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Abstract 

Advancements in additive manufacturing technology have allowed the realisation of 

geometrically complex structures with enhanced capabilities in comparison to solid 

structures. One of these capabilities is vibration attenuation which is of paramount 

importance for the precision and accuracy of metrology and machining instruments. In 

this project, new additively manufactured lattice structures are proposed for achieving 

vibration attenuation. The ability of these lattices to provide vibration attenuation at 

frequencies greater than their natural frequency was studied first. This is referred to as 

vibration isolation. For the vibration isolation study, a combination of finite element 

modelling and an experimental setup comprising a dynamic shaker and laser vibrometer 

was used. The natural frequencies obtained from the experimental results were 93 % in 

agreement with the simulated results. However, vibration attenuation was demonstrated 

only along one dimension and vibration waves were allowed to propagate, meaning the 

transmissibility was allowed to be greater than 0 dB. To achieve lower transmissibility, the 

project demonstrated that lattice structures can develop Bragg-scattering and internal 

resonance bandgaps. The bandgaps were identified from the lattices' dispersion curves 

calculated using a finite element based wave propagation modelling technique. Triply 

periodic minimal surface lattices and strut-based lattices developed Bragg-scattering 

bandgaps with a normalised bandgap frequency (wavelength divided by cell size) of ~ 0.2. 

The bandgap of the tested lattices was demonstrated to be tunable with the volume 

fraction of the lattice unit cell, thus, providing a tool to design lattice structures with 

bandgaps at required frequencies. An internal resonance mechanism in the form of a solid 

cube or sphere with struts was designed into the inner core of the unit cell of strut-based 

lattices. These new internal resonance lattices can provide (a) lower frequency bandgaps 

than Bragg-scattering lattices within the same design volume, and/or (b) comparable 

bandgaps frequencies with reduced unit cell dimensions. In comparison to lattices of higher 

normalised bandgap frequencies, lattices with lower normalised bandgap frequencies have 
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cell sizes that are more suitable for manufacturing with the current additive manufacturing 

technologies and have higher periodicity within a constrained design volume, resulting in 

higher attenuation within the bandgaps and more homogenous structures. Similar to the 

Bragg-scattering lattices, the bandgaps of the internal resonance lattices were 

demonstrated to be tunable through modification of the geometry of the lattice unit cell. 

The internal resonance lattice experimentally demonstrated a bandgap of normalised 

frequency between 0.039 to 0.067 and an attenuation of up to -77 dB. These results are 

essential for engineering vibration attenuation capabilities within the macro-scale of 

materials for complete elimination of all mechanical vibration waves at tailorable 

frequencies. Future work will include further reduction of the bandgap frequencies and 

increasing the bandgap width by exploring new unit cell designs and new materials for 

additive manufacturing. 
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Terms definition 

 

These terms are used throughout the thesis: 

 Vibration attenuation: is the reduction of vibration transmissibility between two 

structures. 

 Vibration damping: is a method for vibration attenuation by operating at frequencies 

lower than the first natural frequency of the structure. 

 Vibration isolation: is a method for vibration attenuation by operating at frequencies 

higher than the natural frequency of the structure. 

 Bandgap engineering: is a method for vibration attenuation with which wave 

propagation is prohibited at certain frequencies.
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1. Introduction  

 

Chapter 1  

Introduction 

Additive manufacturing (AM) allows the manufacturing of periodic cellular structures 

(lattices structures) of enhanced properties when compared to solid structures. The aim 

of the project was to study the use of lattice structures for vibration attenuation purposes 

by providing the required design tools, modelling tools, and suitable lattice structures and 

vibration attenuation techniques.  

When vibration propagates through the support/metrology frame of an instrument, it 

causes displacement of the end effector, for example, optical head in a measuring 

instrument or cutting tool in a precision machine, relative to the workpiece. Such 

displacement leads to machining and measuring errors. The main motivation behind the 

project was to enhance the performance of precision manufacturing and measuring 

instruments by attenuating vibration using lattice structures to machine better parts or 

perform better measurements. Enhancing the performance of these machines and 

instruments can be done by constructing them from lattice structures that have vibration 

attenuation capabilities. For constructing precision machines and measuring instruments, 

the required lattice geometries, structural properties and capabilities were studied and 

outlined to allow for later use in precision and metrology applications. The study of the 

capabilities of lattice structures included development of suitable wave modelling 

techniques, testing the vibration attenuation capabilities of various types of pre-existing 
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lattices and creating new types of lattices with superior vibration attenuation capabilities 

in comparison to solid structures.  

1.1 Research questions 

This research answered these questions: 

 Can lattices be used for vibration attenuation? 

 How can wave propagation be eliminated in lattices to achieve vibration attenuation 

below 0 dB? 

 How can the vibrational performance of lattices be tailored to meet different 

vibrational needs (i.e. different vibration frequencies and directions)? 

1.2 Vibration attenuation structures 

Vibration attenuation structures are used to suppress vibration waves propagating from 

one structure to another. Vibration causes damage to structures and leads to machining 

and measuring errors. Vibration arises from different sources in different engineering 

fields. In construction engineering, vibration sources include machines such as 

compressors, ventilation systems and elevators [1]. In metrology and precision 

engineering, vibration sources include moving stages, camera shutters, contact between 

tool and workpiece, rotary components, for example, spindles, cutting tools, electronic 

fans and nearby traffic. 

1.3 Manufacturing and materials 

The ability of lattice structures to provide vibration attenuation was investigated. Lattice 

structures are a type of cellular structures with tailored geometrical features identified by 

a repeating unit cell [2]. The characteristics of these lattices include high strength to 

weight ratio, high surface area to volume ratios and high energy absorption properties. 

The solid geometries of lattices reflect the travelling waves which can destructively 
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interfere with each other (see Figure 1.1). The destructive interference of waves leads to 

the creation of frequencies of no wave propagation and results in high magnitudes of 

vibration attenuation (below 0 dB). The range of frequencies of no wave propagation is 

called a bandgap. In contrast, conventional solid structures lack the ability to destruct 

vibration waves and consequently allow propagation of waves which is associated with low 

magnitudes of vibration attenuation (≥ 0 dB).  

 

Figure 1.1. Vibration wave travelling within a conventional solid structure (top) and a 
lattice structure (bottom). Only low magnitudes of vibration attenuation are achievable 
with the use of solid structures, while lattice structure that is low in mass can provide high 
magnitudes of vibration attenuation when the wave frequency matches that of the 

bandgap. 

The literature explored different types of lattices and their mechanical and structural 

capabilities have been studied for use in aerospace, automobile, mining and manufacturing 

sectors [3–5]. An opportunity exists to design lattice structures that have reduced 

response to vibration in comparison to solid structures (see Figure 1.2). In Figure 1.2, an 

example of a conventionally manufactured machine frame, shown on the left, is used to 

support the optical head of a measuring instrument. The optical head should be kept stable 

to avoid any measurements errors which are caused by the vibration of a measuring 

instrument. Since the metrology frame is a solid conventionally manufactured structure, 

then only vibration transmissibility ≥ 0 dB is achievable (see Section 3.3 for detailed 

description of vibration transmissibility). Lattice structures can be used in the design of 
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metrology/machine frames to achieve vibrational responses below 0 dB. This project 

provided lattice structures of enhanced vibration performance. These lattices can, later 

on, be used for manufacturing structural and metrology frames of enhanced vibration 

response and, thus, improved measurement and machining performance. 

 

Figure 1.2. Illustration of the available opportunity to obtain machine frames with lattice 
structures of enhanced vibration attenuation capabilities. 

Manufacturing of lattice structures with complex geometries is feasible and made easy 

with AM. AM is a manufacturing process that builds three-dimensional (3D) parts from a 

computer-aided design (CAD) file, usually by successively adding material layer by layer, 

as opposed to conventional manufacturing where materials are subtracted or formed to 

obtain the final part [6] (see Section 2.1.1 for more description of AM). AM provides an 

opportunity to realise complex lightweight structures of enhanced strength to weight ratio 

and superior vibration and thermal isolation capabilities in comparison to conventionally 

manufactured solid structures. In addition, AM parts can be tailored to meet the 

requirements of certain applications, for example, the strength, ductility, and thermal and 

vibration isolation capabilities of an AM part can be tuned by adjusting the density and 

sizes of geometrical features [7]; this eliminates the need for expensive tooling that is 

part-specific, for example, moulds in injection moulding and jigs and fixtures in machining.  
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1.4 Publications list 

This thesis resulted in one book chapter, four conference papers and three peer-reviewed 

journal papers, all of which are published. 

Book chapter: 

 Elmadih, W.; Nefzi, M.; Bruice, E. Environmental isolation. In Basics of Precision 

Engineering; Leach, R. K., Smith, S., Eds.; 2018; pp. 565–600 

Conference proceeding papers: 

 Elmadih, W.; Syam, W.; Maskery, I.; Leach, R. K. Additively manufactured lattice 

structures for precision engineering applications. In: Proceedings of the 32nd 

Annual Meeting of American Society for Precision Engineering 29th October to 3rd 

November, Charlotte; 2017; pp. 164–169. 

 Elmadih, W.; Syam, W.; Maskery, I.; Leach, R. K. Designing low-frequency 

bandgaps in additively manufactured parts using internal resonators. In: 

Proceedings of the 33rd Annual Meeting of American Society for Precision 

Engineering 4th to 8th November, Las Vegas; 2018; pp. 162-167. 

 Elmadih, W.; Syam, W.; Maskery, I.; Leach, R. K. Control of elastic wave 

propagation in three-dimensional metamaterials. In: the American Society of 

Mechanical Engineers: 43rd Mechanisms and Robotics conference from 18th to 21st 

August 2019; 2019. 

 Leach, R. K.; Elmadih, W.; Piano, S.; Senin, N.; Sims-Waterhouse, D.; Syam, W.; 

Su, R.; Thomas, M. Enriching micro-scale metrology with an all-optical dimensional 

measuring system. In Proceedings of the Proc. euspen Micro/Nano Manufacturing 

Workshop 8th to 9th November, Strathclyde; 2017. 
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Journal papers: 

 Elmadih, W.; Wahyudin, S.; Maskery, I.; Meng, H.; Chornopolous, D.; Leach, R. K. 

Three-dimensional resonating metamaterials for low-frequency vibration 

attenuation. Sci. Reps. 2019, 9, 11503. 

 Elmadih, W.; Wahyudin, S.; Maskery, I.; Chornopolous, D.; Leach, R. K. Mechanical 

vibration bandgaps in surface-based lattices. Addit. Manuf. 2019, 25, 421–429. 

 Elmadih, W.; Syam, W.P.; Maskery, I.; Chronopoulos, D.; Leach, R. K. 

Multidimensional phononic bandgaps in three-dimensional lattices for additive 

manufacturing. Mater. (Basel, Switzerland) 2019, 12, 1878. 

Part of the work here contributed in the following peer-reviewed journal papers: 

 Meng, H.; Chronopoulos, D.; Fabro, A. T.; Elmadih, W.; Maskery, I. Rainbow 

metamaterials for broadband multi-frequency vibration attenuation: numerical 

analysis and experimental validation. J Sound Vib. 2019, (In-press). 

 Syam, W.P.; Jianwei, W.; Zhao, B.; Maskery, I.; Elmadih, W.; Leach, R. K.  Design 

and analysis of strut-based lattice structures for vibration isolation. Precis. Eng. 

2017, 52, 494–506. 
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2. Lattice structures 

 

Chapter 2 

Lattice structures 

Lattice structures are a set of interconnected networks of solid struts or plates that form 

a unit cell which is tessellated in space with no gaps between the cells [2].  

 

Figure 2.1. Examples of single unit cells of lattice structures at various (a) volume 
fractions, (b) cell sizes and (c) spatial periodicity. 



8 

 

The parameters of lattice structures include material, shape, volume fraction, unit cell size 

and spatial periodicity. The volume fraction (or relative density) 𝜌∗ of a lattice unit cell is 

expressed as 

 
𝜌∗  =

𝑉𝑠

(𝑉𝑠 + 𝑉0)
  , 2.1 

where 𝑉𝑠 is the volume of the solid region of the lattice and 𝑉0 is the volume of the void 

region as shown in Figure 2.1.a. The spatial periodicity of a lattice is defined as tessellation 

of the single unit cell of size 𝐿 along certain directions in space (see Figure 2.1.b and 

Figure 2.1.c). Lattice structures generally have a high strength to weight ratio, high 

surface area to volume ratio, good energy absorption characteristics, and good thermal 

and acoustic insulation properties [8,9]. Research in lattice structures is motivated by the 

desire to design and manufacture structures of multifunctional properties; structures that 

are not only light in mass and stiff but also possess intrinsic vibrational attenuation and 

thermal isolation capabilities.  

 

Figure 2.2. Lattice structures featured in the classification of cellular structures 
of Rehme et al. [10]. 

Rehme [10] classified cellular structures, depending on the type of porosity, into open-cell 

structures and closed-cell structures (see Figure 2.2) [10]; lattices are classified as 



9 

 

periodic open-cell structures as opposed to foam structures which are classified as 

closed-cell stochastic structures. According to Luxner et al. [11], who studied both periodic 

(regular) and stochastic (disordered) structures of simple cubic struts, periodic lattices 

have higher strength than stochastic ones (see Figure 2.3) due to the loads being evenly 

distributed among the unit cells. Stochastic structures cannot be identified by a repeating 

unit cell, but rather by a representative volume element (RVE) that contains the main 

microstructural features of the lattice (see elsewhere for more details on RVE [12]). 

Luxner et al. [11] found periodic lattices to be prone to strain localisation causing local 

damage at certain orientations. 

 

Figure 2.3. Example of a stochastic structure (left – photo adopted from [13]) and a 

periodic deterministic lattice structure (right). 

In a contradicting study to that of Luxner et al. [11], Mullen et al. [14] highlighted that 

stochastic structures possess higher mechanical strengths than periodic structures, 

arguing that stochastic structures do not have the planes of natural fault which can be 

found in periodic structures. Mullen et al. [14] used L-PBF (an AM process which is 

discussed in Section 2.1.1). This is because L-PBF possesses the ability to manufacture 

the metallic and polymer lattice structures that Mullen et al. used in their study. 
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2.1 Lattice structure fabrication methods 

In this section, the methods for manufacturing lattices are reviewed. Lattice structures 

can theoretically be manufactured in many ways, for example, fusion deposition modelling, 

stereolithography, material jetting, powder bed fusion, electron beam melting and metal 

forming [15]. However, only laser powder bed fusion, electron beam melting, investment 

casting and deformation forming will be discussed here as they are the most suitable 

methods for fabrication of lattice structures [4,16]. Description of other usable 

manufacturing methods, for example, material jetting and stereolithography, can be found 

elsewhere [17]. 

2.1.1 Additive manufacturing 

 Laser powder bed fusion 

L-PBF is an AM technique used for making solid parts from 3D CAD files by fusing selective 

regions of a powder bed using thermal energy [18]. The fundamental fabrication method 

of L-PBF relies on applying material powder in thin layers on a building platform and fusing 

specific areas using a laser beam of suitable thermal energy for consolidation of the powder 

[10]. The consolidation area depends on the data read from the 3D file and the required 

part resolution. The consolidation energy depends mainly on the material used which 

determines the exact L-PBF processing parameters, for example, thermal source energy, 

slicing of the part, scanning speed, scan line spacing (hatching), scanning strategy, 

atmosphere and powder bed temperature.  The laser beam scans in a pattern obtained 

from CAD data. The laser beam melts the desired regions in the powder bed for 

consolidation [19,20]. During the building of metallic parts, supports are used to attach 

the parts to a base plate, while for plastic parts, the unfused powder acts as a support 

structure in most cases. A blade/wiper spreads another layer of unsolidified powder as the 

building platform indexes downwards. The platform is usually connected to a piston, as 

shown in Figure 2.4 which shows a schematic of L-PBF process [21].  
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Figure 2.4. Schematic of L-PBF process adopted from [22]. 

A recent study by Tasch et al. [23] showed that L-PBF can manufacture features of sizes 

equal to or greater than 0.8 mm with minimal loss in mechanical capabilities, for example, 

ultimate tensile strength and Young’s modulus, when compared to smaller features of sizes 

less than 0.8 mm. The smaller features either failed to manufacture or manufactured with 

considerable loss in mechanical capabilities when compared to the results of larger 

samples of no defects [23]. 

A problematic feature of L-PBF is the existence of porous regions (i.e. regions of 

unsolidified powder in the build) which occur due to, for example, entrapped gas between 

powder particles or incomplete melt of powder. To reduce porosity in L-PBF, the process 

parameters, for example, scanning speed and index amount, were studied and optimised 

based on their effect on porosity [24,25]. As a result, parts with near 100 % density were 

demonstrated to be achievable [22].  
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Generally, L-PBF can manufacture geometrically complex metallic and polymer 

components, and without the need, in some cases, for post-processing. Post-processing 

includes hot isostatic pressing, infiltration, removal of powder, and support, sintering and 

finishing. However, L-PBF is a costly process, because it requires expensive powder, 

especially metal powder, of spherical morphology and small size. The process is also time-

consuming because it takes a longer time than conventional processes to build small metal 

parts [26] and is less energy efficient than milling, turning and drilling processes [27]. 

 Electron beam melting  

Electron beam melting is a layer by layer process used to produce 3D parts. It is a similar 

process to L-PBF, except for that it uses an electron beam instead of a laser for melting 

metal powder layers of up to 50 µm in a near vacuum chamber at around 2×10-1 Pa 

[28,29]. The powder and the base plate require preheating [5]. The process, as Cansizoglu 

et al. [30] describe, starts with heating a tungsten filament for generating the electron 

beam. An acceleration voltage of 60 kilovolts is then imposed on the electrons to 

accelerate them towards the building table where the powder is placed. To control the 

electrons’ deflection and focus, electromagnetic coils are used. Cansizoglu et al. [31] also 

studied the effect of electron beam angle in contact with the build material during the 

manufacturing of a Ti-6Al-4V lattice structure. As shown in Figure 2.5, the study of 

Cansizoglu et al. [31] concluded that small building angles affect the structural stiffness, 

as layers built at small angels have relatively smaller cross-sections than those built at 

wider angles. Syam et al. [32] presented an estimation of the accuracy and cost of EBM 

of Ti6Al4V parts. Despite being a cost-efficient and fast process, electron beam melting 

suffers from rougher surface finish compared to L-PBF process and investment casting 

methods (i.e. uneven surfaces) [33]. 
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Figure 2.5. Effect of beam angle on the cross-section area in EBM, adopted from [30]. 

2.1.2 Investment casting 

Investment casting is a traditional manufacturing method for manufacturing lattice 

structures by injecting material into disposable truss patterns connected to sheets which 

are made from a polymer or volatile wax, for example, polyurethane. A ceramic casting 

slurry covers the pattern and is allowed to cool down using a gating and risers cooling 

system. The wax or polymer is then vaporized or melted, from inside the ceramic casting, 

to form the cavity which the molten metal fills. Investment casting can produce different 

types of unit cells, for example tetrahedral, 3D kagome and octet-truss lattice 

(see Figure 2.6) [34,35]. Manufacturing of complex lattice geometries is possible with 

investment casting, however, cores of near-optimal shapes and very low volume fractions 

are challenging to obtain due to conventional manufacturing difficulties (i.e. stress 

concentration, liquid flowing issues, etc.). 

The minimum achievable core density with investment casting is 2 % [36].  Only materials 

of low viscosity can be used, which narrows the variety of usable materials [34]. 

Investment casting produces parts of high porosity which is not favourable in some 

applications [36] and is not optimum for the manufacturing of lattice structures. 

Deshpande et al. [16] managed to manufacture octet-truss lattice structures (shown in 

Figure 2.6b) from aluminium alloys using investment casting with injection moulded 

polystyrene pre-forms. Sacrificial investment casting patterns were reported to be 
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manufacturable from Cu-Be alloy (see Figure 2.7a) using Acrylonitrile Butadiene Styrene 

(ABS - common thermoplastic polymer) by Wang et al. [37] and Wadley et al. [34]. 

 

Figure 2.6. Investment casting: (a) 3D kagome lattice made from Cu - 1.8 % Be 
alloy [34], (b) octet-truss lattice structure made from aluminium alloy [16]. 

2.1.3 Deformation forming 

Deformation forming is another way of producing lattice structures with the utilisation of 

shaping and perforation techniques. The process can produce cells of sizes ranging 

from millimetres up to several centimetres [34,38]. As illustrated in Figure 2.7, the 

process starts with the rolling of metal sheet to a perforator for producing holes of diamond 

or hexagonal shapes. Then, the produced sheets with the shaped holes are punched at 

predefined regions to turn the sheets into pyramidal or tetrahedron structures. As required 

by most of the deformation processes, the produced structures require annealing, to soften 

the material and take it towards its equilibrium state, and suffer from inefficient use of 

materials. Lattice structures produced by deformation forming are reported to have better 

ductility than those produced with investment casting [34]. Kooistra et al. [39] argued 

that deformation forming can produce structures with volume fractions between 1.7 % 

and 8 % by changing the sheet thickness and the hole dimensions.  
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Figure 2.7. Illustration of the deformation forming process for producing lattice 
structures [40]. 

2.2 Classification of lattice structures 

Lattice structures for engineering applications can be classified based on their unit cell 

design into three main categories: Strut-based lattices, triply periodic minimal surface 

(TPMS) lattices and topology optimised lattices. Topology optimised lattices are designed 

by introducing changes to the base design of the unit cell of strut-based and TPMS lattices. 

Thus, it can be argued that strut-based and TPMS lattices are the two main categories of 

lattice structures. Strut-based lattices, as shown in Figure 2.8., are characterised by 

having struts of certain cross-section, for example, circular, rectangular or square cross-

section. The struts form the inner geometry and outer scaffold of the lattice unit cell. A 

strut-based lattice can have a different number of struts at different orientations. 

Identification of the struts (and their numbers) in a strut-based lattice is made based on 

the connection between the lattice nodes. For example, a simple cubic (SC) lattice has 

twelve struts forming the outer scaffold of the lattice unit cell, as can be seen in Figure 2.8. 

The body-centred cubic lattice (BCC) with reinforcement struts in x-, y- and z-directions 

(BCCxyz) possesses twelve struts forming the outer scaffold, similar to the SC, and extra 

eight struts forming the inner geometry of the unit cell as can be seen in Figure 2.8. A SC 
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lattice has eight lattice nodes, all located at the corners. A BCC lattice has nine lattice 

nodes, eight of which are located in the corners and one is in the centre of the cubic lattice 

as in Figure 2.8.  

 

Figure 2.8. Illustrative examples of BCCxyz (left) and SC (right) strut-based lattice with 
circular strut cross-section. 

The other type of lattice structures is triply periodic minimal surface (TPMS) lattices which 

have complex morphologies making their fabrication by conventional manufacturing 

methods challenging, if not impossible [41]. Two categories of TPMS lattices exist: network 

phase TPMS and matrix phase TPMS. The unit cell of network phase TPMS have one void 

region and one solid region, both of which retain their connectivity in every part of the 

structure [42]. Matrix phase lattices have two non-connected void regions separated 

everywhere by a solid wall or sheet. Examples of network phase TPMS lattices and matrix 

phase TPMS lattices can be seen in Figure 2.9. At constant volume fraction, the thickness 

of material varies in network phase TPMS lattices, while it is constant in matrix phase 

TPMS’s. In addition, matrix phase lattices are known to have higher specific stiffness than 

their network phase equivalents [43]. 
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Figure 2.9. Illustrative examples of TPMS lattices: (a) Matrix gyroid, (b) network gyroid, 
(c) matrix diamond, (d) network diamond, (e) matrix primitive and (f) network primitive.  

TPMS are identified by TPMS equations that describe 3D surfaces. For example, matrix 

gyroid lattice at certain volume fraction and number of tessellations can be generated by 

solving for the 𝑈 = 0 isosurface of the function [41] 

 𝑈 = cos(µ𝑥𝑥) sin(µ𝑦𝑦) + cos(µ𝑦𝑦) sin(µ𝑧𝑧) + cos(µ𝑧𝑧) sin(µ𝑥𝑥) − 𝑡 , 2.2 

where µ𝑖 are the tessellations of the TPMS function, defined as 

 µ𝑖 = 2𝜋
𝑛𝑖

𝐿𝑖

 , 2.3 

where 𝑖 denotes x-, y- and z-directions, 𝑛𝑖 are the number of tessellation of the unit cell 

in a certain direction, 𝐿𝑖 is the size of the single unit cell along a certain direction, and 𝑡 is 

a variable to control the volume fraction of the lattice. Primitive TPMS lattices can be 

obtained by solving for the 𝑈 = 0 isosurface of the function  

 𝑈 = cos(µ𝑥𝑥) + cos(µ𝑦𝑦) + cos(µ𝑧𝑧) − 𝑡 , 2.4 

and, similarly, diamond TPMS lattice can be obtained by solving for the 𝑈 = 0 isosurface 

of the function [44] 
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 𝑈 = sin(µ𝑥𝑥) sin(µ𝑦𝑦) sin(µ𝑧𝑧) + sin(µ𝑥𝑥) cos(µ𝑦𝑦)cos(µ𝑧𝑧)

+ cos(µ𝑥𝑥) sin(µ𝑦𝑦)cos(µ𝑧𝑧) + cos(µ𝑥𝑥) cos(µ𝑦𝑦) sin(µ𝑧𝑧)

− 𝑡 . 

2.5 

Many studies to date have focussed mainly on the load-bearing capabilities of TPMS lattices 

[4,41,45]. There is a wide range of TPMS lattice cell types, for example, gyroid, diamond 

and primitive [4,41,42]. TPMS lattices provide high stiffness when compared to 

strut-based lattices [42,46], are easier to manufacture with AM (i.e. can be manufactured 

with a fewer number of defects) than other strut-based lattices due to the self-supporting 

nature of TPMS lattices [46,47]. TPMS lattices also provide higher structural stiffness than 

strut-based lattices for use in different applications [43]. 

2.3 Geometrical modelling of lattice structures 

Different methods are available for creating CAD files of lattice structures. For example, 

Brooks et al. [48] developed computer software that can create lattice structure CAD files 

using a combination of three different elements. These elements include: pillars, diagonals 

and octahedral, as shown in Figure 2.10. The software was reported to be able to produce 

metallic lattice structures of unit cell sizes ranging from 0.8 mm to 5.0 mm which were 

then manufactured with strut diameter ranging from 100 µm to 500 µm from stainless 

steel 316L using a L-PBF system [48].  

 

Figure 2.10. Types of elements that can be produced by the software of Brooks et al. [48] 
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TPMS lattices can be designed using a lattice generation software developed at University 

of Nottingham - called FLatt Pack [49]. FLatt Pack uses the TPMS surface equations 

introduced in Section 2.2 to design various TPMS lattice types of different sizes, 

periodicities and volume fractions, for the purpose of numerical modelling (finite element 

meshes) or printing (in .stl format). Maskery et al. [41] designed network phase gyroid, 

primitive and diamond TPMS lattices with dimensions (40×40×40) mm, and volume 

fraction of 30 %, using FLatt Pack, and successfully manufactured them using L-PBF. 

Santorinaios et al. [50] produced three types of simple geometry open-cell lattice 

structures of vertical pillars and cross-bracing L-PBF with the aim of testing their 

manufacturability. The cells were of sizes 1.25 mm, 2.5 mm and 5 mm. The 5 mm cell 

showed fabrication difficulties as the pillars tended to ‘sag’ during the melting process. 

McKown [51] was able to manufacture metallic lattice structures with octahedral and pillar-

octahedral unit cells, both of sizes 1.5 mm and 2.5 mm, using L-PBF, and examined their 

blast loading and compression behaviour. The study of Yan et al. [52] used x-ray computed 

tomography (XCT) [53] to measure the internal structures of the cells and revealed that 

various gyroid lattices can be manufactured with unit cell sizes ranging from 2 mm up to 

8 mm with no geometrical defects and without the need for support structures. As in the 

work of Syam et al. [54], strut-based lattices can be designed in CAD using estimates of 

the volume fraction relative to the strut thickness and cell sizes. The use of CAD provides 

suitable design freedom to alter lattice designs easily, for example adding or removing 

specific features and struts. This is essential for the development, and later on for the 

investigation of properties, of novel lattices, rather than relying on predefined lattice types. 

An estimate of the volume fractions of lattices is usually done by neglecting the intersection 

volume between the struts, which could be considerably large depending on the strut 

thickness and unit cell size. For example, for a strut-based lattice with struts of circular 

cross-section (see Figure 2.11), the volume of the solid region 𝑉𝑠 is calculated as 
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 𝑉𝑠 =
𝜋

4
𝑛𝑑2𝐿𝑡   , 

2.6 

where 𝑑 is the diameter of the strut, 𝐿𝑡 is the length of the single strut and 𝑛 is the number 

of struts in the lattice.  

 

Figure 2.11. Illustration of two struts in an intersection. 

For depicting the change in a lattice property with the change in volume fraction, an 

estimate of volume fractions can be used, but it is not effective when structures are to be 

designed and tailored for a specific use. Thus, there is a need for establishing the 

relationship between the volume fraction, cell size and strut thickness in strut-based 

lattices while taking into account the intersection volume. 

2.4 Identification of lattice structures 

Lattice structures represent the dominant type of open-cell structures which all fit under 

the umbrella of cellular materials. Unlike solid structures, lattice structure properties are 

not solely dependent on the material; they also depend on the cell size, cell configuration, 

structure periodicity and the connectivity between cell members or struts [10]. Gibson and 

Ashby used the relative elastic modulus 𝐸∗ for relating the geometrical characteristics of 

lattice structures to their physical properties. The relative elastic modulus 𝐸∗ is calculated 

as 
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𝐸∗ =

𝐸𝑙𝑎𝑡𝑡

𝐸𝑠𝑜𝑙

  , 
2.7 

where 𝐸𝑠𝑜𝑙 is Young’s modulus of the lattice material and 𝐸𝑙𝑎𝑡𝑡 is Young’s modulus of the 

lattice structure calculated as 

 
𝐸𝑙𝑎𝑡𝑡 =

𝐹𝐿

𝐴𝑈
  , 

2.8 

where 𝐴 is the surface area of the lattice, 𝐿 is the size of the lattice and 𝑈 is the 

displacement of the lattice structure under a compression force (see Figure 2.12).  

 

Figure 2.12. An illustrative example of a compression test carried on a lattice structure. 

When the number of unit cells in a lattice is increased, the lattice can be approximated as 

a homogenous porous structure. This is because smaller proportions of the unit cells are 

located at the edges when a lattice has a higher number of unit cells. In comparison to 

lower homogeneity structures, structures of higher homogeneity have uniform stress 

distribution across the unit cells and, thus, less stress concentration at the edges. As a 

result, the individual contribution of the single unit cell towards the overall stiffness of the 

structures is reduced. It is expected that the relative elastic modulus of a lattice (as can 

be calculated by Equation 2.7) will be increased with the increase in the number of unit 
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cells in the lattice. The convergence of the relative elastic modulus with the number of unit 

cells is expected to occur when the lattice has a sufficient number of unit cells. As shown 

by Maskery et al. [55], the relative modulus of lattice structures might be underestimated 

by up to 15 % from its converged value with respect to the number of unit cells in the 

lattice. Thus, in this project, the convergence of the number of unit cells in a lattice with 

respect to the relative elastic modulus is ensured to guarantee accurate estimation of the 

vibration and physical properties of lattice structures.  

2.5 Summary 

Lattice structures are a type of cellular structures which have a set of features 

interconnected through the edges and faces. Lattice structures are identified by a unit cell 

of certain geometry that repeats in space. Lattice structures generally have a high strength 

to weight ratio, high surface area to volume ratio, good energy absorption characteristics 

and good acoustic insulation properties. Depending on the geometry of the unit cell, a 

lattice can be classified into a strut-based lattice (inter-connected struts of defined 

cross-section, number and angles) and a TPMS lattice (intricate surfaces generated from 

mathematical equations and then given a certain thickness). Complex TPMS lattices can 

be designed for manufacturing or modelling, for example, using the Flatt Pack software, 

while strut-based lattices can be designed in general CAD software after establishing the 

relationship between the size of the features, cell sizes and the number of struts. 

Strut-based lattices can be manufactured using many techniques including L-PBF, electron 

beam melting, investment casting and deformation forming. The latter two are only 

accessible for simple lattice designs (i.e. designs with no intricate features) and suffer 

from conventional manufacturing issues (fluid flow issues in investment casting, inefficient 

use of materials in deformation forming and, generally, limited customisation ability). The 

literature has shown that AM and especially L-PBF is the more favourable for 

manufacturing of complex lattices (both strut-based and TPMS lattices). L-PBF has the 
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ability to produce strong, lightweight and complex metallic and polymer components, and 

to manufacture parts of full-density with no need for post-processing in some cases. All of 

these benefits show that additively manufactured lattice structures are well-suited for use 

as support structures in precision engineering and metrology applications. 
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3. Vibration attenuation 

 

Chapter 3 

Vibration attenuation 

In this chapter, the basic concepts of vibration and wave propagation are discussed. The 

various methods for vibration attenuation are reviewed in Section 3.3 and are published 

in this book chapter [56]. The major contribution of this project is on bandgap structures, 

thus, the concept of bandgaps is detailed in Section 3.5. The methods for investigation of 

bandgaps are available in Section 3.6 and the recent work on the topic is reviewed in 

Section 3.7. 

Vibration is any repeating motion that occurs in a medium due to an initial or continuous 

cyclic disturbance. Vibration can be expressed mathematically with waves which can be 

classified into elastic waves that propagate through a solid medium, and acoustic waves 

which propagate through fluids. When disturbances occur in the parallel direction to the 

direction of travel of the waves, the waves are called longitudinal (primary) waves. When 

disturbances occur in the perpendicular direction to that of travel, the waves are called 

transverse (shear) waves [57] (see Figure 3.1). 

 

Figure 3.1. The direction of particle motion relative to the direction of propagation of (a) 
longitudinal waves, and (b) transverse waves. 
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Every structure/system has a frequency at which it vibrates in the absence of any driving 

force; this frequency is called the natural frequency and is described as a function of the 

stiffness of the structure 𝑘 and the mass of the structure 𝑚. For a simple mass and spring 

system like that shown in Figure 3.2, the first natural frequency 𝑓𝑛 is calculated using [58] 

 

𝑓𝑛 = √
𝑘

𝑚
 . 3.1 

 

Figure 3.2. Illustration of a simple mass and spring system. 

In precision engineering and metrology, vibration displaces the effective end of the 

instrument or machine relative to the workpiece; causing loss of accuracy and precision. 

In some cases, vibration damages the structural components of a system when the 

frequency of vibration coincides with the natural frequency of the system (see an example 

of precision and measuring instruments in Figure 3.3). Examples of end effectors include 

tools in conventional manufacturing machines and optics in optical scanning instruments. 

It is important to assess the design of instruments and machines to get knowledge of the 

achievable precision and limiting components within the assembled mechanism. Assessing 

of a design can be done by considering the structural loop, metrology loop and thermal 

loop of the assembled mechanism. A structural loop is an assembly of mechanical 

components that maintain relative position between specified objects. A metrology loop is 

a structural loop of all elements from the end effector to the workpiece for which 

dimensional changes would not be detected by the measurement process, thus, leading 

to measurement errors. A thermal loop includes components that will cause measurement 

errors if they undergo thermal expansion (see Bosmans and Reynarts [59] for further 

details). Of interest to this project are the components that form part of the metrology 
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and structural loop, for example, the metrology/rigid frame shown in Figure 3.3. This is 

because any disturbances due to vibration in these components would transfer into relative 

displacement between the workpiece and the end effector, resulting in loss of both 

precision and accuracy. This is usually in the hertz to low kilohertz frequency range [60]. 

 

Figure 3.3. Example of (a) conventional manufacturing machines and (b) optical scanning 
instrument with (c) schematic of the main components.  

Figure 3.4 shows a mechanical wave of wavelength 𝜆 and amplitude 𝐴 which can be 

expressed by 

 
𝑞(𝑥, 𝑡) = 𝐴 sin (

2𝜋

𝜆
(𝑥 − 𝑣𝑡))  , 3.2 

where 𝑞 is the amplitude of the wave at time 𝑡 and position 𝑥, and 𝑣 is the speed of the 

wave. 
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Figure 3.4. Illustration of wave motion. 

Each type of elastic wave has a different propagation speed. For example, for longitudinal 

elastic waves (see Figure 3.1a), the speed of wave propagation 𝑣 is calculated as  

 𝑣 = √
𝐸

𝜌
 , 3.3 

where 𝜌 is the material density and 𝐸 is Young’s modulus. Different types of transverse 

waves exist including electromagnetic waves, material shear waves and seismic waves. Of 

particular interest for this project are the shear waves (see an example of a shear wave 

in Figure 3.1b). The speed of propagation 𝑣𝑡 of a shear wave in a material is calculated as  

 𝑣𝑡 = √
𝐺

𝜌
  , 3.4 

where 𝐺 is the shear modulus of the solid material. These waves originate from various 

sources including seismic (ground) vibration, acoustic vibration, and directly or indirectly 

applied forces [58]. A frequency spectrum of the vibration encountered in a typical lab 

environment was measured and is presented in Section 5.3. Seismic vibration includes all 

the excitations that shake the floor on which a machine is placed, for example, footsteps, 

motion of vehicles, and air conditioning and ventilation systems. Sources of seismic 

vibration generate acoustic vibration (frequency range between 20 Hz to 20 kHz) as well 

in many cases. The third source, applied forces, includes elastic vibration in the form of 

mechanical forces directly applied on the machine, for example, forces arising from moving 
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stages and rotating machine tools [54,58]. Attenuation of vibration is important to reduce 

the displacement of the end effector relative to the workpiece and ensure the accuracy 

and precision of machining and measurements. 

3.1 Calculation of vibrational response 

Understanding wave propagation and the system response to vibration is important for 

designing structures with vibration attenuation capabilities. For calculating the vibrational 

response of a structure, analytical methods were used before advances in computational 

mathematics. Consider an analytical representation of geometrically simple lattice unit cell 

as sets of mass 𝑚 and stiffness 𝑘 (see Figure 3.5). 

 

Figure 3.5. Representation of simple lattice unit cell. 

The equations of motion for free undamped vibration of the unit cell is given by  

 1

2
𝑚1𝑞𝑙̈ + 𝑘(𝑞𝑙 − 𝑞𝑖) = 0, 

𝑚2𝑞𝑖̈ + 𝑘(2𝑞𝑖 − 𝑞𝑙 − 𝑞𝑟) = 0, 

1

2
𝑚1𝑞𝑟̈ + 𝑘(𝑞𝑟 − 𝑞𝑖) = 0. 

3.5 

where 𝑞̈ is the second derivative (acceleration) of the displacement vector 𝑞. The subscripts 

𝑙, 𝑖 and 𝑟 represent left, right, and inner finite element (FE) nodes as shown in Figure 3.5. 

The acceleration vector featured in Equation 3.5 can be obtained by taking the second 

derivative of 𝑞 in Equation 3.2. 

 𝑞̈ = −𝜔2𝐴 sin(ω𝑡 − ø). 3.6 

Substituting Equation 3.6 into Equation 3.5 and dividing all terms by sin(ω𝑡 − ø) gives 
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1

2
𝑚1(−𝜔2𝐴𝑙) + 𝑘(𝐴𝑙 − 𝐴𝑖) = 0, 

𝑚2(−𝜔2𝐴𝑖) + 𝑘(2𝐴𝑖 − 𝐴𝑙 − 𝐴𝑟) = 0, 

1

2
𝑚1(−𝜔2𝐴𝑟) + 𝑘(𝐴𝑟 − 𝐴𝑖) = 0. 

3.7 

Equation 3.7 can be written in matrix format as 

[

2𝑘/𝑚1 −2𝑘/𝑚1 0
−𝑘/𝑚2 2𝑘/𝑚2 −𝑘/𝑚2

0 −2𝑘/𝑚1 2𝑘/𝑚1

] [

𝐴𝑙

𝐴𝑖

𝐴𝑟

] = 𝜔2 [

𝐴𝑙

𝐴𝑖

𝐴𝑟

]. 3.8 

Equation 3.8 is an eigenvalue problem of type 𝐴𝑋 = λX which can be solved for the values 

of 𝜔2. Taking the square root of 𝜔2 and dividing the real part by 2𝜋 gives the natural 

frequencies of the unit cell in hertz. In metrology and precision engineering, the natural 

frequency of the instruments and machines has to be greater than or lower than the 

operational frequency range; this is to prohibit undesirable displacement of components if 

the operational frequency coincides with the natural frequency. Coinciding with the natural 

frequency leads to detrimental effects on measurement and machining accuracy and, in 

some cases, can cause structural damage of components. To obtain the maximum 

displacements at the natural frequencies, Equation 3.7 can be solved for the amplitude 𝐴 

by substituting the values of 𝜔. If 𝑞𝑙, 𝑞𝑖 and 𝑞𝑟 are associated with external forces 𝑓, then 

the right side of the equations of motion in Equation 3.7 can be substituted with their 

values 𝑓𝑙, 𝑓𝑖 and 𝑓𝑟. These equations enable us to obtain numerical results of the natural 

frequencies of a lattice and its response to harmonic excitations, to identify good lattice 

candidates for vibration attenuation. 

3.2 Bloch’s theorem and wave propagation 

Wave propagation in the entire lattice can be understood by analysing a single unit cell 

through the application of Bloch’s theorem. The use of a single unit cell for analysing wave 

propagation leads to savings in computation and time costs in comparison to analysing 

lattices with infinite and semi-infinite number of unit cells [61–63]. Bloch’s theorem states 
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that for any repetitive unit cell the propagation of waves without attenuation does not 

depend on the location of the unit cell within the lattice. The Bloch’s theorem for a 1D 

lattice (i.e. a lattice of one degree of freedom [DOF]) gives 

 𝑞𝑟 = 𝑒−𝑘𝐿𝑞𝑙  , 3.9 

where 𝑘 is the plane wave vector, given by 𝑘 = 𝛿 + 𝑖𝜇, where the real part 𝛿 is the 

attenuation constant of the wave as it propagates through the unit cells, and the imaginary 

part 𝜇 is the phase constant of the wave. In this work, the wave is assumed to be 

propagating without attenuation (𝛿 is zero), thus, 𝑘 = 𝑖𝜇. The displacement vectors of the 

unit cell 𝑞𝑙, 𝑞𝑖𝑛 and 𝑞𝑟 are grouped into one displacement vector 𝒒 to simplify matrix 

operations. The displacement vector 𝒒 can be projected to a reduced vector 𝒒̃ that denotes 

the displacement of the FE nodes in reduced coordinates using the following Bloch’s 

transformation 

 𝒒 = 𝑵𝒒̃, 3.10 

where, 

 
𝒒 = [

𝑞𝑙

𝑞𝑖

𝑞𝑟

], 𝑵 = [
𝑰 0

𝑰𝑒−𝑘𝐿 0
0 𝑰

], and 𝒒̃ = [
𝑞𝑙

𝑞𝑖
], 3.11 

where 𝑰 denotes an identity matrix of proper size. To obtain the governing equations in 

the new reduced coordinates, the Bloch’s transformation appearing in Equation 3.10 can 

be inserted into the governing equations of motion in Equation 3.5.  To ensure the 

equilibrium of the forces in the new and old coordinates, the resultant equation is 

multiplied by 𝑵𝐻 to give 

 𝑫̃𝒒̃ = 𝟎, 3.12 

where 

and 

𝑫̃ = 𝑵𝐻𝑫𝑵,  

 

𝑫 ≡ 𝑲 − 𝜔2𝑴, 

3.13 
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where 𝑫 is the dynamic stiffness matrix (assuming a harmonic motion of 𝑒𝑖𝜔𝑡) and 𝐻 is the 

Hermitian transpose [63,64]. The Hermitian transpose of an m×n matrix of complex 

entries is the n×m matrix and is obtained by taking the transpose of the original matrix 

and then taking the complex conjugate of each entry. Equation 3.12 is an eigenvalue 

problem for a harmonic free wave motion the can be solved for the frequencies of the 

propagating waves. These equations allow for an understanding of the ability of lattices to 

propagate vibration waves within their structure and can be used to identify good 

candidate lattice structures for vibration attenuation.  

3.3 Methods for vibration attenuation 

Vibration attenuation is commonly required to reduce the amount of vibration in 

instruments and machines. In this section, the methods for passive vibration attenuation 

are discussed. See elsewhere [65] for details on active and nonlinear vibration attenuation 

methods. Although these attenuation methods will not form part of the main findings and 

novelty of this thesis, it is worth acknowledging them to identify limitations and provide a 

detailed description for direct use or further research and development elsewhere. 

Different methods for vibration attenuation exist, for example, pneumatic mounts, metal 

springs and rubber mounts. These vibration attenuation methods are applied either to 

protect the base of a vibrating instrument from vibration or to protect the instrument from 

the vibration of the base. In both cases, the transmissibility of a vibration attenuation 

system is adjusted at a given frequency to suppress the displacement of the instrument. 

Consider the single DOF vibration attenuation mechanism shown in Figure 3.6.  
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Figure 3.6. An illustration of a single DOF vibration attenuation mechanism. 

The instrument of mass 𝑚 is protected from the vibration of the base using a vibration 

attenuation mechanism. The vibration attenuation mechanism can be modelled as a set of 

spring of stiffness 𝑘 and a damper of capacity 𝑐. The transmissibility of such single DOF 

vibration attenuation mechanism can be calculated as [56,58] 

 

𝑇 = |
𝐹𝑜

𝐹𝑖

| = |
𝛾

𝑋
| = √

(1 + (2𝜁𝑟)2

(1 − 𝑟2) + (2𝜁𝑟)2
 , 3.14 

where 𝑇 is the transmissibility, 𝜁 is the damping ratio, 𝑟 is the ratio of the input frequency 

to the undamped natural frequency of the spring and mass, 𝛾 is the motion of the ground 

and 𝑋 is the amplitude of the response at the mass. The damping ratio 𝜁 is calculated as  

 
𝜁 =

𝑐

2√𝑘𝑚
 . 3.15 

Apparent from Equation 3.14, the transmissibility can be used to calculate the 

displacement of the system due to the motion of the ground. Given the excitation 

frequency and the desired maximum allowed transmissibility, it is possible to specify the 

isolation frequency. In the following sections, the various methods for vibration 

attenuation are discussed. 
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3.3.1 Pneumatic mounts 

A Pneumatic mount consists of a piston maintained inside a container of compressed air 

for providing vibration attenuation at frequencies down to 0.7 Hz [66]. Figure 3.7 shows 

a typical example of a pneumatic mount that comprises a piston of cross-sectional area 𝐴 

moving inside a cylinder. The cross-sectional area can take any shape, but it is usually 

square or round in cross-section.  Consider 𝑣𝑖 to be the instantaneous initial volume of the 

cavity between the piston and the cylinder which a fluid occupies. With the settings in 

Figure 3.7, the initial absolute pressure in the cavity 𝑃𝑖 is given by 

 𝑃𝑖 = 𝑃𝑎 +
𝑚𝑔

𝐴
 , 3.16 

where 𝑃𝑎 is the atmospheric pressure at the level where the pneumatic mechanism is 

installed and 𝑚 is the mass of the instrument to be isolated [56,58]. 

 

Figure 3.7. Schematic of a pneumatic mount for vibration attenuation. 

Assuming the compression process of the fluid in the cavity to be adiabatic (no energy is 

transferred between the internal cavity and the surrounding) the pressure and volume 

after a linear displacement of the piston 𝑥 is calculated as  

 𝑃𝑖𝑉𝑖
𝑛 = 𝑃𝑥𝑉𝑥

𝑛 , 3.17 

where n is the ratio of specific heats, which depends on the fluid occupying the cavity. The 

ratio n is 1.4 when air is used in adiabatic conditions.  
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Pneumatic isolators have smaller sizes than other passive isolators used to isolate the 

same loads and frequencies. The gas volume provides low stiffness and supports the load 

with pressure. However, pneumatic isolators have relatively high vibration transmissibility 

for frequencies above 20 Hz, which is a shortfall that can be overcome by isolating the 

piston from the hard cylinder by a rolling diaphragm seal, as shown in Figure 3.8.  

 

 

Figure 3.8. Illustration of a rolling diaphragm seal. 

A rolling diaphragm seal reduces the transmissibility of the pneumatic isolation mechanism 

above 20 Hz, however, it has relatively high stiffness and very low damping properties in 

the horizontal direction. A method for identifying the design parameters of these 

diaphragms can be found in [67]. 

The stiffness of a pneumatic isolator k0 can be calculated as the first derivative of the 

pressure 
𝑑𝑃

𝑑𝑥
 and is given by 

 

𝑘0 =
𝑑𝑃

𝑑𝑥
=

𝑛𝑃𝑖𝐴
2

𝑉𝑖

[
1

1 − (
𝐴
𝑉𝑖

) 𝑥
]

𝑛+1

. 3.18 

Equations 3.16 to 3.18 are used to design the parameters of the pneumatic mount, for 

example, initial volume, stiffness and working pressure, for an instrument of given 

mass [66]. 
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3.3.2 Elastomer mounts 

Similar to the pneumatic mounts, elastomer mounts are used to provide vibration 

attenuation so as to protect instruments and equipment. Elastomers are used due to their 

low modulus of elasticity and their high strain capabilities (above 100 %), in comparison 

to metal vibration attenuation mounts. Different materials can be used in the design of 

elastomer mounts, for example, rubber, silicone and neoprene. A typical example of an 

elastomer mount is the elastomer cup mount shown in Figure 3.9. This design is used in 

a wide range of equipment such as operating machinery, electronic compressors and 

generators. The operating frequency of an elastomer cup mounts is 12 Hz to 30 Hz and 

can provide an elongation of up to 300 % as a response to vibration. The cup housing 

limits the elongation of the rubber mount so as to allow for safe elongation of the rubber 

without snapping. Other versions of the elastomer mounts exist without the cup housing 

for higher elongation rates than that achievable with the elastomer cup mounts [68]. 

 

Figure 3.9. Example of an elastomer cup mount mechanism for attenuating vibration of 
the base [68]. 

3.3.3 Metal and composite mounts 

Metal and composite mounts are used for attenuating vibration in heavy equipment where 

the environmental conditions can degrade/break the elastomer mounts. Metal and 

composite mounts provide stability under extreme long-term exposure to temperature 

fluctuations and dynamic loads. The design and material of these mounts determine the 

transmissibility, stiffness and damping of the attenuation mechanism. The properties of 

metal and composites are constant under a large range of temperature; this allows for 
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accurate modelling of the deflection and damping properties over a wide temperature 

range. The most common example of a metal mount is the steel-spring axial mount shown 

in Figure 3.10.  

 

Figure 3.10. Example of a steel-spring mount for vibration attenuation [69]. 

The steel-spring axial mount is reliable for long-term use with good creep resistance. The 

mount consists of a steel spring with a housing of metal for protection and axial alignment 

of the spring. These mounts are commonly used in heating, ventilation and air conditioning 

(HVAC) systems and marine engines for reducing the amount of transmissibility. The open 

end of the housing allows for easy examination of the steel-spring. For examining the 

effectiveness of the spring to provide vibration attenuation, the spring is loaded and 

unloaded multiple of times; the spring is considered defective if it does not go back to 

within permissible limits within its original height. The vertical operating frequency of the 

steel-spring mount 𝑓𝑛 is expressed as a function of the static deflection of the spring δ 

using the formula [68] 

 𝑓𝑛 = 3.13√1/δ . 3.19 

3.3.4 Advances in vibration attenuation methods 

Advances in the mechanism for vibration attenuation lead to improvements in the energy 

dissipation mechanisms, for example, frictional and viscous damping. A damping system 

that does not depend on the relative velocity between the moving components in the 

damping system is called frictional damping system. A common example of a frictional 
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damping system is the Coloumb damping system. Coulomb damping occurs when a mass 

slides on a dry surface and is produced by dissipating energy through friction. According 

to Coulomb’s law of dry friction, the damping force is proportional to the normal force 

which acts on the contact plane, giving a sliding force 𝐹 of [58,68] 

 𝐹 = 𝜇𝑁 = 𝜇𝑊 = 𝜇𝑚𝑔, 3.20 

where 𝑁 is the normal force acting on the contact plane, which is sometimes equal to the 

weight of the sliding object; and 𝜇 is the coefficient of friction, which depends on the 

surface condition and the materials in contact but is otherwise considered to be 

independent of load, speed, surface texture and contact area. The damping force direction 

is opposite to the displacement direction and does not depend on the displacement 

magnitude nor the velocity; it depends on the force acting normally between the sliding 

surfaces [56,58]. 

 

Figure 3.11. Illustration of a frictional damping system. 

Consider the single DOF frictional damping system shown in Figure 3.11. The mass m 

slides on the surface, and the spring causes the displacement to have two values of +𝑋 

and −𝑋 with regard to the initial position. The amplitude of vibration is found to be 

attenuated by an amount 4𝜇𝑁/𝑘 in each cycle.  

The second type of energy dissipation mechanism, viscous damping, is the most commonly 

applied damping mechanism for reducing the amount of vibration energy induced in the 

system. In viscous damping, the damping force is considered to be proportional to the 

relative velocity between two bodies. This is typically achieved using eddy currents or by 
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using the motion of the body to force the fluid to flow (typical fluids being water, oil or 

air). Examples include fluid flow between a piston and a cylinder wall; fluid present 

between two sliding surfaces, or fluid being squeezed out of two parallel surfaces (called 

squeeze film damping); and fluid present between a bearing and a journal. 

 

Figure 3.12. Illustration of a viscous damping system. 

In Figure 3.12, the two parallel plates of a viscous damper have a distance ℎ and a fluid 

of viscosity 𝜇 between them. The two plates can move parallel to each other in the same 

direction with different velocities 𝜈, or in opposite directions with equal or unequal 

velocities. For simple modelling of the viscous damping system, one plate should be 

considered stationary, while the other plate is moved with a relative velocity 𝜈 to the 

stationary plate. The fluid particles in contact with the stationary plate do not have any 

velocity (𝜈 = 0), while those in contact with the upper moving plate (as shown in the 

example in Figure 3.12) travel with the same speed 𝜈 as the plate. Newton’s second law 

for viscous flow, indicates that the shear stress 𝜏 of a fluid particle in a layer of distance 𝑦 

from the lower fixed plate can be expressed as 

 
𝜏 = 𝜇

𝑑𝑢

𝑑𝑦
 , 3.21 

where the differential term 
𝑑𝑢

𝑑𝑦
 is the velocity gradient. The resisting force developed on 

the inside surface of the upper plate is the product of shear stress and area 
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𝐹 = 𝜏𝐴 = 𝜇

𝐴𝑣

ℎ
 , 3.22 

where 𝐴 is the surface area of the upper plate. Since 𝜇, 𝐴 and ℎ are all constants, can be 

written as 

 𝐹 = 𝑐𝑣, 3.23 

where 𝑐 = 𝜇𝐴/ℎ is the damping constant [56,58].  

An example of the advances in energy dissipation mechanisms (i.e. in frictional and viscous 

damping) is the elastomeric seismic bearing and the friction pendulum system. The 

elastomeric seismic bearing consists of a bearing made of an elastomeric material and 

filled with lead. The bearing is used for providing high damping of ground vibration. An 

example of an elastomeric bearing is shown in Figure 3.13 where the elastomeric layers 

are constrained by intermediate plates to maintain compression stiffness under vertical 

loads. The equivalent viscous damping of an elastomeric bearing is a property of the 

material and has a damping ratio 𝜁 in the range from 0.1 to 0.15. The natural frequency 

of the elastomeric bearing is typically between 0.75 Hz to 1.5 Hz. 

 

Figure 3.13. Illustration of an elastomeric bearing used for attenuating seismic 
vibration [70]. 

The friction pendulum system is a vibration attenuation mechanism for protecting 

equipment against seismic vibration. The pendulum system is made from steel and consist 
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of an articulated friction slider that slides along the concave of a spherical surface. This 

system, shown in Figure 3.14, reduces the amplitude of pendulum motion of the supported 

structure.  

 

Figure 3.14. Illustration of a friction pendulum system [71]. 

The upper part of the system is attached to the supported structure. Relative sliding motion 

between the upper part and the lower part of the system starts when the friction force is 

exceeded. The natural frequency of the frictional pendulum system is between 0.5 Hz to 

1.0 Hz. 

The vibration attenuation methods discussed in this section reduces the magnitude of 

vibration through isolation or damping of excitation waves [54,72,73]. Damping is 

different from isolation in the sense that it reduces a vibration amplitude by using high 

mass - high stiffness structures. Damping reduces the magnitude of vibration transmission 

in frequency regions close to the natural frequency (see Figure 3.15). The characteristics 

of a damping system include having an attenuation system of high stiffness for the purpose 

of increasing the natural frequency of the attenuation system and providing a frequency 

range of attenuated vibration as illustrated in Figure 3.15. The second approach for 

attenuation of excitation waves, vibration isolation, reduces the magnitude of vibration 

magnitudes (kept below 0 dB) by isolating certain frequency ranges through energy 
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absorption and results in much higher attenuation than in damping (which is limited to 

transmission values ≥ 0 dB, see Figure 3.16). 

 

Figure 3.15. Illustration of the difference between damping and vibration isolation; 
vibration isolation is more favourable because it provides higher attenuation of vibration 
magnitudes [54]. 

The energy absorption mechanism in vibration isolation necessitates having a structure of 

relatively lower stiffness than in damping for the same frequency of interest (see 

Figure 3.16b). This is to reduce the natural frequency of the structure which is proportional 

to the square root of the stiffness of a structure. The energy absorption characteristics of 

vibration isolation structures are similar to that of lattice structures discussed in 

Section 2.4 (i.e. releases the absorbed energy in mechanical forms that include bending, 

compression and stretching). If lattice structures with vibration isolation capabilities are 

used in metrology and precision engineering, then instruments and machines could have 

a vibrational response below 0 dB. This also leads to savings in mass and material. 
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Figure 3.16. Illustration of the response of (a) high stiffness-high mass damping structure, 
and (b) low mass isolation structure, tailored for a certain frequency of interest. 

3.4 Lattice structures and vibration attenuation 

Wang et al. [74] drew on the importance of lattice structures to provide vibration 

attenuation through damping and suggested a method for optimisation of the natural 

frequency of 3D printed lattice structures. The method targets reduction in mass as well 

as optimisation of natural frequency for dynamical design problems. Wang et al. 

experimentally verified the natural frequency on a cantilever plate-like lattice (i.e. a lattice 

with unit cells tessellated in space along two directions) and showed a reduction in mass 

and optimisation of the natural frequency. This method can be used for providing vibration 

attenuation at frequencies lower than the optimised natural frequency. The drawbacks of 

the study are that it neglected different types of strut-based and triply periodic minimal 



43 

 

surface (TPMS) lattice structures, not necessarily plate-like lattice structures, for their 

ability to provide vibration isolation at frequencies lower than and greater than the natural 

frequency. As shown in Figure 3.16b, at frequencies greater than the natural frequency 

(vibration isolation) the attenuation can be higher than the attenuation at frequencies 

below the natural frequency (damping). There is a need to design lattice structures and 

test their ability to provide tunable vibration isolation at frequencies greater than the first 

natural frequency for use in metrology and precision engineering applications. 

3.5 Bandgaps 

Both damping and vibrational isolation (the two conventional methods for vibration 

attenuation) do not restrict the propagation of elastic waves. This limits the extent of the 

achievable vibration attenuation. Additive manufacturing phononic bandgap structures 

based on repeating lattice unit cells provide a new approach to vibration attenuation, with 

low vibration transmission and high tunability to meet the requirements of metrology and 

precision engineering applications, without the cost of high-mass structures. 

Phononic bandgap structures are those in which elastic wave propagation is restricted at 

certain frequencies. These have received considerable attention recently, mainly for their 

ability to provide enhanced vibration attenuation compared to that resulting from 

conventional vibration attenuation approaches. The concept of bandgaps emerged from 

solid-state physics, with recent use in electronic systems [75–77], photonics [78–81] and 

phononic structures [63,82–86]. Bandgaps generally result from Bragg-scattering, in 

which transmitted and reflected waves within a periodic medium undergo destructive 

interference [62,64,87–90]. The bandgap frequencies depend on the geometry and size 

of the repeating lattice unit cell [91]. Bandgaps can also arise through a different 

phenomenon called internal resonance, where the energy of elastic waves of certain 

frequencies is absorbed by internal resonators embedded in the structure [92–96]. These 

bandgap formation mechanisms are illustrated in Figure 3.17. In Figure 3.17a, elastic 
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waves are reflected due to the difference in mechanical impedance within the lattice 

structure. These waves destructively interfere with the propagating wave when they are 

out of phase with one another, leading to a Bragg-scattering bandgap. 

 

Figure 3.17. Illustration of the bandgap mechanism in (a) Bragg-scattering lattices and 
(b) internal resonance lattices. 

In Figure 3.17b, another bandgap formation mechanism co-exists alongside Bragg-

scattering; the energy of the elastic waves is absorbed by a resonating mass in each unit 

cell to create an internal resonance bandgap. For both bandgap formation mechanisms, 

increasing the lattice periodicity leads to higher attenuation of transmitted waves within 

the bandgap frequency range [90,91]. 
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The reflection of waves in Bragg-scattering occurs due to the difference in the impedance, 

for example, local density, of the bandgap structure. For the in-phase reflection to occur, 

the Bragg law has to be satisfied [91] which is expressed as 

 𝑛𝜆~2𝐿, 3.24 

where 𝜆 is the wavelength, 𝑛 is an integer number and 𝐿 is the unit cell size of the lattice. 

From Equation 3.24 it can be seen that Bragg’s law is highly dependent on the unit cell 

size of the lattice structure. Bragg-scattering starts to occur when the wavelength is 

approximately equal to twice the cell size of the lattice [91]; around a normalised 

frequency (the quotient of cell size and wavelength) of 0.5. Thus, there is a limiting 

dependency on the size of the unit cell of the lattices to form bandgaps by Bragg-

scattering. As a result of this dependency, unrealistic cell sizes need to be employed to 

satisfy the Bragg law at low frequencies. For example, consider a bandgap lattice with 

normalised bandgap frequency of 0.5. 

 

Figure 3.18. An illustrative example of the relationship between the normalised bandgap 
frequency and the cell size 𝐿. 
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When manufactured from aluminium (speed of longitudinal wave is 6320 m·s-1) [82] to 

obtain bandgaps frequencies below 3 kHz (corresponds to common vibration frequencies 

in metrology and precision engineering), this Bragg-scattering lattice has to have a unit 

cell at least 1 m in length (see Figure 3.18). Despite being challenging to manufacture, a 

lattice with cells as large as 1 m has limited periodicity within a constrained design volume 

(as that of metrology and precision engineering instruments) which causes reduced 

attenuation within the bandgaps. See Figure 3.3 for example of metrology and precision 

engineering instruments. For this reason and as will be shown in later chapters, the 

bandgap lattices that will be developed in this thesis for metrology and precision 

engineering will mainly depend on the internal resonance mechanism. 

Bandgaps are classified, according to the periodicity required for their presence in a 

material, into 1D bandgaps, 2D bandgaps and 3D bandgaps. A 1D bandgap requires a 

periodicity of the single unit cell in a single direction to form a beam-like structure; a 2D 

and 3D bandgap structures require periodicity of the single unit cell in two and three 

directions to form plate-like, and cubic-like structures, respectively. Figure 3.19 shows 

examples of different types of bandgap structures. The frequency of the bandgap 

(bandwidth) would differ depending on the periodicity. In other words, if a unit cell has a 

1D bandgap, it does not necessarily mean it has 2D or 3D bandgap. Even if this unit cell 

has a 2D and a 3D bandgap, it is most probably not going to be within the same frequency 

range. This is because the underlying wave propagation and, as a consequence, wave 

reflection occurring at each of the structures are completely different. The reflection of 

waves illustrated earlier by Figure 3.17a is one of the simple forms. However, in reality, 

the reflection is much more complicated, differs with the types of propagating waves and 

can be understood through the study of the corresponding dispersion curves (see 

Section 3.6).  
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Figure 3.19. Example of (b) 1D, (c) 2D and (d) 3D bandgap structures of the single unit 
cell shown in (a). 

3.6 Methods for identification of bandgaps 

The complex forms of wave propagation and reflections can be represented using 

dispersion curves (bandplots) from which the bandgap frequency regions are identified. 

Dispersion curves show propagation frequency in one axis and wave vectors in the other 

axis (see illustrative example in Figure 3.20). The wave vectors describe the wave number 

(number of radians per unit cell) and the direction of travel of the waves. The wave number 

𝑘 is calculated as [64,98] 

 
𝑘 =

2𝜋

𝐿
 . 3.25 

Dispersion is a characteristic of mediums in which the speed of propagation of a wave 

depends on the medium. The relationship between the frequency and the wave vector is 

non-linear in dispersive mediums and linear in non-dispersive mediums. For two points 

along a wave band in a dispersion curve, the dispersion 𝑠 can be calculated as 

 𝑠 =
𝜔2

𝑘2

−
𝜔1

𝑘1

 , 3.26 
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where 𝜔 is the frequency of wave propagation. This is to say that the phase velocity is 

changing with the frequency. For any two points on a wave band, if 𝑠 =  0, then the 

medium is non-dispersive and if 𝑠 ≠ 0, then the medium is dispersive.  

 

Figure 3.20. Illustration of the dispersion curves (bandplot) from which bandgaps are 
identified. The shaded grey area represents the bandgap where no wave bands exist. 

Dispersive medium has the ability to cut-off (i.e. stop the propagation) of a wave at a 

certain frequency. At frequencies higher than the cut-off frequency of a wave travelling in 

a dispersive medium, some other types of waves can cut-on (i.e. start propagating). Any 

frequency range between any two wave bands is a bandgap where there is no propagation 

of waves [91] (see Section 3.5 for further details). Dispersion curves can be modelled 

using many different techniques, of which the most elementary is the analytical technique 

by which the structure is modelled as a set of mass and springs elements (see Section3.2). 

An analytical technique is fast and easy to use for very simple structures (noncomplex 

structures like that in the work of Raghavan et al. [99] and James et al. [100]) and for 

modelling individual types of waves. The classification of lattices into simple and complex 

is arbitrary and no characterisation technique is found in the literature for that. In this 

work, we define simple lattices as periodic structures assembled from single or multiple 

beams or slabs; these simple lattices are suitable for modelling using the analytical 

methods (see Figure 3.21a). We define complex lattices as periodic lattices of higher 
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number of geometrical features than simple lattices and can not be modelled using 

analytical techniques (see Figure 3.21b).  

For modelling complex structures and/or multiple types of waves, many methods exist. 

For example, a plane wave expansion method (PWE) is a Fourier space method that is 

highly efficient in calculating vibration modes in periodic structures. Despite being more 

accurate and efficient than the analytical method for modelling more complex structures, 

like in the work of Trainiti et al. [101] and Kuang et al. [102], the PWE method provides 

highly inaccurate results when modelling the dispersion curves of structures of high 

difference in local impedance. The difference in local impedance is what provides the wave 

reflection (see Section 3.5) and is essentially the difference in densities and modulus 

within certain regions in a structure. 
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Figure 3.21. Illustration of different types of (a) simple lattices and (b) complex lattices. 

PWE also suffers from the scaling effect. This means that, in comparison to other modelling 

techniques, there is higher scaling of the mathematical problem with the number of plane 

waves used in the modelling [103] (i.e. the mathematical problem becomes larger and 

more complicated to solve). Dispersion curves can also be modelled using finite-difference 

time-domain method (FDTD). FDTD operates in the time-domain and replaces all time 

derivatives with finite-difference approximations. FDTD can parallelise large problems and 

model structures with high difference in impedance like that in the work of Hsieh et al. 
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[104] and Sigalas et al. [105]. The main issue with FDTD is that it can not efficiently model 

curved regions or narrow bands. FDTD requires a higher number of time steps for a 

suitable representation of narrow bands in comparison to wider bands [106]. By far the 

most computationally efficient and most accurate method for modelling dispersion curves 

of both complex and simple structures is the finite element method (FEM) [96,107]. FEM 

subdivides the whole structure into elements [108]. The subdivision results in accurate 

representation of complex structures, easy capture of local effects, for example, local 

resonance, and incorporation of dissimilar regions and materials. For these reasons, FEM 

is used in structural, heat transfer, fluid flow, mass transport, acoustic, and elastic, wave 

propagation and electromagnetic analyses [109]. An example of the use of FEM for 

modelling wave propagation in complex structures can be seen in the work of Abueidda et 

al. [82] who modelled the acoustic dispersion curves of various TPMS lattices and 

Lucklum et al. [110] who studied elastic wave propagation in a simple cubic lattice with 

local resonators. 

3.7 Recent work on bandgap structures 

In this section, the recent work on bandgap structures is reviewed based on their bandgap 

type, modelling method, material type and frequency scale. This section is important for 

identifying any gaps in knowledge about bandgaps which were addressed in this study. 

Various AM Bragg-scattering bandgap lattices have been studied. For example, 

Warmuth et al. [111] manufactured and tested bandgap lattices based on interconnected 

struts. Wormser et al. [112] experimentally identified bandgaps in lattices similar to those 

of Warmuth et al. [111]. Lucklum et al. [113] presented strut-based lattices at the 

millimetre scale. Non strut-based AM bandgap lattices can be seen in the work of Abueidda 

et al. [82] who tested some forms of TPMS lattices. The work of Abueidda et al. [82] 

targeted acoustic waves only (not elastic waves) and only examined the network and 

matrix forms of primitive, Schoen and Nevious TPMS lattices. The most common types of 

https://en.wikipedia.org/wiki/Structural_analysis
https://en.wikipedia.org/wiki/Heat_transfer
https://en.wikipedia.org/wiki/Fluid_flow
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TPMS lattices still need to be investigated for their ability to provide bandgaps (i.e. gyroid 

and diamond lattices). Nevertheless, the literature on bandgaps also does not examine 

the ability of any of the TPMS lattices to provide bandgaps of elastic waves. Since TPMS 

have higher stiffness than strut-based lattices, the addition of bandgaps to their existing 

properties would allow for their multifunctional use in applications that require structural 

and dynamic support. Non strut-based AM bandgap lattices can also be seen in the ceramic 

lattice work of Kruisova et al. [114] and Ampatzidis et al. [88]. Ampatzidis et al. designed 

and manufactured a 1D bandgap structure from two materials glued together. The 

structure included a composite panel for the use in aerospace applications and provided 

bandgaps above 7 kHz. Kruisova et al. obtained multiple 2D bandgaps within the 

megahertz frequency range using single-material structures. 

On the structural side, research on TPMS lattices has mainly focused on their mechanical 

and heat dissipation properties [41,45,115]. It is critical to examine the ability of TPMS 

lattices to provide elastic waves bandgaps if these lattices are to be employed in general 

cases for vibration attenuation. Because of their high specific stiffness and large surface-

to-volume ratio [4,116], TPMS lattices could see use in the aerospace sector, where heat 

exchangers are commonly integrated into structural elements [117], and in precision and 

measuring instruments. Further applications exist as support structures in the automotive 

and aerospace sectors, where vibration attenuation and impact resistance are essential 

properties [118]. 

Previous work on strut-based lattices, namely the body-centred cubic (BCC) lattice, 

showed that it has good manufacturability from polyamide and metal with L-PBF [54] [29]. 

The BCC lattice has a high strength-to-weight ratio in comparison with other strut-based 

lattices, for example, those comprising simple cubic (SC) and face-centred cubic (FCC) 

cells [119]. BCC lattices with additional reinforcement struts along a single direction were 

studied by Leary et al. [119], who concluded that these lattices have higher impact energy 



53 

 

absorption than the conventional BCC design. To the best of the author’s knowledge, the 

propensity for BCC lattices with reinforcement struts to form bandgaps has not been 

studied. Syam et al. [54] determined the natural frequencies of BCC lattices with additional 

reinforcement struts in the x-, y- and z-directions (designated as BCCxyz) for vibration 

attenuation purposes, but did not model the dispersion curves of the lattice, and did not 

report on the effect of the lattice volume fraction on achieving vibration attenuation. Lu et 

al. [86] and Hsieh et al. [104] independently predicted the dispersion curves of 

multimaterial BCC lattice designs, but to date, there have been no reports on the 

manufacturability or performance of these designs. In comparison to single material AM, 

which is well-established, multimaterial AM currently requires manual assembly (such as 

in the lattice work of Matlack et al. [62]), requires support structures which constrain the 

design of the part, necessitates post-processing (such as in the work of Choi et al. [120]) 

and is limited to a small range of materials. 

It is possible to form bandgaps below the lowest Bragg limit, as discussed in Section 3.5, 

by using internal resonators which are independent of the Bragg law. The bandgaps in 

internal resonance lattices are formed by hindering the wave propagation at frequencies 

close to the natural frequency of the internal/local resonators [92,121,122]. The benefits 

of internal resonance lattices include increased design freedom and flexibility to obtain 

bandgaps in structures of suitable sizes for AM and of higher periodicity within a design 

volume in comparison to Bragg-scattering lattices [123–125]; resulting in better-defined 

bandgaps, more homogenous structures, more predictable mechanical properties and 

higher tolerance to the effects of defects. The single unit cell has less contribution towards 

the overall stiffness and properties in higher periodicity lattices, for example, internal 

resonance lattices, when compared to structures of lower periodicity. Research on internal 

resonance lattices includes the work of Liu et al. [126], who first developed an internal 

resonance lattice using solid cores and silicone rubber coatings. The periodic coated 

spheres of Liu et al. [126] exhibited bandgaps at low frequencies (400 Hz). Numerous 
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locally resonant internal resonance lattices have been proposed. An example by Fang et 

al. [127] showed arrays of resonators with high vibration attenuation at frequencies close 

to their natural frequency. Qureshi et al. [128] numerically investigated the existence of 

bandgaps in cantilever-in-mass lattices. Lucklum et al. [110] and D’Alessandro et al. [129] 

independently verified the existence of bandgaps in ball-rod resonating lattices. Zhang et 

al. [130] presented results of a beam lattice with local resonance bandgaps. Bilal et al. 

[131] reported on the concept of combining local resonance with Bragg-scattering to form 

trampoline lattice with subwavelength bandgaps. Matlack et al. [62] developed a multi-

material structure that has wide bandgaps using a similar concept to that of Bilal et al 

[131]. Most of the above work, regarding both Bragg-scattering lattices and internal 

resonance lattices, has employed analytical techniques to model and optimise the 

suggested unit cells. Because analytical techniques can only model simple designs, the 

potential for exploring the elastic capabilities of complex internal resonance lattices 

designs has been limited.  

Table 3.1 summarises the most recent work on bandgap structures by reviewing the 

dimensionality of the bandgaps (i.e. 1D, 2D or 3D), material type (single- or multi-

material), structure type and frequency scale. Despite the advancement achieved by the 

use of internal resonance lattices, these lattices still suffer from manufacturing and size 

issues when targeting bandgaps in the hertz to low kilohertz scale (10 Hz to 3 kHz). Of 

significance here is the work of Sharma et al. [124] who suggested a multi-material 

bandgap structure that provided bandgap between 147 Hz to 364 Hz. Despite the fact that 

this frequency range is very low, the structure is only effective in 1D and no information 

has been provided about the manufacturability or the experimental response of the 

structure of Sharma et al. [124]. Demonstrating the manufacturability and the 

experimental response of the proposed lattices is important for its adoption in metrology 

and precision engineering applications.
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Table 3.1. Review of recently published work on phononic bandgaps. Bragg-Scattering: BS, Internal resonance: IR, Elastic waves: EW, 

Longitudinal: L, Flexural: F, Acoustic waves: AW, Single material: SM, Multi-material: MM. 

Authors Lattice type Material 
type 

Bandgap 
type 

Dimensionality Frequency scale Dispersion 
curves 
calculation 
method 

Targeted 
waves 

Manufacturing 
and 
experimental 
validation 

Kruisova et al. [132] Strut-based/complex SM BS 2D MHz FEM EW Yes 

D’Alessandro et al. [129] Novel/complex SM IR 3D kHz FEM EW Yes 

Raghavan et al. [99] Simple MM IR 1D Hz Analytical L EW Yes 

Lazcano et al. [133] Simple MM BS 1D GHZ Analytical L AW Yes 

James et al. [100] Simple MM BS 1D - Analytical L AW Yes 

Sharma et al. [124] Simple MM BS and IR 1D Hz Analytical F EW No 

Trainiti et al. [101] Simple SM BS 1D and 2D kHz PWE EW No 

Abueidda et al. [82] TPMS/complex MM BS 3D kHz FEM AW No 

Lucklum et al. [110]  Novel/complex SM IR 3D kHz FEM EW Yes 

Phani et al. [63] Strut-based MM BS 2D - FEM EW No 

Croenne et al. [134] Simple MM BS 2D MHz MST EW Yes 

Kuang et al. [102] Simple MM BS 3D - PWE EW No 

Wormser et al. [112] Strut-based/complex SM BS 3D kHz FEM EW Yes 

Matlack et al. [62] Strut-based/complex MM BS and IR 1D kHz FEM EW Yes 

Ampatzidis et al. [88] Novel MM BS 1D and 2D kHz FEM EW Yes 

Hsu et al. [135] Simple SM BS 1D - FEM AW Yes 

Wang et al. [136] Novel/complex SM BS 3D MHz FEM EW No 

ZhiZhong et al. [137] Simple MM BS 1D - PWE EW No 

Hsieh et al. [104] Simple MM BS 3D Above 100 kHz FDTD EW No 

Bilal et al. [131]  Novel SM BS and IR 2D - FEM EW No 

Lu et al. [86] Simple MM BS 3D Above 60 kHz FEM EW No 
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3.8 Summary 

Lattice structures have geometries which foster the occurrence of destructive wave 

interference. The destructive interference of waves can lead to the development of 

bandgaps, which are frequency regions with no wave propagation of high vibration 

attenuation capabilities (typically of transmissibility below 0 dB). For creating bandgaps, 

the work from literature examines multi-material lattices. In comparison to single material 

AM, which is well-established, multi-material AM currently requires manual assembly (such 

as in the lattice work of Matlack et al. [62]), requires support structures which constrain 

the design of the part, necessitates post-processing (such as in the work of Choi et al. 

[120]) and is limited to a small range of materials. Development of lattices that can obtain 

bandgaps using only a single material would facilitate the process of obtaining bandgap 

structures and would provide better vibration attenuation performance. The work on 

bandgap lattices for low-frequency vibration attenuation has also mainly focused on 1D 

lattices. In reality, a 3D lattice (i.e. lattice with periodicity in 3D) is essential if they are to 

be used in metrology, precision, aerospace and automobile applications; this is because 

they can provide enhanced, and tailorable, mechanical and vibrational capabilities in 

comparison to solid structures.  In addition, a wide range of lattice structures has not been 

tested for their ability to develop bandgaps. The existence of 3D phononic bandgaps would 

add vibration attenuation to the existing panoply of controllable mechanical performance 

of the lattice structures [46,47,115,116,119]; thus enabling them to simultaneously fulfil 

various mechanical and vibration attenuation functions. 
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4. Methodology 

 

Chapter 4 

Methodology 

The motivation behind this project, as described in Section 1.1, is to enhance the vibration 

attenuation of precision engineering and measuring instruments. Lattice 

structures, manufactured and realised by the advancement in AM, are suitable structures 

to be used in the manufacturing of precision and measuring instruments; due to their 

intrinsic load-bearing and vibration attenuation capabilities (see Chapter 2 and 3). 

However, different knowledge gaps as discussed in Chapter 2 and Chapter 3 prevent the 

realisation of enhanced vibration attenuation performance in lattice structures. In the 

context of vibration attenuation, the knowledge gaps are related to the design techniques, 

modelling methods, and vibration attenuation performance of lattice structures and they 

are as follows: 

 No knowledge on the ability of additively manufactured lattices to provide vibration 

attenuation at frequencies greater than the natural frequency. At frequencies 

greater than the natural frequency, high attenuation (below 0 dB) is usually 

achieved. 

 No knowledge about the bandgap formation ability of some strut-based lattices 

and all TPMS lattices (standard lattices). Within the bandgap frequency range, it 

is guaranteed that the attenuation is below 0 dB. 

 No sufficiently detailed methodology published for modelling 3D wave propagation. 
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 Little research on single-material lattices for obtaining 3D bandgaps in the hertz 

to low kilohertz frequency range. This is particularly important to provide 3D 

attenuation of lab environment vibration. 

The work for filling the knowledge gaps will be broken down into three work packages 

(WPs) as shown in Figure 4.1. 

 

Figure 4.1. Breakdown of the work in this project into manageable work packages. 

4.1 Methodology for conventional vibration isolation with lattice structures 

This section details the methods used in WP1 of this project. The aim of WP1 is to examine 

the ability of lattice structures for providing vibration attenuation at frequencies greater 

than the natural frequency (called vibration isolation). The methodology for approaching 

this is outlined in Figure 4.2. WP1 will characterise lattice structures (i.e. determining the 

minimum number of unit cells required to form a lattice) and study the effect of lattice 

unit cell size, volume fraction and tessellation on the natural frequency. A case study for 

showcasing the ability of lattice structures to provide vibration isolation at frequencies 

greater than the first natural frequency will be presented. The results of WP1 are discussed 

in Chapter 5.
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Figure 4.2. Methodology for examining the ability of lattices to provide vibration isolation. 
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4.1.1 Strut-based lattice design 

The design of lattice structures for AM is a significant challenge. A simple tool in the form 

of an equation will be developed to allow the design of various strut-based lattices based 

on the desired volume fractions. The equation allows the calculation of the exact diameter 

of a strut-based unit cell based on the pursued volume fraction 𝜌∗ and number, and type, 

of struts. The solid volume 𝑉𝑠 of a strut of length 𝐿𝑡 and circular cross-section of diameter 

𝑑 is calculated as 

 𝑉𝑠 = 
𝜋

4
𝑑2𝐿𝑡. 

4.1 

Multiple struts of different lengths exist in a strut-based lattice. As detailed in Section 2.3, 

inaccurate calculations of the volumes of lattice structures are obtained when the 

intersection volumes between the struts are not considered (see Figure 4.3). To remedy 

this, the orientation, total length and intersection length of the struts should be 

represented in the design equation.  

 

Figure 4.3. Illustration example of two struts intersecting with each other. 

The total length 𝐿 of all cylindrical members in a strut-based lattice is calculated as follows 

 𝐿𝑡 = 𝑎1𝐿 + 𝑎2𝐶𝑙 + 𝑎3𝐶𝑙 + 𝑏√2𝐶𝑙 + 𝑐√3𝐶𝑙 , 4.2 

where 𝑎1 is the  number of horizontal struts of length 𝐿 as they appear in the top and 

bottom views of a single lattice cell; 𝑎2 is the total number of vertical struts of length 𝐶𝑙 as 
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they appear in top and bottom views of a single lattice cell; 𝑎3 is the total number of 

vertical struts of length 𝐶𝑙 as they appear in front, back and side views; 𝑏 is the total 

number of diagonal struts on all faces and 𝑐 is the number of diagonal members across 

the centre of the lattice cell (see example in Figure 4.4). 

 

Figure 4.4. An illustrative example of the naming of struts in a strut-based lattice. 

One way of designing strut-based lattice structures is by specifying the volume fraction 

and the unit cell size 𝐿. The diameter 𝑑 of the strut can then be calculated if the orientation 

and number of struts are known. Each of the members 𝑎1, 𝑎2 and 𝑎3 in a single unit cell 

has a cross-sectional area represented by a quarter of a circle, each of the members 𝑏 has 

a cross-sectional area represented by half a cylinder, and each of the members 𝑐 has a 

cross-sectional area of a full circle. The volume 𝑉 of a lattice unit cell can be expressed as 

 
𝑉 = 𝜌∗𝐿3 =

𝜋

4
𝑑2 (

𝑎1𝐿

4
+

𝑎2𝐶𝑙

4
+

𝑎3𝐶𝑙

4
+

𝑏√2𝐶𝑙

2
+ 𝑐√3𝐶𝑙) − (𝑐 − 1)𝑒𝑐, 4.3 

where 𝑒𝑐 is the intersection volume of struts 𝑐 of diameter 𝑑. The intersection volume 

equals 0 when 𝑐 = 0, 0.181021 when 𝑐 = 2, and 0.636638 when 𝑐 = 4 [138]. 
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Since 𝐿 = 𝐶𝑙 + 𝑑, 4.4 

then 𝐶𝑙 = 𝐿 − 𝑑. 4.5 

Substituting the value of 𝐶𝑙 from Equation 4.5 in Equation 4.3 gives 

 
𝜋𝑑3

𝐿3
(
𝑎2

16
+

𝑎3

16
+

𝑏√2

8
+

𝑐√3

4
+ 𝑒𝑐) +

𝜋𝑑2

𝐿2
((

𝑎1

16
+

𝑎2

16
+

𝑎3

16
+

𝑏√2

8
+

𝑐√3

4
)) − 𝜌∗

= 0, 

4.6 

Equation 4.6 can be solved to obtain the diameter of a lattice strut at a given number of 

struts, volume fraction and unit cell size. The diameter can then be used in CAD to design 

the intended structure. For example, for a lattice structure of 10 % volume fraction and 

30 mm cell size (see Table 4.1 for full details) the strut diameter obtained using 

Equation 4.6 is 2.52 mm.  

Table 4.1. Example of calculation of the diameter of a lattice unit cell using Equation 4.6 

Nominal lattice filled volume / mm3 27,000 

Number of cells 1 

Unit cell size (𝐿) / mm 30 

Calculated diameter 𝑑 from 

Equation 4.6 / mm 

2.52 

Nominal filled volume / mm3 2700 

Filled volume as calculated from CAD 
file / mm3 

2,696.08 

Nominal volume fraction 10 % 
𝑎1 4 

𝑎2 4 

𝑎3 4 

𝑏 0 
𝑐 4 

Volume error of Equation 4.6 0.14 % 
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Figure 4.5. (a) Example of a single lattice cell as designed with Creo Parametric CAD 
software, and (b) example of 2×2×2 periodic lattice as tessellated with Autodesk Inventor 
CAD software. 

To calculate the error in the lattice volume, two volume values were recorded: the 

originally intended volume (the nominal volume 𝑉 as calculated using 𝜌∗ from 

Equation 4.6), and the volume obtained from the CAD file of the lattice. The error was 

then calculated as the absolute difference between the nominal volume and the volume 

obtained from CAD divided by the nominal volume. The calculated error in the lattice 

volume was negligible; less than 0.14 %. This error originates from the intersection 

between the struts as approximated by Equation 4.6. CAD was used for the design of 

single unit cells which were then tessellated in 3D to create lattice structures as illustrated 

in Figure 4.5. 

4.1.2 Lattice mechanical properties 

Drawing from the lattice discussion in Section 2.4, convergence of the number of unit cells 

in a lattice with respect to the relative elastic modulus should be ensured in order to 

achieve accurate modelling of the properties of the lattice structures. Hence, the designed 

lattices should be tested to determine: 1) whether or not the stress-strain curve reaches 
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the densification region [9], and 2) ensure convergence of the number of tessellations 

with the relative elastic modulus. Section 2.4 describes how lattice structures are 

identified. Experimental compression tests were carried out on representative samples of 

the same overall size of 30 mm, 20 % volume fraction and BCCxyz cell configuration. The 

number of tessellations was 2×2×2, 3×3×3 and 4×4×4. The samples are shown in 

Figure 4.6a and the experimental setup is shown in Figure 4.6b.  

 

Figure 4.6. (a) Compression samples as designed in CAD (top) and manufactured from 

Nylon-12 on an EOS P100 L-PBF system with a building powder layer height of 100 µm, 
and (b) Compression test machine setup. 

The samples were compressed at a constant compression speed of 1 mm⋅min-1 using a 

50 kN moving die. The selection of the attributes of the representative samples is made 

based on their suitability for manufacturing with AM (see Figure 2.12). The relative elastic 
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modulus 𝐸∗ of each sample was calculated using Equations 2.7 and 2.8. The three samples 

were enough to represent the linear trend between the relative elastic modulus and the 

number of tessellations of the unit cell which is presented in Section 5.2.1. 

4.1.3 Lattice structure naming scheme 

The lattice structures used in this study are of different volume fraction (10 %, 20 % and 

30 %), different number of lattice nodes and different cell configurations. For the purpose 

of individual characterization, every lattice cell was assigned a unique code in the form of 

(𝑥1𝑥2𝑥3𝑥4-𝑥5), where 𝑥1 is the number of lattice nodes in the unit cell and 𝑥2𝑥3𝑥4 denotes 

the volume fraction taking, for example, a value of ‘010’ for a 10 % lattice cell. The value 

𝑥5 is an arbitrary identification number of the struts configuration (topology) as shown in 

Figure 4.7. In Chapter 5, “x” is used for generalisation of the naming, for example, 9010-

x refers to all lattices of any cell configuration (hence the x in place of 𝑥5) that have 9 

lattice nodes and are of 10 % volume fractions. 

 

Figure 4.7. An illustrative example of the naming scheme of the lattice. 
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4.1.4 Finite element modelling and experimental testing 

For testing of the response of the lattices, CAD models of the lattices were prepared with 

the minimum number of unit cells, which is obtained with the method of Section 4.1.2. 

Finite element modelling was used to test the response of the lattices at certain frequencies 

under excitation inputs of 1 N. The excitations are sent through the crystallographic [001] 

direction.  

For experimental verification of the results, samples of 8010-7 and 5010-1 lattices were 

manufactured with L-PBF (method prescribed in Section 4.1.5). The harmonic responses 

in the crystallographic [001] direction were tested using the general description (provided 

below) in this section. The vibration testing range was from 0.1 Hz to 1000 Hz for the 

8010-7 samples, and from 0.1 Hz to 3000 Hz for the 5030-1 samples, all with < 1 Hz 

frequency intervals (see Figure 4.8b). 

 

Figure 4.8. An illustrative example of the experimental verification setup for (a) 8010-7 
lattice and (b) 9010-1 lattice, and (c) lattice structures manufactured with laser powder 
bed fusion for experimental verification. 

General description of the experimental setup: The lattice sample was suspended using 

piano wire to approximate free-free boundary conditions. The approach, taken to suspend 
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the lattice, is similar to the approach taken by Zhang et al.[130] and Chen et al. [139], 

supports the lattice uniformly. An alternative approach, which can also be used for 

approximation of free-free boundary conditions, can be found in the work of D’Alessandro 

et al. [129] who used a soft material in the form of bubble wrap to support the structure. 

The lattice was fixed on one side to a connector which was, in turn, bolted to an 

acceleration sensor. The acceleration sensor was linked to the armature of the shaker (the 

Modal Shop Shaker 2060E) [140] through a stinger. The stinger is a 1.5 mm rod which 

connects to the acceleration sensor and decouples cross-axis force inputs, thus, minimising 

errors during measurements [141]. As part of the experimental setup, the beam of a laser 

vibrometer was projected perpendicularly to the opposite surface of the lattice to take 

longitudinal acceleration measurements. 

 Laser vibrometer 

A laser vibrometer uses coherent laser beam to measure the vibration of a surface. The 

coherent laser beam splits into a reference beam and a measurement beam, both of the 

same frequency. The reference beam is focused towards a photo detector housed within 

the body of the laser vibrometer while the measurement beam is focused on the measured 

surface. Shifting of the phase and frequency of the measurement beam is done using a 

Bragg cell (see Figure 4.9a). When the measured surface vibrates, the scattered light 

changes in frequency and phase due to the change in the velocity of the measured surface. 

The reflected beam carries characteristic information of the motion of the measured 

surface which is analysed with that of the reference beam to obtain information about the 

output signal to detect the change in frequency. The displacement, velocity and 

acceleration data of the measured surface is then obtained by analysing the output signal 

[142]. The benefits of the laser vibrometer used in this project, Polytec PDV 100, is that 

it is low in mass (less than 1.5 kg), has high measurement resolution of 2 nm/s and is 
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capable of measuring vibration up to 22 kHz. The laser vibrometer is non-contactless 

which means that the measured surface is not damaged with this measurement process.  

 

Figure 4.9. (a) Operation concept of a laser vibrometer and (b) photo of Polytec PDV 100 
laser vibrometer [143]. 

The effective measurement distance of this vibrometer is between 0.2 m and 30 m. 

However, in this project, the measurement distance between the laser vibrometer and the 

measured surfaces was between 0.2 m and 3 m [143]. The drawback of this laser 

vibrometer is that it is single-axis which required reorientation of the laser vibrometer 

position, as will be required particularly for WP3, to obtain 2D and 3D vibrational results. 

In addition, and since this vibrometer can only measure surfaces with sufficient surface 

reflectance, shiny reflective papers had to be glued to the measured surfaces in this 

project [142,143]. The mass of the reflective papers at which the laser beam was 

projected is negligible in reference to the mass of the samples measured in this project, 

thus, the vibrational results were not affected by the addition of the reflective papers. 

Figure 4.9b shows a photo of the used laser vibrometer. 

 Acceleration sensor 

This project used an acceleration sensor which formed one part of an impedance head. In 

principle, the impedance head contains a force sensor as well (see the work of 

Ampatzidis et al. [88] for an example of the use of the force sensor of the impedance 

head). The acceleration sensor uses the piezoelectric effect of piezoelectric material, for 
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example, barium titanate, to measure the acceleration of a vibrating surface. Piezoelectric 

materials respond to mechanically applied stress by producing a charge. The 

accelerometer uses these materials to generate a voltage signal that is proportional to the 

acceleration [144]. A schematic diagram of the acceleration sensor and its assembly in 

the vibrational test set up is shown in Figure 4.10.  

 

Figure 4.10. Schematic of the impedance head and its assembly. 

The accelerometer is glued to the measured surface from one end and is mounted to the 

stinger of the shaker at the other end. Vibration of the measured surface causes variation 

in the inertial forces applied to the mass of the piezoelectric material and leads to its 

deformation. This deformation is proportional to the acceleration of the measured surface 

which allows for measuring the vibration of the surface. In general, piezoelectric 

acceleration sensors are low in mass (less than 200 g), has a good response to frequencies 

up to 5 kHz and are easy to mount. The acceleration sensor used in this project is the 

PCB 288D01 and is shown in Figure 4.10. This model is compact in size 

(17.5×17.5×20.8) mm and has a good sensitivity of 10.2 mV·(m·s-²)-1. The natural 

frequency of this model when mounted is above 20 kHz [145] which is four times higher 
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than the operating frequency of the tested samples (below 5 kHz), thus, the measurement 

results are not affected by the natural frequency of the model. 

4.1.5 Laser powder bed fusion: additive manufacturing 

All lattices in this work were fabricated on a laser powder bed fusion (L-PBF) system using 

Nylon-12 polymer material (see Section 2.1.1 for a description of other lattice fabrication 

methods). The material properties for Nylon-12 can be found in Table 4.2. The L-PBF 

system used a 21 W laser of scan speed and hatch spacing of 2500 mm˖s-1 and 0.25 mm, 

respectively. The nominal spot size of the laser was 0.3 mm and the layer thickness was 

0.1 mm. Nylon-12 powder was used to fill the powder bed volume of dimensions 

1320 mm × 1067 mm × 2204 mm at a temperature of 173 °C. Geometrical features of 

sizes below 0.8 mm are usually manufactured with considerable losses in mechanical 

properties and geometrical inaccuracy, due to the existence of unsolidified powder within 

the manufactured features [23]. To ensure that all geometrical features were 

manufactured in agreement with the specified design, the size of the narrowest lattice 

feature was designed to be 1 mm [23]. 

The choice of Nylon-12 is based on its compatibility with the L-PBF process. Nylon-12 has 

a large temperature processing window that allows for uniform crystallisation during 

cooling of the part; thus leading to reduction of material warpage and lamination [146], 

which is essential for manufacturing parts with predictable geometries and mechanical 

properties. Details about the physics and the challenges of L-PBF can be found 

elsewhere [20]. 

Table 4.2. Properties of L-PBF Nylon-12 used for modelling lattice structures in this 

work [147]. 

Tensile modulus Density Poisson’s ratio 

1500 MPa 950 kg·m-3 0.3 
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4.2 Methodology for investigation of 1D bandgaps 

This section details the methods used in WP2 of this project. The aim of WP2  is to explore 

the ability of TPMS lattices to provide bandgaps. The methodology is outlined in 

Figure 4.11. First, a modelling method for examining 1D wave propagation in 3D lattices 

was obtained. Then, lattices with ability to form 1D bandgaps were designed and their 

bandgap was verified. A tuning method for control of the wave propagation in lattice 

structures in 1D was suggested and the manufacturability of these lattices with L-PBF was 

examined; this was done by studying the differences in volume fractions, cell sizes 

between the manufactured part and the original CAD file. The results of WP2 are discussed 

in Chapter 6. 

4.2.1 Modelling of 1D dispersion curves 

A finite element (FE) based wave propagation method was used to calculate the elastic 

dispersion curves of the lattice structures. In comparison to other dispersion calculation 

methods, for example, analytical method, PWE [84] and FDTD [105,148,149], the FE 

method provides higher computational efficiency and greater wave modelling accuracy 

[103,150]. The FE method incorporates Bloch’s theorem, which governs the displacement 

of the FE nodes, and infinite tessellation of the unit cell along the tested propagation 

directions [61].  
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Figure 4.11. Methodology for examining wave propagation and bandgap formation in manufacturable 1D lattices.
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Figure 4.12. Illustrative example of a unit cell modelled with infinite boundary conditions. 

The simulation work throughout this thesis used 3D lattice models with three DOFs at each 

FE node to capture all the possible modes of vibration (see Section 3.5 for information on 

lattice periodicity). The stiffness and mass of an individual mesh element were recorded 

in x-, y- and z- directions. No rotational degrees of freedom were considered for the 

individual mesh elements (i.e. the individual elements had no bending stiffness). However, 

the ability of the simulation to model the bending behaviour of the whole structure was 

not put at risk since the three DOF proved to be sufficient for the modelling as can be seen 

in other work [113,129]. A lattice can be visualised as a set of discrete points in reciprocal 

space with the distance between the neighbouring points equal to 𝜋/𝐿. Understanding the 

propagation of waves within the reciprocal space of the lattice provides fundamental 

understanding of the dynamic behavior of the lattice, i.e. the types of waves, their 

propagation directions and propagating frequencies can be understood with ease. 

However, the reciprocal space is an infinite space and, thus, it is inconvenient to fully 

model it. Fortunately, for symmetric lattices, the reciprocal space is also symmetric which 
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provide a chance for modelling finite regions within this space. In this work, modelling of 

wave propagation was restricted to the contour of a region called the irreducible Brillouin 

zone (IBZ) of the examined lattices. A Brillouin zone (BZ) is a representation of the lattice 

in reciprocal space. The IBZ is the first BZ of the lattice reduced by all of the geometrical 

symmetries. The contour of the IBZ is bounded by critical points Γ, X, M and R. The critical 

points of a simple cubic lattice are shown in Figure 4.13 and the IBZ is highlighted. The 

propagation of the wave across an IBZ can be understood by studying the motion of the 

wave in a single 3D unit cell. For example, the 1D IBZ of a cubic lattice spans from 0 to 𝜋/𝐿, 

where 𝐿 is the unit cell size. According to a statistical study by Maurin et al. [151], 

restricting the detection of bandgaps to only the contour of the IBZ rather than the full 

IBZ provides accurate results for symmetric unit cells as well as savings in computation 

time [151–153]. Modelling waves in the IBZ provides time savings in the analysis of wave 

propagation in periodic structures, rather than modelling waves in the full BZ.  

 

Figure 4.13. The 3D IBZ of a cubic lattice with the reciprocal space coordinates of the 
critical points. 

The equation of motion for a unit cell without an external driving force can be described 

as 

 𝑴𝒒̈ + 𝑲𝒒 = 𝟎, 4.7 

where 𝑴, 𝑲 and 𝒒 represent the global mass matrix, the global stiffness matrix and the 

displacement vector of the structure of interest, respectively. The effect of damping is not 
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included in this work, as is the case with most of the work on phononic bandgaps. This 

means that the wave is assumed to be propagating without attenuation, hence the 

wavenumber 𝑘 in this work is calculated as 𝑘 = 𝑖𝜇. This assumption is very common in 

literature as can be seen in [62,82,110,154]. The addition of damping may only alter the 

propagation outside the bandgap or increase the width of the bandgap [155]. In addition, 

assuming that the wave propagates without attenuation when analysing wave propagation 

in solid materials will provide generalised results that are applicable to a wide variety of 

materials, for example, Nylon 12 and stainless steel, irrespective of their damping 

properties. For each examined lattice type, the FE nodes located at the unit cell edges and 

faces were identified to allow for the 1D periodicity of the unit cell. Their DOFs were 

rearranged into a nodal displacement matrix 𝒒 of the following order [62,156]  

 
𝒒 =  [

𝒒𝑙

𝒒𝑖

𝒒𝑟

], 4.8 

where 𝒒𝑟 𝒒𝑙 and 𝒒𝑖𝑛 denote the DOFs of the right, left and inner FE nodes of the 3D unit 

cell respectively (see Figure 4.14) and 𝑘 is the wave number of a specific wave in the first 

BZ.  

 

Figure 4.14. A hexahedral mesh of a gyroid unit cell used in this work. The highlighted 
areas illustrate the FE nodes of the right and left edges of the cells which need to be 
identified for the application of the finite element method. 
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The displacement matrix 𝒒𝐼𝑁 contains all the DOFs of FE nodes that are not located at the 

unit cell edges and faces. The naming scheme is arbitrary, as it depends on the orientation 

of the cell; the important principle is the grouping of the FE node sets according to their 

location. 

Bloch theory describes the wave propagation in an infinite periodic medium using the wave 

vectors of the reciprocal space. The Bloch response is a product of a Bloch periodic function 

and a phase multiplier. The phase multiplier is the plane wave 𝑒−𝑖𝑘𝐿 (see Section 3.2 for 

details on Bloch theory). For the application of Bloch’s theorem, the Bloch response is the 

displacement matrix 𝒒 and the Bloch periodic function is a reduced nodal displacement 

matrix 𝒒̅ that is specified in Bloch’s reduced coordinates [63]. The reduced displacement 

matrix 𝒒̅ is used to reduce the stiffness and mass matrices so that they only contain 

information on the sets of FE nodes relevant to each examined wavevector. Bloch theory 

has been successfully implemented to analyse wave propagation for the purpose of 

identifying bandgap structures in most of the studies discussed in Section 3.7. The reduced 

nodal displacement matrix 𝒒̅ was obtained by introducing a transformation matrix 𝑵, that 

contains information about the plane wave 𝑒−𝑘𝐿, of the following shape 

 
𝑵 =  [

𝑰 𝟎
𝑰𝑒−𝑘𝐿 𝟎

𝟎 𝑰
]. 4.9 

Then we have 

 𝒒 = 𝑵𝒒̅, 4.10 

with  

 𝒒̅ = [
𝒒𝑙

𝒒𝑖
]. 4.11 

Projected stiffness and mass matrices of the reduced sets of FE nodes, 𝑲̅ and 𝑴̅ 

respectively, were then computed using  

 𝑲̅ = 𝑵′𝑲𝑵, 4.12 
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and 

 𝑴̅ = 𝑵′𝑴𝑵, 4.13 

where 𝑲 and 𝑴 are the global stiffness and mass matrices extracted from the FE model of 

the single unit cell and rearranged in the same order of 𝒒, and 𝑵′ is a transpose matrix 

used for ensuring force equilibrium [63,88]. The following generalised eigenvalue problem 

was then constructed and solved numerically 

 𝑲̅ − 𝜔2𝑴̅ = 𝟎, 4.14 

where 𝜔 denotes the frequency of a propagating wave corresponding to each of the 

sampled wave vectors. An example of the calculation of the dispersion curves of a test 

lattice unit cell is shown in Figure 4.15. 

 

Figure 4.15. Illustration of 1D Dispersion curves calculated for a test unit cell with 100 
wavenumber intervals. Solving for one, two, three and four eigenvalues for each wave 
number interval provides (a) one wave band, (b) two wave bands, (c) three wave bands 
and (d) four wave bands, respectively. 
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When equation 4.14 is solved once for a specific range of wavenumbers, one wave band 

can be formed as can be seen in Figure 4.15a. In this project, a wave band is defined as 

a visual representation of the dispersion that happens to one elastic wave when it 

propagates through a material. It can be seen from Figure 4.15a that the propagation of 

the first wave band starts at zero Hz and stops around 5000 Hz. The wave bands can 

sometimes overlap, especially wave bands of geometrically complex lattices as can be 

seen in Figure 4.15c. In other research areas, for example in structural health 

monitoring [157], the overlapping of wave bands may lead to difficulties in spotting where 

they start and finish. However, in bandgap engineering, which is the main focus of this 

project, the overlapping of wave bands does not impose an issue. This is because the goal 

is to discover frequency ranges where no wave bands exist. A Total of 100 wavenumbers 

were specified between 0 to 2𝜋/𝐿. At each wavenumber, the eigenvalue in Equation 4.14 

was constructed and solved to give the frequency of the propagating waves. The wave 

numbers and propagating frequencies were stored in matrix format and plotted in the form 

of the dispersion curves shown in Figure 4.15.  

 Preparation of the lattices 

FE models of the TPMS unit cells are assigned the mechanical and density properties of 

laser powder bed fusion Nylon-12 prescribed in Section 4.1.5. The voxelised network 

gyroid cell is shown in Figure 4.14 in which the leftmost and rightmost FE nodes are 

highlighted. The modelling assumes an infinite tessellation of lattice cells along the 

x-direction. 

The mass and stiffness matrices of the unit cells are rearranged with the help of the FE 

nodes numbering obtained from a commercial finite element package. The mass and 

stiffness matrices are then arranged in the form shown in Equation 4.8. The generalised 

eigenvalue problem of Equation 4.14 is constructed. The frequency eigenvalue problems 

are solved for 100 equally spaced wave numbers which were enough to provide sufficient 
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description of waves in the first BZ of the TPMS unit cells. All wave bands below 15 kHz in 

each lattice were included in the analyses. Tailoring the lattice to attenuate the vibration 

of certain frequencies depends on the specific application. For the purpose of using lattices 

in metrology and precision engineering applications, the interest is mostly in the hertz to 

low kilohertz range (see Section 5.3 for a range of problematic frequencies for a measuring 

instrument). It is assumed that bandgaps found below 15 kHz are tuneable using the 

methods described in Section 4.2.2. To obtain normalised frequencies, all frequency 

results were normalised to the unit cell size 𝐿 and the speed of longitudinal waves in the 

lattice material 𝑣, which was introduced in Equation 3.2. With the normalisation of the 

results, bandgaps below and above 15 kHz can be obtained by selecting the appropriate 

material and cell size. 

4.2.2 Bandgap tuning method 

The properties of lattice structures that can be tuned to potentially induce a phononic 

bandgap include cell size, volume fraction and cell geometry. The unit cells had been 

analysed first, with the most promising candidate for bandgap development (i.e. with the 

widest and more number of bandgaps) then chosen for bandgap tuning. The characteristic 

wave bands for the initial settings of the chosen cell found under 15 kHz were examined 

under different volume fractions and cell sizes. The range of volume fractions used in this 

study extended from 20 % to 40 %, while the examined cell sizes were of 15 mm, 20 mm, 

25 mm, 30 mm and 40 mm. Although the selected volume fraction and cell size ranges 

are arbitrary, their exact values hold no bearing on our results and conclusions. 

4.3 Methods for investigation of three-dimensional bandgaps 

This section details the methods used in WP3 of this project. The aim of WP3 is to develop 

3D wave propagation modelling techniques and develop single material lattices with 3D 

bandgaps at low frequencies. Details of the methodology for developing the 3D modelling 
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technique can be found in Figure 4.16 and that for developing of the 3D bandgap lattices 

is shown in Figure 4.17.  

 

Figure 4.16. Methodology for developing 3D wave propagation technique. 

The work will include providing a detailed description of the analysis required for modelling 

3D wave propagation and validation of the modelling technique with published literature. 

Lattices, of featured developed with the help of FlattPack and the design equation 

developed in Section 4.1.1 will be tested with the developed 3D wave modelling technique. 

Tuning methods for control of the wave propagation in lattice structures in 3D will be 

suggested for all the developed structures using the methods detailed in Section 4.2.2. 

Verification of the existence of the bandgaps will be carried out by simulation modelling 

and experimental testing of a selection of lattices of suitable periodicities as detailed in 

Section 4.1.4 and Section 4.3.2. The results of WP3 are discussed in Chapter 7 and 

Chapter 8. 
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Figure 4.17. Methodology for development of 3D lattices for 3D wave propagation 
bandgaps at low frequencies. 

CAD modelling provides the freedom to design strut-based lattices of different shapes and 

can create CAD files of different formats for the use in different commercial simulation 

software. Due to the availability of FlattPack at university of Nottingham and its 

demonstrated capabilities to design geometrically complex lattices, it is used for modelling 

the TPMS unit cells used in this work. Modelling and simulation of the vibration properties 

are made using a commercial finite element software (ANSYS) and due to its high 

accuracy, high computation efficiency for modelling complex structures (see Chapter 3). 
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Modelling of the dispersion curves in this work (for identification of bandgap structures) is 

carried out using dedicated wave propagation modelling techniques that incorporate finite 

element modelling with Matlab codes and functions developed specifically for this project 

as discussed in Section 4.3.1. See Section 3.6 for other bandgap modelling methods. 

4.3.1 Modelling of 3D dispersion curves 

The method presented in this section draws on from the FE modelling technique of 1D 

bandgaps which was introduced in Section 4.2.1. In the case of investigation of 3D 

bandgaps, the displacement matrix 𝒒 of the lattice unit cell is rearranged in the way that 

would allow for the 3D periodicity of the unit cell in the following order 

 𝒒 = [𝒒𝐼𝑁 𝒒𝐹   𝒒𝑆 𝒒𝐵 𝒒𝑇 𝒒𝐿 𝒒𝑅  𝒒𝐹𝐵 𝒒𝐹𝑇  𝒒𝑆𝐵 𝒒𝑆𝑇 𝒒𝐹𝐿 𝒒𝐹𝑅  𝒒𝑆𝐿 𝒒𝑆𝑅  𝒒𝐵𝐿 𝒒𝐵𝑅 𝒒𝑇𝐿 𝒒𝑇𝑅]T, 4.15 

where the subscripts 𝐼𝑁, 𝐿, 𝑅, 𝐹, 𝐵, 𝑇 and 𝑆 denote the DOFs at the inside, left, right, front, 

bottom, top and back of the single unit cell, respectively (see Figure 4.18). Similar to the 

case of 1D dispersion curves, the displacement matrix 𝒒𝐼𝑁 contains all the DOFs of FE 

nodes that are not located at the unit cell edges and faces. For the same unit cell, the size 

of the matrix 𝒒𝐼𝑁 in the case of 3D modelling is smaller than that in the case of 1D 

modelling. This is because in 3D modelling it is essential to decouple some of the DOFs 

which were part of the inner FE nodes matrix in the case of 1D, for example, those located 

at the front and back of the unit cell. The transformation matrix 𝑵 in the case of 3D takes 

the form  
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 𝑵 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝑰 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎
𝟎 𝑰 𝟎 𝟎 𝟎 𝟎 𝟎
𝟎 𝑰𝑒−𝑘𝑦𝐿 𝟎 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝑰 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝑰𝑒−𝑘𝑧𝐿 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝑰 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝑰𝑒−𝑘𝑥𝐿 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎 𝑰 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎 𝑰𝑒−𝑘𝑧𝐿 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎 𝑰𝑒−𝑘𝑦𝐿 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎 𝑰𝑒−𝑘𝑦𝑒−𝑘𝑧𝐿 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎 𝟎 𝑰 𝟎
𝟎 𝟎 𝟎 𝟎 𝟎 𝑰𝑒−𝑘𝑥𝐿 𝟎
𝟎 𝟎 𝟎 𝟎 𝟎 𝑰𝑒−𝑘𝑦𝐿 𝟎
𝟎 𝟎 𝟎 𝟎 𝟎 𝑰𝑒−𝑘𝑥𝐿𝑒−𝑘𝑦𝐿 𝟎
𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝑰
𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝑰𝑒−𝑘𝑥𝐿

𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝑰𝑒−𝑘𝑧𝐿

𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝑰𝑒−𝑘𝑥𝐿𝑒−𝑘𝑧𝐿]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

, 4.16 

to get a reduced nodal displacement matrix 𝒒̅ of the form 

 𝒒̅ = [𝒒𝐼𝑁 𝒒𝐹  𝒒𝐵 𝒒𝐿 𝒒𝐹𝐵 𝒒FL 𝒒𝐵𝐿 ]
T, 4.17 

where 𝑘 are wave vectors in the irreducible Brillouin zone (IBZ) corresponding to the lattice 

structure.  

 

Figure 4.18. Selection of the segmentation of the unit cell of the lattice into DOF as used 
for modelling the periodicity of the unit cell. The magenta points represent the FE (a) front 
nodes, (b) left nodes, (c) top nodes, (d) top-left nodes, (e) top-front nodes, and (f) 
front-left nodes. 

Waves propagating along the path Γ-X, X-R, R-M, and M-Γ of the IBZ were modelled using 

a minimum of eighty combinations of wave vectors which were sufficient to model the 

dispersion curves. The full contour of the IBZ has six paths, however, it is common practice 

to examine only four of these paths for investigation of 3D bandgaps, as seen in references 
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[86,96,111,112]. The preparation analysis further reinforced this common practice by 

showing that waves propagating in paths M-X and Γ-R has minimal/zero effect on the 

bandgap position as can be seen in Figure 4.19. Similar to in the method for 1D dispersion 

curves, the frequency eigenvalues were normalised to the unit cell size 𝐿 and the 

longitudinal speed of the wave in the lattice material 𝑣 to obtain normalised frequencies. 

The dispersion curves were then constructed as corresponding pairs of wavevector and 

normalised frequency.  

 

Figure 4.19. Three-dimensional bandgap identified from calculations of the full contour of 
the IBZ. 

4.3.2 Numerical modelling of vibration transmissibility 

Calculation of the dispersion curves made use of infinite periodic boundary conditions in 

the FE models. In practical applications, only lattice structures of finite periodicity are 

realisable (i.e. manufacturable). This limitation is expected to reduce the extent of 

vibration attenuation achievable with these lattices. Thus, the transmission of waves was 

calculated through lattice structures with very low periodicity (single, 3 and 6 periods in 
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3D). The choice of the unit cell for this study was made from the unit cells that exhibited 

bandgaps under infinite periodic boundary conditions, as depicted by their respective 

dispersion curves. The transmission of waves in the selected lattices was conducted using 

ANSYS Workbench. Longitudinal (primary) waves were modelled passing through the 

lattice structures. The wave transmission between the input side and the opposite side of 

the lattice was determined with a normalised frequency resolution of 0.0025 to ensure 

sufficient representation of all vibration modes within the examined frequency range. A 

damping coefficient of 0.1 has been used throughout all FE simulations. 

The damping coefficient is different for each material. The addition of damping reduces 

vibration transmission around the resonance, which is the frequency range within which 

the highest vibration transmissibility levels are expected (see Section 3.4 for more 

illustration of the effect of damping on the vibration response). Generally, metals have low 

damping coefficient (below ~0.03) whilst polymers have high damping coefficient 

(above ~0.05) [158]. Since AM of polymers is less expensive than that of metals, Nylon-12 

properties were used in the simulation which was carried out using a damping coefficient 

of 0.1. 

4.3.3 Manufacturing and experimental testing 

Lattice structure with 3D bandgap was manufactured with L-PBF and experimentally tested 

using the set up described in Section 4.1.4. As part of the experimental setup, the beam 

of a laser vibrometer (Polytec PDV-100) was projected perpendicularly to the opposite 

surface of the lattice to take longitudinal acceleration measurements. See Section 4.1.4 

for more details of the laser vibrometer. The transverse acceleration measurements were 

taken by projecting the beam of the laser vibrometer perpendicularly to the side surfaces 

of the lattice. The laser vibrometer was set to measure the structural response in the 

longitudinal and transverse directions from a normalised frequency of 0 to 0.15 which 

includes the bandgap frequency range of the tested lattice. The acceleration data within 
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the tested frequency range were also obtained through the acceleration sensor 

(PCB 288D01). See Section 4.1.4 for more details of the acceleration sensor. The 

combination of the measurements of both the laser vibrometer and the acceleration sensor 

provided the transmissibility of the specimen. Figure 4.20 shows a representative 

photograph of the experimental setup. All measurements were taken with a normalised 

frequency resolution of less than 3.7 × 10-5. In practice, four or five spectral sweeps are 

usually used, however, we have used over 100 spectral sweeps to ensure accuracy of the 

results which were then complexly averaged, considering both the phase and the 

magnitude of the measurements. 

 

Figure 4.20. (a) An illustrative example of the 3D vibration testing experimental setup and 
(b) a photo of the experimental setup with the laser beam projected perpendicular to the 
side surface of the lattice to take transverse direction measurements. 
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4.4 Summary 

This chapter outlined the methodology for studying the vibration attenuation capabilities 

of lattice structures. Strut-based lattices are produced using CAD and integrated a design 

tool that was developed specifically for this project. The design tool provides the volume 

fraction of the strut-based lattices based on the unit cell size, strut orientation and the 

number of struts. The volume fractions achievable with the developed design tool has an 

error of less than 1 %. TPMS lattices are developed using in-house software (FLattPack) 

that modelled TPMS lattices with different parameters. The methodology split the work of 

this project into three main WPs. WP1 studies the ability to control the natural frequency 

of lattices so that vibration isolation can be achieved. WP1 examines the effect of cell size, 

volume fraction and number of tessellations of the lattice on the natural frequency of the 

lattices. Verification of the ability to control lattice structures is demonstrated by testing 

the vibration transmissibility of representative lattices with simulation and experimental 

testing. The experimental testing used a laser vibrometer set up that includes a modal 

shaker for exciting the lattice samples, a piezoelectric accelerometer for measuring the 

acceleration at the input and a laser vibrometer for measuring the acceleration at the 

output of the lattice samples. The lattice samples were produced from Nylon-12 using 

L-PBF. WP2 and WP3 examine the ability of lattice structures to develop bandgaps for 

complete elimination of wave propagation. The bandgaps are identified from the dispersion 

curves of each of the examined lattice structures. While WP2 studies 1D wave propagation 

and WP3 studies 3D wave propagation, dedicated Matlab codes were developed to produce 

the dispersion curves of each WP. The Matlab codes solve the eigenvalue problem which 

was constructed using Bloch theorem and infinite boundary conditions. The equations in 

WP3 are much more complex than WP2 and uses matrices of a higher number of rows and 

columns than that of WP2. The project aim is to develop lattices for metrology and 

precision engineering applications which usually operate within the hertz to low kilohertz 

frequency range, thus, WP2 and WP3 examined the ability of the developed bandgaps to 
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be tuned through the volume fraction and cell size of the lattices. This would allow for the 

bandgap to match the operating frequency of a specific application. WP3 examines the 

ability of new types of internal resonance lattices to develop internal resonance bandgaps 

to obtain low-frequency bandgaps. The results for WP1 can be seen in Chapter 5, results 

for WP2 are presented in Chapter 6, and the results of WP3 are available in Chapter 7 and 

Chapter 8. The methodology presented in this chapter formed part of these publications 

[54,56,159–163]. 
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5. Tuning of natural frequencies for vibration isolation with lattice structures 

 

Chapter 5 

Tuning of natural frequency for vibration 

isolation with lattice structures 

Part of the results in this chapter are published in these journal and conference 

papers [54,163]. Lattice structures have high strength to weight ratio and good energy 

absorption properties. The literature review of lattice structures for vibration attenuation, 

presented in Chapter 2 and Chapter 3, showed that lattices can be used to damp excitation 

waves at frequencies lower than the first natural frequency, as discussed in Section 3.3. 

In vibration isolation, the attenuation of vibration can get higher at frequencies greater 

than the first natural frequency (can get below 0 dB) as shown in Section 3.3. However, 

no reported work has shown that lattice structures can provide attenuation at frequencies 

higher than the first natural frequency. In this chapter, lattices structures are examined 

for their ability to provide tunable vibration isolation through adjustment of the natural 

frequency with the cell size, volume fraction and number of unit cell tessellations of the 

structures. The literature review, as shown in Chapter 2, showed that there is a minimum 

number of unit cells that a structure should have so that it could be characterised as a 

lattice [55]. 

Characterisation of lattices (i.e. determining the minimum number of unit cells) was 

determined through analysing compression test data. This compression test included 

multiple samples at various number of tessellations (see Section 4.1 for detailed 
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methodology). The minimum number of unit cells was then used to construct the lattice 

CAD models used in this vibration isolation study. A case study for demonstrating the 

ability to provide vibration isolation with lattice structures is presented towards the end of 

this chapter.  

5.1 Lattice design and fabrication 

A total of twenty-three lattice cell configurations were developed using the method 

described in Section 4.1.1. Each configuration formed the basis for three different volume 

fraction cells: 10 %, 20 % and 30 %. Figure 5.1 shows the lattice cells of 10 % volume 

fraction in a 2×2×2 tessellation.  

 

Figure 5.1. CAD models of the lattices used in this study, all in 2×2×2 tessellation and of 
10 % volume fraction. 
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Two lattice structures were manufactured from Nylon-12 using L-PBF, namely 9030-1 and 

8010-7. See Section 4.1.5 for details on L-PBF and Section 4.1.3 for details on the lattice 

naming scheme. 

5.2 Results and discussion 

5.2.1 Compression testing results 

As discussed in Section 2.4, the minimum number of unit cells required for effective 

modelling of the lattice behaviour should be established. This was done by producing three 

compression test samples (see Section 4.1.2), examining the load-displacement curve and 

studying the relative modulus of the lattice. The results of the compression tests of the 

three samples are shown in the form of load-displacement curves in Figure 5.2a. During 

compression, it was observed that the gaps in the middle of the lattice samples narrowed 

down as the die pushed down. The gap in the 3×3×3 lattice shrank faster than in the 

2×2×2 lattice. The bottom cells in the 3×3×3 lattice started collapsing first through 

bending outwards. The signs of tear and breakage in overall was considerably less in the 

3×3×3 samples than in the 2×2×2 samples, which indicates that higher energy was 

absorbed through bending rather than breakage in 3×3×3 lattice. The 4×4×4 lattices 

experienced no observable tearing and breakage, which indicates higher energy absorption 

through bending than in the other lattices. The plateau region in the 4×4×4 lattice is 

shorter in comparison to the other tested lattices and the densification region started at 

higher compression force (15 kN) than in the other lattice (~10 kN); this is due to their 

slightly higher mass (by ~6 %) compared to the other lattices as appears in Table 5.1. 

The standard error of the measurements of the mass is also presented in Table 5.1 and is 

determined as the standard deviation of the measurements from the mean over the square 

root of the number of experimental repetitions (three repetitions for each lattice).  
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Figure 5.2. (a) Compression testing of lattice structures at multiple numbers of 
tessellations, and (b) relative elastic modulus 𝐸∗ of the tested lattices. 

The errors in calculation of the effective elastic modulus are calculated considering the 

error in force measurements which is ±0.5 % and the error in displacement measurements 

which is ±0.15 % or ±0.02 mm, whichever is greater [164]. It can be seen that for small 

displacements, like that in the linear region of the tested lattices, the displacement error 
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is relatively high (±1.99 %). For metal structures, the linear region is expected to be 

considerably longer than reported here, thus, a much lower displacement error is expected 

in those structures ~ ±0.15 %. By propagation of the errors, the error in calculation of 

the effective elastic modulus for the tested lattices is calculated to be ±1.99 %. All lattices 

took the curves up to the densification area. In addition, the calculated relative modulus 

𝐸∗  saw convergence with respect to the number of lattice unit cells at 2×2×2 (see 

Figure 5.2b). This essentially means that all tested lattices exhibited lattice behaviour and 

that 2×2×2 lattices (eight unit cells) can be used as the minimum number of unit cells to 

represent a lattice.  This will ensure that the structures used in this study meet the lattice 

criteria set by Gibson and Ashby [2] (see Section 2.4 for more details). The minimum 

number of unit cells is used throughout the study to ensure modelling accuracy, and save 

in computation time and cost. 

Table 5.1. Mass of compression test samples as measured using a mass balance with the 

calculated standard errors. 

Cell configuration Sample configuration Mass, g 

9010-9 

2×2×2 9.001±0.051 

3×3×3 9.333±0.025 

4×4×4 9.600±0.006 

5.2.2 Simulation and experimental results 

The natural frequencies of the lattices shown in Figure 5.1a were analysed using a 

commercial FE package (ANSYS). To ensure the calculations had converged with respect 

to the element size, the first natural frequency of the structures was determined using a 

range of element sizes from 25 mm to 0.25 mm. At an element size of 1 mm, the difference 

between subsequent results had fallen below 1 % for Nylon-12 samples of (60×60×60) 

mm size (see Figure 5.3). Therefore, all subsequent calculations used elements of 1 mm 

size (also due to manufacturing limitations as mentioned in Chapter 4).  
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Figure 5.3. Results of the convergence test of 8010-1 lattice in 2x2x2 tessellations. 

The first natural frequencies of 8010-x lattices are shown in Figure 5.4 and that of 9010-x 

lattices are shown in Figure 5.5. Most of the lattices with nine lattice nodes (9xxx-x 

lattices) showed higher first natural frequency. This is due to the existence of diagonal 

struts across the centre of their bodies; this fosters increased stiffness 𝑘 and, thus, 

increased natural frequency. The lowest natural frequency was for 8010-7 and 9010-3 

lattices (< 250 Hz) and the highest first natural frequency was for 5010-9 lattice 

(> 900 Hz).  
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Figure 5.4. Natural frequencies of 8010-x lattices. 

The unit cell design of 9010-9 is symmetric (i.e. similar number of struts and orientation 

in 2D and 3D), while 8010-7 unit cell design is asymmetric with missing vertical pillars 

(see Figure 4.8). The absence of vertical pillars meant that the support of top and bottom 

faces are through inclined struts (which is a less stiff connection than vertical pillar). 

Structures of less stiffness and of the same overall mass and size, generally, have a lower 

natural frequency. All 9xxx-x unit cell designs have two or four diagonal struts across their 

body while 8xxx-x designs do not. 



96 

 

 

Figure 5.5. Natural frequencies of 9010-x lattices. 
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Harmonic response analyses in the longitudinal direction were obtained with simulation 

and experiment; see Section 4.1.4 for a detailed description of the methods. The tested 

and simulated structures were one lattice of high first natural frequency (9030-1) and one 

lattice with the lowest natural frequency (8010-7). The experimental and simulation 

results are shown in Figure 5.6.  

 

Figure 5.6. Longitudinal harmonic response analysis obtained with experiment (solid line) 
and simulation (dashed line) of 9030-1 (top) and 8010-7 (bottom) lattice of 2×2×2 
tessellations. 

The experiment included suspending the structure using piano strings to approximate free-

free boundary conditions. A signal sweeping the tested frequency range has been sent 

through one surface of the lattice and the acceleration data of the signal input surface and 

the opposite surface were acquired. The frequency sweep has been performed 100 times 

and the averaged measurements have been reported (see Chapter 4 for more details). 

The experimental first natural frequency of 9030-1 lattice was less by 7 % than the 
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simulated value. For 8010-7 lattice, several natural frequencies existed within the tested 

frequency range. The difference between simulation and experimental values are due to 

experimental error and difference in structural properties, for example, Young’s modulus 

and density between the modelled parts and those manufactured with L-PBF. 

The effect of the volume fraction of lattices on the natural frequency was studied to provide 

means for control of natural frequency; using 4xxx-7 lattices in 2x2x2 tessellations and of 

various volume fractions: 10 %, 20 % and 30 %. Lattices with lower volume fraction 

showed lower natural frequencies than lattices of higher volume fractions (see Figure 5.7). 

This is due to the lower stiffness of the lower volume fraction models. 

 

Figure 5.7. The effect of volume fraction of lattice cells on the natural frequency; based 
on 80xx-7 lattices in 2x2x2 tessellations. 

The effect of the size of the lattice cells on the natural frequencies was simulated. The 

following macro-scale sizes were chosen for their suitability for manufacturing with 

L-PBF: 30 mm, 22.5 mm and 16.875 mm, while keeping the number of tessellations 

constant at 2×2×2. From the FE modelling results shown in Figure 5.8, it can be concluded 

that decreasing the cell size results in higher natural frequencies.  This is due to lower 



99 

 

stiffness of taller structures; this behaviour is similar to that reported for tall buildings 

which tend to have lower natural frequencies than shorter ones [165]. This behaviour 

happens because the natural frequency of a structure depends on the stiffness 𝑘 and mass 

𝑚. When the stiffenss of the structure is increased, the natural frequency is increased and 

when the mass is increased, the natural frequency is reduced. 

 

Figure 5.8. The effect of lattice cell size on the natural frequency. 
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Figure 5.9. The effect of the number of tessellations of lattice cells on the natural 
frequency.  

The effect of the number of tessellations of the lattice was studied using lattices of 

tessellations of 2, 4, 5 and 10, in three-dimensions, as shown in Figure 5.9. It was shown 

that increasing the number of tessellations, for constant cell size and volume fraction, 

reduces the natural frequency of the structure, which is related to increased strut bending 

in structures with a higher number of tessellations.  

5.3 Case study 

The structural frame of a new all-optical coordinate measuring system (AODMS) was 

manufactured with L-PBF from Nylon-12 using lattice structures. The vibration attenuation 

method of the structural frame of the AODMS relies on vibration isolation (not the bandgap 

mechanism) by shifting the natural frequency below the frequency of interest. The 

structural frame is to hold the mass of a 1 kg probe and isolate mechanical vibration in 

the z-direction propagating to the structural frame from the lab environment. The AODMS 

is a flexible and open-architecture system for measuring the geometry and surface 

topography of micro-scale components. The system is designed to operate in a cube 

of 100 mm sides, with micrometre or sub-micrometre measurement uncertainties. 
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The open nature of the architecture allows full flexibility in the design and 

configuration of the instrument control and communication software, as well as of the 

data analysis and processing software [166]. 

To design the structural frame of the AODMS, the lab vibration spectrum was measured 

using a laser vibrometer. Vibration of the wall and floor were measured by pointing the 

laser vibrometer perpendicular to the wall and floor, respectively, of the lab where the 

AODMS will operate. See Section 4.3.3 for information about laser vibrometer. Then the 

structural frame was designed to isolate a problematic frequency region for illustration of 

the capabilities of lattice structures to provide vibration isolation. The vibration spectrum 

of the wall and floor of the lab were measured using a vibrometry set up as shown in 

Figure 5.10. The results of the lab measurements are shown in Figure 5.11. 

 

Figure 5.10. Experimental setup of the laser vibrometer for taking measurements of (a) 
wall excitations, and (b) floor excitations of the lab. 
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Spectrum A spans from 0 Hz to 20 Hz and appears as two natural frequency spikes on 

both wall and floor vibrometry measurements. Spectrum B spans from 30 Hz to 57 Hz and 

appears on only the wall vibrometry measurements. This corresponds to the vibration of 

nearby elevators, handling equipment, low-frequency machinery and street traffic. 

Spectrum C spans from 70 Hz to 200 Hz and appears only on the wall vibrometry 

measurements. The vibration magnitude in spectrum C is below 1 mm∙s-2 in the lower and 

upper third of the spectrum and is above 1 mm∙s-2 in the middle third of the spectrum. 

This corresponds to the frequency of motorised equipment and machinery. The vibrometry 

measurements of the floor show spikes at 150 Hz, 250 Hz, 350 Hz and 450 Hz (referred 

to as floor excitations) which corresponds to vibration of high-way traffic, machinery and 

motorized equipment. 

 

Figure 5.11.Vibrational spectrum of the lab as measured from the wall (top) and floor 
(bottom) of the lab. 

For the purpose of this case study, we target the frequency range 60 Hz to 150 Hz for 

illustration of the capabilities of the lattices structures to provide vibration isolation at low 
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frequencies. This frequency range corresponds to the common noise frequencies from 

rotating instruments, handling equipment and near-by street traffic. 

5.3.1 Determining the lattice cell size 

There are two options for the selection of the cell size and the number of cell tessellations 

that can fill a volume in space with low natural frequency: (a) large size cells with a low 

number of tessellations, or (b) smaller cells with a higher number of tessellations. The 

results, so far, do not suggest which route is more appropriate for the purpose of vibration 

isolation. So, a study was conducted to suggest the most appropriate route to obtain lower 

natural frequency. The study comprised the design of (30×30×30) mm lattice structure 

samples using 8010-7 cells of different sizes: 15 mm, 7.5 mm, and 3.75 mm. By default, 

cells of lower size need a higher number of tessellations to fill the (30×30×30) mm space. 

FE modelling (results are summarised in Table 5.2) showed that larger size cells had lower 

first natural frequency than smaller ones with a higher number of tessellations (see 

Figure 5.11 for vibration spectrum of lab environment). 

Table 5.2.The coupled effect of cell size and the number of tessellations at constant volume 

fraction on the first natural frequency of the lattice structures. 

Cell size/ mm Sample size/mm Number of cells 
First natural 
frequency / Hz 

15 30 8 410 

7.5 30 64 421 

3.75 30 512 468 

5.3.2 Verification with in-situ harmonic test  

The design of the structural frame comprises three identical sub-frames each kinematically 

coupled to the stage of the optics through balls in v-grooves located on top of each sub-

frame. The v-grooves provide kinematic constraint through contact with the ball in two 

points, thus, constraining linear and rotational movement of the optical stage in x- and y- 

directions [167]. The three sub-frames are oriented at an angle 120o between each other 
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as shown in Figure 5.12; this is to reduce movement between the sub-frames due to 

thermal expansion by creating a thermal centre [59]. The sub-frame, shown in 

Figure 5.12, is stiffened at the back through the use of a solid swept stiffener and in both 

sides through the use of perforated swept surfaces. The swept surfaces are used to 

increase the stiffness of the structure in x- and y-directions, however, no further analyses 

were carried on that since the focus of this chapter is on 1D attenuation (see Chapters 6 

to 8 for 3D attenuation). As a result, the most suitable cell size for the structural frame 

must have two tessellations in the direction of the shortest dimension (two is the lowest 

number of tessellations that can represent a lattice as previously established in 

Section 5.2). Subsequently, 30 mm cells were used to construct the body of the structural 

frame because the shortest dimension was the thickness of the structural frame (60 mm).  

The support structure, developed in this section for the AODMS, is selected from a 

predefined list of lattices and is not solely based on an optimised solution. The structure 

used the 4010-7 lattice, because it proved to have the lowest natural frequency among 

those examined in Section 5.2.2. Then, we varied the volume fraction and the number of 

tessellations based on the results shown in Figure 5.7 and Figure 5.9 to bring the natural 

frequency below the frequency of interest (below 60 Hz). When the first natural frequency 

is below the frequency of interest, the second natural frequency lied within the frequency 

of interest and thus destroyed the intended attenuation region. However, when both the 

first natural frequency (as appears in Figure 5.12) were brought below 60 Hz, the targeted 

attenuation region was not affected (i.e. no natural frequency existed between 60 Hz to 

150 Hz). This was based on longitudinal transmissibility of the structure which was 

simulated and experimentally tested using the methods detailed in Section 4.1.4.  
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Figure 5.12. Design of the structural sub-frame with an illustration of its full assembly to the optical stage. 
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Figure 5.13. The harmonic response of one sub-frame as obtained with simulation 
(solid-line) and experiment (dotted-line). 

As can be seen from Figure 5.13, the structure succeeds in isolating excitations in the 

range of 60 Hz to 150 Hz (90 Hz in width). However, if we had relied on the first and 

second natural frequency, then the width of the attenuation region would have been only 

22 Hz (see the narrow attenuation region in Figure 5.13) which would cover only 24 % of 

the intended isolation region. 

5.4 Summary of results 

Before lattice structures can be used for vibration isolation of a system, the dynamic 

behaviour of the system has to be understood. Then, the lattice characteristics can be 

tailored to isolate the resonance peaks of the system. The control of the natural frequency 

is the first step towards tailoring the dynamic behaviour of lattice structures. The study 

revealed that the natural frequency of a lattice structure can be reduced by increasing cell 

size, reducing volume fraction, and/or increasing the number of tessellations of a singular 

lattice cell, and vice versa. The findings of this chapter are very important for 

understanding the vibrational response of lattices for the purpose of designing lattices with 
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vibration isolation capabilities especially at low-frequency. The major drawback of relying 

on this attenuation method to achieve vibration attenuation are:  

 difficulty to tune in 2D and 3D. The unit cell designs that showed low frequencies 

were asymmetric (i.e. had a different number of struts in 2D and 3D). This lead to 

a reduction in the natural frequency of these unit cells compared to symmetric unit 

cells of the same volume fractions and size. Dynamic characterisation of such unit 

cells in 2D and 3D, and consequently their control, will become much more 

challenging. The solution for this is to use symmetric unit cells (Chapter 6 to 

Chapter 8 will address this).  

 the amount of attenuation achievable with vibration isolation is not guaranteed. For 

example, as shown in Figure 5.6, the response at frequencies higher than the 

natural frequency did not fall below 0 dB. To give confidence in the amount of 

achievable attenuation, a more comprehensive approach for vibration attenuation 

has to be proposed; one that guarantees attenuation below 0 dB. This chapter 

paves way for work on 1D bandgap lattices which is presented and discussed in 

Chapter 6.  
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6. One-dimensional bandgaps in surface-based lattices 

 

Chapter 6 

One-dimensional bandgaps in triply periodic 

minimal surface lattices 

The results of this Chapter are published in this peer-reviewed journal paper [159]. The 

novelty of the work presented in this chapter lies in the discovery of 1D bandgaps in TPMS 

lattices, which has not been presented before, and in providing numerical results that can 

be used to design an AM lattice structure with a desirable bandgap. Many applications in 

different industries are expected to exploit the ability of TPMS structures to provide 

vibration bandgaps due to their controllable mechanical and vibration properties. For 

example, the transport sector could make use of TPMS lattice structures for sound 

absorption in vehicles, while benefitting from their inherently light-weight nature. The 

aerospace sector could benefit from TPMS lattices for designing heat exchangers with 

vibration attenuation capabilities [117]. Structural frames for precision machines, which 

are the focus of this work, will also benefit from TPMS lattices; they could be used to 

attenuate environmental vibration within certain frequency ranges; for example, those 

associated with laboratory or workshop equipment. In general, lattices that are 

manufacturable with current AM methods, and have broad bandgaps with low starting 

frequencies are the most desirable. This is because they can be tailored for use in various 

applications, including precision engineering and metrology, providing a wide frequency 

range over which vibration transmission is restricted. 
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This chapter is structured as follows: Section 6.1 introduces the TPMS lattice unit cells 

used in the study. Section 6.2 presents and discusses the dispersion curves of the TPMS 

lattices. The dependence of the frequency and bandwidth of the bandgaps on the cell size 

and volume fraction is presented in Section 6.2.1 and Section 6.2.2, respectively, to 

provide a simple tool for designing bandgaps at desired frequencies. As detailed in 

Section 4.2.1, the bandgap analyses assume infinite tessellations of the lattice cell along 

the x-direction, so the response of TPMS structures of finite lengths was simulated and 

presented in Section 6.2.1 and Section 6.2.2. Prototype structures are fabricated with AM 

to demonstrate the manufacturability of TPMS lattices; the results are reported on in 

Section 6.2.3. Conclusions are provided in Section 6.3. For details on the theoretical 

background of the finite element method, see Section 3.6. The methodology of this work 

is provided in Section 4.2.  

6.1 TPMS bandgap lattice design 

The lattice unit cells used in this study are the network and matrix phases of the gyroid 

and diamond TPMS lattices, as shown in Figure 6.1, due to their high stiffness when 

compared to strut-based lattices [42,46]. Network phase cells have one void region and 

one solid region, both of which retain their connectivity in every part of the structure. 

Matrix phase lattices have two non-connected void regions separated everywhere by a 

solid wall or sheet.  

 

Figure 6.1. Representations of the TPMS unit cells used in the study. (a) Network gyroid, 

(b) network diamond, (c) matrix gyroid and (d) matrix diamond. 
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In addition, matrix phase lattices are known to have higher specific stiffness than their 

network phase equivalents [43]. The determination of phonon dispersion curves requires 

analysis of a single lattice unit cell. The unit cells are designed using FLatt Pack [49] (see 

Section 2.3 for more details). The volume fraction and size of the cells shown in Figure 6.1 

is 20 % and 15 mm (initial settings), respectively. The results will be normalised to the 

cell size and manufacturing material to obtain normalised results that are applicable to a 

wide range of materials and permissible sizes for the chosen manufacturing technique. 

Table 6.1. Geometric specifications of the unit cell used in this study. The parameter 

𝑡 identifies the thickness of the minimum feature in each unit cell. 

Unit cell Unit cell size, 
𝐿/mm 

Volume 
fraction /% 

𝑡/mm 𝑡/𝐿 Schematic 

Network 

gyroid 
15 20 3.8 0.25 

 

Matrix gyroid 15 20 1.05 0.07 

 

Network 
diamond 

15 20 2.55 0.17 

 

Matrix 
diamond 

15 20 1.05 0.07 

 

The geometrical specifications of the unit cells are shown in Table 6.1. The minimum 

feature size of the matrix unit cells is the sheet thickness 𝑡. For network type unit cells, 

the thickness differs across the unit cell. The parameter 𝑡 for the network unit cells is, 

therefore, defined as the thickness in the slimmest regions. Design equations of gyroid 

and diamond TPMS can be found in the AM work of Maskery et al. [41] and chemistry work 

of  Gandy et al. [168], respectively. 
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6.2 Results and discussion 

The mass and stiffness matrices on which the phonon dispersion curves depend were found 

to have converged with respect to the number of FE nodes as shown in Figure 6.2. This 

was done by simulating the first natural frequency in ANSYS which used the stiffness and 

mass matrices of the structure. The simulated structures used different number of FE 

nodes representing hexahedral mesh elements of different sizes. The results showed 

convergence with a difference of less than 1 % when 28,312 FE nodes were used, which 

corresponds to 20 mesh elements along one Cartesian direction as shown in Figure 6.3. 

 

Figure 6.2. Convergence results of 2x2x2 network gyroid lattice of 20 % volume fraction, 
and 30 mm cell size. 

The dispersion curves of the TPMS lattices which were presented in Section 6.1 were 

modelled using the 1D dispersion curves modelling method detailed in Section 4.2.1. The 

dispersion curves for the network gyroid lattice is shown in Figure 6.4. The dispersion 

curves were modelled with the properties of AM Nylon-12. The wave bands are numbered 

from the 1st to the 11th wave band. The top axis of the dispersion curves shows the 

frequency 𝑓 normalised to the lattice unit cell size 𝐿 and the speed of the wave 𝑣 in the 

material, while the right axis shows the wavenumber normalised to the lattice unit cell 

size 𝐿.  
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Figure 6.3. Selection of the structures used in the convergence study, more elements 
along a Cartesian direction show higher structural definition. Illustration of the number of 

elements along a Cartesian direction is shown in bottom right using a solid cube. 

The bandgaps are identified from the dispersion curves by observing the frequency regions 

between the wave bands. If the two wave bands disperse to close the gap between them, 

as is the case between wave band 5 and wave band 6 in Figure 6.4, then no bandgap is 

developed between them. If the two wave bands disperse away from each other to open 

a frequency gap between them, as is the case with wave band 6 and wave band 7 in 

Figure 6.4, then a bandgap is formed. A total of four bandgaps in the sub-15 kHz region 

were found from the dispersion curves in Figure 6.4. The broadest bandgap is formed 

between the 6th and 7th wave bands, is 1047 Hz wide and starts from 7905 Hz. A bandgap 

of similar width spans 978 Hz from 11349 Hz to 12327 Hz and is formed by the 9th and 

10th wave bands. A bandgap narrower in width than the previous two appears in the range 

of 9340 Hz to 9506 Hz, and another one appears in the range of 10134 Hz to 10238 Hz.  
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Figure 6.4. 1D phonon dispersion curves for the network gyroid lattice with 15 mm cell 
size and 20 % volume fraction. Shaded areas represent the bandgaps. 
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Figure 6.5. 1D phonon dispersion curves for the network diamond lattice with 15 mm cell 
size and 20 % volume fraction.  

The scattering of the mechanical waves in a structure relies on the impedance mismatch 

between two adjacent geometrical features [169]. This is because a travelling wave in a 

medium disperses when its propagation speed changes, thus, causing it to reflect. As 

shown in Figure 6.4 and Figure 6.5, the network gyroid lattice possesses phononic 

bandgaps below 15 kHz while the network diamond lattice does not. This can be explained 

by considering the differing internal geometries of the respective cells. As a wave travels 

from a thicker to a thinner solid region of the cell, or from the solid phase to the void 

phase, it is partially reflected, owing to the change in local impedance. This process is 

repeated for each reflected wave, giving rise to complex dispersion curves such as those 
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in Figure 6.4 and Figure 6.5. The absence of bandgaps from the dispersion curves of 

diamond TPMS suggests that no destructive interference occurs within the tested range. 

 

Figure 6.6. 1D phonon dispersion curves for matrix gyroid lattice with 15 mm cell size and 
20 % volume fraction.  

The lowest frequency bandgap is usually formed by one acoustic wave band (a wave band 

cutting-on at 0 Hz) and one optical wave band (a wave band cutting-on at a nonzero 

frequency) [64]. Although Bragg bandgaps can also be formed by two optical wave bands, 

which is the case of all the bandgaps in this chapter, it is impossible for a Bragg bandgap 

to be formed at frequencies lower than the cut-off frequency of acoustic wave bands. This 

is because the acoustic wave bands of a Bragg-scattering lattice, which always start to 
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propagate from 0 Hz, does not split into two halves, as is the case in internal resonance 

lattices which are discussed in Chapter 7 and Chapter 8. Since there is a continuous 

presence of the same acoustic wave bands from 0 Hz until their cut-off frequency, no 

bandgap is formed before their cut-off frequency. We compare the ability of the network 

diamond and the matrix diamond lattices to form bandgaps by examining the cut-off 

frequency of their acoustic wave bands.  

 

Figure 6.7. 1D phonon dispersion curves for matrix diamond lattice with 15 mm cell size 
and 20 % volume fraction.  

As can be seen in Figure 6.5 and Figure 6.7, respectively, the acoustic wave bands cut-off 

at a higher frequency in the matrix diamond cell (around 14000 Hz) while they cut off at 

a much lower frequency (around 9000 Hz) in the network diamond cell. The network 
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diamond lattice also showed a larger number of wave bands within the tested frequency 

region. However, similar to its matrix counterpart, the network diamond cell did not 

possess bandgaps within the examined frequency range. 

Similar behaviour is observed by the network gyroid and the matrix gyroid cells; the cut-

off frequency of acoustic wave bands of the network gyroid cell is around 7000 Hz while 

the corresponding frequency in the matrix gyroid cell is around 9600 Hz. The matrix gyroid 

formed a bandgap spanning from 12952 Hz to 13220 Hz. This bandgap is higher in terms 

of the starting frequency and narrower in terms of width than the lowest frequency 

bandgap observed in the gyroid network cell. In addition, matrix type lattices have almost 

constant wall thickness across the inner parts of the cell. This suggests that matrix cells 

would have reduced capacity to hinder wave propagation from one end of the cell to the 

other than in the network type lattices. This is because wave reflection, which is the 

mechanism by which Bragg induced bandgaps are formed, is expected to be higher when 

there is a large difference in densities; or a large difference in wall thickness.  

The dispersion curves of the matrix lattices support the claim presented by Kapfer et al. 

[43] in that matrix type lattices have higher stiffness than network type lattices. The 

examined lattices are of identical volume fraction and cell size and, therefore, identical 

mass. If the two lattices have the same natural frequency, then they would have the same 

stiffness (see Equation 3.1). However, the natural frequency of a matrix type lattice is 

higher than its corresponding network counterparts. This implies that the stiffness of the 

matrix type lattice is higher than that of the network type lattice. In wave reflection by 

Bragg-scattering, the bandgap does not appear at frequencies lower than the natural 

frequency of the structure. Thus, the high natural frequency of matrix gyroid lattice, as 

can be seen from Figure 6.8, prohibits the opening of bandgaps at lower frequencies than 

the network gyroid lattice. This is seen in Figure 6.4 and Figure 6.6, where one bandgap 

appears in the matrix gyroid dispersion curves, while several bandgaps appear within the 
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same frequency range using the network gyroid lattice. The reader is referred to 

Section 2.3 for more information on matrix and network type TPMS lattices. 

 

Figure 6.8. 1st natural frequency of the same natural frequency mode for four types of 
TPMS lattices unit cells as modelled in FE with the initial settings of 15 mm cell size and 
20 % volume fraction. A matrix TPMS has a higher 1st natural frequency than its 
corresponding network counterpart. 

6.2.1 Tuning lattice bandgaps through cell size selection 

The network gyroid lattice represents a suitable candidate to examine the control of 

bandgaps because we have established that it supports multiple bandgaps at a 

manufacturable cell size and volume fraction, as demonstrated in Section 6.2. The 

absolute bandgap frequencies arising from the network gyroid lattice with cell sizes of 

15 mm, 20 mm, 25 mm, 30 mm and 40 mm, at a constant volume fraction of 20 %, are 

calculated. Figure 6.9 shows the dependence of the absolute bandgaps frequencies on the 

cell size of Nylon-12 gyroid TPMS. The bandgap with the largest bandwidth was seen for 

the 15 mm cell, where the bandgap spanned approximately 1048 Hz from 7905 Hz to 

8953 Hz.  
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Figure 6.9. Dependence of network gyroid bandgaps on the cell size. 

Of the examined network gyroid cell sizes, the 40 mm lattice showed a bandgap of the 

lowest frequency. This bandgap is formed between wave bands 6 and 7. The starting 

frequency of this bandgap is around 60 % lower than the corresponding bandgap in the 

15 mm cell. 

Since the bandgap analyses assume infinite tessellations of the lattice cell along the 

x-direction, we have chosen settings of nine unit cells to examine the harmonic response 

of this network gyroid cell. According to Chen et al. [170], any number of unit cells higher 

than seven is enough to spot the bandgap with harmonic response analysis. The criteria 

of Chet al. determined the number of finite unit cells required to obtain vibration 

attenuation within the bandgap frequency region of a Bragg-scattering lattice. Such 

criterion is important because the bandgaps are obtained by assuming infinite periodicities 

of the unit cells and that is not applicable in real life. Thus, only finite lattices are applicable 

for use in real life. The number of unit cells which we chose, nine, is an arbitrary one that 

fits the finite criteria of Chen et al. The analyses were carried on the 40 mm network gyroid 
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cell structure by exciting one of its faces with an oscillating load. The load was 1 N and 

was applied to the leftmost FE nodes in the structure. The movement of the rightmost FE 

nodes in x-, y- and z-directions are depicted to obtain the response of the finite lattice 

with transfer and cross-transfer receptance setups. The transfer receptance setup saw the 

harmonic load being applied to the leftmost nodes in the x- direction and the movement 

of the rightmost nodes was also depicted along the x-direction. In the y-direction cross-

transfer and z-direction cross-transfer setups, the movement of the rightmost nodes was 

depicted along the y-direction and z-direction, respectively, whilst the oscillating load was 

applied to the leftmost nodes along the x-direction.  Figure 6.10 highlights the frequency 

range of the bandgaps as identified from the 1D dispersion curves of their infinite lattices. 

It can be seen that the bandgaps of 40 mm network gyroid correspond to attenuation in 

the harmonic response diagram. The natural frequencies appearing within some of the 

bandgap frequencies in Figure 6.10 can be the cause of the finite length of the lattice. 

From our previous work [54,163], we assert that 40 mm cells are less stiff than 15 mm 

cells of similar configurations due to higher dominance of bending behaviour in larger cells. 

This lower stiffness, of the 40 mm gyroid cell compared to the 15 mm cell, is translated 

into lower bandgap frequency. 
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Figure 6.10. The harmonic response of 40 mm network gyroid cell with nine tessellations 
along the longitudinal (transfer receptance, solid-line), y-transverse (cross-transfer 
receptance, dashed-line) and z-transverse (cross-transfer receptance, dotted-line) 
directions. The shaded regions represent the bandgap frequency range obtained from the 
dispersion curves. 

6.2.2 Tuning lattice bandgaps through volume fraction selection 

Phonon dispersion curves for the network gyroid lattices with volume fractions of 20 %, 

25 %, 30 %, 35 % and 40 % were simulated at a constant cell size of 15 mm. These 

volume fractions were selected arbitrary, however, their exact values bear no significance 

in the conclusions of this chapter; the important thing is depicting the effect of varying the 

volume fraction on the bandgap. The unit cell information, including the 𝑡/𝐿 ratio for the 

network gyroid unit cells at different volume fraction, are shown in Table 6.2. 

Table 6.2. Network gyroid unit cells specification at different volume fractions. 

Unit cell size 𝐿/mm Volume fraction/% 𝑡/mm 𝑡/𝐿 Schematic 

15 20 3.8 0.25 

15 25 4.35 0.29 
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15 30 4.9 0.33 

 

15 40 5.95 0.4 

The phonon dispersion curves of these lattices are presented in Figure 6.4 and 

Figure 6.11 to Figure 6.14. The dependence of the bandgaps on the volume fraction of the 

15 mm gyroid unit cell is shown in Figure 6.15. The width of the bandgap between the 9th 

and the 10th wave bands was the largest at a volume fraction of 25 % and spanned a 

frequency range of around 1900 Hz.  Increasing the volume fraction above this value 

reduced the width of this bandgap. In addition, the starting frequencies of all bandgaps 

increased with the increase in volume fraction, except between wave bands 9 and 10, 

where the starting frequency showed a reduction of approximately 1 % over that of 20 % 

volume fraction network gyroid.  

The bandgap between the 8th and 9th wave bands disappeared when the volume fraction 

went from 20 % to 25 %, but it returned when the volume fraction was 30 %, 35 % and 

40 %. Similar behaviour is observed by the bandgap of wave bands 6 and 7; this one does 

not appear in the 35 % and 40 % volume fraction dispersion curves. Thus, the bandgap 

formed by the 9th and the 10th wave bands and the bandgap formed by the 7th and the 8th 

wave bands are the only bandgaps that sustained the variation of the volume fraction and 

the cell size. 
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Figure 6.11. 1D phonon dispersion curves for the network gyroid lattice with 15 mm cell 
size and 25 % volume fraction. 
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Figure 6.12. 1D phonon dispersion curves for the network gyroid lattice with 15 mm cell 
size and 30 % volume fraction. 
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Figure 6.13. 1D phonon dispersion curves for the network gyroid lattice with 15 mm cell 
size and 35 % volume fraction. 
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Figure 6.14. 1D phonon dispersion curves for the network gyroid lattice with 15 mm cell 

size and 40 % volume fraction. 

The network gyroid cell with 40 % volume fraction shows a bandgap between wave bands 

9 and 10 which appears at a starting frequency 45 % greater than that of the 20 % volume 

fraction cell. These results indicate a means to control the frequency and width of phononic 

bandgaps in lattice structures by controlling their volume fraction.  
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Figure 6.15. Dependence of network gyroid bandgaps on the volume fraction. A bandgap 
exists between the 8th and 9th wavebands at 20 % and 30 % volume fraction, but it does 

not exist at 25 % volume fraction. 

Similar to the harmonic analyses carried on the 40 mm network gyroid cell structure, 

harmonic response analyses were carried on the 40 % volume fraction network gyroid cell, 

with nine tessellations along the x-direction, by exciting one of its faces with an oscillating 

load. The load was 1 N and was applied in the x-direction to all the leftmost FE nodes in 

the structure. The movement of the rightmost FE nodes in x-, y- and z-directions are 

depicted. From Figure 6.16, it can be seen that the bandgaps present in 40 % volume 

fraction cell’s dispersion curve, which are shown in Figure 6.14, correspond to vibration 

attenuation in the harmonic response diagram. In addition, it is observed that the TPMS 

structure has the ability to provide attenuation at non-bandgap frequencies as labelled in 

Figure 6.16. The results suggest that the development of wide bandgaps is possible with 

the network gyroid lattice. The starting frequency of the bandgaps can be reduced for 

specific applications by reducing the volume fraction of the lattice.  
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Figure 6.16. The harmonic response of 40 % volume fraction gyroid cell with nine 

tessellations along the longitudinal (transfer receptance, solid-line), y-transverse 
(cross-transfer receptance, dashed-line) and z-transverse (cross-transfer receptance, 
dotted-line) directions. 

The bandgap behaviour of AM TPMS lattice structures has not received much attention. Of 

relevance to our investigation is the work of Matlack et al. [62], who used internal 

resonators lattices, allowing the development of bandgaps with starting frequencies of 

3000 Hz to 4000 Hz. Our work shows that TPMS structures have the ability to open up 

bandgaps at similar starting frequencies with the potential to go even lower by choosing 

an appropriate cell size and volume fraction. 

Using multi-material unit cells can result in large differences in impedance and ultimately 

a wider bandgap than those reported in this work; Ampatzidis et al. [88] presented a 

structure of Nylon-12 glued to a composite panel that provided a 1D bandgap. The 

normalised bandgap frequency of their structure was from 0.24 to 0.27. In comparison to 

the first bandgap of 20 % volume fraction gyroid examined in this work, the structure of 

Ampatzidis et al. is higher by 160 % in terms of the starting normalised bandgap frequency 
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and wider by 50 %. Lucklum et al. [113] presented a bandgap of normalised frequency 

between 0.15 to 0.25. In this work, the normalised frequency of the first bandgap formed 

by the 20 % gyroid unit cell is from 0.09 to 0.11. This bandgap is lower by 40 % in terms 

of the starting frequency and narrower by 90 % in terms of width than the bandgap 

presented by Lucklum et al [113].  

However, single material designs are more easily made with AM than multi-material 

designs. Single material structures are reported by Kruisove et al. [114] who presented 

four bandgap structures of lattice unit cell sizes as low as 200 µm. Kruisove et al. used an 

extrusion-based AM technology to manufacture these strut-based micro lattices with 

bandgaps from 3 MHz. The closest bandgap structure, reported by Kruisova et al., to the 

bandgap structures in this work, in terms of equal lattice constants in 3D is their “SS 

model”. The SS model had dimensions of 308 µm, 219 µm and 261 µm in x-, y- and z-

directions with a starting bandgap frequency of 9 MHz. Normalising this bandgap with the 

average lattice constant of 262 µm and the speed of the wave in SiC material to provide 

a fair comparison with the network gyroid bandgap gives a normalised starting bandgap 

frequency of 0.26. This starting bandgap frequency is higher by 180 % than the 

normalised starting frequency of the first bandgap formed by 20 % volume fraction gyroid 

reported here. This indicates that TPMS lattices have the ability to form Bragg-scattering 

bandgaps at frequencies lower than the corresponding ones found in the literature. 

6.2.3 Fabrication with additive manufacturing 

Network gyroid prototype samples were fabricated using L-PBF (see Section 4.1.5). A 

theoretical size threshold below which the network gyroid would be fabricated with major 

defects (i.e. deviations from the nominal or CAD geometry) is determined by the accuracy 

of the L-PBF system and the geometry of the network gyroid cell. The L-PBF properties 

affecting the precision of a produced part include the laser spot size, layer thickness, 

powder size and laser scanning strategy. The network gyroid cell properties are the cell 
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size 𝐿, and the volume fraction 𝜌∗, which together determine the minimum feature 

thickness 𝑡. Features of sizes close to the laser spot size and below 0.8 mm are expected 

to be fabricated with significant losses in mechanical properties; this is because a higher 

amount of unmelted or partially melted powder exists in features of sizes below 0.8 mm, 

in comparison to thicker features [171].  

Figure 6.17 shows the dependency of 𝑡 on the volume fraction and cell size of the unit cell. 

The lower L-PBF manufacturing limit is set to 0.8 mm to ensure minimal loss of mechanical 

properties [171]. The 𝑡/𝐿 ratio was obtained from CAD models at volume fractions between 

5 % to 40 % using a step of 5 %. The relationship between 𝑡, 𝐿 and 𝜌∗ as obtained by 

linear fitting to the data from the CAD models is expressed as 

 𝑡 = 𝐿 × (0.0075 × 𝜌∗ + 0.1). 6.1 

By substituting 𝑡 = 0.8 mm, and 𝜌∗ =0.2 while solving for 𝐿, we theoretically obtain the 

lowest achievable cell size at 20 % volume fraction which is 7.8 mm. More generally, 

Equation 6.1 can be used to determine the minimum value of 𝜌∗ or 𝐿 for the gyroid lattice 

produced once the other is specified. 

L-PBF is employed to fabricate 20 % volume fraction lattices of four tessellations along the 

x-direction, with cell sizes of 15 mm, 25 mm and 40 mm. These will be referred to as 

lattice 1, 2 and 3, respectively. Two copies of each lattice were fabricated and they are 

shown in Figure 6.18. Table 6.3 shows the nominal and average length and mass 

properties. The nominal values were extracted from the CAD models.  
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Figure 6.17. (a) Minimum thickness 𝑡 of network gyroid unit lattice at different volume 

fractions and unit cell sizes 𝐿, and (b) zoomed in view with labeled fabricable and not 
fabricable design spaces. 
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Figure 6.18. Prototype samples of network gyroid lattice of 15 mm, 25 mm, and 40 mm 
unit cell sizes, all in 4×1×1 tessellations. The size of the single unit cell is indicated. 
Fabrication is made with L-PBF using Nylon-12 powder.  

The length and mass values were measured using a vernier calliper and a mass balance, 

respectively. Each measurement was repeated four times and the standard error of the 

measurements, calculated as the standard deviation from the mean over the square root 

of the number of repetitions, are shown alongside the mean properties in Table 6.3. The 

measured volume fraction is calculated as the ratio between the measured mass and the 

mass of a solid structure of dimensions identical to the measured lattice assuming a 

950 kg˖m-3 density (see Section 4.1.5) [147]. 

The differences between the properties of copies of the lattice structures were insignificant, 

as they all fell within the standard error of the measurements of each property. Comparing 

the measured properties to the nominal properties, the mass of the fabricated lattices was 

lower by 4.9 %, 2.1 %, and 0.3 % in lattice 1, lattice 2, and lattice 3, respectively. The 

difference in the mass translated into a reduction of 10 % and 2.4 % from the nominal 

volume fraction of lattice 1 and lattice 2, respectively. The length measurements showed 

a 3.2 % decrease in the 𝑡 values of lattice 1. For lattice 2, the deviation from the nominal 𝑡 

value was lower, 1.52 %. 
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Table 6.3. Nominal and measured properties of 4×1×1 network gyroid lattice fabricated 

with L-PBF. The standard error is provided for each measured property. 

Property Lattice 1 Lattice 2 Lattice 3 

Nominal 𝐿 / mm 15 25 40 

Measured 𝐿 / mm 15.26 ± 0.03 25.03 ± 0.02 39 .98 ± 0.03 

Nominal mass / g 2.56 11.88 48.712 

Measured mass / g 2.43473 ± 4 ×10-5 11.6314 ± 5 ×10-5 48.56755 ± 2 ×10-5 

Nominal 𝑡 / mm 3.75 6.25 10 

Measured 𝑡 / mm 3.63 ± 0.04 6.16 ± 0.03 10.01 ± 0.03 

Nominal volume 
fraction / % 

20 20 20 

Measured volume 
fraction / % 

17.99 ± 0.06 19.52 ± 0.02 19.99 ± 0.02 

The measured cell size showed deviations of 1.8 %, and 0.11 % from the corresponding 

nominal values of lattice 1, and lattice 2, respectively. However, the measured deviations 

in the minimum thickness, cell size and volume fraction from the nominal values of lattice 3 

are insignificant as they are smaller than the standard error of their measurements. All 

length deviations are below the laser spot size in L-PBF which is 0.3 mm. These results 

prove that the suggested 1D bandgap lattices are manufacturable through L-PBF. The 

designer of the attenuation structure for an application of interest can use these results to 

predict the manufacturability of the selected unit cells. 

Future advances in the accuracy and minimum feature sizes of L-PBF systems are expected 

to reduce the gap between the nominal and fabricated lattices. These improvements may 

also push the theoretical cell size limit for gyroid lattices below the fabrication limits which 

are set in Figure 6.17, for example, below 7.8 mm for 20 % volume fraction gyroid cells. 

This will provide an opportunity to open bandgaps at higher frequencies by manufacturing 

unit cells of lower cell sizes. 

6.3 Summary of results 

This chapter demonstrated that TPMS lattice structures can induce mechanical bandgap 

behaviour which can be tailored for vibration attenuation purposes. The novelty of the 
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presented work lies in predicting the 1D bandgaps of beam-like TPMS lattices, which have 

not been studied before. Our analysis showed that: 

 At manufacturable cell sizes and volume fractions for AM capabilities, the network 

gyroid and the matrix gyroid lattices have bandgaps, while other examined lattice 

types do not.  

 Changing the lattice cell size and volume fraction of TPMS lattices can alter the 

width of a pre-existing bandgap, the starting frequency, or both. In addition, the 

potential to open up bandgaps that did not exist previously between two wave 

bands was demonstrated.  

 The network gyroid and the matrix gyroid TPMS lattices have several bandgaps 

under 15 kHz when their volume fraction is 20 % and cell size is 15 mm. 

 Bandgaps at frequency regions as low as 3000 Hz are demonstrated to be 

achievable using a cell size of 40 Hz and 20 % volume fraction. 

 Simulation of the vibration response was carried out using network gyroid lattices 

of nine unit cells tessellated along the x- axis. The simulation used 1 N dynamic 

load at one side of the lattice and the response of the opposite side was picked up 

(with transfer and cross-transfer receptance setup). It was shown that a reduction 

in the vibration response of the gyroid lattices is achieved within the bandgaps. 

 Fabrication of prototype lattice structures was done using L-PBF system which 

fabricated 4×1×1 lattices of cell sizes of 15 mm, 25 mm, and 40 mm. The L-PBF 

system fabricated the lattices with a maximum deviation of 1.8 % and 10 % from 

the nominal cell sizes and volume fractions, respectively. The measured minimum 

feature t showed a maximum difference of 3.2 % from the nominal value. All the 

differences between measured and nominal values are below the laser spot size in 

L-PBF which is 0.3 mm. 
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Introduced here are new design factors for tuning bandgaps of phononic structures which 

are realised by the nature of TPMS lattices and the manufacturing freedom of AM. The 

designer of lattice structures can now use these results to assist with designing parts for 

use in metrology and precision engineering applications. These results can be used as 

guidelines so that high attenuation of vibration magnitudes is achieved in lattice structures 

that are fabricated with AM.  

The major drawbacks of the attenuation method discussed in this chapter are its 1D 

nature, which means that it can only be realised in beam-like structures, and its relatively 

high frequency of attenuation. Chapter 7 discusses 3D bandgap lattices (i.e. with 

tessellations in 3D) in search for lower vibration attenuation frequencies. 
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7. Exploration of three-dimensional bandgaps for vibration attenuation 

 

Chapter 7 

Exploration of three-dimensional bandgaps 

for vibration attenuation 

The results of this chapter are published in this peer-reviewed journal paper [160]. The 

design freedom of additive AM enables the production of complex structures with 1D 

bandgaps as presented in Chapter 6. The novelty of this chapter (Chapter 7) is in the 

examination of 3D bandgaps in three types of single material lattice which have not been 

studied previously. These lattices are the BCCxyz (lattice 50xx-9 following the naming 

scheme established in Section 4.1.3) the network gyroid (gyroid TPMS) and a modified 

BCCxyz lattice with internal resonators (res-BCCxyz). The existence of 3D phononic 

bandgaps would add vibration attenuation to the existing panoply of controllable 

mechanical performance of the examined lattice structures [20,21,96]; thus enabling 

them to simultaneously fulfil various mechanical and vibrational functions. The bandgaps 

of the examined lattices were identified from their respective dispersion curves and 

predicted using the 3D FE wave propagation modelling method. 

The dispersion curves computational method was developed as an expansion of the 1D 

(used in Chapter 6) and 2D FE techniques used elsewhere [62,64,87–89] and is described 

in Section 4.3.1. In Section 7.1, the designs and structural parameters of the examined 

lattices are presented. The 3D dispersion curves of the lattices are presented in 

Section 7.2. The results are discussed in Section 7.2.2 with respect to a selection of 

relevant findings from the literature, while ‘tuning’ of the lattice bandgaps through volume 
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fraction control is discussed in Section 7.2.3. Lastly, the evolution of the predicted 

bandgaps with finite periodicity, as opposed to the infinite periodicity of computational 

models, is presented in Section 7.2.4.  

7.1 Design of three-dimensional bandgap lattices 

The BCCxyz  unit cell, shown in Figure 7.1, was designed using the strut-based lattice design 

equations presented in our previous work [163]. In designing BCCxyz lattice structures for 

this study, a range of volume fractions was considered from 5 % to 30 %.  

 

Figure 7.1. BCCxyz lattice unit cell as designed in CAD with strut diameter 𝑑 and cell size 𝐿. 

Table 7.1. Design data of multiple BCCxyz lattices. 

Volume fraction/ % 𝒅/𝑳 

5 0.084 

10 0.121 

20 0.178 

30 0.226 

The corresponding ratios of strut diameter 𝑑 to cell width 𝐿 are provided in Table 7.1. A 

change in the 𝑑/𝐿 ratio leads to a change in the volume fraction of the lattice. 

The unit cell of the gyroid TPMS lattice is the same as that used in Chapter 6. The design 

information, expressed again as the ratio of strut thickness to cell width, for gyroid TPMS 

unit cells of different volume fractions, is available in Table 7.2. In this case, 𝑑 represents 

the diameter of the unit cell’s solid region at its narrowest point. 
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Figure 7.2. Gyroid TPMS unit cell with minimum thickness 𝑑 and cell size 𝐿. 

Table 7.2. Design data of multiple gyroid TPMS lattices. 

Volume fraction/ % 𝒅/𝑳 

5 0.138 

10 0.175 

20 0.250 

30 0.325 

For exploring internal resonance bandgaps in strut-based lattices, a solid spherical mass 

of diameter 𝑠 was added to the centre of the BCCxyz unit cell to create a BCCxyz unit cell 

with an internal resonator (res-BCCxyz), as shown in Figure 7.3. Internal resonance 

bandgap structures generally have lower bandgap frequencies than Bragg-scattering ones 

(see Section 3.5 for detailed description and comparison between the two bandgaps 

formation mechanisms). The outer scaffold of the res-BCCxyz is a 5% volume fraction 

BCCxyz cell. Although different scaffolds can be considered using the same concept, the 

5% volume fraction BCCxyz lattice features a central void of sufficient size to host spherical 

masses with a wide range of sizes. The design information for the res-BCCxyz unit cells at 

different volume fractions is presented in Table 7.3. See Section 3.5 and Section 3.7 for 

more explanation about internal resonance structures.  
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Figure 7.3. Res-BCCxyz unit cell as designed in CAD with strut diameter 𝑑, spherical mass 

of diameter 𝑠 and cell size 𝐿. 

Table 7.3. Design data of multiple res-BCCxyz lattices. 

Volume fraction/ % 𝒅/𝑳  𝒔/𝑳 

10 0.084 0.480 

20 0.084 0.680 

30 0.084 0.796 

7.2 Results and discussion 

BCCxyz and res-BCCxyz unit cells were modelled in CAD and meshed in ANSYS using 

tetrahedral elements which are more economical to use than hexahedral elements [172]. 

Gyroid TPMS unit cells were generated using FlattPack (see Section 2.3 for more 

information), however, FlattPack currently allows hexahedral meshes only; this was used 

for meshing the gyroid TPMS lattices. Mesh convergence was determined through 

examination of the structure’s first natural frequency (similar to that in Chapter 6), which 

in each case was found to be well converged with respect to the mesh density (see 

Figure 7.4a).  
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Figure 7.4. (a) Convergence results of the first natural frequency with respect to the mesh 
density of a 2×2×2 BCCxyz lattice (converged mesh density is highlighted) and (b) 
comparison of high-frequency vibration modes (existing above a normalised frequency of 
0.3) of converged mesh (right) and finer mesh (left). 

To ensure convergence of high-frequency results (particularly above a normalised 

frequency of 0.3), a high-frequency vibration mode of the converged mesh was compared 

to that of a finer mesh. The results, shown in Figure 7.4b, showed minimal discrepancies 

in the vibration mode and frequency. 
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7.2.1 Verification of three-dimensional dispersion curve calculations 

The FE wave modelling technique, detailed in Section 4.3.1, was used to calculate the 

dispersion curves of the lattice examined by Wang et al. [96] for verification purposes. 

This lattice was selected due to its CAD modelling simplicity and clear bandgap. The lattice 

is modelled in CAD using the design parameters in Figure 7.5 and a Poisson’s ratio of 0.33. 

 

Figure 7.5. Three-dimensional bandgap dispersion curves of the lattice proposed by Wang 
et al. [96] (a) as remodelled using our FE modelling technique in comparison to (b) the 
dispersion curves presented by Wang et al. [96] The shaded grey area in the dispersion 

curve plot represents the identified bandgap. 

As can be seen in Table 7.4, the dispersion curves resulting from the FE method employed 

in this work exhibited a very similar bandgap to that predicted by Wang et al. The 

difference of 0.01 in the normalised bandgap end frequency (4.3 % difference) is likely 
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due to the difference in our respective meshing techniques (Wang et al. did not report an 

exact mesh density) and bandgap identification methods.  

Table 7.4. Bandgap properties as identified in this work and reported by Wang et al. [96]. 

 Remodelled structure 
(this work) 

Wang et al. 
([96]) 

Normalised bandgap start frequency  0.19 0.19 

Normalised bandgap end frequency  0.22 0.23 

Normalised bandgap frequency width 
(bandwidth) 

0.03 0.04 

7.2.2 Wave dispersion in lattices with infinite periodicity 

The wave propagation dispersion curves of the three considered lattice types, all with 20 % 

volume fraction, are shown in Figure 7.6. 3D bandgaps are identified in the dispersion 

curves of the BCCxyz and res-BCCxyz lattices. The gyroid TPMS lattice did not show a 3D 

bandgap, although it is known to exhibit a 1D bandgap as shown in chapter 6 [89]. Below 

a normalised frequency of 0.2, the res-BCCxyz lattice was the only lattice that showed a 

bandgap. Above a normalised frequency of 0.2, both the BCCxyz and res-BCCxyz lattices 

possess one bandgap. The first bandgap of the res-BCCxyz lattice is wider by 57 % and has 

a bandgap starting frequency lower by 68.5 % than that of the BCCxyz lattice. The bandgap 

frequency width of the BCCxyz lattice is eight times that of the second bandgap of the res-

BCCxyz lattice. 

As discussed in Chapter 6, lattices that are manufacturable with current AM methods, and 

have broad bandgaps with low starting frequencies are the most desirable. In comparison, 

if the intrinsic bandgap frequency of a particular lattice type is high, efforts to tune its 

frequency by modifying the cell size will generally result in unrealistic (i.e. very large in 

size for applications in metrology and precision engineering) and/or non-manufacturable 

cell sizes [62].  
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Figure 7.6. Dispersion curves of (a) BCCxyz, (b) gyroid TPMS, and (c) res-BCCxyz lattice 
structures with 20 % volume fraction. 

A relative gap to mid-gap ratio (relative bandgap width) can be used to compare the 

calculated bandgaps of the BCCxyz and res-BCCxyz lattices to those of the BCC-inspired 

multi-material lattices of Lu et al. [86] and Husieh et al. [104]. A relative bandgap width 

is calculated as 

 
Relative bandgap width =

Bandgap frequency width

(bandgap mean frequency)
 . 

7.1 
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A high relative bandgap width is more desirable as it indicates a wide bandgap (at high- 

or low-frequency) or a low-frequency bandgap (of narrow width). The bandgap of Lu et al. 

had a relative width of ~60 %, while that of Husieh et al. was ~40 %, both at a volume 

fraction of ~23 %. Interpolation of our bandgap results for the BCCxyz and res-BCCxyz 

lattices at 23 % volume fraction was done linearly considering the bandgap attributes at 

20 % and 30 % volume fractions of each lattice; the interpolation results showed a relative 

bandgap width of 30 % and 98.7 % for the BCCxyz and res-BCCxyz, respectively. This 

indicates that the res-BCCxyz lattice has the ability to provide wide bandgaps of low starting 

frequencies using single material lattices. 

For comparison of the width and starting frequency, the 3D bandgap of the BCCxyz lattice 

is compared to the 1D bandgap of the gyroid TPMS, which was presented in Chapter 6. At 

similar volume fraction, the BCCxyz lattice shows bandgaps at higher frequencies than the 

gyroid TPMS lattice. For example, at 20 % volume fraction, several bandgaps are present 

below a normalised frequency of 0.2 in the gyroid TPMS lattice. However, the bandwidth 

of this BCCxyz lattice is almost five times wider than that of the 1D gyroid TPMS. 

The normalised results in Figure 7.6 can be used to predict bandgaps in BCCxyz lattices of 

various materials and unit cell sizes. For example, bandgaps of Ti-6Al-4V BCCxyz lattices 

can be predicted. Ti-6Al-4V is used in the aerospace and the biomedical sectors due to its 

high corrosion resistance, biocompatibility and high fracture toughness [173]. The 

phononic properties of Ti-6Al-4V strut-based lattices have been studied previously [111]. 

For the purpose of comparison with the BCCxyz and res-BCCxyz lattices presented here, a 

unit cell 10 mm in size and 20 % volume fraction, based on the design of Warmuth et al. 

is considered. The bandgap properties can be calculated using the bandgap tuning tool in 

Equation 1 from reference [111] 

 

Bandgap frequency~√
𝐸

𝜌
∙
𝑑

𝐿2
 , 7.2 
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where 𝑑 is the strut thickness of the lattice of Warmuth et al. The bandgap starting 

frequency and bandgap ending frequency of the BCCxyz, res-BCCxyz and the Warmuth et 

al. lattice of 10 mm unit cell size and 20 % volume fraction are presented in Figure 7.7.  

 

Figure 7.7. Bandgap properties of the BCCxyz, res-BCCxyz and Warmuth et al. lattices of 
20 % volume fraction and 10 mm unit cell size, as predicted using the material properties 
of Ti-6Al-4V. 

The relative bandgap width of the BCCxyz and res-BCCxyz lattices at 20 % volume fraction 

were 30 % and 94 %, respectively, while the relative bandgap width of the Warmuth et 

al. structure is 28.8 % at the same volume fraction. The bandgap of the BCCxyz lattice has 

a lower bandwidth than the lattice of Warmuth et al.; the bandgap of the BCCxyz lattice 

spanned 99.2 kHz to 134.2 kHz, which is approximately 52 % of the bandwidth of the 

lattice of Warmuth et al. However, the BCCxyz lattice had the ability to provide bandgaps 

at frequencies lower by 50.2 % than those of Warmuth et al. at similar cell size and volume 

fraction. 

7.2.3 Tuning of three-dimensional bandgaps 

For a range of volume fractions, the properties of the lowest frequency bandgap were 

identified from the dispersion curves of the BCCxyz and res-BCCxyz lattices. The 5 % and 

10 % volume fraction BCCxyz lattices showed two bandgaps below a normalised frequency 
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of 0.4. The lowest frequency bandgap of the 5 % volume fraction BCCxyz lattice spanned a 

normalised bandwidth of 0.014, from 0.151 to 0.165. This bandgap is the narrowest in 

width and is formed by an acoustic wave band (wave cutting-on at zero frequency) and 

an optical wave band (wave cutting-on at a nonzero frequency). However, 20 % and 30 % 

volume fraction BCCxyz lattices had no second bandgaps.     

The BCCxyz lattice of 30 % volume fraction showed the highest predicted bandgap, which 

spanned from 0.25 to 0.34. The res-BCCxyz lattice of 30 % volume fraction showed the 

lowest predicted bandgap, which spanned from 0.067 to 0.187. The res-BCCxyz lattice has 

a bandgap mean frequency lower by an average of 43 % than the bandgap mean 

frequency of the BCCxyz lattice, as calculated from the bandgap mean frequency of lattices 

with volume fractions of 5 % to 30 %. The bandwidth increased approximately fivefold, 

and tenfold upon increasing the volume fraction of the BCCxyz and res-BCCxyz lattices 

respectively, from 5 % to 30 % as can be seen in Figure 7.8.  

Bragg-scattering bandgaps are bounded by a natural frequency of the Bragg-scattering 

unit cell (BCCxyz) [64], while internal resonance bandgaps (res-BCCxyz) occur around the 

natural frequency of the internal resonance mechanism [125]. Thus, the two bandgap 

mechanisms can be explained by referring to the natural frequency 𝑓𝑛 equation, 𝑓𝑛 ∝ √𝑘/𝑚. 

Above a volume fraction of 5 %, additional material uniformly enlarges the struts of the 

BCCxyz lattices, which results in stiffer lattices of higher mass. It has been shown that the 

bandgap frequency increases with the increase in volume fraction of Bragg-scattering 

bandgaps lattices [86,89]; indicating that the stiffness increases at a greater rate than the 

rate at which the mass increases.  
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Figure 7.8. Attributes of the bandgaps as identified from the dispersion curves of the 
BCCxyz (dashed lines) and res-BCCxyz (dotted lines) lattices at different volume fractions. 

The bandgap mechanism for the res-BCCxyz lattice is different since the mass of the 

resonance mechanism is dictated by the mass of the solid sphere, while the stiffness is 

dictated by the stiffness of the resonance struts. Since above a volume fraction of 5 % 

additional material enlarges the size of the sphere of the res-BCCxyz lattices, but does not 

increase the diameter of the struts, an overall reduction of the natural frequency of the 

resonance mechanism is achieved, thus, reducing the internal resonance bandgap 

frequency, as shown in Figure 7.8. 

7.2.4 Evolution of the wave transmission in lattices with finite periodicity 

The transmission spectrum of lattice structures with different periodicities was modelled 

to examine the evolution of the bandgap in physically realisable components. The 

res-BCCxyz lattice at 20 % volume fraction was selected for this study. This lattice was 

found to have a wide bandgap spanning normalised frequencies from 0.067 to 0.187, as 

seen in Figure 7.8. The examined lattice structures, shown in Figure 7.9, had periodicities 

of one, three and six (i.e. they contained a single unit cell, 3×3×3 and 6×6×6 cells, 

respectively). 
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Figure 7.9. Res-BCCxyz lattice structures of finite periodicities of (a) one, (b) three and 
(c) six. 

Outside the bandgap region identified from the dispersion curves in Section 7.2.2, the 

transmission of the waves in the finite lattices varied between ±20 dB as can be seen in 

Figure 7.10. There is no established way for identification of bandgaps from the 

transmission spectrums. However, since outside the infinite bandgap frequency range (i.e. 

bandgap identified form the dispersion curves) the attenuation reaches -20 dB, thus, it is 

sensible to use -20 dB as the upper limit for the transmission within a bandgap. For the 

single unit cell, the bandgap was shown between normalised frequencies of 0.06 to 0.11; 

this bandwidth is narrow (only 37 % of that identified from the dispersion curves). The 

narrow bandwidth can be traced back to the lack of spatial periodicity which is essential 

for obtaining transmission bandgaps. The width of the bandgap for the 3×3×3 lattice is 

higher than that of the single unit cell and spanned from 0.06 to 0.15. The largest bandgap, 

with the assumption of -20 dB as the upper amplitude limit, is for 6×6×6 lattice. 
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Figure 7.10. Transmissibility of longitudinal waves in 20 % volume fraction res-BCCxyz 
lattices of finite periodicity.  

The shaded area in Figure 7.10 represents the bandgap region as depicted by the 

dispersion curves with infinite periodicity assumptions. The percentage values denote the 

bandgap width of the finite lattice to that of the infinite one. In addition to the change in 

width, the minimum and mean amplitudes within the infinite bandgaps also changed with 

the periodicity of the finite lattice.  

Table 7.5. Summary of the evolution of the bandgap as obtained from studying the 

transmissibility of longitudinal waves in bandgap lattices of different periodicity.  

Periodicity Mean 
transmissibility/dB 

Lowest 
transmissibility/dB 

One -23 -56 

Three -24 -63 

Six -66 -103 
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Table 7.5 summarises the mean and minimum transmissibility of longitudinal waves in 

finite lattices of various periodicities. As the lattice periodicity increases, the 

transmissibility within the bandgap decreases. 

In search for enhanced performance lattices for use in precision and metrology 

applications, bandgap structures have been proposed. The bandgaps provided by the 

lattices proposed in this chapter are 3D which promises high amount of vibration 

attenuation in 3D; the guaranteed attenuation is a feature that is unmatched by the 

vibration isolation method of the lattices featured in Chapter 5. The 3D nature of the 

proposed lattices gives more freedom in designing lattices for precision engineering and 

metrology applications than the TPMS lattices in Chapter 6, which only showed 1D 

bandgaps. In addition, the bandgap frequencies of the lattices in this chapter are lower 

(for the same cell size and material) than those featured in Chapter 6. This allows low-

frequency bandgaps to be realised in structures with a higher number of tessellations and 

of better suitability for manufacture within a constrained design volume (considering AM 

building size and the smallest manufacturable features). 

7.3 Summary of results 

Reported here is an investigation into the potential for 3D AM lattice structures to provide 

3D bandgaps for the purpose of vibration attenuation. The bandgaps were identified from 

the structures’ dispersion curves calculated using a FE based wave propagation modelling 

technique and infinite periodic boundary conditions. The FE technique provides high 

computational efficiency and high wave modelling accuracy. Key results included: 

 Single material BCCxyz and res-BCCxyz lattices can provide bandgaps that are tunable 

with the volume fraction of the lattice. This allows the performance of metrology and 

precision structures to be enhanced by reducing the magnitudes of vibration at their 

problematic frequency ranges. 
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 BCCxyz and res-BCCxyz lattices have bandgaps of high width and intrinsically low-

frequency compared to results reported for similar structures in the literature. 

 Although gyroid TPMS lattices are known to have 1D bandgaps, they do not exhibit 3D 

bandgaps.  

 Increase in the finite periodicity of the lattice leads to an increase in the bandwidth 

and to decrease in transmissibility within the bandgap. In the context of precision and 

metrology structures, this is an important feature to attenuate vibration using lattices 

of high number of tessellations, higher attenuation and of sizes that are better suited 

for AM; especially when tied up with the lower bandgap frequency nature of the 

proposed structures. 

 The transmissibility of longitudinal waves within the finite lattices was low within the 

bandgap (far below 0 dB) which indicates that these lattices are suitable for vibration 

attenuation. 

These results complement the set of design tools already available for AM parts, which are 

mainly concerned with the static support and load-bearing properties, by adding a tuning 

tool for enhanced mechanical vibration attenuation. In Chapter 8, the concept of internal 

resonators is used to design 3D bandgap lattices of lower bandgap frequencies than that 

reported in this chapter and is experimentally verified in 3D. 
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8. Three-dimensional bandgaps in internal resonance lattices for low-

frequency vibration attenuation 

Chapter 8 

Three-dimensional bandgaps in internal 

resonance lattices for low-frequency 

vibration attenuation 

The results in this chapter are published in this peer-reviewed journal paper [162]. This 

chapter reports on 3D lattices comprising internal resonators, designed for targeting 

maximum elastic wave attenuation below a normalised frequency of 0.1. This normalised 

frequency limit, chosen arbitrarily to design structures with 3D bandgaps at low 

frequencies, is four times lower than the lowest theoretical limit allowed for Bragg-

scattering bandgaps (see Section 3.5 for a detailed description of bandgap mechanisms 

and Bragg limits). Bandgaps of normalised frequencies below 0.1 would allow for 

guaranteed vibration attenuation in structures of smaller unit cells and a higher number 

of tessellations within a constrained design volume; thus resulting in more homogenous 

structures, more predictable mechanical properties and higher tolerance to defects. A 

novel approach for tuning and designing the unit cell of the internal resonance lattice is 

presented. The computation scheme of the wave dispersion curves uses finite element 

(FE) modelling (see Section 3.6 for comparison with other modelling techniques). L-PBF is 

employed for the fabrication of the internal resonance lattice, which is experimentally 

tested for verification of the numerical predictions. The fundamental unit cell of the internal 
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resonance lattice is shown in Figure 8.1 and is periodically tessellated in 3D to allow a local 

resonance effect. The 3D wave propagation and the complete bandgaps of the lattice are 

presented in Figure 8.4. The experimental response of the manufactured internal 

resonance lattice is shown in Figure 8.6. Details of the computation, manufacturing and 

experimental methods are provided in the subsequent sections.  

8.1 Design of low-frequency bandgap lattices 

The unit cell of the internal resonance lattice featured in this work is shown in Figure 8.1. 

The design is a cubic unit cell with face-centred struts (FCC), and reinforcement struts in 

the x-, y- and z-directions (FCCxyz). FCC lattices generally have good compressive strength 

[119], in comparison to body-centred cubic (BCC) lattices which is featured in Chapter 7.  

  

Figure 8.1. The design of the resonating lattice: (a) Schema of the single unit cell of the 
lattice as modelled in CAD, the labels show the strut diameter (𝑆𝑑), strut length (𝑆𝑙), and 
cell size (𝐿), and a photograph of the 3×3×3 lattice as (b) digitally rendered, and (c) 
manufactured with L-PBF. 

Since the lattice is directed towards metrology and precision applications in which load-

bearing is as essential as vibration attenuation, the FCCxyz lattice is used as the host for 

the internal resonance mechanism of the lattice due to its good compressive strength. The 

internal resonance mechanism consists of six struts; each connects one side of a cubic 

mass to the inner walls of the FCCxyz unit cell. Increasing the strut diameter 𝑆𝑑 would 
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increase the stiffness of the resonator, while increasing the strut length 𝑆𝑙 would reduce 

its volume fraction, which will have an impact on the bandgap frequencies and the total 

mass. 

The 3D dispersion curves in this work were modelled using the method developed in 

Section 4.3.1. A complete description of each passing wave, including x-, y- and 

z-directional wavenumbers, at a certain frequency range, is acquired. As illustrated in 

Figure 8.2, the lattice used in this chapter can be viewed as a simple cubic lattice (eight 

lattice nodes on each corner), a FCC lattice (one lattice node on each of the six faces) or 

a BCC lattice (one lattice node at the centre that represents the solid cubic mass). 

 

Figure 8.2. Illustration of various approximations for the internal-resonance lattice in this 
chapter and their corresponding irreducible Brillouin zones. 

When modelling the dispersion curves of this lattice, suitable 3D translation of all solid 

features and voids within the unit cell is obtained when the design is approximated as a 

simple cube, thus, allowing for the use of the simple IBZ of simple cubic lattice for 

modelling the dispersion curves (see a detailed description of the IBZ of simple cubic lattice 

in Section 4.2.1). Such approximation can also be seen elsewhere [96,154,174]. Our 
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preliminary analysis showed minimal/zero discrepancies between the bandgap calculated 

with the approximation of the design as FCC and the bandgap calculated with the 

approximation of the design as a simple cube as in Figure 8.3. 

 

Figure 8.3. The bandgap of the lattice as calculated considering several paths in the IBZ 
of FCC lattice (left) and simple cubic lattice (right). The inset shows the IBZ of each lattice 
type. The shaded grey area represents the bandgap. 

8.2 Results and discussion 

Modelling of the elastic wave propagation in the lattices used sufficient tetrahedral 

elements, such that the frequency of the first vibration mode converged with the FE mesh 

density (approximately 6000 FE nodes per unit cell). The elements of the converged mesh 

used three DOF per FE node with an adaptive mesh size to sufficiently model narrow 

regions in the lattices [175]. To mathematically model the elastic wave propagation, the 

contours of the irreducible Brillouin zone (IBZ) of the unit cells of the lattices were scanned. 

Several characteristic points exist within the contours of the IBZ including Γ(0,0,0), 

X(𝜋/𝐿,0,0), M(𝜋/𝐿, 𝜋/𝐿,0), and R(𝜋/𝐿, 𝜋/𝐿, 𝜋/𝐿), where 𝐿 is the unit cell size (also referred 

to as 𝑎 or 𝐶 in other literature [62,63,135]). The scan of the IBZ was carried out using a 

total of 360 combinations of wavenumbers (90 combinations for each examined path in 

the reciprocal space). The corresponding dispersion properties along the path Γ–X–R–M–

Γ of the IBZ were predicted and the complete bandgaps were identified. The dispersion 

curves of a lattice unit cell with 𝑆𝑑/𝐿 and 𝑆𝑙/𝐿 values of 0.033 and 0.1, respectively, are 

presented in Figure 8.4a. It was observed that the lattice exhibits a bandgap below a 

normalised frequency of 0.1. The bandgap spans a normalised frequency range of 0.028, 
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starting from 0.039 to 0.067, and is formed by an internal resonance that cuts the first 

three acoustic wave bands (wave bands cutting-on at zero frequency) and splits them into 

two branches (i.e. top and bottom acoustic branches). 

The dispersion curves of multiple lattices of different values of 𝑆𝑑/𝐿 and 𝑆𝑙/𝐿 were predicted. 

The considered 𝑆𝑑/𝐿 values were 0.005, 0.01, 0.02, 0.025 and 0.033, and the considered 

𝑆𝑙/𝐿 values were 0.05 (large-size resonator), 0.1 (mid-size resonator) and 0.2 (small-size 

resonator). In Figure 8.4a, the dispersion curves are shown for the internal resonance 

lattice with 𝑆𝑑/𝐿 and 𝑆𝑙/𝐿 values of 0.033 and 0.1, respectively, and the eigenmodes are 

shown at a selection of high symmetry points. Figure 8.4b presents the bandgaps for each 

of the considered lattices to show the impact of the design of the internal resonators on 

forming complete 3D bandgaps. All frequencies 𝑓 are normalised to the longitudinal wave 

speed in the medium 𝑣 and the unit cell size 𝐿. The relative gap to mid-gap percentages 

of a selection of the presented bandgaps (width of the bandgap divided by its central 

frequency) are highlighted in Figure 8.4b. The large-size resonator showed the largest 

relative gap to mid-gap percentage of 68 %. The cut-on frequency of the top acoustic 

branches (i.e. the bandgap end frequency) increased with the increase in the diameter of 

the struts, and with the increase in the size of the resonator. The bandgaps of all the 

considered unit cell designs were below a normalised frequency of 0.1, as can be seen in 

Figure 8.4b.  
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Figure 8.4. Wave propagation properties of the internally resonating lattice: (a) Dispersion 
curves for the internal resonance lattice. and (b) start and end frequencies of the complete 
bandgaps of lattices of different 𝑆𝑑/𝐿 values with the struts connected to resonators of 
large-size (green), mid-size (blue), and small-size (orange).  
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The bandgaps of the large-size resonator had wider bandgaps than that of the mid-size 

resonator. The average bandgap width in the large-size resonator was calculated to be 

wider by 63 %, and 236 % than that of mid-size and small-size resonators, respectively. 

The mean frequency of the bandgap showed a change of 2.4 % with the change in the 

resonator size (see Figure 8.5 for comparison with recent literature).  

 

Figure 8.5. Comparison of the bandgaps in this work with the bandgaps of relevant 
literature. The indicated percentages show the relative gap to mid-gap percentage. 
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The results shown in Figure 8.4b can be used as a means of tuning the bandgaps of the 

lattice for a specific application. As can be seen in Figure 8.5, the frequencies of the 

bandgaps presented here are among the lowest reported in the literature (see Section 3.7 

for a full list of work on bandgap). Only two published studies showed bandgaps with lower 

frequencies than those reported here: Wang et al. [96] and D’Alessandro et al. [174]. 

Wang et al. did not demonstrate the manufacturability of the lattices and, as a 

consequence, did not provide experimental validation of their findings, which is something 

D’Alessndro et al. did. However, the bandgap width of the lattice of D’Alessandro et al. 

[174] represents only 3 %, 5 % and 11 % of the bandgap width of the orange design, 

blue design and green design (see Figure 8.5). 

8.3 Experimental verification of the bandgap 

For verification of the complete bandgap in the proposed lattice, L-PBF was used to 

manufacture a 3D structure of finite periodicity. Details about the L-PBF process can be 

found in Section 4.1.5. The geometrical dimensions and periodicity of the lattice were 

selected to be suitable for the L-PBF process. The manufactured lattice, presented in 

Figure 8.1c, had a unit cell size of 30 mm and a 3D periodicity of three. The 𝑆𝑑/𝐿 and 𝑆𝑙/𝐿 

values were selected to provide the lowest bandgap start frequency, when referenced to 

the bandgap start frequencies presented in Figure 8.4b while considering the lowest 

manufacturable feature size with L-PBF [23] (see Section 4.1.5); this meant that the 𝑆𝑑/𝐿 

and 𝑆𝑙/𝐿 values had to be 0.033 and 0.1, respectively.  

The 3D transmissibility of the lattice was obtained experimentally and is presented in 

Figure 8.6a. An experimental setup was assembled, comprising a modal shaker, a laser 

vibrometer, and accelerometer. See Section 4.3.3 for full details on the experimental 

testing. The longitudinal transmissibility had a value of 0 dB near the normalised frequency 

of zero, which indicates complete transmission of the excitation waves.  
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Figure 8.6. Experimental results acquired for the resonating lattice: (a) Transmissibility of 
the 3×3×3 lattice in the x-longitudinal direction (solid line), y-transverse direction (dotted 
line), and z-transverse direction (dashed line) vis-à-vis the corresponding bandgap as 
illustrated by the dispersion curves of the infinite lattice shown in (b), and (c) 

representative photograph of the experimental setup. The shaded areas show the 
identified bandgaps. 

At the vibration resonances, the longitudinal transmissibility was greater than 0 dB and 

reached 28 dB, which indicates high amplification of the excitation waves. Within the 

bandgap, the longitudinal transmissibility reached -77 dB. For this particular lattice, the 

bandgap was from 1.63 kHz to 2.8 kHz with a unit cell size of 30 mm. In light of the 

example of aluminum Bragg-scattering lattice presented earlier on in Section 3.4, 

stopbands below 3 kHz are obtainable with metamaterials of 30 mm unit cell size rather 

than 1 metre for the aluminum Bragg-scattering lattice. Thus, unit cells of suitable 

dimensions for AM and applications, and higher periodicity within a certain design volume, 

in comparison to Bragg-scattering lattices, can be employed to obtain low absolute 

frequency bandgaps; resulting in higher attenuation within the bandgaps. The effect of 

lattice periodicity on the transmissibility within the bandgap can be seen elsewhere 

[134,176]. For this investigation, considering the manufacturable feature size of L-PBF, 

we have chosen 3×3×3 as a reasonable example. The results showed that the lattice in 
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this work has double the transmissibility reduction experimentally reported by Croënne et 

al. [134] for their 3D Bragg-scattering lattice which had double the spatial periodicity used 

in this work. 

8.4 Summary of results 

The 3D elastic wave propagation in the internal resonance lattices was modelled using a 

FE method combined with infinite periodicity assumptions. It was shown that the lattices 

exhibit complete bandgaps far below the lowest frequency limit of Bragg-scatteirng 

bandgaps, which exist in traditional Brag scattering lattices. A lattice of finite periodicity 

was manufactured using L-PBF. The experimental results showed that, within the bandgap, 

the longitudinal transmissibility of vibration waves in the lattice reached -77 dB. Tuning of 

the bandgap can be achieved by adjusting the size of the resonator and the diameter of 

the struts to suit the requirements of various applications. With these lattices, structures 

of more realistic cell sizes and higher periodicity within a certain design volume, in 

comparison to Bragg-scattering lattices, can be employed to obtain low-frequency 

bandgaps; resulting in higher attenuation within the bandgaps, more homogenous 

structures, more predictable mechanical properties and higher tolerance to defects. 
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9. Summary and future work 

 

Chapter 9 

Summary and future work 

The advancement in AM technology has allowed the realisation of complex lattice 

structures with tailorable properties. The first research question was “can lattices be used 

for vibration attenuation?” The project investigated the development and use of lattice 

structures for vibration attenuation. Different attenuation techniques have been tested 

and proposed including vibration isolation through shifting the natural frequency below the 

frequency of interest and 1D, and 3D, vibrational bandgaps with which wave propagation 

is prohibited at certain frequency regions. The study answered the first research question 

and revealed that lattice structures can be used to provide vibration attenuation through 

all of the tested mechanisms.  

For vibration isolation by shifting the natural frequency below the frequency of interest, it 

was found that the response of the structure can be below or above 0 dB. When the 

response is below 0 dB, the attenuation is high and this is useful for providing vibration 

attenuation for applications in metrology and precision engineering. The frequency 

response region can be tailored through tuning of the natural frequency of the lattice with: 

 the volume fraction: The higher the volume fraction of the lattice, the lower is the 

natural frequency, 

 the cell size: The bigger the cell size, the lower is the natural frequency, 

 and the number of tessellations: The higher the number of tessellation of the unit 

cell, the lower is the natural frequency. 
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The study used both simulation and experimental techniques to test the transmissibility of 

the lattices manufactured with laser powder bed fusion. The discrepancies between 

simulation and experiment results were minimal (4 % to 7 %). The results of the lattice 

vibration isolation study were used to successfully design and test a metrology frame for 

1D vibration isolation at low frequencies (60 Hz to 150 Hz). In comparison to the existing 

methods of vibration attenuation, for example, metal and composite mounts, vibration 

isolation with lattices provide a low-mass solution to redesign metrology and structural 

frames for enhanced vibration attenuation performance. The redesign is done by replacing 

the solid parts of the structure with unit cells of suitable sizes, volume fractions and 

number of tessellations for the frequency of interest. When tailored to a specific frequency 

of interest, the vibration isolation lattice structure can provide response below 0 dB; this 

response is lower than that achievable with conventional vibration damping method 

(typically ≥ 0 dB) and, thus, it is better for vibration attenuation. One of the major 

drawbacks of this vibration isolation method was found to be its 1D nature; in metrology 

and precision engineering applications, for example in the case of a metrology frame, 

vibration attenuation in 2D and 3D is just as important as vibration attenuation in 1D to 

ensure minimal displacement between the effective end of the instrument/machine 

relative to the workpiece. In addition, the response at frequencies greater than the natural 

frequency is not guaranteed to be below 0 dB with vibration isolation; this is because 

longitudinal and transverse waves are still able to propagate in the structure.  

To address the identified drawbacks of the vibration isolation method, the project 

successfully investigated and developed lattice structures for complete elimination of 

vibration waves in 3D. This was done by examining wave propagation and identifying 

bandgaps in 3D TPMS lattices with unit cell tessellations made along 1D. This answered 

the second research question “how can wave propagation be eliminated in lattices for the 

purpose of achieving vibration attenuation below 0 dB?” It was shown that gyroid TPMS 

lattices can develop bandgaps above a normalised frequency of 0.2 with transmissibility 
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below 0 dB in the bandgap frequency region, which is something the vibration isolation 

method failed to provide. However, this 1D bandgap investigation method showed 

bandgaps at relatively high frequency (< 9000 Hz). The project raised new research 

questions regarding the manufacturing and the fit of bandgap lattices for metrology and 

precision engineering applications. To illustrate, for tuning down the frequency of the 

bandgap to the hertz and low kilohertz frequency regions, which corresponds to the 

operating frequencies of metrology and precision engineering instruments, large unit cells 

with small features have to be used. This is quite challenging for the current state of L-

PBF technology, for example, the smallest manufacturable feature size which is currently 

around 1 mm, and limits the number of tessellations available for applications with 

constrained design volume. In addition, the 1D bandgaps are only applicable to the unit 

cells tessellated along a single direction which limits their use in practical applications. For 

addressing these new issues, the project developed a method for modelling 3D wave 

propagation (with tessellations of the unit cell made in 3D) and with the aim of attaining 

lower and wider bandgap frequencies. It was found that strut-based lattices have 3D 

bandgaps above a normalised frequency of 0.2; this is a higher frequency than the TPMS 

bandgap but is five times wider than the widest TPMS bandgap, which is essential for 

covering wide frequency ranges in practical and research applications.  

The project also showed that 3D low-frequency bandgaps below a normalised frequency 

of 0.1 can be obtained using strut based lattices with a resonator designed within their 

body. The outer scaffold of the internal resonance lattice is a strut-based lattice that is 

used for structural support, while the inner resonance mechanism is tunable to frequencies 

lower than can be realised with TPMS and strut-based lattices. This is because gyroid and 

strut-based lattices rely on Bragg-scattering for creating bandgaps which are highly 

dependant on the unit cell size for creating destructive wave interference. The internal 

resonance lattice showed transmissibility below 0 dB with finite number of tessellations 

(one, three and six unit cells along each direction). The internal resonance lattices can 
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create bandgaps at much lower frequencies (below a normalised frequency of 0.1). L-PBF 

was used to manufacture an internal resonance lattice which showed attenuation of up to 

-77 dB within its bandgap frequency region. Tuning of the frequency of the bandgap in all 

of the proposed bandgap lattices was demonstrated through control of the volume fraction, 

unit cell size and the AM material of the lattice. The volume fraction controlled the 

thickness and size of the struts in strut-based lattices, the wall thickness in TPMS lattices 

and the size of the resonator in the internal resonance lattices. This answered the third 

research question “how can the vibrational performance of lattices be tailored to meet 

different vibrational needs?” The designer of lattice structures can now use these results 

to assist with designing parts for use in metrology and precision engineering applications. 

Bandgap structures exhibit remarkable vibration attenuation capabilities through complete 

elimination of vibration waves; this is not obtainable with the existing vibration attenuation 

methods which do not prohibit wave propagation. The elimination of vibration waves 

translates into very low vibration responses (typically below 0 dB) that can get even lower 

with the increase in the number of tessellation of the bandgap unit cell. These results can 

be used as guidelines so that high attenuation of vibration magnitudes is achieved in lattice 

structures that are fabricated with AM. 

For future work:  

 Although bandgap structures are always better than vibration isolation structures 

for obtaining high magnitudes of vibration attenuation, the vibration isolation 

method can be useful in some case. For example, it can provide fast design and 

modelling of lattice structures for specific metrology and precision applications in 

comparison to bandgap engineering. This is because bandgap engineering relies on 

complex calculations of dispersion curves which are memory and CPU expensive. 

Future work will study vibration isolation in 2D and 3D as well as exploring methods 

to control the response at frequencies higher than the natural frequency.  
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 The internal resonance lattice of this project will be used in a future study to design 

a metrology frame for an all-optical dimensional measuring system (AODMS) with 

3D bandgaps. This will ensure minimum move of the optical lens relative to the 

measured workpiece and thus take more accurate and repeatable measurements. 

The metrology frame will use three identical legs made of internal resonance 

lattices while using the thermal centre principle to minimise thermal expansion in 

x- and y-directions. Reduction of the thermal expansion in the z-direction will be 

achieved by shielding the lattice with invar sheets. The invar sheets will have very 

low thermal expansion under thermal fluctuations, in comparison to polymer and 

most metallic materials. The workpiece stage of the AODMS will also be made from 

internal resonance bandgap lattices with invar shielding to achieve vibration 

attenuation and reduce the thermal expansion. 

 This work could benefit from further experimental testing to give more confidence 

in these lattices. For example, the effect of the number of tessellations of the lattice 

on its 3D bandgap can be experimentally studied by producing and testing various 

lattices of similar topology and different number of tessellations. Future work will 

also consider setting up more vibration testing studies, for example testing the 

durability of the lattices under random excitation and carrying vibration phase 

analysis. 

 This project showed bandgap results that are normalised to the speed of wave of 

the material 𝑣. These results opened the door for investigation of new materials for 

AM that can be useful for metrology and precision engineering applications. New 

hybrid material for AM will also be explored so as to design structures of enhanced 

load-bearing and vibration attenuation capabilities in comparison to the existing 

AM technologies. 

 Although the demonstrated bandgap of internal resonance lattice in this work has 

one of the lowest 3D bandgap frequencies ever reported, further reduction of the 
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normalised frequency is preferable. This can be done by exploring new unit cell 

designs, for example by varying the volume fractions within the unit cells to create 

a high difference in impedance. 

 Lattice structures, in general, will benefit from advancement in the precision, 

accuracy and minimal manufacturable features of L-PBF and AM methods. The 

results presented in this thesis will also be useful when such technological progress 

is achieved. For example, if the minimum feature size of L-PBF is reduced by half, 

then the unit cell that gives the same bandgap frequency can be of half the original 

cell size. Consequently, twice as much unit cells can be suited within a specified 

volume. By successfully enhancing the precision, accuracy and minimal 

manufacturable features, bandgaps can be engineered within the micro-scale of 

the materials used for manufacturing. This will allow for almost infinite number of 

unit cells to be suited side by side for complete elimination of all mechanical 

vibration waves at tailorable frequencies. 
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