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Abstract

Simulating from and making inference for stochastic epidemic models are key strategies

for understanding and controlling the spread of infectious diseases. Current methods

for modelling infection rate functions are exclusively parametric. This often involves

making strict assumptions about the way the disease spreads and choices which may

lack any biological or epidemiological justification. To remove the need for making

such assumptions, we develop a Bayesian nonparametric framework which allows us

to learn how the disease spreads directly from the data.

In this thesis, we consider individual-level models where the infection rate between

each pair of individuals depends on characteristics of their relationship. We begin by

considering infectious diseases where the infection rate between any two individuals

can be modelled by a function of a single characteristic, for example, the distance

between them. We model this function nonparametrically by assigning a Gaussian

Process prior distribution to it and then develop an efficient data augmentation

Markov Chain Monte Carlo algorithm to infer this function, alongside the prior

distribution hyperparameters and the times individuals were infected.

We develop this methodology further, first for multi-type outbreaks and then for

outbreaks where the infection rate function depends on more than one characteristic.

For multi-type outbreaks, where the infection rate between two individuals not
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only depends on the characteristics, but also the type of individual being infected,

we develop a Multi-Output Gaussian Process method. This method allows us to

compare how susceptible each type of individual is to infection. We extend our

Gaussian Process method into several dimensions for modelling outbreaks where

the infection rate between individuals can be modelled as a function of multiple

continuous variables.

Finally, we demonstrate our results on two data sets, giving new insights and

analysis. The first is an outbreak of Avian Influenza in the Netherlands in 2003,

where over 30 million birds were culled. Using the posterior predictive distribution of

our nonparametric model, we simulate outbreaks of Avian Influenza to assess various

control measures. Alongside our nonparametric analysis, we are able to investigate

which of the pre-emptively culled farms were infected. The second is an outbreak of

Foot and Mouth Disease in Cumbria, UK. We are able to analyse the relationship

between the infection rate of farms with different kind of livestock, showing that

farms with both cattle and sheep were much more susceptible to the virus than farms

with a single type of livestock.
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CHAPTER 1

Introduction

1.1 Epidemic Modelling

Mathematical models for outbreaks of infectious diseases can help us understand

how a disease spreads between individuals. Mathematical models have been used to

study the spread of a wide range of infectious diseases from the Ebola virus (Lekone

and Finkenstädt, 2006) and HIV (Jacquez et al., 1988) to Avian Influenza (Retkute

et al., 2018) and Swine Fever (Stegeman et al., 1999). Fitting epidemic models to

data from outbreaks of infectious diseases allows us to understand what occurred in

the outbreak and which factors played a substantial role in the spread of the disease.

For example, in an outbreak of measles, we may be able to identify which areas or

age groups were most susceptible to the disease. Simulating future outbreaks from

epidemic models allows us to develop control strategies and prevent future outbreaks

of the disease. For example, after having identified a particular age group that is

susceptible to being infected with the measles virus, we can simulate outbreaks where

children in the identified age group have been vaccinated.

Understanding how diseases spread has long been of interest to mathematicians.
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Bernoulli was the first to model a disease mathematically in 1760 when he investigated

the spread of smallpox and furthered the argument for vaccination. Another key

contribution to the area came from Kermack and McKendrick (1927) where the

authors developed the idea of compartmental models. This is where individuals

are either susceptible to infection, infected with the disease, or removed from the

outbreak. Removed individuals are those who have had the disease and are no longer

infectious. This may be because they have recovered from the disease and have

developed immunity, they have been quarantined, or have died.

In this thesis, we are concerned with stochastic models for outbreaks of infectious

diseases. This is in contrast to deterministic models, which are specified through

a system of differential equations (Bacaer, 2011). Stochastic models allow us to

capture the randomness in how humans and animals behave, which is a key part to

modelling disease transmission. Stochastic models can be more difficult to formulate

and analyse than their deterministic counterparts. There are several significant texts

in the area of stochastic epidemic models including Bailey (1975), Becker (1989) and

Andersson and Britton (2000).

1.1.1 Motivation

Inference for infectious disease models is often complicated by the amount of data

observed in an outbreak. Although we observe when an individual suffers from

symptoms or is removed from the general population, we do not observe when they

are infected. This makes understanding how or when one individual infected another

difficult. When modelling an infectious disease, we need to quantify the probability

one individual infects another, and with limited data this is challenging. We may

also want to quantify various factors. For example, specifying that children are more

susceptible to the measles virus than adults.

This thesis deals with individual-level models, where we specify the infection

rate from one individual to another. This allows us to include information about

the relationship between the individuals; for example, the distance between them,

their ages and sex, or their vaccination status. Current methods for modelling the
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spread of a disease in an individual-level model typically use parametric forms; that

is they propose the exact parametric form for the infection rate from one individual

to another. The choice of parametric form for the kernel specifying the infection rate

between each pair fo individuals is often arbitrary and lacks biological justification.

It is may be difficult to include all biological effects in the parametric form. For

example, there is evidence that cattle are more susceptible to Foot and Mouth disease

than sheep or pigs when the virus is transmitted by wind (Alexandersen et al., 2003).

Including this effect in a model, without it being too narrow, is difficult. Another

challenging problem is where there is a spatial element to the spread of a disease.

Consider an outbreak of Foot and Mouth Disease on cattle farms, the probability

one farm infects another may depend on the distance between the farms. Given

the observed data, quantifying this spatial element is difficult and may require a

complex parametric form. Parametric forms are strict assumptions which are difficult

to justify.

To avoid making such strict assumptions, in this thesis we will develop a Bayesian

nonparametric approach. This method will allow us to learn how a disease spreads

directly from the data. We will develop methods for including both continuous and

categorical variables, allowing us to model the spread of a wide variety of diseases.

1.2 Bayesian Inference and Computation

Throughout this thesis, we will develop methods for performing Bayesian inference.

We now outline the main theory and methods for Bayesian inference, however for a

detailed introduction see Bernardo and Smith (1994) or Gelman et al. (2013).

1.2.1 Bayes’ Rule

Bayesian inference is conducted through the posterior distribution for the parameter

θ given the observed data y. We construct this using Bayes’ rule, which is given by:

π(θ|y) =
π(y|θ)π(θ)

π(y)
, (1.1)
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where π(y|θ) is a likelihood function of the observed data and π(θ) is the prior

distribution for the model parameter θ. The prior distribution quantifies our beliefs

about the parameter θ before observing any data and the posterior distribution

defines the probability distribution of θ given the observed data y.

One difficulty when carrying out Bayesian inference is computing the normalising

constant π(y) as we need to integrate – or compute the sum – over all possible values

of θ. Thus, the normalising constant is given by:

π(y) =

∫
π(y|θ)π(θ)dθ.

However, as this does not depend on the parameter of interest, we usually omit this

and consider the unnormalised posterior distribution

π(θ|y) ∝ π(y|θ)π(θ).

Another difficulty in Bayesian inference is the choice of prior distribution, and this

has received much attention (Bernardo and Smith, 1994). In this thesis, we will use

two methods for selecting prior distributions. The first is to choose a conjugate prior

distribution, that is a distribution that when combined with the likelihood function

leads to a posterior distribution that is of the same distribution family. These priors

are often chosen for their analytical and computational convenience. The second

method is to choose a prior distribution that contains as little information as possible

about the parameter of interest. These are often known as non-informative prior

distributions and are used when we have little prior information about the parameter.

1.2.2 Markov Chain Monte Carlo Methods

In Bayesian inference, we wish to learn about the posterior distribution and one

way to do this is to draw samples. Often the posterior distribution does not have a

form from which we can draw samples easily or directly. Markov Chain Monte Carlo

methods allow us to generate samples from any probability distribution, even when

it is not tractable.

With MCMC methods we generate a sequence of samples that is a Markov chain

and the stationary distribution of the Markov chain is the posterior distribution



Chapter 1: Introduction 5

π(θ|y). We now outline two MCMC methods which are relevant to this thesis: the

Metropolis Hastings algorithm and the Gibbs sampler. For a more detailed discussion

see Gelman et al. (2013, §10− §13).

1.2.2.1 Metropolis-Hastings Algorithms

Suppose we wish to draw samples of θ from the posterior distribution π(θ|y). The

Metropolis-Hastings algorithm begins by us choosing some initial value for the Markov

chain θ(0). On the ith iteration of the algorithm, we propose a new value of the Markov

chain θ′ from a proposal distribution q(·|θ(i−1)). We then accept this proposal with

probability

pacc =
π(θ′|y)

π(θ|y)

q(θ(i−1)|θ′)
q(θ′|θ(i−1))

∧ 1,

where a ∧ b = min{a, b}. If we accept the proposal, then we set θ(i) = θ′, otherwise

θ(i) = θ(i−1). Rewriting the posterior distribution as that shown in equation (1.1), we

see that the ratio of posterior distributions in the acceptance probability allows us to

avoid calculating the normalising constant in the posterior distribution:

pacc =
π(θ′|y)

π(θ|y)

q(θ(i−1)|θ′)
q(θ′|θ(i−1))

∧ 1

=
π(y|θ′)
π(y|θ)

π(θ′)

π(θ)

π(y)

π(y)

q(θ(i−1)|θ′)
q(θ′|θ(i−1))

∧ 1

=
π(y|θ′)
π(y|θ)

π(θ′)

π(θ)

q(θ(i−1)|θ′)
q(θ′|θ(i−1))

∧ 1.

The choice of proposal distribution can considerably effect the convergence rate

and mixing of the resulting Markov chain. If the proposal distribution given the

current value of the Markov chain is too broad in the space of plausible parameter

values, then proposed values will be frequently rejected. Conversely, if the proposal

distribution is too narrow, the Markov chain will be slow to converge. Two common

proposal distributions are the normal and uniform distributions, which result in a

random walk Metropolis-Hasting algorithm. For the normal proposal distribution,

we propose values by:

θ′ ∼ N(θ(i−1), σ2),



Chapter 1: Introduction 6

where σ2 controls the distance between values in the parameter space. Similarly for

the uniform proposal distribution, we propose values such that

θ′ ∼ U [θ(i−1) − a, θ(i−1) + a],

where a controls the step size.

The Metropolis-Hastings algorithm is given in algorithm 1.

Algorithm 1 The Metropolis Hasting Algorithm

1: Initialise the chain with value θ(0)

2: for i← 1 to m do

3: Propose θ′ ∼ q(·|θ(i−1))

4: Compute pacc = π(θ′|y)
π(θ|y)

q(θ(i−1)|θ′)
q(θ′|θ(i−1))

5: Sample u ∼ U [0, 1]

6: if pacc < u then

7: θ(i) = θ′

8: else

9: θ(i) = θ(i−1)

10: end if

11: end for

1.2.2.2 Gibbs Samplers

The Gibbs sampler is a special case of the Metropolis-Hastings algorithm, where every

proposal is accepted. Suppose θ = {θ1, . . . , θn} is a vector consisting of n parameters

and let θ−j = {θ1, . . . , θj−1, θj+1, . . . θn} be the vector of parameters excluding the jth

parameter. The Gibbs sampler can be implemented if the conditional distribution of

θj given the remaining parameters is known and has a closed form. To implement

the Gibbs sampler, we sample a value of θj from the distribution π(θj|θ−j, y) for

j = 1, . . . , n. A full algorithm is given in algorithm 2.



Chapter 1: Introduction 7

Algorithm 2 The Gibbs Sampler

1: Initialise the chain with value θ(0) = {θ(0)
1 , . . . , θ

(0)
n }

2: for i← 1 to m do

3: Sample θ
(i)
1 ∼ π(θ1|θ(i−1)

2 , . . . , θ
(i−1)
n , y)

4: Sample θ
(i)
2 ∼ π(θ2|θ(i)

1 , θ
(i−1)
3 , . . . , θ

(i−1)
n , y)

5: Sample θ
(i)
3 ∼ π(θ3|θ(i)

1 , θ
(i)
2 , . . . , θ

(i−1)
n , y)

6:
...

7: Sample θn(i) ∼ π(θn|θ(i)
1 , θ

(i)
2 , . . . , θ

(i)
n−1, y)

8: end for

1.2.2.3 Burn-in and Thinning

After running the MCMC algorithm for a specified number of iterations, we have

a chain of samples which should resemble samples from the posterior distribution.

Often, the early samples in the sequence are influenced by the choice of the initial

value θ(0). We reduce the impact of this choice by removing these early samples.

We refer to these early samples as a burn-in period and the length of this period is

problem specific and often chosen by visually checking the resulting Markov chain.

To do this, we use trace plots, to inspect how well the Markov chain is mixing.

Once we have removed the early samples, the chain of samples the should resemble

a sequence of samples drawn from the posterior distribution. However, we can choose

to store every kth iteration as this not only reduces the required storage space, but

also reduces autocorrelation between the samples. This is known as thinning.

1.2.3 Bayesian Nonparametric Methods

In Bayesian inference for parametric models, we treat the parameters as random

variables and use a prior distribution to describe the knowledge or uncertainty about

the parameter. A Bayesian nonparametric model places a prior distribution on an

infinite parameter space and invokes a finite set of parameters (Orbanz and Teh,

2017). We usually consider the infinite parameter space to be the set of all possible

solutions to the problem. An example of this would be the set of all continuous,
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differentiable functions when carrying out a regression problem.

There are a wide variety of techniques for carrying out Bayesian nonparametric

methods. When modelling densities, a typical Bayesian nonparametric method

employed is a Dirichlet Process. (Gelman et al., 2013). For regression problems, one

widely used method is Gaussian Processes (GPs), which allow us to model functions

without specifying an exact parametric form (Rasmussen and Williams, 2006) – this

is the method we will be using in this thesis.

Bayesian nonparametric models grow in dimension as the number of data points

increase, and as such can describe a greater range of variation in the data. They also

reduce the number of assumptions we need to make about the underlying generating

process compared to parametric models. This is because the Bayesian nonparametric

framework is a lot more flexible than a parametric framework. Using Bayesian

nonparametric methods allow us to design models which can better describe the data

and reduce the assumptions modellers need to make.

However, this ability to capture a large range of effects and flexibility results

in challenges we do not face when implementing parametric models. Having a

model with a large dimension greatly increases the difficulty in fitting Bayesian

nonparametric models compared to parametric models. This difficulty comes in

several forms, including technical ability to fit models, computational complexity

in performing inference for the models, and interpreting the models. Having a

more flexible framework also makes it more challenging to compare models. When

comparing parametric models, we often penalise each model based on how many

parameters it has, however as Bayesian nonparametric models have an infinite number

of parameters, this is not possible.

Parametric and Bayesian nonparametric models often see large differences in

the uncertainty in the results. The uncertainty in results for parametric models is

often considerably smaller than that for Bayesian nonparametric models. Näıvely,

this makes parametric methods more attractive. However, Bayesian nonparametric

models allow us to better quantify the uncertainty. As parametric models require

very strict assumptions, the best-fitting such model may not not accurately represent
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the underlying process and will not estimate the correct level of uncertainty in the

results. This may result in incorrect predictions being made from the model. Bayesian

nonparametric methods are more flexible and result in larger uncertainty around

estimates, but the models are better posed.

1.3 Stochastic Epidemic Modelling

We now introduce stochastic epidemic models, which will be used in this thesis for

modelling the spread of infectious diseases.

1.3.1 Compartmental Models

The building blocks of stochastic epidemic models are the compartments. Suppose

there is an outbreak of an infectious disease in a population. We put each individual

in the population in a compartment depending on their current status in the outbreak

(Andersson and Britton, 2000). The most common compartments are the Susceptible,

Infected and Removed compartments. A model with these three compartments is

referred to as an SIR model; at any point in the outbreak an individual may be

susceptible, infected or removed. An individual is susceptible if they have not been

infected with the disease and are susceptible to contracting it. Infected individuals

are individuals who are infected with the disease and we assume that all infected

individuals are also infectious and able to pass the disease on to susceptible individuals.

Removed individuals are those who have had the disease and are no longer able to

pass the disease on. This may be because they no longer have the disease, have been

put into quarantine, or otherwise have been removed from the population. Once

an individual enters the removed class, they cannot be reinfected. Typically, an

individual will start in the susceptible compartment and, if infected, then move to

the infected compartment, before entering the removed compartment when they are

no longer infected. An example of this model is given in figure 1.1.

Compartments allow us to build flexible models as we are not limited by the type

or number of compartments. Another possible model is an SIS model, where instead
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S I R

Figure 1.1: A graphical representation of an SIR stochastic epidemic model.

of being removed after being infected, individuals return to being susceptible. This is

used for modelling diseases such as the common cold. For some diseases an individual

may not be infectious upon becoming infected and to model this we can introduce an

exposed compartment between the susceptible and infectious compartments. This

is often referred to as an SEIR model. In this thesis, we consider outbreaks among

populations of a fixed size as we assume the outbreaks to occur over a short period.

However it is possible to include demographic changes in compartmental models.

Including demographic changes is particularly useful for modelling endemic diseases

where we are considering the number of cases of a disease over a long time span

or diseases such as HIV, where there is chance a pregnant mother with HIV will

pass on the disease to her baby. Given these compartmental models, we now discuss

stochastic models for epidemics.

1.3.2 The General and Standard Stochastic Epidemic

Models

We begin by defining the so-called general Susceptible-Infective-Removed stochastic

epidemic model (see e.g. Bailey (1975)). In this model, we consider a population

consisting of N individuals and for any time t ≥ 0, an individual may be susceptible

to the disease, infected with the disease, or removed from the infection process. We

assume that the population consists entirely of susceptible individuals and at time

t = 0, one individual becomes infected. Once infected, an individual remains infected

for a time period drawn from an Exponential distribution with rate parameter γ and

density function:

h(x|γ) = γ exp{−γx}, γ > 0, x > 0.
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When this time has elapsed they enter the removed class. We assume the infectious

time period for each individual is independent of that of other individuals. While an

individual is infected, we assume it makes infectious contact with a given susceptible

individual at the time points given by a homogenous Poisson process with rate β, and

infectious contact results in the susceptible individual becoming infected immediately.

We assume the infectious contact process for each pair of individuals is independent

of any other pair. The outbreak is declared over once there are no infected individuals

remaining in the population. At this time, individuals are either susceptible, having

avoid infectious contact, or removed, as their infectious period has elapsed. During

the outbreak, we assume no new individuals enter the population and no individuals

leave the population. For short time periods, this is a reasonable assumption to make.

S I R
βStIt γIt

Figure 1.2: A graphical representation of the general stochastic epidemic model.

We define St, It and Rt to be the number of susceptible, infected and removed indi-

viduals at time t respectively. As the homogenous Poisson processes are independent

of each other, the process of new infections at time t is an inhomogeneous Poisson

process with rate βStIt. We refer to β as the infection rate and βStIt as the infection

force. Modelling the infectious period distribution by an exponential distribution

makes the stochastic process {(St, It); t ≥ 0} a Markov process. In Andersson and

Britton (2000), the authors also outlined the standard epidemic model. This model

differs from the general model by allowing the length of the infectious period to be

drawn from any arbitrary and non-negative distribution D. This allows for a more

realistic choice of infectious period distribution, but results in the stochastic process

{St, It; t ≥ 0} no longer being Markovian whenever D is not exponential.
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1.3.3 The Individual-level Stochastic Epidemic Model

Often we have information about the individuals in the population which can help us

analyse the spread of a disease. Stockdale et al. (2018) describes the analysis of an

outbreak of smallpox in a town in Nigeria, where the authors took into account in

which compound each individual lived, whether they were a member of a particular

church and if an individual had been vaccinated. Another example is presented by

Jewell et al. (2009), which analyses an outbreak of Foot and Mouth Disease in the

UK, where the authors considered the locations of the farms, as well as the type and

number of animals on each farm.

We consider an individual-level stochastic epidemic model, which is a type of

heterogeneously mixing model. In this model, we specify the infection rate between

each pair of individuals, and we denote the pair-wise infection rate from individual i

to individual j by βi,j . The only difference between the standard stochastic epidemic

model and the individual-level model is that we assume an infected individual i

infects a susceptible individual j at time points from a Poisson process with rate βi,j .

As in the standard model, if j becomes infected they remain so for a time period

drawn from an arbitrary and non-negative distribution D. If we fix βi,j = β0 > 0 for

all pairs of individuals, the model simplifies to the standard epidemic model.

Instead of specifying a distinct value of βi,j for each pair of individuals, we define

a function that takes the characteristics of the individuals as inputs and outputs the

pair-wise infection rate. This is almost always done by specifying an exact parametric

form. For example in the aforementioned outbreak of Foot and Mouth Disease, one

form for the infection rate from individual i to j is given by:

βi,j = (β1(nci)
β2 + (nsi )

β2) · (β3(ncj)
β2 + (nsj)

β2) · β4

d2
i,j + β5

,

where nci and nsi and the number of cattle and sheep on farm i, di,j is the Euclidean

distance between farm i and j, and β1, . . . , β5 are parameters controlling the infection

rate (Jewell et al., 2009). Having proposed the infection rate function, we may

perform inference for the function parameters.

However, we argue that proposing parametric forms for the infection rate function
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requires us to make assumptions an in many cases there is no clear biological or

epidemiological basis for using a particular parametric model. We instead develop

a Bayesian nonparametric method, which allows for a much more flexible approach

avoiding such assumptions. To understand the context around our new method,

we now outline current Bayesian and nonparametric methods for inferring model

parameters in stochastic epidemic models.

1.4 Bayesian Inference for Epidemic Models

Bayesian methods have been widely applied to infectious disease data; for an introduc-

tion see e.g. Held et al. (2019). The first Bayesian inference methods for stochastic

epidemic models were developed in Gibson and Renshaw (1998) and O’Neill and

Roberts (1999). In Gibson and Renshaw (1998), the authors inferred the parameters

of the general stochastic epidemic model and allowed the population to change in size

due to birth and death. The authors developed a reversible-jump MCMC method to

allow for the population size, N , to change. This allowed for births and deaths to

occur whilst the outbreak was continuing. In O’Neill and Roberts (1999), the authors

developed a different approach to infer the model parameters in the general stochastic

epidemic model. The authors placed a prior distribution on the infection and removal

rates and then used a Gibbs sampler in an MCMC framework to sample from the

corresponding conditional distributions. They also assumed the times individuals

were infected are unobserved and augmented the likelihood function to treat these

times as parameters. They developed a Metropolis-Hastings algorithm to infer the

infection times.

These models have been extended to allow for individual-level infection rates. For

example, in Boender et al. (2007), the authors fitted an individual-level stochastic

epidemic model to an outbreak of Avian Influenza in the Netherlands. To model the

infection rate from farm i to j, the authors proposed several infection rate functions

which depended on the distance between farms i and j. The authors used maximum

likelihood methods to estimate the model parameters. Finally, they chose the best
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fitting of the models using information criteria. In Jewell et al. (2009), the authors

also fitted an individual-level model for an outbreak of Foot and Mouth Disease,

and adapted the data augmentation method proposed in O’Neill and Roberts (1999)

to infer the infection times of farms which were culled without being tested for the

disease, as well as improving efficiency of the method.

1.4.1 Bayesian Nonparametric Methods for Stochastic Epi-

demic Models

Parametric models, like those proposed by Boender et al. (2007) and Jewell et al.

(2009), can be restrictive, as we need to propose exact parametric forms for the

infection rate. Given the limited data we observe about the outbreak, accurately

specifying plausible functions is challenging and we aim to alleviate these problems

and relax assumptions by estimating the infection rate from the data. Bayesian

nonparametric methods allows us to fully infer the infection rate without having to

impose strict assumptions about the form of the infection rate.

More recently, inference for Bayesian nonparametric epidemic models has been

developed. With regards to stochastic epidemic models, step functions and B-Splines

have been used in a nonparametric Bayesian framework to estimate a time-dependent

infection rate Knock and Kypraios (2014). The authors first modelled the infection

rate as a step function and partitioned the time period of the epidemic into k segments,

i0 = s1 < s2 < . . . < sk = rn, where i0 is the first infection time and rn the final

removal time. They define the infection rate at time of partition j to be βj, which

allows them to write the infection rate as:

β(t) =
k∑
j=1

βj1sj<t<sj+1
.

They placed prior distributions β1, . . . , βk and used a Gibbs sampler to infer the

values of these parameters. Using dependent prior distributions, where E [βj+1|βj],

allowed them to control the smoothness of the function. They then implemented a

Metropolis Hastings algorithm to infer the number and locations of the change points
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s2, . . . sk−1. They also proposed a similar B-spline method, where the value of the

B-spline coefficients and number of knots are inferred using a MCMC framework.

In Xu (2015) and Xu et al. (2016), the authors used GPs to estimate time-

dependent infection rates for the general epidemic model. They assume infections

occur at time points given by an inhomogeneous Poisson process with rate β(t),

and develop a nonparametric inference method based on Adams et al. (2009). Xu

(2015) modelled the infection rate using a Sigmoidal Gaussian Cox Process, where

the infection rate is given by

β(t) = β0σ(g(t)),

where σ(x) = {1 + exp{−x}}−1 and g is a function with a GP prior distribution

on it. In Xu et al. (2016), the authors developed an MCMC algorithm to infer

the maximum infection rate, β0, which is equivalent to the rate parameter of the

homogeneous Poisson process λ∗, as well as the time-dependent function. This method

requires data augmentation as the number of thinned points, m, and their locations,

t = {t1, . . . , tm} are inferred, as well as β0 and the function g. In Xu et al. (2016), the

authors also developed a similar nonparametric method inferring infection rates of

the form β(t)StIt. Modelling the infection rate by a GP allows for the smoothness of

the infection rate function to be inferred as well. This avoids the need for sequentially

dependent prior distributions.

The majority of research in nonparametric estimation for epidemic models has

looked at estimation for time-dependent infection rates. Our aim is to develop a

method for estimating infection rates where they depend on other factors, such as a

spatial covariate or type of individual. Our new methods should allow us to learn the

infection rate from observed removal times, and we should only need to make very

basic assumptions about the infection rate a priori, such as the rate being a positive

continuous function.

Although this work is related to that described in Xu (2015) and Xu et al. (2016),

namely the development of Bayesian nonparametric methods for stochastic epidemic

models and the use of Gaussian Process prior distributions, the methods are materially

different and address a distinct kind of problem. In Xu et al. (2016), the authors
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developed methods for modelling time-dependent infection rates nonparametrically,

and the work was done on a population-level. This work contributes to the field

by developing Bayesian nonparametric methods for models where the infection rate

differs between individuals.

1.5 Gaussian Processes

The nonparametric method we will be using is the GP prior distribution. Intuitively,

a GP prior distribution is a prior distribution over a space of functions. We build

our assumptions about the function we are modelling through the prior distribution

hyperparameters. We will be considering GP prior distributions for modelling one-

dimensional functions. We now give a full definition, outline possible covariance

functions and give an example in a regression context.

1.5.1 Definition

Given an input space χ, typically a subset of Rn, a GP is a probability distribution

over χ, such that the joint distribution over any finite subset x = {x1, . . . , xn} ∈ χ

follows a multivariate normal distribution. We use the definition from Rasmussen

and Williams (2006)[§2, p. 13] and define a GP as follows:

Definition: A GP is a collection of random variables any finite number of which

have a joint Gaussian distribution.

A GP prior distribution on a function f can be completely defined through its

mean function and covariance matrix, which are given by:

µ(xi) = E[f(xi)], i = 1, . . . , n,

Σi,j = E[(f(xi)− µ(xi))(f(xj)− µ(xj))], i, j = 1, . . . , n.

The mean function evaluated at x, µ(x), specifies the expected value of f(x) a priori ;

throughout this thesis we will use a zero-mean GP prior distribution, where µ(x) = 0
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for all x ∈ χ. Using a zero-mean prior distribution is not restrictive as long as we

ensure the distribution covers a large space of plausible functions. The (i, j)th element

of the covariance matrix Σ specifies the relationship between f(xi) and f(xj) a priori.

We denote the prior distribution by:

f ∼ GP
(
µ, Σ

)
.

The advantage of using a GP over another nonparametric method is that a

GP prior distribution allows us to assume a level of smoothness for the infection

rate instead of approximating the biological processes that causes the disease to

spread. Other methods such as step functions or B-splines do allow smoothness to be

considered, but indirectly through more complicated prior constructions. They also

require change points, the location and number of which need to be estimated.

1.5.2 Covariance Functions

The covariance matrix is how we allow for the majority of our assumptions about the

function we are modelling to be made. Although these assumptions are less strict

than in parametric methods, we must specify if the function is continuous or the

differentiability class. We also need to consider how quickly moving the function over

the input space is or whether it is periodic. Using a covariance function means the

covariance between any two points, f(xi) and f(xj), is a function of the inputs, xi

and xj. The covariance is therefore given by:

Σij = k(xi, xj).

There is a wide variety of choices for the covariance function, for a full overview see

Rasmussen and Williams (2006, §4). We now recall several relevant functions.

The squared exponential covariance function is a widely used choice when mod-

elling continuous functions. The squared exponential covariance function is given

by:

k(xi, xj; α, l) = α2 exp

{
−(xi − xj)2

l2

}
(1.2)
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and has two hyperparameters: the signal variance parameter α and the length scale

parameter l. The signal variance parameter controls the overall variance in the prior

distribution and the length scale parameter describes how quickly changing we assume

the function to be. The value of the length scale parameter ensures how similar the

output of the function is for two nearby input values.

The Mátern covariance function can be used to model functions which are contin-

uous but not differentiable and is related to the squared exponential function. The

covariance function is given by:

k(xi, xj; ν, l) =
21−ν

Γ(ν)

(
(xi − xj)

√
2ν

l

)ν

Kν

(
(xi − xj)

√
2ν

l

)
,

where Kν is a modified Besel function of the νth kind. As in the squared exponential,

l is a length scale parameter. The parameter ν is a differentiability parameter and

this covariance function models functions that are bν − 1c mean square differentiable.

As ν −→ ∞, the covariance function becomes the squared exponential covariance

function.

The rational quadratic covariance function is given by:

k(xi, xj;α, γ, l) = α2

(
1 +

(xi − xj)2

2γl2

)−γ
and is analogous to the summation of many squared exponential covariance functions

with different length scales. The scaling parameter γ defines the weight of the smaller

length scale variation to longer length scale variation. As with the Mátern covariance

function, as γ −→ ∞, the covariance function tends to the squared exponential

function.

We can also model functions that are periodic by using the periodic covariance

function. This is given by:

k(xi, xj;α, ρ, l) = α exp

{
−2

sin2(π|xi − xj|/ρ)

l2

}
.

The parameter ρ defines the periodicity, the length scale is given by l, and α is the

signal variance parameter.
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Once we have chosen a covariance function, we can then generate samples from

the GP. Consider the function f evaluated at the points in the input set x =

{x1, . . . , xn} ⊂ χ. We place the following GP prior distribution on f :

f ∼ GP(0, Σ), Σij = k(xi, xj),

where k is a suitably chosen covariance function. To generate samples from this

distribution we use a Cholesky based method (algorithm 3). This method trans-

forms samples drawn from a standard normal distribution by using the Cholesky

decomposition of the covariance matrix.

Algorithm 3 Draw a sample from a GP Prior Distribution

1: Construct Σ

2: Compute L, where LLT = Σ

3: Sample u ∼ N(0, I)

4: Compute f = Lu

We now demonstrate these four covariance functions in figure 1.3. We place a

zero-mean GP prior distribution on a function f and use x = {0, 0.01, 0.02, . . . , 10}

as the input set. We then draw three samples from the prior distribution for each of

the covariance functions. The samples from the prior distribution with the squared

exponential function are smooth, whereas due to our choice of hyperparameters, the

samples from the prior distribution with the Mátern covariance function are only

once mean square differentiable. We can see the effect of the scaling parameter in

the prior distribution with rational quadratic covariance function, which is equivalent

to summing samples from prior distributions with a squared exponential covariance

function and different length scales. The periodic function generates functions which

are periodic over the input space, and we have chosen the period to be 2.

1.5.3 Gaussian Process Regression

Before developing GP methods for stochastic epidemic models, we first illustrate

GPs and Bayesian nonparametric methods with a basic regression example. Suppose
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(a) Three samples from a GP prior distribution with squared

exponential covariance function with α = 3, and l = 2.

(b) Three samples from a GP prior distribution with Mátern

covariance function with ν = 5/2, and l = 2.

(c) Three samples from a GP prior distribution with rational

quadratic covariance function with α = 3, l = 2, and γ = 1.

(d) Three samples from a GP prior distribution with periodic

covariance function with α = 3, l = 2, and ρ = 2.

Figure 1.3: Samples drawn from GP prior distributions with different covariance functions.
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we observe n pairs of points, (x,y) = {(x1, y1), . . . , (xn, yn)}, and we wish to fit the

following model:

yi = f(xi) + εi, εi
i.i.d.∼ N(0, σ2).

We model f by placing a GP prior distribution on it, and, for this example, we assume

σ2 is known. The likelihood function of y given the function f and the variance σ2 is

given by:

π(y|f, σ2) =
1

(
√

2πσ2)n
exp

{
−

n∑
i=1

(yi − f(xi))
2

2σ2

}
.

We place the following GP prior distribution function on f using the squared expo-

nential covariance function:

f ∼ GP(0,Σ), Σij = k(xi, xj;α, l).

By Bayes’ theorem, the posterior distribution is given by:

π(f |x,y, σ2) ∝ GP(f ; 0, Σ)π(y|x, f, σ2)

∝ GP(f ; 0, Σ)N (y; f, σ2I)

∝ GP
(
f ;

1

σ2
(Σ−1 +

1

σ2
I)−1y, (Σ−1 +

1

σ2
I)−1

)
,

where N (x; 0, Σ) denotes the density function of a multivariate normal distribution

with mean vector 0 and covariance matrix Σ, evaluated at the vector x.

By way of example, we generate 80 points using the function y = 0.5 log(x) −

4Φ(x− 5) and add noise from a N(0, 0.52) distribution, where Φ(x) is the cumulative

distribution function of a standard normal density. We choose this function as it

is challenging to model parametrically with no prior knowledge of the parametric

form. For the GP prior distribution, we set α = 10 and l = 3. We show the posterior

mean and credible interval in figure 1.4. The posterior mean gives a reasonable

approximation of the genera ting function and the generating function is contained

entirely within the credible interval.

Assessing the model fit when using GPs is challenging as the number of parameters

in a Bayesian Nonparametric model has a different meaning to the number of

parameters in a parametric model. This means we cannot use typical measures of
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Figure 1.4: The regression example with GP prior distribution and simulated data.

We show the true function (dotted), the posterior median function (solid), and the

95% credible interval (in blue).

model assessment such as Information Criteria or likelihood ratio tests. Diagnostics

for checking the posterior distribution are also challenging as the GP models a function

at a number of points, and we would need to check the posterior distribution at each

point. For example, in this regression example, we evaluate the function at 80 points,

resulting in a posterior distribution with 80 dimensions, or 80 marginal distributions.

Model assessment for Bayesian Nonparametric models is an open area of research

and we use several different methods to assess our models. We run simulation studies

with a large number of independent simulations, where we simulate data from a given

model and fit the model to the simulated data; the aim of this is that MCMC chains

from well fitting and mixing models will converge to the same answer. We also make

use of the posterior predictive distribution to compare our results to observed data.

These methods are not perfect and are in some respects imprecise, but do allow us

to compare models and reassure us that the Markov chains have converged to the

posterior distribution.
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1.5.4 Gaussian Process Notation

Much of the work on GPs has been carried out from a Machine Learning and

Computer Science standpoint, indeed, one of the most widely read texts in the area

is titled ‘Gaussian Processes for Machine Learning’ (Rasmussen and Williams, 2006).

Although the methodology in Statistics and Machine Learning is identical, there

are differing paradigms in the two areas. In Statistics, we are interested in inferring

a function, and as such, the notation describes functions. Researchers in machine

learning are often interested in making predictions about the value of a function in

an area of the domain where no data is observed. Examples of this include audio

reconstruction, where a missing part of a sound wave needs to be predicted given

the parts of the wave that were observed, or GP emulation, where given a small

number of outputs from a very complex model that is time consuming to run, a large

number of outputs are inferred. Since the aim in machine learning is mostly to make

predictions about the value of a function given the observed data, the notation and

language used there is different to that used in statistical literature.

We now outline typical notation used in Machine Learning. At some input points

x = {x1, . . . , xn}, we observe the values of the function f = {f1, . . . , fn}, where

fi = f(xi). We assume the mean of the GP prior distribution at the points of x is

given by µ = {µ1, . . . , µn}. To construct a covariance matrix, we choose a covariance

function k, and compute the covariance matrix, Σ, based on k evaluated at the

input points x. The prior distribution is therefore given by the following GP prior

distribution, although we can view it as a multivariate normal distribution:

f ∼ GP (µ,Σ) .

From a statistical standpoint, we consider the problem of inferring functions. We

consider a function f and after choosing suitable prior mean and covariance functions,

µ and k respectively, we write the GP prior distribution as:

f ∼ GP(µ, k).

However, as we consider the function f as an infinite dimensional object, we cannot

evaluate or perform computations with this distribution. We introduce the set of
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locations at which we wish to evaluate the function, x = {x1, . . . , xn}. Using this set,

we construct a covariance matrix Σ, and evaluate the mean function at these points.

The GP prior distribution becomes a multivariate normal distribution, although as

we are inferring functions, we still choose to view it as a GP prior distribution over a

space of functions. We denote it as

f ∼ GP(µ,Σ).

We choose to use Σ over k as in chapter 3 we investigate Multi-Output GP prior

distributions, where we use the same covariance function, k, over different input sets

to construct difference covariance matrices and functions.

1.6 Structure of the Thesis

This thesis is divided into three chapters detailing the methodological advancements

and one chapter implementing the methods to real life data sets. In chapter 2 we

outline our nonparametric method for modelling infection rate functions where the

infection rate between any two individuals depends on a single, continuous covariate,

such as the Euclidean distance between the individuals. We do this using GP prior

distributions, and we describe the Bayesian nonparametric approach in this chapter.

We also develop a MCMC algorithm in this chapter to generate samples from this

appropriate posterior distribution. In chapter 3, we turn our attention to multi-type

epidemics, where the infection rate between any two individuals not only depends on

a single, continuous covariate, but also the type of the susceptible individual. For

example, the types in an outbreak of Foot and Mouth disease may be sheep farms and

cattle farms. Our main method of modelling this is through Multi-Output Gaussian

Processes, although we also outline a fixed-effects approach for this problem. The final

methodological developments are given in chapter 4, where we model infection rate

functions which depend on multiple continuous covariates, for example, Euclidean

distance and the size of the susceptible individual. We do this by extending our GP

technique into n dimensions.
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In chapter 5, we apply our methods to two data sets and compare the results

with previously used methods. The first data set is an outbreak of Avian Influenza

in the Netherlands in 2003, in which 233 farms were infected with the disease, 30

million birds were culled, and one person died after contracting the disease. We infer

the infection rate function for this outbreak as well as estimating which farms were

infected with the disease and for how long. This has not previously been investigated

for this outbreak. We then investigate various possible culling strategies for the

outbreak by way of the posterior predictive distribution. We apply our methods to

data taken from an outbreak of Foot and Mouth Disease in the UK in 2001. We

use our multi-type methods to understand the difference in susceptibility between

different types of animals.



CHAPTER 2

Bayesian Nonparametric Methods for Infection Rate

Functions with One Covariate

2.1 Introduction

Individual-level models allow us to specify the infection rate between each pair of

individuals, and have been successfully implemented in a number of cases (see e.g.

Keeling, 2001; Boender et al., 2007; Jewell et al., 2009). To model the spread of a

disease, we assume an infected individual i infects a susceptible individual j at the

time points of Poisson process with rate βij. Often, even for small populations, the

number of pair-wise infection rate parameters is too large to estimate. Instead, we

model the pair-wise infection rates by an infection rate function. The infection rate

function models the pair-wise infection rate between any two individuals as a function

of the relationship between them. For example, in an outbreak of Swine Fever, we

may assume the infection rate from one farm to another depends on the number of

pigs on each farm, the type of housing for the pigs, and the location of the farm.

It is challenging to quantify or describe any biological rationale in these functions.

For example, in Alexandersen et al. (2003), the authors state that under certain
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weather conditions the Foot and Mouth disease virus can be carried of gusts on wind

for short distances, and that cattle are more susceptible to this form of transmission

than pigs. Constructing a mathematical function which contains this information

can be challenging.

Parametric infection rate functions can also lack justification from the data. This

is particularly acute when there is a spatial element to the spread of a disease.

Consider an outbreak of Avian Influenza among poultry farms, where we model the

infection rate between farms as a function of the distance between them. In Boender

et al. (2007), the authors chose to propose functions of the form

f(d) =
β0

1 + (d/β1)β2
, βi > 0

for this problem. Although proposing a function form may be straightforward,

justifying it is difficult given the observed data. The parametric forms are also strict

assumptions about the infection rate functions. In this chapter, we develop a Bayesian

nonparametric method for modelling infection rate functions which depend on a

single covariate, for example, the Euclidean distance. This will allow us to build a

much more flexible model and learn the infection rate function from the data.

We will use GPs to nonparametrically model the infection rate functions. GPs have

been used to model functions in a wide variety of contexts, for example, modelling

the number of births on each day of the year (Gelman et al., 2013, §21), or the price

of houses in the UK (Hensman et al., 2013). Using GPs will allow us to learn the

infection rate functions from the data without requiring specific biological justification

or making strict assumptions about how the disease spread.

We will follow previous Bayesian methods such as those in O’Neill and Roberts

(1999), Xu (2015) and Stockdale et al. (2018), and develop efficient, data augmentation,

MCMC methods. This will allow us to infer the infection rate function alongside

other parameters, as well as infer the times individuals were infected.
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2.1.1 Layout of Chapter

We begin the chapter by defining an individual-level stochastic epidemic model and

deriving an appropriate likelihood function. In section 2.3 we outline inference for

parametric models, and a number of model selection methods. Section 2.4 concerns

GPs and their use in our nonparametric methodology and inference for the length

scale parameter of the commonly used squared exponential covariance function. We

then develop an MCMC algorithm for our Bayesian nonparametric method in section

2.5. This method can have a high time and memory cost when implemented for an

outbreak in a large population, so we outline approximation methods in section 2.6

and discuss methods for improving the MCMC framework for outbreaks of diseases

in large populations. Section 2.8 gives a comprehensive overview of the methodology

applied to various simulated data sets.

This chapter sets out the Bayesian nonparametric framework we will be using

throughout the thesis and provides an exposition of the fundamental of this novel

method. It serves to bridge two areas: individual-level stochastic epidemic models

and GPs. It outlines a method for how to include monotonicity information in the

model and provides a framework to carry out efficient MCMC methods. A simulation

study confirms the accuracy of our method.

2.2 Transmission Model and Likelihood

This section concerns the standard stochastic epidemic model (see e.g. Andersson

and Britton, 2000). During an outbreak of a disease individuals are susceptible to

the disease, infected, or removed from the process. The data concerning the outbreak

is the times at which individuals entered the infected and removed compartments.

We first outline the model and then derive an appropriate likelihood function given

the data.
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2.2.1 Individual-Level Stochastic Epidemic Model

Consider an outbreak of a disease in a population with N individuals, where the

individuals are labeled arbitrarily from 1, . . . , N . At some time t ≥ 0, we assume each

individual is either susceptible to contracting the disease, infected with the disease,

or removed as they are no longer infectious. Consider an infected individual j and

a susceptible individual k. We assume individual j makes infectious contact with

individual k at the time points given by a Poisson process with rate βj,k. If individual

k is infected, they remain so for a time period drawn from a Gamma distribution

with shape parameter α and rate parameter γ. At the end of the infectious period,

the individual enters the removed class and cannot be reinfected. We assume the

Poisson processes between each pair of individuals are independent and the infectious

period distribution for each individual is independent of any other individual. The

outbreak is declared over when there are no infected individuals remaining and we

define n to be the final size or total number of individuals infected in the outbreak.

To construct the appropriate likelihood function given the times individuals were

infected and removed: we denote the time individual j was infected and removed

by ij and rj respectively, we label the infected individuals from 1, . . . , n by removal

time, such that r1 < r2 < . . . rn, we label the remaining individual in the population

n + 1, . . . , N , and define their infection and removal times to be ij = rj = ∞. We

assume a single individual becomes infected initially, who we label κ, and we define

iκ to be their infection time, and we define the sets i = {i1, . . . , iκ−1, iκ+1, . . . in} and

r = {r1, . . . , rn}.

When constructing the likelihood function, we split the outbreak into two processes

– the infection process and the removal process. The infection process contributes to

the likelihood function in two ways: the first is through individuals avoiding infection

and the second is individuals becoming infected. Consider a susceptible individual k,

the contribution of them avoiding infection from individual j is given by

ψj,k = exp{−βj,k((rj ∧ ik)− (ij ∧ ik))},
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where a ∧ b = min{a, b}. The difference of minimums is the length of time individual

j could have infected individual k. This notation condenses the following three cases

where individual j is infected:

(rj∧ik)−(ij∧ik) =


rj − ij if j is removed before k is infected, or k is not infected,

ik − ij if k is infected after j is infected and before j is removed,

0 otherwise.

A diagram for the first two cases is shown in figure 2.1.

Case 1:
j infected j removed k infected k removed

Case 2:
j infected k infected j/k removed j/k removed

Figure 2.1: Two of the cases for the infection and removal times of two individuals j

and k. The black and white circles correspond to infections and removals respectively.

The red segment is the time individual j can infect individual k.

The event individual j becomes infected contributes to the likelihood through the

overall hazard rate of the infection:

φj =
∑
k∈Yj

βk,j,

where Yj = {k : ik < ij < rk} is the set of individuals who were infectious immediately

before j became infected. We do not consider the contribution of the initially infected

individual, labelled κ, becoming infected as we do not model how the epidemic started,

instead conditioning on the label κ and the corresponding infection time.

For the removal process, we consider how long each infected individual remained

infectious with respect to the infectious period distribution. The removal process

part of the likelihood function is given by:

πrem =
n∏
j=1

h(rj − ij|λ, γ),
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where h(·|λ, γ) is the Gamma probability density function, with shape parameter λ

and rate parameter γ. Combining these three parts gives the full likelihood function,

which is given by:

π(i, r|β, λ, γ, κ, iκ) =

(
n∏
j=1

N∏
k=1

ψj,k

) n∏
j=1
j 6=κ

φj

 n∏
j=1

h(rj − ij|λ, γ) (2.1)

= exp

{
−

n∑
j=1

N∑
k=1

βj,k ((rj ∧ ik)− (ij ∧ ik))

}

×
n∏
j=1
j 6=κ

∑
k∈Yj

βk,j

 n∏
j=1

h(rj − ij|λ, γ).

2.3 Bayesian Inference for Parametric Models

Current methods for individual level stochastic epidemic models are parametric.

For parametric models, we propose one or more plausible parametric forms for the

infection rate function and estimate the parameters from the data. These parametric

forms are often based on previous models used in the literature or because of their

mathematical convenience. In this section, we argue that once parametric forms

have been proposed, there are a wide variety of model fitting and model assessment

methods to choose from, and although they may not be straightforward to implement

or suffer from their own limitations, this is not a flaw with the parametric approach.

The flaw comes when proposing the parametric forms, as we have no justification

from the data for these forms. . We no give a brief introduction of how to implement

a parametric approach. We explicitly state the functional form of the infection rate.

We outline possible infection rate functions, then provide a framework for Bayesian

inference for the parametric infection rate. We end by giving an example of this

method for a logistic model. These methods we describe are by no means the most

suitable or optimal in every case, but are given as an example of how parametric

methods can be applied.
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2.3.1 The Choice of Infection Rate

We begin by assuming the infection rate from individual j to individual k depends on

some characteristic of the individuals j and k. This characteristic is defined through

a covariate x which describes the relationship between individuals j and k. The

infection rate function is

βj,k = β(xj,k).

We can propose many parametric forms for the function β, using, for example, logistic

or exponential functions. However, these proposals are arbitrary and we may not be

able to justify our choices from the data. Choosing a parametric form for β is also a

strong assumption, as we are explicitly stating the infection rate between each pair

of individuals. In this section, we show that several methods of model fitting and

model assessment can be used, and although they may be challenging to implement

in practice, the main flaw with parametric models is proposing suitable functions.

Suppose we have chosen a parametric form for β and wish to infer the parameters

of this function, denoted by the vector β. We place a prior distribution, π(β), on

these parameters and a prior distribution on the infectious period distribution rate

parameter γ. We follow Jewell et al. (2009) and fix the rate parameter λ > 1 as this

gives a distribution the mean of which can be defined through γ. We assume the

infection times are observed as we are demonstrating methods for the infection rate

function. The posterior distribution is given by:

π (β, γ|i, r, λ, iκ, κ) ∝ π(i, r|β, λ, γ, κ, iκ)π(β)π(γ) (2.2)

π (β, γ|i, r, λ, iκ, κ) ∝ exp

{
−

n∑
j=1

N∑
k=1

β(xj,k) ((rj ∧ ik)− (ij ∧ ik))

}

×
n∏
j=1
j 6=κ

∑
k∈Yj

β(xk,j)

 n∏
j=1

h(rj − ij|λ, γ)π(β)π(γ).

For the majority of parametric forms for β, we will need to develop an MCMC

algorithm to infer the model parameters.
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2.3.2 Inference for a Logistic Infection Rate

We now demonstrate an inference method for a logistic infection rate. We adopt a

similar approach to Boender et al. (2007) and suppose the infection rate between

individuals j and k depends on the Euclidean distance between them, dj,k, and the

infection rate function is given by:

β(xj,k) =
β0

1 + (dj,k/β1)β2
,

where β = {β0, β1, β2} are parameters to be inferred. We place independent expo-

nential prior distributions on β0, β1 and β2, with respective rates χβ0 , χβ1 and χβ2 .

We place an exponential prior distribution on the rate parameter γ, which has rate

χγ. The posterior distribution is given by:

π(β, γ|λ, i, r, κ, iκ) ∝ exp

−β0

n∑
j=1

N∑
k=1

1

1 +
(
dj,k
β1

)β2 ((rj ∧ ik)− (ij ∧ ik))


× βn−1

0

n∏
j=1
j 6=κ

∑
k∈Yj

1

1 + (dj,k/β1)β2

 γnλ

Γ(λ)n

n∏
j=1

(rj − ij)λ−1

× exp

{
−γ

n∑
j=1

(rj − ij)

}
exp{−β0χβ0} exp{−χβ1}

× exp{−β2χβ2} exp{−γχγ}.

We use the following MCMC algorithm (algorithm 4) to infer the values of the

infection rate parameters β0 > 0, β1 > 0 and β2 > 0 and the infectious period

distribution rate parameter γ.

We now outline each of the sampling steps from the MCMC framework in more

detail.

2.3.2.1 Sampling γ

The full conditional posterior distribution for γ is given by:

π(γ|λ, i, r, χγ) ∝ γ exp {−γχγ}
n∏
j=1

h(rj − ij|λ, γ).
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Algorithm 4 Structure of the MCMC algorithm for the logistic model

1: Initialise the chain with estimates γ(0), β
(0)
0 , β

(0)
1 , and β

(0)
2 .

Repeat the following steps

2: Sample γ from the conditional distribution π(γ|λ, i, r, χγ) using a Gibbs step

3: Sample β0 from the conditional distribution π(β0|β1, β2, λ, γ, i, r, χβ0) using a

Gibbs step

4: Sample the values of β1 using a Metropolis Hastings Random Walk step

5: Sample the values of β2 using a Metropolis Hastings Random Walk step

As we have used a conjugate prior distribution, the posterior distribution has the

following closed form:

γ|λ, i, r,x, λ, χγ ∼ Γ

(
1 + nλ, χγ +

n∑
j=1

(rj − ij)

)
.

Although the full conditional distribution for γ is known and has a closed form,

we still include it in our MCMC approach as a demonstration for methods later on.

2.3.2.2 Sampling β0

The conditional posterior distribution for β0 has a closed form due to prior conjugacy,

and is given by:

π(β0|β1, β2, i, r, χβ0) ∝ β
(n+1)−1
0 exp {−β0 (χβ0 + Ψ)} , (2.3)

where Ψ =
n∑
j=1

N∑
k=1

1
1+(dj,k/β1)β2

((rj ∧ ik)− (ij ∧ ik)). Hence the posterior distribution is

given by the following Gamma distribution:

β0|β1, β2, i, r, χβ0 ∼ Γ (n+ 1, χβ0 + Ψ) .

2.3.2.3 Sampling β1 and β2

We update the values of β1 and β2 jointly in the MCMC algorithm. We use a

Metropolis Hastings Random Walk algorithm and given the current values β1 and β2,

we propose updating them to β′1 and β′2 by drawing these values from the proposal
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Parameter Value

β0 0.01

β1 0.3

β2 3

λ 2

γ 0.75

Table 2.1: Parameter values used to simulate the outbreak with the logistic infection

rate shown in section 2.3.2.

distribution: β′1
β′2

 ∼ N

β1

β2

 ,

 σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

 ,

where σ2
1 and σ2

2 are the proposal variances for β1 and β2 respectively and ρ is the

proposal correlation between β1 and β2. We choose values for the parameters in the

proposal distribution, ρ, σ1 and σ2, such that we achieve a good mixing of the Markov

chain, often basing them on trial runs of the MCMC algorithm. In more sophisticated

algorithms, we can use an adaptive algorithm. We accept these proposals with

probability

pacc =
π(i, r|β0, β

′
1, β

′
2, λ, γ, κ, iκ)

π(i, r|β0, β1, β2, λ, γ, κ, iκ)
∧ 1.

2.3.3 Results

We simulate an outbreak of a disease in a population of size 200 where the coordinates

are generated uniformly at random on a unit square, and the parameter values shown

in table 2.1.

One realisation of this outbreak generated 117 infected individuals, we recorded the

infection and removal times of the individuals. We then infer the model parameters

given these times. We propose the forms shown in table 2.2. The first model

assumes homogeneous mixing, whereas the remaining models depend on the pair-wise



Chapter 2: Modelling Infection Rate Functions with One Covariate 36

Model Form

1 β0

2 β0
1+d2j,k

3 β0
1+(dj,k/β1)2

4 β0
1+(dj,k/β1)β2

Table 2.2: Proposed parametric forms for the infection rate, β(dj,k) for the example

in section 2.3.2.

Euclidean distance. One advantage of choosing these parametric forms is that they

are nested, enabling us to use likelihood-ratio tests for model comparison.

For models one and two, we use the exact posterior distributions and compute the

median and 95% credible intervals. For models three and four, we run the MCMC

algorithm for each model for 100,000 iterations, and remove the first 1,000 iterations

as a burn-in period and thin the results by keeping every 20th sample. The posterior

median values and 95% credible intervals are shown in table 2.3. Figure 2.2 shows

the trace plots and histograms for the parameters in model four. We can see that

the Markov chain for β2 mixes very slowly and that the 95% credible interval is very

large. As the infection times are known, the trace plot for γ shows the chain for this

parameter mixes well. Figure 2.3 compares the median infection rate to the true

rate. We see large uncertainty around the estimate which is due to the population

size being small, N = 200. In situations where we do not have much data about

the outbreak, even with strong parametric assumptions and observing the times

individuals were infected, it can be challenging to make precise estimates about the

infection rate function.

We now use the values in table 2.3 to compute the value of the corresponding

likelihood functions and select the best model. There are a wide variety of model

assessment methods, each with their different advantages and disadvantages. We now

outline two methods: Bayes’ Information Criterion and the Likelihood ratio test. We

choose these by way of an example model assessment methods, and not because they
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(a) Trace plot for β0 (b) Histogram for β0

(c) Trace plot for β1 (d) Histogram for β1

(e) Trace plot for β2 (f) Histogram for β2

(g) Trace plot for γ (h) Histogram for γ

Figure 2.2: Trace plots and histograms for the model parameters in model 4 in the

logistic infection rate example. The red lines give the true values of each parameter.



Chapter 2: Modelling Infection Rate Functions with One Covariate 38

Model γ β0 β1 β2

1
0.772 0.00287 - -

(0.676, 0.874) (0.00230, 0.00337)

2
0.772 0.00363 - -

(0.676, 0.874) (0.003, 0.00432)

3
0.769 0.00356 0.171 -

(0.671, 0.872) (0.00790, 0.0311) (0.102, 0.309)

4
0.7686 0.00998 0.310 4.02

(0.00610, 0.0215) (0.00634, 0.0193) (0.141, 0.449) (1.877, 10.3)

Table 2.3: The results for the logistic infection rate function example. These are the

posterior median value and 95% credible intervals for the values in each proposed

function in table 2.2.

are optimal. We define Bayes’ Information Criterion (BIC) (Schwarz, 1978) by:

BIC = k log(N)− 2 log π(i, r|β, λ, γ, κ, iκ) (2.4)

where k is the number of parameters in the model and N is the number of individuals

in the population. The model with the smallest BIC is model 4, the true model.

However, as shown in table 2.4, there are only minor differences between the BIC

values for models two, three and four. Another model choice method is the likelihood-

ratio test. Given a model with parameter vector β1, which is nested in the model

with parameter vector β2, the likelihood-ratio test statistic between them is given by:

Λ = −2 (log π(i, r|β1, λ, γ, κ, iκ)− log π(i, r|β2, λ, γ, κ, iκ)) .

We can then test how significant this difference is as Λ ∼ χ2
k2−k1 , where k1 and k2

are the number of parameters in models one and two respectively. Models one and

two are nested in model three and model three is nested in model four. This method

shows that model four is significantly better at modelling the infection rate than

model three. The likelihood-ratio statistics and corresponding p values for models two

and three and three and four are given in table 2.4. Both BIC and the likelihood-ratio
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Figure 2.3: The true infection rate function compared to the infection rate functions

constructed using the posterior median parameter values for model 4.

test correctly choose model four as the most suitable function with which to model

the infection rate.

2.3.4 Difficulties and Constraints

Although proposing infection rate functions is straightforward, the choice is often

arbitrary and has little justification from the data. One way of mitigating this is to

propose a variety of functional forms and use a measure of goodness of fit to choose

the best fitting function. Choosing a particular function is a restrictive assumption to

make about the infection rate. We avoid this assumption by modelling the infection

rate with GPs. We now develop our nonparametric modelling approach.
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Model Log-likelihood BIC Likelihood-Ratio p value

1 -11821 23650 - -

2 -667.9 1341 - -

3 -654.8 1320 26.144 < 0.0001

4 -647.7 1312 14.06 0.0002

Table 2.4: The values of the log-likelihood and BIC for each of the models. The

likelihood-ratio value in row m is the likelihood-ratio test value of model m compared

to model m− 1.

2.4 Gaussian Processes for Stochastic Epidemic

Models

Instead of specifying the exact parametric form for the infection rate function β, we

model this using a Bayesian nonparametric method and place a GP prior distribution

on it. As the codomain of infection rate function and the GP prior distribution

differ, we put a GP prior on a dummy function f and then transform this into the

infection rate using a bijective function, g, with a positive codomain. The infection

rate function is therefore given by:

β = g(f),

and the explicit choice of g is arbitrary. There are many choices for g, including

the soft-plus function, g(x) = log(1 + exp(x)), for which g(x) ≈ x for large enough

values of x. For the computation in this thesis, we used g = exp as this requires a

single transformation to switch between f and β in the MCMC algorithm. A suitably

chosen function g will not impact the estimate for β as the GP will adapt to the

choice of g.

Given the set of all covariate values, x = {xj,k}, we put a GP prior on the infection

rate via the function g as follows:

β = g(f), f ∼ GP(0, Σ)
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The covariance matrix, Σ, contains the information about how the infection rate will

change over the input space. This information is partly gained from the data, but

also the choice of covariance function and hyperparameters. It is important to choose

a covariance function that models functions with suitable characteristics, such as

smoothness and periodicity. We also need to set the hyperparameters to suitable

values, which can either be done by hand or by learning them from the data. There

are many choices of covariance function, and the resulting estimates will depend on

this choice, so it is important to consider what type of function we are modelling.

We have outlined several covariance functions in section 1.5.2. If we are modelling

an outbreak of a disease where there is a spatial component, we can disregard the

periodic covariance function. The squared exponential, Matérn and rational quadratic

covariance functions are more suited to modelling spatial functions.

Making a choice about the covariance function is challenging given the little

data we observe. For example, there is little to no justification from the data

about the differentiability class of the infection rate function or how quickly moving

the function is. Having previously declared lack of justifiability as a problem in

the parametric framework, we also encounter it in the Bayesian nonparametric

framework. However, in the parametric framework, we make strict assumptions about

the infection rate function which need to be justified from a biological standpoint,

however in the Bayesian nonparametric framework, we need to make mathematical

assumptions about the function, for example, its differentiability class. As modellers

and statisticians, we are more able to make such assumptions. We can also choose to

include weak but plausible assumptions in other parts of the model, for example in

section 2.7.1, we include assumptions about monotonic infection rate functions in the

likelihood function.

In this thesis, we choose the squared exponential covariance function, as this

models a wide range of smooth functions. We also choose this function as we wish

to learn plausible values for the GP hyperparameters. In doing so, we are better

able to justify our choice of covariance function. The squared exponential function

has two hyperparameters, α and l, which control the signal variance and length
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scale respectively. In the next section, we outline how we can learn the length scale

parameter l. Both the rational quadratic and Matérn covariance functions include an

extra hyperparameter. In the rational quadratic function, we can specify the relative

weighting of short to long length scale variation and in the Matérn covariance function

we can specify how the differentiability class. Given we typically only observe removal

times and these will no be informative about possible values of these parameters, we

choose not to use these covariance functions. From this point of the thesis, when

we refer to any covariance function k, we are referring to the squared exponential

covariance function unless another is specified.The full prior distribution is given by:

β = g(f), f ∼ GP(0, Σ), Σjk = k(xj, xk;α, l)

One drawback with the GP prior distribution is that we require substantially more

data to infer the infection rate than with the parametric model. This is because we

are inferring the infection rate at each point in the input space. For example, suppose

we observe an outbreak of a disease among a population of N individuals where the

jth individual has coordinates (xj, yj) and xj, yj ∼ U[0, 1]. We suppose the infection

rate is distance-dependent and model the infection rate function nonparametrically

over the space of all the pair-wise distances. We will observe many medium-sized

pair-wise distances, but very few long range distances or very small distances. This

means the Bayesian nonparametric method may struggle to learn the infection rate

for the very small or very large distances and revert to the prior mean.

2.4.1 Learning the Gaussian Process Hyperparameter

One difficulty of the GP is the need to choose sensible values for the hyperparameters.

The variance parameter α controls how much the function can vary. For our inference

method, we can fix this parameter to a value so that the prior distribution generates

functions which have a plausible codomain. The length scale is more challenging to

set and small changes in the length scale can result in substantially different posterior

distribution. It may be possible to learn plausible values of the length scale from the

model’s application. For example when looking at spatial covariates for an outbreak
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of Avian Influenza, we expect the infection rate to differ when farms are several

kilometres, not metres, apart. Although this may give an approximate range of values,

we require more precision and we aim to learn the length scale from the data.

We follow Murray and Adams (2010) and Titsias et al. (2011) derive the following

density function of l, f and the data i and r:

π(f, i, r, l) = π(l)π(f |l)π(i, r|g(f), l)

= π(l)GP(f ; 0,Σ)π(i, r|g(f), λ, γ),

From the joint distribution, we derive the following posterior conditional distributions:

π(l|f, i, r) ∝ π(l)GP(f ; 0,Σ) (2.5)

π(f |l, i, r) ∝ GP(f ; 0,Σ)π(i, r|g(f), λ, γ). (2.6)

We give details of how we sample from these distributions in an MCMC framework

in section 2.5.

As written above, we choose to fix the signal variance parameter α. It is possible

to learn this parameter, and placing a conjugate inverse-Γ prior distribution on this

parameter results in an accessible, closed form posterior conditional distribution.

However, for the sake of the mixing of the Markov Chain, it is convenient to fix this

parameter. The value of this can be chosen through trial-runs and inspecting the

prior distribution. We need to ensure α is large enough such that the samples from

the prior distribution cover a large enough range and can mimic the true infection rate

function. However, choosing a value that is too large results in a very poorly mixing

Markov chain. We can compare this to the variance parameter in a one-dimensional

normal prior distribution. Choosing a small value for the variance parameter results

in a constrictive prior distribution, however choosing a value that is very large results

in a prior distribution that is very vague places too much weight outside of the

plausible range of values of the parameter. In both this one-dimensional example and

our GP prior distribution, we need to choose a variance parameter that is suitably

vague. In the following section we discuss underrelaxed MCMC, where we can in

effect control the step size of the proposal distribution, which can mitigate the effects

of a very vague prior distribution.



Chapter 2: Modelling Infection Rate Functions with One Covariate 44

2.5 MCMC Implementation

In an outbreak, we often only observe the times individuals were removed, and the

infection times are unobserved. As such, we treat the infection times as missing

data and infer these values. By Bayes’ theorem, the posterior distribution given the

removal times r is:

π(β, l, γ, i, κ, iκ|r, λ) ∝ π(i, r|β, λ, γ, κ, iκ)π(β|l)π(l)π(γ)π(κ)π(iκ|κ). (2.7)

To estimate the infection rate function β, the infectious period distribution rate

parameter γ, the label and time of the initially infected individual, κ and iκ, as

well as the infection times of the other infected individuals, we develop an MCMC

algorithm. The data we require is the removal times r = {r1, . . . rn}, centred such

that r1 = 0. We follow Kypraios (2007) and Jewell et al. (2009) and fix the infectious

period distribution scale parameter λ. We place the following prior distributions on

the model parameters:

f ∼ GP(0, Σ), Σjk = k(xj, xk;α, l), β = g(f)

l ∼ Exp(χl)

γ ∼ Exp(χγ)

κ ∼ U[1, . . . , n]

iκ ∼ −z, z ∼ Exp(χκ)

The prior distribution for f is a GP prior distribution evaluated at the set of all

pairs covariates, for example all pairwise distances. We place an exponential prior

distribution on the length scale parameter l. We use a vague exponential prior

distribution by setting the rate parameter to be small. We place a conjugate prior

distribution on the infectious period distribution rate parameter γ, again, using a

small parameter for the prior distribution so that it is vague. As we defined i to

be the set of infection times excluding the initial infective, we must place a prior

distribution on the initial infective and their infection time. For κ, the label of the

initial infective, we place a discrete uniform prior distribution over the labels of
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all infected individuals, and for the corresponding infection time iκ, we place an

exponential prior distribution on a dummy variable z and set iκ = −z. This restricts

iκ to be less than 0, so that the first infection occurs before the first removal. Using

the augmented likelihood function in equation (2.1), we derive the following posterior

density using Bayes’ theorem:

π(β, l, γ, i, κ, iκ|r, λ) ∝ π(i, r|β, λ, γ, κ, iκ)π(β|l)π(l)π(γ)π(κ)π(iκ|κ)

∝ exp

{
−

n∑
j=1

N∑
k=1

g(f(xj,k)) ((rj ∧ ik)− (ij ∧ ik))

}

×
n∏
j=1
j 6=κ

∑
k∈Yj

g(f(xk,j))

 n∏
j=1

h(rj − ij|λ, γ)GP(f ; 0,Σ)

×χl exp {−lχl}χγ exp {−γχγ}χκ exp {iκχκ} .

In the posterior distribution, we have replaced the infection rate function β with its

inferred form g(f). The full MCMC algorithm is shown in algorithm 5 and we now

Algorithm 5 Structure of the MCMC algorithm

1: Initialise the chain with estimates γ(0), f (0), l(0), and i(0)

Repeat the following steps

2: Sample γ from the conditional distribution π(γ|λ, i, r, χγ) using a Gibbs step

3: Sample f using an underrelaxed proposal mechanisms for a Metropolis Hastings

step

4: Sample l using a Metropolis Hastings step

5: Update an infection time

outline each of the steps in the algorithm.

2.5.1 Sampling the Infectious Period Rate Parameter

The full conditional posterior distribution for γ is given by:

π(γ|λ, i, r, χγ) ∝ χγ exp{−γχγ}
n∏
j=1

h(rj − ij|λ, γ).
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As we have used a conjugate prior distribution, the full conditional posterior distribu-

tion is given by:

γ|i, r, λ, χγ ∼ Γ

(
1 + nλ, χγ +

n∑
j=1

(rj − ij)

)
.

2.5.2 Sampling the Infection Rate

According to equation (2.7), the full conditional posterior distribution for β is

π(f |λ, γ, i, r,x) ∝ GP(f ; 0,Σ) exp
{
−

n∑
j=1

N∑
k=1

g(f(xj,k))
(
(rj ∧ ik)− (ij ∧ ik)

)}
×

n∏
j=1

(∑
k∈Yj

g(f(xk,j))
)
.

There are various methods to sample from this distribution. Hamiltonian Monte Carlo

is one of the more efficient methods, but is more analytically complex than other

methods (Heinonen et al., 2016). Splitting the function into blocks and conditionally

updating one block given the values of the function in the other blocks reduces

computational complexity, as this reduces the size of the covariance matrix, but

increases the computation time, as we need to propose function values for each block.

We instead sample from this distribution using the underrelaxed MCMC method.

This method was first proposed by Neal (1995), and applied to GPs by Adams et al.

(2009). We use it as it allows us to update the function as one block and as it is

intuitive. To propose a new function, β′, we use the form

β′ = g(f ′), f ′ =
√

1− δ2f + δν, (2.8)

where ν is drawn from the GP prior distribution, and δ ∈ (0, 1]. The parameter δ

is a tuning parameter, similar to the variance parameter in a Metropolis Hastings

Random Walk algorithm. For values of δ close to zero, proposals are more similar to

the current function values, and for values of δ close to one, samples are much closer

to samples from the prior distribution. Once we have proposed a new value of f , we

accept or reject the proposal by computing the acceptance probability:

pacc =
π(i, r|g(f ′), λ, γ)

π(i, r|g(f), λ, γ)

GP(f ′; 0,Σ)

GP(f ; 0,Σ)

q(f |f ′)
q(f ′|f)

∧ 1,
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where q(f ′|f) is the probability of proposing f ′ given the current state f . One of the

advantages of the underrelaxed proposal mechanism is that the proposal ratio can

be simplified. Rearranging equation (2.8), this probability is given by the following

multivariate normal density:

q(f ′|f) = GP
(

1

δ

(√
1− δ2f − f ′

)
; 0,Σ

)
∝ exp

{
− 1

δ2

(√
1− δ2f − f ′

)t
Σ−1

(√
1− δ2f − f ′

)}
∝ exp

{
− 1

δ2

[
(1− δ2)f tΣ−1f −

√
1− δ2(f tΣ−1f ′)−

√
1− δ2(f ′tΣ−1f) + f tΣ−1f ′

]}
.

The proposal ratio is therefore given by:

q(f |f ′)
q(f ′|f)

=
exp

{
− 1
δ2

[
(1− δ2)f ′tΣ−1f ′ −

√
1− δ2(f ′tΣ−1f)−

√
1− δ2(f tΣ−1f ′) + f ′tΣ−1f

]}
exp

{
− 1
δ2

[
(1− δ2)f tΣ−1f −

√
1− δ2(f tΣ−1f ′)−

√
1− δ2(f ′tΣ−1f) + f tΣ−1f ′

]}
=

exp
{
− 1
δ2

[
(1− δ2)f ′tΣ−1f ′ + f ′tΣ−1f

]}
exp

{
− 1
δ2

[(1− δ2)f tΣ−1f + f tΣ−1f ′]
}

=
exp {−f tΣ−1f}

exp
{
−f ′tΣ−1f ′

}
=
GP(f ; 0,Σ)

GP(f ′; 0,Σ)
.

Hence the proposal ratio is the inverse of the prior density ratio. This reduces the

acceptance probability to

pacc =
π(i, r|g(f ′), λ, γ)

π(i, r|g(f), λ, γ)

GP(f ; 0,Σ)GP(f ′; 0,Σ)

GP(f ′; 0,Σ)GP(f ; 0,Σ)
∧ 1

=
π(i, r|g(f ′), λ, γ)

π(i, r|g(f), λ, γ)
∧ 1.

This acceptance probability is convenient in an MCMC algorithm as we need to

compute neither the prior distribution ratio nor the proposal distribution ratio.

2.5.3 Sampling the Length Scale

The conditional posterior distribution for l is given in equation (2.5). We use a

random walk Metropolis algorithm to target this distribution, proposing new values

of l by l′ = l + ε, where ε ∼ N(0, σ2). We propose to update the covariance matrix
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by Σ′jk = k(xj, xk; α, l
′). The acceptance probability is given by:

pacc =
GP(f ; 0,Σ′)

GP(f ; 0,Σ)
∧ 1.

We choose to fix σ based on trial runs, but it is possible to update this and use and

adaptive MCMC algorithm.

2.5.4 Sampling Infection Times

As the infection times are unobserved, we treat them as parameters and infer these

in the MCMC algorithm. We need to infer these as they are required to evaluate the

likelihood function, and they also contain useful information in their own right when

examining how an outbreak spread.

We propose a new label for κ uniformly at random and then propose a value of iκ

by i′κ = rκ − t, where t ∼ Γ(λ, γ). We write i + ik to denote the set of infection times

with ik included and i− ik to be the set with ik removed. We accept this proposal

with probability

pacc =
exp{−χκi′κ}
exp{−χκiκ}

h(rκ − iκ|λ, γ)

h(rκ − i′κ|λ, γ)

π(i− iκ + i′κ, r|β, λ, γ)

π(i, r|β, λ, γ)
∧ 1.

We infer the remaining infection times using a Metropolis-Hastings algorithm

developed by O’Neill and Roberts (1999). We use the infectious period distribution

to infer these times, as for any infected individual j

rj − ij = tj, tj ∼ Γ(λ, γ). (2.9)

We uniformly at randomly choose an infected individual j and propose a new

infection time by i′j = rj − tj, where tj ∼ Γ(λ, γ). We accept the proposal with

probability

pacc =
h(rj − ij|λ, γ)

h(rj − i′j|λ, γ)

π(i− ij + i′j, r|β, λ, γ)

π(i, r|β, λ, γ)
∧ 1.

2.6 Inference for Large Populations

Large populations pose two difficulties for our inference method. The first is the GP

prior distributions and its covariance matrix. Large populations can require large
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covariance matrices that are slow to decompose and invert, or require large memory

allocations. The second difficulty is the speed of the MCMC algorithm, in particular

updating the infection times. In this section we address both problems.

2.6.1 Methods for approximating GPs

Computational problems due to the dimension of the covariance matrix are well

acknowledged in the GP literature, see for example Csato and Opper (2002); Hensman

et al. (2013); Quinonero-Candela and Rasmussen (2005). Given N data points, a

corresponding N × N covariance matrix is generated, which can be inverted and

decomposed in time O(N3) and requires memory O(N2). For a spatially dependent

infection rate, the dimension of the covariance matrix quickly becomes large; for

example in a population with 500 individuals; there are almost 150,000 pair-wise

distances. Although there are efficient ways to store, decompose and invert large

matrices, we can approach this problem from a statistical standpoint. We now outline

several methods for fitting a GP to a large data set.

Bui et al. (2017) divide the approximation methods into two sets: those using

exact inference for approximate models, and those using approximate inference for

exact models. The first set are methods that create an approximate model, similar

to the original model and then perform inference on the approximate model, with

the assumption that the inference for the approximate model gives similar results to

the inference of the full model. Methods in this set include the Fully Independent

Training Conditional approximation (Quinonero-Candela and Rasmussen, 2005) and

the Projected Process approximation (Csato and Opper, 2002). The second set of

methods take the opposite approach and use the exact model, but with relaxed

assumptions on the inference algorithms. Variational Free Energy (Titsias, 2009) is

one of the most commonly used methods of this kind.

2.6.1.1 The Mean Projection Approximation

The method we will use is a projection method used to construct many approximations.

It creates a similar model on a small set of pseudo data and performs exact inference
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for this new model. The Mean Projection Approximation (MPA) forms the basis

of many other projection approximations such as the Fully Independent Training

Conditional (Csato and Opper, 2002) approximation, the Partially Independent

Training Conditional approximation (Quinonero-Candela and Rasmussen, 2005),

the Subset of Regressors approximation (Rasmussen and Williams, 2006) and the

SOLVE-GP method (Shi et al., 2019). These methods are primarily designed for

regression and prediction problems and their differences are due to the formulation of

the covariance matrix and posterior predictive distribution. However, they all contain

the same mean projection method, which we now outline.

The MPA places a GP prior distribution on a function over a pseudo data set,

then projects it onto the full data set, as such we can use the likelihood function

in our inference algorithms. Suppose we have a data set x of size n, where n is

prohibitively large. To perform inference, we create a pseudo data set of size m < n,

and denote it by x̄. The chosen input points must cover a sufficient proportion of the

domain and any areas we expect the inferred function to have interesting properties.

The pseudo data set should be similar to the original data set, but smaller in size.

One method is to construct a set of uniformly placed points over the original input

space. If we expect the function to have particular qualities, such as turning points,

then we need to ensure the pseudo set has sufficient input points near the locations of

these points. As the purpose of this is to infer the function, deciding if these features

exist and their locations can be difficult. We further examine the impact of the size

of the pseudo set on computational time and error in section 2.8.2.

We denote the original function of interest by f and the function over the pseudo

data set by f̄ . We place a joint GP prior distribution on f and f̄ such thatf
f̄

 ∼ GP
0

0

 ,

Σx,x Σx,x̄

Σx̄,x Σx̄,x̄

 , (2.10)

where Σx,x is the covariance matrix for the original data set, Σx̄,x̄ is the covariance

matrix for the pseudo data set, and Σx,x̄ the covariance between the original and

pseudo data set. The MPA method exploits the conditional distribution of the
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multivariate normal distribution, as the distribution of the function f given f̄ is:

f |f̄ ∼ GP
(
Σx,x̄Σ

−1
x̄,x̄f̄ , Σx,x − Σx,x̄Σ

−1
x̄,x̄Σx̄,x

)
.

This projects f̄ onto the full data set x, but only requires time O(m3) to compute

Σ−1
x̄,x̄. For dense input spaces, the Eigenvalues of the covariance matrix may decay to

0 quickly making this matrix difficult to decompose or invert computationally. Due

to this, and also as f is not a real observation, we compute it by:

f = Σx,x̄Σ
−1
x̄,x̄f̄ . (2.11)

The MPA allows us to approximate f and greatly reduce the dimension of the

covariance matrix, yet still evaluate the likelihood function and perform exact inference.

We choose the MPA method as it requires fewer operations than other similar methods,

which will be computationally advantageous in the MCMC algorithm. The second

advantage to the MPA method is that it requires only minimal adjustments to the

MCMC algorithm, instead of targeting f , we now target f̄ . This means in proposal

distributions and acceptance probabilities we replace f with f̄ and Σ by Σm,m. In the

likelihood function we replace g(f) with g(Σx,x̄Σ
−1
x̄,x̄f̄).

2.6.2 The Conditional Model

In some modelling circumstances, we can assume a priori that the function we are

modelling tends towards a horizontal asymptote as x tends to some value. We can

then choose a critical point, such that for any input point larger than the critical

point, the function can be modelled by the asymptote. For example, we may be

interested in modelling an infection rate which depends on the distance between two

individuals. It may be reasonable to assume that there is some critical distance,

d∗, such that if any two individuals are further away from each other than d∗ the

infection rate between them can be assumed to be effectively 0 and one farm will

almost never infect another farm more than d∗km away.

Suppose we are modelling a function f over an input region χ, and there exists

some c ∈ R such that as x −→ ∞, f(x) −→ c. We approximate this by assuming
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there exists some x∗ ∈ χ such that for all x > x∗, f(x) = c. We partition χ into two

sets χ1, which contains the elements less than or equal to x∗ and χ2 for the elements

strictly greater than x∗. We then construct two functions f1 and f2, which correspond

to the functions over χ1 and χ2 respectively. We place a joint GP prior distribution

on f1 and f2 such that:f1

f2

 ∼ GP
0

0

 ,

Σ1,1 Σ1,2

Σ2,1 Σ2,2

 ,

where Σi,j is the covariance matrix specifying the covariance between sets xi and xj.

The conditional distribution of f1 given f2 = c is

f1|(f2 = c) ∼ GP(µ̃, Σ̃),

where µ̃ = Σ1,2Σ
−1
2,2c and Σ̃ = Σ1,1 − Σ1,2Σ

−1
2,2Σ2,1. We can use the underrelaxed

proposal mechanism to target f1 in the MCMC algorithm, and proposing new values

by:

f ′1 =
√

1− δ2f1 + δν, ν ∼ GP(µ̃, Σ̃).

Proposed values of β are then given by:

β′ = g(f ′), f ′ = {f ′1, c}.

This will increase the speed of the MCMC algorithm, as when computing the likelihood

function, many elements will remain the same when updating the function. This

method can improve the mixing of the Markov chain as fewer elements of the GP

need to be updated. The main disadvantage to this method is that we need to a

priori identify both the limiting value, c, and the point where this value begins

x∗. For example, when modelling an infection rate function which tends to 0 as x

tends to infinity, we need to identify a value x∗ for which the infection rate is close

enough to 0 to be approximated by 0. On a computational level, we need g−1(0)

to be a well-defined, real value. In the case where the log function is used as the

transformation function, we have found that setting c = −20 works well.

The most suitable application of this method is when the domain of f is large,

or the value of x∗ is a small value in χ. This is because we will be modelling a
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large number of points which will be constant. This can also create difficulties when

inferring the length scale parameter, as f may fluctuate greatly over χ1, but not at

all over χ2.

2.6.3 Methods for the MCMC Algorithm

To improve the speed of the MCMC algorithm, we are able to make use of parallel

threading and rewrite several equations to make them more suitable for computational

evaluation.

The main difficulty is updating the infection times, as they need to be updated

sequentially and they are slow to converge. We can reduce the time required to run

the algorithm by updating 30-50% of the infection times for each iteration of the

MCMC algorithm, choosing infection times with a random scan and accepting and

rejecting the proposals individually.

Another difficulty is repeatedly computing the likelihood function (2.1), in partic-

ular the double sum

Ψ =
n∑
j=1

N∑
k=1

exp{−β(xj,k)((rj ∧ ik)− (ij ∧ ik))}.

To reduce the requirements for this computation, we define the following matrices:

B =


0 β(x1,2) . . . β(x1,N)

β(x2,1) 0 . . . β(x2,N)
...

...
. . .

...

β(xN,1) β(xN,2) . . . 0

 ,

∆ =


r1 − i1 (r1 ∧ i2)− (i1 ∧ i2) . . . (r1 ∧ iN)− (i1 ∧ iN)

(r2 ∧ i1)− (i2 ∧ i1) r2 − i2 . . . (r2 ∧ iN)− (i2 ∧ iN)
...

...
. . .

...

(rN ∧ i1)− (iN ∧ i1) (rN ∧ i1)− (iN ∧ i1) . . . rN − iN

 .

The double sum is now given by

Ψ =
N∑
j=1

N∑
k=1

(B ◦∆)j,k ,
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where ◦ is the component-wise multiplication operation. On the surface, we have

increased the double sum from O(nN) to O(N2), however this double sum is no

longer ordered by infected then susceptible individuals, and the elements of ∆

corresponding to susceptible-susceptible interaction will be 0. The main advantage

to this formulation is that when updating that infection time ik to i′k, we now only

need to update the kth row and column of ∆, instead of computing the whole matrix

from scratch. Furthermore, given the current infection matrix ∆ and the proposed

matrix ∆′, the proposed value of the double sum is

Ψ′ = Ψ +
N∑
j=1

(B ◦ (∆′ −∆))j,k +
N∑
j=1

(B ◦ (∆′ −∆))k,j . (2.12)

We can also make performance improvements by choosing a suitable programming

language. We have written our algorithm in C using the GCC compiler, and make

use of OpenMP to parallelise the double sum and product elements of the likelihood

function. This works by transferring different iterations of the sum and product

to different compute cores. For example, when computing equation (2.12) with 16

available cores, we can choose to compute the values of the two sums for j = 1, . . . , N
16

on core one, for j = N
16

+ 1, . . . , 2N
16

on core two and so on. Once all iterations of the

sum have been computed, we then add all the values from the 16 cores to compute

the values of the two sums. We have found that dynamic allocation of the likelihood

function elements, that is allowing the OpenMP processor to allocate which elements

go to which cores, reduces the time for the MCMC algorithm by up to 30%, with

larger time savings for larger population sizes.

2.7 Monotonicity and Gaussian Processes

The main advantage of Bayesian nonparametric methods is the lack of assumptions

we need to make. However, if we can make general, accurate assumptions about the

model, this will improve the accuracy of the results. One assumption we can often

make about infection rate functions is that they are monotone functions. Consider an

outbreak of a disease among livestock on farms. We may assume the more livestock
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present on a farm, the more susceptible the farm is to contracting the disease, and

wish to model the infection rate function as monotonically increasing. We now discuss

a method for enforcing monotonicity in GPs in a regression setting proposed in

Riihimäki and Vehtari (2010), and then apply this to our epidemic model.

Enforcing monotonicity is challenging, especially as we cannot restrict the prior

distribution in such a way that we only draw samples which are monotonic. Instead

of specifying that the function must be monotonic, In Riihimäki and Vehtari (2010),

the authors developed a method where they specify the sign of the gradient at a

limited number of points. They define the joint prior distribution of the function

f and its derivative f ′, and then only consider functions whose derivative meets a

pre-determined monotonicity constraint.

To implement this method, we first need to derive the GP gradient. Suppose the

function of interest is given by f over an input set x = {x1, . . . , xn}. We begin by

placing a GP prior distribution on f :

f ∼ GP(0, Σ), Σij = k(xi, xj).

The covariance between fi and fj is given by the covariance function evaluated at xi

and xj:

cov(fi, fj) = k(xi, xj)

= α2 exp

{
−(xi − xj)2

l2

}
. (2.13)

As differentiation is a linear operator, the covariance between fi and f ′j, the value of

the GP evaluated at xi and the value of the derivative of the GP at xj is

cov(fi, f
′
j) =

∂k(xi, xj)

∂xj

= −α2 2

l2
(xi − xj) exp

{
−(xi − xj)2

l2

}
= − 2

l2
(xi − xj)k(xi, xj). (2.14)
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And the covariance between the values of the derivative, f ′i and f ′j, is

cov(f ′i , f
′
j) =

∂2k(xi, xj)

∂xi∂xj

=
2α2

l2

[
1− 2

l2
(xi − xj)2

]
exp

{
−(xi − xj)2

l2

}
=

2

l2

[
1− 2

l2
(xi − xj)2

]
k(xi, xj). (2.15)

As we are using a zero mean prior distribution, we have

E[fi] = 0 =⇒ E[f ′i ] = 0.

Hence the joint distribution of the values of the function f and the values of the

derivatives f ′ is f
f ′

 ∼ GP
0

0

 ,

 Σ ∂
∂x

Σ

∂
∂x

Σ ∂2

∂x∂x
Σ

 , (2.16)

where Σ is the matrix given by the non-differentiated function in equation (2.13),
∂

∂x
Σ

specifies the covariance between the function and its first derivative and is computed

using equation (2.14), and
∂2

∂x∂x
Σ is the covariance matrix for the differentiated

function and is constructed in equation (2.15).

Given the joint prior distribution, we now wish to enforce a monotonicity. The

method proposed in Riihimäki and Vehtari (2010) requires us to specify the sign of f ′

at a limited number of points. We follow Riihimäki and Vehtari (2010) and introduce

a monotonicity parameter m = ±1, where the value of m depends on whether we

assume the gradient of f to be positive (+1) or negative (-1). In Riihimäki and

Vehtari (2010), the authors suggest for one dimensional problems that derivative

points are chosen uniformly on a grid. As we use a squared exponential covariance

function, we must take the length scale into account when placing these points, as

we must ensure the length scale and spacing of the derivative points are agreeable.

To enforce monotonicity, we include an extra term in the likelihood function to

only consider contributions from functions where the sign of the gradient at the

chosen points satisfy the monotonicity condition. We follow Riihimäki and Vehtari



Chapter 2: Modelling Infection Rate Functions with One Covariate 57

(2010) and include a probit term in the likelihood function, which is given by:

π(m|f ′i) = Φ(mf ′i
1

τ
), Φ(z) =

z∫
−∞

N(u; 0, 1)du,

where τ is a tolerance parameter. In general, this assigns 0 probability to derivative

values of the opposite sign to m and a probability of 1 when the signs are the same.

The tolerance parameter τ allows for small errors, that is gradients which are of the

opposite sign to m but close to 0. The choice of τ is problem specific and can either

be fixed or considered a hyperparameter, the value of which can be learned in the

MCMC algorithm. Another, stricter option, would be to use an indicator function,

which rejects any function which does not meet the constraint. The value of τ allows

us to choose how strict the monotonicity constraint is, as when τ −→ 0, the probit

term tends to a step function and any samples which have a derivative with the wrong

sign are rejected. In many cases, this is too strict and although we are enforcing the

sign of the derivative a small error in the sign can be tolerated. Both the probit and

indicator functions are shown in figure 2.4.

In practice, there is little difference seen in results when using different values of

τ . We find that in areas where there is a lot of data, this condition and the value

of τ makes no difference to the results as we can learn the function directly from

the data. In areas where there is little data, we do see there is some change in the

results, however we only see considerable change in results comparing values of τ

which are an order of magnitude different. The effect seems to control how quickly

the posterior reverts to the prior distribution in large areas of little data.

2.7.1 Monotonic GP Regression

We now demonstrate the monotonic GP method in a regression problem, where

yi = f(xi) + εi, εi ∼ N(0, σ2).

Given some observations y at locations x, and the assuming the direction of the

monotonicity, the posterior distribution for the function f and its derivative f ′ is
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Figure 2.4: Two possible options for the monotonicity term in the likelihood function

in section 2.7.1. The dashed line is the probit function with τ = 10−2 and the solid

line is an indicator function.

given by:

π(f, f ′|y,m, σ2) ∝ π(f, f ′)π(y|f, σ2)π(m|f ′),

To generate samples from the posterior distribution we use an MCMC algorithm,

using the underrelaxed proposal mechanism. Given the current values of f and f ′,

we propose values f (prop) and f ′(prop) by:f (prop)

f ′(prop)

 =
√

1− δ2

f
f ′

+ δ

ν
ν ′

 ,

ν
ν ′

 ∼ GP
0

0

 ,

 Σ ∂
∂x

Σ

∂
∂x

Σ ∂2

∂x∂x
Σ

 .

Using the underrelaxed proposal mechanism, the acceptance probability is given by:

pacc =
π(f (prop)|y)π(m|f ′(prop))

π(f |y)π(m|f ′)
.

By way of an example, we generate ten input points x = {x1, . . . , x10} uniformly at

random on the interval [0, 10], and then generating 10 observations points from the

model:

yi = exp{−xi} − Φ(xi − 5) + εi, ε ∼ N(0, 0.52).

We wish to infer the value of the function at the input points x∗ = {0, 0.01, 0.02, . . . , 10}.

We enforce a negative gradient at the points xm = {0, 0.5, . . . , 10}. We place the



Chapter 2: Modelling Infection Rate Functions with One Covariate 59

following GP prior distribution on f and f ′:f
f ′

 ∼ GP
0

0

 ,

 Σ ∂
∂x

Σ

∂
∂x

Σ ∂2

∂x∂x
Σ

 .

and set α2 = 5 and l2 = 8. The likelihood function for the regression part is given by:

π(y|f,x) =
1√

(2πσ2)10
exp

{
−

10∑
i=1

(yi − fi)2

2σ2

}
,

and the probit likelihood function is given by:

π(−1|f ′) =
20∏
i=1

Φ

(
−1

10−4
f ′i

)
.

From this, the likelihood contributions to functions which has positive gradient at the

monotonicity points is 0. We choose the value of τ based on Riihimäki and Vehtari

(2010). The full posterior is given by:

π(f, f ′|x,xm,y, α, l, σ2) ∝ GP

f
f ′

 ; 0,

 Σ ∂
∂x

Σ

∂
∂x

Σ ∂2

∂x∂x
Σ


×N(y; f, σ2I)

20∏
i=1

Φ

(
−1

10−4
f ′i

)
.

We then compare the standard GP regression model to the monotone GP regression

model, the results are shown in figure 2.5. We can see the uncertainty around the

estimate for the standard GP prior distribution is much larger than for the monotone

GP, especially in the interval [0, 1.5]. This is because there are no observations in

this interval, so we are almost entirely dependent on the prior distribution. With the

monotonic GP prior distribution, we assume f(0) ≥ f(0.5) ≥ . . . ≥ f(2), which forces

the function to be decreasing, whereas in the standard method, this assumption is not

made and the samples revert to the prior distribution. As we are including a strong

assumption in the prior distribution, the monotone assumption reduces uncertainty

in areas where data is not observed.
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Figure 2.5: The standard GP regression model compared to the monotone GP

regression model developed in section 2.7.1. The tick marks are the points at which

monotonicity is enforced.

2.7.2 Monotone GPs for Epidemic Models

We now apply this method to our epidemic model and assume the infection rate

function is an increasing function of the covariate, that is:

β′ ≥ 0.

The case when the function is monotonically decreasing is analogous with m = −1.

We model the infection rate through the dummy function f , which is transformed

into the infection rate through the function g. By the chain rule:

β = g(f) =⇒ β′ = g′(f)f ′.

As we choose the form of g, the sign of g′ is known, and we can infer the required

sign of f ′ for β′ to be positive.

We then construct a set of q points, xm, at which we will enforce monotonicity by

either forming a grid through x or choosing points from x uniformly at random. The
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value of the infection rate at the points x, is given by β, and the prior distribution

for β is

β = g(f),

f
f ′

 ∼ GP
0

0

 ,

 Σ ∂
∂x

Σ

∂
∂x

Σ ∂2

∂x∂x
Σ

 .

The full likelihood function, including the contributions from the probit model, is

π(i, r|f, f ′, λ, γ, κ, iκ) = exp

{
−

n∑
j=1

N∑
k=1

g(f(xj,k)) ((rj ∧ ik)− (ij ∧ ik))

}

×
n∏
j=1
j 6=κ

∑
k∈Yj

g(f(xk,j))

 n∏
j=1

h(rj − ij|λ, γ)

q∏
j=1

Φ

(
f ′j

1

10−4

)
.

We then continue by deriving the posterior distribution in the same fashion as in

section 2.5, and generating samples from this distribution using the MCMC algorithm

outlined in algorithm 5. This method can be combined with the MPA method given

in section 2.6, which reduces the dimension of Σ and therefore the prior distribution

covariance matrix. We do not need to project f ′ onto the full data set as we are only

concerned with the values of f .

2.8 Simulation Studies

In this section, we give the results of two simulation studies to show the effectiveness

of the nonparametric method. In the first study, we demonstrate the nonparametric

method on a small data set with 100 individuals, and compare the results to our

approximation method. We then run a simulation study for outbreaks in a large

population of 1000 individuals using the MPA method to infer the infection rate.

To simulate outbreaks of a disease, we use an infection rate that is distance

dependent. The exact form of the rate is

β(di,j) = β0 exp{−β1di,j}, (2.17)

where di,j is the Euclidean distance between individuals i and j. This gives an

infection rate close to β0 when the distance is small, but tends to 0 as the distance
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Figure 2.6: The positions used to simulate the outbreaks in the small simulation

study with 100 individuals in section 2.8.1.

between the infected and susceptible individuals grows. This is a characteristic that

we would expect to see in outbreaks where the distance is a key factor.

We choose to run a simulation study where we infer the model parameters for

250 independent outbreaks, using a different random seed for each outbreak. This is

for two reasons. The first is so we cannot cherry pick results for a ‘nice’ outbreak.

We present the results of all 250 outbreaks with the aim that the inference method

performs well for all 250 outbreaks. The second reason is that it is difficult to study

the mixing of the infection rate function. As we are evaluating the function at a large

number of points we would need to investigate trace plots for all of the points of the

function. This would be unfeasible, and although we can instead look at collections

of points or the sum of the points of the function, these often disguise poor mixing in

parts of the function. Instead we use a different initial condition for the function in

the MCMC algorithm for each outbreak. If the posterior estimates for all outbreaks

are similar then given that the starting points are different, we can deduce the Markov

chains are mixing well.
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2.8.1 Inference for a Small Population

We generate the positions of 100 individuals by

xi ∼ N(0.5, 0.12), yi ∼ N(0.5, 0.12), i = 1, . . . 50,

xi ∼ N(1.5, 0.252), yi ∼ N(1.5, 0.32), i = 51, . . . 100.

This creates two clusters with 50 individuals each, the positions of which are shown

in figure 2.6. We choose a population with two clusters as we are want to analyse how

the model is affected by intra- and intercluster infections. We are likely to see many

infections between pairs of individuals in the same cluster, but fewer between pairs of

individuals in different clusters because they are further apart. This will make it more

difficult for the model to learn the infection rate function for larger distances. We

simulate 250 outbreaks of a disease with infection rate shown in equation (2.17) in this

population. We ensure that there are more than 20 infecteds in each outbreak, this is

to ensure there is sufficient data from which the model can learn. The parameters we

use in the model are shown in table 2.5. The value of N was chosen to be 100 so that

we can compare the GP and MPA methods. This is because the data set generates a

covariance matrix small enough to use the GP method, and large enough to the MPA

method. The infection rate parameters give a function that is plausible to observe in

a real outbreak. We chose the infectious period shape parameter to be two so that

the distribution is not exponential. The value of the GP variance, α, was chosen so

that the samples prior distribution vary over a large range and produce a wide variety

of possible values for β0. This generates 250 sets of infection and removal times.

For each set, we implement the MCMC algorithm to infer the infection rate,

infection times and the rate parameter of the Gamma infectious period distribution.

As sampling the length scale involves repeatedly inverting and decomposing the

covariance matrix, we only use the method with the MPA and do not fit a GP using

the full data set, and as such, fix the length scale for this study. We run the MCMC

algorithm for 100,000 iterations and remove the first 5,000 as a burn-in period. We

thin the results by keeping every 5th sample.
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Parameter Value

N 100

β0 0.2

β1 2

λ 2

γ 3

α 10

l 8

Table 2.5: Parameter values used to simulate outbreaks in the small simulation study

2.8.1.1 Observed Infection Times

We first estimate the infection rate with known infection times because this should

yield better estimates for the infection rate function. Figure 2.7(a) shows that we can

estimate the infection rate function with minimal error. We estimate the shape and

scale of the infection rate well using our new nonparametric method. By using this

nonparametric method, we remove any identifiability issues. As the exact infection

times are known, estimating γ is not challenging, and we estimate this parameter

well as shown in figure 2.7(b).

2.8.1.2 Unobserved Infection Times

We now repeat the study except we assume the times individuals were infected were

unobserved and infer these using data augmentation within the MCMC algorithm.

Figure 2.8(a) shows the posterior median estimates for the true infection rate functions

for each data set as well as the median of the posterior medians. This shows we can

recover the true infection using our nonparametric method. As figure 2.8(c) shows,

the infection times are estimated well, but there is a tendency to underestimate the

infection times. We monitor the success of the infection time estimates by comparing

the sum of the infection time estimates to the sum of the true infection times. This



Chapter 2: Modelling Infection Rate Functions with One Covariate 65

(a) Estimates for the infection rate function

(b) Estimates for the infectious period distribution rate parameter

Figure 2.7: Results of the simulation study in section 2.8.1 for a small population of

size 100 with known infection times. Figure (a) shows estimates for the infection rate,

with each grey line representing the posterior median for one of the 250 data set. The

black line is the median of all 250 data sets and the red line is the true infection rate.

Figure (b) is a histogram for the median estimate of γ for each of the 250 data sets.
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is given by:

ĩ =

n∑
j=1

îj −
n∑
j=1

ij

n∑
j=1

ij

,

where îj is the posterior median infection time for individual j. We use this statistic

as it allows us to compare all the data sets, despite them having different numbers

of infected individuals. We incur a small relative error when estimating the median

value of γ, shown in figure 2.8(b), which leads to an overestimate in the infection

times. For some data sets, the estimated infection rate is an increasing function.

These very poor estimates correspond to data sets where the final size of the outbreak

is small and the infected individuals lie almost exclusively in one cluster. When the

infected individuals all lie in the bottom left cluster in figure (2.6), we only observe

infections over small distances, and the GP cannot learn about the infection rate in

long range transmissions.

2.8.1.3 Comparison of the full and MPA methods

We now repeat the simulation study without infection times with the MPA method

to compare to the full GP method. We use an input set of size 32 consisting of the

smallest pair-wise distance, the largest pair-wise distance, and 30 other randomly

chosen pair-wise distances. Figure 2.9(a) shows using the MPA does not affect the

results and estimates the infection rate well. Figure 2.9(b) confirms this and shows

that the MPA method infers the infection rate well, and introduces only a small

amount of error. The mean absolute error for the full method is 0.0035, compared to

0.0055 for the MPA method. Figures 2.9(c-d) show that we continue to estimate the

infection times and infectious period distribution rate parameter well.
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(a) Estimates for the infection rate function

(b) Estimates for the infectious period distribu-

tion rate parameter

(c) The relative error for the sum of the infec-

tion times

Figure 2.8: Results of the simulation study for a small population with unobserved

infection times. Figure (a) shows the estimates for the infection rate function for

each data set. Figure (b) shows the distribution of the infectious period distribution

rate parameter estimates, and (c) shows the relative error in the sum of the infection

times for the 250 data sets.
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(a) Estimates for the infection rate function (b) The GP study median compared to the MPA study median

(c) Estimates for the infectious period distribution rate parameter (d) The relative error for the sum of the infection times

Figure 2.9: Results of the simulation study for a small population of size 100 in section 2.8.1 with unknown infection times and

the MPA method.
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Scenario Parameter Median 95% CI

Observed Infection Times
β0 0.186 (0.117, 0.271)

γ 3.00 (2.45, 3.713)

Unobserved Infection Times

β0 0.203 (0.080, 0.365)

γ 2.921 (1.903, 4.608)

ĩ 0.028 (-0.311, 0.522)

MPA with unobserved Infection Times

β0 0.198 (0.078, 0.355)

γ 2.925 (1.897, 4.612)

ĩ 0.029 (-0.342, 0.510)

Table 2.6: The median and 95% credible interval from the 250 medians for the three

different scenarios in the small simulation study.

2.8.2 The MPA and the Pseudo Set

We now examine the effectiveness of the MPA when changing the number of input

points in the pseudo set. We choose the first 50 data sets from the previous study and

run the MPA inference algorithm with 8, 16, 32, 64, 128, 256, 512, 1024, and 2048

input points. The pseudo set consists of the smallest and largest pair-wise distances

and the remainder are uniformly chosen. The use of the smallest and largest points in

the set of pair-wise distances ensures the MPA method does not need to interpolate

to cover the full data set. We choose the remaining points uniformly, as this ensures

equal coverage across the entire domain. As we outline in section 2.6, we need to

ensure there are sufficient input points at locations where we see changes in behaviour

in the function, and in this study we assume the function behaves similarly across

the domain, i.e. it has no turning points or singularities. We compare the results for

each pseudo set to the results of the full algorithm. The full algorithm is equivalent

to the MPA method with the whole data set as the input set.

Figure 2.10 shows the computational time required to run 30,000 iterations of

the MPA inference algorithm, and the root mean square error (RMSE) of the study
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median against the true rate. We define RMSE to be

RMSE =

√√√√√ N∑
j=1

j∑
k=1

(
β̂(xj,k)− β(xj,k)

)2

N(N − 1)/2
,

where β̂ is the posterior median estimate for the true function β. The data point with

the largest number of pseudo points corresponds to the full GP method. We can see

from figure 2.10(a) that as the number of pseudo points increases, the computational

time required increases exponentially, this is driven by the need to repeatedly project

the pseudo function onto the complete data set. We can see from figure 2.10(b) the

logistic type decrease in the RMSE incurred as the number of pseudo points increases.

In order to obtain results with a similar order of error to that when using the full

data set, we need to implement the MPA with a large number of pseudo points.

However, including a large number of input points results in a similar computational

time to that of the method with the full data set. Using fewer pseudo points reduces

the computation time by up to 33% when compared to using the full data set and,

although this method incurs the most error, the increase in root mean square error is

less than 0.003.

2.8.3 Inference for a Large Population

We generate the positions of 1000 individuals uniformly on [0, 4]2, and simulate 100

outbreaks using the distance dependent infection rate in equation (2.17). To simulate

the outbreaks, we used the parameter values shown in table 2.8.

Given 1000 individuals, there are 499,500 pair-wise distances between the indi-

viduals, so this data set is too large to use the full GP method. We apply the MPA

method with 32 pseudo points chosen uniformly between 0 and 4
√

2, the smallest

and largest possible pairwise distances.

For each of the simulations, we use the MPA method to infer the infection rate,

using only the distances and removal times as observed data. Figure 2.12 shows that

we can estimate the infection rate effectively across the entire domain. The estimate

for the large-scale simulation study is more accurate compared to the small study



Chapter 2: Modelling Infection Rate Functions with One Covariate 71

(a) Size of pseudo data set against computational time

(b) Size of pseudo data set against RMSE

Figure 2.10: The results for the MPA simulation study in section 2.8.2. We show

the computational time taken and the RMSE for the MPA method used to infer the

infection rate, with different number of input points. The shaded point corresponds

to the standard GP method.
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Parameter Value

N 1000

β0 0.01

β1 2

λ 3

γ 6

α 10

Table 2.7: Parameter values used to simulate outbreaks in the large population

simulation study.

for two reasons: the number of data points has increased, and we are estimating the

length scale. We can also estimate plausible values of the length scale hyperparameter,

as shown in figure 2.11(a). As there is no true value for this parameter, there is

no truth we can compare it to. As with the previous studies, we can estimate the

infectious period distribution parameter well, which leads to a good estimate of

the sum of the infection times. This is shown in figures 2.11(b-c) and the median

estimates for the inferred parameters are shown in table 2.8.

2.8.4 Remarks on the Simulation Studies

In both the large and small simulation studies we were able to estimate the infection

rate function well. We can also infer the infectious period distribution rate parameter

and the times individuals were infected. Using an approximation method allows us

to perform inference on much larger data sets as well as learn plausible values for the

length scale parameter. Both of these allow us to give much better estimates for the

infection rate. The method learns the infection rate function well over the entire set

of distances, and is not affected by the cluster structure in the population.

One disadvantage to modelling the infection rate function using a Bayesian non-

parametric method is the computational time required to run the MCMC algorithm.

To estimate the infection rate function, infectious period distribution rate parameter
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and infection times for a single data set in the large simulation study with population

size 1,000 took on average 57.2 hours. This was using the University of Nottingham’s

High Performance Compute service alongside using the MPA, efficient computation of

the likelihood function, and OpenMP software. This is compared to around 5 hours

for a parametric alternative. There are three reasons for the large computational time:

the length scale parameter, the likelihood function, and the infection times. Inference

for the length scale parameter in the GP prior distribution requires us to repeatedly

decompose and invert the covariance matrix which, even when using the MPA to

reduce its dimension, takes a large amount of time. The likelihood function also takes

a considerable amount of time to compute, and as we are using a nonparametric

method, updating the infection rate function means updating every value of βj,k

individually. As in the parametric method, estimating the infection times is very

time consuming, especially when the population is large.

Parameter True Value Study Median Study Credible Interval

β0 0.01 0.01 (0.00782, 0.013)

γ 6 5.86 (4.79, 7.78)

ĩ Relative Error 0% 0.215% (-5.88%, 4.78%)

Table 2.8: Parameter values for the large simulation study. The study median refers

to the median of the 100 posterior median estimates, and the study credible interval

is a 95% credible interval of the posterior median estimates.

2.9 Conclusion

In this chapter, we have developed a novel method for inferring the infection rate

function of a heterogeneously mixing infectious disease. Our method is the first

Bayesian nonparametric method to infer infection rate functions for infectious disease

models that are not time dependent. This method assumes that the infection rate

depends on one characteristic of the relationship between the infector and susceptible

individual, e.g. Euclidean distance. The first method uses a GP prior distribution
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(a) Estimates for the GP prior distribution length

scale parameter

(b) Estimates for the infectious period distribu-

tion rate parameter

(c) The relative error for the sum of the infection

times

Figure 2.11: Results of the large simulation study with unknown infection times

for the simulation study in section 2.8.3. In figure (a) we show the distribution of

the median estimate for l, the length scale parameter, for each of the 100 data sets.

Figure (b) shows the distribution of the infectious period distribution rate parameter

estimates, and figure (c) shows the relative error in the sum of the infection times for

the 100 data sets.
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Figure 2.12: The estimated infection rate functions for the 100 data sets in the large simulation study. The grey lines are the

posterior median estimates for the individual data sets. The black line is the median of the posterior medians, and the red line is

the true rate.
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and an MCMC algorithm to estimate the rate. This gives good results for small

populations. However the computational requirements can become prohibitive for

large data sets. To overcome this problem we implemented a standard approximation

from the GP literature. The MPA method fits a GP to a small subset of the data

and projects this onto the full data set, which allows us to use the same likelihood

function and MCMC framework as in the original method. We then implemented a

method for inferring the prior distribution length scale, improving the results and

reducing the precision required in specifying the prior distribution. We were able to

successfully use these methods alongside standard methods for inferring parameters

of the infectious period distribution and infection times. Finally, we showed the

effectiveness of our method using simulated data.

The framework we have developed reduces the need for arbitrary, parametric

assumptions. Our Bayesian nonparametric model nevertheless requires some assump-

tions to be made. In particular, we have made decisions about the smoothness of the

function through the choice of covariance function and length scale parameter. We

can remove the need for specific assumptions about the length scale parameter by

estimating plausible values for it. Although our method requires some assumptions to

be made, these are less specific than and not as arbitrary as in parametric modelling.

Results from parametric methods have less uncertainty associated with them than

our Bayesian nonparametric methods. This is because the assumptions in parametric

methods are much stronger, which give results that underestimate uncertainty. In

some cases, this can lead to incorrect predictions. By using Bayesian nonparametric

methods, we are able to avoid making such strong assumptions and better estimate

the uncertainty.

One drawback of our method is that we need to be confident about the variance

of the GP prior distribution. Underestimating this value yields slow convergence

times for the Markov chain, or even no convergence in extreme cases. Overestimating

this parameter also gives poor mixing of the chain as too few proposals are accepted.

We have also assumed that the infection rate is a well-behaved function with no

discontinuities, and our choice of covariance function outputs infinitely differentiable
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functions – a characteristic unlikely to be observed in nature. One method of

overcoming this would be to use a different covariance function, for example, the

Màtern covariance function, where the number of times sample paths generated by

the GP are differentiable can be specified. When using the MPA method, we need to

ensure the pseudo dataset covers the entire domain and there are sufficient points

in areas where the infection rate function has interesting features. These areas can

be difficult to determine as the entire function is unknown. Bayesian nonparametric

method also requires substantially more data than equivalent parametric methods,

as we are inferring the infection rate at every point of the domain. Compared to

the parametric methods, the uncertainty concerning our nonparametric estimate is

much larger. This is an underlying property of nonparametric methods, however we

can argue that parametric methods are too certain as we are including much stricter

assumptions that may be incorrect. When estimating infection rate functions for

individual outbreaks our uncertainty will be larger than if we had used parametric

methods, and this will be carried across into the posterior predictive distribution.

We have shown that our method works well for one-dimensional infection rate

functions, and we now move on to models where the infection rate depends on multiple

parameters; for example size and distance or multi-type epidemics. This will be

crucial when modelling diseases such as Foot and Mouth Disease, where the infection

rate may depend factors such as distance between farms, type of animal, and number

of animals on a farm.



CHAPTER 3

Bayesian Nonparametric Methods for Individual-Level

Multi-Type Epidemics

3.1 Introduction

To more realistically model the spread of an infectious disease, we may want to allow

the infection rate to differ between types of individuals as well as over a continuous

covariate. For example, in an outbreak of Avian Influenza, the infection rate may not

only depend on the distance between farms, but also on whether the type of animal

on the farm were caged chickens or free-range turkeys.

These models are known as multi-type models; see Andersson and Britton (2000,

§6) for a comprehensive overview. There are two main types of multi-type models:

those where the infection rate depends on the social structure in the population, and

those where infection rates differ due to the population consisting of different types. To

take the social structure of a population into account, we consider which people share a

household, workplace or school. In Ball et al. (1997), the authors propose a household

model where there is an infection rate parameter that controls infections between

individuals in the same household, as well as a parameter controlling infections
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between members of different households. In this chapter, we are concerned with

multi-type models where the infection rate differs between types of individuals. In

Britton (1998), the author proposes a multi-type model where each individual in the

population can be assigned a type, for example sex or age group. It is assumed that

individuals of the same type act in an identical fashion, and the infection rate from

one individual to another depends on their type. We consider the multi-type model

proposed in Britton (1998) as opposed to Ball et al. (1997) as in chapter five, we will

model outbreaks of disease among livestock, where we can assign each farm a type,

for example cattle farm or sheep farm.

The multi-type model we consider is an extension of the general epidemic model as

we allow for the population to consist of different types. The there are several possible

ways of allowing for different types in the population. We outline an infectivity,

susceptibility and dual model. The infectivity model is where the infection rate

from individual i to j depends on the type of infectious individual i. Conversely,

the infection rate in the susceptibility model depends on the type of the susceptible

individual j. The dual model is where the infection rate depends on both the type

of the infected individual i and the susceptible individual j, and this is the type of

model analysed in Britton (1998).

To model on outbreak of an infectious disease in a population of multiple types, we

suppose the population consists of m types. In an infectivity model, we assume that

infectious contact occurs between a given type τ individual and another individual

of any type at the time points of a homogeneous Poisson process with rate βτ . In

the susceptibility model, we assume the infectious contact occurs between a given

infected individual of any type and a susceptible type τ individual according to a

homogenous Poisson process with rate βτ . Finally, in the dual model, the infection

rate from a given individual, which is type τ , to a given individual, which is type ζ,

is given by ατβζ . Typically, the infectious period distribution is identical across all

types, however it is possible to have distinct distributions for each type.

It is possible to allow for the infection rate to depend on other variables, as

well as the type, and we do this by modelling the pair-wise infection process as an
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inhomogeneous Poisson process. In Xu (2015, §3.4), the author develops a Bayesian

nonparametric framework for modelling type-dependent infection rates in multi-type

susceptibility models. In this model, the infection rate from a given individual of any

type to a given type τ individual at time t is modelled by the function β(τ)(t). The

author uses a Sigmoidal Gaussian Cox Process to model the time-dependent infection

rate in a Bayesian nonparametric framework. They then developed an MCMC

algorithm for inferring the infection rate function, based on a method proposed in

Adams et al. (2009) where the infection times are thinned.

In this chapter, we develop a multi-type susceptibility model and incorporate the

methods developed in chapter two. We assume the infection rate function from a given

individual of any type to an individual of type τ is given by the function β(τ). Our

method is simple to implement for both infectivity and dual models, however both of

these models require more data to implement. In practice are more challenging to

work with than susceptibility models. We now develop several methods for inferring

the infection rate function for each type in a susceptibility model using GPs and then

Multi-Output GPs (MOGPs).

MOGPs are a method for modelling several functions simultaneously and allowing

for the functions to be dependent on or correlated to each other (Boyle and Frean,

2005). In Álvarez et al. (2012), the authors implement a MOGP framework where the

interactions between the functions are described through the covariance matrices for

the prior distributions for the functions. MOGPs have a wide variety of applications,

particularly when there is limited data or the data is not very informative. This is

because the MOGP framework allows information to be shared between the functions.

For example in Alvarez et al. (2009), the authors infer the concentrations of various

metals in a mine using a MOGP framework. One of the primary parameters of

interest is the concentration of copper at various locations, and they supplement this

with information about the concentration of lead, nickel and zinc. By using a MOGP

framework and allowing the concentration of each of the four metals to be correlated,

they are able to make better predictions about where copper-rich areas are located.

We now develop a MOGP framework for multi-type models. We are interested
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where the infection rate functions in an individual-level stochastic epidemic model

differs between types, as well as across a covariate such as the Euclidean distance.

An example for this is in an outbreak of Avian Influenza. The infection rate between

any two farms may depend on the distance between them and whether the farms

house chickens or ducks. We model the infection rate function for each type nonpara-

metrically using a GP prior distribution and using a MOGP framework allows the

functions, which we assume to be similar, to share information across types.

3.1.1 Layout of Chapter

We begin the chapter by defining our multi-type model extending the likelihood

function in the previous chapter to account for multiple types of individuals. In

section 3.3 we introduce fixed effects models and implement a fixed effects approach

for modelling multi-type epidemic models nonparametrically. A key piece of our

nonparametric method is Multi-Output GPs, we describe them in section 3.4 and

then apply them to a stochastic epidemic model framework in section 3.5.

This chapter contributes three methods for modelling multi-type outbreaks non-

parametrically. A fixed-effects type method can be used when there is a lack of data.

Two MOGP methods are then developed to allow for a more flexible model, where

the infection rate functions between types are dependent but not identical. Most

current methods for mutli-type models assume the infection rate functions for types

are of the same form, and our method allows us to relax this assumption. We aim our

two MOGP methods at different audiences: mathematical modeller and veterinary

practitioners.

3.2 Multi-Type Transmission Model and The Like-

lihood Function

To allow for different types of individuals in our models, we define a multi-type model

and construct the corresponding likelihood function. We recall the heterogeneously
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mixing stochastic epidemic model from section 2.2. An infected individual j makes

infectious contact with a susceptible individual k at the time points of a Poisson process

with rate βj,k. If individual k becomes infected, they remain so for a time period

which is distributed according to a random variable following a Γ(λ, γ) distribution,

where λ is the shape parameter, and γ is the rate parameter.

In the previous chapter, we assumed the infection rate from individual j to k can

be modelled as a function of some continuous covariate describing their relationship,

for example the Euclidean distance between the individuals. We now extend this

to a suite of functions which depend on the same covariate, but where the choice

of function depends on the type of the susceptible individual. This is known as a

susceptibility model. However our methodology will also work for infectivity models,

where the infection depends on individual j as well as models where the infection

rate depends on both j and k. We have chosen a susceptibility model as our methods

require a large amount of data and removal times observed from infectivity and dual

models are less informative than susceptibility models.

3.2.1 Multi-Type Transmission Model

We suppose that in a population of size N , each individual is one of m << N types,

and the infection rate differs between types. We consider the type to be a categorical

variable. For modelling an outbreak of a disease among humans, examples of suitable

categorial variables are the sex and ethnicity of the individuals. For diseases on farms,

an example of a categorical variable is the type of livestock on the farm. We model

the infection rate from individual j to k, which depends on the covariate xj,k, by the

following functions:

βj,k =


β(1)(xj,k) if k is type one,

...

β(m)(xj,k) if k is type m.

We recall the likelihood function for the heterogeneously mixing stochastic epi-
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demic model in equation (2.1):

π(i, r|β, λ, γ, κ, iκ) = exp

{
−

n∑
j=1

N∑
k=1

β(xj,k) ((rj ∧ ik)− (ij ∧ ik))

}
(2.1)

×
n∏
j=1
j 6=κ

∑
k∈Yj

β(xk,j)

 n∏
j=1

h(rj − ij|λ, γ),

where Yj = {k; ik < ij < rk} is the set of individuals who are infectious immediately

before individual j becomes infected.

Let c = {c1, . . . , cN} be the set of types of the individuals, where individual j

has type cj. We assume these types to be fixed and known. Replacing the pair-wise

infection rate βj,k for the type dependent infection rate function, β(cj), gives us the

following heterogeneously mixing multi-type likelihood function:

π(i, r|β(1), . . . , β(m), λ, γ, κ, iκ, c) = exp

{
−

n∑
j=1

N∑
k=1

β(ck)(xj,k) ((rj ∧ ik)− (ij ∧ ik))

}

(3.1)

×
n∏
j=1
j 6=κ

∑
k∈Yj

β(cj)(xk,j)

 n∏
j=1

h(rj − ij|λ, γ).

We can decompose the likelihood function into a product of terms, each element

corresponding to a likelihood contribution for each type. Let Cτ be the set of

individuals who are type τ and C̃τ be the set of type τ individuals who were infected,

then the contribution for type τ individuals is given by:

πτ = exp

{
−

n∑
j=1

∑
k∈Cτ

β(τ)(xj,k) ((rj ∧ ik)− (ij ∧ ik))

} ∏
j∈C̃τ
j 6=κ

∑
k∈Yj

β(τ)(xk,j)

 (3.2)

×
∏
j∈C̃τ

h(rj − ij|λ, γ).

We will use the decomposed form both analytically for the full conditional distributions

of some parameters and computationally. The full likelihood function can be recovered

by computing

π(i, r|β(1), . . . , β(m), λ, γ, κ, iκ, c) =
m∏
τ=1

πτ .
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3.3 Fixed Effects Model

The first model we propose is a fixed effects model. Fixed effects models are commonly

used in regression problems where the data can be split into groups, the model allows

for population-wide trends as well as group-specific trends. This idea can be used to

model infection rate functions in a multi-type epidemic model as we allow for the

infection rate function to have the same shape across all types, but a different scale

for each type. We first outline nonparametric methods for a fixed effects model in a

regression setting, then apply this to a stochastic epidemic model.

3.3.1 Fixed Effects Regression Model

Suppose we observe n points {y1,t, . . . , yn,c}, for each of m categories, where c =

1, . . . ,m, at the input points {x1,c, . . . , xn,c}. We fit the linear fixed effects model:

yi,c = f(xi,c) + αc + εi,c, εi,c
i.i.d∼ N(0, σ2), i = 1, . . . , n. (3.3)

We assume there is an underlying generating function f that is common to all types.

However the location parameter, α, which controls the y-intercept, is different for

each type. We model the location type-effect for type j by including αj. We can

represent this model in the following matrix form:

y1,1

...

yn,1

y1,2

...

yn,2
...

y1,m

...

yn,m



=



1 0 · · · 0 f(x1,1)
...

...
...

1 0 · · · 0 f(xn,1)

0 1 · · · 0 f(x1,2)
...

...
...

0 1 · · · 0 f(xn,2)
...

...
...

0 0 · · · 1 f(x1,m)
...

...
...

0 0 · · · 1 f(xn,m)




α1

...

αm

1

+


ε1,1

...

εn,m

 , (3.4)

which can be written as Y = Xβ+ε. We will refer to Y as the vector of observations,

X as the design matrix, β as the vector of parameters, and ε as the error vector.
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The likelihood function for the data is given by:

π(Y|β, f, σ2) ∝ exp

{
− 1

2σ2
(Y−Xβ)T (Y−Xβ)

}
.

Given data Y, we can perform Bayesian inference for the values of the parameters, β

and the function f . The posterior distribution is given by:

π(β, f |Y, σ2) ∝ π(Y|β, σ2)π(β)π(f).

We put the following conjugate prior distribution on β:

β ∼ N (0, λ2I). (3.5)

We model f nonparametrically, by placing a GP prior distribution on the function

as follows:

f ∼ GP(0, Σ), Σij = k(xi, xj, α
2, l2).

By Bayes’ theorem, the posterior distribution is given by:

π(β, f |Y, σ2) ∝ π(Y|β, σ2)π(β)π(f).

∝ exp

{
− 1

2σ2
(Y−Xβ)T (Y−Xβ)

}
GP(f ; 0,Σ) exp

{
− 1

2λ2
βTβ

}
= exp

{
− 1

2σ2
(Y−Xβ)T (Y−Xβ)− 1

2λ2
βTβ

}
GP(f ; 0,Σ)

∝ exp
{

(β − µn)TΣ−1
n (β − µn)

}
GP(f ; 0,Σ),

∝ N(β; µn,Σn)GP(f ; 0,Σ),

where Σn =

(
1

σ2
XTX +

1

λ2
I

)−1

, and µn =
1

σ2
ΣnX

TY. The penultimate step in the

derivation comes by completing the square and removing any terms dependent solely

on Y.

To generate samples from this distribution, we can construct an MCMC algorithm.

The conditional posterior distribution for β has a closed form, and is given by:

β|Y, f, σ2 ∼ N(µn, Σn).

We can use a Gibbs step to sample values from the distribution. To sample f , we

can use a Metropolis Hastings step with an underrelaxed proposal mechanism, we
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described in section 2.5. Given then current state f , we propose values by:

f ′ =
√

1− δ2f + δν, ν ∼ GP(0, Σ).

We accept f ′ with probability

pacc =
π(Y|β, f ′, σ2)

π(Y|β, f, σ2)

Figure 3.1 shows the results of this Bayesian inference method applied to a data set

where six observations in each of two categories are observed. The data was generated

as follows:

yi,1 = 2 + 3 sin(2xi,1) + 3 exp(−3xi,1) + εi,1

yi,2 = 4 + 3 sin(2xi,2) + 3 exp(−3xi,2) + εi,2

and the error term was given by a random variable following a N(0, 0.52) distri-

bution. By using a vague prior density in equation (3.5), where λ2 = 202, we can

infer the functions well. However, table 3.1 shows that none of the parameters

are correctly identified. This is due to identifiability issues. Consider the points

{(x1,1, y1,1), (x1,2, y1,2)} = {(0, 5), (0, 7)}. We must solve the equations:

5 = α1 + f(0)

7 = α2 + f(0).

As there are three unknown parameters, α1, α2, and f(0), and only two observations,

we cannot fully identify the parameters individually. To resolve this, we need to

reduce the number of degrees of freedom in the model by one, which is done by fixing

some linear combination of the model parameters. The simplest way to do this is to

fix α1 = 0, as the value we infer for α2 is given by α2 − α1. This is relevant for the

multi-type infection model as we will not be able to fully identify the susceptibility

parameters, instead we can infer the relative susceptibility for one type compared to

another.

We now apply this method to an epidemic model where the population can be

split into different categories or types.
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(a) Inferred values for function 1 compared to the true function.

(b) Inferred values for function 2 compared to the true function.

Figure 3.1: The fixed effects GP regression model in section 3.3.1 applied to a sample

data set.
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Parameter True Value Posterior Median 95% Credible Interval

α1 2 6.86 (-2.17, 18.29)

α2 4 8.43 (-0.603, 19.90)

f(x1,1) 3 -5.06 (-14.26, 20.03)

Table 3.1: Parameter estimates and credible intervals for the fixed effects GP regression

model.

3.3.2 Fixed Effects Epidemic Model

Consider a population consisting of m types, labeled 1, . . .m. We assume the infection

rate from individual j to k can be split into two independent parts. The first part

is the infection rate function, which depends on the covariate xj,k, for example the

distance between the individuals. The second part is a scaling parameter, which

depends type of the susceptible individual k. We define the infection rate functions

as:

βj,k =


β1g(f(xj,k)) if individual k is type 1,

...

βmg(f(xj,k)) if individual k is type m.

This model is similar to the fixed effects regression model. Consider the log of the

infection rate, which is given by:

log βj,k = log βck + log f(xj,k). (3.6)

Given the removal times of the infected individuals and the covariate information,

we wish to infer the scaling parameters β1, . . . , βm and the function f . To resolve

any identifiability problems, we set β1 = 1, as this enables us to fully identify f and

the susceptibility of each type relative to type one individuals, β2
β1
, . . . , βm

β1
. The form

shown in equation (3.6) also allows us to simplify the decomposed likelihood function,

as β2, . . . , βm are constants. Allowing for this fixed effects form, the likelihood
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contribution for type τ individuals in equation (3.2) becomes:

πτ = exp

{
−βτ

n∑
j=1

∑
k∈Cτ

f(xj,k) ((rj ∧ ik)− (ij ∧ ik))

}
βntt

∏
j∈C̃τ
j 6=κ

∑
k∈Yj

f(xj,k)

 (3.7)

×
∏
j∈C̃τ

h(rj − ij|λ, γ),

where nτ is the number of type τ individuals infected. By Bayes’ theorem, the

posterior distribution is:

π(β2, . . . , βp, f, λ, γ, i, iκ, κ|r, λ, α, c) ∝

(
m∏
τ=1

πτ

)
π(f |l)π(l)π(γ)π(γ) (3.8)

× π(κ)π(iκ|κ)

(
m∏
j=2

π(βj)

)
.

3.3.3 MCMC Implementation

We place exponential prior distributions on β2, . . . βp, a GP prior distribution on the

function f over the space of covariate information, and a vague exponential prior

distribution on the GP length scale. The complete set of prior distributions for this

model is given by:

βj ∼ Exp(χj), j = 2, . . . , p

β = g(f), f ∼ GP(0, Σ), Σjk = k(xj, xk;α, l)

l ∼ Exp(χl)

γ ∼ Exp(χγ)

κ ∼ U[1, . . . , n]

iκ ∼ −z, z ∼ Exp(χκ)

Typically, we will choose the parameters of the exponential prior distributions,

χ2, . . . , χp, χl, χγ and χκ to be small, e.g. 0.01, as this gives a vague prior distribution.

As in the previous chapter, we fix λ > 1 to give a bell-shaped distribution for the

infectious period distribution whose mean is defined by the rate parameter, γ.
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3.3.3.1 Sampling the Scaling Parameter

The full conditional posterior distribution for the scaling parameter for type τ

individuals, βτ , is given by:

π(βτ |i, r, f, κ, iκ) ∝ exp

{
−βτ

(
χτ +

n∑
j=1

∑
k∈Cτ

g(f(xj,k)) ((rj ∧ ik)− (ij ∧ ik))

)}
βnτ+1
τ .

As we have placed a conjugate prior distribution on βτ , the posterior distribution has

a closed form given by the following gamma distribution:

βτ |i, r, f ∼ Γ

(
nτ , χτ +

n∑
j=1

∑
k∈Cτ

g(f(xj,k)) ((rj ∧ ik)− (ij ∧ ik))

)
.

We can therefore use a Gibbs sampler step to sample values for β2, . . . , βm.

3.3.3.2 Sampling the Infection Rate Function

As in the previous chapter, we propose a new function, f ′, using an underrelaxed

proposal mechanism, where

f ′ =
√

1− δ2f + δν, ν ∼ GP(0, Σ),

and δ ∈ (0, 1] is a tuning parameter. The acceptance probability for f ′ is

pacc =
π(i, r, c|g(f ′), λ, γ, κ, iκ, β2, . . . , βm)

π(i, r, c|g(f), λ, γ, κ, iκ, β2, . . . , βm)
.

We can use the Mean Projection Approximation (MPA) in the same way as the

previous chapter in section 2.6. That is given the full set of n input points x, we

construct a set of m training points x̄. We then propose functions f̄ over this set,

and project it onto the full data set by:

f = Σx,x̄Σ
−1
x̄,x̄f̄ .

3.3.3.3 Sampling the Remaining Parameters

The remaining parameters are sampled as outlined in section 2.5. The outline of the

MCMC algorithm is given in algorithm 6.
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Algorithm 6 Structure of the MCMC algorithm

1: Initialise the chain with values γ(0), β
(0)
2 , . . . , β

(0)
p , f (0), l(0), and i(0)

Repeat the following steps

2: Sample γ from the conditional distribution π(γ|λ, i, r) using a Gibbs sampler

3: for t = 2, . . . , p do

4: Sample β(t) from π(β(t)|i, r, f, κ, iκ) using a Gibbs step

5: end for

6: Sample f using an underrelaxed proposal method for a Metropolis Hastings step

7: Sample l using a Metropolis Hastings step

8: Sample κ and iκ using a Metropolis Hastings step

9: Update an infection time

3.3.4 Simulation Study

We now test the method by using simulated data. We simulate the positions of 1,000

individuals on a unit square, and choose uniformly at random 350 individuals to

be type one, 350 to be type two and the remaining 300 labelled type 3. We then

simulate an outbreak of an infectious disease, where the infection rate is given by:

β(dj,k) = βck exp{−µdj,k},

where dj,k is the Euclidean distance between individuals j and k, βck is the scaling

parameter for individual k and µ is a rate parameter common to all types. To simulate

the outbreaks, we used the parameters in table 3.2. We simulated 250 outbreaks

of an infectious disease among the individuals conditioned on more than 100 being

infected, and using only the removal times and positions, we inferred the infection

rate, scaling parameters, infectious period distribution rate parameter and infection

times. We ran the MCMC algorithm for 30,000 iterations for each data set, removing

the first 1,000 iterations as a burn-in period. On a standard desktop PC, this took

around 15 hours for each data set. We fixed the GP variance parameter to be α = 6.

The results for the shape of the infection rate are given in figure 3.2. Due to the

identifiability problems, the rates have been rescaled so that we are comparing them
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Parameter Value

β1 0.008

β2 0.004

β3 0.001

µ 2

λ 5

γ 3

Table 3.2: Values used to simulate outbreaks in the fixed effects model simulation

study in section 3.3.4.

Parameter True Value Study Median Study 95% Credible Interval

β2
β1

0.5 0.504 (0.379, 0.655)

β3
β1

0.125 0.127 (0.0938, 0.198)

γ 3 2.803 (2.065, 3.684)

ĩ 0 0.0129 (-0.0321, 0.0637)

l - 7.781 (4.695, 15.493)

Table 3.3: The fixed effects model simulation study median and credible intervals.

against f(d) = exp{−2d}. These issues are because we are inferring the product of

two parameters: the scaling parameter βj and the function g(f). As the value of g(f)

will depend on the value of βj in each individual outbreak, and the outbreaks are

independent we must fix one of the parameters to compare them. We therefore fix

the y-intercept, g(f(0)), to be 1. We can see that, although the study median is close

to the true rate, the variance is higher than for the standard, single-type method.

This may be down to combined uncertainty in both the shape of the GP and the

scale parameters. The estimates for the scale parameters are shown in figure 3.3, and

we infer these parameters well. The numerical estimates and credible intervals are

shown in table 3.3.
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Figure 3.2: The 250 posterior medians for the infection rate, with the study median

and the true rate using the simulated data for the fixed effects simulation study in

section 3.3.1. As there are identifiability issues, the functions are rescaled so that the

infection rate for immediate neighbours is 1.

3.4 Multi-Output Gaussian Processes

Multi-Output Gaussian Processes (MOGPs) are a method for learning multiple

functions simultaneously, allowing for correlation and dependency between the func-

tions. This allows the functions to collaborate and share the information learned

(Nguyen and Bonilla, 2014). There are two main ways of introducing dependency

between the functions. The first is to allow to noise or error terms in the different

functions to be dependent on each other (Rasmussen and Williams, 2006, §5.4.3).

This method requires the likelihood functions to be based on the normal distribution

and is frequently used in regression models (Rasmussen and Williams, 2006, §9.2).

The second method is to build a correlation structure into the prior distribution.

This method has been studied in spatial statistics and is commonly referred to as

co-kriging (Cressie, 1993). As our likelihood function does not have a Gaussian form,

we will employ the second method.
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(a) The distribution of the median estimates for the 250 estimates of β2/β1.

(b) The distribution of the median estimates for the 250 estimates of β3/β1.

Figure 3.3: The results of the fixed effects model applied to the 250 data sets from

the simulated data in section 3.3.4.

There are several methods for using MOGPs. In Liu et al. (2018), the authors

divide the MOGP with a correlated prior distribution methods into two sets: sym-

metric and asymmetric methods. Suppose we wish to infer m different functions,

then using symmetric MOGPs, we allow each of the m prior distributions to depend

on all of the other prior distributions. We can construct one large covariance matrix

and draw samples from each of the prior distributions simultaneously. If we instead

use an asymmetric method, the prior distributions are constructed sequentially, so
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(a) Isotopic data

(b) Heterotopic data

Figure 3.4: Examples of heterotropic and isotropic data sets.

that the prior distribution for function j depends on the distribution for function

j − 1. We will develop both symmetric and asymmetric methods.

Before we outline the methods, we first define isotopic and heterotopic systems.

If the functions we are modelling share the same input space, this is known as an

isotopic system. In heterotopic systems, the functions have different input spaces. An

illustration of both of these is given in figure 3.4. In this chapter we are concerned

with heterotopic data.

Suppose we observe m correlated process, f (1), . . . , f (m), which we wish to model



Chapter 3: Modelling Multi-Type Infection Rate Functions 96

nonparametrically. We now outline three methods: the Independent GP model, the

Multi-Output Covariance model (MOC) and a Discrepancy Based Model (DBM).

3.4.1 The Independent GP Model

We model the function the jth function f (j) nonparametrically, each function is

independent of the others. We place independent prior distributions on f (j) such

that:

f (j) ∼ GP(0, Σ(j)), Σ
(j)
k,l = k(x

(j)
k , x

(j)
l ;α, l), j = 1 . . . ,m.

The advantage to this model is its simplicity, because we do not have to describe the

relationship between any two functions. The independence of the prior distributions

allows us to factorise the joint prior distribution over sets of observations, which is

advantageous when the likelihood function can be similarly factorised. The simplicity

of the model is also a drawback, as it does not capture the relationship between the

functions.

3.4.2 The Multi-Output Covariance Model

For the MOC model, we place a joint GP prior distribution on the functions

f (1), . . . , f (m), such that
f (1)

f (2)

...

f (m)

 ∼ GP
0,


Σ(1,1) ρ1,2Σ(1,2) · · · ρ1,mΣ(1,m)

ρ1,2Σ(2,1) Σ(2,2) · · · ρ2,mΣ(2,m)

...
...

. . .
...

ρ1,mΣ(m,1) ρ2,mΣ(m,2) · · · Σ(m,m)



 , (3.9)

where Σ
(a,b)
l,m = k(x

(a)
l , x

(b)
m ;α, l) and ρj,k is the correlation between functions f (j) and

f (k). Using the multi-output covariance block matrix allows us to draw samples for

all functions simultaneously, as well as specify the correlation between the functions.

This can be a disadvantage when there are a large number of functions, as there are

a large number of correlation parameters. In our framework, we will assume that

all functions have the same length scale parameter. This is because we would need
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f (1) f (2) f (3)

x(1) x(2) x(3)

(a) Independent GPs

f (1) f (2) f (3)

x(1) x(2) x(3)

(b) Multi Output Covariance Model

Figure 3.5: A graphical representation of the independent GP model and the Multi-

Ouptut Covariance Model.

to learn the length scale parameters for different types, i.e. Σ(j,k), which are not

immediately interpretable, and the data may not contain information about.

This model is a type of Common Principle Components Model, which allows for

different population to consist of different groups, each with a unique covariance

structure. The covariance structure dictates how the groups interact with each oher.

This was first proposed in Flury (1984). In the MOC model, we assume the the

covariance is given by the squared exponential function, and the relationships between

the groups is given by a correlation parameter. Graphical representations of the

independent GP model and the MOC model are given in figure 3.5.

3.4.2.1 MOC Regression Model

We now give an example of using the MOC model to fit curves to a regression data

set. Suppose we observe the data points shown in figure 3.6, where x(1) = x(2) =

{0, . . . , 10}, y1 = sin(x(1))+ log(x(1) +1)+ε, y2 = sin(x(2))+ log(x(2) +1)+
1

2
x(2) +ε,

and εi
i.i.d∼ N(0, 0.1). We wish to fit curves f (1) and f (2) through y1 and y2 over the

input points x(j)∗ = {0, 0.01, 0.02, . . . , 10}. The posterior distribution is given by:

π(f (1), f (2)|y, σ2, ρ) ∝ π(y|f (1), f (2), σ2)π(f (1), f (2)|ρ).
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Figure 3.6: The results of the MOC model applied to a basic regression problem.

We place the following MOC GP prior distribution on f (1) and f (2):f (1)

f (2)

 ∼ GP
0,

 Σ(1,1) 0.3Σ(1,2)

0.3Σ(2,1) Σ(2,2)

 ,

where Σ
(i,j)
l,m = k(x(i)∗

l , x
(j)∗
m;α, l). We set the GP length scale to be 2 and the

variance to be 2. The results of 10,000 runs of a Metropolis-Hasting algorithm with

an underrelaxed proposal mechanism is shown in figure 3.6. This method gives a

reasonable fit to the data, although it is evident that the length scale is more suitable

for f (1) than f (2).

3.4.3 The Discrepancy Based Model

The Discrepancy-Based Model (DBM) is constructed such that the prior distribution

for function j depends on the prior distribution for function j − 1. As this method

requires isotropic data, we first create a pseudo data set x̄ based on x(1), . . . ,x(m).
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We then set the following prior distributions:

f̄ (1) ∼ GP(0, Σ(1)), Σ
(1)
j,k = k(x̄j, x̄k; α, l1)

u(2) ∼ GP(0, Σ(2)), Σ
(2)
j,k = k(x̄j, x̄k; α, l2), f̄ (2) = f̄ (1) + u(2)

...

u(m) ∼ GP(0, Σ(m)), Σ
(m)
j,k = k(x̄j, x̄k; α, lm), f̄ (m) = f̄m−1 + u(m),

where f̄ (j) is the function for data set j over the pseudo data set. After sampling

from the prior distributions and computing the discrepancies, we then project each

function f̄ (j) onto its respective input data set x(j). An example of this model with 3

functions is shown in figure 3.7.

The model allows us to asses how each function differs from the previous function.

It also lets us choose one function as a baseline, but without the loss of information

incurred when using the fixed effects model. One drawback of using this model is that

the the input data must be isotopic, as each function is used in the prior distribution

for the following function. However, as we are likely to be using the MPA method

from the previous chapter, this is not a severe limitation as long as all functions share

a similar input domain.

3.4.3.1 Discrepancy Based Regression Model

We now apply this model to fit two curves to a data set and we use the same data

set as in the MOC model. The posterior distribution is given by:

π(f (1), f (2)|y, σ2) ∝ π(y|f (1), f (2), σ2)π(f (1))π(f (2)|f (1)).

The results are shown in figure 3.8, and we can see the median estimates for both

functions fit the data well. We can also compare the differences between the functions,

as shown in figure 3.8(b). This shows the functions are substantially different after

approximately one unit.
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x̄

x(2) x(3)x(1)

u(2) u(3)

f̄ (2)f̄ (1) f̄ (3)

f (2)f (1) f (3)

Input Data

GP Prior Distributions

Pseudo Data Set

Discrepancy Calculations

Projection onto Input Data

Figure 3.7: The prior distribution structure for the DBM with three functions.

3.4.4 Comparison of the Multi-Output Gaussian Process

Models

The models offer different advantages and are suited to different settings. The MOC

model allows us to describe the covariance between functions, whereas the DBM

allows us to more directly compare estimates for functions. The independent model

assumes the functions are independent of each other a priori and allows us to factorise

the prior distributions. Another important difference is the length scales of the prior
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(a) The results of the DBM prior distribution applied to a basic regression

problem.

(b) The estimated difference between the two regression curves with 95%

credible interval

Figure 3.8: The results of the DBM applied to a basic regression problem. The

posterior medians for the functions are shown with a black solid line, and the functions

which generated the data are shown with a dashed line.

distribution, the DBM and independent model allow us to set different length scales

for each function. However, we assume the length scales are all identical for the MOC

model.

Both the DBM and MOC model allow us to state the relationship between
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the functions. The MOC model describes the relationship through the correlation

parameters ρi,j, whereas the DBM allows us to compare the functions more directly

through the discrepancy calculations. This form is likely to be more accessible to

practitioners applying this method to data than by estimating the correlation in the

MOC model.

The models also have different advantages computationally and in the MCMC

algorithm. The MOC model allows us to draw samples for all functions jointly,

however it does require a larger covariance matrix, which will require more time and

memory to decompose. As the covariance matrix is a block matrix, the eigenvalues

can be numerically difficult to obtain, and can result is numerical instabilities when

inverting or decomposing the matrix, particularly when pi,j is close to 1 and the

off-diagonal matrices are similar. For this we recommend estimating either the

covariance ρ or the length scale l, but not both. The DBM has a smaller covariance

matrix, so does not suffer from this problem. However the samples from the prior

distributions must be drawn sequentially.

3.5 MOGPs for Multi-Type Models

We now apply the three methods to modelling the infection rate functions in an

individual-level multi-type epidemic model. For notational convenience, we restrict

ourselves to populations consisting of two types. It is, however possible for the

methods to be extended to a larger number of types. We denote the vector of covariate

information for type one and type two individuals by x(1) and x(2) respectively, and

the functions for type one and type two individuals by β(1) and β(2) respectively.

3.5.1 Independent Gaussian Process Model

The first model assumes that the values of β(1) and β(2) are independent of each

other, and that information about one of the vectors does not help in learning the
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f (1) f (2)

x(1) x(2)

β(1) β(2)

Figure 3.9: The independent GP prior distribution structure for epidemic models.

other. We place independent prior distributions on β(1) and β(2) such that:

β(1) = g(f (1)), f (1) ∼ GP(0, Σ(1)), Σ
(1)
j,k = k(x

(1)
j , x

(1)
k ; α, l). (3.10)

β(2) = g(f (2)), f (2) ∼ GP(0, Σ(2)), Σ
(2)
j,k = k(x

(2)
j , x

(2)
k ; α, l). (3.11)

We sample the infection rate functions using the underrelaxed proposal mechanism

for a MH algorithm outlined in section 2.5. For large data sets we can use the MPA

outlined in equation (2.11), repeating this step for each function. The remaining

parameters and infection times are updated as before, and an outline of the MCMC

algorithm is shown in algorithm 7.

3.5.2 Multi-Output Covariance Model

In the MOC model, we allow the infection rate functions for the two types to be

correlated. A graphical illustration of this is shown in figure 3.10.We define the

covariance between the two functions to be ρ, and put the following joint prior

distribution on β(1) and β(2):

β(1) = g(f (1)), β(2) = g(f (2)),

f (1)

f (2)

 ∼ GP
0,

 Σ(1,1) ρΣ(1,2)

ρΣ(2,1) Σ(2,2)

 ,

Σ
(l,m)
j,k = k

(
x

(l)
j , x

(m)
k ; α, l

)
. (3.12)
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Algorithm 7 Structure of the Independent GP MCMC algorithm

1: Initialise the chain with estimates γ(0), (f (1))(0), (f (2))(0), l
(0)
1 , l

(0)
2 , and i(0)

Repeat the following steps

2: Sample γ from the conditional distribution π(γ|λ, i, r) using a Gibbs step

3: Sample f (1) and f (2) using an underrelaxed proposal method for a Metropolis

Hastings step

4: Sample l1 using a Metropolis Hastings step

5: Sample l2 using a Metropolis Hastings step

6: Sample κ and iκ using a Metropolis Hastings step

7: Update an infection time

f (1) f (2)

x(1) x(2)

β(1) β(2)

Figure 3.10: The MOC prior distribution for multi-type epidemic models.
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We note that this model with ρ = 0 is equivalent to the independent GP model. A

graphical representation for this model is shown in figure 3.10. To sample values for

β(1) and β(2), we again use the Metropolis Hastings algorithm with an underrelaxed

proposal mechanism, and we propose new values by:

β(1)′ = g(f (1)′), β(2)′ = g(f (1)′),f (1)′

f (2)′

 =
√

1− δ2

f (1)

f (2)

+ δ

ν(1)

ν(2)

 ,

ν(1)

ν(2)

 ∼ GP
0,

 Σ(1,1) ρΣ(1,2)

ρΣ(2,1) Σ(2,2)

 .

We then accept the proposed values with probability

pacc =
π(i, r|β(1)′, β(2)′, λ, γ, κ, iκ, c)

π(i, r|β(1), β(2), λ, γ, κ, iκ, c)
.

For large data sets, we again use the MPA outlined in equation. As each function

has unique and independent training and full data sets, we project each function

independently. We do this by computing

f (j) = Σj,x̄Σ
−1
x̄,x̄f̄

(j), (3.13)

where Σj,x̄ is the covariance matrix constructed from set xj and the pseudo input set

x̄. We place a uniform prior distribution on ρ, such that

ρ ∼ U[−1, 1].

If it is believed a priori that the infection rate functions are positively correlated,

it is possible to use a U[0, 1] prior distribution and similarly a U[−1, 0] if negative

correlation is assumed a priori. By using a closed interval, we can estimate whether

ρ = 0, in which case there is no correlation between the infection rate functions, or

whether ρ = 1, in which case the infection rate functions for both types are identical.

To sample this parameter we use a Metropolis Hastings Random walk algorithm, and

propose new values by

ρ′ ∼ N(ρ, σ2
ρ).
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We accept ρ′ with probability

pacc =

1√
|Σ′|

exp

−1
2

(
f (1) f (2)

)
Σ′−1

f (1)

f (2)


1√
t|Σ|

exp

−1
2

(
f (1) f (2)

)
Σ−1

f (1)

f (2)


∧ 1,

where Σ′ =

 Σ(1,1) ρ′Σ(1,2)

ρ′Σ(2,1) Σ(2,2)

 and Σ =

 Σ(1,1) ρΣ(1,2)

ρΣ(2,1) Σ(2,2)

.

The full MCMC algorithm with sampling steps for all model parameters is given

in algorithm 8.

Algorithm 8 Structure of the MOC model MCMC algorithm

1: Initialise the chain with values γ(0),
(
f (1)
)

(0),
(
f (2)
)

(0), ρ(0) l(0), and i(0)

Repeat the following steps

2: Sample γ from the conditional distribution π(γ|λ, i, r, χγ) using a Gibbs step

3: Sample f (1) and f (2) using an underrelaxed proposal method for a Metropolis

Hastings step

4: Sample ρ using a Metropolis Hasting Random Walk step

5: Optional: Sample l using a Metropolis Hastings Random Walk step

6: Sample κ and iκ using a Metropolis Hastings step

7: Update an infection time

3.5.3 Discrepancy Based Model

In this model, we treat the infection rate function for type one individuals as a

baseline, and compute the infection rate function for type two individuals conditioned

on the function for type one individuals. However, as this method requires isotopic

data, we introduce a pseudo data set x̄, which is constructed from the input sets x(1)

and x(2). Given the training set x̄, we sample both f̄ (1) and f̄ (2) over x̄. Combining
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the training set with the discrepancy assumption gives the prior distributions:

f̄ (1) ∼ GP(0, Σ(1)), Σ
(1)
jk = k(x̄j, x̄k; α, l1).

f̄ (2) = f̄ (1) + u, u ∼ GP(0, Σ(2)), Σ
(2)
jk = k(x̄j, x̄k; α, l2).

We then project f̄ (1) and f̄ (2) onto their respective full data sets using the MPA

outlined in equation (3.13). The infection rate functions are given by β(j) = g(f (j)),

where f (j) is the projected function for type j. We can extend the graphical repre-

sentation of the DBM in figure 3.7 to include the transformation into infection rate

functions. A graphical representation is given in figure 3.11.

x̄

x(2)x(1)

u

f̄ (1) f̄ (2)

f (1) f (2)

β(1) β(2)

Input Data

GP Prior Distributions

Pseudo Data Set

Discrepancy Calculations

Projection onto Input Data

Transformation to Infection Rate

Figure 3.11: The DBM framework for an epidemic model with two types of individuals.

We construct the MCMC algorithm as before and again use a Metropolis-Hastings
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algorithm with an underrelaxed proposal mechanism to target the infection rate

functions. The full algorithm is shown in algorithm 9.

Algorithm 9 Structure of the DBM MCMC algorithm

1: Initialise the chain with values γ(0),
(
f (1)
)

(0),
(
f (2)
)

(0), l
(0)
1 , l

(0)
2 , and i(0)

Repeat the following steps

2: Sample γ from the conditional distribution π(γ|λ, i, r) using a Gibbs step

3: Sample f (1) using an underrelaxed proposal method for a Metropolis Hastings

step

4: Sample f (2) based on f (1) using an underrelaxed proposal method for a Metropolis

Hastings step

5: Sample l1 using a Metropolis Hasting Random Walk step

6: Sample l2 using a Metropolis Hastings Random Walk step

7: Sample κ and iκ using a Metropolis Hastings step

8: Update an infection time

3.5.4 MOGP Models for more than two Types

It is possible to use all three methods to model more than two infection rate functions,

but some additional modelling choices need to be made. Consider the case where

a population consists of three types of individuals, types one, two and three, with

respective infection rate functions β(1), β(2), and β(3). The independent GP model is

the most simple to construct, we simply place an independent GP prior distribution

on the infection rate for each of the types, as follows:

β(j) = g(f (j)), f (j) ∼ GP(0,Σ(j)), Σ(j)
m,n = k(x(j)

m , x(j)
n ; α2, l2j ).
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To implement the MOC model for three types, we can extend the prior distribution

given in equation (3.12) to:
f (1)

f (2)

f (3)

 ∼ GP
0,


Σ(1,1) ρ1,2Σ(1,2) ρ1,3Σ(1,3)

ρ1,2Σ(2,1) Σ(2,2) ρ2,3Σ(2,3)

ρ1,3Σ(3,1) ρ2,3Σ(3,2) Σ(3,3)




β(1) = g(f (1)), β(2) = g(f (2)), β(3) = g(f (3)).

By including a third type in the population, we have increased the number of

correlation parameters from one to three. In general, for a population of m types, we

will need m(m−1)
2

correlation parameters. Given sufficient data, we can place uniform

prior distributions on each of the correlation parameters and infer plausible values.

In cases where we have insufficient data, we can make several assumptions. The first

is to assume that the correlation parameters are equal, that is ρi,j = ρ for all i and j.

This reduces the number of parameters in the model, while still allowing flexibility

and transferring information across the prior distribution. The second assumption we

can make is that the infection rate functions for certain types are uncorrelated, that

is for some i and j, ρi,j = 0. This assumption reduces the number of parameters in

the model, but may make learning the functions more difficult. It is also dependent

on the context of the outbreak, where this a priori assumption may be suitable, if,

for example, we expect the infection rate functions between types i and j not to have

any particular relationship.

There are two ways in which we can modify the DBM in equation (3.5.4) to

allow for three types. In both cases we treat the infection rate function for type one

individuals as a baseline. In the first method, we condition the infection rate function

for type two individuals on that of type one individuals and the infection rate function

for type three individuals on type two individuals. The prior distributions are given

by:

f̄ (1) ∼ GP(0, Σ(1)), Σ
(1)
j,k = k(x̄j, x̄k; α, l1).

f̄ (2) = f̄ (1) + u(2), u(2) ∼ GP(0, Σ(2)), Σ
(2)
j,k = k(x̄j, x̄k; α, l2).

f̄ (3) = f̄ (2) + u(3), u(3) ∼ GP(0, Σ(3)), Σ
(3)
j,k = k(x̄j, x̄k; α, l3).
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In this nested model, each type builds on all of the previous types. It is suitably

appropriate when the types are contained within each other. For example, when

measurements are taken over kilometres, metres, and centimetres. In an epidemic

setting, an example of this may be when we are modelling the infection rate between

adults, children under the age of 15, and children under the age of 5. However, for

some contexts this may not be the most suitable model. We can instead choose type

one to be a baseline type and model the other types relative to the baseline type.

The prior distributions are given by:

f̄ (1) ∼ GP(0, Σ(1)), Σ
(1)
j,k = k(x̄j, x̄k; α

2, l21).

f̄ (2) = f̄ (1) + u(2), u(2) ∼ GP(0, Σ(2)), Σ
(2)
j,k = k(x̄j, x̄k; α

2, l22).

f̄ (3) = f̄ (1) + u(3), u(3) ∼ GP(0, Σ(3)), Σ
(3)
j,k = k(x̄j, x̄k; α

2, l23).

This model construction bears some similarity to the fixed effects model where we

choose a type to be the baseline type and compare all other functions to the baseline

function.

There are several ways to construct the GP models for modelling more than

two infection rate functions. The construction of the model will ultimately be

context dependent, as well as depending on how much data there is. It situations

where there is little data, we will need to make stronger assumptions and design the

prior distribution accordingly. Depending on how the results will be used, we may

need to structure the model so that it is easily interpretable by practitioners and

non-mathematicians.

3.5.5 Simulation Studies

We now apply these models to simulated data to see how well we can recover the

model parameters and infection times. We generate the positions of 1,000 individuals

on a unit square, and choose 500 uniformly at random to be labeled type zero, with

the remaining individuals labeled type one. We then simulate 250 outbreaks of an

infectious disease, conditioned on the final size being greater than 100, using the

infection rate functions shown in equation (3.14) and model parameters shown in
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table 3.4.

βi,j =

β0 exp{−µ0di,j} if individual j is type 0

β1 exp{−µ1di,j} if individual j is type 1.

(3.14)

These functions have been chosen so that although the functions are different between

the two types, they still share some similarities. The parameter values were chosen

so that approximately half of the individuals become infected in serious outbreaks.

The values for the infectious period distributions give a mean period of two days and

a standard deviation of approximately 0.8 days.

3.5.5.1 Independent GP Model

We first implement the Independent GP model. The results for the infection rate

functions are shown in figure 3.12 and for the remaining model parameters in figure

3.13. The infection rate functions are inferred well, with the largest errors for the

smallest and largest pair-wise distances. The infection rate for type one individuals

is inferred more successfully than for type two. This is because type one individuals

were five times more susceptible to the disease than type two individuals, therefore

more type one individuals were infected. This gives the model more information to

learn from on type one individuals. The numerical estimates are shown in table 3.4

and we can see γ is slightly overestimated, but the true value is still contained in the

95% credible interval.

3.5.5.2 Multi-Output Covariance Model

We implement the MOC model MCMC algorithm shown in algorithm 8 and infer

the two infection rate functions: the infection period distribution rate parameter

and the infection times, given the removal times. For this example we assume the

infectious period distribution shape parameter is known, this is so that we can focus

on inferring the values of the other parameters. We also fix the GP prior distribution

length scale, this is because performing inference for the length scale as well as the

covariance parameter can lead to numerical instability in the covariance matrix and

its determinant.



Chapter 3: Modelling Multi-Type Infection Rate Functions 112

Model Parameter Study Median 95% Credible Interval

Parameter Values

β0 0.005 -

β1 0.001 -

α 6 -

γ 3 -

ĩ 0 -

Independent GPs

β0 0.00446 (0.00257, 0.00859)

β1 0.000920 (0.00415, 0.00180)

γ 3.13 (2.41, 3.92)

ĩ -0.0111 (-0.0791 ,0.0470)

MOC Model

β0 0.00484 (0.00273, 0.00782)

β1 0.00113 (0.000644, 0.00191)

γ 3.07 (2.39, 3.89)

ĩ -0.00757 (-0.0839, 0.0514)

ρ 0.762 (0.495, 0.856)

DBM

β0 0.00430 (0.00223, 0.0808)

β1 0.00126 (0.000562, 0.00250)

γ 3.11 (2.43, 4.02)

ĩ -0.00989 (-0.102, 0.0505)

l1 5.05 (2.49, 10.7)

l2 6.87 (2.14, 16.3)

Table 3.4: The median and 95% credible interval for the model parameters using the

MOC model and the DBM, compared to the true model parameters.
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(a) Estimates for the infection rate functions for type 0 individuals.

(b) Estimates for the infection rate functions for type one individuals.

Figure 3.12: The inferred infection rate functions for the independent GP model.

The grey lines are the posterior median infection rate functions for each of the 250

data sets. The black line is the median of all 250 infection rate functions and the red

line is the true infection rate function.
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(a) The distribution of the median estimates for

the 250 estimates of γ.

(b) The distribution of the relative error in the

sum of the infection times over the 250 data sets.

Figure 3.13: The results of the independent GP model applied to the 250 simulated

data sets.

In figure 3.14, we show the posterior median infection rate functions for each of

the 250 data sets, the median of the 250 rates, along with the rate used to simulate

the data. We can see that the rates for both types are recovered well and almost all

of the individual posterior medians are close to the true rate. There are two data

sets which yield infection rate functions which are much higher than the true rate,

which is due to there being a very high number of infected individuals in these two

simulations. In figure 3.15 and table 3.4, we can see that the remaining parameters

are inferred well. On average, the relative error in the sum of the infection times is

less than 1% and the infectious period distribution rate parameter is inferred almost

exactly. The inferred value of the covariance parameter is 0.762 and the 95% credible

interval gives some evidence that the functions are similar but not identical.

This simulation shows that the MOC model is suitable for modelling the outbreaks

of infectious diseases where their infection rate is both heterogenous and depends

on the type of the susceptible individual. The model works well when inferring the

infection rate functions alongside other model parameters, such as the infectious

period distribution rate parameter, and gives us information on how the infection

rate functions are related. Compared to the independent GP model, the variability

in the results is less. This is due to an increased number of assumptions in the model,

but these are only weak assumptions, and we are able to learn plausible values for
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parameters related to these assumptions.

3.5.5.3 Discrepancy Based Model

We now repeat the simulation study, except using the DBM outlined in equation

(3.5.4). Again, we wish to infer the infection rate functions, infection times and

infection period distribution rate parameter. Instead of inferring the covariance

between the two rates as in the MOC model, we infer the difference between the two

functions.

The results for the infection rate functions are shown in figure 3.16 and we see

we can infer both rates well. In a small number of simulations, the estimates for the

infection rate functions over short distances are overestimated, and as the infection

rate for type one individuals is overestimated, the infection rate for type two is also

overestimated. The inference for the infection rate for type two individuals was

slightly more accurate the for type one individuals, this is because this function also

has information for type one individuals. Figure 3.17 shows the ratio of the functions,

which we consider instead of the difference as the GPs are on the log scale. A ratio

of 1 implies that the rates are identical and we can see that in only a few simulations

is this inferred and this is for large pair-wise distances, so we can correctly conclude

that the infection rate functions for the two types are different across the whole range

of distances. The study median of all the ratios is decidedly different from the true

ratio in the later part of the input region and the study medians are spread across a

large range. This is because the infection rate functions asymptotically tend to 0,

and a small variation in values near 0 can lead to ratio near 1. For example that

relative error in β(1) = 10−7 and β(2) = 10−8 is large, but compared to the scale of

the functions, the absolute error is small. This plot has a practical use as we can

quickly identify that about a third as many type two individuals will be infected per

day over short distances as type one individuals, suggesting that control measures

should aimed at type one individuals.

With regard to the results of the other model parameters, which are shown in

figure 3.18, using the DBM has little impact on the accuracy of the results and we
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(a) Estimates for the type 0 infection rate function.

(b) Estimates for the type one infection rate function.

Figure 3.14: The inferred infection rate functions for the MOC model for the simulation

study. The grey lines are the posterior median infection rate functions for each of the

250 data sets. The black line is the median of all 250 infection rate functions, and

the red line is the true infection rate.
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(a) The distribution of the median estimates for

the 250 estimates for γ.

(b) The distribution of the relative error in the

sum of the infection times over the 250 data sets.

(c) The distribution of the 250 median estimates

for the covariance parameter ρ.

Figure 3.15: The results of the MOC model applied to the 250 simulated data sets.

infer the values well and have a similar sized credible interval to that of the MOC

model. The numerical results for the parameters are shown in table 3.4.

3.5.5.4 Remarks on the Simulation Studies

We now compare the results of the three simulation studies. The study medians and

95% confidence intervals are shown in figure 3.19. The independent GP model and

the DBM are almost identical as they share the same prior structure for the type

one infection rate. The MOC model does not give a significantly different result to

the other two models and all models give good results across the entire domain. The

results for the second infection rate are where we can see larger differences between

the models. The 95% credible interval for the DBM is has a higher upper bound than

for the other models, which is an artefact of the higher infection rate for type one
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(a) Estimates for the type 0 infection rate function.

(b) Estimates for the type one infection rate function.

Figure 3.16: The inferred infection rate functions for the DBM model for the simulation

study. The grey lines are the posterior median infection rate functions for each of the

250 data sets. The black line is the median of all 250 infection rate functions, and

the red line is the true infection rate.
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Figure 3.17: The ratio of the two infection rate functions for the DBM.

individuals. However the DBM has a narrower credible interval for large distances,

again because it values are based on the infection rate for type one individuals. The

MOC model has the smallest credible interval, which is because the information for

both types is shared in the GP prior distribution.

For a numerical comparison, we define the maximum absolute error for individual

type t by

AE(t) = max
j,k
|β(τ)(xj,k)− β̂(τ)(xj,k)|

where β̂(t)(xj,k) is the posterior median of the model in question. These values are

given in table 3.5, and show that the MOC model performs best for the type one

infection rate and both the MOC and independent GP models perform well for the

type two infection rate.

3.6 Conclusion

In this chapter we have extended the GP model outlined in chapter two. This has

allowed us to include more information in our model and allow for more variation in
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(a) The distribution of the median estimates for γ.
(b) The distribution of the relative error in the

sum of the infection times over the 250 data sets.

(c) The distribution of the 250 median estimates

for the length scale of function 1.

(d) The distribution of the 250 median estimates

for the length scale of function 2.

Figure 3.18: The results of the DBM applied to the 250 simulated data sets.

Model Error for type one (×10−4) Error for type two (×10−4)

Independent GPs 5.4 1.04

MOC 1.86 1.32

DBM 6.94 2.70

Table 3.5: Maximum absolute error for the estimates for type one and type two

infection rate functions.
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(a) Estimates for the type 0 infection rate function.

(b) Estimates for the type one infection rate function.

Figure 3.19: The median of the 250 estimates for the infection rate functions functions

under each model compared to the true rate for the simulated data.

the spread of the disease. The frameworks we have developed maintain our aim of

inferring infection rate functions without making strict parametric assumptions, or
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choices which lack any real biological or epidemiological justification. The assumptions

that we described in this chapter are mild and in many applications the structures we

have outlined can be justified. This is in comparison to parametric methods, where

the choice of kernel is often arbitrary and difficult to justify. Our methods have been

successfully used alongside methods to infer the other model parameters and the

missing infection times.

The first extension was to allow for our individual-level model to include informa-

tion about the type of the individuals. We did this by assuming the infection rate

depended on the susceptible individual’s type as well as the relationship between the

infector and susceptible individual. We outlined four models: a fixed effects model,

an independent GP model, a multi-output covariance model, and a discrepancy based

model. The fixed effects model assumed the shape of the infection rate was shared

between all types, and the infection rate only differed by scale. This model is an

extension of the work in the previous chapter and gives good results. This assumption

is restrictive as we often have no prior beliefs or evidence that the shape of the

infection rate is the same over different types. To allow for this, we introduced the

multi-output GPs and the remaining three models. Multi-output GPs allow us to

share the learning across types, that is we believe a priori that there is some shared

structure between the infection rate functions for individuals of different types. This is

a less restrictive assumption than for the fixed effects model. The three models differ

in how this structure is described. The Multi-Output Covariance model assumes the

infection rate functions for individual types are correlated, whereas the discrepancy

based model assumes the infection rate for each type is based on the infection rate

for the previous type. In the Independent GP model, we assume the infection rate

for each type is independent of any other type.

These models share two drawbacks: identifiability and a requirement for a large

amount of data. In the fixed effects model, we are unable to fully identify the scale

parameters, merely the ratio between them. In the multi-output GP models, we have

difficulties identifying the length scale parameters, even in data rich situations. We

need to resort to fixing at least one length scale and inferring the remaining parameters.
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As all the other models require more than one GP, they require significantly more

data. The multi-output covariance model and the discrepancy based model make full

use of the data as information can be shared between GPs. In situations where we

have a lack of data, we may need to included either weak or strong assumptions in the

model. Examples of weak assumptions include the monotonicity framework described

in section 2.7.1 and the conditional framework in section 2.6.2. When making stronger

assumptions, we would explicitly break the Bayesian nonparametric framework, for

example, by including a mean function based on a parametric model and reducing

the variance of the GP prior distribution. Despite these potential weaknesses, the

simulation studies have shown that these methods yield good results and can be

successfully implemented.

The main difference between the MOC model and DBM is their intended audience.

From a mathematical viewpoint, being able to characterise the covariance between

two functions is useful and the MOC framework allows us to do this. It also allows us

to distill the relationship between the types into one parameter, ρ. The correlation

between rates however has less practical interpretation. Practitioners are more likely

to be interested in direct comparisons of the infection rate functions than correlation

parameters, as well as how this can be implemented in diseases control measures.

The DBM allows us to directly compare the infection rate functions, and see how

different types are affected. However, if we are interested in comparing the rates over

a small range, we risk not having enough data to draw significant conclusions. The

independent model allows us to do neither of these and does not use the data to the

greatest effect. The fixed effects model gives us insight to the data, but we run the

risk of making false assumptions about the infection rate. Given that the DBM and

MOC model contain the independent GP model and the fixed effects model, these

are superior models, and we recommend their use over the independent models.



CHAPTER 4

Bayesian Nonparametric Methods for Heterogeneous Infection

Rate Functions with Multiple Covariates

4.1 Introduction

So far, we have used our nonparametric methodology to infer the infection rate

functions which depend on a single continuous covariate. We now consider cases

where we allow the infection rate from individual i to j to depend on two continuous

covariates. Examples of this include an outbreak of Foot and Mouth disease where

the infection rate function may depend on the distance between any two farms and

the number of animals on them. The infection rate from individual i to j can be

written as

βij = f(x1,i,j, x2,i,j, . . . , xm,i,j),

where x1,i,j, x2,i,j, . . . , xm,i,j are covariates describing the relationship between indi-

viduals i and j. As in previous chapters, we assume individual i makes infectious

contact with individual j at the time points of a Poisson process with rate βi,j.

Like infection rate functions of one covariate, modelling infection rate functions
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with multiple covariates has typically been done parametrically. A modeller will

propose a parametric form for f and then estimate the model parameters from the

data. In Kypraios (2007), the author proposed a parametric infection rate function

for an outbreak of Foot and Mouth disease that depends on the Euclidean distance

between farms as well as the number of sheep and cattle on each farm. We now recall

this infection rate function from chapter one:

βi,j = (β1(nci)
β2 + (nsi )

β2) · (β3(ncj)
β2 + (nsj)

β2) · β4

d2
i,j + β5

.

Here, nci and nsi and the number of cattle and sheep on the ith farm, di,j is the

Euclidean distance between farm i and j, and β1, . . . , β5 are parameters controlling

the infection rate. This was then analysed in Jewell et al. (2009) and Stockdale (2019).

However, we argue that the choice of parametric form used to model the infection

rate is arbitrary and lacks justification from the data. Instead we develop a Bayesian

nonparametric framework which allows us to learn the infection rate function from

the data.

There are several ways of modelling a function of two variables in a nonparametric

way, and this is more challenging than modelling a function over one variable. We

will use Multi-Input GP prior distributions to do this. This extends the framework

from chapter 2 to allow for multiple inputs. Instead of modelling the infection rate

as a function in one dimension, we now consider it a curve in n dimensions, where

the number of dimensions is the number of covariates we input into the model. One

Multi-input GP method extends the covariance functions to allow for multiple inputs

(Rasmussen and Williams, 2006, §4). This is also known as a Gaussian Random Field

(Abrahamsen, 1997). A commonly implemented method is the Gaussian Markov

Random Field (Rue and Held, 2005) where the prior distribution is placed on a

network and a dependence structure is created between the nodes.

We develop two methods for modelling multi-dimensional infection rate functions.

The first method is an additive method where we consider the covariates separately

and model the infection rate as a sum of n distinct functions. Our second method is

a coupled model where we model the infection rate as a function of all the covariates
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and use the Multi-Input GP method.

4.1.1 Layout of the Chapter

Before we outline our methods for modelling two-dimensional infection rate functions

in epidemic models, we introduce two covariance functions: the multi-dimensional

squared exponential covariance function and the linear covariance function. We

demonstrate the use of each covariance function with a regression example. We

then develop two methods for modelling infection rate functions using Bayesian

nonparametric methods based on the covariance functions in section 4.3 before

comparing the methods in section 4.4. We finish the chapter by demonstrating our

methods in a simulation study in section 4.5.

This chapter extends the methods developed in chapter 2 to allow for multi-

covariate functions to be modelled; for example, when the infection rate function

depends on size and distance. Given the limited amount of data observed, this is

challenging, so we allow for some assumptions to be made to include semi-parametric

methods.

4.2 Further Covariance Functions

In previous chapters, we have used the squared exponential function:

k(xi, xj; α, l) = α2 exp
{
− (xi − xj)2

l2

}
. (1.2)

This can be used to model one dimensional functions which are infinitely differentiable,

and in this chapter we will extend this covariance function into n dimensions. We will

then introduce the linear covariance function, which is used to model one-dimensional

linear functions, full descriptions of which can be found in Rasmussen and Williams

(2006, §4). We demonstrate the use of both covariance functions by way of a basic

regression example.
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4.2.1 Multi-Dimensional Squared Exponential Covariance

Function

We now introduce a covariance function which can take a multi-dimensional input.

When modelling a function with a single input, the squared exponential covariance

function depends on (xi−xj)2, the squared distance between the two input points. In

multiple dimensions, the equivalent is given by (xi − xj)
T (xi − xj). The multi-input

squared exponential covariance function is therefore given by:

k(xi,xj;α, l) = α2 exp
{
−(xi − xj)

TΛ(xi − xj)
}
, (4.1)

where α is the signal variance parameter and Λ is the length scale matrix. There are

several options for Λ, the simplest being Λ = lI, where I is the identity matrix. In

this case we assume the length scale in the same in both dimensions and is given

by l. If we expect the length scales to differ, we can construct the vector of length

scales l = {l1, . . . , lm} and set Λ = diag(l)−2. We can also set Λ to have non-zero

off-diagonal elements, which represents an interaction between the terms. When

designing Λ, we need to ensure the resulting covariance matrix is a valid symmetric

and positive semi-definite covariance matrix.

To choose the most appropriate covariance structure, we consider the effect of

the covariance function geometrically. As we are demonstrating this geometrically,

we assume the input space is two-dimensional. However this can be extended to

any number of dimensions. Consider the point xi = (xi,1, xi,2). With the length

scale matrix Λ = lI2, the covariance is the same between xi and any point on the

circle centred at xi with radius l. For the length scale matrix Λ = diag(l1, l2)−2, the

covariance between xi and any point on the ellipse centred at xi with semi-major

axis l1 and semi-minor axis l2 is the same. Allowing for off-diagonal terms rotates

the ellipse. In Rasmussen and Williams (2006, §4), the authors consider the matrix

Λ = AAT +diag(l1, l2)−2, where A is a vector giving the direction of greatest variation.

The choice of covariance structure depends on the modelling scenario. For

example, in an outbreak of Avian Influenza we may want to consider the direction

of the prevailing wind or the direction in which migratory birds travel. To do this
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we would include off-diagonal terms in the length scale matrix, maximising the

covariance in the direction of interest. This allows us to include some biological and

epidemiological assumptions in the model without the need for strict parametric

assumptions.

Figure 4.1 shows two samples from a zero-mean GP using the multi-input covari-

ance function. We used two input sets x = {0, 0.1, 0.2, . . . , 5}, y = {0, 0.1, 0.2, . . . , 6}.

We set the signal variance parameter, α, to be 3 and the length scale matrix to be

Λ = diag(l1, l2)−2. In figure 4.1(a) both length scales are the same, whereas in 4.1(b)

the length scale for the y dimension is six times as long as that for the x dimension.

This results in the function moving much more quickly over the x domain than the

y domain. For example, taking either a horizontal or vertical slice in figure 4.1(a),

we note the values do not vary considerably. This is the same in figure 4.1(b) for

horizontal slices, as the length scale is also 6. However when taking vertical slices, we

see much larger variability, as the length scale has been reduced.

4.2.1.1 Two-Dimensional Regression

We now outline the coupled model in a regression setting. We wish to infer the

function f in the following model:

zi,j = f(xi, yj) + εi,j, εi,j
i.i.d∼ N(0, σ2).

We denote x = {x1, . . . , xn}, y = {y1, . . . , ym} and z = {z1,1, . . . , zn,m}. The likeli-

hood function for this model is given by:

π(z|f, σ2) ∝ exp

{
− 1

2σ2

n∑
i=1

m∑
j=1

(zi,j − f(xi, yj))
2

}
.

We model the function f by placing a GP prior distribution on it as follows

f ∼ GP(0, Σ), Σi,j = k ((xi, yi), (xj, yj); α,Λ) ,

where Λ = diag(lx, ly)
−2. As this is a toy example, we assume that σ2 is known

meaning we can write down the posterior distribution as follows:

π(f |z, σ2, α, lx, ly) ∝ exp

{
− 1

2σ2

n∑
i=1

m∑
j=1

(zi,j − f(xi, yj))
2

}
GP(f ; 0,Σ).
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(a) A sample from a GP with length scales (6, 6).

(b) A sample from a GP with length scales (6, 1)

Figure 4.1: Samples from a GP prior distribution with multi-input squared exponential

covariance function in equation (4.1) and different length scale values. The signal

variance parameter was set to α2 = 9.
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To sample from this distribution, we construct an MCMC algorithm. We use the

Metropolis-Hastings algorithm with an underrelaxed proposal mechanism to generate

samples of the function f . To demonstrate this method, we use the following model:

zi,j = log(xi + 1)
√
yj + 2 + εi,j, εi,j

i.i.d∼ N(0, 0.22).

We use the input sets x = {0, 0.1, . . . , 5}, y = {0, 0.1, . . . , 6} and fix the hyperparam-

eters to be α = 4, lx = 5 and ly = 6. These values were chosen based on preliminary

runs of the algorithm; it is possible to learn plausible values for these parameters,

but as this is a toy example, we choose not to. We sample from the posterior density

15,000 times, removing the first 100 samples as a burn-in period. The results are

shown in figure 4.2 and show good results for this dataset. The relative largest errors

are in the top left and bottom right corners of the surface, where both x and y values

are small.

(a) The posterior mean surface. (b) The true surface, f(x, y) = log(x+ 1)
√
y + 2.

(c) The relative error at each point.

Figure 4.2: The results of the 2D nonparametric regression example in section 4.2.1.1

with multi-input squared exponential covariance function.



Chapter 4: Modelling Multiple Covariate Infection Rate Functions 131

Type Input Scale Output Scale Functional Form

Linear Linear Linear f = px+ q

Exponential Linear Logarithmic f = Q exp{px}

Monomial Logarithmic Logarithmic f = Qxp

Table 4.1: The three possible functional forms for samples from a GP prior distribution

with a linear covariance function.

4.2.2 The Linear Covariance Function

The linear covariance function takes a one-dimnesnion input and is given by:

klin(xi, xj;α0, α1, α2) = α2
0 + α2

1(xi − α2)(xj − α2), (4.2)

and it is sometimes referred to as the dot product covariance function. Placing a

GP prior distribution on a function f using a linear covariance function results in

samples taking the following form:

f ∼ GP (0,Σ) , Σi,j = klin(xi, xj;α0, α1, α2), =⇒ f = px+ q, p, q ∈ R

Although samples drawn from a GP prior distribution with this covariance function

are linear, we are able to expand the type of functions we can model slightly by taking

either the output alone or both the input and the output to be on a log scale. This

fits in with our use of the function g = exp, to ensure the function is non-negative. As

we are using the exponential function, we can model monomial functions by taking

both the input and the output on log scales, which is shown by:

log f ∼ GP (0,Σ) , Σi,j = klin(log xi, log xj;α0, α1, α2) =⇒ log f = p log x+ q

=⇒ f ∝ xp.

Similarly, by taking the output on a log scale, and the input on a natural scale, we

can model exponential functions. Samples from all three combinations are shown in

figure 4.3 and table 4.1. Although this covariance function can model three types of

function, this choice must be made before the data is observed.
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(a) Samples drawn on a linear scale. (b) Samples drawn on a log-linear scale

(c) Samples drawn on a log-log scale

Figure 4.3: Three samples from a GP with a linear covariance function. The

hyperparameters used were {α0, α1, α2} = {3, 1, 0}. Each of the three plots show the

effect of different scales on the inputs and outputs.

The linear covariance function has three hyperparameters, α0, α1, α2. In this

chapter, we will set the location parameter α2 = min x, which forces the smallest

covariance value to be α2
0. The final parameter is the scaling parameter α1, which

in part controls the maximum covariance. The linear covariance function is non-

stationary and the variance increases as x increases. It is possible to perform inference

for these hyperparameters. However, it can be challenging, and they do not have the

same physical interpretation as the length scale in the squared exponential function.

We recommend setting α1 and α2 with respect to input data such that GP prior

distribution is vague, yet still contains information about the data points. That is

α1 should be large enough to increase the covariance of data points near zero, but

not overpower the covariance of larger points. Similarly, α2 should be small enough

so that the covariance between large points is of a similar order to the covariance
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between small points. It should, however, should be large enough to ensure the

covariance between points is distinct. These decisions should be made with the input

space in mind, which can be challenging.

Instead of using a GP prior distribution with a linear covariance function, we

could propose the model f(x) = px + q and place prior distributions on p and q.

However, this model has a different posterior distribution to using the GP prior

distribution . We have chosen the linear covariance function over the parametric

linear model because it is in keeping with our other proposed GP models.

4.2.2.1 Regression with a Linear Covariance Function

We now demonstrate the linear covariance function by applying it to a regression

problem. We generate 100 input points, x = {x1, . . . , x100}, uniformly at random

from {100, 101, . . . , 30, 000}. We generate observations y = {y1, . . . , y100} by:

yi = x0.8
i exp εi, εi ∼ N(0, 0.52).

We therefore consider the model:

log yi = f(log xi) + εi.

We place the following GP prior on the function f :

f ∼ GP(0, Σ), Σi,j = klin(log xi, log xj).

The likelihood function is given by:

π(y|f, σ2) =
1√

(2πσ2)n
exp

{
− 1

2σ2

100∑
i=1

(log yi − f(log xi))
2

}
,

and by Bayes’ Theorem, the posterior distribution is:

π(f |y, σ2) = GP(f ; 0, Σ)N(log y; f, σ2I).

We sample from this density using an MCMC algorithm with an underrelaxed proposal

mechanism, as described in section 2.5, whereby given the current function f , we

propose a new vector f ′ by:

f ′ =
√

1− δ2f + δν, ν ∼ GP(0, Σ),
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which is accepted with probability

pacc =
π(y|f ′, σ2)

π(y|f, σ2)
.

The results of 10,000 iterations of the MCMC algorithm are shown in figure 4.4,

and we see the method is effective resulting in a good estimate for the true function.

4.3 Nonparametric Methods for Two Covariate

Infection Rates

Now we have introduced the linear and two dimensional covariance functions, we

extend our method from the previous chapters to model infection rates with two

continuous covariates. The first two methods will be additive. We consider the

covariates independently of each other. We model the infection rate over the covariates

separately and then combine them to compute the pairwise infection rate.The third

method is a coupled model, where we consider the two covariates to be dependent

and infer the infection rate between each pair of individuals.

We consider two models for the infection rate function. The first is the additive

model where we assume the infection rate from individual j to k is given by:

βj,k = g(fx(xj,k) + fy(yj,k)).

The second model is the coupled model, where we assume the infection rate is given

by:

βj,k = g(f(xj,k, yj,k)).

Otherwise, the model remains the same and we recall the corresponding likelihood

function in equation (2.1)

π(i, r|β, λ, γ, κ, iκ) = exp

{
−

n∑
j=1

N∑
k=1

βj,k ((rj ∧ ik)− (ij ∧ ik))

}
n∏
j=1
j 6=κ

∑
k∈Yj

βk,j


×

n∏
j=1

fD(rj − ij|λ, γ).
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(a) The results on a log-log scale

(b) The results on the natural scale

Figure 4.4: The posterior median and 95% credible interval for the functions in the

regression problem in section 4.2.2.1 with linear covariance functions.
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4.3.1 The Additive Model

In the additive method, we assume that infections occur according to two independent

Poisson processes underpinning the infection rate, the first according to the covariate

x with rate fx, and the second according to y with rate fy. We superimpose these

processes to model the infection rate function by:

βj,k = g(fx(xj,k) + fy(yj,k)),

where g is the transformation function to ensure βj,k is positive. We place independent

GP prior distributions on fx and fy, as follows:

fx ∼ GP(0, Σx) (Σx)j,k = kx(xj, xk)

fy ∼ GP(0, Σy) (Σy)j,k = ky(yj, yk),

and a graphical representation of the model is given in figure 4.5.

x y

fx fx

β

Figure 4.5: The additive GP prior distribution structure for the epidemic model.

For the epidemic model, we must choose suitable covariance functions to construct

the covariance matrices for fx and fy. The most straightforward option is to continue

using the squared exponential covariance function, shown in equation (1.2), as this

can model a wide range of smooth functions. As the squared exponential function

allows us to model such a large range of functions, it can cause the Markov chain to be

slow to converge and this problem is exacerbated in two dimensions. As we typically
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only observe removal times of individuals and these are not wholly informative, we

may struggle to learn this function well. To overcome this, we suggest using the

linear covariance function for one of the GP prior distributions. Using the linear

covariance function is incredibly restrictive as we are only able to model functions

that are linear or linear on the log or log-log scale. Reducing the number of functions

we can model does increase the rate of convergence and improves the mixing of the

Markov chain. This contradicts the overarching theme of the thesis somewhat, to

avoid making strict parametric assumptions, but given the limited data, we may be

forced to implement pragmatic, parametric assumptions.

If our chosen transformation function is g = exp, we have three choices for the

covariance functions in the additive model:

1. Both kx and ky are the squared exponential function,

2. kx is the squared exponential covariance function; ky is the linear covariance

function with input on the natural scale, giving an exponential function and

3. kx is the squared exponential covariance function; ky is the linear covariance

function with input on the log scale, giving a monomial function.

As for the remaining model parameters, we use the following independent prior

distributions:

l ∼ Exp(χl), (4.3)

γ ∼ Exp(χγ), (4.4)

κ ∼ U[1, . . . , n], (4.5)

iκ ∼ −z, z ∼ Exp(χκ), (4.6)

where l is the length of fx, γ the infectious period distribution rate parameter, κ

the label of the first infected individual and iκ the time at which they were infected.

Combining these distributions with likelihood function in equation 2.1 by Bayes’
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theorem, the posterior distribution is given by:

π(β, γ, κ, iκ, lx|r, λ, α, ly) ∝π(i, r|fx, fyλ, γ, κ, iκ)π(fx|lx)π(lx)π(fy)π(γ)π(κ))

×π(iκ|κ)π(fy)π(γ)π(κ)π(iκ|κ)

∝ exp

{
−

n∑
j=1

N∑
k=1

g(fx(xj,k) + fy(yj,k)) ((rj ∧ ik)− (ij ∧ ik))

}

×
n∏
j=1
j 6=κ

∑
k∈Yj

g(fx(xk,j) + fy(yk,j))

 n∏
j=1

fD(rj − ij|λ, γ)

×GP(fx; 0,Σx)GP(fy; 0,Σy) exp{−lxχl} exp{−γχγ}

× exp{iκχκ}.

We have replaced βj,k by its nonparametric model g(fx(xj,k) +fy(yj,k)). We only need

to make minor adjustments to the overall MCMC algorithm for this model. When

sampling the functions fx and fy, we again use the MPA to allow for large data sets

and this methods works with both the squared exponential and linear covariance

functions. To use the MPA, we first construct training input sets for the GP prior

distributions and we denote them by x̄ and ȳ. We then propose new functions f ′x̄

and f ′ȳ over the training sets, and compute the proposed value of β by:

β′ = g(Σx,x̄Σ−1
x̄,x̄f

′
x̄ + Σy,ȳΣ−1

ȳ,ȳf
′
ȳ),

where Σx,x̄ is the covariance function for x applied to the full data set x and the

training set x̄, and similarly for Σy,ȳ. The function g is our chosen transformation

function to ensure the infection rate is positive; letting g be the exponential function

and denoting the projected GP samples by f ′x and f ′y gives

β′ = ef
′
xef

′
y .

As the functions fx and fy are independent of each other we store their covariance

matrices separately; it may be possible to use a block covariance matrix, but this

would be prohibitively large to store and the off-diagonal blocks would be 0. The full

MCMC algorithm is given in algorithm 10.
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Algorithm 10 Structure of the Additive Model MCMC algorithm

1: Initialise the chain with values γ(0), f
(0)
x , f

(0)
y ,l

(0)
x , and i(0)

Repeat the following steps

2: Sample γ from the conditional distribution π(γ|λ, i, r) using a Gibbs step

3: Sample fx and fy individually using an underrelaxed proposal mechanism for a

Metropolis Hastings step

4: Sample the appropriate GP hyperparameters

5: Sample κ and iκ using a Metropolis Hastings step

6: Update an infection time

4.3.2 The Coupled Model

We now propose a model where the dependency on x and y cannot be separated and

we model the infection rate function by:

βj,k = g(f(xj,k, yj,k)).

A graphical representation of the structure of this model is given in figure 4.6.

To apply this model to an epidemic setting, we first construct the covariance

matrix using the 2D squared exponential covariance matrix. The prior distribution

for β is therefore given by

β = g(f), f ∼ GP(0, Σ), Σi,j = k((xi, yi), (xj, yj); α,Λ). (4.7)

For this model, we need to infer the infection rate β = g(f), the GP length scales,

lx and ly, as well as the infectious period distribution parameter λ and the infection

times i. We have found it challenging to infer both GP length scales simultaneously

and have encountered issues distinctly identifying them. This is because there is only

one covariance value for each pair of individuals, and we are inferring two length

scale parameters from this one covariance value. We recommend fixing either length

scale, say ly, and inferring the other. Multiplying the likelihood function in equation

(2.1) by the multi-input GP prior in equation (4.7) and the prior distributions in
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equations (4.3) – (4.6) gives the following posterior distribution:

π(β, γ, κ, iκ, lx|r, λ, ly, α) ∝ π(i, r|f, λ, γ, κ, iκ)π(f |lx, ly)π(lx)π(γ)π(κ)π(iκ|κ)

∝ exp

{
−

n∑
j=1

N∑
k=1

g (f(xj,k, yj,k)) ((rj ∧ ik)− (ij ∧ ik))

}

×
n∏
j=1
j 6=κ

∑
k∈Yj

g (f(xk,j, yk,j))

 n∏
j=1

fD(rj − ij|λ, γ)GP(f ; 0,Σ)

× exp{−lxχl} exp{−γχγ} exp{−iκχκ}.

The full MCMC algorithm is shown in algorithm 11.

x y

f

β

Figure 4.6: The coupled GP prior distribution structure for the epidemic model.

Algorithm 11 Structure of the Coupled Model MCMC algorithm

1: Initialise the chain with estimates γ(0), f (0), l
(0)
x , and i(0)

Repeat the following steps

2: Sample γ from the conditional distribution π(γ|λ, i, r, χγ) using a Gibbs step

3: Sample f using an underrelaxed proposal mechanism for a Metropolis Hastings

step

4: Sample lx using a Metropolis Hastings Random Walk step

5: Sample κ and iκ using a Metropolis Hastings step

6: Update an infection time
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4.4 Comparison of the Models

In this section we have constructed two models: the additive model and the coupled

model. There are two types of additive models, one where both functions are modelled

using a GP with a squared exponential kernel, and one where we assume one of the

functions to be linear on either a natural or log scale. These models allow us to

consider the same problem in different ways. As in the previous chapter, the models

place emphasis on different outputs and serve different audiences. They also have

different approaches to large data sets or large amounts of missing data.

The additive model allows us to model the effect of the different covariates and

see how they differ. This is of interest to practitioners. For example when developing

control measures for an outbreak of Foot and Mouth disease, it is useful to know

whether to place high priority on preventing infections between nearby farms or from

farms that have a large number of animals present. The coupled method, however,

gives the infection rate between each pair of farms and as such is more suited to

a mathematical analysis with the posterior and posterior predictive distributions.

This model is therefore well suited to statistical analysis of the outbreak and making

predictions about outbreaks on the data set.

The models also differ in the assumptions we need to make when dealing with

limited data. The additive model may require strict parametric assumptions about the

shape of the function of one of the covariates. When using a Bayesian nonparametric

framework, this is undesirable. It is nevertheless a pragmatic approach. The coupled

approach does not require such strong assumptions as the coupling allows information

to be shared between covariates.

4.4.1 Extending the Models for more than two Covariates

In this chapter, we have considered outbreaks where the infection rate depends on

two covariates only. The framework can be extended to include more covariates. For

the additive model, we can place a GP prior distribution on the function for each

covariate and their sum gives the log infection rate functions. For the coupled model,
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we can extend the covariance function into any finite number of dimensions. However,

this becomes increasingly difficult as the amount of information contained in the data

is limited and we may not be able to learn about all of the covariates from the data.

To overcome this lack of information in the data, we can make a series of in-

creasingly strict assumptions. The first is to use the additive linear model, where we

assume any number of the functions for individual covariates are linear or monomial.

We can also form a more traditional semi-parametric model where we use GP prior

distributions for some covariates and propose parametric forms for others. Another

method is to strengthen the assumptions we make about the infection times, for

example assuming a constant infectious period.

4.5 Simulation Studies

We now examine the success of the models using simulated data. We simulate

250 outbreaks of a disease among 1,000 individuals, where the infection rate from

individual j to individual k is given by:

βj,k =
1

1, 000
exp{−3dj,k}

√
wk
100

,

where dj,k is the Euclidean distance between them and wk is the weight of individual

k, the individual being infected. The weights were drawn uniformly at random from

the interval [100, 1000] and we label the individuals by weight, from smallest to

largest. We generate the positions of the individuals by:

xi,1
i.i.d∼ N(0.5, 0.12), i = 1, . . . , 500,

yi,1
i.i.d∼ N(0.5, 0.12), i = 1, . . . , 500,

xi,1
i.i.d∼ N(1.5, 0.32), i = 501, . . . , 1000,

yi,1
i.i.d∼ N(1.5, 0.32), i = 501, . . . , 1000,

so that there are two clusters of individuals. We choose to have two clusters for

similar reasons to those in chapter 2 – to test the model’s ability to overcome few

intracluster transmissions. Our justification for the weights are related to the Avian
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Figure 4.7: The population used for the simulation studies in section 4.5. The

coordinates of the individuals are shown with the size of the individuals representing

the weight.

Influenza data set we analyse in chapter 5. In outbreaks among livestock hobby

farmers are often affected. These are typically households in towns or villages who

keep a handful of animals in their back garden, and as such there will be a large

number of farms with a small number of animals in the same cluster. Figure 4.7

shows the population structure.

4.5.1 The Additive Squared Exponential Model

For the squared exponential model, we place independent GP prior distributions on fx

and fy, the values for the infection rate functions for distance and weight respectively.

For both prior distributions we set α = 10, which results in a vague distribution.

For these data sets and combined with the squared exponential covariance functions,

we found it challenging to infer both length scales, so we chose to set lx = 4km

and ly = 15, 000. These values were chosen by generating samples from the prior

distributions with various length scales.
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Figure 4.8 shows the results of the simulation study. We normalise the results such

that the spatial component for immediate neighbours is 1, i.e., fx(0) = 1. This allows

us to compare the results from each of the 250 datasets. The results for the distance

function closely match the true fucntion. However the variance for these functions

is much higher than for the one covariate simulation study. For the multi-covariate

study, we do not see functions increasing at the furthest pair-wise distances as we did

in the single covariate case (for example see figure 2.12). Despite there being more

information in these specific cases, we require the model to learn more than in the

single covariate case and the model struggles to capture the effects of both covariates.

The results for the weight covariate are substantially worse than for the distance

covariate. The model had difficulties when inferring this rate. The first reason for

this is there being fewer data points for this covariate; for a population of size N ,

we observe N weights, however we observe N(N−1)
2

pair-wise distances. The second

reason is that the data was less informative about this covariate than the spatial

element. It still, however, captures the overall shape. This poor performance is one

motivation for implementing the linear model.

4.5.2 The Additive Linear Model

We now turn our attention to the additive linear model. We place a GP prior

distribution with a squared exponential covariance function on fx, the function used

to model the distance element of the infection rate, and a GP prior distribution with

a linear covariance function on fy, the function modelling the size-based function on

the infection rate. We place the prior distribution of fy over the logarithm on the

size space and, as placing the prior distributions on log β, fy will model monomial

functions. To allow for uncertainty between pairs of individuals with small sizes, in

the linear covariance function, we set α0 = 5, and to reduce the impact of very large

individuals, we set α1 = 0.01. In the squared exponential function, we set α0 = 10

and placed a vague exponential prior on the length scale to infer this parameter.

The results of functions fx and fy are shown in figure 4.9, as there are identifiability

issues for this model, we scaled the results so log fx(0) = 0 and log fy(0) = 0. Theses



Chapter 4: Modelling Multiple Covariate Infection Rate Functions 145

(a) The inferred functions for the distance part of the infection rate.

(b) The inferred functions for the size part of the infection rate.

Figure 4.8: The inferred infection rate functions for the additive squared exponential

model simulation study in section 4.5.1. The grey lines are the posterior median

infection rate functions for each of the 250 data sets. The black line is the median of

all 250 infection rate functions and the red line is the true infection rate function.
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issues stem from us treating the single function of interest β as the sum of two

functions. We can see that we infer the shape of both functions well. However, we

overestimate both functions slightly on average. There is much larger uncertainty

around the estimates for the size function, this is because there is less data available,

and this covariate only depends on the infected individual, not the relationship

between both the infector and infected individual.

4.5.3 The Coupled Model

We now repeat the inference using the coupled model. Figure 4.10(a-b) shows the true

pair-wise infection matrix, our posterior mean pair-wise infection matrix, on a log

scale and the relative error for each pairwise rate. These figures display the posterior

median for each pair-wise infection rate βi,j. Figure 4.10(c) is the most revealing,

showing that the error in the model is relatively small for individuals infecting other

individuals in the same cluster, but outside of the cluster we tend to overestimate

the infection rate. We also see that the model overestimates the infection rate for

individuals with a small weight. Due to the size of the population, figure 4.10 is

not suited to understanding the results of the model, and so we instead consider the

posterior median for the infection rate function f .

The median for the pseudo-function f̄ is shown in figure 4.12 and we see the study

median is close to the true rate. In order the visualise this function, we plot the

posterior median of the pseudo-function, which is over a smaller pseudo dataset and

on the log scale. We choose to do this as plotting the full function for each outbreak

was not feasible. We do see that we overestimate the infection rate for the first 12

individuals, which all have small weights. This figure also shows the uncertainty is

much larger when the distance between individuals is larger, this corresponds to the

log infection rate functions between -12 and -10. The reason for this uncertainty is

that we see many intra-cluster infections, but fewer inter-cluster infections, meaning

the model has less data to learn from.
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(a) The inferred functions for the distance part of the infection rate.

(b) The inferred functions for the size part of the infection rate.

Figure 4.9: The inferred infection rate functions for the additive linear simulation

study in section 4.5.2. The grey lines are the posterior median infection rate functions

for each of the 250 data sets. The black line is the median of all 250 infection rate

functions and the red line is the true infection rate function.
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(a) The posterior mean pairwise infection matrix (b) The true pairwise infection matrix

(c) The relative error for pairwise infection rates

Figure 4.10: The pair-wise log infection rates for each pair of individuals in the coupled simulation study in section 4.5.3. The

posterior median value for βi,j is given in row i column j. We recall that there are two clusters of individuals and the individuals

are ordered from smallest to largest weight.
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The results for the remaining parameters are shown in figure 4.11. Both the

infectious period distribution rate parameter and the sum of the infection times are

inferred well. We can also infer the length scale of the GP for the weight component.

4.5.4 Remarks on the Simulation Studies

In figure 4.13 we directly compare the three models, by computing the relative error

in the posterior means for β600,j. We see the errors in both the size and distance

parts. We recall that the individuals are labelled by weight, so the individuals with

the smallest weights are first. Considering the first 100 individuals, we see that all

models overestimate the infection rate to these individuals, the coupled model in

particular. By introducing the log-linear assumption, we are able to reduce this bias,

as we are forcing the model to take smaller values in this region. The other systematic

bias is in the distance function, and we recall the individuals are divided into two

clusters, with individuals 1,...,500 in the first and the remaining in the second cluster.

There is no systematic bias when estimating the infection rate to individuals in the

same cluster as individual 600, but infection rates in the other cluster are consistently

overestimated by all models. This is because the individuals are further away and we

observe fewer infections between clusters. Therefore the model has fewer observations

from which to learn.

Despite there being systematic biases in the results caused by the lack of data and

few assumptions in the model, the simulation studies have shown our methodology

can be effective. Alongside the infection rate function, we were also able to infer model

hyperparameters and the infection times. The best results come from the model with

the linear kernel, which is because we are including an additional assumption, which

is true, into the model. As we need to include additional assumptions in the model,

and considering our aim was to reduce the number of assumptions about the infection

rate function, this suggests we are reaching on the borderline with what is possible

with this methodology with this amount of data. To improve results and extend the

models further, we would either need to observe a large amount of data, or observe

infection times.
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(a) The distribution of the 250 estimates for γ.

(b) The distribution of the 250 estimates for the

relative error in the sum of the infection times

(c) The distribution of the 250 estimates for l, the

weight length scale

Figure 4.11: Results for the coupled model simulation study in section 4.5.3 for the

infectious period distribution and length scale parameters.
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Figure 4.12: The infection rate function before projection onto the full dataset and transformation to a positive function. The

sparse ID refers to the MPA and the pair of observations in the pseudo data set.
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Figure 4.13: The relative error in the infection rate from individual 600 to each other individual, β600,j.
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4.6 Conclusion

In this chapter, we have introduced new models allowing infection rates to depend

on two relationships between the infected and susceptible individuals. For example

the distance between them and the size of the susceptible individual. We proposed

three ways of modelling this problem: an additive model, an additive model with

linear assumptions, and a coupled model. In the additive models, we assumed that

the two relationships have no influence on one another and they could be considered

separately. In the coupled model, we considered the covariates jointly, assuming they

cannot be considered separately. The structure of the model is ultimately a modelling

choice, all constructions having advantages and being intended for different audiences

and purposes. The additive models allowed us to easily see the shape of the functions

for each covariate, which may be useful when developing disease control strategies.

Conversely, the construction of the coupled model allowed us investigate the pair-wise

infection rates and make predictions via the posterior predictive distribution.

These methods require a large amount of data to return good results without

systematic bias. In our simulation studies, we have shown that even with 1,000

individuals in the population, there are still irregularities in the results, particularly

with individuals with a smaller weight. Another weakness was that we overestimated

transmissions between clusters as we do not observe many intra-cluster infections.

However, given that we have made much fewer assumptions than in a a comparable

parametric framework, we are still able to infer the infection rate functions well. This

method can be successfully combined with existing methods for inferring the other

model parameters and unobserved infection times. Observing infection times would

greatly improve the accuracy of the model, and improve results.

We have developed methods for extending our models for the infection rate

functions which have more than two inputs. As the number of inputs increases, the

amount of data or strength of assumptions about the function must also increase.

Despite this problem, we were still able to infer the infection rate functions alongside

the other model parameters and estimate the times individuals were infected.



CHAPTER 5

Bayesian Nonparametric Methods for Individual-Level

Stochastic Epidemic Models in Practice

5.1 Introduction

The spread of diseases on farms can pose a high risk to public health and food

chains. Governments have a number of powers to control the spread of diseases,

including culling animals that are already or at risk of being infected. Developing an

effective culling strategy can be challenging as the government has to ensure enough

animals are culled to eliminate the disease, but minimise the amount of money paid

in compensation to farmers, as well as minimising the economic impact on the wider

agriculture industry.

If we are able to estimate the pair-wise infection rate between farms, we can

improve the culling strategy in future outbreaks of the disease. Once we have inferred

the infection rate functions, we can use predictive simulation techniques to simulate

outbreaks of a disease. We can implement culling strategies in the simulation to see

their effect. For example, in Backer et al. (2015), the authors fit a model to outbreak

data of Avian Influenza in the Netherlands and estimate the economic impact of
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various culling and vaccination strategies in controlling an outbreak. In Probert et al.

(2018), the authors analyse the effect of culling farms in two outbreaks of Foot and

Mouth disease, one in the UK and one in Japan, and develop a method for making

decisions about control strategies while the outbreak is ongoing.

In this chapter, we will analyse outbreaks of two diseases, Avian Influenza and

Foot and Mouth disease, with the aim of constructing an accurate model of the

outbreak and using this to investigate disease control strategies. Both Avian Influenza

and Foot and Mouth disease have been widely studied by infectious disease modellers.

For example, outbreaks of Avian Influenza have been studied in the Netherlands

(Elbers et al., 2004; Boender et al., 2007) and Thailand (Retkute et al., 2018). The

outbreak of Foot and Mouth disease we analyse has been studied extensively (see e.g.

Keeling, 2001; Lawson and Zhou, 2005; Diggle, 2006; Kypraios, 2007; Jewell et al.,

2009; Stockdale et al., 2018; Probert et al., 2018).

We will first analyse an outbreak of Avian Influenza. In 2003, there was a large

outbreak of Avian Influenza in the Netherlands in which over 300 million birds were

culled, 90 people were infected with the virus and one person died as a consequence

(Stegeman et al., 2004). This dataset poses interesting problems as there is a clear

spatial element to the spread of the disease (see figure 5.1), which we will quantify.

But also, as the authorities pre-emptively culled farms to control the spread of the

disease, we have a large number of farms whose disease status in unknown. The

second outbreak we will analyse is the 2001 outbreak of Foot and Mouth disease

in the UK. During this outbreak, livestock on more than 2,000 farms were culled

(Stockdale et al., 2019) and the had an economic impact of over £8 million (Jewell

et al., 2009). There is evidence that different animals are susceptible to the disease

in different ways (Alexandersen et al., 2003) and so we must consider the type of

animals on each farm. To model this outbreak, we will implement our methods for

multi-type models and analyse how susceptible different types of farms are to the

virus.

Having developed Bayesian nonparametric methodology for modelling the outbreak

of infectious diseases, we now apply this to two data sets mentioned above. We will
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model the infection rate between two farms without making strict assumptions about

the parametric form or make any assumption which lack any biological justification.

As well as inferring the infection rate functions, we will infer other parameters such as

the times farms were infected and the infectious period distribution rate parameter.

5.1.1 Layout of Chapter

We first analyse an outbreak of Avian Influenza in the Netherlands. As well as inferring

the infection rate nonparametrically, we use the posterior predictive distribution to

investigate the effects of various culling strategies on future outbreaks. We then

investigate an outbreak of Foot and Mouth in Disease in the UK, where we use our

MOGP method to quantify the difference between cattle, sheep, and cattle and sheep

farms.

In this chapter, we are able to use our Bayesian nonparametric methods to

estimate the infection rate functions in both outbreaks. In the Avian Influenza,

we identify which pre-emptively culled farms were likely to have been infected and

analyse possible culling strategies using the posterior predictive distribution, which

has not been done before. As we are using Bayesian nonparametric methods, we

are better able to quantify the uncertainty in the data, and take this uncertainty

into account when making predictions by using the posterior predictive distribution.

In the outbreak of Foot and Mouth disease, we are able to better analyse how the

infection rate between farms with two types on animals and one type of animals are

related, using both the Multi-Output Covariance model and the Discrepancy Model.

5.2 Avian Influenza

Highly Pathogenic Avian Influenza is an illness caused by a virus. It is most common

in birds, but can also be transmitted from birds to humans and, for some strains,

between humans. Highly Pathogenic Avian Influenza can cause severe problems for

poultry farmers. The symptoms for birds include: lack of appetite, reduced mobility,

respiratory problems and ultimately death (Velkers et al., 2006). In countries with
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well developed control strategies, if the poultry on a farm are infected with a highly

pathogenic strain of the virus, the birds on the farm are culled and the farmer is

compensated for the loss of livestock (Backer et al., 2015). The virus is also fatal to

humans, though the transmission rate between humans is typically much lower than

between birds (Stegeman et al., 2004).

In this section, we begin by giving an overview of a large-scale epidemic of Avian

Influenza in the Netherlands from 2003. We review the current literature on this

outbreak, examining the model that has been used on this data set previously. We

then apply our new nonparametric methods to infer the infection rate and we compare

our results to analyses using parametric models. Finally, we investigate various culling

strategies and their economic impact, which has not been done in a Bayesian way.

5.2.1 An Epidemiological Overview

In the Netherlands in 2003, a large outbreak of the highly pathogenic Avian Influenza

A/H7N7 virus occurred, which resulted in the death of one veterinarian, the non-fatal

infection of 89 others, and the culling of over 30 million birds. Of the 5,397 bird

farms in the Netherlands, 233 were confirmed to have been infected immediately after

the outbreak was finished, and over 1,200 farms with an unknown infection status

were pre-emptively culled (Boender et al., 2007). The locations and status of the

farms are shown in figure 5.1. Several poultry farms in Belgium and Germany were

also infected and control measures were introduced in these countries as well. Before

applying our nonparametric methods, we first outline the timeline of the outbreak

and how the infection spread.

5.2.1.1 A Brief Timeline

The European Commission has made available a complete chronology of this outbreak

covering all infections, directives implemented, and safeguarding measures used in

the Netherlands, Germany, Belgium, and Luxembourg (Director Generate Health

and Consumers, 2003). We now summarise the key events in the outbreak in the

Netherlands.
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Figure 5.1: The locations and statuses of poultry farms after the outbreak of Avian

Influenza A in the Netherlands in 2003.
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The first recorded case of Avian Influenza in this outbreak occurred on the 28th

February 2003 on a Layer Farm in a bird farming area in the central Netherlands.

The cause of this infection is suspected to be wild fowl infecting birds on this farm

with a low-pathogenic strain of the H5 or H7 viruses. This strain then mutated into

a highly pathogenic strain and spread among one layer flock on the farm.

The following day, all movements of poultry and eggs were banned both nationally

and internationally. The government of the Netherlands implemented an EU directive

imposing protection zones around infected farms, introducing disinfection points on

farms and ensuring poultry on infected farms were kept indoors. On the 3rd March,

at least 17 farms were confirmed to have been infected and the government started

to cull all infected farms. On 5th March, the culling was expanded to include any

farm within a 1 km radius of a farm which was infected.

The following week, nationwide testing for the virus began. The testing suggests

the infection had now spread to a region much further south of the first cases, as well

as farms on the border with Belgium. By this point over 2.4 million birds had been

culled, and as a result of the new areas being infected, the government was emptying

farms around the infected regions to create buffer zones.

At the start of April, 177 farms were confirmed to be infected, including 5 turkey

farms, the first of the species to be infected. As a result, the culling radius was

increased to 3 km of a suspected infected farm, and the culling of all turkeys within

a 10 km radius of an infected turkey farm was implemented. Disinfection points were

introduced on the German, Belgian and Luxembourgish borders with the Netherlands,

and farms in these countries within 3 km of the borders were culled to reduce the

chance of the epidemics spreading to these countries.

The only human fatality was announced on 19th April – a veterinarian who died

of pneumonia, with the Avian Influenza virus found in his lungs. As a result of this,

the Dutch government implemented new safety strategies for individuals who were

working with the virus, began testing for the virus in pigs, and increased the size of

buffer zones on the borders. By this point, the number of birds being culled reached

750,000 birds a day (Stegeman et al., 2004), and over 20 million birds had been culled.
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The last confirmed case of the virus in the Netherlands was on 16th May. Over

the following months, the restrictions put in place were slowly lifted, with the final

safeguarding measure being removed on 22nd August.

5.2.1.2 The Transmission Mechanisms

So far we have only viewed the infection process as the result of an inhomogeneous

Poisson process. To aid our understanding of the model, we consider how livestock

on farms are infected. The data detailed above shows there are several infection

mechanisms which spread the virus in different ways.

The first mechanism was through wild waterfowl, who carried a strain of low

pathogenic Avian Influenza. Wildfowl harbour a low pathogen Avian Influenza virus

which can be transmitted to free-range birds, and the virus can then mutate into a

highly pathogenic variety (Boender et al., 2007). In both Elbers et al. (2004) and

Fouchier et al. (2004), the authors suggest that the first confirmed infection was

caused by wildfowl at a lake less than 1 km from the farm. In Boender et al. (2007)

the authors also noted that the fifth confirmed farm to be infected was located on the

opposite side of the same road as the first case, and in Fouchier et al. (2004) the high

number of Avian Influenza viruses that circulated among ducks, geese and migratory

birds during the same time period are cited. This suggests that wildfowl were likely

to be a cause of spatial transmission, spreading the virus to farms in a small area.

The second mechanism was the movements of livestock and eggs between farms. In

Boender et al. (2007), the authors suggest that the disease could have been detected

earlier had warning systems been put in place and followed. Only six farms were

suspected to be infected when farm movements were halted, it is likely that infected

birds were traded before this, allowing the virus to be spread at a national and

international level.

The third mechanism was human transmission, where humans acted as vectors.

In Fouchier et al. (2004) the 89 individuals who were infected with Avian Influenza

are documented. 86 of these individuals had come into contact with infected poultry,

most of them after having visited several farms. It is possible for the virus to be
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carried between farms by humans on their clothing or on machinery.

5.2.2 Literature Review

This outbreak has been studied extensively, with many studies carried out into the

medical aspect of the virus. The outbreak posed several interesting factors from a

medical standpoint. In Fouchier et al. (2004) and Koopmans et al. (2004) human-

human transmission is documented, something which had not been observed in similar

H7N1 and H7N3 outbreaks. A single fatality occurred during the outbreak, which is

identified as unusually many in Fouchier et al. (2004). In Elbers et al. (2004), the

authors discuss the outbreak from a veterinary standpoint, investigating the events

that occurred on infected farms leading up to the outbreak and developing more

effective disease control measures. In Bataille et al. (2011), the authors analyse virus

sequence data from the outbreak.

In Stegeman et al. (2004), the authors were the first to look at the outbreak from

a modelling standpoint. They assumed that the infection rate was constant between

all farms and that all farms were infected for a fixed time period T . Using a fixed time

period for the infectious period distribution means the authors assume the infection

times are known. They used these assumptions to implement a generalised linear

model proposed in Becker (1989)[pp. 108-110], where the probability a susceptible

farm avoids infection on day t is given by:

p(t) = exp
{
− β I(t)

N

}
.

Using this probability, the number of cases of Avian Influenza arising day t, C(t),

can be modelled by the following binomial distribution:

C(t) ∼ Bin
(
S(t), 1− p(t)

)
.

Combining this with the complementary log-log link function, the infection rate can

be estimated using the formula:

log(− log(1− p(t)) = log
I(t)

N
+ log β.



Chapter 5: BNP for Individual-Level Stochastic Epidemic Models in Practice 162

In Boender et al. (2007), the authors built on this model by including a spatial

element, replacing the constant infection rate with a heterogenous rate given by βi,j.

In the model, farms are either susceptible, infected but not infectious, infected, or

removed, and they define the infection force being applied to a susceptible farm i up

to day t as:

λi(t) =
∑
j 6=i

βi,j1[j is infectious at time t],

which gives the probability farm i avoids infection up to day t as:

pi(t) = exp{−λi(t)}.

Their likelihood function is split into three parts: the farms that remained susceptible

throughout the entire outbreak, the farms that were susceptible but were culled as a

disease control measure, and the farms that were infected. The likelihood function is

therefore written as:

π(i, r|β) =
∏
k∈K

pk(tmax)
∏
l∈Λ

pl(tcull,l)
∏
m∈M

pm(tinf,m)(1− pm(tinf,m)),

where K is the set of farms which remained susceptible and tmax is the final day

of the outbreak, Λ is the set of farms which were preemptively culled and tcull,l is

the day farm l was culled, and M is the set of infected farms and tinf,m is the day

farm m was infected. They propose the spatial, parametric infection rates shown in

table 5.2. They numerically compute MLEs for the model parameters and use Akaike

Information Criterion to choose the best of the proposed models.

Although the latter method takes spatial variation into account, the parametric

forms of the infection rate can be restrictive. Using nonparametric inference would

allow us to be flexible and learn the infection rate directly from the data. Both

methods assume a constant infectious period, whereas using data augmentation

within a Bayesian framework will again allow us to be more flexible, and give better

estimates of the infectious period distribution and infection dates for individual farms.

Data augmentation will allow us to estimate which of the preemptively culled farms

were likely to have been infected, something that has not yet been considered.
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5.2.3 Data

The data set contains the locations of all 5,397 poultry farms in the Netherlands at

the time of the outbreak. We discarded all 931 hobby farms from the data set, as

they had fewer than 500 poultry. For each farm, we have its status at the end of

the outbreak, describing whether it had remained susceptible throughout the course

of the outbreak, had been culled due to infection, or had been culled pre-emptively.

These were removed as they are civilians who keep a small number of chickens in

their back gardens, and so the strict bio-securtiy measures were not applied to these

farms. For farms which were culled, we have the date on which this occurred. At the

end of the outbreak, 233 farms had been culled because they were confirmed to be

infected with the virus and 1,232 were culled as a precaution. The positions of the

farms are shown in figure 5.1.

5.2.4 Stochastic Epidemic Model

We construct our model based on the standard epidemic model in continuous time

(see e.g. Bailey (1975); Andersson and Britton (2000)). We begin by assuming that

all farms are initially disease free but the animals on one farm become infected due to

an external source. At any time t, a farm is either susceptible to the disease, infected

with the disease and infectious, or removed as the animals on the farm have been

culled. The model can be separated into two processes: the infection process and

the removal process. The infection process is governed by a rate function β = β(d),

where d denotes the Euclidean distance between two farms.

We assume an infectious farm infects a given susceptible farm that is dkm away

according to a Poisson process with rate β(d). The processes governing different

pairs of farms are assumed to be independent. For the removal process, once a farm

is infected it is infectious for a time period given by a random variable distributed

according to a Γ(λ, γ) distribution, which has mean λ/γ and variance λ/γ2. Once

this time has elapsed the birds on this farm are culled. We model the culling strategy

by assuming the animals on all farms within an rkm radius are also culled at this
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time.

We now derive the likelihood function for this model. This is similar to the

likelihood function derived in equation (2.1), but is adjusted to allow for farms to

be culled pre-emptively. Let N denote the total number of poultry farms in the

Netherlands and n the number of confirmed infected farms. We label the infected

farms from 1, . . . , n by their culling date and the remaining farms n + 1, . . . , N

arbitrarily. We denote the infection and culling times for farm j by ij and rj

respectively and we define κ to be the label of the initial infected farm. We define

i = {i1, . . . , iκ−1, iκ+1, . . . , iN} to be the set of infection times excluding the initial

infected and r = {r1, . . . , rN} to be the set of removal times, and we centre the times

such that r1 = 0. For farms which were not infected, their infection times are set to

be ij =∞ and for farms which were not culled, we set rj =∞.

We construct the following four sets based on the final infection status of the

farms:

• set A consists of the farms that remained susceptible to the disease throughout

the course of the epidemic and were not culled,

• set B is the set of farms that were infected with the virus and culled as a

consequence,

• set C is the set of farms that were infected but were culled pre-emptively due

to a nearby farm being infected,

• and set D consists of the farms that were not infected but pre-emptively culled

due a nearby farm being infected.

These sets are shown in table 5.1. From the data, we are unable to distinguish

between farms in sets C and D.

The likelihood function consists of three parts: the contribution from farms

avoiding infection, the contribution from farms being infected, and the contribution

for farms remaining infectious for a given length of time. For a farm k in either set

A, B or C, the contribution from the farm avoiding becoming infected by infectious
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Set Infected Culled Pre-emptively Culled

A × × ×

B X X ×

C X X X

D × X X

Table 5.1: The different sets of farms in the Avian Flu data set.

farm j is:

ψj,k = exp{−β(dj,k)((rj ∧ ik)− (ij ∧ ik))},

where β(dj,k) is the infection rate for a pair of farms that are dj,kkm apart, and

a ∧ b = min{a, b}. The difference in minimum times is the amount of time during

which farm j exerted pressure on farm k. If the farm k is in set D we must take into

account its pre-emptive culling time and the contribution from it avoiding infection

is given by:

ψj,k = exp{−β(dj,k)((rj ∧ rk)− (ij ∧ rk))}.

When farm j is infected, we consider the set of farms that were infectious immediately

before j was infected. This is given by:

Yj = {k : ik < ij < rk},

and the event that j is infected contributes to the likelihood function through the

overall hazard rate of the infection:

φj =
∑
k∈Yj

β(dk,j).

For the removal process, the likelihood is given by:

Lrem =
∏
j∈B

h(rj − ij|λ, γ)
∏
j∈C

S(rj − ij|λ, γ),

where h(x|λ, γ) is the probability density function of the Γ(λ, γ) distribution evaluated

at x and S(x|λ, γ) is the survivor function

S(x|λ, γ) =

∞∫
x

h(u|λ, γ)du.
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Farms in set B, that were infected and culled at the end of their infectious period,

contribute to the likelihood function through the total time they were infectious with

respect to the infectious period distribution. For those in set C, who were infected but

culled pre-emptively, we consider their removal time as a censoring time, and compute

the probability they would have remained infectious longer given their culling time.

Combining the infection and removal processes gives the following likelihood function:

π(i, r, B, C,D|β, λ, γ, κ, iκ) =

( ∏
j∈B∪C

N∏
k=1

ψj,k

) n∏
j∈B∪C
j 6=κ

κj

∏
j∈B

h(rj − ij|λ, γ)

×
∏
j∈C

S(rj − ij|λ, γ) (5.1)

= exp {−Ψ}
∏
j∈B∪C
j 6=κ

∑
k∈Yj

β(dk,j)

∏
j∈B

h(rj − ij|λ, γ)

×
∏
j∈C

S(rj − ij|λ, γ),

where:

Ψ =
n∑

j∈B∪C

[ ∑
k∈A∪B∪C

β(dj,k) ((rj ∧ ik)− (ij ∧ ik)) +
∑
k∈D

β(dj,k) ((rj ∧ rk)− (ij ∧ rk))

]
.

(5.2)

We note that the removal times determine the set A, which is why the set A does

not appear in the left hand side of equation (5.1).

5.2.5 Fixed Infectious Period

We compare the results of parametric and Bayesian nonparametric methods. In order

to compare our results to those presented in Boender et al. (2007), we assume the

infectious to be constant and last 71
2

days for each farm. We follow Jewell et al. (2009)

and Stockdale et al. (2019) for the infectious period distribution and we set λ = 4.
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Rate Kernel

1 βj,k = β0

2 βj,k = β0
1+dj,k

3 βj,k = β0
1+d2j,k

4 βj,k = β0

1+d
β1
j,k

5 βj,k = β0
1+(dj,k/β2)β1

Table 5.2: The proposed parametric pair-wise infection rates for the Avian Influenza

data set.

5.2.5.1 Parametric Methods

We follow Boender et al. (2007) and propose the infection rate kernels in table 5.2.

The first proposed kernel is a homogeneously mixing model, where the distance

between farms is not taken into account and the remaining models are all variants

on the logistic function. We are interested in the infection rate function parameters

β0, β1, β2. We assume the infectious period distribution lasts for 71
2

days for each

farm (Elbers et al., 2004). The posterior distribution is given by:

π(β0, β1, β2, |i, r, A,B,C,D, λ, κ, iκ) ∝ π(i, r, B, C,D|β0, β1, β2, λ, κ, iκ)

× π(β0)π(β1)π(β2).

As for this analysis, we assume the infectious period is fixed, the label and time of

the first farm to be infected, κ and iκ are known. We place the following independent

prior distributions on the model parameters:

β0 ∼ Exp(0.01),

β1 ∼ Exp(0.01),

β2 ∼ Exp(0.01),

In section 5.2.5.3, we report on the implementation of the MCMC algorithm for

parametric infection rates in chapter 2 (algorithm 4).
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5.2.5.2 Nonparametric Methods

We now repeat the inference for the model. However, instead of proposing a parametric

form for the function β, we model it nonparametrically. The posterior distribution is

given by:

π(β, γ|i, r, A,B,C,D, λ, κ, iκ) ∝ π(i, r, B, C,D|β, λ, γ, κ, iκ)

× π(β)π(γ).

We place a GP prior distribution on the dummy function f and use the exponential

function to transform it into the non-negative rate function β. The prior distribution

is:

β = exp(f), f ∼ GP(0, Σ), Σjk = k(dj, dk;α, l),

where dj is the distance between the jth pair of farms. As there are almost 10 million

pairs of farms in this dataset, we use the MPA method (see section 2.6). We set

the pseudo-dataset to be d̄ = {0, 0.5, 1, . . . , 24.5, 25, 35, 45, . . . , 425}. This allows

us a finer level of detail over the first 25 km, as this is the likely range where the

infection rate function will be non-zero. We use the squared-exponential covariance

function and fix α to 4 as this gives a distribution that is sufficiently vague. We

place a vague exponential prior distribution on the length scale parameter l, such

that l ∼ Exp(0.01). We place a vague, conjugate prior distribution on γ such that

γ ∼ Exp(0.01). We generate samples from the posterior distribution using algorithm

5 in Chapter 2.

5.2.5.3 Comparison of the Methods

For the parametric model, we run the MCMC algorithm for a burn-in period of 500

iterations, followed by another 10,000 iterations. The posterior medians for the model

parameters are given in table 5.3 alongside the Akaike Information Criterion (AIC)

for the proposed form. We use AIC to directly compare our findings to those in

Elbers et al. (2004); the AIC for kernel m is defined by:

AICm = 2k − 2 log π(β
(m)
j,k |i, r),
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Infection Rate Parameter Posterior Median 95% Cred. Int. ∆ AIC

1 β0 2.88×10−5 (2.53×10−5, 3.25×10−5) 860

2 β0 9.27×10−4 (8.14×10−4, 10×10−4) 208

3 β0 5.37×10−3 (4.71×10−3, 6.07×10−3) 0

4
β0 4.96×10−3 (3.96×10−3, 6.04×10−3) 0.778

β1 1.93 (1.79, 2.07)

5

β0 3.54×10−3 (2.18×10−3, 6.06×10−3)

β1 2.05 (1.81, 2.30) 3.98

β2 1.41 (0.842, 1.94)

Table 5.3: Posterior medians and 95% credible intervals for the parametric infection

rates, alongside the ∆AIC values.

where k is the number of model parameters and β
(m)
j,k is the kernel for infection rate

m. It attempts to balance model fit with parsimony, and we choose the best fitting

model to be that with the lowest AIC value. We define ∆AICm to be:

∆AICm = AICm −min
j

AICj,

which shifts all the AIC values, such that the best of the proposed models has an

AIC value of 0. We use this to easily identify the differences between the AIC values.

Table 5.3 shows the AIC values, and infection rate function 3 is chosen as the most

suitable of the proposed forms, however models 4 and 5 are also suitable.

For the nonparametric method, we run the MCMC algorithm for 10,000 iterations,

removing the first 1,000 as a burn-in period. Figure 5.2 shows the results of the

parametric and nonparametric methods when the infectious period is fixed and

constant. We can see the methods broadly agree with each other, with the main

difference being the uncertainty. The large uncertainty in the nonparametric methods

is the price paid for a more flexible model. As well as a more flexible model, the

nonparametric method allows us to infer plausible values of the length scale, with

our posterior median being 2.75 km (95% CI: (2.55, 3.01)). This can help inform

judgements about control strategies.
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Figure 5.2: The results of the parametric (dotted and red) with the nonparametric

(solid and red) methods for the infection rate function with fixed infectious period.

Another noticeable difference between the two methods is the computational time

required. The parametric method took approximately 2 hours to run 10,000 iterations

of an MCMC algorithm, whereas the nonparametric method took approximately

100 hours to run the same number of iterations. Both methods were written in the

C programming language, however the nonparametric method also used OpenMP

software when calculating the likelihood function. The difference in speed is down to

the computation of the likelihood function, constructing the infection matrix, βi,j,

but mainly inverting and decomposing the covariance matrix when proposing new

values of the length scale. Some improvement may be made by using a different C

compiler, as this was performed using the GCC compiler and GSL BLAS libraries.

We also note the difference in the fitted values compared to Elbers et al. (2004),

in which this authors estimate for an immediate neighbour (di,j = 0) the infection

rate is 0.002 farms per day. Our estimates are over twice as high, 0.042 farms per

day for the nonparametric and 0.00537 farms per day for the parametric model. This

difference is largely caused by two factors: the use of a different compartmental
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models and the different likelihood functions.

5.2.6 Unknown Infection Times

We now repeat the nonparametric method, except with unknown infection times. As

in the inference for the parametric model, we assume the infectious period distribution

is given by a Γ(4, γ) distribution, where the shape parameter γ is to be estimated. We

also wish to estimate the infection times and statuses of the pre-emptively culled farms,

that is whether they were in set C or D, and we do this using data augmentation

techniques.

By Bayes’ theorem, the target posterior density is given by:

π(β, γ, κ, iκ, i, C,D|r, B, λ) ∝ π(i, r, B, C,D|β, λ, γ, κ, iκ)π(β)π(λ)π(iκ|κ)π(κ).

We implement the same prior distribution of the infection rate function as the fixed

infection time case and place a GP prior distribution on it as follows:

β = exp{f}, f ∼ GP(0,Σ), Σjk = k(dj, dk; α, l).

As inferring the infection times and statuses is computationally expensive, we fix the

GP prior distribution length scale parameter to be 3 km. This avoids us having to

repeatedly invert and decompose the covariance matrix.

We now describe the prior distributions we place on the remaining model pa-

rameters. We first consider the infectious period distribution, which is given by the

Γ(λ, γ) distribution. We place a vague conjugate exponential prior on γ such that

γ ∼ Exp(0.01). We follow Jewell et al. (2009) and assume λ to be fixed and greater

than 1 as this gives a bell-shaped distribution with mean that only depends on γ.

This has the advantage of improving the mixing of the resulting Markov chain in the

MCMC algorithm. With regards to the infection times, we place a uniform prior on

κ, the label of the initial infected. As we assume the first removal to be on day 0,

the prior on the infection time of κ is given by :

iκ|κ = −z, z ∼ Exp(0.01).
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The posterior distribution is given by:

π(β, γ|r, B, C,D, λ, κ, iκ, i) ∝ exp {−Ψ}
n∏
j=1
j 6=κ

∑
k∈Yj

exp{f(dk,j)}


∝
∏
j∈B

f(rj − ij|λ, γ)
∏
j∈C

S(rj − ij|λ, γ) (5.3)

× GP(f ; 0,Σ) exp{−0.01γ}.

The likelihood contribution to the posterior distribution is the same as in equation

(5.1) and Ψ is the same as in equation (5.2), but β is replaced by the inferred function

exp(f).

As the infection times are unknown, we need to infer these times as well as whether

pre-emptively culled farms were infected. To implement this we develop the MCMC

algorithm for inferring the infection rate function and infection times (algorithm 5)

to allow us to infer the infection status of pre-emptively culled farms. This is given

in algorithm 12.

Algorithm 12 Structure of the MCMC algorithm

1: Initialise the chain with values f (0), γ(0), l(0), and i(0)

Repeat the following steps

2: Sample f using an underrelaxed proposal mechanism for a Metropolis-Hastings

step

3: Sample l using a Metropolis-Hastings random walk step

4: Sample γ using a Metropolis-Hastings random walk step

5: Sample κ using a Metropolis-Hastings random walk step

6: Sample iκ using a Metropolis-Hastings step

7: Choose one of the following steps with equal probability:

• Update an infection time

• Remove an infection time for a pre-emptively culled farm

• Add an infection time for a pre-emptively culled farm

To infer the infection status of pre-emptively culled farms in the MCMC algorithm,
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we follow Jewell et al. (2009), where the authors proposed a method where the

individuals were removed without their infection status being known. This method

allows us to propose inserting or deleting infection times for individuals with an

unknown infection status. Suppose there are N individuals in the population, n of

which were infected, and where m were removed without their infection status being

known. We suppose that at each iteration of the algorithm, m̃ of the individuals who

were pre-emptively removed have had infection times added by the algorithm. For

each iteration of the algorithm we choose one of three events: moving, inserting or

deleting an infection time. We choose which of the three events occurs with equal

probability. For epidemics where the infection statuses are completely known, we

only choose to update infection times.

5.2.6.1 Moving Infection Times

We randomly choose an individual j with an infection time and propose a new

infection time by i′j = rj − tj, where tj ∼ Γ(λ, γ). We accept the proposal with

probability

pacc =
h(rj − ij|λ, γ)

h(rj − i′j|λ, γ)

π(i− ij + i′j, r|β, λ, γ)

π(i, r|β, λ, γ)
∧ 1.

5.2.6.2 Inserting Infection Times

We randomly choose one of the m− m̃ pre-emptively removed individuals with no

infection time and propose infecting them. Should m = m̃ the step is abandoned.

We propose an infection time as above and accept it with probability

pacc =
1/(m̃+ 1)

(1/(m− m̃))h(rj − i′j|λ, γ)

π(i + ij, r|β, λ, γ)

π(i, r|β, λ, γ)
∧ 1

=
m− m̃

(m̃+ 1)h(rj − i′j|λ, γ)

π(i + ij, r|β, λ, γ)

π(i, r|β, λ, γ)
∧ 1.

To derive the proposal ratio, suppose there are m individuals with unknown infection

statuses, and m̃ have had infection times added by the algorithm. The numerator is

the probability of individual j having an infection time and it being deleted. This
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is equivalent to the probability of there being m̃+ 1 possible infection times to be

deleted and randomly choosing the time belonging to j, which is given by 1
m̃+1

. The

denominator is the probability we choose to add an infection time for individual j,

given by 1
m−m̃ and we propose i′j, given by h(rj − i′j|λ, γ).

5.2.6.3 Deleting Infection Times

We randomly choose an individual j who at the current iteration has an infection

time added and propose removing their infection time. Should there be no individuals

with an unknown infection status, who, at the current iteration of the algorithm,

have had an infection time added, the step is abandoned. We accept this proposal

with probability

pacc =
1/(m− (m̃− 1))h(rj − ij|λ, γ)

1/m̃

π(i− ij, r|β, λ, γ)

π(i, r|β, λ, γ)
∧ 1

=
h(rj − ij|λ, γ)m̃

m− (m̃− 1)

π(i− ij, r|β, λ, γ)

π(i, r|β, λ, γ)
∧ 1.

The proposal ratio is given in a similar fashion to the ratio from the inserting proposal.

The numerator is the probability we choose to insert an infection time for individual j

and we propose ij . Suppose j is not infected, then there are m− (m̃− 1) individuals

to choose from, so the proposal probability is given by 1
m−(m̃−1)

h(rj − ij|λ, γ). The

denominator is the probability we choose individual k from the m̃ possible individuals,

and delete their infection time. This probability is given by 1
m̃

.

5.2.7 Results

We ran the MCMC algorithm for 20,000 iterations, including a burn-in period of

500 iterations. For each update of the MCMC algorithm, we repeat the step which

updates, adds or deletes infection times 200 times. Following the results with fixed

infection times, we fix the length scale parameter l = 3km as this reduces the

computational time required. The results for the infection rate are shown in figure 5.3,

where the function decays to zero. From this, we estimate that after approximately

6km the probability of infection is negligible. From the credible interval, we can see
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samples from the posterior distribution will take a variety of shapes, with functions

that have a high infection rate over short distance decaying quickly and functions

that have a lower rate over short distances taking a logistic-type form. The reason

for the difference in shapes over short distances is because there is little data to learn

from. In a small radius of an infected farm we observe that most other farms are

infected, so we learn that the infection rate is high but we do not learn the shape of

the function well.

To assess our results against existing methods, we compare our results to the best

fitting parametric model with fixed infection times, namely model 3 in table 5.2. The

results are shown in figure 5.3 and one clear difference between the parametric and

nonparametric methods is the associated uncertainty. Although the nonparametric

method allows for a greater degree of flexibility, it also induces a greater degree of

uncertainty. Despite this, both estimates are of similar shape and scale and our

results broadly agree with existing work.

As we assume the infection times to be unknown, we infer the times farms were

infected alongside the infection rate. We estimate the mean infectious period to be

6.4 days, and figure 5.4 shows the distribution of infectious periods by culling status.

We see that on farms that were subject to pre-emptive culling, the average infectious

period is shorter than on those were identified to be infected. This is expected as the

culling times are similar to censored times. The distribution of the infectious periods

for the pre-emptively culled farms assigned infection times is more positively skewed

than that of the farms that were confirmed to be infected. The pre-emptively culled

farms with longer infectious periods were infected towards the end of the epidemic.

This is partly due to the infection rate not being time dependent, but also an increase

in the number of farms being culled at the end of the outbreak. For each of the

pre-emptively culled farms, we estimate the probability they were infected and the

probabilities are shown on the map in figure 5.4. All of the farms with non-zero

probability are located in the two main infection clusters. Our results show that

the transmission to the southern cluster cannot be explained by a path of shorter

distance infections that were censored by preventive culling. This is consistent with
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Figure 5.3: The posterior median for the nonparametric (solid) and parametric

(dashed) infection rate functions for the Avian Influenza data set with unknown

infection times and allowing for pre-emptive culling.

the hypothesis proposed in Bataille et al. (2011) that this long distance transmission

event of avian influenza was the result of human-mediated transport of the virus.

Long range transmissions require a non-zero probability for pairs of individuals that

are far apart from each other. In a parametric setting, this is difficult to achieve

when using an infection rate function that decays to 0. Typically, modellers include

an extra non-zero shifting term to allow for long range terms and propose models of

the form:

βi,j = f(di,j) + ε,

where f(x) ↓ 0 as x→∞ and ε > 0. Using our Bayesian nonparametric method, we

do not need to this as the infection rate function learns the non-zero infection rate

from the observed long range transmissions.
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Figure 5.4: Top: the distribution for how long farms remained infectious for. Bottom:

the probability each pre-emptively culled farm was infected. Farms which were

susceptible throughout the outbreak are not included.
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5.2.8 Culling Strategies

We can use these results to investigate different intervention strategies. Intervention

strategies are used to control and limit the spread of the disease and there are two

commonly used strategies.

The first is to cull all farms within a specified radius of an infected farm, this

is sometimes referred to as stamping out or depopulation. When implemented

successfully, this method can quickly and effectively stop the spread of the disease,

but can be expensive as governments typically pay out compensation for culled

animals. It can also be difficult to implement as it needs quick and accurate diseases

tests, and can generate negative publicity and headlines for both the farming industry

and the government. This therefore involves balancing the two effects, culling too

many farms can result in increased costs, damage to the poultry industry and be

unnecessary, whereas culling too few farms can be a public and animal health risk.

The second option is to vaccinate farms against the disease. This option is low cost

as compensation is not required, and better received by the public, but takes longer

to implement. Once the disease has been identified, farmers can add vaccination

feed to the animals usual feed and after approximately a week the animals will be

vaccinated. Considering the timescale of the Avian Influenza outbreak, this strategy

cannot respond quickly enough. For this reason, we only investigate the effects of

culling.

5.2.8.1 The Posterior Predictive Distribution

To simulate the effect of culling, we sample from the posterior predictive distribution

for the infection and removal times. Given the observed removal times, and the

posterior distributions of g, γ and κ, we wish to generate new infection times i∗ for

all individuals and corresponding removal times r∗. We do this using the posterior

predictive distribution, which is given by:

π(i∗, r∗|i, r) =

∫∫∫
π(i∗, r∗|f, γ, i, κ, iκ, r,d)π(g, γ, κ|i, r,d)df dγ dκ.
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Total Number of

Infected Farms (I)

Maximum Number of

Farms Culled per day

Proportion of Culling

Radius Implemented

I ≤ 33 0 0

33 ≤ I < 54 3 1
2

54 < I 6 1

Table 5.4: The number of infected farms and the corresponding culling radius and

maximum number of farms culled per day.

To generate samples from this distribution, we generate sample from the posterior

distributions for g and γ and simulate an outbreak of avian influenza. We fix the first

infected farm, κ, to be the first culled farm in the observed outbreak. To simulate

culling, we assume that once an infected farm reaches the end of its infectious period

and enters the removed class all farms up to rkm away are simultaneously culled and

enter the removed class. Culling cannot start early in the outbreak as it may take time

for the authorities to be notified and put measures into place. Furthermore, whereas

previous work (e.g. Backer et al. (2015)) has used the date after the initial infected

to initiate the culling measures, we allow for stochasticity in the disease take-off and

assume culling takes place once a certain number of farms have been infected. As the

resources may not immediately be available to the authorities, authorities may not be

able to cull all farms within rkm and we simulate this by fixing a maximum number

of farms the can be culled per day. We then increase this number over the course of

the outbreak as the authorities have more available resources. The numbers are given

in table 5.4 and are based on the number of farms we estimate to have been infected

in the observed outbreak. Similarly, we assume the authorities will not have sufficient

resources to cull all farms within the chosen radius at the start of the outbreak and

we model this by assuming farms within a radius half as large are culled initially.
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5.2.8.2 The Posterior Predictive Distribution as an Assessment of Model

Fit

As we are using the posterior predictive distribution to simulate outbreaks, we can

use these simulations to asses how well our model is fitting the data. We use the

removal curves as a measure of fit, and the removal curves from simulated data sets

to the curve from the observed data. The removal curve is computed by

R(t) =
n∑
j=1

1rj<t,

which computes the cumulative number of removed individuals up to time t. If our

model provides a good fit to the data, we should seems removal curves generated

from the posterior predictive distribution being similar to the observed removal

curve. Although there are pre-emptively removed individuals in the data set, we

only consider confirmed infected individuals in the removal curve. This is because

the culling strategy used in the outbreak is not clear and so we cannot simulate

this exactly. We instead simulate 20 outbreaks using a 5km culling radius and the

constraints in table 5.4. The number of simulations is small as in order to compare

similar outbreaks we condition on the final size being within 10% of the observed

final size (233). This increases the time required significantly.

The removal curves are shown in figure 5.5. In figure 5.5(a) we display the true

removal curves and it is clear that the simulated outbreaks do not match the observed

outbreak. This is due to the difference in times for the outbreaks to take off and

become serious epidemics. This difference occurs for two reasons. The first is that

we are modelling a stochastic process and so the time for each outbreak to take off

will be different. The second reason is that in the observed outbreak the authorities

were not aware the disease was spreading at the start of the outbreak, so there are a

considerable number of removals recorded on the day when they became aware of the

outbreak. As we are not interested in comparing take off times, merely the course

of the epidemic, we perform time-shifting on the simulated removal curves. To do

this, we minimise the sum of squares between each simulated removal curve and the

observed removal curve. This method is being developed by G. Aristotelous (private
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communication). The shifted simulated removal curves are shown in figure 5.5(b)

and we can see that they match the observed curve, and the observed outbreak is

fairly typical of samples from the posterior predictive distribution. Considering the

shifted removal curves, the main difference in the curves is the start of the outbreak.

In the simulated removal curves we see a period where the number of cases increases

gradually, however we do not see this in the observed outbreak. This is due to how

the data was collected, as at the start of the outbreak, the authorities were not aware

of the outbreak, so were not collecting data. This effect has been minimised by

the time-shifting, but is still somewhat evident. After this initial period, both the

observed and simulated removal curves, show a fairly linear increase in the number

of removals, before reaching a critical point, where the number of removals decreases

considerably. Comparing these two curves, we are more confident that our Bayesian

nonparametric method gives a good fit.

5.2.8.3 Analysis of Culling Strategies

To investigate the economic consequences of these strategies, we assume each farmer

is compensated for their culled livestock. The value of the compensation depends

of the type of bird culled, the number of birds culled, their age in weeks and, for

turkeys, their gender. We follow Backer et al. (2015), and use the approximate rates

shown in table 5.5. We acknowledge this method is crude and does not take into

account any of the wider economic impacts. However, it will allow us to simulate

the number of farms that are infected, the number of farms that are culled, and the

compensation paid to farmers. These three values can be used to compare the risk to

public health, the impact of the poultry industry, and the cost to the authorities.

Table 5.6 shows the results of the culling strategies for radius between 0 km and

5 km. A culling radius of 0 km is when the authorities take no action. It is clear that

taking any course of action is better than taking none, however we also see that more

ambitious strategies show little gain in reducing the median number of farms infected

in an outbreak. The effect of culling at larger radii results in a larger number of culled

farms and a higher amount of compensation, but does not result in a considerable
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(a) The removal curves for the simulated outbreaks (grey) and the observed outbreak

(red).

(b) The shifted removal curves for the simulated outbreaks (grey) and the observed

outbreak (red).

Figure 5.5: Removals curves constructed from samples from the posterior predictive

distribution.
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Poultry Type Compensation (eper bird)

Broiler 0.98

Duck 2.09

Turkey 10.63

Layer 2.05

Table 5.5: Estimates of compensation per bird paid to farmers during the Avian

Influenza outbreak. The estimates were obtained from table 2 in Backer et al. (2015).

Radius (km) Total Number of

Infected Farms

Total Number of

Culled Farms

Compensation (emillions)

0 443 (151, 644) 443 (151, 644) 24.8 (8.62, 35.9)

1 297 (110, 535) 489 (215, 709) 27.2 (12.2, 38.9)

2 283 (108, 608) 488 (217, 740) 27.5 (12.2, 41.7)

3 283 (112, 582) 517 (242, 775) 29.0 (13.2, 43.1)

4 274 (105, 564) 512 (228, 793) 28.5 (12.3, 43.9)

5 280 (109, 549) 527 (226, 797) 39.2 (12.4, 41.9)

Table 5.6: Posterior predictive medians for the number of infected and culled farms

and the amount of compensation paid.

reduction in the number of infected farms. This is because the maximum number of

farms culled per day is quickly reached, even for small culling radii. In the data set,

the average density of farms was approximately 2 per km2, whereas a culling radius

of 2 km covers over 12km2.

These results are broadly in line with those of Backer et al. (2015), who also

suggest that larger culling radii do not result in a considerable reduction in the number

of infected farms. However, as we use a much smaller estimate for the maximum

number of farms culled per day, we do not find a large difference between culling

radii of 1 km and 2 km.
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5.2.9 Discussion

Our main conclusion is that it is possible to model the spatially-heterogenous infection

rate for epidemic diseases nonparametrically and that GPs provide a flexible framework

for doing so. This nonparametric methodology allows us to reduce the need for strict

parametric assumptions, which are made for mathematical convenience rather than

any characteristics in the data. We were also able to incorporate current MCMC

and data augmentation methods alongside our nonparametric approach to allow for

missing data without making assumptions about which farms were infected.

The method however requires more time and computational power than the

standard parametric methods, especially as we are using an MCMC method. We

have taken steps to alleviate these issues by utilising the MPA approximation method,

which reduces the dimension of the covariance matrix. This fits a GP onto a smaller

set of uniformly spaced pair-wise distances and then projects this onto the complete

set of pair-wise distances.

Concerning the Avian Influenza data set, our methodology has allowed us to

approach the infection process in a more flexible way than previous methods. Our

estimates are in line with previous work and combining this method with previously

developed MCMC techniques and data augmentation allows us to analyse this data

set in more detail than has previously been possible, including determining whether

pre-emptively culled farms had been infected. The uncertainty around our estimates

is much larger than that of previous parametric methods. However, we believe

we are better quantifying the uncertainty. As parametric models we use strict

assumptions, the uncertainty is the results is often a lot smaller compared to Bayesian

Nonparametric methods. Underestimating this uncertainty can result in misplaced

confidence in results, particularly in predictions, which many then be taken into

account by practitioners and policy makers. We were able to use the posterior

predictive distribution to analyse the effect of different control strategies which can

be used to inform policy in this area. Using the posterior predictive distribution

also allowed us to exploit the larger uncertainty in our estimates. Previous methods

used asymptotic properties of Maximum Likelihood Estimates and used quantiles of
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this distribution to simulate forward and make predictions. The posterior predictive

distribution means we can explore the entire posterior distribution of the model

parameters, including the better quantified uncertainty around these estimates.

For this outbreak, we only considered the spatial heterogeneity. It is possible that

the number of animals or the type of animals on the farms impacted the infection

rate. Given sufficient data, further work could build a model which uses this data as

covariates. One way of doing this would be considering each covariate as a separate

dimension of the GP. We also used the squared exponential function throughout to

analyse this data set, and we could allow for a non-stationary infection rate function

by considering different covariance functions.

5.3 Foot and Mouth Disease

Foot and Mouth Disease (FMD) is a viral infection affecting a wide variety of animals,

including cattle, sheep and pigs. Infected animals can suffer from a loss of appetite

followed by blisters in the mouth and on the legs. They may also have a high fever

and the disease can be fatal in some cases (Alexandersen et al., 2003). In 2001 there

was a large outbreak of FMD among sheep and cattle farms in the UK and over

the course of seven months over six million animals were infected. The outbreak

affected farms in Cumbria and Devon, and in this section we consider the outbreak

in Cumbria.

In Cumbria, a county in the north-west of the UK, there were 5,436 farms

consisting of: 1,061 sheep farms, 1,064 cattle farms, and 3,253 farms with both sheep

and cattle. Of these farms, 1,021 were infected including 8% of the sheep farms, 13%

of the cattle farms, and 24% of farms where both sheep and cattle were present.

FMD can be spread through several mechanisms. We outline the four mechanisms

given in Alexandersen et al. (2003). The first is direct contact between infected and

susceptible animals, this can occur when animals are moved between farms. The

second is feeding contaminated feed to susceptible livestock. Thirdly, it is possible

for humans to contribute to the spread of the disease by carrying the disease from an
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infected farm to a susceptible farm. This can include carrying the virus on clothing

or machinery between farms. The final mechanism is for the virus to be carried for

short distances on the wind, but this is only under certain weather conditions and is

unlikely to occur over long distances.

5.3.1 Literature Review

The data set has been studied extensively from a parametric standpoint. In Keeling

(2001), the authors proposed a parametric model where the infection rate between

farms depended on the Euclidean distance between them as well as the number of

sheep and cattle on each of them two farms. They estimated the model parameters

using a least squares method. In Diggle (2006), the author proposed a similar

parametric model and used a partial likelihood approach to reduce the computational

complexity for the inference.

A network-based approach was proposed in Ferguson (2001). In this model, a

susceptible farm receives infectious pressure from local neighbouring infected farms

and a lower level of pressure from farms that are further away. This was based on a

two-level mixing model proposed in Ball et al. (1997). The model in Ferguson (2001)

also depends on which type of animals were on the farm.

In Kypraios (2007, §.3) and Jewell et al. (2009), a Bayesian approach was adopted

and the authors proposed a parametric model consisting of. a spatial kernel and

components for the number of sheep and cattle on each farm. They assigned prior

distributions to the model parameters to infer their values and used a data augmen-

tation technique to infer the unobserved infection times. In Stockdale et al. (2019),

the author used the same parametric form proposed in Kypraios (2007, §.3), but im-

plemented a likelihood approximation method. This data set has not previously been

analysed using Bayesian nonparametric methods. This outbreak has been previously

analysed parametrically using a Bayesian framework in Probert et al. (2018), and

the authors use an individual-level model where the infection rate between any two

farms depends on the distance between them, as well as the number of sheep, cattle

and pigs on both farms. The authors also take into account the ban on movements
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between farms the authorities introduced to control the spread of the disease. The

authors develop methods for making real time decisions about control strategies.

Methods for performing real time analysis for this outbreak are also developed in

Welding and Neal (2019) using a Sequential Monte Carlo approach.

In contrast to previous work, we will estimate the infection rate functions non-

parametrically, in particular describing how the relationship in susceptibility between

farms with one type of animal and farms with two types of animals differ. This has

previously been done by including a parameter in the model which compares the

susceptibility of sheep to the susceptibility of cattle, and assuming the spatial kernel

is the same for all types of animals. We use our multi-type models to allow these

kernels to be dependent and learn how they are related.

5.3.2 Data

The data set we used was previously used in Kypraios (2007), Jewell et al. (2009) and

Stockdale et al. (2019). Kypraios had obtained from the Department for Food and

Rural Affairs (DEFRA), however it is no longer publicly available. The data consists

of the location of all 5,436 sheep and cattle farms in Cumbria and the surrounding

areas, their status at the end of the infection, and which types of animals were on

the farms. For farms that were infected, we have the date on which the animals were

culled. The animals on a small number of farms were culled without their infection

status being known. We follow Kypraios (2007) and assume they were infected. A

map with the locations of the farms in shown in figure 5.6.

5.3.3 Single Type Model

We propose modelling the infection rate from farm j to farm k by a function of the

Euclidean distance between them:

βj,k = β(dj,k).
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Figure 5.6: A map of the farms in Cumbria, during the outbreak. Grey farms were

not infected with the virus, red farms were infected with the virus.

We model the function β nonparametrically through the function f using a transfor-

mation function to ensure it is positive:

β = exp(f), f ∼ GP(0, Σ), Σj,k = k(dj, dk;α, l).

We place a vague exponential prior distribution on l such that

l ∼ Exp(0.01).

We assume the infectious period distribution is given by a Γ(λ, γ), where λ is fixed

and known. We place a vague exponential prior distribution on γ such that

γ ∼ Exp(0.01).
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Figure 5.7: The posterior median and 95% credible interval for the infection rate

function for the FMD dataset.

As we are inferring plausible values for the length scale parameter, we fix the infection

times. This reduces the computational time required. We follow the results of Jewell

et al. (2009) and (Stockdale et al., 2018, §4.4.2) and assume once infected, each farm

remains so for 71
2

days.

We run the MCMC algorithm (algorithm 5) for 20,000 iterations, removing the

first 5,000 iterations as a burn-in period. This took approximately seven days. The

results for the infection rate function are shown in figure 5.7. The infection rate

function is a decreasing function of distance and we estimate the infection rate

between farms further than 7km apart to be negligible. We see from the credible

interval that the function could have several shapes. The upper bound of the credible

interval decays roughly exponentially, whereas the lower bound does not. Instead, it

is similar to a logistic function. This analysis is not possible with parametric methods

as we must specify the exact form the of function. For the length scale parameter,

the posterior median is 8.53 km (95% CI: (8.02, 8.93)).

We now compare our results with those in Jewell et al. (2009). The authors
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assume the spatial component is the same for all types of farm and we therefore

compare their results to our method with one type. The spatial element of the model

in Jewell et al. (2009) is given by:

f(dij) =
β0

d2
ij + β2

0

.

The comparison is shown in figure 5.8. We show the relative infection rate functions,

which are the infection rate functions normalised by their values for immediate

neighbours, i.e. βrelative = β
β(0)

. We see the results are broadly similar, with our

result having a heavier tail. In Kypraios (2007, §3.3.2), where the parametric results

are also presented, the author justifies their choice of infection rate function by

stating the need for a function with a heavy tail without including extra parameters.

Although this choice of functions fulfils these requirements, as it only has a single

parameter, the scale of the function depends on the shape of the tail. As we have

used a Bayesian nonparametric method, we can avoid assuming the type of tails we

require and how to parameterise the infection rate function. This is an advantage

over parametric methods as we can estimate the scale of the function independently

of the shape of the tail, and we do not need to propose of shape of the tail at all.

5.3.4 Multi-Type Model

Using our MOGP models, we fit a multi-type model with three types; sheep-only farms,

cattle-only farms, and farms with both sheep and cattle. Due to the substantially

different number of farms in each type, we normalise the functions by the number

of farms in each type and fit a density dependent model. This is because there are

approximately three times farms with two types of animals as single type farms. The

susceptibility model is given by:

βj,k =


1
N1

exp
(
f (1)(dj,k)

)
if k is a sheep-only farm

1
N2

exp
(
f (2)(dj,k)

)
if k is a cattle-only farm

1
N3

exp
(
f (3)(dj,k)

)
if k has both sheep and cattle,
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Figure 5.8: The relative infection rate function for the Bayesian nonparametric

method (black with blue credible intervals) and the parametric results from Jewell

et al. (2009).
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where N1 = 1061, N2 = 1064 and N3 = 3253. We implement both the MOC model

and the DBM and infer the model parameters.

5.3.4.1 Multi-Output Covariance Model

For the MOC model, we place a joint prior distribution on the functions f (1), f (2),

and f (3). In the MOC model, we can control the correlation between the infection

rate functions. Initial runs of this model show that the infection rate functions for

sheep-only and cattle-only farms have higher correlation than that of sheep-only

farms and cattle-only farms with farms with both sheep and cattle. We therefore

specify two correlation parameters and use the following prior distribution:
f (1)

f (2)

f (3)

 ∼ GP
0,


Σ(1,1) ρ1Σ(1,2) ρ2Σ(1,3)

ρ1Σ(2,1) Σ(2,2) ρ2Σ(2,3)

ρ2Σ(3,1) ρ2Σ(3,2) Σ(3,3)


 ,

where Σ(i,j) is the covariance matrix for types i and j. We assume the correlation pa-

rameters are positive and place identical and independent uniform prior distributions

on both correlation parameters such that:

ρ1 ∼ U [0, 1] and ρ2 ∼ U [0, 1].

For the label of the first infected farm, we place a discrete uniform prior distribution

over the labels of the infected farms, and given this label the prior distribution of the

initial infected time is

iκ|κ = −z, z ∼ Exp(0.01).

It is negative as it must occur before the first removal, which occurs at time t = 0.

We place a vague, conjugate exponential prior distribution on the infectious period

distribution rate parameter, such that γ ∼ Exp(0.01). As inferring both the infection

times and length scale parameter is computationally expensive, based on the inference

for the single type model, we fix the length scale parameter to be l = 8.5km. This is

justified as we used sensible estimates for the infection times, so we do not expect

the infection rate function to be considerably different when inferring the infection
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times. The posterior distribution is therefore given by

π(f (1), f (2), f (3), ρ1, ρ2, γ, i, iκ, κ|r, λ, c) ∝

exp

{
−

n∑
j=1

N∑
k=1

f (ck)(dj,k) ((rj ∧ ik)− (ij ∧ ik))

}
n∏
j=1
j 6=κ

∑
k∈Yj

f (cj)(dk,j)



×
n∏
j=1

h(rj − ij|λ, γ)GP



f (1)

f (2)

f (3)

 ; 0,


Σ(1,1) ρ1Σ(1,2) ρ2Σ(1,3)

ρ1Σ(2,1) Σ(2,2) ρ2Σ(2,3)

ρ2Σ(3,1) ρ2Σ(3,2) Σ(3,3)




× exp{−0.01γ} exp{0.01κ}.

We run the MCMC algorithm outlined in algorithm 8 for 25,000 iterations, removing

the first 5,000 as a burn-in period. The results in figure 5.9 show that farms with

both sheep and cattle are more susceptible to contracting the disease than farms with

only one type of animal. With regard to the shape of the infection rate functions, the

function of sheep and cattle farms decays more quickly than the other two functions,

and for farms of all types the probability of an infected farm infecting a susceptible

further than 7 km away is negligible.

The MOC model allows us to asses the relationship between the infection rate

functions. In figure 5.9(a) it is striking how similar the infection rate functions for

sheep-only and cattle-only farms are. Figure 5.9(b) shows the correlation between

these two functions is high and the 95% credible interval is (0.914, 0.982). The

correlation between the functions for farms with one type of animal and the function

for farms with both types of animals is not as high, but these functions are still highly

correlated (95% CI: (0.652, 0.891)).

With regard to the infection times, the posterior median for the infectious period

distribution rate parameter is 0.508, which gives an expected infectious period of

7.86 days. This is in line with the results in Jewell et al. (2009) and Stockdale et al.

(2019).
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(a) The posterior medians and 95% credible intervals for the infection rate

functions.

(b) The posterior distributions for the correlation parameters ρ1 and ρ2.

(c) The posterior distribution for the infectious period distribution rate

parameter γ.

Figure 5.9: Results of the MOC model applied to the FMD dataset.
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5.3.4.2 Discrepancy Based Model

We choose the sheep-only farm infection rate function to be the baseline function,

and set up the prior distributions as follows:

f (1) ∼ GP(0,Σ(1)), Σ
(1)
jk = k(d

(1)
j , d

(1)
k ;α, l)

f (2) = f (1) + u(2), u(2) ∼ GP(0,Σ(2)), Σ
(2)
jk = k(d

(2)
j , d

(2)
k ;α, l)

f (3) = f (1) + u(3), u(3) ∼ GP(0,Σ(3)), Σ
(3)
jk = k(d

(3)
j , d

(3)
k ;α, l),

where d
(τ)
j is the jth pair-wise distance for type τ farms. This construction allows us

to compare the susceptibility of both cattle-only farms and sheep and cattle farms to

sheep-only farms.

As in the MOC model, we use the following prior distributions on the remaining

model parameters:

γ ∼ Exp(0.01),

κ ∼ U [1, . . . , n],

iκ|κ = −z, z ∼ Exp(0.01).

Again, we set the length scale parameter to be l = 8.5km. The posterior distribution

is therefore given by:

π(f (1), f (2), f (3), ρ, γ, i, iκ, κ|r, λ, c) ∝ exp

{
−

n∑
j=1

N∑
k=1

f (ck)(dj,k) ((rj ∧ ik)− (ij ∧ ik))

}

×
n∏
j=1
j 6=κ

∑
k∈Yj

f (cj)(dk,j)

 n∏
j=1

h(rj − ij|λ, γ)

× GP(f (1); 0, Σ(1))GP(u(2); 0, Σ(2))GP(u(3); 0, Σ(3))

× exp{−0.01γ} exp{0.01ıκ}.

We run the MCMC algorithm outlined in algorithm 9 for 25,000 iterations and

remove the first 5,000 as a burn-in period. The results are shown in figure 5.10

and they are similar to the results of the MOC model. In contrast to the MOC

model, we can compare the functions to a baseline. We have chosen the infection rate
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function for sheep-only farms to be a baseline and we see in figure 5.10(b) compared

to cattle-only farms, there is no significant difference between the functions, as their

ratio is near 1. However, the infection rate function for farms with both sheep and

cattle is significantly higher across all distances compared to the sheep-only infection

rate function. We need to be cautious when interpreting this as in figure 5.10(a) all

three infection rate functions tend to 0 and after 7km the infection rate is negligible.

For example, the relative error for β(1) = 10−7 and β(2) = 10−8 is large, although the

absolute error is small. This means for larger distances the discrepancy shown 5.10(b)

is not as meaningful as it may seem on first impressions. However, we can say the

infection rates between cattle-only and sheep-only and cattle and sheep farms and

sheep-only farms are different.

We estimate γ = 0.517 (95% CI:(0.469, 0.570)), which gives an expected infectious

period of 7.74 days. This is in line with both the results from the MOC model and

the results presented in Jewell et al. (2009) and Stockdale et al. (2018).

5.3.5 Discussion

Both of the models show similar results; farms with both sheep and cattle are more

susceptible to infection than those with only one type of animal on and farms with

either only sheep or only cattle are equally susceptible to the disease. All farms share

a similar spatial element to the infection rate function, which is a decreasing function

of distance. There is little difference in the time taken for the DBM and MOC, with

both taking around 5 days to run for 25,000 iterations.

The estimates for the model parameters are shown in table 5.7. We show the value

of the infection rate functions for immediate neighbours that are 0km apart. Again,

we see the estimates from both models are similar and the 95% credible intervals

largely overlap.

This dataset shows how the models are suitable for different audiences. The

MOC model allows us to understand the correlation structure for the GPs. This is

interesting from a mathematical standpoint. However, famers, the authorities and

other practitioners are likely to be interested in a direct comparison of the infection
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(a) The posterior medians and 95% credible intervals for the infection

rate functions.

(b) The computed discrepancy between the sheep-only and cattle-

only infection rate functions, and the sheep and cattle and sheep-only

infection rate functions. The horizontal line at represents no difference.

(c) The posterior distribution for the infectious period distribution rate

parameter γ.

Figure 5.10: Results of the DBM applied to the FMD dataset.
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Parameter MOC Estimate DBM Estimate

γ
0.508 0.517

(0.469, 0.557) (0.469, 0.570)

β(0)(0)
6.05×10−3 7.77×10−3

(3.89×10−3, 9.3×10−3) (5.28×10−3, 1.1×10−2)

β(1)(0)
6.2×10−3 7.42×10−3

(3.92×10−2, 9.07×10−2) (4.8×10−3, 1.17×10−2)

β(2)(0)
1.33×10−2 1.58×10−2

(1.00×10−2, 1.95×10−2) (1.20×10−2, 2.03×10−2)

ρ1

0.95 -

(0.941, 0.982) -

ρ2

0.806 -

(0.652, 0.891) -

Table 5.7: The posterior median values and 95% credible intervals for the model

parameters for the Foot and Mouth disease dataset.

rate functions. The DBM allows us to do this in a presentable and concise fashion.

We can also see the advantages of using a multi-type model over model with an

infection rate function that only depends on the distance. Not only can we analyse

the difference between the various types of farms, but we risk fitting a misspecified

model when assuming the infection rate function is the same between types. When

fitting the single covariate model, we estimate the infection rate between immediate

neighbours to be 0.00798 (95% CI: (0.00478, 0.0127)) farms per day. This falls in

between the estimates for the different types in the multi-type model as some kind

of average for the infection rate for each type. Using the multi-type model, we are

better able to analyse the infection rate for each type of farm and quantify their

susceptibility to the disease.

There is a subtle difference between the analysis presented here and that of Jewell

et al. (2009) and Stockdale et al. (2019). Previous analyses have investigated the
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relative susceptibility of cows to sheep, whereas the our analysis with the DBM

describes the relative susceptibility of cattle-only farms to sheep-only farms, as well

as farms with both cattle and sheep to sheep-only farms. Our analysis assumes the

susceptibility of a farm does not depend on the number of animals present on the

farm. However, our model allows the spatial component to be distinct for each type.

5.4 Conclusion

We have applied our methods to two datasets. The first was a large outbreak of

Avian Influenza in the Netherlands. There were several ways in which our analysis

was novel. The first was the use of Bayesian nonparametric methods. Our method

provided a flexible framework for modelling the infection rate function and, compared

to previous parametric methods, allowed us to fully capture the uncertainty around

the function. Using this uncertainty, we then analysed various culling strategies. This

had been done previously using the asymptotic distribution of maximum likelihood

estimators. We used the posterior predictive distribution of our Bayesian nonpara-

metric method, which gives a richer analysis. Our method showed that culling is in

principle an effective strategy, but the high density of farms in some areas can cause

problems. Using a data augmentation method allowed us to analyse the infection

times and infection status of pre-emptively culled farms, which has not previously

been investigated. We were able to estimate the probability each pre-emptively culled

farm was infected, and we concluded the pre-emptively culled farms had on average

a shorter infectious period length than farms which were confirmed to be infected.

Finally, we applied our methods to an outbreak of Foot and Mouth disease in

Cumbria, UK. We were successfully able to use our multi-type method to infer the

infection rate functions for cattle-only farms, sheep-only farms, and farms with both

sheep and cattle. This allowed us to compare the functions and understand how they

were correlated. We showed the infection rate functions for sheep-only farms and

cattle-only farms were similar to each other and that farms with both sheep and

cattle were much more susceptible to the disease. The dataset also demonstrated the
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difference in our two models. The output for the DBM is more suited to practitioners

as we can clearly show the difference in susceptibility of the different types of farms.

The MOC model allows us to analyse the correlation between the infection rate

functions.

In this chapter, we have shown that we can successfully apply our methods to

datasets and we have produced new results. Our Bayesian nonparametric methods can

be implemented alongside existing data augmentation methods to better understand

the spread of a disease. Using a Bayesian framework also has advantages as we are

able to make use of the posterior predictive distribution to simulate outbreaks and

analyse culling strategies.



CHAPTER 6

Conclusion

In this thesis, we have developed Bayesian nonparametric methodology for inferring

infection rate functions for individual-level stochastic epidemic models. Our new meth-

ods allow us to infer infection rate functions for individual-level stochastic epidemic

models without making strict assumptions about the parametric forms or choosing

forms which lack any biological or epidemiological justification. Our methodology

can be combined with existing data-augmentation Bayesian methods for inference for

stochastic epidemic models such as inferring the infection times of individuals and the

parameters of the infectious period distribution. The methodological advancements in

this thesis can be split into three parts. We first developed a method for inferring in-

fection rates, where the infection rate from one individual to another can be modelled

as a continuous function of a characteristic of the relationship of the individuals. We

then developed a method for nonparametrically modelling infection rate functions for

multi-type epidemics. The final methodological advancement came through extending

our nonparametric method to modelling infection rates where the infection rate from

one individual to another can be considered as a continuous function of any number

of continuous variables. We then demonstrated our methodology on two real data
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sets, one of Avian Influenza in the Netherlands and the other on Foot and Mouth

Disease in the UK. Using our Bayesian nonparametric methods, we were able to

provide new analysis and insight into these outbreaks.

6.1 Main Findings

In chapter 2, we considered stochastic epidemic models, where the infection rate

between any two individuals could be modelled as a function of the relationship

between the individuals, for example the Euclidean distance between the individuals.

Methods for these models had been exclusively parametric (see e.g Boender et al.,

2007; Jewell et al., 2009). Using a parametric framework means we have to make

assumptions about the infection rate function, which are arbitrary as we do not

directly observe the infection process. To avoid making such strict assumptions, we

developed a Bayesian nonparametric method and placed a Gaussian process prior

distribution on the function modelling the infection rate. We then developed an

MCMC algorithm to infer the infection rate function alongside the infectious period

distribution parameter and the times at which individuals were infected. One difficulty

with using the Gaussian process prior distribution is setting the prior distribution

hyperparameters, so we place a prior distribution on the length scale hyperparameter

and infer this alongside the other model parameters. Another challenge with both

the Gaussian process prior distribution and MCMC algorithms is the computational

complexity. To overcome this, we developed an approximation method based on the

Deterministic and Fully Independent Conditional Approximation (Rasmussen and

Williams, 2006, §8) called the Mean Projection Approximation. This fits a Gaussian

Process prior distribution to a function over a pseudo data set and then projects the

function onto the full data set. Furthermore, we allowed more assumptions to be

included the model, such as assuming the infection rate function is monotonic by

incorporating a method described in Riihimäki and Vehtari (2010) or assuming the

function has some asymptotic behaviour. We demonstrated our methods with several

simulation studies, which showed our method yields good results, but can be time
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consuming.

Chapter 3 concerned multi-type epidemics, where the infection rate from one

individual to another depends on some continuous variable describing the relationship

between them as well as the type of individual being infected. This can be used to

model outbreaks of diseases such as Avian Influenza, where the type of birds on the

farm may influence how susceptible they are to the disease. We developed two sets of

methods for modelling these types of diseases in a Bayesian nonparametric framework.

The first method was a fixed-effects model, where the function governing the infection

rate is the same across all types, but the scale is different. To avoid assuming

the infection rate function is identical between types, we introduced Multi-Output

Gaussian Process. This is a way of modelling several functions simultaneously and

allowing a correlation structure between them. The first method we introduced was

the Multi-Output covariance model, where we allow the functions to be correlated.

The second method we implemented was the Discrepancy Based model, where we

chose one type to be a baseline and compute the discrepancy for each type based on

the baseline type. These models allow us to learn more information from the data by

describing how the infection rate functions for the different types are related to each

other. We demonstrated our methods through several simulation studies.

In chapter 4, we developed a Bayesian nonparametric framework for modelling

heterogeneously mixing epidemics where the infection rate between any two individuals

can be considered as a function of more than one continuous variable describing the

relationship between them. For example, an outbreak of a disease where the infection

rate from one individual to another is a function of the distance between them and

the size of the individual being infected. We extended the model developed in chapter

2 to allow for n dimensional functions. We also developed methods where we model

the effect of the variables separately. This framework allowed us to make more

assumptions about the form for the infection rate functions. This is often needed due

to the limited data we observe during the outbreak of an epidemic. This method may

also be useful to practitioners as they can develop disease control strategies based on

each variable.
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In chapter 5, we turned our attention to real data sets. We analysed two data sets.

The first was an outbreak of Avian Influenza that occurred in the Netherlands in 2003.

This data set had previously been analysed using parametric methods (e.g. Boender

et al., 2007). We analysed this using Bayesian Nonparametric methods, which, to our

knowledge, has not previously been done. Our results were broadly similar to the

parametric results with some important differences; we were better able to quantify

the uncertainty around the estimate for infection rate function. We were also the first

to investigate the role of pre-emptively culled farms, in particular which farms were

infected with the virus. Culling strategies for this outbreak have been investigated

using maximum likelihood methods (Backer et al., 2015), and we were able to produce

richer results for culling methods using the posterior predictive distribution. This used

the full distribution from our nonparametric model, including the wider uncertainty

regions. We also then investigated an outbreak of Foot and Mouth disease from the

UK in 2001. This outbreak had not been previously investigated from a nonparametric

standpoint, and we were able to use our Multi-Output Gaussian process methods to

analyse the susceptibility of farms with different animals.

6.2 Limitations and Further Work

Our method is not without limitations, and we now discuss three limitations we

encountered: lack of data, long runtime compared to parametric methods, and

accessibility of Bayesian Nonparametric methods. We require a large amount of data

for the method to return suitable results. This is due to us making fewer assumptions

compared to equivalent parametric models and the model being more flexible. This

can pose difficulties when implementing the multi-dimensional methods discussed

in chapter 4. The lack of informative data also affects the multi-type models we

can use in chapter 3. We considered susceptibility multi-type outbreaks, where the

infection rate depends on the type of susceptible individual being infected. This type

of outbreak is often more evident in the data than infectivity models as we observed

different proportions of each type becoming infected. In an infectivity model, the data
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is less informative about the outbreak as we do not observe the infection process and

cannot determine who infected whom easily. Therefore, further work could be done to

improve methods for determining which individuals were more infectious than others.

To improve the results we could include a parametric mean function in the GP prior

distribution and reduce the prior variance making the distribution more informative.

In Rasmussen and Williams (2006, §.7), the authors discuss incorporating explicit

mean functions and how these can be learned as data becomes available.

The second limitation was competitiveness compared to parametric methods

regarding runtime. One of the bottlenecks in the nonparametric MCMC algorithm

was inferring length scale parameters, as this involves decomposing and inverting the

covariance matrix repeatedly. Future work can look at more efficient computational

methods for this. In this thesis, I used the GCC compiler and the GSL BLAS libraries,

but other alternatives, which may be more efficient, include the Intel compiler and the

LAPACK libraries. It would be interesting to explore better implementations of the

GP prior distribution, for example using a covariance operator instead of covariance

function, or drawing samples using singular value decomposition instead of Cholesky

decomposition.

Although we have tried to made GPs more accessible to practitioners in this thesis

by investigating the length scale parameter and constructing methods by which we

can compare functions, GPs and Bayesian Nonparametric methods as a whole are

still inaccessible. One method to make these more accessible would be to develop an

R package to implement nonparametric methods for spatial epidemics. This package

would implement a GP based method given observed removal times and spatial

coordinates. This would reduce the expertise needed to run these methods. Another

way in which these methods are inaccessible is the large uncertainty compared to

parametric methods. This can be improved in two ways. The first is to reassure

practitioners that uncertainty is a natural consequence of these methods and that

parametric methods require many unjustifiable assumptions. The second is to again

work on methods of including mean functions in the prior distribution.

Throughout this thesis, we have assumed the outbreaks are complete. These
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methods can be extended to analyse the spread of infectious diseases early on in an

outbreak. We would however suffer from the same problem as mentioned above – a

severe lack of data. One way to mitigate this is to include assumptions in the model,

such a monotonicity, asymptotic behaviour or, in extreme cases, using covariance

functions which only model certain types of functions, such as the linear covariance

function. The credible intervals around our estimates would also be much larger than

current parametric estimates, due to the use of nonparametric methods and the lack

of data. Further work would look at how to make nonparametric methods competitive

against parametric methods for real-time inference. In low data situations, such as

the start of an outbreak, the GP prior distribution will regress to its mean, and so

we can include an informative mean function in the prior distribution.

We can also extend this work to consider outbreaks in discrete time. This has

already been done for time-dependent infection rate functions using GPs O’Neill

and Kypraios (2018). As the Bayesian nonparametric method concerns the infection

rate, modelling outbreaks in discrete time will only involve changing the likelihood

function, in particular the infectious period distribution.

We can extend the structure of the model to allow for recent technological advances.

When modelling the outbreak of a disease among livestock using a spatial covariate, we

have only considered the Euclidean distance between farms. As discussed in Kypraios

(2007, §3.3.2), the Euclidean distance may be an insufficient measure of distance as it

does not take the physical geography of a location into account. Using Geographic

Information Systems (GIS) or mapping Application Programming Interfaces (APIs),

we can now easily compute the walking and driving distance between locations. This

is particularly pertinent to outbreaks of disease among livestock where the disease

may be spread by humans travelling between farms. Our method can be extended to

include this information by using a mixture model. We would consider the infection

rate function a weighted sum of several functions, each measuring the infection rate

using different distances. Although we have only used a Euclidean distance metric,

we can also consider other types of metrics. A further application is considering

outbreaks on a network where the relationship between the individuals is described
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by the edge between them. In a similar vein, we could consider pandemics, where

we model the spread of a disease between cities. The weighting of each function

could indicate the importance of each distance metric. As well as technological

advances in mapping software, we could make use of better computer software and

hardware for the MCMC algorithm. For example, we have used a GCC compiler

with the GSL BLAS library, but improvements could be made by using an Intel

compiler or the LAPACK library. It may be possible to shorten the time the GP

element converges in the MCMC algorithm by using a more efficient algorithm. We

implemented the underrelaxed proposal mechanism, as this updates the function as a

block and requires reduces computational complexity. Other, more computationally

complex methods, such a Hamiltonian Monte Carlo or Stochastic Gradient MCMC,

may be more efficient at sampling from the target density and reduce convergence

time.

There are many modelling choices and weak assumptions which can be made

when implementing this method. Many of these are biological or epidemiological

assumptions which are difficult to include in parametric models without being very

precise. For example, in diseases which are airborne or spread by migratory birds, we

may want to include the direction of prevailing wind or the general direction of the

migratory path. Instead of computing the Euclidean distance between each pair of

individuals, we can use a modified Euclidean metric, which is given by:

ρ(i, j) = (xi − xj)
TΛ(xi − xj).

Here, xi is the coordinates of individual i and Λ is a matrix which defines the direction

component. Setting Λ = I gives the standard Euclidean distance metric, the diagonal

terms give weighting to the x and y directions and non-zero off-diagonal terms allow

for interactions between the directions. We can also change the underlying covariance

structure by weighting individuals and treating some of them as ‘super infectors’,

who are much more likely to pass on the disease or mix with a larger number of

individuals. This can be done by shortening the distances between each individual

and the ‘super infector’. For example, in an outbreaks of disease among humans,
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these individuals may be airline employees or frequent travellers.

6.3 Concluding Remarks

This thesis contributes new Bayesian nonparametric methods for stochastic epidemic

models. These methods can be successfully implemented alongside existing Bayesian

methods in an MCMC framework, such as data augmentation techniques for in-

ferring when individuals were infected. These Bayesian nonparametric methods

use Gaussian process prior distributions to provide a more flexible framework than

current parametric methods. They allow the observed data to speak for itself and

for fewer assumptions to be made when modelling infection rates. Our methods do

away with the need for arbitrarily choosing parametric forms, which may lack any

epidemiological basis. Nevertheless, we can still allow for more general assumptions

to made, such as assuming a priori the function is decreasing. The methods also

allow us to better quantify the uncertainty by fitting far less specific models. We

have demonstrated the success of our methods using both simulated data sets and

real-life data sets, where we were able to make contributions beyond the Bayesian

nonparametric framework.
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