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Abstract

Anabelian geometry of hyperbolic curves has been studied in detail for the
last thirty years, culminating in proofs of various versions of Grothendieck
Anabelian Conjectures. These results are usually stated as fully faithfulness
of a certain functor, which to a hyperbolic curve X associates some type of
fundamental group ΠX . Careful inspection of the proofs reveals that in fact
quite often we proceed by establishing various reconstruction algorithms, which
to a fundamental group ΠX associate some other type of data related to the
curve X. In other words, we recover information about the curve X from the
topological group ΠX . This algorithmic approach is sometimes called mono-
anabelian.

In this thesis we concentrate on the special case when the hyperbolic curve
X is a smooth and proper curve of genus one over a p-adic local field K with
one K-rational point removed i.e., elliptic curve E punctured at the origin.
We consider the problem of reconstructing the local height of a rational point
on an elliptic curve from the fundamental group ΠX equipped with a section
of the absolute Galois group GK determined by this point. We provide such
construction for the full étale fundamental group of X as well as for its max-
imally geometrically pro-p quotient in the case when the elliptic curve E has
potentially good reduction.

Another problem we consider is determining the reduction type of the el-
liptic curve E from the maximal geometrically pro-p fundamental group of X,
equipped with an additional data of the set of discrete tangential sections. Our
main result provides such reconstruction when the residue characteristic p is
greater than three. Moreover, we study the tempered fundamental group of a
Tate curve and prove that a particular torsor of cohomology classes of theta
functions admits a natural trivialization, well defined up to a sign, which is
compatible with the integral structure coming form the stable model of the
Tate curve. Finally, in the last chapter we shift our attention to studying GK-
equivariant automorphisms of various multiplicative submonoids of the monoid
(Kalg)× and describe their structure.
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Introduction

This introduction provides a more detailed overview of the topics presented in
this thesis. In addition, every chapter starts with its own introduction.

Let K be a finite extension of the field Qp of p-adic numbers. Recall that
a hyperbolic curve X over K is a smooth variety of dimension one obtained
as an open subscheme of a proper smooth curve X of genus g such that the
reduced divisor D = X \X satisfies the inequality 2g − 2 + deg(D) > 0. After
base changing to some fixed algebraic closure Kalg the divisor D becomes a set
of r rational points and the above condition translates into 2g − 2 + r > 0.
Consider now the étale fundamental group π1(XKalg) of the curve XKalg . Then,
the condition of being hyperbolic given by the previous inequality is equivalent
to the property that the group π1(XKalg) is not abelian. In fact, when X is
hyperbolic and r > 0, then the étale fundamental group of XKalg is a free
profinite group on 2g + r − 1 generators, hence it is, in some sense, very far
from being abelian. This is exactly the property expressed by the adjective
anabelian.

Grothendieck formulated a few conjectures about expected properties of
anabelian varieties. For example, let X and Y be two hyperbolic curves over
some base field K and consider the map

MorK(X, Y )→ HomGK (π1(X), π1(Y )),

from the set of dominant K-morphisms X → Y to the set of open continu-
ous homomorphisms of étale fundamental groups π1(X) → π1(Y ) compatible
with surjections to GK and considered up to conjugation by elements from
the geometric fundamental group π1(YKalg). Then, the Hom-version of relative
Grothendieck Conjecture over K says that this map should be a bijection, in
other words the functor associating to a hyperbolic curve X its fundamental
group π1(X) equipped with the surjection to the absolute Galois group of the
base field GK is fully faithful in appropriate categories. This conjecture was
proved by Mochizuki when K is a sub-p-adic field.
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We call this result relative since étale fundamental groups are equipped
with fixed surjections to the absolute Galois group GK of the base field and
homomorphisms are required to commute with them. On the other hand, one
may also consider absolute version of Grothendieck Conjecture by removing
this fixed surjection and considering all open continuous group homomorphisms
π1(X)→ π1(Y ). When K is a number field and we consider only isomorphisms
of schemes and fundamental groups, then this relative Isom-version is in fact
equivalent to the absolute one due to the Neukirch-Uchida theorem. This the-
orem says that all open continuous homomorphisms between absolute Galois
groups of number fields come from morphisms of underlying fields. However,
when K is a p-adic local field, then the absolute Isom-version is indeed more
general since the naive extension of the Neukirch-Uchida theorem from number
fields to local fields is false. In general, the Absolute Grothendieck Conjecture
is still an open problem.

A very common situation appearing in anabelian geometry may be presented
in the following form. Suppose that we start from the fundamental group π1(X)
of hyperbolic curve, treated as an object in the category of topological groups,
and then we try to reconstruct some information related to the geometry of the
curve X. This approach is called mono-anabelian to emphasize that we start
with only one group. On the other hand, we may also start from two topological
groups π1(X)→ π1(Y ) together with a homomorphism between them and ask
whether we may infer some relations between X and Y . This second approach
is called bi-anabelian.

Then, one can formulate theorems in anabelian geometry using both these
approaches. For example, a mono-anabelian version would state that certain
property A of the curve X may be determined group theoretically from the
topological group π1(X). On the other hand, a bi-anabelian version would say
that if we have an isomorphism of topological groups π1(X) ∼= π1(Y ), then X
has the property A if and only if Y has. Hence we see that in general a mono-
anabelian results may be considered slightly stronger than their bi-anabelian
versions. Therefore, it is usually the case that they are more difficult to obtain.
For example, the original proof of the Neukirch-Uchida theorem did not provide
a method of reconstructing a number field K from its fundamental group GK .

In this thesis we study the mono-anabelian geometry of once punctured
elliptic curve X over a p-adic local field K. In other words, we are interested in
group theoretic reconstructions of properties of the elliptic curve E from various
versions of the étale fundamental group π1(X). As we will see, the properties
that we are especially interested in are the local height of rational points of E
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as well as determining whether the elliptic curve E has good reduction over K.

In Chapter 1 we will consider the following situation. Let E be an elliptic
curve over a p-adic local field K and let π1(X) be the étale fundamental group
of the hyperbolic curve X = E \{O}. Then, we have a surjection π1(X) � GK ,
where GK is the absolute Galois group of the local field K. Every K-rational
point P ∈ X(K) determines a section sP : GK ↪→ π1(X) of the surjection
π1(X) � GK . Characterizing sections of the form sP for some K-rational
point P among all sections of the above surjection is a difficult open problem.
Indeed, description of sections coming from rational points is the content of
another anabelian conjecture of Grothendieck, so-called Section Conjecture.
On the other hand, assuming that we are given the section sP , we may try to
recover some information about the point P from the section sP . The main
result we prove in Chapter 1 says that in certain cases we may reconstruct the
local Néron-Tate height of the point P , from the data of the étale fundamental
group π1(X) together with the section sP .

Theorem 1. Assume that E has potentially good reduction. Let π1(X) � GK

be the natural surjection and let s : GK ↪→ π1(X) be a section determined by
a K-rational point P . Then, one can recover the local Néron-Tate height of
the point P from the diagram GK ↪→ π1(X) � GK of two homomorphisms of
topological groups.

In fact, one can prove a version of the above theorem also in the case when
the point P is an L-rational point, for some finite field extension L/K. More-
over, Chapter 1 also serves as an introduction of basic techniques that we are
going to use in Chapters 2 and 3, namely group theoretic Kummer theory and
elliptic cuspidalization.

In Chapter 2 we consider a slight variation of the étale fundamental group of
X which is called the maximal geometrically pro-p fundamental group, denoted
by ΠX . This group classifies all finite étale covers Y of X whose Galois closure
Z → X is a composition of a base change morphism XL → X, for some finite
field extension L/K, and a geometrically connected finite étale cover Z → XL

of p-power degree. Then, we may ask which properties of the elliptic curve E
may be recovered from the group ΠX . For example, we may try to determine
whether E has good reduction over K. This question is motivated by the
work of Hoshi (see [16]), as well as by the p-adic nonabelian criterion of good
reduction of Andreatta, Iovita and Kim (see [4]).

The main difficulty of the problem we consider lies in the fact that various
classes of p-adic representations used in p-adic Hodge Theory, e.g., crystalline

3



or semistable, may not be preserved under the automorphisms of the absolute
Galois group GK of a local fieldK. This is precisely the reason why results from
p-adic Hodge Theory have rather limited applications to problems in absolute
anabelian geometry over p-adic local fields. On the other hand, certain facts and
theorems can still be used. For example, we will see that the potential type of
reduction of E may be group theoretically reconstructed from the fundamental
group ΠX , without any assumptions on the residue characteristic p. Moreover,
when p > 2 and E has potentially good ordinary reduction, then we may in fact
determine the reduction type over K. Thus, in Chapter 2 we will be focused
mainly on the case of elliptic curves E with potentially good supersingular
reduction.

In our main result we consider the group ΠX endowed with certain addi-
tional data, namely the set of all discrete tangential sections. These sections
do not come from rational points of the curve X, rather they are associated to
cotangent vectors at the unique cusp of X. Then, we prove that if we further
restrict the residue characteristic of the base field K, then we may determine
the reduction type of E from this augmented data.

Theorem 2. Assume that the residue characteristic p is at least five. Then,
from the topological group ΠX equipped with the set of all discrete tangential
sections, we may recover the reduction type of the elliptic curve E.

Moreover, in the last section we consider a pro-p version of the main the-
orem of Chapter 1, reconstructing local height of a rational point from the
corresponding section of the surjection ΠX � GK . Let P be a nonzero K-
rational point on the elliptic curve E. Hence, the point P determines a section
sP : GK ↪→ ΠX of the surjection ΠX � GK . Then, the strongest result we are
currently able to prove is the following theorem.

Theorem 3. Assume that the elliptic curve E has potentially good reduction.
Then, we can determine group theoretically from the diagram GK ↪→ ΠX � GK

whether the local height of the rational point P is equal to zero. Moreover, if
we assume additionally that we are given the canonical rigidity isomorphism

M
(p)
X
∼= Zp(GK),

then we may in fact reconstruct the local height of the point P .

The canonical rigidity isomorphism M
(p)
X
∼= Zp(GK) used in the statement

will be defined in Section 2.6. It is likely that the two previous results could
be strengthened. For example, the author hopes that the rigidity isomorphism

4



mentioned in the statement of the previous theorem can be in fact reconstructed
from the topological group ΠX , which would allow us to remove it from the
assumptions. Similarly, one may investigate whether the set of discrete tangen-
tial sections may be reconstructed group theoretically. These two questions are
closely related and require further study.

In Chapter 3 we use another type of fundamental group of the hyperbolic
curveX called the tempered fundamental group Πtp

X , introduced by André in [3].
This group in not profinite in general, as it classifies not only finite étale covers
but also some infinite analytic covers. We consider the case when E is a Tate
curve with Tate parameter q ∈ K× and analyse cohomology class of certain
analytic theta function Θ̈ on an infinite analytic cover Ÿ of X, introduced by
Mochizuki in [29]. This function is given by the formula

Θ̈(Ü) = Ü
∏
n≥0

(1− qnÜ2)
∏
n>0

(1− qnÜ−2).

One can prove that the O×K-torsor of multiples of Kummer classes of Θ may be
reconstructed group theoretically from the topological group Πtp

X . The result
we prove is that this O×K-torsor admits a group theoretic trivialization, well
defined up to a sign.

Theorem 4. Assume that K contains all 12th roots of unity as well as coordi-
nates of all 2-torsion points. Then, there exists a group theoretic construction
of a trivialization of the O×K-torsor of multiples of theta function Θ, well de-
fined up to a sign. Moreover, this trivialization is constructed by evaluating
theta function at a lift of a certain 6th torsion point.

This construction slightly improves some results from [29] and positively
answers the question asked in 2016 at IUT summit organized at RIMS, Kyoto,
about extending the theory of [29] to local fields with even residue characteristic.

Finally, in the last section of Chapter 3, we come back to discussing the
reconstruction of the local height of a rational point on a Tate curve from its
section, this time using the tempered fundamental group Πtp

X . We consider
section sP : GK ↪→ Πtp

X of the surjection Πtp
X � GK coming from a nonzero

rational point P of the elliptic curve E. Then, we prove the following theorem

Theorem 5. Assume that E is a Tate curve. Then, there exists a group
theoretic reconstruction of the local height of the point P from the diagram
GK ↪→ Πtp

X � GK of topological groups.

This theorem may be considered as a complement to analogous results we
obtain in Chapters 1 and 2 regarding the problem of reconstructing the local
height.
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Chapter 4 is the last part of this thesis and is essentially independent of
the first three chapters. Let us first provide some motivation for the results
of we are going to state. Fix an algebraic closure Kalg of the p-adic local field
K and let GK = Gal(Kalg/K) be the absolute Galois group of K. We write
GK y Kalg for the pair of the topological group GK acting on the field Kalg.
Consider now the group of automorphisms Aut(GK y Kalg) of this pair, which
consists of a group automorphism of GK and a field automorphism of Kalg. It
is easy to check that every such automorphism must be in fact inner. Thus,
the image of the restriction map

Aut(GK y Kalg)→ Aut(GK) (1)

is equal to the group of inner automorphisms of GK , moreover the map is
injective since the group GK has trivial center. Therefore, since the group
GK admits automorphisms which are not inner, the restriction map (1) is not
surjective.

Consider now a multiplicative monoidO.Kalg = O×Kalg\{0} of nonzero integral
elements of the field Kalg. Similarly as before we may consider the group
Aut(GK y O.Kalg) of automorphisms of the pair of a group acting on a monoid.
Then, it is proved in [30] that the restriction map

Aut(GK y O.Kalg)→ Aut(GK)

is in fact a bijection. In other words, when we consider only multiplicative
structure of Kalg, then it is possible to lift every automorphism of the group
GK to an automorphism of a pair. As we have seen, this is not true if we want
to respect both multiplicative and additive structure of Kalg.

Motivated by this results, we consider the following situation: let L/K be a
Galois extension of K with the Galois group G, and let O.L = OL \ {0} be the
multiplicative monoid of nonzero integral elements of the field L. As previously,
we have the restriction map

Aut(Gy O.L)→ Aut(G), (2)

which in general may not be injective. The question to determine Galois field
extensions L/K for which the map (2) is an isomorphism was asked to Prof.
Fesenko by Prof. Mochizuki.

Our main focus is to analyse the kernel of this map, which is equal to the
group AutG(O.L) of G-equivariant automorphisms of the monoid O.L. We also
introduce the group AutG(O×L ) of G-equivariant automorphisms of the group of
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units O×L . To state our main result, denote by VL = O.L/O×L the value monoid
of L. Moreover, let V (L/K) = lim←−M Z/e(M/K)Z, where M runs through
all finite subextensions of L/K and e(M/K) is the ramification degree of a
field extension M/K. We prove that they form a part of the following exact
sequence.

Theorem 6. Let L/K be a Galois field extension with the Galois group G.
Then, there exists an exact sequence of group homomorphisms

1→ Hom(VL,O×K)→ AutG(O.L)→ AutG(O×L )→ V (L/K)× → 1.

Using this result, we give a few examples of field extensions L/K when the
restriction map (2) is not injective. On the other hand, the question whether
there exists a non algebraically closed field extension L/K such that the map
(2) is injective remains open. Finally, in the last section of Chapter 4 we discuss
briefly the issue of surjectivity of the restriction map.

We use standard notation Z,Q,R,Qp for sets of integers, rational numbers,
real numbers and p-adic numbers. Furthermore, we denote the set of prime
numbers by P. The only type of base field K we use in this thesis is a finite
extension of Qp, therefore we will simply say that K is a local field, or p-adic
local if we want to indicate the residue characteristic p.

7



Chapter 1

Anabelian construction of local
height

1.1 Introduction

Let E be an elliptic curve of over the field K which is a finite extension of the
p-adic field Qp. Let X be the hyperbolic curve obtained by removing from E a
K-rational point given by the origin O of the elliptic curve E. Thus, X is an
affine curve over K.

Consider the étale fundamental group π1(X) of X. We do not specify base-
points for various fundamental groups of curves as we will only consider them as
abstract topological groups. Then, one has the following short exact sequence

1→ π1(XKalg)→ π1(X)→ GK → 1, (1.1)

where GK is the absolute Galois group of the local field K. For a finite field
extension L/K, every L-rational point S of X determines a section s : GL →
π1(X) over the open subgroup GL ⊂ GK of the surjection π1(X) � GK . Hence
we have a commutative diagram

GL

π1(X) GK .

s (1.2)

Then, the result we are going to prove is the following theorem.

Theorem 1.1.1. Assume that E has potentially good reduction. Let π1(X) �
GK be the natural surjection and let s : GL ↪→ π1(X) a splitting over an open
subgroup determined by an L-rational point S. Then, one can recover the local
Néron-Tate height of the point S from the diagram (1.2), i.e., from the data of
two homomorphisms of topological groups.
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We recall the notion of the Néron-Tate local height of a rational point in the
next section. Moreover, in the following by “recovering” certain data we will
mean the description of an appropriate group theoretic algorithmic construction
which determines the data under consideration.

For elliptic curves over a number field there is a notion of the global Néron-
Tate height, which is in fact an appropriate sum of local heights. Then, one
can consider analogous statement as in Theorem 1.1.1 replacing the field K by
a number field. In this case, it is known that one can reconstruct the global
height of a rational point from its corresponding section. In fact, one has a
much stronger result of Mochizuki (see [30], Theorem 1.9) which essentially
says that the whole curve X can be reconstructed from the topological group
π1(X).

Moreover, a similar result is known also in the case where K is a p-adic local
field, see [28], Corollary 3.8 and Remark 3.8.1, together with [30], Appendix,
(CM5). Although the result of [28] is stated in a bi-anabelian fashion, in fact the
content of the proof is entirely mono-anabelian. On the other hand, the method
which we use in this chapter may be adapted to the maximal geometrically pro-p
étale fundamental group which we consider in Chapter 2.

The structure of this chapter is as follows: in Section 1.2 we recall the def-
inition of the local height; in Sections 1.3 and 1.4 we recall basic properties
of absolute Galois groups of local fields and étale fundamental groups of hy-
perbolic curves over local fields; in Sections 1.5 to 1.7 we present a few results
of Mochizuki considering the anabelian constructions of Kummer classes and
elliptic cuspidalizations; finally in Section 1.8 we use these results to prove
Theorem 1.1.1.

1.2 Néron-Tate local height function

In this section we briefly recall the definition and some properties of the local
height function. Let K be a p-adic local field and let | · | : K → R≥0 be
a multiplicative valuation which we uniquely extend to some fixed algebraic
closure Kalg of K. For x ∈ Kalg, we define v(x) = − log |x|, hence v is an
additive valuation on Kalg with v(x) ≥ 0 if and only if x is an integral element
of Kalg. It will be convenient to use two different normalizations of this additive
valuation. We will write vK : K → Z for the additive valuation such that
vK(πK) = 1, where πK is a uniformizer ofK. Moreover, we will write v : Kalg →
Q for the additive valuation satisfying v(p) = 1. Then, it is clear that we have
vK = ev, where e is the ramification degree of the field extension K/Qp.
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Consider an elliptic curve E over K and choose a Weierstrass equation of
E

y2 + a1xy + a3y = x3 + a4x
2 + a2x+ a6. (1.3)

Then, we have the following classical theorem, see [37], Chapter VI, Theo-
rem 1.1.

Theorem 1.2.1. There exists a unique function

λ : E(K) \ {O} → R

satisfying the following properties:

1. λ is continuous and is bounded on the complement of every v-adic neigh-
bourhood of O.

2. The limit
lim
P→O

(λ(P ) + 1
2v(x(P )))

exists.

3. For all P ∈ E(K) with 2P 6= O,

λ(2P ) = 4λ(P ) + v((2y + a1x+ a3)(P ))− 1
4v(∆).

Moreover, the function λ is independent on the choice of a Weierstrass equation
representing E and is invariant under field extensions.

The function constructed in the above theorem is called the local Néron-
Tate height function. In this chapter we are especially interested in the case
when E has good reduction. Then, we have a more explicit formula (see [37],
Chapter VI, Theorem 4.1).

Proposition 1.2.2. Suppose that E has good reduction over K and let

y2 + a1xy + a3y = x3 + a4x
2 + a2x+ a6

be a minimal Weierstrass equation of E. Then, the local height is given by the
formula

λ(P ) = 1
2 max{−v(x(P )), 0}.

In particular, if v(x(P )) ≥ 0, then the local height λ(P ) is equal to zero.
Therefore, in the case of good reduction, one can think informally of the function
λ as measuring the size of the denominator of x(P ).
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We also discuss the explicit formula in the case of bad reduction, as it will
be needed in Chapter 2. First, we introduce some notation. For q ∈ K× with
|q| < 1, denote by Eq the Tate curve corresponding to the parameter q (see [37],
V, §3). Then, we have a Galois equivariant isomorphism (Kalg)×/qZ ∼= Eq(Kalg)
as well as an isomorphism K×/qZ ∼= Eq(K). Every split multiplicative elliptic
curve over K is K-isomorphic to a unique Tate curve Eq for some q ∈ K×.

We also introduce the following infinite product

θ(u) = (1− u)
∏
n≥1

(1− qnu)(1− qnu−1).

The series θ(u) is convergent for all u ∈ (Kalg)× and satisfies the functional
equation

θ(qu) = −u−1θ(u).

Finally, denote by B2(T ) the polynomial T 2 − T + 1
6 . In the next proposition

we identify E(K) with K×/qZ using Tate parametrization and we consider the
local height function as a function defined on the group K×/qZ.

Proposition 1.2.3. Suppose that E has split multiplicative reduction and let
E ∼= Eq for q ∈ K×. Then, the local height function λ : K×/qZ → R at the
point ū ∈ K×/qZ is given by the formula

λ(ū) = 1
2B2

(
v(u)
v(q)

)
v(q) + v(θ(u)),

where u ∈ K× is a lift of ū. The value λ(ū) is independent of the choice of this
lift.

In fact, in what follows, we will not need the definition of the local height
given in Theorem 1.2.1, as will only use the explicit formula recalled above
in the case of good and split multiplicative reduction. Moreover, for future
reference, we recall the following simple lemma.

Lemma 1.2.4. Assume that E has good reduction over K and fix a minimal
Weierstrass equation (1.3) of E. For a natural number n, define the function

Fn = n2 ∏
T∈E[n]\{O}

(x− x(T )).

Then, we have the following formula

λ(nP ) = n2λ(P ) + 1
2v(Fn(P )),

for every K-rational point P with nP 6= O.

Proof. See [37], Chapter VI, Exercise 6.4.(e).
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1.3 Absolute Galois group of a local field

Here we recall a few basic facts concerning the absolute Galois group of a
local field of characteristic zero that are important from the point of view of
anabelian geometry. All the statements in this section are well known, see,
e.g., [34] or [13].

First we need to introduce some notation. Let Σ ⊂ P be a nonempty set
of prime numbers. We say that a natural number n is a Σ-integer if all of its
prime divisors are contained in Σ. We denote the set of Σ-integers by N(Σ).
Let A be an abelian group. We define its Σ-completion by the formula

ÂΣ = lim←−
n∈N(Σ)

A/nA.

When the set Σ is equal to the set of all prime numbers we simply write Â.
Let K be a finite extension of Qp and denote by e and d the absolute

ramification index ofK and the degree of the field extensionK/Qp, respectively.
Moreover, let k be the residue field of K and denote by q = pf its cardinality.
The absolute Galois group GK of K fits in the short exact sequence

1→ IK → GK → Ẑ→ 1,

where IK is the inertia subgroup. The quotient GK/IK ∼= Ẑ corresponds to the
maximal unramified extension Kur of the local field K and has the canonical
generator given by the Frobenius element. The inertia group IK has a unique
normal pro-p Sylow subgroup Iwild

K called the wild inertia subgroup and the
quotient

1→ Iwild
K → IK → Itm

K → 1

is called the tame inertia group. By pushing out the quotient IK � Itm
K we

obtain a quotient GK � Gtm
K and the Galois field extension corresponding to

this quotient is the maximal tamely ramified extension Ktm of K.
Let µn ⊂ (Kalg)× be the subgroup of nth roots of unity. Consider the

projective system of GK-modules µn indexed by natural numbers n, where the
morphisms µmn → µn in this system are given by raising to the mth power for
all natural numbers m,n. Define Ẑ(µ) = lim←−µn be the limit of this projective
system over all natural numbers n. Here we diverge from the standard notation
Ẑ(1) to emphasise the construction of Ẑ(µ) from the group of roots of unity.
Thus, in the following by Ẑ(1) we will mean a free Ẑ-module of rank one
with a fixed generator 1 ∈ Ẑ(1), equipped with an action of GK given by the
cyclotomic character. Therefore, the module Ẑ(µ) is a GK-module isomorphic
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(noncanonically) to the GK-module Ẑ(1). Similarly, by taking limit over all
natural numbers n which are Σ-integers we obtain

ẐΣ(µ) = lim←−
n∈N(Σ)

µn.

When Σ = P \ {p}, we will write Ẑ(p′)(µ) for simplicity, which is a Galois
module isomorphic (again noncanonically) to the module Ẑ(p′)(1) = ∏

l 6=p Zl(1).
Then, it is well known that the tame inertia group Itm

K is canonically isomorphic
to the group Ẑ(p′)(µ), in particular it is an abelian group. In fact, this is an
isomorphism of Gal(Kur/K)-modules, where the action of Gal(Kur/K) on IK
is obtained by lifting the Frobenius element to the group GK and acting by
conjugation on the inertia group IK . This action descends to an action on the
quotient Itm

K , which is independent of the choice of the lift since the group Itm
K

is abelian.
Let GK � Gab

K be the abelianization map and denote the images of IK and
Iwild
K in Gab

K with the upper index a. Therefore we have the exact sequence

1→ IaK → Gab
K → Ẑ→ 1,

as well as the sequence

1→ Ia,wild
K → IaK → Ia,tmK → 1,

where Ia,tmK is defined to make the last sequence exact. The filtration

Ia,wild
K ⊂ IaK ⊂ Gab

K

is closely related to the filtration UK ⊂ O×K ⊂ K×, where UK is the subgroup of
principal units, via the reciprocity map κ : K× → Gab

K from the local class field
theory. Indeed, recall that κ is an injection with dense image which induces
isomorphisms O×K ∼= IaK and UK ∼= Ia,wild

K . Moreover, the induced injection

Z = K×/O×K ↪→ Gab
K /I

a
K
∼= Ẑ

maps the canonical generator 1 ∈ Z to the Frobenius element.
Using the results recalled above we may prove the following well-known fact.

Proposition 1.3.1. The subgroups IK and Iwild
K of the group GK, together with

the natural numbers d, e, f and p, may be reconstructed group theoretically from
the topological group GK. Moreover, we may also reconstruct the canonical
generator of the quotient GK/IK determined by the Frobenius element.
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Proof. For every prime number we consider the (finite) dimension

dl = dimQl G
ab
K ⊗Ẑ Ql.

Because the group UK is a pro-p group we easily see that dl = 1 for l 6= p.
On the other hand, since the p-adic logarithm determines an isomorphism of
the open subgroup of UK with the group Zdp, we obtain dp = d + 1. Thus, we
may recover the residue characteristic p as the unique prime number l such that
dl > 1. Then, since the prime to p torsion in Gab

K has the cardinality q − 1, we
may easily recover the degree f of the residue field extension k/Fp. Finally, we
can determine the degree d simply as dp − 1 and then the ramification degree
as e = d/f .

We now apply the same method to every open normal subgroup H ⊂ G. If
the subgroup H corresponds to the Galois field extension L/K, then we may
determine the relative degrees d(L/K), e(L/K) and f(L/K) as quotients of the
corresponding absolute degrees. In particular, we may characterise all the open
subgroups H ⊂ G such that the corresponding field extension is unramified.
Then, the inertia subgroup IK may be determined as the intersection of all open
subgroups corresponding to unramified extensions. Similarly, the group Iwild

K

can be determined by considering open subgroups H corresponding to tamely
ramified extensions (or as the unique p-Sylow subgroup of IK).

Consider now the action of Gal(Kur/K) on the group Itm
K . From the iso-

morphism Iur
K
∼= Ẑ(p′)(µ) recalled above we see that the Frobenius element is

the unique element of Gal(Kur/K) which acts as the multiplication by q on the
group Itm

K (written additively).

Therefore, from the topological group GK , one can naturally reconstruct the
Galois module K× as the preimage of the subgroup Z ⊂ Ẑ, generated by the
Frobenius element, along the surjection GK � Ẑ. Moreover, from well-known
functorial properties of the residue map in the local class field theory, for every
finite field extension L/K the inclusion K× ⊂ L× corresponds to the transfer
morphism Gab

K → Gab
L . By taking the colimit over all open subgroups GL ⊂ GK

with connecting homomorphisms given by the transfer map we obtain a group
theoretic reconstruction of the Galois module (Kalg)×. We will denote this GK-
module by Kalg(GK)× to emphasise the group theoretic construction implicit
in its definition. In particular, by considering the torsion subgroup we recover
subgroups corresponding to the groups of nth roots of unity, which we similarly
denote by µn(GK). Finally, by taking the limit of the Galois modules µn(GK)
with connecting homomorphisms given by raising to an appropriate power we

14



obtain the Galois module

Ẑ(GK) = lim←−
n∈N

µn(GK),

noncanonically isomorphic to the module Ẑ(1). Similarly, for every nonempty
subset Σ of the set of prime numbers we may define the GK-module

ẐΣ(GK) = lim←−
n∈N(Σ)

µn(GK)

which is noncanonically isomorphic to the module ẐΣ(1).
Consider now the Kummer sequence associated to the group theoretical

GK-module Kalg(GK)×

1→ µn(GK)→ Kalg(GK)× → Kalg(GK)× → 1,

which induces, by the Hilbert’s Satz 90 (see [34], Theorem 6.2.1), the isomor-
phism

K(GK)×/K(GK)×n ∼= H1(GK , µn(G)),

where by K(GK)× we simply mean the group of GK-invariants of the GK-
module Kalg(GK)×. Since the inclusion K(GK)× ↪→ Gab induces an isomor-
phism

K(GK)×/K(GK)×n ∼= Gab
K /(Gab

K )n,

we get the canonical isomorphism

Gab
K /(Gab

K )n ∼= H1(GK , µn(G)).

By taking the limit over all natural numbers n, we construct a group theoretical
isomorphism

Gab
K
∼= H1(GK , Ẑ(GK)). (1.4)

This isomorphism is a group theoretic analogue of the classical Kummer iso-
morphism

K̂× ∼= H1(GK , Ẑ(µ))

Here by K̂× we mean the limit lim←−K
×/K×n with respect to the natural quotient

homomorphisms. In particular, by composing the isomorphism (1.4) with the
surjection Gab

K � Ẑ, we obtain the homomorphism

H1(GK , Ẑ(GK)) � Ẑ. (1.5)

Then, it follows immediately from the construction that the composition of the
isomorphism Ẑ(µ) ∼= Ẑ(GK), induced by the residue homomorphism κ, with
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the isomorphism K̂× ∼= H1(GK , Ẑ(µ)) gives rise to the following commutative
diagram

K̂× H1(GK , Ẑ(µ)) ∼= H1(GK , Ẑ(GK)) Ẑ

K× Z

'

where the bottom horizontal map is simply the additive valuation K× � Z.
Therefore, the group homomorphism (1.5) may be thought of as a group theo-
retic profinite valuation map.

In the similar manner, we have a pro-Σ version of the valuation homomor-
phism

H1(GK , ẐΣ(GK)) � ẐΣ, (1.6)

which has analogous compatibility property induced by the canonical isomor-
phism ẐΣ(GK) ∼= ẐΣ(µ).

Remark 1.3.2. When we use group cohomology of a profinite group G with
coefficients in a topological G-module A we always mean the continuous group
cohomology H i(G,A) = H i

cts(G,A), as defined for example in [34]. We need to
relate this group cohomology to the group cohomology with discrete coefficient
groups. Assume that A is (topologically) isomorphic to the limit lim←−An, where
every G-module An is a finite group with discrete topology. Moreover, suppose
that for every natural number n the cohomology groups H i−1(G,An) are finite.
Then, we have the natural isomorphismH i(G,A) ∼= lim←−H

i(G,An). For a proof,
see [34], Corollary 2.7.6. The finiteness assumption from this statement will be
satisfied in all our applications.

Remark 1.3.3. Proposition 1.3.1 can also be found in [17], Lemma 1.3. Here
we remark that in general it is not possible to recover the additive struc-
ture on the set Kalg(GK)× ∪ {0}, together with the multiplicative structure
on Kalg(GK)× corresponding to the field structure on Kalg. Indeed, it follows
from the fact that there exist two nonisomorphic local fields K1 and K2 such
that their absolute Galois groups GK1 and GK2 are isomorphic as topological
groups (see [34], remark preceding Theorem 12.2.7).

1.4 Fundamental group of a hyperbolic curve

In this section we recall basic properties of fundamental groups of hyperbolic
curves together with group theoretic characterization of the geometric funda-
mental group and inertia subgroups associated to cusps. The reference for the
notion of the étale fundamental group is [1].
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Let X by a smooth separated geometrically connected curve over a p-adic
local field K. Moreover, let X ⊂ X be the unique smooth compactification
of the curve X. Denote by g be the genus of X and by r the cardinality of
the finite set XKalg \ XKalg . We will then say that the curve X is hyperbolic
if 2g + r − 2 > 0, moreover the curve X is hyperbolic of type (g, r) if X is
hyperbolic and the numbers g and r are defined as above. Every point lying in
the complement of the curve X inside the compactification X will be referred
as a cusp. Therefore, the number r is equal to the number of geometric cusps.
We emphasise the possibly confusing point that with this terminology all cusps
are in fact smooth points.

Denote by π1(X) the étale fundamental group of X and by π1(XKalg) the
étale fundamental group of XKalg . Then, the morphisms of schemes X →
SpecK and XKalg → X induce the homomorphisms of fundamental groups
π1(X)→ GK and π1(XKalg)→ ΠX , which give rise to the following short exact
sequence of fundamental groups

1→ π1(XKalg)→ π1(X)→ GK → 1.

This exact sequence induces naturally the outer representation

GK → Out(π1(XKalg)).

It is constructed by lifting an element σ ∈ GK to an element σ̃ ∈ π1(X)
and considering the automorphism of π1(XKalg) induced by the conjugation
τ 7→ σ̃τ σ̃−1 for τ ∈ π1(XKalg). The dependence on the choice of lifting vanishes
after taking the quotient Aut(π1(XKalg)) � Out(π1(XKalg)).

There is a well-known group theoretic presentation of the profinite group
π1(XKalg). First, for every nonnegative integers g, r we define the following
discrete group

Γ(g, n) = 〈a1, b1, . . . , ag, bg, c1, . . . , cr | [a1, b1] . . . [ag, bg]c1 . . . cr = 1〉,

which is a quotient of a free group on 2g+ r letters by one relation. The group
Γ(g, n) is isomorphic to the topological fundamental group of the Riemann sur-
face X(C) of genus g punctured at r points. The elements ai and bi correspond
to the standard loops on the compactificationX(C) ofX(C) generating the first
singular homology, whereas the elements ci correspond to the loops around the
points on the boundary. Let Γ∧(g, n) be the profinite completion of Γ(g, n),
more explicitly Γ∧(g, n) = lim←−Γ(g, n)/N where the inverse limit runs through
all normal subgroups N of finite index. Then, the geometric étale fundamental
group π1(XKalg) is noncanonically isomorphic to the profinite group Γ∧(g, r),
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where g and r are equal to the genus and the number of cusps of X. This
is true over every algebraically closed field of characteristic zero. For a proof,
see [1], Exposé X. It uses specialization theorems to reduce to the case over the
complex numbers where one can use topological methods.

We need to introduce a pro-Σ version of the fundamental group of a hyper-
bolic curve X. Let Σ be fixed nonempty subset of the set of prime numbers.
Denote by π1(XKalg) � ∆X the maximal pro-Σ quotient of the geometric fun-
damental group π1(XKalg). It is defined as the inverse limit of all finite discrete
quotients π1(XKalg) � Q whose orders are Σ-integers. Thus, this quotient
classifies all finite étale covers of XKalg whose degree is a Σ-integer. Moreover,
we define the maximal geometrically pro-Σ fundamental group of X to be the
topological group ΠX fitting the following commutative diagram with exact
rows

1 π1(XKalg) π1(X) GK 1

1 ∆X ΠX GK 1.

From now on, we fix a nonempty subset Σ as above and we consider the topo-
logical groups ∆X and ΠX .

We need to describe the Galois module structure of the abelian group ∆ab
X .

The quotient ∆X � ∆ab
X induces a homomorphism Out(∆X) → Aut(∆ab

X ),
therefore we have a well defined action of GK on the abelianization ∆ab

X . Let
now J be the Jacobian variety of X and denote by J [n] be the kernel of the
multiplication by n isogeny [n] : J → J . Define the (pro-Σ) Tate module TΣ(J)
of J by the usual formula

TΣ(J) = lim←−
n∈N(Σ)

J [n](Kalg),

where the map J [mn](Kalg) → J [n](Kalg) in this projective system is defined
as multiplication by m. Then TΣ(J) is a free ẐΣ-module of rank 2g. Using
the fact that every abelian finite étale cover of X comes from the finite étale
cover of J (see [12], Chapter VII, Proposition 9.1 ), together with a well-known
isomorphism π1(JKalg) ∼= T (J) (see [33], §18), we obtain a natural isomorphism
of GK-modules

∆ab
X
∼= TΣ(J).

The morphism of schemes XKalg → XKalg induces the surjection ∆X � ∆X

which again induces the surjection ∆ab
X � ∆ab

X
on abelianizations. Obviously, if

r = 0 then it is the identity, and in the case when r > 0 we have the following
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short exact sequence of GK-modules

1→ ẐΣ(1)→
⊕

x∈cusps
ẐΣ(1)x → ∆ab

X → TΣ(J)→ 1.

The direct product in the formula above runs through the finite set of geometric
cusps.

The group ∆X is a normal closed subgroup of the topological group ΠX .
Moreover, there exists a purely group theoretic characterization of this sub-
group.

Theorem 1.4.1. Let X be a hyperbolic curve and let ΠX be its étale fun-
damental group. Then the subgroup ∆X ⊂ ΠX may be reconstructed group
theoretically.

Proof. When Σ = P, this is the content of [23], Lemma 1.1.4, (ii), however
the same proof works under the assumption that {p, l} ⊂ Σ, for some prime
number l 6= p. We give an idea of the proof. The crucial observation is the fact
that the function

P 3 l 7→ dimQl(Πab
X ⊗Ẑ Ql)− dimQl(Gab

K ⊗Ẑ Ql) ∈ Z

is constant, where P is the set of prime numbers. In particular, applying it to
every open subgroup of ΠX and every prime number in Σ one can characterize
the subgroup ∆X in a similar way as we did in the case of inertia group IK

in the proof of Proposition 1.3.1. The remaining cases when p ∈ Σ or when
Σ = {p} may be proved using [26], Lemma 1.17. We discuss the case Σ = {p}
in Chapter 2 in Proposition 2.4.1.

We also recall the definition of decomposition groups associated to rational
points and inertia groups associated to cusps (see, e.g., [1], Exposé V).

For a finite field extension L/K, let x be an L-rational point on X and fix
a geometric point x̄ over x. For every connected finite étale cover Y → X we
may consider the geometric fibre Yx̄ over the geometric point x̄. Choose now
the universal pro-system of étale covers lim←−Xi → X and consider the limit
of sets lim←−Xi,x̄. Each element it this set is called a pro-point lying over x̄.
In other words, a pro-point is a system of compatible geometric points lying
over x̄ for every finite étale cover of X. Pick one pro-point x̃ lying over x̄.
The étale fundamental group π1(X) acts naturally on the set of pro-points
and we may consider the stabilizer of the chosen pro-point x̃. It is a closed
subgroup of π1(X) called a decomposition group of x. Choosing a different
pro-point lying over x̄ results in conjugating the decomposition group by some
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element of π1(X). Therefore, the conjugacy class of decomposition subgroup
is independent of any choices. We will write Dx for a decomposition group of
x, well defined up to conjugation. Through the surjection π1(X) � GK , the
group Dx maps isomorphically onto the open subgroup GL of GK .

Let now x be a cusp, hence it is an L-rational point on X for some finite field
extension L/K. Every connected finite étale cover Y → X extends uniquely
to a connected (possibly ramified) finite cover Y → X, where Y is the smooth
compactification of Y . Therefore, we may consider as previously the pro-fibre
and pro-point over x̄ and define a decomposition groupDx of x as an appropriate
stabilizer. We then define an inertia group Ix of x as the intersectionDx∩π1(X).
Equivalently, inertia group of x it is equal to the decomposition group of the
unique lift of the point x to the base-changed curve XKalg . Inertia group is
a subgroup of π1(X) defined up to conjugation by π1(X). When we fix a
decomposition group Dx, then we have a short exact sequence

1→ Ix → Dx → GL → 1.

Finally, we look at the local structure of the ramification. Fix a cusp x

and let R be the completion of the local ring at x on the curve XKalg . The
ring R is noncanonically isomorphic to the power series ring Kalg[[T ]]. Covers
of X ramified at x are étale locally of the form S = R[X]/(Xn − T ). Every
automorphism of the cover R → S is given by X → ζX for some n-th root
of unity ζ, which does not depend on the choice of the parameter T . On
the other hand, this group is equal to Ix/nIx by the definition of an inertia
subgroup, hence we have a natural isomorphism Ix/nIx ∼= µn. Therefore, by
taking limit over all natural numbers, we obtain the canonical isomorphism
Ix ∼= lim←−µn = Ẑ(µ).

Subgroups of ∆X obtained as images of inertia groups by the surjection
π1(XKalg) � ∆X will be called inertia groups as well, similarly for decomposi-
tion groups. One easily checks that every inertia group I in ∆X is isomorphic to
the group ẐΣ(1), moreover we also have the canonical isomorphism I ∼= ẐΣ(µ).

Theorem 1.4.2. For a nonempty set of prime numbers Σ, inertia groups in
∆X associated to the cusps of X can be reconstructed group theoretically from
the topological group ΠΣ

X .

Proof. When Σ is equal to the set of all prime numbers, see [23], Lemma 1.3.9.
For the general case, we refer to [27], Corollary 2.7.

Finally, we discuss another relation between the inertia group and the de-
composition group of a cusp. For this purpose we need to recall the definition
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of a commensurator. Let H ⊂ G be a closed subgroup of a topological group G.
Consider the set of all elements g ∈ G such that the intersection H∩gHg−1 has
finite index in H, as well as in gHg−1. This set is in fact a group containing H
which is called the commensurator of H in G and is denoted by CG(H). Then,
we have the following theorem.

Theorem 1.4.3. Fix an inertia group I ⊂ ∆X of a cusp x. Then, the com-
mensurator CΠX (I) of the inertia group in the étale fundamental group ΠX is
equal to a decomposition group Dx of the cusp x. In particular, an inertia group
of a cusp determines its decomposition group.

Proof. In the pro-l case, see [23], Lemma 1.3.7. The same proof works for every
nonempty set of primes Σ.

1.5 Kummer classes of rational functions

In this section we present the anabelian construction of Kummer classes of
certain rational functions on X, as presented in [24], §4 (for a pro-Σ version,
see [26], §2). We assume that X is a hyperbolic curve over a local field K

with the smooth compactification X. We use the same notation as in previous
section. The following lemma identifies étale cohomology of certain curves with
the group cohomology of their étale fundamental group.

Lemma 1.5.1. Suppose that the genus g(X) is nonzero. Let A be a finite
π1(X)-module. Then, there exists a natural isomorphism

H i(π1(X), A) ∼= H i
ét(XKalg , A).

Proof. See [26], Proposition 1.1 for the case g ≥ 2, the same proof works in our
case.

By taking inverse limits and using Remark 1.3.2 we see that similar state-
ment holds in the case when A = Zl or A = Zl(1) for a prime number l.

Let n ≥ 1 be a natural number and consider the short exact sequence of
étale sheaves

1→ µn → Gm → Gm → 1.

Taking the long exact sequence in cohomology we obtain a coboundary map

O(X)×/O(X)×n ↪→ H1
ét(X,µn)

Identifying the étale cohomology with the group cohomology we obtain an
injection

O(X)×/O(X)×n ↪→ H1(π1(X), µn).
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This map is given explicitly by assigning to a regular function f ∈ O(X)×

the finite étale cover obtained by taking nth root of f . We may now consider
the inverse limit of these maps over all natural numbers n. Denote by

Ô(X)×Σ = lim←−
n∈N(Σ)

O(X)×/O(X)×n

the limit of the modules O(X)×/O(X)×n with respect to the natural quotient
homomorphisms. Then, by taking limits we obtain an injective homomorphism

Ô(X)×Σ ↪→ H1(ΠX , ẐΣ(µ)).

We will call this homomorphism the (pro-Σ) Kummer map and the image of a
rational function f under the Kummer map will be called the (pro-Σ) Kummer
class of f .

On the other hand, the exact sequence 1→ ∆X → ΠX → GK → 1 induces
the inflation to restriction sequence

1→ H1(GK , µn)→ H1(ΠX , µn)→ H1(∆X , µn)GK .

Since ∆X acts trivially on the group µn, the last group may be replaced by the
group of GK-equivariant homomorphisms

HomGK (∆X , µn) = HomGK (∆ab
X , µn).

Using the isomorphism K×/K×n ∼= H1(GK , µn) and taking limit over all Σ-
integers n we obtain the exact sequence

1→ K̂×Σ → H1(ΠX , ẐΣ(µ))→ HomGK (∆ab
X , ẐΣ(µ)). (1.7)

Here the group of homomorphisms actually mean the group of continuous ho-
momorphisms. Let I ⊂ ∆ab

X be the subgroup generated by the inertia sub-
groups Ix for all cusps x ∈ XKalg \XKalg , which has a direct sum decomposition
I = ⊕xIx. Because the quotient of ∆ab

X determined by the subgroup I is equal
to the quotient ∆ab

X � ∆ab
X
, we obtain the exact sequence

1→ HomGK (∆ab
X
, ẐΣ(µ))→ HomGK (∆ab

X , ẐΣ(µ))→ HomGK (I, ẐΣ(µ))

Lemma 1.5.2. The group HomGK (∆ab
X
, ẐΣ(µ)) of GK-equivariant homomor-

phisms is trivial.

Proof. See [24], Lemma 4.6. Here we give a sketch of the proof for the conve-
nience of the reader. The group ∆ab

X
is isomorphic to the Σ-adic Tate module

of the Jacobian J(X) of the curve X, which is self dual with respect to the
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Cartier duality. Hence, it would be enough to show that the Tate module of an
abelian variety A over a p-adic field K has a trivial submodule of GK-invariant
elements. But A(K) is a p-adic Lie group, thus has an open neighbourhood of
identity isomorphic to the group Zdp for some natural number d, which is ob-
viously torsion-free. Since A(K) is compact, the subgroup of torsion elements
must be finite, which implies that the GK-invariant part of the Tate module of
A is trivial.

Therefore, using the above lemma, we obtain the injection

HomGK (∆ab
X , ẐΣ(µ)) ↪→ HomGK (I, ẐΣ(µ)),

which together with the sequence (1.7) gives the following exact sequence

1→ K̂×Σ → H1(ΠX , ẐΣ(µ))→ HomGK (I, ẐΣ(µ)).

Using the natural identification Ix ∼= ẐΣ(µ) recalled at the end of Section 1.4
we obtain a canonical isomorphism

HomGK (I, ẐΣ(µ)) ∼=
⊕

x∈cusps
ẐΣ,

which gives us the exact sequence

1→ K̂×Σ → H1(ΠX , ẐΣ(µ))→
⊕

x∈cusps
ẐΣ. (1.8)

The next lemma relates this sequence to the Kummer homomorphism.

Lemma 1.5.3. We have a commutative diagram with exact rows

1 K× O(X)× ⊕
x∈cusps Z

1 K̂×Σ H1(ΠX , ẐΣ(µ)) ⊕
x∈cusps ẐΣ,

div

where the map div is the divisor map. Moreover, when Σ is equal to the set of
all prime numbers, then all vertical arrows are injective.

Proof. The commutativity of the left square is obvious from the functoriality of
Kummer sequence. The commutativity of the right square follows easily from
the construction of the canonical isomorphism Ix ∼= ẐΣ(µ). The injectivity in
the case Σ = P follows from the fact that for every p-adic local field K the
subgroup ⋂n≥1K

×/(K×)n of divisible elements is trivial.

23



Let x be an L-rational point on the curve X, for some finite field exten-
sion L/K. Choose a decomposition group Dx of this point and consider the
restriction map

s∗ : H1(ΠXL , Ẑ
Σ(µ))→ H1(Dx, ẐΣ(µ)) ∼= H1(GL, ẐΣ(µ)),

where the last isomorphism is induced by the isomorphism Dx
∼= GL. Then,

we have the following diagram

O(XL)× ̂O(XL)×Σ H1(ΠXL , ẐΣ(µ))

L× L̂×Σ H1(GL, ẐΣ(µ))

s∗

'

where the existence and description of the dotted arrow follows from the next
lemma.

Lemma 1.5.4. The restriction map H1(ΠXL , ẐΣ(µ)) → H1(GL, ẐΣ(µ)) in-
duces the homomorphism O(XL)× → L× which is equal to the evaluation map
f 7→ f(x).

Proof. This follows immediately from the functoriality of the Kummer homo-
morphism with finite coefficients µn applied to the morphism SpecL→ X given
by the rational point x.

To turn the above construction into a group theoretical algorithm we will
need to replace the Galois module ẐΣ(µ) and a canonical isomorphism Ix ∼=
ẐΣ(µ) by a corresponding group theoretical object.

1.6 Rigidification of cyclotomes

In this section we provide a group theoretic version of the canonical isomor-
phism Ix ∼= ẐΣ(µ) that was used to construct the sequence (1.8). First, we
explain the terminology used in the title of this section. Following Mochizuki,
by a cyclotome we mean a topological GK-module isomorphic (noncanonically)
to the topological GK-module ẐΣ(1), for some nonempty set of prime numbers
Σ. Thus, an inertia group Ix of a cusp x and the module ẐΣ(µ) are exam-
ples of cyclotomes. The topic of this section is to construct certain canonical
isomorphisms between those cyclotomes.

Let C be a proper curve over K of nonzero genus and let n be a Σ-integer.
From the Poincaré duality in étale cohomology (e.g., [20], VI, §11), expressed
as a cup product in group cohomology

H0(∆C , µn)×H2(∆C ,Z/nZ)→ H2(∆C , µn) ∼= Z/nZ,
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we obtain a natural isomorphism Hom(H2(∆C ,Z/nZ),Z/nZ) ∼= µn. Following
[26], we introduce the following definition.

Definition 1.6.1. Let X be a hyperbolic curve with positive genus g(X). We
define the GK-module MΣ

X by the formula

MΣ
X = Hom(H2(∆X , Ẑ

Σ), ẐΣ)

where, as previously, X ⊂ X is the smooth compactification of X.

From the short discussion preceding the definition together with a limit
argument it follows that MΣ

X is naturally isomorphic to the GK-module ẐΣ(µ),
thus MΣ

X is a cyclotome. Composing the natural isomorphisms MΣ
X
∼= ẐΣ(µ)

and ẐΣ(µ) ∼= Ix we obtain, for every cusp x, the canonical isomorphism MX
∼=

Ix. In what follows, we are going to reconstruct this canonical isomorphism
between the moduleMΣ

X and the inertia group Ix of a cusp x group theoretically.
Let x be a K-rational point on X and define U to be the open subscheme

X \ {x}. Then, we have open immersions X ↪→ U ↪→ X which induce surjec-
tions ∆X � ∆U � ∆X . The quotient ∆X � ∆U is obtained by dividing by
the smallest normal subgroup of ∆X generated by all inertia groups of cusps
excluding the cusp x. On the other hand, the quotient ∆U � ∆X is obtained
by dividing by the normal subgroup generated by the inertia group of the cusp
x. Moreover, the quotient ∆X � ∆U maps every inertia group of the cusp x
in X isomorphically onto an inertia subgroup of the same cusp x in U , thus
we may identify them canonically. Therefore, we are reduced to consider the
surjection ∆U � ∆X . Let H be the kernel of this homomorphism. Consider the
topological commutator subgroup [∆U , H] of H. It is also a normal subgroup
of ∆U , hence by taking quotient by [∆U , H] we obtain a commutative diagram
with short exact rows

1 H ∆U ∆X 1

1 I Q ∆X 1.

From the above description of the group H we easily see that the group I is
isomorphic to ẐΣ(1). Moreover, for every choice of an inertia subgroup Ix ⊂ H

the quotient H � I induces an isomorphism Ix ∼= I. Therefore it is enough to
construct the induced isomorphism I ∼= MΣ

X . The subquotient

∆U � Q� ∆X

will be called the maximal centrally cuspidal subquotient of the quotient ∆U �

∆X .
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Consider now the inflation-restriction exact sequence associated to the group
extension 1 → I → Q → ∆X → 1 with the coefficient module equal to I

equipped with a trivial group action. In particular, we have the coboundary
map:

Hom(I, I) = H1(I, I)∆
X → H2(∆X , I

I) = H2(∆X , I)

On the other hand, we have canonical isomorphisms

Hom(MΣ
X , I) ∼= Hom(MΣ

X , ẐΣ)⊗ I ∼= H2(∆X , Ẑ
Σ)⊗ I ∼= H2(∆X , I).

Therefore, composing those isomorphisms with the coboundary map mentioned
previously we obtain a homomorphism

Hom(I, I)→ Hom(MΣ
X , I).

Now, consider the image of the identity map I → I under this homomorphism,
which is a homomorphism MΣ

X → I.

Proposition 1.6.2. The homomorphism MΣ
X → I just constructed is in fact

an isomorphism which is equal to the natural isomorphism MΣ
X
∼= I.

Proof. When Σ is the set of all prime numbers, see [30], Proposition 1.4,(ii),
this also implies the general case.

In this way we construct canonical isomorphisms between the GK-module
MΣ

X and an inertia group Ix ⊂ ∆X of a cusp x compatible with the natural
identifications with ẐΣ(µ).

In Section 1.3 we introduced another cyclotome Ẑ(GK), canonically isomor-
phic to Ẑ(µ) by the local reciprocity map. Therefore, by composing canonical
isomorphisms MX

∼= Ẑ(µ) and Ẑ(µ) ∼= Ẑ(GK) we obtain the canonical isomor-
phism MX

∼= Ẑ(GK). Then, in the case when the set Σ is equal to the set of
all prime numbers, we have the following lemma.

Lemma 1.6.3. Assume that Σ = P. Then, the natural isomorphism MX
∼=

Ẑ(GK) can be reconstructed group theoretically from the topological group ΠX =
π1(X).

Proof. See [30], Corollary 1.10, (ii), (c).

We now need to discuss the group theoretic version of the Kummer exact
sequence and the Kummer classes of functions. Recall the exact sequence

1 H1(GK , ẐΣ(µ)) H1(ΠX , ẐΣ(µ)) ⊕
x∈cusps ẐΣ.
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We may apply exactly the same construction as in Section 1.5, replacing the
cyclotome ẐΣ(µ) with the cyclotome MΣ

X , to obtain the exact sequence

1 H1(GK ,M
Σ
X) H1(ΠX ,M

Σ
X) ⊕

x∈cusps HomGK (Ix,MΣ
X).

Using the natural (and group theoretic) isomorphism MΣ
X
∼= Ix, the last group

of homomorphisms is identified with a direct sum of copies of the group ẐΣ.
Moreover, since the natural isomorphism MΣ

X
∼= ẐΣ(µ) is compatible with the

natural isomorphisms ẐΣ(µ) ∼= Ix and MΣ
X
∼= Ix, it induces a commutative

diagram

H1(GK , ẐΣ(µ)) H1(ΠX , ẐΣ(µ)) ⊕
x∈cusps ẐΣ

H1(GK ,M
Σ
X) H1(ΠX ,M

Σ
X) ⊕

x∈cusps ẐΣ.

' ' (1.9)

The cohomology module H1(ΠX ,M
Σ
X), constructed group theoretically, serves

as an analogue of the group H1(ΠX , ẐΣ(µ)) and the above diagram provides
the compatibility between the Kummer classes of regular functions.

1.7 Elliptic cuspidalization

We now come back to the original situation introduced in Section 1.1. Namely,
we have an elliptic curve E over the p-adic local field K and we consider the
hyperbolic curve X of type (1, 1) obtained by removing the K-rational point
given by the origin O from the curve E. We also denote by Xn = E \E[n] the
open subscheme of E obtained by removing the subgroup of n-torsion points.
In this section we assume that the residue characteristic p is contained in the
set Σ.

Consider the maximal geometrically pro-Σ étale fundamental group ΠX of
the hyperbolic curveX. The main result in this section is a group theoretic con-
struction of decomposition groups of nonzero torsion points of the elliptic curve
E, as subgroups of the group ΠX . In fact, the construction will give even more,
as it produces a fundamental group of the curve E with certain torsion points
removed. More precisely, for every natural number n, we are going to construct
(from the fundamental group ΠX) another topological group ΠU together with
a surjective homomorphism ΠU � ΠX such that ΠU is the étale fundamental
group of a scheme U and the group homomorphism ΠU � ΠX comes from the
open immersion U ↪→ X which identifies U with the subscheme Xn. This con-
struction is usually called the elliptic cuspidalization and is introduced in [24]
in the case when Σ = P.
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From the definition of Xn, for every natural number n, we have a cartesian
diagram

Xn E

X E,

n

where the vertical arrows are finite étale morphisms obtained by the multipli-
cation by n isogeny on the elliptic curve E.

Lemma 1.7.1. The open subgroups ΠXn of ΠX corresponding to the finite étale
covers Xn → X can be characterised group theoretically.

Proof. First we claim that we may determine all the open subgroups of ΠU ⊂
ΠX such that the corresponding finite étale cover U → X is unramified over
the unique cusp of X, equivalently that the cover U → X extends to the finite
étale cover of the proper curve E. Indeed, we easily observe that the quotient
ΠX � ΠE corresponding to the open immersion X ↪→ E is determined group
theoretically as the pushout of the following diagram

∆X ΠX

∆ab
X .

Thus, the étale covers of X which extend to étale covers of E correspond to the
open subgroups of ΠX which are the preimages of open subgroups of ΠE under
the quotient map ΠX � ΠE.

Therefore, we are reduced to characterise the multiplication by n isogeny
among all étale covers of E, where n is a Σ-integer. Let H be a normal open
subgroup of ΠE generated by the image of the decomposition group of the cusp
and the subgroup n∆E ⊂ ∆E (written additively). Then one easily checks that
H corresponds to the étale cover [n] : E → E.

The above lemma constructs the group ΠXn as an open subgroup of ΠX ,
whereas we want to construct the surjection ΠXn � ΠX . This is the content
of the next proposition which is in fact the most nontrivial part of the whole
construction since it uses the main result of [22].

Proposition 1.7.2. From the topological group ΠX we may reconstruct the sur-
jection ΠXn � ΠX corresponding to the open immersion Xn ↪→ X. Moreover,
we may also reconstructs the set of conjugacy classes of decomposition groups
of torsion points (as subgroups of the topological group ΠX) together with the
group structure on the set of decomposition groups corresponding to the group
structure on the elliptic curve E.
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Proof. Take the open subgroup ΠXn ⊂ ΠX constructed in the previous lemma.
The curve Xn has n2 cusps. Using the results of Section 1.4 we may reconstruct
the inertia groups of those cusps and, by considering commensurators, also their
decomposition groups. Pick one of the cusps which is K-rational, equivalently
its decomposition group surjects onto the Galois groupGK , and call it P . Define
the quotient ∆Xn � ∆P whose kernel is the normal subgroup generated by the
inertia subgroups of ΠXn of all cusps excluding the cusp P . Finally, let ΠP be
a quotient of ΠXn obtained by pushing out the quotient ∆Xn � ∆P along the
map ∆Xn ↪→ ΠXn

1 ∆Xn ΠXn GK 1

1 ∆P ΠP GK 1.

By construction, the quotient ΠP is isomorphic to the étale fundamental
group ΠU of the curve U = E\{P}. Moreover, we may choose the isomorphism
ΠP
∼= ΠU to commute with the natural surjections to GK . Therefore, the above

discussion may be summarized by the following diagram of curves and their
fundamental groups

ΠXn ΠP
∼= ΠU Xn U

ΠX X.

(1.10)

The K-curves X and U are isomorphic as schemes over K. Moreover, since
every fundamental group in the above diagram is endowed with the fixed surjec-
tion to the group GK and the maps between them are morphisms over GK , we
may choose an isomorphism ΠP

∼= ΠX lying over GK . Now it follows from the
p-adic Grothendieck Conjecture (see [22], Theorem A) that this isomorphism
of fundamental groups comes from the isomorphism of K-schemes U ∼= X (this
is the point where we use that p ∈ Σ). Therefore, the surjection ΠXn � ΠX

obtained as the composition

ΠXn � ΠP
∼= ΠX

comes from the morphism of schemes, which can be identified (up to an auto-
morphism of K-schemes) with the open immersion Xn ↪→ X. This proves the
first part of the proposition.

Consider now the conjugacy classes of decomposition groups of cusps in
ΠXn . We map them to ΠX by the surjection ΠXn � ΠX . Then, it follows
easily from the construction that this image consists of conjugacy classes of
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decomposition groups of n-torsion points. To recover the group structure on
the decomposition groups we use the natural isomorphism

E[n](Kalg) ∼= Gal(EKalg → EKalg)

between geometric torsion points of E and the Galois group of the finite étale
cover EKalg → EKalg given by the multiplication by n isogeny. Indeed, we may
map all decomposition groups of torsion points to the quotient ΠX � ΠE and
consider the permutations of their images under the action of the Galois group
of the cover [n] : E → E.

In fact, we may obtain a slightly stronger statement as a corollary of the
above proof. Let P be a nonzero point of E with a decomposition group
D ⊂ ΠX and let n be a Σ-integer. LetXn ↪→ X be the open subscheme obtained
by removing n-torsion points. Therefore, the previous proposition constructs
the corresponding surjection ΠXn � ΠX . Consider the set A of rational points
Q on the elliptic curve E such that nQ = P τ , for some automorphism τ of the
elliptic curve E. Hence the points from the set A are rational points on the
curve Xn.

Lemma 1.7.3. With the notation as above, suppose we are given a decom-
position group D of the point P as a subgroup of the group ΠX . Then, from
the inclusion D ⊂ ΠX , we may reconstruct conjugacy classes of decomposi-
tion groups of rational points Q belonging to the set A as conjugacy classes of
subgroups of ΠXn.

Proof. Indeed, we look again at the diagram (1.10). Intersecting the conjugacy
class of a decomposition group D with an open subgroup ΠXn produces n2

conjugacy classes of subgroups in ΠXn , corresponding to points Q satisfying
nQ = P . Therefore, using GK-equivariant isomorphism ΠP

∼= ΠX , the set of
conjugacy classes of subgroups that we obtain in ΠXn is equal to the desired
set of decomposition groups.

1.8 Reconstruction of the local height

In this final section we give the proof of Theorem 1.1.1. Observe that, when Σ 6=
{p}, having good reduction is a group theoretic property due to the following
lemma.

Lemma 1.8.1. Assume that the set Σ contains a prime number l 6= p. Then,
from the topological group ΠX one can determine whether the elliptic curve E
has good reduction.
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Proof. We have seen that the subgroup ∆X ⊂ ΠX can be recovered group the-
oretically. Therefore, for a prime number l 6= p belonging to Σ we may consider
the GK-module ∆(l)

X = ∆X ⊗ẐΣ Zl. On the other hand, ∆(l)
X is isomorphic as

a GK-module to the l-adic Tate module Tl(E). It follows immediately from a
well-known criterion of Serre-Tate (see [36]), that E has good reduction if and
only if the action of the inertia group IK on ∆(l)

X is trivial. Since the subgroup
IK ⊂ GK is group theoretic, the lemma follows.

We now start proving Theorem 1.1.1. Because the Néron-Tate local height
function is invariant under field extensions, we may reduce to the case when E
has good reduction. Indeed, for a finite extension L/K, the fundamental group
of XL is equal to the preimage of GL under the group theoretic surjection
ΠX � GK . Then, at least in the case when Σ 6= {p}, we may restrict to
a subgroup GL and use Lemma 1.8.1 to finish the reduction step. On the
other hand, recall that there exists a finite field extension F/K such that every
elliptic curve over K acquires split semi-abelian reduction after the base change
to F . Indeed, it follows from a well-known property of local fields that for
every integer d there exist only finitely many field extensions L/K with degree
[L : K] ≤ d. Thus, we may simply restrict to the open subgroup GF to acquire
good reduction, without any assumption on the set Σ.

Therefore, we will now assume that E has good reduction. Recall that for
an elliptic curve E over K with good reduction there exists a model E over OK
described by a minimal Weierstrass equation

y2 + a1xy + a3y = x3 + a4x
2 + a2x+ a6

where ai ∈ OK with discriminant ∆ being a p-adic unit. This expression is
unique up to the change of coordinates given by the formula

x 7→ u2x+ r, y 7→ u3y + u2sx+ t,

where r, s, t ∈ OK and u ∈ O×K (see [38]). In the following we fix some minimal
Weierstrass equation of E.

We will call a Kalg-rational point P on the elliptic curve E integral if

vK(x(P )) ≥ 0,

where x is the function chosen in the minimal Weierstrass equation above. We
easily see from the transformation formula recalled above that this property
does not depend on the choice of the function x and is therefore well defined.
Because the group scheme E [n] is étale over SpecOK for every natural number
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n prime to p, one easily checks that every n-torsion point (for (n, p) = 1) is
integral. Moreover, the set of Kalg-points which are not integral is equal to the
preimage of the origin O of the reduced elliptic curve Ek under the reduction
map E(Kalg) = E(OKalg)→ Ek(kalg) (see, e.g., [38], Chapter VII, §2).

Let P be now a nonzero n-torsion point on the elliptic curve E. Consider
the set of rational functions on E having double pole at the origin O and simple
zero at the point P . It follows immediately from the Riemann-Roch formula
that this set is a K×-torsor and every function in this set is equal to u(x−x(P ))
for some u ∈ K×. We introduce the following useful definition.

Definition 1.8.2. For every algebraic extension L/K we define the L×-torsor
of standard functions associated to the point P as the set of functions f of the
form f = u(x− x(P )), for some u ∈ L×. Moreover, we define the O×L -torsor of
integral standard functions associated to the point P as the set of all functions
of the form u(x− x(P )), where u ∈ O×L .

Observe that the definition of the O×K-torsor of integral functions does not
depend on the choice of a minimal Weierstrass equation over K. Indeed, for any
other choice of minimal Weierstrass equation with coordinate functions x′ and y′

we have x′−x′(P ) = v(x−x(P )), for some unit v ∈ O×K . Therefore, any minimal
Weierstrass equation determines the same reduction of the group structure from
K× to O×K , i.e., canonically determines the O×K-torsor of integral functions.
Moreover, we easily see that the construction of this torsor is compatible with
every algebraic extension of the base field, as the good reduction property is
stable under base change.

Lemma 1.8.3. Assume that Σ is the set of all prime numbers and E has good
reduction. Let n be a natural number prime to p and suppose that K = K(E[n]).
Then, the set of O×K-torsors of integral standard functions associated to all
nonzero n-torsion points can be constructed group theoretically from the group
ΠX .

Proof. Let P be a nonzero n-torsion point on E. We use the elliptic cuspi-
dalization (Proposition 1.7.2) to construct the topological group ΠU together
with a surjection ΠU � ΠX coming from the open immersion of schemes
U = X \ {P,−P} ↪→ X if n > 2, and U = X \ {P} ↪→ X if n = 2. Next, we
recall the exact sequence (1.9)

1→ H1(GK ,MX)→ H1(ΠU ,MX)→
⊕

x∈cusps
Ẑ,

which we constructed group theoretically. By the definition of U , the set of
standard functions associated to the point P is contained in the set of regular
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functions on U . Then, using the above exact sequence and considering the
divisor of zeroes and poles associated to classes in H1(ΠU ,MX), we may choose
those classes whose divisor has double pole at the cusp of X and zero at the
point P . This set of classes is a K̂×-torsor, informally it consists of all functions
f of the form f(x) = u(x − x(P )) for u ∈ K̂×. Therefore, to obtain the O×K-
torsor of integral standard functions, we need to reduce the indeterminacy from
K̂× to O×K . We achieve this by evaluating these functions at various torsion
points.

Recall that by applying elliptic cuspidalization we also obtain the set of
decomposition groups of torsion points, as subgroups of ΠU , together with a
group structure coming from the group structure on elliptic curve E. Thus,
if DQ is a decomposition group of a m-torsion point Q, we may consider the
evaluation map

H1(ΠU ,MX)→ H1(DQ,MX) ∼= H1(GK ,MX) ∼= H1(GK , Ẑ(GK)) � Ẑ (1.11)

where the first isomorphism is induced by surjection ΠU � GK , the second
comes from the canonical isomorphism MX

∼= Ẑ(GK) and the last surjection is
the valuation map (1.5) constructed in Section 1.3.

To specify the O×K-torsor of integral standard functions f , we impose the
following condition:

(∗) for all natural numbers m prime to p and all m-torsion points
Q 6= ±P , the value f(Q) of the function f at the point Q is a p-adic
unit.

We claim that f satisfies the above property if and only if f is an integral
standard function. Indeed, since f(Q) = u(x(Q) − x(P )), it is equivalent to
check that x(Q)− x(P ) belongs to O×Kalg . But it clearly belongs to OKalg since
both points P and Q are integral. Hence it is enough to prove that the only m-
torsion points Q, for (m, p) = 1, satisfying x(Q) = x(P ) are given by ±P . Here
by x(Q) we mean the image of x(Q) under the reduction map OKalg � kalg.
On the other hand, this statement follows easily from the injectivity of the
reduction map E(Kalg)[m] → Ek(kalg), when restricted to m-torsion points.
Finally, we easily observe that the condition (∗) is group theoretic since it is
equivalent to the triviality of the homomorphism (1.11) for the point Q.

Finally, we may prove the main theorem of this chapter.

Proof of Theorem 1.1.1. Let s be a section over an open subgroup GL of the
surjection ΠX � GK coming from a rational point S. We may assume that S
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is a nontorsion point. Choose natural number n prime to p and let Xn ↪→ X be
the subscheme obtained by removing all n-torsion points. Let A be the set of
all rational points Q such that nQ = Sτ , for some automorphism τ ∈ Aut(E).
By restricting to an open subgroup of GK we may assume that all n-torsion
points as well as all points Q contained in A are K-rational.

The section s determines a decomposition group of the point S in ΠX . Using
Lemma 1.7.3 we may reconstruct conjugacy classes of decomposition groups of
all points Q from the set A as subgroups of the group ΠXn . We fix one point
Q ∈ A and its decomposition group DQ ⊂ ΠXn . The group DQ determines a
section s0 : GK → ΠXn of the surjection ΠXn � GK , hence also a restriction
map

s∗0 : H1(ΠXn ,MX)→ H1(GK ,MX) ∼= H1(GK , Ẑ(GK)),

which we may compose with the group theoretic absolute value map (1.5)

v : H1(GK , Ẑ(GK)) � Ẑ.

Then, for every regular function f ∈ O(Xn)×, from the functorial properties
of Kummer sequence we obtain the equality v ◦ s∗0(f) = v(f(Q)). Moreover,
since the section comes from the rational point, this image actually lies in the
subgroup Z ⊂ Ẑ.

Let P be a nontrivial n-torsion point. By using Lemma 1.8.3 we may re-
construct cohomology classes of a integral standard functions f = u(x−x(P )),
where u is a p-adic unit, associated an n-torsion point P . These classes are in
fact elements of the group H1(ΠXn ,MX). Thus, by the previous discussion, we
may evaluate these classes at the point Q to obtain the integer

v ◦ s∗0(f) = v(f(S)) = v(x(Q)− x(P )) ∈ Z.

This integer is nonnegative if and only if Q is integral which implies that its
local height is equal to zero. On the other hand, if v(f(Q)) < 0, then in fact
v(f(Q)) is already equal to v(x(Q)) from which we immediately obtain the local
height λ(Q) of the point Q.

Moreover, observe that the cohomology class of the function Fn appearing in
Lemma 1.2.4 may also be reconstructed group theoretically, up to a p-adic unit,
as a cohomology class in H1(ΠXn ,MX). Indeed, we easily see that Fn is, up to
the factor n2, equal to the product of integral standard functions associated to
n-torsion points. Therefore, by evaluating the Kummer class of Fn at Q, we
may reconstruct the integer v(Fn(Q)). Finally, Lemma 1.2.4 implies that this
data determines the local height λ(nQ) = λ(S), which finishes the proof.
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Remark 1.8.4. In fact, in the case of potentially good reduction it is also
possible to prove a pro-Σ version of Theorem 1.1.1, for every subset Σ of prime
numbers containing the prime number p. Namely, we replace the étale fun-
damental group π1(X) by maximal geometric pro-Σ quotient ΠX and consider
sections of the surjection ΠΣ

X � GK coming from rational points. We come
back to this problem at the end of the next chapter.
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Chapter 2

Anabelian criteria of good
reduction

2.1 Introduction

Let E be an elliptic curve over a p-adic local field K. Consider, as in the
previous chapter, a hyperbolic curve X obtained by removing from E the K-
rational point given by the origin O of the elliptic curve E. Let π(p)

1 (X) be the
maximal geometrically pro-p étale fundamental group of the hyperbolic curve
X. Thus, we have a short exact sequence of topological groups

1→ π
(p)
1 (XKalg)→ π

(p)
1 (X)→ GK → 1,

where π(p)
1 (XKalg) is defined as the maximal pro-p quotient of the geometric

fundamental group π1(XKalg).
In this chapter we consider the following problem. Given the topological

group π
(p)
1 (X), is it possible to determine the reduction type of the elliptic

curve E over K? In this context, the strongest result we can prove is the
following theorem.

Theorem 2.1.1. Assume that p ≥ 5. Then, from the topological group π(p)
1 (X)

equipped with the set of all discrete tangential sections, we may recover the
reduction type of the elliptic curve E.

For a definition of the notion of a discrete tangential section, see Section 2.5.
In fact, we will see that even when p is smaller than five we may recover the
reduction type is certain special cases.

The problem considered in this chapter is motivated by the results of [16],
where it is proved that for a proper hyperbolic curve X one can determine,
from the fundamental group π(p)

1 (X), whether the curve X has good ordinary
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reduction. Here, good ordinary reduction of a curve X means that the curve
X has good reduction and that the reduction of the Jacobian J(X) of X is an
ordinary abelian variety.

Remark 2.1.2. Let Σ be a nonempty set of prime numbers. One can consider
analogous problem where instead of π(p)

1 (X) we take the maximal geometrically
pro-Σ fundamental group ΠX of the curve X. When the set Σ contains a prime
number l 6= p, then we have already seen this characterization in Lemma 1.8.1.
On the other hand, we will explain below why we are cannot use the p-adic
criterion of good reduction to determine the reduction type of E.

Recall that, for an abelian variety A over K, we know that the variety A
has good reduction if and only if the p-adic representation Vp(A) = Tp(A)⊗Qp

of the Galois group GK is crystalline (we will recall the notion of crystalline
representation in the next section). Thus, one may try to characterise good re-
duction of E using this theorem applied as previously to the p-adic representa-
tion πp,ab

1 (XKalg). However, this may not be possible. Indeed, the fundamental
group π(p)

1 (X) is considered just as a topological group, without any fixed surjec-
tion to the absolute Galois group GK . Therefore, the quotient π(p)

1 (X) � GK ,
whose kernel may be reconstructed group theoretically, is determined only up
to an automorphism of topological groups. On the other hand, the category of
crystalline representations (considered as a full subcategory of all p-adic repre-
sentations) is not necessarily preserved by the equivalence of categories induced
by automorphisms of the topological group GK . For example, it is known that
there exist Hodge-Tate representations GK → GL(V ) and an automorphism
GK
∼= GK such that the composition GK

∼= GK → GL(V ) is not a Hodge-Tate
representation. This problem did not arise in the l-adic case simply because the
subcategory of unramified representations is preserved by every automorphism
of GK . See also the discussion in [16]. Nevertheless, in the following we will
use certain results from p-adic Hodge theory which will not be affected by the
group of automorphisms of GK and therefore are purely group theoretic.

Let us fix the notation used in this chapter. When X is a hyperbolic curve
and Σ is a nonempty set of prime numbers, we have defined in Section 1.4
the maximally geometrically pro-Σ étale fundamental group ΠX of X. For the
rest of this chapter, we will consider only the pro-p case hence we assume that
Σ = {p}. Thus, we have a commutative diagram

1 π1(XKalg) π1(X) GK 1

1 ∆X ΠX GK 1,
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obtained as the pushout by the maximal pro-p quotient π1(XKalg) � ∆X .
Let K be a local field. We denote by K̂×p the inverse limit

K̂×p = lim←−
n≥1

K×/(K×)pn .

Note that by Kummer theory we have

K×/(K×)pn ∼= H1(GK , µpn),

therefore by taking the inverse limit over all natural numbers n we obtain

K̂×p ∼= H1(GK ,Zp(µ)).

The kernel of the natural homomorphism of groups K× → K̂×p is equal to the
group µp

′

K of roots of unity of order prime to p contained in K. For every local
field L we denote

L×µ = L×/µp
′

L ,

the quotient of L× by the subgroup of p′-roots of unity. Moreover, we have a
natural isomorphism UL ∼= O×L/µ

p′

L , where UL denotes the group of principal
units. Hence, we obtain injections UL ↪→ L×µ ↪→ L̂×p.

2.2 Reminder on p-adic Hodge Theory

In this section we recall a few basic facts from the theory of p-adic representa-
tions that we will use later.

Let k be a perfect field of characteristic p and denote by W (k) the ring
of Witt vectors over k. Let K be a finite totally ramified extension of the
nonarchimedean complete fieldW (k)[1/p]. Let V be a finite dimensional vector
space over Qp equipped with a linear continuous GK-action, where GK is the
absolute Galois group of K. We will simply say that V is a representation of
GK . Moreover, for every integer n ∈ Z, we will denote by V (n) the nth Tate
twist of the representation V .

The general formalism of rings of periods is given as follows. Let B be a
Qp-algebra domain equipped with a continuous and linear action of GK . Then
one can consider the functor DB : V 7→ (B ⊗Qp V )GK from the category of
GK-representations to the category of BGK modules. It naturally induces the
GK-equivariant comparison morphism of B-modules

α : DB(V )⊗BGK B → V ⊗Qp B

Assume now additionally that B is (Qp, GK)-regular. This means that we have
the equality BGK = Frac(B)GK and for every nonzero b ∈ B such that the line
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Qpb is GK-stable we have b ∈ B×. This obviously implies that the Qp-algebra
BGK is a field, hence DB(V ) is a vector space over BGK . Then, using the as-
sumption of (Qp, GK)-regularity, one proves that the morphism α is injective, in
particular dimBGK DB(V ) ≤ dimK V . Therefore, one defines a representation
V to be B-admissible when the morphism α is an isomorphism, which is in fact
equivalent to the equality dimBGK DB(V ) = dimK V . Every subrepresentation
and every quotient of a B-admissible representation is also B-admissible. More-
over, the category of B-admissible representations in closed under the formation
of tensor product and operation of taking the dual representation.

In the following we use three period rings, Bcris, Bst and BdR, whose admissi-
ble representations are called crystalline, semistable and de Rham, respectively
(see, e.g., [14]). One has inclusions Bcris ⊂ Bst ⊂ BdR, hence every crystalline
representation is also semistable and every semistable representation is also de
Rham. Moreover, a representation V is crystalline (semistable, de Rham) if and
only if its restriction to the inertia subgroup IK ⊂ GK is crystalline (semistable,
de Rham, respectively), in particular every unramified representation is crys-
talline. The ring BdR is equipped with a decreasing filtration Bi

dR for i ∈ Z, in
addition it satisfies the equality BGK

dR = K. Therefore, for every representation
V the K-vector space DdR(V ) has the induced decreasing filtration of K-vector
subspaces DdR(V )i, for i ∈ Z. Moreover, if the representation V is de Rham
then V is also a Hodge-Tate representation and the dimension of the i-graded
subquotient

DdR(V )i/Di+1
dR (V )

is equal to the multiplicity of the weight i in the Hodge-Tate decomposition
of V . Finally, the cyclotomic character Qp(1) is a crystalline representation.
The main property of these representations we are going to use is the following
theorem which we have already mentioned in the introduction (see [11] for the
good reduction case and [10] for the semi-stable case).

Theorem 2.2.1. Let E be an elliptic curve over a p-adic local field K. Then, E
has good reduction over K if and only if the representation Vp(E) is crystalline.
Moreover, when p > 2, then E has semi-abelian reduction over K if and only
if the p-adic representation Vp(E) is semistable.

We also recall, following [7], the definition of crystalline, and semistable
cohomology classes. Let V be a finite dimensional p-adic representation of GK .
The cohomology group H1(GK , V ) is a finite dimensional Qp-vector space. For
a ring of periods B, we may consider the kernel of the natural map

H1(GK , V )→ H1(GK , V ⊗Qp B).
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When B = Bcris, then cohomology classes lying the kernel of the above map
are called crystalline and the kernel is denoted by H1

f (GK , V ). Similarly, when
B = Bst then the kernel is denoted by H1

st(GK , V ) and a cohomology class
lying in the kernel is called semistable. Consider now a cohomology class α ∈
H1(GK , V ) and let

1→ V → W → Q→ 1

be the extension of representations corresponding to α, via the identification
H1(GK , V ) = Ext1

Qp[GK ](Qp, V ). Suppose now that the representation V is
crystalline (semistable). Then, the representation W is crystalline (semistable)
if and only if the cohomology class α is crystalline (semistable).

Lemma 2.2.2. Let V be a two-dimensional p-adic representation fitting in the
following exact sequence of GK-modules

1→ Qp(1)→ V → Qp → 1.

Then, the representation V is semistable.

Proof. Consider the cohomology group H1(GK ,Qp(1)). By Kummer theory, it
is a Qp-vector space of dimension [K : Qp] + 1. From the computation of [7]
(see the table in Example 3.9), we know that the subspace H1

f (GK ,Qp(1)) of
crystalline cohomology classes is aQp-vector space of dimension [K : Qp]. More-
over, the extension of Qp by Qp(1) constructed from the Tate module of a Tate
curve over K (which we will recall in the next section) is a semistable extension
which is not crystalline (by Theorem 2.2.1). Therefore, the cohomology class
of this extension generates a one dimensional Qp-vector subspace of the vector
space H1(GK ,Qp(1)), consisting of semistable classes, which is not contained
in H1

f (GK ,Qp(1)). Since the subspace of crystalline classes is of codimension
one this implies that every class is semistable.

In fact, we have a slightly stronger result.

Lemma 2.2.3. Let V be a two-dimensional p-adic representation such that
there exist one-dimensional unramified representations V ′ and V ′′ and an exact
sequence of GK-modules

1→ V ′(1)→ V → V ′′ → 1.

Then, the representation V is semistable.

Proof. By tensoring with the dual of the character V ′′ we may assume that
V ′′ = Qp. Moreover, by the previous lemma we may assume that the unramifed
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character V ′ is nontrivial. We prove that in this case the representation V is
in fact crystalline, hence also semistable.

For a p-adic representation W we write hi(W ) = dimQp H
1(GK ,W ), sim-

ilarly hif (W ) = dimQp H
1
f (GK , V ). Recall (see [34], Corollary 7.3.8), that the

Euler characteristic of the representation W is equal to

h0(W )− h1(W ) + h2(W ) = −[K : Qp] dimQpW.

Moreover, it we denote by

W ∗ = HomQp(W,Qp)

the Qp-linear dual representation of W , then it follows from local Tate duality
(see [34], Theorem 7.2.6), that

hi(W ) = h2−i(W ∗(1)), for 0 ≤ i ≤ 2.

Since V ′ is a nontrivial unramified character we have h0(V ′(1)) = 0 and

h2(V ′(1)) = h0((V ′)∗) = 0,

therefore h1(V ′(1)) = [K : Qp]. On the other hand, using [7], Corollary 3.8.4,
for every de Rham representation W we have the equality

h1
f (W ) = h0(W ) + dimQp(DdR(V )/DdR(V )0).

The second term on the right hand side of the above formula is equal to the
sum of negative Hodge-Tate weights of the representation W . In particular, it
is invariant under twisting by unramified characters. Thus, for the unramified
character V ′ we have

h1
f (V ′(1)) = h1

f (Qp(1)) = [K : Qp].

Therefore, we obtain h1
f (V ′(1)) = h1(V ′(1)) which implies that

H1
f (GK , V

′(1)) = H1(GK , V
′(1)).

Thus, every cohomology class is crystalline and V is a crystalline representation.

2.3 Structure of p-adic Tate module

In this section we will recall basic properties of the p-adic Tate module of an
elliptic curve over a p-adic field. Similar discussion would be valid in the more
general case of abelian varieties. All the results are well known, e.g., see [39].
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Let E be an elliptic curve over a p-adic local field K. We assume that E
has split semi-abelian reduction over K i.e., the Néron model E of E, which
is a smooth flat scheme over Spec(OK), has the special fibre Ek isomorphic to
either an elliptic curve or to a split torus. Equivalently, the special fibre of
the minimal Weierstrass model of E over OK is either an elliptic curve or a
split nodal pointed curve. In each case we are going to describe a GK-module
structure of the p-adic Tate module Tp(E).

Suppose first that E has bad reduction. Since it also has split semi-abelian
reduction we know that E is a Tate curve. Thus, there exists a unique element
q ∈ K× with |q| < 1 and an isomorphism E ∼= Eq. Hence we also have a
GK-equivariant isomorphism E(Kalg) ∼= (Kalg)×/qZ. In particular, the group
of n-torsion points is isomorphic to the subgroup of (Kalg)×/qZ generated by
the elements

ζ inq
j
n, for 0 ≤ i, j ≤ n− 1,

where ζn is a primitive nth root of unity and qn is an nth root of q. The elements
ζ in form a cyclic subgroup of E[n](Kalg) which is GK-invariant, hence we have
a short exact sequence of GK-modules

1→ 〈ζn〉 → E[n]→ E[n]/〈ζn〉 → 1.

Since for every σ ∈ GK we have σ(qn) = ζ inqn for some natural number i,
we see that the quotient E[n]/〈ζn〉 has trivial GK-action. Moreover, the above
short exact sequence is compatible with the multiplication map E[nm]→ E[m].
Therefore, by taking n = pk, for every k ≥ 1 and considering the inverse system
with morphisms given by multiplication by p we obtain a short exact sequence

1→ lim←−
n≥1

µn → Tp(E)→ lim←−
n≥1

Z/nZ→ 1.

The exactness on the right follows from finiteness of groups µn. Hence, by
tensoring with Qp we see that there exists a short exact sequence of p-adic
representations of GK

1→ Qp(1)→ Vp(E)→ Qp → 1.

Next, we are going to describe the good reduction case. Here we have
two possibilities, either the elliptic curve E has ordinary reduction or it has
supersingular reduction. Let E be the Néron model of E. Consider the pi-
torsion group scheme E [pi], which is defined as the kernel of the homomorphism
pi : E → E . It is a finite flat group scheme of order p2i over Spec(OK), which is
a local henselian scheme, therefore its connected component of identity E [pi]◦
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is naturally a subgroup scheme. Then, we have a short exact sequence of finite
flat group schemes

1→ E [pi]◦ → E [pi]→ E [pi]ét → 1,

where the quotient E [n]ét is étale over Spec(OK). Here by a short exact sequence
of finite flat group schemes over Spec(OK) we mean the short exact sequence
of corresponding sheaves in the flat topology. Thus, essentially by definition,
for every natural number i the finite flat group scheme E [pi]ét has order pi (is
trivial) if and only if E has ordinary (supersingular) reduction. By looking at
Kalg-points we obtain a short exact sequence of GK-modules

1→ E [pi]◦(Kalg)→ E [pi](Kalg)→ E [pi]ét(Kalg)→ 1.

As the group E [pi]ét is finite étale, we have E [pi]ét(Kalg) = Ek[pi](kalg). Hence
the subgroup E [pi]◦(Kalg) ⊂ E(Kalg) consists exactly of all pi-torsion points
such that their reduction to the special fibre Ek is equal to the origin O of
the reduced elliptic curve Ek. The above short exact sequence is compatible
with the multiplication map on elliptic curve E. Therefore, since the groups
E [pi]◦(Kalg) are finite for every i ∈ N, after taking inverse limit we obtain a
short exact sequence of GK-modules

1→ Tp(E)◦ → Tp(E)→ Tp(E)ét → 1.

Here we use the notation Tp(E)◦ = lim←−i≥1 E [pi]◦(Kalg), similarly Tp(E)ét =
lim←−i≥1 E [pi]ét(Kalg). After tensoring with Qp we have a short exact sequence of
GK representations

1→ Vp(E)◦ → Vp(E)→ Vp(E)ét → 1. (2.1)

Because the p-divisible group E [pi]ét is étale over Spec(OK), the action of GK

on the module Tp(E)ét is unramified.
Assume now that E has good ordinary reduction. Then, both GK-modules

Tp(E)◦ and Tp(E)ét are free Zp-modules of rank one. On the other hand, it
follows easily from the Cartier duality together with the self-duality of elliptic
curves that there exist a GK-equivariant isomorphism

Tp(E)◦ ∼= HomZp(Tp(E)ét,Zp(1)).

Therefore, we obtain that in the ordinary case the short exact sequence (2.1)
is of the form

1→ Qp(χ−1)(1)→ Vp(E)→ Qp(χ)→ 1,
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where χ is some unramified character.
Finally, we assume that the elliptic curve E has good supersingular reduc-

tion. Here, the only fact concerning the p-adic Tate module that we are going
to use is the following lemma (see also [21], Lemma 8.1).

Lemma 2.3.1. Suppose that E has good supersingular reduction. Then, there
are no nontrivial IK-equivariant homomorphisms Vp(E)→ Qp.

Proof. Since the construction of connected-to-étale exact sequence is functorial
with respect to unramified field extension we may assume that IK = GK . Let
Vp(E) → Qp be any GK-equivariant homomorphism. By replacing the elliptic
curve E with some isogenous elliptic curve we may assume that the homo-
morphism Vp(E) → Qp of Qp-vector spaces comes from the homomorphism
Tp(E) → Zp of Zp-modules. Since the functor from the category of p-divisible
groups over Spec(K) to the category of Zp[GK ]-modules given by the Tate mod-
ule is fully faithful we obtain a homomorphism E[p∞] → Qp/Zp of p-divisible
groups over the field K. Now, by the theorem of Tate (see [39], Theorem 4), it
comes from a unique homomorphism

E [p∞]OK → (Qp/Zp)OK

of p-divisible groups over Spec(OK). On the other hand, a homomorphism from
a connected group scheme to a constant group scheme must be trivial. Hence,
the homomorphism E[p∞] → (Qp/Zp)K of p-divisible groups over the generic
fibre Spec(K) is trivial as well. Then, it follows that the map Tp(E) → Zp is
also trivial.

2.4 Potential type of reduction

In this section we are going to determine the potential type of reduction of
the elliptic curve E from the topological group ΠX . This means determining
whether the curve E has potentially good reduction or essentially bad reduc-
tion (i.e., has bad reduction after every finite field extension). Recall that the
elliptic curve has essentially bad reduction if and only if after some finite field
extension it is isomorphic to a Tate curve. To obtain the desired group theoretic
description we will look at the Galois action on the p-adic Tate module.

Before we start, we discuss the following proposition which we have already
mentioned in Chapter 1.

Proposition 2.4.1. The prime number p together with a subgroup ∆X ⊂ ΠX

may be reconstructed group theoretically from the topological group ΠX .
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Proof. Consider the set S of all closed, normal subgroups H of ΠX which are
topologically finitely generated pro-p groups. This set contains the subgroup
∆X and is partially ordered by inclusion. We claim that the group ∆X is in
fact the greatest element in the partially ordered set S, which will provide the
desired characterisation. Indeed, let H be any subgroup contained in the set S.
Since for every two subgroups H1 and H2 from the set S their product H1H2

also belongs to S, we may assume that ∆X ⊂ H. Consider now the image
M ⊂ GK of H by the surjection ΠX � GK . The group M is also closed,
normal and topologically finitely generated pro-p subgroup of GK . Let Ktm

be the maximal tamely ramified extension of K and let Gtm
K = Gal(Ktm/K)

be the Galois group of this extension. From the well-known structure of the
group Gtm

K (see, [34], Theorem 7.5.3) it easily follows that the image of M by
the quotient map GK � Gtm

K is trivial, therefore K must be contained in the
wild inertia subgroup Gwild

K ⊂ GK . On the other hand, the group Gwild
K is a

free pro-p group of infinite rank (see, [34], Proposition 7.5.1), hence it has no
nontrivial closed normal subgroups which are topologically finitely generated.
Thus, the group M is trivial, hence H = ∆X .

Proposition 2.4.2. The potential type of reduction of the elliptic curve E (i.e.,
potentially good or essentially bad) may be recovered group theoretically from
the topological group ΠX .

Proof. Let F be a field extension of K such that every elliptic curve over K
acquires split semi-abelian reduction after the base change to F , as in the
discussion after Lemma 1.8.1. Thus, by extending the base field K to F (which
is independent of the curve E), we may assume that the elliptic curve E has
split semi-abelian reduction. Now, we observe that E has bad reduction if
and only if there exists a GK-equivariant surjection Vp(E) � Qp. Indeed, if
E has bad reduction then the description of the Tate module given previously
provides us with such homomorphism. On the other hand, assume that E
has good reduction and let ϕ a GK-equivariant homomorphism ϕ : Vp(E) →
Qp. We are going to prove that every such homomorphism is trivial. If the
reduction is supersingular then we have already seen in Lemma 2.3.1 that the
homomorphism ϕ must be trivial. Suppose now that the reduction is ordinary.
Then, as we have seen in Section 2.3, there exists a short exact sequence

1→ Qp(χ−1)(1)→ Vp(E)→ Qp(χ)→ 1

of GK-modules, where χ is an unramified character. After restricting to the
inertia subgroup IK ⊂ GK we have a short exact sequence

1→ Qp(1)→ Vp(E)→ Qp → 1
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of IK-modules. Since the restriction of p-adic cyclotomic character to the inertia
subgroup is nontrival, every homomorphism Vp(E)→ Qp must be trivial on the
submodule Qp(χ−1)(1), hence it factorizes through the quotient Qp(χ). Thus,
ϕ is trivial if and only if the character χ is nontrivial. Since Qp(χ) is isomorphic
to the Tate module of the reduced curve Ek we see that this action must be
nontrivial, otherwise it would imply the existence of infinitely many p-power
torsion points defined over the finite field k, which is absurd.

Proposition 2.4.3. Assume that the elliptic curve E has potentially good re-
duction. Then, from the topological group ΠX we may determine whether the
potential reduction of E is supersingular or ordinary.

Proof. As previously, we may extend the base field and assume that the elliptic
curve E has good reduction. Then we observe that the reduction is ordinary if
and only if there exists a surjective homomorphism Tp(E) � Zp of IK-modules.
Indeed, if the reduction is ordinary then it follows from the description of the
p-adic Tate module of E. On the other hand, if the reduction is supersingular
we have seen that every homomorphism to the trivial representation must be
trivial.

Proposition 2.4.4. Assume that p > 2 and E has potentially good ordinary
reduction. Then, we may determine from the topological group ΠX whether the
elliptic curve E has good reduction over the field K.

Proof. We claim that E has good reduction over K if and only if there exists
of short exact sequence of GK-modules

1→ W (1)→ Vp(E)→ V → 1, (2.2)

whereW and V are unramified representations. As we have seen, this condition
is necessary. We now prove that it is also sufficient. Suppose that we have a
sequence of representations as in (2.2). Then, using Corollary 2.2.3 we obtain
that the p-adic representation Vp(E) is semistable. Moreover, by Theorem 2.2.1,
this implies that the elliptic curve E has semi-abelian reduction over the field
K. Finally, it is easy to see that potentially good reduction and semi-abelian
reduction over K together imply good reduction over K.

Summarizing, by looking at the Tate module of E, we were able to determine
group theoretically the potential reduction type of E, i.e, the reduction type of
the curve EF with F/K as in the proof of Proposition 2.4.2. Moreover, in the
case when the curve EF does have good ordinary reduction and p > 2, we were
able to distinguish when the good model of EF descends to the good model of
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E over K. Therefore, we have reduced the original problem to the problem of
finding a group theoretic criterion for a descent of the good model from F to
K in the case of good supersingular reduction.

2.5 Tangential sections

In this section we recall the notion of a tangential section associated to a cusp
of a hyperbolic curve and its relation to the integral model of the curve.

First we consider the following elementary situation arising in group theory.
Let G be a group, A an abelian group and suppose that we have a short exact
sequence of groups

1→ A→ Π p−→ G→ 1.

Then, the conjugaction by Π determines an action Π→ Aut(A) descending
to a natural action G → Aut(A). Therefore the abelian group A in naturally
a G-module. Denote by Sect(Π, G) the set of all sections of the surjection
Π � G. This set has a natural left action of the group A given by conjugating
sections by elements from A. Let A \ Sect(Π, G) be the quotient of the set
of sections by this action. Finally, denote by C the subset of all cohomology
classes in H1(Π, A) such that their image under the restriction map

H1(Π, A)→ H1(A,A) = Hom(A,A)

is equal to the identity homomorphism. Then, we have the following well-known
lemma.

Lemma 2.5.1. There is a natural bijection of sets C ' A \ Sect(Π, G) given
explicitly by as follows.

• If [aπ] ∈ C ⊂ H1(Π, A) is a cohomology class, then we define the corre-
sponding section s : G → Π by the formula g 7→ (aπ)−1π, where π ∈ Π is
any element such that p(π) = g.

• If s : G → Π is a section of the surjection Π � G, then we define the
corresponding cocycle aπ by the formula aπ = πs(p(π−1)).

Proof. We include the proof for convenience of the reader. Let s be a section
and for every π ∈ Π we define aπ ∈ A by the formula π = aπs(p(π)). By
definition, we have

aππ′s(p(ππ′)) = ππ′ = aπs(p(π))aπ′s(p(π′)).
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Since s is a homomorphism we obtain

aππ′s(p(π)) = aπs(p(π))aπ′ ,

thus aππ′ = aπa
π
π′ and π 7→ aπ is a cocycle. It is obvious that aπ is the identity

on homomorphism A. For α ∈ A, consider the conjugated section s′ = sα with
the corresponding cocycle bπ. We compute

π = bπs
′(p(π)) = bπαs(p(π))α−1 = bπa

−1
π απα−1,

therefore aπa−1 = bπa
−1
π , hence the classes [aπ] = [bπ] are equal.

Let now [aπ] be a cohomology class in H1(Π, A) defined by a cocycle π 7→ aπ

such that its restriction to A induces the identity homomorphism. Define the
section s : G→ Π as s(g) = a−1

π π, where π is a lift of g to Π. It is well defined
since if π′ is another lift of g then we have π′ = απ for some α ∈ A, hence

a−1
π′ π

′ = a−1
π α−1απ = a−1

π π.

We need to check that s is a group homomorphism. Fix g, g′ ∈ G with lifts π
and π′ respectively, then

s(gg′) = a−1
ππ′ππ

′ = (a−1
π′ )πa−1

π ππ′ = πa−1
π′ π

−1s(g)π′.

Hence using that π−1s(g) ∈ A we obtain after rearranging s(g)s(g′).
Moreover, let a cocycle bπ be cohomologous to aπ, thus we may write bπ =

aπα
πα−1. Let s′ be a section obtained from the cocycle bπ, then we compute

s′(g) = α(α−1)πa−1
π π = απα−1π−1s(g) = αs(g)α.

Therefore s′ is a conjugate section of s. It is now easy to check that the both
maps constructed above are inverses of each other.

After this preliminary discussion, we recall the local structure of fundamen-
tal groups at the cusps. Let X be an affine hyperbolic curve over a local field
K and let X be the unique smooth compactification of X. Therefore, we have
a surjection of pro-p fundamental groups ∆X � ∆X as well as a surjection of
geometrically pro-p fundamental groups ΠX � ΠX .

Let x be a (K-rational) cusp of the hyperbolic curve X over K, denote by
D ⊂ ΠX its decomposition group and by I = D ∩∆X its inertia group. Then,
we have a short exact sequence

1→ I → D → GK → 1.

The group I is isomorphic to Zp(1) as a GK-module. Here we recall the defini-
tion of a tangential section.
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Definition 2.5.2. We say that a section s of the surjection ΠX � GK is
tangential at the cusp x if its image lies in some decomposition group of the
cusp x, i.e., if s comes (up to conjugation) from the section of the surjection
D � GK .

Therefore, the set of tangential sections at the cusp x is a torsor over the
group H1(GK , I) ∼= K̂×p.

Let OX,x be the local ring at the point x with the maximal ideal mx. Define
Kx to be the fraction field of the completion of OX,x with respect to mx-adic
topology

Kx = Frac(ÔX,x).

From the Cohen structure theorem, the field Kx is (noncanically) isomorphic
to the field of Laurent series K((T )) with coefficients in K. In fact, Kx has
the structure of a two dimensional local field. Let Gx be the absolute Galois
group of the field Kx (defined with respect to some algebraic closure Kalg

x ). The
natural inclusion K ↪→ Kx induces a surjection Gx � GK . Define ∆x to be the
kernel of this surjection, hence we have a short exact sequence of groups

1→ ∆x → Gx → GK → 1.

The group ∆x may be identified with the absolute Galois group of the tensor
product Fx = Kx ⊗K Kalg and is (again, noncanonically) isomorphic as a GK-
module to the group Ẑ(1). Then, the group D may be identified with the
quotient of the absolute Galois groupGx such that the induced quotient ∆x � I

is equal to the maximal pro-p quotient, i.e. we have a commutative diagram

1 ∆x Gx GK 1

1 I D GK 1

The quotient Gx � D corresponds to the Galois group of the field extension
Lx/Kx, where Lx is the maximal pro-p extension of the field Fx. Therefore,
sections of the surjection D � GK may be identified with field subextensions
Kx ⊂M ⊂ Lx satisfying Gal(Lx/M) ∼= GK .

Extensions of this form can be easily constructed as follows. Let t ∈ mx\m2
x,

choose a compatible system t1/p
i of p-power roots of t and define the field

Mt =
⋃
i≥1

Kx(t1/p
i).

One easily checks that this field satisfies Gal(Lx/Mt) ∼= GK , hence it defines
a tangential section st : GK → D. Moreover, different choices of a compatible
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system of roots of t correspond to conjugating the section st by the elements of
the group I. Therefore, the conjugacy class of the section st does not depend
on this choice.

Let Ux be the multiplicative group 1 + m̂x, where m̂x is the maximal ideal
mxÔX,x of the local ring ÔX,x. We easily observe that the group Ux is divisible.
Thus, for any two uniformizers satisfying t ≡ t′ mod m̂2

x we have Mt = M ′
t ,

for some choice of a compatible system of roots. This implies that the sections
st and st′ are in the same conjugacy class. Therefore, the conjugacy class of a
section st depends only on the cotangent vector t ∈ m̂x/m̂

2
x. Let

T∨K = m̂x/m̂
2
x = mx/m

2
x

denotes the cotangent space at the point x. For a nonzero vector ω from the
one dimensional K-vector space T∨K , we define a conjugacy class of tangential
section sω as conjugacy class of a section st, where t is a lift of ω to the maximal
ideal mx. Thus, we obtain a well defined map of sets

T∨K \ {0} −→ {conjugacy classes of sections of D � GK}.

Definition 2.5.3. We say that the tangential section s : GK → D is discrete if
its conjugacy class is equal to a conjugacy class of a section sω for some nonzero
cotangent vector ω in T∨K .

The set of sections of the surjection D � GK is a torsor over the group
K̂×p ∼= H1(GK , I), whereas the set of nonzero differentials ω is a K×-torsor.
One easily observes that these torsor structures are compatible with the natural
map K× → K̂×p, in other words for every a ∈ K× and w ∈ T∨K we have
asω = saω. Indeed, the description of the torsor structure of tangential sections
is given as follows. Let a be an element of K̂×p which defines a sequence of
elements ai ∈ K×/(K×)pi satisfying aj = ai mod (K×)pi for j ≥ i. Moreover,
let t be a uniformizer with the corresponding section st. Then, consider the
field extension

La =
⋃
i≥1

Kx(bit1/p
i),

where bp
i

i = ai. By construction, this field extension defines the section sat , hence
the compatibility follows. Therefore the set of discrete sections is naturally a
K×µ-torsor.

Suppose now that the hyperbolic curve X has stable reduction over K and
denote by X the stable model of X over OK . Then, the one dimensional
cotangent space T∨K has a canonical OK-submodule T∨OK of rank 1 determined
by the stable model X at x. Thus, the set of generators of this OK-submodule
is a O×K-torsor.
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Definition 2.5.4. Assume that the curve X has stable reduction over K (see
[18]). We say that the tangential section s : GK → D is integral if it is equal
to a discrete section sω for a cotangent vector ω contained in the O×K-torsor
of generators of the OK-module T∨OK . We say that a uniformizer t ∈ mx is
integral if the section st is integral. Similarly, we say that a differential ω ∈ T∨K
is integral if the section sω is integral.

Obviously the set of integral sections is a UK-torsor. For a tangential sec-
tion s we may consider its restriction to an open subgroup GL ⊂ GK which
determines a tangential section sL at the unique lift of the cusp x to the curve
XL. Then we have the following lemma.

Lemma 2.5.5. Assume that the curve X has stable reduction over OK. Then,
the section s is integral if and only if the section sL is integral.

Proof. When s is integral then the section sL is integral as well. Indeed, it
follows immediately from the compatibility of stable models with base change.
Suppose now that the section sL is integral. Choose any integral section s′ of
D � GK and let s′L be its restriction to GL, which is also integral. Then, we
have s = as′ for some a ∈ K̂×p, as well as sL = bs′L for some b ∈ UL, since both
sections sL and s′L are integral. Therefore, by restricting the first equality to GL

we obtain a = b. On the other hand, it is easy to check that UL ∩ K̂×p = UK ,
therefore a belongs to UK . It implies that s is an integral section.

We will need to compare the cohomology class associated to a cuspidal sec-
tion with certain Kummer classes. First, fix a cotangent vector ω in T∨K and let
sω be a discrete tangential section associated to ω. Denote by α the cohomol-
ogy class in H1(D, I) determined by sω using bijection from Lemma 2.5.1. On
the other hand, using the differential ω we may construct another cohomology
class in the following way. Choose a regular function f on U , where U is an
open subscheme of X, with simple zero at the cusp x and inducing the cotan-
gent vector ω. Hence we obtain the Kummer class ηf ∈ H1(ΠU ,Zp(µ)) of the
function f . Consider now the following composition

H1(ΠU ,Zp(µ))→ H1(D,Zp(µ)) ∼= H1(D, I),

where the first map is the restriction and the second comes from the natural
isomorphism Zp(µ) ∼= I. Let β be the image in H1(D, I) of the Kummer class
ηf by this composition.

Lemma 2.5.6. The cohomology classes α and β are equal.
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Proof. This follows easily from the construction, once we recall all the defi-
nitions. Indeed, let t be a uniformizing element lifting the cotangent vector
ω. Then the restriction of the Kummer class of f to the cohomology group
H1(D,Zp(µ)) is equal to the cohomology class associated to the projective limit
of cocycles

D 3 π 7→ π(t1/n)
t1/n

∈ µn.

On the other hand, let s be the tangential section determined by the cotangent
vector ω. Then, by definition, the cohomology class in H1(D, I) associated to
s is represented by the cocycle π 7→ aπ where aπ satisfies the equality π =
aπs(p(s)). Here, p denotes the projection p : D � G. Recall that the section s
was constructed using certain quotient of the absolute Galois group of the field
Mt = ⋃

i≥1Kx(t1/p
i

ω ) for some choice of a compatible system of roots of t. In
particular, by replacing s by some conjugate section we may assume that the
image of s acts trivially on the field Mt. Therefore, we obtain the equality

π(t1/n)
t1/n

= aπ(t1/n)
t1/n

.

Moreover, by the construction of the natural isomorphism I ∼= Zp(µ) we see
that the element on the right hand side of the above equality corresponds to
the image of aπ in the quotient I/nI. Therefore, by taking inverse limit we
obtain that the cohomology class of β is represented by the cocycle π 7→ aπ,
hence it is equal to the class determined by α.

Remark 2.5.7. We easily observe that results analogous to those stated in this
section remain valid also in the case of the full fundamental group π1(X) and
its tangential sections. Indeed, instead of considering the quotient ∆x � I, we
may simply work with the full group ∆x

∼= Ẑ(1).

2.6 Cohomology classes of integral functions

To analyse the case of potentially good reduction we will need to introduce
cohomology classes of certain special functions.

Let E be an elliptic curve over the local field K and X be the hyperbolic
curve E \ {O}. Let v : (Kalg)× → Q be the standard additive valuation with
v(p) = 1. Choose a minimal Weierstarss equation of E over K

y2 + a1xy + a3y = x3 + a4x
2 + a2x+ a6, (2.3)

thus the coefficients ai are integral. We fix the minimal Weierstrass equation
(2.3) and when we refer to the function x it is always understood the be the
chosen coordinate function.
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Let P be a nonzero torsion point of p-power order and denote by K(P ) the
field extension of K obtained by adding coordinates of the point P . Finally, let
L be any field extension containing K(P ). Similarly as in the previous chapter,
we consider the L×-torsor of standard functions associated to the point P as
the set of all rational functions on EL with only one pole of order two at the
origin and with single zero at the point P . Moreover, recall that in the case
when E has stable reduction we have also defined the O×L -torsor of integral
standard functions associated to the point P , as the set of all functions of the
form u(x− x(P )), where u ∈ O×L .

Assume that the point P has order pn and letXn be the open subscheme of E
obtained by removing all pn-torsion points. Let L/K be a field extension such
that all pn-torsion points are L-rational. Using elliptic cuspidalization from
Section 1.7 in the pro-p case we may reconstruct the surjection ΠXn � ΠX

of topological groups. Then, by applying Kummer theory as in the proof of
Lemma 1.8.3, we reconstruct the H1(GL,M

(p)
X )-orbit of the set of cohomology

classes of standard functions associated to pn-torsion points, as a subset of the
cohomology group H1(ΠXn ,M

(p)
X ). This orbit is a torsor over the cohomology

group
H1(GL,M

(p)
X ) ∼= L̂×p

and may be thought of as a set of functions of the form a(x−x(P )), where a ∈
L̂×p. Cohomology classes contained in this L̂×p-torsor will be called profinite,
we will also call them profinite standard functions. Classes corresponding to
the image of standard functions under the Kummer map will be called standard
classes, they form a L×µ-torsor. Similarly, when E has stable reduction, then
classes corresponding to the image of integral standard function will be called
integral, they form a UL-torsor.

It will be convenient to introduce certain colimit of cohomology groups
which contains Kummer classes of all standard functions associated to p-power
torsion points. Observe that for each pair of natural numbers m ≥ n, elliptic
cuspidalization also constructs the surjection ΠXm � ΠXn coming from the
open immersion Xn ↪→ Xm. Therefore, by using the injective inflation map

H1(ΠXn ,M
(p)
X ) ↪→ H1(ΠXm ,M

(p)
X ),

we may always consider cohomology classes in H1(ΠXn ,M
(p)
X ) as elements of

H1(ΠXm). Next, for every finite field extension L/K we write ΠXn,L for the
preimage of GL under the surjection ΠXn � GK . Then, observe that the
restriction map

H1(ΠXn ,M
(p)
X ) ↪→ H1(ΠXn,L,M

(p)
X )
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is in fact injective, hence we may consider H1(ΠXn ,M
(p)
X ) as a subgroup of the

group H1(ΠXn,L,M
(p)
X ). Finally, we introduce the following colimit

C(X) = lim−→
L/K

lim−→
n∈N

H1(ΠXn,L,M
(p)
X )

over all natural numbers and finite extensions L/K. Therefore, it follows from
the construction that we may regard the Kummer class of every rational func-
tion on X with divisor supported at the set of p-power torsion points as an
element of C(X). Moreover, by considering colimit of L̂×p-torsors of profinite
standard functions associated to p-power torsion points over all finite extensions
L/K we obtain a K∧∞-torsor of profinite standard functions in C(X), where

K∧∞ = lim−→
L/K

L̂×p.

Similarly, defining
K∞ = lim−→

L/K

L×p, U∞ = lim−→
L/K

UL

and taking colimits of corresponding torsors we obtain a K∞-torsor of discrete
classes as well as U∞-torsor of integral classes of standard functions, both con-
tained in C(X).

Let P and Q be two nonzero p-power torsion points and let f = a(x−x(P ))
and g = b(x − x(Q)), for some a, b ∈ (Kalg)×, be two standard functions
associated to points P and Q, respectively. We say that f and g are equivalent
if the element ab−1 ∈ (Kalg)× is a root of unity. We easily see that this notion
does not depend on the choice of minimal Weierstrass equation and indeed it is
an equivalence relation. Similarly, when f = a(x− x(P )) and g = b(x− x(Q)),
for some a, b ∈ K∧∞, are two profinite classes associated to P and Q we say
that the classes f and g are equivalent if the element ab−1 ∈ K∧∞ is torsion.
Observe that the Kummer classes of two standard functions are equivalent if
and only if these two functions are equivalent. Indeed, it follows from the fact
that for every local field L the kernel of the map L× → L̂×p is contained in the
group of roots of unity. Moreover, it is easy to see that for P 6= Q, profinite
classes f and g are equivalent if and only if f(Q)g(P )−1 is a torsion element in
the group K∧∞. The next lemma shows that the above notion of equivalence
is group theoretical.

Lemma 2.6.1. From the topological group ΠX we may reconstruct equivalence
classes of profinite standard functions, considered as cohomology classes inside
the colimit C(X).
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Proof. Pick any two torsion points P and Q as above and two profinite standard
function fP and fQ associated to these two points. We need to determine
whether they are equivalent. Fix some decomposition groups DP and DQ of
points P and Q. For m large enough, consider the evaluation maps

H1(ΠXm ,M
(p)
X )→ H1(DP ,M

(p)
X ) ∼= H1(GL,M

(p)
X )

and
H1(ΠXm ,M

(p)
X )→ H1(DQ,M

(p)
X ) ∼= H1(GL,M

(p)
X ),

for some sufficiently large finite field extension L/K.
By evaluating the functions fP and fQ at points Q and P we obtain two

elements fP (Q) and fQ(P ) of the group H1(GL,M
(p)
X ) ∼= L̂×p. Then, as we have

seen, fP is equivalent to fQ if and only if the element fP (Q)fQ(P )−1 is torsion
in the group H1(GL,M

(p)
X ).

To compute the evaluations of standard functions, we need to use pro-p
version of the group theoretical valuation homomorphism (1.6). Recall, that
we have the natural isomorphisms

MΣ
X
∼= ẐΣ(µ) ∼= ẐΣ(G),

thus in the pro-p case we obtain the isomorphisms

M
(p)
X
∼= Zp(µ) ∼= Zp(GK).

We refer to the above isomorphism M
(p)
X
∼= Zp(GK) of topological GK-modules

as canonical rigidity isomorphism. It induces a homomorphism

H1(GK ,M
(p)
X ) ∼= H1(GK ,Zp(GK)) � Zp,

where the second map has a group theoretical construction. When L/K is a
finite extension, then the inclusion GL ⊂ GK induces a natural isomorphism
Zp(GL) ∼= Zp(GK) of GL-modules. Thus, we may consider the following colimit

K∧∞(GK) = lim−→
L/K

H1(GL,Zp(GL)),

as well as
K∧∞(MX) = lim−→

L/K

H1(GL,M
(p)
X ).

Thus, by taking colimit of over finite extensions L/K we obtain homomorphisms

K∧∞(MX) ∼= K∧∞(GK) � Qp. (2.4)
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We will refer to the above diagram as valuation map. Observe that the set
of all isomorphisms α : M (p)

X
∼= Zp(GK) of GK-modules has a natural torsor

structure under the group Z×p , with a trivialization given by the canonical
rigidity isomorphism. In particular, the knowledge of the canonical rigidity
isomorphism is equivalent to the knowledge of the above valuation map.

We now assume that the elliptic curve E has good supersingular reduction
over K. Let P ∈ E(Kalg) be a torsion point of p-power order. Since the p-
divisible group of the reduced curve is connected, it has no nontrival field-valued
points, hence the image of P under the reduction map

E(Kalg) = E(OKalg)→ Ek(kalg)

is trivial. In other words, using the equation (2.3), if P is represented in homo-
geneous coordinates by

[XP : YP : ZP ],

where XP , YP and ZP are integral and are not all contained in the maximal
ideal of OK , then we have v(XP ) < 0 and v(ZP ) < 0, while v(YP ) = 0.
Therefore, going back to inhomogeneous coordinates P = (x(P ), y(P )) one
obtains v(x(P )) < 0. Moreover, by comparing absolute values in the equation
(2.3) we also obtain v(y(P )) < 0, in fact v(x(P )) = −2a and v(y(P )) = −3a for
some positive rational number a. Therefore, it follows from the transformation
formula for Weierstrass equation that the value v(x(P )) is in fact independent
of the choice of a minimal Weierstarss equation.

We are going to use a result from [38], which bounds the value v(x(P )) from
below. The formulation we will need is the following lemma, which is a key
technical fact in the theory of this chapter.

Lemma 2.6.2. Let P = (x(P ), y(P )) be a torsion point on the elliptic curve
(2.3) of the exact order pn, for some natural number n. Then, we have the
following inequality

0 > v(x(P )) ≥ − 2
pn − pn−1 .

Proof. We have already seen that the first inequality holds. The second one
is just a reformulation of [38] Chapter VII, Theorem 3.4, once we compare
our notation. Let L = K(E[pn]) be the field extension obtained by adding
coordinates of all torsion points of E of order pn. Let π be the uniformizing
element of L and let e = e(L/Qp) be the absolute ramification degree of the
field L. Then, [38] says that we have π2rx(P ) ∈ OL, where

r =
⌊

e

pn − pn−1

⌋
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Since v(π) = 1/e, it is equivalent to 2r/e+ v(x(P )) ≥ 0. On the other hand,

2r
e
≤ 2e
e(pn − pn−1) = 2

pn − pn−1 ,

which is exactly the statement of the lemma.

We immediately obtain the following corollary which is crucial for our re-
covery of the reduction type in the supersingular case.

Corollary 2.6.3. Let E be an elliptic curve with good supersingular reduction.
For every natural number n, let Pn be a torsion point on the elliptic curve E
of exact order pn. Then, we have

lim
n→∞

v(x(Pn)) = 0,

where x is a rational function from the minimal Weierstrass equation (2.3).

We now go back to the discussion of the canonical rigidity isomorphism.
Let Q×(p) be a subgroup of the group Q× consisting of all rational numbers a/b,
where a, b are nonzero and relatively prime, such that ab is not divisible by p.
The group Q×(p) may be considered as a subgroup of the group Z×p . The next
proposition reflects the difference between the profinite and pro-p cases.

Proposition 2.6.4. Assume that the elliptic curve E has good supersingular
reduction. Then, the Q×(p)-orbit of the canonical rigidity isomorphism of cyclo-
tomes M (p)

X
∼= Zp(GK) may be reconstructed group theoretically.

Proof. Observe that for any choice of an isomorphism α : M (p)
X
∼= Zp(GK) induc-

ing an isomorphism α∗ : K∧∞(MX)→ K∧∞(GK), the kernel of the composition

K∧∞(MX) α∗−→ K∧∞(GK) � Qp

does not depend on the choice of the isomorphism α. Indeed, it follows from
the fact that the set of isomorphisms α as above is a torsor under the group
Z×p and the subgroup UK ⊂ K̂×p is preserved by this action.

Let n be sufficiently large natural number, which we will specify later. Pick
a torsion point Pn of exact order pn and a standard function fn associated to this
point. Denote by L = K(E[pn]) the field extension obtained by adjoining coor-
dinates of all pn-torsion points. Moreover, choose another nontrivial pn-torsion
point Q such that Q 6= ±P . Using any automorphism α, we may normalize the
function fn by requiring that the p-adic valuation of the evaluation fn(Q)

vα : H1(ΠXn ,M
(p)
X )→ H1(GL,M

(p)
X )

∼=−→ H1(GL,Zp(GL)) � Zp
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is trivial. This defines fn uniquely, up to an element from UL, more precisely
fn = u(x−x(Pn)) with an element u ∈ L×p satisfying v(u) = −v(x(Q)−x(Pn)).
Moreover, as we have seen, this normalization of fn does not depend on the
choice of an automorphism α : M (p)

X
∼= Zp(GK). We now consider the set

A of absolute values vα(fn(R)) of all nontrivial pn-torsion points R such that
R 6= ±P . It follows from Corollary 2.6.3 that for n large enough, the set A
generates a free Z-submodule of rank one of the group Zp.

Finally, observe that when the submodule A is contained in the submodule
of integers Z ⊂ Zp, then the automorphism α is equal, up to a Q×(p)-action, to
the canonical rigidity isomorphism M

(p)
X
∼= Zp(GL). Indeed, it follows from the

fact that the only elements of Z×p which preserve the line Q ⊂ Zp ⊗Z Q belong
to Q ∩ Z×p = Q×(p).

Remark 2.6.5. In particular, the valuation map (2.4) can be constructed group
theoretically up to multiplication by some rational number from Q×(p). We will
see soon that this Q×(p) indeterminacy may by reduced further to the subgroup
Q×(p) ∩ Q>0 of positive rational numbers contained in Q×(p). However, we are
currently unable to remove this indeterminacy completely and this is the reason
why in various statements in this chapter we need to assume that we are given
the canonical rigidity isomorphism. On the other hand, observe that if we knew
in advance all valuations v(x(P )) of all p-torsion points P , then in fact we would
be able to reconstruct the canonical rigidity isomorphism M

(p)
X
∼= Zp(GK).

Indeed, in that case we would also know the index of the submodule A ⊂ Z from
the proof of the previous proposition, which would reduce the indeterminacy.

Lemma 2.6.6. Assume that we are given the canonical rigidity isomorphism
M

(p)
X
∼= Zp(GK) and suppose that K = K(E[pn]) for some natural number

n ≥ 1. Then, for every pn-torsion point P , the L×µ torsor of standard functions
associated to P may be reconstructed group theoretically.

Proof. Let P be a nonzero pn-torsion point. Since we assume that the canonical
rigidity isomorphism is given, for every pn-torsion point Q 6= ±P we obtain the
valuation map

H1(ΠXn ,M
(p)
X )→ H1(GL,M

(p)
X ) � Zp,

defined as f 7→ v(f(Q)), without any indeterminacies. Then, a profinite stan-
dard function f associated to the point P is standard if and only if the image
v(f(Q)) lies in the submodule Z ⊂ Zp.

Proposition 2.6.7. Assume that the elliptic curve E has good supersingular
reduction. Then, for every nonzero torsion point P of p-power order the U∞-
torsor of integral standard functions can be reconstructed group theoretically.
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Proof. Let v : K∧∞(MX) � Qp be the p-adic valuation, which by Proposi-
tion 2.6.4 may be reconstructed group theoretically up to multiplication by
some rational number. For every P as in the proposition, choose a cohomology
class of a profinite standard function fP ∈ H1(ΠXn ,M

(p)
X ). Using Lemma 2.6.1,

we may assume that they lie in the same equivalence class. Moreover, we may
also assume that the value v(fP (Q)) lies in the subgroup Q ⊂ Qp, for all p-
power torsion points P and Q such that Q 6= ±P . Pick now a sequence of
p-power torsion points Pi, for i ≥ 0, with P = P0 and such that the exact
orders of points Pi go to infinity as i → ∞. To ease the notation, we write
fj = fPj . Finally, for every pair of natural numbers i, j consider the absolute
value

vi,j = v(fj(Pi)) ∈ Q

of the evaluation of the Kummer class of fj at the point Pi. Then, the set {vi,j}
of rational numbers can be reconstructed group theoretically, up to multiplica-
tion by some rational number r.

Consider now the double limit

lim
i→∞

lim
j→∞

vi,j ∈ R,

here the limit is taken with respect to archimedean topology. We claim that
this limit exists and moreover it is equal to 0 ∈ R if and only if the chosen
equivalence class of functions fj consists of integral standard functions. More-
over, since multiplication by r ∈ Q on R is continuous and fixes the point
0, this characterization is not affected by the indeterminacy in the construc-
tion of the valuation v. Therefore, it will provide the desired group theoretic
reconstruction.

To prove the claim, observe that if we fix the index i, then the sequence vi,j of
rational numbers becomes constant for sufficiently large j. Indeed, if we denote
fj = uj(x − x(Pj)), then since the functions fj are in the same equivalence
class the valuation v(uj) does not depend on j. Denote this constant value by
a = v(uj). Then, from Corollary 2.6.3 we see that for sufficiently large index j
we have

vi,j = v(uj(x(Pi)− x(Pj))) = v(uj) + v(x(Pi)) = a+ v(x(Pi)).

Therefore, for fixed i, the sequence (vi,j)j is eventually constant and we obtain

lim
j→∞

vi,j = a+ v(x(Pi)).

Therefore, again applying Corollary 2.6.3 we compute

lim
i→∞

lim
j→∞

vi,j = a.
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This proves the first part of our claim. Moreover, as we have seen, a = 0 is
equivalent to v(uj) = 0, which is equivalent to the fact that uj is a Kummer
class of a p-adic unit. This is exactly the definition of being an integral standard
function.

Observe that the proof of the above proposition also slightly reduces the
indeterminacy in the reconstruction of the canonical rigidity isomorphism, as
we see in the next corollary.

Corollary 2.6.8. Assume that the elliptic curve E has good supersingular re-
duction. Then, the canonical rigidity isomorphism M

(p)
X
∼= Zp(GK) may be

reconstructed up to an element from the group Q×(p) ∩Q>0.

Proof. Let fi = u(x−x(Pi)) be the integral standard function used in the proof
of the previous proposition. Observe that for every p-torsion point Q the value
v(fi(Q)) is negative for all sufficiently large natural numbers i. Therefore, by
requiring that an isomorphism α : M (p)

X
∼= Zp(GK) from the proof of Propo-

sition 2.6.4 preserves this sign reduces the indeterminacy to positive rational
numbers in Q×(p).

In other words, the above corollary says that the sign of the valuation ho-
momorphism is determined group theoretically.

2.7 Criterion in the supersingular case

In this section we are going to give the proof of Theorem 2.1.1. Let E be an
elliptic curve over K and let X = E \ {O}. First, we will need a few simple
results.

Lemma 2.7.1. Suppose that we are given the set of all discrete tangential
sections of the surjection ΠX � GK. Then, we may reconstruct the {±1}-orbit
of the canonical rigidity isomorphism M

(p)
X
∼= Zp(GK).

Proof. Recall that discrete section have a structure of a K×µ-torsor. Therefore,
the set of all discrete sections of the surjection determines a subgroup of the
group H1(GK , I), where I is an inertia group of the cusp, corresponding to the
subgroup K×µ ⊂ K̂×p. This in turn determines, by applying a group theoretic
isomorphismM

(p)
X
∼= I, a subgroup JK of the cohomology group H1(GK ,M

(p)).
Let α : M (p)

X
∼= Zp(GK) be an isomorphism of GK-modules and consider the

induced map

vα : H1(GL,M
(p)
X )→ H1(GL,Zp(GK)) � Zp.
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Then, the image of the subgroup JK under the map vα is equal to the subgroup
Z ⊂ Zp if and only if the isomorphism α is equal, up to ±1, to the canonical
rigidity isomorphism. Indeed, it follows from the fact that the only elements of
Z×p which preserve the subgroup Z ⊂ Zp are equal to ±1.

Lemma 2.7.2. Suppose that we are given the set of all discrete tangential
sections of the surjection ΠX � GK. Then, for every finite field extension L/K
we may reconstruct the set of all discrete tangential sections of the surjection
ΠXL � GL.

Proof. Observe that restriction of a discrete section is also discrete. Since the
set of discrete sections of ΠXL → GL is a L×µ-torsor, it is enough to reconstruct
the subgroup L×µ. By the previous lemma, from the set of discrete sections, we
may reconstruct the canonical rigidity isomorphism, up to±1. Thus, it uniquely
determines a subgroup JL of the cohomology group H1(GL,M

p
X) corresponding

to the subgroup L×µ ⊂ L̂×p.

Using the theory developed so far we may prove the following proposition,
which may be regarded as pro-p version of Lemma 1.8.3 in the case of super-
singular reduction.

Proposition 2.7.3. Assume that E is an elliptic curve with good supersingular
reduction. Suppose that we are given the set of all discrete tangential sections
of the surjection ΠX � GK Then, we may reconstruct group theoretically the
O×K-torsor of integral tangential sections.

Proof. Fix any nonzero torsion point P of p-power order. By using Proposi-
tion 2.6.7 we may recover the U∞-torsor of Kummer classes of integral stan-
dard functions associated to P inside the group C(X). In particular, for suf-
ficiently large finite field extension L/K and some positive integer m ∈ N
we have constructed UL-torsor of integral classes inside the cohomology group
H1(ΠUm ,M

(p)
X ). Since the elliptic curve E has good reduction, by Lemma 2.5.5

together with Lemma 2.7.2 we may assume that L = K.
Denote by c the cusp determined by the origin of E and let ω ∈ T∨c,K be an

integral cotangent vector. We claim that there exists a lift t ∈ Kc of ω such
that for every integral standard function f associated to P we have the equality
f = vt2 for some v ∈ O×K . Indeed, recall that integral functions f are of the
form f = u(x − x(P )), where u belongs to O×K . Since our fixed Weierstrass
equation is minimal we know that the function z = x/y determines an integral
uniformizer at the cusp c. Moreover, in the field Kc we have the equality

x = 1/z2 + higher order terms.
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Thus, we obtain

f−1 = u−1(x− x(P ))−1 = u−1z2(1 + higher order terms) = u−1(zs)2,

for some s ∈ 1 + mc. Hence we may take t = zs.
Fix a decomposition group D of the cusp c, hence we have a short exact

sequence
1→ I → D → GK → 1.

Consider inverses η−1
f of the Kummer classes of integral standard functions f

associated to the point P . Restrict these classes to the decomposition group D.
We denote this set of classes by B, it is a UK-torsor contained in the cohomology
group H1(D,Mp

X). Applying the canonical isomorphismM
(p)
X
∼= I we may treat

B as a UK-torsor contained in the cohomology group H1(D, I). By the discus-
sion in the previous paragraph, the torsor B is determined by Kummer classes
of functions ut2, where u ∈ O×K and t is an integral uniformizer. By assump-
tion, we have a K×µ-torsor of cohomology classes in H1(D, I) corresponding to
discrete sections, every class in this torsor will be called discrete.

Let A be a subset of H1(D, I) consisting of all discrete cohomology classes α
in H1(D, I) such that 2α ∈ B, here we use the additive notation for cohomology
classes. From the short exact sequence

1→ H1(GK , I)→ H1(D, I)→ Hom(I, I)→ 1

we easily observe that A is determined by Kummer classes of functions ut, for all
u ∈ UK . In particular, for every α ∈ A its restriction to H1(I, I) = Hom(I, I) is
the identity. Therefore, the UK-torsor A defines the torsor of integral tangential
sections.

Proposition 2.7.4. Assume that E has potentially good supersingular reduc-
tion. Then, from the topological group ΠX equipped with the set of all discrete
tangential sections, we may determine whether the absolute value of the minimal
discriminant vK(∆) of E/K is divisible by 12.

Proof. Choose a decomposition group DK ⊂ ΠX of the unique cusp of X, hence
we have a short exact sequence

1→ I → DK → GK → 1.

Let L/K be a finite field extension such that E has good reduction over the
field L. By pulling back the above short exact sequence along the inclusion
GL ↪→ GK we obtain the restricted sequence

1→ I → DL → GL → 1.
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By the previous proposition, applied to the fundamental group ΠL, we may
reconstruct the UL-torsor of integral tangential sections sL of the surjection
DL → GL. Consider now the following diagram

DL GL

DK GK .

sL

sK

We are going to prove that the value vK(∆) is divisible by 12 if and only if
there exists an integral tangential section sL which extends to a discrete section
sK : GK → DK of the surjection DK � GK . This group theoretic description
will finish the proof.

Let T∨L = T∨K⊗L be the cotangent L-vector space of the unique cusp on XL

and let S ⊂ T∨L be the O×L -torsor of integral differentials. We have the following
diagram

S T∨L

S ∩ T∨K T∨K .

We claim that there exists a tangential integral section sL which extends to a
discrete section over GK if and only if the intersection S ∩ T∨K is nonempty.
Indeed, choose any integral tangential section sL of the surjection DL � GL

corresponding to the cotangent vector ωL ∈ T∨L . Moreover, choose any discrete
tangential section s of the surjection DK � GK corresponding to a cotangent
vector ωK ∈ T∨K . Then, the section sL extends to a section of the surjection
DK � GK if and only if there exists an element a ∈ K×µ such that the re-
striction of as to GL is equal to sL. Using the correspondence between discrete
sections and cotangent vectors we see that this equality of restrictions is equiv-
alent to the equality aωK = bωL, for some a ∈ K× and b ∈ O×L . This finishes
the proof of the claim.

Let now x′ and y′ be some fixed coordinates of a minimal Weierstrass equa-
tion over K, similarly let x and y be coordinates of a minimal equation over L.
Then we have

x = u2x′ + r, y = u3y′ + u2sx′ + t

for some u ∈ L× and r, s, t ∈ L. Let ωK ∈ T∨K be the cotangent vector deter-
mined by the rational function x′/y′, similarly let ωL ∈ T∨L be the cotangent
vector determined by x/y. We easily check that uωK = ωL, as elements of T∨L .
Moreover, if ∆ and ∆′ denote the discriminants of the corresponding minimal
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Weierstrass equations, then we know that u12∆′ = ∆. Therefore we obtain
v(u12) = v(∆), since ∆′ is a unit.

Assume now that the intersection S ∩ T∨K is nonempty. Then, we have
the equality aωK = bωL, for some a ∈ K× and b ∈ O×L . Thus, we obtain
aωK = buωL, which implies that a = bu, hence comparing valuations we have
v(a) = v(u). Therefore, we finally compute that v(∆) = v(a12) for some a ∈ K,
which proves that 12 divides vK(∆).

On the other hand, if we assume this divisibility it is easy to run the argu-
ment backwards and see that we obtain the existence of a ∈ K and b ∈ O×L as
before, which proves that S ∩ T∨K is nonempty.

Finally, as a corollary we obtain the proof of the main result of this chapter.

Proof of Theorem 2.1.1. As we have seen in Section 2.4, when the elliptic curve
E does not have a potentially good supersingular reduction, then in fact we may
determine the reduction type of E by analysing the p-adic Tate module of E;
moreover in this case the proof is valid for every residue characteristic p > 2
and does not need additional data consisting of the set of discrete sections.

When E has potentially good supersingular reduction, we have shown in
Proposition 2.7.4 that we can determine group theoretically whether the p-adic
absolute value vK(∆) of the minimal discriminant ∆ over K is divisible by 12.
On the other hand, it is well known that, for an elliptic curve over K with
potentially good reduction, we have the following estimate

vK(∆) < 12 + 12vK(2) + 6vK(3).

In particular, if p ≥ 5, then vK(E) < 12. Therefore, in this case, having good
reduction is equivalent to the divisibility condition we have obtained and this
finishes the proof.

2.8 Pro-p reconstruction of local height

In this section we prove a pro-p version of Theorem 1.1.1. To state it precisely,
we recall our assumptions. Let E be an elliptic curve over a local field K and
let X be a hyperbolic curve E \ {O}. Consider the maximal pro-p geometric
fundamental group ∆X = π

(p)
1 (XKalg) of X, hence we have a pushout diagram

1 π1(XKalg) π1(X) GK 1

1 ∆X ΠX GK 1.
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Let P be an L-rational point of the curve X, for some finite field extension
L/K. The point P determines a section over an open subgroup GL of the sur-
jection π1(X) � GK . Therefore, by composing this section with the surjctive
homomorphism π1(X) � ΠX we obtain a commutative diagram

GL

ΠX GK .

s (2.5)

Hence s is a section over an open subgroup of the surjection ΠX � GK deter-
mined by a L-rational point P . Then, we have the following pro-p version of
Theorem 1.1.1 in the case of potentially good reduction.

Theorem 2.8.1. With the notation as above, assume moreover that the elliptic
curve E has potentially good reduction. Then, we can determine group theoret-
ically from the diagram (2.5) whether the local height of the rational point P is
equal to zero. Moreover, if we assume additionally that we are given the canon-
ical rigidity isomorphism M

(p)
X
∼= Zp(GK), then we may in fact reconstruct the

local height of the point P .

The proof of the above theorem is almost identical to the proof of The-
orem 1.1.1, namely we are going to reconstruct classes of integral standard
function and use group theoretic valuation map to compute the height. The
additional difficulty comes from the fact that in the pro-p case elliptic cuspi-
dalization constructs only torsion points of p-power order.

Since the local height is invariant under field extensions, in order to prove
Theorem 2.8.1 we may assume that E has good reduction. Fix a minimal
Weiestrass equation (2.3) of the elliptic curve E. Recall, that in Chapter 1
we defined the notion of integral point on the hyperbolic curve X = E \ {O}.
Namely, an L-rational point P 6= O is integral when v(x(P )) ≥ 0, for some
finite extension L/K. Similarly, we say that a point P 6= O is nonintegral
when v(x(P )) < 0. These notions are independent of the choice of a minimal
Weierstrass equiation. Moreover, we have seen that the set of nonintegral points
together with the origin O is equal to the preimage of O under the reduction
map

E(Kalg) = E(OKalg)→ Ek(kalg).

In particular, it is a subgroup of the group of all rational points. When E has
supersingular reduction then every nonzero torsion point of p-power order is
nonintegral. For a rational point P on the elliptic curve E we will write P̄ for
the reduction of P .
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Assume now that the elliptic curve E has good ordinary reduction and
consider the set of nonzero m-torsion points, for some m = pα. Then, it follows
from our discussion in Section 2.4 that we have a short exact sequence of abelian
groups

1→ E [m]◦(Kalg)→ E [m](Kalg)→ E [m]ét(Kalg)→ 1,

recall that E is a good model of E over Spec(OK). Since E has ordinary
reduction, the group E [m]ét(Kalg) has order m. Therefore, the set of nonzero
nonintegral m-torsion points has cardinality m − 1, hence the set of nonzero
integral m-torsion points has cardinality m2 −m.

We now take m = p for p > 3, m = 9 if p = 3 and m = 8 if p = 2. Moreover,
choose any s from the set (Z/mZ)× \ {1,−1}, which is nonempty by the choice
of m. Therefore, if P is a point of exact order m, then the point sP also has
exact order m and sP 6= ±P . Moreover, P is integral if and only if sP is
integral. For every nonzero torsion point P of exact order m we write

AP = E[m](Kalg) \ {O,P,−P},

which is a set of cardinality m2 − 3. Consider a function ϕP : AP → Q defined
by the formula

ϕP (Q) = v(x(Q)− x(P ))− v(x(sP )− x(P )).

Let P be any nonzero torsion point of exact order m. Then, we have the
following technical lemma.

Lemma 2.8.2. With the notation as above, the following statements hold.

1. Suppose that P is an integral point such that sP̄ 6= ±P̄ and P̄ 6= −P̄ .
Then, the set ϕ−1

P (Q<0) is of cardinality m − 1, the set ϕ−1
P ({0}) is of

cardinality m2 − 3m and the set ϕ−1
P (Q>0) is of cardinality 2m− 2.

2. Suppose that P is an integral point such that sP̄ 6= ±P̄ and P̄ = −P̄ .
Then, the set ϕ−1

P (Q<0) is of cardinality m − 1, the set ϕ−1
P ({0}) is of

cardinality m2 − 2m and the set ϕ−1
P (Q>0) is of cardinality m− 2.

3. Suppose that P is an integral point and sP̄ = ±P̄ . Then, the set ϕ−1
P (Q<0)

has cardinality at least m2 − 2m+ 1.

4. Suppose that P is a nonintegral point. Then, at least one of the sets

ϕ−1
P (Q<0), ϕ−1

P ({0}), ϕ−1
P (Q>0),

has cardinality greater than or equal to m2 −m.
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Proof. Assume first that P is an integral point and sP̄ 6= ±P̄ . Then, we have
v(x(sP )− x(P )) = 0 and it follows that

ϕP (Q) = v(x(Q)− x(P )).

When Q is a nonintegral point, then v(x(Q)) < 0 and we obtain ϕP (Q) < 0.
Suppose now that Q is integral so we have x(Q) ≥ 0, hence ϕP (Q) ≥ 0. Thus,
it is enough to count points Q such that ϕP (Q) > 0. On the other hand,
x(Q̄) = x(P̄ ) if and only if Q̄ = ±P̄ . When P̄ 6= −P̄ , then this equation has
2m−2 solutions Q in the set AP and when P̄ = −P̄ , then it hasm−2 solutions.
This proves statements (1) and (2).

Assume now that the point P is integral and sP̄ = ±P̄ . Then, we have

v(x(s(P ))− x(P )) > 0,

and it follows that
ϕP (Q) < v(x(Q)− x(P )).

Therefore, we may repeat the computation from the previous paragraph to
obtain that ϕP (Q) < 0 for at least (m− 1) + (m2− 3m) = m2− 2m− 1 points
Q from the set AP . This proves statement (3).

Finally, assume that P is a nonintegral point, hence v(x(P )) < 0. Therefore,
for every integral point Q we have

ϕP (Q) = v(x(P ))− v(x(sP )− x(P )).

For clarity, we distinguish three cases.

• Suppose that v(x(P )) 6= v(x(sP )). Therefore

v(x(sP )− x(P )) = min{v(x(sP )), v(x(P ))}

and for every integral point Q we compute

ϕP (Q) = v(x(P ))−min{v(x(sP )), v(x(P ))} > 0.

• Suppose that v(x(P )) = v(x(sP )) = v(x(sP ) − x(P )). Then, for every
integral point Q we obtain

ϕP (Q) = v(x(P ))− v(x(sP )− x(P )) = 0,

• Finally, suppose that v(x(P )) = v(x(sP )) 6= v(x(sP ) − x(P )), hence
v(x(sP ) − x(P )) > v(x(P )) = v(x(sP )). Therefore, for every integral
point Q we have

ϕP (Q) = v(x(P ))− v(x(sP )− x(P )) < 0.
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This finishes the proof, since the set of integral points in A has cardinality
m2 −m.

We will say a nonzero integral torsion point P of exact order m is a good
integral point if sP̄ 6= ±P̄ . Therefore, when the integral point P is good, we
have seen in the proof of the previous lemma that ϕP (Q) = v(x(Q) − x(P )),
for every point Q ∈ AP .

In the next three lemmas, we assume that E has good ordinary reduction
over K.

Lemma 2.8.3. The Q×(p)-orbit of the canonical rigidity isomorphism may be
reconstructed group theoretically from the group ΠX .

Proof. Observe that to prove this lemma we may apply exactly the same ar-
gument as in the proof of Proposition 2.6.4. Indeed, the only place we needed
the assumption that E has good supersingular reduction was to prove that the
module A is nontrivial, which is clear in the case of good ordinary reduction as
the sets of integral and nonintegral points are both nonempty.

In particular, the valuation map H1(GK ,M
(p)
X ) � Zp may be reconstructed

up to multiplication by some rational number. Recall that elliptic cuspidal-
ization reconstructs from the group ΠX the set of decomposition groups of
p-power torsion points. Next lemma says that we may determine whether a
specific decomposition group comes from an integral point.

Lemma 2.8.4. Let D ⊂ ΠX be a decomposition group of a nonzero torsion
point S of p-power order. Then, we may determine group theoretically whether
the point S is integral or not. Moreover, we may also reconstruct the canonical
rigidity isomorphism up to an element from Q×(p) ∩Q>0.

Proof. Let m and s be as in Lemma 2.8.2 and consider set B = E[m] \ {O}
of nonzero m-torsion points. We may assume that all m-torsion points are
rational. Let P be a torsion point of exact order m. Fix a profinite standard
function fP associated to the point P satisfying v(fP (sP )) = 0. This condition
is group theoretic, moreover fP is in fact a standard function fP = u(x−x(P )),
for some u ∈ K×µ satisfying v(u) = −v(x(sP )−x(P )). Hence, for every torsion
point Q from the set AP we have the equality v(fP (Q)) = ϕP (Q). Then, it
follows from Lemma 2.8.3 that the function ϕP : AP → Q may be reconstructed
group theoretically form the group ΠX , up to multiplication by some nonzero
rational number.
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Observe that by Lemma 2.8.2 this information suffices to determine if the
point P is a good integral point. Moreover, when P is in fact a good inte-
gral point we may use Lemma 2.8.2 again to reduce the indeterminacy in the
reconstruction of canonical rigidity isomorphism to positive rational numbers.
Indeed, it follows from the fact that sets ϕ−1

P (Q<0) and ϕ−1
P (Q>0) have dif-

ferent cardinalities. Therefore, we may now reconstruct the value v(fP (S))
group theoretically up to multiplication by some positive rational number. Fi-
nally, observe that when P is a good integral point of exact order m, then
v(fP (S)) = v(x(S)−x(P )) is nonnegative if and only if the point S is integral.
Therefore, it follows that we may determine whether the point S is integral or
not.

Lemma 2.8.5. Let S be a nonzero p-power torsion point. Then, we may re-
construct U∞-torsor of integral standard functions associated to the point S.

Proof. Fix a nonzero good integral torsion point P or exact order m. Let fP
be the function used in the proof of the previous lemma, normalized by the
condition v(fP (sP )) = 0. Since v(x(sP ) − x(P )) = 0, it implies that the
function fP is already integral. Then, it follows from Lemma 2.6.1 that we may
also reconstruct integral standard functions associated to the point S.

Corollary 2.8.6. Suppose that E has good reduction. Then, from the group
ΠX , we may reconstruct group theoretically U∞-torsor of integral standard func-
tion associated to all nonzero p-power points.

Proof. This is simply Proposition 2.6.7 and Lemma 2.8.5.

Proof of Theorem 2.8.1. We proceed as in the proof of Theorem 1.1.1. Let
s : GL → ΠX be a section over an open subgroup GL of the surjection ΠX � GK

coming from the L-rational point. We may extend the base field K so that s
becomes a real section and all p-torsion points are K-rational. Moreover, we
may assume that the point P is not a p-power torsion point. Using elliptic
cuspidalization, we obtain the surjection ΠX1 � ΠX determined by the open
immersion X1 = E\E[p] ↪→ X. The image of the section s determines a decom-
position group DP ⊂ ΠX of the point P . Using Lemma 1.7.3 we reconstruct
conjugacy classes of decomposition groups DQ ⊂ ΠX1 of points Q satisfying
pQ = P τ , for some automorphism τ of the elliptic curve E. We choose one of
those classes corresponding to a point Q and a decomposition group DQ from
this class.

Let S be a nontrivial p-torsion point and let fS be an integral standard
function associated to the point S. Thus, we have fS = u(x − x(S)) for some
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unit u ∈ O×K . By Corollary 2.8.6, the cohomology class of the function fS may
be reconstructed group theoretically, up to a p-adic unit, as an element of the
cohomology group H1(ΠX1 ,M

(p)
X ).

Observe now that we may determine whether the rational point Q is integral
or not. Indeed, we evaluate the class fS at the decomposition group DQ and
consider the p-valuation v(fS(Q)) ∈ Q. Then, the rational point Q is integral
if and only if there exists an integral p-torsion point S such that the number
v(fS(Q)) is nonnegative. On the other hand, when the point Q is not integral,
then the value v(fS(Q)) for an integral p-torsion point S computes the local
height of the point Q. Therefore, we may reconstruct the height of the point
Q, up to multiplication by some rational number r.

Moreover, the cohomology class of the function Fp from Lemma 1.2.4 may
be reconstructed as well, as a product of integral standard function associated
to p-torsion points normalized by p2. By restricting the cohomology class of
the function Fp to decomposition group DQ and taking valuations we may
compute v(Fp(Q)), up to multiplication by the same rational number r. Thus,
by Lemma 1.2.4, we may determine whether the local height of P is equal
to zero. Suppose now that we are given the canonical rigidity isomorphism,
in particular the valuation map is defined without any indeterminacy. Then,
using the above computation we recover the local height of the point P .
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Chapter 3

Anabelian geometry of Tate
curve

3.1 Introduction

In this chapter we continue studying anabelian geometry of punctured elliptic
curve X = E \{O} over a local field K, this time under the assumption that E
is a Tate curve. In this case, we will consider the tempered fundamental group
Πtp
X of X, which is no longer a profinite group. This group allows us to consider

certain infinite analytic covers, like the Tate uniformization Gm → Gm/q
Z in

terms of fundamental groups. In particular, one can consider Kummer classes
of theta functions, as introduced in [29].

To explain our main result, we need to introduce some notation which will
be defined in the following sections. We write Y → X for a Z-cover determined
by the Tate uniformization and Ÿ → Y for certain étale cover of degree two.
On the curve Ÿ we introduce the following theta function

Θ̈(Ü) = Ü
∏
n≥0

(1− qnÜ2)
∏
n>0

(1− qnÜ−2).

The preimage of the cusp O determines the set of cusps on the curve Ÿ and the
function Θ̈(Ü) has single zero at each of these cusps. Moreover, it also possesses
certain well-known symmetries with respect to transformations Ü 7→ −Ü and
Ü 7→ Ü−1. It is shown in [29] that these symmetries, together with the property
of having single zeroes at cusps, allows us to reconstruct group theoretically a
K×-torsor of Kummer classes of the function Θ̈(Ü), as a subset of certain
cohomology group H1(Πtp

Ÿ
,∆Θ).

Since X has stable model over K, we have the notion of an integral tangen-
tial section of the surjection Πtp

X � GK , introduced in Section 2.5. Therefore,
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one can further reduce the K×-torsor structure to obtain a O×K-torsor of classes
compatible with the integral structure at cusps. Assume now that the field
K contains 12th roots of unity as well as coordinates of all 2-torsion points of
E. Then, our main result in this chapter is the following theorem (for a more
detailed statement, see Theorem 3.4.5 and Corollary 3.4.11).

Theorem 3.1.1. There exists a group theoretic construction of a trivialization
of the O×K-torsor of Kummer classes of theta functions compatible with integral
structure at the cusp, which is well defined up to a sign.

More precisely, this trivialization is constructed by normalizing the above
O×K-torsor at certain special point.

Finally, in the last section we consider a variant of the problem discussed
in Chapter 1. Assume that E is an elliptic curve without potentially good
reduction. Let P be a nonzero rational point on E and consider the diagram

GL

Πtp
X GK ,

s

where s is a section over an open subgroup GL induced by the point P . Then,
in Proposition 3.5.1, we prove the following result.

Theorem 3.1.2. The local Néron-Tate height of the point P may be recon-
structed group theoretically from the above diagram of topological groups.

Throughout this chapter we assume that the set Σ introduced in Chapter 1
is equal to the set of all prime numbers. To simplify the notation, we will still
write ΠX = π1(X) and ∆X = π1(XKalg) for étale fundamental groupsof X.

3.2 Tate curve

In this section we recall a few basic facts surrounding the geometry of the Tate
curve. For more details, see [32], Section 5 and [15], Section 5.1, as well as [35],
II.5.

Let E be an elliptic curve over K with split multiplicative reduction and
let X = E \ {O} be the hyperbolic curve obtained by removing the origin of
E. As in the previous chapters, we will refer to the point O as the cusp of X.
By Tate’s uniformization, there is an element q ∈ K× of norm |q| < 1 and a
GK-equivariant isomorphism of groups E(Kalg) ∼= (Kalg)×/qZ. In particular,
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we have an isomorphism E(K) ∼= K×/qZ. The quotient map K× � K×/qZ

corresponds to a rigid analytic morphism

Gan
m,K → Gan

m,K/q
Z ∼= E.

The preimages of the cusp O in Gan
m,K define the set of cusps on Gan

m,K , cor-
responding to the set of points qi, for all i ∈ Z. Denote by Y the analytic
curve Gan

m,K punctured at these cusps, by restriction we have the analytic cover
Y → X. It is a Galois cover with the Galois group Aut(Y/X) isomorphic to Z.
This group acts on the set of cusps of Y and in fact the set of cusps of Y is an
Aut(Y/X)-torsor. Hence, by choosing generator of the group Aut(Y/X) and
a trivialization of this torsor we may identify the set of cusps of the curve Y
with the set of integers Z. We fix this bijection and we will say that an integer
corresponding to a cusp is its label.

Let X be the stable model of the curveX over the ring of integersOK . Then,
using the language of formal schemes, the cover Y → X may be described as a
morphism of formal schemes Y→ X as follows:

Y Y YK = Y

X X XK = X.

Here, curved arrows represent the completion of stable models over OK along
the special fibre and dotted arrows express the Raynaud’s generic fibre functor
(see [8], Chapter 8). The scheme Y is given explicitly as

Y = Proj(OK [. . . , qk2+kU2k+1t, qk2
U2kt, qk2−kU2k−1t, . . .]k∈Z),

where the symbol t indicates degree 1. Let us describe the standard affine open
subschemes covering this scheme. For every k ∈ Z and ε ∈ {−1, 0, 1}, we denote
by Uk,ε the affine scheme obtained by inverting the element qk2+εkX2k+εt. Hence
we have Uk,1 = Uk+1,−1, moreover we see that

Ui,0 = SpecOK [qiX, q−iX−1]

and

Ui,1 = SpecOK [qi+1X, q−iX−1], Ui,−1 = SpecOK [qiX, q−i+1X−1].

Therefore, introducing new variables Xi = qiX for all i ∈ Z, we may write

Ui,0 = SpecOK [Xi, X
−1
i ]
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and
Ui,1 = SpecOK [Xi+1, X

−1
i ]/(Xi+1X

−1
i − q).

Thus, we easily see that the generic fibre YK of Y is the multiplicative group
scheme Gm,K . On the other hand, the special fibre Yk of Y has the structure of
an infinite chain of projective lines with labels i ∈ Z. They are glued together
by identifying the point ∞ on the line with label i with the point 0 on the
line with label i + 1. In fact, when q is a uniformizer of K, the smooth locus
of the morphism Y → Spec(OK) may be considered as a Néron lft-model of
the multiplicative group scheme Gm,K (see [9], Chapter 10). The scheme Y is
endowed with the action of the group Z of integers

(n,X) 7→ qnX

(n, t) 7→ qn
2
X2nt

which maps the open subscheme Ui,ε isomorphically onto the subscheme Ui+n,ε.
On the special fibre of Y this action corresponds to the “translation by n” in
the chain of projective lines.

The rigid analytic space Gm,K has an admissible cover determining a cover
of the multiplicative group (Kalg)× by the open annuli Ai, defined as follows:

Ai = {x ∈ (Kalg)× : |qi+1| ≤ |x| ≤ |qi|}.

This covering corresponds to the decomposition of the special fibre of the scheme
Y as a sum of projective lines, under the Raynaud’s generic fibre functor. For
example, K-rational points on the generic fibre YK which reduce to k rational
points lying in the smooth locus of the special fibre Yk belong to the set B =⋃
iBi, where Bi = Ai ∩ Ai−1 is the “boundary” of the annulus. On the other

hand, points reducing to the singular points of the special fibre Yk belong to
the set C = ⋃

iCi, where Ci = Ai \ (Bi ∪ Bi+1) is the“interior” of the annulus
Ai. Therefore, we obtain bijection between the set of cusps on Y and the set of
irreducible components of the special fibre of Y . Hence we may define a label
of a projective line in the special fibre Yk as the label of its corresponding cusp.

In the following, we are going to use the notion of the tempered fundamen-
tal group of a curve C. Here we briefly recall the definition, for a detailed
explanation see [3] and [2]. Let Can be the analytification of the curve C, in the
sense of Berkovich spaces. The topological space Can is locally contractible and
locally path connected hence has a universal topological covering. On the other
hand, unlike in the complex case, the analytification C ′an → Can of a finite étale
cover C ′ → C is not necessarily a topological covering. A tempered cover of
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Can is defined to be a cover T → Can of K-manifolds which is a quotient of
the cover T ′ → Dan → Can, where D → C is a finite étale cover and T ′ → Dan

is a topological cover. Then, the tempered fundamental group Πtp
C of C is a

prodiscrete topological group classifying tempered covers of Can, namely open
subgroups of Πtp

C correspond to tempered covers. More precisely, one defines
Πtp
C as an automorphism group of a fibre functor associated to a chosen base

point, similarly as in the case of the étale fundamental group. In particular,
since we are not using base points in our notation, we treat the group Πtp

C as a
topological group defined up to an inner automorphism. Since algebraic covers
are tempered, have a natural homomorphism Πtp

C → ΠC from the tempered
fundamental group of C to its algebraic fundamental group.

Equivalently, one can define Πtp
C as follows. Let (Ci → C)i∈I be the universal

pro-étale cover of C, i.e., inductive limit of all finite Galois étale covers Ci → C.
Write C∞i → Can

i to be the universal topological cover of the analytification
Can
i of Ci. It is easy to check that every cover C∞i → Can is Galois as well.

Then, one can define Πtp
C to be the inverse limit

Πtp
C = lim←−

i∈I
Gal(C∞i → Can)

Here we give a few examples. Recall that for a stable curve C over K the
homotopy type of its Berkovich analytification Can is equal to the homotopy
type of the dual graph of the special fibre of the stable model of C (see [6]). In
particular, if C has good reduction then Can has no nontrivial topological cov-
erings. Moreover, for every curve C, the homomorphism Πtp

C → ΠC is injective
and induces an isomorphism Π̂tp

C
∼= ΠX of profinite completions. Therefore,

when E is an elliptic curve with good reduction then we have an isomorphism
Πtp
E
∼= ΠX . Indeed, morphisms [n] : E → E are cofinal in the family of all étale

covers of E, hence all tempered coverings are algebraic and the natural map
Πtp
E → ΠE is an isomorphism. One example of a nontrivial tempered cover is

given by the Tate uniformization Gan
m → Ean, where E is an elliptic curve with

split multiplicative reduction. This cover gives a surjection Πtp
E � Z, hence also

an example of an infinite discrete quotient. In fact, one can show that when K
is algebraically closed, the tempered fundamental group of a Tate curve E is
isomorphic to the product Ẑ× Z.

Similarly as in the case of étale fundamental group, for every rational point
P on the curve C we have a decomposition group DP ⊂ Πtp

C of the point P ,
determined up to conjugation by Πtp

C . Moreover, for every cusp x of C we also
have inertia and decomposition groups. Then, every such decomposition group
is in fact compact and its image under the inclusion map Πtp

C ↪→ ΠC is equal to
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corresponding decomposition group in ΠC , similarly for inertia groups of cusps.
Therefore, the theory of tangential sections recalled in Section 2.5 immediately
extends to tempered tangential sections. Furthermore, when Σ is the set of all
prime numbers, the statements of Theorem 1.4.2 and Theorem 1.4.3 remain
valid also in the tempered case. See, e.g., [25], Section 6. This implies that the
elliptic cuspidalisation algorithm introduced in Section 1.7 is applicable also in
the case of tempered fundamental group.

3.3 Theta function

Let us now recall the definition of the basic theta function (see, e.g., [15], Defi-
nition 5.1.8)

Θ(U) =
∏
n≥0

(1− qnU)
∏
n>0

(1− qnU−1).

We check that Θ(U) is a global section of a structure sheaf of the formal scheme
Y, for instance using the classical Jacobi triple product formula (see [5], The-
orem 14.6)∏

n≥1
(1− qn)

∏
n≥0

(1− qnU)
∏
n>0

(1− qnU−1) =
∑
n∈Z

(−1)nqn(n−1)/2Un,

together with the fact that ∏n≥1(1 − qn) is a unit in OK . As a meromorphic
function on Y , the function Θ(U) has simple zeroes at all cusps of Y and
no poles. Moreover, just from the definition, we easily obtain that the theta
function Θ(U) has the following properties

Θ(U−1) = −U−1Θ(U), Θ(q−1U) = −q−1UΘ(U).

The operation U 7→ q−1U corresponds to“translation by one line” on the un-
derlying topological space of the special fibre of Y, hence also to translation
by one on the set of labels Z. Similarly, the operation U 7→ U−1 defines an au-
tomorphism of Y coming from the automorphism [−1] : E → E of the elliptic
curve E. On the special fibre Yk this automorphism corresponds to changing
the order of projective lines given by multiplication by −1 on the set of labels
Z.

Assume that q has a square root in K. We consider another cover Ÿ → Y
of formal schemes of degree 2 by taking square root Ü = U1/2 of the function
U . The scheme Ÿ may be defined using the Proj functor by the same formula
as Y , where we replace U by Ü and change q to q1/2. Thus, the special fibre
of Ÿ is also a chain of projective lines and the map Ÿ → Y defines a bijection
between sets of irreducible components in the special fibre. Analytically, it
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gives rise to a cover Ÿ → Y of rigid spaces corresponding to the square map
(·)2 : K× → K×. Similarly as before, we define the set of cusps of Ÿ as the
preimage of the unique cusp of X under the composition Ÿ → Y → X. Thus,
cusps on Ÿ correspond to the set {±qi/2}i∈Z. When the residue characteristic
p is different than two, then the scheme Ÿ defines a stable model of Ÿ , in the
sense that reductions of cusps (corresponding to points ±qi/2, for all i ∈ Z)
to the special fibre lie in the smooth locus and are pairwise distinct. On the
other hand, when the residue characteristic p = 2, then the stable model has
additional lines coming from blowups performed at each line (cf. Lemma 3.4.6).
Summarizing, we have the following picture of models and formal schemes

Ÿ Ÿ Ÿ (Kalg)×

Y Y Y (Kalg)×

X X X (Kalg)×/qZ.

(·)2

Following [29], we introduce another function, which we will be our main object
of interest

Θ̈(Ü) = ÜΘ(Ü2) = Ü
∏
n≥0

(1− qnÜ2)
∏
n>0

(1− qnÜ−2).

The theta function Θ̈(Ü) is a global section of the structure sheaf on the formal
scheme Ÿ and defines a meromorphic function on the analytic curve Ÿ . The
set of zeroes of Θ̈(Ü) is equal to the set of cusps {±qi/2}i∈Z of Ÿ and every zero
occurs with multiplicity one. We easily check that Θ̈(Ü) satisfies the following
symmetry relations

Θ̈(Ü−1) = −Θ̈(Ü), Θ̈(−Ü) = −Θ̈(Ü),

together with the “translation” relation:

Θ̈(q−i/2Ü) = (−1)iq−i2/2Ü2iΘ̈(Ü), for all i ∈ Z.

We are going to give a group theoretic construction of the Kummer class of
the theta function Θ̈(Ü). First, following [29], we define certain subquotients of
the tempered fundamental group Πtp

X . There is a canonical quotient Πtp
X � Z

corresponding to the analytic cover Y → X. Define the kernel of this quotient
to be Πtp

Y , so we have a short exact sequence

1→ Πtp
Y → Πtp

X → Z→ 1.
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Similarly, we define groups ∆tp
X and ∆tp

Y to fit in the following diagram with
exact rows

1 ∆tp
Y Πtp

Y GK 1

1 ∆tp
X Πtp

X GK 1.

We define ΠX and ∆X to be the profinite completions of Πtp
X and ∆tp

X and
identify them with the étale fundamental group and the geometric étale funda-
mental group of X, respectively. Thus, we have the usual short exact sequence

1→ ∆X → ΠX → GK → 1.

When G is a topological group we write, [G,G] for the topological commutator
subgroup which is defined as the closure of the usual commutator subgroup of
G. Next, we define the following quotients of the geometric fundamental group

∆ell
X = ∆X/[∆X ,∆X ], ∆Θ

X = ∆X/[∆X , [∆X ,∆X ]].

The notation is explained as follows: superscript ell corresponds to all étale
covers of X which extend to étale covers of the underlying elliptic curve E, and
superscript Θ describes, as we will see later, étale covers needed to define the
Kummer class of the function Θ(U). Moreover, since the group ∆X is a free
profinite group on two generators, we know that the theta quotient ∆Θ

X has
noncanonically the structure of the Heisenberg group:


1 Ẑ Ẑ

0 1 Ẑ

0 0 1

 .

Define ∆Θ to be the kernel of the natural surjection ∆Θ
X � ∆ell

X , it gives us the
short exact sequence

1→ ∆Θ → ∆Θ
X → ∆ell

X → 1,

which similarly may be represented in a matrix group form

1


1 0 Ẑ

0 1 0

0 0 1




1 Ẑ Ẑ

0 1 Ẑ

0 0 1

 Ẑ× Ẑ 1.
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Observe, that when X is a punctured elliptic curve the quotient ∆Θ
X is equal to

the maximal cuspidally central quotient introduced in Section 1.6. This can be
seen, for example, from the explicit group presentation of the group ∆X given
by

∆X
∼= 〈a, b, c | [a, b]c = 1〉.

In particular, for every inertia group I ⊂ ∆X of the cusp, the surjection ∆X �

∆Θ
X rectricted to I induces a natural isomorphism I ∼= ∆Θ.
Going back to the tempered case, we define quotients

∆tp
X � (∆tp

X )Θ � (∆tp
X )ell

by pushing out the following quotients

∆X � ∆Θ
X � ∆ell

X .

Thus, we obtain two exact sequences

1 ∆Θ (∆tp
X )Θ (∆tp

X )ell 1

1 ∆Θ ∆Θ
X ∆ell

X 1.

Again, the upper row can be noncanonically represented in a matrix group form

1


1 0 Ẑ

0 1 0

0 0 1




1 Ẑ Ẑ

0 1 Z

0 0 1

 Ẑ× Z 1,

which shows the difference between the group ∆X and ∆tp
X coming from the

analytic Z-cover Y → X.
Similarly, we define quotients

∆tp
Y � (∆tp

Y )Θ � (∆tp
Y )ell and Πtp

Y � (Πtp
Y )Θ � (Πtp

Y )ell,

by pushing out the following quotients

∆tp
X � (∆tp

X )Θ � (∆tp
X )ell.

Hence we have a short exact sequence

1→ ∆Θ → (∆tp
Y )Θ → (∆tp

Y )ell → 1,
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which may be represented as

1


1 0 Ẑ

0 1 0

0 0 1




1 Ẑ Ẑ

0 1 0

0 0 1

 Ẑ 1

Finally, we define quotients

∆tp
Ÿ
� (∆tp

Ÿ
)Θ � (∆tp

Ÿ
)ell and Πtp

Ÿ
� (Πtp

Ÿ
)Θ � (Πtp

Ÿ
)ell,

by pushing out the quotients

∆tp
Y � (∆tp

Y )Θ � (∆tp
Y )ell.

Thus, we have a short exact sequence

1→ ∆Θ → (∆tp
Ÿ

)Θ → (∆tp
Ÿ

)ell → 1,

which again may be represented as

1


1 0 Ẑ

0 1 0

0 0 1




1 2Ẑ Ẑ

0 1 0

0 0 1

 2Ẑ 1.

After these preparations, we will consider Kummer classes of theta functions
Θ(U) and Θ̈(Ü). It follows from [29], Proposition 1.1 and Lemma 1.2 that all
covers of Y needed to define cohomology classes of these functions come from
the quotient (Πtp

Y )Θ. Therefore, we obtain two Kummer classes

ηΘ ∈ H1((Πtp
Y )Θ, Ẑ(µ)) and η̈Θ ∈ H1((Πtp

Ÿ
)Θ, Ẑ(µ)).

We remark here our notation of these cohomology classes slightly differs from
the notation used in [29]. We have seen that the quotient ∆X � ∆Θ

X induces a
natural isomorphism between an inertia group I of the cusp and the cyclotome
∆Θ. Hence, by composing with the canonical isomorphism I ∼= Ẑ(µ), we obtain
an isomorphism Ẑ(µ) ∼= ∆Θ, which we will call canonical as well. Therefore,
we have two cohomology classes (denoted in the same way)

ηΘ ∈ H1((Πtp
Y )Θ,∆Θ) and η̈Θ ∈ H1((Πtp

Ÿ
)Θ,∆Θ).
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To characterize the Kummer class of the theta function Θ̈(Ü) we will use the
following two exact sequences

1→ H1(GK ,∆Θ)→ H1((Πtp
Ÿ

)Θ,∆Θ)→ Hom((∆tp
Ÿ

)Θ,∆Θ)→ 1

and

1→ Hom((∆tp
Ÿ

)ell,∆Θ)→ Hom((∆tp
Ÿ

)Θ,∆Θ)→ Hom(∆Θ,∆Θ)→ 1.

We are going to specify a subset of cohomology classes in H1((Πtp
Ÿ

)Θ,∆Θ) satis-
fying certain properties. Recall our choice of bijection between the set of cusps
on Y and the set of integers Z. We choose an automorphism ιY of Πtp

Y corre-
sponding to multiplication by −1 on the set of labels Z. This can be defined
group theoretically, it is the unique (up to inner automorphisms) involution
fixing the label 0 and lying over the automorphisms of Πtp

X induced by multipli-
cation by −1 on the level of elliptic curve E. Using the model Y it corresponds
to a morphism defined by U 7→ U−1. Let now η be a cohomology class in the
group H1((Πtp

Ÿ
)Θ,∆Θ). We impose two conditions, as follows.

1. We require that the restriction of η to Hom(∆Θ,∆Θ) is equal to the
identity map. This property comes from the fact that the theta function
Θ̈(Ü) has simple zeroes at all cusps (recall the choice of the canonical
isomorphism ∆Θ ∼= Ẑ(µ)).

2. We further require that the restriction of η to Hom((∆tp
Ÿ

)Θ,∆Θ) is invari-
ant with respect to the action of ιY . This property corresponds to the
invariance of Θ̈(Ü), up to a sign, with respect to operations Ü 7→ Ü−1

and Ü 7→ −Ü .

Observe that the set of cohomology classes satisfying both conditions as above is
a K̂×-torsor generated by the Kummer class of the theta function Θ̈(Ü). Indeed,
the classes ηΘ and ηU form a Ẑ-basis of the free Ẑ-module Hom((Πtp

Y )Θ,∆Θ)
and we have the following commutative diagram of groups

Hom((Πtp
Ÿ

)Θ,∆Θ) Hom(Ẑ⊕ 2Ẑ, Ẑ) ẐηΘ ⊕ 1
2ẐηU

Hom((Πtp
Y )Θ,∆Θ) Hom(Ẑ2, Ẑ) ẐηΘ ⊕ ẐηU .

∼= ∼=

∼= ∼=

Similarly, the classes ηΘ̈ = ηΘ + 1
2ηU and ηÜ = 1

2ηU form a basis of the free Ẑ-
module Hom((Πtp

Ÿ
)Θ,∆Θ). Let η = aηΘ̈ +bηÜ be any class in Hom((Πtp

Ÿ
)Θ,∆Θ),

for some a, b ∈ Ẑ. Because the theta function Θ̈(Ü) has a simple zero at each
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cusp we see that the cohomology class η satisfies the condition (1) if and only
if a = 1. Moreover, from the transformation formula, the class ηΘ̈ is invariant
with respect to the action of ιY whereas the Kummer class ηÜ is an eigenvector
with eigenvalue −1. Hence, the class η satisfies the condition (2) if and only
if b = 0. Therefore, we obtain a group theoretic construction of the K̂×-torsor
generated by the Kummer class of the function of Θ̈(Ü).

The above computation explains the necessity of introducing the double
cover Ÿ → Y . Indeed, up to a constant, Kummer classes of meromorphic
functions on Y satisfying the condition (1) are those of the form aηU+ηΘ. Then,
invariance with respect to the automorphism ιY forces a = 1−a, hence a = 1/2.
Finally, we observe that the reconstruction is independent on the choice of a
generator of the group Gal(Y/X). Indeed, it follows from the invariance of
Θ̈(Ü) (up to a constant) under the automorphism Ü 7→ Ü−1.

3.4 Evaluation points

So far we have seen that we may recover the Kummer class of the theta
function Θ̈(Ü) up to a constant from K̂×, i.e., arbitrary cohomology class in
H1(GK , Ẑ(µ)). We may reduce this indeterminacy further from K̂× to K× by
evaluating Kummer classes on decomposition groups of rational points. Indeed,
let P be an L-rational point on Ÿ which is not a cusp, for some finite extension
L/K, and let DP be a decomposition group of P . Recall the valuation map
already used in previous two chapters

H1(Πtp
Ÿ
,∆Θ)→ H1(DP ,∆Θ) ∼= H1(GL,∆Θ) ∼= H1(GL, Ẑ(GL)) � Ẑ.

Then, if η = ηu + η̈Θ is a cohomology class for some u ∈ L̂×, then the valuation
of η(P ) lies in the subset Z ⊂ Ẑ if and only if u ∈ L×. Therefore, we easily
obtain a K×-torsor of multiples of the theta function Θ̈(Ü).

Definition 3.4.1. Any function θ of the form θ = uΘ̈ for some u ∈ (Kalg)×

will be called a standard theta function.

The above definition is analogous to Definition 1.8.2. Observe that a co-
homology class of a standard theta function θ determines a discrete tangential
section of the surjection Πtp

X � GK at the cusp x, as defined in Section 2.5. In-
deed, let Q be one of two cusps of the curve Ÿ with label 0. Since the function
θ has a single pole at the cusp Q, using the construction from Lemma 2.5.1
we obtain conjugacy class of tangential sections of the surjection Πtp

Ÿ
� GK .

Thus, by composing with the inclusion Πtp
Ÿ
↪→ Πtp

X , we obtain a conjugacy class
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of tangential sections sθ of the surjection Πtp
X � GK , which does not depend

on the choice of the cusp Q.
Moreover, recall from Section 2.5, that the OK-module structure provided

by the stable model X gives rise to the notion of an integral tangential section.
Hence, we may introduce the following definition.

Definition 3.4.2. We say that a standard theta function θ is integral if the
tangential section sθ is integral.

Hence the set of integral theta functions is a O×K-torsor. Moreover, we have
the following lemma.

Lemma 3.4.3. Let θ = uΘ̈ be a standard theta function. Then, the function θ
is integral if and only if u is a p-adic unit.

Proof. Let a = (∏n≥1(1 − qn))−1, which is a p-adic unit. Using Jacobi triple
product formula we have

Θ(U) = a
∑
n∈Z

(−1)nqn(n−1)/2Un,

hence
Θ̈(Ü) = a

∑
n∈Z

(−1)nqn(n−1)/2Ü2n+1.

Observe that every coefficient of Θ̈(Ü) is an integral element of K. Moreover,
the reduction of Θ̈ modulo the maximal ideal of OK is nonzero as it is equal
to a(Ü−1− Ü). Since Θ̈(Ü) has simple zero at every cusp, these two properties
imply that the theta function Θ̈ is integral, in the sense of Definition 3.4.2.
Indeed, it follows from the fact that the formal scheme X is equal to the quo-
tient of the formal scheme Y and that the stable model X is obtained as the
algebraization of the formal scheme X. Therefore, any integral theta function
is of the form uΘ̈ for some p-adic unit u.

We will need one more definition.

Definition 3.4.4. Let P be a K-rational point on the curve Ÿ which is not a
cusp. We say that a standard theta function θ is normalized at P if its value
θ(P ) at the point P is equal to one.

The condition of being normalized at P is obviously group theoretic. Indeed,
let DP ⊂ Πtp

Ÿ
be a decomposition group of the point P , hence we have the

restriction map
H1(Πtp

Ÿ
,MX)→ H1(DP ,MX).

83



Then θ is normalized at P if and only of the restriction of ηf along the above
map is equal to the trivial element of the group H1(DP ,MX) ∼= K̂×.

We denote by Γ the group of automorphisms of Ÿ generated by the auto-
morphisms Ü 7→ Ü−1 and Ü 7→ −Ü . Thus, we have Γ ∼= Z/2Z×Z/2Z. Finally,
we may state the main theorem of this chapter.

Theorem 3.4.5. There exists a rational point P on the curve Ÿ having the
following two properties:

1. There exists a group theoretic reconstruction, from the topological group
ΠX and a chosen automorphism iY of ΠY , of the Γ-orbit of the conjugacy
class of decomposition groups DP of the point P ,

2. After extending the base field to K(P ), the theta function normalized at
the point P is integral.

In fact, the point P is given explicitly as a lift of a certain 6th torsion point on
E.

To prove the above theorem, we first observe that the theta function θ = uΘ̈
normalized at the point P is integral if and only if Θ̈(P ) is a p-adic unit. Indeed,
we have seen in Lemma 3.4.3 that θ is integral if and only if u is a p-adic unit.
Since θ is normalized at P we have θ(P ) = uΘ̈(P ) = 1, hence u is a unit if and
only if Θ̈(P ) ∈ O×K .

Before we continue, we need to recall the notion of a dual semi-graph of a
stable marked curve C (see [23], Appendix). Let Ck be the special fibre of the
(marked) stable model of C. Then, we have the usual notion of a dual graph
(see [19], Chapter X), whose vertices v correspond to irreducible components
Zv and edges correspond to intersection between components. Moreover, for
every marked point x lying in the smooth locus of the component Zv we attach
an open edge ev abutting to the vertex v. In this way we obtain a semi-graph
which we call a dual semi-graph of the stable curve C.

To construct the decomposition group of the point P from Theorem 3.4.5
we are going to use [23], Lemma 2.3 which says that if C is a hyperbolic curve
over a local field K with a stable reduction over OK , then we may recover the
dual graph GC of the special fibre of the stable model of the curve C. Moreover,
this algorithm also gives a bijection between the set of cusps and the the set
of open edges of the semi-graph GC . We are going to apply this theorem to
identify some “special” torsion points of the elliptic curve E.

Take a natural number n and let Xn be a marked curve over K(E[n]) ob-
tained from the Tate curve E, with the divisor of marked points given by all
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n-torsion points. The next lemma describes the structure of special fibres of
stable models of some of those curves.

Lemma 3.4.6.

Assume that n is a prime number. Then the graph of the special fibre of the
stable model of the marked curve Xn is equal to

• (n 6= p) a standard n-gon with n open edges attached to each vertex of the
n-gon;

• (n = p) a modified standard n-gon, where to each vertex v from the stan-
dard n-gon we attach a semi-graph consisting of one vertex v′, one closed
edge [v, v′] connecting v′ to v together with n open edges attached to the
vertex v′.

For example, for n = 2 it is one of the following:

p 6= 2 p = 2

For n = 3 is one of the following:

p 6= 3 p = 3

Proof. This follows from a well-known computation of a blowup of the scheme
SpecR[X, Y ]/(XY − a) at the point (X, Y, π), where R is a discrete valuation
ring and a belongs to the maximal ideal of R (see Chapter 8, Example 3.53
in [19]). We blow up the model X at the cusp n times after which we obtain
another model X ′ with the special fibre equal to the n-gon of projective lines
and with the property that all marked points of Xn reduce to the smooth locus
of X ′k. When n 6= p, then then this model is already a stable model since
reductions of torsion points {ζ in, 0 ≤ i ≤ n−1} to the special fibre are pairwise
distinct. Indeed, it follows from the fact that the product∏

1≤i≤n−1
(1− ζ in) = n
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is a p-adic unit.
Suppose now that n = p. Then, for a fixed integer 0 ≤ j ≤ n − 1, all

n-torsion points from the set

Tj = {ζ inqj/n, 0 ≤ i ≤ n− 1}

reduce to the same point sj on the special fibre of X ′. However, observe that
the p-adic valuations of numbers 1−ζ in, for all 1 ≤ i ≤ p−1, are equal. Indeed,
modulo the maximal ideal of OK we have the equality

1− ζ in
1− ζ =

∑
0≤j≤i−1

ζjn ≡ i

which is a p-adic unit. Therefore, after blowing up the model X ′ again at points
sj we obtain new projective lines Lj such that the reduction of the points from
the set Sj lie on the smooth locus of Lj and are pairwise distinct.

Remark 3.4.7. A similar description may be obtained as well in the case of n-
torsion, for every natural number n. In the following, we will need only torsion
points of order two and three.

Corollary 3.4.8. Consider the subgroups S2 = {1,−1} ⊂ E[2](Kalg) and S3 =
{1, ζ3, ζ

2
3} ⊂ E[3](Kalg). Then, the conjugacy classes of decomposition groups

of rational points belonging to S2 and S3 can be reconstructed group theoretically
from the topological group ΠX .

Proof. As we have discussed in Section 3.2, by applying the tempered version
of elliptic cuspidalization we may reconstruct decomposition groups of torsion
points together with the surjection Πtp

Xn � Πtp
X of topological groups, for every

natural number n. Then, using the reconstruction of the dual graph of the
special fibre of the stable model, applied to profinite completions of groups Πtp

Xn

for n = 2 and n = 3, we may distinguish decomposition group corresponding to
subgroups S2 and S3. Indeed, from Lemma 3.4.6, these subgroups are precisely
the subsets of marked points lying on the same irreducible component as the
origin of the elliptic curve E.

In particular, the above corollary provides a method to find the conjugacy
class of decomposition groups of the 2-torsion point determined by −1, which
is a normalization point used in [29].

Corollary 3.4.9. Let ζ6 ∈ Kalg be a primitive 6th root of unity. Then the
decomposition groups of torsion points ζ6, ζ

−1
6 ∈ E[6](Kalg) may be reconstructed

group theoretically from the topological group Πtp
X , as subgroups of Πtp

X ,
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Proof. Recall that the group structure on the set of decomposition groups of
torsion points may be constructed group theoretically. Therefore, since we
have already obtained ζ2 and ζ3, we may construct the subgroup of the group
of 6th torsion points generated by ζ2 and ζ3. Then, ζ6 and ζ−1

6 are obtained as
generators of this subgroup.

Finally, we come back to the proof of the main theorem.

Proof of Theorem 3.4.5. First, we lift points ζ6 and ζ−1
6 from the curve X to

Y . In terms of decomposition groups, we intersect a conjugacy class of decom-
position groups with the subgroup Πtp

Y ⊂ Πtp
X to obtain a Aut(Y/X)-torsor of

conjugacy classes of preimages of points ζ6 and ζ−1
6 to the cover Y → X. These

preimages correspond to sets of points

{ζ6q
k}k∈Z and {ζ−1

6 qk}k∈Z.

Using again the anabelian reconstruction of the dual graph applied to all finite
subcovers of Y → X we may choose the preimages corresponding to the label
0, namely the points ζ6, ζ

−1
6 on the curve Y . Lifting them further to the cover

Ÿ → Y (which corresponds to the map x 7→ x2), we obtain the following set of
four points on the curve Ÿ

{ζ12, ζ
−1
12 ,−ζ12,−ζ−1

12 }.

It is an orbit of the point P = ζ12 under the action of the group Γ. Because
our construction was entirely group theoretical, the point P satifies the first
condition from the statement of Theorem 3.4.5.

We claim that the point P satisfies also the second condition. Indeed, we
observe from the product formula

Θ̈(Ü) = ÜΘ(Ü2) = Ü
∏
n≥0

(1− qnÜ2)
∏
n>0

(1− qnÜ−2)

that Θ̈(P ) is a p-adic unit if and only if 1− ζ6 is a p-adic unit. Since Φ6(x) =
x2 − x+ 1, we see that

(1− ζ6)(1− ζ−1
6 ) = Φ6(1) = 1,

which finishes the proof.

Remark 3.4.10. In fact, for every natural number n, we may use the same
method to reconstruct decomposition groups of the subgroup of n-torsion points
generated by ζn. Then, it is interesting to note that among all these points the
only choice of a point P satisfying both conditions in Theorem 3.4.5 comes
from n = 6. Indeed, the properties of the natural number n that we use are
ϕ(n) ≤ 2 and Φn(1) = 1, which occurs only for n = 6.

87



Therefore, we have the following immediate corollary.

Corollary 3.4.11. Assume that the field K contains 12th roots of unity. Then,
the O×K-torsor of Kummer classes of integral theta functions has a group theo-
retic trivialization, well defined up to a sign.

Proof. Indeed, using Theorem 3.4.5 we reconstruct the Γ-orbit of the point P
and we may trivialize this O×K-torsor by normalizing at a point P . Since we
have Θ̈(P ) = ±Θ̈(γP ) for every γ ∈ Γ, this trivialization is well defined up to
multiplication by −1.

3.5 Local height on Tate curve

In this section we are going to prove another version of Theorem 1.1.1. Let
E be an elliptic curve over K with essentially bad reduction and consider the
hyperbolic curve X = E \ {O}. Moreover, let P be a nonzero L-rational, point
of E, for some finite extension L/K. The point P defines a section over an open
subgroup of the surjection Πtp

X � GK . In other words, we have a commutative
diagram of topological groups

GL

Πtp
X GK .

s (3.1)

Then, we have the following proposition.

Proposition 3.5.1. There exists a group theoretic reconstruction of the local
height of the point P from the diagram (3.1) of topological groups.

Observe that for the proof of this proposition we may extend the base field
by any finite extension, by the invariance of the local height. Therefore, we
assume that K contains 12th roots of unity, coordinates of all 2-torison points
as well as coordinates of the point P and all its 2-division points. Moreover,
we may assume that E has stable reduction over K. Hence, E is a Tate curve
Eq for some q ∈ K×. Let q̈ be a square root of q, which belongs to K by the
above assumptions.

Recall, that we have a group theoretic valuation map

v : H1(GK ,MX) ∼= H1(GK , Ẑ(GK)) � Zp

induced by the isomorphism MX
∼= Ẑ(GK) from Lemma 1.6.3. Therefore,

by restricting Kummer classes of standard theta functions θ to decomposition
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group of the rational point P we may compute group theoretically the absolute
value v(θ(P )) ∈ Q.

Lemma 3.5.2. The absolute value v(q) of the q-parameter of E may be recov-
ered group theoretically from the topological group Πtp

X .

Proof. Let P be a rational point on Ÿ from the proof of Theorem 3.4.5 and
let θ be a theta function normalized at P . Thus we have θ = uΘ̈ for some
u ∈ O×K . Consider the orbit of the point P under the action of the group
Aut(Ÿ /X). This orbit of points corresponds to the set {±ζ±12q

i/2}i∈Z. By
restricting the Kummer class of θ to decomposition groups of points from this
set and computing valuations we construct the following set of values

{v(θ(±ζ±12q
i/2))}i∈Z = {i2v(q̈)}i∈Z.

This equality of sets comes from the transformation formula of the theta func-
tion Θ. Clearly, this set of integers determines the value v(q).

Using the uniformization isomorphism K×/qZ ∼= E(K), every K-rational
point P of E may by uniquely represented by some u ∈ K×, satisfying

0 ≤ v(u) < v(q).

We will say that the point P is integral if v(u) = 0.

Lemma 3.5.3. With the notation as above, from the diagram (3.1) we may
determine whether the point P is integral. Moreover, when the point P is not
integral, we may reconstruct the set of values {v(u), v(q)− v(u)}.

Proof. We lift the point P to the curve Y , hence we obtain a set of points S
corresponding to the set {uqi}i∈Z. Since the set S is a torsor over the group
Aut(Y/X) ∼= Z, it may be naturally regarded as a sequence of elements, in
particular in the set S we have a notion of consecutive points. Next, we may
lift points from S to the curve Ÿ to obtain another set of points S ′ corresponding
to the set {±wqi/2}i∈Z, where w2 = u. Over each element of S lies a pair of
elements in S ′, thus the set S ′ may be regarded as a sequence of pairs of points.

Let θ be an integral theta function on Ÿ . By restricting the cohomology
class of θ to decomposition groups of points from S ′ we may compute the set
V of valuations

V = {v(θ(s′))}s′∈S′ .

Since v(θ(wqi/2)) = v(θ(−wqi/2)), the set V may be regarded as a sequence of
integers. We may compute this set directly using the transformation formula
of the theta function

vi = v(θ(wqi/2)) = −i2v(q̈)− iv(u) + v(Θ̈(w)).
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If we choose an “orientation” of the set V (more precisely, a generator of the
group Aut(Y/X) ∼= Z), then we may consider the set V2 of differences between
consecutive elements of V

vi+1 − vi = −(2i+ 1)v(q̈)− v(u).

Finally, we observe that the set V2 is contained in the set of odd multiples of
v(q̈) if and only if we have v(u) = 0. Indeed, it follows from the inequality

0 ≤ v(u) < 2v(q̈),

moreover this characterization does not depend on the choice of orientation
of V . Hence, by using Lemma 3.5.2 we may determine group theoretically
whether v(u). Furthermore, when v(u) 6= 0, then the set V2 of rational numbers
uniquely determines the set {v(u), v(q)− v(u)}, independently of the choice of
an orientation on V .

Proof of Proposition 3.5.1. When P is not an integral point, then by using
Lemma 3.5.3 together with Lemma 3.5.2 we may determine the value v(q) as
well as the set {

v(u)
v(q) , 1−

v(u)
v(q)

}
.

This uniquely determines the height of the point P , by Proposition 1.2.3 (ob-
serve that B2(x) = B2(1− x)).

Suppose now that P is an integral point, thus v(u) = 0. Observe that the
set of values V that we computed in the proof of Lemma 3.5.3 is equal to the
set of rational numbers

{−i2v(q̈) + v(Θ̈(w))}i∈Z.

Therefore the set V has a unique maximal element equal to v(Θ̈(w)). Moreover,
as v(u) = 0, we use the product formula

Θ̈(Ü) = Ü
∏
n≥0

(1− qnÜ2)
∏
n>0

(1− qnÜ−2)

to compute that v(Θ̈(w)) = v(1 − u). Thus, we have determined the value
v(1−u) and again using Proposition 1.2.3 we may compute the height of P .

Remark 3.5.4. The statement of Proposition 3.5.1 uses section of the tem-
pered fundamental group Πtp

X , whereas in the Theorem 1.1.1 we used sections
of the étale fundamental group ΠX . Obviously, every section of the tempered
fundamental group determines a section of the étale fundamental group. One
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may ask if it is possible to prove another version of Proposition 3.5.1, where we
replace the group Πtp

X by its étale version ΠX . This is indeed possible, here we
give a sketch of the proof. Recall that using [23], Lemma 2.3 we may recon-
struct the dual graph of the stable model of a hyperbolic curve X from its étale
fundamental group ΠX . Applying this reconstruction to all étale covers of X we
may distinguish covers coming from topological covers of the dual graph of the
stable model. Therefore, one can recover Πtp

X as a subgroup (not topological)
of ΠX , determined up to conjugation. Moreover, using [31], Corollary 2.5, we
obtain that the image of some conjugate of the section s is contained Πtp

X and is
in fact equal to a decomposition group in Πtp

X of the point P . Thus, this reduces
the problem to the tempered case already discussed in Proposition 3.5.1.
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Chapter 4

Automorphisms of Galois
monoids

4.1 Introduction

Let K be a finite extension of Qp with the ring of integral elements OK . For
every algebraic field extension L/K we denote by OL the integral closure of
OK in L and by O×L the group of units of the ring OL. Let O.L = OL \ {0}
be the set of nonzero integral elements, which is a monoid with respect to
multiplication. In what follows, we will always consider O.L as a monoid. If
we assume additionally that L/K is a Galois extension with the Galois group
G = Gal(L/K), then we obtain a natural action ofG on the monoidO.L. Denote
by G y M a pair consisting of a monoid M and a group G acting on M by
monoid automorphisms. Consider the group of automorphisms Aut(GyM) of
this pair. Every such automorphism consists of an automorphism α of G and
an automorphism β of the monoid M satisfying the following compatibility
property

G×M M

G×M M,

α×β β

where the horizontal arrows correspond to the action of the group G. In this
chapter we will be interested in the case when G is the Galois group of a field
extension L/K and M is equal ether to the monoid O.L or to the group O×L .

Consider now the following restriction map

Aut(GyM)→ Aut(G). (4.1)

Its kernel is equal to the group AutG(M) of G-equivariant automorphisms of
the monoid M . Then, we have the following theorem of Mochizuki (see [30],
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Proposition 3.2 and Proposition 3.3), which motivates theory developed in this
chapter.

Theorem 4.1.1. Suppose that M is equal to the monoid O.Kalg where Kalg is
an algebraic closure of K and G is the Galois group GK of the field extension
Kalg/K. Then the restriction map

Aut(GK y O.Kalg)→ Aut(GK)

is an isomorphism. Moreover, when M is equal to the group of units O×Kalg of
p-adic algebraic integers, then the restriction map

Aut(GK y O×Kalg)→ Aut(GK)

is surjective with kernel naturally isomorphic to the group Ẑ×.

In particular, the above theorem computes the groups AutGK (O.Kalg) and
AutGK (O×Kalg), as the trivial group and Ẑ×, respectively. In this chapter we are
going to consider more generally the groups AutG(O.L) and AutG(O×L ), for a
Galois field extension L/K with G = Gal(L/K). The main result we prove is
the following theorem.

Theorem 4.1.2. Let L/K be a Galois extension with the Galois group G =
Gal(L/K). Then, there exists an exact sequence of group homomorphisms

1→ Hom(VL,O×K)→ AutG(O.L)→ AutG(O×L )→ V (L/K)× → 1.

Here, VL = O.L/O×L and V (L/K) = lim←−M Z/e(M/K)Z, where M runs through
all finite subextensions of L/K and e(M/K) is the ramification degree.

This theorem is proved as Corollary 4.4.17. As a special case we will see
that when VL ∼= Q, then the group AutG(O.L) is trivial if and only if the group
AutG(O×L ) is isomorphic to Ẑ×. We also give a few applications and examples.

Finally, in the last section we briefly discuss the problem when the restriction
map

AutG(Gy O.L)→ Aut(G)

is surjective. To understand the difficulty of this question it is useful to make
the following remark. Denote by Inn(G) the subgroup of the group of automor-
phisms Aut(G) consisting of all inner automorphisms and by Inn(GyM) the
preimage of Inn(G) under the restriction map (4.1). Then, the map

Inn(GyM)→ Inn(G)
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is obviously surjective. Indeed, for every inner automorphism g 7→ σgσ−1 we
may consider the automorphism m 7→ σm of M and they together define an
automorphism of the pair GK y M . In other words, we have the following
commutative diagram

1 AutG(M) Inn(GyM) Inn(G) 1

1 AutG(M) Aut(GyM) Aut(G)

Hence the real difficulty for determining the cokernel of the map (4.1) comes
from the fact that the Galois group Gal(L/K) may have nontrivial outer auto-
morphisms. For example, this is the case when L = Kalg.

4.2 Notation

From now on K is a fixed finite extension of Qp. We recall our convention that
a finite extension of a p-adic field Qp is called a local field. We write Kur and
Ktm for the maximal unramified extension and the maximal tamely ramified
extension of K, respectively, both contained in a fixed algebraic closure Kalg.
Moreover, let q be the cardinality of the residue field of K.

For every algebraic field extension L/K define the value monoid VL as the
quotient monoid

1→ O×L → O.L → VL → 1.

Hence, VL is isomorphic to the additive monoid N of natural numbers if and only
if LKur/Kur is finite. Obviously VL = lim−→M

VM , where M runs over all finite
subextensions of the extension L/K. We may identify VL with a submonoid
of the additive monoid Q≥0 by sending the image of a uniformizer of K to 1.
Usually, when the field extension L/K is assumed to be Galois, we will write
G as the Galois group of this extension.

Moreover, for every extension L/K, we denote by mL the maximal ideal
of OL. We also have the following subgroups of O×L : the group of principal
units UL = 1 +mLOL, the subgroup µL of all roots of unity in L, the subgroup
µpL of roots of unity of p-power order and the subgroup µp

′

L consisting of roots
of unity of order prime to p. Elements of the group µpL and µp

′

L will also be
called p-roots of unity and p′-roots of unity, respectively. When L/K is finite
then all these subgroups of O×L are characteristic subgroups of the monoid O.L.
Similarly, when the field extension L/K is Galois with the Galois group G, then
they are characteristic subgroups of the pair Gy O.L.
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To indicate G-invariance we always use the lower subscript (·)G, as for ex-
ample in the group AutG(O.L) of G-equivariant automorphisms.

4.3 General properties

We will consider short exact sequences of commutative monoids, not necessarily
abelian groups. Let A,B and C be commutative monoids. We say that the
diagram

1 A B C 1f g (4.2)

is a short exact sequence if the following conditions are satisfied: the monoid
A is in fact an abelian group, the morphism f is injective, the morphism g is
surjective and finally the image of f is equal to the kernel of g. In other words,
the morphism g induces an isomorphism of the monoid C with the quotient
monoid B/A. Here we remark that this quotient is well defined and has a
monoid structure since we have assumed that A is an abelian group. Similarly,
if all the monoids A,B,C are equipped with an action of a group G and the
morphisms f and g are G-equivariant, then the short exact sequence considered
above is said to be a short exact sequence of G-monoids.

Suppose now that the group A is a characteristic subgroup of B. Then, by
restriction we obtain a natural group homomorphism Aut(B)→ Aut(A). Simi-
larly, taking quotient we get another group homomorphism Aut(B)→ Aut(C),
denoted ϕ 7→ ϕC for any ϕ ∈ Aut(B). Moreover, when (4.2) is a short ex-
act sequence of G-monoids we obviously obtain G-equivariant versions of the
restriction homomorphism AutG(B) → AutG(A) and the quotient homomor-
phism AutG(B)→ AutG(C).

Recall the following well-known fact.

Lemma 4.3.1. The kernel of the homomorphism Aut(B)→ Aut(A)×Aut(C)
is naturally isomorphic to the group Hom(C,A). Moreover, when the short
exact sequence (4.2) is in fact a short exact sequence of G-monoids, then the
kernel of the morphism AutG(B)→ AutG(A)×AutG(C) is naturally isomorphic
to the group HomG(C,A).

Proof. Let ϕ be an element from the kernel D of the map Aut(B)→ Aut(A)×
Aut(C). Denote by b the image of the element b ∈ B under the map g. Then,
for each b from B we obtain ϕ(b) = ϕC(b) = b, hence ϕ(b) = ab for some
a ∈ A. Thus, we may define a unique homomorphism ϕ0 : B → A such that
ϕ(b) = ϕ0(b)b. Since ϕ is the identity on A we have ϕ0(a) = 1 for every a from
A. Therefore, the map ϕ0 factorizes through a homomorphism ϕ0 : C → A,
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denoted in the same way. Hence we obtain a map D → Hom(C,A), which is
obviously injective and we need to prove that it is also surjective.

Let now ϕ0 : C → A be a homomorphism and define the endomorphism
ϕ of B by the formula ϕ(b) = ϕ0(b)b for all b in B. We need to check that
the endomorphism ϕ is in fact an isomorphism. It is injective, since if ϕ(x) =
ϕ0(x)x = 1 for some x ∈ B, then x = ϕ0(x)−1 belongs to A. Hence ϕ0(x) = 1,
which implies x = 1. For the surjectivity we easily check that for every b ∈ B,
if we put x = bϕ0(b)−1, then we obtain ϕ(x) = b.

The G-module case follows immediately from the same argument as every
morphism appearing above would be G-equivariant.

We now fix a Galois field extension L/K with the Galois group G =
Gal(L/K). We have a short exact sequence of G-monoids

1→ O×L → O.L → VL → 1.

Lemma 4.3.2. Let ϕ be a G-equivariant automorphism of O.L. Then, ϕ induces
the identity on the value monoid VL.

Proof. Since ϕ isG-equivariant, it also induces theG-equivariant automorphism
of a monoid O.M , for every finite Galois field subextension M/K. Hence, it
also induces the automorphism of the value monoid VM ∼= N, which must
be the identity homomorphism. The result follows from the fact that VL =
lim−→M

VM .

The above lemma implies that every G-equivariant automorphism ϕ of the
monoid O.L is of the form ϕ(x) = ϕ0(x)x, for some ϕ0 ∈ HomG(O.L,O×L ) and
for every x ∈ O.L.

Lemma 4.3.3. Consider the natural restriction map AutG(O.L)→ AutG(O×L ).
Then, the kernel of this homomorphism is naturally isomorphic to the group
HomG(VL,O×L ) = Hom(VL,O×K).

Proof. We apply Lemma 4.3.1 to the short exact sequence

1→ O×L → O.L → VL → 1.

together with the previous observation that every G-equivariant automorphism
of O.L induces the identity homomorphism on the quotient VL. Moreover, the
last equality follows since the action of G on VL is trivial and (O×L )G = O×K .

Lemma 4.3.4. The group Hom(VL,O×K) is trivial if and only if the monoid VL
is p(q − 1)-divisible.
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Proof. Assume first that the group VL is p-divisible. Since the only p-divisible
elements of the group O×K are p′-roots of unity we easily see that every homo-
morphism Hom(VL,O×K) has its image contained in µp

′

K . Moreover, when the
group VL is (q − 1) divisible then this image must be in fact trivial since q − 1
is the order of the group µp

′

K . This proves the sufficiency of our condition.
Suppose now that the group VL is not p-divisible, we want to construct a

nonzero homomorphism in the group Hom(VL,O×K). Recall that VL may be
identified with a submonoid of the additive monoid Q≥0. Since we assume that
VL is not p-divisible, the powers of p appearing in the denominator must be
bounded. It follows that VL is contained in some submonoid Sn consisting of
all nonnegative rational numbers of the form a/pnb for some natural numbers
a, b and n such that b is not divisible by p. Then, we easily produce a map
Sn → UK by declaring 1/pn 7→ u, using any element u of UK . It is well defined
since raising to the power b for b prime to p defines an automorphism of the
group UL. Thus, in this case the group Hom(VL,O×K) is nontrivial.

Suppose now that the group VL is not (q− 1)-divisible. In particular, there
exist a prime l dividing q − 1 such that VL is not l-divisible. Arguing as pre-
viously we see that the monoid VL is contained in some set Ln which consists
of all nonzero rational numbers of the form a/lnb where a, b and n are rational
numbers such that b is not divisible by l. Moreover, we may choose the smallest
n satisfying VK ⊂ Ln. Consider now the group µl ⊂ µK of all lth roots of unity.
We may define a homomorphism Ln → µl by declaring 1/ln 7→ ζ for some
primitive lth root of unity ζ. It is well defined since raising to the power b for
b prime to l is an automorphism of the group µl. Moreover, by the minimality
of Ln the homomorphism VL → µl obtained by composition is nonzero. This
proves nontrivialty of the group Hom(VL,O×K) and finishes the proof.

Recall that a supernatural number is a formal product ∏ pαii over all prime
numbers pi where αi is either a nonnegative integer or +∞. The set of su-
pernatural number has an obvious monoid structure as well as a relation of
divisibility. If ni is a sequence of supernatural numbers such that ni|nj for
i ≤ j, then we write limi→∞ ni for the least common multiple of the numbers
ni.

We use this notion in the following situation. Let L/K be an algebraic
extension and write L = lim−→i∈NMi as a colimit of a directed set of finite ex-
tensions Mi/K. Define the ramification index e(L/K) of the extension L/K as
the supernatural number limi→∞ e(Mi/K), where e(Mi/K) is the usual ram-
ification index of the finite field extension Mi/K. It is easy to see that this
definition does not depend on the choice of the collection of fields Mi. Using
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this terminology, we have a restatement of the previous corollary.

Corollary 4.3.5. Let L/K be a Galois field extension with Galois group G

such that p∞(q − 1)∞ does not divide the ramification number e(L/K). Then,
the group AutG(O.L) is nontrivial.

Definition 4.3.6. Let L/K be a Galois extension with the Galois group G and
letM ∈ {O.L,O×L}. Hence, for each ϕ ∈ AutG(M) we may write ϕ(x) = ϕ0(x)x
for some ϕ0 ∈ HomG(M,O×L ).

1. Define the subgroup Autp
′

G(M) of the group AutG(M) as the set of all
automorphisms ϕ ∈ AutG(M) such that ϕ0(x) is a p′-root of unity for
every x ∈M .

2. Define the subgroup Aut0
G(M) of the group AutG(M) as the set of all

automorphisms ϕ of M such that ϕ0(x) ∈ UL for every x ∈M .

We have a natural isomorphism of groups

O×L ∼= µp
′

L × UL. (4.3)

This decomposition is in fact a characteristic decomposition of the monoid O×L .
Indeed, it follows from the fact that the group UL can be characterised as the
subgroup of all l-divisible elements for any prime l 6= p.

Lemma 4.3.7. We have a natural group isomorphism

AutG(O×L ) ∼= Autp
′

G(O×L )× Aut0
G(O×L )

which to every automorphism ϕ ∈ Aut(O×L ) associates pair of automorphisms
(ϕ′, ϕ′′) defined as ϕ′(x) = ϕ′0(x)x and ϕ′′(x) = ϕ′′0(x)x, where

ϕ0(x) = ϕ′0(x)ϕ′′0(x)

is the decomposition induced by the isomorphism (4.3).

Proof. Observe first that the restriction maps

Autp′(O×L )→ Aut(µp
′

L ) and Aut0(O×L )→ Aut(UL)

are isomorphisms. Indeed, for every automorphisms ϕ ∈ Autp′(O×L ) its restric-
tion to UL is the identity. Therefore, we easily see that the first homomorphism
in the statement must be an isomorphism. Similarly, the restriction of every
automorphism ϕ ∈ Aut0(O×L ) to the group µp

′

L is the identity, hence the second
map is an isomorphism as well. This, together with the isomorphism (4.3),
finishes the proof.
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4.4 Cohomology classes of automorphisms

In this section we are going to construct certain cohomology classes measuring
the obstruction to the existence of a lift of a G-equivariant automorphism of
O×L to a G-equivariant automorphism of O.L. This method will enable us to
characterise the cokernel of the restriction map AutG(O.L)→ AutG(O×L ).

Observe first that when we do not require G-equivariance, then for every
finite extension L/K the map Aut(O.L)→ Aut(O×L ) is surjective. Indeed, pick
any uniformizing element π of O.L. Then, if ϕ is any automorphism of the group
O×L , we may simply define ϕ̃(uπn) = ϕ(u)πn, for a unit u and natural number
n. This defines an endomorphism of O.L, which is in fact an automorphism.

Fix a finite Galois extension L/K and let ϕ be a G-equivariant automor-
phism of O×L . Take any lift ϕ̃ of ϕ to an (not necessary G-equivariant) auto-
morphism of O.L and choose a uniformizer πL of O.L. Then, we may define for
every σ ∈ G the element aσ by the following formula

aσ = ϕ̃(σ(πL))
σ(ϕ̃(πL)) .

It is easy to see that aσ is a unit in the p-adic field L. We then have the
following basic lemma.

Lemma 4.4.1. The function σ 7→ aσ is a cocycle, in other words we have
aστ = aσσ(aτ ). Moreover, the construction of aσ does not depend on the choice
of an uniformizer πL. Furthermore, choosing a different lift ϕ̃ ∈ Aut(O.L)
changes the cocycle aσ by a coboundary (i.e. a map σ 7→ σ(b)/b, for some unit
b). Together it implies that we obtain a well defined map of sets

AutG(O×L )→ H1(G,O×L ).

Proof. We start by proving that aσ is independent of the choice of a uniformizer
of O.L. Obviously the map

O.L 3 x 7→
ϕ̃(σ(x))
σ(ϕ̃(x)) ∈ O

×
L

is multiplicative, moreover it vanishes on units O×L as ϕ is assumed to be G-
equivariant. Thus, if π′L = uπL is another uniformizer then we have

a′σ = ϕ̃(σ(π′L))
σ(ϕ̃(π′L)) = ϕ̃(σ(u))

σ(ϕ̃(u))
ϕ̃(σ(πL))
σ(ϕ̃(πL)) = ϕ̃(σ(πL))

σ(ϕ̃(πL)) = aσ.

Now we will prove the cocycle relation. We have

aστ = ϕ̃(στ(πL))
στ(ϕ̃(πL)) = ϕ̃(στ(πL))

σ(ϕ(τ(πL))
aτ

)
= ϕ̃(σ(τ(πL)))
σ(ϕ̃(τ(πL)))σ(aτ ) = aσσ(aτ ),
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where the last equality follows from the fact that τ(πL) is also a uniformizer.
Finally, let ϕ2 be some other extension of ϕ to an automorphism of O.L.

Then we have ϕ2(πL) = ϕ̃(πL)u, for some unit u. Moreover, for every σ ∈ G
we have

ϕ2(σ(πL)) = ϕ2

(
σ(πL)
πL

πL

)
= ϕ

(
σ(πL)
πL

)
ϕ̃(πL)u = ϕ̃(σ(πL))u.

We now compute the cocycle using the lift ϕ2

ϕ2(σ(πL))
σ(ϕ2(πL)) = ϕ̃(σ(πL)u)

σ(ϕ̃(πL)u) = ϕ̃(σ(πL))
σ(ϕ̃(πL))

u

σ(u) = aσ
u

σ(u) .

hence two computations of aσ differ by a cocycle σ(u)/u, which finishes the
proof.

The map just constructed will be denoted by κL, we also use the notation
κL(ϕ)σ to denote a cocycle in the cohomology class κL(ϕ).

κL : AutG(O×L )→ H1(G,O×L )
ϕ 7→ [σ 7→ κL(ϕ)σ]

Observe that the group AutG(O×L ) acts naturally on the group H1(G,O×L ).
Indeed, if ϕ is any G-equivariant automorphism of O×L and σ 7→ aσ is a cocycle,
then we may compose aσ with ϕ to get a map σ 7→ ϕ(aσ) = bσ. Then it follows
from the G-equivariance of ϕ that bσ is a cocycle

bστ = ϕ(aστ ) = ϕ(aσσ(aτ )) = ϕ(aσ)σ(ϕ(aτ )) = bσσ(bτ ).

Similarly, again by G-equivariance, composing with ϕ preserves the set
of coboundaries, hence the action of ϕ descends to the action on the group
H1(G,O×L ).

Lemma 4.4.2. The map κL is a crossed homomorphism. In other words, we
have κL(ϕψ) = κL(ϕ)ϕ(κL(ψ)) for every two automorphisms ϕ and ψ.

Obviously, a crossed homomorphism is the same as a cocycle, however we
choose this terminology to avoid any confusion with cocylces representing co-
homology classes in the group H1(G,O×L ).

Proof. We want to compute the cocycle associated to the morphism ϕψ. Choose
extensions ϕ̃ and ψ̃, moreover as an extension of ϕψ we may simply take ϕ̃ψ̃.
To ease the notation, denote the cocycles corresponding to ϕ̃ and ψ̃ by aσ and
bσ, respectively. Then we have

ϕ̃ψ̃(σ(πL))
σ(ϕ̃ψ̃(πL))

= aσ
ϕ̃(bσσ(ψ̃(πL)))
ϕ̃(σ(ψ̃(πL)))

= aσϕ(bσ),

hence the lemma follows.
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Every crossed homomorphism G→ A from a group G to a G-module group
has a well defined kernel which is a subgroup of G (however, it may not be a
normal subgroup of G).

We are now able to describe the relation between the map κL and the group
of G-equivariant automorphisms of O.L.

Proposition 4.4.3. Let L/K be a finite Galois extension with the Galois group
G. Then, the following sequence is exact

1 Hom(VL,O×K) AutG(O.L) AutG(O×L ) H1(G,O×L )κL (4.4)

More precisely, the kernel of the crossed homomorphism κL is equal to the image
of the group AutG(O.L) in the group AutG(O×L ).

Proof. Put κ = κL. By Lemma 4.3.3 we only need to check exactness at
AutG(O×L ). Let ϕ be a G-equivariant automorphism of O×L . Suppose first that
ϕ lies in the image of AutG(O.L). Hence we may assume that the lift ϕ̃ chosen
in the construction of the class κ(ϕ) is G-equivariant. Thus, directly from the
definition of the map κ, we obtain κ(ϕ) = 1.

Suppose now that κ(ϕ) = 1. Choose any extension ϕ̃ of ϕ to the automor-
phism of O.L. Triviality of κ(ϕ) means that the cocycle constructed from ϕ̃ is a
coboundary, in other words there exist a unit v and a uniformizer πL such that
for every σ ∈ G we have

ϕ̃(σ(πL))
σ(ϕ̃(πL)) = σ(v)

v
.

We may now define an automorphism ϕ̂ of O.L by putting

ϕ̂(uπi) = vϕ(u)ϕ̃(πL)

for every unit u. Then we have

ϕ̂(σ(πL)) = ϕ̂(σ(πL)
πL

πL) = ϕ̂(σ(πL)
πL

)ϕ̂(πL) = ϕ̃(σ(πL)
πL

)vϕ̃(πL) = vϕ̃(σ(πL))

and similarly
σ(ϕ̂(πL)) = σ(vϕ̃(πL)) = σ(v)σ(ϕ̃(πL)),

hence comparing both sides we get ϕ̂(σ(πL)) = σ(ϕ̂(πL)). Since πL and units
generate the monoid O.L, it shows that ϕ̂ is in fact a G-equivariant automor-
phism extending ϕ, which finishes the proof.

The natural isomorphism O×L ∼= µp
′

L × UL induces a splitting

H1(G,O×L ) ∼= H1(G, µp
′

L )×H1(G,UL),
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moreover, from Lemma 4.3.7, we have a similar product decomposition for the
group of automorphisms.

AutG(O×L ) ∼= Autp
′

G(O×L )× Aut0
G(O×L )

The next lemma shows that the map κL respects these product decompositions.

Lemma 4.4.4. There exist dotted arrows (also denoted by κL), which are
crossed homomorphisms, fitting in the following commutative diagram with ex-
act rows.

1 Hom(VL, µp
′

K) Autp
′

G(O.L) Autp
′

G(O×L ) H1(G, µp
′

L )

1 Hom(VL,O×K) AutG(O.L) AutG(O×L ) H1(G,O×L )

1 Hom(VL, UK) Aut0
G(O.L) Aut0

G(O×L ) H1(G,UL)

κL

κL

κL

Proof. We will only consider the upper row, the proof for the bottom one
is analogous. Let ϕ be a G-equivariant p′-automorphism of O×L . Choose a
uniformizer πL of L. Observe that the extension ϕ̃ defined by ϕ̃(uπnL) = ϕ(u)πnL
is also a p′-automorphism. Write ϕ(x) = ϕ0(x)x and σ(x) = σ0(x)x, for every
x ∈ O.L. We compute the cocycle aσ using the lift ϕ̃

aσ = ϕ̃(σ(πL))
σ(ϕ̃(πL)) = ϕ̃0(σ0(πL))

σ0(ϕ̃0(πL)) .

Therefore we see that aσ belongs to the set µp
′

L of p′-roots of unity. Choosing a
different p′-automorphism extending ϕ changes the cocycle aσ by a coboundary,
hence it gives a well defined cohomology class in H1(G, µp

′

L ). This defines the
dotted arrow, also denoted by κL. Moreover, by the same computation as
previously, we see that it is a crossed homomorphism.

Lemma 4.4.5. For every finite Galois extension L/K with G = Gal(L/K)
there exist natural isomorphisms

H1(G,O×L ) ∼= VL/VK ∼= Z/eZ

where e = e(L/K) is the ramification index. Moreover, if L′/L/K is a tower
of Galois extensions with Galois group G′ = Gal(L′/K), then the following
diagram

H1(G′,O×L′) Z/e(L′/L)Z

H1(G,O×L ) Z/e(L/K)Z

'

e(L′/L)

'
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is commutative. Here, the left vertical arrow is a multiplication by e(L′/L) and
the right vertical arrow is the natural projection.

Proof. Consider the following exact sequence of G-modules

1→ O×L → L× → VL → 1.

Taking the long exact sequence in cohomology associated to this short exact
sequence we obtain

1→ O×K → K× → VL → H1(G,O×L )→ H1(G,L×).

The group H1(G,L×) vanishes by Hilbert’s Theorem 90 and the image of K× in
VL is identified with VK . That finishes the proof of the first part of the lemma.

For the second part, since the isomorphism H1(G,O×L ) ∼= VL/VK obtained
above is functorial, applying the restriction map we have a commutative dia-
gram

VL′/VK H1(G′,O×L′)

VL/VK H1(G,O×L ),

'

'

hence also a commutative diagram

H1(G′,O×L′) VL′/VK

H1(G,O×L ) VL/VK .

'

e(L′/L) e(L′/L)

'

Then it is enough to observe the commutativity of the diagram

VL′/VK Z/e(L′/K)Z

VL/VK Z/e(L/K)Z,

e(L′/L)

'

'

which is obvious.

Remark 4.4.6. We may write down explicitly the formula of the above iso-
morphism. Let n be an element of the group VL/VK and take any lift of n to
an element a of L×. Then, the cohomology class corresponding to the element
n is given by the cocyle σ 7→ σ(a)/a. In particular, the canonical generator
1 ∈ Z/eZ corresponds to the cocycle σ 7→ σ(π)/π, where π is a uniformizer of
L.
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Remark 4.4.7. Observe that one can define the map κL even without choosing
a lift ϕ̃. Indeed, let ϕ ∈ AutG(O×L ) be a G-equivariant automorphism of O×L .
We write ϕ0(x) = ϕ(x)x−1 for all x ∈ O×L , similarly let σ0(x) = σ(x)x−1 for
every σ ∈ G. Then, one easily checks that the cohomology class κL(ϕ) is
represented by the cocycle σ 7→ ϕ0(σ0(πL)), where πL is a uniformizer of L.

In the next lemma we observe that we may replace the crossed homomor-
phism κL by another map which is a group homomorphism.

Lemma 4.4.8. The map κL : AutG(O×L ) → H1(G,O×L ) factorizes as the fol-
lowing composition

AutG(O×L )→ Aut(H1(G,O×L ))→ H1(G,O×L )

where the first map is a natural group homomorphism induced by the functori-
ality of group cohomology. The second map is a map of sets given by

(Z/eZ)× 3 n 7→ n− 1 ∈ Z/eZ,

here we use the natural isomorphism H1(G,O×L ) ∼= Z/eZ from Lemma 4.4.5.

Proof. Let ϕ be an G-equivariant automorphism of O×L and π a uniformizer
of L. Then, we have seen in Remark 4.4.7 that the class κL is represented by
the cocycle κL(ϕ)σ = ϕ(σ0(π))/σ0(π). On the other hand, σ0(π) is a canonical
generator ofH1(G,O×L ) identified with 1 ∈ Z/eZ. Therefore, if ϕ induces an au-
tomorphism of H1(G,O×L ) identified with b ∈ (Z/eZ)×, then κL(ϕ) corresponds
to b− 1.

Therefore we may modify Corollary 4.4 to obtain the next result.

Corollary 4.4.9. Using the natural identification Aut(H1(G,O×L )) ∼= (Z/eZ)×

we have a short exact sequence of group homomorphisms

1 Hom(VL,O×K) AutG(O.L) AutG(O×L ) (Z/eZ)×.

Next we describe functorial behaviour of the map κL with respect to field
extensions.

Lemma 4.4.10. Let L′/L/K be a tower of Galois extensions with Galois groups
G′ = Gal(L′/K) and G = Gal(L/K). Then we have the following commutative
diagram

AutG′(O×L′) H1(G′,O×L′)

AutG(O×L ) H1(G,O×L ) H1(G′,O×L′),

κL′

e(L′/L)

κL
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where the inclusion H1(G,O×L ) ↪→ H1(G′,O×L′) is the inflation map and e(L′/L)
denotes the multiplication by the ramification index e(L′/L) of the field exten-
sion L′/L.

Proof. Choose a uniformizer πL′ of L′ and denote e = e(L′/L). Then, we have
πeL′ = uπL for some uniformizer πL of L and some unit u ∈ O×L′ . Let ϕ be a
G-equivariant automorphism of O×L′ . Then, by Remark 4.4.7, we may compute
the eth power of the cocycle κL′(ϕ)σ as follows

κL′(ϕ)eσ = ϕ0(σ0(πL′))e = ϕ0(σ0(uπL)) = σ0(ϕ0(u))ϕ0(σ0(πL)),

where the last equality uses G-equivariance of ϕ. Therefore, the right hand side
of the above equality is a cocycle cohomologous to κL(ϕ)σ, which finishes the
proof.

Corollary 4.4.11. For every tower of Galois field extensions L′/L/K as in
Lemma 4.4.10 we have a commutative diagram of group homomorphisms

AutG′(O×L′) (Z/e(L′/K)Z)×

AutG(O×L ) (Z/e(L/K)Z)×,

where the right vertical arrow is the natural projection.

Proof. This compatibility follows immediately from Lemma 4.4.10, together
with statements of Lemma 4.4.8 and Lemma 4.4.5.

We are going to describe the relation between the product decomposition
O×L ∼= µp

′

L × UL and the group homomorphism AutG(O×L ) → (Z/e(L/K)Z)×.
First we recall a well-known computation of certain Galois cohomology modules.

Lemma 4.4.12. Write e = e(L/K) as the product pαe′, where (e′, p) = 1.
Then, we have natural isomorphisms,

H1(G, µp
′

L ) ∼= Z/e′Z, H1(G,UL) ∼= Z/pαZ,

which are compatible with the product decomposition O×L ∼= µp
′

L × UL.

Proof. Let Gwild ⊂ G be the wild inertia subgroup and let G� Gtm � Gur be
the maximal tamely ramified and unramified quotient, respectively. Hence we
have short exact sequences

1→ Gwild → G→ Gtm → 1
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and
1→ Gtr → Gtm → Gur → 1.

They correspond to the following tower of intermediate field extensions

K ⊂ F ur ⊂ F tm ⊂ L.

First we are going to prove that the cohomology groups H1(Gtm, UF tm) and
H2(Gtm, UF tm) vanish. Consider the Hochschild-Serre spectral sequence

Hp(Gur, Hq(Gtr, UF tm))⇒ Hp+q(Gtm, UF tm),

associated to the group extension

1→ Gtr → Gtm → Gur → 1.

Since the order of Gtr is prime to p we see that for every q > 0 cohomology
groups Hq(Gtr, UF tm) are trivial. Hence, the spectral sequence degenerates and
we get isomorphisms Hn(Gur, UFur) ∼= Hn(Gtm, UF tm), for every n ≥ 0. Con-
sider now the short exact sequence of Gur-modules

1→ O×Fur → (F ur)× → VFur → 1

and the associated long exact sequence in cohomology

K× → VFur → H1(Gur,O×Fur)→ H1(Gur, (F ur)×).

The first map is surjective since the extension F ur/K is unramified and the last
group vanishes by Hibert’s Theorem 90. Therefore, the cohomology group
H1(Gur,O×Fur) is trivial which implies that H1(Gur, UFur) is trivial as well.
Hence, we obtain that the group H1(Gtm, UF tm) is trivial.

To compute the second cohomology group we may use periodicity of Tate co-
homology (see [34], Proposition 1.7.1), since the group Gur is cyclic. Therefore,
we obtain

H2(Gtm, UF tm) ∼= H2(Gur, UFur) ∼= Ĥ0(Gur, UFur) = UK/Nm(UFur) = 1,

since for unramified extensions the norm map Nm: UFur → UK is surjective.
Going back to the proof of the lemma, observe that we have a sequence of

isomorphisms

H1(G, µp
′

L ) ∼= H1(Gtr, µp
′

L ) ∼= H1(Gtr,O×L ) ∼= Z/e′Z.

Indeed, the first isomorphism comes from inflation map since Gwild is a p-group,
the second follows from triviality of cohomology groupH1(Gtm, UL) and the last
one come from Lemma 4.4.5. This finishes the proof of the first isomorphism.
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For the second isomorphism, we consider the spectral sequence

Hp(Gtm, Hq(Gwild, UL))⇒ Hp+q(G,UL),

associated to the short exact sequence

1→ Gwild → G→ Gtm → 1

Then, we obtain the exact sequence

1→ H1(Gtm, UF tm)→ H1(G,UL)→ H1(Gwild, UL)Gtm → H2(Gtm, UF tm),

hence the middle arrow is an isomorphism. Moreover,

H1(Gwild, UL) ∼= H1(Gwild,O×L ) ∼= Z/pαZ

and the action of Gtm on H1(Gwild, UL) is trivial, therefore finally we obtain
H1(G,UL) ∼= Z/pαZ. Compatibility with the product decomposition is obvious.

Corollary 4.4.13. The map AutG(O×L ) → (Z/e(L/K)Z)× is compatible with
the decomposition O×L ∼= µp

′

L × UL. More precisely, we have the following com-
mutative diagram of group homomorphisms with exact rows

1 Hom(VL, µp
′

K) Autp
′

G(O.L) Autp
′

G(O×L ) (Z/e′Z)×

1 Hom(VL,O×K) AutG(O.L) AutG(O×L ) (Z/eZ)×

1 Hom(VL, UK) Aut0
G(O.L) Aut0

G(O×L ) (Z/pαZ)×.

Proof. This follows from Lemma 4.4.4 together with Lemma 4.4.12.

We would like to extend Corollary 4.4.9 to the case of infinite Galois ex-
tensions. Let L/K be a fixed Galois extension (not necessarily finite) with the
Galois group G. Write L = lim−→i∈I Li, where every Li is a finite Galois subex-
tension of L/K and denote for simplicity ei = e(Li/K). Moreover, let Gi be
the quotient of G given by the Galois group of the field extension Li/K.

Definition 4.4.14. With the notation as above, we define

V (L/K) = lim←−
i∈I

Z/eiZ,

where the maps in the inverse system are given by the natural projections.
Similarly, we define

V (L/K)× = lim←−
i∈I

(Z/eiZ)×.
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For every Li we have constructed a map AutGi(O×Li) → (Z/eiZ)× and as
i varies they form an inverse system with respect to natural restrictions and
projections, by Corollary 4.4.11. Taking limit over i ∈ I we obtain a group
homomorphism

AutG(O×L ) = lim←−
i∈I

AutGi(O×Li)→ V (L/K)×.

Lemma 4.4.15. The following sequence of group homomorphisms

1→ Hom(VL,O×K)→ AutG(O.L)→ AutG(O×L )→ V (L/K)× (4.5)

is exact.

Proof. We only need to check exactness at AutG(O×L ). One inclusion is imme-
diate, since if ϕ is a G-equivariant automorphism of O.L, then from the finite
degree case its image in (Z/eiZ)× is trivial for every i, hence its image in
V (L/K)× is trivial as well.

Suppose now that we have a G-equivariant automorphism of O×L which
vanishes in V (L/K)×, which is equivalent to vanishing in every V (Li/K)×. By
the finite degree case this is equivalent to the existence of a lift of ϕ to a Gi-
equivariant automorphism of O.Li . However, since those lifts are not unique, it
is not immediate that they lift to a G-equivariant automorphism of O.L.

Let Si be the subset of those lifts, more precisely Si is a subset of AutGi(O.Li)
consisting of all Gi-equivariant automorphisms which coincide with ϕ after
restricting to O×Li . For every two fields Li ⊂ Lj we have a natural restriction
map Sj → Si and we need to prove that the inverse limit lim←−i∈I Si is nonempty.
We are going to prove it by defining a topology on every set Si which makes it
into a compact topological space and such that the restriction maps Sj → Si

are continuous. That will finish the proof since the inverse limit of compact
topological spaces is always nonempty.

We define the topology on Si to be the topology of uniform convergence.
Here, a basis of neighbourhoods of an automorphism ϕ is given by the sets Uε
of automorphisms ψ such that |ϕ(x)/ψ(x) − 1| < ε for every x ∈ O.Li , where
ε > 0. Then, it is immediate that with respect to this topology the restriction
maps Sj → Si are continuous. Therefore, we need to check that the topological
spaces Si are compact. Since the field extension Li/K is finite, the monoid VLi
is isomorphic to N. Therefore we have an isomorphism Hom(VLi ,O×K) ' O×K .
Moreover, as the set Si is a torsor over the group Hom(VLi ,O×K) ∼= O×K , we
may fix a trivialization t and get a bijection Hom(VLi ,O×K) ' Si, defined by
s 7→ st. Together we obtain a bijection O×K ' Si which is a homeomorphism,
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by the definition of the topology on Si. Hence the compactness of the group
O×K finishes the proof.

In the following we are going to show that the rightmost arrow in the exact
sequence (4.5) is in fact surjective. To achieve this we will construct explic-
itly certain homomorphism Ẑ× → AutG(O×L ) of groups, describe its action on
H1(G,O×L ) and prove that the composition Ẑ× → V (L/K)× is surjective.

Fix a Galois extension L/K and let M/K be a finite subextension. Then
the field M is also a local field, in particular it is locally compact and we have
a natural isomorphism

O×M ∼= lim←−
n∈N
O×M/(O×M)n.

The maps in this inverse system are given by the natural projections

O×M/(O×M)mn � O×M/(O×M)n.

For every natural number n and for every element αn of the group (Z/nZ)×

we may define a map O×M/(O×M)n → O×M/(O×M)n given by raising to the power
αn. It is easy to check that this is well defined an that the constructed map
(denoted also by αn) is an isomorphism. Now consider any element

α = (αn)n ∈ lim←−
n∈N

Z/nZ = Ẑ.

For any two natural numbers n,m the automorphisms of O×M/(O×M)nm and
O×M/(O×M)n given by αmn and αn are compatible with the natural projection
O×M/(O×M)mn � O×M/(O×M)n. Therefore, the element α ∈ Ẑ defines an auto-
morphism of the inverse limit of those projection, hence an automorphism of
O×M . Moreover, it is immediate from the construction that when the field M is
Galois over K with the Galois group Gal(M/K) = H then the automorphism
α : O×M → O×M is H-equivariant. Write O×L = lim−→M

O×M as the colimit over all
finite subextensions M/K with respect to the natural inclusion maps. The au-
tomorphism α constructed for every finite extension M/K is compatible with
inclusions hence it defines an automorphism of the colimit O×L . This defines
the map Ẑ× → AutG(O×L ), which is obviously a group homomorphism.

It is easy to see that the automorphism α could also be defined in another
way as follows. Pick a sequence of integers ai ∈ Z converging to α (as Z ⊂ Ẑ
is a dense subset). Let x be any element of the group of units O×L , we may
then define α(x) = limi→∞ x

ai . As x lies in some finite subextension M/K

the sequence converges and gives the same automorphism of O×L as constructed
previously.
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We also easily see that the homomorphism Ẑ× → AutG(O×L ) respects the
product decomposition O×L ∼= µp

′

L × UL. Namely, let Zp′ = ∏
l 6=p Zl, thus we

have a canonical isomorphism Ẑ× = Z×p × Z×p′ . Then, we have the natural
commutative diagram

Z×p Ẑ× Z×p′

AutG(UL) AutG(O×L ) AutG(µp
′

L ),

here we use the natural isomorphisms from Lemma 4.3.7. We easily see that
the left vertical arrow is injective whereas the right vertical arrow is surjective.

Lemma 4.4.16. Let L/K be a finite Galois field extension with the Galois
group G and ramification index e = e(L/K). Then, the composition of homo-
morphisms

Ẑ× → H1(G,O×L )→ Aut(H1(G,O×L )) ∼= (Z/eZ)×

is equal to the natural projection homomorphism Ẑ× � (Z/eZ)×.

Proof. Let N ∈ Ẑ×, for any unit x ∈ O×L we will use the notation xN for the
image of x under the automorphism corresponding to N . We may uniquely
write N = n + eN ′ for a natural number n satisfying 0 ≤ n ≤ e− 1 and some
N ′ ∈ Ẑ. Then, we also have xN = xn+eN ′ = xnxeN

′ .
Take any uniformizer π of the local field L. The canonical generator of

H1(G,O×L ) is given by the class of a cocycle σ(π)/π. Therefore, by Lemma 4.4.8,
the image by the action of N is given by the class of a cocycle(

σ(π)
π

)N
=
(
σ(π)
π

)n (
σ(π)
π

)eN ′
.

Since the group H1(G,O×L ) is e-torsion, the e-power of the cocycle (σ(π)
π

)N ′

has trivial cohomology class. Therefore, the action of N is determined by the
natural number n which obviously coincides with the image under the projection
map.

Corollary 4.4.17. Let L/K be a Galois extension. Then the following sequence
of group homomorphisms is exact

1→ Hom(VL,O×K)→ AutG(O.L)→ AutG(O×L )→ V (L/K)× → 1. (4.6)

Moreover, when the value group VL is p(q − 1)-divisible,then we have the fol-
lowing short exact sequence

1→ AutG(O.L)→ AutG(O×L )→ V (L/K)× → 1.
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Proof. Surjectivity follows immediately from the definition of V (L/K)× to-
gether with Lemma 4.4.16. When VL is p(q − 1)-divisible, then the group
Hom(VL,O×K) vanishes by Lemma 4.3.4.

To state the next corollary, we need to introduce some notation. Let L/K
be an algebraic extension and µL ⊂ L the subgroup of roots of unity. Then,
we may define a supernatural number rL as the order of the group µL. More
precisely, write µL = lim−→M

µM , where M/K runs through all finite extensions
M/K, and define rL to be the limit of rM . Similarly, when we consider only
the group of roots of unity µp

′

L of order prime to p, then we will denote its order
by r(p′)

L . Moreover, we write e′(L/K) for the supernatural number equal to the
prime to p component of the supernatural number e(L/K).

Another corollary we obtain from the exact sequence (4.6) is the following
characterization of the triviality of the group AutG(O.L).

Corollary 4.4.18. Let L/K be a Galois extension with Galois group G. Then,
the group AutG(O.L) is trivial if and only if the following three conditions are
satisfied:

1. The group VL is p(q − 1)-divisible,

2. We have the equality of supernatural numbers r(p′)
L = e′(L/K),

3. The injection Z×p ↪→ AutG(UL) is an isomorphism.

Proof. As we have seen, the group VL is p(q − 1)-divisible if and only if the
group Hom(VL,O×K) is trivial. We look at the diagram

Ẑ×

1 Hom(VL,O×K) AutG(O.L) AutG(O×L ) V (L/K)× 1.

α
β

Therefore, we may assume that the group Hom(VL,O×K) is trivial. Observe now
that the equality r(p′)

L = e′(L/K) is equivalent to the equality ker(α) = ker(β),
moreover the third condition is equivalent to the surjectivity of the map α.
Hence the result follows.

We will concentrate on the third condition from the above corollary. It will
be convenient to introduce the following definition.

Definition 4.4.19. Let L/K be a Galois extension with the Galois group G

and let ϕ be a G-equivariant automorphism of the group UL. We say that ϕ
is a standard automorphism if it induced by the image of some element Z×p
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through the map Z×p ↪→ AutG(UL). Moreover, we say that ϕ is a nonstandard
automorphism if it is not a standard automorphism.

Thus, by Corollary 4.4.18, the existence of nonstandard automorphisms of
the group UL implies that the group AutG(O.L) is nontrivial. We are going to
describe certain class of field extensions L/K for which there exists a nonstan-
dard automorphism. First, we introduce another definition.

Definition 4.4.20. Let L/K be a Galois field extension with the Galois group
G and let ϕ0 be a G-equivariant endomorphism of the group UL. We say that
ϕ0 is small if for every element x ∈ UL the sequence ϕ(n)

0 (x) converges to 1
(where by ϕ(n)

0 we mean the composition ϕ0 ◦ . . . ◦ ϕ0︸ ︷︷ ︸
n

).

For example, it is easy to see that the endomorphism of UL determined by
N ∈ Zp is small if and only if N is divisible by p.

Lemma 4.4.21. Let ϕ0 be a G-equivariant continuous endomorphism of UL.
Assume that ϕ0 is a small endomorphism. Then, the G-equivariant endomor-
phism ϕ of the group UL defined as ϕ(x) = ϕ0(x)x, for all x ∈ UL, is a G-
equivariant automorphism.

Proof. First we prove surjectivity of the endomorphism ϕ. Let x be an element
of UL, thus x lies in some finite field extension M/K. Define the following
infinite product

y = x

ϕ0(x)
ϕ

(2)
0 (x)

ϕ
(3)
0 (x)

ϕ
(4)
0 (x)

ϕ
(5)
0 (x)

. . . ,

which converges due to the assumption that ϕ0 is small and completeness of
the group UM . Because the map ϕ0 is continuous, we also obtain

ϕ0(y) = ϕ0(x)
ϕ

(2)
0 (x)

ϕ
(3)
0 (x)

ϕ
(4)
0 (x)

. . . ,

hence we have ϕ(y) = ϕ0(y)y = x, which proves the surjectivity of ϕ.
Thus, for every finite extension M/K we have a surjective homomorphism

ϕ : UM � UM of Zp-modules. Since the extension M/K is finite, the group
UM is a finitely generated Zp-module. Therefore, the restriction of ϕ to UM
must be injective as well. Indeed, every surjective endomorphism of a finitely
generated module over a ring is automatically injective. Hence the injectivity
holds for every finite extension M/K, so ϕ is injective on UL as well.

Proposition 4.4.22. Let L′/L/K be a tower of Galois extensions with L′ 6= L

and with Galois groups G′ = Gal(L′/K) and G = Gal(L/K). Assume that the
degree [L′ : L] is not divisible by p∞ (as a supernatural number). Then, there
exists a nonstandard G′-equivariant automorphism of the group UL′.
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Proof. We easily reduce the proof to the following two cases: (1) when L′/L

is finite of degree [L′ : L] which is a power of p, (2) when the degree [L′ : L]
is not divisible by p. In each case we are going to construct a nontrivial small
G′-equivariant endomorphism ϕ0 of the group UL′ which factorizes through the
group UL

ϕ0 : UL′ → UL ↪→ UL′ .

In the case (1), we consider the norm map N = NL′
L : UL′ → UL and simply

define ϕ0(x) = N(x) for every x ∈ UL′ . Since the subgroup Gal(L′/L) ⊂ G′ is
normal, the homomorphism ϕ0 is G′-equivariant. Moreover, it is small since we
have ϕ(n)

0 (x) = (N(x))pn−1 , which converges to 1 as n→∞.
In the case (2), we define first a normalized norm N : UL′ → UL as follows.

Let x ∈ UL′ be any element, choose a finite extension M/L such that x belongs
to M and define N(x) to be NM

L (x)1/d, where d = [M : K]. This is well
defined since by assumption d is prime to p, hence raising to the power d is an
isomorphism of the group UL. Moreover, the definition does not depend on the
choice of the intermediate field M due to the normalizing factor 1/d. Finally,
we define the endomorphism ϕ0 as ϕ0(x) = N(x)p for x ∈ L′, which again has
required properties.

We may now define a G′-equivariant endomorphism ϕ of the group UL by
the formula ϕ(x) = ϕ0(x)x. By Lemma 4.4.21, it is in fact an automorphism of
the group UL. We claim that it is a nonstandard automorphism. Indeed, if we
had ϕ(x) = xn for some n ∈ Z×p , then ϕ0(x) = xn−1 for every x ∈ UL′ . Since
ϕ0(x) ∈ L and L′ 6= L, it is only possible when n = 1, but then ϕ0(x) = 1
which is a contradiction as the image a norm map is open.

In particular, when the field extension L/K is finite there always exist non-
standard automorphisms.

Remark 4.4.23. Using the previous proposition one can give many examples
of Galois field extensions L/K such that the group AutG(O.L) is nontrivial. For
instance, let M/K be any Galois extension with VM ∼= Q and let F/K a Galois
extension not contained in M and of degree not divisible by p∞. Then the field
L = MF contains all p′-roots of unity, hence it trivially satisfies conditions
(1) and (2) from Corollary 4.4.18. On the other hand, it does not satisfy the
condition (3). Indeed, from Proposition 4.4.22 applied to the extension L/M

we see that there exist nonstandard automorphisms of the group UL. Therefore,
the group AutG(O.L) must be nontrivial.
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4.5 Complements

In this section we gather a few results complementing the previous discussion.

Definition 4.5.1. Let L/K be a finite extension of local fields and let ϕ be an
automorphism of the group UL. We write ϕ0 for an endomorphism of UL defined
by the formula ϕ(x) = ϕ0(x)x, for all x ∈ UL. For any two automorphisms ψ
and ϕ of the group UL, we say that they are p-equivalent if there exist two
natural numbers i, j such that ϕ0(x)pi = ψ0(x)pj , for all x ∈ UL. This induces
an equivalence relation on the group of all automorphisms of the group UL.

Similarly if ψ and ϕ are two endomorphisms of the additive group (L,+),
we say that they are p-equivalent if there exists an integer k such that ϕ(x) =
pkψ(x), for all x ∈ L. Again, this induces an equivalence relation on the group
of all endomorphisms of the group (L,+).

Proposition 4.5.2. Let L/K be a finitely ramified extension (i.e. the extension
LKur/Kur is finite). Then, there exists a natural bijection between the set
of p-equivalence classes of automorphisms of the group UL and the set of p-
equivalence classes of endomorphisms of the group (L,+). Moreover, if L/K
is a Galois extension with the Galois group G, then this bijection preserves the
equivalence classes of G-equivariant morphisms.

Proof. Consider the p-adic logarithm map log : UL → L. It induces an isomor-
phism of groups UL/µpL ∼= log(L) ⊂ L which is G-equivariant when L/K is a
Galois extension,. Moreover, the group log(L) is open and compact due to the
finite ramification assumption.

Let now ϕ be an automorphism of the group UL and consider the endo-
morphism ϕ0 of UL. Using the logarithm map it defines an endomorphism
log(ϕ0) of the (additive) group log(L) hence also an endomorphism of the (ad-
ditive) group log(L)⊗Qp

∼= L. Moreover, if we replace ϕ by some p-equivalent
automorphism then ϕ0 changes to ϕp

i

0 thus log(ϕ0) changes to a p-equivalent
endomorphism pi log(ϕ0).

On the other hand, suppose that α is an endomorphism of the additive
group L. Because the submodule log(L) is compact and open in L, there exists
a natural number n such that pnα(log(L)) ⊂ log(L). Thus, replacing α by a
p-equivalent endomorphism we may assume that α(log(L)) ⊂ log(L). There-
fore, by using the inverse of the logarithm map, we obtain an endomorphism
exp(α) of the group UL/µ

p
L. Because UL contains only finitely many roots

of unity we may assume, after enlarging n, that exp(α) defines a morphism
UL/µ

p
L → UL. Denote by ϕ0 the endomorphism of UL given by the composition
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UL � UL/µ
p
L → UL. Enlarging n if necessary, we may assume that for every

x ∈ UL the sequence ϕ(i)
0 (x) converges to 1, as i goes to infinity. Thus, using

Lemma 4.4.21, we define an automorphism ϕ of the group UL by the formula
ϕ(x) = xϕ0(x). It is easy to see that these two constructions define bijection
from the statement.

Moreover, it is obvious that when the field extension L/K is Galois both
these constructions preserve the property of being G-equivariant. Indeed, it
follows immediately from the G-equivariance of the p-adic logarithm map.

Let L/K be a Galois extension with the Galois group G. Fix an automor-
phism ϕ of the monoid O.L, thus ϕ induces an automorphism of the subgroup
µL of roots of unity. Suppose that L contains a primitive root of unity of order
n. Then, the induced action of ϕ on nth roots of unity is given by ζ 7→ ζrn for
some unique element rn ∈ (Z/nZ)×.

Lemma 4.5.3. Let a ∈ O.K. Suppose that there exists x ∈ O.L such that
xn = a for some natural number n. Then, n divides (rn − 1)vK(a). Therefore,
when n is prime to vK(a) we obtain rn = 1, in other words ϕ is the identity
homomorphism on the set of nth roots of unity.

Proof. Take any σ ∈ G. As σ(x)/x is a root of unity, we obtain

σ(ϕ(x))
ϕ(x) = ϕ

(
σ(x)
x

)
=
(
σ(x)
x

)rn
= σ(xrn)

xrn

Therefore ϕ(x)/xrn is stabilized by every element σ in G, hence it belongs to
K. It follows that ϕ(x) = txrn for some t ∈ K and raising to nth power gives
ϕ(a) = tnarn . Applying now vK we obtain vK(a) = nvK(t) + rnv(a), hence
(rn − 1)vK(a) = −nvK(t). When n is prime to vK(a) we have that n divides
rn − 1 which together with 0 ≤ rn − 1 ≤ n− 2 implies rn = 1.

Lemma 4.5.4. Suppose that ϕ restricts to the identity on the set of nth roots
of unity. Let a ∈ O.K and assume that there exists x ∈ O.L such that xn = a.
Then, ϕ(a)/a lies in (O×K)n.

Proof. Using the same computation as in the previous lemma (with rn = 1) we
obtain ϕ(x) = tx for some t ∈ O×K and again raising to the nth power gives us
ϕ(a) = atn.

Corollary 4.5.5. Suppose that ϕ restricts to the identity on the group of roots
of unity of p-power order. Let a ∈ O.K and assume that for every natural
number n there exists x ∈ O.L such that xpn = a. Then ϕ(a) = ζa, where ζ is
a root of unity of order prime to p.
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Proof. Indeed, applying Lemma 4.5.4 we see that ϕ(a)/a belongs to the inter-
section ⋂n≥1(O×K)pn , which is equal to the subgroup of roots of unity of K of
order prime to p.

Corollary 4.5.6. Assume that K contains pth roots of unity and let L/K be
the maximal pro-p-extension. Then, every G-equivariant automorphism of the
monoid O.L is of the form a 7→ ζaa where ζa is p′-root of unity. In other words,
we have the equality

AutG(O.L) = Autp
′

G(O.L).

Proof. Fix an G-equivariant automorphism ϕ of the monoid O.L and let πK be
a uniformizer of K. By assumption, the field L contains all pnth roots of πK ,
thus applying Lemma 4.5.3 we obtain that ϕ acts trivially on all roots of unity
of p-power order. Now, fix any a ∈ L and observe that all roots of a of p-power
order also belong to L. Therefore, applying Corollary 4.5.5 we conclude that
ϕ(a) = ζa for some ζ ∈ µp.

Remark 4.5.7. Let L/K be as in the Corollary 4.5.6. Using the sequence (4.6)
(or repeating the proof of the previous corollary) we easily see that every G-
equivariant automorphism of the group UL is standard, hence L/K satisfies
condition (3) from Corollary 4.4.18. On the other hand, conditions (1) and (2)
are not satisfied.

Corollary 4.5.8. Let L/K be the maximal tamely ramified extension of K.
Then, every G-equivariant automorphism of the monoid O.L is of the form a 7→
ϕ0(a)a, where ϕ0(a) is a principal unit. In other words, we have the equality

AutG(O.L) = Aut0
G(O.L)

Proof. The proof is analogous to the proof of the previous corollary. Let ϕ be a
G-equivariant automorphism of the monoid O.L. For every prime number l 6= p

all the lth roots of a uniformizer πK of K belong to L, hence by Lemma 4.5.3
we see that ϕ acts trivially on prime to p roots of unity. Take any x ∈ O.L,
hence x ∈ O.M for some finite extension M/K. Then, using Lemma 4.5.4, we
have ϕ0(x) ∈ ⋂l 6=p(O×M)l = UM .

Remark 4.5.9. Let L/K be as in Corollary 4.5.8. Observe that the conditions
(1) and (2) from Corollary 4.4.18 are trivially satisfied. On the other hand, we
easily see using Proposition 4.4.22 that the condition (3) is not satisfied, i.e.,
there exist nonstandard automorphisms of UL.

Remark 4.5.10. We have provided a few examples of Galois field extension
L/K such that the group AutG(O.L) is nontrivial. On the other hand, we
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gave only one example for which the group AutG(O.L) is trivial, namely when
L = Kalg. Therefore, one may pose the following question: Does there exist a
Galois field extension L/K which is not algebraically closed such that the group
AutG(O.L) is trivial? The author’s attempts to answer this question provided
another motivation for developing the results contained in this chapter.

4.6 Surjectivity of the restriction

In this section we briefly discuss certain results concerning the image of the
restriction map

Aut(Gy O.L)→ Aut(G). (4.7)

As we have already mentioned, it is the existence of outer automorphisms of G
that makes this problem nontrivial.

We start again with the local field K, a finite extension of Qp. We are
going to define a tower of field extensions Kn of K, for every natural number
n ∈ N. First, let K0 = K and then for every n ≥ 1 we take Kn = Kab

n−1 to
be the maximal abelian extension of Kn−1. Then, Kn/K is also a Galois field
extension, denote its Galois group by Gn. We have surjective maps Gn+1 � Gn

and the kernel of this map is a characteristic subgroup of Gn+1. In particular,
we have a natural homomorphism Aut(Gn+1)→ Aut(Gn).

We now consider the sequence of Galois monoids Gn y O.Kn as well as
their “shifted” versions Gn+1 y O.Kn . Again, using the fact that the quotient
Gn+1 � Gn is characteristic, we obtain natural maps

Aut(Gn+1 y O.Kn+1)→ Aut(Gn+1 y O.Kn)→ Aut(Gn y O.Kn).

Together with the restriction map (4.7) we obtain the following commutative
diagram

Aut(Gn+1 y O.Kn+1) Aut(Gn+1)

Aut(Gn+1 y O.Kn) Aut(Gn+1)

Aut(Gn y O.Kn) Aut(Gn)

αn+1

γn+1

βn+1

αn

for every n ≥ 1, where various restriction maps are denoted by αn, βn and γn.

Proposition 4.6.1. The map βn is surjective for every n ≥ 1. Moreover, for
n ≥ 2, we have the equality

ker(αn) = ker(γn).
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Proof. Observe first that starting from the topological group Gn, for some n ≥
1, we may reconstruct group theoretically the sequence of quotients

Gn � Gn−1 � . . .� G0.

Indeed, denote Hs = ker(Gn � Gs) for 0 ≤ s ≤ n− 1, thus have a filtration

Hn−1 ⊂ Hn−2 ⊂ . . . ⊂ H0.

Then, it is easy to see that H1 = ker(Gn � Gab
n ). Moreover, we have Hi+1 =

ker(Hi � Hab
i ), which determines all quotients Gn � Gi for i ≤ n.

We are going to use similar arguments as in the proof of Proposition 1.3.1.
Let H be an open subgroup of Gn containing Hn−1 and consider its preimage
HK under the surjection GK � Gn

HK GK

H Gn

It follows immediately from definitions that the surjection HK � H induces an
isomorphism Hab

K
∼= Hab. Denote by LH/K the field extension corresponding

to the open subgroup H of GK . Then, by applying the argument used in the
proof of Proposition 1.3.1, we may reconstruct the ramification index e(LH/K)
of this field extension. Therefore, by taking intersection over all open sub-
groups H corresponding to unramified field extensions, together with the fact
that Kur ⊂ Kab, we may determine the inertia subgroup In of the group Gn.
Moreover, by considering p′-torsion of Hab for all open subgroups H as above
we may determine the p′-cyclotomic character Gn → Ẑp′ , which consequently
determines uniquely the Frobenius element in the quotient Gn/In. Thus, we
reconstruct the natural surjection Gm � Ẑ.

We may apply the same construction to any open subgroup H ⊂ Gm which
contains the closed subgroup Hn−1, hence we reconstruct surjections H �

Hab � Ẑ. Then, by taking preimage of the Frobenius element 1 ∈ Ẑ under the
map Hab � Ẑ we reconstruct the monoid O.LH equipped with its natural Gn-
action. Finally, we consider the colimit of modules O.H under the transfer map
for all open subgroup H containng the closed subgroup Hn−1. This produces a
Gn monoidO.Kn−1(Gn), which is isomorphic to the Gn-monoidO.Kn−1 . Since this
construction is functorial, any automorphism of Gn induces an automorphism
of O.Kn−1(Gn) compatible with the Gn-action. This proves the surjectivity of
the map βn.

Now we are going to prove the equality of kernels of αn and γn, for n ≥ 2.
Only the inclusion ker(αn) ⊂ ker(γn) is nontrivial. Let ϕ ∈ ker(αn), in other
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words ϕ is aGn-equivariant automorphism of the monoidO.Kn . We need to show
that the restriction of ϕ to the monoid O.Kn−1 is the identity homomorphism.
From the assumption we have K1 ⊂ Kn−1, hence the Kn−1 contains all roots
of unity. Therefore, for any x ∈ Kn−1, the field Kn contains all roots of x.
Thus, we may apply Lemma 4.5.3 to obtain that ϕ is the identity on the set
of roots of unity. Finally, using Lemma 4.5.4 we see that ϕ is trivial on the
monoid O.Kn−1 . Indeed, if x ∈M for some finite extension M/K, then ϕ0(x) ∈⋂
n∈N(O×M)n = {1}.

Corollary 4.6.2. Let ϕn be an automorphism of Gn. Suppose that ϕn lifts
to an automorphism of Gn+1. Then ϕn lifts to an automorphism of the pair
Gn y O.Kn.

Proof. It follows from the surjectivity of the map βn+1.
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