GPa) E3 (GPa) ν12 ν13

46.8 46.8 5.79 0.145 0.363
ν23 G12 (GPa) G13 (GPa) G23 (GPa) Vyarn
0.363 2.90 2.32 2.32 0.532

78141 E1 (GPa) E2 (GPa) E3 (GPa) ν12 ν13

47.4 47.4 5.80 0.146 0.365
ν23 G12 (GPa) G13 (GPa) G23 (GPa) Vyarn
0.365 2.94 2.33 2.33 0.537

Table B.10: Effective elastic properties of the different meshes. Used for the
static convergence study, before correction of the inaccurate yarn volume fraction
(Vyarn) in Sec.3.3.1.

B.3.4 Models computation time

C3D4 C3D10 C3D8
Nodes Time Nodes Time Nodes Time

726 2min 1CPU
3564 7 min 1CPU 3864 10 min 1CPU

7164 19 min 1CPU 7436 20 min 1CPU 6359 25 min 1CPU
16764 1h44 1CPU 15376 1h40 1CPU 10625 30 min 6CPU
44179 16h 1CPU 26896 4h50 6CPU 18873 1h 6CPU
92503 60h 1CPU 46818 8h50 6CPU 36357 3h45 6CPU

78141 29h15 6CPU

Table B.11: Computation times for the different models.
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B.4 3D woven composite models

Figure B.7: Linear hexahedral voxel discretisation of the 3D woven model.

Figure B.8: Elastic moduli for the static macroscale model of the 3D woven
composite. Homogenisation method presented in Fig.3.28.
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Figure B.9: Elastic moduli for the static macroscale per layer model of the 3D
woven composite. Homogenisation method presented in Fig.3.28.
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C.1 Material properties

C.1.1 Material properties datasheets
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MATERIAL 1 Supplier Product ref Filament count Tensile Modulus (GPa) Density (g/cm3)
Warp tows Tairylan TC35-12K 2 x 12K 246 1.801
Weft tows Tairylan TC35-12K 12K 246 1.801
Binder tows Tairylan TC33-6K 6K 230 1.798
Resin Easy Composites IN2 3.35 1.10
MATERIAL 2
Warp tows Tairylan TC35-12K 4 x 12K 246 1.801
Weft tows Tairylan TC35-12K 12K 246 1.801
Warp interwoven tows Tairylan TC33-6K 6K 230 1.798
Binder tows Tairylan TC33-6K 6K 230 1.798
Resin Gurit Prime 20LV 3.5 1.144
MATERIAL 3
Warp tows Teijin HTS40 12K 240 1.77
Weft tows Teijin HTA40 2 x 6K 240 1.77
Binder tows Teijin HTA40 1K 240 1.77
Resin Easy Composites IN2 3.35 1.10

Table C.1: Mechanical properties from the datasheets provided by the fibers manufacturers and resin providers.
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C.1.2 Mechanical properties in the literature

Lit ref Product ref E1 E2,3 G12,13 ν12,13 ν23

[15] Toray T300 230 15 13 0.24 0.24
[180] Toray M40 294 15
[180] Toray M60 277 14
[180] Mitsubishi Pitch KL637 640 10.7
[198] 200-500 10-15
[31] 303 15.2 9.7 0.2 0.2
[199] T300 230 17
[199] T400 226 21.4
[199] AS 215 21
[199] M30 290 17
[199] M40 400 15.8
[199] M46 450 14.8
[199] T800H 290 17
[199] M-40J 390 17
[199] M-46J 450 17
[169] 238 13 13 0.2 0.2
[200] AS4 235 14 28 0.2 0.25
[181] T300 231 16
[201] 18.5
[202] 10.1
[14] 227.53 16.6 24.8 0.2 0.25
[203] T300 15.8
[15] Resin epoxy 3.5 3.5 0.35
[31] Resin epoxy 3.31 3.31 0.35

Table C.2: Fiber and resin mechanical properties obtained from the literature.
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C.1.3 Mechanical properties of the yarns
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Yarn V yarn
f E1 E2,3 G12,13 G23 ν12,13 ν23 density

Yarn - Mat1 Warp 0.643 159 7.76 4.83 3.40 0.247 0.434 1.55
Weft 0.421 105 5.79 2.72 2.33 0.281 0.481 1.39
Binder 0.610 141 7.32 4.29 3.20 0.253 0.446 1.53

Yarn - Mat2 Warp 0.705 173 8.84 6.27 3.78 0.239 0.405 1.61
Warp tows 0.364 85.1 5.62 2.50 2.17 0.291 0.485 1.38
Weft 0.683 169 8.52 5.76 3.68 0.242 0.415 1.59
Weft compressed 1.00 246 15.0 18.0 6.00 0.200 0.250 1.80
Binder 0.797 182 10.8 10.9 4.30 0.225 0.340 1.67

Yarn - Mat3 Warp 0.705 169 8.84 6.27 3.78 0.239 0.405 1.57
Weft 0.635 153 7.84 4.81 3.41 0.249 0.435 1.53
Binder 1.00 240 15.0 18.0 6.00 0.200 0.250 1.77

Table C.3: Engineering constants for the yarns of the mesoscale model.202
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D.1 Damping models

D.1.1 Damping in the WFE/CMS model

Damping is introduced as an imaginary term in the stiffness matrix

K = K′ + iK′′, (D.1)

and

K′′ = ηyarnK
′
yarn + ηmatK

′
mat, (D.2)

so

K = K′ + i(ηyarnK
′
yarn + ηmatK

′
mat), (D.3)

which we write for simplicity as

K = K′ + iηK′. (D.4)

Introducing Eq.(D.4) in the equation of motion gives

[
K′ + iηK′ − ω2M

]
q = f . (D.5)
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D.1.2 Damping in the transient FEA

Using Rayleigh’s damping model:

C = αM + βK, (D.6)

and choosing α = 0 and β = η
ω

, one obtains

C =
η

ω
K. (D.7)

Introducing Eq.(D.7) in the equation of motion gives

[
K + iη

ω

ω
K− ω2M

]
q = f (D.8)

and finally

[
K + iηK− ω2M

]
q = f . (D.9)

D.2 Material properties

C11 (GPa) C12 (GPa) C22 (GPa) C13 (GPa) C23 (GPa) C33 (GPa)
80.7 12.9 18.7 3.6 5.1 1.5
C44 (GPa) C55 (GPa) C66 (GPa) density (kg/m3) ηx (%) ηy (%)
3.0 4.9 5.4 3212 0.118 0.62

Table D.1: Nine independent elastic stiffness parameters defining orthotropic
elasticity of the material in Sec.6.2, its density and damping properties.

E1 (GPa) E2 (GPa) E3 (GPa) ν12 ν13

200 10 10 0.3 0.4
ν23 G12 (GPa) G12 (GPa) G23 (GPa) density (kg/m3)
0.4 5 5 5 4600

Table D.2: Elastic properties of the yarn material used in Sec.6.3-6.5.

E (GPa) ν density (kg/m3)
3 0.2 1600

Table D.3: Elastic properties of the matrix material used in Sec.6.3-6.5.
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D.3 Adjusted β coefficient

D.3.1 Macroscale damping modelling of a composite lam-

inate
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Figure D.1: Loss factor in a two layers laminate beam, function of the frequency,
propagating in the x direction, associated to the pressure mode. The loss factor
of both layers is of η = 0.003. (+) the dispersion curve, (×) the loss factor
computed with the methodology introduced in this chapter, (o) the loss factor
computed from the transient FEA.

Frequency (kHz) βη=0.003 Relative difference (%)
250 1.91E-09 2.10
300 1.59E-09 2.27
350 1.36E-09 4.3
400 1.19E-09 6.33
450 1.06E-09 7.77
500 9.55E-10 9.33
550 8.68E-10 14.20
600 7.96E-10 19.07

Table D.4: β coefficients computed using Eq.(6.6) and the loss factor relative
difference.

In Sec.6.2.2, a transient analysis was performed for a two layers laminate beam

with a unique loss factor of η = 0.003. Using an identic loss factor for every

constituents of the material should produce an equal and constant loss factor

for the whole material, independently of the frequency. However, a difference is

observed in the transient FEA when using the β coefficients displayed in Table
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D.4 (see Fig.D.1), which the model formulation should prevent. The results are

used to adjust the determination of the β coefficient for later computations as

displayed in Table D.5.

Frequency (kHz) βη=0.003 βη=0.00118 βη=0.0062

250 1.87E-09 7.36E-10 3.87E-09
300 1.56E-09 6.12E-10 3.22E-09
350 1.31E-09 5.14E-10 2.70E-09
400 1.12E-09 4.42E-10 2.32E-09
450 9.85E-10 3.87E-10 2.03E-09
500 8.83E-10 3.47E-10 1.82E-09
550 7.60E-10 2.99E-10 1.57E-09
600 6.68E-10 2.63E-10 1.38E-09

Table D.5: β coefficients adjusted from Table D.4 and Fig.D.1.

D.3.2 Mesoscale damping modelling of a triaxial braided

composite
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pressure mode
loss factor obtained with the introduced methodology
loss factor obtained with the transient FEA

Figure D.2: Loss factor in a triaxial braided composite beam, function of the
frequency, propagating in the x direction, associated to the pressure mode. The
loss factor of both constituent materials (yarn and matrix) is of η = 0.003. (+) the
dispersion curve, (×) the loss factor computed with the methodology introduced
in this chapter, (o) the loss factor computed from the transient FEA.

In Sec.6.5, a transient analysis was performed for a triaxial braided composite

beam with a unique loss factor of η = 0.003 for each constituents of the material.

This should produce an equal and constant loss factor for the whole material,
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Frequency (kHz) βη=0.003 Relative difference (%)
200 2.39E-09 0.30
250 1.91E-09 0.43
300 1.59E-09 0.57
350 1.36E-09 0.80
400 1.19E-09 0.93
450 1.06E-09 1.43
500 9.55E-10 1.83
550 8.68E-10 2.23
600 7.96E-10 2.87
650 7.35E-10 3.27
700 6.82E-10 3.97
750 6.37E-10 5.67
800 5.97E-10 6.63

Table D.6: β coefficients computed using Eq.(6.6) and the loss factor relative
difference.

independently of the frequency. However, a difference is observed in the tran-

sient FEA when using the β coefficients displayed in Table D.6 (see Fig.D.2),

which the model formulation should prevent. The results are used to adjust the

determination of the β coefficient for later computations as displayed in Table

D.7.

Frequency (kHz) βη=0.003 βη=0.02 βη=0.0001

200 2.38E-09 1.59E-08 7.93E-11
250 1.90E-09 1.27E-08 6.34E-11
300 1.58E-09 1.06E-08 5.28E-11
350 1.35E-09 9.02E-09 4.51E-11
400 1.18E-09 7.88E-09 3.94E-11
450 1.05E-09 6.97E-09 3.49E-11
500 9.38E-10 6.25E-09 3.13E-11
550 8.49E-10 5.66E-09 2.83E-11
600 7.74E-10 5.16E-09 2.58E-11
650 7.11E-10 4.74E-09 2.37E-11
700 6.56E-10 4.37E-09 2.19E-11
750 6.02E-10 4.02E-09 2.01E-11
800 5.60E-10 3.73E-09 1.87E-11

Table D.7: β coefficients adjusted from Table D.6 and Fig.D.2.
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