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Abstract

Understanding the dewetting and solidification of thin films is key in the

fabrication of thin film solar cells, as a device with low percentage of sur-

face coverage will have a greatly diminished efficiency. In this thesis we

use Rational Continuum Mechanics to propose a thermodynamically-

consistent framework for classes of models describing the evolution of

solidifying thin films.

Starting from the key laws of the conservation of mass and the first and

second laws of thermodynamics, and employing the Coleman Noll pro-

cedure, we derive a class of models for predicting the evolution of a thin

liquid film in isothermal settings. We show that models existing in liter-

ature and derived using different techniques fit into these classes. This

work is published in [1].

Invoking the same axioms we then consider non-isothermal settings,

and first re-derive models for solidification in a bulk setting. Then we

return to thin-film settings and derive a model for heat conduction in a

rigid thin film by averaging the laws in the vertical direction to reduce

the problem from d dimensions to d− 1 dimensions, and then proposing

a solution to the closure problem that arises due to fluctuations in the z

direction. Culminating these techniques we discover, for the first time,

a thermodynamically-consistent class of models for the solidification of

thin films.

To allow proper numerical simulations, suitable choices for the consti-
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tutive relations within the new models are discussed. Simulations are

discussed using linear finite elements for the spatial discretisation and

energy-stable convex-splitting schemes as the time stepping algorithms.

Parameters within the model are varied to investigate the effect they

have on the dewetting of the thin film and the growth of holes, which

gives implications on optimal manufacturing conditions for thin film so-

lar cells.
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CHAPTER 1

Introduction

In a world in which non-renewable energy sources are rapidly deplet-

ing, and climate change caused by burning fossil fuels is having a dev-

astating effect on the natural environment, it is becoming more impor-

tant than ever to pursue cheap and clean renewable alternatives. So-

lar power offers an annual potential of over 1,500 exajoules of energy,

around three times the total annual energy consumption in the world in

2012 [2]. However, by the end of 2016, only 1.8% of the world’s elec-

tricity consumption came from solar power. Despite this, according to

a 2014 study conducted by the International Energy Agency [3], solar

power could be the largest source of energy by 2050.

Thin film solar cells, including those using perovskite material to absorb

light, have the potential to greatly enhance the amount of solar energy

harvested in society. They provide a cheap and lightweight alternative

to silicon devices, and are currently the fastest developing photo-voltaic

technology to date [4]. In addition to this, fabrication of these devices

uses much less energy than their silicon counterparts, and they are con-

structed using materials abundant in nature.

The topic of this PhD thesis is the solidification of thin liquid films, which

is one of the key processes in the fabrication of thin-film solar cells. To

provide a proper context into the thesis, we next present in Section 1.1
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CHAPTER 1: INTRODUCTION

Figure 1.1: Diagram taken from [6] showing the layer structure of a thin
film solar cell. Fluorine-doped Tin Oxide (FTO) is used as
the electron transport material, while an optional metal ox-
ide scaffold is shown [7]. In this case the absorbing layer is
Perovskite.

a brief review on thin-film solar cells, issues with their fabrication, and

approaches to their mathematical modelling. Then, Section 1.2 outlines

the achievements obtained in this thesis.

1.1 Thin Film Solar Cells

1.1.1 Thin Film Solar Cells: Technological Importance

A standard thin film solar cell consists of three major components: an

absorber for the absorption of light (for example Perovskite), an n-type

semi-conductor such as FTO to accept electrons excited by the absorbed

light, and a p-type semi-conductor (hole transporting material, HTM)

for transporting holes [5], arranged as in Figure 1.1. During illumination,

light excites electrons in the Perovskite material, which are injected into

the conductance band of the n-type semi-conductor. The positive charge

left on the Perovskite is then transferred onto the p-type semi-conductor

and then on to the electrode.
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CHAPTER 1: INTRODUCTION

Perovskite is an organic-inorganic compound that is attracting a large

amount of attention in the field of photo-voltaic devices, due to the fact

that the cells have the potential to be transparent, flexible, cheap and

highly efficient. Details on the structure of the Perovskite material can

be found in [6, 8–10]. There is a theoretical maximum limit, known as the

‘Shockley-Queisser’ limit, for single junction solar cells. For Perovskite

based cells, the limit of efficiency is 31%, which is close to the 33% limit

of gallium arsenide cells [11]. Current issues with the technology include

rapid degradation of the devices, particularly in damp conditions [12];

however large strides have been taken to rectify this issue, such as in

[7, 13].

Issues needing to be overcome during the fabrication process of a thin-

film solar cell are the thickness of the absorbing layer [14, 15] and the size

of the crystalline grains formed during solidification of the layer [16–18].

The final issue is the dewetting of the absorbing layer during fabrication

[19]. The surface coverage issue [20, 21] is the basis of the research in this

thesis and is discussed in greater detail in the next subsection.

1.1.2 Fabrication of Thin Film Solar Cells: Surface Cov-

erage Issue

One of the major factors dictating the efficiency of a thin film solar cell

is the percentage of the device that is covered by the absorbing material.

Fabrication of perovskite solar cells involves mixing chemicals in a sol-

vent to produce the Perovskite compound (the most studied Perovskite

mixes methylammonium iodine, MAI, and lead iodide, PbI2, in a sol-

vent to produce methylammonium lead tri-iodie perovskite,MAPbI3).

The perovskite-solvent mixture is then deposited onto a substrate using

a deposition technique which can include dip coating [22], spin coating

[23, 24] or vapour deposition [17], as shown in Figure 1.2.

3



CHAPTER 1: INTRODUCTION

Figure 1.2: Three examples of deposition techniques, from left to right:
dip coating, spin coating, vapour deposition. Image taken
from [25].

Following deposition, the film is annealed by heating the device. This

allows the Perovskite to fully crystalise [17], and also allows any unre-

acted reagents and the solvent to evaporate off. This evaporation drives

a dewetting phenomenon [26] during which the thin film flows and so-

lidifies, resulting in the final morphology of the thin film absorbing layer.

It is this dynamic process of changing thin film morphology that the re-

search carried out in this thesis is directed towards.

Poor surface coverage causes a reduction in device efficiency for two

major reasons. Most obvious is that light cannot be absorbed by the areas

uncovered by the absorber layer. Thus if only 70% of the cell is covered

by the thin film, a maximum of 70% of light hitting the device can be

absorbed while the rest passes through, assuming a uniform distribution

of photons [14]. Secondly, a hole in the absorber layer allows the contacts

on either side of the absorbing material to touch, creating ‘shunt paths’,

in which recombination [27] of released electrons becomes much more

likely, reducing the cell efficiency [28]. Many works agree that to achieve

the maximum possible efficiency from a perovskite solar cell, carefully

controlling the morphology of the film is key [9, 14, 29].

Some methods have been proposed to help avoid this issue. In 2014,

Eperon et al. conducted a series of experiments to obtain maximal sur-

face coverage by optimising annealing temperature and initial film thick-

4



CHAPTER 1: INTRODUCTION

Figure 1.3: An example of the final morphology of a solar cell after an-
nealing. The light areas are islands of perovskite while the
darker area is the substrate uncovered by the absorber layer.
Courtesy of a collaboration with the University of Amster-
dam

ness [14]. They also discovered that using a solvent that evaporated

more slowly reduces the surface coverage. Xu et al. suggested a method

involving pumping away the solvent before the device is annealed [30].

This has the effect of greatly reducing the influence of solvent evapo-

ration on film evolution and resulted in an average increase in film ef-

ficiency of 2%. Another method is to use a scaffold as a support for

encouraging surface coverage [31–33], although this requires the use of

much higher temperatures than fabrication of planar cells [34], incurring

a higher energy cost.

It is well known that solid films in the as-deposited state are often ther-

modynamically unstable, causing them to dewet or agglomerate during

annealing [35]. During the annealing phase, the absorber layer dewets

and forms islands of perovskite surrounded by areas where the sub-

strate is uncovered by the absorber layer. Figure 1.3 highlights this effect.

Works cite various reasons for poor surface coverage. Fast crystallization

of the perovskite material with solvent evaporation has been considered

5



CHAPTER 1: INTRODUCTION

by Huang et al. [36], while the effects of film thickness [29] and the choice

of halide anion [9] have also been investigated.

1.1.3 Modelling Techniques

The evolution of an unstable thin film has been well studied in a variety

of ways. Many of these studies consider asymptotically manipulating

bulk Navier-Stokes equations. A key work in this field is from Burelbach

et al. [37] which is an underlying work to many further modelling at-

tempts for the phenomenon. However, the asymptotic handling of bulk

equations does not always guarantee that a model is consistent with the

laws of thermodynamics. More recent methods of modelling thin film

evolution are gradient flow based, for example [38]. These models, while

thermodynamically consistent, make specific choices, while there exists

whole families of models for describing thin film evolution which align

with the laws of thermodynamics.

Rational Continuum Mechanics [39] provides a framework for modelling

that initiates from key axioms from physics, i.e. conservation laws and

the laws of thermodynamics. Starting with these principles, a class of

models can be derived which guarantees thermodynamic consistency,

regardless of the material in question. To make a class of models spe-

cific to a particular material, constitutive classes can then be defined.

The Coleman-Noll procedure [40] can then be applied to reduce the con-

stituent class to ensure this thermodynamic consistency is maintained

[41].

Rational Continuum Mechanics has become a leading method in the

modelling of the solidification of materials [42, 43]. However its applica-

tion to thin films has remained unexplored and is the topic of this thesis.

6



CHAPTER 1: INTRODUCTION

1.2 Achievements and Outline of Thesis

The main aim of this thesis is to provide a Rational Continuum Mechan-

ics framework for the derivation of mathematical models for thin films

and their solidification. The objectives achieved in this thesis are:

1. To derive a new elementary class of models for thin-film evolution

in an isothermal setting, based on a rational framework using free-

energy dissipation, and to show that this class supports existing

models derived using asymptotics and gradient-flows.

2. To derive a class of models for solidification of a bulk liquid, based

on a rational framework using the axioms of thermodynamics and

a new constitutive dependence, and to show that this derivation is

consistent with other existing rational frameworks.

3. To derive a new class of models for heat conduction in a rigid thin

film, based on a rational framework using the axioms of thermo-

dynamics, their vertical averaging, and suitable closure for vertical

fluctuations.

4. To derive a new class of models for the solidification of thin films

in a non-isothermal setting, by extending the framework obtained

in Objective 3.

5. To demonstrate how to obtain stable numerical simulations for the

new models and investigate the behaviour of a thin film in a variety

of settings.

Chapters 2 and 3 introduce the method of Rational Continuum Mechan-

ics and diffuse interface modelling. In these chapters, the five key axioms

used in rational continuum mechanics are presented; the conservation of

mass and linear and angular momentum and the first and second laws

of thermodynamics. We also derive a mechanical version of the second

7



CHAPTER 1: INTRODUCTION

law of thermodynamics that can be used in isothermal settings. Two im-

portant models, the non-conservative Allen-Cahn equation [44] and the

conservative Cahn-Hilliard equation [45] are derived using these princi-

ples; these equations form the basis of the majority of phase-field type

models. Finally, in Chapter 3, numerical methods for simulating phase-

field models in an energetically stable manner are discussed. In particu-

lar, we show that the Convex Splitting scheme [46] is energy stable, but

the Backward-Euler method is only conditionally energy stable despite

it being fully implicit. The methods discussed in these chapters form the

basis of all modelling and simulations carried out in this thesis.

In Chapter 4, we derive a class of thermodynamically consistent mod-

els for describing the evolution of a liquid thin film from the mechanical

version of the second law of thermodynamics detailed in Chapter 2. We

perform simple simulations using the convex splitting methods for time

stepping and linear finite elements for the spatial discretisation, as de-

scribed in Chapter 3. We investigate other attempts for modelling thin

films, in particular the asymptotically derived model by Burelbach et al.

[37] and the gradient flow method by Thiele [38]. We proceed to show

that, for a non-volatile film, the models derived in these works fit within

the class that we have derived, and therefore rectify these issues. In do-

ing so, objective 1 is achieved. Our derivation and simulations presented

in this chapter have been published in [1].

To approach objective 2, an non-isothermal class of models is derived in

Chapter 5 to describe the solidification of a bulk liquid. Often during

the modelling of solidification, the solidification model is derived in an

isothermal setting and a temperature equation is added post-derivation

[47], for example by considering Fick’s Law [48]. We use rational con-

tinuum mechanics coupled with the Coleman-Noll procedure to derive

a thermodynamically consistent class of models which is assumed to be

non-isothermal to begin with. We consider the second law of thermo-

8



CHAPTER 1: INTRODUCTION

dynamics, and follow the work of Fabrizio et al. [43] by considering

additional terms in the entropy flux to account for entropy changes on

the diffuse boundary of the phase change, and we adapt previous meth-

ods by allowing dependent variables to have a constitutive dependence

on the chemical potential.

In Chapter 6 we derive a model for heat conduction in a d-dimensional

rigid thin film based on a rational framework. We use the thin nature

of the film to introduce the method of taking the average of the param-

eters in the vertical direction, resulting in reducing the model to d − 1

dimensions. In doing so, a closure problem similar to that found in tur-

bulance modelling [49] arises due to the existence of both vertically av-

eraged terms and non-averaged terms in the laws of thermodynamics.

Modelling a solution to this closure problem results in the achievement

of objective 3.

Chapter 7 combines the methods from all previous chapters in order

to derive a new class of models for a solidifying thin film in a non-

isothermal setting, in doing so achieving objective 4. The issues with

dealing with a non-isothermal setting, as well as the closure problem

that arises from vertically averaging out parameters both reoccur, and

are handled in similar way to Chapters 5 and 6 respectively. When con-

sidering a vertically averaged free energy, additional terms arise when

employing the Coleman-Noll procedure; this results in the chemical po-

tentials of the system needing to be modified. In order to achieve objec-

tive 4, we verify that the class of models is indeed thermodynamically

consistent and that it reduces to the classes found in previous chapters

when the scenario is simplified.

In order to provide numerical simulations in Chapter 8, we first choose

parameters within the class found in Chapter 7 to obtain a specific model.

This model requires regularisation in order to properly simulate it. The

convex splitting method [46] is applied as a time stepping algorithm,

9



CHAPTER 1: INTRODUCTION

while the model is discretised spatially using linear finite elements [50].

The simulations investigate both non-volatile and volatile films, and nu-

merical experiments are run to investigate how changing parameters af-

fects the growth of holes in the thin film.

Finally, concluding remarks are made in Chapter 9, and recommenda-

tions for future work are suggested.
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CHAPTER 2

Rational Continuum Mechanics

In this chapter, we introduce the framework of Rational Continuum Me-

chanics and rational diffuse interface modelling, and discuss why they

provide a better choice than sharp interface alternatives for the situa-

tions being modelled in this thesis. We then describe the five axiomatic

laws that underlie all rational modelling, and conclude by deriving two

simple models, the Allen-Cahn and the Cahn-Hilliard equations, the dy-

namics of which lie at the heart of the majority of rationally derived mod-

els.

2.1 Introduction to Rational Continuum Mechan-

ics

Computational problems dealing with a moving boundary can be ad-

dressed using sharp or diffuse interface methods. Sharp interface mod-

els consider a jump in the values of the phase variable, whereas diffuse

interface models consider a smooth transition between values on each

side of the boundary. This is highlighted in Figure 2.1. While many prob-

lems, such as that of thin films (see Chapter 4) can be satisfactorily dealt

with using both methods, there are certain advantages that diffuse in-

terface modelling offers which make it applicable in the work presented

11



CHAPTER 2: RATIONAL CONTINUUM MECHANICS

Figure 2.1: The difference between how a diffuse interface (a) and a
sharp interface (b) model handles a jump at an interface,
taken from [51].

here.

A major issue with sharp interface modelling is dealing with a change in

the topology of the system under investigation. Consider, for example, a

bead of water hanging from a surface, which separates to form a drop, or

a thin liquid film on a surface rupturing and dewetting. Many sharp in-

terface models that examine these phenomena break down at this point,

as will be demonstrated later. However, diffuse interface modelling tech-

niques naturally deal with this change of topology. This is demonstrated

in Figure 2.2, which shows two growing holes in a liquid film coalescing

to form a single, larger hole.

Rational continuum mechanics provides a rigorous framework for dif-

fuse interface modelling. The method works from key axioms which are

presented below, and through energetic considerations results in ther-

modynamically consistent partial differential equations for modelling

the scenario in question. In this section we outline the theory of rational

continuum modelling and state the five key axioms that form the basis

of the method based on a complete work by Gurtin, Fried and Anand

[39].

12
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Figure 2.2: Two small holes in a liquid film growing and merging to
form one larger hole. The change in topology is handled
easily by a diffuse interface model, but a sharp interface
model would come across difficulties between the panels
in the top left and top right.
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CHAPTER 2: RATIONAL CONTINUUM MECHANICS

2.2 Key Laws

There are five key axioms that underlie rational continuum modelling:

the conservation of mass, the conservation of linear and angular momen-

tum, and the first and second laws of thermodynamics. For a model to

be thermodynamically consistent, these five laws must hold in all phys-

ically realistic scenarios. In this section we present a general form for

these five axioms.

We consider a d-dimensional body Bt ⊂ Rd, and a velocity field v(x, t)

for all points x ∈ Bt and time t. We consider a reference body B to be

Bt defined at a fixed point in time, and for any time t define a bijective

deformation map χt : B → Bt such that for all x ∈ Bt, x = χt(X) for

some X ∈ B.

2.2.1 Conservation of Mass

We take an arbitrary subset which convects with the body, Pt, and define

the reference subset P ⊂ B such that Pt = χt(P). Define ρR(X) > 0 to be

the density at reference point X ∈ B. Then the total mass contained in P

is given by ∫
P

ρR(X)dVR. (2.2.1)

Similarly, let ρ(x, t) define the density field of the body. Then the mass

inside Pt ⊂ Bt is given by

∫
Pt

ρ(x, t) dV. (2.2.2)

The balance of mass is then the statement that, for any time t,

∫
Pt

ρ(x, t) dV =
∫

P
ρR(X) dVR. (2.2.3)

Noting that the right hand side of this equation is not dependent on time,

14
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we differentiate with respect to time to obtain

d
dt

∫
Pt

ρ(x, t) dV = 0. (2.2.4)

The local form of this equation can be found by applying the Reynolds

Transport Theorem [52], resulting in

∫
Pt

dρ

dt
+ ρ (∇ · v) dV, (2.2.5)

which, by the arbitrary nature of Pt results in

ρ̇ + ρ (∇ · v) = 0. (2.2.6)

2.2.2 Conservation of Linear and Angular Momentum

For a spatial region Pt ⊂ Bt, the linear and angular momentum is given

by

L(Pt) =
∫
Pt

ρv dV, (2.2.7)

for some density ρ = ρ(x, t). Taking the time derivative gives

d
dt

L(Pt) =
d
dt

∫
Pt

ρv dV, (2.2.8)

which becomes ∫
Pt

d
dt
(ρv) + ρv (∇ · v) dV (2.2.9)

by applying the Reynolds Transport Theorem. Applying the product

rule to the time derivative term and rearranging results in

∫
Pt

ρv̇ + v (ρ̇ + ρ(∇ · v)) dV. (2.2.10)
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Here, v̇ represents the time derivative of v. Finally, by applying (2.2.6)

we obtain
d
dt

L(Pt) =
∫
Pt

ρv̇ dV. (2.2.11)

The angular momentum for the same spacial region Pt is given by

A(Pt) =
∫
Pt

r× (ρv) dV, (2.2.12)

where r is the position vector of a point x from an origin o, defined as

r = x− o. Taking the time derivative and again employing the Reynolds

Transport Theorem results in

d
dt

A(Pt) =
∫
Pt

d
dt
(r× (ρv)) + (r× ρv)(∇ · v) dV. (2.2.13)

We note that

d
dt
(r× (ρv)) = r× d

dt
(ρv) + ṙ× (ρv), (2.2.14)

and since o is not dependent on t this becomes

d
dt
(r× (ρv)) = r× d

dt
(ρv) + v× (ρv) = r× d

dt
(ρv). (2.2.15)

Using this result, employing the product rule and rearranging in a simi-

lar way to that used for linear momentum, the right hand side of (2.2.13)

becomes ∫
Pt

r× (ρv̇) + r× (v (ρ̇ + ρ(∇ · v))) dV. (2.2.16)

Finally, applying (2.2.6) results in

d
dt

A(Pt) =
∫
Pt

r× (ρv̇) dV. (2.2.17)

Forces acting upon a body can be split into two categories: contact forces

exerted on the boundary of the body by its surroundings, and body

forces, which act on the internal points of the body. We represent by
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t(n) the contact force acting on the boundary oriented with the unit nor-

mal of Pt, n, and by b0(x, t) the body force acting on x ∈ Pt. Therefore

the total contact and body forces acting on Pt are given by

∫
Pt

t(n) ds (2.2.18)

and ∫
Pt

b0 dV (2.2.19)

respectively. Similarly, the total moment exerted on Pt by the contact

and body forces respectively are given by

∫
Pt

r× t(n) ds (2.2.20)

and ∫
Pt

r× b0 dV. (2.2.21)

Cauchy’s theorem [53] states that there exists a spatial tensor field T,

known as the Cauchy stress tensor, such that

Tn = t(n). (2.2.22)

Given this, using the Reynolds Transport Theorem and applying the law

of conservation of mass, we obtain from Newton’s second law the final

laws for the conservation of linear and angular momentum:

∫
Pt

ρv̇ dV =
∫

∂Pt
Tn ds +

∫
Pt

b0 dV (2.2.23)

and

∫
Pt

r× (ρv̇) dV =
∫

∂Pt
r× Tn ds +

∫
Pt

r× b0 dV. (2.2.24)

In this thesis, we consider inertial effects to be negligible, and so do not
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consider the conservation laws for linear and angular momentum. How-

ever, they have been included to give an overview of the full framework

of Rational Continuum Mechanics.

2.2.3 1st Law of Thermodynamics

As in section 2.2.1 we consider a part Pt ⊂ B to be an arbitrary region of

B. The first law can be written

d
dt

(E(Pt) +K(Pt)) =W(Pt) +Q(Pt), (2.2.25)

where E(Pt) and K(Pt) represent the internal and kinetic energies re-

spectively, W(Pt) is the external power applied to the boundary of Pt

andQ(Pt) is the rate of heat transfer to Pt. The kinetic energy is written

in the conventional way

K(Pt) =
∫
Pt

1
2

ρ|v|2 dV, (2.2.26)

and the external power is given by

W(Pt) =
∫

∂Pt
Tn · v ds +

∫
Pt

b · v dV, (2.2.27)

where T is the Cauchy stress tensor and b is a body force. We now intro-

duce the internal energy density e, and define

E(Pt) =
∫
Pt

ρe dV, (2.2.28)

and we say that the change in heat energy in the body is made up of the

flux of heat over the boundary q and an internal heat source q, written

Q(Pt) = −
∫

∂Pt
q · n ds +

∫
Pt

q dV. (2.2.29)
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These definitions are combined together to give the first law of thermo-

dynamics:

d
dt

∫
Pt

ρ

(
e +

1
2
|v|2

)
dV =

∫
∂Pt

Tn · v ds +
∫
Pt

b · v dV

−
∫

∂Pt
q · n ds +

∫
Pt

q dV.
(2.2.30)

It can be noted than in the case without motion, i.e. v ≡ 0, this reduces

to
d
dt

∫
P

ρe dV = −
∫

∂P
q · n ds +

∫
P

q dV. (2.2.31)

2.2.4 2nd Law of Thermodynamics

Define the internal entropy of Pt to be S(Pt) and the rate at which en-

tropy is transferred to Pt to be J (Pt). Then the rate of entropy produc-

tion in Pt, H(Pt) is defined as

H(Pt) =
d
dt
(S(Pt))−J (Pt). (2.2.32)

The second law of thermodynamics states that this entropy production

must be non-negative in all situations:

H(Pt) > 0. (2.2.33)

We introduce the entropy density η, and write

S(Pt) =
∫
Pt

ρη dV. (2.2.34)

We also write

J (Pt) = −
∫

∂Pt
j · n ds +

∫
Pt

j dV (2.2.35)

for the entropy flux j and entropy source j. Finally, we introduce the

temperature field θ > 0, and we postulate that entropy is related to the
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heat energy by

j =
q
θ

, (2.2.36)

and

j =
q
θ

. (2.2.37)

Thus the final inequality for the second law of thermodynamics is given

by
d
dt

∫
Pt

ρη dV > −
∫

∂Pt

q
θ
· n ds +

∫
Pt

q
θ

dV. (2.2.38)

2.2.5 Mechanical Version of the Second Law

In this section, we investigate the meaning of the second law of thermo-

dynamics in an isothermal situation, that is to say that θ = θ0 is constant.

Given this assumption and using (2.2.29), we note that

J (Pt) =
1
θ0

(
−
∫

∂Pt
q · n ds +

∫
Pt

q dV
)
=
Q(Pt)

θ0
, (2.2.39)

and so by multiplying through by θ0 we see that

d
dt

∫
Pt

ρθ0η dV > Q(Pt). (2.2.40)

Subtracting this from (2.2.30) we obtain the mechanical version of the

second law of thermodynamics for use in isothermal cases:

d
dt

∫
Pt

ρ

(
e− θ0η +

1
2
|v|2

)
dV 6W(Pt). (2.2.41)

By defining

Ψ = e− θ0η (2.2.42)

to be the free energy density, then this can be written as

d
dt

∫
Pt

ρ

(
Ψ +

1
2
|v|2

)
dV =W(Pt)−D(Pt) (2.2.43)
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for some D(Pt) > 0, which represents free energy dissipation.

2.3 Phase Field Variables

Rational continuum mechanics can be used for modelling numerous phe-

nomena. For example, in [54] a derivation of the Navier-Stokes equa-

tions is given. In such scenarios, the quantities of interest, such as veloc-

ity or pressure, are continuous variables. However, in other cases such as

the solidification of a liquid [55] or a crack propagating through a solid

[56], the quantities of interest are discontinuous. In these cases, one can

introduce a phase-field variable to distinguish between the phases of a

region. Figure 2.3 shows an example of this for a liquid film which has

partly solidified. In this case, the phase field variable φ(x) takes the

value of 1 if the film is liquid at point x (represented by the white re-

gion), 0 if the film is solid (black region), and has a diffuse boundary of

thickness ε separating the two distinct phases (grey region).

Advantages of phase field modelling include that surface tension is nat-

urally included, topological changes such as pinching off or the merging

of two bodies are easily handled and the boundary between the separate

phases does not require tracking [54].

Models using phase field variables are often driven by the variational

derivative of the free energy functional. This is defined such that the

variational derivative of Ψ with respect to φ, written δΨ/δφ satisfies

d
dt

∫
Pt

Ψ dV =
∫
Pt

δΨ
δφ

φ̇ dV. (2.3.1)

Using phase field variables and the variational derivative of an energy

functional, we are able now to derive two simple equations for describ-

ing non-conservative and conservative gradient flows that lie at the heart

of phase-field modelling: the Allen-Cahn and the Cahn-Hilliard equa-
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Figure 2.3: An example of a phase field parameter being used to iden-
tify the separate phases of a region. The parameter takes the
value of 1 in the white phase, 0 in the black phase and has a
smooth continuous interface between the two (grey areas)
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tions.

2.4 The Allen-Cahn and Cahn-Hilliard Equations

In this section we use the above theories to derive two equations that

are central to phase-field modelling, the non-conservative Allen-Cahn

equation and the conservative Cahn-Hilliard equation. Consider a fixed

domain Ω ⊂ Rd. For all points x ∈ Ω, we introduce a phase-field pa-

rameter φ(x) and for the canonical free energy Ψ(φ,∇φ) we define an

energy functional E to be

E [φ] =
∫

Ω
Ψ dV. (2.4.1)

We assume that density is constant with ρ(x, t) = 1, and that there is no

velocity field v = 0. With these assumptions, the mechanical version of

the second law of thermodynamics, derived in Section 2.2.5, becomes

d
dt

∫
Ω

Ψ(φ,∇φ) dV =W(Ω)−D(Ω), (2.4.2)

for D(Ω) > 0. Assuming Ω is fixed, the time derivative can be moved

inside the integral, and so by using the chain rule we can write

d
dt

∫
Ω

Ψ dV =
∫

Ω

(
∂φΨφ̇ + ∂∇φΨ ˙(∇φ)

)
dV. (2.4.3)

Changing the order of the time and space derivatives in the second term

on the right hand side, and integrating this term by parts results in

d
dt

∫
Ω

Ψ dV =
∫

Ω

[
∂φΨ−∇ · (∂∇φΨ)

]
φ̇ dV +

∫
∂Ω

∂∇φΨφ̇ · n ds. (2.4.4)
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From this, we define the variational derivative µ of E as

µ =
δ

δφ

(∫
Ω

Ψ dV
)
= ∂φΨ−∇ · (∂∇φΨ). (2.4.5)

The derivation for both the Allen-Cahn and Cahn-Hilliard equations

start with the Ginzburg-Landau energy functional, given by

E [φ] =
∫

Ω
Ψ(φ,∇φ) dV =

∫
Ω

(
W(φ) +

ε2

2
|∇φ|2

)
dV, (2.4.6)

where W(φ) is a double well function with minima corresponding to

the pure phases of φ and ε describes the width of the diffuse boundary

between the phases.

2.4.1 Allen-Cahn Equation

The derivation for the Allen-Cahn equation starts by postulating the

mass balance
∂φ

∂t
= −R, (2.4.7)

which, along with (2.4.5) can be substituted into (2.4.4) to give

d
dt

∫
Ω

Ψ dx =
∫

Ω
−µR dx +

∫
∂Ω

∂∇φΨφ̇ · n ds. (2.4.8)

Identifying the boundary integral term to be W(Ω) and
∫

Ω µRdx to be

D(Ω) in (2.4.2), we postulate the constitutive class

R = R̄(φ,∇φ, µ), (2.4.9)

which is restricted by the requirement of dissipation: 0 6 D(Ω) =∫
Ω µR̄(φ,∇φ, µ). Therefore, the thermodynamically consistent choice,

R̄ = m(φ)µ (2.4.10)
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for some function m(φ) > 0 clearly satisfies the dissipation condition

D(Ω) > 0, as ∫
Ω

µR dx =
∫

Ω
m(φ)µ2 dx > 0. (2.4.11)

It can be noted here that other dependencies for the mobility, such as

m(φ,∇φ) > 0 would also be consistent with the dissipation condition,

and it is the choice of the modeller to decide which dependencies best

describe their specific scenario.

Using the energy functional chosen in (2.4.6), it follows that

µ = W ′(φ)− ε2∆φ, (2.4.12)

hence the choice for R̄ given in (2.4.10), the final Allen-Cahn equation is

derived and is given as

∂φ

∂t
= −m(φ)

(
W ′(φ)− ε2∆φ

)
. (2.4.13)

Here, the Lapacian operator is defined as ∆ = ∇ · ∇.

2.4.2 Cahn-Hilliard Equation

The Cahn-Hilliard equation is conservative, and therefore its derivation

starts with the general conservation equation with no source or sink term

[54]:
∂φ

∂t
= −∇ · j. (2.4.14)

Again, substituting this into (2.4.4), we obtain

d
dt

∫
Ω

Ψ dx =
∫

Ω
−µ∇ · j dx +

∫
∂Ω

∂∇φΨφ̇ · n ds. (2.4.15)

Now, we postulate the constitutive class

j = j̄(φ,∇φ, µ,∇µ). (2.4.16)
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Integrating by parts the first term on the right hand side, we obtain

d
dt

∫
Ω

Ψ dx =
∫

Ω
j · ∇µ dx +

∫
∂Ω

(
−µj + ∂∇φΨφ̇

)
· n ds. (2.4.17)

Again, identifying the boundary integral to beW(Ω) and−
∫

Ω j · ∇µ dx

to be D(Ω) in (2.4.2), then it is clear that a choice of

j̄ = −m(φ)∇µ (2.4.18)

for a function m(φ) > 0 satisfies the energy dissipation requirementD >

0, as

−
∫

Ω
j̄ · ∇µ dx =

∫
Ω

m(φ)|∇µ|2 > 0. (2.4.19)

Thus, using the energy functional (2.4.6) and the choice for j̄ made in

(2.4.18), the final Cahn-Hilliard model is given by

∂φ

∂t
= ∇ · (m(φ)∇(W ′(φ)− ε2∆φ)). (2.4.20)

The Allen-Cahn and Cahn-Hilliard models form the basis of many dif-

fuse interface models. Non-conservative phenomena such as solidifica-

tion [57] or evaporation of a liquid [58] can be modelled using Allen-

Cahn type equations, whereas conservative phenomena such as the sep-

aration of mixtures via spinodal decomposition [59, 60] often take the

form of the Cahn-Hilliard equation.

The above rational approach of deriving (a class of) models that are con-

sistent with thermodynamics, in this case consistent with the free en-

ergy dissipation inequality (2.4.2), will be fully extended to the case of

iso-thermal and non-isothermal solidifying thin films in Chapters 4-7.
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Numerical Methods for Phase

Field Simulations

In this chapter, we investigate numerical methods for gradient flow phase-

field type models. It forms a bridge to the next chapters, in which we

derive families of models for thin film dynamics and the solidification

of a liquid using energetic considerations from the first principles of the

conservation of mass and the second law of thermodynamics. Some of

the numerical methods detailed here are used in Chapter 8 to perform

simulations of some of the models. This section also reviews newly de-

veloped numerical methods [61–63] that have many benefits for gradient

flows.

3.1 Gradient-Flow Model

For a fixed domain Ω with boundary ∂Ω, and using the standard energy

functional (2.4.1), the gradient flow under consideration is the Cahn-

Hilliard equation derived in the previous chapter:

∂h
∂t

= ∇ · [m(h)∇µ] , (3.1.1)

µ = W ′(h)− σ2∆h, (3.1.2)
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for some quantity h(x, t), where m(h) > 0 is a positive function known

as the mobility, µ is the variational derivative of the chosen energy func-

tional E(h), and the Laplacian operator ∆ is defined by ∆ = ∇ · ∇. The

model is subject to the choice of boundary conditions

∇h · n = ∇µ · n = 0 (3.1.3)

on ∂Ω, where n is the outward pointing unit normal to ∂Ω, and an initial

condition

h(x, 0) = h0(x) ∀x ∈ Ω. (3.1.4)

Under these conditions, it is easy to show that

d
dt
E(h) = d

dt

∫
Ω

[
W(h) +

1
2

σ2|∇h|2
]

dx

=
∫

Ω

[
W ′(h)

∂h
∂t
− σ2∆h

∂h
∂t

]
dx

=
∫

Ω
µ∇ · (m(h)∇µ) dx

=−
∫

Ω
m(h)|∇µ|2 dx 6 0,

(3.1.5)

thus the model is energy dissipative.

3.2 Numerical Methods for Simulations

In this section, spatial and time discretisations used for simulating gra-

dient flows are described in more detail.

3.2.1 Spatial Discretisation

A linear finite element scheme [50] can be used to discretise equations

(3.1.1) and (3.1.2) in space. To do this, the equations are multiplied by a

test function, integrated over the domain Ω and integrated by parts.
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The weak form of the equations is then to find h ∈ U and µ ∈ V such

that

〈ht(t), v1〉 =
∫

Ω
m(h(t))∇µ(t) · ∇v1 dx, (3.2.1)

∫
Ω

µ(t)v2 dx =
∫

Ω
W ′(h(t))v2 dx + σ2

∫
Ω
∇h(t) · ∇v2 dx, (3.2.2)

∫
Ω

h(0)v3 dx =
∫

Ω
h0v3 dx, (3.2.3)

for all v1, v2 ∈ H1(Ω), v3 ∈ L2(Ω) and almost every t ∈ (0, T ] where

L2(Ω) is the space of functions f over Ω such that
∫

Ω | f |
2 dx is finite,

H1(Ω) := {u : Ω → R|u ∈ L2(Ω), ∇u ∈ L2(Ω)} and T is the end

of the time interval. The solution spaces V and U are defined as V =

L2(0, T ; H1(Ω)) := {v(x, t)|
∫ T

0

∫
Ω(|v|

2 + |∇v|2) dx < ∞} and U := {u :

(0, T ] → R|u ∈ L2(0, T ; H1(Ω)) and ut ∈ L2(0, T ; H1(Ω)′)}. H1(Ω)′ is

the dual space of H1(Ω). Here we have employed the boundary condi-

tions given in (3.1.3). This problem is known to be well posed [64].

For Ω ∈ R2, by splitting the domain into triangular elements, and defin-

ing ϕi(x) to be the standard hat function at node i (the continuous, piece-

wise linear function that takes the value 1 at node i and 0 at all other

nodes), the weak form can be discretised by taking the test functions

v1 and v2 to be ϕi and approximating h(x, t) and µ(x, t) by h(x, t) ≈

∑n
j=1 ξ j(t)ϕj(x) and µ(x, t) ≈ ∑n

j=1 ηj(t)ϕj(x). This discretisation results

in the system Mξt = −Kmη

Mη = N(ξ) + σ2Kξ.
(3.2.4)

M and K are the mass matrix and the stiffness matrix respectively, de-

fined such that Mij =
∫

Ω ϕj ϕi dV and Kij =
∫

Ω∇ϕj · ∇ϕi dV, Km is the

stiffness matrix given by Kmij =
∫

Ω m(h)∇ϕj · ∇ϕi dV and N is a vector

dependent on ξ(t).
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3.2.2 Convex Splitting Time Discretisation

Key aspects to consider when choosing a time-stepping scheme for gra-

dient flow are whether the scheme keeps energy dissipation, the order

of its accuracy, its efficiency and how easy the scheme is to implement

[65]. When choosing a time discretisation, it is desirable that the method

demonstrates energy stability, that is

E(hn+1) 6 E(hn), (3.2.5)

with hi being the height function of the film at the ith time step.

A groundbreaking method to discretise in time is based on convex-splitting

[46, 66], which splits the non-linear free-energy density W(h) into a con-

vex part and a concave part:

W(h) = W+(h) + W−(h), (3.2.6)

with W ′′+(h) > 0 and W ′′−(h) 6 0. The convex part is dealt with implicitly,

and the concave part is dealt with explicitly. The mobility function m(h)

is also dealt with explicitly as this does not affect the energy stability, as

will be shown.

The time discretisation for equations (3.1.1) and (3.1.2) is then given by

hn+1 − hn

τ
=
[
∇ ·m(hn)∇µn+1

]
, (3.2.7)

µn+1 = W ′+(h
n+1) + W ′−(h

n)− σ2∆hn+1, (3.2.8)

where τ is the positive time step size. In this scenario, a constant τ is

considered, however the arguments can be extended for varying time

step sizes.

Arguments showing that the convex splitting method is energy stable for

the Cahn-Hilliard equation (m(h) ≡ 1 in equation (3.1.1)) are presented
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in [54]. These arguments are now followed for proving the energy sta-

bility for the method when applied to equations (3.1.1), (3.1.2). In order

to satisfy (3.2.5), we consider

E(hn+1)− E(hn) =
∫

Ω

[
W+(hn+1) + W−(hn+1) +

1
2

σ2|∇hn+1|2

−W+(hn)−W−(hn)− 1
2

σ2|∇hn|2
]

dx.
(3.2.9)

Consider now the Taylor expansion of W+(hn) about hn+1 with remain-

der term:

W+(hn) = W+(hn+1)+W ′+(h
n+1)(hn− hn+1)+

1
2

W ′′+(h
n+ζ1)(hn− hn+1)2,

(3.2.10)

which can be rearranged to obtain

W+(hn+1)−W+(hn) = W ′+(h
n+1)(hn+1− hn)− 1

2
W ′′+(h

n+ζ1)(hn+1− hn)2.

(3.2.11)

Similarly, taking a Taylor expansion of W−(hn+1) about hn with remain-

der term gives

W−(hn+1)−W−(hn) = W ′−(h
n)(hn+1 − hn) +

1
2

W ′′−(h
n+ζ2)(hn+1 − hn)2.

(3.2.12)

In the above Taylor expansions, ζi ∈ (0, 1) for i = 1, 2 and hn+ζi is some

value between hn and hn+1.

Substituting (3.2.11), (3.2.12) into (3.2.9) gives

E(hn+1)− E(hn) =
∫

Ω

[
W ′+(h

n+1)(hn+1 − hn)− 1
2

W ′′+(h
n+ζ1)(hn+1 − hn)2

+ W ′−(h
n)(hn+1 − hn) +

1
2

W ′′−(h
n+ζ2)(hn+1 − hn)2

+
1
2

σ2(|∇hn+1|2 − |∇hn|2
)]

dx.

(3.2.13)
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From (3.2.8) it can be seen that W ′+(hn+1) + W ′−(hn) = µn+1 + σ2∆hn+1,

and by using the convex and concave properties of W+(h) and W−(h)

respectively then

E(hn+1)− E(hn) 6
∫

Ω

[ (
µn+1 + σ2∆hn+1

) (
hn+1 − hn

)
+

1
2

σ2(|∇hn+1|2 − |∇hn|2
)]

dx
(3.2.14)

=
∫

Ω

[
µn+1

(
hn+1 − hn

)
+ σ2∆hn+1hn+1 − σ2∆hn+1hn

+
1
2

σ2(|∇hn+1|2 − |∇hn|2
)]

dx.
(3.2.15)

Integrating by parts the second and third terms and making use of the

natural boundary conditions given in (3.1.3), the right hand side of the

above inequality becomes

∫
Ω

µn+1
(

hn+1 − hn
)

dx− 1
2

σ2||∇
(

hn+1 − hn
)
||2, (3.2.16)

where || · || represents the standard L2 norm given by || f ||2 =
∫

Ω | f |
2dx.

The final step is to consider the integral term in (3.2.16). Noting that

hn+1 − hn = τ∇ ·
[
m(hn)∇µn+1

]
(3.2.17)

from (3.2.7), the integral becomes

∫
Ω

µn+1
(

hn+1 − hn
)

dx = τ
∫

Ω
µn+1∇ ·

[
m(hn)∇µn+1

]
. (3.2.18)

Integrating by parts the right hand side and again using the natural

boundary conditions (3.1.3), the final result is obtained:

∫
Ω

µn+1
(

hn+1 − hn
)

dx = −τ
∫

Ω
m(hn)|∇µn+1|2 dx 6 0, (3.2.19)

recalling that τ > 0 and m(h) > 0 ∀h.
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Combining (3.2.14), (3.2.16) and (3.2.19), the final result

E(hn+1)− E(hn) 6
∫

Ω
µn+1

(
hn+1 − hn

)
dx− 1

2
σ2||∇

(
hn+1 − hn

)
||2

= −τ
∫

Ω
m(hn)|∇µn+1|2 dx− 1

2
σ2||∇

(
hn+1 − hn

)
||2

6 0,

(3.2.20)

and so condition (3.2.5) is met, and the convex splitting scheme is un-

conditionally energy stable for systems of the form (3.1.1), (3.1.2). The

first term on the right hand side of (3.2.20) is the physical dissipation as

it is the discretised version of that found in (3.1.5). The second term is

artificial dissipation.

In [54], the claim is made that, if there exists some LW > 0 such that

|W ′′(h)| 6 LW ∀h then it is possible to perform a splitting with

W+(h) =
LW

2
h2. (3.2.21)

This is a useful property as with this splitting, the implicitly handled

terms in the scheme are linear.

3.2.3 Backwards Euler Time Discretisation

A naive alternative scheme to the Convex Splitting method for discreti-

sation in time is the fully implicit Backwards Euler method, as it is not

unconditionally stable. Here, we demonstrate that it is only condition-

ally energy stable. The discretisation is given by

hn+1 − hn

τ
=
[
∇ ·m(hn+1)∇µn+1

]
, (3.2.22)

µn+1 = W ′(hn+1)− σ2∆hn+1. (3.2.23)
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As with the convex splitting method, we take the Taylor expansion of

W(hn) about hn+1 and rearrange to give

W(hn+1)−W(hn)−W ′(hn+1)(hn+1 − hn) = −1
2

W ′′(hn+ξ)(hn+1 − hn)2.

(3.2.24)

By insisting that W ′′(ζ) > −kW ∀ζ for some positive kW , we obtain

W(hn+1)−W(hn) 6W ′(hn+1)(hn+1 − hn) +
kW

2
(hn+1 − hn)2. (3.2.25)

Now, by considering the energy in a similar way to (3.2.9), we obtain

E(hn+1)− E(hn) 6
∫

Ω

[
kw

2
(hn+1 − hn)2 + W ′(hn+1)(hn+1 − hn)

+
σ2

2

(
|∇hn+1|2 − |∇hn|2

) ]
dx

6
∫

Ω

kw

2
(hn+1 − hn)2 dx− τ

∫
Ω

m(hn+1)|∇µn+1|2 dx

− σ2

2
||∇

(
hn+1 − hn

)
||2

(3.2.26)

by the same arguments made for convex splitting.

We now look to bound the first term. By using (3.2.22),

∫
Ω
(hn+1− hn)2 dx = τ

∫
Ω
∇ ·
(

m(hn+1)∇µn+1
)
(hn+1− hn) dx. (3.2.27)

Integrating by parts the right hand side and applying the Cauchy-Schwarz

inequality, one sees that

∫
Ω
(hn+1 − hn)2 dx 6 τ||

√
m(hn+1)∇µn+1|| ||

√
m(hn+1)∇(hn+1 − hn)||,

(3.2.28)
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and finally, by applying Young’s inequality, that

∫
Ω
(hn+1 − hn)2 dx 6

τ

2δ

∫
Ω

m(hn+1)|∇µn+1|2 dx

+
τδ

2

∫
Ω

m(hn+1)|∇(hn+1 − hn)|2 dx,
(3.2.29)

∀ δ > 0. Substituting this into (3.2.26) and choosing δ = kW/4, it can be

seen that

E(hn+1)− E(hn) 6
k2

Wτ

16

∫
Ω

m(hn+1)|∇(hn+1 − hn)|2 dx

− σ2

2

∫
Ω
|∇(hn+1 − hn)|2 dx

(3.2.30)

6

(
k2

Wτ

16
||m(hn+1)||∞ −

σ2

2

)
||∇(hn+1 − hn)||2, (3.2.31)

where || · ||∞ signifies the maximum value of the function over the do-

main Ω. From this, it can be deduced that the Backwards Euler method

is energy stable if

τ 6
8σ2

k2
W ||m(hn+1)||∞

, (3.2.32)

and thus the scheme is only conditionally energy stable. As energy sta-

bility is key for a numerical scheme when handling phase field type

models, this method can be discarded.

3.2.4 IEQ and SAV Methods

While the convex splitting method described above is unconditionally

energy stable, it is only first-order, and while it is possible to construct

a second-order scheme on a case-by-case basis, a general formulation of

second-order convex splitting schemes is not available [63].

A much more recent approach from 2013 [67] is that of invariant energy

quadratization (IEQ) which can be applied in scenarios where the free-

energy density is merely bounded from below, that is ∃ C0 > 0 such
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that W(h) > −C0 ∀h. One then introduces a new variable q(t, x; h) =√
W(h) + C0, and write the system of equations (3.1.1), (3.1.2) as

∂h
∂t

= ∇ · [m(h)∇µ] , (3.2.33)

µ =
q√

W(h) + C0
W ′(h)− σ2∆h, (3.2.34)

qt =
W ′(h)

2
√

W(h) + C0
ht. (3.2.35)

This can then be time-discretised using the following first order scheme:

hn+1 − hn

τ
= ∇ ·

[
m(hn)∇µn+1

]
, (3.2.36)

µn+1 =
qn+1√

W(hn) + C0
W ′(hn)− σ2∆hn+1, (3.2.37)

qn+1 − qn

τ
=

W ′(hn)

2
√

W(hn) + C0

hn+1 − hn

τ
, (3.2.38)

which is linear and is shown to be unconditionally energy stable in [67].

An advantage of this scheme is that it can be easily extended to uncon-

ditionally energy stable second-order BDF schemes. It requires W(h) to

be bounded from below, which is not always the case, and it involves

solving linear equations with complicated variable coefficient [63]. In

addition, for a system with multiple components, the IEQ scheme leads

to a coupled system.

The scalar auxiliary variable (SAV) approach [68] is obtained with a small

adaption to the IEQ scheme. This scheme addresses the above discussed

drawbacks of the IEQ scheme. Instead of requiring W(h) is bounded

from below, the scheme only requires that E1(h) :=
∫

Ω W(h) dx is bounded

from below: E1(h) > −C0. This assumption is valid for any physically

sound free energy. Now a scalar auxiliary variable r(t) =
√

E1(h) + C0
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is introduced, and the system can be rewritten as

∂h
∂t

= ∇ · [m(h)∇µ] , (3.2.39)

µ =
r(t)√

E1(h) + C0
W ′(h)− σ2∆h, (3.2.40)

rt =
1

2
√

E1(h) + C0

∫
Ω

W ′(h)ht dx. (3.2.41)

The first order scheme is then

hn+1 − hn

τ
= ∇ ·

[
m(hn)∇µn+1

]
, (3.2.42)

µn+1 =
rn+1√

E1(hn) + C0
W ′(hn)− σ2∆hn+1, (3.2.43)

rn+1 − rn

τ
=

1
2
√

E1(hn) + C0

∫
Ω

(
W ′(hn)

hn+1 − hn

τ

)
dx. (3.2.44)

Under a second-order BDF, the SAV scheme is also unconditionally en-

ergy stable [63]. For single component gradient flows, at each time step

only linear equations with constant coefficients require solving, and for

multi-component flows, at each time step decoupled linear equations

with constant coefficients (one for each component) require solving, mak-

ing the scheme very efficient [65].

In this thesis, we will primarily be using linear finite elements for the

spatial discretisation and the convex splitting scheme described in Sec-

tion 3.2.2 for time stepping, although the more advanced schemes are

certainly applicable.
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CHAPTER 4

Isothermal Thin Film Dynamics

In this Chapter we provide the rational derivation for an elementary

class of thin film models. This derivation assumes an isothermal situ-

ation, and is only based on mass conservation and a free-energy dissipa-

tion inequality (hence a mechanical version of the second law of thermo-

dynamics). 1

Before presenting the derivation of the new models, we first present in

Section 4.1 elementary models for nucleation and growth of holes in thin

films, and in Section 4.2 classical PDE models for thin film dynamics

based on asymptotics and gradient-flow dynamics. We present our ra-

tional framework in Section 4.3 which ends with a new class of models.

It is furthermore demonstrated that the classical PDE models fit with the

derived class. We also present some numerical examples for hole growth

in a one and two dimensional thin film using the techniques described

in Chapter 3.

1Section 4.3 is based on the publication [1], which has been slightly edited to fit in
line with the notation in this thesis.
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4.1 Nucleation and Growth of Holes in Thin Films

In this section we discuss the connection between the processes of hole

nucleation (when holes form) and dewetting. Nucleation and growth of

holes can occur in thin films as deposition techniques such as spin coat-

ing are very rarely stable, especially if prepared on non-wettable surfaces

[35]. Reiter performed a series of experiments using thin polystyrene

films coated on a silicon substrate to investigate the effects of film thick-

ness on hole growth [69]. Film samples of less than 100nm were used,

as it was shown in [70] that these films are unstable. The work considers

different annealing times and temperatures.

Several samples of the same thickness were heated at the same tempera-

ture for different lengths of time. It was found that, as long as the holes

did not coalesce, the number of defects remained constant and only the

hole diameter increased. This implies that hole nucleation did not oc-

cur during the heating phase, and instead film break up (via spinodal

decomposition) and hole growth occur as two separate phases. Further-

more, the experiments showed that more holes nucleate in thinner films.

This is shown in Figure 4.1.

Srolovitz and Safran indicate that ways to prevent the film from dewet-

ting include modifying the conditions so the film is thermodynamically

stable, eliminating defects which lead to formation of large, substrate in-

tersecting perturbations and decreasing the rate at which the holes grow

[71]. However it is noted that these solutions are not always possible in

every scenario.

4.1.1 Simple Hole Growth Models

A nice but simple model for hole growth is by Burlakov et al. [72], who

derived a simple model for describing the evolution of holes in thin films

over time to obtain a basic understanding of the dewetting process. The
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Figure 4.1: Double log plot showing the average number of initial holes
per 104µm2 (NH) as a function of film thickness h, taken di-
rectly from [69].

model is derived from an energetic perspective, and is fitted to data ac-

cumulated in [14].

Srolovitz and Safran were among the first to consider the growth of holes

in a thin film from this perspective [73]. They built on work by Mullins

[74] in which it was shown via linear analysis that all small perturbations

to film thickness will decay and the film will remain flat. They claim that

this result is counter-intuitive from an energetic viewpoint as it is well

documented that for a finite film the equilibrium shape is a spherical cap

when the surface energy is isotropic [73]. Srolovitz and Safran explain

this by claiming that substrate effects can only be studied with a nonlin-

ear analysis, as perturbations must be large enough to rupture the film.

By considering the difference in surface energy (energy interactions be-

tween the liquid film and air, and the film and substrate), considering

the small slope approximation, and minimising this energy, they de-

duce that there exists a threshold radius rc for every individual scenario.

Whether a hole with initial radius r0 grows or shrinks depends on the

relationship between r0 and rc.

Four major assumptions are made: that all holes can be considered as
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Figure 4.2: A diagram of the geometry considered in [72].

cylindrical in shape and never impinge on each other, nucleation does

not take place during the hole growth phase, elastic stresses in the film

are fully relaxed and all mass lost via evaporation is treated the same.

The work considers a flat film with N cylindrical holes sitting on a flat

solid substrate with the area L× L, as shown in Figure 4.2. The surface

and interface energy E is then given by

E(R1, . . . , RN) = γF

(
2πh

N

∑
k=1

Rk + L2 − π
N

∑
k=1

R2
k

)

+γI

(
L2 − π

N

∑
k=1

R2
k

)
+ γSπ

N

∑
k=1

R2
k,

(4.1.1)

where h is the film thickness, γF, γS and γI represent the surface energies

of the film, substrate and film-substrate interface respectively, and Ri

is the radius of hole i. Assuming a gradient flow of energy, the time

evolution of the holes’ radii is given by

dRi

dt
= −Γ

∂E
∂Ri

= −2πΓ (γFh− Ri (γF + γIS)) , (4.1.2)

where γIS = γI − γS and Γ is the kinetic constant. This can be rewritten

as
dRi

dt
= A(Ri − Rc), (4.1.3)

where A is a positive constant and Rc = h/(1 + γIS/γF) is the critical
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Figure 4.3: Contour plot of surface coverage as a function of initial film
thickness and annealing temperature taken directly from
[72]. A normal distribution was used for initial hole size.
The dotted line represents 100oC.

radius. As predicted by [71, 73], this implies that hole growth depends

on a critical radius; a hole with Ri > Rc will grow while a hole with

radius Ri < Rc will shrink.

Given the above model of hole growth, it is possible to predict sur-

face coverage given additional assumptions on the initial distribution

of holes and the effect of evaporation. Starting with an initial Gaussian

distribution of initial radii for the holes, assuming that the proportion of

covered substrate to uncovered substrate is much less than 1, and cali-

brating the model to data collected in [14], Burlakov et al. obtained the

results in Figure 4.3. The results show that for good surface coverage,

very thin or very thick films must be used. However, the accuracy of the

model depends on the accuracy of the experimental data.

Simple models such as those described above have many advantages:

they tend to reproduce the proper qualitative behaviour, identify the im-

portant variables and indicate the manner in which these variables scale

[73]. However while models such as that described in [72] may give

accurate figures for the final percentage of surface covered by the film,
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they offer minimal insight into realistic dynamics of film morphology,

and give no indication of the distribution of the uncovered areas.

4.2 PDE Models Describing the Evolution of Thin

Films

In this chapter, classical approaches for deriving PDE models for describ-

ing the dynamics of a non-evaporating, dewetting thin film on a solid flat

substrate are discussed. Both an asymptotic approach and an energetic

approach are considered. The standard PDE model for thin films was

developed by Burelbach et al. [37], and is given by

ht +
(

h−1hx

)
x
+
(

h3hxxx

)
x
= 0, (4.2.1)

where h(x, t) is the height of the film at point x at time t, and hx = ∂h/∂x.

Next follows the derivation of (4.2.1).

4.2.1 Classical Thin-Film Modeling

The classical asymptotic approach to thin film modeling was reviewed

by Burelbach et al. in 1988 [37]. Their model considers a thin liquid film

on a flat, solid substrate with a gaseous vapour above, as depicted in Fig-

ure 4.4. It is assumed that the layer is thin enough for gravity effects to be

negligible and for van der Waals forces to take effect. It is also assumed

that evaporation occurs at the vapour-liquid interface z = h(x, t) where

h represents the thickness of the film. Mass loss, momentum transfer and

energy consumption occur at this interface. The model was constructed

using a single-phase approach, neglecting the dynamics of the vapour

layer above the liquid film, with a long-wave approximation, and has

been widely used in literature for modeling thin film evolution.
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Figure 4.4: Configuration of a thin liquid film on a solid substrate in
two dimensions [37]. u and w are velocities in the x and z
directions respectively, n and t are the unit normal and tan-
gent, and J is the evaporative flux across the liquid-vapour
interface.

We now present the derivation of the single-phase model in (4.2.1) for

the case of d = 2, although it should be noted that the derivation can

easily be extended into higher dimensions. The derivation begins by

considering the incompressible Navier-Stokes equations with an addi-

tional body force fb to represent the van der Waals forces, along with a

suitable energy equation:
ρ(vt + v · ∇v) = −∇p + ν∆v−∇ fb

∇ · v = 0

θt + v · ∇θ = κ∆θ,

(4.2.2)

where v = (u, w) is the velocity vector in the x and z directions respec-

tively, t is time, ρ is the density, p is pressure, ν is viscosity, T is temper-

ature and κ is the thermal diffusivity.

At the solid-liquid interface, the no slip and no penetration conditions,

v(z) = 0 at z = 0, are used, and it is assumed that the liquid is heated

from below, so that at this boundary there is a constant temperature θ =
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θH.

At the vapour-liquid interface five conditions are required. These are the

jump mass balance,

J = ρ(v− vI) · n = ρV(vV − vI) · n, (4.2.3)

the jump energy balance,

J
[

L +
1
2

[
(vV − vI) · n

]2
− 1

2

[
(vV − vI) · n

]2
]
+ k∇θ · n− kV∇θV · n

+2ν(τ · n) · (v− vI)− 2νV(τV · n) · (vV − vI) = 0,

(4.2.4)

the normal stress,

J(v− vV) · n− (T− TV) · n · n = (∇ · n)σ(θ), (4.2.5)

the tangential stress,

J(v− vV) · t− (T− TV) · n · t = −∇σ(θ) · t, (4.2.6)

and a constitutive equation for the flux across the boundary,

J =

(
αρV L
θ3/2

S

)(
MW

2πRg

)1/2

(θ I − θS), (4.2.7)

derived in [75]. J is the mass flux at the interface (due to evaporation),

L is the latent heat of vaporisation, k is the thermal conductivity, τ is

the rate of deformation tensor, T = −pI + 2ντ is the stress tensor with I

representing the identity matrix, θS is a reference temperature, MW is the

molecular weight, Rg is the universal gas constant and α is the accom-

modation coefficient. σ(θ) represents surface tension and is assumed to

be linear with respect to temperature. In these equations, the superscript

V refers to the vapour, a superscript I refers to the interface and no su-
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perscript refers to the liquid.

The single-phase approach utilised assumes that density ρ, viscosity ν

and thermal conductivity k are negligible in the vapour phase. Formally

this can be written as taking the limits

ρV

ρ
,

νV

ν
,

kV

k
→ 0. (4.2.8)

Finally, it is assumed that the pressure in the vapour, pV = 0. Using

these interface conditions and assumptions, the model can then be non-

dimensionalised. Length is scaled by d0, the initial mean film thickness,

and time, velocity and pressure are scaled using viscous scales; d2
0/ν,

ν/d0 and ρν2/d2
0 respectively. The temperature difference θ− θS is scaled

on Θ = θH − θS and finally an evaporative timescale tE = Θρd2
0L/k is

introduced.

Following non-dimensionalisation a long-wave argument is employed

as detailed in [37], in which it is assumed that the gradients of h and

θ are small in the areas considered. In this work, periodic long wave

disturbances are considered, and a small wavenumber λ is defined. The

dependent variables are expanded in λ and lubrication theory is used to

truncate them to the appropriate order: u, J and θ = O(1), while w =

O(λ) as λ → 0 to preserve continuity, and p, fb = O(λ−1) as λ → 0 so

spontaneous rupture can be examined.

Combining the resulting series of equations gives the resultant PDE to

describe the evolution of an evaporating thin film:

ht + E(h + K)−1 + S(h3hxxx)x + {[Ah−1 + E2D−1(h + K)−3h3

+KMP−1(h + K)−2h2]hx}x = 0.
(4.2.9)

Here,

A =
A′

6πd0ρν2 (4.2.10)
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is a non-dimensionalised version of the dimensional Hamaker constant

A′,

P =
ν

κ
(4.2.11)

is the Prandtl number,

E =
kΘ
ρνL

(4.2.12)

is the evaporation number,

D =
3ρV

2ρ
(4.2.13)

is a parameter proportional to the ratio of vapour to liquid densities,

S =
σ0d0

3ρν2 (4.2.14)

is the non-dimensionalised surface tension, where σ0 is the surface ten-

sion at reference temperature θS,

M =
γΘd0

2ρνκ
(4.2.15)

is the Marangoni number where γ = −dσ/dθ, and

K =

(
kθ3/2

S
αd0ρV L2

)(
2πRg

MW

)1/2

(4.2.16)

is a measure of the degree of non-equilibrium at the interface.

Now, rather than having to solve a free boundary problem, one only

needs to solve the PDE given in equation (4.2.9). This model includes

effects from mass loss due to evaporation, vapour recoil (a force result-

ing from the expansion of the fluid as it changes from liquid to gas [76]),

thermocapillarity, long range molecular forces, surface tension and vis-

cous forces. To investigate the results, an isothermal case was considered
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Figure 4.5: Film profiles at different times for the isothermal case K = 0
up to the time of film rupture using an initial condition of
h(x̄, 0) = 1 + 0.1 sin(kM x̄). Taken directly from [37].

initially, by taking K = 0. This reduces the model to

ht̄ + (h−1hx̄)x̄ + (h3hx̄x̄x̄)x̄ = 0. (4.2.17)

by employing the scalings x̄ = (A/S)1/2x and t̄ = (A2/S)t and setting

the remaining non-dimensional parameters to 1. A numerical solution to

this model on the interval −π/kM < x̄ < π/kM, where kM is the max-

imising wavenumber of linear theory, in this case kM = 21/2, is shown in

Figure 4.5. An initial condition of h(x̄, 0) = 1 + 0.1 sin(kM x̄) was used.

The rupture time calculated lines up well with the result predicted in

[77].

The model proposed by Burelbach et al. has been used in many situa-

tions. Shklyaev and Fried added two terms to the model in order to ac-

count for the transport of energy along the liquid-vapour interface and

the influence of effective pressure accounting for vapour recoil [78]. This

is used to show that for molten metals consideration of the effective pres-

sure substantially affects the growth rate, indicating that the effective
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pressure has a stabilizing effect when acting on materials with parame-

ter values in the same range as molten metals.

Anderson and Davis [79] used lubrication theory to derive a model to

simulate the spreading of volatile liquid droplets on heated surfaces.

They employed the single-phase approach used by Burelbach to derive a

model for continuous films, as this effectively decoupled the liquid film

from the surrounding vapour. However, the model breaks down when

film rupture occurs and so modifications were made to account for con-

tact line dynamics.

The stability analysis of an evaporating or condensing film conducted

in [37] plays a major role in the work by Oron et al. [80] in which

macroscopic thin liquid films are studied in detail. Films acting solely

under gravity, films with van der Waals forces acting upon them, films

with temperature dependent properties and films on different geome-

tries such as a thick substrate or a cylinder have been considered, among

many others.

It is clear that the single-phase approach and non-dimensionalisation

techniques proposed by Burelbach et al. in [37] remain key ideas in thin-

film modeling. Aside from the limitations that the model breaks down

as h → 0 and therefore is not able to deal with film rupture and contact

line dynamics, the method has been the underlying key to many mod-

els considering a continuous thin film. Further, it has provided the base

for several works considering the rupture of thin films, and also films

dewetting on a substrate such as in [81–83].

4.2.2 Energetic Modeling Approach in Thin Films

A different method which can be employed to model thin-film flow is a

gradient flow technique, which is discussed in this section. The idea be-

hind this technique is to consider the energy of the system, and describe
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its evolution by insisting the energy dissipates.

In a 2011 review, Thiele [58] builds on works in [84] and proposes that,

for a standard free energy functional,

Ψ =
σ2

2
(∇h)2 + W(h), (4.2.18)

with total energy given by

E [h] =
∫

Ψ dA. (4.2.19)

The equation governing the time evolution of the thickness profile h(x, y, t)

of a thin film acting under the sole influence of capillary and wettability

is given by
∂h
∂t

= ∇.
[

m(h)∇δE
δh

]
, (4.2.20)

where m(h) = h3/3ν is the mobility factor assuming a Poiseuille flow

[58], and δE/δh is the variational derivative of the free energy functional

Ψ. This equation can be rewritten as

∂h
∂t

= −∇.
[

h3

3ν
∇
(

σ2∆h−W ′(h)
)]

, (4.2.21)

where ν is viscosity and W(h) is the free energy density. Similar models

have been used to simulate capillary waves [85], moving contact lines

[86] and droplets and nucleation [87].

4.3 Rational Derivation of Isothermal Thin-Film

Dynamics

In this section we derive a family of models describing the flow of a

thin film on a flat impermeable substrate using the rational techniques

described in Chapter 2. We proceed by showing that, by making specific
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choices within the derived family, the asymptotically derived model by

Burelbach et al. [37] and the model stated by Thiele [38] both fit within

this framework.

By considering the conservation of mass of a thin liquid film on a hori-

zontal substrate D ⊂ Rn−1 where n = 2 or 3, we derive an equation for

the height function of the film h(x, t) for x ∈ D, t ≥ 0.

We follow the standard argument of considering the horizontal flux j

across an arbitrary sub-domain of the thin film, Ω ⊂ D, such as pre-

sented in [39]. We consider the film to have constant density ρ = 1, and

that rate of mass lost across the interface of the film (due to evaporation

for example) is given by R. From the conservation of mass, we obtain

∂h
∂t

= −∇ · j− R. (4.3.1)

We next consider the mechanical version of the second law of thermody-

namics. We showed in Chapter 2 that in an isothermal case, the second

law reduces to
d
dt

∫
B
(Ψ + Ξ) dV 6W(B), (4.3.2)

where W (B) contains the work done on B and the free energy flux

through the boundary ∂B. The total energy density is given by E =

Ψ + Ξ, where Ψ is the Helmholtz free energy density of the system, and

Ξ is a function encapsulating energies from other sources, including ki-

netic energy and energy from magnetic fields [88]. The constitutive class

of Ψ, and the composition of Ξ are a choice to be made by the modeler.

For a simple scenario of a static film, we take Ξ ≡ 0. In this case, for the

subdomain Ω we write

d
dt

∫
Ω

Ψ dV =W(Ω)−D(Ω) (4.3.3)

for some functionD (Ω) > 0, which represents the dissipation of the free
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energy.

4.3.1 Constitutive Dependence

We consider the Helmholtz free energy density Ψ to depend on h and its

gradient, that is to say

Ψ = Ψ̄ (h,∇h) , (4.3.4)

and the total energy functional is given by

E(Ω) :=
∫

Ω
Ψ̄ (h,∇h) dx. (4.3.5)

The variational derivative µ of F with respect to h is defined as

µ =
δE
δh

= ∂hΨ̄−∇ · (∂∇hΨ̄) . (4.3.6)

We now define a constitutive class for j and R in equation (4.3.1) by pos-

tulating that these variables are dependent on h, the variational deriva-

tive µ, and the gradients of these variables. Defining Γ := {h,∇h, µ,∇µ},

this can be written

j = j̄(Γ), (4.3.7)

R = R̄(Γ). (4.3.8)

Having set up the constituent classes for the dependent variables in the

model, we now derive constraints such that the second law of thermo-

dynamics (4.3.3) holds.

52



CHAPTER 4: ISOTHERMAL THIN FILM DYNAMICS

4.3.2 Deriving Constraints

Using that Ψ = Ψ̄(h,∇h) and that Ω is not time-dependent, the left hand

side of (4.3.3) equals

d
dt

∫
Ω

Ψ̄ (h,∇h) dV =
∫

Ω

(
∂hΨ̄ḣ + ∂∇hΨ̄ · ˙(∇h)

)
dV, (4.3.9)

where ∂h is the partial derivative with respect to h and ḣ is the time

derivative of h. Switching the time and space derivatives in the last term

of (4.3.9) results in

d
dt

∫
Ω

Ψ̄ (h,∇h) dV =
∫

Ω

(
∂hΨ̄ḣ + ∂∇hΨ̄ · ∇ḣ

)
dV, (4.3.10)

which when integrating the second term on the right hand side by parts

gives

d
dt

∫
Ω

Ψ̄ (h,∇h) dV =
∫

Ω
∂hΨ̄ḣ dV−

∫
Ω

ḣ∇· (∂∇hΨ̄) dV +
∫

∂Ω
∂∇hΨ̄ḣ ·n ds.

(4.3.11)

Combining the integrals over Ω and using (4.3.6) results in

d
dt

∫
Ω

Ψ̄ (h,∇h) dV =
∫

Ω
ḣµ dV +

∫
∂Ω

∂∇hΨ̄ḣ · n ds. (4.3.12)

We can now substitute (4.3.1) into (4.3.12) to give

d
dt

∫
Ω

Ψ̄ (h,∇h) dV =
∫

Ω
(−∇ · j− R)µ dV +

∫
∂Ω

∂∇hΨ̄ḣ · n ds, (4.3.13)

and integrating by parts the term involving µ∇ · j results in

d
dt

∫
Ω

Ψ̄ dV = −
∫

Ω
(µR− j · ∇µ) dV +

∫
∂Ω

(
−µj + ∂∇hΨ̄ḣ

)
· n ds.

(4.3.14)

Comparing (4.3.14) to (4.3.3), we identify the domain integral to be the

dissipation D(Ω) and the boundary integral to beW(Ω), which are nat-

ural identifications, similar to the choices made in earlier works [89].
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Thus, a family of models that suitably describes the evolution of a thin

film on a solid substrate while ensuring energy dissipation is given by

∂h
∂t

+∇ · j̄ = −R̄, (4.3.15)

where j̄ and R̄ are chosen to be as in (4.3.7) and (4.3.8) and

µR̄− j̄ · ∇µ > 0, (4.3.16)

with µ = ∂hΨ̄−∇ · (∂∇hΨ̄).

4.3.3 Choices

Having derived a constraint on j̄ and R̄ we can make choices that satisfy

the constituent classes which ensure the restrictions are met. We make

the choices such that the constraint is satisfied term-wise. It is apparent

that making the choices

R̄ = k1(Γ)µ, (4.3.17)

and

j̄ = −k2(Γ)∇µ, (4.3.18)

with k1, k2 > 0 for all realistic scenarios satisfies (4.3.16). This can be

confirmed by substituting these choices into (4.3.16) to give

k1(Γ)µ2 + k2(Γ)|∇µ|2 > 0. (4.3.19)

A classical choice for the free energy density Ψ̄ which applies in this

scenario is

Ψ̄(h,∇h) = W(h) +
σ2

2
|∇h|2 , (4.3.20)

with corresponding variational derivative

µ = W ′(h)− σ2∆h, (4.3.21)
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where W(h) is a free energy function depending only on the height h,

and the second term represents energy due to variations in height, with

σ being the surface tension. Having made these choices, the final model

to describe the evolution of a thin liquid film on a solid substrate is given

by
∂h
∂t

= ∇ · [k2(Γ)∇µ]− k1(Γ)µ, (4.3.22)

µ = W ′(h)− σ2∆h. (4.3.23)

4.3.4 Connections

In this section, we show that the family of models described above is

consistent with existing models for thin film evolution when the modeler

makes particular choices for k1(Γ), k2(Γ) and W(h).

Thiele’s model [38] for a non-volatile case is given by

∂h
∂t

= ∇ ·
[

Mc(h)∇
δE
δh

]
, (4.3.24)

where Mc(h) > 0 is the mobility function for the thin film and δE/δh

is given in (4.3.6), with E given in (4.3.5). It is clear that this model fits

into the framework (4.3.22-4.3.23) with k1(Γ) = 0 and k2(Γ) = Mc(h),

and with these choices it is also clear that constraint (4.3.16) is satisfied,

implying the dissipation

D(Ω) =
∫

Ω
Mc(h)|∇µ|2 > 0. (4.3.25)

We now show that the model derived using asymptotic approaches by

Burelbach et al. [37] also satisfies these requirements. The equation for a

non-volatile case (k1(Γ) = 0) given in [37] is

∂h
∂t

+ S∇ ·
(

h3∇∆h
)
+∇ ·

([
Ah−1

]
∇h
)
= 0, (4.3.26)
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where A > 0 is a non-dimensionalised version of the Hamaker con-

stant and S > 0 is the non-dimensionalised surface tension. This can

be rewritten
∂h
∂t

= −∇ ·
[

Sh3

σ2 σ2∇∆h +
A
h
∇h
]

. (4.3.27)

Factoring out Sh3/σ2 results in

∂h
∂t

= −∇ ·
[

Sh3

σ2

(
σ2∇∆h +

Aσ2

Sh4 ∇h
)]

. (4.3.28)

Noting that for some function f (h) the chain rule gives∇ f (h) = f ′(h)∇h

then we can write
Aσ2

Sh4 ∇h = ∇
(
− Aσ2

3Sh3

)
, (4.3.29)

which can be substituted back into (4.3.28) to give

∂h
∂t

= ∇ ·
[

Sh3

σ2 ∇
(

Aσ2

3Sh3 − σ2∆h
)]

. (4.3.30)

It can be seen that by choosing

W(h) = − Aσ2

6Sh2 , (4.3.31)

in (4.3.23), and

k2(Γ) =
Sh3

σ2 (4.3.32)

in (4.3.22), noting that as h > 0 for all realistic situations then k2(Γ) > 0

also, the model derived asymptotically by Burelbach et al. fits within the

framework derived from first principles, with k1(Γ) = 0.

With these choices along with (4.3.17) and (4.3.18), the dissipation given

by

D(Ω) =
∫

Ω
µR̄− j̄ · ∇µ dV (4.3.33)

is given by

D(Ω) =
∫

Ω

Sh3

σ2 |∇µ|2 dV > 0, (4.3.34)
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for any realistic situation, and so the model is thermodynamically con-

sistent.

A point of interest here is that the so-called disjoining pressure Π(h) cho-

sen in the derivation of the model (4.3.26) is given by Π(h) = −kW ′(h) =

Ah−3 for constant k = 3S
σ2 , and so is directly proportional to −W ′(h), see

also [58].

4.3.5 Regularisation of the Asymptotic Model

A characteristic of model (4.3.26) is that it breaks down as the film rup-

tures since h−1 → ∞. In typical numerical simulations this breakdown

is observed by h becoming negative. To enable simulations to continue

past the point of rupture one can regularise the bulk free energy W(h)

and the mobility function m(h) = Sh3σ−2 as follows.

The dotted lines in Figure 4.6 show the non-regularised m(h) and W(h).

To regularise the mobility, we force m(h) = 0 for h ≤ 0 as depicted in

the top panel of Figure 4.6. To handle W(h), we choose a small ε > 0

and construct W(h) to be quadratic for h < ε, and remain defined as

in (4.3.31) for h ≥ ε. We require the minimum of W(h) to be at h = 0

and for the function to be continuous with a continuous derivative. The

regularised function is given by

W(h) =


1

6ε4 h2 − 1
3ε2 if h < ε,

−1
6

h−2 if h ≥ ε.

(4.3.35)

and is shown in the bottom panel of Figure 4.6.

To perform numerical simulations we use a linear finite element discreti-

sation in space for h and µ in (4.3.22) and (4.3.23) having set k1(Γ) = 0

in the former, employing homogeneous Neumann boundary conditions

and triangular elements for the case of n = 3. For the time discretisation
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we use a convex splitting method in which the non-linear term is split

as W(h) = W+(h) + W−(h) with W+(h) being convex and W−(h) be-

ing concave. It is shown in Chapter 3 that if W+(h) is treated implicitly

and W−(h) explicitly then the method is energy stable. In addition, it is

claimed in [54] that if ∃ LW > 0 such that |W ′′(h)| ≤ LW ∀h then there

exists a convex split with W+(h) = LWh2/2. This is a useful property as

it results in the implicit terms being linear, removing the need to use a

non-linear solver. Also, we use a semi-implicit treatment of the mobility

term m(h).

Figure 4.7 shows examples of numerical solutions for d = 2 (top panel)

and d = 3 (bottom panel). σ, S and A are taken to be 1. For n = 2,

ε = 0.1 and ∆t = 0.00032, with an initial condition of h(x, 0) = 1 −

0.1 cos(x/
√

2). For n = 3, ε = 0.5, ∆t = 0.025 and h(x, y, 0) = 1 −

0.05(cos(x/
√

2) + cos(y/
√

2)). The chosen initial conditions represent a

small perturbation in a flat film.

It should be noted here that this figure is a visual representation of the

physical effects of film rupture and dewetting, and the time taken for the

film to undergo this evolution is not intended to be realistic. Due to the

different choices made between the n = 2 and n = 3 cases (in particular

ε), the two graphs should not be directly compared in terms of timescale.

However, it is clear that in both cases the small perturbation in the film

grows until the film ruptures, at which point a hole forms and grows via

dewetting.

4.3.6 Conclusion

In this work a family of thermomechanically consistent models for pre-

dicting the evolution of a non-volatile thin liquid film on a flat substrate

was derived from mass conservation laws and the second law of thermo-

dynamics, and it was shown that existing models fit within this family.
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In particular, this allowed for a simple regularisation that can be applied

to modeling choices to better handle film rupture and investigate dewet-

ting of the film.

In [38, 58] more complex thin-film processes are described that require a

change in the energy functional W(h), but the general form of the equa-

tion remains unchanged. Similarly, Lyushnin et al. [90] postulate a dif-

ferent choice of W(h) to simulate fingering instabilities. Further, it can be

shown that other existing models, such as those developed in [91, 92] fit

the framework, covering a wide range of applications from introducing

a regime to account for slip to the growth of dry regions.
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Figure 4.6: Graphs of the original mobility m(h) (top) and free energy
W(h) (bottom), along with the regularised versions of these
functions, with ε = 0.1 in the regularised graph of W(h).
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Figure 4.7: Top: Simulation with n = 2 of the regularised asymp-
totic model showing film rupture in the domain D =
[−π
√

2, π
√

2]. Here, ∆t = 0.00032 and ε = 0.1. Bottom:
Simulation with n = 3 showing how a small perturbation
in a flat thin film can result in a hole forming. Only half
the domain D = [−π

√
2, π
√

2]× [0, π
√

2] is shown to visu-
alise the dewetted area and the final time of t = 6.25. Here,
∆t = 0.025 and ε = 0.5.
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CHAPTER 5

Solidification in a Bulk Fluid

The change of phase from a liquid to a solid is a complex problem to

model, but which has many important practical applications. An under-

standing of the solidification process helps to understand dendrite for-

mation during the solidification of a metal from its melt, and microseg-

regation during fusion welding of alloys. In addition, the rate at which

an evolving body solidifies has a large effect on its final morphology.

This chapter investigates the modelling of solidification in a bulk fluid.

A review of previous studies into this phenomenon is presented, before a

phase-field model for describing solidification is rigorously derived us-

ing the principles of rational continuum mechanics presented in Chapter

2. Finally, connections are made between this derived model and models

that already exist in the literature.

This chapter forms a basis for Chapter 7, in which the rational frame-

work derived in this chapter is extended to thin films.

5.1 Existing Work

Early models for solidification relied on a sharp boundary between the

solid and liquid phases of the material, with differential equations de-

scribing the diffusion of heat within the individual phases, with bound-
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ary conditions applied to the moving interface [93]. This posed major

issues, as the interface itself was unknown, resulting in models that are

very computationally expensive to simulate. The development of phase-

field modelling led to a change in focus for modelling solidification, as

this technique does not require the moving boundary to be tracked. In

this section we present the derivation of the sharp interface model, and

discuss in more detail the development and refinement of the diffuse

interface models commonly used in the literature.

5.1.1 Sharp Interface Model

The conventional sharp interface model for a pure substance solidify-

ing from its melt is driven by the diffusion of latent heat away from the

interface [94, 95]. Defining the thermal diffusion field to be

u =
θ − θM

k
, (5.1.1)

where θ is the temperature, θM is the melting temperature of the mate-

rial, and k is the ratio of the latent heat to the specific heat capacity, the

diffusion of the latent heat can be written

∂u
∂t

= D∆u, (5.1.2)

for some diffusion coefficient D. The first boundary condition, relating

to heat conservation, states that the normal growth velocity vn can be

written

vn = − [D∇u · n] , (5.1.3)

where n is the unit normal pointing outwards from the solid phase and

the square brackets represent the discontinuity across the boundary. The

second boundary condition states that the equilibrium temperature us at
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the interface can be written

us = −dκ − β(vn). (5.1.4)

Here d is proportional to the surface tension, κ is the sum of the principle

curvatures of the interface and the term β(vn) accounts for deviation

from the local equilibrium due to the movement of the interface. This is

often written as

vn = β−1(−dκ − us). (5.1.5)

The model, now completed, can theoretically be solved numerically. How-

ever, as Langer points out [96], the computational expense of solving

such a system is very large, particularly considering that β−1 can be

highly non linear in the majority of real cases. Langer proceeds to pro-

vide the derivation of a phase field model of which the previously-described

sharp interface model is a limiting case. The model is an adaption of

Halperin, Hohenberg and Ma’s ’model C’ [97], and the derivation is

summarised below.

5.1.2 Phase-Field Modelling

Let φ(x, t) be the phase-field, and define its equation of motion to be

∂φ

∂t
= −Γ

δF
δφ

(5.1.6)

for kinetic coefficient Γ and free energy F defined as

F[φ] =
∫ [K

2
|∇φ|2 + f (φ)− αuφ

]
, (5.1.7)

where f (φ) is a double well function with minima at the equilibrium

values of φ and gradient-energy coefficient K. The coupling coefficient

α can be calculated by considering the thermodynamic equilibrium. The
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temperature equation is just given as heat conservation.

Penrose and Fife [47] investigated the method applied in Halerpin et

al, and concluded that the treatment of the temperature variable was

ad hoc. Specifically, the phase-change equation was derived as if in an

isothermal setting, with the equation for the change of temperature be-

ing derived using other methods, such as by Fick’s law [48]. This results

in a model that is not strictly relaxational, and thus the model derived

may be considered to be thermodynamically inconsistent. The proposed

solution was, instead of initially stating the free energy functional Ψ, to

define an entropy functional to be used as a starting point.

To achieve this, Penrose and Fife start with the Legendre transform equa-

tions

f (θ, φ) = inf
e
[e− θη(e, φ)] , (5.1.8)

and

η(e, φ) = inf
θ

[
e
θ
− f (θ, φ)

θ

]
. (5.1.9)

Differentiating the latter of these equations with respect to φ, we can

write the energy density in the form

e =
∂( f (θ, φ)/θ)

∂(1/θ)
. (5.1.10)

Considering the standard form of the energy functional,

F =
∫

Ω
f (θ, φ) +

1
2

κ|∇φ|2 dx (5.1.11)

=
∫

Ω

(
inf

e
[e− θη(e, φ)] +

1
2

κ|∇φ|2
)

dx (5.1.12)

= inf
e

∫
Ω

(
e− θη(e, φ) +

1
2

κ|∇φ|2
)

dx (5.1.13)

= inf
e
(E [e]− θS [e, φ]) , (5.1.14)
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where the internal energy functional is given by

E[e] =
∫

Ω
e dx, (5.1.15)

and the entropy functional is given by

S[e, φ] =
∫

Ω
η − κ

2θ
|∇φ|2 dx. (5.1.16)

By making the assumption that κ/θ is constant, and differentiating (5.1.16)

with respect to time it can be seen that the variational derivatives of

S[e, φ] are given by
δS
δe

=
∂η

∂e
=

1
θ

(5.1.17)

and
δS
δφ

=
∂η

∂φ
+

κ

θ
∆φ =

1
θ

(
− ∂ f

∂φ
+ κ∆φ

)
. (5.1.18)

For conserved order parameters, one can now write

∂φ

∂t
= −∇ ·

(
Mθ∇

[
δS
δφ

])
, (5.1.19)

and for a non conserved parameter we write

∂φ

∂t
= Kθ

δS
δφ

. (5.1.20)

It is postulated that the energy density can be written in the form

e = u(θ)v(φ) + w(φ), (5.1.21)

with u(θ) strictly increasing. Combining this with (5.1.10) and integrat-

ing with respect to 1/θ one obtains the kinetic equation for φ to be

∂φ

∂t
= Kθ

(
−u1(θ)

θ
v′(θ)− w′(φ)

θ
+ s′0(φ) + κ1∆φ

)
, (5.1.22)
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where

u1(θ) = θ
∫

Ω
u(θ)d(1/θ), (5.1.23)

and s0(φ) is an as yet undefined function arising from the integration.

The equation for e is given by

∂e
∂t

= −∇ ·
(

M∇1
θ

)
, (5.1.24)

which can be combined with (5.1.21) to give

v(φ)
∂u
∂t
−
[
u(θ)v′(φ) + w′(φ)

] ∂φ

∂t
= −∇ ·

(
M∇1

θ

)
. (5.1.25)

The term in the square brackets is considered to represent the latent heat

of the phase transition. Through making the choices u(θ) = −1/θ, v(φ) =

1, w(φ) = −λφ for λ constant, and M = 1, these equations reduce to the

model formed by Halperin, confirming that this system of equations is

indeed thermodynamically consistent. The method of deriving a model

starting from the entropy functional as opposed to the free energy func-

tional has been used in many works. Notably, Wang et al. [57] used

this method to investigate the crystalisation of a pure substance from its

melt.

5.1.3 Adaptions to the Phase-Field Model

Fabrizio et al. [43] made two significant adaptions to this method. Firstly,

based off recommendations from [98, 99] for non-isothermal conditions,

the free energy functional should be multiplied through by a factor of

1/θ. Secondly, in the second law of thermodynamics, an additional term

is considered in the entropy flux to give

d
dt

∫
Ω

ρη dv > −
∫

Ω
∇ ·

(q
θ
+ k

)
dv +

∫
Ω

r
θ

dv. (5.1.26)
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The new k term accounts for entropy fluxes on the diffuse boundary

between the solid and the liquid phases.

One issue with both the Halperin model and the Penrose and Fife model

is that they rely on knowing either the free energy functional or the en-

tropy functional before the modelling process starts. In the next section,

we use the axioms from rational continuum mechanics from an unspec-

ified free energy functional. We then propose constituent classes for the

variables and employ the Coleman-Noll procedure to reduce the system

to a thermodynamically consistent class of models for the solidification

of a liquid.

5.2 Rational Derivation of a Model

In this section, we derive a family of thermodynamically consistent mod-

els for describing the solidification of a liquid in a non-isothermal bulk

setting from first principles, using the key laws detailed in Chapter 2. We

then make specific choices to reduce this family of models to the specific

cases derived by Halerpin and Penrose and Fife.

For a body of material B ⊂ Rd, we consider an arbitrary subset of the

material P ⊂ B, and introduce a phase-field parameter φ(x, t), which

takes the value of 1 if the material at x ⊂ P is purely liquid, 0 if it

is purely solid, and has a smooth transition between the values on the

boundary between the phases. We assume the density of the body is

constant in both liquid and solid phases with ρ = 1.

5.2.1 Deriving Constraints

For this scenario we require the first and second laws of thermodynam-

ics, given in general form in (2.2.31) and (5.1.26). We consider a fixed

body, and so Pt = P ∀t. As the volume being integrated over is not time
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dependent, the time derivative can be moved inside the integral, and by

applying the divergence theorem on the boundary term, we obtain

∫
P

∂e
∂t

dV = −
∫
P
∇ · q dV +

∫
P

r dv. (5.2.1)

where e(x, t), q(x, t) and r(x, t) are the the energy density, heat flux and

a source term respectively at point x at time t. Noting that P was chosen

arbitrarily, the equation for the change in internal energy of the material

is given by

ė = −∇ · q + r. (5.2.2)

Here, ė represents the material derivative of e, which in this case is equiv-

alent to the time derivative as the body is fixed. Similarly for the second

law of thermodynamics, we move the time derivative inside the integral,

use the divergence theorem on the boundary term and use the arbitrary

choice of P to obtain the inequality

η̇ > −∇ ·
(q

θ
+ k

)
+

r
θ

, (5.2.3)

where η(x, t) is the entropy density, k(x, t) is a term related to the en-

tropy on the boundary and θ(x, t) is the temperature at point x at time t.

We define the phase change equation to be

φ̇ = γ, (5.2.4)

where γ has a form yet to be decided. We now construct the Helmholtz

free energy at point x at time t, Ψ(x, t), to connect the energy and entropy

densities. We define

Ψ = e− θη. (5.2.5)

Taking the time derivative of both sides results in

Ψ̇ = ė− θη̇ − ηθ̇. (5.2.6)
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Rearranging this to leave it in terms of η̇ gives

η̇ =
1
θ

(
ė− ηθ̇ − Ψ̇

)
. (5.2.7)

We now combine (5.2.7) with (5.2.3) to obtain the following inequality

1
θ

(
ė− ηθ̇ − Ψ̇

)
> −∇ ·

(q
θ
+ k

)
+

r
θ

, (5.2.8)

and substituting in (5.2.2) results in

1
θ

(
−∇ · q + r− ηθ̇ − Ψ̇

)
> −∇ ·

(q
θ
+ k

)
+

r
θ

. (5.2.9)

Finally, expanding the divergence term using the divergence term on the

right hand side, we obtain

−1
θ
∇ · q +

1
θ2 q · ∇θ −∇ · k +

r
θ
− 1

θ

(
−∇ · q + r− ηθ̇ − Ψ̇

)
6 0,

(5.2.10)

which, when multiplying through by θ, reduces to

Ψ̇ + ηθ̇ − θ∇ · k +
1
θ

q · ∇θ 6 0. (5.2.11)

Any choices that are made for any of the dependant variables must sat-

isfy this constraint for any realistic scenario for a model to maintain

thermo-dynamic consistency.

5.2.2 Choices of Constituent Classes

We now look to define a constituent class for Ψ, η, k, q and γ. The con-

stituent choices for these variables are {θ, φ,∇θ,∇φ, ∆θ, ∆φ}. We then

define

Γ = {θ, φ,∇θ,∇φ, ∆θ, ∆φ}, (5.2.12)
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and choose the constituent class

Ψ = Ψ̄(Γ). (5.2.13)

We follow the work of [43] for solidification in a non-isothermal case,

and define µ to be the variational derivative of Ψ̄/θ with respect to φ,

given by

µ =
δ

δφ

(
Ψ̄
θ

)
=

∂φΨ̂
θ
−∇ ·

(
∂∇φΨ̄

θ

)
. (5.2.14)

We then pose the constitutive classes for the remaining variables:

η = η̄(Γ, µ,∇µ), (5.2.15)

k = k̄(Γ, µ,∇µ), (5.2.16)

q = q̄(Γ, µ,∇µ), (5.2.17)

and

γ = γ̄(Γ, µ,∇µ). (5.2.18)

These dependencies are new in the context of solidification, however it

has recently been proposed to be natural for Phase-field models [54].

Theorem 1. Given (5.2.11), the constitutive class of Ψ can be reduced to Ψ =

Ψ̄(θ, φ,∇φ). In addition, η̄(Γ, µ,∇µ) = −∂θΨ̄. With these enforced choices,

the constraint to be satisfied becomes

∂φΨ̄φ̇ + ∂∇φΨ̄ ˙(∇φ)− θ∇ · k +
1
θ

q · ∇θ 6 0. (5.2.19)

Proof. Taking the time derivative of Ψ̂ results in

˙̄Ψ = ∂θΨ̄θ̇ + ∂φΨ̄φ̇ + ∂∇θΨ̄ ˙(∇θ) + ∂∇φΨ̄ ˙(∇φ) + ∂∆θΨ̄ ˙(∆θ) + ∂∆φΨ̄ ˙(∆φ).

(5.2.20)
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Substituting this back into (5.2.11) and recalling that φ̇ = γ results in

(∂θΨ̄ + η)θ̇ + ∂φΨ̄γ̄ + ∂∇θΨ̄ ˙(∇θ) + ∂∇φΨ̄ ˙(∇φ) + ∂∆θΨ̄ ˙(∆θ)+

∂∆φΨ̄ ˙(∆φ)− θ∇ · k +
1
θ

q · ∇θ 6 0.
(5.2.21)

We now proceed with the Coleman-Noll procedure. Given the constitu-

tive choices made, and using the fact that this inequality must hold in all

scenarios, we fix all variables with the exception of ˙(∆φ). There are no

restrictions on the size of the value of ˙(∆φ), the restriction can only hold

if the coefficient of ˙(∆φ) is zero. The same method can be applied to θ̇,
˙(∇θ), ˙(∇φ) and ˙(∆θ) to result in (∂θΨ̄ + η̄) = 0, ∂∇θΨ̄ = 0, ∂∇φΨ̄ = 0,

∂∆θΨ̄ = 0 and ∂∆ΦΨ = 0. Thus we conclude that

Ψ = Ψ̄(θ, φ,∇φ) (5.2.22)

and

η̄ = −∂θΨ. (5.2.23)

Having found this reduced choice of constituent class for Ψ, we can sub-

stitute (5.2.22) and 5.2.23 into (5.2.11) to result in

∂φΨ̄φ̇ + ∂∇φΨ̄ ˙(∇φ)− θ∇ · k +
1
θ

q · ∇θ 6 0 (5.2.24)

as required. �

It can be noted that this definition for the entropy density found in (5.2.23)

is commonly found in literature, for example in [54]. (5.2.24) can be made

into

γµ + γ∇ ·
(

∂∇φΨ̄
θ

)
+

1
θ

∂∇φΨ̄ ˙(∇φ)−∇ · k +
1
θ2 q · ∇θ 6 0 (5.2.25)

by dividing through by θ and using (5.2.4) and (5.2.14). Noting that
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˙(∇φ) = ∇φ̇ = ∇γ the final constraint can be rearranged as

γµ +∇ ·
(

∂∇φΨ̄
θ

γ− k

)
+

1
θ2 q · ∇θ 6 0. (5.2.26)

One method to ensure that (5.2.26) is met is to ensure that each indi-

vidual term adheres to the inequality withing the bounds of the chosen

constituent classes. Thus, a clear choice for γ̄ is

γ̄ = −k1(Γ)µ, (5.2.27)

for some k1(Γ) > 0. We also make the choice of

q̄ = −k2(Γ)∇θ, (5.2.28)

for some k2(Γ) > 0. It should be noted that in some literature, such as

[29], q̄ is chosen as k′2(Γ)∇(1/θ). Performing the chain rule on this gra-

dient term results in q̄ = −
(
k′2(Γ)/θ2)∇θ, so this choice is equivalent

to (5.2.28) with k2(Γ) = k′2(Γ)/θ2. The final choice we make is to pick

k̄ = −k1(Γ)µ
∂∇ϕΨ̂

θ
. (5.2.29)

With these definitions, (5.2.26) becomes

−k1(Γ)µ2 − k2(Γ)
θ2 |∇θ|2 6 0, (5.2.30)

and so will hold for all energy functionals Ψ̄ within the constituent class

(5.2.22), which is still to be defined.
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5.2.3 The Free Energy Functional

Recalling (5.2.5) and (5.2.23), we can write

ē = Ψ̄− θ∂θΨ̄ = −θ2 ∂

∂θ

(
Ψ̄
θ

)
, (5.2.31)

and so we can define the free energy by choosing a suitable form for the

internal energy density. We use for the internal energy function the same

form as used in the literature:

e = u(θ)v(φ) + w(φ). (5.2.32)

For temperatures greater than around 100K it is well established that the

internal energy has a linear dependence on the temperature [100] and so

we set u(θ) = cθ for some constant c and v(φ) = 1. Initially we postulate

a linear dependence on the phase by setting w(φ) = λφ for a constant

λ, however towards the end of this chapter we suggest an alteration to

make this dependence non linear. With these modelling decisions, we

write

ē = cθ + λφ. (5.2.33)

Using (5.2.31), rearranging and integrating with respect to θ we obtain

the expression for Ψ̄:

Ψ̄ = −cθ ln
(

θ

θ0

)
+

(
1− θ

θ0

)
λφ +

θ

θ0
W(φ) +

σ2

2θ0
θ|∇φ|2, (5.2.34)

where θ0 is the melting point of the material. In commonly used phase

field models, W(φ) is given as a double well function with minima at

0 and 1. The term containing σ is a common inclusion in free energies

for solidification models and represents the free energy on the diffuse

boundary between the two phases [29]. Finally, the term containing λ

can be thought of as the latent heat of phase change, that is the energy

that is either gained or lost during the change of phase without having an
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effect on the temperature. The coefficient of the latent heat of (1− θ/θ0)

ensures that if the temperature of the substance is below its melting point

(θ/θ0 < 1) then the film is transitioning from the liquid phase into a

solid phase, and so energy is given out, as the latent heat contribution

is positive. On the other hand, a solid film absorbs heat when it melts,

and so when θ/θ0 > 1 the contribution of latent heat to the free energy

is negative.

Returning to equations (5.2.2) and (5.2.4) we can now derive the final sys-

tem of equations for describing the solidification of a bulk material. Dif-

ferentiating (5.2.33) with respect to time and combining this with (5.2.2)

results in

cθ̇ + λφ̇ = k2∆θ + r. (5.2.35)

It can be noted that for a material not undergoing a phase change, that is

when φ̇ = 0, this equation reduces to the standard heat equation. We em-

ploy the non-dimensionalisation θ̄ = θ/θ0. Then the variational deriva-

tive for our choice of Ψ̄ is given by

µ =
λ

θ0

(1− θ̄)

θ̄
+

1
θ0

W ′(φ)− 1
θ0

σ2∆φ. (5.2.36)

Thus, the final system of equations is given by

c̄ ˙̄θ = −λφ̇ + k̄2∆θ̄ + r, (5.2.37)

φ̇ = −k̄1

[
(1− θ̄)

θ̄
λ + W ′(φ)− σ2∆φ

]
, (5.2.38)

where c̄ = cθ0, k̄1 = k1/θ0 and k̄2 = k2θ0. This is equivalent to the model

derived by Langer [96].

A potential improvement to this model is to allow the internal energy

density to depend on the phase in a non-linear way, by setting w(φ) to
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be non constant. We write

ē = cθ + w(φ). (5.2.39)

This choice results in a free energy density functional of

Ψ̄ = −cθ ln
(

θ

θ0

)
+

(
1− θ

θ0

)
w(φ) +

θ

θ0
W(φ) +

σ2

2θ0
θ|∇φ|2, (5.2.40)

which, following the same non-dimensionalisation of θ̄ = θ/θ0 leads to

the final system of equations

c̄ ˙̄θ = −w′(φ)φ̇ + k̄2∆θ̄ + r, (5.2.41)

φ̇ = −k̄1

[
(1− θ̄)

θ̄
w′(φ) + W ′(φ)− σ∆φ

]
. (5.2.42)

Choosing w′(φ) to be a quadratic function by setting

w′(φ) = −aφ2 + bφ + c, (5.2.43)

and describing the potential W(φ) as a double well function, for example

W(φ) = φ2(φ− 1)2, (5.2.44)

results in the model derived by Penrose and Fife [47].

5.3 Conclusions

In this chapter, a family of thermodynamically consistent models to de-

scribe the solidification of a pure material from its melt has been de-

rived from the key axioms from rational continuum mechanics. We have

shown that by making certain choices, existing models that are com-

monly used in the literature fit within this framework. However, as we

have left the choosing of the energy function until last, the model derived
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in this section can be easily adapted to describe a range of scenarios.

Langer suggests that in order to capture the growth of dendrites often

seen during crystallisation, one can add higher derivatives into the free

energy. However, one must be cautious that, if the constitutive class

of the free energy Ψ is changed, the model remains thermodynamically

consistent.

In the coming chapters, we employ the theories described here for bulk

solidification in conjunction with the methods used to describe thin film

flow to derive a system of equations for prediction the evolution of a

solidifying thin film.
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Thin Film Heat Equation

In this chapter we derive a new class of models for the diffusion of

heat in a rigid thin film in d-dimensions. We introduce the concept

of vertically averaging key variables to reduce the problem from a d-

dimensional to a (d − 1)-dimensional problem. In doing so, a closure

problem arises when accounting for fluctuations in the vertical direction.

Lastly, we make constitutive choices to result in a final model.

6.1 Geometry

As in Chapter 4, we consider a d-dimensional thin film on a flat solid

substrate D ⊂ Rd−1. We consider a fixed arbitrary region Ω ⊂ D, and

define the height of the film above the substrate at point x ∈ Ω to be

h(x, t). For the purpose of this chapter, we assume the height function to

be non time dependent, and so write h(x, t) = h0(x) ∀ t. Then we define

the region

P :=
⋃

x∈Ω

{(x, z)|z ∈ [0, h0(x)]} (6.1.1)

for x ∈ Rd−1 and z ∈ R to be a fixed arbitrary region of the film bound

by Ω, the top surface of the film and vertical sides. Denote by ∂P the

boundary of P , and note that this can be written as the union of three
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surfaces: the bottom

B := Ω× {0}, (6.1.2)

the vertical sides

S :=
⋃

x∈∂Ω

{x} × [0, h0 (x)] , (6.1.3)

where ∂Ω is the boundary of Ω, and the top surface of the film

T :=
⋃

x∈Ω

{x} × {h0 (x)}. (6.1.4)

A depiction of this geometry for the case d = 2 is shown in Figure 6.1.

Figure 6.1: The geometry of a thin film on a solid substrate for the case
of d = 2. P is an arbitrary fixed subset of the film with Ω as
its base, h0(x) as the top surface and vertical sides.

We begin this section with a key result that will play a vital role in the

remaining chapters of this work. Given some surface ΣM which can be

projected onto another surface Σ using the transformation M, for some

quantity ζ on ΣM

∫
ΣM

ζ dΣM =
∫

Σ
(ζ ◦M) F dΣ, (6.1.5)
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where

F := JM| (∇M)−T n|, (6.1.6)

with∇M−T representing the inverse of the transpose of the matrix∇M,

and

JM := det∇M. (6.1.7)

Here, n is the outward pointing unit normal to Σ. Proof for this result

can be found in [101]. The result given in equations (6.1.5)-(6.1.7) can be

applied to the top boundary T. Choose Σ to be Ω and ΣM to be T, and

define the map M such that

M :

x

z

→
 x

z + h0(x)

 . (6.1.8)

Then, by defining the operator∇x = (∂/∂x1, ∂/∂x2, . . . , ∂/∂xd−1) we see

that

∇M =

 I 0

(∇xh0)
T 1

 , (6.1.9)

where I is the d− 1 dimensional identity matrix and 0 is the (d− 1)× 1

vector with every entry 0. From this we obtain

JM = 1. (6.1.10)

For the choice of Σ = Ω, the outward pointing unit normal n is given by

n =

 0

−1

 . (6.1.11)

Then F can be calculated as

F =
√
|∇xh0|2 + 1. (6.1.12)

In this scenario, F is the arclength of h0(x). From this result it can be seen
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that for any quantity Q on the top boundary T, it stands that

∫
T

Q dT =
∫

Ω
Q
√
|∇xh0|2 + 1 dΩ =

∫
Ω

QF dΩ. (6.1.13)

6.2 Vertical Averaging

A key operator in this chapter is taking the vertical average. For a quan-

tity Q̂(x, z) defined for all z ∈ [0, h0], the vertically averaged quantity

Q(x) is taken to be

Q(x) =
1

h0(x)

∫ h0(x)

0
Q̂(x, z) dz. (6.2.1)

We now apply this vertical averaging operator to the laws of thermody-

namics described in Chapter 2.

6.2.1 Conservation of Energy

First, we consider the first law of thermodynamics, given in (2.2.31). Let

ê(x, z, t), q̂(x, z, t) and r̂(x, z, t) be the energy density, heat flux and heat

source at point (x, z) at time t respectively. Then

d
dt

∫
P

ê dV = −
∫

∂P
q̂ · n ds +

∫
P

r̂ dV. (6.2.2)

where n is the outward pointing normal to ∂P . Splitting the integral

over ∂P into integrals over the three separate boundaries T, B and S we

can write

∫
∂P

q̂ · n ds =
∫

T
q̂ · nT ds +

∫
B

q̂ · nB ds +
∫

S
q̂ · nS ds, (6.2.3)
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where ni represents the unit normal to surface i. Defining

ed =

0

1

 (6.2.4)

as the unit normal perpendicular to Ω, we obtain

∫
Ω

d
dt

∫ h0

0
ê dz dA = −

∫
∂Ω

(∫ h0

0
q̂ dz

)
· nΩ ds

−
∫

Ω
q̂(x, h(x, t), t) · edF dA

−
∫

Ω
q̂(x, 0, t) · (−ed) dA +

∫
Ω

∫ h0

0
r̂ dz dA,

(6.2.5)

where nΩ is the outward pointing unit normal to ∂Ω. Applying the ver-

tical average operator to the internal energy density, energy flux and

energy source, we obtain

e =
1
h0

∫ h0

0
ê dz, (6.2.6)

q =
1
h0

∫ h0

0
q̂ dz, (6.2.7)

r =
1
h0

∫ h0

0
r̂ dz (6.2.8)

respectively, and further defining

qT = q̂(x, h0, t) · ed, (6.2.9)

qB = q̂(x, 0, t) · ed, (6.2.10)

and noting that Ω was chosen arbitrarily, the final conservation of energy

equation is obtained:

d
dt
(h0e) = −∇x · (h0q)− qTF + qB + h0r. (6.2.11)
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6.2.2 Entropy Inequality

Next, we consider the second law of thermodynamics. Let Φ̂(x, z, t) be

the entropy flux of the film and Ĥ(x, z, t) be an entropy source. Then by

(2.2.38)
d
dt

∫
P

η̂ dV > −
∫

∂P
Φ̂ · n ds +

∫
P

Ĥ dV, (6.2.12)

where η̂ = η̂(x, z, t) represents the entropy density at position (x, z) at

time t. As with the bulk equations, we define

Φ̂ =
q̂
θ̂
+ k̂, (6.2.13)

and

Ĥ =
r̂
θ̂

, (6.2.14)

where θ̂(x, z, t) is the temperature at position (x, z) at time t, and k̂ repre-

sents an entropy flux related to the diffuse boundaries between the dif-

ferent phases of solidification in the film. In this case, where there is only

one phase, k̂ ≡ 0. Again splitting the boundary integral and applying

(6.1.13) results in

∫
Ω

d
dt

∫ h0

0
η̂ dz dA > −

∫
∂Ω

(∫ h0

0

q̂
θ̂

dz
)
· nΩ ds

−
∫

Ω

q̂(x, h0, t)
θ̂(x, h0, t), t)

· edF dA−
∫

Ω

q̂(x, 0, t)
θ̂(x, 0, t)

· (−ed) dA

+
∫

Ω

∫ h0

0

r̂
θ̂

dz dA.

(6.2.15)

Taking the vertical average of the entropy density gives

η =
1
h0

∫ h0

0
η̂ dz, (6.2.16)

and defining the temperature at the top and bottom boundaries to be

θT = θ̂(x, h0, t) (6.2.17)
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and

θB = θ̂(x, 0, t), (6.2.18)

respectively, the final entropy inequality becomes

d
dt

(hη) > −∇x ·
(∫ h0

0

q̂
θ̂

dz
)
− qTF

θT
+

qB

θB
+
∫ h0

0

r̂
θ̂

dz. (6.2.19)

With the key laws vertically averaged, we now define a free energy Ψ

and choose the dependent variables to ensure that the model is thermo-

dynamically consistent.

6.2.3 Applying Laws of Thermodynamics

We now look to combine the first and second laws of thermodynamics

Define a free energy functional Ψ(x, t) such that

h0Ψ = h0e− θh0η, (6.2.20)

where θ(x, t) is defined such that

1
θ
=

1
h0

∫ h0

0

1
θ̂

dz. (6.2.21)

Taking the time derivative of this equation and rearranging results in

˙(h0η) =
1
θ

[
˙(h0e)− h0ηθ̇ − ˙(h0Ψ)

]
. (6.2.22)

As h0(x) is not time dependent, ˙(h0Ψ) = h0Ψ̇, and so combining (6.2.22)

with (6.2.11) and (6.2.19) we obtain

1
θ

[
−∇x · (h0q)− qTF + qB + h0r− h0ηθ̇ − h0Ψ̇

]
> −∇x ·

(∫ h0

0

q̂
θ̂

dz
)
− qTF

θT
+

qB

θB
+
∫ h0

0

r̂
θ̂

dz.
(6.2.23)

This constraint must hold in all physical scenarios for all energy func-
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tionals Ψ. In the next section we pick a constituent classes for the vari-

ables that relate specifically to the transfer of heat within a rigid thin

film.

6.3 Free Energy Functional

We look to postulate a constitutive class for the free energy Ψ, and we

choose the dependent variables suitable within this class. The constituent

properties for a material in this scenario are θ,∇θ and ∆θ. Therefore we

define Γ = {θ,∇θ, ∆θ} and postulate the constitutive classes of Ψ and η

to be

Ψ = Ψ(Γ), (6.3.1)

and

η = η(Γ). (6.3.2)

Theorem 2. Given (6.2.23), the constituent class of Ψ reduces to Ψ = Ψ(θ). In

addition, η = −∂θΨ. With these enforced choices, the constraint to be satisfied

becomes

1
θ2 h0q · ∇xθ +∇x ·

(
1
θ

h0q
)
−∇x ·

(∫ h0

0

q̂
θ̂

dz
)
+

qTF
θ
− qTF

θT
− qB

θ
+

qB

θB

−h0r
θ

+
∫ h0

0

r̂
θ̂

dz 6 0.

(6.3.3)

Proof. By the chain rule, the time differential of Ψ(θ,∇θ, ∆θ) is given by

Ψ̇ = ∂θΨθ̇ + ∂∇θΨ ˙(∇θ) + ∂∆θΨ ˙(∆θ). (6.3.4)
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Substituting this into (6.2.23) results in

1
θ

[
−∇x · (h0q)− qTF + qB + h0r− h0ηθ̇ − h0∂θΨθ̇

−h0∂∇θΨ ˙(∇θ)− h0∂∆θΨ ˙(∆θ) > −∇x ·
(∫ h0

0

q̂
θ̂

dz
)

−qTF
θT

+
qB

θB
+
∫ h0

0

r̂
θ̂

dz.

(6.3.5)

which can be rearranged to give

1
θ2 h0q · ∇xθ +∇x ·

(
1
θ

h0q
)
−∇x ·

(∫ h0

0

q̂
θ̂

dz
)
+

qTF
θ
− qTF

θT
− qB

θ
+

qB

θB

−h0r
θ

+
∫ h0

0

r̂
θ̂

dz +
1
θ

h0(∂θΨ + η)θ̇ +
1
θ

h0∂∇θΨ ˙(∇θ) +
1
θ

h0∂∆θΨ ˙(∆θ) 6 0.

(6.3.6)

We now apply the Coleman-Noll argument to (6.3.6). The constraint

must hold in all situations. By fixing θ,∇θ, ∆θ, ˙(∇θ) and ˙(∆θ), it is al-

ways possible to pick a θ̇ to break the constraint. Therefore, the coeffi-

cient of θ̇ must be 0. Similar arguments can be applied to ˙(∇θ) and ˙(∆θ),

resulting in the conclusion that ∂θΨ + η = 0, ∂∇θΨ = 0 and ∂∆θΨ = 0.

Therefore for a model to be thermodynamically consistent,

Ψ = Ψ(θ) (6.3.7)

and

η = −∂θΨ. (6.3.8)

With these choices, (6.3.6) becomes

1
θ2 h0q · ∇xθ +∇x ·

(
1
θ

h0q
)
−∇x ·

(∫ h0

0

q̂
θ̂

dz
)
+

qTF
θ
− qTF

θT
− qB

θ
+

qB

θB

−h0r
θ

+
∫ h0

0

r̂
θ̂

dz 6 0

(6.3.9)

as required. �
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It is noted that the result for the entropy η is consistent with the choice

of entropy made for solidification in a bulk system in Chapter 5 as well

as in many cases in the literature.

6.3.1 Defining the Dependent Variables

We now choose the remaining variables such that the constraint (6.3.9)

holds. Whereas it was a necessity within the chosen constituent class

for (6.3.8) to hold, there may be multiple viable options for the variables

defined in this section. We therefore try to select the option within the

framework derived that best describes the physical situation.

Source Terms

We firstly turn our attention to the energy source r̂, we argue that this

is known, and that it is equal to the vertically averaged energy source,

r̂ = r. Then we have

∫ h0

0

r̂
θ̂

dz− h0r
θ

=
∫ h0

0

r
θ̂

dz− r
∫ h0

0

1
θ̂

dz. (6.3.10)

However, r is not dependent on z and can be taken out of the integral,

resulting in ∫ h0

0

r̂
θ̂

dz− h0r
θ

= 0. (6.3.11)

Heat Flux Terms

Now it remains to ensure that

1
θ2 h0q · ∇xθ +∇x ·

(
1
θ

h0q
)
−∇x ·

(∫ h0

0

q̂
θ̂

dz
)

+qTF
(

1
θ
− 1

θT

)
− qB

(
1
θ
− 1

θB

)
6 0.

(6.3.12)
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First, consider the terms within the divergence:

1
θ

h0q−
∫ h0

0

q̂
θ̂

dz = −h0

(
1
h0

∫ h0

0

q̂
θ̂

dz− 1
θ

q
)

. (6.3.13)

Define K(x) to be the difference between the quotient of the vertically

averaged quantities q and θ and the vertical averaging of the quotient of

q̂ and θ̂:

K =
1
h0

∫ h0

0

q̂
θ̂

dz− 1
θ

q. (6.3.14)

Note that the term with the vertical integral of the quotient is still in

terms of non-averaged quantities, and hence this is a closure problem.

We proceed with an approach for this closure problem by considering

fluctuations of the quantities from the vertical average. We can write

q̂(x, z) = q(x) + q̃(x, z), (6.3.15)

where q̃ represents the deviation of the heat flux at point (x, z) from the

vertically averaged heat flux at x. Similarly, we define θ̃−1 such that

θ̂−1(x, z) = θ−1(x) + θ̃−1(x, z), (6.3.16)

with θ̃−1 representing the deviation of θ−1 from the vertically averaged

value. By definition,

1
h0

∫ h0

0
q̃ dz =

1
h0

∫ h0

0
θ̃−1 dz = 0. (6.3.17)

Taking the product of q̂ and θ̂−1 results in

q̂θ̂−1 = qθ−1 + qθ̃−1 + q̃θ−1 + q̃θ̃−1. (6.3.18)
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Applying the vertical averaging operator to both sides results in

1
h0

∫ h0

0
q̂θ̂−1 dz =

1
h0

∫ h0

0
qθ−1 dz +

1
h0

∫ h0

0
qθ̃−1 dz

+
1
h0

∫ h0

0
q̃θ−1 dz +

1
h0

∫ h0

0
q̃θ̃−1 dz.

(6.3.19)

The vertically averaged quantities can be pulled outside of the integral

as they are not dependent on z, and so the right hand side becomes

qθ−1 1
h0

∫ h0

0
dz + q

1
h0

∫ h0

0
θ̃−1 dz + θ−1 1

h0

∫ h0

0
q̃ dz

+
1
h0

∫ h0

0
q̃θ̃−1 dz = qθ−1 +

1
h0

∫ h0

0
q̃θ̃−1 dz

(6.3.20)

by applying (6.3.17). Thus, by substituting this into (6.3.14) we obtain

K =
1
h0

∫ h0

0
q̃θ̃−1 dz, (6.3.21)

and can rewrite (6.3.12) as

1
θ2 h0q · ∇xθ−∇x · (h0K)+ qTF

(
1
θ
− 1

θT

)
− qB

(
1
θ
− 1

θB

)
6 0. (6.3.22)

Now we are required to model the form of K. We make the assumption

that if the temperature at the top of the film θT is the same as the tem-

perature at the bottom of the film θB, the temperature is constant in the

z direction. We also note that when ∇x(θT − θB) is nonzero, one may

expect fluctuations to appear in z-direction. We therefore postulate that

K takes the form

K = q′(∇x(θT − θB)) (θT − θB) (6.3.23)
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for some function q′. With this form, we have that if θT = θB then K = 0.

Taking the divergence of this term now results in

∇x · (h0K) = (θT − θB)∇x · (h0q′) + h0q′ · ∇x (θT − θB)

= (θT − θB)∇x · (h0q′) + h0q′ · (∇xθT −∇xθB) .
(6.3.24)

Substituting this back into (6.3.22) gives the requirement

1
θ2 h0q · ∇xθ − (θT − θB)∇x · (h0q′)− h0q′ · ∇x (θT − θB)

+qTF
(

1
θ
− 1

θT

)
− qB

(
1
θ
− 1

θB

)
6 0,

(6.3.25)

where now we are required to choose q, q′, qT and qB. We have already

specified the constituent class of q′ in (6.3.23); we now propose the fol-

lowing constituent classes for the remaining variables:

q = q(∇xθ), (6.3.26)

qT = qT (h0,∇xh0, θ, θT,∇x(θT − θB), ∆x(θT − θB)) , (6.3.27)

qB = qB (h0,∇xh0, θ, θB,∇x(θT − θB), ∆x(θT − θB)) . (6.3.28)

We make the choice of

q = −k2∇xθ, (6.3.29)

which is consistent with the choice made for the heat flux in the bulk

situation, shown in Chapter 5. In order to ensure that the third term in

(6.3.25) is negative, we choose

q′ = k4∇x (θT − θB) (6.3.30)

for some function k4 > 0, leaving the requirement to be

− (θT − θB)∇x · (h0k4∇x (θT − θB))+ qTF
(

1
θ
− 1

θT

)
− qB

(
1
θ
− 1

θB

)
6 0.

(6.3.31)
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We rearrange the terms containing qT and qB to result in

− (θT − θB)∇x · (h0k4∇x (θT − θB)) +
qTF
θθT

(θT − θ)− qB

θθB
(θB − θ) 6 0,

(6.3.32)

and write the first term on the left hand side as

− (θT − θ + θ − θB)∇x · (h0k4∇x (θT − θB)) . (6.3.33)

The constraint can now naturally be split into two separate constraints;

the first relating to the heat flux across the top boundary

− (θT − θ)∇x · (h0k4∇x (θT − θB)) +
qTF
θθT

(θT − θ) 6 0, (6.3.34)

and the second relating to the heat flux across the bottom boundary

− (θ − θB)∇x · (h0k4∇x (θT − θB))−
qB

θθB
(θB − θ) 6 0. (6.3.35)

We make the choice of

qT =
θθT

F
∇x · (h0k4∇x(θT − θB))− k5 (θT − θ) . (6.3.36)

We verify that this is an acceptable choice by substituting it into (6.3.34)

to give

− (θT − θ)∇x · (h0k4∇x (θT − θB)) +[
∇x · (h0k4∇x(θT − θB))−

k5F
θθT

(θT − θ)

]
(θT − θ)

= − (θT − θ)∇x · (h0k4∇x (θT − θB)) + (θT − θ)∇x · (h0k4∇x (θT − θB))

− k5F
θθT

(θT − θ) (θT − θ) = −k5F
θθT

(θT − θ)2 6 0.

(6.3.37)

91



CHAPTER 6: THIN FILM HEAT EQUATION

Similarly, we make the choice of

qB = θθB∇x · (h0k4∇x (θT − θB)) + k6 (θB − θ) (6.3.38)

to satisfy (6.3.35), which reduces to

− k6

θθB
(θB − θ)2 6 0. (6.3.39)

These choices for the boundary heat fluxes are consistent with the find-

ings in [102].

6.3.2 Final Equation

All the choices in this section can be combined and substituted back into

the original equation for the internal energy density, equation (6.2.11), to

result in

d
dt
(h0e) = ∇x · h0k2∇xθ − (θT − θB)θ [∇x · (h0k4∇x(θT − θB))]

+k5F (θT − θ) + k6 (θB − θ) + h0r.
(6.3.40)

As in Chapter 5, we use that the internal energy depends linearly on

the temperature, e = cθ for some constant c, which can be multiplied

through by h0 to give

h0e = ch0θ. (6.3.41)

Taking the time derivative of this results in the final thin film heat equa-

tion

ch0θ̇ = ∇x · h0k2∇xθ − (θT − θB)θ [∇x · (h0k4∇x(θT − θB))]

+k5F (θT − θ) + k6 (θB − θ) + h0r.
(6.3.42)
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Thin Film Solidification

In this chapter, we combine the procedures used in the previous chapters

in order to create a thermodynamically consistent class of models for

describing the evolution of a solidifying thin film.

As in Chapter 4, consider a d-dimensional thin film on a flat solid sub-

strate D ⊂ Rd−1. Consider a fixed yet arbitrary region Ω ⊂ D on the

substrate and define by the function h(x, t) : Ω × [0, ∞) → [0, ∞) the

height above the substrate of the surface of the film at time t ∈ [0, ∞).

Finally define a region

Pt :=
⋃

x∈Ω

{(x, z) |z ∈ [0, h(x, t)]} (7.0.1)

to be an arbitrary subset of the film bounded by Ω, vertical sides, and

the time dependent top of the film. This can be seen in Figure 7.1. Note

that x ⊂ Rd−1 and z ⊂ R.

As in the case of the thin film heat equation, the boundary of Pt, denoted

∂Pt, can be split into three separate components: the bottom surface

B := Ω× {0}, (7.0.2)
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Figure 7.1: The geometry of a thin film on a solid substrate for the case
of d = 2. Pt is an arbitrary subset of the film with Ω as its
base, h(x, t) as the top surface and vertical sides.

the vertical sides

St :=
⋃

x∈∂Ω

{x} × [0, h (x, t)] , (7.0.3)

where ∂Ω is the boundary of Ω, and the top surface of the film

Tt :=
⋃

x∈Ω

{x} × {h (x, t)}. (7.0.4)

It can be noted that, unlike in the case of the thin film heat equation, St

and Tt are time dependent, although B remains non time dependent.

7.1 Axiomatic Laws for a Solidifying Thin Film

7.1.1 Conservation of Mass

Let ρ̂(x, z, t) be the density of the film at point (x, z) at time t. For this

section we assume ρ̂(x, z, t) = ρ̂0 is constant in both the solid and liquid
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phases of the film. The total mass enclosed by Pt is given by

∫
Pt

ρ̂0 dV. (7.1.1)

Therefore, the conservation of mass results in

d
dt

∫
Pt

ρ̂0 dV = −
∫

∂Pt
ρ̂0 ĵ · n ds +

∫
Pt

R dV, (7.1.2)

where ∂Pt is the boundary of volume Pt, ĵ(x, z, t) is the flux of the film at

point (x, z) at time t, n(x, z) is the outward pointing unit normal to Pt at

(x, z) and R represents a source term for the film within Pt. It is assumed

that there is no source or sink term, and so R ≡ 0.

Equation (7.1.2) can be written

d
dt

∫
Pt

ρ̂0 dV = −
∫

S
ρ̂0 ĵ · nS ds−

∫
B

ρ̂0 ĵ · nB ds−
∫

T
ρ̂0 ĵ · nT ds, (7.1.3)

where ni represents the unit normal to surface i. Define

ed =

0

1

 (7.1.4)

as the unit normal perpendicular to Ω.

Equations (7.0.2)-(7.0.4), (7.1.3), (7.1.4) and result (6.1.13) can be com-

bined to give

d
dt

∫
Ω

∫ h(x,t)

0
ρ̂0 dz dA = −

∫
∂Ω

(∫ h(x,t)

0
ρ̂0 ĵ(x, z, t) dz

)
· nΩ ds

−
∫

Ω
ρ̂0 ĵ(x, 0, t) · (−ed) dA−

∫
Ω

ρ̂0 ĵ(x, h(x, t), t) · edF dA.
(7.1.5)

As the region Ω is not time dependent, the time differential can be moved

inside the integral over Ω. Note that in the first term on the right hand

side of (7.1.5), the normal to Ω, nΩ, can be taken out of the integral in the

vertical direction as it is independent of z ∀x ∈ ∂Ω. We now define the

95



CHAPTER 7: THIN FILM SOLIDIFICATION

vertically averaged mass flux

j =
1
h

∫ h(x,t)

0
ĵ(x, z, t) dz, (7.1.6)

jB = ĵ(x, 0, t) · ed, (7.1.7)

and

jT = ĵ(x, h(x, t), t) · ed. (7.1.8)

By employing the divergence theorem to the boundary integral in (7.1.5)

we obtain

∫
Ω

d
dt

∫ h(x,t)

0
ρ̂0 dz dA = −

∫
Ω
∇x ·

(∫ h(x,t)

0
ρ̂0 ĵ(x, z, t) dz

)
dA

−
∫

Ω
ρ̂0 ĵ(x, 0, t) · (−ed) dA−

∫
Ω

ρ̂0 ĵ(x, h(x, t), t) · edF dA,
(7.1.9)

where ∇x represents the d− 1 dimensional gradient given by

(∂/∂x1, ∂/∂x2, . . . , ∂/∂xd−1)
T. Noting that Ω was chosen arbitrarily, we

can rewrite this as

d
dt

∫ h(x,t)

0
ρ̂0 dz = −∇x · (ρ̂0hj)− ρ̂0 jTF + ρ̂0 jB. (7.1.10)

Finally, by recalling that ρ̂0 is constant, the equation of the rate of change

in the height of the film is obtained:

dh
dt

= −∇x · (hj)− jTF + jB. (7.1.11)

7.1.2 Conservation of Energy

As in the case of a rigid film described in Section 6.2, the change of en-

ergy in a given region of the film is affected by the flux of energy across

the boundary and internal sources or sinks. Let ê(x, z, t), q̂(x, z, t) and

r̂(x, z, t) be the energy density, heat flux and heat source at point (x, z) at
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time t respectively. Then from the first law of thermodynamics,

d
dt

∫
Pt

ê dV = −
∫

∂Pt
q̂ · n ds +

∫
Pt

r̂ dV. (7.1.12)

Defining sets as in (7.0.2), (7.0.3) and (7.0.4), and following the same pro-

cess as for the conservation of mass, this can be written as

∫
Ω

d
dt

∫ h(x,t)

0
ê dz dA = −

∫
∂Ω

(∫ h(x,t)

0
q̂ dz

)
· nΩ ds

−
∫

Ω
q̂(x, h(x, t), t) · edF dA

−
∫

Ω
q̂(x, 0, t) · (−ed) dA +

∫
Ω

∫ h(x,t)

0
r̂ dz dA

(7.1.13)

Define the vertically averaged internal energy density, energy flux and

energy source to be

e =
1
h

∫ h(x,t)

0
ê dz, (7.1.14)

q =
1
h

∫ h(x,t)

0
q̂ dz, (7.1.15)

r =
1
h

∫ h(x,t)

0
r̂ dz (7.1.16)

respectively. Further defining

qT = q̂(x, h(x, t), t) · ed, (7.1.17)

qB = q̂(x, 0, t) · ed, (7.1.18)

and again noting that Ω is arbitrary, the final conservation of energy

equation is obtained:

d
dt
(he) = −∇x · (hq)− qTF + qB + hr. (7.1.19)
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7.1.3 Entropy Inequality

Let Φ̂(x, z, t) be the entropy flux of the film and Ĥ(x, z, t) be an entropy

source. As in Section 6.2, by the second law of thermodynamics, entropy

must be non-decreasing, and so

d
dt

∫
Pt

η̂ dV > −
∫

∂Pt
Φ̂ · n ds +

∫
Pt

Ĥ dV, (7.1.20)

where η̂ = η̂(x, z, t) represents the entropy density at position (x, z) at

time t. As in the bulk equations, we define

Φ̂ =
q̂
θ̂
+ k̂, (7.1.21)

for some k̂ which represents an entropy flux related to the diffuse bound-

aries involved in the problem, and

Ĥ =
r̂
θ̂

, (7.1.22)

where θ̂(x, z, t) is the temperature at position (x, z) at time t. Again split-

ting the boundary integral into integrals of the sets (7.0.2), (7.0.3) and

(7.0.4) results in

∫
Ω

d
dt

∫ h(x,t)

0
η̂ dz dA >

−
∫

∂Ω

(∫ h(x,t)

0

q̂
θ̂

dz
)
· nΩ ds−

∫
∂Ω

(∫ h(x,t)

0
k̂ dz

)
· nΩ ds

−
∫

Ω

q̂(x, h(x, t), t)
θ̂(x, h(x, t), t)

· edF dA−
∫

Ω

q̂(x, 0, t)
θ̂(x, 0, t)

· (−ed) dA

−
∫

Ω
k̂(x, h(x, t), t) · edF dA−

∫
Ω

k̂(x, 0, t) · (−ed) dA

+
∫

Ω

∫ h(x,t)

0

r̂
θ̂

dz dA.

(7.1.23)

We define

η =
1
h

∫ h(x,t)

0
η̂ dz, (7.1.24)
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and

k =
1
h

∫ h(x,t)

0
k̂ dz, (7.1.25)

to be the vertically averaged entropy density and non-thermal entropy

flux at position x and time t respectively. Further, we define

θT = θ̂(x, h(x, t), t) (7.1.26)

and

θB = θ̂(x, 0, t) (7.1.27)

to be the temperature at the top surface and the bottom surface of the

film respectively. In addition, as the top and bottom surfaces of the film

are sharp interfaces, the term relating to entropy within a diffuse bound-

ary can be set as

k̂(x, h(x, t), t) · ed = k̂(x, 0, t) · ed = 0. (7.1.28)

With these definitions, employing the divergence theorem on the bound-

ary integrals, and using that Ω is arbitrary, the final entropy inequality

becomes

d
dt

(hη) > −∇x ·
(∫ h(x,t)

0

q̂
θ̂

dz
)
−∇x · (hk)− qTF

θT
+

qB

θB
+
∫ h(x,t)

0

r̂
θ̂

dz.

(7.1.29)

7.1.4 Solidification

We define a phase parameter φ(x, t) for x ∈ Ω such that φ(x, t) = 0 if the

vertical strip of film at point x is solid at time t, and φ(x, t) = 1 if it is a

liquid. Consider a mass conservation argument for the arbitrary area Ω:

d
dt

∫
Ω

φ ds =
∫

Ω
γ ds, (7.1.30)
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where γ is the rate of the phase change from liquid to solid and has a

form yet to be defined. Then given that Ω is arbitrary and not dependent

on time, the equation describing the evolution of φ in time is given by

dφ

dt
= γ. (7.1.31)

It can be noted that 0 < φ < 1 describes a diffuse interface between the

two phases.

7.1.5 The Reduced Dissipation Inequality

We introduce an averaged temperature parameter, θ(x, t), defined such

that
1
θ
=

1
h

∫ h(x,t)

0

1
θ̂

dz. (7.1.32)

Using this definition, we construct a Helmholtz free energy Ψ(x, t) given

by

hΨ = he− θhη. (7.1.33)

Differentiating with respect to time results in

˙(hη) =
1
θ

[
˙(hε)− θ̇hη − ˙(hΨ)

]
. (7.1.34)

Substituting this and (7.1.19) into inequality (7.1.29) and noting that ˙(hΨ) =

ḣΨ + hΨ̇ gives

−∇x ·
(∫ h(x,t)

0

q̂
θ̂

dz
)
−∇x · (hk)− qTF

θT
+

qB

θB
+
∫ h(x,t)

0

r̂
θ̂

dz 6

1
θ

[
−∇x · (hq)− qTF + qB + hr− θ̇hη − hΨ̇− ḣΨ

]
.

(7.1.35)

Using the result that for a scalar x and vector v,

∇x · (xv) = x∇x · v + v · ∇xx, (7.1.36)
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we obtain

−∇x ·
(∫ h(x,t)

0

q̂
θ̂

dz
)
−∇x · (hk) +∇x ·

(
1
θ

hq
)
+

1
θ2 (hq) · ∇xθ

+
1
θ

hΨ̇ +
1
θ

ḣΨ− qTF
θT

+
qB

θB
+
∫ h(x,t)

0

r̂
θ̂

dz +
1
θ

qTF− 1
θ

qB −
1
θ

hr

+
1
θ

θ̇hη 6 0.

(7.1.37)

For a model to be thermo-mechanically consistent, equation (7.1.37) must

hold in all realistic situations.

7.2 Choices of Constituent Classes and Depen-

dent Variables

Having found a constraint to ensure that the family of models is thermo-

mechanically consistent, choices must now be made for the constituent

classes for the dependent variables. From these classes, specific choices

are either forced or made to result in an individual model which can then

be used to simulate the evolution of a solidifying thin film over time.

7.2.1 Free Energy Functional

The initial decision is to choose a constitutive class for the free energy

functional Ψ. The constitutive properties related to this problem are the

height of the film, the phase of solidification and the temperature. We

define Γ = {θ,∇θ, ∆θ, φ,∇φ, ∆φ, h,∇h, ∆h} and define the constituent

classes

Ψ = Ψ (Γ) (7.2.1)

and

η = η(Γ). (7.2.2)
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Theorem 3. Given (7.1.37), the constituent class of Ψ reduces to

Ψ = Ψ(θ, φ,∇xφ, h,∇xh). In addition, η = −∂θΨ. With these choices, the

constraint (7.1.37) becomes

−∇x ·
(∫ h(x,t)

0

q̂
θ̂

dz
)
−∇x · (hk) +∇x ·

(
1
θ

hq
)
+

1
θ2 (hq) · ∇xθ

− qTF
θT

+
qB

θB
+
∫ h(x,t)

0

r̂
θ̂

dz +
1
θ

qTF− 1
θ

qB −
1
θ

hr +
1
θ

ḣΨ

+
1
θ

h∂hΨḣ +
1
θ

h∂∇xhΨ ˙(∇xh) +
1
θ

h∂φΨφ̇ +
1
θ

h∂∇xφΨ ˙(∇xφ) 6 0.

(7.2.3)

Proof. Employing the chain rule to (7.2.1) it can be seen that

Ψ̇ =∂θΨθ̇ + ∂∇xθΨ ˙(∇xθ) + ∂∆xθΨ ˙(∆xθ) + ∂hΨḣ + ∂∇xhΨ ˙(∇xh)

+ ∂∆xhΨ ˙(∆xh) + ∂φΨφ̇ + ∂∇xφΨ ˙(∇xφ) + ∂∆xφΨ ˙(∆xφ),
(7.2.4)

where ∂xy represents the partial derivative of x with respect to y. Substi-

tuting this into (7.1.37) results in

−∇x ·
(∫ h(x,t)

0

q̂
θ̂

dz
)
−∇x · (hk) +∇x ·

(
1
θ

hq
)
+

1
θ2 (hq) · ∇xθ

− qTF
θT

+
qB

θB
+
∫ h(x,t)

0

r̂
θ̂

dz +
1
θ

qTF− 1
θ

qB −
1
θ

hr +
1
θ

ḣΨ +
1
θ

h(∂θΨ + η)θ̇

+
1
θ

h∂∇xθΨ ˙(∇xθ) +
1
θ

h∂∆xθΨ ˙(∆xθ) +
1
θ

h∂hΨḣ +
1
θ

h∂∇xhΨ ˙(∇xh)

+
1
θ

h∂∆xhΨ ˙(∆xh) +
1
θ

h∂φΨφ̇ +
1
θ

h∂∇xφΨ ˙(∇xφ) +
1
θ

h∂∆xφΨ ˙(∆xφ) 6 0.

(7.2.5)

We substitute in (7.1.11) and (7.1.31) employ the Coleman-Noll proce-

dure. As the constraint must hold for all values, we fix all variables

{Γ}\∆xθ. ∆xθ is linear in the inequality, and therefore it will be always

be possible to break the constraint by picking the right value of ∆xθ,

unless the coefficient of ∆xθ is zero. Using the same arguments for the

other variables linear in the inequality, we can conclude that ∂∇xθΨ = 0,

∂∆xθΨ = 0, ∂∆xφΨ = 0, ∂∆xhΨ = 0 and (η + ∂θΨ) = 0. Therefore we
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conclude that the constituent class of Ψ reduces to

Ψ = Ψ(θ, φ,∇xφ, h,∇xh), (7.2.6)

and

η = −∂θΨ. (7.2.7)

Now substituting (7.2.6) and (7.2.7) into (7.1.37) results in the final con-

straint:

−∇x ·
(∫ h(x,t)

0

q̂
θ̂

dz
)
−∇x · (hk) +∇x ·

(
1
θ

hq
)
+

1
θ2 (hq) · ∇xθ

− qTF
θT

+
qB

θB
+
∫ h(x,t)

0

r̂
θ̂

dz +
1
θ

qTF− 1
θ

qB −
1
θ

hr +
1
θ

ḣΨ

+
1
θ

h∂hΨḣ +
1
θ

h∂∇xhΨ ˙(∇xh) +
1
θ

h∂φΨφ̇ +
1
θ

h∂∇xφΨ ˙(∇xφ) 6 0,

(7.2.8)

as required. �

Define the chemical potentials of φ and h as

µφ = h
∂φΨ

θ
−∇x ·

(
h

∂∇xφΨ
θ

)
(7.2.9)

and

µh =
1
θ

Ψ + h
∂hΨ

θ
−∇x ·

(
h

∂∇xhΨ
θ

)
(7.2.10)

respectively. We now use (7.2.8) and employ the same methods as de-
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scribed in Chapter 5 to rewrite the constraint as

−∇x ·
(∫ h(x,t)

0

q̂
θ̂

dz
)
−∇x · (hk) +∇x ·

(
1
θ

hq
)
+

1
θ

Ψḣ

+
1
θ2 (hq) · ∇xθ +

1
θ

qTF− 1
θ

qB −
1
θ

hr− qTF
θT

+
qB

θB
+
∫ h(x,t)

0

r̂
θ̂

dz

+ h
∂hΨ

θ
ḣ−∇x ·

(
h

∂∇xhΨ
θ

)
ḣ +∇x ·

(
h

∂∇xhΨ
θ

)
ḣ + h

∂∇xhΨ
θ

˙(∇xh)

+ h
∂φΨ

θ
φ̇−∇x ·

(
h

∂∇xφΨ
θ

)
φ̇ +∇x ·

(
h

∂∇xφΨ
θ

)
φ̇ + h

∂∇xφΨ
θ

˙(∇xφ)

6 0.

(7.2.11)

Noting that for some Y, ˙(∇xY) = ∇xẎ we can use the definitions of the

chemical potentials (7.2.9) and (7.2.10) to rewrite (7.2.11) as

−∇x ·
(∫ h(x,t)

0

q̂
θ̂

dz
)
−∇x · (hk) +∇x ·

(
1
θ

hq
)

+
1
θ2 (hq) · ∇xθ +

1
θ

qTF− 1
θ

qB −
1
θ

hr− qTF
θT

+
qB

θB
+
∫ h(x,t)

0

r̂
θ̂

dz

+ µhḣ +∇x ·
(

h
∂∇xhΨ

θ
ḣ
)
+ µφφ̇ +∇x ·

(
h

∂∇xφΨ
θ

φ̇

)
6 0.

(7.2.12)

We integrate (7.2.12) over the domain Ω and substitute in (7.1.11). The

term containing ḣµh becomes

∫
Ω

ḣµh dA =
∫

Ω
(−∇x · (hj)− jTF + jB) µh dA. (7.2.13)

Integrate by parts the first term, and using the homogenous boundary

conditions µh · nΩ = 0 on ∂Ω, it is found that

∫
Ω

ḣµh dA =
∫

Ω
(∇xµh · (hj)− jTFµh + jBµh) dA. (7.2.14)

Removing the integrals and substituting in (7.1.31) results in the final
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constraint for the constituent class of Ψ chosen in (7.2.1)

−∇x ·
(∫ h(x,t)

0

q̂
θ̂

dz
)
−∇x · (hk) +∇x ·

(
1
θ

hq
)

+
1
θ2 (hq) · ∇xθ +

1
θ

qTF− 1
θ

qB −
1
θ

hr− qTF
θT

+
qB

θB
+
∫ h(x,t)

0

r̂
θ̂

dz

+∇xµh · (hj)− jTFµh + jBµh + µφγ

+∇x ·
(

h
∂∇xhΨ

θ
ḣ
)
+∇x ·

(
h

∂∇xφΨ
θ

φ̇

)
6 0.

(7.2.15)

Having defined the chemical potentials and found a constraint that must

hold for any choice of dependent variables for the choice of constituent

class made in (7.2.6), we are able to postulate constituent classes for these

variables to give a thermodynamically consistent model that fits within

this framework.

7.2.2 Choices of Dependent Variables

In this section we break (7.2.15) into groups of terms, and ensure that

each group piecewise satisfies the constraint. From this section onwards,

as we have reduced the problem to a (d− 1)-dimensional problem, we

drop the x subscript from the gradient, thus∇ = (∂/∂x1, . . . , ∂/∂xd−1)
T.

Energy Source Terms

We first turn our attention to the energy source terms. The energy source

is a known input, and so it is possible to calculate the vertically averaged

source. Therefore, we choose r̂ to be a vertically averaged heat source,

thus making it independent of z. The terms containing the energy source

in (7.2.15) are ∫ h(x,t)

0

r̂
θ̂

dz− 1
θ

hr (7.2.16)
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which, by using the definition of r given in (7.1.16) and the definition of

θ given in (7.1.32), can be written

∫ h(x,t)

0

r̂
θ̂

dz− 1
h

∫ h(x,t)

0

1
θ̂

dz
∫ h(x,t)

0
r̂ dz. (7.2.17)

As r̂ does not depend on z, the right hand side can be rearranged to give

∫ h(x,t)

0

r̂
θ̂

dz− 1
θ

hr =
∫ h(x,t)

0

r̂
θ̂

dz− 1
h

∫ h(x,t)

0

r̂
θ̂

dz h = 0, (7.2.18)

and so (7.2.15) is satisfied for the energy source terms.

Mass Flux and Solidification Terms

The next group of terms to define relate to the movement of mass and

the changing of the phase of solidification. It requires that the following

constraint holds:

∇µh · (hj)− jTFµh + jBµh + µφγ 6 0. (7.2.19)

Almost universally in energetically derived solidification models, the

change of phase is driven by the chemical potential of the energy func-

tional with respect to the phase. Therefore, as in Chapter 5 we postulate

the constitutive class of

γ = γ(µφ). (7.2.20)

From Chapter 4, evaporation of the material is driven by the chemical

potential relating to the height of the film, while the flow of the material

is driven by the gradient of this property and the height of the film. In

addition, it is obvious that the phase of solidification has an impact on

the movement of mass of the film. We postulate the classes

j = j(h, φ,∇µh), (7.2.21)
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jT = jT(φ, µh) (7.2.22)

and

jB = jB(φ, µh). (7.2.23)

With these constituent classes defined, we pick

γ = −k1µφ (7.2.24)

for a positive constant k1 > 0,

j = −m1(h, φ)∇µh, (7.2.25)

jT = m2(φ)µh, (7.2.26)

and

jB = −m3(φ)µh (7.2.27)

for mobility functions mi(θ, φ) > 0 for i = 1, 2, 3. The choice for j is

consistent with the form derived in Chapter 4 which is equivalent to both

energetically derived models as well as asymptotically derived models

[37, 38] from literature. The terms for mass flux across the boundary, jT

and jB represent evaporation of the film. In the case of a non-volatile

film such as that used in the previous chapters, m2 = m3 = 0. The

form of jT is consistent with that postulated by Thiele [58] for a volatile

liquid film. However the evaporative terms in the model by Burelbach

et al. were not derived with energetic considerations in mind, and we

have been unable to prove that they are consistent with the second law

of thermodynamics, and therefore comparisons here are not made.

From these choices, it can be seen that the evolution of the film exhibits

Cahn-Hilliard like properties, while evaporation acts like the Allen-Cahn

equation derived in Chapter 2

Recalling that φ(x) is defined as 1 if the film is liquid at point x and 0
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if the film is solid, with a smooth transition between the phases, a clear

choice for the form of m1 would be

m1(h, φ) = φm′1(h) (7.2.28)

for a function m′1 > 0. This dependence on φ ensures that if the film

is solid, the mass does not move and evaporation does not occur. In

addition, as the film transitions from a liquid into a solid, the mobility

decreases.

Heat Flux Terms

Next we turn attention to the terms containing the flux of heat both

within the main body of the material q and across the top and bottom

boundaries qT and qB. Our choices are required to satisfy

−∇ ·
(∫ h(x,t)

0

q̂
θ̂

dz
)
+∇ ·

(
1
θ

hq
)
+

1
θ2 hq · ∇θ

+
1
θ

qTF− 1
θ

qB −
qTF
θT

+
qB

θB
6 0.

(7.2.29)

Initially we consider the difference between the vertically averaged heat

flux term and the un-averaged term,

−∇ ·
(∫ h(x,t)

0

q̂
θ̂

dz
)
+∇ ·

(
1
θ

hq
)

, (7.2.30)

which can be written

−∇ ·
[

h
(

1
h

∫ h(x,t)

0

q̂
θ̂

dz− 1
θ

q
)]

. (7.2.31)

The vertical integral contains non-averaged terms, and so this is a similar

closure problem to that described in Chapter 6. The term in the round

brackets is the difference between the vertical average of a product of

two variables and the product of the vertical average of the product. We
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call this difference K, so that

K =
1
h

∫ h(x,t)

0

q̂
θ̂

dz− 1
θ

q. (7.2.32)

We note that K is a vertically averaged quantity which accounts for fluc-

tuations in q̂ and θ̂ in the z-direction, and is itself not dependent on z.

As in Chapter 6, we write

q̂(x, z) = q(x) + q̃(x, z) (7.2.33)

and

θ̂−1(x, z) = θ−1(x) + θ̃−1(x, z). (7.2.34)

where a tilde represents the deviation in the z-direction from the verti-

cally averaged value. From these definitions it is clear that

1
h

∫ h(x,t)

0
q̃ dz =

1
h

∫ h(x,t)

0
θ̃−1 dz = 0. (7.2.35)

Taking the product of (7.2.33) and (7.2.34), integrating over the interval

[0, h(x, t)] and substituting the result into (7.2.32) results in

K =
1
h

∫ h(x,t)

0
q̃θ̃−1 dz. (7.2.36)

This results now in only the single term K needing to be modelled. We

can write (7.2.29) as

−∇ · (hK) +
1
θ2 hq · ∇θ +

1
θ

qTF− 1
θ

qB −
qTF
θT

+
qB

θB
6 0. (7.2.37)

We now postulate that the heat flux within the material is dependent on

the temperature gradient, and state that

q = q(∇θ). (7.2.38)
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Within this constituent class we make the choice of

q = −k2∇θ (7.2.39)

for a positive constant k2 > 0. This choice of q is consistent with the

choice (5.2.28) made in the case of bulk solidification. This also corre-

sponds with many other works in the literature, [29, 43].

As in Chapter 6, we assume that if θT(x) = θB(x) then the temperature

does not vary in the z-direction. We therefore postulate that hK takes the

form

K = q′(θT − θB) (7.2.40)

for some function q′. As in Chapter 6, if the gradient of the difference

of the boundary temperatures is nonzero, one would expect to see tem-

perature fluctuations in the z-direction, and so we pose the constitutive

class

q′ = q′(∇(θT − θB)). (7.2.41)

With these choices, we can write

∇ · (hK) = (θT − θB)∇(hq′) + hq′ · ∇(θT − θB). (7.2.42)

Substituting this into (7.2.37) gives

−(θT − θB)∇(hq′)− hq′ · ∇(θT − θB) +
1
θ

qTF− 1
θ

qB −
qTF
θT

+
qB

θB
6 0.

(7.2.43)

Note we have omitted the term containing hq as q has already been cho-

sen to satisfy the constraint. Factorising the terms relating to qT and qB
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results in

− (θT − θB)∇(hq′)− hq′ · ∇(θT − θB) + qTF
(

1
θ
− 1

θT

)
− qB

(
1
θ
− 1

θB

)
= −(θT − θB)∇(hq′)− hq′ · ∇(θT − θB) +

qTF
θθT

(θT − θ)− qB

θθB
(θB − θ)

6 0.

(7.2.44)

Recalling constitutive class (7.2.41), we pick

q′ = k4∇(θT − θB) (7.2.45)

for some function k4 > 0 to ensure the second term in this equation

is always non-negative. It remains to define qT and qB such that the

constraint always holds. We postulate constitutive classes of

qT = qT (h,∇h, θ, θT,∇(θT − θB), ∆(θT − θB)) (7.2.46)

and

qB = qB (h,∇h, θ, θB,∇(θT − θB), ∆(θT − θB)) . (7.2.47)

The first term of (7.2.44) can be split to give

(θT − θB)∇(hq′) = (θT − θ + θ − θB)∇(hq′), (7.2.48)

which enables the constraint to be split into two separate constraints; one

handling the heat flux over the top boundary and the other handling the

heat flux over the bottom boundary:

−(θT − θ)∇ · [hk4∇(θT − θB)] +
qTF
θθT

(θT − θ) 6 0, (7.2.49)
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and

−(θ − θB)∇ · [hk4∇(θT − θB)]−
qB

θθB
(θB − θ) 6 0. (7.2.50)

From these constraints, we define

qT =
θθT

F
[∇ · (hk4∇x(θT − θB)]− k5(θT − θ) (7.2.51)

and

qB = θθB [∇ · (hk4∇x(θT − θB)] + k6(θB − θ) (7.2.52)

for functions k5 > 0 and k6 > 0.

These choices align with the choices made in Chapter 6, along with the

claims made in [102]. With the choices made in this section, constraint

(7.2.29) reduces to

−k5F(θT − θ)2 − k6(θB − θ)2 − 1
θ2 k2h|∇θ|2 6 0. (7.2.53)

Entropy on the Diffuse Boundary

Finally, we consider the entropy on the diffuse boundary, k. As pre-

viously discussed, this term is related to uncertainties on the diffuse

boundary, and accounts for the variations averaged out in the vertical

direction. The part of (7.2.15) relating to these terms is

−∇ · (hk) +∇ ·
(

h
∂∇φΨ

θ
φ̇

)
+∇ ·

(
h

∂∇hΨ
θ

ḣ
)
6 0. (7.2.54)

We postulate a constituent class

k = k(Γ, µh,∇µh, µφ,∇µφ), (7.2.55)
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and make the choice of

k =
∂∇φΨ

θ
φ̇ +

∂∇hΨ
θ

ḣ. (7.2.56)

With this choice, (7.2.54) becomes

∇ ·
[
−h
(

∂∇φΨ
θ

φ̇ +
∂∇hΨ

θ
ḣ
)
+ h

∂∇φΨ
θ

φ̇ + h
∂∇hΨ

θ
ḣ
]
= 0. (7.2.57)

Having now chosen a constitutive class for Ψ and defined all parameters

such that (7.2.15) holds for this constituent class, we now proceed to pick

a specific Ψ and finalise the model.

7.3 Internal Energy and the Free Energy

As in previous chapters, we state that the internal energy of the film can

be written as a function of φ and θ in the form

e = u(θ)v(φ) + w(φ). (7.3.1)

We once again make the assumption that v(φ) = 1 and that the energy

relating to varies linearly in all non-extreme cases and so write

e = cθ + w(φ). (7.3.2)

In this expression, cθ represents the energy in the system due to the in-

ternal heat. w(φ) represents the latent heat of phase change, defined to

be the amount of energy gained or lost during the change of phase of a

material without the temperature.

Multiplying through by h and differentiating the result with respect to

time we obtain

˙(he) = chθ̇ + cḣθ + hw′(φ)φ̇ + ḣw(φ). (7.3.3)
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Using (7.1.19) along with (7.2.39), (7.2.51) and (7.2.52) we obtain the heat

transfer equation

chθ̇ =− cḣθ − hw′(φ)φ̇− ḣw(φ) +∇ · hk2∇θ−

(θT − θB)θ [∇ · (hk4∇(θT − θB))] + k5F(θT − θ) + k6(θB − θ) + hr.

(7.3.4)

The final two terms in (7.3.4) suggest that if the average temperature in-

side the material, θ, is greater than the external temperature on one of the

boundaries, θT or θB, energy is lost through this surface. Conversely, if θ

is lower than the boundary temperature θT, energy is absorbed through

the boundary.

The temperature equation combined with (7.1.11) and (7.1.31) give the

final system of equations for describing the evolution of a solidifying

thin film:

chθ̇ =− cḣθ − hw′(φ)φ̇− ḣw(φ) +∇ · hk2∇θ−

(θT − θB)θ [∇ · (hk4∇(θT − θB))] + k5F(θT − θ) + k6(θB − θ) + hr,

(7.3.5)

ḣ = ∇ · hm1∇µh − (m2F + m3)µh, (7.3.6)

φ̇ = −k1µφ, (7.3.7)

where

µh =
Ψ
θ
+ h

∂hΨ
θ
−∇ ·

(
h

∂∇hΨ
θ

)
, (7.3.8)

and

µφ = h
∂φΨ

θ
−∇ ·

(
h

∂∇φΨ
θ

)
. (7.3.9)

It now remains to define a free energy. Recall that Ψ = e− θη, and also

that η = −∂θΨ. Therefore

e = −θ2 ∂

∂θ

(
Ψ
θ

)
, (7.3.10)
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which by substituting in e can be written

cθ + w(φ) = −θ2 ∂

∂θ

(
Ψ
θ

)
. (7.3.11)

Also recalling that the constituent class of Ψ = Ψ(θ, φ, h,∇φ,∇h), then

by dividing through by −θ2 and integrating with respect to θ we obtain

the form of the free energy to be

Ψ
θ
= −c ln θ +

w(φ)

θ
+ G(φ,∇φ, h,∇h), (7.3.12)

where G(φ,∇φ, h,∇h) is still to be picked. In the next two sections we

propose two different models based on differing choices for Ψ. As both

models are chosen within the constituent class of Ψ, they are both ther-

modynamically consistent.

7.4 Specific Models

In this section we present two thermodynamically consistent models

that fit within the framework derived in the previous sections of this

chapter. We start by identifying a function for the latent heat w′(φ)

which is used in both models. The final models are then presented.

7.4.1 Latent Heat

To model the latent heat of phase change, we are required to define a

function that is 0 in the pure phases, and so we define w(φ) such that

w′(0) = w′(1) = 0. (7.4.1)

We follow similar methods to those used by Penrose and Fife [47] and

take the latent heat function to be quadratic, and therefore w(φ) to be
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cubic, by defining

w(φ) = λ0(−4φ3 + 6φ2 − 1) (7.4.2)

for some constant λ0 > 0, the magnitude of which describes the amount

of energy that is released during the liquid-to-solid phase transition. The

reason behind picking w(φ) to be cubic is for numerical purposes and is

made clear in Chapter 8.

7.4.2 Model A

For the first model, we make the choice of

Ψ
θ
= −c ln

(
θ

θ0

)
+

1
θ

(
1− θ

θ0

)
w(φ) +

W1(φ)

θ0
+

σ2
1

2θ0
|∇φ|2

+
W2(h)

θ0
+

σ2
2

2θ0
|∇h|2,

(7.4.3)

where θ0 is the melting point of the material. The 1 − θ/θ0 dictates

whether latent heat is added or taken away during phase transition. If

the average temperature of the material is lower than its melting point,

θ/θ0 < 1, then the energy contribution is positive; this is equivalent to

energy being released during solidification. If the temperature is higher

than the melting point, θ/θ0 > 1, this term is negative, suggesting en-

ergy is absorbed during melting.

As in previous chapters, W1(φ) and W2(h) are the free energy potentials

relating to the phase and height functions respectively. W1(φ) has min-

ima at φ = 0 and φ = 1 and W2(h) has a minimum point at h = 0. The

term containing σ1 represents the contribution to the free energy on the

diffuse interface between the pure phases, and the term containing σ2

represents surface tension.

As in Chapter 5, we non-dimensionalise the temperature parameter by

defining θ̄ = θ/θ0, and so the chemical potentials for this choice of free
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energy are given by

µφ =
1
θ0

(
h
(1− θ̄)

θ̄
w′(φ) + hW ′1(φ)−∇ · (hσ2

1∇φ)

)
, (7.4.4)

and

µh =
1
θ0

(
Ψ
θ̄
+ hW ′2(h)−∇ ·

(
σ2

2 h∇h
))

. (7.4.5)

Applying a similar non-dimensionalisation of θ̄T = θT/θ0 and θ̄B =

θB/θ0 to the boundary temperatures, the final system of equations de-

scribing the evolution of a thin film undergoing solidification is given

by

c̄h ˙̄θ =− c̄ḣθ̄ − hw′(φ)φ̇− ḣw(φ) +∇ ·
(
hk̄2∇θ̄

)
−

(θ̄T − θ̄B)θ̄
[
∇ · (hk̄4∇(θ̄T − θ̄B))

]
+ k̄5F(θ̄T − θ̄) + k̄6(θ̄B − θ̄) + hr,

(7.4.6)

ḣ = ∇ · (hm̄1∇µh)− (m̄2F + m̄3)µh, (7.4.7)

φ̇ = −k̄1µφ, (7.4.8)

with

µh =
Ψ
θ̄
+ hW ′2(h)−∇ ·

(
σ2

2 h∇h
)

, (7.4.9)

and

µφ = h
(1− θ̄)

θ̄
w′(φ) + hW ′1(φ)−∇ · (hσ2

1∇φ), (7.4.10)

where c̄ = cθ0, k̄1 = k1/θ0, k̄2 = k2θ0, k̄4 = k4θ3
0, k̄5 = k5θ0, k̄6 = k6θ0 and

m̄i = mi/θ0 for i = 1, 2, 3.

7.4.3 Model B

In the derivation of the system, Ψ, φ and θ are vertically averaged quan-

tities. However, taking the vertical average of the height function would

not make physical sense, and so the variable h is not vertically averaged.
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To represent this, we consider a free energy split into two; the first, Ψ1

relating to the vertically averaged quantities and the second, Ψ2 contain-

ing the h terms. To account for the fact that Ψ2 is not vertically averaged,

we multiply this term by a factor of 1/h resulting in

Ψ
θ
= Ψ1(θ, φ,∇φ) +

1
h

Ψ2(h,∇h). (7.4.11)

We define

Ψ1 = −c ln
(

θ

θ0

)
+

1
θ

(
1− θ

θ0

)
w(φ) +

W1(φ)

θ0
+

σ2
1

2θ0
|∇φ|2 (7.4.12)

and

Ψ2 =
W2(h)

θ0
+

σ2
2

2θ0
|∇h|2, (7.4.13)

where each terms represents the same phenomena as in the choice for

Model A. Following the same non-dimensionalisation as for Model A,

the the chemical potentials for the new choice of free energy become

µh =
1
θ0

(
Ψ1 + W ′2(h)− σ2

2 ∆h
)

(7.4.14)

and

µφ =
1
θ0

(
h
(1− θ̄)

θ̄
w′(φ) + hW ′1(φ)−∇ ·

(
hσ2

1∇φ
))

. (7.4.15)

These chemical potentials are combined with the evolution equations to

give the final system of equations

c̄h ˙̄θ =− c̄ḣθ̄ − hw′(φ)φ̇− ḣw(φ) +∇ ·
(
hk̄2∇θ̄

)
−

(θ̄T − θ̄B)θ̄
[
∇ · (hk̄4∇(θ̄T − θ̄B))

]
+ k̄5F(θ̄T − θ̄) + k̄6(θ̄B − θ̄) + hr,

(7.4.16)

ḣ = ∇ · (hm̄1∇µh)− (m̄2F + m̄3)µh, (7.4.17)

φ̇ = −k̄1µφ, (7.4.18)

118



CHAPTER 7: THIN FILM SOLIDIFICATION

with

µh = Ψ1 + W ′2(h)− σ2
2 ∆h, (7.4.19)

and

µφ = h
(1− θ̄)

θ̄
w′(φ) + hW ′1(φ)−∇ · (hσ2

1∇φ). (7.4.20)

We now have derived two separate thermodynamically consistent mod-

els for simulating the evolution of a solidifying thin film. In the next

section, we verify the models in order to assure us of their validity.

7.5 Verification of the Models

In this section we investigate the validity of the two models given in

(7.4.6-7.4.10) and (7.4.16-7.4.20). Firstly, we confirm that the 2nd law of

Thermodynamics is indeed adhered to. We then proceed by showing

that, by fixing certain parameters for a given scenario, the model reduces

to each of the models derived in Chapters 4 and 6. For the remainder of

this work, we drop the bar from the non-dimensionalised parameters.

7.5.1 Thermodynamical Consistency

The first stage in the verification of the model is to ensure that it is con-

sistent with the second law of thermodynamics. This is equivalent to

saying that restriction (7.2.15) holds for all energy functionals Ψ with the

constitutive class Ψ = Ψ(θ, φ,∇φ, h,∇h). The restraint is written as

−∇ · (hK)−∇ · (hk) +∇ ·
(

h
∂∇hΨ

θ
ḣ
)
+∇ ·

(
h

∂∇φΨ
θ

φ̇

)
+

1
θ2 (hq) · ∇θ +

1
θ

qTF− 1
θ

qB −
1
θ

hr− qTF
θT

+
qB

θB
+
∫ h(x,t)

0

r̂
θ̂

dz

+∇µh · (hj)− jTFµh + jBµh + µφγ 6 0.

(7.5.1)
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Substituting the derived forms of K, k, q, qT, qB, J, jT, jB and γ into the left

hand side of this equation gives

− 1
θ2 hk2|∇θ|2 − k5F

θθT
(θT − θ)2 − k6

θθB
(θB − θ)2

− hm1|∇µh|2 − (m2F + m3)µ
2
h − k1µ2

φ 6 0.
(7.5.2)

Thus we have shown that the choices made within this chapter for a

constitutive class of Ψ = Ψ(θ, φ,∇φ, h,∇h) do indeed result in thermo-

dynamically consistent models.

We now proceed to reduce the system of equations to cases that have

previously been modelled.

7.5.2 Thin Film Heat Equation

The first model that Model A and Model B are compared to is the thin

film heat equation, as derived in Chapter 6. In this derivation, the film

is modelled as a single phase scenario, and so we choose φ(x) to be con-

stant for all x, resulting in φ̇ = W ′1(φ) = w′(φ) = 0. Similarly, it is as-

sumed that the film is rigid, and so h(x, t) = h0(x) and ḣ = 0. To achieve

this, we set m1 = m2 = m3 = 0. Substituting these simplifications into

both (7.4.6-7.4.10) and (7.4.16-7.4.20) results in the equation

ch0θ̇ = ∇ · (h0k2∇θ)− (θT − θB)θ [∇ · (h0k4∇(θT − θB))] +

k5F(θT − θ) + k6(θB − θ) + h0r.
(7.5.3)

This is identical to the model (6.3.42), and so the reduced thin film solid-

ification models are consistent with the thin film heat equation derived

in Chapter 6.
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7.5.3 Thin Film Flow

Next, we look to reduce equations (7.4.6-7.4.10) and (7.4.16-7.4.20) to a

model simulating the evolution of a thin film which is not undergoing

a change in state of solidification. To negate the consideration of tem-

perature and phase, we set Ψ1 = 0. In addition, as the film is in an

isothermal setting, we fix θ = θT = θB to be constant. Substituting these

assumptions into Model A results in

ḣ = ∇ · (hm1∇µh) , (7.5.4)

µh = Ψ2 + hW ′2(h)−∇ ·
(

σ2
2 h∇h

)
. (7.5.5)

It is clear that this is not equivalent to the system (4.3.22-4.3.23), and thus

we have provided a new alternative.

Implementing the same assumptions, Model B reduces to

ḣ = ∇ · (hm1∇µh) , (7.5.6)

µh = W ′2(h)− σ2
2 ∆h, (7.5.7)

which is equivalent to (4.3.22-4.3.23). As we have shown in Chapter 4

that this model is equivalent to both energetically and asymptotically

derived models for non volatile thin film flow, we proceed by study-

ing Model B, as it is a more natural extension from the simpler models.

However, it should be noted that Model A is not invalidated, and it,

along with other choices for Ψ/θ could prove useful in future work.

We have now shown that Model B is both thermodynamically consistent,

and that is it consistent with models that describe less complex scenar-

ios. We thus have provided with system (7.4.16-7.4.20) a valid model

for describing the evolution of a solidifying thin film in an non isother-

mal setting. In the final chapter, we investigate this model by presenting
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simulations for a variety of cases.
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CHAPTER 8

Numerical Simulations

This chapter provides numerical simulations for Model B (system (7.4.16)-

(7.4.20)). This model describes a solidifying thin film, and it was derived

in Chapter 7 to be thermodynamically consistent. Firstly in this chapter

we simulate a non volatile thin film on a flat impermeable substrate and

investigate the effect that solidification has on the evolution of the film

by comparing it to the results in Chapter 4. We consider films under-

going phase changes from liquid to solid and also from solid to liquid.

We then allow for evaporation to occur and investigate how the rate of

evaporation effects the final morphology of the film.

8.1 Numerical Methods

To simulate the system of equations, we employ linear finite elements

for the spatial discretisation. For the time discretisation, we employ a

convex splitting method as described in Section 3.2.2 for the terms con-

taining the energy potential terms. For this system of equations, this

involves finding splits for both W1(φ) and W2(h). This process is de-

tailed in Section 8.3. For the remaining non-linear coupling terms, a

semi-implicit scheme is implemented. This results in a linear system of

equations having to be solved at each time step. The code used for pro-
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viding these simulations was entirely written for this project, and was

based on [50].

For this work, we use a simple fixed mesh spacing, splitting the domain

into N = 100 equally sized elements. Simulations were carried out start-

ing with a more coarse mesh, and were compared to further simulations

performed on a mesh with a greater number of elements. We were satis-

fied that the mesh was sufficiently refined for our choice of parameters

when a further increase in N resulted in no visual changes in the simu-

lations produced at varying time points.

Using these techniques, for the chosen ε the simulations took in the

range of 1− 2 minutes to run. More advanced techniques, such as refin-

ing the mesh around interfaces where variables change quickly, would

enable smaller values for ε to be used; however for the purposes of this

work this was deemed unnecessary.

8.2 A Non Volatile Liquid Film on a Substrate

In order to investigate the solidification of a thin film, we start by mod-

elling a simple thin film on a substrate. Initially we make the assumption

that θT = θT0 and θB = θB0 are constants, although not necessarily the

same value. This replicates a scenario such as the manufacture of thin

film solar cells: a film is sitting on a substrate heated from below, while

the top surface of the film is in contact with the air. We assume the film

is not volatile and therefore set m2 = m3 = 0.

Given that the temperatures on the boundaries are constant, ∇(θT −

θB) = 0, and (7.4.16-7.4.20) becomes

chθ̇ = −cḣθ− hw′(φ)φ̇− ḣw(φ)+∇· (hk2∇θ)+ k5F(θT0− θ)+ k6(θB0− θ),

(8.2.1)

ḣ = ∇ · (hm1(h, φ)∇µh) , (8.2.2)
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φ̇ = −k1µφ, (8.2.3)

µh = Ψ1 + W ′2(h)− σ2
2 ∆h, (8.2.4)

µφ = h
(1− θ)

θ
w′(φ) + hW ′1(φ)− σ2

1∇ · (h∇φ) . (8.2.5)

To describe a material which is purely liquid at φ(x) = 1 and purely

solid at φ(x) = 0, it is required that the potential W1(φ) is a double well

function with minima at both W1(φ) = 0 and W1(φ) = 1. We therefore

define

W1(φ) = φ2(φ− 1)2. (8.2.6)

For W2(h), we refer back to Chapter 4 and make the choice of

W2(h) = −
1
6

h−2. (8.2.7)

We assume that the mobility function m1(h, φ) is only linearly dependent

on the phase of solidification, and so choose

hm1(h, φ) = φh3. (8.2.8)

This forces the mobility of the film to be zero when it is solid, resulting

in there being no flow of material. In addition, when the film is partially

solidified at a point x, the mobility is restricted.

8.3 Numerically-Suitable Function Extensions and

Convex Splitting

As in Chapter 4, it is required that the functions chosen are regularised

to ensure they remain non-negative when, through computational error,

the variables h, φ or θ become negative. In addition to this, we seek a reg-

ularisation of the potentials W1(φ) and W2(h) to functions which can be

split into a convex part and a concave part, which is key for employing
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the Convex Splitting time stepping method described in Chapter 3. It is

also required that the regularisation of the function must be continuous

with a continuous first derivative.

We first regularise W1(φ). The key property of this potential is that it has

minima at both W1(φ) = 0 and W1(φ) = 1, so this must also hold true

for the regularised function. we define the regularised function to be

W1(φ) =



φ2 if φ 6 0,

φ2(φ− 1)2, if 0 6 φ 6 1,

(φ− 1)2 if φ > 1.

(8.3.1)

The second derivative of W1(φ) is

W ′′1 (φ) =


2 if φ 6 0,

12φ2 − 12φ + 2 if 0 6 φ 6 1,

2 if φ > 1,

(8.3.2)

and it can be seen that |W ′′1 (φ)| 6 2 ∀φ. Recall that for some function

f (x), if ∃L > 0 such that | f ′′(x)| < L ∀x then f can be split into the

sum of a convex function f+(x) and a concave function f−(x) with the

convex part given by f+(x) = Lx2/2 [54]. Given this, we split W1(φ)

into the convex function

W1+(φ) = φ2, (8.3.3)

with corresponding concave function

W1−(φ) =



0 if φ 6 0,

φ4 − 2φ3, if 0 6 φ 6 1,

1− 2φ if φ > 1.

(8.3.4)
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Figure 8.1: Plot of W1(φ). The dotted red line is the unregularised func-
tion while the blue line represents the regularised function.

The regularised version of W1(φ) is shown in Figure 8.3.4 as a solid blue

line. The dotted red line shows the unregularised function.

For the function W2(h) we use the same regularisation as in Chapter 4,

by taking a small number ε > 0, and by defining

W2(h) =


1

6ε4 h2 − 1
3ε2 if h < ε,

−1
6

h−2 if h ≥ ε.

(8.3.5)

This regularisation makes W2(h) quadratic for h < ε, and in addition

ensures that W2(h) and W ′2(h) are continuous at all points, in particular

h = ε. We finally note that the minimum of W2(h) is found at h = 0. A

plot of this function can be seen in the bottom panel of Figure 4.6.

Taking the second derivative of W2(h) results in

W ′′2 (h) =


1

3ε4 if h < ε,

− 1
h4 if h ≥ ε,

(8.3.6)
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from which it can be seen that |W ′′2 (h)| 6 ε−4 and so we take a convex

splitting of

W2+(h) =
1

2ε4 h2, (8.3.7)

with corresponding concave part

W2−(h) =


− 1

3ε4 h2 − 1
3ε4 if h < ε,

−1
6

h−2 − 1
2ε4 h2 if h ≥ ε.

(8.3.8)

The next function requiring regularisation is the latent heat function.

While this function is already defined such that w′(0) = w′(1) = 0, is

is important that if numerical inaccuracies lead to either φ > 1 or φ < 0,

the energy is unaffected. Thus, we make the regularisation

w(φ) =



−λ0 if φ < 0,

λ0(−4φ3 + 6φ2 − 1) if 0 < φ < 1,

λ0 otherwise.

(8.3.9)

This regularised function is plotted in Figure 8.2. From this, it can be

seen that when w(φ) is added to the potential W1(φ), the positions of

the minima do not change. Having a function w′(φ) being quadratic is

preferable as, for this implemented regularisation, it is continuous for all

φ.

Finally, for the mobility function we adapt the regularisation made in

Chapter 4, and define

hm1(h, φ) =


0 if h 6 0 or φ 6 0,

φh3 otherwise.

(8.3.10)
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Figure 8.2: Plot of the regularised w(φ). The dotted red line is the un-
regularised function while the blue line represents the reg-
ularised function.

We now simulate the system for two scenarios; first we look at a liquid

thin film undergoing solidification, and secondly we investigate a solid

film melting after being heated from below. For both scenarios, we start

with a perturbed flat film by setting the initial height function to be

h(x, 0) = 1− 0.1 cos
(

1√
2

x
)

, (8.3.11)

and as we are interesting in understanding the behaviour of the film un-

der the chosen conditions, we pick ε = 0.3 in the regularisation of W2(h).

If the goal was to produce more realistic results, ε would be chosen to be

smaller.

8.4 Solidification of a Liquid Film

For a film to undergo solidification from its liquid state, the temperature

must be below the melting point of the material. For this reason, we

pick θT0 = θB0 = 0.4. We also take the initial condition of θ(x, 0) = 0.4;
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Figure 8.3: The evolution of a solidifying liquid film. The left column
shows φ(x, t), the middle column shows h(x, t) and the
right column shows θ(x, t). The rows show the solutions
at times t = 0, 5, 15, 17.5, 20 and the equilibrium position.
Homogeneous Neumann boundary conditions are used.
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this is suggesting that the temperature is in an equilibrium state before

the effects of solidification and hole evolution start to contribute. As in

Chapter 4, we start with a perturbed flat film, and assume that solidifi-

cation has nucleated at the left boundary. For this, we set

φ(x, 0) =
1
2
+

1
2

tanh
(
(x + 4)
σ1
√

2

)
. (8.4.1)

We use this initial condition for φ as it is a natural choice for an Allen-

Cahn type equation.

We set the coefficient of the latent heat λ0 = 0.1, and choose σ1 = 0.3 and

k1 = 0.5. The remaining parameters are set as σ2 = c = k2 = k5 = k6 = 1.

The results using these parameter settings are shown in Figure 8.3 for

times t = 0, 5, 15, 17.5, 20 and the equilibrium position. The column on

the left shows the evolution of the phase parameter φ, the central column

depicts the height function of the film above the substrate h, and the right

hand column shows the evolution of the average temperature θ.

The top row shows the initial conditions while moving down the rows

shows the progression in time. The final row is at a point where h and θ

have reached an equilibrium position.

As can be seen from the height function plots, initially the dewetting

occurs in a very similar way to the thin film flow modelled in Chapter

4. As the film solidifies, dewetting continues due to the disjoining pres-

sure; however the left boundary becomes fixed, causing a ridge to form.

Eventually, hole growth stops as it reaches an equilibrium point. The

temperature spike in the second row comes from the latent heat of phase

change; as the liquid turns into a solid energy is released as heat. As the

film dewets and the height becomes close to zero, additional tempera-

ture spikes can be seen (for example in row 4). As the height function of

the film height reduces, the average temperature at a point x increases

before it is diffused away, causing this additional spike.
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Figure 8.4: The temperature of a solidifying thin film for differing heat
diffusion coefficients k2. In the left hand column, k2 = 1
and in the right hand column k2 = 2. Results are shown at
times t = 15 (row 1), t = 17.5 (row 2) and t = 20 (row 3).

This explanation for the origin of this temperature spike can be con-

firmed by increasing the heat diffusion coefficient k2 and comparing the

results to those shown in Figure 8.3. The left column of Figure ?? shows

the temperature at times t = 15, 17.5 and 20 when k2 = 1 (as in Fig-

ure 8.3), and the right hand column shows the temperature at the same

times for k2 = 2. As can be clearly seen, an increase in the heat diffusion

coefficient results in a lower spike in temperature as expected.

We now look to vary parameters in order to understand the effect they

have on the evolution of the film. In Figure 8.5, we vary the parameter

controlling the speed of propagation of solidification, k1. As can clearly

be seen, increasing this parameter results in a smaller hole being formed.

Figure 8.6 demonstrates the effect of varying the coefficient of latent heat.
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Figure 8.5: The effects on hole growth in a dewetting thin film due to
varying the speed of propagation of solidification, k1.

As with k1, it can be seen that increasing this value results in the forma-

tion of a smaller hole.

Figure 8.6: The effects on hole growth in a dewetting thin film due to
varying the coefficient of latent heat, λ0

Figure 8.7 shows the effects that the external temperature has on the film

formation. When the external temperature is much less than the melting

point of the film, as in the left panel, the film solidifies very quickly and

very little change in morphology is observed. When the external tem-

perature is close to the melting point, the rate of solidification is greatly

reduced, and hole formation is more significant.

8.5 Solid Film Melting on a Heated Substrate

In this section we investigate the effects of putting a solid film with a

slight perturbation onto a heated substrate. We set θB0 = 2.5, ensuring

that this is above the melting temperature of the film. We set θT0 =

2.5 also - this simulates for example a thin film solar cell being placed
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Figure 8.7: The effect on hole growth in a solidifying thin film of vary-
ing the boundary temperatures θT and θB.

into a hot box in which the air temperature has risen to the temperature

of the heating plate. For the initial height function, we use the same

perturbation used in the previous section, namely

h(x, 0) = 1− 0.1 cos
(

1√
2x

)
. (8.5.1)

For the initial seed for phase-change, we use

φ(x, 0) =
1
2
− 1

2
tanh

(
(x + 4)
σ1
√

2

)
, (8.5.2)

This indicates a liquid film with a seed at the left hand side of the film.

Figure 8.8 shows the evolution of a film with these initial conditions,

with all parameters set as for Figure 8.3. The time intervals shown are

t = 0, 27.5, 47.5, 55, 60 and the equilibrium position, reached at approxi-

mately t = 125. The left column shows the evolution of φ and the right

column shows the evolution of θ. The black line in the central column

shows the evolution of h with the blue line being the initial condition

used as a reference. As can be seen, the phase change from a solid into a

liquid causes a spike downwards in the temperature as the change from

solid to liquid absorbs energy.

Figure 8.9 shows the difference in the evolution of the film when an ad-

ditional seed for phase change is introduced. In this case, the seed is
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Figure 8.8: The evolution of a melting solid film. The left column
shows φ(x, t), the middle column shows h(x, t) (black line)
with the initial condition (blue line) for reference and the
right column shows θ(x, t). The rows show the solutions at
times t = 0, 27.5, 47.5, 55, 60 and the equilibrium position.
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Figure 8.9: The evolution of a melting solid film with two seeds for
initiating solidification. The left column shows φ(x, t), the
middle column shows h(x, t) (black line) with the initial
condition (blue line) for reference and the right column
shows θ(x, t). The rows show the solutions at times t =
27.5, 40, 47.5, 55, 60 and the equilibrium position.
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introduced on the right, and the initial condition is given by

1− 1
2

tanh
(
(x + 4)
σ1
√

2

)
+

1
2

tanh
(
(x− 4.2)

σ1
√

2

)
. (8.5.3)

The rows in Figure 8.9 show the phase (column 1), height function (col-

umn 2) and temperature for times t = 27.5, 40, 47.5, 55 and 60. The fi-

nal row shows the equilibrium position which in this case is reached

at around time t = 87.5. The equilibrium position reached is the same

for both simulations, however the latter simulation reaches this position

much quicker.

8.6 Volatile Film on a Heated Substrate

Finally, in this section we investigate the effects of evaporation on a so-

lidifying thin film on a heated substrate. For the temperature on the

boundaries, we make the same assumptions as in the previous section

that θT = θT0 and θB = θB0 are constants. We assume that the substrate

that the film is sitting on is non-permeable, and so we still set m3 = 0.

However, we now assume that the mobility of the film across the top

boundary, m2 is defined as

m2(θ, φ) = k3φ (8.6.1)

for a positive constant k3. This makes the assumption that any vapour

produced during evaporation is immediately removed. The system of

equations that describes the volatile film on a non-permeable heated sub-

strate is now given by

chθ̇ = −cḣθ− hw′(φ)φ̇− ḣw(φ)+∇· (hk2∇θ)+ k5F(θT0− θ)+ k6(θB0− θ),

(8.6.2)

ḣ = ∇ · (hm1(h, φ)∇µh)− k3φFµh, (8.6.3)
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φ̇ = −k1µφ, (8.6.4)

µh = Ψ1 + W ′2(h)− σ2
2 ∆h, (8.6.5)

µφ = h
(1− θ)

θ
w′(φ) + hW ′1(φ)− σ2

1∇ · (h∇φ) . (8.6.6)

We set the initial film to have the same perturbation as in previous sim-

ulations,

h(x, 0) = 1− 0.1 cos
(

1√
2

x
)

, (8.6.7)

and assume there are two seeds of solidification, one on the left and one

on the right, by using

φ(x, 0) =
1
2

tanh
(
(x + 4)
σ1
√

2

)
− 1

2
tanh

(
(x− 4)
σ1
√

2

)
. (8.6.8)

The final height function of the film for varying values of k3 are shown

in Figure 8.10. The remaining parameters for these simulations are set to

the same values as for Figure 8.3. The boundary temperatures θT0 and

θB0, and the initial average temperature θ(x, 0) are set at 0.4.

Figure 8.10: The effect changing the rate of evaporation of a solidifying
thin film has on hole growth. Each image is shown once
the film has fully solidified.

As can be seen, a faster rate of evaporation, represented by a higher
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value of k3, results in a much larger hole being formed. This can be

explained by more liquid evaporating before the film has a chance to so-

lidify. To investigate the effects on the rate of solidification on a volatile

film, we now fix the rate of evaporation k3 = 0.1, and vary the coefficient

of solidification propagation, k1. The results for this are shown in Figure

8.11.

Figure 8.11: The effects on hole growth in a dewetting volatile thin film
due to varying the speed of propagation of solidification,
k1.

As can be seen clearly, an increase in the speed of propagation of solidifi-

cation, k1, reduces the size of the hole formed in the dewetting thin film.

This is due to the fact the film solidifies before it has a chance to dewet

fully.

8.7 Conclusions

In this section we have considered Model B derived in Chapter 7 and

performed simulations using linear finite elements for the spatial dis-

cretisation and a convex splitting algorithm for the time stepping. We

have shown how the model can be used to investigate the behaviour of

both a non-volatile film and a volatile film when parameters are varied,

which will assist in optimising fabrication processes of thin film solar

cells, as parameters can be chosen to give the best possible surface cov-

erage.
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Conclusions and

Recommendations for Future

Work

9.1 Conclusions

In this thesis we have presented a rigorous framework for the rational

derivation of a family of thermodynamically consistent models describ-

ing a number of phenomena: the evolution of the morphology of a thin

film; solidification in a bulk material; the transport of heat in a rigid thin

film and the solidification of an evolving thin film in a non-isothermal

setting. Simulations on the final model have been carried out using an

energy stable convex splitting algorithm for the time stepping, and lin-

ear finite elements for the spatial discretisation.

We used rational continuum mechanics to derive a family of models for

the evolution of an isothermal thin film on a solid substrate. By using

this technique, we ensured that the model was thermodynamically con-

sistent, assuming dependent variables were chosen within the consti-

tutive classes specified. In addition, we considered a commonly used

model derived using asymptotic assumptions by Burelbach et al. [37]
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and showed that, for a non-volatile film, the models are equivalent, as

is the model proposed by Thiele [38] by using gradient flow consider-

ations. However, for volatile films, the asymptotically derived model

was not necessarily thermodynamically consistent, highlighting an is-

sue with this method of modelling.

Rational arguments were also made to obtain a framework for describ-

ing solidification of a material in a non-isothermal setting. Previous

work in this area, such as that by Penrose and Fife [47], relies on speci-

fying an entropy functional before initiating the modelling process. We

were able to recreate the Penrose and Fife model by saving any choices

that needed to be made until the last moment, resulting in a much larger

family of potential models.

We then introduced the concept of vertically averaging properties of a

thin film to reduce a d-dimensional problem into d− 1 dimensions. Us-

ing this process, we applied rational arguments to derive a thin film heat

equation to be used for describing the evolution of temperature in a rigid

thin film in a non-isothermal setting. This involved overcoming a closure

problem in order to account for variations in the z direction.

Finally, we employed the methods used in all previous chapters to derive

a thermodynamically consistent d− 1-dimensional family of models to

describe the evolution of a thin film undergoing solidification-induced

phase change in a non-isothermal setting. We then proposed a choice for

a free energy functional, based on standard choices made in less complex

models, to result in a specific system of equations consistent with the

second law of thermodynamics. We performed numerical simulations

for this model using the energy stable convex splitting time stepping

method for a variety of settings. These consisted of a thin liquid film so-

lidifying, a solid thin film melting, and a volatile thin film experiencing

both solidification and evaporation. These scenarios relate directly to the

fabrication of a thin film solar cell, which undergoes a process of melting
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and resolidifying during the annealing stage of fabrication. We validated

our choice of model by confirming that it is thermodynamically consis-

tent, and reduces to existing models for more simple scenarios when

certain choices are made.

The model provided is of interest to those working with thin films; we

have demonstrated that we are able to demonstrate the different effects

changing parameters have on the final morphology of the film. In par-

ticular, we were able to replicate the findings in [14] that suggested the

evaporation rate of a material plays a major role in determining the final

surface coverage percentage of a thin film on a substrate.

It can be noted that, while all model families derived in this thesis have

dealt with a thin film on a flat substrate, it is simple to simulate an un-

even substrate by applying the key result given in (6.1.5-6.1.13) to the

bottom surface to project it onto Ω. If the slope of the substrate is suf-

ficiently aggressive, a term handling gravitational effects may be added

into the free energy functional Ψ.

9.2 Recommendations for Future Work

We now discuss several recommendations for further research into this

topic.

We recommend that the simulations presented in this thesis be extended

to two dimensions. One limitation of the simulations provided is that

lateral curvature is not present in one dimension. The lateral curvature

plays a key role in the evolution of a film under Allen-Cahn type equa-

tions, and so should be included in the simulations.

The process of fabricating a thin film solar cell involves a solvent mixed

with an absorbing chemical being deposited onto a substrate and heated.

During this process, the solvent evaporates off while the absorbing ma-
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terial solidifies. We would recommend that future work be undertaken

to extend the single constituent model to deal with multiple constituents.

Using rational arguments to describe the evolution of mixtures is a well

understood process [89, 103–105]. Using this mixture theory coupled

with the model produced in this thesis, setting the evaporation rate of

the solvent to be much higher than that of the absorbing material, while

setting the melting point of the absorbing material to be higher than that

of the solvent would give a good description of the full process of thin

film solar cells. In addition, the evaporation of the solvent would be suf-

ficient to destablilise the system, and so evolution of the phase, height

function and temperature can commence without the need for a seed.

A final area of interest to progress this work would be to use higher or-

der numerical techniques for simulating the evolution of thin films. This,

combined with a more refined regularisation of the functions, would al-

low parameter optimisation to take place. In the context of thin film

solar cell manufacture, this would allow the fabricator to optimise the

material, deposition technique and annealing temperature and duration

in order to produce the most efficient devices for the lowest energetic

and financial cost. An extension of this recommendation, would be to

calibrate the model against experimental data.
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