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Abstract 

The long-ignored compressive properties of Min-mod type limiter is investigated in this 

manuscript by demonstrating its potential in numerically modelling shockwave-containing flows, especially in 

SWBLI (Shock Wave/Boundary Layer Interaction) problems. Theoretical studies were firstly performed based on 

Sweby’s TVD ( Total Variation Diminishing ) limiter region and Spekreijse’s monotonicity-preserving limiter 

region to indicate Min-mod type limiters’ compressive properties. The influence of limiters on the solution accuracy 

was evaluated using a hybrid-order analysis method based on the grid-independent study in three typical 

shockwave-containing flows. The conclusions are that, Min-mod type limiter can be utilized as a dissipative 

and/or compressive limiter, but depending on the reasonable value of the compression parameter. The compressive 

Min-mod limiter tends to be more attractive in modelling shockwave-containing flows as compared to other 

commonly preferred limiters because of its stable computational process and its high-resolution predictions. 

However, the compressive Min-mod limiter may suffer from its slightly poor convergence, as that observed in other 

commonly-accepted smooth limiters in modelling SWBLI problems. 

Keywords: Limiter function, Min-mod limiter; SWBLI; Grid independent; Hybrid-order analysis 

1. Introduction 

The shockwave/boundary layer interactions (SWBLI) have been greatly attractive in engineering and scientific 

research for more than fifty years [1–5]. To investigate the SWBLI problems [6–8], the high-order (at least 

third-order) shock-capturing schemes [9–12] are the general choice. However, the high-order schemes are less 

robust, difficult to code and practice, especially in solving SWBLI problems which contain numerous steep 

gradients in the form of shockwaves and relatively thin thickness of boundary layers. For industrial applications, 

there are very few routinely utilised working CFD codes embedding higher than second-order accuracy. The 



classical second-order upwind schemes [13–16] are always preferable in practical aerodynamics because of their 

simplicity, efficiency, flexibility and robustness in practice.  

The main approaches of conducting second-order schemes for strong shockwave-containing flows are MUSCL 

and non-MUSCL approach [17–20]. Although the non-MUSCL-based schemes have shown to provide excellent 

accuracy, they suffer from unsound convergence properties due to the inherent non-differentiable conducting 

process. As compared to the non-MUSCL-based schemes, the MUSCL-based approach is more prevalent in 

engineering due to its inborn simplicity and efficiency in modelling complex flows. To achieve the second order 

accuracy, the MUSCL method [21] proposed by Van Leer is commonly adopted. The linear interpolation method 

used in conducting a second-order scheme can cause spurious oscillations in steep gradient regions [22]. Therefore, 

the MUSCL-based linear interpolation needs to be improved with a special manner, i.e. the limiter functions, when 

the flow solution contains shockwave or other discontinuities. The application of limiter function in conducting 

upwind schemes can suppress the numerical oscillations, achieve the monotonically converged solutions with the 

aimed second order accuracy. In this paper, the authors mainly focus on the classical second-order schemes, with the 

emphasis being laid on the influence of limiter functions on the accuracy and the convergence behaviour in 

numerical simulations of SWBLI problems.  

Existing literature shows that extensive research has already been conducted on developing accurate and robust 

limiters. The most significant breakthrough in this field is Sweby’s second-order TVD limiter region [23] based on 

the one-dimensional scalar conservation law as shown in Fig.(1a). However, Goodman and Leveque [24] have 

stated that TVD schemes in two-dimensional cases can only achieve first-order accuracy at most. To achieve 

second-order accuracy in multi-dimensional problems, Spekreijse [25] extended Sweby’s TVD limiter region to 

monotonic limiter region as shown in Fig.(1b). Barth and Jespersen [26] derived a multi-dimensional limiter suitable 

for unstructured grids based on Spekreijse’s monotonic limiter region. In the application of the limiter in the upwind 

scheme, the frequently encountered problem is that it may severely hamper the numerical solution convergence. 

This phenomenon is even more pronounced for a non-differentiable limiter. Venkatakrishnan [27] devised a limiter 

function, in which a threshold parameter based on local cell size was added. And then, the solutions can converge to 

the steady state as expected, and in regions where numerical oscillations were below the selected threshold, the 

limiter could be effectively switched off. This modification to limiter is similar to that of van Albada et al. [28] in a 

different context via the problem of capturing smooth extrema without clipping. Kim and Kim [29] proposed a MLP 



(Multi-dimensional Limiting Process) method  which shows the outstanding feature of controlling numerical 

oscillations in multi-space dimensions with very desirable properties in terms of accuracy, efficiency and robustness. 

Yoon and Kim [30] modified the aforementioned MLP and refined it for three-dimensional applications without 

assuming local gradients, which made an excellent improvement on the solution accuracy, convergence, as well as 

the robustness for the steady/unsteady flows. 

 
(a) Sweby’s TVD limiter region               (b) Spekreijse’s monotonic limiter region 

Fig. 1 Second order limiter region 

Although much effort has been invested in developing and testing different kinds of limiters, there is yet no 

widely accepted unambiguous conclusion on their attributes. Scott [31] first performed a systematical investigation 

on the limiter functions in MUSCL-based upwind schemes. Among of the investigated limiters, van Albada’s limiter 

was considered as the most attractive one because of its less compressive properties and less limitation on time 

marching step, whereas Min-mod limiter was considered as the most dissipative one with the least accurate 

prediction of discontinuities. Scott’s conclusion on the investigated limiters has been widely accepted in the current 

practice of CFD. However, the conclusion on Min-mod limiter is still incomplete. The authors, in this paper, argue 

that Min-mod type limiter has various forms and its properties are actually determined by a special compression 

parameter (as described later). In [31], Scott’s discussions only referred to one situation of Min-mod type limiter’s 

properties, and the others with different compression parameter were not discussed at all. After that, there has been 

no relevant and compelling literature to study this issue in depth and in detail. Although Min-mod limiter is 

considered to be the most dissipative limiter in general, it is widely accepted in CFD practice and embedded in 

various in-house CFD codes and commercial CFD software packages, and surprisingly demonstrating its capability 

of achieving acceptable numerical results with robustness. Very few researchers [32, 33] are aware of this 



inconsistent behaviour of Min-mod type limiter of being a dissipative limiter with more accurate predictions of flow 

discontinuities. A thorough understanding of its underlying reasons has never been explored.   

As noted by Scott [31], the limiter function in MUSCL-based upwind schemes plays important roles on the 

numerical solutions of the shockwave-containing flows. In Section 2 the in-house-developed CFD code is presented 

firstly,  and the modifications by the authors to the MUSCL interpolation are presented in detail in Section 3 with 

the form of Spekreijse’s primary modification to limiter functions. The properties of several frequently utilized 

limiters [34] as listed in Section 3 are discussed systematically based on Sweby’s TVD limiter region and 

Spekreijse’s monotonic limiter region.  In Section 4 a hybrid-order estimator based on grid-independent theory is 

introduced, and it is used to perform the current investigation of limiter functions’ properties. Following in Section 

5, the numerical solutions from various limiters are discussed in detail. Finally, a general conclusion is drawn on the 

properties of commonly used limiter functions in the numerical simulation of the flows containing shockwaves, in 

particular on Min-mod type limiter’s compressive properties which have never been referred to or adequately 

investigated in previous literature because of the historic overemphasis of it being the most dissipative limiter. One 

thing needs to be noticed is that, all the numerical test cases in this work are performed based on the calorically 

perfect gas model with a constant specific heat of 1.4. 

2. Numerical Method 

The two-dimensional governing equations of Navier-Stokes flows are presented in the numerical computation 

domain ( , )   as following: 

                                （1） 

Where Q  are conservative flow variables. F , G , vF  and vG  are convective fluxes and viscous fluxes 

respectively.  

The CFD code ATTF (Analysis Toolkits for Transonic Flows) [35] developed by Li is implemented to perform 

the current limiter function investigation. In ATTF, the viscous fluxes are calculated with the second order central 

difference due to its elliptic nature.  Most of the widely-accepted spatial discretisation schemes are enclosed in 

ATTF, such as Jameson’s central-difference scheme, Van Leer’s flux vector splitting scheme (FVS), Roe’s flux 

difference splitting schemes (FDS), as well as AUSM (Advection Upstream Splitting Method) series of schemes.  



Previous literature showed that the computational results would be significantly influenced by the different intrinsic 

dissipation and dispersion properties of the spatial schemes, even with the same limiter function used[31]. A 

common belief is that the FVS-type scheme is robust in application, but with the loss of the accuracy in solutions 

due to the hefty numerical dissipation. To achieve the sufficient accuracy in solutions with FVS scheme, one has to 

use a more refined computational grid to decrease the computational dissipation caused by the insufficient accuracy 

of spatial discretisation. Roe’s FDS scheme is another popular choice for solving flow governing equations with 

high resolution and high fidelity, but there is a possibility of violating the entropy condition, which may lead to 

significant difficulties in simulating high-speed complex flows. In Ref.[36] AUSMpw+ was proposed as an 

improved AUSM-type of scheme [37], which has the advantages of having not only the robustness of FVS schemes 

but also the high-resolution and high-accuracy of FDS schemes for CFD practical problems. Therefore, AUSMpw+ 

scheme is chosen to perform the aimed limiter function investigation in the current research. 

3. Review of Limiter Functions 

The original van Leer’s MUSCL interpolation[21] is written as following:  

                           （2） 

Where Lq  and Rq  are primitive flow variables at left and right sides of the grid cell faces, and  

1i iq q+ + = − , 1i iq q− − = −  

  is a parameter that determines the spatial accuracy. As   increases from -1 to 1/3, the solution accuracy 

would increase and 0 =  and 1 3 =  are the commonly adopted options in practice. 

It has been proven that the linear interpolation formulas used to obtain second-order accurate algorithm, like 

Eq.(2), are not adequate since they can cause unphysical oscillations in solutions where discontinuities exist. 

According to Spekreijse [25], Eq. (2) can be reformulated as:   

                                 （3） 



Where ( )r  is expressed as following： 

                            （4） 

and  

 

In computing numerical fluxes, limiter function will result in a reduction of accuracy in discontinuous regions. 

Therefore, the original formulation of Eq.(2) should be retained in smooth regions. It can be done by setting 

( ) 1r =  in Eq. (4), then Eq.(2) and Eq.(3) are equivalents, which implies that, in smooth regions, limiter function 

can be switched off with ( ) 1r = .  

Four commonly implemented limiter functions, as investigated by Sweby and Spekreijse respectively [34], are 

summarized as following: 

Superbee limiter:                      (5a) 

van Leer limiter:                                          (5b) 

van Albada limiter:                                            (5c) 

Hemker-Koren limiter:                                      (5d) 

The current research focuses on further characterising Min-mod type limiter. However, there exist two different 

forms of Min-mod type limiter in literature, which are both different in mathematical expressions and intrinsic 

attributes.  

The first form of Min-mod limiter discussed by Sweby [19] is expressed as: 

Min-mod limiter：                            （6） 

Scott [31] and Anderson [38] employed different forms of Min-mod limiter in their work respectively, of which 

the characteristics are determined by a compression parameter. To make a completely transparent comparison 

between selected limiter functions, Min-mod limiter employed by Scott [31] and Anderson [38] is reformulated to 

have a similar form as that of Eq. (6).  

The MUSCL interpolation formula used in [31, 37] is presented below: 



                              （7） 

where 

 

and   is the compression parameter given by 

3
1    

1






−
 

−
( 1  ). 

In general, the maximum allowable value of   is adopted.  

By setting r + −=   , Eq. (7) can be reformulated in the form of Eq. (3), and then the corresponding Min-mod 

limiter function is written as： 

                                 （8） 

where 

                                      （9） 

Eq.(8) will produce several forms of Min-mod-type limiter with different   and  : 

• if 1 = , it is the same with Eq.(6) 

                               (10a) 

• if 1 = −  and (3 ) (1 ) 2  = − − =  

                                          (10b) 

• if 0 =  and (3 ) (1 ) 3  = − − =  



                                     (10c) 

• if 1 3 =  and (3 ) (1 ) 4  = − − =   

                                         (10d) 

 
(a) Limiters in Eq.(5a)-(5c) and Eq.(6)            (b) Min-mod type limiter and Hemker-Koren limiter 

Fig. 2 Curves of limiter functions 

With the above modifications to Min-mod type limiter, Eq.(7) can be expressed as a function of ( )r  as that of 

Eq.(3), which makes the comparisons among the different limiters listed in Eq.(5) and Eq.(10) easier. All limiters 

given in Eq.(5), Eq.(6) and Eq.(10) are plotted together in Fig.2. Figure 2 highlights the fact that, except for 

Min-mod limiter of 4 = , all others lie in Sweby’s TVD limiter region (illustrated in Fig.(1a)). Part of 4 =

Min-mod limiter lies outside of Sweby’s TVD region. According to Spekreijse’s monotonic second-order region 

shown in Fig.(1b), i.e. 

    ( )

( )
2

r M

r
M

r

 




 

−   +
, (0, )M   , [ 2,0]  −                         (11) 

It is obvious that Min-mod type limiter shown in Eq.(10d) really satisfies monotonicity-preserving condition by 

setting 3M =  and 0 = , where M and   are two parameters used to define Spekreijse’s monotonic 

second-order region. 



In general, all limiters shown in Fig.(2a) can roughly be classified into two categories: the ones close to the left 

and upper bound (Superbee limiter) of the TVD region are compressive limiters, which can achieve high-accuracy 

results, but possess unsound convergence behaviour and severe restrictions on time step size. Sweby[23] performed 

the detailed investigation on Superbee’s properties, and showed that, Superbee limiter is an extremely compressive 

limiter which could give remarkably sharp profiles for the linear and non-linear advection problem. However, the 

ones close to the right and lower bound (Mid-mod limiter of 1 = ) are dissipative limiters, which show robust and 

well-converged behaviour, but produce low-accuracy results in general. In Fig.(2a), all limiter functions shown in 

Eq.(5a)~(5d) and Eq.(6) are in the sequence of increasing dissipation and decreasing compression, which is similar 

to the trend observed in CFD practice. However, this does not always hold true for Min-mod type limiters shown in 

Fig.(2b), which clearly indicates that the properties of Min-mod type limiter are determined by the compression 

parameter   defined in Eq.(10). Scott [31] only discussed one case of Min-mod limiter shown in Eq.(6) and/or 

Eq.(10a) with 1 = . However, with 3 =  or 4 = , Fig.(2b) demonstrates that Min-mod limiter is more 

compressive than van Leer limiter. If 2 = , Min-mod limiter is compressive in the region of 1r  , equivalent to 

Superbee limiter, but dissipative in the region of 1r  , equivalent to the case of 1 =  Min-mod limiter. 

Therefore, it would be an incomplete conclusion to take Min-mod limiter as the most dissipative limiter without 

investigating its compressive features. The compressive behaviours of Min-mod type limiter in practical applications 

will be further explored through three shockwave-containing flows in the following sections. One crucial aspect to 

be noted for Superbee limiter is that, it tends to turn smooth waves into square waves, and makes the gradient 

sharper in solving practical flow. The overly compressive nature of Superbee limiter in multiple dimensions may 

lead to stair-casing effects at flow discontinuities. Due to its impracticality in engineering, Superbee limiter will not 

be discussed in the following sections. Min-mod limiter of 2 =  will also not be considered because of its 

Superbee-like features in the region of 1r   as shown in Fig.(2b). 

4. Grid Convergence Error Analysis Method 

There has been consensus on the effect of limiters on the convergence properties and accuracy of numerical 

solutions. However, most of the existing literature is based on the conclusion of qualitative analysis, and it is 

difficult to provide quantitative analysis results for the characteristics of different limiters and their comparison due 

to the lack of effective error analysis tools. For SWBLI problem, the general numerical solutions based on upwind 



schemes can only achieve up to third-order accuracy due to the existence of shockwave discontinuity in the flow 

field, and even only the first order can be reached at the discontinuity. Roach [39, 40] proposed a global numerical 

error analysis method based on Richardson extrapolation theory, but the effectivity on the discontinuity-containing 

flow field error analysis was less than expected. Roy et al. [41–43] demonstrated that, the first-order and 

second-order errors coexist in the numerical solutions of discontinuity-containing flows, and some flow quantities 

are non-monotonically converged with the grid refinement. The occurrence of non-monotonic grid convergence 

solution is due to the opposite sign of the first- and second-order errors. Therefore, Roy [41] proposed a 

hybrid-order error analysis method for this non-monotonic grid convergence phenomenon in 

discontinuity-containing flows. In this research, the same hybrid-order error analysis method by Roy is adopted to 

evaluate the performance of selected limiter functions.  

The hybrid-order analysis method by Roy [41] is expressed as the following Eq.(12). 

                                    (12) 

Where kf  is the flow quantity on the k th level grid, and the densest grid is indicated as 1k = . exactf  is defined 

as the exact solution of flow quantities. The grid size scaling factor of 1k + th grid to k th grid is defined as 

        , 1 1 /k k k kr h h+ +=                                     (13) 

The detailed information of other symbols, such as ig , kh , can be found in [32].   

By setting the grid scaling factor shown in Eq.(13) as a constant, the approximate solution of 1g , 2g and exactf

can be obtained from Eq.(12), which is expressed as following: 

                                      (14) 

                                  (15) 

                             (16) 

Where  

,  



The approximate solution of exactf  shown in Eq.(16) is generally third-order accurate, and the spatial 

discretization error on the k th grid with respect to exactf  can be expressed as following:  

                            (17) 

Based on Roy’s hybrid-order error analysis method, the first- and second-order errors can be given as follows, 

and the sum of them is presented at the same time in the following formulation:  

                                            (18.a) 

                                           (18.b) 

                                         (18.c) 

5. Results and Discussions 

5.1  NACA 0012 Airfoil 

Anderson [38] studied the properties of Min-mod limiter of 4 =  and the differentiable Albada-like limiter in 

two-dimensional transonic Euler flow around NACA 0012 airfoil. With the same 2D case in present work, a series 

of computational grids are generated to perform the grid-independence investigation. The free stream flow 

parameters are given as =0.8Ma , =1.25 . Although there is special interest in SWBLI problems in present 

work, it is a common way to verify the characteristics of a spatial scheme by performing Euler-based numerical 

simulations, and the same idea is adopted in verifying the limiter functions’ properties in this test. 

Table 1 provides the detailed grid descriptions of the grid dimensions and the grid spacing. Figure 3 shows the 

drag coefficients calculated by different limiters on all grids, and the estimated grid-converged drag coefficients on 

0h =  grid. It can also be concluded that, with grid refinement, the computed drag coefficients are grid-converged, 

and the grid-converged drag coefficients obtained by Eq.(16) for different limiter function are slightly different. The 

varying of grid-converged flow quantities indicates that, the numerical prediction accuracy is related to the intrinsic 

properties of the limiter function embedded in the numerical scheme. 



Table 1: Computational grids information 

 
aGrid spacing measure is normalized by the grid spacing 

on the finest grid (e.g. grid 1 has 1h = ) 
 

Fig. 3 Comparison of drag coefficients by different 

limiter functions 

 

Table 2: Comparison of hybrid-order spatial errors for different limiter functions 

Limiter functions 
Estimated exact drag 

coefficient (h=0) 

Calculated drag 

coefficient (h=1) 
Spatial error (%) 

van Leer 0.021199 0.021201 0.005346 

van Albada 0.021168 0.021121 0.224705 

Hemker-Koren 0.021098 0.021110 0.054191 

Min-mod (β=1) 0.021221 0.021110 0.525733 

Min-mod (β=3) 0.021200 0.021251 0.240091 

Min-mod (β=4) 0.021280 0.021279 0.002036 

 

Table 2 presents the estimated grid-converged drag coefficients on 0h =  grid, the numerically predicted drag 

coefficients on 1h =  grid for different limiter functions. It can be obviously seen that the grid-converged drag 

coefficient value for Min-mod limiter of 4 =  is the highest, while for Hemker-Koren limiter is the lowest. The 

estimated hybrid-order spatial errors by Eq.(17) for different limiter functions on 1h =  grid are also shown in 

Table 2,  which indicates that the spatial discretization error from Min-mod limiter of 4 =  is the least, while 

1 =  is the largest. 

Figure 4 shows the curves of spatial errors for different limiter functions as the grid refinement. The first- and 

second-order errors, as well as their sum are calculated individually by Eq.(18.a-c). The discrete solution errors 

indicated by the square symbols in Fig.4 are calculated from Eq.(17) where the approximate solution of  exactf  is 

from Eq.(16) using 1-3 grids. For all limiter functions, only the sums of the first- and second-order error terms on 



1-3 grids coincide exactly with the discrete solution errors. The reason is that only 1-3 grids are used to determine 

the coefficients in Eq.(14) and Eq.(15). It can also be clearly seen from Fig.4 that, except for Min-mod limiter of 

3 = , all other limiter functions capture the non-monotonic grid convergence phenomenon that occurs with the 

grid refinement. The main reason for this phenomenon is that, the first- and second-order errors with opposite signs 

would cancel each other out.  Regardless of whether the grid convergence is monotonic or non-monotonic, the 

spatial error of different limiter function on the coarse grid is gradually approaching the second-order accuracy, 

whereas, on the fine grid approaching the first-order range asymptotically, that means the solution accuracy of the 

focused shockwave-containing flows is between the first- and second-order accuracy. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Fig. 4 Spatial errors for different limiter functions with grid refinement 

 

Figure 5 plots the extrapolated sums of the first- and second-order errors of different limiters. It is very clear that, 

for the extrapolated spatial errors on the infinitely fine grid, Hemker-Koren limiter presents the lowest spatial 

discrete error, while Min-mod limiter of 1 =  presents the highest spatial discrete error. Although with less 

dissipation level, Min-mod limiters of 3 = and 4 =  do not show the less spatial discrete error than 

Hemker-Koren limiter. The main reason is that, the contributions of the converged iterative error due to the 

differentiable limiter function, such as Hemker-Koren limter, has to be taken into account.   



 
Fig. 5 Comparison of hybrid-order spatial errors for NACA 0012 airfoil 

Figure 6 presents the predicted pressure coefficients along the solid wall of the airfoil with the finest grid. All 

limiters yield similar pressure distributions over the almost whole part of the airfoil, and Min-mod limiter of 4 =  

captures the shockwave with the highest resolution on the upper surface. However, the 1 =  Min-mod limiter 

captures the shockwave with the lowest resolution. For the shockwave on the lower surface, there is a slight and 

sharp decrease on the pressure distributions after the shockwave (with a closer view not shown here). We believe 

that, it is due to the slight increase of the local velocity after the shockwave. The results from the differentiable 

limiters are similar because of their similar dissipation levels.  Although the pressure distributions along the airfoil 

surface for different limiters are of very small difference with the finest computational grid adopted, the influence of 

the inherent dissipative characteristics of the limiters still can be perceived in Fig.6. 

 



 

Fig. 6 Comparison of pressure coefficients for NACA 0012 airfoil 

 

Fig. 7 Comparison of iterative residual 

histories for NACA 0012 airfoil 

  Another important aspect that may affect the computational solution accuracy is the iterative convergence error in 

numerical simulations. Venkatakrishnan [27] discussed the influences of limiters on converging to steady solutions 

of numerical simulation in great detail, pointed out that a non-differentiable limiter might more severely hamper the 

convergence process of a numerical simulation and result in less accurate solutions than that of a differentiable 

limiter. Figure 7 shows the residual convergence process with respect to iteration steps for all abovementioned 

limiters on the densest grid, and clearly demonstrates that the three differentiable limiters, i.e. van Leer limiter, 

Hemker-Koren limiter and van Albada limiter, exhibit excellent convergence performance by approaching to the 

machine zero level. However, as depicted in [38], the residuals of non-differentiable Min-mod type limiters fail to 

approach machine zero and exhibit numerical oscillations after a few orders of magnitude drops. Anderson et al.[38] 

also pointed out that  the limit cycle oscillation in the iterative process for Min-mod limiter of 4 =  was mainly 

due to its non-differentiable feature. Also, Ventakarishnan [27] concluded that the convergence behaviour is even 

worse in the case of non-differentiable limiter functions compared with that of smoothing and differentiable limiter 

functions.  

The discussion mentioned above clearly demonstrates that conclusions from Fig.7 are consistent with those in [27] 

and [38], i.e. the non-differentiable limiter might severely deteriorate the convergence process of numerical 

simulations. The contrast, that the compressive Min-mod limiters with 3 =  and 4 =  produce larger spatial 

errors than that of the less compressive Hemker-Koren limiter, as shown in Fig.4, mainly comes from the poorly 

converged iterative residual due to the non-differentiable feature of Min-mod type limiter. The current study also 

demonstrates that, with a reasonable compression parameter  , Min-mod limiter could behave as a compressive 



limiter predicting the solution accurately with small spatial errors. Meanwhile, it might also become a dissipative 

limiter resulting in significant spatial errors, which correlate with the theoretical analysis shown in Fig.2. 

5.2  Supersonic SWBLI on Flat Plate 

Hakkinen et al. [44] conducted an experiment on the laminar boundary layer flow interacting with an incident 

shock on a flat plate, as illustrated in Fig.8. This experiment has been frequently used as a benchmark to verify 

various numerical algorithms. Here this same case is selected to perform the numerical evaluation of limiter 

functions.  

The computational domain is defined as a 2-D rectangular with a length of 2L  and a width of L , and the 

reference length L  is defined as the distance from the leading edge of the plate to the impacting point of the 

incident shock on the plate. The free stream conditions are listed as following: 

2.0Ma = , 117T K = , 
5Re 2.96 10 =   (based on L ) and 32.6 =  (incident shock angle). 

 

Fig. 8 Schematic of SWBLI on the flat plate 

For the numerical simulation, the left side of the rectangular domain is a supersonic inflow boundary with 

primitive variables being specified. The left-side inflow boundary is divided into two parts: the first part is below the 

incident point with the upstream condition of the incident shock being specified, and the second part is above the 

incident point with the downstream condition of the incident shock being specified. The downstream condition of 

the incident shock is calculated with Rankine-Hugoniot relationship, while the upstream condition of the incident 

shock is from the free stream condition, i.e. 2.0Ma = . The right side of the rectangular domain is an outflow 

boundary, which is far enough from the induced separating point so that a zero-order extrapolation of the primitive 



variables in stream-wise direction can be employed. The bottom of the rectangular domain is a no-slip solid wall on 

the surface of the plate with adiabatic temperature condition specified. The top side of the rectangular domain is 

defined as the downstream condition of the incident shock, the same as the upper part of the left-side inflow 

boundary. The same case has been studied in [32], and only the main results and conclusions are reviewed briefly 

here. 

Table 3 describes the detailed information of the computtional grids for the current study. Figure 9 presents the 

calculated drag coefficients by different limiter function on all grids, and the grid-converged drag values by Eq.(16) 

are also plotted. For different limiter function, the extrapolated grid-converged drag coefficients are slightly 

different, and the maximum difference between different limiters is about 1 count. The highest grid-converged drag 

is from Min-mod limiter of 4 = , while the lowest is from Hemker-Koren limiter. 

Table 3: Computational grids information 

 

Fig. 9 Comparison of drag coefficients by different 

limiter function on the flat plate 

  Figure 10 plots the curves of spatial errors for different limiters as the grid is refined. Although several limiter 

functions exhibit the non-monotonic grid-convergence features, the grid convergence solutions of different limiters 

approach to the second-order accuracy on the coarse grid, while to the first-order accuracy on the dense grid. Figure 

11 presents the extrapolated hybrid-order spatial errors of different limiters. It can be clearly concluded that, 

Min-mod limiter of 4 =  is compressive, while 1 =  is dissipative, because the solution accuracy from 

Min-mod limiter of 4 =  is the highest, and is the lowest from 1 =  Min-mod limiter. 
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Fig. 10 Spatial errors for different limiter functions with grid refinement 

 

 
Fig. 11 Comparison of hybrid-order spatial errors for 

SWBLI on the flat plate 

 
Fig. 12 Comparison of iterative residual histories for 

SWBLI on the flat plate 

 A further investigation on the iterative convergence effects is performed on the currently densest grid, as shown 

in Fig.12. Although Min-mod limiter of 1 =  is non-differentiable, it still can converge to machine zero due to its 

inherent hefty dissipation, but with the lowest accuracy. For differentiable limiters, van Albada limiter and 

Hemker-Koren limiter can iteratively converge to machine zero, while van Leer limiter only drops a few orders in 

residuals. However, van Leer limiter still achieves the higher accuracy than van Albada and Hemker-Koren limiters 



do. Even with the unsound iterative convergence, Min-mod limiter of 4 =  still achieves the lowest spatial errors.  

Although the differentiable or non-differentiable features of the limiter may influence the residual convergence, the 

dominating factor of the solution accuracy is the inherent dissipation of the employed limiter. Therefore, the 

difference in hybrid-order spatial errors between different limiters mainly comes from the capabilities of capturing 

discontinuities, i.e. the dissipation level of limiters determines the accuracy of the numerical solution to a large 

extent. 
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Fig.13 Contours of velocity divergence for the flow over the flat plate 

 

A qualitative analysis of the concerned flow features is also performed. The contours of velocity divergence of 

different limiters on the densest grid are presented in Fig.13. The whole field of flow structures, as shown in Fig.8, 



are numerically captured clearly. Since the numerical simulation is obtained on the densest grid and is 

grid-converged, the discrepancy on flow structure resolutions between different limiters is rarely visible. According 

to the sequence of compressive limiters shown in Fig.2 and corresponding conclusions of their properties, Min-mod 

limiter of 1 =  with the most dissipation achieves the least accurate solutions, as illustrated in Fig.13. It can be 

seen that, all of the waves, including the leading edge shockwave, the compression waves and the expansion waves, 

lose the high resolution characteristics they deserve and are numerically smeared due to the hefty dissipation. In 

contrast, the results from Min-mod limiters of 3,4 =  are of the higher order shockwave resolutions than other 

limiter functions. 

Figure 14 plots the computational results of different limiter functions on the densest grid compared with the 

experiment data on the flat plate. The differences between limiters are evident on the distribution of skin friction. 

Firstly, the positions of flow separation point, where the skin friction turns to the negative value, are of great 

discrepancy. Min-mod limiter of 1 =  with the most dissipation predictes the separation point at the most 

downstream position, while Min-mod limiter of 3,4 =  predicts the most upstream separation position. Secondly, 

the locations of flow reattachment point, where the skin friction turns back to the positive value, are predicted in a 

reversed order of the separation point. The reattachment point of 1 =  Min-mod limiter is predicted at the most 

upstream, but 3,4 = Min-mod limiter is at the most downstream. Therefore, the extent of the separation region, 

which is induced by the impacting of incident shock with boundary layer, varies for different limiters. The 

compressive limiter function, like Min-mod limiter of 3,4 = , predicts the largest separation bubble length, but the 

most dissipative limiter function, like Min-mod limiter of 1 = , predicts the smallest separation bubble. The 

maximum difference of the predicted separation length is about 7.57% (0.03472 L) according to the separation 

information shown in Table 4. 

 



 

(a) Skin friction coefficient 

 

(b) Normalized pressure 

Fig. 14 Comparison of computed results 

Detailed information about the separation regions for different limiters is shown in Table 4 and illustrated in 

Fig.(14a). For the distribution of surface pressure shown in Fig.(14b), the primary discrepancy of different limiters is 

at the impacting point, where there is an obvious pressure plateau, which is determined by the size of the separation 

bubble. The larger the separate region is, the flatter the plateau of the pressure distribution is. Figure 15 shows the 

pictures of SWBLI separation bubble predicted by different limiters and the streamline spectrum in the vicinity. It 

can be seen that, the stronger the dissipation of the limiter, the smaller the predicted separation bubble size. The least 

dissipative Min-mod limiter of 3,4 =  predicts the largest separation bubble size, which is consistent with the 



separation bubble information given in Table 4. It is also stated that Min-mod limiter of 3,4 =  is a compressive 

type limiter with less dissipation. 

Table 4: Detailed information of separation region for different limiters 
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5.3  Hypersonic Flow about a 24-deg Compression Ramp 

As presented schematically in Fig.16, the current test is a complex hypersonic case with the strong interactions 

of shockwaves, expansion waves, and boundary layer as well. As shown in Fig.16, a large recirculation region is 

formed in the 24° corner of the compressive ramp. The free stream conditions are as follows [45]: 

14.1Ma = , 72.7T K = , 297wallT K= , 
51.0369 10Re =   (based on the reference length 1L =  m) 

The reference length L  is defined as the length of the horizontal plate. Three computational grids were 

generated to perform the grid-independent study. For the densest grid, the grid point number on the horizontal plate 

is 161, on the ramp plate is 241. 161 grid points are distributed along the direction normal to the wall, with the first 

grid point distance is 
62.0 10 L−  off the solid wall.  

 
Fig. 16 Schematic of hypersonic flow past 24°compression ramp 
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Fig.15 Details of the streamline near separation region with different limiters 



Table 5: Computational grid information (2D) 

 

 

 
Fig. 17 Comparison of drag coefficients by different 

limiter function for compression ramp plate 

Table 5 presents the detailed information of the computational grids. Figure 17 shows the comparison of the 

predicted drag coefficients on all grids with different limiters, which indicates the computations are 

grid-independent. The estimated grid-independent drag coefficients with hybrid-order extrapolation method for all 

limiters are also plotted in Fig.17. It can be concluded that, as the grid spacing approaches to zero, the predicted drag 

coefficients tend to converge to the grid-independent solutions for each limiter respectively, but the 

grid-independent values are different for different limiter. The variation of the extrapolated grid-converged solutions 

shown in the current test case, as well as in the aforementioned two test cases, indicates that, the grid-converging 

process of different limiter functions is determined by their inherent dissipation properties. 

Figure 18 presents the estimated spatial errors based on the hybrid-order analysis method for all the concerned 

limiters. The non-monotonic grid-convergence features are observed for all limiter functions. It is clearly showing 

that, the spatial errors gradually approach to the first-order range on the densest grid, while to the second-order 

range on the coarsest grid. The sum of them based on the hybrid-order analysis method is also shown in Fig.19. It 

can also be obviously seen that, Min-mod limiter of 3,4 =  predicts the smallest error, while the highest error 

with 1 =  Min-mod limiter, thus the dissipation level of Min-mod type limiter is determined by the compression 

parameter: 3,4 =  indicates a compressive limiter with higher accuracy, while 1 =  indicates a dissipative 

limiter with less accuracy.  
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Fig. 18 Spatial errors for different limiter functions with grid refinement 

 

 

 

Fig. 19 Comparison of hybrid-order spatial errors for SWBLI on compression ramp plate 

The computational results, in terms of the pressure coefficient, skin friction coefficient, and heat transfer rate, on 

the densest grid from different limiter functions are plotted in Fig.(20a)~Fig.(20c). The heat transfer rate is defined 

as ( ) / [ ( )]ww
Ch k T n u H H  =   − , H is the total enthalpy with the subscript w  standing for the solid 



surface. As noted by Dolling [1], Knight [2, 4], Zheltovodovo [3, 5] and Rudy [46], the flow field of hypersonic 

SWBLI over a ramp with large ramp angle is dominated greatly by the unsteady shockwave system and large flow 

recirculation. From Fig.20, the wavy distributions of pressure, skin friction and heat transfer along the aft part 

surface of the compressive ramp are obvious. Because the simulation is performed based on the framework of steady 

RANS (Reynolds Averaged Navier-Stokes equations), this wavy features are mainly caused by the low level 

numerical dissipation that is not enough to suppress the numerical oscillations in the current strong SWBLI flows, 

even though the shockwave system in the flowfield, as well as the flow separation, is unsteady in physics. 

 

(a) Pressure coefficient                              (b) Skin friction coefficient 

 

(c) Non-dimensional heat transfer rate 

Fig. 20 Computational results of the compression ramp plate 



The distribution of pressure coefficients on the ramp plate is shown in Fig.(20a). The start points of the pressure 

rise for Min-mod limiters of 3,4 =  are at the location close to / 0.5X L = , while others at about 

/ 0.6 ~ 0.7X L = . The peak values of pressure and their locations are markedly different for all limiters. Min-mod 

limiters of 3,4 =  predict the closest pressure peak value as compared to the experiment data. The peak location 

of Min-mod limiter of 4 =  is towards the most downstream in the streamwise direction. However, Min-mod 

limiter of 1 =  obtains the smallest pressure peak value at the most upstream peak location. Therefore, the peak 

value decreases and peak location moves upstream as the dissipation of limiter functions, as shown in Fig.(20a).  

For the skin friction coefficients shown in Fig.(20b), the position of the skin friction turning negative indicates 

the beginning of the separation bubble, while the position where the skin friction turning back to positive 

corresponds to the reattachment of the separation bubble. Therefore, Min-mod limiter of 4 =  shows the largest 

region of negative skin friction, which indicates the largest separation region as compared to that of all other 

limiters, while Min-mod limiter of 1 =  predicts the smallest separation region. The predicted peak values and 

their locations of the skin friction on ramp plate vary significantly. It is clear that Min-mod limiters with 3,4 =  

predict the similar peak values and locations. However, the peak value of 1 =  Min-mod limiter is the smallest 

and the location is the most upstream. That clearly implies that the compressive feature would make the predicted 

peak value larger and the peak location more downstream. From the distribution of heat transfer rate shown in 

Fig.(20c), it can be seen obviously that the predicted peak values and locations exhibit the similar trend with that of 

skin friction, being distributed in a very scattered manner for different limiters.  

Table 6: Detailed information about separation region with different limiters 

Limiter function Separation Point ( /SX L ) Reattachment Point ( /RX L ) Separation Length 

van Leer 0.643465 1.29232 0.648855 

van Albada 0.71119 1.24822 0.537030 

Hemker-Koren 0.727391 1.23974 0.512349 

Min-mod 1 =  0.786031 1.20417 0.418139 

Min-mod 3 =  0.586151 1.31993 0.733779 

Min-mod 4 =  0.545169 1.34315 0.797981 

 

Table 6 presents the detail information of the separation region predicted with different limiters, and Min-mod 

limiter of 4 =  predicts the largest separation region with the most upstream separation point and the most 



downstream reattachment point. However, the well-known Min-mod limiter of 1 =  captures the smallest 

separation region with the most downstream separation point and the most upstream reattachment point. The size of 

the flow separation regions by different limiters varies greatly. The more compressive the limiter function, the larger 

the predicted separation region size. This is consistent with the results of surface skin friction distribution shown in 

Fig.(20b), which indicates the similar conclusion by the range of negative skin friction values. Therefore, Min-mod 

type limiter can be compressive with the reasonable compression parameter, not always be dissipative as mentioned 

in most of the previous literature. 
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Fig. 21 Contours of velocity divergence with different limiters over the compression ramp plate 

 



A qualitative investigation about the concerned SWBLI flow features is performed according to the contours of 

velocity divergence shown in Fig.21. It is obvious that, the flow features by different limiters show great 

discrepancy because of their different dissipation level. With a compressive limiter, such as Min-mod limiter of 

4 = , the predicted separated flow region on the ramp plate is larger. The compression waves caused by the 

separation bubble firstly combines with the shockwave developed from the leading edge of the horizontal plate. 

Then the merged shock wave interacts with the expansion fans and re-compression waves. However, with a 

dissipative limiter such as Min-mod limiter of 1 = , the compression waves, expansion fans and re-compression 

waves around the separation bubble firstly coalesce into a shockwave, and then the coalesced shockwave interacts 

with the leading edge shockwave. The different manners of shockwaves interacting with boundary layer result in the 

variations of computational results regarding the peak value and location for pressure, skin friction and heat transfer 

rate. The flow structure predicted by the most dissipative Min-mod limiter of 1 =  is obviously different with that 

of Min-mod limiter of 3,4 = . In addition, the wavy distributions after the shockwave interaction point observed 

in the contours of Min-mod limiter of 3,4 =  are caused by their overly compressive properties.  

Based on the above discussions about these two strong shockwave-containing SWBLI problems in section 5.2 

and 5.3, the numerical solution accuracy is greatly influenced by both the intrinsic dissipation level and the iterative 

property of the employed limiter. However, the intrinsic dissipation dominates over its iterative property relating to 

the differentiable/non-differentiable features, especially in the flow field that contains strong discontinuous 

phenomena. Although the residuals of Min-mod limiter of 3,4 =  do not converge to the machine zero, they can 

still predict the solution with the higher accuracy than that of the commonly-used limiter functions as shown in 

Fig.2. Thus, Min-mod limiter definitely is a compressive limiter with 3,4 = , but be a dissipative limiter with 

1 = , which implies Min-mod limiter can also achieve high-order accuracy for shockwave-containing flows with 

reasonable compression parameter  .  

6. Conclusions 

The compressive properties of Min-mod type limiter are investigated theoretically and numerically in the current 

research. As a comparison, a series of commonly-used MUSCL-based limiter functions are assessed together. Three 

typical shockwave-containing flows, including the transonic flow about NACA 0012 airfoil and two high-speed 



laminar SWBLI problems, are performed. A hybrid-order spatial error estimator is introduced for the first time in 

public literature to perform the limiter function investigations. Some key conclusions can be drawn as follows: 

1) The MUSCL-based interpolation commonly used to obtain formally second-order accurate scheme is 

reformulated according to Sweby’s second-order TVD limiter region and Spekreijse’s second-order monotonic 

limiter region. The properties of Min-mod type limiter are found to be determined by the compression parameter 

. This notion complements the previous incomplete comments on Min-mod type limiter by demonstrating its 

compressive properties, not only the dissipative properties. 

2) The hybrid-order spatial error estimator devised by Roy is introduced for the first time to perform the analysis 

and comparison of limiter functions’ dissipative characteristics. Studies have shown that, the inherent dissipation of 

the limiter function has a significant impact on the numerical solution accuracy in shockwave-containing flows. The 

compressive limiter, like Min-mod limiter of 4 = , can predict the flow discontinuities more accurately than a 

dissipative limiters does. 

3) It is very hard to obtain the well-converged solution in strong shockwave-containing flows, such as the 

selected supersonic/hypersonic SWBLI problems, no matter the limiter is differentiable or non-differentiable, and 

the differentiable/non-differentiable properties of limiters are no longer the indication of the iterative convergence to 

machine zero for strong shockwave-containing flows.  

4) This work demonstrates that not only theoretically but also numerically Min-mod type limiter changes from the 

dissipative limiter to the compressive limiter by selecting the reasonable compression parameter. The compressive 

properties of Min-mod type limiter have been substantiated in current research through simulating strong 

shockwave-containing flows, resulting in high resolution of flow structures. This is significant for the further 

development of new numerical schemes via Min-mod-like procedure to simulate strong discontinuity-containing 

problems more accurately. 
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