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Abstract 

Both the establishment of neuronal polarity and axonal growth are critical 

steps in the development of the nervous system, allowing neurons to fulfil 

their functional role, transmitting and receiving electrical signals. The local 

translation of mRNAs in the axon provides fine regulation of protein 

expression, and is now known to participate in axon development, 

homeostasis and degeneration. In this context, microRNAs play a 

fundamental role in the spatiotemporal regulation of axonal translation and, 

by doing so, can regulate almost every aspect nervous system development, 

physiology and disease.  

This thesis focuses on elucidating the mechanisms by which local protein 

translation in the axon can regulates axon development and survival. I show 

how axonal protein synthesis contributes in supplying the needs of the axon 

and maintaining its homeostasis. Repression of protein translation restricted 

to the axonal compartment of microfluidic chambers triggers axon 

degeneration in mouse sensory neurons. Moreover, I identified four 

microRNAs as potential candidate regulators of axon degeneration pathways. 

I then investigated the role of a single microRNA, miR-26a, in early stage 

primary cortical neuron development. I show that miR-26a is highly expressed 

in neuronal cultures and regulates both neuronal polarity and axon growth. 

Specifically, inhibition of miR-26a reduces the number of polarised neurons, 

whilst its over-expression produces the opposite phenotype and increases the 

number of neurons with multiple axon-like processes via the targeting of 

GSK3β.  

Using compartmentalised microfluidic neuronal cultures, I also identified a 

local role for miR-26a in the axon, where the repression of local synthesis of 

GSK3β controls axon development and growth. Removal of this repression in 



 

 

the axon triggers local translation of GSK3β protein and subsequent transport 

to the soma, where it can impact axonal growth mechanism.  

These results demonstrate how the axonal miR-26a can regulate local protein 

translation in the axon to facilitate retrograde communication to the soma and 

amplify neuronal responses, in a mechanism that influences axon 

development.   
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Introduction 

Brain function relies on the formation of highly structured connections 

between neurons in the brain. By means of their dendrites, neurons gather and 

process signals coming from other neuronal cells and they re-transmit the 

resulting output through the axon to their post-synaptic targets. However, 

what sounds like a relatively simple process, turns out to be an exquisitely 

complex mechanism, given that the human brain consists of about 80 billion 

neurons, an almost equal number of non-neuronal glial cells, and the neuronal 

networks comprising about 100 trillion connections (Azevedo et al., 2009).  

Moreover, the huge diversity of neuronal cell types only adds a further layer 

of complexity that also reflects the impressive computational properties of the 

mammalian nervous system. How can each one of them send its axon to the 

proper target cell and how neurons connect with each other to establish 

functional circuitry? More than a century ago, Santiago Ramón y Cajal and 

colleagues tried to answer this question and mapped with astonishing details 

the complexity of neuronal networks [Figure 1a] and modern developmental 

neuroscientists follow in Ramón y Cajal’s footsteps, trying to unravel the 

processes underlying the formation of neural circuits. 

b a 

Figure 1: Neuronal connections over the century. (a) Cajal’s sketch of the structure and 

connections of Ammon’s horn. (b) White matter fibre architecture of the brain. Measured 

from diffusion spectral imaging. The fibres are color-coded by direction: red = left-right, 

green = anterior-posterior, blue = up-down. From www.humanconnectomeproject.org 

http://www.humanconnectomeproject.org/
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Despite the remarkable improvement of imaging techniques [Figure 1b] and 

the striking advances in understanding the molecular basis of neural 

development, we are still marvelled by how complex and intricate those 

axonal projections and the brain’s connectivity can be. These advances have 

converged to our current understanding of neuronal connectivity and we 

know now that the precise construction of neural circuits requires orderly 

transition of sequential events that ranges from the establishment of the axon-

dendrite polarity, axon outgrowth, pathfinding, branching, to synaptogenesis. 

Understanding how those connections are made and eventually how they can 

be lost in neuron degeneration is therefore essential to understand the 

workings of the brain, as well as to develop efficient therapeutic strategies.  

 

1.1 Neuronal polarisation and axon specification 

1.1.1 Neuronal polarity in vivo 

Neurons are undoubtfully the most complex and specialised cells within our 

body. As said above, with their long axon and dendrites, they can form an 

intricate network with hundreds of millions of connections known as 

synapses. After all, the whole mammalian neocortex is in turn an exquisitely  

complex, highly organised, six-layered structure that contains hundreds of 

different neuronal cell types and a diverse range of glia (Ramon y Cajal, 1995).  

In fact, heterogenous populations of projection neurons are located in specific 

cortical layers and areas, have unique morphological features, express a 

plethora of transcription factors, and ultimately perform different functions 

(Molyneaux et al., 2007).  

This complexity and diversity makes any classification scheme particularly 

challenging, and the most accurate system should probably incorporate a 

combination of morphology, electrophysiological properties and patterns of 
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gene expression (Migliore and Shepherd, 2005). However, the most basic way 

to classify projection neurons is according to their connectivity and projection 

patterns, with three major classes falling under this classification: associative, 

commissural and corticofugal. Associative projection neurons comprise those 

neurons that extend axonal projections within a single cerebral hemisphere, 

connecting local areas or proximal gyri. Commissural projection neurons 

instead, are primarily located in layers II/III, V and VI and they extend their 

axons from one hemisphere to neurons in the contralateral hemisphere. Then, 

the axons can extend projections either through the corpus callosum, the major 

commissural connection between the hemispheres, or through the anterior or 

posterior commissures. Finally, corticofugal projection neurons extend axonal 

projections ‘away’ from the cortex. These include sub-cerebral projection 

neurons, which are primarily located in deep-layer V and extend axons to the 

brainstem and spinal cord, and corticothalamic neurons, located in layer VI 

that project subcortically to different nuclei of the thalamus (Molyneaux et al., 

2007). Depending on layer location and type of projection, morphology of 

excitatory neurons can vary. However, many excitatory neurons resemble so-

called “pyramidal cells”. 

But how are these various projection neuron subtypes generated during 

corticogenesis? Although it’s now clear that neurons in the mammalian brain 

are not a homogenous entity, coming in different types and varying in their 

morphological and functional properties, they all have to break the symmetry, 

and to polarise into distinct functional domains, which are normally defined 

as the axon and the somatodendritic compartment (Dotti et al., 1988). These 

domains are both extremely important for the neuronal functionality but the 

mechanisms underlying this polarisation have only started to be elucidated in 

the last 30 years (Esch et al., 1999). Nowadays, it is known that behind neuronal 

polarisation there is a coordinated reorganisation of cell-surface subdomains, 
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the cytoskeleton, cellular organelles and proteins, and is usually triggered by 

external cues (Nelson, 2003).   

During mouse brain development, excitatory neurons undergo extensive 

migration from the neocortical ventricular zone (VZ) radially towards the pia 

to their final locations in the cortical plate (CP) (Anderson et al., 2002; Gorski 

et al., 2002). On the other hand, inhibitory neurons, so-called interneurons, 

establish local connections and contribute to intracortical information 

processing by modulating excitability and thus shaping cortical output 

(Hatten, 2002; Marín and Rubenstein, 2003). Most of these interneurons are 

born from germinal zones outside the neocortex, such as the medial and 

caudal ganglionic eminences in the ventral telencephalon. However, smaller 

percentages of interneurons might be produced in the lateral ganglionic 

eminence and septal area and migrate tangentially to reach their final 

destination and cortex (Wonders and Anderson, 2006). Regardless of their 

origin, their overall migration pattern appears really similar: in general, 

immature neurons migrate tangentially over long distances toward the cortex 

(Tanaka et al., 2003). They enter the CP from the subventricular zone (SVZ), 

pass through it, and reach the marginal zone (MZ), where they further execute 

multidirectional tangential migration and become dispersed throughout the 

cortex, reaching their final positions postnatally (Tanaka et al., 2009). 

In the mammalian cortex, most of neurons are the excitatory type, and in this 

thesis, I will mostly discuss this population of cells.  

Excitatory neurons are produced by cortical neural stem cells (NSCs) which 

generate most of cell types in the cortex: excitatory neurons, astrocytes and 

oligodendrocytes (Gallo and Deneen, 2014; Gorski et al., 2002). During 

embryonic day E9.5-E11.5, NSCs undergo a series of symmetric divisions in 

order to self-renew and increase their number (Takahashi, 1995), but soon 

after, with the onset of neurogenesis, NSCs start producing another type of 
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apical stem cells called radial glia cells (RGCs). This population of cells in turn 

is capable of both self-renewal and production of postmitotic neurons. (Noctor 

et al., 2004). Cortical neurons are generated between E11-E17 in the VZ of the 

mouse neocortex and they have a long basal (radial) process attached to the 

basal membrane at the pial surface and a short apical process on the ventricle 

side. Upon cell cycle exit, the postmitotic neuron goes through a multipolar 

transition in the SVZ where multiple neurites emerge from the cell body until 

one major process is generated in the radial direction and becomes the leading 

process (LP). At this point, the neuron initiates radial translocation along a 

radial glial process and leaves behind a trailing process (TP), which elongates 

tangentially in the intermediate zone (IZ) (it can last until around postnatal 

day P7 in mouse corticofugal axons with distant targets like the spinal cord). 

The cell body continues to migrate toward the CP while the axon rapidly 

elongates whilst the leading process gives rise to the apical dendrite, which 

initiates local branching in the MZ in post-natal development [Figure 2] 

(Barnes and Polleux, 2009). Once they have reached the CP, the immature 

neurons leave the RGC process and start differentiating into neurons of their 

specific cortical layer. Hence, the neocortex is formed in an inside-out fashion, 

with early born neurons forming the deep layers while the later born neurons 

generating the upper layers. Inhibitory neurons also extend a single axon and 

multiple dendrites, but their morphologies are highly heterogenous: they 

include basket cells, chandelier cells, Martinotti cells, double bouquet cells, 

neurogliaform cells, and at least 10 others (Kubota, 2014). However, so far only 

a few reports have described how axons or dendrites are established in these 

neurons (Kawaguchi, 1993). 

Upon neurogenesis completion, a ‘gliogenic switch’ occurs and they begin 

differentiating into astrocytes, oligodendrocytes and ependymal cells. This 

transition is linked with a downregulation of the Golgi-derived apical 
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trafficking and VZ NSCs lose tight junctions while keeping intact the adherens 

junctions (Götz and Huttner, 2005). This is followed by the gradual expression 

in the mouse of astroglial markers, such as glial fibrillary acidic protein 

(GFAP) (Malatesta et al., 2003). Although the mechanisms of the neurogenic 

to gliogenic phase transition are not clearly understood, numerous secreted 

signals such as Sonic hedgehog (Shh), fibroblast growth factors (FGFs), Wnts, 

Notch, bone morphogenetic proteins (BMPs) and cytokines act together to 

spatiotemporally control cell fate, leading to the appearance of specific 

domains that selectively generate either astrocytes or oligodendrocytes 

(Zuchero and Barres, 2013).  

1 

2 

3 

4 

5 

E11 E12 E13 E17 

Figure 2: Polarisation of cortical neurons in vivo. Adapted from Barnes et al., 2009. 

Neurons generate from radial glial cells (grey) between E11 and E17 in the ventricular 

zone (VZ) of the mouse neocortex. Upon cell cycle exit through asymmetric cell division 

(1), the postmitotic neuron (blue) goes through a multipolar transition in the 

subventricular zone (SVZ) where multiple neurites emerge rapidly from the cell body (2) 

before one major process forms in the radial direction and becomes the leading process 

(3, LP). At this point, the neuron initiates radial translocation along a radial glial process 

and leaves behind a trailing process (4, TP), which elongates tangentially in the 

intermediate zone (IZ) (purple). The cell body continues to translocate toward the cortical 

plate (CP) whilst the axon rapidly elongates and the leading process gives rise to the 

apical dendrite (5, green) which initiates local branching in the marginal zone (MZ). 
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Conventionally, cultures of dissociated hippocampal and cortical neurons 

represent a valuable model to study the cell biology and molecular 

mechanisms behind neuronal polarity in vitro (Arimura and Kaibuchi, 2007). 

Experiments involving this type of approach have demonstrated that isolated 

neurons are still capable of adopting spatially and functionally distinct axonal 

and dendritic domains (Dotti et al., 1988) despite being outside their three-

dimensional environment. However, it should be noted that most neurons in 

culture are post-mitotic neurons upon dissociation and therefore, the neuronal 

polarisation that we can observe in this in vitro model corresponds to a ‘re-

polarisation’ of previously polarised neurons in vivo. Moreover, 

morphological changes seen in immature neurons in different brain areas are 

not necessarily identical in vivo and in vitro. The axon-dendrite axis emergence 

differs deeply in each type of neuron. For example, the Purkinje cells in the 

cerebellum, similarly to pyramidal cells in the neocortex or hippocampus, are 

produced near the VZ, extend an axon without any minor processes towards 

the basal surface, and then migrate toward pre-determined positions 

following the leading processes that enwrap the glial fibres (Solecki et al., 

2006). At the same time, young cerebellar granule cells migrate along the pia 

matter, and then form axons bilaterally and migrate towards the inner layer. 

In both Purkinje cells and cerebellar granule cells, nascent dendrites develop 

at a later stage (Solecki et al., 2006). In both mouse and zebrafish retinal 

ganglion cells and bipolar cells, post-mitotic neurons directly inherit the 

intrinsic apico-basal polarity of progenitors which is transformed into axon-

dendrite polarity upon cell cycle exit (Zolessi et al., 2006). In fact, shortly after 

their terminal division, axons begin to extend from the  basal process as the 

cell body migrates towards the basal lamina, whereas dendrite formation 

happens at opposite pole of the cell body, by transforming the apical process 

into early dendritic structures (Randlett et al., 2011b; Zolessi et al., 2006).  
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The vertebrate retina is indeed a valuable model to study neuronal 

polarisation in vivo. Being an outpocketing of the CNS on the surface of the 

embryo, the retina provides a system that can be easily accessed by 

experimental techniques and high-resolution in embryo microscopy.  

Retinal neurons are generated by neuroepithelial progenitor cells at the apical 

surface of the neuroepithelium and can differentiate into one of the five 

neuronal cell types. Photoreceptors reside in the apical surface of the retina, 

with light sensitive outer segments pointing apically, and extend axons to 

form synapses onto bipolar cells, which have their dendrites pointing apically 

and have axons basally. Retinal ganglion cells establish synapses with BCs and 

extend axons along the basal surface of the retina, which collect at the optic 

disk and leave the eye to find partner neurons in the optic tectum. These three 

cell types form the excitatory pathway of the retina, whereas amacrine cells  

and horizontal cells, form the inhibitory retinal pathway and modulate the 

visual information that flows through the excitatory pathways (Randlett et al., 

2011a).  

Considering the plethora of polarised morphologies and the different modes 

of neuronal migration in every organism, it is reasonable that cell-type-specific 

components play a crucial part. Therefore, at present, it is difficult to explain 

every type of neuronal polarization by components and pathways identified 

from studies of hippocampal cultures in vitro. 

Nevertheless, one of the greatest advantages of this approach is to be in a 

controlled and simpler environment than the in vivo situation. Very few 

extracellular signals are present in dissociated cell cultures and the neurons 

break symmetry randomly, allowing the identification of several intracellular 

signalling pathways important for the polarisation of the axon/dendrite axe in 

vitro (Arimura and Kaibuchi, 2007), some of which will be discussed in more 

detail below. 
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1.1.2 Neuronal polarity in vitro 

In this in vitro system and only a few hours after plating, neurons first extend 

several immature neurites during what is called stages 1 and 2 [Figure 3]. Half 

a day after plating starts a phase of asymmetric growth (stage 3) during which 

one of the neurites begins to extend rapidly, becoming longer than any 

neurites until it differentiates into an axon (Jacobson et al., 2006; Ruthel and 

Hollenbeck, 2000). Meanwhile, all the remaining processes continue to 

undergo a series of mechanical stretching between growth and retraction 

cycles for up to a week, during which their net length is maintained, and they 

become mature dendrites (stage 4). During this process, dendrites become 

thicker and shorter than the axon and begin to establish dendritic components 

and to construct premature dendritic spines (stage 5) (Banker, 2018; Dotti et al., 

1988). 

Figure 3: Polarisation of cortical neurons in vitro. In dissociated cultures, postmitotic cortical 

neurons display specific transitions as described for hippocampal neurons by Dotti et al. (1988). 

At stage 1, immature neurons possess intense lamellipodial and filopodial protrusive activity, 

which culminates to the emergence of multiple immature neurites (stage 2). Stage 3 represents 

a critical step when neuronal symmetry breaks and a single neurite starts growing faster to 

become the axon, whilst the other neurites acquire dendritic identity. Stage 4 is characterised 

by rapid axon and dendritic outgrowth. Finally, stage 5 neurons are terminally differentiated 

pyramidal neurons harbouring dendritic spines. 
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How a single axon is specified among equally potential neurites is still an area 

of active investigation (Takano et al., 2019). It has been suggested that the 

symmetry breaking can only be achieved by generating a bi-directional 

feedback loop between both processes (Andersen and Bi, 2000). In this model, 

the neurites extension is driven by four positive forces: higher intracellular 

vesicular transport (Bradke and Dotti, 1997; Futerman and Banker, 1996), an 

increase in the dynamics of actin filaments (Bradke and Dotti, 1999), the 

enhancement of microtubule formation (Baas, 2004) and activation of 

signalling molecules (such as phosphatidyl inositol 3-kinase (PI3K) and Rho 

GTPase) (Apenstrom, 1999; Ueyama, 2019). These four forces create a growth-

promoting-positive-regulation, which is counteracted by signalling molecules 

such as GTPase-activating proteins and phosphatases that, by inducing 

microtubule catastrophe, decreasing actin dynamics and the amount of 

plasma membrane (Shelly et al., 2010), generate in turn a negative regulation. 

Before polarisation, therefore, positive and negative signals seem to be 

perfectly balanced: when this balance is broken by a positive cue, such as the 

accumulation in the growth cone of a growth-promoting protein, the 

activation of a continuous self-activation system (positive feedback loop) is 

triggered (Andersen and Bi, 2000; Goslin and Bank, 1989) and a single neurite 

elongates to become an axon. Concurrently, this positive feedback loop system 

generates a strong negative feedback signals that prevent other neurites from 

forming a second axon (Andersen and Bi, 2000; Takano et al., 2017).  

What exactly makes the axon so different from the somatodendritic domain at 

this stage of development? Dendrites and the axon are compartments with 

clearly defined borders from both a structural and a molecular point of view. 

The cytoskeleton underlying these domains is composed of microtubules, 

actin filaments, and intermediate filaments (also called neurofilaments) along 

with their associated binding proteins. Microtubules in turn are composed of 
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α- and β-tubulin subunits that polymerise to form a long filament by the 

means of the addition of tubulin subunits to only one side of the growing 

filament called the plus end, while on the opposite side depolymerisation 

occurs. However, the cytoskeleton that forms the backbone of the developing 

axon has a unique protein signature. 

It was discovered more than thirty years ago that the axon of a neuron contains 

a very uniform distribution of microtubules with the plus ends all facing away 

from the cell body (Heidemann et al., 1981). Whereas this observation was 

confirmed through the years in many neuron cell types, it was also determined 

that dendrites are characterised by rather complex array of microtubule 

orientations, which differs from the axonal microtubule orientation with their 

plus end pointing outward (Baas, 2004; Kapitein and Hoogenraad, 2011; Rao 

and Baas, 2018; Yau et al., 2016). In fact, current research shows that proximal 

dendrites are mainly composed of minus-end out microtubules, whilst more 

distal dendrites shift from an equal distribution of minus-end out and plus-

end out microtubules to mainly plus-end out microtubules (Ori-McKenney et 

al., 2012; Park and Roll-Mecak, 2018; Stone et al., 2007).  

Another hallmark that discriminates the axonal compartment from the 

somatodendritic compartment is the composition in microtubule-associated 

proteins (MAPs), and which enrich microtubules to regulate their bundling, 

dynamic properties and stability (Hirokawa et al., 2010). Indeed, microtubules 

in the axon are associated with Tau and Microtubule-associated protein 1B 

(MAP1B), whereas microtubules in the dendrites are labelled by proteins of 

the MAP2a-c family (Avila et al., 1994).  

The actin polymerisation into actin filaments (F-actin) also plays an important 

role in characterising the axonal domain. Several groups have shown that the 

disruption of actin polymerisation allows dendritic proteins to inaccurately 

enter the axonal domain (Mellman et al., 1999; Song et al., 2009). One possible 
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explanation is that a dense F-actin meshwork creates a cytoplasmic diffusion 

barrier shortly after polarisation, which partially separates the axonal 

compartment from the rest of the cell. Two recent works showed via high 

resolution imaging techniques that the axon has indeed a unique F-actin 

network that has not been found in dendrites (Watanabe et al., 2012; Xu et al., 

2013), formation of which appears to directly precede the formation of the 

axon initial segment (AIS; Song et al., 2009). Live-imaging experiments have 

also demonstrated that vesicles carrying dendritic proteins enter both axons 

and dendrites with a similar rate. However, once they have reached the AIS, 

almost all vesicles carrying dendritic proteins halt, whilst others reverse 

direction, in an actin- and Myosin-Va (involved in transport in the synaptic 

regions) dependent manner (Al-Bassam et al., 2012). In contrast, vesicles 

carrying axonal or non-specifically localised proteins move undisturbed 

through the AIS. These observations strongly suggest that this actin-

dependent barrier could be regulating the trafficking of proteins specifically 

to the axonal or somatodendritic membrane, allowing neurons to establish and 

maintain polarised compartments with distinct morphology and function. 

Notable, the knockdown of AnkyrinG, a key component of the AIS, causes 

axons to acquire molecular characteristics of dendrites (Hedstrom et al., 2008). 

Another vesicles-sorting mechanism came out from a recent study, in which a 

microtubule-associated septin (SEPT9), acts as membrane traffic regulator on 

the plus-end-out subsets of MT (Karasmanis et al., 2018). In fact, SEPT9 by 

localising specifically in dendrites, slows down and halts axonally destined 

vesicles of kinesin1/KIF5 whilst it mobilises and speeds up dendritic-destined 

kinesin-3/KIF1A vesicles during entry into dendrites, via the recognition of the 

lysine-rich patch in the L12 loop present in the motor domain of kinesin-

3/KIF1A (Karasmanis et al., 2018). The role and function of some kinesins will 

be discussed in more detail below.  
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1.1.3 Extracellular signals and polarity 

As mentioned above, axon and dendrites in vivo develop within a defined 

temporal sequence and stereotyped growth directions in a three-dimensional 

environment. Thus, symmetry breaking in vivo is likely triggered by 

extracellular cues released into the surrounding extracellular matrix, that 

provide the compass for the polarity establishing intracellular events. 

In Caenorhabditis elegans, the axon guidance molecule cue UNC-6 (also known 

as netrin in mammals) is required not only for axon guidance (Bellon and 

Mann, 2018) but also for orienting initial polarised emergence of the 

hermaphrodite-specific motorneuron (HSN) axon (Adler et al., 2006). The 

secreted protein LIN-44/Wnt controls the polarisation of another C. elegans 

neuron, the mechanosensory posterior lateral microtubule neuron (PLM; 

Hilliard and Bargmann, 2006; Prasad and Clark, 2006). This type of neuron 

extends a long anterior process that forms a chemical synapse, and a shorter 

posterior process that does not form a synapse. In lin-44/wnt or lin-17/fz 

mutants, the anterior PLM process extends posteriorly to its cell body instead 

of anteriorly. WNT signalling cascades impair the activity of glycogen 

synthase kinase 3β (GSK3β) during planar polarisation which is the 

coordinated organisation of cells within the plane of a single-layered sheet of 

cells (He et al., 2018; Logan and Nusse, 2004). 

In mammals, the Transforming Growth Factor beta (TGF-β) released from the 

VZ, is the main diffusible cue that induces axon formation in developing 

cortical neurons (Yi et al., 2010). In fact, TGF-β receptors are enriched in the 

axons, and their elimination induces the formation of axon-less cortical 

neurons. Local application of TGF-β in vitro is sufficient to trigger axon 

specification and growth (Yi et al., 2010).  

Other diffusible cues that are involved in axon specification and growth are 

Neurotrophins, such as brain-derived neurotrophic factor (BDNF) and 
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neurotrophin 3 (NT3). In fact, knockout of the pan-neurotrophin receptor 

p75NTR leads to failure to initiate an axon in cortical neurons and during adult 

hippocampal neurogenesis, and expression of dominant-negative 

neurotrophin receptors TrkB and TrkC (tropomyosin receptor kinase B and C) 

disrupts the multipolar to bipolar transition (Nakamuta et al., 2011; Zuccaro et 

al., 2014). A repulsive guidance cue, semaphorin 3A, is also known to act as a 

dendritic chemoattractant agent and regulates the orientation of apical 

dendrites in cortical neurons (Whitford et al., 2002). 

The extracellular protein Reelin has been shown to be involved in polarising 

the movement of multipolar neurons towards the CP while they are migrating 

through the multipolar morphology zone (MMZ, comprising the SVZ and the 

lower part of the IZ; Jossin and Cooper, 2011). In this study, Reelin, which is 

known for its role in neuron lamination in the cortical plate (Jossin, 2004), 

activates Ras-related GTPase (Rap1) in multipolar neurons in the IZ. 

Activation of Rap1 regulates and increases the level of neural cadherin (NCad) 

on the surface which is needed to orient the migration of multipolar neurons 

toward the CP (Jossin and Cooper, 2011). More recently, another small 

GTPase, Rab 23 has been considered as important player in the radial 

migration of cortical neurons by influencing the expression of NCad during 

migration (Hor and Goh, 2018).  

Finally, ephrin guidance factors and their Eph receptors can also regulate the 

directionality of multipolar migration (Dimidschstein et al., 2013). Ephrins are 

cell-surface proteins with a pivotal role in axon guidance (Drescher, 2011) that 

trigger a forward signal when binding to Eph family receptors present on 

other cells, grouped into class A and class B based on their degree of sequence 

similarity and binding affinities, with ephrin-A binding to EphA receptors and 

ephrin-B binding to EphB receptors (Seiradake et al., 2016). It was first shown 

that the Ephrin- A/EphA forward signalling controls the lateral distribution of 
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neurons by promoting a wider tangential migration during the multipolar 

stage (Torii et al., 2009). Later, it was demonstrated that ephrin-B1 reverse 

signalling may have an opposite effect, restricting the tangential migration of 

multipolar neurons at the MMZ (Dimidschstein et al., 2013).  

 

1.1.4 Intracellular signalling and polarity 

Dissociated hippocampal and cortical neurons in vitro are still able to break 

the symmetry and to polarise even if they are “dragged” outside their 

physiological environment and in absence of extracellular cues, suggesting 

that axon specification is also an intrinsic cellular mechanism driven by cell-

autonomous signalling cascades. Over-expression and downregulation 

studies of candidate genes involved in polarity have unravelled over the years 

an intricate and complex array of signalling molecules that orchestrate the 

formation of the axonal domain (Takano et al., 2019). These molecules might 

act in distinct types of neurons at specific stages of development, but it is also 

possible that they form an “intricate” web that modulate neural development 

in a coordinated manner.  

 

PI3K-Akt and GSK3β.  

Activation of PI3K and the accumulation of its lipid product, 

phosphatidylinositol-3,4,5-trisphosphate (PIP3) at the tip of the new-born 

axon is considered a hallmark for the induction of neuronal polarisation 

(Ménager et al., 2004). Accordingly, inhibition of PI3K activity prevents axon 

specification (Ménager et al., 2004; Shi et al., 2003). Activation of PI3K–Akt (also 

known as protein kinase B) pathway phosphorylates GSK3β, a constitutively 

active kinase, on Serine 9, leading to the inactivation of the protein (Arimura 

and Kaibuchi, 2007; Eun-MI Hur and Zhou, 2010). As Akt localises to the tips 
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of the axons in hippocampal neurons, phosphorylated GSK3β is also restricted 

at the axon terminal (Jiang et al., 2005; Yoshimura et al., 2005) which explains 

why overexpression of constitutively active GSK3β impairs axon elongation. 

On the other hand, knockdown of GSK3β and the use of specific inhibitors or 

transfection of the constitutively active form of Akt cause the formation of 

multiple axons (Jiang et al., 2005; Yoshimura et al., 2006). Moreover, ectopic 

expression of Phosphatase and Tensin homolog (PTEN), a phosphatase that 

rescues PI3K activity, prevented axon specification, and this effect was 

counteracted by a GSK3 inhibitor (Jiang et al., 2005). Conversely, knocking 

down Pten induced the formation of neurons with multiple axons, which was 

prevented by expression of GSK3β-Ser9Ala, a mutant of GSK3β which is 

unresponsive to Akt (Jiang et al., 2005). GSK3β also phosphorylates Tau 

(Hanger et al., 1992; Mandelkow et al., 1992), MAP1B (Lucas et al., 1998) and 

Adenomatous Polyposis Coli  (APC; Zumbrunn et al., 2000). These three 

substrates, when unphosphorylated, have a microtubule stabilisation role, but 

this function is disrupted by GSK3β-mediated activity. (Mandelkow et al., 

1995; Zumbrunn et al., 2000). One study reported that hippocampal neurons 

derived from mice lacking both Tau and MAP1B show axon loss at stage 3 

(Takei et al., 2000). As microtubule stabilisation and protrusion into the actin 

network at the distal area of the growth cone generally promote axon 

elongation (Baas, 1999; Bradke and dotti, 1999; Dent and Gertler, 2003), GSK3β 

seems to have a central role as a negative regulator of neuronal polarisation 

but its function in nervous system development, will be discussed in more 

detail in Part 4 of this thesis [Figure 4].  

 

PI3K and RAP1B. 

Alongside the activation of Akt, PI3K also recruits RAS‑related protein 1B 

(RAP1B), a Ras superfamily GTPase that localises to the tips of the future axons 
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and activates cell division control protein 42 homologue (CDC42), which in 

turn recruits and activates the partitioning defective homologue 3 (PAR3) –

PAR6–atypical protein kinase C (aPKC) complex (Schwamborn and Püschel, 

2004). Over-expression of Rap1b leads to the formation of multiple axon-like 

neurites and the accumulation of the Par complex in each neurite. Inhibition 

of Rap1b expression by RNA interference (RNAi) causes the complete loss of 

axons (Lova et al., 2003). The loss of axons induced by Rap1b RNAi is partially 

counteracted by expressing an active form of Cdc42, whereas axonal loss in 

response to treatment with a PI3K inhibitor is rescued by the active form of 

RAP1B. So, RAP1B seems to function upstream of Cdc42 and the Par complex, 

and downstream of PI3K (Lova et al., 2003).  

 

PAR complex. 

The Par protein complex (PAR3–PAR6–aPKC), was identified for the first time 

in C. elegans for their roles in directing asymmetric cell division during early 

development (Cowan and Hyman, 2004). In pyramidal neurons and before 

polarisation, the Par complex is localised at the tips of all processes, but later 

they become selectively concentrated into the developing growth cone during 

the transition between stages 2 and 3 (Nishimura et al., 2004; Shi et al., 2003). 

Inhibition of aPKC activity prevents axon formation (Shi et al., 2003) whereas 

phosphorylated (active) aPKC can be seen at the tips of developing axons 

(Schwamborn and Püschel, 2004). Inhibition of PI3K impairs polarisation and 

cause an impaired localisation of both PAR3 and PAR6 (Shi et al., 2003), 

suggesting that the Par complex is acting downstream of PI3K in the 

regulation of neuronal polarity. Microtubule affinity‑regulating kinase 2 

(MARK2) has also been suggested to function downstream of the Par complex 

to control neuronal polarisation (Chen et al., 2006). Depletion of MARK2 by 

RNAi induces the formation of multiple axons in hippocampal neurons (Chen 
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et al., 2006), whereas its over-expression increases Tau phosphorylation and 

prevents axon formation. This effect can be rescued by over-expressing Par 

complex, as aPKC phosphorylates MARK2 on threonine 595 and inactivates 

its kinase activity (Suzuki et al., 2004).  

 

PI3K-Akt and the TSC-mTOR pathway 

Akt activation also induces an inhibitory phosphorylation of tuberous 

sclerosis 2 (TSC2), reducing the GTPase activating protein (GAP) activity of 

TSC2 towards the Ras homolog enriched in brain (Rheb) and consequently 

activating the mammalian target of rapamycin (mTOR) signalling. Although 

phosphorylation of TSC2 by Akt inhibits TSC1 and TSC2 activity (TSC1/2), 

phosphorylation of TSC2 by means of GSK3 has the opposite effect (Inoki et 

al., 2006). Thus, inhibition of GSK3 downstream of either PI3K or Wnt 

signalling would reduce GSK3‑dependent stimulatory phosphorylation of 

TSC2 and thereby increase Rheb‑GTP levels. This leads to the activation of 

mTOR‑mediated translation. Activation of mTOR signalling in the axon 

induces local translation of the GSK3 substrates collapsin response mediator 

protein 2 (CRMP2) and Tau (Morita and Sobuě, 2009).  
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Figure 4: Key signalling pathways in neuronal polarity. PI3K activation triggers a 

series of signalling events: Akt activation and GSK3β inhibition stabilise microtubules. 

Activation of RAP1B and cdc42 promotes the PAR complex assembly and inhibition 

of TSC1/2 induce the activation of mTOR signalling and local translation of CRMP2 

and Tau. The Wnt pathway may regulate polarity via Dvl by inhibiting GSK3.  
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1.1.5 Other polarity effectors 

Centrosomes. The position of centrosomes inside the cell body was suggested 

to play a role in axon formation by influencing where the future axon will 

eventually protrude. This was based on the observation that the centrosome 

consistently appeared to be repositioned to the base of the newly emerging 

axon during transition from a unipolar to bipolar morphology in granule cells 

(Lefcort, 2004; Zmuda and Rivas, 1998). However, other studies suggested that 

the positioning of the centrosome is not necessary for neuronal polarisation 

(Distel et al., 2010; Nguyen et al., 2011) and its localisation to the site of axon 

formation is not correlated to the emergence of the axon in retinal ganglion 

cells in zebrafish (Zolessi et al., 2006). Centrosome localisation is likely 

constrained by microtubule organisation within the cell, and therefore the 

centrosome position within the cell changes dynamically during different 

stages of polarisation (Sakakibara et al., 2014). Hence, the specific centrosome 

localisation may not be the cause for axon formation but rather a result and 

by-product of axon-inducing cues (Arimura and Kaibuchi, 2007). 

Actin waves. Actin waves are periodically occurring and move across the 

neurite shaft, being associated with protein transport and increased neurite 

outgrowth (Flynn et al., 2009; Toriyama et al., 2006; Winans et al., 2016). 

Importantly, the frequency of actin waves is higher in the future axon than in 

any other projections (Flynn et al., 2009). How is this preferential occurrence 

of actin waves in the future axon achieved? Waves are regulated by 

microtubule based transport (Winans et al., 2016) and wave frequency is 

reduced upon Kinesin 12 knockdown (Liu et al., 2010). Kinesin-mediated 

transport can be in turn regulated by microtubule stability (Hammond et al., 

2010). Therefore, microtubule stability could ultimately regulate actin wave 

frequency. This would be the perfect link between actin wave frequency and 

neuronal polarisation, since microtubule stability is increased in the nascent 
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axon (Witte et al., 2008). Moreover, microtubule-based transport produces the 

accumulation of several polarity effectors to the growth cone during axon 

specification.  

Kinesins and cargoes. As it will also be described in more detail in the relative 

section below (1.3), in order to establish and maintain polarity, neurons also 

employ active transport driven by cytoskeletal motor proteins, which allows 

cargo sorting between axons and dendrites. These motors can move in a 

specific direction over either microtubules (kinesins, dynein) or actin filaments 

(myosins) (Hirokawa et al., 2010).  In fact, Kinesin 1 is a conventional member 

of the kinesin family and a microtubule plus-end-directed motor (Vale, 2003), 

which is characterised by two kinesin heavy chains (KIF5; also known as KHC) 

and two kinesin light chains (KLC; Bloom et al., 1988). KIF5 contains the motor 

domain and KLC contains the binding domain for the cargo and when one 

neurite begins to adopt the fate of an axon, KIF5 strictly concentrates in the 

growing axon  (Nakata and Hirokawa, 2003). It has been shown that Kinesin 

1 can associate with vesicles directly, or indirectly by interacting with various 

adaptor proteins, which determine selective transport of cargos in neurons 

and, among these, c-Jun N-terminal protein kinase (JNK)-interacting protein 1 

(JIP1), a scaffold protein for JNK signalling pathways (Whitmarsh, 2006), 

mediates axonal transport of several cargos (Koushika, 2007). Interestingly, 

JIP1 specifically localise to a single neurite and, after axonal specification, it 

accumulates in the emerging axon (Dajas-Bailador et al., 2008). It can also 

regulate axonal growth dependent upon its binding to kinesin-1 and c-Abl 

tyrosine kinase (Dajas-Bailador et al., 2008), a well-established regulator of 

cytoskeletal dynamics (Lanier and Gertler, 2000). Consistent with the fact that 

KIF5 motor domain preferentially localises to axonal tips rather than 

dendrites, several key molecules that are involved in axon formation 

accumulate into the distal parts or tips of axons. Among them, the transport 
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of amyloid precursor protein (APP) has been extensively investigated as it 

may be involved in the progression of Alzheimer disease (AD) (Gunawardena 

and Goldstein, 2001; Kamal et al., 2000). KIF5 can interact with APP vesicles 

through JIP1 (Muresan and Muresan, 2005). KIF5 also transports TrkB vesicles 

through the CRMP2-Slc1 complex, loading and unloading of which is 

regulated by Rab27 (member of the Rab subfamily of GTPases) and GSK3β 

(Arimura et al., 2009). The CRMP2–kinesin 1 complex is conserved from 

worms to mammals, and regulates the transport of tubulin heterodimers to the 

distal part of the growing axon to influence the organisation of microtubules 

and actin filaments (Kimura et al., 2005). As described above, during axonal 

specification, PIP3 accumulates at one neurite tip, recruits Akt and specifies 

one neurite to become an axon. It has been reported that PIP3 is transported 

by the guanylate kinase-associated kinesin (GAKIN) to the prospective axon 

(Horiguchi et al., 2006), whilst another important neuronal polarity regulators, 

the PAR complex, is instead transported towards the axon by kinesin 2 (which 

comprises KIF3 and kinesin superfamily-associated protein 3 -KAP3-), 

through the direct binding of PAR3 to KAP3 (Nishimura et al., 2004). More 

recently, another member of the kinesin family, KIFC1, a molecular motor well 

characterised in mitosis, has been reported to deeply influence on the 

organisation of microtubules in a number of different functional contexts 

(Muralidharan and Baas, 2019). Specifically, experimental manipulations of 

KIFC1, which had never been studied in the nervous system, elicit 

morphological changes in the axon as well as changes in the organisation, 

distribution and polarity orientation of its microtubules (Muralidharan and 

Baas, 2019). Taken together, these studies reinforce the important role of 

kinesin family in establishing neuronal polarity by recruiting molecules into a 

single neurite. 
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1.2 Axon growth and growth cone 

After axon specification, growth represents another important process of axon 

development, and is deeply linked to axon guidance towards post-synaptic 

targets (Stoeckli, 2018). Axons grow at their tips by means of the growth cone, 

a highly dynamic structure capable of sensing and integrating a plethora of 

signals that, by converging on cytoskeletal dynamics, eventually lead the 

axons to their targets (Lowery and Vactor, 2009). 

The growth cone structure is comprised of a central domain (C-domain) 

enriched of microtubule bundles entering from the axon shaft, a peripheral 

domain (P-domain) dominated by dynamic actin structures such as 

lamellipodia and filopodia, and lastly an intermediary transition zone (T-zone) 

where myosin II produces condensed actomyosin structures called actin arcs, 

by generating contractions of F-actin, (Dent and Gertler, 2003; Schaefer et al., 

2002) [Figure 5].  

Growth cones detect extracellular signals through a rod-like, actin-rich, highly 

dynamic membrane-limited structures called filopodia. Their surface 

membranes are enriched of receptors for the molecules that serve as 

directional cues for the axon. When filopodia sense environmental signals, 

they contract and pull the growth cone forward. At this point, actin filaments 

polymerise at the leading edge of a filopodium, disassemble at the trailing 

edge, and interact with myosin along the way. Then, the net force generated 

by both actin polymerisation and the retrograde movement of actin, pushes 

the filopodium forward. Meanwhile, exocytosis adds membrane to the leading 

edge of the filopodium and provides new adhesion receptors to maintain the 

traction. The combined action of these motors creates an actin depleted space 

that is filled by the advance of microtubules coming from the C-domain, 

creating a new section of axonal shaft (Mitchison and Kirschner, 1988).  
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Coordinated actin and microtubule dynamics seem to be fundamental for the 

proper functioning of the growth cone. However, it has been shown that actin-

disrupting agents have limited consequences on axon elongation and are 

rather involved in axon guidance in vitro (Marsh and Letourneau, 1984; Ruthel 

and Hollenbeck, 2000) and in vivo (Bentley and Toroian-Raymond, 1986) Local 

disruption of actin organisation in the growth cone of minor neurites allows 

them to turn into axons (Bradke and dotti, 1999; Kunda et al., 2001), indicating 

that the dense actin network present at the periphery of immature neurites 

may prevent microtubule protrusion and elongation necessary for axon 

specification. It is still unclear how the force is generated to drive axon growth. 

Several studies have provided evidence in support of the traction forces 

described above (Athamneh et al., 2017; Bard et al., 2008; Buck et al., 2017; 

Garcia et al., 2015; Toriyama et al., 2013). Indeed, in hippocampal neurons, 

Figure 5: The structure of the growth cone. Growth cones are comprised of a 

central domain (C-domain) enriched of microtubule bundles entering from the 

axon shaft, a peripheral domain (P-domain) dominated by dynamic actin 

structures such as lamellipodia and filopodia, and lastly an intermediary 

transition zone (T-zone) where myosin II produces condensed actomyosin 

structures  called actin arcs. 
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growth does not correlate with traction (Koch et al., 2012) and established 

neurites can still grow without filopodia and lamellipodia (Bentley and 

Toroian-Raymond, 1986; Bradke and dotti, 1999; Marsh and Letourneau, 

1984), structures necessary for actin-mediated force generation. It remains 

possible that microtubules are actively contributing during neurite growth 

and so an axon-originating force (Lu et al., 2013; Recho et al., 2016; Roossien et 

al., 2013). Axonal transport also plays a fundamental role on axon elongation 

(Dent and Gertler, 2003; Letourneau et al., 1987; Suter and Miller, 2011). In fact, 

cytoskeletal elements are transported along the axon through slow axonal 

transport (Xia et al., 2003; Yabe et al., 1999), but it is still not clear whether 

tubulin and other cytoskeletal components are transported along the axon as 

monomers and/ or as polymers (Roy et al., 2000; Terada et al., 2000; Wang et al., 

2000). Either way, disruption of the slow transport of tubulin impairs the 

pushing force resulting from microtubule polymerisation, affecting axon 

elongation (Suter and Miller, 2011). Therefore, it is not surprising that axon 

growth is affected in vitro and in vivo by disruption of plus-end microtubule-

binding proteins such as APC (Chen et al., 2011; Shi et al., 2004; Yokota et al., 

2009; Zhou et al., 2004) or End binding protein 1 (EB1) (Jiménez-Mateos et al., 

2005; Zhou et al., 2004) and microtubule-associated proteins such as MAP1B 

(Dajas-Bailador et al., 2012; Takei et al., 2000; Tortosa et al., 2013; Villarroel-

Campos and Gonzalez-Billault, 2014). 

 

1.2.1 Intracellular signals and axon elongation 

Proper pathfinding can occur only if both the motor component and sensory 

activity of growth cones are properly linked. It is then crucial that the 

recognition proteins on the filopodia are signal-inducing receptors capable of 

affecting the organisation of the cytoskeleton, and in this way modulate both 
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direction and movement of the growth cone, and not exclusively by means of 

binding moieties that facilitate adhesion.  

It is reasonable to suppose that many of the molecules associated with axon 

specification are also involved in axon growth and elongation toward 

postsynaptic targets. In fact, the aforementioned GSK3β plays again a key role 

in this cellular process, since several of its substrates have the potential to 

regulate tubulin polymerisation and microtubule stability (Hur et al., 2011; 

Kim et al., 2006; Zhou and Snider, 2005), a key issue for efficient axon 

elongation. These include the microtubule plus-end binding proteins APC and 

the Cytoplasmic Linker Associated Protein 2 (CLASP2), CRMP-2, which is 

localised to axon tips and may play a role in cargo delivery and tubulin 

polymerisation, and both MAP1B and Tau (Kim et al.,  2006; Yoshimura et al., 

2005; Zhou and Snider, 2006). CLASPs are homologous proteins that were 

believed to possess overlapping activity in neurons (Hur et al., 2011). 

However, a recent work reported that they may have different functions, as 

CLASP1 stimulates neurite outgrowth and CLASP2 acts as a break (Sayas et 

al., 2019). Specifically, they differ in their accumulation at MT plus-ends and 

display different sensitivity to GSK3 activity, and hence regulation (Sayas et 

al., 2019). Pharmacological inhibition of GSK3 specifically affects CLASP2 but 

not CLASP1 phosphorylation (Sayas et al., 2019). Indeed, many studies 

indicate that local inhibition of GSK3 signalling is essential for promoting 

microtubule polymerisation at the level of the growth cone (Jiang et al., 2005; 

Yoshimura et al., 2005; Zhou et al., 2004). However, other studies have shown 

how inhibition of GSK3 can block axon growth (Garrido et al., 2007; Kim et al., 

2006; Shi et al., 2004). To reconcile these contradictory results, Kim et al. (2006) 

hypothesised a model in which inhibition of GSK3 can both promote and 

inhibit axon growth at the same time, depending on the substrates involved. 

In fact, another interesting aspect of GSK3s is that before being 
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phosphorylated by this enzyme, some of the substrates need to be first 

phosphorylated by a different kinase through a process called priming, whilst 

others can be directly activated by GSK3s. During axon elongation, GSK3 

activity in the growth cone seems to be accurately controlled, so that the kinase 

activity towards primed substrates is blocked whilst its activity towards 

unprimed substrates is preserved (Kim et al., 2006). In fact, inhibition of GSK3 

activity with regards to CRMP2 and APC, which are primed substrates, allows 

both molecules to bind and stabilise microtubules (Fukata et al., 2002; 

Yoshimura et al., 2005). By contrast, GSK3’s activity towards MAP1B, an 

unprimed substrate, is preserved in the growth cone (Kim et al., 2006). 

Phosphorylation of MAP1B maintains microtubules in a dynamic state, which 

is essential for axon growth (Dent and Gertler, 2003; Zhou and Snider, 2005). 

Consistently, phosphorylated MAP1B is enriched at the distal ends of growing 

axons (Trivedi, 2005). In this way, GSK3 can orchestrate several properties of 

microtubules to guarantee optimal microtubule assembly in axons. 

Abundant in vitro evidence depicted RAS and its downstream signalling 

RAF/MEK/ERK cascade as important players in the modulation of axon 

growth (Zhou and Snider, 2006). Several studies with the pharmacological 

inhibitors show strong inhibition of axon growth mediated by neurotrophins 

and other molecules acting via receptor tyrosine kinases (all reviewed in Zhou 

and Snider, 2006). Further, gene manipulation studies in vitro suggested that 

Ras, Raf, and ERK/MAPK possess axon growth promoting activity (Markus et 

al., 2002).  

Experimental findings have also depicted an important role JNK signalling, 

classically considered a degenerative signal (Brecht et al., 2005; Kuan et al., 

1999; Sabapathy et al., 1999), in the regulation of axonal outgrowth. In 

particular, deletion of a single isoform, JNK1, disrupts axon tract maintenance 

in vivo (Bjorkblom, 2005; Chang et al., 2003). Moreover, several studies suggest 
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this pathway is also important for axon elongation (Ciani and Salinas, 2007; 

Eminel et al., 2008; Xiao et al., 2006). JNKs are constitutively active within 

neurons and phosphorylate several cytoskeletal proteins that are in turn 

involved in axon growth, including MAP1B, MAP2, Tau, and the superior 

cervical ganglion 10  (SCG10) (Ciani and Salinas, 2007; Tararuk et al., 2006; 

Yamauchi et al., 2006). Axonal transport is modulated by JNK, and it has been 

proposed that JNK triggers the release of cargoes, such as tubulin, from kinesin 

complexes (Horiuchi et al., 2007; Stagi et al., 2006). It is thus clear that the 

repertoire of JNK substrates is well-suited to mediate many aspects of axon 

growth.  

Activation of mTORC1 signalling also plays a role in axon elongation (Park 

and He, 2008) and combining mTORC1 activation with dysregulation of other 

pathways including Stat3, B-raf, and c-Myc confer additional axon growth 

benefit over mTORC1 activation alone (Belin et al., 2015; O’Donovan et al., 

2014). More recently, deletion of TSC2, a negative regulator of mTORC1 

signalling, enhanced axon regeneration by upregulating expression of 

regeneration-associated transcription factors (RATFs) known to be both 

necessary and sufficient for promoting axon growth (Carlin et al., 2019).  

 

1.2.2 Transcription factors and axon growth 

Transcription is an important aspect of axon growth, targeting, and 

regeneration upon injury (Polleux et al., 2007). One elegant mechanism has 

been defined involving the anaphase promoting complex, which, along with 

its activator protein, Cdh1, promote degradation of the transcription factor 

SnoN in postmitotic neurons (Konishi et al., 2004; Stegmüller et al., 2006). SnoN 

is also regulated by the TGF-β/SMAD-2 axis (Stegmuller et al., 2008). 

Knockdown experiments in vivo show that a decrease of Cdh1 promote axon 

elongation of cerebellar granule cells and, on the other hand, suppression of 
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SnoN expression reduces axon growth. The scaffolding protein Cdc1 is an 

important target of SnoN, that controls JNK activity (Ikeuchi et al., 2009). It has 

been reported recently that activation of TGF-β/SMAD-2 signalling pathway 

inhibits neurite elongation of human induced pluripotent stem cell-derived 

neurons (Nakashima et al., 2018). Mechanistic-wise, activated Smads form a 

complex with transcriptional repressor TG-interacting factor (TGIF), and 

downregulate the expression of CRMP2 (Nakashima et al., 2018).  

Other transcriptions factors that have been documented to control axon 

elongation include CREB and NFAT transcription complexes (Graef et al., 

2003; Lonze et al., 2002). The role of the NFATc family is particularly effective 

in vivo. Indeed, in mice lacking 3 NFATc family members, extension of 

peripheral axon is almost completely impaired at early developmental stages 

(Graef et al., 2003; Lonze et al., 2002).  

More recently, an interesting study identified Sox11 from a screen of 

transcription factors that could activate genes involved in cytoskeletal 

remodelling and axon growth (Norsworthy et al., 2017). Remarkably, over-

expression of Sox11 killed adult α-retinal ganglion cells (RGCs), which 

preferentially regenerate after Pten deletion, whilst promoted regeneration of 

non α-RGCs, which are instead refractory to Pten deletion-induced 

regeneration (Norsworthy et al., 2017). In the same model, phosphorylation of 

STAT3 significantly promoted optic nerve axon regeneration after activation 

of NF-κB signalling pathway upon peripheral axotomy (Ma et al., 2019). In 

another work conducted almost in parallel, co-expression of STAT3 with 

KLF6, a member of the Kruppel-like factors (KLF) family and a known pro-

regenerative transcription factor (Qin et al., 2013; Z. Wang et al., 2017), 

synergistically promoted axon growth in vitro in central nervous system (CNS) 

neurons (Wang et al., 2018).  
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1.2.3 Axon pathfinding and guidance cues 

Several developmental processes, such as neuronal polarity, migration and 

axonal outgrowth, shape precise patterns of connections in the nervous 

system, but none is more important than the guidance of axons from their 

origin to appropriate targets. To reach their destinations and establish 

connections with synaptic partners, axons need in fact to grow long distances 

and avoid numerous targets along the way. To do so, axons receive along their 

way guidance signals which, by means of their growth cones, can be 

integrated and converted into instructions that steer the structure.  

As already described in previous sections of this thesis, growth-cone motility 

is deeply linked with the extension and retraction of filopodia along with the 

extension and retraction of lamellipodia between the filopodia. These latter 

have a central role in axon pathfinding, as they are the first structure of the 

growth cone to come into contact with guidance molecules and they are 

equipped with the molecular machinery to detect and respond to these signals 

(Gupton and Gertler, 2007). Filopodia react to guidance cues either by 

stabilising when they sense an attractive guidance cue, or by retracting when 

they encounter a repulsive cue. If this occurs differentially on one side of the 

growth cone, then the growth cone will steer towards the attractive cue or 

away from a repulsive guidance molecule. Such growth-cone turning is a key 

mechano-sensory event in axon pathfinding and occurs specifically at choice 

points. Thus, the growth cone relays the information conveyed by guidance 

molecules into changes in motility that result in steering manoeuvres and thus, 

a change of route during their travel towards post-synaptic targets (Kahn and 

Baas, 2016). 

Today, a large number of axon guidance cues and receptors have been 

identified and in general they can be subdivided into attractive and repulsive 

cues that act either over long distances or locally, in a contact-dependent 
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manner (de Ramon Francàs et al., 2017). A combination of both genetic and 

biochemical approaches has led to the identification of 4 well-characterised 

classes of axon guidance molecules and their receptors: Ephrins, Netrins, 

Semaphorins and Slits. 

Ephrins/Eph:  

Ephrins are cell surface-associated guidance cues that bind to Eph receptor 

tyrosine kinases in trans on opposing cells. During nervous system 

development, the Eph–ephrin signalling system can mediate several cellular 

responses including contact-mediated attraction or repulsion, adhesion or de-

adhesion, and migration. A peculiar feature of Eph-ephrin complexes consist 

on their ability to trigger bidirectional signals that can affect both the receptor-

expressing and ephrin-expressing cells (Pasquale, 2005). To mediate their 

function, Eph receptors and ephrins use intracellular signalling effectors, such 

as Src family kinases and Ras/Rho family GTPases, which are known to 

modulate both the organisation of the actin cytoskeleton and cell adhesion, 

thus influencing growth cone motility (Pasquale, 2008). A textbook example in 

which the role of Ephrins has been well characterised is the retinotopic 

mapping and proper migration of RGC axons from the retina to specific 

regions of the superior colliculus (Suetterlin et al., 2012). Projection patterns of 

RGC axons are in fact perfectly in line with the expression gradient of 

ephrinAs and EphAs in both the retina and tectum. The two gradient systems 

in the retinotectal projection are, firstly, the EphA gradient in the retina (Nasal 

< Temporal) and the corresponding ephrinA gradient in the tectum (Anterior 

< Posterior), and, secondly, the ephrinA gradient in the retina (Nasal > 

Temporal) and the EphA gradient in the tectum (Anterior > Posterior). Based 

on knockout/in experiments the model is that temporal axons with high EphA 

concentrations project on the anterior tectum, because they are repelled from 

the posterior tectum with high ephrinA concentration. In turn, nasal axons 
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with high ephrinA concentrations are projecting on the posterior tectum 

because they are repelled from projecting onto the anterior tectum expressing 

high EphA concentrations (Suetterlin et al., 2012).  

Netrins: 

Since its first discovery (Serafini et al., 1994), netrin-1 has been one of the most 

well-studied member of this class of proteins, playing a fundamental role in 

guiding axons through the midline (Raper and Mason, 2010). Interestingly, 

even though the majority of the axon guidance cues can mainly have either an 

attractive or repulsive activity, and act as either diffusible/chemotactic 

molecule, function of netrin-1 has never fallen into one single category. In fact, 

Netrin binding to its receptor, deleted in colorectal cancer (DCC) results in 

attractive responses, via homodimerization of DCC (Fazeli et al., 1997), 

whereas heterodimerization between DCC and receptor uncoordinated 

locomotion 5 (UNC5) results into repulsion (Finci et al., 2014). Mechanistically, 

the intracellular domain of DCC is a hotspot for interaction with several 

binding proteins that are involved in cytoskeletal and membrane remodelling, 

such as the unconventional myosin X (MyoX), the non-receptor tyrosine 

kinase FAK, the E3 ubiquitin ligase TRIM9, F-actin binding ezrin-radixin-

moesin (ERM) proteins, and p120RasGAP (Boyer and Gupton, 2018). Rho 

family GTPases are also regulated downstream of Unc5. In fact, in mouse 

neuroblastoma cells, RhoA is activated by netrin-1 binding to UNC5A, and to 

a lesser extent, Rac1 and Cdc42 are activated (Picard et al., 2009). 

Semaphorins 

They constitute a large family of more than twenty members that activate 

complexes of cell-surface receptors called Plexins and Neuropilins, with 

Sema3A as the most studied family member. The first functional evidence of 

its activity was the ability of this molecule to act as a repulsive factor on 
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chicken DRG neurons by inducing the collapse and retraction of their growth 

cones (Luo et al., 1993). Most of the semaphorins discovered so far have a 

repulsive activity but some members have a growth promoting effect on 

specific neuronal subpopulations (Bagnard et al., 1998).  

Knockout experiments shown several defects such as abnormal projections of 

sensory axons, abnormal cortical neurites orientation (Behar et al., 1996) or 

distorted odor map (Taniguchi et al., 2003) in Sema3A-deficient mice. In many 

cases, the most severe phenotype was the loss of axons in absence of Sema3A 

signalling (Taniguchi et al., 1997).  Several defects in projections in the 

hippocampus, mid brain, forebrain and in the PNS of Sema3F deficient-mice 

have also been described (Sahay et al., 2003). The diversity of the guidance 

effects elicited by semaphorins is thus consistent with their role in the complex 

wiring of several brain regions.  

Mechanistically and consistent with both other guidance cues and the 

considerable amount of evidences collected on Sema3A, the intracellular 

pathways recruited upon co-receptors activation relate to Rho GTPases (Hu 

and Zhu, 2018). 

Slits 

Slits are secreted proteins that bind to Roundabout (Robo) receptors and they 

are known for mediating axon repulsive activity in during nervous system 

development, especially in providing commissural axons with the right 

trajectory from one (ipsilateral) side of the CNS to the other (contralateral) 

(Blockus and Chédotal, 2016). In the mouse spinal cord, commissural 

interneurons are generated in the dorsal part of the neural tube and their axon 

crosses the ventral midline by E10.5-11. All three vertebrate Slits are expressed 

in the ventral midline, and Slit1;2;3 triple knockouts show re-crossing and 

axon stalling phenotypes at the midline (Long et al., 2004). Robo2 on its own 
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does not contribute to midline crossing in the spinal cord, and only the 

Robo1−/− mutant partially mimics the triple Slit mutants. Robo1;2 double 

mutants display similar axon stalling phenotypes as Slit1;2;3 triple mutants 

(Jaworski and Tessier-Lavigne, 2012) indicating that Slits may also act 

independently of Robos in commissural axons and that others Slit receptors 

may be at play. Data also suggests that Slit-Robo signalling interplays with the 

Netrin-1/DCC axis. When Slit is present, both Robo1 and DCC interact in 

Xenopus spinal cord commissural axons, in turn quenching attraction to 

Netrin-1 (Stein and Tessier-Lavigne, 2001). However, Slit-Robo repulsive 

function is an active process that can occur in the absence of DCC signalling, 

at least in Drosophila (Garbe and Bashaw, 2007), weakening hypothesis that the 

sole function of Robo1/2 is to silence attraction.  

Once again, the major effectors of Robo-triggered signalling pathway are 

cytoplasmic kinases and both actin and microtubule cytoskeleton regulators. 

The cytoplasmic kinase Abelson (Abl) plays a fundamental role and, through 

its effectors, influences both the actin and microtubule cytoskeleton (Blockus 

and Chédotal, 2016). Several studies related to different types of cancer, show 

that Slit and Robo are also implicated in the regulation of E-cadherin (cadherin 

1)- dependent adhesion via the Wnt signalling axis, along with GSK3β and β-

catenin (Prasad et al., 2008; Zhou et al., 2011). Slit-Robo signalling also involves 

GTPases, which are small GTP-binding proteins that rearrange the 

cytoskeleton and thus regulating cell polarity and motility. 

Considering the complexity of neural circuits, and even if axon guidance cues 

can be shared among several classes of neurons, the number of guidance 

molecules is surprisingly small. This suggests that the regulation of axon 

guidance signalling involves all possible mechanisms of regulation: 

transcriptional and translational regulation, vesicles trafficking, protein-

protein interactions as well as protein stability. Moreover, the link between 
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receptor-ligands interaction with the observed phenotypes of growth cones is 

still missing (Stoeckli, 2018). There is also a very small understanding of the 

association between surface receptors and the regulation of cytoskeletal 

dynamics responsible for steering growth cones (Gomez and Letourneau, 

2014).  

 

1.3 Axonal transport 

Transport of proteins and organelle cargoes is essential for mammalian cells 

function, but for neurons this can be considered an understatement. In fact, 

neurons are extremely polarised cells with an altogether different proteome 

between the axon and dendrites, and because most neuronal proteins are 

synthesised in cell bodies, mechanisms are required to direct axonal vs. 

dendritic transport. Even within the axonal domain, cargoes must be targeted 

to specific locations, e.g., sodium channels are enriched at nodes of Ranvier, 

whereas synaptic proteins are targeted to the axon terminal. Thus, intracellular 

transport processes become extremely important when it comes to the 

neuronal structure. The two major molecular motors involved in transport 

machinery have been already mentioned in previous sections of this thesis and 

are kinesin, that by unidirectionally moving toward the microtubule plus end 

it mostly mediates transport toward the synapse (anterograde), and dynein 

that moves toward the microtubule minus end and, accordingly, mediates 

transport of cargoes toward the cell body (retrograde; Vale, 2003; Welte, 2004). 

In both the axon and dendrites, microtubules and neurofilaments constitute 

the main cytoskeletal structure through which kinesins and dyneins move 

along. In the synaptic regions, such as presynaptic terminals and postsynaptic 

spines, the cytoskeletal architecture is mainly composed of actin filaments, 

where myosins convey the cargos (Hirokawa et al., 2010). As mentioned above, 

in the axon and dendrites transport occurs bidirectionally, from the cell body 
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to the periphery (anterograde transport) and from the periphery to the cell 

body (retrograde transport) depending on the microtubule’s polarity; the 

latter is extremely uniform in both axon and distal part of dendrites, with all 

the plus-end microtubules pointing distally toward their own terminal parts. 

In contrast, microtubules in the proximal region of dendrites lack an overall 

polarity. Actin filaments have a polarity too, as the barbed end (the growing 

end) points to the plasma membrane in the presynaptic and postsynaptic 

regions (Leterrier et al., 2017). 

Classically, axonal transport is divided into fast and slow axonal transport 

depending on the bulk speeds of cargo movement. Cargoes such as vesicles, 

mitochondria and mRNA-containing protein complexes (mRNPs) (Ling et al., 

2004; Ohashi et al., 2002) move by fast axonal transport, a form of transport 

that is faster than 400 mm per day. The organelles moved by retrograde fast 

axonal transport are primarily endosomes generated by endocytic activity at 

nerve endings, mitochondria, and elements of the endoplasmic reticulum, and 

many of these components are degraded by lysosomes. Retrograde fast 

transport also delivers signals that regulate gene expression in the neuron’s 

nucleus. In effect, neurotrophins have been shown to signal retrogradely in 

peripheral neurons after triggering the local translation of specific effectors 

and/or transcription factors (Cox et al., 2008; Walker et al., 2018; Willis et al., 

2007).  

Cytosolic proteins and cytoskeletal proteins are instead moved from the cell 

body by slow axonal transport which occurs only in the anterograde direction 

at speeds of ∼1 mm/day.  However, it is now established that both types of 

transport are mediated by the same “engines” of the fast axonal transport 

(kinesin and dynein) and that the slower overall speed of slow axonal 

transport is due to prolonged pauses between movements (Roy et al., 2000; 

Wang et al., 2000).  



CHAPTER 1: General introduction 

38 

1.4 Local protein synthesis in the axon  

As previously described, the signalling pathways underlying neuronal 

polarisation and axon development rely on regulatory mechanisms that 

modulate the formation of the axon, its elongation, and its guidance towards 

the synaptic targets. These processes require dynamic changes of the local 

proteome in order to rapidly respond to extracellular cues, thus providing the 

rationale for local protein synthesis in the developing axon (Mili et al., 2008; 

Zivraj et al., 2010).  

Even though it is now recognised that axons do have the capacity for local 

protein synthesis, and that this capacity is even retained into adulthood (Costa 

and Willis, 2018; Gumy et al., 2011; Shigeoka et al., 2016) full acceptance of this 

mechanism as a key molecular process in axon development and function has 

taken decades. Indeed, early data in the 1950s suggested that local translation 

in the axon was an unlikely scenario for neurons, lacking both mRNA and 

protein synthesis apparatus. Palay and Palade demonstrated at the time the 

apparent lack of ribonucleoprotein (RNP) in histochemical preparations of 

neurons, concluding that the minimum necessary for protein production was 

absent (Palay and Palade, 1955). A similar conclusion was also reached by 

Deitch, Murray, and others, suggesting that there was no organisation of 

protein producing superstructures in axons (Deitch and Moses, 1957; Deitch 

and Murray, 1956). 

The dogma that proteins were produced only in the cell bodies persisted into 

the mid-1960s and early 70s when it was reaffirmed that protein synthesis was 

unlikely to occur in mature axons as little or no ribosomal RNA was found in 

the axoplasm (Lasek et al., 1973). This interpretation started being disputed 

only later, when ribosomes were identified by electron microscopy in 

embryonic peripheral sensory axons in vivo (Tennyson, 1970), in sympathetic 

neuronal axons (Bunge, 1973) and in embryonic cortical neurons (Bassell et al., 
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1998). Results obtained using more sensitive biochemical methods finally 

showed the presence of ribosomal RNAs (Giuditta et al., 1980), mRNAs 

(Giuditta et al., 1986) and actively translating polysomes in squid giant axons 

(Giuditta et al., 1991).  

More recent immunohistological studies showed that mature PNS axons 

contain both ribosomal proteins and RNAs and that are localised in the 

peripheral axoplasm close to the plasma membrane (Benech et al., 1982; 

Koenig et al., 2000; Koenig and Martin, 1996; Kun et al., 2007; Sotelo-Silveira 

et al., 2008, 2006). 

Probably the most important evidence of axonal local translation came from 

metabolic labelling experiments in which unmyelinated axons without their 

cell bodies were still capable of synthesising proteins (Eng et al., 1999; Koenig, 

1991; Koenig and Adams, 1982; Tobias and Koenig, 1975). 

In the last years, thousands axonal mRNAs have been identified by in situ 

hybridisation, small axonal cDNA libraries, microarrays (Taylor et al., 2009; 

Yoon et al., 2009) and genome-wide transcriptome analyses (Poulopoulos et 

al., 2019; Shigeoka et al., 2016) exposing an ever-growing list of axonal mRNAs 

that included transcripts encoding for cytoskeletal proteins such as β-tubulin, 

β-actin, MAP1B, Tau, but also cell signalling molecules like RhoA and 

transmembrane receptors such as EphB2 (Yoon, Byung C. & Holt, 2009).  

Technically, local protein synthesis confers several advantages over the 

transport of pre-existing proteins from one part of the cell to another (Holt and 

Bullock, 2009), such as the storage of translationally inert forms of mRNAs 

which may be used to synthesise a protein when needed, thereby providing 

an “energetic” advantage. For this reason, highly polarised cells like neurons 

would benefit greatly from local mRNA translation. Indeed, local mRNA 

translation is known to mediate long-lasting synaptic plasticity in dendritic 
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spines and to be regulated by extracellular signals (Sutton and Schuman, 

2006). 

Axonal mRNA translation allows the developing axon and its growth cone to 

locally and rapidly respond to cues coming from their environment (Harris et 

al., 1987), often, even without enough time to communicate with the soma. In 

fact, axons severed from their cell bodies, can still properly pathfind in vivo 

(Ming et al., 2002). 

Among these extracellular cues there are semaphorin 3A (SEMA3A) 

(Campbell and Holt, 2001), nerve growth factor (NGF) (Hengst et al., 2009), 

BDNF (Yao et al., 2006) and NT3 (Zhang et al., 1999). All these cues commonly 

activate the translational machinery on the side of the growth cone (Campbell 

and Holt, 2001). According to the nature of cues, only specific set mRNAs are 

translated, depending on whether it is an attractive or repulsive cue (Holt et 

al., 2019). This can also determine the direction of growth cone turning. In 

particular, application of attractive cues, such as netrin 1 and BDNF, leads to 

synthesis of β-actin on the side close to the source of the cue, which in turn 

may lead to actin polymerisation and the turning of the growth cone toward 

the aforementioned cue (Leung et al., 2006; Yao et al., 2006). On the other hand, 

repulsive cues such as SEMA3A and Slit homolog 2 protein (SLIT2), activate 

the axonal translation of the actin-depolymerising proteins RhoA and Cofilin, 

causing a turn of the growth cone toward the opposite direction, preventing 

the axon from “meeting” with incorrect targets (Piper et al., 2006; Wu et al., 

2005). Recent proteomic analyses have enlarged this differential translation 

model and revealed that a single cue typically triggers regulation of ~100 

proteins, and different cues induce distinct proteomic signatures (Cagnetta et 

al., 2018).  

Axonal mRNAs and local protein translation also play a role in axon 

elongation during development, as for the case of PAR3, which is required for 
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NGF-induced and netrin 1-induced axon outgrowth (Hengst et al., 2009). β-

thymosin, which prevents actin polymerisation, is also locally synthesised in 

cultured mollusc neurites treated with brain lysate, and inhibiting its 

translation in isolated neurites promotes their elongation (van Kesteren, 2006). 

More recently, local translation of TC10, a small GTPase required for exocyst 

function, is essential for NGF-induced axon growth and membrane expansion 

(Gracias et al., 2014).  

Notably, mRNAs encoding for proteins involved in branching and synaptic 

vesicle release were enriched in mature growth cones when compared to 

younger developing ones (Zivraj et al., 2010) of cultured Xenopus laevis 

neurons. This leads to the speculation that these mRNAs might be transported 

to the growth cone in sync with target arrival and might be translated in 

response to target-derived cues. Indeed, presynaptic protein synthesis is 

essential for BDNF- and NT3-induced potentiation of synaptic vesicle release 

in X. laevis lower motor neurons (Wang et al., 2011; Zhang and Poo, 2002).  

It is clear from the previously described studies that axonal translation is 

important for several aspects of neuronal development, and it is thus not 

surprising that axonal protein synthesis has roles in axonal signalling too. For 

example, local translation can relay signals coming from growth cones to the 

nucleus, thereby influencing gene transcription. This can be achieved by 

means of the local synthesis of transcription factors that are retrogradely 

transported to the cell body. Local synthesis CREB, CCAAT/enhancer-binding 

protein (CEBP-1), signal transducer and activator of transcription 3 (STAT3), 

importins and SMAD transcription factors have all been linked to retrograde 

signalling mediated by NGF, bone morphogenetic protein 4 (BMP4) and nerve 

lesion (Ben-Yaakov et al., 2012; Cox et al., 2008; Hanz et al., 2003; Ji and Jaffrey, 

2012; Yan et al., 2009). These studies show that the consequences of local 
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translation are not restricted to localised responses but can also influence other 

subcellular compartments, such as the nucleus.  

Despite their function, hundreds of different mRNAs can coexist in the same 

subcellular locations at the same time. Axonal transcriptome analyses from 

different types of neurons — including microarrays studies in X. laevis, mouse 

embryonic retinal ganglion cells (Zivraj et al., 2010), rat embryonic and 

perinatal cortical and hippocampal neurons (Taylor et al., 2009), rat embryonic 

and adult peripheral sensory neurons (Gumy et al., 2011), and a subcellular 

RNA–proteome mapping on the developing callosal projection of the mouse 

cerebral cortex (Poulopoulos et al., 2019)— identified thousands of different 

mRNAs in their axons. 

After the initial findings, supporting data emerged from few studies in vivo, 

although in vivo visualisations of protein synthesis are relatively rare, due to 

the extreme difficulty of the experiments and anatomical restrictions (Holt et 

al., 2019). Nonetheless, several proteins that can encode for cytoskeletal 

regulators, cell-adhesion molecules, axon guidance receptors and signalling 

molecules, have been found to be locally synthesised also during axon growth 

in vivo (Shigeoka et al., 2016).  

Evidence demonstrating the need for these locally synthesised proteins for 

axon pathfinding in vivo is again sparse due to the technical limitations 

associated with blocking protein synthesis exclusively in the axonal 

compartment. However, few studies in the mammalian spinal cord show that 

specific axon guidance receptors (e.g. EphA2, Robo3.2) are synthesised in 

growing axons at the midline, implying a role for local translation in the 

switches of commissural growth cone responsiveness along their journey 

(Brittis et al., 2002; Colak et al., 2013). Moreover, in vivo inhibition of a 

microRNA caused defects in pathfinding and target entry in small subsets of 

RGCs (Bellon et al., 2017).  
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Breakthrough Fluorescence Recovery After Photobleaching (FRAP) 

experiments have demonstrated the a de novo β-actin synthesis at the bases 

and tips of new branches in vivo by using single axons in the Xenopus visual 

system (Wong et al., 2017). Moreover, inhibition of axonal β-actin mRNA 

translation impairs arborisation, demonstrating for the first time a 

requirement for local protein translation in building arbor complexity and 

assembling neural circuits (Wong et al., 2017).  

The complexity of the dynamic mRNA subpopulations in the axon raises the 

question of what type of mechanisms regulate local axonal protein translation 

(Holt et al., 2019). To date, at least four regulation mechanisms have been 

reported: 

1. Extracellular cues involved in axon guidance and neurotrophins can 

stimulate and subsequently phosphorylate RBPs which release their 

associated mRNAs for local translation (Lepelletier et al., 2017; Leung 

et al., 2006; Sasaki et al., 2010; Yao et al., 2006). The same cues can also 

increase local translation in the axon via mammalian target of 

rapamycin complex 1 (mTORC1) activation of cap-dependent 

translation. Although mTORC1 generally controls global protein 

synthesis, it can also selectively trigger the translation of subsets of 

mRNAs, including eukaryotic translation initiation factor 4E (eIF4E)-

sensitive and 5’ terminal oligopyrimidine (TOP) mRNAs (Campbell 

and Holt, 2003, 2001; Leung et al., 2006; Piper et al., 2006). Of note, 

modulation of the phosphorylation of eIF2α has been reported to 

regulate the nascent proteome in the axonal compartment of RGCs via 

differential eIF2B activity (Cagnetta et al., 2019).  

2. Post-transcriptional modifications of mRNAs, among which n6-

methyladenosine (m6A) is the most common one, has recently been 

suggested to regulate axonal translation (Yu et al., 2017). In fact, axonal 
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GAP-43 mRNA is modified by m6A and is a substrate of the 

demethylase enzyme fat mass and obesity-associated protein (FTO). 

FTO itself can be axonally synthesised and depleting this enzyme in 

axons increases m6A modification of GAP-43 mRNA, thereby 

repressing its local translation (Yu et al., 2017). 

3. Another mechanism of local translation regulation is the direct binding 

between the translational machinery and a guidance cue receptor. 

Thus, cue stimulation can release this machinery and increases 

translation. In fact, DCC (deleted in colorectal carcinoma), a netrin 1 

receptor, directly binds to ribosomal protein L5, a component of the 

60S ribosomal subunit. Binding of netrin 1 to DCC activates 

translational initiation and subsequently releases the ribosome–mRNA 

complex from DCC, thereby allowing more ribosomes to form 

polysomes in the vicinity of receptor activation  (Tcherkezian et al., 

2010). 

4. MicroRNAs (miRNA) also play a fundamental role in the 

spatiotemporal regulation of local translation (Davis et al., 2015). As 

will be described in more detail in the next section and in chapter 5, 

axons contain a huge diversity of miRNAs that also differ among 

several neuronal populations (Wang and Bao, 2017). miRNAs are 

known to repress translation by binding to 3’UTRs, but inhibition or 

activation of specific miRNAs by extracellular signals can also trigger 

a selective stimulation or repression of subsets of mRNAs in axons. 

Several studies (Bellon et al., 2017; Dajas-Bailador et al., 2012; Sasaki et al., 

2014) have shown how regulation of local translation by specific miRNAs 

can control different biological processes of both central and peripheral 

neurons. For example, in CNS neurons, miR-9-5p was shown to locally 

control axon development by targeting MAP1B (Dajas-Bailador et al., 

2012) and miR-338 controls axonal synthesis of two functionally linked 
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mRNAs for the nuclear- encoded mitochondrial proteins COXIV and 

ATP5G1 (Aschrafi et al., 2012, 2008). This process not only can regulate 

the global axonal proteome, but also respond to specific needs in 

restricted subdomains as was recently reported for miR-182 in 

response to Slit2 in RGC growth cones (Bellon et al., 2017). In a recent 

and remarkable study, it has been demonstrated that precursors 

miRNAs are actively transported to distal axons via late 

endosomes/lysosomes and that upon exposure to Sema3A, these pre-

miRNAs are converted into mature miRNAs in vivo (Corradi et al., 

2020). Moreover, one of this microRNAs, miR-181a can regulate 

growth cone steering via the targeting of locally translated βIII-tubulin 

(Corradi et al., 2020).  

It is clear the axonal transcriptome is complex and highly regulated to serve 

different roles at different stages of neuronal development. Understanding the 

function and the role of miRNAs in the regulation of local translation in 

developing axons is the focus of the present thesis. 

 

1.5. MicroRNAs: function and biogenesis 

Cells have at their disposal a plethora of mechanisms capable of regulating 

protein expression. Hypothetically, any step of gene expression can be 

modulated, ranging from transcriptional initiation, to RNA processing and to 

the post-translational modification of a protein. Among those mechanisms, 

microRNAs have emerged in the last decade as dominant players as 

suppressors of unwanted transcripts.  

MicroRNAs (miRNAs) are a class of small non-coding RNAs with a length of 

approximately 22 nucleotides, which act as post-transcriptional regulators of 

gene expression. First found in Caenorhabditis elegans, miRNAs are 
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endogenously expressed in almost all eukaryotes, except for the model 

organisms Saccharomyces cerevisiae, and are transcribed mainly by RNA 

polymerase II. In fact, the majority of miRNA sequences are normally located 

within introns of non-coding or coding transcripts, but some miRNAs are 

encoded by exonic regions (Lee et al., 2002). Moreover, miRNA genes can 

produce primary transcripts containing one individual miRNA but the vast 

majority of miRNA genes are clustered in introns of protein-coding genes and 

only one large primary transcript is synthesised together with the host mRNA 

(Bartel, 2004).  

The process of miRNA biogenesis in animals (canonical pathway, Figure 6) 

can be briefly simplified into three fundamental steps. First, double-stranded 

primary miRNA (pri-miRNA) short hairpin structures are transcribed by RNA 

polymerase II (Kim, 2005). Secondly, a RNase III enzyme, Drosha, and its 

partner DiGeorge syndrome critical region 8 (DGCR8; also known as Pasha in 

Drosophila) help to defines one end of the pri-miRNA duplex and cleave 

double-stranded RNA (dsRNA) transcripts into approximately 70 nucleotides 

stem loops called precursor mRNAs (pre-miRNAs) (Lee et al., 2003). 

Some pre-miRNAs are produced from very short introns (mirtrons) as a result 

of slicing and debranching, thereby bypassing the Drosha– DGCR8 step (non-

canonical pathway, Figure 6). In either case, these pre-miRNAs are then 

exported to the cytoplasm by Exportin-5 (XPO5) (Yi et al., 2003) where the 

RNase III Dicer enzyme along with  TAR RNA-binding protein 2 (TRBP) 

cleaves off the loop of the hairpin and generates a short-lived, 21 nucleotides 

long double stranded miR-3p/miR-5p duplex (Li and Rana, 2014). In 

subsequent steps, the miRNA duplex is unwound and one strand give rise to 

the mature miRNA and it is incorporated into a miRNA-protein complex 

referred to as RISC (miRNA-induced silencing complex) which is a complex 

of Argonaute (AGO) and other proteins (Krol et al., 2010) whilst the other 
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strand is released and degraded. After that, the miRISC complex scans the 

transcriptome for complementary mRNA sequences, and the miRNA then 

associates with a target mRNA by imperfect base-pairing, on the most part, to 

its 3′UTR mediating post-transcriptional repression or decay of specific mRNA 

targets [Figure 6]  (Pasquinelli, 2012). 
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Figure 6: Canonical and non-canonical miRNA biogenesis pathways. (Adapted from Li et al., 

2014). In the canonical pathway, RNA polymerase II (not shown) generates pri-miRNA 

transcripts containing hairpins and the complex composed of DGCR8 and Drosha cleaves 

(red arrowheads) the pri-miRNA at the stem of the hairpin, releasing a pre-miRNA. The non-

canonical pathway differs at this step, as pre-miRNAs are generated by the mRNA splicing 

machinery. In both pathways, Exportin 5 binds pre-miRNAs and mediates their transport to 

the cytoplasm, where they are further cleaved by the Dicer-TRBP complex and loaded into 

AGO2-containing RISCs to regulate protein translation.  
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The degree of complementarity between the miRNA and the target RNA 

influences how a miRISC acts on the target RNA. Target RNAs that have 

perfect or nearly perfect complementary sequence to a miRNA are cleaved in 

an RNAi-like manner. In this case the miRNA functions exactly like a short 

interfering RNA (siRNA) and guide the miRISC complex to the target for 

sequence-specific cleavage. Then Ago2, the endoribonuclease in mammals, 

cleaves the target mRNA. Perfect complementary target sites are frequently 

found in plants but in animals, however, perfect complementarity in miRNA 

target sites is extremely rare (Meister and Tuschl, 2004). In the majority of 

cases, miRNAs imperfectly base-pair with sequences in the 3′-UTR of target 

mRNAs, and regulate translation by either suppressing protein synthesis or 

promoting mRNA deadenylation and decay (Bartel, 2004). This means that a 

single miRNA has the potential to regulate the expression of hundreds of 

genes. Indeed, mRNA recognition is determined through nucleotides 2–8 of 

the 5′ end or “seed” region of miRNAs and the presence of GU pairs, 

mismatches and bulges in the seed region affects repression. However, an A 

residue across position 1 of the miRNA, and an A or U across position 9, 

improve the site efficiency, although they do not need to base pair with the 

miRNA nucleotides (Filipowicz et al., 2008). Apart from these key sites, the rest 

of the miRNA sequence contacts the mRNA only partially (Bartel, 2009).  

Today, two models have been proposed to show how miRNAs act on 

translation. One possibility is that miRNAs, since they co-sediment with 

polyribosomes, could act on the level of translational elongation, because 

ribosomes can initiate in the presence of miRNAs. The other possibility is that 

miRNAs function at the level of translational initiation. Indeed, it has been 

seen that miRNAs interact with the translation initiation machinery and 

inhibit mRNA circularisation by preventing interaction between the poly(A) 

tail and the 5’end of the mRNA (Filipowicz et al., 2008).  
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As mentioned above, a specific miRNA could target multiple genes, that in 

turn they could have multiple miRNA-binding sites in their 3′UTRs and, 

therefore, multiple miRNA families potentially control their expression 

(Bartel, 2009). In addition, considering the ability of miRNAs of being 

temporarily and spatially differently expressed, it is not surprising that they 

have established a sophisticated and widespread control of gene regulatory 

networks. As a proof of that, miRNAs are now considered to regulate the 

expression of up to 50 % of all genes at the level of mRNA translation and/or 

stability, showing to be required for several key biological processes, such as 

cell differentiation and development of several type of tissues (Sayed and 

Abdellatif, 2011), stem cell self-renewal ability (Gangaraju and Lin, 2009) and 

cell proliferation in cancer (Jansson and Lund, 2012). 

Moreover, research in this field has seen a huge increase in recent years, 

illustrated by the latest miRBase release (v22), which contains 38589 entries 

representing hairpin precursor microRNAs from 271 organisms, capable of 

producing a total of 48860 mature microRNA sequences (Kozomara et al., 

2019). Those numbers only indicate the extension that microRNAs could reach 

as fundamental regulatory players of biological processes.  

 

1.6 MicroRNAs in the nervous system 

development 

The capacity of the nervous system to respond to a plethora of environmental 

stimuli requires a well-conserved and, at the same time, flexible repertoire of 

molecular mechanisms. In the last decade, miRNAs have been confirmed to be 

key gene regulators, functioning by being spatiotemporally expressed (Chen 

and Qin, 2015), fine-tuning a wide range of biological processes and regulating 

the expression of at least one-third of all human genes (Lewis et al., 2005). 
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Additionally, microRNAs are abundant in the brain (Fiore et al., 2011) and not 

surprisingly, recent works have largely highlighted their diverse functions in 

the CNS, including neural differentiation, development and synapse 

formation (Barry, 2014; Fiore and Schratt, 2007; Shinde et al., 2013).  

The first evidence of microRNAs’ involvement in nervous system 

development in vivo came from an experiment with a Dicer knockout zebrafish 

model. As described in the previous section, Dicer is an essential component 

in the microRNAs-producing-machinery and, without it, hairpin precursor 

miRNAs cannot be processed into their mature counterparts causing severe 

malformations in the brain and spinal cord (Giraldez et al., 2005). Re-

introduction of the miR-430 family could rescue the brain defects observed in 

these mutants. Similarly, the same Dicer knockout experiments in murine 

models led to impaired brain development and embryonic death (De Pietri 

Tonelli et al., 2008; Huang et al., 2010).  

Interestingly, evidences from deletion of Dicer in specific postmitotic neurons 

led to opposing results. In fact, the Dicer knockout in excitatory forebrain 

neurons (Davis et al., 2008), midbrain dopaminergic neurons (Kim et al., 2007), 

and Purkinje cells produced apoptosis (Schaefer et al., 2007). However, Dicer 

loss of function in striatal dopaminoceptive neurons and olfactory neurons did 

not recapitulate the same phenotype (Cuellar et al., 2008). It is worth noting 

that, even though dopaminoceptive neurons survived over the life of the 

animal, their biological function was particularly affected, and the animals 

showed several phenotypes, including ataxia, reduced brain size, and smaller 

neurons (Cuellar et al., 2008).  

Moreover, early absence of Dicer in the cells forming retina and optic chiasm 

produced severe axon pathfinding defects of RGCs at the midline (Pinter and 

Hindges, 2010). Using a conditional deletion approach in mice, Pinter and 

colleagues found a drastic increase of ipsilateral projections, RGC axons 
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extending outside the optic chiasm, the formation of a secondary optic tract 

and a substantial number of RGC axons projecting aberrantly into the 

contralateral eye. In addition, the mutant mice display a microphthalmia 

phenotype (Pinter and Hindges, 2010). 

It is known that Dicer also processes other small non-coding RNAs involved 

in gene silencing, such as siRNAs, rising questions regarding the actual 

specificity of the phenotypes obtained by Dicer knockout animals. However, 

deletion of DGCR8, a more specific component of the microprocessor complex 

of miRNAs, resulted in diminished cognitive performance and deficit in 

dendritic arborisation in a mouse model of schizophrenia (Stark et al., 2008). 

Deletion of other key players in the biogenesis of miRNA such as Ago2 and 

Dicer1 also produced embryonic lethality (Alisch et al., 2007; Morita et al., 

2007).  

As much as these studies on the knockdown of miRNA biogenesis machinery 

components in the brain gave us a valuable hint on the role of microRNAs in 

the nervous system development, they do not shed light on the function and 

impact of specific miRNAs. The silencing of single miRNA does not have as 

drastic an effect as knocking down all the miRNAs in the organism (Park et 

al., 2010). This may be due to the redundancy of miRNA:mRNA interactions 

the lack of one miRNA would be rescued by others. In the future, the use of 

conditional mice lacking single miRNAs in specific neuronal lineages could 

thus help to resolve this issue. However, even though in vitro models have 

provided much insight into the role of miRNAs in neural development, in vivo 

models that examine miRNA function at the organismic level are still lacking. 

More recent results from miRNA KO models are highly reassuring and 

indicate that the loss of specific miRNAs can have rather strong consequences 

for the development of neural circuits and animal behaviour (Amin et al., 2015; 

Feinberg et al., 2013).  
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Applying CRISPR-Cas technology to analyse miRNA function in the brain will 

drastically contribute and accelerate efforts to investigate the physiological 

function of specific miRNA-target interactions.  

 

1.6.1 MicroRNAs in neurogenesis  

Among the upregulated miRNAs upon NSC differentiation, miR-9, miR-124 

and let-7 are the most enriched in the brain (Krichevsky et al., 2003; Smirnova 

et al., 2005) and so the most investigated miRNAs in the context of 

neurogenesis.  

The let-7 family of miRNAs is among the first microRNA to be identified and 

one of the most conserved throughout the animal Phyla and studied especially 

as suppressor of cancer cells proliferation (Roush and Slack, 2008). In NSCs 

let-7 maturation is tightly controlled given that the RNA-binding protein 

LIN28 regulates its biogenesis by inhibiting let-7 maturation at both the pri-

miRNA (Newman et al., 2008) and pre-miRNA (Rybak et al., 2008) processing 

steps. In fact, let-7 expression increases during neuron differentiation and its 

overexpression interferes with proliferation and elicits differentiation of 

neural stem cells in the mouse brain (Rybak et al., 2008; Wulczyn et al., 2007; 

Zhao et al., 2009a). Another confirmation of the involvement of let-7 family in 

maintaining a balance between the proliferation of neuronal progenitor and 

neurogenesis came from a study in which Tripartite motif-containing protein 

32 (TRIM32) (Schwamborn et al., 2009) and more recently the transcription 

factor SRY (sex-determining region)-box 2 (SOX2) (Cimadamore et al., 2013) 

influence let-7 levels to maintain cells in a proliferative state. 

 

miR-9 is another well-conserved miRNA that has been shown to be a major 

player in the regulation of neurogenesis. Gain- and loss-of-function 
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experiments showed that miR-9, via the targeting of different components of 

the fibroblast growth factor (FGF) signalling pathway, promotes progression 

of neurogenesis and diminishes the midbrain-hindbrain boundary (MHB) 

progenitor pool (Leucht et al., 2008). In mouse neural stem cells instead, 

overexpression of miR-9 leads to premature neuronal differentiation through 

the inhibition of the orphan nuclear receptor tailless (TLX), which is an 

important regulator of neural stem cell renewal (Zhao et al., 2009b). 

Interestingly, TLX negatively regulates miR-9 expression levels, suggesting a 

sophisticated feedback mechanism that precisely regulates the switch between 

neural stem cell proliferation and differentiation (Zhao et al., 2009b).  

In combination with TLX, miR-9 also negatively regulates multiple 

transcription factors linked to neuronal differentiation processes (Shibata et al., 

2011). In fact, mice embryos lacking both miR-9-2 and miR-9-3 exhibited 

several defects in the telencephalic structures related to enhanced proliferation 

of neural progenitors and development abnormalities, including the 

suppression of basal ganglia development (Shibata et al., 2011). miR-9 in 

combination with miR-124 can also convert human fibroblasts into 

physiologically functional neurons (Yoo et al., 2011). This pro-neurogenic 

function of miR-9 (and miR-124) is achieved through regulation of the actin-

related protein Brg/Brm associated factor 53a (BAF53a), components of the 

ATP-dependent chromatin-remodelling complex BAF (also called mammalian 

SWItch/Sucrose Non-Fermentable complex, SWI/SNF). This complex has the 

ability to switch different subunits, allowing the cell to regulate the expression 

of specific genes at different stages of development and specifically, BAF53a 

subunit promotes neural progenitor proliferation. Upon commitment to the 

neuronal cell fate, the level of both miR-124 and miR-9 increases, which in turn 

downregulates BAF53a gene in postmitotic neurons. This suggests that the 

neuron-specific transcriptional signature observed upon miR-9/miR-124 
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expression is a result of an extensive epigenetic alteration (Yoo et al., 2011). To 

further complicate things, miR-9 is negatively regulated my another 

microRNA, miR-107, via the targeting of Dicer in the zebrafish MHB (Ristori 

et al., 2015). In the same study, in situ hybridisation has also revealed that the 

localisation of miR-107 and Dicer is mutually exclusive along the hindbrain 

VZ, thus determining the border between the progenitor pool and 

differentiated neurons (Ristori et al., 2015).  

In the PNS of Drosophila, each external sensory organ develops from the 

division of a single sensory organ precursor (SOP) cell. In this model, in 

contrast to the mouse, miR-9a acts as anti-neurogenic factor and inhibits 

neuronal fate in non-SOP cells, including those that are adjacent to SOPs 

within pro-neural clusters via the targeting of the proneuronal zinc-finger 

transcription factor Senseless (SENS). The overexpression of miR-9a resulted 

in severe loss of SOPs, whereas depletion of miR-9a led to production of extra 

SOPs (Li et al., 2006). This suggests that miR-9a regulates the formation of a 

precise number of neuronal precursor cells during neural development.  

miR-124 has a key role in neurogenesis, too. In addition to the above described 

role of this microRNA, miR-124 has been linked to the transition of a non-

neuronal to a neuronal-specific pattern of alternative splicing. In particular, 

miR-124 targets the Polypyrimidine Tract RNA-binding protein (PTBP1) 

(Makeyev et al., 2007), described as a repressor of nervous system-specific 

splicing. The reduced expression of PTBP1 coincides with an increased 

expression of its nervous system-enriched homolog, PTBP2, triggering a 

neuronal-specific splicing program that ultimately leads to neuronal 

differentiation (Makeyev et al., 2007). Moreover, knockdown of endogenous 

miR-124 preserved cells from the SVZ, a neurogenic area in the adult brain, as 

dividing precursors, whereas ectopic expression of the microRNA led to 

precocious and increased neuron formation (Cheng et al., 2009).  
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Ablation of the miR-17-92 cluster in NSCs in a conditional transgenic mouse 

line significantly reduced both the number of proliferating NSCs and 

neuroblasts and neuronal differentiation in the dentate gyrus (DG) of the 

hippocampus (Pan et al., 2019).  

 

1.6.3 MicroRNAs in dendritogenesis and post-synapse  

The main function of the nervous system is to store information coming from 

other neurons and relay the signal to post-synaptic targets. Information 

between different neurons is transmitted through specialised junctions known 

as synapses, which consist of a presynaptic part (axon terminal) and a 

postsynaptic part (dendrite). They are very dynamic structures that can 

modulate their strength in response to external stimuli, a process better known 

as synaptic plasticity. Given the compartmentalised nature of neurons and 

that synapse formation depends on the local synthesis of proteins (Holt et al., 

2019), it is not surprising that microRNAs could have a role in this process, 

too. Indeed, as will be reported for the axonal domain in chapter 5, miRNAs 

are also enriched in dendrites, as shown by a comparative analysis by laser 

capture multiplex RT-PCR (Kye et al., 2007; Sambandan et al., 2017), or by the 

characterisation of miRNAs enriched in the synaptoneurosome (a biochemical 

fraction highly enriched in synaptic proteins and membranes) across several 

regions of the mammalian brain (Pichardo-Casas et al., 2012).  Moreover, since 

the distribution of the synaptoneurosomal miRNA population was different 

in each brain region explored, it has been suggested that a particular miRNA 

might have a specific role in synaptic plasticity depending on its location in 

the brain (Pichardo-Casas et al., 2012).  

Among the most enriched miRNAs in dendrites, the brain-specific miR-134 

was seen to negatively modulate spines size by inhibiting the local synthesis 

of LIM domain kinase 1 (Limk1), a kinase that promotes actin polymerisation 
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in spines. Moreover, this effect is activity dependant given that miR-134-

mediated repression of Limk1 was rescued upon BDNF application (Schratt et 

al., 2006).  

In addition to miR-134, miR-132 was also found to regulate neuronal 

morphogenesis in developing neurons by repressing translation of the Ras-

homolog gene family (Rho) GTPase-activating protein, p250GAP (Marler et al., 

2014; Remenyi et al., 2013; Wayman et al., 2008). In addition, besides its role in 

neurogenesis and axon development, as will be described in chapter 4, miR-9 

has also been reported to be necessary for dendrite development in both 

mouse brain (Giusti et al., 2014) and in sensory neurons of Drosophila (Y. Wang 

et al., 2016).    

Several miRNAs have also been implicated in synaptic transmission and 

synaptogenesis. Among these, miR-137 is the most studied and of particular 

interest, since a single nucleotide polymorphism (SNP) located in the MIR137 

gene was one of the most significant SNP associated with schizophrenia 

(Consortium, 2011). Using neuronal-like SH-SY5Y cells, it has been reported 

that inhibition of miR-137 led to up-regulation of a subset of genes involved in 

synaptogenesis and neuronal transmission (Strazisar et al., 2015).  In line with 

this, miR-137 gain of function downregulates three presynaptic target genes, 

complexin-1 (Cplx1), N-ethylmaleimide-sensitive factor (Nsf) and 

synaptotagmin-1 (Syt1), causing impairment in synaptic vesicle trafficking 

and alterations in synaptic plasticity (Siegert et al., 2015). 

In an elegant work by Lippi et al. (2016), miR-101 was shown to coordinate pre- 

and post-synaptic functions during neural circuit development. Specifically, 

transient inhibition of miR-101 activity in post-natal mice induces a switch 

from excitatory to inhibitory synaptic transmission via the targeting of the 

sodium-potassium-chloride cotransporter 1 (NKCC1) (Lippi et al., 2016).  
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Specific roles of microRNAs in the axon will be described in the introductory 

section of chapter 5. 

 

1.7 Aims of this thesis  

Local translation of mRNAs in the axon provides precise regulation of protein 

expression and has a pivotal role in axon development, homeostasis and 

degeneration (Cioni et al., 2018). In this scenario, the present thesis aims to 

expand our current knowledge of the mechanisms controlling axon 

specification, elongation and degeneration.  

Along this line, I focus on understanding how microRNAs, a class of small 

non-coding RNAs with the ability to regulate gene networks, can modulate 

the molecular signalling programs underlying these cellular processes.  

 

Specifically, Chapter 3 discusses how axonal local protein translation 

contributes in supplying the needs of the axon and maintaining its 

homeostasis. Moreover, this chapter identifies four microRNAs as potential 

candidate regulators of axon degeneration pathways.  

The role of a single microRNA, miR-26a, in modulating two distinct but also 

sequentially related developmental processes, axon specification and growth 

via the targeting of GSK3β, will be addressed in Chapter 4.  

I then test whether the same microRNA is also controlling axon outgrowth 

locally in the axon of cortical neurons and I elucidate a novel molecular 

mechanism in which inhibition of miR-26a leads to a remarkable process of 

long-distance signalling, where both local axon translation of GSK3β and its 

transport to the soma are required for the regulation of axon development 

(Chapter 5). 
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The materials and methods used in this thesis are described below. The numbers in brackets in the 

headings denote the chapter of this thesis in which the method was used. 

 

2.1 Animals 

(Chapters 3, 4 and 5) 

Mice (C57/BL6) were housed, bred and treated in compliance with the ethics 

and animal welfare in place in the University of Nottingham, in accordance to 

the Animal (Scientific Procedures) Act 1986. 

 

2.2 Mouse Dorsal root ganglia (DRG) cultures  

(Chapter 3) 

2.2.1 Cultures of Dorsal root ganglia (DRG) explants  

C57/BL6 (referred to as wild-type) mouse DRGs explants were dissected from 

E16.5 mouse embryos. Cleaned explants were placed in the centre of 3.5 cm 

tissue culture dishes pre-coated with poly-L-lysine (20 µg/ml for 1–2 h; Sigma) 

and laminin (20 µg/ml for 1–2 h; Sigma). Explants were cultured in Dulbecco’s 

Modified Eagle’s Medium (DMEM D6546, Sigma) with 2 mM glutamine, 1% 

penicillin/streptomycin, 50 ng/ml 2.5 S NGF (all Invitrogen), 50 ng/ml GDNF 

(Sigma-Aldrich) and 2% B27 (Gibco). 4 µM aphidicolin (Sigma-Aldrich) 

(hereafter referred to as supplemented DMEM) was used to reduce 

proliferation and viability of small numbers of non-neuronal cells. Culture 

media was replenished every 3 days. Axons were allowed to extend for 7 days 

before performing the experiments. 
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2.2.2 Cultures of dissociated DRGs in compartmentalised microfluidic 

chambers 

Mouse DRG explants isolated from wild-type and Sarm1-/- mice (the latter 

kindly provided by Prof. Michael Coleman, University of Cambridge) were 

incubated in 0.025 % trypsin (Sigma-Aldrich) in PBS (without CaCl2 and 

MgCl2) for 30 min followed by 0.2 % collagenase type II (Gibco) in PBS for 30 

min. Ganglia were then gently triturated using a pipette. DRG dissociated cells 

were cultured for 5-7 d in microfluidic devices with 150 µm long microgrooves 

between opposing channels (Xona Microfluidics, SND150) [Figure 7a] or in 

three channel devices with two 500-μm microgroove channels and a 500-μm 

central chamber (Xona Microfluidics, TCND500) [Figure 7b]. Both type of 

chambers allows the fluidic isolation and functional compartmentalisation of 

the axon and somal compartments. The devices were prepared as described 

previously (Garcez et al., 2016). Briefly, ethanol sterile devices were mounted 

onto 35mm culture dishes (Nunc, Thermo Fisher Scientific) coated with poly-

L-lysine (100 µg/ml for 1–2 h) and all the channels were equilibrated for 1 h 

with laminin (20 µg/ml for 1–2 h; Sigma) and supplemented DMEM. 

Following collection of excess media from the devices’ reservoirs, dissociated 

cells were added onto to the designated somal channel at a seeding density of 

5x106 cells/ml and incubated for 4 h (37oC, 5% CO2) to allow for cell attachment. 

The devices’ reservoirs were then topped up with supplemented DMEM and 

incubated at 37oC, 5% CO2. Axons were allowed to extend and cross the 

microgrooves to the axonal channels. Functional experiments were performed 

after 5-6 days in vitro.  

To suppress protein synthesis, emetine (Sigma-Aldrich) at 10 µM (Gilley and 

Coleman, 2010; Milde et al., 2013) was added to the axon side of the 

microfluidic device at the beginning of the experiment.  
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A difference of volume of 100 µl was maintained at all times between the soma 

and axonal channels in order to maintain fluidic isolation. The opposite 

experimental setup was performed for the soma channel to control for non-

local effects. Live imaging of the axons in the axonal channel was performed 

at different time points (as indicated in the figures and/or figure legends) after 

addition of the drug on Axiovert 200M microscope (Zeiss) under a 10x phase 

contrast lens.  
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Figure 7: Schematic representation of microfluidic devices.  (a) Two-

channel device. In these devices, neurons are plated into one of the lateral 

compartments (soma side) and extend their axons through 150 μm long 

microgrooves into the opposite compartment (axon side). (b) Three- 

channel device. DRG neurons are plated into the bottom compartment 

(somal side) and extend their axons into the top compartment (axon side) 

through two barriers of 500 μm long microgrooves and a 500 µm thick 

central chamber. In both cases, microgroove channels ensure total fluidic 

isolation of the axonal and somal compartments. 
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2.3 Axon degeneration assay 

(Chapter 3) 

2.3.1 DRG explants axotomy experiments 

Wild-type DRG axons were cut around the cell bodies using a disposable 

scalpel under a dissection microscope [Figure 8]. Emetine (Sigma-Aldrich) at 

10 µM was administered immediately after axotomy. The time of pre-

incubation and the concentrations used for every experiment are indicated in 

the figures and/or figure legends. 

 

 

2.3.2 Acquisition of phase contrast/bright field images and quantification 

of axon degeneration 

Phase contrast/bright field images were acquired under a 10x objective of a 

widefield fluorescence microscope (Axiovert 200M, Zeiss), coupled to a CCD 

camera (Photometrics CoolSnap MYO) and Micro-Manager software 1.4.21 

(Stuurman et al., 2010). To measure the axon degeneration index, an ImageJ 

Figure 8: Schematic representation of an axotomy experiment.  
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plugin was used (Schneider et al., 2012) which calculates the ratio of 

fragmented axonal area over total axonal area after binarisation of the pictures 

and subtraction of the background (Figure 9 and Sasaki et al., 2009). Axons that 

detached from the dish were considered completely degenerated and scored 

as 1. 

 

2.4 Primary mouse cortical cultures 

(Chapter 4 and 5)  

C57/BL6 mouse embryos at E16.5 stage of development were culled and their 

brains removed. The brain cortices were dissected and the meninges separated 

under a dissection microscope. The tissue was further incubated in Hanks 

Balanced Salt Solution (HBSS, Ca2+ and Mg2+-free; Gibco) with 1mg/ml trypsin 

and 5 mg/ml DNase I (Sigma-Aldrich) at 37°C for 30’. Following the addition 

of 0.05% (v/v) soybean trypsin inhibitor (Sigma-Aldrich), the tissue was 

mechanically dissociated in Neurobasal media (Invitrogen) supplemented 

with 1X GlutaMax and 2% B-27 (Gibco).  

Figure 9: Quantitative axon degeneration assay. 

Representative pictures of original images, intact and 

fragmented masks images from intact and degenerated DRG 

axons. 
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2.4.1 Primary cortical cultures 

Following mechanic trituration of the digested tissue, dissociated neurons 

were resuspended in supplemented Neurobasal media to a final cell density 

of 10x106 cells/mL. For functional assays and RNA extraction, neurons were 

plated at a final seeding density of 1.75x105 cells/cm2 in 6-well plates (Corning) 

with or without 22x22mm glass coverslips (Menzel Glaser) and incubated at 

37°C, 5% CO2. Glass coverslips or 6-well plates were previously coated with 50 

µg/ml poly-L-ornithine (PLO; Sigma-Aldrich) and washed twice with sterile 

water. For experiments that required over 7 days in culture, media was 

replenished with ¼ of its volume every 2-3 days. 

 

2.4.2 Primary cortical neurons in compartmentalised microfluidic 

chambers 

Primary cortical neurons were cultured for 5 d in two-channel-microfluidic 

devices (SND150; Xona Microfluidics) [Figure 7a]. The devices were prepared 

as described above and mounted onto PLO-coated 35mm culture dishes 

(Nunc, Thermo Fisher Scientific) and both channels equilibrated for 1 h with 

supplemented Neurobasal media. Following collection of excess media from 

the devices’ reservoirs, cortical neurons were added onto to the designated 

somal channel at a seeding density of 4x106 cells/ml and incubated for 30’ 

(37°C, 5% CO2) to allow for cell attachment. The devices’ reservoirs were then 

topped up with supplemented Neurobasal media and incubated at 37°C, 5% 

CO2. Axons were allowed to extend and cross the microgrooves to the axonal 

channel. Functional experiments were performed after 5-6 days in vitro.  
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2.5 MicroRNAs functional analysis tools  

(Chapter 4 and 5)  

In order to investigate microRNAs functionals mechanism, and specifically 

miR-26a with regards to axon development, I used commercially available 

miRNA mimics and inhibitors (miRCURY LNA miRNA Mimics and 

Inhibitors, Qiagen), a tool widely used in the field and in our laboratory 

(Dajas-Bailador et al., 2012; Garcez et al., 2016). These miRNA mimics and 

inhibitors are oligonucleotides that contain locked nucleic acid monomers, in 

which the ribose moiety is modified with an extra bridge connecting the 2' 

oxygen and 4' carbon that “locks” the ribose in a rigid conformation, 

improving their binding specificity and making them resistant to nuclease 

degradation (Kaur et al., 2006).  

miRNA mimics  

Mimics are designed to “mimic” the natural activity of endogenous miRNAs 

They are characterised by three RNA-LNA strands: one strand is an 

unmodified RNA strand (guide strand) bearing a sequence identical to the 

endogenous mature miRNA of interested, whilst the passenger strand is 

divided into two locked nucleic acids (LNA)-enhanced RNA strands. The 

segmented nature of the passenger strand ensures that only the miRNA strand 

is loaded into the RNA-induced silencing complex (RISC) with no resulting 

miRNA activity from the two complementary passenger strands (Bramsen et 

al., 2007).  

miRNA inhibitors 

miRNA silencing was instead achieved using miRNA inhibitors, which are 

antisense oligonucleotides bearing a complementary sequence of a specific 

miRNA. When introduced into the cells, miRNA inhibitors strongly bind to 
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and sequester the endogenous miRNA of interest, leading to the blocking of 

normal miRNA-mediated activity (Naguibneva et al., 2006).  

miRNA power-inhibitors 

In this work (chapter 5) I also used cell-permeable miRNA inhibitors that 

incorporate phosphorothioate modifications to their LNA backbone 

(miRCURY LNA miRNA Power inhibitors, Qiagen) which markedly 

improves their stability in culture and a transfection-free incorporation into 

the cell.  

 

2.6 DNA constructs and oligos  

(Chapter 4) 

For the pcDNA-GSK3β and pcDNA-PTEN constructs, both GSK3β and PTEN 

cDNAs were PCR-amplified from a replication construct (pMD18-TSimple 

(Sino Biological) and pCMV-Sport6 respectively (Source Biosciences) with 

primers containing the appropriate restriction sites: GSK3β fwd – 5’ CTC CAT 

TGG CTA GCT ATG TCG GGG CGA CCG AGA ACC TCC TT 3’; GSK3β rev 

– 5’ GCG GTC TCT AGA TCA GGT GGA GTT GGA AGC TGA TGC AGA 

AGC 3’; PTEN fwd - 5’ CTC CAT TGG GAT CCA TGA CAG CCA TCA AAG 

AG 3’; PTEN rev – 5’ GCG GTC TCT AGA TCA GAC TTT TGT AAT TTG TGA 

ATG 3’. The amplicons were cloned into pcDNA3.1/Zeo(+) vector (a kind gift 

from Dr Simon Dawson, University of Nottingham), using Nhe/XbaI (GSK3β) 

and BamHI/XbaI (PTEN) restriction sites. The miRCURY LNA miRNA 

Inhibitor Control (sequence: TAACACGTCTATACGCCCA; catalogue 

number YI00199006) and the negative control miRCURY LNA miRNA mimic 

control (sequence: UCACCGGGUGUAAAUCAGCUUG; catalogue number 

YM00479902) were from Qiagen, as well as the miR-26a-5p miRCURY LNA 

miRNA Inhibitor (sequence: GCCTATCCTGGATTACTTGA; catalogue 
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number YI04102930) and the miR-26a-5p miRCURY LNA miRNA Mimic 

(sequence: UUCAAGUAAUCCAGGAUAGGCU; catalogue number 

YM00471417).  The miRCURY LNA miRNA Power Inhibitor Control 

(catalogue number YI00199006-DDA) and the miR-26a-5p miRCURY LNA 

miRNA Power Inhibitor (catalogue number YI04102930-DDA) were also 

obtained from Qiagen. 

 

2.7 Neuronal incorporation of microRNAs 

(Chapter 4)  

Neuronal transfections with miRCURY LNA miRNA Mimics and Inhibitors 

were performed 4 h, 24 h or 5 d after plating using 5 µL/well of Lipofectamine 

2000 reagent and 250 µl/well of Opti-MEM reduced serum media (Thermo 

Fisher Scientific), in accordance to manufacturer instructions. miRCURY LNA 

microRNA inhibitor [50 nM], inhibitor control [50 nM], mimic [20 nM] and 

mimic control [20 nM] of miR-26a (all Qiagen) were used for transfections. In 

all cases, 1 µg pmaxFP-Green-C (Lonza) was co-transfected for visualisation 

of transfected neurons. In protein overexpression studies, neurons were 

transfected with 1 µg pmaxGFP (hereafter referred to as GFP) and either 1 µg 

of pcDNA3.1/Zeo (+) or 1 µg of pcDNA-GSK-3β. 

Other concentrations for both miR-26a inhibitor and mimic were also 

investigated alongside the concentrations stated above, such as microRNA 

inhibitor [25 nM, 75 nM] and mimic [10 nM, 50 nM]. Among these, both miR-

26a inhibitor [75 nM] and miR-26a mimic [50 nM] had a cytotoxic effect, 

whereas the lowest concentrations tested for both miR-26a inhibitor and 

mimic resulted in a lower effect compared to the concentrations chosen for all 

the experiments. [Figure 47].  
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To rescue the effects of miR-26a inhibition, cortical neurons were co-

transfected with 1 µg GFP and LNA inhibitor control or LNA miR-26a 

inhibitor 50 nM, whilst the GSK-3 inhibitor SB415286 (Tocris) was used at a 

concentration of 1 µM (Dajas-Bailador et al., 2014) and added to the culture 24 

h after plating. The same inhibitor was also tested at a concentration of 10 µM 

(Jiang et al., 2005) but since its effect with regards to axon length was the same 

as that of lower concentration [Figure 48], for consistency with previously 

published work in our lab (Dajas-Bailador et al., 2014) the lowest concentration 

was chosen to carry out all the experiments.  

In all the experiments, cortical neurons were fixed in 4% paraformaldehyde 72 

h after transfection and washed in PBS before direct visualisation and/or 

immunostaining. Microscope imaging was done using a widefield 

fluorescence microscope (Axiovert 200M, Zeiss), coupled to a CCD camera 

(Photometrics CoolSnap MYO) and Micro-Manager software (Stuurman et al., 

2010).  

 

2.8 RNA extraction  

(Chapters 4 and 5) 

In standard cultures, cells were seeded at a density of 1.75x105/cm2 in 6-well 

plates and cultured as described above. Total RNA was isolated from cortical 

cultures at 4h, 24h after plating and then at day in vitro (DIV) 5 and 9 by the 

phenol-chloroform extraction method using TRIzol Reagent (Invitrogen) for 

extraction of total RNA, in accordance to manufacturer’s instructions. Briefly, 

culture media was removed, the cells washed with ice cold PBS 

(ThermoFisher), and then scraped and collected in 250 µl of TRIzol® Reagent 

(Fisher Scientific) per well into LoBind tubes (Eppendorf), homogenised and 

mixed with 1/5 volume of chloroform (ThermoFisher). Following 

centrifugation at 12000x g/ 4oC for 15 min, the aqueous phase was mixed with 
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equal volume of isopropanol (ThermoFisher) and incubated at -20oC 

overnight. Total RNA was precipitated at 12000x g/ 4oC for 30 min and the 

pellet further washed twice in 75 % (v/v) ethanol (12000x g/ 4oC, for 30 min; 

ThermoFisher). RNA pellet was left to dry until gel-like appearance and 

resuspended in Hyclone nuclease-free water (GE Healthcare). 

Axonal RNA from microfluidic cultures was obtained following the procedure 

described in (Garcez et al., 2016) with few modifications. Microfluidic cortical 

cultures were grown for 8 d, when the average dendrite length is ~40% lower 

than the 150 µm microgrooves and Map2 (Microtubule-associated protein 2) 

staining shows no contamination by dendrite projections [Figure 10]. Device 

channels were washed twice with PBS and 20 µL of TRIzol was added to each 

reservoir of the axonal channel and incubated for 2 min at room temperature, 

while 100 µL PBS was kept in the soma reservoirs to prevent contamination 

from cell body RNA. Following collection of axonal fractions, the somal 

fraction was obtained in the same manner. Fractions from 40-50 devices were 

collected for each independent experiment and total RNA was extracted as 

described above. All steps were conducted in an RNAse-free environment, 

using nuclease-free tubes and reagents, filtered pipette tips and, where 

adequate, on ice to minimise the rapid RNAse-dependant degradation of the 

samples. All materials, equipment and surfaces were decontaminated with 

RNAZap solution (Sigma) before commencing the procedure.  
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Figure 10: MAP2 staining in microfluidic chamber. 

Representative images of cortical neurons cultured in 

microfluidic chambers for 8 days and immunolabelled 

with acetylated tubulin (Cambray-Deakin and Burgo, 

1987) and MAP2, used as axonal and dendritic marker 

respectively. The panel shows that only axons extend 

through microgrooves and are able to reach the axonal 

compartment. Dendrites (MAP2 positive) are restricted 

to the somal compartment, as they are on average ~60 

µm shorter than the 150‑μm‑long microgrooves. In our 

study the average dendrite length was 91.53 ± 2.7 µm. 
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2.9 Quantification by real-time qPCR 

(Chapters 4 and 5) 

2.9.1 miRNA qPCR 

cDNA was synthesised from mature miRNAs using the miRCURY LNA™ 

Universal cDNA synthesis kit (Qiagen, UK) as per manufacturer’s 

instructions, using 10 ng of total RNA. For each timepoint 5 biological samples 

were run in duplicate using the following miRCURY LNA™ (Qiagen, UK) 

primers [Table 1]. 

 

 

 

 

 

 

 

 

qPCR was undertaken using the ExiLENT SYBR® Green master mix kit 

(Qiagen, UK), and the Applied Biosystems Step One Plus thermocycler was 

used in standard mode with cycling parameters recommended by Qiagen. 

Data was acquired using Applied Biosystems SDS2.3 programme. Passive 

reference dye ROX™ (Fisher Scientific - UK Ltd) was included in all reactions. 

Expression of miR-26a-5p was analysed by relative quantification using the 

comparative Ct method (2-ΔΔCt). The choice of reference miRNA genes was 

advised by pilot the RT-qPCR studies previously conducted in the lab and the 

geometric mean of miR-100-5p, miR-128-3p, miR-134-5p, miR-434-3p and 

 

mmu-miR-26a-5p 5’UUCAAGUAAUCCAGGAUAGGCU 

mmu-miR-100-5p 5’AACCCGUAGAUCCGAACUUGUG 

mmu-miR-128-3p 5’UCACAGUGAACCGGUCUCUUU 

mmu-miR-134-5p 5’UGUGACUGGUUGACCAGAGGGG 

mmu-miR-434-3p 5’UUUGAACCAUCACUCGACUCCU 

mmu-let-7a-5p 5’UGAGGUAGUAGGUUGUAUAGUU 

Table 1: microRNA primers 
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let7a-5p was used as reference due to their stable expression across 

developmental stages (Bustin et al., 2009) and miR-26a-5p levels expressed as 

relative expression to 4 h.  miRNAs used for endogenous reference were 

selected in accordance to previous in-house qPCR studies on the development 

of cortical neurons. Data are expressed as fold change to 4 h +/- SEM.  

 

2.9.2 mRNA qPCR 

cDNA was synthesised from 100ng total RNA using SuperScript IV™ and 

Oligo(dT)20 primer (Invitrogen) as per manufacturer’s instructions. Q-PCR 

was undertaken using the PowerUp™ SYBR™ Green (Applied Biosystems) 

using 1.5 µL cDNA per replicate and 400 nM primers. PCR amplification was 

carried out in the same thermocycling system using the fast mode cycling 

parameters recommended by Applied Biosystems. For each time point 5 

biological samples were run in duplicate using primers for GSK3β (Sino 

Biological Inc.) and the reference genes GAPDH (F- 5’ 

CTGCACCACCAACTGCTTAG 3’ and R- 5’ ACAGTCTTCTGGGTGGCAGT 

3’), UBE2 (F- 5’ TGCCTGAGATTGCTCGGATCT 3’ and R- 5’ 

TCGCATACTTCTGAGTCCATTCC 3’) and ROX™ (Fisher Scientific). 

Expression of GSK3β was analysed by relative quantification using the 

comparative Ct method (2-ΔΔCt). The geometric mean of GAPDH and UBE2 

was used as reference due to their stable expression across developmental 

stages and GSK3β levels expressed as relative expression to 4 h. Data are 

expressed as fold change to 4 h +/- SEM.   
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2.10 Immunofluorescence 

(Chapters 4 and 5) 

Cortical neurons cultured on coverslips or microfluidic devices were fixed 

using 4% paraformaldehyde (w/v) (ThermoFisher) for 30’, washed with 10 

mM Glycine in PBS, permeabilised in PBS/Glycine-Triton (1x PBS, 10 mM 

glycine, 0.2% Triton X-100; Sigma),blocked with 3% bovine serum albumin in 

PBS (BSA; Sigma) and further incubated with the following primary 

antibodies overnight: anti-JIP1 (1:100, Santa Cruz) anti-GSK-3β (1:100, BD 

Biosciences), anti-acetylated tubulin (1:300, Sigma-Aldrich), anti-MAP2 (1:100; 

Abcam) and anti-βIII tubulin (1:100; Abcam). Following PBS-Triton 0.1% 

washes, cells were incubated with secondary antibodies (Alexa Fluor 488 and 

568; 1:300 Molecular Probes) and mounted with Vectashield Hardset 

mounting media with Dapi (Vectorlabs). 

 

2.11 Data analysis 

(Chapters 4 and 5) 

Measurement of axons in primary cortical neurons. For quantification of axon 

length, an axon was defined as a neurite that was at least 3 times the length of 

any other neurite and measured  from the cell body to the distal extent of the 

central region of the growth cone using Fiji software [Figure 11] (Dajas-

Bailador et al., 2008; Schindelin et al., 2012). Data are expressed as percentages 

of respective controls (~300 axons measured for each condition from 4-6 

independent experiments). Data are expressed as mean +/- SEM.  
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Measurement of average neurites length. Neurite length was assessed by 

measuring the length from the cell body to the distal tip of all the projections 

in each GFP-positive cell. Data are expressed as percentages of respective 

controls (~700 projections measured for each condition from 4 independent 

experiments). Data are expressed as mean +/- SEM.   

Polarity assessment. The aforementioned criteria for the definition of axon was 

also used to define a neuron as a polarised cell. Neuronal polarisation in 

culture was then assessed by determining the percentage of polarised cells 

with respect to the total number GFP-positive cells. The data set of 5 

independent experiments was normalised to respective control and expressed 

as percentage of control (mean ± SEM). Multi polar neurons were identified as 

neurons bearing more than one axon, defined as a neurite with JIP1-positive 

tips (Dajas-Bailador et al., 2014, 2008; Deng et al., 2014; Fu and Holzbaur, 2013). 

The data set of 5 individual experiments was normalised to respective control 

and expressed as percentage of control (mean ± SEM). 

Quantification of fluorescence signal. Neurons stained for GSK3β were imaged at 

63x and images were further processed with Fiji software. Cell bodies and 

growth cones were manually selected and the area, mean grey value and 

integrated density were measured. In order to correct for background in each 

image, 3 empty areas were selected around every cell body/growth cone. Total 

Figure 11: Measurement of axonal projection in ImageJ. 
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cell fluorescence (C.F.) per cell was calculated as the measured integrated 

density corrected for background, according to the formula:  

C.F.= Integ.Density – [Area of cell body X Average (mean grey value of background)]. 

For quantification of endogenous GSK3β in culture, approximately 150 cell 

bodies and 75 growth cones were measured in each condition from 3 

independent experiments. Data was normalised to the average C.F. of the 

control expressed in percentage as mean ± SEM.  

Measurement of axon length in microfluidic cortical cultures. Cortical neurons 

seeded in microfluidic devices were cultured for 5-6 days to allow axons to 

extend through the microgrooves into the axonal channel. Cell-permeable 

Power inhibitor miR-26a or Power inhibitor control at 100 nM was added to 

the axon side of the microfluidic device at day 5. A difference of volume of 

~100 µl was maintained at all times between the soma and axonal channels in 

order to maintain fluidic isolation. Live imaging of the axons in the axonal 

channel was performed at different time points (0h, 24h and 48h) after addition 

of inhibitors on Axiovert 200M microscope (Zeiss) under a 10x phase contrast 

lens. To rescue the local effects of miR-26a inhibition, the axonal channel was 

treated with GSK3 inhibitor SB415286 at 1 μM together with the cell-permeable 

inhibitor of miR-26a-5p or Power inhibitor control at 100 nM. and live imaging 

of the axons in the axonal channel was performed at 0 h and 24 h after addition 

of drugs/inhibitors. In all the experiments, the length of the axons was 

measured in Fiji software by tracing at least ~125 axons in each condition from 

4 independent experiments; each axon was traced from the edge of 

microgrooves to the growth cone of the longest axonal branch [Figure 12]. 

Data for the different timepoints in each chamber was normalised to t 0 and 

expressed as a percent of respective controls (mean ±SEM).  
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Quantification of fluorescence signal in microfluidic cortical culture and disruption of 

axonal transport. To impair axonal transport, nocodazole (0.1 µM, Sigma-

Aldrich) was added 18 h after the addition of the cell-permeable miR-26a 

inhibitor. Following 6 h of nocodazole incubation (24 h in total after addition 

of miRNA inhibitors/controls), devices were removed, and neurons fixed and 

immunolabelled for GSK3β protein and βIII tubulin. During the protocol 

optimisation for the axonal transport impairment, I have titrated nocodazole 

effects to make sure axonal integrity was not affected in the experimental 

window to be tested , in agreement with previous studies using nocodazole as 

an inhibitor of retrograde transport (Twelvetrees et al., 2016). Moreover, use 

of mitotracker as a new experimental control to demonstrate how addition of 

100 nM nocodazole dramatically inhibits axonal transport in my cultures 

(Lucci et al., 2020). For quantification of endogenous GSK-3β levels, ~200 cell 

bodies and ~200 growth cones were measured in each condition from 4 

independent experiments. Data was normalised to the average C.F. of the 

control expressed in percentage as mean ± SEM.  

 

 

Figure 12: Measurement of axonal projections in 

microfluidic chambers in ImageJ. 
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2.12 Statistical analysis 

(Chapters 3, 4 and 5) 

In all statistical tests, “n” refers to the number of independent experimental 

repeats, which varied from 4-7 depending on experimental model (see specific 

section for details). Data analysis was done using Prism v7.0 (GraphPad 

Software) and all data groups shown are expressed as mean +/- SEM. The 

probability distribution of the data set was analysed before further statistical 

analysis (Shapiro–Wilk test). Statistical evaluation between two groups was 

performed using unpaired Student’s t-test. Analysis of more than 2 groups 

were carried out using ANOVA with Bonferroni post hoc analysis. Kruskal-

Wallis’ test followed by a Dunn’s multiple comparisons test was used for non-

parametric distributions. For all tests, p<0.05 was used as threshold for 

significant difference. For all tests P values are two-tailed. When less than 3 

experiments were performed, data are indicated as preliminary in the main 

text and no statistical analysis test was carried out. 
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3.1 Introduction  

As described in Chapter 1, axonally synthesised proteins are important for the 

spatially and temporally sensitive events that occur during development, 

including axon growth and guidance (Jung et al., 2012). Developing neurons 

face a challenge unique to their cellular identity, which is to successfully and 

accurately meet with their post-synaptic contacts. To do so, both central 

nervous system and peripheral nervous system neurons locally synthesise 

proteins in their axons as they knit their way to their targets (Batista and 

Hengst, 2016). Once the neuron has formed its synapse, constant work is still 

needed to mature and maintain the synapse both during the rest of 

development and throughout the life of the organism (Meems et al., 2006). This 

would suggest that given the complex polarised morphology, a tightly 

controlled level of protein synthesis must be sustained over the large 

cytoplasmic volume that compose the long axonal connections. 

Despite the evidence available for the local axonal synthesis of multiple 

proteins, many others appear to be synthesised only in the cell body and rely 

on axonal transport to reach their site of action in the axon or synapse (Cioni 

et al., 2018). This constant supply process is extremely demanding, and not 

surprisingly, any impairment affects axonal function or survival (all reviewed 

in De Vos, Grierson, Ackerley, & Miller, 2008).  

In this chapter, I will address the possibility that local synthesis in the axon of 

survival factors may contribute to regulate their levels in the axon and 

influence their long-term viability. In the next sections, I will discuss in more 

detail what is currently known about local protein translation in axonal 

survival, regeneration and neurodegenerative diseases and I will introduce 

NMNAT2 and SARM1 as axonal proteins involved in survival and pro-

degenerative processes respectively and their role in Wallerian degeneration.  
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3.1.1 Local protein synthesis in injury response  

As previously mentioned, the axonal mRNA population is really dynamic 

across the developmental stages and life span. After development, the 

quantity of rRNA and mRNA in axons decreases (Bassell et al., 1994; Hengst 

and Jaffrey, 2007), and so does the ability to regrow after axotomy (Gumy et 

al., 2010). Typically, CNS neurons show decreased regenerative potential as 

compared with PNS axons, as the latter are partially facilitated by some of the 

same locally translated proteins that help a developing neuron to find its 

synaptic target and establish connections (Deglincerti and Jaffrey, 2012; Verma 

et al., 2005). However, CNS axons are still capable of local synthesis (Shigeoka 

et al., 2016) and the effects of local translation following an injury are twofold, 

providing both the materials for axon regrowth and the proteins that act as 

retrograde signals, reporting on the status of the injury and subsequent 

recovery (Ben-Yaakov et al., 2012; Costa and Willis, 2018).  Local protein 

translation amplifies and accentuates nervous system-wide signals, 

facilitating communication between the axon-soma axis. Following axonal 

injury there is a complex and orchestrated response within the axon designed 

to generate a signal that allows the neuron to survive and ultimately 

regenerate (Cioni et al., 2018; Terenzio et al., 2018; Verma et al., 2005; Zheng et 

al., 2001). The signalling cascade induced by nerve injury has been extensively 

studied in peripheral axons and some of the locally synthesised proteins and 

signalling cascades have been uncovered (Gumy et al., 2010; Rishal and 

Fainzilber, 2010). An initial calcium wave triggers a first round of translation 

of several sensor mRNAs, forming a signalling complex that is retrogradely 

trafficked and influences transcription (Rishal and Fainzilber, 2014). Importin 

β, whose typical function is to facilitate nuclear import of nuclear localisation 

signal (NLS)-bearing proteins, is locally translated in the injury site and a core 

component of the injury signalling complex (Hanz et al., 2003). Its upregulation 
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leads to the formation of a NLS binding complex that associates with the motor 

protein dynein and travels retrogradely to the cell body (Hanz et al., 2003). 

Deleting axonal localisation sequence in the importin β1 transcript in mice 

causes a subcellular loss of both importin β1 mRNA and protein in axons, 

affects the transcriptional response, and delays functional recovery to nerve 

injury (Perry et al., 2012), confirming its significance in vivo.  

The local synthesis of transcription factors, such as signal transducer and 

activator of transcription 3 (STAT 3), has also been shown as a relevant 

mechanism in the retrograde communication from the periphery to the cell 

body, in this case leading to the mounting of an injury response (Ben-Yaakov 

et al., 2012). Overall, boosting protein synthesis appears to restore the 

regenerative potential of CNS axons (Park and He, 2008), and importantly, 

mRNAs and protein synthetic machinery managed to localise to regenerating 

mature CNS axons when they are provided with a growth supporting 

substrate (Kalinski et al., 2015). 

 

3.1.2 Local protein synthesis in neuronal survival and homeostasis 

Local translation might also contribute to axonal homeostasis and survival by 

ensuring a constant supply of functional mitochondria. In fact, considering the 

extensive axonal arborisation that some type of neurons have, such as 

nigrostriatal dopamine neurons that are capable of forming up to 245,000 

synapses (Matsuda et al., 2009), and given that mitochondria are enriched at 

synapses, the cell body might not be able to produce enough copies of nuclear-

encoded mitochondrial proteins at a rate to sustain a constant supply of axonal 

mitochondria (Court and Coleman, 2012; Schwarz, 2013). Moreover, any 

mutations that impair either mitochondrial function or transport lead to 

degeneration (Pease and Segal, 2014; Schwarz, 2013). To reinforce this 

hypothesis, rat superior cervical ganglia (SCG) axons contain several 
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mitochondrial mRNAs and suppression of axonal protein synthesis impairs 

mitochondrial membrane potential (Hillefors et al., 2007). mir-338 is also 

present in the axon, which is known to target COXIV (Aschrafi et al., 2008 and 

see Chapter 1). The mimicking of miR-338 downregulates COXIV and reduces 

both the mitochondrial oxygen consumption and ATP levels (Aschrafi et al., 

2008). Local protein translation may also guarantee a local pool of axon 

survival factors, such as neurotrophins. In fact, in vitro application of NGF 

induces the local synthesis of pro-survival transcription factors such as cAMP-

responsive element (CRE)-binding protein (CREB) and its activator myo-

inositol monophosphatase 1 (Impa-1) for retrograde transport, while its 

selective silencing decreased nuclear CREB activation and induced axonal 

degeneration (Andreassi et al., 2010). NGF application also triggers the axonal 

synthesis of the dynein regulators Lissencephaly-1 (Lis1) and p150Glued and 

thus mediates the transport of vesicles that are presumed to contribute to axon 

survival (Villarin et al., 2016). To reinforce this theory, local synthesis of Lys1 

was also shown to be necessary for the retrograde transport of a pro-apoptotic 

signal upon NGF- deprivation (Villarin et al., 2016). NGF application regulates 

transcription of the anti-apoptotic gene bcl-w with its consequent transport to 

the axon and local synthesis (Cosker et al., 2013). Loss of axonal bcl-w mRNA 

has recently been linked to neuropathy (Pease-Raissi et al., 2017). Since the use 

of protein synthesis inhibitors “nullify” the protective effects of neurotrophins, 

other axonal survival factors might be at play (T. Kim et al., 2009; Pease and 

Segal, 2014). A good candidate is nicotinamide nucleotide adenylyltransferase 

2 (NMNAT2), an essential axon survival factor with a half-life of only few 

hours (Gilley and Coleman, 2010). Importantly, even if NMNAT2 was 

transported at the fastest rate by axonal transport (1 µm per second), the 

protein would take 11.6 days to reach distal axon terminals in large mammals 
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(1 m away) (Maday et al., 2014). As a result, neurons may require different 

balances of transported vs. locally translated NMNAT2.  

The protective effects of NMNAT2 in axon degeneration is contrasted by the 

destruction program mediated by SARM1, which triggers a soma-

independent axon destruction program by counteracting Nmnat function 

(Gerdts et al., 2016) , and it is highly translated in vivo during the axon pruning 

phase of development, but not in adults (Shigeoka et al., 2016).  A possible 

explanation for this switch of the axonal translatome from a degenerative to a 

survival mode at the end of development is that while the developing axon 

might need components of axon degeneration pathways for selective branch 

pruning, adult axons would keep them at low levels to maintain long term 

connectivity (Shigeoka et al., 2016). The function of SARM1 will be discussed 

in more detail below. 

 

3.2 SARM1 

A genetic screening in Drosophila melanogaster revealed another important 

effector of the Wallerian degeneration pathway, a protein better known as 

Sterile α and TIR motif–containing protein 1 (SARM1 in mammals, dSARM in 

Drosophila). SARM1 is a Toll-like receptor (TLR) adaptor family member and 

plays a role in the innate immunity response (Carty et al., 2006; Mink et al., 

2001). Its suppression drastically delays degeneration in both PNS and CNS 

neurons and in both mice and Drosophila melanogaster (Osterloh et al., 2012). 

Moreover, the degree of protection obtained with SARM1/dSARM deletion 

after injury is similar to that of Wallerian degeneration mutant mouse 

(WLDs/NMNATs) (Gerdts et al., 2013; Gilley et al., 2017; Osterloh et al., 2012), 

mechanisms of which will be described in the next section. Sarm1-/- axons can 

also be protected from the toxicity caused by vincristine and NGF withdrawal 

(Gerdts et al., 2013). Mice lacking SARM1 are healthy and do not show any 
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sign of abnormality (Gilley et al., 2015), making SARM1 an really promising 

target for therapy and its mechanism of action is thus the source of intensive 

studies.  

Since both SARM1 and NMNAT2 loss trigger axon degeneration, it would be 

interesting to determine whether they are both members of a common 

pathway impinging on Wallerian degeneration, or if they act independently. 

A relatively recent study demonstrated that SARM1 could be acting 

downstream of NMNAT2 loss or in a parallel branch of a convergent pathway 

(Gilley et al., 2015; Loreto et al., 2015). Similar to the effects seen after expression 

of WLDS, SARM1 deficiency fully corrects axonal defects and perinatal 

lethality caused by NMNAT2 loss (Gilley et al., 2015). In fact, NMNAT2-

deficient embryos show truncation of peripheral nerve axons, leading to 

perinatal lethality (Gilley et al., 2013). On the other hand, double NMNAT2 

and SARM1 knock out mice are healthy into adulthood (Gilley et al., 2015). 

These results reinforce the presence of a strong crosstalk between SARM1 and 

NMNAT2 to regulate axon degeneration.  

SARM1 deletion ameliorates axonal damage in a model of traumatic brain 

injury (Henninger et al., 2016; Hill et al., 2016) and in a genome-wide 

association study, variants of SARM1 have been associated to Amyotrophic 

lateral sclerosis (ALS) (Fogh et al., 2014).  

 

3.3 NMNAT2 is a critical survival factor for axons 

Multiple mechanisms can control the health and homeostasis of axons 

throughout life and be part of distress/degenerative processes during aging. 

Both injury and disease induce axon degeneration by compromising 

maintenance mechanisms and promoting active self-destruction pathways. In 

this context, Wallerian degeneration, first described by the neurophysiologist 
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Augustus Waller in 1850, is defined as the degeneration of the axon distal to a 

site of physical injury (Waller, 1850). In this model, axon degeneration is 

initiated by an injury at a defined site/time and simultaneously affects all 

axons. Expression of the Wallerian degeneration slow (WLDS) mutant protein, 

a chimeric fusion of the nuclear NAD+ biosynthetic enzyme Nicotinamide 

Nucleotide Adenylyltransferase 1 (NMNAT1) and a fragment of the 

ubiquitination factor E4B (UBE4B) (Conforti et al., 2009), delays the Wallerian 

degeneration process (Waller, 1850) induced by numerous pathological insults 

(reviewed in Conforti, Gilley, & Coleman, 2014). WLDS is predominantly 

nuclear, reflecting the nuclear localisation of NMNAT1. This led to the 

suggestion that it has a nuclear axon-protective action (Araki et al., 2004), 

however, small amounts of WLDS are also present in axons, and multiple lines 

of evidence indicate that this is the location where WLDS acts to delay injury-

induced degeneration (Beirowski et al., 2009; Cohen et al., 2012; Conforti et al., 

2009).  

An interesting model to explain WLDS axonal protection has been proposed 

(Gilley and Coleman, 2010). When WLDS is present in the injured axon, it 

provides the enzymatic NAD synthesis capacity via its NMNAT1 activity, with 

a much longer half-life compared to NMNAT2, which is the cytosolic NMNAT 

isoform normally present in the axon. This action of WLDs substitutes for the 

rapid loss of endogenous NMNAT2 in the axon after injury, thus maintaining 

NMNAT activity for a prolonged period (Gilley et al., 2013).  

In support of this model, downregulation of NMNAT2 caused spontaneous 

degeneration of non-injured-axons, indicating that NMNAT2 acts as an 

endogenous survival factor (Gilley and Coleman, 2010). As far as it is known, 

NMNAT2 is synthesised in the cell bodies and constantly delivered to the axon 

and axon terminal by fast axonal transport. However, the short half-life of 

NMNAT2 means that when axons are injured or axonal transport is impeded, 
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its axonal levels quickly decrease, triggering degeneration. Neither nuclear 

NMNAT1 nor mitochondrial NMNAT3 can compensate for the loss of 

NMNAT2 (Gilley et al., 2013; Gilley and Coleman, 2010). To further support 

the role of this protein in axon survival, strong overexpression of the enzyme 

delays Wallerian degeneration in vitro, and this protective effect is dependent 

on its enzymatic activity (Yan et al., 2010). In addition, NMNAT2 is required 

for normal axon growth in embryos (Gilley et al., 2013).  

As a consequence of its very short half-life (around 4h) (Milde et al., 2013), any 

disruption in NMNAT2 axonal transport could result in spontaneous axon 

degeneration, raising the important question of how neurons are able to 

supply enough quantities of this enzyme without triggering degeneration.  

A possible explanation relies on the local synthesis of NMNAT2 in the axon. 

However, several large-scale studies in the past identified hundreds of axonal 

mRNAs but have so far failed to detect NMNAT2 mRNA (Gumy et al., 2011; 

Zivraj et al., 2010).  Only recently, NMNAT2 mRNA has been found in vivo in 

both sensory neuron axons (Dr. Jose Sotelo-Silveira, personal communication) 

and in RGC axons (Shigeoka et al., 2016), indicating a possible involvement of 

local translation in the more subtle regulation of local NMNAT2 levels.  

Despite the prediction of molecular mechanisms and these recent findings, the 

axonal synthesis of NMNAT2 has not received much attention likely due to 

the fact that cell body but not axonal protein synthesis is apparently required 

for axon survival (Gilley and Coleman, 2010). This indicates that the majority 

of the axonal NMNAT2 pool is supplied by the cell body, at least in vitro. 

Nonetheless, it is worth noting that the specific experiment in Gilley and 

Coleman (2010) did not monitor axonal survival for longer than 24 hours. 

Indeed, local transport seems unlikely to be the only mechanisms involved, 

especially in a long human peripheral nerve of one-meter length, with fast 
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axonal transport taking several days to arrive at the distal end (Spaulding and 

Burgess, 2017).  

 

3.4 MicroRNAs in axon degeneration and 

homeostasis 

Despite the growing number of studies demonstrating the importance of 

miRNAs in neuronal development (Rajman and Schratt, 2017; Swanger and 

Bassell, 2011) evidence for their role in axon degeneration and homeostasis has 

been largely missing (Aschrafi et al., 2008). High-throughput technologies, 

such as microarray and Next-Generation Sequencing (NGS), have depicted 

several deregulated miRNAs in different types of injuries and 

neurodegenerative disorders (Rajgor, 2018; Bhalala et al., 2013; Foggin et al., 

2019; Maciotta et al., 2013; Reddy et al., 2017), however only few investigations 

attempted to link those miRNAs-expression profiles to function of specific 

microRNAs in neurodegenerative disorders.  

An example comes from the well-known brain-enriched miR-9, which targets 

a number of proteins involved in Alzheimer’s disease (AD) pathogenesis 

pathways, including Sirtuin-1 (a protein involved in reducing amyloid beta -

Aβ- peptides and anti-aging) and Calcium/Calmodulin Dependent Protein 

Kinase Kinase 2 (CAMKK2) (Chang et al., 2014; Schonrock et al., 2012). 

Specifically, the latter is capable of phosphorylating Tau and its activity is 

higher in hippocampal neurons treated with Aβ peptides, leading to dendritic 

spine loss (Mairet-Coello et al., 2013), while over-expression of miR-9 can 

rescue this phenotype (Chang et al., 2014). In another study, miR-26b has been 

found to be upregulated in human post-mortem brains at early stages of AD 

and remains elevated during the disease progression (Absalon et al., 2013). 

Mechanistically, over-expression of miR-26b in rat primary cortical neurons 
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led to DNA replication and aberrant cell cycle entry via the targeting of 

Retinoblastoma protein (Rb1), with increased Tau phosphorylation and 

ultimately cell death (Absalon et al., 2013).  

After AD, Parkinson’s disease (PD) is the second most common 

neurodegenerative disorder and approximately 30% of PD cases are caused by 

mutation in the α-synuclein protein (α-SYN) (Capriotti and Terzakis, 2016). 

Interestingly, both miR-34b and miR-34c target α-SYN and their levels are 

downregulated in the brain of patients suffering from PD (Kabaria et al., 2015). 

Moreover, their suppression in human SH-SY5Y cells increased α-SYN levels 

and triggered aggregate formation (Kabaria et al., 2015). 

Very recently, both miR-181a/b have been involved in global regulation of 

mitochondrial by controlling a group of genes involved in their biogenesis, 

function and redox balance (Indrieri et al., 2019). Downregulation of these two 

miRNAs preserve mitochondrial homeostasis and ameliorates the phenotype 

of three different animal models of mitochondrial disease. (Indrieri et al., 2019).  

The studies described above are just representative examples and it is clear 

that much work remains to be done in order to elucidate and define the 

various roles of multiple miRNAs in pathological pathways, mainly due to 

multiple miRNA-target interaction.  However, the potential use of circulating 

miRNAs detected in biological fluids as early biomarkers of disease onset or 

their use as therapeutic targets may provide an important breakthrough in 

neurodegenerative disease therapies. 

 

3.5 Aims of the chapter 

Highly polarised cells like neurons must face the huge logistical challenge of 

sustaining homeostasis over the long distance that may separate the cell body 

from its distal axonal part (Spaulding and Burgess, 2017). Decades of research 
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have revealed axonal translation as an indispensable tool of axonal 

development and homeostasis (Sahoo et al., 2018). However, its impact in in 

vitro models of primary neurons, as well its spatiotemporal regulation remains 

poorly understood.  

In this context, the axonal trafficking dynamics of the NAD-synthetic enzyme 

NMNAT2 represents an interesting experimental model, given that it’s 

constant supply from the cell body into axons is required for axon 

maintenance (Gilley and Coleman, 2010), but its rapid turnover (Milde et al., 

2013) makes it unlikely that protein levels reach distal axons in sufficient 

quantities to ensure viability. Considering the observation that NMNAT2 

mRNA is present in the axon of peripheral neurons, and based on the evidence 

discussed above, the aims of this chapter are as follows: 

 

• To address the possibility that local protein synthesis can contribute 

towards axonal survival in vitro; 

 

• To test whether deletion of Sarm1 can impact axon survival upon local 

translation suppression; 

 

• To identify for microRNAs that could target NMNAT2 and regulate its 

expression in the axon 
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3.6 Results 

3.6.1 Somatic protein synthesis suppression induces axon degeneration 

 Towards the aim of addressing whether local protein synthesis is required for 

axonal survival in vitro, I first addressed one question: Is general protein 

synthesis suppression in intact primary neuronal cultures sufficient to trigger 

axon degeneration? In fact, my main hypothesis predicts that if protein 

synthesis is required for survival, blocking of protein translation is expected 

to trigger Wallerian-like degeneration even without injury, similar to that 

induced by blocking axonal transport (Figure 13 and Wang et al., 2001),  

 

To test this, I used DRG primary neuronal cultures, a widely used in vitro 

model in the field and in our laboratory. DRG neurons can either be cultured 

as explants or they can be dissociated into separate neuron cultures. In both 

conditions, DRG neurons extend long axons, hereafter referred as neurites (see 

Materials and Methods for additional details on this in vitro model). The first 

experimental approach was to inhibit all protein translation in DRGs explant 

cultures using emetine at 10 µM (Gilley and Coleman, 2010; Milde et al., 2013). 

Protein synthesis inhibition Control 

degeneration 

Figure 13: Diagram of the expected mechanism of action of global protein synthesis 

suppression in intact axons. 
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As expected and consistent with previous results (Gilley and Coleman, 2010), 

addition of 10 µM emetine to uninjured explants induced neurite degeneration 

by 24 h [Figure 14a-b], whilst neurites in control cultures continued to grow 

and appeared morphologically normal.  

 

 

Figure 14: Protein synthesis suppression induces rapid Wallerian-like degeneration of 

DRG neurites. Representative phase contrast images of distal uninjured neurites from 

wild-type (C57) mouse DRG explant cultures treated with H2O as control and 10 µM 

emetine as indicated. Images were captured at the times indicated on top. (b) Degeneration 

index was calculated from three fields per condition in 3 independent experiments. Bar 

graphs expressed as mean ± SEM; two-way ANOVA followed by Bonferroni post-hoc test: 

**: P≤0.01, ****: P≤0.0001, compared with untreated at the same time point. 

100 µm 
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Beyond the expected confirmation that global inhibition of protein synthesis 

leads to axon/neurite degeneration, the previous experimental approach does 

not discriminate between the effects caused by suppression of somal vs axonal 

protein synthesis. To directly test whether local protein translation in the axon 

contributes to axonal survival, I employed an axotomy model in which all the 

neurites were separated from their cell bodies by cutting around the explant 

with a scalpel (see methods and Di Stefano et al., 2015). Considering the effects 

seen in the previous experiment, and if it is true that axonal protein synthesis 

has a role in axon survival, then addition of emetine in injured neurites should 

trigger faster degeneration rate compared to injured controls [Figure 15].  

 

Unexpectedly, the inhibition of protein synthesis in the axotomised neurites 

did not accelerate the process of degeneration, but it was instead significantly 

slower than the control [Figure 16a-b], at least in the earlier timepoints. 

Although multiple factors might be at play in this process, a feasible 

explanation for the slower rate of degeneration [Figure 16b] is that blocking 

protein synthesis could inhibit the axonal translation of putative pro-

degenerative factors. This is an interesting proposition, as it suggests that local 

Protein synthesis inhibition Control 

Degeneration Faster degeneration rate 

Figure 15: Diagram of the expected mechanism of action of global protein synthesis 

suppression in the axotomy model. 
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synthesis in the axon might also have a role in active degeneration alongside 

survival in vitro. However, it also reflects a technical limitation of the cut/injury 

model, in which the presence of the physical injury, with the consequent 

induction of many simultaneous changes, might confuse the final 

observations. 

  

Figure 16: Protein synthesis suppression delays axon degeneration in axotomy model. 

Representative phase contrast images of distal injured neurites from wild-type (C57) mouse 

DRG explant cultures. Axons were cut and then treated as indicated immediately after cut. 

Images were acquired at the times indicated on top. (b) Degeneration index was calculated 

from three fields per condition in 3 independent experiments. Bar graphs expressed as 

mean ± SEM; two-way ANOVA followed by Bonferroni post-hoc test: **: P≤0.01, ****: P≤0.0001, 

compared with untreated at the same time point. 
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3.6.2 Neurite degenerates after suppression of protein synthesis in the cell 

body 

The fact that the previously employed experimental approach had some 

limitations, such as the need of axotomy to isolate the axons from the cell 

bodies, with the consequent trigger of axon degeneration pathways and 

induction of many simultaneous changes, prompted me to use 

compartmentalised cell cultures in microfluidic chambers. Their greatest 

advantage compared to other models or even other compartmentalised 

culture devices is the ability to fluidically isolate the axonal (axon side) from 

the somato-dendritic domain (somal side) of cultured neurons, exploiting 

differential hydrostatic pressure. This allows for selective manipulations 

either in the somas or in the axons, without affecting the other compartment 

(Figure 7 and Garcez et al., 2016; Taylor et al., 2005).  

 

So, in order to test directly whether axonal protein synthesis is required for 

axon survival, I cultured dissociated DRG neurons in two-channel 

1
5

0
 µ

m
 

Figure 17: Schematic representation of microfluidic 

devices. Two-channel device. In these devices, 

neurons are plated into one of the lateral 

compartments (soma side) and extend their axons 

through 150 μm long microgrooves into the opposite 

compartment (axon side). Microgroove channels 

ensure total fluidic isolation of the axonal and somal 

compartments. 
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microfluidic culture platforms (SND150, Figure 17) for 5 d and applied the 

same protein synthesis inhibitor as before in either the somal or axonal 

compartment of these microfluidic devices.  

Consistent with the previous experiment, in which cell bodies were exposed 

to the translation blocker, our initial experiments with standard two-channel 

microfluidic chambers showed that neurites degenerated in less than 24 h only 

when the inhibitor was applied to the compartment containing neuronal cell 

bodies and proximal neurites [Figure 18a]. However, translation inhibitor 

applied only to the axonal compartment caused no significant degeneration 

within this timeframe [Figure 18b]. Indeed, neurites continued to grow as well  

as in the control conditions. This is in agreement with previous findings using 

Campenot chambers, in which SCG neurites degenerated only when protein 

Figure 18: Neurites degenerate when suppression of protein synthesis 

is restricted to the cell body side of microfluidic chamber (a) 

Representative bright-field images from the axonal side of a 

microfluidic chambers in which 10 µM emetine was added to either 

the cell bodies side or (b) the axonal side. Phase-contrast images of the 

same field were acquired just after emetine addition (0 h) and 24 h 

later. For all the experiments, schematics of the microfluidic chambers 

(upper right corner) depict where drugs were added. Application to 

the axon and the cell body (CB) side is illustrated in green and blue, 

respectively. 
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synthesis inhibitors were applied to the compartment containing neuronal cell 

bodies and proximal neurites (Gilley and Coleman, 2010). Nonetheless, it is 

worth noting that even if no quantification of axon degeneration was carried 

out for this preliminary experiment, at 24 h after the drug addition, clear signs 

of degeneration started appearing in the most distal part of neurites of the 

axonal side of the devices [Figure 18], suggesting that if local translation is 

needed, tip of neurites farther from the cell bodies might be more sensitive to 

axonal transport impairment. 

 

3.6.3 Axonal protein synthesis suppression induces degeneration in triple 

chamber devices 

The fact that the distal part of neurites started degenerating at 24 h after 

treatment suggested that the farther the axonal tips are from the cell bodies, 

the more susceptible to local protein synthesis inhibition they must be.  To test 

this hypothesis, dissociated DRG neurons were cultured in three-channel 

chamber devices, a more sophisticated device that consists of one 500 µm wide 

central chamber and two lateral compartments/channels separated from each 

other by 500 µm microgroove barriers. This means that neurites are allowed 

1
.5

 m
m

 

Figure 19: Schematic representation of microfluidic three-channel 

devices. DRG neurons are plated into the bottom compartment 

(somal side) and extend their axons into the top compartment (axon 

side) through two barriers of 500 μm long microgrooves and a 500 

µm thick central chamber. In both cases, microgroove channels 

ensure total fluidic isolation of the axonal and somal compartments. 
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to extend up to 1.5 mm across the microgroove barriers and 

compartmentalised channels [Figure 19]. 

As described in the methods and in Figure 19 DRG neurons were seeded in 

one of the lateral compartments and their axons were let to grow long enough 

to pass through the first microgroove barrier, reaching the central 

compartment, usually within 2-3 days. After 5-6 days in cultures, axons also 

reach the further lateral compartment. In order to have a representative 

number of neurites, quantification of degeneration was performed by taking 4 

representative images of the central compartment for each technical replicate.  

 As previously observed in the two-channel device, when the addition of the 

protein synthesis inhibitor was restricted to the cell bodies compartment, 

significant axonal degeneration was observed within 24 h and almost 

complete loss at 72 h  [Figure 20a-b].   
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Figure 20: Somal protein synthesis suppression induces degeneration in triple chamber devices. 

(a) Representative phase-contrast images of the same field from the cell bodies (CB) channel, 

middle and third channel of three-channel microfluidic devices in which 10 µM emetine was 

added to the bottom somal compartment. Images were captured just after emetine addition (0 

h) and at the times indicated on top. (b) Degeneration index was calculated from three fields 

of the middle channel per condition in 3 independent experiments. For all the experiments, 

schematics of the microfluidic chambers (above the graphs) depict where drugs were added. 

Bar graphs expressed as mean ± SEM; two-way ANOVA followed by Bonferroni post-hoc test: 

**: P≤0.01, ***: P≤0.001, compared with untreated at the same time point.  
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When emetine was applied to the axonal compartments instead, distal neurites 

in the middle axonal compartment started degenerating after 24 h, until the 

degeneration was complete at 144 h after treatment [Figure 21a-c]. Overall, 

these results indicate that local translation is needed for the survival of long 

axonal projections.  

  

Figure 21: Axonal protein synthesis suppression induces degeneration in triple chamber devices. 

(a) Schematic representation of the experimental design. (b) Representative phase-contrast 

images of the same field from both the middle channel and third channel of three-channel 

microfluidic devices in which 10 µM emetine was added in both axonal compartments. (c) 

Degeneration index was calculated from three fields of the middle channel per condition in 3 

independent experiments. For all the experiments, schematics of the microfluidic chambers 

(above the graphs) depict where drugs were added. Bar graphs expressed as mean ± SEM; two-

way ANOVA followed by Bonferroni post-hoc test: ****: P≤0.0001, compared with untreated at 

the same time point. 
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3.6.4 Axonal protein synthesis suppression induces degeneration in 

Sarm1-/- DRG neurons 

As mentioned in the introduction to this chapter, axon survival/degeneration 

can be regulated through at least two main pathways: one involves the 

capacity to maintain axonal protein/energy homeostasis via NMNAT2, and the 

other requires the tight regulation of SARM1-dependent axon degeneration 

pathway. SARM1 appears to act downstream of NMNAT2 loss to promote 

axon degeneration, and its depletion is, to date, one of the most valuable tools 

for investigating Wallerian-like-degeneration mechanisms (Gilley et al., 2015; 

Loreto et al., 2015). Considering that a decrease in NMNAT2 levels (via 

inhibition of its local translation) could be one of the cellular mechanisms 

impacted by the addition of emetine to the axon compartment,  I therefore 

hypothesised whether the previously described protection provided by 

SARM1 deletion in axon degeneration triggered by NMNAT loss (Gilley et al., 

2017, 2015) could also work in the experimental model used here. To this 

purpose, I cultured dissociated DRG neurons from Sarm1-/- mice in triple-

channel-microfluidic devices as above, and then evaluated axon degeneration 

in the axonal channels. Pilot studies found a 24 h delay in the degeneration 

rate of Sarm1-/- axons compared to the experiments with wild-type DRG 

neurons, when emetine was added in the axonal side of microfluidic chambers 

[Figure 22a-c].  

Taken together, these preliminary data suggest that the degeneration of axons 

following proteins translation impairment can be delayed by regulators of 

Wallerian degeneration, but more experiments are needed to confirm this, 

alongside a direct comparison with wild-type DRG neurons and treatments in 

the somal side of compartmentalised devices for non-local effects.  
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3.6.5 In silico screening for NMNAT2 regulatory microRNAs 

After finding that the pharmacological inhibition of protein synthesis spatially 

restricted to the axonal compartment can induce axon degeneration and thus 

local protein synthesis contributes towards axonal survival, the next step was 

to identify the molecular mechanism underlying this process. In particular, the 

fact that the same protein synthesis suppression could delay the degeneration 

rate in absence of SARM1 [Figure 22b-c] and after injury [Figure 16c-d], made 

me speculate about the presence of a regulatory mechanism that is in turn 

controlling the NMNAT2:SARM1-axon degeneration-mediated pathway and 

its major players. Interestingly, a previous report and, more recently, a 

preliminary study conducted in our laboratory, showed that NMNAT2 is a 

developmentally regulated and low abundance neuronal protein, 

Figure 22: Loss of Sarm1 delays emetine-induced axon degeneration. (a) Schematic 

representation of the experimental design. (b) Representative phase-contrast images of the 

same field from the middle channel of three-channel microfluidic devices in which 10 µM 

emetine was added to the axonal compartment. Images were captured just after emetine 

addition (0 h) and at the times indicated on top. (c) Degeneration index was calculated from 

three fields of the middle channel per condition in 1 independent experiment. Bar graphs 

expressed as mean ± SEM. Preliminary data and no statistical analysis test was carried out. 



CHAPTER 3: Local protein translation in axonal survival 

103 

overexpression of which can be toxic to CNS neurons (data from Katerina 

Konstatoulaki, MRes student in the lab). This observation suggests that 

despite its well-known protective properties, endogenous protein levels must 

be tightly regulated (Mayer et al., 2010), in order to avoid potential detrimental 

effects. Overall, these results also provide a rationale for the evolutionary 

development of an axon survival protein (NMNAT2) with a very short half-

life (~4 hours), given that longer half-life would be initially a beneficial 

property of proteins that require long-distance transport along the axon. 

As mentioned in Chapter 1, since miRNAs are fundamental regulatory players 

in most biological processes, targeting at least 60% of the genes in the human 

genome (Zhang and Wang, 2017), it is plausible to speculate that NMNAT2 

could be one of them. For this reason, I carried out a standard bioinformatics 

workflow (Riffo-Campos et al., 2016) to identify potential microRNAs that 

could target NMNAT2 mRNA. First, two extensively used miRNA prediction 

tools, TargetScan (Agarwal et al., 2015) and DIANA-microT-CDS 

(Paraskevopoulou et al., 2013), were employed to create a computational 

prediction list of potential microRNAs targeting the NMNAT2 transcript. As 

it will be also described in the next chapter of this thesis, both prediction tools 

generate a list of miRNAs scored by strength of predicted NMNAT2-miRNA 

site interaction. Specifically, I found 692 miRNAs in TargetScan 

(TargetScanMouse 7.1) and 92 miRNAs in DIANA-microT-CDS (miTG score 

threshold >0.7). To increase the likelihood of identifying biologically valid 

miRNA candidates, I overlapped the two miRNA datasets and further 

narrowed it down by selecting only conserved sites for miRNA families in turn 

conserved among vertebrates and mammals. In this way I  obtained a subset 

of 11 candidates common to both TargetScan and Diana prediction analysis 

[Figure 23a-b]. Next step was to manually curate in NCBI the list of miRNAs 

for expression in nervous system and pinpoint candidates whose regulatory 
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activity has a function in axonal outgrowth, development and/or 

degeneration. This workflow resulted in a shortlist of 4 candidate miRNAs: 

mmu-miR-494-3p, mmu-miR-132-3p, mmu-miR-129-3p and mmu-miR-181a-

5p  [Table 2]. 

Future work now is needed to experimentally validate the interaction 

mRNA:miRNA in vitro through luciferase reporter assays, whereby the 

binding is probed by measuring the capacity of a candidate miRNA sequence 

to repress activity of luciferase linked to the mRNA binding site. In parallel, 

phenotype rescue experiments carried out by re-expressing the targeted gene 

product alongside with the selected miRNA can provide a further 

confirmation of the specificity of the miRNA activity (Cullen, 2006).  

 

 

11 

microRNAs 

a 

b 

Figure 23: microRNAs predicted to target NMNAT2. Venn diagram representing the number of 

common microRNAs predicted to target NMNAT2 between TargetScan and DIANA micro-T-

CDS computational lists. (b) miRNA target sites in the NMNAT2 3’UTR sequence predicted 

using TargetScan. 
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Table 2: List of microRNAs predicted to target NMNAT2. 

  

 

  

miRNAs  Position in the 3’UTR seed match 

miR-185-5p 66-72 7mer-m8 

miR-132-3p 101-107 7mer-m8 

miR-212-3p 101-107 7mer-m8 

miR-877-5p 198-204 7mer-m8 

miR-129-3p 346-353 8mer 

miR-181a-5p 2591-2598 8mer 

miR-493-5p 2594-2600 7mer-m8 

miR-1197-3p 3263-3270 8mer 

miR-203-3p.1 3484-3490 7mer-m8 

miR-203-3p.2 3484-3490 7mer-1A 

miR-494-3p 3557-3564 8mer 

miR-653-5p 3558-3565 8mer 
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3.7 Discussion 

Local mRNA translation is widely used to maintain subcellular autonomy in 

both axons and dendrites (Bellon et al., 2017; Dajas-Bailador et al., 2012; Jung et 

al., 2012), suggesting that this mechanism might also contribute to the 

maintenance of the steady state of the local proteome in the distal axons (Holt 

et al., 2019). The work presented in this chapter focuses on determining 

whether local protein synthesis in the axon is needed to maintain axonal 

homeostasis and survival in primary DRG neurons. To this purpose, I 

combined the use of protein synthesis inhibitor along with an axotomy model 

first, and then with microfluidic compartmentalised devices. Our data shows 

that inhibition of protein translation restricted to the axonal compartment of 

microfluidic chambers triggers axon degeneration in mouse sensory neurons 

and that this process might be delayed after deletion of SARM1. Next, I 

attempted to dissect the molecular mechanisms underlying this process by 

investigating the possibility of a NMNAT2 post-transcriptional regulatory 

mechanism mediated by microRNAs. 

Since axon requires local protein synthesis to maintain and control its function 

(Cioni et al., 2018), it is plausible to think that axons severed from their cell 

bodies will also synthesise proteins to counteract the potential effects of 

Wallerian-like degeneration and inhibition of translation in axons would be 

thus expected to accelerate the degeneration rate. However, our findings with 

axotomised neurites revealed an unforeseen outcome in which protein 

synthesis suppression did not produced such a degeneration-promoting 

effect, at least at early stages of the experiment but it rather had a protective 

role. As already hypothesised in the results section, a possible explanation for 

the observed axonal protection window might lie in the broad-spectrum 

consequences of inhibiting protein synthesis as a whole. Only one 

concentration of emetine was tested for consistency with previously published 
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data (Gilley and Coleman, 2010), but there is the possibility that other 

concentrations may provide a more tailored inhibition of protein translation. 

Moreover, the use of leucine incorporation assays would be needed to confirm 

and determine the level of protein synthesis inhibition.  In fact, it is reasonable 

to speculate that alongside the suppression of putative axon survival factors, 

repression on pro-degenerative factors is also at stake and thereby the 

prevention of degeneration-activating signals.  

In this context, a good candidate as pro-degenerative factor might be SARM1. 

In effect SARM1 is an essential component of the axon degeneration 

mechanism, and a defining molecule in this program, whose activation 

triggers an irreversible commitment to axon destruction (Gerdts et al., 2013; 

Osterloh et al., 2012). Moreover, SARM1 activation seems to occur within the 

first 4 hours upon injury in vitro (Gerdts et al., 2016, 2013) and this is in line 

with the later degeneration observed in our axotomy experiments. To support 

this hypothesis, not only its depletion but also the small interfering RNA 

(siRNA)-mediated inhibition of SARM1 can attenuate Wallerian-Like 

Degeneration of RGC axons (Massoll et al., 2013). The next crucial step would 

be identifying the signal that triggers SARM1 activation. As mentioned in the 

introductory section of this chapter, relatively recent findings have placed 

SARM1 downstream of NMNAT2 loss-dependent degeneration (Gilley et al., 

2015). NMNAT2 may represent a “survival factor” whose depletion can 

trigger the axon destruction cascade, as knockdown of NMNAT2 in cultured 

neurons is sufficient to cause axon degeneration in the absence of injury (Gilley 

and Coleman, 2010). The tight link between positive and negative axon 

stability mechanisms, exemplified by NMNAT2 and SARM1 respectively, 

may then ensure that in healthy axons, degeneration signalling is closely 

maintained in an “off” state, thus preventing spontaneous axon degeneration. 

This relationship also reflects the difficulty in standardising interpretation of 
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the axotomy approach, reinforcing the need to dissect the effects caused by 

disruption of axon survival from degeneration.  

An experimental challenge in demonstrating the role of local translation in 

neurons is in fact the need to differentiate local translation in the axon from 

somatic translation with protein transport to distal axonal parts (Holt et al., 

2019). Recent advances in cell culture technologies has allowed to 

morphologically and functionally separate axons from their cell bodies (Dajas-

Bailador et al., 2012; Garcez et al., 2016; Hengst et al., 2009; Taylor et al., 2005), 

and thus provide experimental models to study local mRNA translation in 

axons. Previous studies have in fact attempted to test whether a critical axon 

survival factor(s) has to be synthesised and delivered from cell bodies by using 

compartmentalised SCG cultures with Campenot chambers, suggesting that 

somal but not axonal protein synthesis is the only apparent requirement for 

axon survival in vitro (Gilley and Coleman, 2010). However, as already 

mentioned in the introduction, Gilley and colleagues monitored the effects of 

axon translation inhibition for only 24 h and over a distance of 150 µm. In our 

experiments using three-channel microfluidic chambers we observed a later 

effect, in which more distal neurites start undergoing degeneration. In fact, it 

is tempting to hypothesise that the longest axons, may be the most reliant on 

mRNA transport and local translation for homeostasis. Confirmation of this 

hypothesis was provided by blocking axonal protein synthesis using 

microfluidic three-channel devices. In this experimental paradigm, neurites 

could extend themselves up to 2 mm and, as predicted, more distal neurites 

started degenerating after 24 h post translation inhibition in axons. This is an 

important observation, at it suggests a physiological significance of axonal 

translation in nervous system maintenance. Of note, evidence of 

neurodegeneration as a result of dysregulation of mRNA transport is found 

with mutations in the RNA binding protein Survival of Motor Neuron 1 
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(SMN1), which cause spinal muscular atrophy (E. T. Wang et al., 2016). More 

recently, a really elegant work has described how axonal RNAs are co-

transported with late endosomes, and suggests that late endosomes function 

as platforms for local synthesis of proteins responsible for axonal integrity and 

survival (Cioni et al., 2019). Interestingly, disruption of endosomal RNA 

association triggered dysfunction within mitochondria (Cioni et al., 2019).  

Among multiple interconnected cellular mechanisms, two cellular processes 

might be key in axon survival: the maintenance of a healthy supply of 

functional mitochondria (Cosker et al., 2016; Pease and Segal, 2014) and the 

inhibition of a destruction program mediated by SARM1 (Gerdts et al., 2015; 

Gilley et al., 2017, 2015).  Whilst both mechanisms are at play after axon injury 

(Gerdts et al., 2016; Loreto et al., 2015), our preliminary study in which protein 

synthesis was suppressed in the axons of Sarm1-/- mice initially suggested only 

a partial contribution to axon survival from this player. In fact, other effectors 

might be operating upstream to counteract the absence of SARM1-mediated 

protection, in a process that also likely requires local axon translation. As 

before, considering its role as gatekeeper of axonal survival, one of the players 

might be NMNAT2. 

In this scenario, even if it has not been addressed directly, the axonal 

trafficking dynamics of the NAD-synthesising enzyme NMNAT2 represents a 

challenging and interesting open question. As said in the introductory section 

of this chapter, NMNAT2 is critical for axon survival in PNS primary cultures 

and its depletion may contribute to axon degeneration in a variety of 

neurodegenerative disorders (Conforti et al., 2014; Gilley and Coleman, 2010). 

On the other hand, this enzyme is also actively transported along the axon, 

but, due to a short half-life of only 4 h (Milde et al., 2013), its levels in cut axons 

drop prior to any visible sign of fragmentation, suggesting it may be a trigger 

for axon degeneration.  
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How neurons manage to supply enough copies of extremely labile NMNAT2 

into axons, in order to avoid spontaneous axon degeneration? The scale of the 

problem becomes even more significant in human peripheral nerves that can 

be one-meter long, with fast axonal transport taking several days to arrive at 

the distal end (Holt et al., 2019). Data presented in our study showed that 

blocking translation exclusively in the axonal compartment only triggers 

degeneration at 24 h, and not within the precise timeframe of the NMNAT2 

half-life in vitro. A possibility that has not been addressed so far is that 

NMNAT2 turnover might be faster in axons after cut. A longer half-life in 

uninjured axons would allow sufficient copies of NMNAT2 to reach the distal 

ends of axons and so ensuring axon maintenance.  In this scenario, the local 

synthesis of this enzyme in the axon might constitute an additional mechanism 

of action that should be considered. We have recently obtained data from RNA 

extracted from sciatic nerve of adult rats, where NMNAT2 RNA was detected 

in vivo in axons (collaboration with Sotelo-Silveira lab at the IIBCE Institute, 

Uruguay). Thus, the potential for locally translated NMNAT2 in the axon 

constitutes a tantalising possibility that has not been previously investigated 

and requires further consideration. Moreover, potential off-target effects 

related to the use of a protein synthesis inhibitor in this study need to be 

contemplated, whereas a more selective silencing of NMNAT2 in the axon, by 

means of a cell-permeable siRNA technology might be a more direct approach.  

Whilst NMNAT2 neuroprotective activity has been largely investigated in the 

peripheral nervous system, its role in the central nervous system is still largely 

unexplored. Mice lacking NMNAT2 die at birth with severe axon defects in 

the CNS (Gilley et al., 2013), but, paradoxically, Mayer and co-workers found 

that overexpression of the exogenous enzyme was toxic to primary cortical 

neurons and led to massive cell death (Mayer et al., 2010). This is also in 

agreement with recent results in our lab, where over-expression of NMNAT2 
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resulted to be toxic in mouse primary cortical neurons. Whilst these data may 

seem contradictory with its role in peripheral axons, they essentially support 

a scenario in which NMNAT2 is tightly regulated and any impairment on its 

levels (either up or down) would lead to harmful outcomes for the cell.  

NMNAT2 is also axonally transported on Golgi-derived vesicles, to which it 

is anchored by palmitoylation, but surprisingly, its protective efficacy is 

greatly increased if it is detached from these vesicles (Milde, 2013) through a 

mechanism of reduction of ubiquitin-proteasome mediated degradation. More 

recently, the pharmacological inhibition of the mitogen-activated protein 

kinase kinase kinases (MAP3Ks) dual leucine zipper kinase (DLK) and leucine 

zipper kinase (LZK) increased NMNAT2 abundance and protected axons from 

injury-induced degeneration (Summers et al., 2018). Mechanistically, MAPK 

signalling selectively promoted degradation of palmitoylated NMNAT2, 

suggesting that this lipid modification is a component of a broader strategy for 

regulating protein degradation of neuronal proteins. (Summers et al., 2018). 

So, as another option, post-translational modifications could target NMNAT2 

to multiple vesicle sub-populations with different outcomes on its half-life, 

reinforcing the need of fine-tuning the regulation of this protein. 

 

microRNAs and NMNAT2: the need for precise regulation of protein 

expression levels 

Considering the pivotal role of miRNAs in regulating almost every aspect of 

central nervous system function (Fiore et al., 2011), it is somehow surprising 

that only few investigations attempted to link miRNAs-mediated mechanisms 

to axon homeostasis and survival (Aschrafi et al., 2008; Indrieri et al., 2019). 

Even more, a putative miRNA-mediated regulation of NMNAT2 has not been 

addressed yet. Our in-silico screening of miRNAs potentially targeting 

NMNAT2 has yielded a list of 4 potential candidate miRNAs: mmu-miR-129-
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3p, mmu-miR-132-3p, mmu-miR-494-3p, and mmu-miR-181a-5p. As 

mentioned in the results section, both the expression and function of these 

miRNAs in nervous system were used as search parameters to identify 

plausible candidates. For example miR-129 has been recently placed into a 

regulatory network capable of regulating axon regeneration of DRG neurons 

via the targeting of the Insulin-like growth factor 1 (IGF-1), providing further 

insight into the regulatory role of miRNAs in peripheral nerve regeneration 

(Zhu et al., 2018). Moreover, in developing cortical neurons, over-expression 

studies of miR-129 showed that this miRNA also owns the ability to impair 

both migration and transition from multipolar to bipolar through Fragile X 

Mental Retardation gene 1 (Fmr1), which is mutated in the autism spectrum 

disorder fragile X syndrome (Wu et al., 2019).  

Besides the already mentioned protective role of miR-181 inhibition on 

mitochondrial disease models (Indrieri et al., 2019), the inhibition of this 

miRNA has been also found to reduce apoptosis and mitochondrial 

dysfunction in astrocytes via the targeting of Bcl-2 family members (Ouyang 

et al., 2012), and its levels are upregulated in the hippocampus of triple AD 

transgenic mice (3xTg-AD) (Rodriguez-Ortiz et al., 2014).  

Gain of function studies with miR-494 instead, significantly decreased the 

level of DJ-1, an oxidative sensor that participates in both familial and sporadic 

PD, and rendered a neuronal cell line more susceptible to oxidative stress 

(Xiong et al., 2014). Very recently, an elegant work reported that levels of miR-

494 were down-regulated in extracellular vesicles (EV) derived from 

iAstrocytes of ALS patients (Varcianna et al., 2019). Of note, restoring miR-494-

3p levels increased motor neurons survival in vitro (Varcianna et al., 2019).  

Finally, miR-132, an old acquaintance of the nervous system development, is 

also noticeably dysregulated AD (Pichler et al., 2017) and plays a key role in 

Tau metabolism, as it regulates exon splicing of Tau (Hébert et al., 2012).  
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Further studies are now needed to confirm this interaction, and this is part of 

current work in our lab. Specifically, it would be informative to determine the 

phenotypes obtained after manipulating the levels of those miRNAs and if 

their over-expression can mimic the effects seen after the loss of this key 

regulator of axon health. 
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4.1 Introduction 

The establishment of cell polarity in pyramidal neurons through the 

development of multiple dendrites and a long axonal projection is one of the 

most complex structural and functional challenges faced by any cell type. As 

described in the general introduction of this thesis, several cellular and 

molecular mechanisms underlying this process have been extensively 

investigated, leading to the identification of many important intracellular 

signalling pathways and molecules with sometimes convergent actions 

orchestrating both axon establishment and elongation (Arimura and Kaibuchi, 

2007; Barnes and Polleux, 2009; Hapak et al., 2018).  

In this scenario, local translation of mRNAs in the axon offers the capacity for 

precise temporal and spatial regulation of protein expression (Cioni et al., 2018; 

Costa and Willis, 2018). As extensively described in previous sections of this 

thesis, axonal protein synthesis is now considered a fundamental part of the 

neuron’s biology, playing key roles in several processes including 

development, growth, pathfinding, formation of pre-synaptic terminals and 

maintenance (Batista et al., 2017; Campbell and Holt, 2001; Deglincerti et al., 

2015; Gracias et al., 2014; Hengst et al., 2009; Hengst and Jaffrey, 2007; Jung et 

al., 2012; Piper et al., 2006; Sasaki et al., 2010; Yao et al., 2006). Considering these 

vast arrays of cellular processes at play, it is important to understand the 

complexity and diversity of the axonal translatome, and to elucidate the 

regulatory mechanisms controlling axonal mRNAs.  

As described in the introductory section of this thesis, miRNAs have 

undoubtfully emerged in recent years as important players in multiple cellular 

processes, such as neurogenesis, axon development, pathfinding and neuron 

connectivity (Bellon et al., 2017; Dajas-Bailador et al., 2012; Hancock et al., 2014; 

Kaplan et al., 2013; Reh and Hindges, 2018).  
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The identification of axonal miRNAs has been previously carried out using 

microarray expression profiling and/or RT-qPCR (Natera-Naranjo et al., 2010; 

Sasaki et al., 2014). Although new technologies have greatly increased the 

quality and sensitivity of axonal miRNAs profiling studies, the lack of 

reproducibility derived from different sample preparations and detection 

methods is still a weakness of this type of studies, making the consolidation of 

data a particularly demanding task.  

For this reason, my lab has been focussing in the last few years on shedding 

light on the role of miRNAs in axon biology. In particular, preliminary work 

aimed to outline the axonal miRNA content in the axon of mouse cortical 

neurons using NGS, as a more sensitive and unbiased method. This study 

made the starting point of the results presented in this chapter, in which the 

role of an axon-enriched miRNA was further investigated. Thus, this section 

aims to briefly describe the background work leading into the identification of 

these miRNAs of interest, and to provide a more complete background on the 

scientific questions that will discussed in the following chapters.  

In order to obtain a pure axonal RNA fraction, cortical neurons were cultured 

for 8-10 days in compartmentalised microfluidic devices (Garcez et al., 2016; 

Taylor et al., 2005) which allow for the separation of the axons from the cells 

bodies [Figure 24]. The RNA extracted from both the cell body and soma side 

of ~ 40 chambers was used for axonal miRNA sequencing (miRNA-seq) 

allowing us to identify a complex axonal miRNA subpopulation of over 100 

miRNAs. Considering this long list of potential candidates to study, we 

decided to refine it by making a hierarchical list based on miRNA axon 

enrichment (axon/cell body), which allowed the identification of ~20 axonally 

enriched miRNAs [Table 3]. These miRNAs were further validated by qPCR. 

Among the validated results, we could identify both miR-9 and miR-16, two 

microRNAs previously described to have a role in axon outgrowth (Dajas-
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Bailador et al., 2012; Kar et al., 2013), thus confirming the validity of our 

approach. Additionally, the majority of axon-enriched miRNAs had Ct values 

< 32, consistent with previous evidence showing that mature miRNAs present 

in low copy numbers have Ct values that are normally higher than 35-36 

(Natera-Naranjo et al., 2010; Schmittgen and Livak, 2008). 

 

 

 

As depicted in Table 3 one of the top axon-enriched miRNAs identified by this 

preliminary study and with the lowest Ct values in the qPCR experiments is 

the mmu-miR-26a-5p (hereafter referred to as miR-26a) and, in this chapter of 

thesis, I will focus on its role in axon. First, I will briefly describe the family of 

this miRNA and what is known to date about its functions in neurons, 

followed by an overview of one of its validated targets, GSK3β, with regards 

to its role during neuronal system development. 

Figure 24: miRNAs enriched in developing cortical axons. Schematic representation of a 

microfluidic device used to separate axons from cell bodies and primary cortical neurons 

cultured in these devices and immunostained with acetylated tubulin antibody (Red), 

depicting the compartmentalisation of the culture. The table below depicts a list of the top 

20 miRNAs most enriched in the axons as compared to the soma fraction. 

 

Top 20 axonal-enriched microRNAs 

miR-9-5p miR-16-5p miR-191-5p miR-125b-3p 

miR-151-3p miR-134-5p miR-181c-5p miR-181b-5p 

miR-434-3p miR-26a-5p miR-182-5p miR-708-5p 

miR-3470b_1 miR-146a-5p miR-27-3p miR-143-3p 

miR-99a-5p miR-25-3p miR-146b-5p miR-30a-5p 

Table 3: Axonal-enriched microRNAs 
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4.1.1 miR-26a 

The miR-26 family is widely conserved across vertebrates (Lagos-Quintana et 

al., 2001) and harbours two homologs, miR-26a and miR-26b, which are 

transcribed from three different genomic loci,  miR-26a-1, miR-26a-2 and miR-

26b. The mature miRNA of miR-26a-1 and miR-26a-2 possesses the same 

sequence, with the exception of 2 different nucleotides in mature miR-26b. In 

mammals, miR-26 family members reside in introns of the C-terminal domain 

small phosphatases (CTDSP) genes (miR-26a-1 (CTDSPL), miR-26a-2 

(CTDSP2), miR-26b (CTDSP1) a class of phosphatase that, by acting 

synergistically with repressor element 1 (RE1) silencing transcription factor 

(REST)/neuron-restrictive silencer factor (NRSF) protein complex, inhibits 

RNA Polymerase II and suppress neuronal gene expression in NSCs (Chen et 

al., 1998; Yeo et al., 2005).  

These miRNAs can target their host transcripts and so creating an intrinsic 

inhibitory feedback loop of regulation (Dill et al., 2012), and in fact, this 

feedback loop is fundamental in zebrafish, where via the targeting of its own 

host gene ctdsp2 miR-26b promotes neurogenesis. Interestingly, mature miR-

26b is not constitutively co-expressed with its CTDSP2 host but rather kept in 

an inactive form in NPCs and in non-neuronal cells, which represses the 

negative feedback loop. This is achieved through the inhibition of miR-26 

processing in Neural Precursor Cells  (NPCs) and in non-neuronal cells (Dill 

et al., 2012).  Consistently, miR-26a is highly expressed in the mouse cerebral 

cortex at embryonic day 12 and throughout cortical development, where it has 

been shown to regulate neural progenitor differentiation and cell-cycle 

progression, too (Lambert et al., 2018; Zhang et al., 2018).  

Beyond its role in differentiation, miR-26a can also modulate other processes 

in the nervous system. For example, the knocking down of miR-26a in 

peripheral sensory neurons leads to impaired axon regeneration, indicating 
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that miR-26a had a role in the decrease of GSK3β needed for axon re-growth 

(Jiang et al., 2015). In another study that used rat neonatal cortical cultures for 

neurite growth assays, inhibition of miR-26a also showed an effect in 

neuritic/dendritic growth, via the targeting of PTEN (Li and Sun, 2013). 

Moreover, in an elegant study, miR-26a along with miR-384-5p have been 

implicated in the long-term maintenance of long-term potentiation (LTP) and 

spine enlargement of rat hippocampal neurons via the targeting of ribosomal 

S6 kinase 3 (RSK3).  

 

4.1.2 GSK3β: one master key to neuronal development 

As mentioned in the general introduction of this thesis, among the neuronal 

polarity effectors, GSK3β has been positioned at a signalling crossroad able to 

coordinate the complex emergence of axon/dendrite axis in neurons (Kim and 

Snider, 2011).  

GSK3 proteins are serine/threonine kinases that have been originally described 

as important enzymes capable of regulating glucose metabolism (Woodgett 

and Cohen, 1984). There are two mammalian isoforms, GSK3α and GSK3β, 

encoded by separate genes, which show high sequence homology with each 

other across species, with 95% identity in the catalytic domains from flies to 

humans (Woodgett, 2018). GSK3s have been also described to coordinate 

several signalling pathways, among which the Wnt signalling pathway is the 

most studied (Woodgett, 2003). Considering the Wnt proteins function in the 

nervous system, especially during development, it is not surprising that 

evidence point to GSK3s as key regulators of several neurodevelopmental 

processes, including neurogenesis, the already described neuronal 

polarisation and axon growth.  
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GSK3 signalling in neurogenesis. In a key study using a conditional knockout 

strategy in a Gsk3a null background to specifically target Gsk3b in neuronal 

progenitors, it has been found that GSK3 deletion has a pivotal role in the 

regulation of progenitor proliferation and differentiation by impairing 

homeostasis in neural progenitors and shifting the balance toward self-

renewal and away from neurogenesis (W.-Y. Kim et al., 2009). Moreover, the 

observed phenotype was associated with the dysregulation of β-catenin, Sonic 

Hedgehog (SHH), Notch and FGF signalling that are in turn all GSK substrates 

(Doble and Woodgett, 2003; Espinosa et al., 2003; Shimizu et al., 2008) and 

regulators of neural progenitor proliferation (Iwata and Hevner, 2009; 

Machold et al., 2003; Yoon and Gaiano, 2005). Deletion of both Gsk3a and Gsk3b 

in new-born neurons at later stages instead, impairs a correct migration and 

dendritic arborisation of excitatory neurons (Morgan-Smith et al., 2014). More 

recently, suppression of either GSK3α or GSK3β enhanced the proliferation of 

neural progenitor cells in the VZ, according to previous findings (W.-Y. Kim 

et al., 2009) but at later stages, deletion of each isoform resulted in distinct 

outcomes (Ma et al., 2017). Specifically, transition of radial progenitors to 

intermediate progenitor cells was triggered in GSK3α-depleted cells, but 

prevented from doing so in GSK3β-depleted cells  (Ma et al., 2017).  

Further proof of the involvement of GSK3 signalling in neurogenesis was 

obtained by manipulating in neuronal progenitors both Disrupted in 

schizophrenia 1 (DISC1) and PAR3, which are two upstream regulators of 

GSK3. (Bultje et al., 2009; Mao et al., 2009). Indeed, over-expression of these two 

regulators promoted proliferation of progenitors and inhibited neuronal 

differentiation, consistently with the Gsk3 knockout mice. Specifically, in the 

first study, ectopic expression of DISC1 triggered the activation of the Wnt 

pathway and through an interaction with GSK3 prevented it from 

phosphorylating β-catenin and targeting it for ubiquitination (Mao et al., 2009). 
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In the second work, although a direct involvement of GSK3 was not assessed, 

overexpression of PAR3 activated Notch signalling, as it was also observed in 

Gsk3 knockout mice (W.-Y. Kim et al., 2009).  

The discovery that during mitotic cell division GSK3-phosphorylated β-

catenin, which is normally targeted for degradation, is inherited by only one 

daughter cell (Fuentealba et al., 2008), led to the hypothesis that during 

asymmetrical division of RGCs, the two daughter cells may inherit a different 

level of GSK3 activity because of asymmetrical distribution of upstream GSK3 

regulators, such as PAR3. The daughter cell with low levels of GSK3 activity 

will accumulates β-catenin up (and perhaps other pro-proliferative proteins 

such as c-myc) and maintains its progenitor status. On the other hand, the 

daughter cell with higher GSK3 activity will target these proteins for 

ubiquitination and then differentiate into either a neuron or an IPC (Eun-Mi 

Hur and Zhou, 2010). To support this model, there are studies suggesting the 

ability of GSK3 to regulate the stability of a wide range of proteins through the 

ubiquitin-proteasome system (UPS) (N. Kim et al., 2009; Xu et al., 2009). It has 

been also seen the axin-GSK3β interaction is fundamental for the amplification 

of the intermediate progenitors’ pool, whereas the Axin-β-catenin interaction 

promotes neuronal differentiation (Fang et al., 2013).  

GSK3 signalling in axon outgrowth. Beyond its ability to control cytoskeletal 

properties in the axon tip, which has been already described in the general 

introduction of this thesis, GSK3 has also been involved in the transcriptional 

regulation of axon elongation. In the canonical Wnt pathway, inhibition of 

GSK3β leads to the accumulation of β-catenin which in turn, after entering the 

nucleus, activates T cell factor (TCF)-mediated gene transcription and 

promotes axon growth (Lu et al., 2004). Others transcription factors involved 

in axonal outgrowth are nuclear factor of activated T-cells (NFAT) proteins. 

Extracellular cues such as neurotrophins and netrins can trigger 
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Ca2+/calcineurin-dependent nuclear translocation of NFAT family of proteins 

where they induce transcription of genes involved in axon growth (Graef et al., 

2003). However, since NFAT are rapidly re-shuttled back into the cytoplasm 

through a GSK3-mediated phosphorylation, GSK3 is likely to regulate NFAT-

mediated gene transcription in axon elongation (Beals et al., 1997). 

Neurotrophins can also induce the phosphorylation of CREB which in turn 

promotes the assembly of the transcriptional complex (Vo and Goodman, 

2014). Given the fact that CREB can be phosphorylated by GSK3 impairing its 

DNA-binding activity (Grimes and Jope, 2001), one could speculate that GSK3 

signalling is capable of regulating CREB activity.   

An interesting and still open question regards how GSK3 can control and 

coordinate such a plethora of developmental processes. This broad regulatory 

capacity of GSK3 can of course be explained by its long list of functional 

substrates. However, unlike many other kinases, GSK3 proteins are normally 

active in resting cells, with several regulatory mechanisms controlling their 

activity, including protein-protein interactions, spatial regulation and 

phosphorylation (Etienne-Manneville and Hall, 2003; Hengst et al., 2009; 

Thornton et al., 2008; Wu et al., 2009). The constitutive activity, together with 

the complex array of post-translational mechanisms that can control substrate 

specific actions (Beurel et al., 2015), suggests the need for tight regulatory 

mechanisms that can control GSK3 levels. Despite this, the protein levels of 

GSK3β do not appear to be regulated by proteasome activity during the 

establishment of neuronal polarity (Yan et al., 2006), highlighting the potential 

importance of GSK3β translation regulation. 
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4.2 Aims of this chapter 

Despite the growing number of studies demonstrating the importance of 

miRNAs in axon and synapse development (Rajman and Schratt, 2017; 

Swanger and Bassell, 2011), evidence for their role in axon specification and 

neuronal polarisation has been largely missing. In this scenario, miR-26a is a 

well conserved miRNA with an already established function in the nervous 

system, and our preliminary screening depicted miR-26a as one of the highly 

enriched miRNAs in developing axons, reinforcing the case for its potential 

function in neuronal development. Experiments described in this chapter will 

explore the role of miR-26a in the establishment of neuronal polarity and axon 

elongation in cultured mouse cortical neurons. Hence, the specific aims of this 

part of the thesis are as follows: 

 

• Examine miR-26a expression over cortical neurons development; 

 

• Investigate the regulatory effects of miR-26a in neuronal polarity and 

axon outgrowth in developing cortical axons in culture; 

 

• Identify the regulatory target genes that mediate miR-26a activity in 

both neuronal polarity and axonal outgrowth; 

 

• Address roles for the functional target genes of miR-26a in axon 

specification and growth, using gain and loss-of-function approaches. 
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4.3 Results  

4.3.1 miR-26a regulates neuron polarisation and axonal growth in 

cortical primary neurons 

As described in the general introduction, the preliminary miRNA profiling 

performed in our lab identified miR-26a as one of the most enriched miRNAs 

in developing axons when compared to the cell body fraction of neurons 

cultured in microfluidic chambers (see Materials and Methods for additional 

details). I first addressed two questions: i) is miR-26a expressed over the 

development of mouse primary cortical neuron cultures? ii) What is the role 

of miR-26a in the development of CNS neurons in vitro? To test these two 

questions, first, the relative abundance of miR-26a was quantified in whole 

cortical cultures at 4 h post plating, and then at 2 days in vitro (DIV2), 5 (DIV5) 

and 9 (DIV9) in vitro by RT- qPCR. In agreement with previous observations 

(Li and Sun, 2013) I found miR-26a being expressed in cortical neurons at 4 h 

post plating, with a trend towards decrease in more developed cultures up to 

DIV9 [Figure 25a-b]. Despite the slight decrease in expression over the 

timepoints measured, particularly at later stages, miR-26a is consistently 

expressed in cortical neurons over the cortical neuron’s development in 

culture. 
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Next, as an initial approach to determine miR-26a neuronal role, I transfected 

mouse primary cortical neurons with a specific miRNA inhibitor (locked 

nucleic acid technology, LNA, from Exiqon) of miR-26a and evaluated axonal 

growth after three days in culture. For this, neurons were transfected 4 h after 

plating using Lipofectamine 2000 and their development was evaluated 72 h 

later. To inhibit endogenous miR-26a and at the same time label transfected 

neurons, the LNA miR-26a inhibitor (50 nM) was co-transfected with GFP. 

LNA inhibitor control at 50 nM along with GFP was used as an experimental 

control. Consistent with previous results, (Jiang et al., 2015; Li and Sun, 2013), 

inhibition of miR-26a generated a significant decrease in the axonal length of 

Figure 25: miR-26a is expressed in primary cortical neurons. (a) Acetylated tubulin 

staining depicts the increasing axonal complexity of a cortical culture over 

development. (b) Quantification of miR-26a levels over development of cortical 

primary cultures, from 4 h to 9 days in vitro. Expression of miR-26a-5p was 

analysed by relative quantification using the comparative Ct method (2-ΔΔCt) and 

the geometric mean of miR-100-5p, miR-128-3p, miR-134-5p, miR-434-3p and 

let7a-5p used as reference; mean ± SEM of 5 independent experiments. One-way 

ANOVA with Bonferroni’s multiple comparison post-hoc tests: **: p ≤ 0.01. 
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cortical primary neurons. At this timepoint, as depicted in Figure 26a-b, 

inhibition of miR-26a decreased axonal length up to 20 % compared to non-

targeting control probes. In addition to this effect on length, a closer 

morphological examination of the transfected primary cortical cultures also 

revealed that inhibition of miR-26a produced a significant reduction in the 

proportion of polarised neurons [Figure 26c-e], (i.e. those with a distinct axon 

projection, defined as a neurite that was at least 3 times the length of any other 

neurite (Dajas-Bailador et al., 2008).  
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Figure 26: miR-26a regulates neuronal polarisation and axonal outgrowth. (top) Schematic 

representation of the experimental design. (a) Representative images of polarised cortical 

neurons after transfection with GFP plus a miR-26a inhibitor. (b) Quantification of axon 

length after inhibition of miR-26a (50 nM miR-26a i), showing up to 25 % decrease compared 

to a non-targeting control, n=5. (c-d) Schematic representation and images of polarity changes 

induced by miR-26a inhibitor on cortical neurons. (e) Quantification of the number of 

polarised neurons after inhibition of miR-26a, expressed as a percent of neurons transfected 

with non-targeting control, n=5. Data is expressed as mean ± SEM; Student’s t-test: **: p ≤ 0.01. 

 

Transfections at 4 hrs 
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4.3.2 Over-expression of miR-26a induces axonal outgrowth and 

formation of multiple axon-like processes 

To further investigate the potential role of miR-26a in neuron polarisation and 

axon growth, we carried-out overexpression studies using a miR-26a mimic 

(see Methods section for details on the mechanism of action of miRNA 

mimics). Cortical neurons were transfected 4 h after dissection in an analogous 

manner of the previous experiment. MiR-26 mimic were used at 20 nM, 

compared to LNA mimic and co-transfected with GFP to label transfected 

neurons. Subsequently, cortical neurons were cultured for 4 days in vitro and 

then analysed for their ability to polarise and axonal length. 

The rise in miR-26a levels in cortical neurons produced a significant increase 

in axonal growth, in agreement with previous reports in peripheral sensory 

neurons (Jiang et al., 2015). In fact, as depicted in [Figure 27a-b], over-

expression of miR-26a promoted axonal length up to almost 40 % compared to 

non-targeting control oligonucleotides. 
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Crucially, transfection with miR-26a mimic also induced a dramatic increase 

in the number of neurons with multiple axon-like processes [Figure 28a-b], 

identified by the presence of the axonal marker JIP-1 (Dajas-Bailador et al., 

2014, 2008; Deng et al., 2014; Fu and Holzbaur, 2013). This multi-polar neuronal 

phenotype was accompanied by an overall increase in the length of 

projections, which were approximately 40% longer than the average neurite in 

similar cultures [Figure 28c]. Overall, these results demonstrate that in 

addition to affecting axonal growth per se, miR-26a can control neuronal 

polarity.  

 

 

Figure 27: miR-26a overexpression induces axonal outgrowth. (top) Schematic representation 

of the experimental design. (a) Representative images of polarised cortical neurons after 

transfection with GFP plus a miR-26a mimic. (b) Quantification of axon length in polarised 

neurons after over-expression of miR-26a (miR-26a m 20 nM), showing an increase in axon 

length up to almost 40 % compared to a non-targeting control, n=8. Data is expressed as 

mean ± SEM; Student’s t-test: **: p ≤ 0.01. 

 

Transfections at 4 hrs 
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Figure 28: miR-26a overexpression induces formation of multiple axon-like processes. (top) 

Schematic representation of the experimental design. (a) Schematic representation and trace 

to demonstrate the polarity changes induced by miR-26a mimic, showing the appearance of 

neurons with multiple axons. Squares (I-IV) on the trace correspond to images from soma and 

neurite terminals of cortical neuron. Arrows indicate JIP1 labelling, which was used as an 

established marker of axonal growth cones. (b) Quantification of the number of neurons with 

multiple axon-like processes after over-expression of miR-26a and expressed as a percent of 

neurons transfected with a non-targeting control, n=5. (c) Quantification of the overall length 

of all projecting neurites, n=4. Data is expressed as mean ± SEM; Student’s t-test: **: p ≤ 0.01. 

Transfections at 4 hrs 
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4.3.3 miR-26a regulation of neuronal polarity over cortical neurons 

development 

The capacity of miR-26a to control axon specification and growth, two cellular 

processes that are intrinsically linked in early stage neuron polarisation, made 

us speculate whether miR-26a could retain the ability to control both neuronal 

polarity and growth at different stages of neuron development in culture. To 

assess this, I transfected cortical neurons at two further time-points (24 h and 

DIV5) with either miR-26a inhibitor or mimic and analysed them for their 

ability to develop/maintain polarity 72 h later. I found that when transfected 

at 24 h, inhibition of miR-26a still decreased both the number of polarised 

neurons and the growth of the developing axons [Figure 29a-c].  
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Figure 29: miR-26a affects neuronal polarity and growth when 

inhibited after 24 h. (top) Schematic representation of the experimental 

design. (a) Representative images of cortical neurons after transfection 

with GFP plus a miR-26a inhibitor 24 h after plating. (b-c) 

Quantification of axon length and percent of polarised cells after 

inhibition of miR-26a (50 nM miR-26a i), showing up to 20 % decrease 

for both metrics compared to non-targeting controls, n=4. Data is 

expressed as mean ± SEM; Student’s t-test: *: p < 0.05. 

Transfections at 24 hrs 
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As depicted in Figure 29b-c, quantification of axon length and the percentage 

of polarised cells after inhibition of miR-26a at 50 nM showed up to 20 % 

decrease for both analyses compared to non-targeting controls. However, 

when I analysed neurons for their ability to polarise 72 h after transfections 

with miR-26a inhibitor at DIV 5, I found no significant changes in the polarity 

of cortical neurons. Unlike the effect seen at 24 h, miR-26a inhibitor after 5 days 

of culture did not decrease the percentage of polarised cells [Figure 30a-b]. 

More importantly, even the over-expression of the microRNA at this later time 

point did not significantly increase the number of neurons with multiple axons 

[Figure 30c-d]. 
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Transfections at DIV5 

Figure 30: miR-26a does not affect polarity at later stage of development. (top) Schematic 

representation of the experimental design. (a) Trace of a representative neuron after miR-26a 

inhibition at DIV5. Squares (I-III) on the trace correspond to images from soma and neurite 

terminals of cortical neuron. Arrows indicate JIP1 labelling, which was used as an established 

marker of axonal growth cones. (b) Quantification of the number of polarised neurons after 

inhibition of miR-26a, expressed as a percent of neurons transfected with non-targeting 

control, n=3. (c) Representative traces of a neuron after over-expression of miR-26a at DIV5. 

Squares (I-II) on the trace correspond to images from soma and neurite terminals of cortical 

neuron. Arrows indicate JIP1 labelling, which was used as an established marker of axonal 

growth cones. (d) Quantification of the number of neurons with multiple axon-like processes 

after over-expression of miR-26a and expressed as a percent of neurons transfected with a 

non-targeting control, n=3. Data is expressed as mean ± SEM. 
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4.3.4 The search for a target of miR-26a: the GSK3β hypothesis 

A critical next step after finding a function for a specific miRNA is to identify 

the regulatory networks through which the miRNA is acting. However, as 

described in the general introduction, the miRNA:mRNA interaction is not 

unique, and a single mRNA could bear multiple miRNA binding sites in its 

3′UTRs and vice versa (Bartel, 2009), making the identification of miRNA-

dependent regulatory pathways particularly challenging. A way to solve this 

problem is usually through the use of computational prediction tools and 

subsequent experimental validation of these miRNA:mRNA interactions 

(Peterson et al., 2014; Riffo-Campos et al., 2016). For this reason, I exploited the 

use of miRNA target prediction tools in order to generate a list of miR-26a 

putative target genes that were further refined according to their function and 

expression in the nervous system.  

Firstly, I used two of the most common miRNA target prediction tools, 

TargetScan (Agarwal et al., 2015) and DIANA-microT-CDS (Paraskevopoulou 

et al., 2013), in order to produce a list of miR-26a putative target genes. Both 

tools produced a ranked list of genes scored by strength of predicted miR-26a-

mRNA site interaction: 1046 targets in TargetScan (TargetScanHuman 7.1) and 

1568 targets DIANA-microT-CDS (miRNA targeted genes [miTG] score 

threshold >0.7). To increase the likelihood of identifying biologically valid 

target candidates, I produced an overlap of the two gene datasets, obtaining a 

subset of 747 targets genes common to both TargetScan and Diana prediction 

analysis (Riffo-Campos et al., 2016; Sethupathy et al., 2006). As the list of 

putative targets was still extensive, which is not uncommon for widely 

conserved microRNA families (Bartel, 2009), I decided to further refine the list 

by matching it with miRTarBase, a curated database that provides information 

about experimentally validated miRNA-target interactions (Chou et al., 2018). 



CHAPTER 4: Role of miR-26a in neuronal polarity and axon development 

136 

The result narrowed down the list of putative targets to 139 validated targets 

of miR-26a [Figure 31].   

 

After this step, I wanted to identify the molecular pathways potentially 

targeted by miR-26a by performing a pathway analysis of the 139 putative 

target transcripts. For this, I used PANTHER-Pathways (PANTHER 13.1 

release; Mi et al., 2017), a bioinformatics tool for analysis of curated pathways. 

As shown in Figure 32, the 10 top pathways obtained from the analysis include 

some of the most well studied pathways in neuronal function, such as EGF 

receptor signalling pathway that has been involved in axon outgrowth 

(Evangelopoulos et al., 2009; Goldshmit et al., 2004), FGF signalling pathway 

that plays a role in both axonal specification and elongation (Barnes and 

Polleux, 2009; Williams et al., 1994) and the PI3K pathway, already described 

to have a pivotal role in the establishment of axon-dendrite axis (Ménager et 

al., 2004; Shi et al., 2003; Yoshimura et al., 2006).  

  

miRTarBase 

457 Targets 

 

miRTarBase 

457 Targets 

747 

Targets 

139 

Targets 

Figure 31: miR-26a predicted target genes. Venn 

diagram representing the number of common targets 

between TargetScan, DIANA micro-T-CDS and 

miRTarBase lists of predicted/validated targets. 
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Lastly, by means of manual curation of the literature, I investigated the role of 

each target in neuronal function and development. This allowed me to both 

gather hints on the molecular pathways through which miR-26a could be 

acting in neurons and, more importantly, to identify the targets whose already 

described function in the nervous system development fit with the observed 

phenotype of miR-26a in cortical axons. As seen in the functional data 

discussed in Figure 26 and Figure 27, miR-26a acts as a growth promoting 

factor in developing cortical neurons, therefore the transcript predicted to be 

targeted by miR-26a is expected to promote growth and regulate axon 

specification. This led us to investigate both PTEN and GSK3β as targets of 

miR-26a. They both respectively bear three and two highly conserved miR-

26a-binding site sequences in their 3′UTRs [Figure 33a-b] and both have been 

previously described as a functional target of miR-26a (Cui et al., 2015; Jiang et 

al., 2015; Li and Sun, 2013). Key to my findings, both PTEN and GSK3β play a 

Figure 32: Pathway analysis of miR-26a regulatory networks. Top 10 pathways targeted by 

miR-26a obtained from PANTHER Pathway analysis of miR-26a predicted target genes. 

Pathways were ranked by number of target genes (bars) belonging to each Panther pathway 

depicted in the graph. 
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fundamental role in multiple neurodevelopmental processes, including 

neuronal polarisation and axon growth.  

 

Over-expression of constitutively active GSK3β and PTEN disrupts axon 

formation and elongation (Jiang et al., 2005), whereas knockdown of GSK3β 

and the use of specific inhibitors cause the formation of multiple axons 

(Gartner et al., 2006; Jiang et al., 2005). As depicted by Jiang et al. (2005), GSK3β 

Figure 33: Gsk3β and Pten are targets of miR-26a. (a) Diagram of miR-26a sites within the 

3’UTR of Gsk3b predicted by TargetScan, showing the complementary binding to miR-

26a seed sequence and the conservation of miR-26a binding site across vertebrates. (b) 

Diagram of miR-26a sites within the 3’UTR of Pten predicted by TargetScan, showing the 

complementary binding to miR-26a seed sequence and the conservation of miR-26a 

binding site across vertebrates. 
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manipulations prevail over PTEN on neuronal polarity, indicating that PTEN 

acts upstream of GSK3β in polarity formation. For this reason, I decided to 

focus on the latter and test my hypothesis of whether GSK3β is a functional 

target of miR-26a in cortical primary neurons. 

 

4.3.5 miR-26a regulates the expression levels of GSK3β protein in 

primary cortical neurons 

To begin to elucidate the potential functions of GSK3β in cortical neuronal 

development, I first examined its expression in cortical neurons over 

development at the transcriptional level. Firstly, the same total RNA samples 

extracted from primary cortical cultures at four different timepoints to match 

with miR-26a levels, were again used to investigate GSK3β expression 

patterns in young neurons at 4 h, DIV2, DIV5 and DIV9 in culture. Relative 

quantification by RT-qPCR revealed that GSK3β is expressed in developing 

cortical neurons in vitro across all the timepoints analysed (average Ct of 20.91 

from all samples tested), with a trend towards increase at DIV5 [Figure 34].  

 

 

Taking advantage of the morphological polarisation of cortical neurons in 

vitro, the next step was to investigate whether miR-26a can directly regulate 

Figure 34: Gsk3b expression levels in 

cortical neurons. Quantification of Gsk3b 

expression levels over development of 

cortical primary cultures, from 4 h to 9 

days in vitro. Expression of Gsk3b was 

analysed by relative quantification using 

the comparative Ct method (2-ΔΔCt). The 

geometric mean of Gapdh and Ube2 was 

used as reference; mean ± SEM of 5 

independent experiments. One-way 

ANOVA with Bonferroni’s multiple 

comparison post-hoc tests: **: p ≤ 0.01. 
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the expression levels of GSK3β protein in neuronal somas and/or growth cones 

by quantitative immunostaining. If GSK3β is an actual target of miR-26a in our 

model, the mimicking of miR-26a activity in cortical neurons should lead to a 

decrease in GSK3β levels. As shown in Figure 35a-b, over-expression of miR-

26a drastically decreased GSK3β levels in both the soma and axonal growth 

cones, resulting in a significant ~40% decrease in the protein levels in both 

somas and growth cones when compared to non-targeting control oligos.  
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Figure 35: Over-expression of miR-26a regulates the expression levels of GSK3β protein in 

neuronal somas and growth cones. (top) Schematic representation of the experimental 

design. (a) Representative images of the soma of cortical neurons and (b) growth cones, 

after transfection with GFP plus a miR-26a mimic and immunostaining with GSK3β (red). 

Bar charts represent the quantification of GSK3β protein levels expressed as a percent of 

mimic controls, n=4. Data is expressed as mean ± SEM; Student’s t-test: **: p ≤ 0.01. 

Transfections at 4 hrs 
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Conversely, inhibition of endogenous miR-26a drastically raised the levels of 

the GSK3β protein up to 50% in both morphological domains [Figure 36a-b]. 

This is an important observation as it may suggest a local effect of this 

microRNA in the axon compartment, as previously reported with other 

microRNAs (Bellon et al., 2017; Dajas-Bailador et al., 2012; Hancock et al., 2014; 

Y. Zhang et al., 2015). Further experiments using in situ hybridisation (FISH) 

could help better understand miR-26a mechanism of action at the transcript 

level. FISH detection of miR-26a effect on Gsk3b mRNA levels in cortical 

neurons could help reinforcing the results obtained by immunofluorescence. 
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Figure 36: Inhibition of miR-26a regulates the expression levels of GSK3β protein in neuronal 

somas and growth cones. (top) Schematic representation of the experimental design. (a) 

Representative images of the soma of cortical neurons and (b) growth cones after transfection 

with GFP plus a miR-26a inhibitor and immunostaining with GSK3β (red). Bar charts represent 

the quantification of GSK3β protein levels expressed as a percent of non-targeting control, n=3. 

Data is expressed as mean ± SEM; Student’s t-test: **: p ≤ 0.01. 

Transfections at 4 hrs 
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4.3.6 GSK3β mediates the functional effects of miR-26a in neuron 

polarisation and growth 

Considering the capacity for miR-26a to control GSK3β protein levels in 

primary cortical neurons, the next obvious question that I wanted to address 

is whether miR-26a can in fact modulate endogenous GSK3β to regulate its 

actions in the developing axon of cortical neurons. Toward this aim, the first 

approach was to conduct gain- and loss-of-function experiments in primary 

cortical neurons to examine the impact of this protein alone in both axon 

specification and elongation. These experiments were performed at the same 

developmental stage selected for miR-26a functional assays. Mouse GSK3β 

coding sequence was subcloned into the pcDNA 3.1(+) vector (pcDNA-

GSK3β) and co-transfected with a GFP plasmid into primary cortical neurons 

at 4 h after plating, whereas co-transfection with pcDNA 3.1(+) vector was 

used as control (pcDNA). At DIV4, GFP positive neurons were imaged and 

assessed for their ability to polarise and their axons measured following the 

same methodology as for previous miR-26a functional experiments. As 

depicted in Figure 37b-d, overexpression of GSK3β induced a decrease of 

~25% in both axon length and % of polarised cells when compared to control. 

Figure 37a-c shows representative images of cortical neurons in both 

conditions and illustrates the validation of GSK3β overexpression conducted 

by immunostaining of the protein, which confirmed GSK3β overexpression by 

a striking increase in the protein fluorescence intensity.  
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To inhibit GSK3β and evaluate the effect of its decreased activity in axon 

development, I employed SB415286, an extensively used and selective GSK3 

pharmacological inhibitor that competes with ATP (Gobrecht et al., 2014; Guo 

et al., 2017; Jiang et al., 2005).  As before, transfections with a GFP plasmid 

Transfections at 4 hrs 

Figure 37: Over-expression of GSK3β in cortical neurons represses neuronal polarity and 

axonal outgrowth. (top) Schematic representation of the experimental design. (a) 

Representative images of cortical neurons after transfection with GFP plus either empty 

vector or pcDNA-GSK3β and immunostaining with GSK3β. (b) Quantification of axon 

length after over-expression of GSK3β showing up to 25 % decrease compared to the empty 

vector. (c-d) Representative images of cortical neurons showing the polarity changes 

induced by GSK3β over-expression and quantification of the number of polarised neurons 

after transfection with GFP plus either empty vector or pcDNA-GSK3β, n=4. Bar graphs 

expressed as mean ± SEM; Student’s t-test: *: p < 0.05. 
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were performed at 4 h after plating, whilst GSK3 inhibitor was used at a 

concentration of 1 µM and added to the culture 24 h after plating. Neurons 

were then analysed at DIV4 for their axon growth and morphological 

differentiation. As depicted in Figure 38a-b, inhibition of GSK3 produced a 

similar effect in increasing the number of polarised neurons and promoting 

axon outgrowth as observed in Figure 27a-b by mimicking miR-26a activity.  

 

 

 

Transfections at 4 hrs 

Figure 38: Inhibition of GSK3 promotes axon specification and extension in 

cortical neurons. (top) Schematic representation of the experimental design. 

(a) Quantification of axon length upon addition of GSK3 inhibitor 

(SB415286) 24 h after transfection with GFP, n=4. (b) Quantification of the 

number of polarised neurons upon application of GSK3 inhibitor (SB415286) 

24 h after transfection with GFP, n=4. Bar graphs expressed as mean ± SEM; 

Student’s t-test: *: p < 0.05 
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Taken together, these data confirmed the role of GSK3β in the specification 

and growth of axons in cortical neurons and are consistent with a scenario 

where miR-26a modulation of neuronal polarity and axonal outgrowth in 

primary cortical neurons occurs through repression of GSK3β.  

A canonical experimental setup for confirmation of the specificity and validity 

of RNAi-activity-based data are phenotype rescue experiments through the 

expression of a siRNA-resistant sequence of the target gene (Cullen, 2006). 

Since this same principle can also be extended to miRNA activity and its target, 

I therefore directly tested whether GSK3β mediates the functional effects of 

miR-26a in neuron polarisation and growth by attempting functional rescue 

experiments after the inhibition and overexpression of miR-26a. For this, I 

exploited again the use of both GSK3 inhibitor and the pcDNA-GSK3β 

plasmid deprived of its 3’UTR in overexpression studies.  

Pharmacological inhibition of GSK3 reversed the effect of the miR-26a 

inhibitor with regards to neuronal polarity. For this, transfections were again 

performed at 4 h after plating, with SB415286 (1 µM) being added 24 h after 

transfections. The inhibition of GSK3 abolished the drop in 23% of polarised 

cells after inhibition of miR-26a, returning to those seen in control conditions 

[Figure 39a-b]. The effect of pharmacological inhibition of GSK3 was not 

restricted to polarity, and also reverted the decrease in axon length after 

inhibition of miR-26a [Figure 39c]. Conversely, we found that over-expression 

of GSK3β (pcDNA-GSK3β) counterbalanced the increase in axon length after 

transfection with miR-26a mimic, whilst the empty vector (pcDNA) failed to 

affect the growth-promoting actions of miR-26a mimic [Figure 39d-e]. Thus, 

this observation suggests that miR-26a effects in the outgrowth of developing 

axons is mediated by its direct target, GSK3β. 
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Figure 39: GSK3β mediates the functional effects of miR-26a in neuron polarisation and 

growth. (a) Diagrammatic representation of the experimental design used in b and c. (b) 

Representative images and quantification of the number of single-axon neurons after 

inhibition of miR-26a and the addition of GSK3 inhibitor (SB415286, 1 μM) 24 h after 

transfections, n=7. (c) Representative images and quantification of axon length after 

inhibition of miR-26a and the addition of GSK3 inhibitor (SB415286, 1 μM) 24 h after 

transfections, n=7. (d) Diagrammatic representation of the experimental design used in e. (e) 

Representative images and quantification of axon length after overexpression of both miR-

26a and GSK3β, n=4. Data are mean±s.e.m. one-way ANOVA with Bonferroni’s multiple 

comparison post-hoc tests, *P<0.05, **P≤0.01. 
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As mentioned at the beginning of this section, another validated target of miR-

26a that could be mediating the effect observed in our model after miR-26a 

manipulations, is PTEN. Although GSK3β seems to be acting downstream of 

PTEN in axon-dendrite polarity formation and growth (Jiang et al., 2005), I still 

wanted to investigate the impact of this protein on our system and whether 

the targeting of the protein is still necessary for miR-26a to affect neuronal 

polarity and growth. Hence, I employed the same experimental approach 

described above for GSK3β and subcloned mouse PTEN into the pcDNA 3.1(+) 

vector (pcDNA-PTEN) and performed gain-of-function experiments. Similar 

to GSK3β, over-expression of PTEN affected both axon specification and 

elongation [Figure 40a-b] and phenotype rescue experiments also confirmed 

that over-expression of PTEN compensated the rise in axon outgrowth after 

overexpression of miR-26a [Figure 40c]. Therefore, all together these results 

suggest that miR-26a is an important regulator of axon development through 

the PI3K–Akt–GSK3β signalling pathway [Figure 4].  
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Transfections at 4 hrs  

Figure 40: miR-26a regulates axon outgrowth via the targeting of Pten. (top) Schematic 

representation of the experimental design. (a) Quantification of axon length after over-

expression of PTEN showing up to 20 % decrease compared to the empty vector n=4. (b) 

Quantification of the number of polarised neurons after transfection with GFP plus pcDNA-

PTEN, n=3. (c) Quantification of axon length after overexpression of both miR-26a and PTEN, 

n=4. Data is expressed as mean ± SEM; Student’s t test (a-b), one-way ANOVA with Dunnett’s 

multiple comparisons post hoc tests (c): *: p < 0.05 
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4.4 Discussion 

The tight control of multiple signalling pathways allows the development of 

axon/dendrite polarity in neurons and provides the structural platform for the 

establishment of neuronal communication in the nervous system (Barnes and 

Polleux, 2009; Namba et al., 2015). The work presented in this chapter, applied 

bioinformatics, miRNA functional analysis and immunofluorescence 

approaches in mouse primary cortical cultures to examine the role of miR-26a, 

a microRNA previously found to be enriched in developing cortical axons, in 

neuronal polarity and axon elongation. Specifically, the data showed that this 

microRNA can modulate alone two distinct but also sequentially related 

cellular processes, axon specification and growth, via the targeting of GSK3β. 

Importantly, functional rescue experiments placed GSK3β at the centre of miR-

26a-mediated actions in the specification and outgrowth of developing cortical 

axons, with GSK3β activity inhibition or overexpression leading to the 

phenotypic rescue of both the neuronal polarity and axonal growth defects 

caused by inhibiting or mimicking miR-26a activity.  

The capacity for miR-26a to regulate these neuronal processes supports 

previous experimental evidence that axonal growth is not just a consequence 

of axonal specification (Jiang et al., 2005). As such, the ablation of axons in 

order to eliminate length differences can reset axon-dendrite polarity (Bradke 

and Dotti, 2000; Dotti and Banker, 1987), while promoting neurite growth can 

lead to axon specification (Lamoureux et al., 2002; Nakamuta et al., 2011). It is 

still unclear how neurons can generate only one axon and multiple dendrites 

and the molecular mechanisms underlying the maintenance of neuronal 

polarity remain particularly elusive. The aforementioned studies have shown 

that neuronal polarity in vitro can be easily manipulated and reverted (Bradke 

and Dotti, 2000; Jiang et al., 2005; Lamoureux et al., 2002), but how can the 

formation of multiple axons, after an axon has been already specified, be 
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explained? A possible mechanism for this is that the transport of polarity 

effectors may not be fixed to the axon. Increasing the length of another neurite 

may function as force to redistribute polarity effectors. While neurite growth 

is usually impaired in minor neurites after axon specification (Arimura and 

Kaibuchi, 2007; Schelski and Bradke, 2017), this inhibition can be relieved by 

for example stabilising microtubules (Witte et al., 2008) . This would trigger 

the redistribution of both polarity effectors and vesicle recycling (Bradke and 

Dotti, 2000; Jiang et al., 2005) and cause the formation of multiple axons.  

Although the molecular mechanisms that could differentiate axon 

specification vs. growth are the focus of active study, research has also shown 

that several molecules are actively involved in both processes (Arimura and 

Kaibuchi, 2007; Lewis et al., 2013). Among them, GSK3β has the ability to 

crosstalk with most of the pathways reported to control these biological 

mechanisms, at the transcription, translation and cytoskeleton level, suggests 

that it may function as a central node in the coordination and integration of 

neural development and the establishment and maintenance of polarity 

(Beurel et al., 2015; Guo et al., 2016; Eun-MI Hur and Zhou, 2010; Inoki et al., 

2006; Kim and Snider, 2011). 

The role of GSK3β in axonal growth has been demonstrated both at the 

developmental level (Eun-MI Hur and Zhou, 2010; Hur et al., 2011; Kim et al., 

2006) and in regenerative processes following axonal injury (Iekmann and 

Fischer, 2015). In this regard, although the control of axonal growth has been 

long recognised (Kim and Snider, 2011), its precise role in regeneration has 

been more controversial (Leibinger et al., 2017), mainly due to the fact that a 

multitude of regulatory pathways and targets can be involved in GSK3β 

activity. In effect, the capacity of GSK to control such an array of cellular 

functions may arise from the multiple sophisticated mechanisms that regulate 

its action and protein expression, ensuring that it can only phosphorylate 
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substrates at the precise time and in discreet subcellular compartments (Beurel 

et al., 2015).  

The unique ability of miR-26a to control both polarisation and axonal growth 

is mainly achieved via the targeting of GSK3β, which is a known regulator of 

both processes. Additionally, the fact that miR-26a can also control these 

processes via PTEN, an upstream member of the GSK3β signalling pathway, 

reinforces its role as an important regulator of axon development.  

Maintaining local inactivation of GSK3β at the nascent axon is crucial for 

polarisation (Jiang et al., 2005; Shi et al., 2003; Yoshimura et al., 2005) and 

inhibition of miR-26a breaks this equilibrium and impairs axon specification. 

On the other hand, global inhibition of GSK3 by small-molecule inhibitors or 

knocking down of Gsk3b induces the formation of multiple axons (Jiang et al., 

2005) and the over-expression of miR-26a was able to reproduce the same 

multiple “axon-like” neurites phenotype. It would be interesting to test, in 

future experiments, whether those “supernumerary” axons obtained after the 

over-expression of miR-26a are also electrically active. A recent study 

demonstrated that the multiple axons induced by GSK-3 inhibition have 

relatively intact AIS structures and they are capable of initiating action 

potentials before the recruitment of soma-dendritic components (Guo et al., 

2017), thus it is not unreasonable to speculate that this could also happen in 

our model and help to rebuild neuronal network activity after axon injury. 

Once an axon has been specified, inactive GSK3β is restricted at its tips in 

cultured hippocampal neurons (Jiang et al., 2005). Given the fact that our 

preliminary screening depicted miR-26a as axonal-enriched microRNA, and 

that its inhibition could increase the levels of the GSK3β protein in the growth 

cones of our cultures, it would be compelling to investigate whether this 

microRNA can regulate GSK3β in the axon and thus modulate its intrinsic 

development. From our data emerged that inhibition of miR-26a does not exert 



CHAPTER 4: Role of miR-26a in neuronal polarity and axon development 

154 

a function on axon specification at later time points of cortical development 

(DIV5-DIV8). This is not totally unexpected, since this temporal window of 

cortical development corresponds to a period in which most of the axons have 

been already specified (Banker, 2018; Dotti et al., 1988). However, due to 

technical limitation of the culture system, we could not establish whether this 

also applies with regards to axon elongation or if miR-26a preserves a function 

in this process. The use of microfluidic chamber in the same temporal window 

might help to address this question, and, at the same time, it would confirm 

with spatiotemporal accuracy the theory of an axonal role of miR-26a. This 

hypothesis will be tested directly in chapter 5. 

Despite the growing number of studies demonstrating the importance of 

miRNAs in axon and synapse development (Rajman and Schratt, 2017; 

Swanger and Bassell, 2011), evidence for their role in axon specification and 

neuronal polarisation has been largely missing. Only recently, miR-338 was 

shown to have a role in neuronal placement and polarisation in the cortical 

plate, controlling neuronal polarity, migration and or cortical placement cues 

(Kos et al., 2017a). Furthermore, a recent paper by Ambrozkiewicz et al. (2018) 

demonstrated the capacity of miR-140 to act synergistically with its host gene 

E3 ubiquitin ligase WW-Containing Protein 2 (Wwp2) and Wwp1 in the 

establishment of axon-dendrite polarity of developing cortical neurons in vivo. 

An aspect that has not been addressed so far is whether the effects of miR-26a 

with regards to neuronal polarity in vitro can also be translated and 

reproduced in vivo. As Kos and co-workers showed, the manipulation of 

miRNAs levels using a sequence-specific miR-sponge through In utero 

electroporation (IUE) technique, it might be a feasible experimental approach 

to delineate the in vivo function of a specific RNA in corticogenesis (Kos et al., 

2017a). Moreover, this approach overcome the limitations of a global miRNA-

depletion approach, in which the conditional deletion of essential genes for 
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miRNA biogenesis such as Dicer causes gross anatomical abnormalities and 

overwhelming amount of apoptosis (Davis et al., 2008; Makeyev et al., 2007).  

However, in the case of miR-26a, even its specific inhibition through in utero 

electroporation approaches could become ambitious. In fact, a yet 

unpublished study identified the miR-26 family, including miR-26a, as a 

regulatory RNA network required for neurogenesis, thus, inhibition of miR-

26a in vivo might disrupt neuronal migration and differentiation, making the 

unification of results a seemingly impossible task (M. Sauer, 2017).   

 



CHAPTER 5: Axonal miR-26a spatiotemporally regulates GSK3β 

156 

 

 

 

 

 

CHAPTER 5:  

Axonal miR-26a spatiotemporally regulates 

GSK3β 

 

  



CHAPTER 5: Axonal miR-26a spatiotemporally regulates GSK3β 

157 

5.1 Introduction 

As described in the general introduction, neuronal miRNAs were initially 

implicated in early stages of nervous system development, but only relatively 

recently their functions in postmitotic neurons have started to be investigated. 

Because of the compartmentalised nature of neurons, the dendritic localisation 

of proteins belonging to the miRNA biogenesis pathway in mature neurons 

(Lugli et al., 2005) and the isolation of several miRNAs associated with the 

translational machinery of postmitotic neurons (Kim et al., 2004) provided the 

rationale for miRNAs to operate locally within specific neuronal 

compartments to regulate the expression of a subset of mRNAs. This allows 

neurons to control protein synthesis with temporal and spatial resolution in 

fundamental neuronal processes, such as neurite outgrowth, axon guidance, 

synapse formation, and, ultimately cognitive brain function (McNeill and Van 

Vactor, 2012). In effect, studies have depicted a pivotal role of miRNAs in fine 

tuning the axonal translation of local mRNAs over several steps of axon 

development (Iyer et al., 2014; McNeill and Van Vactor, 2012). In chapter 4, we 

showed that the axon-enriched miR-26a is highly expressed in neuronal 

cultures and regulates both neuronal polarity and axon growth via the 

targeting of GSK3β. Moreover, we hinted at the possibility that this microRNA 

might have a local effect in the axon of cortical neurons, given the fact that 

inhibition of the endogenous miR-26a can raise the GSK3β protein levels in 

growth cones [Figure 36b]. In the final experimental chapter of this thesis, I 

will explore this possibility. First, I will give a brief introduction of the function 

of miRNAs compartmentalised in the axon of different neurons with regards 

to axon development.  
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5.1.1 MicroRNAs in the axon  

A large investigation of the miRNA expression profile in axons revealed 

around 137 miRNAs in distal axons, four of which were highly enriched in the 

axon in comparison to the cell body (Natera-Naranjo et al., 2010). In this 

elegant work, superior cervical ganglia neurons were cultured in a 

compartmentalised Campenot culture chamber (Eng et al., 1999) in which 

axons are isolated from their cell bodies. miRNAs were identified from the 

pure axonal RNA fraction by microarray analysis and further validated by 

qPCR (Natera-Naranjo et al., 2010). In a more recent study, using a “neuronal 

ball” for an efficient spatial separation of large amounts of purified axons, 

seven axon-enriched miRNAs were found to be localised to distal axons and 

growth cones (Sasaki et al., 2014).  

Although the repertoire of axonal miRNAs has been greatly expanded by 

profiling studies, very little is known about the function of specific miRNAs 

in the developing axon. Using mice cortical neurons, Dajas-Bailador and co-

workers first revealed that a miRNA, miR-9, modulates the translational 

repression of Map1b and that this process can be regulated by BDNF-

dependent signalling processes in the axon. Inhibition of miR-9 affected axonal 

growth only when applied locally in axons, suggesting that BDNF affects this 

developmental process via local, miRNA-mediated translational control of a 

cytoskeletal regulator (Dajas-Bailador et al., 2012). A further confirmation of 

these local mechanisms came later with the axon-enriched miR-132, which 

promotes embryonic DRG axon outgrowth by targeting endogenous 

p120RasGAP (Rasa1), a protein involved in cytoskeletal regulation (Hancock 

et al., 2014). In this work, miR-132 induced the increase in axonal Rasa1 protein 

levels and the process was dependent on local protein synthesis, demonstrated 

by the abolishment of this process when a translation inhibitor was applied to 

severed axons (Hancock et al., 2014). In another work conducted in parallel 
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BDNF, has been also found to promote axonal branching in the developing 

mouse retina through up-regulation of miR-132, which in turn downregulates 

its known target Rho family GTPase-activating protein, p250GAP (Marler et 

al., 2014).  

miR-16, a brain and axon-enriched miRNA (Natera-Naranjo et al., 2010) has 

been described as regulator of the local protein synthesis machinery in distal 

axons, via the targeting of eukaryotic initiation factor-2B (eIF2B2) and the 

eukaryotic translation initiation factors 4 gamma 2 (eIF4G2) (Kar et al., 2013). 

Transfection of the precursor miRNA in the axon modulated both mRNA and 

protein levels of eIF2B2 and eIF4G2 as well as axon growth. After metabolic 

labelling studies, downregulation of axonal eIF2B2 and eIF4G2 suppressed 

both local axonal protein synthesis and axon outgrowth (Kar et al., 2013). 

Axonal over-expression of the miR-17-92 cluster in microfluidic 

compartmentalised culture of embryonic cortical neurons promoted axonal 

outgrowth, whereas axonal inhibition of endogenous miR-19a, a key 

component of this cluster, supressed outgrowth by regulating local expression 

of PTEN (Y. Zhang et al., 2013). More recent research has identified miR-181d 

as an axon-enriched miRNA that regulates axon elongation by locally 

targeting two mRNAs, MAP1B and calmodulin, in the microfluidic culture of 

embryonic DRG neurons (Wang et al., 2015) 

Finally, as already mentioned, microRNAs can also regulate correct axon 

guidance (Holt et al., 2019). In a fish model of axonal growth, the knockdown 

of miR-204 leads to misguided growth of RGC axons into retinal layers via the 

targeting of ephrin type receptor B 2 (Ephb2) and ephrin B3 (Efnb3) (Conte et 

al., 2014). On the other hand, over-expression of miR-204 rescued these defects 

(Conte et al., 2014). More recently, miR-182 was described to regulate growth 

cone responsiveness to Slit Guidance Ligand 2 (Slit-2) in the same model. Both 

in vitro and in vivo experiments demonstrated that miR-182 is locally 
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suppressing the axonal translation of cofilin-1, a cytoskeleton regulator. 

Accordingly, loss of miR-182 caused RGC axon targeting defects in vivo and 

impaired Slit2-induced growth cone repulsion (Bellon et al., 2017). 
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5.2 Aims of this chapter 

As mentioned in different parts of this thesis, the subcellular localisation and 

translation of mRNAs in the axon are essential for axon elongation, branching, 

and survival. Recent studies have denoted the vast diversity of axonal 

miRNAs and have identified miRNA-based functions in the translational 

control of local protein synthesis. However, the localisation, function, and 

regulatory mechanism of numerous miRNAs in the axon remain unknown.  

Our preliminary screening depicted miR-26a as one of the highly enriched 

miRNAs in developing axons, and data in chapter 4 suggested that it might 

exert a function in the axonal compartment. Hence, the specific aims of this 

part of the thesis are as follows: 

 

 

• Address the axonal localisation of miR-26a and its function in axon 

growth; 

 

• Investigate whether miR-26a is locally controlling axon elongation 

through GSK3β; 

 

• Elucidate the molecular mechanisms through with miR-26a is 

regulating axonal length locally in the axon compartment.  
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5. Results: 

5.1 Localised inhibition of miR-26a in the axon can regulate axonal 

growth 

The capacity for miRNAs to regulate axon development, and to do so by 

localising to the axon compartment is a relatively new area of investigation 

(Bellon et al., 2017; Dajas-Bailador et al., 2012; Wang and Bao, 2017). As 

described in the introductory section of chapter 4, a deep sequencing screening 

identified miR-26a in a subset of axon-enriched microRNAs. Moreover, since 

inhibition of endogenous miR-26a drastically raised the levels of the GSK3β 

protein up to 50% in the axonal domain [Figure 36b], it is possible to speculate 

that miR-26a might have a local effect in the axon, controlling axon outgrowth 

through the regulation of GSK3β. To address if this potential mechanism was 

relevant in the effects observed for miR-26a, I first assessed the presence of 

Gsk3b mRNA in the axons of cortical primary neurons. For this, I cultured 

neurons in compartmentalised microfluidic chambers, which allow the 

morphological and functional separation of axons from somas (Taylor et al., 

2005). As shown in Figure 41, I could detect both miR-26a and Gsk3b mRNA 

in qPCR experiments using axonal RNA (Poulopoulos et al., 2019).   
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Considering the presence in the axon of both miR-26a and GSK3β, the 

following step was to carry out functional assays in microfluidic 

compartmentalised cortical cultures, with the aim to determine the role of 

intra-axonal miR-26a in axon growth. As described in Chapter 3, one of 

advantages of these microfluidic chambers compared to other 

compartmentalised models is their ability to fluidically isolate the axonal 

(axon side) from the somato-dendritic compartment (soma side) by employing 

differential hydrostatic pressure. This allows for the selective manipulation in 

Figure 41: Expression of Gsk3b in the axons of cortical neurons. (a) 

Quantification of miR-26a levels in the axonal fraction of cortical 

primary cultures relative to soma. Expression of miR-26a-5p was 

analysed by relative quantification using the comparative Ct method 

(2-ΔΔCt) and the geometric mean of miR-100-5p, miR-128-3p, miR-434-

3p and let7a-5p used as endogenous reference. miR-26a detection 

levels in the axons were within the range of detection for mature 

miRNAs (Average CT value = 29.95) and comparable to previous 

miRNA qPCR quantification experiments in cortical and DRG axons 

(Natera-Naranjo et al., 2010; Zhang et al., 2013); mean±SEM of 3 

independent experiments. (b)  Quantification of Gsk3b expression 

levels in the axonal fraction of cortical primary cultures relative to 

soma. Expression of Gsk3b was analysed by relative quantification 

using the comparative Ct method (2-ΔΔCt). The geometric mean of 

Gapdh and Ube2 was used as endogenous reference; mean ± SEM of 3 

independent experiments. 
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either the axons or somas, without affecting the other compartment (Taylor et 

al., 2005). 

Accordingly, neurons were seeded in the soma side and grown for 5-6 days in 

order to allow a significant number of axons to cross into the axonal side of the 

device. At this point, the cell permeable inhibitor of miR-26a was added to 

either the soma or axon compartment of the chambers and the length of the 

axons was recorded at 24 h and 48 h after application (0 h) of either the cell-

permeable miR-26a inhibitor or inhibitor control (100 nM). As depicted in 

Figure 42a, axonal outgrowth is drastically reduced when the miR-26a 

inhibitor is applied exclusively in the axonal side of microfluidic chambers at 

both 24 h and 48 h after application. Importantly, this effect on axonal growth 

is not observed when the miR-26a inhibitor was added to the soma side 

[Figure 42b]. Since the reduction in axon length was already significantly 

visible at 24 h after the selective axonal inhibition of miR-26a, I therefore used 

this time point as a cut off to evaluate axonal outgrowth in future experiments, 

thus facilitating the analysis and minimising off-target effects of 

pharmacological inhibitors that will be described in the following sections. 

Overall, these results indicate that miR-26a controls axonal growth in cortical 

neurons up to 8 days after plating by acting in the axon compartment. 
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Figure 42: Localised inhibition of miR-26a in the axon can regulate axonal growth. Cell-

permeable miR-26a inhibitor or inhibitor negative control was applied to 

compartmentalised cultures at DIV5 and axons growing in the axonal side were measured 

at 0 h, 24 h and 48 h after application. (top) Schematic representation of the experimental 

design. (a) Inhibition of endogenous axonal miR-26a by application of a cell-permeable 

miR-26a inhibitor to the axonal compartment induced a decrease in axon length in 

comparison to a cell-permeable inhibitor negative control, 48 h after application. (b) When 

the cell-permeable miR-26a inhibitor or inhibitor negative control were applied to the 

somal compartment, no significant effect was observed in the length of axons growing in 

the axonal side. For all the experiments, schematics of the microfluidic chambers (left 

corner) depict where drugs were added. Application to the axon and the soma side is 

illustrated in green and blue, respectively. Data normalised to axon length at T=0 h (t0) and 

presented as percentage of t0, n=4. Data is shown as mean ± SEM; one-way ANOVA with 

Bonferroni pots-hoc test, *: p < 0.05, **: p ≤ 0.01 

Time course of compartmentalised inhibition of miR-26a 
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5.2 Localised inhibition of miR-26a in the axon regulate axonal growth 

via GSK3β signalling 

To further test the local effects of miR-26a effects and considering the presence 

of Gsk3b mRNA in the axon, I hypothesised that axonal application of the 

GSK3 inhibitor would rescue the locally-mediated decrease in axon growth 

induced by inhibition of miR-26a. For this, I cultured cortical neurons in 

microfluidic chambers for 5-6 days as previously described and applied the 

cell-permeable miR-26a inhibitor in the axon side for 24 h, together with the 

GSK3 inhibitor (SB415286). As predicted, addition of SB415286 into the axonal 

compartment abolished the decrease in axonal growth mediated by local 

application of the miR-26a inhibitor [Figure 43a-b]. However, unlike the 

experiments with miR-26a inhibitor alone, which failed to affect axonal growth 

when applied to the soma, the addition of the GSK3 inhibitor to the soma side 

also rescued the decrease in axon length observed after axonal inhibition of 

miR-26a function [Figure 43c]. The fact that GSK3 inhibition on its own [Figure 

43b-c] did not increase axonal length when applied on the soma or axon sides 

would suggest that in conditions of active axonal growth, the GSK3β activity 

controlling this process is relatively low. The observation that GSK3β activity 

in the soma is necessary to prevent axon growth after miR-26a inhibition is in 

agreement with previous findings (Jiang et al., 2015). However, unlike Jiang et 

al, our results also demonstrate that a local effect of miR-26a present in the 

axon is required for this to occur. Overall, these set of results suggest the 

interesting possibility that GSK3β might be locally translated in the axon and 

that this process is a pre-requisite for a functional outcome in the cell body. 

According to this hypothesis, although newly synthesised GSK3β may still act 

on axon-local mechanisms, likely impacting on cytoskeletal dynamics, it also 

undergoes retrograde transport towards the soma where it activates further 

regulatory mechanisms controlling axonal growth. This retrograde transport 
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of locally synthesised proteins as a mechanism of axonal signalling has been 

only demonstrated for a small number of transcription factors (Cox et al., 2008; 

Ji and Jaffrey, 2012; Willis et al., 2007), and very recently in a 

neurodegenerative CNS neuronal model (Walker et al., 2018). However, this 

functional mechanism has not been shown for intra-axonal miRNA-regulated 

translation.  
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Figure 43: Localised inhibition of miR-26a in the axon regulate axonal growth via 

GSK3β signalling. (top) Schematic representation of the experimental design. (a) 

Representative images and (b) quantification of axonal length after using both miR-26a 

and GSK3 inhibitor (SB415286) applied to the axonal side of microfluidic chambers, n=5. 

(c) Quantification of axonal length after application of miR-26a in the axon side and 

GSK3 inhibitor in the somal side of microfluidic chambers, n=4. For all experiments, 

schematics of the microfluidic chambers (above the graph) depict where drugs were 

added. Application to the axon and the soma side is illustrated in green and blue, 

respectively. Data is expressed as mean ± SEM; Kruskal-Wallis with Dunn’s multiple 

comparison test (b), one-way ANOVA with Bonferroni’s multiple comparison post-hoc 

tests (c): *: p < 0.05. 
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5.3 Retrograde transport of locally translated GSK3β is required for the 

regulation of axonal growth after inhibition of miR-26a in the axon 

In order to test this hypothesis, I first decided to investigate the levels of 

GSK3β protein in the axon and soma of cortical neurons after 

compartmentalised application of the miR-26a inhibitor. Neurons were seeded 

in the soma side and grown for 5-6 days and the cell permeable inhibitor of 

miR-26a was added to either the soma or axon compartment of the chambers. 

At 24 h after application of the inhibitor, the levels of GSK3β protein in 

neuronal somas and/or growth cones were quantified by quantitative 

immunostaining. As shown in Figure 44a-b inhibition of miR-26a only in the 

axon compartment of microfluidic chambers produced a significant increase 

in GSK3β protein levels, both in the axon and soma of cortical neurons. 

Conversely, application of the inhibitor only to the soma side, failed to 

produce an increase in GSK3β protein, both in the soma and axons when 

compared to non-targeting oligonucleotides [Figure 44c-d]. The latter result is 

particularly interesting as it supports the hypothesis of an axon-exclusive 

regulation of GSK3β translation via miR-26a. Moreover, it also suggests that 

passive diffusion of the inhibitor along the axon is not a likely explanation for 

the observed effects. Overall, these findings support the idea that miR-26a can 

regulate GSK3β levels in the axon, but to achieve its full functional effect, it 

requires an increase in GSK3β levels in the soma that is axon dependent.  
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Figure 44: miR-26a regulates the expression levels of GSK3β protein in neuronal somas and 

growth cones only when is inhibited in the axon. (top) Schematic representation of the 

experimental design. Representative images and quantification of GSK3β protein levels in the 

(a) growth cones and (b) somas of cortical neurons after local application of cell-permeable 

miR-26a inhibitor in the axon side of microfluidic chambers, n=5. Representative images and 

quantification of GSK3β protein levels in the (c) growth cones and (d) somas of cortical 

neurons after local application of cell-permeable miR-26a inhibitor in the somal side of 

microfluidic chambers, n=4. Data is expressed as mean ± SEM; Student’s t-test: *: p < 0.05. 
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If this is true, blocking axonal transport exclusively in the axonal compartment 

might further increase the levels of GSK3β protein in the growth cones and 

consequently impair the previously described somatic accumulation of the 

protein after axonal inhibition of miR-26a. To test the validity of this novel 

mechanism, a compartmentalised culture model where axonal transport was 

disrupted was implemented. For this I used a microtubule-destabilising drug, 

nocodazole, which has been previously demonstrated to impair axonal 

transport without dramatically impacting the neuron’s viability (Gobrecht et 

al., 2014; Saijilafu et al., 2013). In this experiment, cortical axons were treated 

with nocodazole 18 h after axonal application of miR-26a inhibitor and imaged 

6 h later. As shown in Figure 45a, addition of nocodazole after inhibition of 

miR-26a in the axon led to a further increase in axonal GSK3β levels, but 

crucially, prevented the previously observed increase in the soma [Figure 

45b]. Overall, when these experiments are put together with our functional 

studies, they provide demonstration of two key mechanisms. First, local 

synthesis of GSK3β in the axon is regulated by axonal miR-26a, which is 

normally repressing its translation. Secondly, regulation of axonal growth by 

GSK3β after release of miR-26a repression requires the transport of newly 

synthesised GSK3β to the somas of cortical neurons.  
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Figure 45: Retrograde transport of locally translated GSK3β is required for the regulation of 

axonal growth after inhibition of miR-26a in the axon. (top) Schematic representation of the 

experimental design. (a-b) Representative images and quantification of GSK3β protein levels 

in both growth cones and somas of cortical neurons treated with nocodazole 18 h after axonal 

application of miR-26a inhibitor and imaged 6 h later. For all the panels, schematics of the 

microfluidic chambers (upper right corner) depict where drugs were added. Application to the 

axon and the soma side is illustrated in green and blue, respectively, n=4. Data is expressed as 

mean ± SEM one-way ANOVA with Bonferroni’s multiple comparison post-hoc tests, **P≤0.01. 
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5.4 Discussion 

As fundamental regulators of protein translation in the nervous system (Davis 

et al., 2015), the investigation of miRNAs and their specific role in the axon 

compartment of neurons has rapidly expanded in recent years  (Kaplan et al., 

2013; Wang et al., 2015; Y. Zhang et al., 2015). Studies from us and others (Bellon 

et al., 2017; Dajas-Bailador et al., 2012; Sasaki et al., 2014) have shown how 

regulation of local translation by specific miRNAs can control energy 

metabolism, growth and branching of axons in culture models of both central 

and peripheral neurons. For example, Kar et al. (2013), elegantly showed how 

axonal transfection of miR-16 or miR-16 inhibitor in rat sympathetic neurons 

was able to regulate mRNA levels of two of its targets (eIF2B2 and eIF4G2) in 

the axon, whereas no effect on the neuron’s soma levels was observed. In CNS 

neurons, miR-9-5p was shown to locally control axon development by 

targeting the microtubule associated protein Map1b (Dajas-Bailador et al., 

2012). In chapter 4, we identified miR-26a as key player in the regulation of 

neuronal polarity and axon outgrowth via the targeting of GSK3β. The data in 

this chapter have revealed for the first time a local role of miR-26a in the 

regulation of axon development, in a process that requires the repression of 

local synthesis of GSK3β. Removal of miR-26a-mediated repression in the 

axon, triggers the local translation of GSK3β protein along with its subsequent 

transport to the neuronal soma, where its activity further regulates axonal 

growth. 

Crucially, our study has also unravelled a previously unknown mechanism 

for neuronal information processing and GSK3β signalling in developing CNS 

neurons. In effect, local inhibition of miR-26a in the axon produced a 

significant increase in GSK3β protein levels and a decrease in axonal growth. 

Although axonal inhibition of miR-26a increased GSK3β protein levels in both 

the axon and soma of cortical neurons, this was not observed when inhibition 
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of this microRNA was restricted to the soma side of compartmentalised 

microfluidic chambers, indicating an axon-exclusive regulation of GSK3β 

translation via miR-26a.     

We suggested a model in which GSK3β activity is needed in both soma and 

axon compartments, since the decrease in axonal length observed after 

inhibition of miR-26a in the axon was prevented by local application of the 

GSK3 inhibitor (SB415286) in either the soma or axon side of microfluidic 

chambers. The GSK3β expression studies reveal a molecular mechanism 

where local translation of GSK3β in the axon is normally repressed by the 

presence of miR-26a. In neuronal cultures, this promotes axonal development 

and growth. However, when miR-26a function is inhibited in the axon, local 

translation of GSK3β is triggered, followed by transport to the soma of cortical 

neurons. Although the activity of GSK3β is required in the axon and soma, the 

somatic increase in GSK activity capable of regulating axon function is 

dependent on its translation in the axon compartment [Figure 46].  
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Confirmation of this mechanism was provided by the application of 

nocodazole in the axon side of microfluidic chambers. In this experimental 

paradigm, disruption of microtubule structure impairs axonal transport 

(Gobrecht et al., 2014), and as predicted, it also prevented the increase in 

GSK3β protein levels that was observed in the soma after axonal inhibition of 

miR-26a. Reassuringly, nocodazole application did not stop the local 

translation of GSK3β in the axon once miR-26a translational repression was 

removed locally. However, the use of dynein inhibitors (i.e. ciliobrevin; 

Walker et al., 2018) would be needed to confirm the specific molecular 

mechanism involved in its retrograde transport to the soma. Moreover, levels 

Figure 46: Proposed miR-26a-mediated-mechanism of action. In condition of active 

growth, the GSK3β activity controlling this cellular process are relatively low and miR-

26a is normally repressing its translation. When miR-26a function is inhibited in the axon, 

local translation of GSK3β is triggered, followed by transport to the soma of cortical 

neurons where it activates further regulatory mechanisms or targets controlling axonal 

growth. 
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of GSK3β protein after the concurrent inhibition of miR-26a in the axon and 

block of retrograde transport indicates that 6 h are sufficient to produce a 20% 

increase in GSK3β protein levels in the axon. This likely reflects the high rate 

of GSK3β axon translation and transport following release of miR-26a 

repression.  

In recent years, local protein synthesis has been confirmed as a cellular process 

that can provide the structural and regulatory components that are specifically 

needed in the axon, either during development, synaptic maturation or 

regeneration (Batista et al., 2017; Batista and Hengst, 2016; Costa and Willis, 

2018), with an ever-growing list of components being locally translated 

(Campbell and Holt, 2001; Si et al., 2003; Verma et al., 2005; Yoon et al., 2012). It 

remains unclear why a protein would be locally synthesised just to be 

transported back to the soma. A possible answer might be that local synthesis 

and retrograde transport of signalling molecules allow to tightly control a 

signalling event. In fact, a similar mechanism has been previously shown only 

with transcription factors (Cox et al., 2008; Ji and Jaffrey, 2012) such as CREB, 

which can be retrogradely transported to the nucleus to promote neuronal 

survival. In this way, local axon translation can facilitate and amplify 

communication between the axon and the neuronal soma, allowing the 

transport of newly synthesised “protein messengers” from the distal ends of a 

neuron (Cox et al., 2008). More recently, exposure of axons to oligomeric Aβ1-

42 generates a retrograde signalling complex, inhibition of which can prevent 

the normal cell body response to Aβ1-42 (Walker et al., 2018). Considering that 

so far this mechanism has been only shown in peripheral neurons and after 

injury (Ben-Yaakov et al., 2012; Terenzio et al., 2018; Walker et al., 2018), our 

study, for the first time, shows that the retrograde transport of a locally 

translated signalling molecule can trigger a functional outcome in developing 

CNS neurons. Further experiments are now needed to determine why GSK3β 



CHAPTER 5: Axonal miR-26a spatiotemporally regulates GSK3β 

177 

retrograde transport is necessary to regulate polarity and axonal growth. To 

address this question, it would be informative to depict what are the targets 

that GSK3β phosphorylates after being transported back to the soma and/or if 

GSK3 has a role in NFAT- or CREB-mediated gene transcription during axon 

growth.  

Our results demonstrate how a single miRNA can use the spatiotemporal 

control of axonally originated protein synthesis to impact events globally in 

the soma. This is a significant observation that challenges the prevalent view 

of miRNAs as only fine tuners of protein translation. In fact, localised 

regulation by specific miRNAs can dramatically change protein levels in 

defined neuronal compartments. However, it would be interesting to 

investigate about the mechanisms through which miR-26a can be in turn 

regulated. Expression of microRNAs can be regulated on multiple levels, such 

as at both the transcriptional and post-transcriptional level (all reviewed in Ha 

and Kim, 2014). But an alternative possibility, as it has been previously 

described for some microRNAs reported to have a function in axon 

development, is that extrinsic signals are involved in their regulation. For 

example, axonal treatment with a low concentration of BDNF reduces the level 

of axonal miR-9 and increases axon extension by inducing local synthesis of 

MAP1B, whereas prolonged treatment with a high concentration of BDNF 

increases the level of the miR and increases axon branching by repressing 

axonal synthesis of MAP1B.(Dajas-Bailador et al., 2012). Another axonal 

miRNA that responds to local signalling is miR-181d, which is involved in the 

NGF-mediated axon elongation of embryonic DRG neurons. However, unlike 

the BDNF-mediated regulation of miR-9, NGF treatment does not change the 

level of miR-181d but regulates the dissociation of targets from miR-181d- 

repressing granules (Wang et al., 2015). Considering the fact that miR-26a 

needs to constantly control the levels of GSK3β to modulate axon growth, 
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further experimental studies of the mechanisms behind the miR-26a 

expression are crucial.  

In conclusion, our findings have placed miR-26a at a junction of regulatory 

mechanisms able to impinge on neuronal polarity and axon development via 

the control of GSK3β levels. 
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6.1 Local protein translation in disease  

As stated in previous sections of this thesis, the mRNA transcripts that are 

transported along the axon are highly heterogeneous, being sensitive to both 

developmental cues and pathophysiological conditions (Costa and Willis, 

2018). Besides prompting further investigations about the function, role and 

regulatory mechanisms of the axonal translatome (Cioni et al., 2018; Jung et al., 

2012), the complexity of the axonal mRNA population raised also interest in 

evaluating the functional consequences when the process of local protein 

translation is lost. The work presented in chapter 3 investigates this question 

using cultures of primary DRG neurons.  

Local translation is thought to be particularly important in the distal parts of 

long axons, such as sensory and motor neurons, because it supplies new 

proteins to meet local demand far from the soma and rapidly respond to 

extracellular stimuli. In this regard, the data presented in chapter 3 represents 

a proof of concept for this mechanism, confirming the important physiological 

role of local translation in preserving both axon survival and homeostasis. 

Specifically, we found how distal portions of axons/neurites were also more 

susceptible to degeneration when the translation machinery was locally 

disrupted. Recent data might support this notion, given the fact that after 

disruption of axonal mRNA-trafficking through the expression of Charcot-

Marie-Tooth disease type 2B (CMT2B)-linked Rab7a mutants, local protein 

synthesis of mitochondrial protein was impaired with the consequent loss of 

axon integrity (Cioni et al., 2019).       

Accumulating evidence has associated aberrant axonal localisation of mRNAs 

and disruption of translation to several neurodevelopmental disorders, such 

as fragile X mental retardation and autism, which seem to have underlying 

local translation deficits (Bear et al., 2008; Kar et al., 2014). Fragile X mental 

retardation protein (FMRP) is a well-documented plasticity regulator in 
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dendritic spines (Bassell and Warren, 2008). It is found in growth cones and 

axons (Antar et al., 2006; Christie et al., 2009), where it regulates the presynaptic 

proteome (Akins et al., 2012). Several nuclear-encoded mitochondrial mRNAs 

are localised within axons, and, not surprisingly, clinical phenotypes are often 

associated with the disruption of their transport or translation (Aschrafi et al., 

2010). In fact, exogenous expression of the Cytochrome C oxidase IV (COXIV) 

in cultured SCG neurons results in the reduction of local ATP levels and 

increases levels of reactive oxygen species (ROS) in the axon, and this increase 

correlates with an anxiety- and depression-like phenotype that is reminiscent 

of neuropsychiatric disease in humans (Kar et al., 2014). Dysregulation of 

microRNAs that regulate these mitochondrial mRNAs also have been linked 

to neuropsychiatric disorders. Deletions within 22q11 are linked with 

schizophrenia and one of the deleted genes embedded in this region encodes 

for DGCR8, a fundamental component of the microRNA’s biogenesis 

machinery. This is also associated with depletion of miR-338, a known 

regulator of COXIV (Aschrafi et al., 2008).  

Once the transcripts are made and then stabilised by binding to RBPs in 

granules, they are prepared to make the long journey to the axon terminal. 

Thus, it is not surprising that mutations of RNA-binding proteins (RBPs) have 

been connected with neurodegenerative disorders, such as amyotrophic 

lateral sclerosis (ALS) and spinal muscular atrophy (SMA) (Bassell et al., 2011). 

Mutations of RNA-binding proteins in fact, lead to both ALS and some types 

of frontotemporal lobar degeneration and impair axonal trafficking of mRNA 

granules (Alami et al., 2014). SMA is instead caused by deletion or mutation(s) 

of the survival motor neuron (SMN) protein. SMN is present in all cell types, 

and its total deletion is lethal, but somehow motor neurons are more sensitive 

to its reduction (Fallini et al., 2016) This might be because a decrease in SMN 
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causes the reduction in the axonal localisation of several mRNAs (Rage et al., 

2013), and inhibits mTOR activity in axons (Kye et al., 2014).  

Perhaps more interesting was the discovery for a role of axonal protein 

synthesis in the response to β-amyloid (Aβ) stimulation, indicating a 

functional role for local translation in the pathogenesis Alzheimer’s disease 

(AD) (Baleriola et al., 2014). In this study, compartmentalised hippocampal 

cultures were used for the application of oligomeric Aβ1-42 specifically to 

axons, and this elicited the recruitment and axonal translation of many 

mRNAs, including the transcript for the transcription factor activating 

transcription factor 4 (ATF4). Locally synthesised ATF4 is retrogradely 

transported to the cell soma, where it changes nuclear transcription, ultimately 

leading to cell death.  

The discussion above highlights, once again, the importance of axonal protein 

synthesis and the associated regulatory mechanisms. It is also clear that the 

centre-stage is now moving towards the clinical consequences that the 

functional loss of this process might induce. However, further investigation 

into the underlying molecular mechanisms are still needed, thus allowing the 

selective control and coordination of axonal translation and the design of new 

strategies for therapies aimed at neurodevelopmental and neurodegenerative 

diseases. In this context, the PI3K-Akt-GSK3β axonal growth regulation 

pathway has a long history of study in the context of axon regeneration (Dill 

et al., 2008; Saijilafu et al., 2013), and in the data presented in chapter 5 of this 

thesis, we demonstrate how local translation of GSK3β in a specific cellular 

compartment, the developing axon, can have functional effects that influence 

distant cellular domains. Whilst the wider implications of this cellular 

mechanism still need to be further explored, it provides an additional mode of 

spatiotemporal regulation of GSK3β as master regulator of axon development 

and regeneration, with potentially broad physiological implications. 
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6.2 MicroRNAs: tiny but mighty regulators of 

nervous system. 

The data presented in this thesis demonstrate that miRNAs exert an important 

influence in the molecular networks that regulate the formation of the nervous 

system. The establishment of neuronal polarity is a very dynamic process, as 

well as a prerequisite for the correct development of both the axon and the 

somatodendritic compartment, which in turn provide the underpinning for 

the transmission and reception of electric signals and overall neuronal 

communication in the brain (Schelski and Bradke, 2017). For correct 

development to take place, this biological process requires the coordinated 

action of extracellular signals, receptors and intracellular signalling pathways, 

in a process made possible by the tight control of regulatory mechanisms. In 

this context, miRNAs have been considered as attractive candidates to 

regulate both signalling pathways and the neuronal translatome, due to their 

spatiotemporal- and tissue-specific-expression patterns (Bartel, 2004; Lagos-

quintana et al., 2001). Now, these post-translational regulators are recognised 

to be fundamental players of virtually all aspects of CNS development, 

physiology and disease (Cao et al., 2016). According to its target, a single 

miRNA can either promote or inhibit a specific developmental process. As the 

target for a given miRNA can change as a function of time and space (Bartel, 

2009), miRNA activity is often context specific, as nicely illustrated by findings 

that one miRNA can play different roles in different stages of neuronal 

development or in different regions of the brain (Rajman and Schratt, 2017).  

The work presented in chapter 4 and 5 of this thesis explores miRNA function 

in post-mitotic neurons at the period of neuronal wiring, when axons are being 

specified and extend towards specific post-synaptic partners to form 

functional connections (Polleux and Snider, 2010). Indeed, how axons manage 

to accurately follow specific paths to reach their partners is one of the highly 
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investigated questions in the axon development field, and the regulation layer 

provided by miRNA activity might play an important part. As neuronal 

polarisation and the development of neuron connectivity involves a 

temporally regulated series of cellular processes that include axon 

specification and outgrowth, pathfinding and the formation of pre-synaptic 

structures, it has now become clear that such tightly regulated events need the 

coordinated expression of miRNAs and their target genes.  

Although different experimental approaches and biological systems have been 

used to detect miRNA levels, very few studies have profiled miRNA 

expression directly within the developing axon (including growth cones). The 

study of their differential localisation and enrichment in these compartments 

(Hancock et al., 2014; Natera-Naranjo et al., 2010; Sasaki et al., 2014), could 

generate important information regarding the functional roles of local 

translation and axonal miRNAs.  

Beyond their identification in the axon compartment, very few studies have 

demonstrated a specific role for local miRNAs in the control of intrinsic axon 

growth pathways as well as guidance cues-stimulated axon outgrowth (Dajas-

Bailador et al., 2012; Hancock et al., 2014; Reh and Hindges, 2018; Wang and 

Bao, 2017), or the spatiotemporal effects of such guidance cues during axonal 

elongation (Bellon et al., 2017). In effect, apart from these specific studies, 

which have been described in different sections of this thesis, the function and 

regulatory mechanisms of miRNAs in the axon remain largely unknown.  

Another open question in the field, and not necessarily limited to neural 

development or to nervous system in general, is to determine when miRNAs 

act as “master regulators” or “switches” and when as fine-tuners of gene 

expression. miRNAs that are highly expressed in early neurogenesis (e.g. miR-

124, miR-9) can be classified as switch genes that control cell fate (Coolen et al., 

2013; Makeyev et al., 2007), but more modestly expressed miRNAs involved at 
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later stages of neuronal development seem to act instead as fine-tuner of gene 

expression in response to the activity state of the network. Although some 

miRNAs have crucial targets, regulation of which is enough to give rise to a 

specific phenotype (Dajas-Bailador et al., 2012; Kos et al., 2017b; W. M. Wang 

et al., 2017), many other miRNAs contribute instead to the regulation of up to 

a few hundred different targets, often in combination with other co-expressed 

miRNAs (Yi Zhang et al., 2013), making the process to assign particular 

biological roles particularly hard.  

Such a complicated view of the miRNA regulatory system comes from some 

studies demonstrating that the repression exerted by one single miRNA is not 

sufficient to influence an entire biological pathway (Baek et al., 2008; Selbach 

et al., 2008), as already showed in neocortical development studies (Barca-

Mayo and De Pietri Tonelli, 2014). However, the possibility to investigate 

miRNAs function in localised cellular environments (Dajas-Bailador et al., 

2012; Kos et al., 2016; Yi Zhang et al., 2013), where the consequence of their 

actions could be more marked, has provided further functional insight that is 

difficult to obtain with other cellular and culture models. In this context, the 

localised action of miR-26a might constitute a representative example, given 

the fact that its axonal suppression radically altered the levels of GSK3β in the 

axon [Figure 44] and whole neuronal cultures [Figure 35].   

Another hypothesis that might explain how miRNAs can manage 

simultaneously and precisely to control several biological processes is the 

convergent activity of multiple microRNAs. One or more individual miRNAs 

might act on different seed regions in one or more target 3’UTR, thus resulting 

in a regulatory effect (Barca-Mayo and De Pietri Tonelli, 2014), or converge on 

a functional outcome by acting at different intracellular signalling pathways 

that share the same biological function. Finally, microRNAs could act on a 

single target or on a pathway by targeting different molecules belonging to the 
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same pathway. One could speculate that the latter might be again the case of 

miR-26a, as it can control neuronal polarity and axon outgrowth via the 

targeting of both PTEN and GSK3β [Figure 39 and Figure 40]. Thus, advanced 

technologies such as high-throughput RNA sequencing for axonal RNAs 

present at low levels may provide an integrated map for the miRNA-mediated 

regulation of mRNAs during axon development.  

Another layer of complexity in the microRNA regulatory network might come 

from cell-cell communication, with the potential to modulate regulatory 

networks away from the cells of origin (Prada et al., 2018). Brain function 

depends on coordinated interactions between neurons and glial cells (Allen 

and Barres, 2009), with the latter providing a wide range of functions, from 

metabolic support to myelination, immune defence, and engagement in 

synapse formation and plasticity (Johanne and Linda, 2012). Recent evidence 

indicates that these cells also release endosome-derived microvesicles termed 

exosomes and carry specific proteins and RNA cargoes including microRNAs 

(Frühbeis et al., 2012). Exosomes can thus interact with neighbouring cells, 

mediate signalling between brain cells and facilitate the delivery of bioactive 

molecules, (Frühbeis et al., 2012). Not surprisingly, miRNAs within exosomes 

were shown to be actively released into the extracellular space and 

subsequently uptaken to exert regulatory actions in the recipient cells (L. 

Zhang et al., 2015), opening up an entirely novel field in exosome study. Even 

though exosome biology is still in its infancy (J. Zhang et al., 2015), the 

possibility to use exosomes and deliver their cargoes as a clinical tool to 

diagnose and monitor diseases, perhaps even for gene therapy, is really 

tantalising. Interestingly, a recent report suggested that miR-26a is enriched in 

astrocytes-derived exosomes and thus, it has the potential to be released and 

internalised by recipient cells (Lafourcade et al., 2016). These observations, 

along with the novel functions described for miR-26a in axon development 
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(chapter 4-5) raise only more questions. What could be the regulatory function 

of miR-26a in the recipient cell? Could exosomes-derived miR-26a be exerting 

regulatory actions in the specification and elongation of axons of neighbouring 

neurons? If this is true, could then miR-26a be uptaken by axons and produce 

the local effects described here? 

 

6.3 Implications of miRNAs in Neurological 

Diseases  

Considering the fundamental role of microRNAs in every stage of neuronal 

development, it is not surprising that a growing number of studies are linking 

their dysregulation to the pathology of neurological diseases such as 

neurodevelopmental disorders, neuropsychiatric disorders, and 

neurodegenerative disorders (Cao et al., 2016; Wang et al., 2012). One of the 

most extensively studied neurodevelopmental disorders for which miRNA 

dysfunction plays a key role is schizophrenia and, as I have already described 

in the general introduction of this thesis, miR-137 is the most well-documented 

microRNA implicated with the disease (Siegert et al., 2015).  

Interestingly, as for aberrant axonal localisation of mRNAs, fragile X mental 

retardation has been also associated with microRNAs. In Drosophila, it was 

showed that phenotypes caused by overexpression of miR-124a could be 

partially rescued by inactivation of dFMR1 (Drosophila homologous of FMRP) 

(Xu et al., 2008), whilst in mouse, it has been seen that FMRP was required for 

miR-125b and miR-132 effects on spine morphology changes (Edbauer et al., 

2010). 

miRNA profiling studies have shown that circulating miRNAs could be used 

as potential biomarkers for neurodegenerative disorders, as the expression of 

miRNAs is dysregulated in patient brain compared to normal brain (Cardo et 
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al., 2013; Grasso et al., 2014; Leidinger et al., 2013). In this context, the relatively 

high levels of miR-26a expression in mature neuronal cultures and CNS raises 

potentially relevant questions about its role in adult brain. There is now a clear 

understanding of how the loss of axon and neuron connectivity constitutes a 

fundamental step in the early and progressive degradation of network 

information capacity (Coleman, 2005; Conforti et al., 2007). Interestingly, both 

miR-26a, as part of a signature group of miRNAs known to be deregulated in 

Alzheimer’s disease (Cogswell et al., 2008; Leidinger et al., 2013), and GSK3β, 

which has shown increased activity leading to Tau hyperphosphorylation in 

various Alzheimer’s disease models, have been implicated in 

neurodegenerative processes (Dargahi et al., 2015; Hooper et al., 2008). Future 

work will need to establish whether the spatiotemporal control of GSK3β 

molecular mechanisms that are regulated by axonal miR-26a in developing 

neurons, could also have an impact in neuronal function in the mature and 

ageing brain. 
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Figure 48: Quantification of axon length after inhibition 

of miR-26a and the addition of GSK3 inhibitor 

(SB415286, 10 μM) 24 h after transfections, n=3. Data are 

mean±s.e.m. one-way ANOVA with Bonferroni’s 

multiple comparison post-hoc tests, *P<0.05 

Appendix 
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a b Axon length Axon length 

Axon length 

Figure 47: Test of different concentrations for both miR-26a inhibitor and mimic. (a) 

Quantification of axon length in polarised neurons after inhibition of miR-26a (miR-26a inhibitor 

25 and 50 nM), showing a dose-dependent decrease in axon compared to a non-targeting control, 

n=2. Data is expressed as mean ± SEM; (b) Quantification of axon length in polarised neurons after 

over-expression of miR-26a (miR-26a m 10 and 20 nM), showing a dose-dependent increase in 

axon length up to almost 40 % compared to a non-targeting control, n=3. Data are mean±s.e.m. 

one-way ANOVA with Bonferroni’s multiple comparison post-hoc tests, *P<0.05, **P≤0.01. 

* 
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