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ABSTRACT 

The efficiency of indoor fire evacuation plays an important role for survival 

improvement and the development of smart fire evacuation system can help 

solve this problem. An ideal intelligent indoor fire evacuation system must 

consider users’ physical features and provide a customized evacuation route 

based on their positions. Meanwhile, it should be able to track the real-time 

environmental conditions in internal networks in indoor environments. In other 

words, this type of fire evacuation system should be able to react immediately 

to the environmental changes in indoor area and provide real-time and valid 

navigation at any time during movements, avoiding panic/stampede and 

congestions in exits. This kind of system will be of great importance in future 

application for human safety. It requires the guidance service to be able to 

provide current user locations and provide a nearest available exit based on 

this information, integrated with fire expansion information. It is highly possible 

under the quick development with the improvement of indoor positioning 

technologies. The research presented in this thesis has developed a novel 3D 

positioning system in order to provide solutions for user localization and 

navigation during fire evacuation and the effect with and without support of 

navigation will be assessed based on the results of simulation.  

This study will first provide a review of popular indoor positioning technologies 

and select possible techniques based on the demands of flexible localizations 

with satisfied accuracy and low cost with few infrastructures. Pedestrian Dead 

Reckoning (PDR) and visual tracking are then selected as promising 

candidates to be combined for 2D positioning and tracking. The applications 

of the corresponding algorithms for the selected positioning technologies have 

been chosen based on the comparison of the accuracy and the easiness of 

operations in the review as well. It will then provide a self-designed system 

with the integrations of the above selected techniques for horizontal 

positioning of each floor, within the testing environment located inside a four-

floor building of University of Nottingham Ningbo China (UNNC). This 2D 

passive vision-aided PDR positioning system proposed by this study can 

achieve an average positioning accuracy of 0.08m on a single floor with less 

impact of occlusion, which is higher than the systems using similar sensors 
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while using a simpler algorithm, fewer sensors and quicker computation. It 

has also been tested under the situation with severe occlusions in the 

selected building. Its accuracy (0.16m) is still comparable to the other studies 

with less occlusion, which has shown the reliability and stability of the 

performances for the algorithms while still keeping the advantages of fewer 

sensor requirement (low-cost) and better sensor accessibility (user-friendly). 

The system is then further developed into a 3D version with the ability for floor 

identification by using a smartphone-based barometer. It also achieved a 

comparable accuracy of height estimation (0.5m) to other studies using the 

barometers while using fewer sensor and simpler computation. The accuracy 

of the floor detection is around 98%. The above achieved accuracy in both 

horizontal and vertical directions are better than the required accuracy 

targeted by several emergency services, including the Federal 

Communications Commission (FCC). The above designed tracking system as 

well as the applied algorithms for sub-systems is the major theoretical 

contribution of this research.  

The system can also be applied for speed and inter-personal distance 

measurement, when tracking the movement of the pedestrians. These 

measured parameters can be applied into the simulation of the indoor fire 

evacuation process with the support from the smartphone-based navigation 

system by using a social-force based agent-based model, with the integration 

of a simplified fire expansion model. Moreover, the PDR based action 

recognition can also provide good support for posture recognition and 

localization reporting of people for later rescue. With the establishment of the 

simulation model, this study is able to discover the bottlenecks inside the 

selected building under normal conditions. Moreover, it is able to compare the 

efficiency of two evacuation strategies, i.e. nearest exits and random walking. 

These two strategies can represent the indoor evacuation with and without the 

support of the navigation system. According to the results, the evacuation with 

the support of navigation system (nearest exits) is more efficient with higher 

survival rate, shorter average evacuation time, and shorter average 

evacuation distance.  With the above experiments and simulations, this study 

has achieved an initial success of developing an indoor evacuation navigation 
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system, with promising results. 
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Chapter 1. INTRODUCTION 

1.1. BACKGROUND 

Fire safety is always an important social topic and the efficiency for 

evacuation is of great interest in future research to improve the percentage of 

survival. Fire has been and always will be a significant threat to life and 

property and psychological well-being, thus it is an important part of the 

human society and livelihood in terms of planning, construction, response and 

mitigation. According to the data of 2015 provided by Fire Service Bureau in 

China, there were 346701 incidents of fire event being reported, which causes 

more than 1899 deaths, 1213 injuries and 4358.95 million RMB in estimated 

damages. Fire occurring in indoor area especially at residential area is most 

common with 113871 reported events,  contributing to 32.84% of all fire 

incidents and leading to 1319 deaths (69.46% of all), 637 injuries (52.51% of 

all) and 664.86 million RMB  in estimated loss (15.25% of all) (Fire-Service-

Bureau, 2017). In order to limit the loss of life and property during fire, many 

policies had been applied such as firefighting by fire brigade, insurance, 

regulations for building establishment, fire evacuation education, indoor 

material and product usage controlling, and building design (Xin and Huang, 

2013).  

Fire results from a complex chain of chemical reactions, where a flammable 

material (fuel) mixes with oxygen in air and is subsequently oxidized in an 

exothermic process. When encountering the flammable materials under high 

temperature, an ignition will appear, and a fire will be initialized (Artim, 1999, 

Thompson, 2016). The persistence of a fire event is affected by multiple 

indoor system factors: building and its functions, building material construction 

and contents, fire initial ignition, fire growth, smoke expansion, the response 

from fire department, or evacuation behaviours by human (Purser and 

Bensilum, 2001, Yung and Benichou, 2003). The risk of a fire event can be 

analysed in three fire aspects, which are the environment for fire event, fire 

automatic repression and human behaviours (Xin and Huang, 2013). Since 

the beginning of 20th century, the building evacuation studies have focused on 
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learning about human movements in building connection parts such as 

corridors, stairs and doors (Bryan, 2002b, O Connor, 2005, Kobes et al., 

2010a) and figuring out technological solutions concentrated on architectural 

design (Kobes et al., 2010a, Kuligowski, 2016). Until the end of 20th century, 

the research focus has started shifting to human behaviour aspect. An ORST 

(Occupant Response Shelter Escape Time) model was introduced as a 

theoretical method to describe how people respond in fire evacuation with 

different attributes located in different positions in indoor area. It also implies 

that the availability of facilities will affect the evacuation as well, which is 

depended on fire characteristics (fire location, fire range and smoke 

expansion) and building characteristics (e.g. conditions of facilities) (Sime, 

1999, Sime, 2001, Kobes et al., 2010a, Tang and Ren, 2012, Atila et al., 2013). 

In addition, the human responses at the individual level also vary with 

changing environment (Gwynne et al., 2001, Kobes et al., 2010b).  

The change of environmental factors is mainly determined by the specific 

situation of fire event, which can be divided into several stages, depending on 

whether there is new intake of oxygen (Fig.1.1a) (Artim, 1999, Thompson, 

2016). This study is more interested in the period before early decay without 

further introduction from new-coming air caused by the entry of firefighters. 

The fire expansion during this period follows a near-linearly growing pattern 

which is relatively easily to be simulated in a temporal-spatial approach, and it 

will be later described in Chapter 5. The other reason of focusing on this 

period is because in this phase, the evacuation of the occupants inside the 

building is more self-dependent without the help from the fire department 

(Purser and Bensilum, 2001, Pires, 2005, Kobes et al., 2010a). This has 

raised the importance of the study of human behaviours during this period, in 

terms of survival. The study of human behaviour during this specific stage can 

help understand human responses under fire emergencies, improve the 

safety design of buildings, and increase the efficiency, communication 

systems, as well as pre-event training for evacuation (Kuligowski, 2016).  

The human response/indoor evacuation can be roughly divided into three 

main periods: pre-alarm, pre-evacuation and movement/evacuation period 

(Fig.1.1b) (Purser and Bensilum, 2001, Ronchi and Nilsson, 2013, Kinateder 
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et al., 2014, Kuligowski, 2016). The pre-alarm phase lasts from the ignition of 

fire to the initiation of alarm and/or the indoor occupants realize the cues of 

fire event  (Purser and Bensilum, 2001, Kuligowski, 2016). The fire 

characteristics is very dependent on the specific stage of fire development. 

The period selected by this study includes the ignition and growing before 

early decay. The incipient/ignition stage is when the fuel contacts the fuel 

source. The fire during this period grows slowly and organically, which varies 

from some minutes to several hours depending on the inflammable material 

properties, fire positions, building structures and amount of available oxygen. 

Smoke also develops during this phase from light to moderate level. In order 

to the study the mechanism of the fire expansion affected by multiple 

environmental factors in reality and validate the simulation model, some of the 

previous studies have tried to do some empirical studies of the fire expansion 

by setting up a mock-up experiment with the same scale of the pre-recorded 

fire event (Grosshandler et al., 2005, Bryner et al., 2007, Galea et al., 2008). 

However, the setup of a fire in reality is of high risk and requires high 

professional expertise to control, making it a non-ideal option to 

experimentally test the expansion of fire. The utilization of the experimental 

data from previous studies within a simulated computational model is rather 

more feasible and this approach is deployed in this study.  

During the growth period of fire, the human behaviours include the pre-

evacuation phase and movement phase. The pre-evacuation period starts 

after the initiation of ignition until people starts evacuation movements while 

the movement period estimates the time during current location to safety 

(Purser and Bensilum, 2001, Kuligowski et al., 2010, Kinateder et al., 2014, 

Kuligowski, 2016). In addition, the pre-evacuation period can be further 

divided into two phases as risk perception/evacuation decision phase and 

protective action initialization phase (Purser and Bensilum, 2001, Pires, 2005, 

Kobes et al., 2010b, Ronchi and Nilsson, 2013, Kinateder et al., 2014, 

Kuligowski, 2016).  
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(a) 

 
(b) 

Fig.1.1. The development of the fire (a) and the overall process for indoor 

evacuation including three main phases: pre-alarm, pre-evacuation, and 

movement periods with sub phases (b) (Artim, 1999, Purser and Bensilum, 

2001, Pires, 2005, Josh, 2010, Kobes et al., 2010b, Ronchi and Nilsson, 2013, 

Kinateder et al., 2014, Kuligowski, 2016, Thompson, 2016). 

As people’s behaviours/actions are performed based on the decision making 

process instead of random choice or a stimulated response to the 

environmental change during indoor fire emergencies (Kuligowski, 2009), a 
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decision making phase first appears following pre-alarm phase before taking 

any actions (Kuligowski, 2009, Kinateder et al., 2014, Kuligowski, 2016). 

Previous researches have shown that the behavioural process of human 

responses during decision making phase starts from perception of certain 

cues of fire for later interpretation of facing situations and risks, and finally to 

decision making of actions before the beginning of protective actions (Purser 

and Bensilum, 2001, Bryan, 2002a, Kuligowski, 2009, Kuligowski, 2016). The 

decision making process is potentially depended on the risk perception by 

human and can also be affected by multiple factors such as the building 

functions, the components of egress facilities, and the strategies of 

evacuation (Kuligowski, 2009, Ronchi and Nilsson, 2013). The protective 

actions are supposed to be collecting personal belongings, alerting others for 

evacuation preparation, shutting down machinery, and other actions allowing 

for self and other protection (Purser and Bensilum, 2001, Kuligowski, 2016). 

The time it takes to arrive at a decision correlates with the higher rate of 

deaths and injuries during the fire event, especially in residential and hotel 

buildings (Purser and Bensilum, 2001), making this period more influential on 

survival than the movement period (Proulx, 2001, Bryan, 2002b, Kobes et al., 

2010b). This study focuses on both phases and simulated in a non-fire setting 

way such scenarios in a selected building at UNNC. This study also includes a 

survey of the students who daily study and move inside this building and 

collect their answers about their pre-evacuation responses. From their 

responses, this research is able to classify various behaviours and validly 

estimate the pre-evacuation period of people. 

During evacuation/movement phase, the first priority of indoor evacuation will 

be evacuation acceleration as humans under fire emergency situation will act 

in panic, leading to congestion and confluence at exits and stairs, or other 

drastic behaviours such as crushing and trampling (Hajibabai et al., 2007, He 

et al., 2013, Mohan et al., 2016). Meanwhile, decision making during the 

movement of people under a fire event is also time consuming by floor plan 

discovery and escape route formulation. These two factors can both cause the 

loss of lives (Kuligowski, 2016, Mohan et al., 2016). A intelligent fire 

evacuation system should cut down the time of decision making by monitoring 
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the status of building and provide safest evacuation plan by using automatic 

fire perception and route prediction based on location positioning system 

(Mohan et al., 2016).  

The understanding of the indoor evacuation process will help to establish the 

egress model to estimate the evacuation time for evacuation, which is an 

efficient way for life safety level evaluation (Kuligowski, 2009, Kuligowski et al., 

2010, Kuligowski, 2016), and reduce the experiment expense under different 

situations (Pelechano and Malkawi, 2008, Guo, 2010, Tang and Ren, 2012). 

With the established egress model, the Available/Required Safe Egress Time 

(ASET/RSET), which is the required time for indoor evacuation, can be then 

determined (Purser and Bensilum, 2001, Proulx, 2008, Kuligowski, 2009). 

They are also depend on various features of process for occupant evacuation, 

such as fire detection, alert notification, occupant response to alert in pre-

evacuation period, the profile of occupants (e.g. age, physical and intelligent 

ability, awake state and crowd density), decision based pre-evacuation 

behaviours (e.g. information seeking, personal belongings collection, exit 

choosing and other protective activities), evacuation movements (e.g. 

pathfinding, moving to an exit and crowd flow), evacuation route design, exit 

numbers and width, as well as the heat and smoke exposure impacts on 

psychological and physical aspects during evacuation (Purser and Bensilum, 

2001, Tang and Ren, 2012, Ortakci et al., 2016). This study will apply an 

Agent-Based Model (ABM) to help investigate the evacuation process of 

pedestrian movements inside the selected building, with the calculation of 

ASET/RSET.  

To provide the information which is required for ASET/RSET calculation and 

evacuation simulation (e.g. pedestrian speed and inter-person distance), the 

development of a low-cost, highly available, intuitive and user friendly smart 

tracking system can provide a suitable solution. It is also helpful in the real 

localization of the users inside the building for future applications. This study 

will investigate whether the integration of the smartphone-based Pedestrian 

Dead Reckoning (PDR), visual tracking and height estimation can provide a 

relatively satisfactory solution of 3D localization for navigation services to 

support fire evacuation, with the considerations of cost, accessibility, and 
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accuracy. It is also the central focus of this research, which is regarded as the 

major theoretical contribution of this study as the developed novel system can 

accurately track pedestrians’ locations and identify walking postures during 

evacuation for risk assessment and provide visible indoor spatial information 

to the occupants. With the above achieved functions by the developed indoor 

3D tracking system, it is also interested in whether the application of such 

system can help to improve the efficiency of fire evacuation, by comparing the 

simulation results of two strategies with and without the support of this system 

based on the selected parameters, e.g. survival rate, evacuation time and 

evacuation distance. In future, the established system is not only for 

evacuation purposes but also for the building management and other 

applications related with location-based services.  

1.2. MOTIVATIONS AND OBJECTIVES OF THE STUDY 

1.2.1. Motivations 

1.2.1.1. The Requirement of A Self-Designed Indoor Positioning 

System  

In Section 1.1, it has indicated the physical reason of focusing on the period 

before the involvement of firefighters during fire development. This period can 

be easily simulated by a temporal-spatial model for evacuation survival 

analysis, as there is no new supplement of air, with less introduction of 

variations of the fire expansion process. Meanwhile, it is also the period when 

the firefighters have not arrived at the scene, and all the occupants should try 

to evacuate in the shortest time to the outside for survival based on individual 

mobility and decision making (Purser and Bensilum, 2001, Pires, 2005, Kobes 

et al., 2010a), regardless the degree of familiarity to the indoor environment. 

Therefore, the tracking of the occupants’ physical locations is relatively 

important, regardless before and after the initialization of the rescue (Kobes et 

al., 2010b, Sha et al., 2006). Before the involvement of firefighters, the user 

positions are correlated with the navigation service which is very location-

based, while during the rescue process, the realization of the user positions 

can assist the localization of potential victims. The application of indoor 

location positioning systems can help detect the positions of people in a large 

indoor area with complicated internal structure and lead them to the nearest 
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safe exits by using technologies such as Wi-Fi network, Bluetooth beacons, 

LED lights, magnetic fields and UWB (Ultra-Wide Band) (Mohan et al., 2016), 

in order to avoid the psychological stresses caused by confusion. However, 

the understanding of the impacts from the user locations is still very limited, 

and this study only focuses on whether indoor navigation will improve 

efficiency of the fire evacuation. This has raised the importance of providing a 

supportive method of guiding the user to the outside, especially within an 

unfamiliar indoor environment. 

The feedback of having this LBS-based navigation support during fire 

evacuation from both the rescue departments and occupants themselves has 

also been considered during the formation of this research. According to the 

previous official reports from Fire Service Bureau in China (Fire-Service-

Bureau, 2017), it has encouraged a more efficient way of individual 

evacuations before the arrival of fire brigades and insisted on the importance 

of daily training of fire drills, which aims to reduce the overall evacuation time 

and to improve the survival rate. Meanwhile, they are interested in having the 

constantly accessible position information of evacuees (Rantakokko et al., 

2007, Rantakokko et al., 2010) if they are still inside the building after the 

arrival of fire brigades, in order to improve the efficiency of rescue and reduce 

the risks for firefighters by having a shorter stay in the fire scene (Sha et al., 

2006). The occupants’ attitude of having navigation services during the 

evacuation process is also of great importance as they are direct users and 

beneficiaries. Before this research, a general survey question about the 

willingness to have guidance service for evacuation assistance has been 

conducted among the students and staffs of different departments inside the 

UNNC, and the responses from the majority are positive. With the above 

positive attitudes from both fire department and occupants, this research has 

raised the interest of establishing an intelligent navigation system to assist the 

evacuation process.  

According to previous studies, an effective intelligent fire emergency 

simulation system should ideally satisfy six requirements (Cutter, 2003, 

Zlatanova and Holweg, 2004):  

a) Representation of physical and human process in dynamic and multi-
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dimensions;  

b) Update of spatial data collection and information integration for users;  

c) Interoperation between integrated data from multiple sources and 

semantic/data discovery with the support of CAD models or 3D 

Geographic Information system (GIS); 

d) Integration of dynamic geospatial data and spatial-temporal data analysis 

and modelling for planning and decision making; 

e) Instant provision of updated information to users via mobile and wireless 

communications; 

f) 3D visualization on multiple equipment.  

Meanwhile, it also requires several critical functions such as 3D geo-location 

positioning, analysis of network connectivity, occupant flow, 3D topology, and 

indoor navigation (Miller and Shaw, 2001, Lee and Zlatanova, 2008). The 3D 

location is provided by location-aware devices to identify location information 

of site of disaster (e.g. fire scene), occupants, area of congestion, and 

isolated zones in indoor area, which requires the integration with sensor 

networks (Jensen et al., 2009). The analysis of network connectivity will be 

applied to identify isolated networks or zones blocked by congestion or fire 

without any exit node connecting to the destination node. The occupant flow 

analysis is also regarded as evacuation model to update movements of 

occupant and impedances of flow by estimation of flow rate and dynamic 

capacities of corridors and staircases. The 3D topology, which is usually 

represented by 3D GNM for internal building structures (Lee, 2004b), is used 

to figure out the locations of congestions in network. The navigation function 

will then seek feasible routes without dangers in multi-layer format and 

provide the navigation guidance to the users (Lee and Zlatanova, 2008).  

The application of GIS can help integrate the sub modules of fire evacuation 

system as well as effectively managing and integrating spatial data of 3D 

topological and geometric features of internal building structure (Lee, 2007, 

Tang and Ren, 2012, Atila et al., 2013). This can help to provide a 

comprehensive description of indoor fire features and support intelligent 

decision making to guide the user to safety (Tang and Ren, 2012, Atila et al., 

2013). The previous study of GIERS (GIS-based Intelligent Emergency 
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Response Systems) pointed out that the 3D GIS had the potential to improve 

the speed of emergency response in multi-level structures in urban space. By 

representing the internal multi-layer building with 3D GIS extended from 

conventional 2D GIS, the overall speed of rescue operations can be 

significantly improved (Kwan and Lee, 2005, Lee, 2007, Lee and Zlatanova, 

2008). As the response for decision making is time critical (Lee and Zlatanova, 

2008) and the uncertainty of indoor route can lead to the longer response 

delay (Kwan and Lee, 2005), the above discovery has motivated the 

development of intelligent emergency systems (i.e. Intelligent Building 

Evacuation system-IBE system) in complex indoor area with the application of 

3D GIS integrated with Intelligent Transportation System (Meijers et al., 2005). 

A hybrid data model will be consisted of a 3D geometric model, a graph model 

and a 3D city model. The 3D geometric model represents the 3D solid 

features of 3D polygonal faces in an enclosed boundary, the 3D graph model 

is used to represent the topological relationships among these solid features, 

and the 3D city models support 3D visualization of the information in real view 

(Lee, 2007, Lee and Zlatanova, 2008). This study adopts this idea during the 

development of an indoor positioning system, and it assigns the 3D 

geographical information to its acquired positioning results. Meanwhile, it 

conducts the simulation in a 3D GIS-based indoor environment and enables 

the 3D visualization during the application.  

Moreover, there are many other factors requiring considerations during the 

design of the positioning system, which can improve the robustness and 

accessibility of the system:  

1) As the designed system will be applied to the fire scene for the growth 

stage, it is supposed to be highly tolerated to the harsh environmental 

conditions (e.g. high temperature and humidity).  

2) The tracking gear should not rely on bulky antennas with exposed cables, 

and its weight should not be over 1kg.  

3) The energy efficiency of system utilization should also be considered, and 

it should be able to work properly more 24 hours.  

4) The representation of the positioning results should be easily understood 

by the evacuees during the evacuation process.  
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5) In order to improve the flexibility of the operations, there should be no 

requirement for pre-installations of the system in the environment.  

6) Moreover, the cost of the system should also be at a low level, in order to 

achieve wider market.  

7) The integration of other data, such as the monitoring of physiological 

status should also be considered, in order to have a more thorough 

assessment of the current status of occupants (Rantakokko et al., 2007, 

Rantakokko et al., 2010).  

This study has also considered these factors during the selection of 

candidates for the positioning technologies and the design of the algorithm for 

data utilization. It also has involved posture recognition, in order to check the 

physiological status of people, which is considered as a threatening risk of fall 

(Campbell, 2013, Ferraz and Saba, 2017) and requires higher energy 

consumption for movement (Morrissey et al., 1985, Davis, 2011a, Grasso et 

al., 2000, Cao et al., 2014, Hora and Sladek, 2014, Kluger et al., 2014, Cao et 

al., 2018). 

1.2.1.2. The Requirement of An ABM-Based Simulation  

The conduction of a real navigation-supported fire drill is also of great risk and 

high cost (Fahy, 2005, Jain and Mclean, 2008, Kady and Davis, 2009a). Thus, 

this research decides to have experiments only on the positioning but doing 

simulations on fire evacuations. According to the previous studies, the current 

evacuation approaches, which can be divided into two types as crowd 

movement simulation models and 3D network models, are not sufficient with 

corresponding disadvantages (Jun and Kim, 2009, Vanclooster et al., 2010). 

The crowd movement simulation models are developed for emergency 

situation prediction and building interior planning design safety evaluations 

(Vanclooster et al., 2010, Atila et al., 2013). For evacuation aspect, the 

modification of model simulators is very common in for protection provision 

such as fire safety ranking (Zhao et al., 2004). Typical examples are agent-

based models (Hajibabai et al., 2007) and cellular automata (CA) models 

(Park et al., 2007, Jun and Kim, 2009). They are more concentrated on the 

user related factors and behaviours with the consideration of individuality and 

occupant profile but lack of crowd interaction (Pelechano and Malkawi, 2008) 
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and comprehensive semantic spatial data, leading to complicated and unclear 

calculations which will make the reality modelling uncertain and difficult 

(Vanclooster et al., 2010, Atila et al., 2013). According to the review of 26 

egress models by NIST, the limitations of these models are the lacking of 

available actual evacuation database (Kuligowski et al., 2010, Averill, 2011). 

This study will apply the measured parameters into the simulation model 

based on the survey and experimental data collected by a self-designed 3D 

indoor positioning system, in order to improve the reality of the model.  

The other popular class is network modelling based approach, which divides 

the indoor area into nodes and arcs to represent the egress components and 

the linkage between different components separately (Kuligowski et al., 2005, 

CFPA, 2009, Kuligowski et al., 2010). It mainly focuses on modifying Dijkstra’s 

2D shortest routing algorithm to 3D with weights from distance or time (Lee, 

2001, Karas et al., 2006, Musliman et al., 2008, Vanclooster et al., 2010, Atila 

et al., 2013), based on using a graph network model (Gilliéron et al., 2004, 

Karas et al., 2006, Jun et al., 2009) and achieving 3D visualization by 

CityGML (Kolbe, 2009). Common options of networks used for research are 

“Node Relation Structures (NRS), Geometric Network Model (GNM), and 

coarse networks” (Lee, 2001, 2007, Kuligowski et al., 2010). However, other 

impedance factors, especially from human aspect for emergency situations, 

are still lacking approaches to integrate them into routing process (Pu and 

Zlatanova, 2005), and it is more focused on distance calculation of paths 

(Meijers et al., 2005, Lee, 2007, Lee and Zlatanova, 2008). In order to solve 

this problem, this study applies a hybrid ABM with the integration of the 

Social-Force (SF) model, which can better describe the human factors in the 

simulation, as these two methods are previously inadequate for route planning 

due to the missing of real connection to the real world (Jun and Kim, 2009, 

Vanclooster et al., 2010). Besides, there are multiple questions should be 

determined initially, e.g. usage domain of algorithm (for evacuation response 

or for risk management), user number (one route for many users or various 

routes for one user) and types as well as their related behaviours (Vanclooster 

et al., 2010). This study tries to provide a more comprehensive solution with 

the considerations of these factors, during the establishment of an ABM-
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based evacuation model. 

Moreover, there is no complete assessment of how indoor positioning 

technologies can be applied to help improve the efficiency of indoor fire 

evacuation (Niu, 2014, Sime, 2001, Kobes et al., 2010b). The previous 

studies usually provide a conceptive design of integrating different positioning 

technologies together and the way of how they are supposed to work during 

the evacuation process (Inoue et al., 2008, Chittaro and Nadalutti, 2008, 

Chittaro and Nadalutti, 2009, Szwedko et al., 2009, Chu, 2010). This study 

attempts to provide a more comprehensive solution to this problem. It first 

develops a low-cost, accessible and relatively accurate indoor positioning 

system. Then, it utilizes the measured parameters based on the application of 

this system for evacuation simulation under different evacuation strategies 

with and without navigation guidance, in order to provide a relatively realistic 

assessment of efficiency improvement. Meanwhile, as human behaviours 

based on decision making process also play an important role in indoor fire 

evacuation, it is also necessary to monitor humans’ actions during movement 

period while tracking their trajectories. The action recognition here in this 

study refers more specifically to human posture recognition during their 

movement and the interested postures are roughly divided into three groups 

as up-straight walking, and stoop walking with and without the flexion of the 

knee. The reason of focusing on these specific postures will be further 

explained in Chapter 5. In a long term, the applications of simulation results 

from collected user data with the assistance of the positioning system in the 

indoor environment can help architects and urban planners to identify possible 

bottlenecks in buildings and improve future structure design. It can also help 

emergency managers, e.g. university marshal, to compare different 

evacuation strategies during evacuations (Bakar et al., 2017, Mahmood et al., 

2017, Trivedi and Rao, 2018). 

Moreover, the pathfinding also requires multiple spatial and cognitive 

capabilities based on occupants’ perception and prior knowledge, e.g., indoor 

familiarity, psychological stress (Graham and Roberts, 2000, O Connor, 2005, 

Kobes et al., 2010b, Kobes et al., 2010a) and user attitudes to the navigation 

support. These factors are also worth of considerations during the fire 
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evacuation simulation. However, they are not able to be integrated into the 

ABM-based simulation in this study and thus are individually discussed for 

future improvements.  

1.2.2. Aims and Objectives 

This study aims to investigate whether the application of a self-developed 

intelligent indoor navigation system with acceptable positioning accuracy can 

help to improve the efficiency of an indoor fire evacuation process, based on 

the results of ABM-based simulation. It focuses on the period before the 

arrival of firefighters, during which the evacuation movements are entirely 

dependent on self-decision and mobility (Purser and Bensilum, 2001, Pires, 

2005, Sha et al., 2006, Kobes et al., 2010a). The hypothesis of this study is 

that the evacuation process aided by navigation is more efficient than the 

evacuation process without navigation assistance.  

The accuracy of provided occupant locations, especially for the real-time 

positions, is of great importance to the fire scene for emergency management, 

enabling a reliable real-time monitoring. Meanwhile, the route planning also 

requires accurate occupant locations (Sha et al., 2006, Rantakokko et al., 

2007, Rantakokko et al., 2010, Deng et al., 2013, Li et al., 2014). According to 

FCC, the required accuracy for the fire emergency is 50m in horizontal 

direction and 3m at vertical direction (FCC, 2015). The current best 

positioning accuracy achieved by the Commercial Mobile Radio Service 

(CRMS) reported in FCC was 5~10 m (FCC, 2015). Other studies have 

proposed more stringent standards to fit the requirements of the firefighters, 

i.e. 1m for horizontal accuracy of room identification and 2m for vertical 

accuracy of floor differentiation (Rantakokko et al., 2007, Rantakokko et al., 

2010). In order to provide a more accurate solution of user locations, which 

can both benefit the effectiveness of route planning for the occupants and the 

efficiency of victim identification by the fire brigades, the accuracy is required 

to be at a relatively high level. Therefore, this study aims to provide a 3D 

positioning system to satisfy the higher proposed standards for fire evacuation 

scenario. The system should also be able to provide automatic estimations of 

uncertainty with the detected positions.  
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To achieve this goal, the entire project is divided into four parts as: 

1) The development of a novel 3D indoor positioning system, which enables 

constant indoor pedestrian tracking with low cost, high accessibility and 

relatively high accuracy; 

2) The recognition of different walking posture based on the processing of the 

collected data from the designed 3D indoor tracking system; 

3) The establishment of an ABM-based fire evacuation model based on data 

collected by the 3D indoor tracking system, whose results can be used for 

evacuation efficiency comparison; 

4) The investigation of potential cognition factors, which can also have effects 

on the evacuation process but have not been applied into the ABM-based 

fire evacuation model. 

1.2.2.1. Design of A 3D Indoor Positioning System 

To design a 3D indoor positioning system achieving the above requirements, 

a few objectives are required to be realized in the following order: 

1) Selection of suitable positioning methods from the current indoor 

positioning technologies which can satisfy the requirements of lower cost, 

higher accessibility and accuracy;  

2) Development of corresponding algorithms to utilize the data provided by 

sub-systems from selected positioning candidates, enabling them to work 

independently with the assumption of unavailability of either of one sub-

system during the operation; 

3) Design of a comprehensive solution for data integration from sub-systems 

to enable them work cooperatively with the absolute 2D positioning 

information for seamless indoor-outdoor transition; 

4) Provide a solution for the integration of the height estimation and floor 

identification to the 2D system to provide 3D positions; 

1.2.2.2. Walking Posture Recognition  

1) Experimental measurements for user velocity and inter-person distances 

in a four-floor building under both emergency and non-emergency 

scenarios, which can later be fed to the ABM-based simulation; 
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2) Posture recognition based on measured user velocity and step length of 

different genders by data processing, i.e. upright walking and stoop-

walking with and without knee flexion; 

1.2.2.3. Intelligent Indoor Evacuation Simulation   

The evacuation with the support of the navigation system can be regarded as 

the evacuation strategy based on ‘nearest exit’, while the evacuation process 

with no navigation is regarded as ‘random walking’. The application of the 

ABM-based evacuation simulation aims to demonstrate that the evacuation 

process aided by navigation is more efficient than the evacuation process 

without navigation assistance, based on the measured user parameters from 

self-designed 3D indoor positioning system. To achieve the above purpose, 

the following objectives are realized in order: 

1) Establishment of an SF-based ABM for pedestrian movements in a GIS-

based simulation environment; 

2) Establishment of a spatial-temporal-based fire expansion model; 

3) Conduction of ABM-based evacuation simulation under the scenarios 

before and after the triggering of the fire alarm with 10 times; 

4) Analysis of the simulation results based on the comparison of survival rate, 

the average and Maximum RSET within the ASET, the maximum velocity 

before and after the alarm, and the mean evacuation distances of using 

two different evacuation strategies with and without navigation support; 

1.2.2.4. Investigation of Potential Cognition Factors  

This study has some partial investigations on cognition factors based on the 

prior knowledge of the occupants. It has conducted a survey of user 

responses among students who daily work inside the selected test site under 

virtual scenarios, focusing on questions on the three aspects: 

1) The level of Indoor familiarity of the test building, including the familiarity to 

the exits, risky places, and satisfaction degree of the indoor signs; 

2) Psychological stress when walking with bending postures, on the aspects 

of difficulty sensation, nervousness and awareness of speed reduction; 
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3) Attitudes to the smartphone-based navigation services during fire 

evacuation; decision making under extreme cases and calming factors 

after trapping.  

With the acquired results, this study can achieve the first stage of developing 

a personalized intelligent indoor navigation system for fire evacuation, with 

supportive evidences from simulations.  

1.3. STRUCTURE OF THE THESIS 

The chapters for this study are organized as follows. Chapter 1 introduces the 

background, motivation, objectives and the original contributions of this study, 

i.e. the development of an intelligent indoor navigation system to improve the 

efficiency of indoor fire evacuation with advantages of low-cost, flexible and 

accessible configuration, easy operation, highly accurate and reliable 

performance and user friendly application.  

Chapter 2 will first provide some existing examples of integrated systems for 

fire evacuation and navigation for future inspiration. A review of these systems 

can help gain better understanding of how an efficient intelligent indoor 

evacuation system should be while addressing the current limitations of these 

systems. As the previous designs of intelligent indoor evacuation systems are 

quite limited on their accessibility, the system will then review the current 

technologies of indoor positioning, in order to find out proper positioning 

candidates who satisfy the requirements of low-cost, high accuracy and high 

accessibility. It particularly focuses on Pedestrian Dead Reckoning (PDR) and 

visual tracking technologies as the priorities of positioning technology 

selections. The reason for choosing these two technologies is due to their 

higher flexibility of application, lower cost for establishment and relatively 

satisfactory accuracy with better user experience. The detailed comparisons 

can be found in Chapter 2 and it will also compare the algorithms of applying 

these two technologies, in order to find solutions with better accuracies and 

simpler applications.  

Chapter 3 will delineate the process of designing a novel 2D indoor 

positioning system with the integration of the PDR and visual tracking 

technologies (2D PVINS). The chapter starts with the investigation of 
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utilization of the sub-systems, i.e. Smartphone-based PDR and Surveillance-

based Visual Tracking, in order to develop the corresponding novel algorithms 

for these sub-systems to work independently with relatively satisfactory 

accuracy. The processing of the visual data starts from using a single camera, 

and then proceeds to investigate a novel algorithm to transfer from multiple-

cameras, which will help for the later development of a multi-camera-based 

PVINS. Then, the transformation of the relative positioning information from 

the sub-systems to the GIS-based absolute positioning information is 

considered as the preparation stage for data integration of the two sub-

systems. The visual data is used to calibrate the PDR results in the visible 

areas, with relatively high accuracy. This study has developed and compared 

two different approaches of data integration and it has determined a more 

effective approach with higher relative accuracy. The test of the accuracy of 

the established 2D PVINS system is executed on the fourth floor of a four-

floor building. With the development of the system and algorithms, the system 

is gradually able to handle the 2D user tracking from using a single camera to 

four cameras, and the coverage area is enlarged to the entire floor with a 

relatively higher accuracy (0.08m) than other studies using similar or 

alternative foot-mounted systems. This newly designed system is also highly 

tolerate to the existence of occlusions, which is later tested in Chapter 4 as 

more than half of the tested path is not covered by the cameras. The achieved 

accuracy (0.16m) is also comparable to the previous studies with lower 

amount of occlusions. The robustness of the designed system is also tested 

on both Android-based and iOS-based smartphones, comparing to the 

Android-only systems in previous studies.  

Chapter 4 will further develop that novel system into a 3D version, with the 

integration of the smartphone-based barometer. It first develops a novel 

algorithm of using a single smartphone-based barometer with relatively 

acceptable accuracy of height estimation (0.5m) and floor identification 

compared to the previous studies either using similar sensors or alternative 

sensors. The development of this algorithm starts from the fingerprint-based 

pressure-height transformation model. The results acquired from this method 

is not satisfactory according to the validation process as the environmental 
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factors can affect the measurements of each time and using one value to 

represent one floor is not sufficient. Thus, this study prescribes to use a 

certain range to represent the corresponding floor. This study has proposed 

two methods as average-based and linearity-based detection. From the 

comparison of these two results, this study has demonstrated the advantages 

of integrating these two approaches, with the pronounced ability to 

transparently identify even transition areas between different floors. To further 

improve the accuracy of using a single smartphone-based barometer, this 

study chooses to use two smartphone-based apps for self-calibration.  

After the integration with the previously developed 2D PVINS, the accuracy of 

the system after the initial trial in the same four-floor building is comparable to 

those foot-mounted systems with more precise sensor suites. This has 

provided the evidence for the effectiveness of the designed novel system, with 

the advantages of being low-cost, user friendly and highly accurate.  The 

developed system is able to track the user movement inside the entire 

building at this stage with a relatively comparable accuracy to other 3D 

positioning systems, compliant to the requirements by the Federal 

Communications Commission (FCC) for fire emergency with 50m horizontal 

accuracy and 3m vertical accuracy (FCC, 2015). This system will help derive 

accurate measurements of the velocity and inter-person distance under 

different postures, which is demonstrated in Chapter 5 as important 

parameters used in the ABM-based fire evacuation simulation. The acquired 

data can also be used for different stoop-walking postures and up-walking by 

analysing the acquired speed and step-length data, also explained in Chapter 

5.  

Chapter 5 will first design a novel hybrid ABM-based system for indoor fire 

evacuation simulation for the selected building with four floors before and after 

fire alarm with lower risk and cost. The developed system is integrated with a 

self-designed simplified fire expansion model, in order to improve the reality of 

the ABM-based simulation, which is usually not included in the previous 

studies using ABM. Moreover, it is operated in a GIS-based environment with 

continuous pedestrian movements. The designed simulation model is able to 

identify the bottlenecks inside the building, which can provide valuable 
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insights for later building design. Meanwhile, it compared the evacuation 

strategies with and without the support of the navigation system as designed 

above by simulating the evacuation process with the guidance as the nearest-

exits while the one without guidance support is regarded as random walking. 

The hypothesis that navigation can help to improve evacuation efficiency is 

supported by the comparison of the survival rate, the average and maximum 

evacuation RSET and the average evacuation distance for survivals. The 

results also suggest the width and distributions of the exits can be important 

factors for user selections of the evacuation routes and efficiency.  

In addition to the above testing of physical feasibility of the designed 

navigation system for indoor fire evacuation, Chapter 6 presents an 

investigation of the potential cognition factors of pedestrians’ fire response 

performance based on the survey data. These cognition factors should be 

considered as they are not included in the default simulation model described 

in Chapter 5 while being important for decision making process in real life 

situations. The survey is taken among the indoor occupants with a median 

age of 22 in the same building for physical experiments, under a virtual 

situation of using bending posture during evacuation. The cognition factors 

can be divided into three aspects as indoor familiarity (spatial cognition), 

psychological stress, and decision making for different situations. For 

indoor familiarity, the study is interested in familiarity to exits and risky places 

as well as the satisfaction degree of the current indoor sign installation. The 

acquired results is gender-dependent to some extent and the familiarity to the 

indoor exits and the risky places are positively correlated with satisfaction 

degree of the current installation of the indoor signs. The integration of the 

height factor with the other two indoor familiarity factors can improve the 

degree of the indoor sign satisfaction. For psychological stress, this study 

concentrates on the situated cognition of moving difficulty, nervousness, and 

speed reduction when using a bending posture during the fire evacuation to 

avoid smoke inhalation. The results are also gender-dependent and this study 

has tested the hypothesis that the growing indoor spatial cognition can help 

ease the psychological hardness and nervousness. However, it only becomes 

self-evident upon reaching a certain threshold. When integrating the effects 
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from indoor familiarity and the other two psychological factors, the correlation 

to the sensation of deceleration can be strengthened. This study has also 

investigated the participants’ attitude to the navigation support during 

evacuation under different situations and the results are quite encouraging 

with the majority of the participants has shown positive attitudes. For the 

corresponding decision time of the selected extreme cases, it is case-

dependent to some extent and is worth future considerations when designing 

a personalized smartphone-based app. Moreover, it has provided an 

additional hypothetical case of being trapped inside the building and 

discovered three previously non-prioritized calming factors, which is a) the 

distance to the nearest firefighters, b) the current fire conditions of in the 

surrounding environment, and c) the locations of all firefighters. All these 

mentioned cognition factors can be considered in future design of navigation 

support for indoor fire evacuations.  

Chapter 7 will summarize all the findings mentioned in the previous chapters 

and give some suggestions on future works.  

1.4. ORIGINAL CONTRIBUTIONS 

The following contributions to the fields of 3D indoor Passive Vision-aided 

PDR, posture recognition, ABM-based simulation, and cognition factor of fire 

response performances can be derived from this study.  

1) A novel algorithm for smartphone-based PDR positioning with automatic 

step-length calibration and turning detection; 

2) A modified Faster R-CNN based passive visual tracking, with simple 

implementation, high accuracy, and real-time detection; 

3) A novel algorithm for multi-scene shifting for visual tracking, assisted by 

the automatic PDR turning detection; 

4) A novel algorithm for depth information transformation from image space 

to heading information; 

5) A novel data fusion method based on the comparison of two proposed 

candidates, with simpler operation and higher effectiveness, achieving 

higher accuracy than other 2D positioning systems (PVINS and foot-

mounted systems) under similar less-occlusion situations, and more than 
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20% 2D accuracy improvement for severe occlusion-affected areas than 

previous 2D PVINSs; 

6) A novel algorithm for height/floor estimation with more detailed floor-level 

division using single embedded barometer in a smartphone; 

7) The acquired results with absolute coordinates to be directly used in 

outdoor systems; 

8) The application on both Android-running and iOS-running smartphones 

with better robustness than previous Android-only systems; 

9) The recognition of upright walking, bending with and without knee flexions 

from PDR data based on pattern identification; 

10) A novel design of a hybrid ABM-based pedestrian evacuation model in a 

four-floor building with experimental results of parameter settings, with the 

visualizations in both 2D and 3D;  

11) A novel design of simplified temporal-spatial model of fire expansion;  

12) The correlation investigation of cognition factors based on survey data 

among indoor familiarity, psychological stress and decision making under 

virtual situations. 
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Chapter 2. LITERATURE REVIEW 

2.1. PREVIOUS STUDIES OF INTEGRATED FIRE EMERGENCY SYSTEM DESIGN AND 

PROTOTYPE 

In the previous studies, there are many of them focusing on the design of a multi-

sensor based intelligent fire emergency system with the functions of human 

positioning and tracking, human flow monitoring and route planning during the 

evacuation process. According to a previous study which has proposed a 

conceptual framework of an intelligent fire emergency system, it suggests that 

this kind of system should be able to represent the 3D building topography with 

floors and their related rooms, while localizing pedestrians with indoor positioning 

technologies, e.g. Wi-Fi or Radio Frequency Identification Services (RFID). It 

should also be able to present the network connectivity of internal structure and 

track the moving target with relative precise positions (Becker et al., 2009). 

Moreover, there are also some more aspects need to be considered for the 

evacuation system, such as the resistance to heat and humidity, the power issue, 

portability of devices, and multi-layered positioning and navigation system 

(Scholz et al., 2010).  

The current developed systems of intelligent fire evacuation can be divided into 

two categories based on the user group as for firefighters and for individual 

victims. However, the researches of the latter are relatively limited comparing to 

those of the former (Bastos et al., 2015). Therefore, this study aims to provide a 

potential solution to enrich the victim-oriented category. Nevertheless, it is still 

worth taking some advantages from the design of firefighter-oriented systems. 

Thus, the following sections will have a short review of the current systems both 

for firefighters and individual users and find out their limitations, which need 

considerations for the system design in this study.  

2.1.1. For Firefighters (Rescue) Aspect 

For the intelligent fire emergency system designed for the firefighters, it is 

established to support indoor navigation for corresponding scenes such as 
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damage mitigation and survivor recue (i.e. ingress routing) (Niu, 2014). The 

requirements for an appropriate working system for firefighters can be divided 

into three aspects. First, the system should be able to handle different data 

processing requirements at end-users and in network. Second, the device 

manipulation should be easily adaptive and configurable. Finally, the sensed 

information should be stored at the related landmark nodes and it should allow 

the later evaluation for future system optimization (Scholz et al., 2010). These 

requirements are also applicable to victim-oriented systems, except the data 

processing and storage are better to be conducted at the processing centre.  

Previous works of firefighter-oriented systems have experienced several updates 

with increasing flexibility, from WearIT@Work (Boronowsky et al., 2005, Ramirez 

et al., 2009), LifeNet (Klann, 2009), Siren (Jiang et al., 2004), to the most current 

Landmark Nodes System (Scholz et al., 2010). According to the designs of these 

systems, it can be found out that they are more focused on integration of 

surrounding context information to human-centred navigational practices based 

on cognition than precise localizations (Ramirez et al., 2009). This is slightly 

different from the focus for the victims mentioned in Section 1.2.2, as the 

localization accuracy is relatively important for victim-oriented systems. However, 

it is also worth considering the surrounding information during evacuation, i.e. fire 

expansion in this study, as it will affect the user safety during evacuation and 

finally affect their decision making of evacuation route selection.  

However, all these systems are designed for the firefighters with professional 

experiences (Klann, 2009, Scholz et al., 2010), which may not be suitable to be 

used for evacuees as the mechanism of pedestrian evacuation can be different 

from that of rescue process, and the utilization of these systems may require 

some special training to deal with the professional operations. Moreover, they all 

require specific set of the sensor system pre-installed in the environment and 

heavy equipment attached to the users, making them have a higher cost for 

installation and configuration as well as less accessibility and lower user-

friendliness daily applications. The evacuation support for user aspect needs a 
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different setup, and this will be discussed in the next section. 

2.1.2. For Individual User (Victim) Aspect 

The system for fire victims to escape from hazardous building (i.e. egress 

routing), should have short-time localization as the long-time response will 

significantly decrease the chance for survival. According to the previous 

experience of fire emergency, the first 10 minutes are of great importance for 

self-evacuation (Niu, 2014) based on the estimation of fire expansion. This will be 

further described in fire dynamics model in Chapter 5.  

The previous studies for the victim-oriented indoor evacuation system are usually 

smartphone-based, and the common indoor positioning technologies are 

Bluetooth Low Energy (BLE) -based (Sashima et al., 2006, Inoue et al., 2008) 

and RFID-based (Chittaro and Nadalutti, 2008, Chittaro and Nadalutti, 2009). 

However, the functioning of the BLE/RFID tags installed in the building 

environment will be affected by the environmental factors such as temperature, 

smoke, or power supply during the fire disaster. Some later studies have tried to 

overcome this problem by integrating RFID with Quick-Response Barcode (QR-

Code) (Szwedko et al., 2009) or Near Field Communication (NFC) (Chu, 2010). 

However, the QR/NFC tags require pre-installations inside the building for 

positioning (Chu, 2010), which may increase the cost of system configuration. 

Moreover, the energy consumption for intensive BLE/RFID reading by the mobile 

reading can also be a problem. Thus, this kind of system is less feasible being 

used in the real applications.  

All the above-mentioned systems require the pre-installations of specific sensors 

inside the indoor area, which are of relative high-cost as the precision of the user 

locations is highly dependent on the number of available BLE/RFID tags. 

Moreover, they also require specific hardware for data transmission as well as 

regular management for both positioning and data transmission devices. This will 

also lead to an increasing cost of using these systems and lower the accessibility 

of system applications. Moreover, the energy consumption can also be a problem 

for specific data reading, which should be considered in the design of the 
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positioning system.  

Thus, this study will carefully consider the positioning technologies applied for the 

victim-oriented intelligent navigation system, which requires no pre-installation of 

specific indoor infrastructure and no specific user device for application while 

achieving satisfactory level of positioning accuracy. This will be discussed in the 

following section of selecting appropriate positioning approaches for the fire 

evacuation based on the comparison of current popular indoor positioning 

technologies. Moreover, the energy consumption for user positioning is supposed 

to be lower than the previous systems in order to achieve long-term functioning. 

The effects from the environmental aspects should also be noticed, which is 

regarded as the environmental tolerance to the fire scene as one of the major 

challenge for system design for the fire evacuation. These problems will be 

discussed during the design of the proposed positioning system in this study in 

Chapter 3 and 4.  

2.2. INDOOR POSITIONING TECHNOLOGIES 

Currently, people spend large amount of time in indoor area, such as residential 

buildings, shopping malls, large transport infrastructures (Klepeis et al., 2001, 

Jensen et al., 2009). Meanwhile, they are more easily getting lost in indoor area 

comparing to in the outdoor environments, which may partially due to the 

increasing difficulty of landmark recognition in indoor space (Huang et al., 2009). 

With further development of urbanization, the indoor structures of architectures 

especially the public facilities, are becoming increasingly complicated and large. 

It has raised difficulties for the exploration of indoor environment (Pu and 

Zlatanova, 2005, Jensen et al., 2009). Meanwhile, human-induced disasters, 

such as fires and the terrorist attacks (e.g. Sep,11th attacks at World Trade 

Centre in USA in 2001, March 11th Madrid train in 2004 and July 7th London 

bombing in 2005) often occur on these indoor micro-spatial environments with 

multi-level structure in urban areas (Kwan and Lee, 2005, Lee and Zlatanova, 

2008). For fire evacuation, there will be additional problems caused by human 

psychological conditions as people will get anxious and react in an impulsive way 
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when looking for an exit. Moreover, the movement of people during evacuation 

will also be affected by the familiarity of floor plan and the pressure from the 

neighbours when moving in a crowd, which will intensify the complications when 

retrieving appropriate routes for evacuation (Vanclooster et al., 2010, He et al., 

2013, Mohan et al., 2016). A reliable indoor navigation system can help mitigate 

the above situation by providing accurate positioning and guidance information to 

the occupants.  

However, the current widely used outdoor positioning system, i.e. Global 

Positioning System (GPS) which uses Global Navigation Satellite System (GNSS) 

signals for accurate position acquisition with geographic coordinate generation 

(Van Diggelen and Abraham, 2001, Rehrl et al., 2005, Misra and Enge, 2006, 

Kjærgaard et al., 2010, Martin et al., 2010, Niu, 2014, GSA, 2015), is not 

available in the indoor area. This is due to two reasons: the relatively low 

accuracy of GPS for indoor positioning and improper functioning of GPS in indoor 

area. As the indoor structure is more compressed than outdoor space and the 

accuracy of GPS is above 10 meters, this will raise difficulties for target 

positioning in the transition zone between outdoor and indoor areas. The 

improper functioning of GNSS is due to the low penetration capability of Radio 

Frequency (RF) signals through construction materials and the multipath 

propagation caused by signal reflection, scattering and diffraction, which has 

limited the application of GNSS system in indoor area (Van Diggelen and 

Abraham, 2001, Jiang et al., 2010, Kjærgaard et al., 2010, Niu, 2014). In addition, 

GPS will become unavailable even in outdoor area, especially in the area 

surrounded by the high buildings, which can also block the satellite signals 

(Kourogi et al., 2006, Jiang et al., 2010, Niu, 2014). This has raised the demand 

of alternative indoor positioning technologies to provide more precise position 

information for Location-Based Services (LBSs) and analysis of human 

movements and activity patterns inside the buildings (Lee, 2004a).  

In order to overcome the above mentioned problems, many solutions have been 

proposed to provide accurate and constant positioning for indoor LBSs (Lee and 

Zlatanova, 2008, Filonenko et al., 2010). These indoor positioning systems can 
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automatically detect the positions of indoor objects, such as products in 

warehouses, medical staffs or equipment in one hospital, or firefighters at the 

action scene (Liu et al., 2007). The popularization of smart devices also affects 

the usage of LBSs (Yun et al., 2013), as they play increasingly important roles in 

people’s communication, positioning, and information gaining (Butler, 2011).  

The current solutions for indoor positioning can be divided into two groups as 

infrastructure-based and infrastructure-free approaches  (Elloumi et al., 2016, 

Basiri et al., 2017). Infrastructure-based methods require pre-installations of 

transmitters or pre-training of databases, including Wi-Fi, BLE, RFID, and UWB. 

Therefore, these kinds of methods are usually with the disadvantages of relative 

high-cost, lower flexibility, more time consuming and higher sensitivity to the 

environmental factors, such as multipath propagation, noise, and interference 

(Inoue et al., 2008, Bonenberg et al., 2010, Sun et al., 2014, Tian et al., 2015, 

Elloumi et al., 2016). On the other hand, the approaches from the other group 

seem to be more promising in future market, with higher flexibility in operation 

and lower cost in infrastructure installation (Dong-Si and Mourikis, 2012). In 

addition, the advancement in manufacturing of Inertial Measurement Units (IMU) 

of Micro Electro-Mechanical Systems (MEMS) and cameras of Charged Couple 

Device (CCD), which are common sensors used for the latter two classes, has 

also led to products with lower price, less energy consumption, smaller size and 

higher precision (Fuchs et al., 2011, Harle, 2013, Racko et al., 2016, Basiri et al., 

2017, Tardif et al., 2010, Mourikis and Roumeliotis, 2007). These advantages 

becomes more prominent with the ubiquity of IMU sensors in smartphones and 

surveillance cameras in public building areas, leading to the wider applications in 

indoor scenarios in daily life (Dong-Si and Mourikis, 2012). However, there is still 

no ideal solution which satisfies the requirements of accuracy, availability, 

continuity, and reliability when comparing with GPS for outdoor positioning 

(Filonenko et al., 2010, Maghdid et al., 2016) and thus more investigations are 

required. One solution for this can be multi-sensor fusion, i.e. the integration of 

different sensors to provide an integrated solution for indoor positioning 

(Panahandeh and Jansson, 2014, Vu et al., 2012). This requires the selection of 
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suitable candidates, which can satisfy the requirements of working inside the fire 

scene mentioned in Section 1.2.1.1.  

2.2.1. Selection of Indoor Positioning Technologies for Fire Evacuation 

The suitability of indoor positioning technologies for fire routing should be 

considered in three aspects: accuracy, cost of installation, and the user 

experience (Niu, 2014). The detailed analysis is listed in Table 2.2.1. Among all 

reviewed technologies, the PDR system is a special localization system due to its 

dependence and requiring absolute estimated position, however, its high 

availability in smartphones without other infrastructures has made it a competitive 

candidate in future indoor positioning for fire emergency. According to a previous 

research on the priority ranking of suitable indoor positioning technologies for 

different applications, the PDR assisted by GNSS is the top one option (10.43%) 

for safety and security applications (8.74% for second selection Wi-Fi), which 

mainly aimed at providing emergency services seamlessly at indoor and outdoor 

area with the advantages of instant response, relative high accuracy (less than 

tens of meters), very high reliability and continuity, low energy consumption, 

reasonable or low price for equipment and system installation. Meanwhile, it also 

take the third position for most suitable technology for indoor navigation and 

tracking (13.3%) (Basiri et al., 2017), making this technology with great 

advantage to be applied in the establishment of intelligent indoor fire evacuation 

system. In this study, the PDR is selected as one of the important sub-systems 

for indoor positioning due to the above-mentioned reasons. Meanwhile, the GIS-

based maps will help provide absolute positioning information and is beneficial to 

the indoor-outdoor transition.  

PDR systems or Inertial Navigation Systems (INSs), which are regarded as 

dead-reckoning-based systems for pedestrians (Harle, 2013), can provide the 

relative user positions, orientation and velocity in indoor area by using triad 

accelerometers and gyroscopes for step detection and heading estimation 

(Woodman, 2007, Rajagopal, 2008, Abdulrahim et al., 2011, Lin et al., 2012, 

Griesbach et al., 2014, Link et al., 2011). This kind of systems can be divided into 
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several groups depending on the implementation locations of IMU sensors on the 

human body as foot-mounted (Hung and Suh, 2013, He et al., 2015a), hand-held 

(Parnian and Golnaraghi, 2010, Racko et al., 2016), backpack (Hide et al., 2010a, 

Hide et al., 2010b, Liu et al., 2010), in-pocket (Steinhoff and Schiele, 2010) or 

head-mounted (Azimi et al., 2012, Sadda et al., 2013, He et al., 2015a). 

This study will focus on the hand-held smartphone-based PDR. This is because 

smartphones have been integrated into routine and spaces of daily life (Bentley 

et al., 2015) and the sensors needed for PDR are already embedded in 

smartphones. Smartphone-based LBS services have been widely used by 

people around the world (Bao et al., 2015, Bentley et al., 2015). It is estimated 

that current active 74% of smartphone owners are active LBS users (Duggan and 

Smith, 2013) and the downloading of positioning related apps is proposed to 

reach 7.5 billion in 2019 (GSA, 2015). Thus any positioning system which is 

based on smartphones, can address some of the challenges of indoor LBS and 

bring more mass market opportunities.  

In addition, their affordable prices makes the less-infrastructure-dependent 

positioning system more feasible to implement (Elloumi et al., 2016). The 

common operating systems for smartphones, i.e. iOS and Android, have been 

both used for PDR based position estimation in previous studies (Kang et al., 

2012, Tian et al., 2015, Sun et al., 2014, Elloumi et al., 2016, Racko et al., 2016, 

Torres-Sospedra et al., 2017, Zampella et al., 2017, Faragher et al., 2012, Liu et 

al., 2012a, Liu et al., 2012b), although with a higher tendency towards the 

Android running devices, which may due to its lower price than iOS based 

system and is dominant in current smartphone market. This study will have 

experiments on both smartphone-based operation systems in order to improve 

the robustness of the designed positioning system for the fire scene. The reason 

of using hand-held posture is due to that the evacuees need to check their 

current positions regularly, which are usually presented on the screen of the 

smartphone.  
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However, the bias drift, which will accumulate with time, is still regarded as the 

major disadvantage of IMU sensors, and this drawback is exaggerated for 

sensors on smartphones with lower precision, and the typical positioning errors 

for smartphones may exceed 100m in 1 minute (Zhang et al., 2011b, Sabatini 

and Genovese, 2014, Woodman, 2007). This leads to errors in long-term PDR-

alone positioning, and thus external positioning information is required for 

position calibration and absolute localization (Abdulrahim et al., 2011, Harle, 

2013, Panahandeh and Jansson, 2014, Pinchin et al., 2012b, Vu et al., 2012).  

Many studies have searched for a potential external positioning system to 

calibrate the performance of PDR. In recent researches, approximately two-thirds 

of multi-sensor systems are inertial systems calibrated by external systems, and 

their common calibration choices are Received Signal Strength (RSS), Time-of-

Flight (ToF), and map matching (Adler et al., 2015). For the external positioning 

system to assist PDR positioning, this study chooses Optical Positioning System 

(OPS), which is under-represented in previous studies (Adler et al., 2015). Unlike 

Bluetooth and RFID which need the installation of infrastructures and tag wearing, 

the infrastructures for surveillance data have already been installed in most of 

indoor environments, which are much easier and more flexible for application. 

Wi-Fi is another good solution as a supplement to PDR data, however, the 

database for Wi-Fi fingerprints needs to be update regularly, requiring large 

amount of labour works. The surveillance system does not have the similar 

problem, which can save much effort and is more convenient for practical. Thus, 

the surveillance-based visual tracking is applied in this study, in order to calibrate 

the PDR positioning results.  

The recent quick improvement of OPS’s service quality with increasing 

availability in the form of surveillance cameras has promoted the development of 

many pedestrian based applications, including indoor pedestrian navigation 

(Mautz and Tilch, 2011, Elloumi et al., 2016). The introduction of OPS in hybrid 

positioning process can also enrich information from visual data by object 

detection (Mourikis and Roumeliotis, 2007, Mautz and Tilch, 2011). There are 

two conventional methods for object detection, i.e. optical flow and feature 
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extraction (Panahandeh and Jansson, 2014), has been explored widely. Optical 

flow, although with higher accuracy, needs more computation power and may 

require precise conditions of lighting and precise equipment. In addition, it 

assumes that between-frame motions are small and limited enough to be ignored 

(Griesbach et al., 2014), which might not be true in real-world applications and 

scenarios. Feature-based methods extract landmark features in images for 

positioning, can provide solutions in many indoor scenarios with relatively low 

computation power (Panahandeh and Jansson, 2014). However, the 

performance of OPS can be easily impacted by occlusion in the ambient, which 

is common inside the buildings, and generally indoors, as the Line-of-Sight (LoS) 

between camera and targets is essential for OPS (Hartmann et al., 2010, He et 

al., 2015a). This remains to be one of the challenges to track people through 

occlusion (Roy et al., 2015), though many studies have tried to predict the 

pedestrian’s positions by using Kalman filters (Yuan et al., 2013, Mirabi and 

Javadi, 2012, De Villiers et al., 2012) or assuming the moving velocity of 

pedestrian does not change (Yan et al., 2013, Hua et al., 2014). However, these 

methods are problematic as the moving pattern of pedestrian will change before 

and after occlusion and thus it is hard to use algorithms for prediction. Therefore, 

it is better have another independent tracking system for constant tracking of 

user positions (i.e. PDR in this study) while the OPS can help to calibrate the 

positioning results in the LoS areas.  

In Section 2.2.3, it will have a review over the current visual tracking 

technologies and how it applied in real time tracking. Meanwhile, it will also 

compare these approaches, in order to give an optimal option to be applied in the 

further development of vision-aided PDR in this study.  
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TABLE 2.2.1 

THE ANALYSIS OF INDOOR POSITIONING TECHNOLOGIES IN FIRE EMERGENCY 

Positioning 
Technology 

Independence Data Rate Accuracy Cost for Users Cost of the Infrastructure User Experience 

GNSS √ ~1Hz 4~7m £1~£100 
Already existed, no 
additional cost 

Not available in indoor 
area 

PseudoLite √ ~1Hz 3~7m 
∼£5000 for Locata 
Receiver 

∼£100,000 per transmitter 
(Depending on specific 
indoor deployment) 

Good for Experiments 

IR √ ~50Hz 10cm~6m ∼£1 (marker)  ∼£1 (marker) Good for Experiments 

Ultrasonic/Soun
d 

√ 
1Hz~tens of 
Hz 

1cm ~1m £10∼£300 £10~£100 per node 

Suitable for special users 
such as disabled people or 
fire responders with high 
precision 

Wi-Fi 
(Fingerprinting) 

√ 
0.2Hz, 0.25 
Hz, 3 Hz, 

2~4m 
Existed 
Smartphones 

~£20 per Wireless AP (at 
least 2 APs, depending on 
specific indoor deployment) 

Optimal for Evacuees but 
only for Android-based 
devices 

Wi-Fi (ToA) √ 1~10Hz 1.7~10m >£5 

~£20 per Wireless AP (at 
least 2 APs, depending on 
specific indoor deployment) 

Optimal for Evacuees but 
only for Android-based 
devices 

RFID (Passive) √ 20Hz, 80Hz 15~50cm >£10 per tag >£1000 per reader 
Suitable for special cases 
(problems with tag using) 

RFID (Active) √ 0.2Hz, 0.5Hz 1~3m 

∼£300 
interrogator, >£500 
M220 reader 

>£10 per tag (Depending 
on specific indoor 
deployment) 

Suitable for special cases 
(problems with tag using) 

Bluetooth √ 
0.2Hz, 1Hz, 
2Hz, 30Hz 

2~5m 

∼£5 receiver/ 
Existed on 
smartphones 

£5–£30 per tag 

Optimal for Evacuees due 
to availability in 
smartphones 

UWB √ 10Hz~25Hz 15cm~1m 

£60 (for ubisense 
tag IP63 slim) 
~1000 Lab 
Equipment 

Expensive lab equipment Good for Experiments 

PDR/INS × ~1KHz 
Depends on 
external system  

Low/ Existed 
Smartphones 

Depends on external 
system 

Optimal for Evacuees 
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2.2.2. Problems of Current Smartphone-Based Navigation Systems  

According to Section 2.2.1, the smartphone-based PDR is one of the selected 

candidates for the positioning system proposed in this study, and the 

navigation services are also supposed to be provided on a smartphone-based 

platform. However, there are some limitations of current smartphone-based 

navigation systems need to be realized during the system operation, 

especially for the data representation to the users. Although this study will not 

do real testing of navigation services, it still needs to consider these limitations 

during the positioning system design and simulation process.  

In general, a smartphone-based multimodal navigation system can be divided 

into two modules. One module will allow the online mobile access to the 

database of multimodal routes for route calculation between any given starting 

points and destinations. The provided result will contain segmented journey 

plan with different transportation and related time estimation. The other 

module will provide an offline service for guiding under both outdoor and 

indoor situations (Rehrl et al., 2005).  

Early studies for smartphone-based navigation applications could be divided 

into three categories: testing systems for pedestrian navigation, positioning 

techniques under both outdoor and indoor environment, as well as pathfinding 

ideal models. The navigation and pathfinding process for human is based on 

interaction between human and environment, especially the spatial cognition 

by human (Darken et al., 1998).  

For example, the REAL project has developed a resource-adaptive hybrid 

navigation, which is composed of Infrared (IR) sensing for passive localization 

and Augmented Reality (AR) technology for active location sensing to deal 

with indoor and outdoor situations respectively. Its indoor navigation system is 

based on IR transmitters installed on ceilings while the outdoor system is a 

GPS-based positioning system. In addition, the system takes the users’ 

specific request besides the navigation into considerations to develop optimal 

solution. The route description is based on both output devices’ capability of 

presentation and input sensor information’s quality (Baus et al., 2002). In a 

later project called NAVIO focuses on the information aspect of pedestrian 

navigation services of indoor and outdoor area, which satisfies users’ request 
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and supports users’ decision making. This system has integrated appropriate 

sensor data for positioning, develops routes based on specific context and 

user requirements, and enables the multimedia communication for user 

guidance. In addition, it also tried to solve the challenges of real-time user 

location tracking, 3D presentation of user location with high precision, and 

seamless transition between outdoor and indoor environments (Gartner et al., 

2004, Retscher and Thienelt, 2004). The project LoL@ also provides the map-

based visualization of user guidance on smartphones (Rehrl et al., 2005). 

Some other previous studies, which focus on the applications in the 

environment inside the mass transit facilities, have divided the wayfinding into 

two cognitive spaces, i.e. Network Space and Scene Space. The Network 

Space describes the public transportation network and can be represented by 

map and timetables, while the Scene Space is regarded as settings at nodes 

of public transport system such as transfer facilities and infrastructures, 

usually is modelled by schematic geometry based on hierarchical cognitive 

schema and partial orders (Rüetschi and Timpf, 2004a, Rüetschi and Timpf, 

2004b). According to the design of these systems, it has raised the 

importance of user context and geographical information presentation to the 

users during the process of navigation besides providing accurate user 

locations.   

However, the current smartphone-based pedestrian navigation is still far from 

maturity when comparing to the navigation systems for vehicles. In fact, the 

current so-called available pedestrian navigation system is based on the 

slightly modified car navigation system. It is very problematic due to the 

different requirements between two groups of users and conceptual mistakes 

(Rehrl et al., 2005).  

First, the route calculation of pedestrian navigation system should be based 

on the pedestrian walking network. However, the common solutions for 

outdoor pedestrian navigation still use the street network, which is more 

suitable for vehicles rather than foot-travellers Second, the current design of 

pedestrian navigation system cannot satisfy constantly changing user context. 

It may due to unreliable and user-location dependent sensor readings for 

pedestrian navigation system as well as various requirements from users for 



36 

information and guidance under different situations. Third, the current 

pedestrian navigation system is only available for outdoor environments. 

However, pedestrians will come across different types of buildings in urban 

area and it is necessary for pedestrian navigation system to be seamlessly 

applied to both indoor and outdoor area as well as transition regions (Baus et 

al., 2002, Rehrl et al., 2005). 

In order to overcome these drawbacks, this study will apply its own GIS-

based indoor maps and path network during navigation simulation, 

while providing reliable and accurate indoor user locations. To limit the 

user context under certain conditions, it focus on the application for a 

specific scenario of the fire evacuations, which is before the arrival of 

the fire brigades. In addition, it should also work properly when 

transferring from indoor to the outdoor environment, which also 

requires a uniform geographical coordinate of data presentation for both 

indoor and outdoor system. Moreover, the majority of the user-related 

parameters will be measured in experiments, which can help to improve 

the effectivity and reliability of the simulations.  

2.2.3. Selection of Visual Tracking Algorithms 

The pedestrian tracking in large indoor area is of great importance to be 

solved in computer vision (Dollar et al., 2012), as it enables applications 

related with security and indoor navigation and route guidance (Jensen et al., 

2009). As the surveillance camera system can provide real-time data and has 

been widely available, this kind of video data has become a new data source 

to be applied with GIS commercial platforms for multiple scenarios (Collins et 

al., 2000, Pai et al., 2004, Haritaoglu et al., 2010, Zhou et al., 2016).  

Many approaches have been developed recently and the classification of 

tracking technologies can be divided into several categories based on 

different criteria, such as number of used cameras, type of cameras (e.g. 

grayscale or colour, static or moving, mono or stereo), number of targets, 

speed and resolution of camera, the style of applied situation, coverage area 

and camera locations (Petrushin et al., 2006, Zhou et al., 2016). This study 

will more focus on the fixed camera systems for visual tracking as surveillance 
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tracking.  

2.2.3.1. Conventional Methods of Localization Based on Fixed Camera 

System 

The fixed visual systems can track people with multi-cameras by establishing 

a camera network such as CCTVs to cover the space and produce an 

intelligent system to detect user (Piscataway, 2000, Torres-Solis et al., 2010). 

The user location can be traced through video streams by comparing patterns 

in image sequences based on visual odometry (Basiri et al., 2017). In this way, 

the location of the targeted people will be estimated based on its position 

within the captured image and the fixed position of camera and once its 

salient feature is recognized by the system. Most of previous studies are 

focused on the target tracking limited in the view of a single camera, only a 

few studies proposed suitable solutions for indoor tracking of people with 

continuous moving in a complete scenario (Torres-Solis et al., 2010).  

The cameras used for pedestrian tracking can be divided into stereos and 

non-stereos. The accuracy of the stereo-camera-based system can reach 10 

cm for localization. However, its high cost is an unneglectable disadvantage 

as it requires the installation of many cameras to cover the occlusion and 

corner area of indoor environment (Mourikis and Roumeliotis, 2007). Other 

than using stereo cameras, other studies using non stereo cameras with 

image processing techniques for people localization. Many studies have 

established Multiple Camera Indoor Surveillance (MCIS) system to track the 

pedestrian movements, and their accuracy can reach 0.15m (Petrushin et al., 

2006, Wang and Wang, 2007, Munoz-Salinas et al., 2009, Torres-Solis et al., 

2010). These methods are all based on the conventional methods of 

pedestrian tracking with certain model application for human identification.  

The conventional methods of passive pedestrian detection are based on 

figure-ground segmentation of video data (Moeslund et al., 2006, Enzweiler 

and Gavrila, 2008, Dollar et al., 2012, Tsai et al., 2016, Zhou et al., 2016). 

Many previous studies have utilized background subtraction for foreground 

detection to identify people in the images. After detecting human in each 

image, the next step is to transfer the human position in image space to other 
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coordinate systems (e.g. Zhou et al., 2016, Tsai et al., 2016). However, 

feature based methods will be limited on its applications on different 

environments as their parameters needs to be modified regularly based on 

prior domain knowledge to extract certain features with a relatively low 

accuracy. Deep learning based methods can overcome these problems based 

on less domain knowledge with direct input of image and improve the 

flexibility of algorithm application by using low-dimension feature vectors with 

non-maximum suppression classification and sharing features among all 

classes. Moreover, the parameters applied in conventional approaches needs 

manual selection, which may increase the amounts of the labour works while 

decreasing the flexibility of applications. This will also be overcome by 

applying the deep-learning based methods as their parameters will be 

automatically extracted during the processing (Girshick et al., 2014, He et al., 

2014, Girshick, 2015, Ren et al., 2015) 

The following section will compare some of the current deep learning based 

methods, in order to provide an optimal selection with relatively high accuracy. 

Based on the results acquired from the comparison, This study will then utilize 

an optimal deep-learning based methods for human detection.  

2.2.3.2. Deep Learning Based Pedestrian Detection 

This study has compared the current popular deep-learning based pedestrian 

detection, mainly focusing on their detection accuracy and detection efficiency 

(Table 2.2.3.2). As the result from the visual tracking is supposed to calibrate 

the smartphone-based PDR, the algorithm applied for this study should be 

able to achieve relatively higher accuracy and real-time detection, while not 

requiring high storage and long processing time. Based on the comparison 

results in Table 2.2.3.2, it can be found out that the Faster R-CNN is an 

optimal choice which almost satisfies the above requirements.  

However, according to the provided detection accuracy, it may not be accurate 

enough due to multi-output of 20 different classes. In this study, it is not 

necessary to output 20 different classes but only two classes as human and 

non-human. This may help to improve the pedestrian detection accuracy, and 

more details will be given in Chapter 3.  
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TABLE 2.2.3.2 

THE COMPARISON OF POPULAR DEEP-LEARNING-BASED PEDESTRIAN DETECTION ALGORITHMS 

Algorithm CNN R-CNN SPP-net Fast R-CNN Faster R-CNN 

Related 
Studies 

AlexNet (Krizhevsky et al., 
2012); Overfeat (Sermanet et 
al., 2013a, Chatfield et al., 
2014); ZF-5 (Zeiler and 
Fergus, 2014); GoogLeNet 
(Szegedy et al., 2015) 

Girshick et al. (2014) He et al. (2014) Girshick (2015) (Ren et al., 2015) 

Major 
Features of 
structures 

Sliding Window +CNN-based 
object detection (Sermanet et 
al., 2013b) 
SVM-based classification; 

RP generation; 
SS+CNN-based object 
detection; 
(Gu et al., 2009, Carreira and 
Sminchisescu, 2012, Uijlings 
et al., 2013); 
BB Regression (Girshick et al., 
2014, He et al., 2014, Girshick, 
2015, Ren et al., 2015); 
Updating weights of CNN 
layers; 
SVM-based classification; 

RP generation; 
Shared feature maps; 
Arbitrary-size input images 
(Sivic and Zisserman, 
2003, He et al., 2014); 
SPM–based feature 
extraction (Grauman and 
Darrell, 2005, Lazebnik et 
al., 2006); 
BB Regression; 
SVM-based classification; 

RP generation; 
Shared feature maps; 
Updating weights of 
CNN layers;  
Arbitrary-size input 
images; 
ROI-based feature 
extraction; 
Softmax-based 
classification; 
Share features during 
training; 

RPN (Long et al., 
2015) + Fast R-CNN 

Training 
Database 

Unsupervised pre-training + 
Supervised fine tuning  

ILSVRC2012 + PASCAL VOC 
2007 (Fine-tuned pre-training) 

PASCAL VOC 2007 PASCAL VOC 2007 MS COCO + PASCAL 
VOC 2007 + PASCAL 
VOC 2012 

20-Class 
Detection 
Accuracy (%) 

58.7 66 63.1 66.9 78.8 

Limitations 
on  Detection 
Efficiency 

Limited applications for image 
classification; 
Fixed-sized input images 
(Krizhevsky et al., 2012, Zeiler 
and Fergus, 2014, Donahue et 
al., 2014, Girshick et al., 2014) 

Repetitive feature extraction; 
Fixed-sized input images; 
High feature storage 
requirement (Girshick, 2015) 
Long training and testing 
process 

Fixed weights of CNN 
layers; 
High feature storage 
requirement; 
Relatively long training 
and testing process; 

Quicker training and 
testing process but not 
real-time detection 

Live streaming for 
online detection 
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2.3. PREVIOUS STUDIES OF INTEGRATIONS OF PDR AND VISUAL TRACKING 

The fusion of PDR and visual tracking, also known as the Vision-aided Inertial 

System (VINS), is expected to benefit from the advantages of both two 

positioning systems, providing the localization service with higher overall 

accuracy, continuity, accessibility and reliability (Vu et al., 2012, Griesbach et al., 

2014, Jiang and Yin, 2015, Jiang and Yin, 2017, Zhang and Zhou, 2018). The 

OPS can be used to calibrate drift accumulation with its higher accuracy, while 

PDR can solve the discontinuity problem of OPS caused by occlusion in LoS due 

to its ability to provide relatively accurate results in short time intervals (Jiang and 

Yin, 2015, Jiang and Yin, 2017, Zhang and Zhou, 2018).  

Based on the way of system deployment, the VINSs can be divided into two 

classes: the Active VINSs (AVINSs) and the Passive VINSs.  

2.3.1. AVINSs 

The AVINSs have been used extensively in many applications and researches, 

as it can provide 3D location information and orientation estimation for motion 

tracking. Some of the potential applications are concentrated in the field of 

robotic mapping and Simultaneous Localization and Mapping (SLAM), and 

unmanned vehicle system (Panahandeh and Jansson, 2014, Lin et al., 2012, 

Hardegger et al., 2015). In previous studies, the common implementation of 

system for these applications is to attach a monocular/stereo camera and an IMU 

sensor on a fixed platform, which uses feature extraction by camera and motion 

estimation by inertial sensor. The motion parameters can also be deduced by 

image processing from video data based on scene flow and features (Tardif et al., 

2010, Dong-Si and Mourikis, 2012, Vu et al., 2012, Hide et al., 2010b, Hide et al., 

2010a), which makes the fusion of sensor data to be plausible. The fusion of 

inertial and visual data is based on egomotion heading estimation (Li et al., 

2013b). The methods used to achieve that can be divided into three groups: (a) 

slowing the sample rate of IMU data (Skog et al., 2010), (b) using Particle Filter 

(PF) (e.g. Ramanandan et al., 2012, Dong-Si and Mourikis, 2012), and (c) 

applying Kalman Filters (KF) (Song et al., 2011, Griesbach et al., 2014) and its 
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extensions such as Extended Kalman Filters (EKF) (Tardif et al., 2010, He et al., 

2015a) and Unscented Kalman Filters (UKF) (Panahandeh and Jansson, 2014). 

The latter two approaches are more widely used in current research articles of 

indoor mapping with better performance. One previous study has developed a 

system named as VISrec, which uses a dual-track system to combine the IMU 

data and optical measurements in a loosely-coupled way. The pose estimation 

by camera based on feature detection and matching could help to limit the drift 

caused by IMU, while the pose prediction by inertial sensor could also constrain 

the searching area for feature tracking (Vu et al., 2012). However, this kind of 

system is built on the robot, it is not suitable for human to use during movement. 

Meanwhile, the current smartphones equipped with rich sensor suite, which could 

help to create more opportunities for low-cost indoor localization, providing with 

the processing capability in real-time and high-accuracy pose estimation (Li et al., 

2013b). Some of AVINSs have utilized the embedded cameras and IMU sensors 

in smartphones for indoor localization (Hide et al., 2010b, Hide et al., 2010a, Li et 

al., 2013b). The built-in cameras were used to film the ground, in order to 

estimate cameras’ relative position and orientation based on ground-plane 

feature matching. Meanwhile, IMU sensors were used for step detection and 

heading estimation (Hide et al., 2010b, Hide et al., 2010a, Li et al., 2013b). 

However, this approach is not fully practical, particularly for commercial 

applications, as the video recording by embedded camera is energy consuming 

and cannot support long durations for indoor localization.  

2.3.2. PVINSs 

Instead, this study uses surveillance cameras for pedestrian detection while 

using inertial sensors in smartphones (Yan et al., 2018b, Yan et al., 2018a). This 

method is regarded as PVINS. Other than AVINS, the sensors in this kind of 

system are distributed on different platforms and further data transformation is 

needed before sensing integration. Some of the recent studies also utilize this 

idea and regard this method as passive-vision-aided active inertial navigation 

(Jiang and Yin, 2015, Jiang and Yin, 2017, Zhang and Zhou, 2018). These 

studies integrate the pedestrian-detection-based visual results from a single 
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surveillance camera and PDR results from the embedded IMU sensors in the 

smartphone to continuously track 2D user movements horizontally in either 

indoor or outdoor environments.  

The studies conducted by Missouri University (Jiang and Yin, 2015, Jiang and 

Yin, 2017) tracks user in the visible area by self-trained SVM-based detector and 

the visual tracking results from the filming view are warped to a top-down view by 

using four corresponding pairs. For PDR positioning, it is based on speed vector 

with fixed step length and moving direction, by using accelerometer, gyroscope 

and magnetometer. The positioning results are required to be transferred from 

world coordinate (relative positioning) into image coordinate for trajectory 

matching. They are matched by checking whether the distance between these 

two trajectories are within a certain threshold in each sliding window by applying 

the similarity matrix. This requires the updating of similarity matrix in the sliding 

window, and may cause some difficulty in computation. Meanwhile, the image 

warping to the top-down view also requires the whole filming scene to be fixed, 

and be covered inside the visible area of the camera. This may require some 

more computation when shifting to a second camera as the warping matrix needs 

to be re-calculated. In addition, it requires an additional time period to determine 

whether pedestrian detection is still working by checking the frames in this 

duration, which may also cause lag errors in detection. Moreover, it still exists in 

a relative coordinate and did not provide a solution to connect with real 

geographical coordinates. In this study, the cameras are facing directly to the 

corridors and the user positions will be estimated based on depth information and 

its horizontal coordinates are proportional to the real width of the corridor. In 

addition, the integration of visual positioning to PDR is only based on time stamp 

similarity and only the heading information from visual tracking is used for PDR 

calibration instead of positions. Therefore, the system does not need to calculate 

these matrices and can freely shift from one camera to another as a multi-

camera system. Moreover, as this study applied deep-learning methods for 

pedestrian detection, it does not need self-training detectors and self-updating of 

scales as the detectors are already available resources and can automatically 
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update the size of detection selection, which can save some manual work. It can 

also achieve nearly real-time detection and respond immediately when no 

pedestrian is detected. Therefore, it will introduce less delay-detection errors to 

the system. 

Another study conducted by Shanghai Technology University (Zhang and Zhou, 

2018) tried to combine the two systems by matching the gait features from both 

visual and PDR system. The system installs the camera to view the whole scene, 

which is the whole room in this specific case, and use foreground segmentation 

for pedestrian detection with no occlusion. The detected user feet position will be 

on the extension cord of two points: the top point of foreground mask and the 

gravity centre of bounding box (BB), and the length between feet point and top 

point of foreground mask is proportional to the height of BB. The occlusion in this 

study is defined as the condition that the pedestrian is only partially detected, and 

the feet point of that situation is regarded as the mid-point of the bottom 

boundary detected by Convolutional Neural Network (CNN). For the gait feature 

extraction from visual data, it is achieved by finding the repeating pattern of 

higher proportion of the lower body in BBs After combining step state, step 

frequency and heading, the gait features from two systems with the largest 

matching rate will be integrated for 2D positioning. This method can improve feet 

position accuracies in no-occlusion areas with a more complicated algorithm. 

However, it also increases the responding time of system as it needs more 

computation steps and the foreground segmentation method cannot be 

processed as quickly as deep-learning method does. Moreover, this algorithm 

cannot be applied in the area with occlusion, which has also limited the accuracy 

of the system when people are too close to the camera and the feet points 

cannot be treated as the bottom mid-points as they are no longer on the ground. 

In this study, the camera is installed to face towards the walking direction of user, 

and thus the system does not need to separately treat the calculation of feet 

positions and they can all be treated as the mid-points of bottom boundaries of 

BBs Moreover, it removes those BBs when no entire human bodies can be 

viewed in the frames. Comparing the matching algorithms, the method in (Zhang 
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and Zhou, 2018) needs gait feature extraction before integrating visual tracking 

and PDR data together, leading to an increase of the computation complexity for 

the application. In this study, the system only needs the similarity checking of 

time stamps from two sub-systems as it is a continuous process, which is simpler 

to achieve. Moreover, none of the above-mentioned studies have provided with a 

solution to integrate the positioning results with the real geographical coordinates, 

i.e. the global mapping system. The system proposed by this study has achieved 

that and provide opportunities for further application of seamless indoor-outdoor 

transition. This study also compares the performances between two types of 

common models of smartphones, other than the previous studies that they only 

use Android-running smartphones, which has improved the system robustness 

for different kinds of smartphones. 

Previous studies have also proved that the combination of floor plan as 

environmental constraints, supported by the application of PF (Pinchin et al., 

2012a, Pinchin et al., 2012b, Hardegger et al., 2015) or certain activities at road 

networks (Zhou et al., 2015), can help to improve the accuracy of indoor 

positioning. This study also takes this constraint into account to estimate the 

positioning solutions, though without using of previous mentioned methods. 

Instead, it is processed by geo-referencing in order to provide absolute position 

information to the results, which needs less computation power. 

2.4. FLOOR DETECTION 

The above sections have introduced the selections of positioning technologies 

and how they may work cooperatively in previous studies. However, in a multi-

floor indoor environment, the system also needs to handle the situation of 

walking up or downstairs. Therefore, this system needs to provide 3D positioning 

information or at least 2.5D information about which floor the user is currently on, 

and it is useful for various LBSs (Tanigawa et al., 2008, Shen et al., 2015, Ye et 

al., 2016). Common examples are floor localization during fire emergency, floor 

map chosen in a shopping mall for, and navigation in multi-floor car park (Li et al., 

2013a, Ye et al., 2016, Shen et al., 2015). For the situation of fire evacuation, the 
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floor detection is of great importance as it will determine the original display of 

floor map to the users and it will also help the firefighters to identify the floor 

locations of trapped people for later rescue. 

2.4.1. Floor Detection by RSS-Based Wireless Positioning 

In past decades, the majority of floor localization methods are based on RSS-

fingerprint-based wireless positioning (Shen et al., 2015, Wu et al., 2013, Ye et 

al., 2016), by Wi-Fi (LaMarca et al., 2005, Wang et al., 2012, Yang et al., 2012, 

Alzantot and Youssef, 2013) or Global System for Mobile Communications (GSM) 

(Otsason et al., 2005, Varshavsky et al., 2007). The main idea is to create a radio 

map for the entire indoor environment, establish the relationship between 

physical locations and corresponded RSS fingerprints. The user locations can 

then be estimated by comparing measured RSS to references on map 

(Varshavsky et al., 2007, Ye et al., 2012, Shen et al., 2015, Ye et al., 2016).  

One of the main drawbacks of this kind of method is its poor scalability due to 

requirement of labour-intensive and time-consuming site surveying and training 

process (Ye et al., 2012, Shen et al., 2015, Ye et al., 2016). In addition, the low 

accuracy is another major disadvantage of all RSS-fingerprint based methods 

(Shen et al., 2015, Ye et al., 2016). For example, the identification accuracy of 

SkyLoc is only 73% in all samples, which is not satisfactory for real applications. 

This is mainly due to RSS are sensitive to interruptions between transmitters and 

receivers caused by obstacles, such as walls and floors (Shen et al., 2011, Xia et 

al., 2015). The multipath effects also impact the RSS based vertical localization. 

These errors may be tolerated when moving in horizontal directions but will be 

significant when doing vertical movements, leading to false floor identification 

(Xia et al., 2015). This will lead to wrong floor plan selection, which is quite 

important for indoor LBSs (Xia et al., 2015) and the acceptable accuracy for 

height measurement for good floor detection should be less than 3m (Li et al., 

2013a).  

Later studies have tried to improve the accuracy of floor detection by Wi-Fi-based 

methods. Some of them tried to improve the algorithms of using Wi-Fi RSS 
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fingerprints. One study develops an RSS identification (RSSI) method, which 

uses Bayesian Graphical Model to process Wi-Fi fingerprints and achieves an 

accuracy of 2.3m (Al-Ahmadi et al., 2010). Another study improves the algorithm 

by applying K-Nearest Neighbour (KNN) and group variance algorithms for multi-

floor detection, and achieves sub-meter accuracy (Alsehly et al., 2011), though 

this accuracy is only available in ideal conditions. Besides, the Wi-Fi RSSI based 

methods are still very problematic in practical with high computational complexity, 

intensive database access, complicated training procedures, and heavy burden 

of data transfer (Bai et al., 2013). Some other studies tried to use other kinds of 

electromagnetic signals such as Bluetooth and RFID. These methods usually 

require pre-installation of transmitters/tags in indoor environment for floor 

correction and the signal receivers/readers are carried by user. Their precision 

thus will be limited by the density of installed tags, which is of high cost for real 

practical applications and a pre-calibration of system calibration is also required 

(Ting et al., 2011, Bai et al., 2013, Kim et al., 2017). In order to overcome these 

problems, a smartphone-based barometer is integrated to provide height/floor 

information.  

2.4.2. Floor Detection by Embedded Barometer in Smartphone 

With the development of available embedded smartphone sensors, the 

applications of infrastructure-less methods are becoming more popular in floor 

localization (Constandache et al., 2010a, Constandache et al., 2010b, Ofstad et 

al., 2008, Ye et al., 2012). However, the application of smartphone-based IMU 

sensors to provide 3D positions will raise the problem of increasing bias in 

vertical direction (Ye et al., 2012, Zhang et al., 2012, Ye et al., 2016). This is due 

to the introduction of nonlinearity caused by accelerometer rotation during 

measurements. The error will grow quadratically with time accumulation and it 

cannot handled by standard EKF (Zhang et al., 2011b, Zhang et al., 2012). 

Therefore, the fusion of other sensor data is necessary to stabilize the height 

tracking by fixed beacons or data training (Constandache et al., 2010a, Zhang et 

al., 2011b, Sabatini and Genovese, 2014). The former one will have additional 

cost for installation as mentioned above, and the latter one needs high-cost data 
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training process (Ye et al., 2016). Although some of the later studies tried to cut 

down the training effort by application of crowdsourcing (Alzantot and Youssef, 

2012, Wang et al., 2012), a reliable detection is still user-specific and sample-

dependent, which needs relatively high energy consumption (Wang et al., 2012, 

Ye et al., 2016).  

Using a barometer may be a good alternative solution (Ebner et al., 2015). First, 

it has been widely used at outdoors for altitude measurements (Li et al., 2013a, 

Xia et al., 2015), as it is low in energy cost (Wang et al., 2006, Muralidharan et al., 

2014, Xia et al., 2015, Ye et al., 2016) and requires no additional installations.  A 

barometer altimeter allows height estimation based on air pressure above the 

given reference level, which is usually sea level (Li et al., 2013a, Sabatini and 

Genovese, 2014, Shen et al., 2015, Xia et al., 2015). It could be used to track 

floor level of user inside building with the provision of building information (known 

heights of various floor) or relative height between floors with initial level (Wang 

et al., 2006, Bai et al., 2013, Li et al., 2013a, Muralidharan et al., 2014).  

Second, there are more smartphones has embedded pressure sensors such as 

Galaxy Nexus 4, Galaxy S3, Samsung S4, iPhone 6, Xiaomi Mi2, and their more 

recent versions, with the availability of smaller-size, higher accuracy and cheaper 

barometers in portable smart devices (Muralidharan et al., 2014, Ebner et al., 

2015, Jeon et al., 2015, Shen et al., 2015, Xia et al., 2015, Ye et al., 2016). 

Together with corresponded software for data fusion, the portable-sensor-

assisted methods have drawn more attentions in the field of providing 3D 

information (Sabatini and Genovese, 2014, Shen et al., 2015, Xia et al., 2015, Ye 

et al., 2016). One recent research has studied the performance of floor changing 

detection by mobile-embedded barometer and has found it performs with higher 

accuracy on one-floor change detection than that only uses accelerometer as 

well as with higher tolerance to perturbations of simultaneously using other 

functions of smartphones such as making phone calls and playing games (Ye et 

al., 2012, Muralidharan et al., 2014). However, this study does not solve the 

problem of exact floor identification (Ye et al., 2016) and indicates that a single 

barometer can only be used as relative changes of floor/height other than 
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absolute height  (Muralidharan et al., 2014, Sabatini and Genovese, 2014, Xia et 

al., 2015, Ye et al., 2016). This is because that the pressure information acquired 

by single barometer is very noisy and keeps changing over time. It can be easily 

affected by multiple factors, such as temperature, humidity, and even opening 

and closing of windows or doors. On the other hand, the relative changes of 

pressure between floors are less various and can be regarded as a constant 

value (Li et al., 2013a, Muralidharan et al., 2014, Sabatini and Genovese, 2014, 

Ebner et al., 2015, Xia et al., 2015, Ye et al., 2016, Kim et al., 2017). In order to 

solve that problem, a pioneering project called B-Loc has used multiple pressure 

sensors on each floor, in order to create a map of barometer fingerprints with 

time stamps for real time projection, which achieves about 98% accuracy of floor 

identification after testing in a 10-floor building (Ye et al., 2016). However, it is still 

limited as it requires real time samples for reference (Shen et al., 2015). A later 

study has reduced the number of barometers by using one reference device and 

one carrying device for exact floor identification (Kim et al., 2017). This study is 

also developed based on this idea for self-calibration but uses a different 

algorithm, which will be introduced later in Chapter 4.  

Previous studies has also proved that MEMS barometer can be integrated with 

IMU sensors, which is known as baro-IMU for indoor navigation systems 

(Tanigawa et al., 2008, Zhang et al., 2012, Flores and Farcy, 2014, Sabatini and 

Genovese, 2014, Lin et al., 2015), It can improve the accuracy of providing 

height information than using only MEMS-based accelerometers while keeping 

tracking horizontal user positions (Ye et al., 2012, Muralidharan et al., 2014). By 

using this method, the positioning errors from horizontal and vertical directions 

are treated separately. For example, one previous study has loosely coupled 

these two types of data with self-designed hardware under experimental 

conditions. Its height estimation has achieved a Root Mean Square Error (RMSE) 

in a range between 0.05m and 0.68m with simple motions (Sabatini and 

Genovese, 2014). A later study applied this approach with smartphone sensors to 

help guide the blind in subway stations and commercial centres with longer 

distance, achieving decimetre-level accuracy on height estimation (Flores and 
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Farcy, 2014). However, many studies more concentrate on improving the 2D 

positioning accuracy by enhanced PDR algorithm, rather than focusing on the 

vertical height error. They just collect the pressure data of each floor as 

fingerprints and treat the between-floor height as constant, with a pre-calibrated 

pressure sensor by GNSS signals (Lin et al., 2015, Shin et al., 2014). The typical 

vertical error is approximately 2m (Lin et al., 2015), and the detection accuracy is 

still unknown as they do not provide any results about whether the floor detection 

can be performed accurately and in time. This may be explained by that the 

requirement for floor detection by barometer is not very high in the real-world 

applications, as the height difference between floors is relatively significant. This 

study will introduce the transition levels of floors which is usually neglected by 

previous studies (Tanigawa et al., 2008, Zhang et al., 2012, Flores and Farcy, 

2014, Sabatini and Genovese, 2014, Shin et al., 2014, Lin et al., 2015). 

Therefore, the accuracy of height estimation is becoming more important as 

more detailed changes are needed. Some studies set up a referential device to 

improve the height estimation. They have achieved better mean accuracy at 

about 0.15m (Kim et al., 2017).  

This study also adheres to the idea of providing height information for indoor 

tracking. However, it only uses a single device but different data collection tools 

to set up referential measurements. In addition, as the barometer can only help 

improve the performance in the 3rd dimension (Ebner et al., 2015), it still needs 

an external positioning system for calibration in the horizontal direction, which 

corresponds to the 2D PVINS in this study mentioned in Chapter 3. The major 

challenge for 3D indoor positioning is to achieve high precision while using low-

cost and user friendly setups (Niu, 2014). The former two requirements have 

been addressed somewhat by the previous studies (Foxlin, 2005, Zhang et al., 

2015), while satisfying the user experience remains a problem to be overcome. 

This study contributes a solution with relatively high accuracy while using low-

cost and user friendly sensors, such as surveillance cameras and smartphone-

based PDR as well as a smartphone-based barometer. It also provides a novel 

design of a 3D indoor tracking system with the integration of passive multi-scene 
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OPS, and active PDR and altimetry estimation, supported by auto-shifting 

georeferenced maps. It is the first time to use only these three sub-systems for 

3D localization simultaneously and collaboratively. 

2.5. POSTURE APPLIED FOR FIRE EVACUATION PROCESS  

The posture can be an important factor, as people during the fire evacuation may 

not always be able to keep upright poses. The harmful environmental factors 

during a fire, such as heat, smoke, and burning gases, may require human to use 

atypical postures other than upright walking (UW) for survival (Cao et al., 2014, 

Muhdi et al., 2006, Nagai et al., 2006, Kady and Davis, 2009a). In order to 

quickly evacuate from the threatening environment with no impediment of 

breathing, people need to seek for a safe and fast-moving manner. According to 

Occupational Safety and Health Administration (OSHA), the breathing zone 

requires to be at least 10 inch radius around the nose and mouth of pedestrian 

(OSHA, 2015). Thus, when under the condition that the atmosphere is becoming 

‘Immediately Dangerous to Life or Health (IDLH), the evacuees are required to 

lower their body in order to make their breathing zone secured (Cao et al., 2014).  

The National Fire Protection Association (NFPA) suggested people to use 

crawling postures during severe fire evacuation in order to move under smoke 

and avoid inhaling toxic gases (Davis,     b, Gallagher et al.,     , N PA and 

 ot , 2015). In addition, it also helps to improve the vision of evacuees for route 

searching when staying under smoke (Cao et al., 2018). However, many 

previous studies have drawn a conclusion that crawling using knees and hands 

could cause significant reduction of moving velocity compared to the UW. They 

have proved that the reduction of the speed of using crawling than that of using 

erection posture varied from 36.8% to 66.7% (Gupta and Yadav, 2004, Muhdi et 

al., 2006, Nagai et al., 2006, Kady and Davis, 2009a, Gallagher et al., 2010, Cao 

et al., 2014, Cao et al., 2018), and the average speed for crawling is in a range 

between 0.5m/s to 0.86m/s (Morrissey et al., 1985, Muhdi et al., 2006, Nagai et 

al., 2006, Kady and Davis, 2009a, Kady and Davis, 2009b, Gallagher et al., 2010, 

Gallagher et al., 2011, Cao et al., 2014, Cao et al., 2018). Meanwhile, the speed 



51 

reduction of the stoop-walking (SW) is much less than that for crawling. The 

maximum reduction (24%) appears when the pedestrians are required to move 

under conditions of low height (<1.2 m) (Gallagher et al., 2010), bending more 

than 70% of the self-stature (Morrissey et al., 1985). For the other studies which 

do not require the users to severely bend during the movement, the reduction of 

the speed from that of UW is in a range of 4.66% to 11% (Cao et al., 2018, Cao 

et al., 2014), and the average speed is between 1.01m/s to 1.84m/s depending 

on different body size and experimental conditions (Gallagher et al., 2010, 

Gallagher et al., 2011, Cao et al., 2014, Cao et al., 2018).  

Moreover, the flexion of trunk and/or knee require more muscle energy 

expenditure than using a upright posture for walking (Morrissey et al., 1985, 

Davis, 2011a, Grasso et al., 2000, Cao et al., 2014, Hora and Sladek, 2014, 

Kluger et al., 2014, Cao et al., 2018). Previous studies has proved that by 

comparing the relative physiological indicators of using crawling and UW, i.e. the 

average heart rates (HR), oxygen consumption rates (VO2), and ventilation rate 

(VE). They have approved that the crawling posture requires a significantly larger 

amount of these physiological demands than using the UW posture, with more 

metabolic energy consumption in a range of 73% to 375% (Morrissey et al., 1985, 

Gallagher et al., 2011, Davis, 2011a, Cao et al., 2014, Cao et al., 2018). The 

situation of using SW is more diverse, depending on the specific degree of 

flexion. Some of the previous studies have tested the corresponding metabolic 

cost of using different degrees of the stooping/bending (Morrissey, 1980, 

Morrissey et al., 1985, Cao et al., 2014, Cao et al., 2018). According to the 

results, they have suggested that amount of energy consumption grows with the 

increasing degree of the trunk flexion (stooping) (Table 2.6.1). The 70% SW 

seems to be a boundary for bending without losing more than twice of the energy 

required by the UW-based movement, and it is the maximum safe energy loss for 

pedestrians according to previous studies (Morrissey, 1980, Morrissey et al., 

1985, Cao et al., 2014, Cao et al., 2018).  
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TABLE 2.6.1 

RELATIVE INCREASE OF ENERGY CONSUMPTIONS UNDER DIFFERENT SW 

POSTURES COMPARING TO UW POSTURE 

Degree of Bending (%) Relative Increase of Energy Consumption (%)  

90 13.3~19.4 
80 19.6~43 
70 33.3~90.8 
60 60~275 
50 (Crawling) 73~375 

A recent study has an empirical test of the longest distance that human can 

struggle to pass using a posture of UW, SW and crawling. It has shown that 

human can suffer from fatigue when using crawling to move through a long 

distance (91.44m), and the available average maximum distance is about 

45.8m~52.6m while using the SW (80%~90% SW) and UW postures, this 

problem does not occur (Cao et al., 2018). Comparing to the enforced distance 

(76.2m) from International Building Code (IBC) for building with sprinkler system 

(ICC, 2015), the survival rate for people using crawling posture will be at a 

relatively low level (4.17%~16.67%) (Cao et al., 2018). These facts make the 

crawling posture not the best option for evacuation movement as it requires more 

metabolic costs and leads to lower moving speed (Muhdi et al., 2006, Gallagher 

et al., 2011). Meanwhile, the SW with relatively lower height reduction seems to 

be more plausible during evacuation. Thus, this study is interested in applying 

SW postures with the maximum available bending (70% SW) at the boundary of 

safe energy consumption, in order to enable the long-term movements of 

pedestrians during the evacuation process. Moreover, as the selected postures 

will suffer more velocity reduction within the safe requirement, it can also be used 

to estimate the extremes of the survival time and rate of indoor pedestrians.  

However, the increasing level of stooping may increase the risk of falls (Campbell, 

2013, Ferraz and Saba, 2017). Falls are regarded as the second leading factor of 

world-wide accidental injuries or deaths (He et al., 2012, Pannurat et al., 2014, 

Burns et al., 2016). Previous studies have proved that the forward leaning 

posture will be an important factor to fall risk and the risk will grow with the 

degree of forward bending (Brauer et al., 2000, Brown, 2017). This may be due 
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to the change of the Centre of Mass (COM) motion in vertical and mediolateral 

(ML) direction (Brauer et al., 2000, Orendurff et al., 2004). Normally, the 

pedestrians will spontaneously adopt knee flexion during movements (Brauer et 

al., 2000). In order to investigate the riskiest case at the falling boundary, this 

study will mainly focus on using the different SW postures by using trunk-only 

flexion or trunk + knee flexion, with the maximum available height reduction (30%) 

for evacuation. It will also investigate the preferred SW type of different genders 

based on the results gathering from the survey data. It will first apply the velocity 

and step-length measurement based on the method provided in Chapter 3 and 4. 

These data will then be fed into the designed evacuation model to simulate the 

fire evacuation process, in order to estimate the evacuation time and survival rate 

by using a mixture of these SWs under different evacuation strategies.  

2.6. ABM FOR CROWD EVACUATIONS DURING FIRE EMERGENCY 

As the fire evacuation cannot be practiced in reality due to the high risk, this 

study will use simulations to testify the efficiency of the evacuation strategies with 

and without the support of the smartphone-based navigation. In this study, it has 

chosen ABM for evacuation process simulation due to its two characteristics. 

First, it can provide simulations of crowd behaviours under emergency condition 

in a ‘bottom-up’ structure based on the individual-level behaviours and the 

interactions between individuals as well as their surrounding environment 

(Borshchev and Filippov, 2004, Goldstone and Janssen, 2005, Schut, 2010, 

Wagner and Agrawal, 2014, Vermuyten et al., 2016). Second, it has been widely 

used in various situations (Santos and Aguirre, 2004, Braun et al., 2005, Pan et 

al., 2007, Zheng et al., 2009, Jiang et al., 2014), with higher flexibility to handle 

different setups. The advantages of choosing ABM to simulate autonomous 

agents with heterogeneous evacuation behaviours in a virtual building 

environment can be divided into three aspects (Borshchev and Filippov, 2004, 

Wagner and Agrawal, 2014):  

a) high capability of representing highly complicated activities; 
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b) low requirement of prior knowledge of internal crowd effects for system 

implementation; 

c) easy establishment with parameters in a microscopic (local) scale instead of 

in a macroscopic (global) scale.  

Moreover, the research interests of using this kind of model for emergency 

planning and preparation is also growing with the existence of various application 

scenarios (Jain and Mclean, 2008, Wagner and Agrawal, 2014, Zhou et al., 2010, 

Pluchino et al., 2015, Picascia and Yorkesmith, 2016, Perez et al., 2017, Trivedi 

and Rao, 2018) in order to help reduce the fatal results in the public areas (Zhou 

et al., 2010, Mahmood et al., 2017). 

The previous studies of applying ABM for crowd evacuations can be categorized 

into four types based on different purposes, among them the evacuation planning 

for the pedestrian facilities is of the most interests. The majority of the studies for 

this purpose are interested in planning for the buildings (Braun et al., 2005, 

Massaguer et al., 2006, Pan et al., 2006, Pelechano and Badler, 2006, Pan et al., 

2007, Camillen et al., 2009, Okaya and Takahashi, 2011, Ha and Lykotrafitis, 

2012) or large rooms with several exits (Bonomi et al., 2009, He and Zhao, 2010, 

Yamamoto, 2013), aiming to provide a solution that all people inside the facilities 

can evacuate to the outside quickly and safely. These studies usually use the 

evacuation time as an important indicator to evaluate the quality of the proposed 

evacuation plan. The common approaches are to calculate the average and the 

maximum evacuation time of all evacuees, and the latter is more popular as it 

can help to improve the survival rate during planning (Vermuyten et al., 2016). 

Other studies are also interested in the number of the survivors in Available Safe 

Egress Time (ASET) (Proulx, 2008, Opasanon and Miller-Hooks, 2009, 

Spearpoint and Xiang, 2011, Kasereka et al., 2018). This study will focus on both 

the number of survivors within the determined ASET and calculate the average 

Required Safe Egress Time (RSET) for the survivals.  

The fire disaster is a special case in ABM-based studies, which usually uses a 

hybrid ABM integrates with other microscopic simulation methods (e.g. CA and 
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SF) to investigate the evacuation processes under different scenarios. The ABM 

+ CA approach is more suitable to model evacuations in a discrete manner and 

fixed ID between individuals with fire data (Filippoupolitis et al., 2008, Shi et al., 

2009a, Tang and Ren, 2008, Tang and Ren, 2012). Other studies have 

introduced more complicated conditions, such as the introduction of the changing 

spatial accessibility (Gwynne et al., 2001, Galea et al., 2008), the application of 

different occupant characteristics (Uehara and Tomomatsu, 2003, Kasereka et al., 

2018), and the integration of these techniques (Wagner and Agrawal, 2014, Tan 

et al., 2015). However, the results acquired by these methods will be limited by 

the setup of the cell size of CA, as it can affect the maximum pedestrian density 

and flow rates (Lord et al., 2005, Pelechano and Malkawi, 2008). In order to 

avoid this problem, another study simplified the fire spread as a spatial-temporal 

model but keep the GIS-based building geometry with the considerations of 

different behaviours (Niu and Song, 2016). This study also takes this idea in 

order to integrate the fire expansion model into the crowd evacuation process.  

One the other hand, the ABM + SF model is good at modelling evacuations in a 

continuous manner and the changing ID between individuals and surrounding 

environment without fire data (Zheng et al., 2009, Vermuyten et al., 2016). 

Previous studies have used it to describe self-organizing crowd phenomena, 

such as blocks (Lin et al., 2006), queuing and mass behaviours (Braun et al., 

2005, Pelechano et al., 2007), correlating with psychological/panic effects, as the 

psychological effects can act as a force to alter the velocity (Helbing et al., 2000, 

Zheng et al., 2009, Vermuyten et al., 2016). Other studies have been interested 

in using it to identify possible bottlenecks in building design and compare 

different evacuation strategies during evacuations (Bakar et al., 2017, Mahmood 

et al., 2017, Trivedi and Rao, 2018). This method has removed the effects from 

the cell size configurations as the setup of the moving speed and ID can be 

acquired from the previous empirical studies of pedestrian flow based on the 

fundamental diagram (Seyfried et al., 2005, Daamen and Hoogendoorn, 2007, 

Chattaraj et al., 2009) and the interactions between human and environment 

described by SF model is more realistic (Yang et al., 2013, Vermuyten et al., 
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2016). However, the fire data is usually ignored in this method as the expansion 

of fire is better described in mesh-based method.  

This study will take the idea in (Niu and Song, 2016) to have a simplified spatial-

temporal model of fire expansion. Meanwhile, it will integrate with a hybrid 

ABM+SF model to describe crowd evacuations with self-measured speed and ID, 

in order to compare the number of survivors in ASET of using a mixture of SW 

postures with different evacuation strategies during evacuations and identify 

possible bottlenecks in the building.  
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Chapter 3. 2D VISION-AIDED 

INDOOR PEDESTRIAN DEAD 

RECKONING 

3.1. INTRODUCTION 

This study proposes a hybrid system for indoor positioning which should be 

able to fulfil the above-mentioned conditions in Section 1.2.1. In this chapter, 

it will present the partial design of the entire system, which is able to satisfy 

the positioning purpose in horizontal direction. The inertial sensors and 

cameras are attached on independent platforms, with the support of the 

georeferenced digital floor map. The video data is taken from several static 

surveillance cameras while the inertial data is taken from smartphones held 

by the users. It does not require any additional installation with complete 

surveillance system and available inertial data collection from smartphone. 

Other than using landmark-based image matching for localization and camera 

orientation estimation, this study uses deep-learning-based object detection 

for pedestrian positioning, with the prior information of camera locations inside 

the building (Yan et al., 2018c, Yan et al., 2018b, Yan et al., 2018a). The 

estimated 2D paths from smartphone-based PDR and visual tracking both 

need to be firstly processed by coordinate transformation based on the real 

geographical information. The visual data is then used to calibrate PDR in 

visible areas by heading correction with similar time stamps (Yan et al., 

2018a). This system is tested on two types of smartphones for ubiquity 

checking and has developed from partial tracking to whole floor tracking.  

3.2. DESIGN AND DEVELOPMENT OF THE SYSTEM 

The designed system is divided into two parts with one major positioning 

system as smartphone-based PDR and a supporting system as visual 

tracking system (Fig.3.2). During the operation, the smartphone-based PDR 

system keeps actively tracking the movements of user while the visual system 

only provides user positions in the visible areas by pedestrian detection, 
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shifting from one camera to another. During the movement, the smartphones 

with either Android or iOS operation system, are held horizontally and pointing 

forward. Their accelerations and the angular velocities are collected 

simultaneously. The former is used for step detection and step length 

estimation while the latter is applied for calibrating heading estimation. The 

integration of these data can help calculate relative 2D PDR positions.  

Meanwhile, the video recording is triggered since the user starts moving. 

Once entering the LoS area of each camera and a significant change is 

detected from the estimated PDR headings, the 2D visual positions will be 

calculated based on BBs’ positions by pedestrian detection and the estimated 

depth information in corresponding frames. The 2D visual headings are 

determined by visual positions in every two consecutive frames (Yan et al., 

2018a).  

The positioning result by the visual tracking has a relatively high density due 

to its sampling frequency. This may not be close to the walking mechanism of 

pedestrians and it will require a larger space of data storage. Meanwhile, the 

visual tracking data from the surveillance system may raise some issues 

related to the privacy. In this case, they may not be very appropriate to serve 

as the positioning guidance but to serve as supportive information to calibrate 

smartphone-based PDR. Therefore, this study only keeps the positioning 

results of calibrated smartphone-based PDR, and the visual tracking results 

will be removed after data processing. The data fusion process can then be 

treated as the calibration of positioning results from smartphone-based PDR 

by visual tracking results.  

This study has tested two methods: a) time-synchronization-based position 

replacement (Yan et al., 2018b), and b) using synthesized results from 

calibrated headings and PDR step lengths. The latter one is selected for later 

system accomplishment. This is because heading calibration responds better 

to the real-world scenarios based on the conclusions in (Yan et al., 2018a), 

thus it can provide better synthesized position estimation. Before 2D 

calibration, both results from PDR and visual tracking are supposed to be 

transformed into the same spatial reference system, i.e. geo-coordinate 

transformation. It is beneficial for further development of seamless indoor-
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outdoor positioning by sharing same coordinate system. To achieve that, the 

corresponding floor plans will help to provide absolute positioning information 

in World Geodetic System (WGS) 1984. These maps are pre-stored in the 

system and will be integrated into the 2D PVINS results by automatic 

selection based on the results of floor detection. The system in 2D PVINS 

aspect provides a calibrated 2D path in an absolute coordinate system at 

each epoch, i.e. the corresponding time stamps of each step (Yan et al., 

2018b, Yan et al., 2018c).  

The experiments during this research keep improving from (a) only using 

camera for visual tracking as a trial; (b) using one camera and a smartphone 

running Android system and integrating data by position-replacement; (c) 

using two types of smartphones as Android and iOS to check whether the 

operating systems could be a barrier for application; (d) comparing with newly 

developed method called heading calibration and finding out the latter one is 

better option; and (e) using multiple cameras for single floor tracking. The 

overall design of system also evolves at the same time as listed below in 

Fig.3.2. During this process, the whole system is also becoming more robust 

as the data fusion process is becoming closer to the real scenarios and it can 

handle more cameras to track user’s movement on an entire floor. However, 

this chapter only focuses on the applications on single user and have not 

been developed into a multi-user tracking system. Considering the special 

case of tracking multiple people during fire emergency, it can treat multi-

people group into one people as they will all move towards the same direction.  
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(a) Trial on visual tracking (first version of system design) 

 

(b) Integration with Android-phone-based IMU (Second Version) 
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(c) Calibration methods comparison and feasibility checking between two 

types of smartphones (Third Version) 

 

(d) Using multiple cameras for single floor checking (Fourth Version) 

Fig.2.2. The development of system design for vision-aided PDR system (a) - 

(d). 
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3.3. SMARTPHONE-BASED PDR 

The inertial position estimation in this study is built upon Step-and-Heading 

System (SHS), which uses 2D description of pedestrian strides as length and 

heading. The proposed inertial positioning proceeds as follows: (1) step 

detection, (2) step length estimation, (3) heading estimation, and (4) position 

estimation. The system also transforms its coordinate from the body frame to 

the global frame (Torres-Sospedra et al., 2017, Zampella et al., 2017, Harle, 

2013, Yan et al., 2018a, Yan et al., 2019).  

3.3.1. Step Detection 

The step detection is based on gait cycle detection, which recognises gait 

cycles by searching for repetitive data patterns. Before the measurements, 

the smartphones are required to remain stationary for a period (52s) in order 

to stabilize the accelerometers and gyroscopes, removing potential noise from 

unexpected vibrations. The measurements from the accelerometers are first 

filtered using a low-pass filter with frequency condition as a function of the 

accelerometer’s sampling rate (Racko et al., 2016).Then, the motion 

accelerations with respect to time taken in three axes as 

             and        needs to be synthesized together. This is due to 

distribution of vertical signals, which mainly contribute to step peaks, may 

appear in all axes based on the current device’s altitude and orientation (Kang 

et al., 2012, Yan et al., 2018a). While may not be always true, but the 

projection to the horizontal axis can be done. In addition, the training of 

evacuation may include such recommendation to the users. Having assumed 

the horizontal grip,  the step detection is only related to the relative 

synthesized motion accelerations in the vertical direction       and its 

magnitude can be calculated as in (3.3.1): 

                                                           (3.3.1) 

where   is the earth’s gravity, requiring to be removed from the vertical motion 

component. The synthetic motion’s magnitude         is then needed to be 

processed by applying a pre-settled threshold to identify different features of a 

gait cycle in each sliding window as one acceleration, two static and one 

deceleration phase. The length of the window is determined by the frequency 
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of the accelerations (Goyal et al., 2011, Yan et al., 2018a, Yan et al., 2018b). 

After that, a zero-crossing approach is then applied to detect different cycles   

(Goyal et al., 2011, Yan et al., 2018b). Examples of the detected steps after 

acceleration processing by Android and iPhone are represented in Fig.3.3.1. 

(a) 

(b) 

Fig.3.3.1. Examples of the processed synthetic accelerations and detected 

steps by Android (a) and iOS (b). 
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The detected steps will be compared to the existing step counting app in the 

smartphones as well as the actually counted step number, in order to evaluate 

the performance of the algorithm.  

3.3.2. Step Length Estimation 

Step length estimation is based on Weinberg’s algorithm as demonstrated in 

formula (3.3.2), which uses a non-linear model with value of maximum 

(          ) and minimum (          ) of synthetic accelerations’ magnitude of 

each step event (Weinberg, 2002, Yan et al., 2018b, Yan et al., 2019). 

                            
                                (3.3.2) 

where     is the step length of the     step and   is an empirical value of 

penalty for estimation (Zampella et al., 2017, Yan et al., 2018b). In the initial 

stage, the step length has not been calibrated, which is one of the error 

source for PDR as this study uses a fixed   for coefficient of step length 

estimation. According to the previous studies, normal stride length can be 

within the range from 0.95m to 1.5m (Danion et al., 2003, Mason et al., 2005, 

Huang et al., 2010b), and   is then determined by the ratio between 

processed results of accelerations and assumed walking step length in 1.22m. 

It can be modified into a real-time value which is determined by the ratio 

between estimated distance and real distance of the walking path. This 

problem is addressed in later development of system, and the step length can 

be calibrated by a ratio   which is determined by the sum of estimated step 

length (i.e. the estimated length of the walking path) and the measured length 

of referential walking path      , as the pedestrians are walking in a straight 

direction.  

                
    
 
   

     
                                      (3.3.3) 

3.3.3. Heading Estimation 

Each step’s orientation is relative by its corresponding angular velocity 

changes in the body frame of the smartphone         , which can be 

measured by the embedded three-axis gyroscope in smartphone as 

  
    

  and   
  (Fig 3.3.3.1).  



65 

 

Fig.3.3.3.1. The smartphone frame in          , and the local ground 

frame in         . 

The collected angular velocity will first be processed to remove the bias, 

which is calculated based on the mean value of the collected data during the 

stationary phase before movement. The changes of heading in smartphone 

frame from current stage to the next stage within certain duration    can be 

described as (3.4.4): 

    

    
     

 

  
       

   

   
     

    

                                 (3.3.4) 

The next step is to transfer that change from body frame to the local ground 

frame          by using a     rotation matrix as:  

                                                    (3.4.5) 

where      is the rotation matrix of the current stage and the         for the 

next stage. The local ground frame           here refers to the frame of 

2D CAD floor plans without geographical transformations and the starting 

point of the trajectory is treated as       of the local ground frame and the 

initial heading is supposed to be along     axis. When in the initial stage, the 
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rotation matrix can be represented in     , which can be described by 

rotations happened in three axes as                  . The transformation 

process is described in (3.4.6) -(3.4.9): 

        

   
                    

                   
                                (3.3.6) 

               
                    

   
                    

                                 (3.3.7) 

        
                    

                   
   

                                 (3.3.8) 

                                                               (3.3.9) 

where              and       are sub rotation matrix consist of roll     , pitch 

     and yaw      directions of body frame respectively. The overall rotation 

matrix      is determined by the integration of these three components. The 

initial states of roll      and pitch      angles are determined by average 

changes of initial accelerations in corresponding directions and the initial yaw 

     will be zero (Yan et al., 2018a). The next step is to find corresponding 

Euler angles from calculated rotation matrices       from angular velocity 

changes. In this study, as the smartphone is held in a relatively stable 

condition by user’s hand, pointing to the walking direction, the heading i.e. 

     of each step is only the results of changes in yaw direction (Racko et al., 

2016, Zampella et al., 2017, Yan et al., 2018a) and can be calculated as in 

(3.3.10) based on the previous detected step events  : 

                                                            (3.3.10) 

This is because that the rotation matrix      can rewritten as: 

                                                       (3.3.11) 

  

                                                                                                              

                                                                                                              

                                              
  

This equation can be also be represented as:  

                             

                     

                     

                     

                                 (3.3.12) 

According to this equation, it can be found out that: 
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                                           (3.3.13) 

The accuracy of the estimated headings is depended on the precision of the 

accelerometers and gyroscopes of the smartphones. This is because the 

initial state of the heading is depended on accelerations and the following 

states are depended on the measurement from the angular velocities. The 

noise from the heading measurement will be provided and be compared with 

the accuracy of the rotation provided by the map.  

As the path in this study is more complicated than in previous works (Yan et 

al., 2018b, Yan et al., 2018a), the acquired headings      is processed for 

automatic turning detection by finding the sudden changes of average values 

with a certain threshold applied (Fig.3.3.3.2), which can be later used for 

matching with visual tracking for 2D position calibration. Previous study has 

tried to extract features from both magnetometer and gyroscopes for heading 

direction classification by applying Principal Component Analysis (PCA) 

algorithm (Shin et al., 2014). However, it will increase the complexity of 

computation introduce some unexpected errors during detection, and reduce 

the variety of heading directions by using classification. The method used in 

this study tries to simplify the computation process by only using gyroscope. It 

smooths down these unexpected changes in headings by averaging while 

providing more options for heading directions. In the provided example, about 

2 corners are detected and their average delay of detection is one step. 

 

Fig.3.3.3.2. An example of turning detection by heading processing. 

c 
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3.3.4. Position Estimation and Error Measurement 

The user position     is then calculated by combination of corresponded 

estimated step length     with estimated heading      and the location of 

previous step:  

    
   
   

    
                      

                      
                          (3.3.11) 

where     and     represent the eastern and northern position components in 

the local ground frame separately (Racko et al., 2016, Zampella et al., 2017, 

Yan et al., 2018a). Before the calculation of position error, the estimated 

positions need to be transformed into a real geographic system as the 

reference positions are measured in this way (Yan et al., 2018a). The 

Absolute Positioning Error      is then defined as the distance between the 

estimated position         and reference position          in each trial, based 

on finding the closest time stamps as there are some errors between the 

number of detected steps and the actually counted steps by users. Then the 

Root Mean Squared Error (RMSE) is calculated as the average of all    based 

on the number of detected step points   in each individual test and the Mean 

Average Error (MAE) is the average value of these RMSEs based on the 

number of repeated experiments  . Meanwhile, the Relative Positioning Error 

     is the difference between the estimated position         in a single test 

and the average value of that position after   repeated experiments. Then 

precision of the system is determined by the mean of      based on the 

number of the detected steps.  

         
             

                                        (3.3.12) 

       
 

 
   
 
                                        (3.3.13) 

     
 

 
      
 
                                     (3.3.14) 

                
 

 
        

 
 
                         (3.3.15) 

           
 

 
                  
                          (3.3.16) 

With the above process, the positions of user during movement can be 

tracked by smartphone-based PDR, with the provision of the initial user 
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position. This is because that the PDR system can only provide relative 

positioning information. Meanwhile, as the drifts of PDR system will 

accumulated with time, the next section is to introduce the highly accurate 

OPS to provide additional information for calibration.  

3.4. PEDESTRIAN DETECTION BASED VISUAL TRACKING 

3.4.1. Pedestrian Detection 

This research uses Faster R-CNN for pedestrian detection (Fig.3.4.1.1). It is 

based on 3-layer Regional Proposal Network (RPN) and 5-layer Region-

Based CNNs (R-CNNs), and is one of the state-of-art methods for deep 

learning with higher accuracy and real-time processing (Ren et al., 2015, Yan 

et al., 2018c, Yan et al., 2018b, Yan et al., 2018a). The RPN is used for 

recognizing the potential object areas (ROIs). The ROIs are processed by 

Pooling for BB prediction with a detector based on VGG-16 model (Ren et al., 

2015) and the results are passed to Full-Connected layers for later Softmax 

classification to differentiate all classes. This study simplifies the original 20 

classes into two: ‘human’ and ‘non-human’. Meanwhile, the BB regression is 

used to improve the detection accuracy. Some of the later studies have tried 

to increase the robustness of Faster R-CNN by improving the performance of 

detecting partial human bodies (Cai and Tan, 2016), however, this study 

mainly focuses on the detection of whole human body and thus still uses 

Faster R-CNN. Faster R-CNN requires a minimum of manual inputs as almost 

the whole process is atomized while providing a relatively high flexibility and 

ubiquity, in comparison with the traditional feature-based methods (Girshick et 

al., 2014, He et al., 2014, Girshick, 2015, Ren et al., 2015). 
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Fig.3.4.1.1. Framework of Faster R-CNN. 

In this study, a pre-trained human detector is used, by using database from 

MS COCO and PASCAL VOC 2007 + 2012. The cameras are located on 

different floors and the cameras are facing nearly orthogonal to the corridors. 

As the resolution of camera is too low for facial recognition, there is no risk of 

personal information releasing. Before the operation, the acquired video data 

need be divided into frames for later processing as the Faster R-CNN 

algorithm only works for individual images. These frames will be uploaded to 

the system by streaming. After being processed by Faster R-CNN, the BBs 

are extracted from these frames and the corresponding frame numbers are 

also recorded for later time stamps acquisition. As the size of these BBs will 

be automatically adjusted to the size of human in the frames and the cameras 

are facing nearly orthogonal to the corridor, the gravity centre of filming user is 

therefore assumed to be at the centre of BBs. Then the middle points of the 

bottom boundaries of the BBs are then regarded as the lowest points of the 

users or potentially user’s mobility aid as the camera facing directly to user 

(Ren et al., 2015, Yan et al., 2018c, Yan et al., 2018b, Yan et al., 2018a). In 

previous studies, it usually needs to compute the highest possibility of 

pedestrian in confidence map or find the projection of gravity centre in 

foreground detection for pedestrian localization (Jiang and Yin, 2015, Jiang 

and Yin, 2017, Zhang and Zhou, 2018), which may cause more computation 

power. These points can be constructed into the entire user path (Fig.3.4.1.2), 

which can be used for position-replacement-based data fusion, and their 
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coordinates can be determined by the horizontal coordinates    
    

    of the 

BBs in frames, which needs to be transferred to the real distance by the width 

of the BBs and the width of each frame, and the depth information     which is 

derived from pinhole model. These points can be constructed into the entire 

user path (Fig.3.5.1b). Although this study only uses one user, Faster R-CNN 

has the potential to handle multiple users for pedestrian detection. However, 

the overlapping of people in camera will be a big challenge at that time. 

Meanwhile, the relatively long filming distance in the beginning between 

targeted user and corresponded camera will also cause the problem of 

missing detection of user (Yan et al., 2018c, Yan et al., 2018b). 

 

Fig.3.4.1.2. An example of extracted BB from frame (left) and entire user path 

(right), where (  
    

   represents the upper left of BB, and (  
    

   reprents the 

lower right of BB. 

For multi-camera system, this process only functions with both a sudden 

change of PDR’s headings (i.e. corner turning) and average ratio   of height 

and width of extracted BBs (      in this study) (Fig. 3.4.1.3). If only partial 

of human body is extracted by one BB, it will be removed as the lowest 

position cannot represent foot position. This helps to remove some incorrect 

measurements of pedestrian detection caused by long filming distance (Yan 

et al., 2018c, Yan et al., 2018b, Yan et al., 2018a) and makes sure the entire 

body of human is maintained in each BB for useful foot positions. The heading 

information is then determined by every two consecutive frames. 
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Fig.3.4.1.3. The shift of visual tracking from one camera to another in multi-

camera system. 

3.4.2. Person Localization  

As the view of the camera is facing directly to the corridor, the coordinate 

system for the user position in the image space          is based on the 

top-down projection of the camera scene (Fig. 3.4.2.1) and it treats the 

boundary locating the furthest point detected by camera as     . 

 

Fig.3.4.2.1. The coordinate system of pedestrian locations in camera scene.  
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The coordinates of the user in each frame can then be represented as 

              where    is related to the ratio of width of frames and corridor:  

   
    

  

 

  
   

  

     
    

    
        

    

  
    

                           (3.4.2.1) 

where (  
    

   is the horizontal coordinates of the upper left and lower right 

corner of the BBs,    is the frame width,   
     is the relative corridor width 

on the user position in frame, and       is the width of the corridor, which will 

be provided later by integrating map information.   is the ratio between 

corridor width on frame and in reality and this value is very close to 0.5 in this 

study. The depth information     is driven from the distance    between user 

and camera in     frame. The common way for depth information acquisition is 

based on using stereo cameras or having additional sensors. For the former, 

it usually apply a method called synthetic stereo vision, which will estimate 

depth information by filming same scene from different locations by the same 

camera with known baseline. However, the main limitations of this method is 

that the baseline determination requires complementary techniques, which 

cannot be directly derived from the video data alone. For the latter, the using 

of additional sensors can simplify the process of acquiring depth of the objects 

as this distance can be directly measured. However, this will increase the cost 

of information acquisition as the common sensors to achieve that goal is laser 

scanners and range cameras (Mautz and Tilch, 2011), and they are much 

expensive than using algorithms. This study will not use either of these two 

methods, instead it will use  a pinhole camera model (Dollar et al., 2012) as in 

(3.4.2.2), which is simple for operation and calculation:  

  

 
  

  

  
                                            (3.4.2.2) 

where    represents the pixel height of human in  th frame extracted from 

video,    is the real height of person,    denotes the real distance of human 

to camera at  th position and   is the focal pixel length. During practice,   is 

determined by the pixel height of first frame as the initial distance to camera 

can be pre-determined according to map information by setting the starting 

point of human movement. With known height of participant and its pixel 

height extracted 1st frame, the focal pixel length of camera is then determined. 

The following    is proportional to    and a series of relative distances of 
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human to camera are then estimated from the above information. The real 

depth information      is then can be determined by the formula below: 

                                                    (3.4.2.3) 

where the    represents the height of the camera which is 3m in this study, 

and    represents the height of the person. The first depth gathered from the 

calculation     can be calibrated by the real length of corridor, which will be 

provided by the map information and the ratio   will be applied to the 

calculation of      : 

     
                                               (3.4.2.4) 

 

Fig.3.4.2.2. The filming mechanism of camera for depth information 

calculation.  

The heading information      is subsequently determined by step points from 

every two consecutive frames as                and             

       (Yan et al., 2018c, Yan et al., 2018b, Yan et al., 2018a, Yan et al., 2019): 

                                                    (3.4.2.5) 

3.5. INTEGRATION WITH FLOOR PLAN 

Before the calibration phase, both results achieved from smartphone-based 

PDR and also camera-based visual tracking need to be projected into the 

same coordinate system provided by map information, i.e. geo-coordinate 

transformation. The way to achieve that is by applying rotation  , scaling  , 

and translation  : 

 
  
  
    

  
  
                                         (3.5.1) 

where (  ,   ) are the coordinates from real global geographical coordinate 

system while (     ) are from the corresponding local coordinate frames, 

which can be (        ) from PDR and                from visual tracking 

systems. In this study, the two sets of the user positions in different local 
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coordinate frames share the same rotation  , and translation  , while only the 

visual-based user positions in the local ground coordinates requires the 

scaling as its positions are estimated based on the video frames, which may 

require the calibration from the absolute coordinates. The rotation  , scaling  , 

and translation   can be determined during the process of geo-referencing by 

finding four pairs of points between 2D CAD-based floor maps and footprint of 

the selected building in absolute outdoor positioning system. 

The reason of choosing CAD-based 2D image floor plan as the reference for 

the geo-referencing in this study is due to its high accessibility and low-cost in 

the indoor environments. The absolute positions with some simplified 

semantic representations of indoor building information are then created by 

importing those images into ArcGIS (Fig.3.5). The digitized floor plans are 

georeferenced into WGS84 UTM 51N coordinate system with the prior 

building height information for 3D positioning. The use of WGS84 will help to 

develop a seamless transition between indoor and outdoor environments. 

This is particularly helpful as it is a widely used Spatial Reference System 

(SRS) for GPS and many other similar systems for outdoor positioning (Yan et 

al., 2018c, Yan et al., 2018b, Yan et al., 2018a). 

(a)                                                                         (b) 

Fig.3.5. An example of transferring image floor plan (a) to georeferenced 

digital floor plan (b).  
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The accuracy of the georeferenced maps is verified by the blueprints of the 

floor plans, which have real distances of the indoor structures. This study has 

compared the distances of major corridors in each floor between the provided 

data in the blueprints with those measured from the digitalized maps, in order 

to evaluate the accuracy of the acquired maps. The average difference 

between the distances provided by the blueprints and those measured from 

the maps is 0.06m. However, as all the PDR and visual tracking results are 

geo-transformed based on the same georeferenced floor plans, this difference 

will be inherited and will not affect their relative positions.  

After that, the maps are posted back to the web map in order to check 

whether they match with the outdoor GPS system in WGS84 UTM 51N. The 

reason of comparing with the coordinates from referential data provided by 

the web map instead of real measurements by Differential GPS is due to that 

the web map is also used by the fire brigades for navigation. Meanwhile, it is 

better to share the coordinate consistency by using the outdoor system with 

similar precision for a relatively seamless transition, instead of introducing 

additional noise caused by different approaches of coordinate measurements. 

This study has selected the four corners of the buildings as the referential 

pairs to compare the measured coordinates based on the georeferenced 

maps with the provided data from the web map. The acquired average 

difference between the georeferenced maps and the referential data in the 

web map is 0.03m. This drift should be noticed when evaluating the accuracy 

of the indoor-outdoor transition in the future.  

3.6. CALIBRATION OF SMARTPHONE-BASED PDR 

The calibration of the smartphone-based PDR can also be regarded as the 

process of data integration as the smartphone-based PDR is the major 

positioning system, and its positioning mechanism is closer to the way of 

pedestrian walking. Meanwhile, the positioning density of visual tracking is 

relatively higher, which will cause the problem of positioning data storage as 

the visual tracking data is supposed to be deleted after being processed at the 

data centre. Earlier researches (Mautz and Tilch, 2011, Elloumi et al., 2016, 

Mourikis and Roumeliotis, 2007) suggest that visual positioning is more 

accurate than PDR in LoS areas. Thus, this study uses the visual positioning 
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solutions to calibrate the drift for PDR-based positioning. This research 

introduces two approaches for PDR calibration, both supported by visual 

tracking with map information. The comparison between these two methods 

will be later discussed in result analysis, in order to pick up a better option for 

data fusion of multi-camera system.  

3.6.1. Position Replacement Based Data Integration 

The first approach is to directly replace the PDR positioning results with the 

visual tracking results based on time synchronization. As both PDR and visual 

tracking results have recorded time stamps, their results with similar time 

stamps can then be matched together by replacing results from PDR 

positioning with vision-based tracking. The time stamps of PDR are deduced 

from the detected step events and the related time stamps from the 

accelerometer readings, while that of the videos are inferred from the frame 

number and filming frequency.  

           
             

                                            (3.6.1) 

where      is the time step from the     step event, and      is the time step 

from     frame.This method has the advantage of simple implementation and 

decreased computation cost (Yan et al., 2018a, Yan et al., 2018b), although 

the synchronization could cause some issues in some scenarios. 

3.6.2. Heading Calibration Based Data Integration 

In reality, however, the time stamps of two positioning systems cannot be 

perfectly matched, and a more realistic situation is that the time stamp of 

current detected step from PDR is between two successive detected positions 

from frames with similar time stamps. This leads to the development of a 

second method, i.e. heading calibration. The heading calibration method is 

closer to the real-time simulation as it replaces the PDR’s heading         of 

each step by the direction determined by two consecutive frames based on 

similar time steps. 

            
             

                                                    (3.6.2) 

where      is the time step from the     step event,      and        are the 
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time steps from     and its following frames. The calibrated headings are 

subsequently used with the previous estimated step lengths to re-calculate 

user positions. The 2D user positions will be recalculated based on the 

integration of these calibrated headings and pre-calibrated step length      

(Yan et al., 2018a, Yan et al., 2019).  

         
      
      

    
                        

        

                        
        

              (3.6.3) 

With this process, PDR and OPS are integrated together to provide a 2D path, 

with synthesized headings from PDR and OPS, and calibrated step length 

from PDR. This method requires a slightly difficult implementation and a more 

computational power when dealing with a large amount of data. Therefore, the 

scalability of the system could be an issue, however, this is not the case in 

this study (Yan et al., 2018a).  

3.7. EXPERIMENTAL SET UP FOR DURING RESEARCH 

3.7.1. Study Area 

The test site in this study is located at the 4th floor of PMB building at UNNC. 

The reference map is a digitized floor plan of experimental site by using 

ArcGIS 10.3, with simple semantic representations of indoor structures. All 

data are transferred to a desktop by wireless network for post-processing by 

MATLAB. As the experiments have tested the different number of cameras for 

user tracking, there are three sets of trajectories with different structures 

designed for the corresponding tests. Along the designed walking path, some 

distinctive markers with an inter-distance of 0.63m are marked on the ground 

to guide the users to follow these markers during movements. The user is 

asked to step over these marked referential points as strictly as possible, and 

the time stamp of each step point will be recorded at the same time. When 

passing the corners, the user does not need to turn exactly 90°, but to turn 

comfortably and naturally. Each set of the experiment is then run for 10 times 

with the same target pedestrian, and the results are presented with one 

selected example and the average performances. The existing indoor 

surveillance cameras are all facing directly to the corresponding corridors with 

the targeted user in the centre of the frame, and they are installed at a height 
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of 3m to the floor of each level inside the test building. 

3.7.1.1. Test of the Using Single Camera 

The test of using single camera is conducted on a walking path with an entire 

length of 51.66m, including one 90° turning (Fig.3.7.1.1). The counted number 

of the step markers is 83 for this walking trajectory. The entire time used for 

walking along this path is about 52s under a normal walking speed about 1.0 

m/s. The location of the camera is at the ceiling in front of the Room 416, 

facing to the corridor. The steps within the trajectory which is invisible by 

camera is 15 and those in the visible area of the camera is 68.  

 

Fig.3.7.1.1. The walking trajectory for the designed system with one camera. 

3.7.1.2. Test of the Using Two Cameras 

The test of using two cameras is conducted on a walking path with an entire 

length of 89.46 m, including two 90° turnings (Fig.3.7.1.2). For this walking 

path, the counted number of steps is 143 and the entire walking time is about 

89s, still under a similar walking speed about 1.0 m/s. The locations of the 

cameras are at the ceiling in front of the Room 416 (Camera #1) and Room 

427 (Camera #2), facing directly to the corresponding corridors. The steps 



80 

within the trajectory which is invisible by cameras is 15. For the footprints in 

the visible areas of cameras, there are 71 steps within the scene of Camera 

#1 and 57 steps within the scene of Camera #2.  

 

Fig.3.7.1.2. The walking trajectory for the designed system with two cameras. 

3.7.1.3. Test of the Using Four Cameras 

The test of using four cameras is conducted on a walking path with an entire 

length of 170.73 m, including six 90° turnings (Fig.3.7.1.2). For this walking 

path, the counted number of steps is 272 and the entire walking time is about 

171s, still under a similar walking speed about 1.0 m/s. The locations of the 

cameras are at the ceiling in front of the Room 416 (Camera #1), Room 427 

(Camera #2), Room 433 (Camera #3), and Room 434 (Camera #4), facing 

directly to the corresponding corridors. For the steps in the invisible areas of 

cameras starting from Room 433 to Room 434, its walking trajectory can be 

described as 6 steps with two turnings and 21 steps for the last straight 

walking. For the footprints in the visible areas of cameras, there are 71 steps 

in the scene of Camera #1, 57 steps in the scene of Camera #2, 50 steps in 

the scene of Camera #3, and 65 steps in the scene of Camera #4.  
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Fig.3.7.1.3. The walking trajectory for the designed system with four cameras. 

3.7.2. Equipment 

For smartphone-based PDR system, the smartphone model selected for 

Android system is Huawei MT7-TL00, and that for iOS system is iPhone 7 

Plus. The operating systems of the smartphones applied in this experiment 

are in Android 6 and iOS 11 respectively.  

Before the formal trials of different walking trajectories, this study has tried two 

different data collection apps, i.e. GetSensorData (Zampella et al., 2017) and 

MATLAB Mobile. However, the former is only applicable on the Android-based 

systems while the latter can work with both kinds of smartphone-based 

operation systems. In order to remove the noise caused by different apps of 

data collection, this study chooses to use MATLAB mobile for both types of 

smartphones in the formal trials.  

All collected data are post-processed in MATLAB after being uploaded to the 

desktop, which is assumed to be the data processing centre for future 

applications. The sampling frequency for two smartphones are all first settled 
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to be 100 Hz and then are reduced to 50 Hz, and this will not significantly 

affect the positioning accuracy but can improve the efficiency of computation. 

During the experiment, both smartphones are held stably and horizontally, 

pointing to the heading direction along the walking trajectory. The method of 

smartphone-based positioning has already been described in Section 3.3. 

For the visual tracking system, the resolution of camera is 680×540, vertical 

FOV is 27°, and thus the pixel length for the camera is about 1.05×103 per 

inch. The frame frequency is 16 frames per second. Cameras start filming 

simultaneously with the initialization of smartphone-based PDR.  

3.8. RESULTS AND ANALYSIS  

3.8.1. Visual Tracking 

Before the evaluating the positioning accuracy of the visual tracking system, 

the detection accuracy should first be investigated as it will affect the later 

positioning results as additional noise. It is essential to check whether the 

pedestrian detection by each camera is functioning properly under a similar 

detection accuracy. After processing all video data by Faster R-CNN of 

cameras at different locations, the average detection accuracy of them is at 

99.7% and the lowest detection accuracy appears at Camera #1 as it has the 

longest corridor for detection with more potential errors (99.4%) (Table 3.8.1). 

As their detection accuracy is nearly 100%, it suggests that the pedestrian 

detection performances of all cameras are acceptable for further processing 

of positioning.  

TABLE 3.8.1 

PEDESTRAIN DETECTION ACCURACY OF CAMERAS AT DIFFERENT LOCATIONS 

Cameras Camera #1 Camera #2 Camera #3 Camera #4 

Detection 
Accuracy (%) 

99.4 99.8 99.9 99.6 

 
As results of visual tracking have denser positioning points than the provided 

by referential points due to higher data frequency, one referential point may 

have multiple corresponding visual tracking points with similar time stamps. 

Thus, it may be difficult to evaluate the accuracy of these positioning points by 

matching them to specific referential step points. The solution in this study is 
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to find a pair of consecutive referential step points with closer time stamps to 

the visual tracking points. Then, it will compare the differences between the 

partial trajectory formed by the selected pair of step points and the visually 

tracked points within this time interval. The following sections of accuracy 

calculation all follow this method, and the corresponding specific details are 

provided below. 

3.8.1.1. For Single Camera 

The mean estimated accuracy (RMSE) of the single-camera-based visual 

tracking based on the above method is 0.06m of the selected sample in Fig. 

3.8.1.1 and the MAE after 10 experiments remains a similar value (Table 

3.8.1.1). The extracted visual tracking points construct a path that match well 

with the reference path. However, these points are not evenly distributed 

(Fig.3.8.1.1). In the beginning, the positioning points are quite dense while 

toward the end, the positioning points start to become sparser. There are two 

reasons for this phenomenon. First, as mentioned previously in Section 3.4.1, 

the target is too far away to be detected by the camera, leading to mistakes in 

the pedestrian detection. Second, as the depth information is calculated 

based on a pinhole model which mainly relies on the pixel height    changes 

in frames, this also affects the results when calculating the distance. In the 

initial stage, the changes of    are trivial, this leads to the dense distribution of 

positioning points, while in the ending part, the changes of    are becoming 

more significant (Yan et al., 2018a, Yan et al., 2018b) and thus leading to the 

distribution of positioning becoming more scattered.  

TABLE 3.8.1.1 

RMSE, MAE AND PRECISION OF USING SINGLE CAMERA 

Cameras Camera #1 

RMSE in the Presented Example (m) 0.06 

MAE of 10 Experiments (m) 0.06 

Precision (m) 0.02 
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Fig.3.8.1.1. An example of using only one camera for visual tracking.  

3.8.1.2. For Two Camera 

The RMSE of visual tracking results is 0.06m for Camera#1 and 0.04m for 

Camera #2 respectively and the synthesised RMSE of the two-camera-based 

system by using the above method is 0.05m and the MAE for 10 experiments 

also remains a similar value (Table 3.8.1.2). This time two partial paths are 

obtained from visual tracking results, matching well with the designed path in 

corresponded parts. Both two paths have the problems of uneven distribution 

of position points as results of using single camera due to same reasons. In 

addition, there are some missing points when shifting from first camera to 

second as there are no entire detected human bodies in frames and they are 

deliberately removed by the designed algorithm (Fig.3.8.1.2).  

TABLE 3.8.1.2 

RMSE, MAE AND PRECISION OF USING TWO CAMERAS 

Cameras Camera #1 Camera #2 

RMSE in the Presented Example 0.06 0.04 

Synthesized MAE After 10 Experiments (m) 0.05 0.05 

Precision (m) 0.02 0.01 
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 Fig.3.8.1.2. An example of visual tracking results by two neighbouring 

cameras. 

3.8.1.3. For Four Camera 

The RMSE of visual tracking results is 0.06m for Camera#1, 0.04m for 

Camera #2, 0.03m for Camera #3, and 0.04m for Camera #4 respectively. 

The synthesised RMSE of the four-camera-based system by using the above 

method is 0.04m and the MAE for 10 experiments also remains a similar 

value (Table 3.8.1.3). As the mechanism is similar to that of using two 

cameras for the whole floor tracking, thus, the problem of uneven distributed 

positioning points is also inherited. This time, the cameras only cover partial of 

the tracking area due to the original installed infrastructures (Fig.3.8.1.3), and 

the rest of the user movements need to be compensated by PDR.  

TABLE 3.8.1.3 

RMSE, MAE AND PRECISION OF USING FOUR CAMERAS 

Cameras Camera #1 Camera #2 Camera #3 Camera #4 

RMSE in the Presented Example 0.06 0.04 0.03 0.04 

Synthesized MAE After 10 Experiments (m) 0.04 0.04 0.04 0.04 

Precision (m) 0.02 0.01 0.01 0.01 
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Fig.3.8.1.3. An example of visual tracking results by four cameras for entire 

floor. 

3.8.1.4. Disadvantages of Directly Applying Visual tracking for PDR 

Calibration 

As mentioned earlier in the accuracy calculation for visual tracking, the filming 

frequency cannot match with the step frequency and the detected target 

positions are always in the middle of a step but cannot identify the starting 

and ending points of each step event.  

Meanwhile, the previous visual gait detection (Jiang and Yin, 2015, Jiang and 

Yin, 2017, Zhang and Zhou, 2018) is not suitable for this study as:  

a) This study does not apply foreground masks, which is quite labour 

intensive and responds slowly, but using a pinhole model for distance 

estimation;  

b) The filming frequency is lower than previous studies;  

c) The ratio between IMU sampling frequency and filming frequency is not in 

integer.  

This makes the results from visual positioning more time-domain based rather 

than gait-based, and these data are not suitable to be directly used for 

calibrating the PDR positioning in visible areas, though it has posiitoning 
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MAEs within 0.04~0.06m and precisions within 0.01~0.02m. However, this will 

not affect the headings between steps and these information can be later 

applied for PDR calibration.  

3.8.2. Smartphone-Based PDR  

As this study has applied the embedded sensors in the smartphones to 

provide the user positions, it may have a larger bias than commercial foot-

mounted IMU sensors (Harle, 2013). The specific parameters of accelerations 

and gyroscopes of the selected smartphone models can be found in Table 

3.8.2.  

TABLE 3.8.2 

RMSES OF SMARTPHONE-BASED IMUS OF SELECED SMARTPHONE MODEL 

 X Y Z 

HUAWEI Mate7    

Acceleration (m/s2) 0.013 0.014 0.022 

Gyroscope (rad/s) 0.0048 0.0032 0.0043 

iPhone 7Plus    

Acceleration (m/s2) 0.016 0.015 0.024 

Gyroscope (rad/s) 0.0032 0.0034 0.0028 

 
According to the above results, it can be found out that the accelerometers of 

the iPhone 7Plus have larger noise than that of the HUAWEI Mate7, which 

may be due to the higher sensitivity of the accelerometers in iPhone 7Plus. 

Meanwhile, the gyroscope from HUAWEI Mate7 has more noise than that of 

the iPhone 7Plus. This noise may also affect the results acquired by applying 

the designed PDR algorithms of different smartphone models. The following 

section will have an investigation of potential effects of this noise from 

accelerometers on the step detection and step length calculation as well as 

from gyroscopes on the heading estimation. This can help to evaluate the 

effectiveness of proposed PDR algorithm and the heading calibration 

algorithm respectively. 

3.8.2.1. Tests on Different Types of Smartphones before Visual 

Integration 

This specific experiment is conducted on the trajectory with similar setups to 

that of applying the single camera, repeating for 10 times. For the effects of 
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noise from the accelerometers, it is evaluated by comparing the results from 

the true measurements to those with and without applying the corresponding 

PDR algorithm before visual calibration. The specific results can be found in 

Table 3.8.2.1.1 and Table 3.8.2.1.2.  

According to the acquired results, it can be found that the application of the 

proposed step detection algorithm can improve the accuracy of detected 

steps than using the embedded apps inside the smartphones (Table 3.8.2.1.1). 

This has suggested the effectiveness of the proposed algorithm on the aspect 

of step detection. Meanwhile, the results also show that iPhone 7Plus has 

better accuracy of step detection with and without the processing by the 

applied PDR algorithm than that of HUAWEI Mate7. This may be due to the 

higher sensitivity of the accelerometers in iPhone 7Plus than that in HUAWEI 

Mate7. It can also be viewed from Fig.3.3.1 as its acceleration changes are 

more significant than Android phone.  

TABLE 3.8.2.1.1 

MEAN ERROR OF DETECTED STEPS WITH AND WITHOUT ALGORITHM PROCESSING 

Smartphone Model HUAWEI Mate7 iPhone 7Plus 

Counted Steps 83 83 

Mean Estimated Steps with Embedded Step Counting App 77 79 

Mean Error (%) 7.23 4.82 

Mean Estimated Steps with Applying Proposed Algorithm 81 84 

Mean Error (%) 2.41 -1.20 

 
For the step length estimation, it can be found that before being processed by 

the calibration method mentioned in Section 3.3.2, the step lengths estimated 

based on the data from HUAWEI Mate7 have a slightly better average 

performance than those by iPhone 7Plus (Table 3.8.2.1.2). This may be due 

to the higher noise of accelerometers in iPhone 7Plus (Table 3.8.2), leading to 

the accumulations of step length error in the selected examples (Fig 3.8.2.1). 

This can be mitigated by the introduction of step length calibration as MAEs of 

step length estimation from the both types of smartphone models have been 

significantly improved based on the results in Table 3.8.2.1.2. Moreover, their 

average performances have reached a similar level, which can help to remove 

the effects caused by the different precision of the accelerometers in 
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corresponding types of smartphones. However, as the noise of 

accelerometers from iPhone 7Plus is slightly larger than that of HUAWEI 

Mate7 due to its higher sensitivity, HUAWEI Mate7 has a slightly better 

average performance of step length estimation than iPhone 7Plus in this 

experiment.  

TABLE 3.8.2.1.2 

MAES OF STEP LENGTH ESTIMATION WITH AND WITHOUT ALGORITHM PROCESSING 

Smartphone Model HUAWEI Mate7 iPhone 7Plus 

Measured Step Length (m) 0.63 0.63 

Mean Step Length without Step Length Calibration 0.81 0.82 

MAE (m) 0.18 0.19 

Mean Step Length with Step Length Calibration 0.64 0.65 

MAE (m) 0.01 0.02 

Improvement of MAE (%) 94.4% 89.5% 

 
For effects of noise from the gyroscopes, it is evaluated by comparing the 

results between those acquired by the application of corresponding PDR 

algorithm before calibration and those measured from the referential points on 

the georeferenced maps. According to the acquired PDR results, it can be 

visualized that they have suffered from bias drift, which is especially severe 

after turning the corner in the presented example (Fig.3.8.2.1).  

(a)                                                                         (b) 

Fig.3.8.2.1. Examples of smartphone-based PDR before calibration by 

Android (a) and iOS (b). 

When comparing the accumulated errors of the heading between the two 
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selected smartphone models, it can be found that HUAWEI Mate7 has more 

drifts than iPhone 7Plus (Table 3.8.2.1.3), which is caused by the higher noise 

of gyroscope in HUAWEI Mate7 than that in iPhone 7Plus (Table 3.8.2). This 

phenomenon will be more severe with the accumulation of time when walking 

on longer paths, especially for using HUAWEI Mate7. The introduction of 

calibration from the visual tracking may help to mitigate this problem by 

reducing the effects of noise from the gyroscopes.  

TABLE 3.8.2.1.3 

MAES OF HEADING ESTIMATION WITH ALGORITHM PROCESSING 

Smartphone Model HUAWEI 

Mate7 

iPhone 

7Plus 

MAE of Synthesized Angular Velocity before Calibration(rad/s) 0.004 0.003 

MAE of Heading Estimation before Calibration(rad) 0.208 0.156 

 
The RMSE of the acquired positioning results based on PDR processing is 

0.83m (Android) and 1.05m (iOS) respectively, in the presented example 

(Fig.3.8.2.1). According to the MAEs after 10 repeated experiments, the 

average positioning performances of both two types of smartphone models 

are similar, with 0.82m for Android and 0.83m for iOS respectively. This may 

be due to the larger variations of the positioning performances by iPhone 

7Plus, which is particularly caused by the noise from the accelerometers, 

leading to larger errors in the precision of the results. Meanwhile, it can also 

be found that the positioning accuracy of HUAWEI Mate7 is more affected by 

the noise from the gyroscopes. According to the results, it has a slightly higher 

accuracy on step length estimation (Table 3.8.2.1.2) and comparable 

accuracy on step detection (Table 3.8.2.1.1). However, it still has comparable 

MAE and precision for the positioning results to those from iPhone 7Plus 

(Table 3.8.2.1.3).  

TABLE 3.8.2.1.3 

ACCURACY AND PRECISION OF POSITIONING BY SMARTPHONE-BASED PDR  

Smartphone Model HUAWEI Mate7 iPhone 7Plus 

RMSE in the Presented Example 0.83 1.01 

MAE of 10 Experiments(m) 0.82 0.83 

Precision (m) 0.15 0.18 
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3.8.2.2. Selection of Better Calibration Method without Step Length 

Calibration by Using Single Camera 

The comparison of two calibration methods is based on calibrated PDR 

results on both Android and iOS platforms by using one camera and the 

results are summarized in Table 3.8.2.2.1 and 3.8.2.2.2. In order to remove 

the effects from the step length calibration, this comparison does not include 

this process in the positioning estimation.  

The position-replacement method directly replaces the PDR results by vision-

based tracking positions based on finding the closest time stamps. Comparing 

its results to those of pre-calibration, this method provides a better solution 

than using PDR-only tracking system as it takes the advantage of accurate 

positioning by OPS in LoS area. Moreover, the ending positioning point of 

calibrated PDR matches with that of the referential path (Fig.3.8.2.2.1). Thus, 

it can provide a correct starting point for the following tracking if a second 

camera is introduced into the current system.  

The RMSEs for selected examples from two smartphones reach the similar 

level, which are 0.73m (Android) and 0.75m (iOS) respectively, suggesting 

this method is able to handle the positioning calibration regardless of the 

smartphone models by removing the effects of the noise from the embedded 

gyroscopes. The MAEs of the positioning do not change significantly after 

repeating 10 times (Table 3.8.2.2.1) with slightly lower variations (Table 

3.8.2.2.2). This may be explained by two reasons. First, the pinhole effect 

from depth estimation can affect the step length estimation in the visual 

tracking, leading to the uneven distribution of step points. Second, the 

different sampling frequency of two positioning system can affect the time 

synchronization of the positioning results. The application of this method also 

introduces these errors to calibrated results by direct position replacement 

(Yan et al., 2018a). However, it should be noticed that the variations caused 

by the larger noise of the accelerometers in the iOS-based smartphone have 

been slightly mitigated as the position replacement can help to smooth its 

effects on step length estimations.  
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(a)                                                               (b) 

Fig.3.8.2.2.1. Examples of calibrated smartphone-based PDR by position 

replacement method by Android (a) and iOS (b).  

The heading calibrations only introduce the replacements of heading 

estimated from the visual tracking results, while keep the walking mechanism 

of pedestrian similar as that used for marking referential points. Comparing to 

the results of using the former method, the heading calibration is more 

accurate as the uneven distribution effect caused by pinhole model has been 

mitigated by only calibrating the orientations but keeping original step lengths 

for position estimation. Meanwhile, it still takes the merits of the previous 

position-replacing-based hybrid system on removing the effects of the noise 

from the embedded gyroscopes.  

This also leads to lower RMSEs than using the former method in selected 

examples as 0.51m (Android) and 0.56m (iOS) (Fig.3.8.2.2.2). After repeating 

for 10 times, their MAEs are also better than using the previous method while 

having similar values for both types of the smartphones (Table 3.8.2.2.1), with 

much better precisions than using the former method (Table 3.8.2.2). This 

may be because this method has mitigated the effects caused by the time 

synchronization to find the corresponding referential points. However, 

according to Table 3.8.2.2.2, the positioning precision of the iOS-based 

smartphone by using this method is still not as good as that of the Android-

based system. This is due to that it has slightly larger noise from the 

accelerometers, which can affect the step length estimation and this has not 
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been overcome by using heading calibration only at the current section. This 

can be improved by the later introduction of step length calibration. Moreover, 

it also has the potential to be adjusted to online calibrations. The heading 

information acquired from every two consecutive frames can be directly used 

for real time PDR heading calibrations other than post-processing. However, it 

has the problem that the ending point may not be perfectly matched with that 

of the referential path as there are still some errors in the step-length 

estimation process (Yan et al., 2018a). 

(a)                                                               (b) 

Fig.3.8.2.2.2. Examples of calibrated smartphone-based PDR by heading 

calibration method by Android and iOS.  

When checking their Cumulative Distribution Function (CDF) of errors for 

selected samples, the advantage of using second method, i.e. heading 

calibration, becomes more prominent as it has more points with lower errors 

compared to the original data and position-replacement method. In addition, it 

also helps to reduce the maximum positioning error as showed on the CDF 

distribution. On the other hand, the position-replacement method seems to 

have more variations, though it has more positioning points with lower errors 

than the original, leading to lower RMSE. Some of points introduce more 

errors as it has wider distribution of error range and the maximum error of the 

positioning point is also larger than the original data, due to the pinhole effects 

of directly using visual tracking results (Fig.3.8.2.2.3). 
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(a)                                                               (b) 

Fig.3.8.2.2.3. Examples of CDF of smartphone-based PDR by Android and 

iOS before and after calibration. (The original in green, the position 

replacement in red and the heading calibration in blue). 

TABLE 3.8.2.2.1 

MAES OF TWO SMARTPHONE-BASED PDR BEFORE AND AFTER VISUAL 

CALIBRATION 

 Device 

Mean Location Accuracy (MAE) Huawei Mate7 iPhone 7Plus 

Pre-Calibration 0.82 m 0.83 m 

Post-Calibration 

(Without Step 

Length 

Calibration) 

Position Replacement 0.73 m 0.73 m 

Improvement 10.9% 12.0% 

Heading Calibration 0.51 m 0.52 m 

Improvement 37.8% 37.3% 

TABLE 3.8.2.2.2 

PRECISION OF TWO SMARTPHONE-BASED PDR BEFORE AND AFTER VISUAL 

CALIBRATION 

 Device 

Precision Huawei Mate7 iPhone 7Plus 

Pre-Calibration 0.15 m 0.18 m 

Post-Calibration 

(Without Step 

Length 

Calibration) 

Position Replacement 0.13 0.14 

Improvement 13.3% 22.2% 

Heading Calibration 0.07 0.08 

Improvement 53.3% 61.1% 

 

In all, the hybrid system has higher accuracy than the PDR-only system by 

reducing the noise from the embedded gyroscopes, regardless of using either 

position-replacing-based or heading-correction-based calibration (Table 
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3.8.2.2.1). The heading-calibration-based approach is more accurate in this 

study with better MAE, as it maintains the walking mechanism of pedestrians, 

while mitigating the errors from the time stamp synchronization of finding 

corresponding referential marked step points. In addition, the results indicate 

that the design of hybrid system can handle both types of smartphone models 

by achieving similar level of accuracy after calibration. As both types of the 

smartphones are common models in the market, it suggests that this system 

has the potential to become a ubiquitous solution for indoor positioning. 

However, the results in this section only depend on using a fixed   for 

coefficient of step length     estimation without the considerations of removing 

noise caused by the accelerometers. This can be modified and improved into 

a more case-dependent value which is determined by the ratio   between 

estimated distance and real distance of designed walking trajectory for the 

experiment. This processing will be included in the following experiments with 

multi-cameras.  

3.8.2.3. The System with the Integration of Two Cameras 

By applying the approaches in Section 3.4.1, the data integration of multiple 

cameras has become plausible for the system. The referential walking path 

with the marked step points of this experiment is presented in Section 3.7.1.2. 

In the selected example, the iOS platform has detected the correct number of 

steps while the Android system only has detected 141 steps. After repeating 

10 times, both types of the smartphones have the similar problem of missing 

step detection as in the previous single-camera experiments. Both the iOS-

based and the Android-based smartphones tended to detect 1~2 fewer steps 

(Table 3.8.2.3.1). Currently, there is no proper solution for this problem for this 

kind error caused by the noise from the embedded accelerometers.  

TABLE 3.8.2.3.1 

MEAN ACCURACY OF STEP DETECTION BY USING TWO SMARTPHONE MODELS  

Smartphone Model Counted  Steps HUAWEI Mate7 iPhone 7Plus 

Detected Steps 143 141 142 

Mean Accuracy 100% 98.6% 99.3% 

 
According to previous results, heading calibration, which replaces each step’s 
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heading acquired from PDR by orientation decided by two consecutive frames 

with similar time steps, is more accurate than position replacement method. In 

the following experiments, the user position will be re-calculated based on the 

integration of these calibrated headings and it will also introduce the 

calibrated step length      after applying   as mentioned in Section 3.3.2. This 

can also help to improve the final accuracy of system by mitigating the errors 

from step length estimation, which are caused by the noise from the 

embedded accelerometers.  

In the selected examples before calibration, the RMSE of positioning is 0.22m 

by using iPhone and 0.52m by using HUAWEI Mate7, respectively. After 

repeating 10 times along the same walking trajectory, the MAEs of these two 

specific smartphone models are similar at about 0.3m (Table 3.8.2.3.2). This 

may be due to the introduction of step length calibration, which can help to 

reduce the errors caused by the noise from the embedded accelerometers. 

Together with the better performances of the step detection from iPhone 7Plus, 

the pre-calibration MAE of iOS-based smartphone is slightly better than that of 

the Android-based smartphone. This can also explain the better pre-

calibration performances of the precision of both types of smartphone models.  

After calibrating the heading information, the RMSE of selected examples has 

reached 0.21m (Android) and 0.16m (iOS) (Fig.3.8.2.3) respectively. The MAE 

after taking 10 repeated experiments has reached about 0.14±0.01m, with 

more than 50% improvement. Meanwhile, as it has reduced the errors caused 

by the noise from the embedded gyroscopes, the precisions of positioning for 

both types of the smartphones have also been improved (Table 3.8.2.3.2).  

TABLE 3.8.2.3.2 

MAE AND PRECISION OF STEP DETECTION BY USING TWO SMARTPHONE MODELS 

BEFORE AND AFTER VISUAL CALIBRATION 

Smartphone Model HUAWEI Mate7 iPhone 7Plus 

MAE Before Visual Calibration (m) 0.31 0.29 

MAE After Visual Calibration (m) 0.15 0.13 

Improvement 53.3% 51.7% 

Precision Before Visual Calibration (m) 0.11 0.12 

Precision After Visual Calibration (m) 0.06 0.05 

Improvement 45.5% 58.3% 
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(a)                                                                         (c) 

(b)                                                                        (d) 

Fig.3.8.2.3. The comparison of pre-calibration and post-calibration of PDR 

using two cameras on Android (a)-(b) and iOS (c)-(d). 

3.8.2.4. The System with the Integration of Four Cameras 

Based on the results acquired from the previous experiment, the user tracking 

along the entire floor becomes plausible with the same mechanism. This time, 

four cameras are used for heading calibrations. The referential walking 

trajectory with the marked step points of this experiment is presented in 

Section 3.7.1.3 for later comparison with estimated positioning results. Both 

iOS and Android systems have detected the correct number of steps in the 

presented examples. For their MAEs after 10 experiments, the missing 

detection of steps still exits as the noise from the embedded accelerometers 

cannot be overcome by the proposed step detection algorithm and they will 

grow simultaneously with the increasing trajectory length (Table 3.8.2.4.1). In 
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addition, the unstable connection of the Wi-Fi during the experiments can also 

cause the interruption of the data transfer for positioning estimation.  

TABLE 3.8.2.4.1 

MEAN ACCURACY OF STEP DETECTION BY USING TWO SMARTPHONE MODELS  

Smartphone Model Counted  Steps HUAWEI Mate7 iPhone 7Plus 

Detected Steps 272 268 269 

Mean Accuracy 100% 98.5% 99.2% 

 
The positioning results of calibrated user positions from both types of phones 

match well with the reference path and reach similar level of accuracy, with 

RMSEs of 0.15 m (Android) and 0.12 m (iOS) in the presented example 

(Fig.3.8.2.4). The MAEs of two types of smartphones after calibration is at 

about 0.11 m with more than 60% improvement than the pre-calibrated results. 

This is related with the increasing proportion of visible areas with more 

introduction of visual calibration. Their precision after calibration is about 0.07 

m with an improvement in the range of 54.5% to 66.7%, which is still related 

with the miss detection of the step events as the detection accuracy is better 

by using iPhone 7Plus (Table 3.8.2.4.2).  

TABLE 3.8.2.4.2 

MAE AND PRECISION OF STEP DETECTION BY USING TWO SMARTPHONE MODELS 

BEFORE AND AFTER VISUAL CALIBRATION 

 

This experiment has shown that the proposed hybrid system is available for 

single user tracking on the entire floor regardless of smartphone models, by 

achieving similar level of MAEs after calibration. This suggests that the 

proposed system has the potential to become a ubiquitous solution for indoor 

positioning. In addition, as this system utilizes the existing indoor 

infrastructures and user devices, it can achieve a low-cost solution without the 

Smartphone Model HUAWEI Mate7 iPhone 7Plus 

MAE Before Visual Calibration (m) 0.31 0.29 

MAE After Visual Calibration (m) 0.12 0.10 

Improvement 61.3% 65.5% 

Precision Before Visual Calibration (m) 0.12 0.11 

Precision After Visual Calibration (m) 0.08 0.06 

Improvement 54.5% 66.7% 
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installation of the additional sensors. Moreover, it also has the potential to be 

adjusted by online calibrations, as the heading information acquired from 

every two consecutive frames can be directly used in real time PDR heading 

calibrations for position estimation, other than post processing. However, the 

application of this system is based on the assumption of existence of a 

complete surveillance system and the designed system is more suitable to be 

applied to public indoor space.  

(a)                                                          (b) 

Fig.3.8.2.4: The calibrated smartphone-based PDR for whole floor tracking.  

3.8.2.5.  2D System Validation 

The above experiments described in Section 3.8.1.1 to 3.8.2.4 is based on 

the data of a single user. In order to validate the robustness of the designed 

2D system, more variations of participants have been introduced with similar 

experimental setups as using two cameras, which can be found in Table 

5.2.3.1.2 of Section 5.2.3.1.1 in Chapter 5 with more females and males 

involved in the experiments. In addition, this study also has involved a group 

of the same number of males and females who are unfamiliar to the selected 

building, i.e. PMB, to participate in the experiment. The acquired results have 

both achieved similar accuracy and precision as listed in Table 3.8.2.3.2. This 

has suggested a relatively stable performance of the designed 2D system with 

various users.  

In addition, the similar 2D experimental setups have also been tested in at a 

specific floor with similar structure in another building at UNNC, which is used 

for 3D building model establishment by matching the measured 2D trajectory 
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to the corresponding 2D Laser Scanning (Chen et al., 2018, Yang et al., 2019). 

According to the achieved accuracy (Yang et al., 2019), the distribution of 

positioning error is also similar as that descried in the CDF in this study (Fig. 

3.8.2.2.3), with a maximum value of RMSE at 0.81m (0.8m in this study). This 

has suggested the reliability of the application of the designed 2D system 

under various environments.  

3.8.2.6. The Comparison to Other PVINS with Similar Setups 

The details of the approaches for two similar studies conducted before have 

already been described in Chapter 2. Comparing with the study conducted by 

Shanghai Technology University (Zhang and Zhou, 2018), the best 

performance of RMSE of their proposed PVINS can achieve an accuracy of 

0.08m, with all positioning areas are in the view of camera. However, the 

minimum RMSE achieved in this study is still comparable to that, even with 

less visible areas (90.04%). The other study conducted by Missouri University 

(Jiang and Yin, 2015, Jiang and Yin, 2017) has a minimum RMSE of 0.5m, 

with a maximum improvement of 22.6%, summarizing from four tests. This is 

lower than the results achieved in this study with a minimum RMSE at 0.08m 

and the corresponding maximum improvement of 65.5% (Table 3.8.2.3.2). 

This may be due to that this study has more visible areas, which has more 

effect from the visual tracking calibration. Meanwhile, the designed path as 

ground truth has a similar rectangular shape of walking trajectory as applied in 

the previous studies. This means the proposed system is comparable to other 

studies under similar conditions of environmental complexity. Meanwhile, it 

has slightly more turnings than those in the previous studies, which may 

introduce more noise from the gyroscopes when in the invisible areas. 

Moreover, the ending points of both calibrated paths match well with the 

entrance of building, which can keep tracking user trajectory and later be 

directly shifted to the outdoor positioning system with available GPS signals. 

This system also has been tested on two types of smartphones while the 

previous studies mainly focus on Android-based systems. However, the 

system proposed by this study cannot provide gait-feature based visual 

tracking as in (Jiang and Yin (2015), Jiang and Yin (2017), and Zhang and 

Zhou (2018)), which makes the visual tracking results not fully compatible with 
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step event mechanism of PDR. It makes this system more single-directional 

calibration based, i.e. calibrating PDR by visual tracking not calibrating visual 

tracking by PDR.  

TABLE 3.8.2.3.2 

POSITIONING ACCURACY COMPARISON BETWEEN OHTER STUDIES USING PVINS 

Reference 
(Jiang and Yin, 2015, 

Jiang and Yin, 2017) 
(Zhang and Zhou, 2018) This Study 

FPS 30 20 17 

Visible Area  >50 100 90.04 

Device  Samsung Galaxy S4 Huawei Honor8 Huawei Mate7,  

iPhone 7Plus 

Turnings 4 3 6 

Best RMSE (m) 0.50 0.08 0.08 

Maximum 

Improvement (%) 

22.6 56.5 65.5 

Calibration Bi-directional Bi-directional Single-directional 

 

3.9. SUMMARY 

Findings from this chapter contributes the design of a hybrid system for 2D 

multi-camera PVINS supported by the digital map information in WGS 1984 

on distributed platforms, with a relatively high accuracy of 0.07%. The 

accuracy is better than required accuracy targeted by several emergency 

services, including the Federal Communications Commission (FCC) (50m). It 

is even significantly higher than the best performances provided by the 

Commercial Mobile Radio Service (CRMS) reported in FCC (5~10 m) (FCC, 

2015). Both sub-systems can work independently with the support of digital 

map information. The accuracy of inertial system in the visible areas can be 

improved by additional visual tracking information while the PDR data can 

reversely compensate the visual data in the invisible areas. This hypothesis 

has been proved in this experiment as the accuracy of calibrated results from 

both smartphones has been significantly improved and achieved similar levels. 

Its algorithm for pedestrian detection, i.e. Faster R-CNN, can be directly 

implemented without training by utilizing online resources while achieving 

real-time detection with high detection accuracy.  

Meanwhile, it first introduces a novel algorithm for automatic scene-shifting 
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integrated with PDR’s automatic turning recognition. Meanwhile, it also finds 

out a simple but effective novel algorithm to integrate PDR and visual tracking 

systems. It first puts forward two kinds of calibration algorithms: the direct 

position replacement and the heading calibration. By comparing the calibrated 

results, it finds out that the latter one is more accurate than the former one as 

it follows the mechanism of PDR with the maintenance of step event detection. 

It has also achieved similar accuracy as previous 2D PVINS under similar 

conditions of environmental occlusion and complexity, but with simpler 

implementation. This system has also been tested on two common 

smartphone operating systems in search for a potentially ubiquitous solution. 

It also has the potential to be a low-cost solution as it does not need additional 

installation of sensors but only utilizing available sensors from user and indoor 

environment. Moreover, the acquired results with absolute world coordinates 

can be directly used in outdoor systems and visualized in corresponding floor 

plan. However, the acquisition of surveillance data may be a limitation as it will 

raise the issue of personal privacy and this time a permission is pre-applied 

for data downloading. In the next chapter, this system will be developed into a 

more comprehensive arrangement with the ability to track the entire 

movement of a single user in the building with multiple floors as this study 

only tests on a single floor. The smartphone-based PDR system will be further 

tested on staircase-walking with the support of a barometer for height 

detection, in order to automatically change to related floor plan. 
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Chapter 4. 3D VISION-AIDED 

INDOOR PEDESTRIAN DEAD 

RECKONING WITH BAROMETER 

4.1. INTRODUCTION 

In previous chapter, it shows the proposed designed system works well on 

single floor positioning, in other words, in horizontal directions. The 3D PVINS 

designed in this study is developed based on the 2D multi-camera PVINS 

mentioned in the previous chapter, to continuously track user movements 

inside the buildings with surveillance cameras with known-locations and user-

held smartphones, supported by auto-shifted corresponding digital floor maps. 

However, the previous 2D PVINS more focuses on providing positions in 

horizontal directions (Yan et al., 2018c, Yan et al., 2018b, Yan et al., 2018a). 

In order to enrich the information of the third dimension, the smartphone-

embedded barometer will also be integrated in this study for floor detection. 

This chapter will provide a novel design of a low-cost 3D indoor tracking 

system and the prototype will be tested in a four-floor building by using two 

types of smartphones, running both of the most widely used operating 

systems of iOS and Android separately. Moreover, the environmental 

conditions will have higher proportions of occlusion areas than in previous 

experiments mentioned in Chapter 3, which is limited by the currently installed 

surveillance cameras in the indoor area. This may also help to further test the 

robustness of designed system under extreme occlusive conditions, which is 

closer to the real scenarios in the fire evacuations.  

4.2. SYSTEM DESIGN 

The proposed system is designed and developed based on the previous 2D 

vision-aided PDR (Yan et al., 2018c, Yan et al., 2018b, Yan et al., 2018a) to 

the 3D version (Fig.4.2). During the operation, the smartphone-based PDR 

keeps actively tracking the user movement, while the OPS only functions in 

the LoS areas, shifting from one scene to another. During the movement, the 
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smartphones are held horizontally and pointing forward. The accelerations 

and the angular velocities are collected simultaneously. The former is used for 

step detection and step length estimation while the latter is applied for 

heading estimation. The integration of these data can help calculate relative 

2D PDR positions. Meanwhile, the video recording is triggered since the user 

starts moving. Once entering the LoS area of each camera and a significant 

change is detected from the estimated PDR headings, the 2D visual positions 

will be calculated based on BBs’ positions by pedestrian detection and the 

estimated depth information in corresponding frames. Meanwhile, the 3D 

information of the corresponding functioning camera will also be reported to 

the main system, which will help to calibrate the floor detection. The 2D visual 

headings are determined by visual positions in every two consecutive frames 

(Yan et al., 2018a). They will later be used for 2D PDR heading calibration 

based on similar time stamps. For data fusion, this study replaces previous 

time-synchronization-based position replacement in (Yan et al., 2018b) by 

using synthesized results from calibrated headings and PDR step lengths. 

This is because heading calibration responses better to the real-world 

scenarios based on the conclusions in (Yan et al., 2018a) mentioned in 

previous chapter, thus it can provide better synthesized position estimation.  

Before 2D calibration, the 2D results from PDR and visual tracking should 

both be transformed into real geographical coordinates, i.e. geo-coordinate 

transformation. It is beneficial for further development of seamless indoor-

outdoor positioning (Yan et al., 2018b, Yan et al., 2018a). To achieve that, the 

corresponding floor plans will help to provide absolute positioning information. 

These maps are pre-stored in the system and will be integrated into the 2D 

PVINS results by automatic selection based on the results of floor detection. 

The system in 2D PVINS aspect is providing a calibrated 2D path in an 

absolute coordinate system at each epoch, i.e. the corresponding time stamps 

of each step. This 2D path will later be integrated with the estimated height 

and floor information by finding the similar time stamps. 

For 3D information, the system uses the smartphone-based barometer to 

continuously identify the current floor of the user during movements. Before 

the start of operation, the barometer needs a self-calibration. This is done by 
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comparing and adjusting the two readings acquired from two smartphone 

apps installed on the very same smartphone. One is chosen as the ‘standard’ 

pressure, and the other is calibrated measurement for the same reading. The 

calibrated measurements are then processed for height estimation and floor 

detection. This process will be discussed in more details in the following 

sections. This chapter has tested different algorithms and investigated a 

relatively optimal solution. With the 3D locations of cameras already stored in 

the system, the calibration results for the floor detection can also be improved.  

Fig.4.2. The architecture of the proposed system (PDR, Visual, Barometer, 

and digital floor plans are represented in red, blue, green and orange, 

respectively). The pedestrian detection and the PDR in dash-boxes have 

been described in Chapter 3, the floor detection is described in the following).  

Having distinguished the floors, the results will be integrated with 2D PVINS 

with a minimum difference of time stamps. The final 3D path will be presented 

in a 2D form on each floor with the corresponding georeferenced floor plan for 

visualization. 
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4.3. PRESSURE-HEIGHT MODEL FOR FLOOR DETECTION 

4.3.1. Pressure-Height Model 

A barometer altimeter allows height estimation based on air pressure above 

the given reference level, which is by default sea level (Li et al., 2013a, 

Sabatini and Genovese, 2014, Shen et al., 2015, Xia et al., 2015). According 

to a recent document of Pressure Reduction Formula by World Meteorological 

Organization’s (WMO) Commission for Instruments and Methods of 

Observation (CIMO), the change of pressure    is proportional to the change 

of height/altitude   , regarding the gas density   and gravity   as constant:  

                                                 (4.3.1.1) 

It can be rewritten as: 

                    
 

   
                                        (4.3.1.2) 

whereas    is the specific gas content, and it is usually treated as a constant 

under dry air condition in   . The formula can be then be transformed into  

        
 

  
 

 

         
  

  
                            (4.3.1.3) 

whereas    is the sea-level pressure,   is the air pressure of the current level, 

  is the temperature lapse rate, and   is the current temperature (K) while 

   is the standard temperature at sea level.   is usually regarded as a 

constant, which is a negative ratio between height and temperature. As the 

relationship between current   and    can be described as:  

                                             (4.3.1.4) 

The formula (4.3) can then be transferred into: 

        
 

          
 

 
   

 

                           
      

          
 
 

 

                             (4.3.1.5) 

The common setups for these parameters are listed in Table 4.3.1.  

TABLE 4.3.1  

COMMON PARAMETERS FOR HEIGHT-PRESSURE MODEL 

Parameter Description Value 

   Standard Atmospheric Pressure 101.325 kPa 

  Temperature Lapse Rate 0.0065 K/m 

  Gravitational Acceleration 9.80665 m/s2 

   Specific Gas Content of Dry Air 287.04 J/kg/K 
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With the applications of these parameters, the height information can be 

extracted based on the specific formula below:  

   
  
  
 
 

 
          

      
                                        (4.3.1.6) 

The temperature   is supposed to be the indoor temperature of corridors, 

open space, and staircases other than room temperature. With this formula, 

the next step is to determine how to transfer that information for floor 

detection. 

4.3.2. Directly Applying Height-Pressure Model  

The first developed method is based on the idea of fingerprinting but in a 

simplified version, which is to establish a height database for the whole 

building, and it can later be used as reference data for floor localization (Li et 

al., 2013a, Muralidharan et al., 2014, Sabatini and Genovese, 2014, Ebner et 

al., 2015, Xia et al., 2015, Ye et al., 2016, Kim et al., 2017). During the 

operation, the barometer of the smartphone keeps reading pressure 

measurements while the user is moving down from 4th floor to the 1st floor, by 

using ‘Barograph’ app. In order to collect more data for later validation, user 

moved around each floor during the whole process when going down. After 

transferring the pressure to height information, the average heights 

information is used to detect the changes of floors and the mean value for 

each floor is kept for the referential heights for later floor detection. These 

results are then validated by a reverse process walking upstairs, in order to 

see whether the absolute referential height information can still be used for 

floor detection. The sampling frequency of pressure reading is one reading 

per second and the indoor conditions for these two experiments are controlled 

for temperature (all set to be 20°C), humidity, and walking speed, with 

negleagible range of flucturation. In the trial, it also tried to detect the 

transition areas, which are the staircase areas between every two floors and 

are usually negelected in previous studies (Muralidharan et al., 2014, Sabatini 

and Genovese, 2014, Xia et al., 2015, Ye et al., 2016, Kim et al., 2017). They 

can be detected by following certain movement patterns. During the 

movement from one floor to another in this experiment, the user needs to 

pass two staircases and a linkage area between them based on the structure 
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of staircases used in the experimental area in this research. This needs to be 

treated as a whole process in floor detection. The approach to detect these 

areas is regarding the values between the means of each floor to be the 

whole transition areas. For special cases in this research of height change, 

the transition area between floors requires to pass three different means of 

heights (Fig.4.3.2.1).  

 
(a) 

 
(b) 

Fig.4.3.2.1: The processing of absolute height information collected in trial 

(The values between the black sections are treated as transition areas) (a) 

and the results of detected floors (b).  

According to the result in Fig.4.3.2.1a, it has shown that the average height of 

each floor cannot represents the whole floor. In other words, the transferred 

height information from the pressure data varies with time. Thus, using only 
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one certain value, which also has been used in many studies before 

(Muralidharan et al., 2014, Sabatini and Genovese, 2014, Xia et al., 2015), is 

not suitable to describe the whole single floor. Instead, a range maybe more 

suitable to describe a single layer as the values fluctuates around the mean. 

In order to improve that situation, the height ranges are settled for floor 

detection based on their means as well as maximum and minimum values in 

every intervals. It has also suggested that the average value may not be 

sufficient at identifying the initial several steps of changing heights when 

walking downstairs, though it works well on distinguishing different floors with 

significant height changes (Fig.4.3.2.1b). This may be also due to relatively 

high variations of collected height information in each layer. Meanwhile, the 

averaging method smoothes the changes of values and when a real change 

of floor level appears, it will slow the response of detection, causing errors in 

the results. 

When turning to the validation process, the reference data does not work well 

on validation process and the absolute height information measured during 

test is not very appropriate to be used for real-time floor localization 

(Fig.4.3.2.2). First, it fails to detect the ground level but treats the whole level 

as the transition area between ground and second floor. In addition, the 

second and third floor are mistakenly detected in the places where there 

should be transition areas between first-to-second floor and second-to-third 

floor and these transition areas are falsely detected as well. The fourth level 

are detected earlier than it should be. When comparing their accuracies, the 

referential height information does not seem to reach similar level (72.8%) as 

that of the previous training period for reference data (97.5%). These 

problems may be due to the high variation of pressure data over time, even 

under similar environmental conditions (Ye et al., 2016, Kim et al., 2017). The 

uncalibrated barometer sensor could be another possible reason as it will also 

introduce some errors into the model when transferring pressure data to 

height. In addition, this method also increases the burden for data storage as 

these barometer data needs a long-period of data collection to deal with 

different situations (e.g. different weather conditions). However, the real-time 

measurements may still be different, even with these information (Shen et al., 
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2015, Ye et al., 2016).  

 
Fig.4.3.2.2. The validation process of floor detection based on the collected 

reference data (the correct floor identifications are marked out in black). 

Another validation experiment also proves the above findings as the absolute 

height references cannot work for the data collected two weeks later as the 

pressure reading has changed significantly, which is taken under a raining 

condition with relatively higher humidity but still under similar temperature 

condition. In this validation experiment, the pressure measured from the 

ground floor has increased to 101.86 kPa rather than 101.32 kPa in the 

reference database, leading the whole transferred height to be significantly 

decreased if still using standard atmospheric pressure as ground level 

pressure. Indeed, this value    needs to be replaced by the real-time readings 

instead of a fixed theoretical value to increase the accuracy of the pressure-

height model. Moreover, as the historical dataset cannot always represent the 

real scenarios, the floor localization should not be based on the collected 

absolute height information.  

Considering these mentioned problems, a more robust floor localization 

method should be developed for floor detection, which should be more flexible 

to deal with the real-time measurements, have low requirement of data 

storage, have higher accuracy and more stable performance of floor detection 

while not requiring not much complicated computation and less affected by 

the environmental factors. The using of only pressure-height model is not 
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sufficient for those purposes and therefore, a more comprehensive algorithm 

is required to solve these problems.  

4.4. UPGRADING OF FLOOR LOCALIZATION METHOD 

In order to overcome the above problems, a more sophisticated algorithm is 

developed to improve the accuracy of floor detection. This method will not use 

the absolute height information for floor identification, instead, it will utilize a 

hypothesis that the changes in pressure between different floors can be 

treated as constant values (Li et al., 2013a, Muralidharan et al., 2014, 

Sabatini and Genovese, 2014, Ebner et al., 2015, Xia et al., 2015, Ye et al., 

2016, Kim et al., 2017), and the floor localization problem can be treated as 

floor change detection with the identification of the initial level of user. It will try 

to detect the number of changes of floor levels based on the real-time 

measurements with the identification of initial level. This makes every 

measurement independent with each other and will not be affected by the 

environmental effects (Ye et al., 2016, Kim et al., 2017). However, in this study, 

it should be treated as a certain range instead of a persistent value to deal 

with variations of each floor, based on the abovementioned findings. The 

following sections will focus on how to determine the height ranges for 

different level and to recognize the time stamps of floor changes in time.  

4.4.1. Absolute Height to Relative Height 

The height range determination for different levels will be based on the 

application of relative height information, which is based on the plausibility of 

previous hypothesis that height differences between every two floors are 

constant levels. In order to test that hypothesis, a comparison of the relative 

height changes is taken based on two random datasets collected under 

different environmental conditions with different temperatures (Fig.4.4.1.1).  
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Fig.4.4.1.1. The comparison of absolute height changes based on two 

datasets collected under different environmental conditions (yellow circles for 

transition areas and blue circles for each floor). 

It has found out that the intervals between every two neighbouring floors 

which are also treated as the transition areas of different levels, are relatively 

remained at similar levels although these intervals may vary with each other. 

For example, the height change from fourth floor to third floor of two tests 

remains the same when linking their changing points, while it differs to that 

from third floor to second floor. When checking every single floor, it can also 

find that every specific floor will cover a certain range of height while these 

ranges can differ from each other. In other words, the height range for each 

level is within a certain range, which can be regarded as a constant.  

This finding can later be used for the estimation of the height ranges for floors. 

The floor height of each level can then be estimated by regarding the height 

range between every floor and the first floor to be within a constant range 

(Fig.4.4.1.2). As the change environmental factors can change the results of 

the transferred height, the relatively stable changes between floors may help 

to improve the accuracy of floor detection. In this study, the experimental site 

is located in PMB building, which is a four-floor building, and the floor levels 

are treated as four levels with three transitions areas (Fig.4.4.1.2). 
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Fig.4.4.1.2. The classification of different floor levels in PMB building.  

These height ranges (      ) are still determined by detecting sudden 

changes of average heights. The next step is to treat the average height of 

first floor as benchmark and the height ranges of the other floors will be re-

calculated to be within relative ranges after removing effect of first level. 

According to the calibrated result from the previously collected height 

information, it also proves the hypothesis of relatively constant height changes 

between floors as there are no significant differences comparing estimated 

relative heights with an acceptable average fluctuation of 0.072m considering 

the average stair’s height is approximately  . 6m. The ranges for relative 

heights for each floor are then determined based on the integration of 

acquired results and can be used as references for later initial floor 

identification (Fig.4.4.1.3 and Table 4.4.1).  

 
Fig.4.4.1.3. The comparison of relative height changes based on two datasets 

collected under different environmental conditions by mean range 
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determination (yellow circles for transition areas and blue circles for each 

floor). 

These acquired ranges also needs validation from another datasets, and this 

study takes another random measurement five weeks later under a different 

weather condition with higher humidity and higher temperature to previous 

two measurements. The newly collected data also being processed to find 

height ranges for classified floor levels. When comparing the referential 

relative heights to new acquired height ranges, the average difference 

between these two sets are about 0.17m (with a range from 0.02m to 0.49m), 

which is significantly different than previous acquired references and is higher 

than the mean height of one stair. This may due to the relatively significant 

error for fourth floor (Fig.4.4.1.4 and Table 4.4.1) as the barometer has not 

been pre-calibrated by a reference device or referential reading. These errors 

can cause mistakes on floor detection from fourth floor to the following 

transition area between third and fourth floor. However, this error is already 

better than previous study with a range from 0.05 to 0.68m (Sabatini and 

Genovese, 2014). 

 

Fig.4.4.1.4. The validation of relative height ranges from new acquired dataset 

to one previous dataset collected under different environmental conditions by 

mean range determination (yellow circles for transition areas and blue circles 

for each floor). 
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Meanwhile, the late response to floor change detection remains to be a 

problem as it keeps using periodical changes of average height values, which 

lengthens the duration for every floor and may not be able to recognize some 

tiny but sudden changes of height information due to smoothing effect caused 

by averaging function. Moreover, it may also affect the precision of range 

determination and causing error in floor detection as the time stamps of floor 

changes is another important indicator for floor detection. Therefore, a new 

way for range determination is required to be developed for the floor detection, 

which should be able to respond to floor changes in time and have better 

accuracy on initial floor identification. 

TABLE 4.4.1 

RELATIVE HEIGHT RANGES COMPARISON FOR EACH FLOOR BY MEAN RANGES 

a represents the transition area between every two floors and the difference 

here does not mean accuracy.  

4.4.2. Average Function Vs Linearity Function 

In order to further improve the performance of floor detection, a more effective 

method of both initial floor range determination and changing time recognition 

is required. This study tries to use linearity change based on the assumption 

that when passing via a specific staircase under relatively constant velocity, 

the changing speed of relative height, i.e. the height gradient change during 

this period is supposed to be similar. The data are from the previous 

processed relative height information with removing benchmark height 

acquired from the first floor. Then these data will be processed to find sudden 

changes of linearity, which means arriving another level. In order to distinguish 

the transition area and flat floor area, the slopes close to zero will be treated 

as flat floors and for transition area, it should pass two changes of non-zero 

Floor Number Referential Height Range (m) Height Range from Validation(m) Difference (m) 

4 >= 12.38 >= 11.89 0.49 

3.5 a 9.14-12.38 9.14-11.89 0.49 

3 8.33-9.14 8.15-9.14 0.18 

2.5 a 4.93-8.33 4.87-8.15 0.24 

2 3.89-4.93 3.90-4.87 0.07 

1.5 a 0.47-3.90 0.49-3.90 0.02 

1 <=0.47 <=0.49 0.02 
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slopes based on the certain structure of staircases in this study. The acquired 

results are listed below (Fig.4.4.2.1).  

 
Fig.4.4.2.1. The comparison of relative height changes based on two datasets 

collected under different environmental conditions by slope changing (yellow 

circles for transition areas and blue circles for each floor). 

It has shown that the floor change detection based on slope changing seemed 

to function more sensitively, especially for transition area detection than that 

using averaging by comparing the acquired results from Fig.4.4.2.1 and Fig. 

4.4.1.3. When checking the time stamps for floor changes, the mean delay for 

changing floors for one to two seconds in average while comparing to using 

the averaging method, the average delay of detection is about three to four 

seconds. However, the slope detection is not good at dealing with flat floors 

appeared between transition areas, which happens during the movements 

from second to fourth floor. This is due to the collected data in these areas is 

not large enough and have high variations of height information. These factors 

are limited by the structure of staircase areas as the linkage areas between 

every two staircases during the whole movement from fourth to first floor are 

similar, making it hard to distinguish from the other moving periods and they 

are usually being treated as partial areas with the neighbouring transition 

areas. Therefore, the different floor levels are divided by the intersections of 
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specific linearity of each area and the transferred height information in 

corresponded area. However, there are still some special cases appearing 

during the movement between first and second floor, which are unexpected 

detections in the transition areas between different staircases as it passes 

three non-zero slopes (Fig.4.4.2.1). This makes the slope detection method 

unsuitable for floor identification as it does not have stable performances of 

dealing with the horizontal variations when moving on flat floors, though it has 

improved the response velocity of sudden vertical movement changing 

process to a large extent. On the other hand, the averaging method has the 

advantage of smoothing effects, which makes it relatively more robust than 

slope changing detection to deal with variations during horizontal movements, 

though it has negative effects for vertical change detection. 

 
Fig.4.4.2.2. The comparison of relative height changes based on two datasets 

collected under different environmental conditions by slope changing and 

mean range determination (yellow circles for transition areas and blue circles 

for each floor).  

As both of the methods cannot handle the floor change detection individually, 

the new idea is to integrate these two methods together, which can keep the 

advantages of linearity changing detection to detect vertical changes in time 

and also can deal with high variations when passing through the flat places. 

According to the moving patterns of user when passing through staircases in 
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this study, the user needs to pass two staircases and a linkage area between 

them. This needs to be treated as a whole process in floor detection. For 

height change, the transition area between every two floors requires to pass 

two changes of linearity and three different means of heights, while the flat 

floors between these transition areas will be treated as the following parts 

after passing these areas, except the initial level. The initial level will be 

determined by the intersection between the first change of linearity and the 

transferred height. The processed results based on previous data are listed in 

Fig.4.4.2.2.  

With the processing of both mean ranges and slope changing, the 

performance of time stamp recognition of floor change has been improved 

than that using only slope changing or mean ranges, as some of undetected 

ranges from using only slope changes while it still keeps quick response to 

sudden changes in vertical direction, with a delay of only one to two seconds 

(Fig.4.4.2.3). However, when determining the range of relative heights for 

each level, there are still some extreme measurements in detected ranges 

due to the unstable performance of the embedded barometers in 

smartphones. These measurements can be smoothed by the neighbouring 

measurements in the range of corresponded level. Then the boundaries of 

ranges for each floor will be determined by the intersections between 

beginning and ending slopes with the transferred height in corresponding 

detected level. The separate series of ranges determined by two sets of data 

has an average fluctuations of 0.05m, which has been improved from the 

previous acquired results by only using mean ranges and can increase the 

precision for detected range. They will be integrated together by taking an 

average, which can be used as referential relative height range for the starting 

level (Table 4.4.2).  

The acquired referential database still needs to be tested to see whether it 

can be used for other datasets and the datasets is still taken from the 

validation dataset used for testing the accuracy of referential heights detected 

by only mean ranges. The acquired results have an average difference 

between referential data in 0.14m (within a range from 0.01 to 0.28m), which 

is acceptable as it is less than one stair’s height ( . 6m) with an improvement 
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of 17.7% than using only mean-range based methods. It is also better than a 

recent research with an average accuracy of 0.15m (Kim et al., 2017). When 

checking with individual ranges, some of them are still slightly over than the 

range of single stair’s height, which may cause about one seconds’ delay 

even with supplementary information of changing time when shifting from one 

level to another (Table 4.4.2). This is limited by the capability of the linearity 

change detection and there is no simple solution to that problem. 

 
Fig.4.4.2.3. The validation of referential relative height ranges for different 

floors by slope changing and mean range determination (yellow circles for 

transition areas and blue circles for each floor). 

TABLE 4.4.2 

RELATIVE HEIGHT RANGES COMPARISON FOR EACH FLOOR BY SLOPE RANGING 

AND MEAN RANGES 

a represents the transition area between every two floors and the difference 

here does not mean accuracy.  

With this acquired referential relative heights for each level with the supporting 

Floor Number Referential Height Range (m) Height Range from Validation(m) Difference (m) 

4 >= 12.53 >= 12.52 0.01 
3.5 a 8.82-12.53 8.63-12.52 0.20 
3 8.69-8.82 8.60-8.63 0.28 
2.5 a 4.67-8.69 4.55-8.60 0.21 
2 4.61-4.67 4.50-4.55 0.23 
1.5 a 0.20-4.61 0.24-4.50 0.04 
1 <=0.20 <=0.24 0.04 

4F 

3F 3F 

2F 
2F 

1F 1F 

4F 
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evidence of floor changing stamps, the whole mechanism of floor detection 

will be an independent process based on the real measurements. The initial 

level of user will first be identified based on the relative height information 

after comparing to the referential and the user will be assumed to stay at the 

same level until a sudden change of floor level is detected by both mean 

ranges and slope changing. The time stamps of corresponded slope changing 

will be used as the starting point of the next floor level. The next step is to 

compare the following measurements with the reference height ranges. If the 

following measurements before the next sudden changes appears is smaller 

than the current height range, then these measurements will be assigned to 

the following lower level of the initial level, otherwise it will be assigned to a 

higher level than current level. The rest of measurements will also be 

estimated based on this process and the flow chart of this process will be 

described in the next section. When testing this method with other 

measurements for floor detection, the average accuracy of floor detection is 

about 95% based on 10 measurements from fourth floor to the first floor 

collected under different environmental conditions, which has been 

significantly improved (approx. 30%) by directly using pressure-height model. 

This makes this method a potential good solution for floor detection, though 

having one to two seconds’ delay when displaying the results limited by 

sensor itself. Therefore, the self-calibration of the embedded barometer before 

the operation is necessary and this method will be further improved in the 

following section.  

4.4.3. Design and Operation of Floor Detection Algorithm 

With the above findings, the overall design of floor detection is listed below 

(Fig.4.4.3). Before the operation, the embedded barometer should be 

calibrated. The approach used in this study is to use two different barometer 

apps on the same smartphone: ‘Barometer’ and ‘Barograph’. The ground level 

pressure will be measured as real-time readings instead of using standard 

atmospheric pressure, and this will be provided by ‘Barometer’. ‘Barometer’ 

can provide pressure at the ground level and the current level and ‘Barograph’ 

keeps recording pressure reading during movement. Their readings will be 

compared initially for self-calibration before height transfer. During the 
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operation, the indoor temperature is supposed to be measured by an indoor 

thermometer which needs to be pre-installed in the building, however, in this 

experiment the indoor temperature is controlled by an air condition system 

and can be regarded as a thermostatic environment and it is estimated to be 

20ºC (293.15K). 

The collected measurements will then be transferred to heights based on 

these information and be processed to relative height ranges 

             
            by removing effect of the first level, which is a reverse 

application of the previous reference database as the referential relative 

height for the first floor is supposed to be about 0.2m (Table 4.4.2). The next 

step is to determine what the current level of user localizes based on the 

comparison between processed data and reference heights. The user will be 

estimated staying on the same floor until a floor change is detected which 

requires the proof from both mean ranges and slope changes as sometimes 

the slope changing method is too sensitive to detect some unexpected 

changes. After the detection of floor change, the time stamp identified by 

slope changing will then be used as the starting point for the next floor. Then 

the following data will be compared to the reference data to see whether user 

is entering a higher level or a lower level, before another floor change is 

detected. When entering the transition areas, the reference data will identify 

this period and require the user to pass two changes of linearity and three 

changes of mean. If user are estimated to stay in transition areas in the 

beginning, the change to the next level will be divided into two cases. If the 

initial user height is higher than half of the pre-determined range, the user still 

need to follow the previous pattern otherwise the user only need to pass two 

changes of mean and one linearity change before reaching the next level and 

the changing time stamps will be the ending point provided by the intersection 

of slope change and height information.  

The following measurements will follow this mode and keep tracking user’s 

level during movements. The recognized level information will then reported 

back to system to help derive the corresponding floor plan. The acquired 

height and level information will also integrate with the 2D vision-aided system 

for later 3D path construction by limiting              , where      is the 
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time stamps from the barometer readings. Moreover, as the 3D locations of 

cameras are already stored in the system before operation, the level 

information can be re-calibrated whenever, the user is in the visible area 

during movement in the building. However, there is still one weak point of this 

design of system, which is the requirement of an embedded barometer on 

smartphones, as there are some old models of the smartphones on the 

market do not have that kind of sensors. However, this disadvantage will be 

gradually counteracted by the improvement of smartphone types as almost all 

new versions of smartphones have embedded barometers.   

 

Fig.4.4.3. The workflow of processing pressure data for floor detection. 

4.5. EXPERIMENTAL SETUP 

The test site in this study is still located at the four-floor PMB building at the 

UNNC. All data are transferred to a desktop by wireless network for post-

processing by MATLAB. The reference maps in WGS84 are the digitized floor 

plans based on blueprints imported to ArcGIS 10.3, with assigned floor level. 

With the assistance of floor detection during the movement, the corresponding 

floor plan will be automatically selected for visualization. They are posted on a 

web map repository using ArcGIS Online for indoor-outdoor transition, with 

the simple semantic representations of indoor structures.  
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Along the designed walking path for horizontal moving of each floor, some 

distinctive markers with an inter-distance of 0.63m are marked on each floor 

to guide the user to follow these markers during movements. The user is 

asked to step over these marked referential points as strictly as possible, and 

the time stamp of each step point will be recorded at the same time. When 

passing the corners, the user does not need to turn exactly 90°, but to turn 

comfortably and naturally. When entering the staircase areas, each stair is 

counted as one step and the step length here will be adjusted to the thread 

length of the stairs. The experiment is then run for 10 times with the same 

target pedestrian, and the results are presented with one selected example 

and the average performances of accuracy and precision.  

The overall length of the 2D referential path is about 168.0m including fifteen 

90° turnings and two non-90° turnings. The total height of stairs is approx. 

13.07 m. The average measured riser height of the stairs is 0.15m and the 

average measured thread length of the stairs is 0.29m. The total counted 

number of the step markers is 312 for this walking trajectory. The entire time 

used for walking along this path is about 311.7s under a normal walking 

speed about 1.0 m/s. 

The cameras are located on the 4th floor in front of Room 416 (Camera #1) 

and 1st floor in front of elevators (Camera #5) (Fig.4.5). They are all facing 

directly to the corresponding corridors with the targeted user in the centre of 

the frame, and they are installed with a height of 3m to the floor of each level 

inside the test building. The detailed walking path at the 4th floor is designed 

as 15 steps before entering the visible area of Camera #1, 66 steps in the 

visible area of Camera#1, 25 steps before the non-90° turning and 12 steps 

before passing down the staircases. When moving in the staircase areas, 

every two floors has 28 steps at stairs and 12 steps at transition areas. When 

arriving on the 1st floor, it passes 12 steps before the non-90° turning, 40 

steps before entering the visible area of Camera #5 and 22 steps in the visible 

area of Camera #5. The overall length of the visible path is 69.3m, which 

means this system is working under a situation with high amount of occlusion. 

This will be closer to the real applications by using existing surveillance 

systems in the indoor environment as there will be no visual tracking in the 
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staircase area.  

   

(a)                                                              (b) 

   

(c)                                                                (d) 

        
                                (e) Web Map of Indoor Test 
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                                                                                              (g) 

Fig.4.5. 2D reference paths visualized from different floors with positions of 

cameras (a)-(e), 3D view of entire indoor path (f), and the webmap with 

outdoor environment in ArcGIS Online (g) (where ‘adpt’ represents the rooms 

other than offices and ‘con’ represents stairs and elevators). 

For smartphone-based PDR system, a Huawei Mate 8 (Android) and an 

iPhone 7 Plus (iOS) are used, which are two common models of smartphone 

of these two operating systems on the market with available embedded 

barometers. The data collection app for both smartphone-based PDR is 

MATLAB Mobile, which can work on both types of smartphones. The 

sampling frequency for two smartphones are set to be 50 Hz. During the 

experiment, both smartphones are held horizontally, pointing towards the 

walking directions. For visual tracking system, the resolution of each camera 

is 680×540, the vertical FOV is 27°, and so the focal pixel length is about 

1.05×103 per inch. The frame frequency is 17 frames per second. Cameras 

start filming simultaneously with the initialization of smartphone-based PDR. 

For floor detection, the barometer apps for pressure data collection are 

Barometer and Barograph. The former is used for sensor self-calibration and 

the latter is used for continuous recording and its sampling frequency is 1s-1. 

Barometers are triggered before the smartphone PDR and visual tracking 

system for self-calibration and their timestamps will be recorded for later data 

fusion. On the other hand, the visual system will also help to calibrate the floor 

level information whenever the user are in the visible area of any of cameras.  

3D Map of Indoor Test 

(f) 
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4.6. RESULTS AND ANALYSIS 

4.6.1. 2D Visual Tracking 

In this study, the overall length of visible paths is 69.3 m, which only accounts 

for 41.2% for the overall path. In previous studies, the non-occlusion path 

occupies at least 50% of the overall path when reaching decimetre-level 

accuracy (Jiang and Yin, 2015, Jiang and Yin, 2017, Zhang and Zhou, 2018, 

Yan et al., 2018b, Yan et al., 2018a), even some of them not reach completely 

invisible occasion but only partial occlusion (Jiang and Yin, 2015, Jiang and 

Yin, 2017, Zhang and Zhou, 2018). This study aims to validate whether the 

system can still work under this extreme condition.  

The pedestrian detection accuracy of two cameras is similar at 99.8%, which 

is satisfactory for later processing. The way of RMSE calculation has already 

been described in Section 3.8.1, and this method is also applied in this 

section. The RMSE of visual tracking results is 0.06m for Camera#1 and 

0.04m for Camera #5 respectively and the synthesised RMSE of two-camera-

based system is 0.05m and the MAE for 10 experiments also remains a 

similar value, with a precision at 0.02m (Camera #1) and 0.01m (Camera #2) 

respectively. The OPS first provides the positions of the functioning camera, 

which can also help for floor detection calibration in LoS areas. As shown in 

Fig.4.6.1, with the mapping results from the visual tracking, two partial paths 

from two cameras are matched well against the reference path. However, 

both two paths still have a problem of unevenly distributed visual positioning 

points, though this phenomenon for the positioning points provided by the 

second camera is not distinct to be realized. This problem has been 

discussed in the previous chapter due to pinhole effect and long distance 

between target and camera (Yan et al., 2018b, Yan et al., 2018a).  

Meanwhile, the filming frequency cannot match with the step frequency and 

the detected target positions are always in the middle of a step but cannot 

identify the starting and ending points of each step event. The previous visual 

gait detection (Jiang and Yin, 2015, Jiang and Yin, 2017, Zhang and Zhou, 

2018) is not suitable for this study as: a) this study does not apply foreground 

masks, which is quite labour intensive and responds slowly, while using a 

pinhole model for distance estimation; b) the filming frequency is lower than 
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previous studies; and c) the ratio between IMU sampling frequency and 

filming frequency is not in integer. This makes the results from visual 

positioning more time-domain based rather than gait-based, and these data 

are not suitable to be directly used for calibrating the PDR positioning in 

visible areas, though it has a Mean Average Error (MAE) of 0.05m. However, 

this will not affect the headings between steps and the information can be 

later applied for PDR calibration. 

(a)                                                                   (b) 

Fig.4.6.1. The 2D path captured by camera on the 4th floor (a) and 1st floor 

(b).  

4.6.2. 2D Smartphone-Based PDR 

4.6.2.1. 2D Calibration 

In this experiment, the user walks 312 steps in average from the fourth floor to 

the first floor and PDR only provides the horizontal positions to avoid imposing 

additional errors due to the inclusion of the third dimension. In the presented 

example, the Android-running phone detects 298 steps while iPhone detects 

306 steps (Fig.4.6.2.1.2). After repeating for 10 times, the average detected 

steps do not change significantly, within   or   steps’ fluctuations (Table 

4.6.2.1.1). This may be caused by data logging mechanism of PDR data, as it 

requires the network connection for data transferring to the main control 

system while the signal strength of Wireless Local Area Network (WLAN) is 

not stable in the experimental site. This could be resolved by using 4/5G for 

Mobile Communications as a supplement or using an offline system for data 

collection. The other reason to that may be due to a relatively higher 
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sensitivity of the accelerometers embedded in iPhone 7Plus than that of 

Huawei Mate 8’s, providing a better step detection performance when using 

the iOS-based system.  

TABLE 4.6.2.1.1 

MEAN ACCURACY OF STEP DETECTION OF TWO TYPES OF SMARTPHONES 

  Device 

 Counted Steps Huawei Mate8 iPhone 7Plus 

Detected Steps 312 296 307 
Mean Accuracy 100% 94.9% 98.4% 

 

Before the heading calibration in horizontal direction, the positional accuracies 

of these two types of smartphones are almost the same, i.e. the MAE is 

0.31m (Android) and 0.29m (iOS) (Table 4.6.2.1.2). However, according to 

their CDF of error distributions, the maximum error of iOS is higher than that 

of Android’s while it has more positioning points with error less than 1m 

(Fig.4.6.2.1.1a).This may be due to the higher noise from the embedded 

accelerometers in iPhone 7Plus. The precision of their positioning results is 

similar with iPhone 7Plus has a slightly better performance due to its higher 

sensitivity to the step detection by embedded accelerometers (Table 4.6.2.1.2). 

However, neither performs well enough for the staircase area with the 

frequent turnings (Fig. 4.6.2.1.2a). This may be improved with more accurate 

gyroscope in future with advancement of embedded smartphone-based 

inertial sensors.  

This experiment also uses heading calibration, which replaces each step’s 

heading         acquired from PDR by orientation decided by two consecutive 

frames with similar time steps. The time stamps of PDR are deduced from the 

detected step events and the related time stamps from the accelerometer 

readings, while that of the videos are inferred from the frame number and 

filming frequency. 

            
             

                                                      (4.6.2.1) 

where         the time step from the     step event,      and        are the 

time steps from     and its following frames. The 2D user positions will be 

recalculated based on the integration of these calibrated headings and pre-

calibrated step length      (Yan et al., 2018a, Yan et al., 2019). 
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After the 2D heading calibration, the MAEs of both types of smartphone-

based PDR have been improved to 0.16m (Table 4.6.2.1.2). 95% positioning 

points’ error falls below  .65m while before calibration it was  .9 m ( ig. 

4.6.2.1.1b). The Android-based-PDR seems to perform better after horizontal 

calibration without considerations of missing detected steps (Fig.4.6.2.1.2b). It 

may be explained by the fact that more detected steps from iOS system will 

introduce more difficulties to 2D calibration as this time when LoS areas only 

occupied 41.3% of the entire path. Therefore, the positioning accuracy cannot 

be significantly improved using the heading calibration, in comparison with the 

previous experiments with higher proportion of LoS areas as mentioned in 

Chapter 3 (Yan et al., 2018b, Yan et al., 2018a), where more than 80% of 

positioning areas are in the view. Therefore, the positioning accuracy in this 

experiment cannot be significantly improved after heading calibration.  

 

(a)                                                           (b) 

Fig.4.6.2.1.1. The CDF distribution for 2D smartphone-based PDR.  

(a)                                                                   (b) 

Fig.4.6.2.1.2. The 2D projection of walking path on the first floor by 2D 
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smartphone-based PDR before calibration (a) and after calibration (b).  

TABLE 4.6.2.1.2 

POSITIONING ACCURACY ANALYSIS BEFORE AND AFTER CALIBRATION 

Smartphone Model HUAWEI Mate7 iPhone 7Plus 

MAE Before Visual Calibration (m) 0.31 0.29 

MAE After Visual Calibration (m) 0.16 0.16 

Improvement 48.3% 44.8% 

Precision Before Visual Calibration (m) 0.15 0.13 

Precision After Visual Calibration (m) 0.10 0.08 

Improvement 33.3% 38.5% 

 

4.6.2.2. Improvements to Other Studies Using 2D PVINS 

Comparing with the recent study conducted by Shanghai Technology 

University (Zhang and Zhou, 2018), it is understood that its minimum RMSE 

of PVINS can achieve an accuracy of 0.2m under the condition of partial 

occlusion, as it has more than 50% of positioning areas are in view during 

experiment. The minimum RMSE proposed by this study can perform better, 

even with a simpler data fusion algorithm and a lower portion of non-occlusion 

areas. The corresponding CDFs in this study also has the advantage of lower 

variations with about 90% of errors less than 0.4m, while this number for other 

studies is up to 0.5m.  

The other studies conducted by Missouri University (Jiang and Yin, 2015, 

Jiang and Yin, 2017) have a minimum MAE of 0.5m, with a maximum 

improvement of 22.6%, summarizing from four tests. This is lower than the 

results achieved in this study when having the minimum RMSE at 0.16m with 

a corresponding maximum improvement of 48.3% (Table 4.6.2.2). Moreover, 

the designed path as ground truth has more frequent turnings of 17, which 

could easily introduce more errors due to the effects of noise from the 

embedded gyroscope in the invisible areas, while in the other studies, the 

maximum number of turnings is 4. This shows the potential to deal with more 

structurally complicated path.  

Meanwhile, the ending points of both calibrated paths match well with the 

entrance of the building, which can keep tracking user trajectory and later be 
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directly shifted to the outdoor positioning system when GPS signals are 

available. This system also has been tested on two types of smartphones 

while the previous studies mainly focus on Android-running systems. However, 

the system proposed by this study cannot provide gait-feature based visual 

tracking as the other studies (Jiang and Yin, 2015, Jiang and Yin, 2017, 

Zhang and Zhou, 2018), which makes the visual tracking results not fully 

compatible with step event mechanism of PDR, making this system more 

single-directional calibration based, i.e. calibrating PDR by visual tracking but 

the other way round, and only providing data for invisible places. 

TABLE 4.6.2.2 

POSITIONING ACCURACY COMPARISON BETWEEN OHTER STUDIES USING PVINS 

 

4.6.3. Height Estimation and Floor Detection 

The common way to achieve 3D positioning is to treat the horizontal and 

vertical localization separately (Ye et al., 2012, Muralidharan et al., 2014, 

Flores and Farcy, 2014, Lin et al., 2015, Sabatini and Genovese, 2014, Shin 

et al., 2014). This may due to the navigation mechanism, as the horizontal 

positioning is more important on each floor than in the transition areas in 

staircases and the vertical positioning only needs to provide the correct floor. 

However, as this study also considers the transition areas to be individual 

levels, it will both provide the height accuracy and floor detection accuracy for 

localization. Moreover, both the initial and the final floors have additional 

sensor information for floor level calibration, i.e. cameras’ 3D locations in the 

main system. This can help improve the floor detection accuracy than using 

only the barometer-based floor detection algorithm. 

Reference 
(Jiang and Yin, 2015, 
Jiang and Yin, 2017) 

(Zhang and Zhou, 
2018) 

This Study 

FPS 30 20 17 
Visible Area 
(%) 

>50 51.7 41.3 

Device  Samsung Galaxy S4 Huawei Honor8 Huawei  Mate 8,  
iPhone 7 Plus 

Turnings 4 3 17 
Best RMSE (m) 0.50 0.20 0.16 
Calibration Bi-directional Bi-directional Single-directional 
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4.6.3.1. Height Estimation and Floor Detection by Barometers 

After the recorded pressure data are transferred into height, the MAEs of 

estimated height information from both types of smartphones are about 0.5m, 

which is not as good as that of using two barometers with one as a reference 

device with an accuracy of 0.15m (Kim et al., 2017). However, it is better than 

the methods with a single barometer, which only achieves an accuracy of 1 to 

2m (Flores and Farcy, 2014, Lin et al., 2015, Shin et al., 2014, Sagawa et al., 

2000) (Table 4.6.3.1). Considering the low-cost and easy implementation, the 

proposed method is still a better choice than other methods with comparable 

accuracy. In addition, its precision is within an average value at 0.16m, 

suggesting a relatively stable performance while other studies have not 

provided corresponding data for comparison.  

TABLE 4.6.3.1 

ACCURACY COMPARISON BETWEEN DIFFERENT STUDIES USING BAROMETERS 

Reference (Sagawa 
et al., 
2000) 

(Flores and 
Farcy, 
2014) 

(Lin et al., 
2015, Shin et 
al., 2014) 

(Kim et al., 
2017) 

This Study 

Methods BPF Relative 
height 
fingerprint 

Relative 
height 
fingerprint + 
GNSS 
signals 

Reference 
Device  

Self-
calibration + 
Mean and 
Slope 
Change 
Detection 

No. of 
Barometers 

1 1 1 2 1 

Device  Self-
created 
prototype 

Samsung 
Galaxy S3 

Unknown 
Android 
Phone 

Samsung 
Galaxy Note 5, 
Samsung 
Galaxy S4 

Huawei Mate 
8/ 
iPhone 7 Plus 

MAE (m) 1.20 1~2m 1~2m 0.15 0.50 

 

After being processed using the floor detection algorithm, the results show 

that the barometers from both types of smartphones are sensitive enough to 

recognize the floors with a relatively high accuracy, i.e. 98%. These errors 

typically appear in the few first stairs of the movement going down from the 

staircases. This may be due to two major reasons as described in the 

previous sections. First is the imprecision of embedded barometers, which 

makes the errors unavoidable during processing and the previous studies also 
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have faced the similar problem (Muralidharan et al., 2014, Ye et al., 2014, Ye 

et al., 2016). Although this study has improved the sensitivity of floor height 

change detection as it is able to detect about less than half meter’s change in 

average, it is still over the average stair’s height. This is mainly from the 

limitations of algorithm used for detecting sudden changing points, which will 

cause short delays during floor detection.  

4.6.3.2. Comparison with IMU-based Height Estimation 

Some studies explore the accuracy of using vertical acceleration changes 

based on foot-mounted INS for height estimation (Foxlin, 2005, Hsu et al., 

2017). As the experimental conditions of these studies are different, the 

accuracy will be assessed by the ratio between estimated height error and the 

overall height of the staircases (Table 4.6.3.2). The results suggest that the 

barometer-assisted height detection is comparable to these foot-mounted 

sensor systems, even using lower precision of embedded hardware in 

smartphones. 

TABLE 4.6.3.2 

ACCURACY COMPARISON BETWEEN OTHER STUDIES USING ACCELEROMETERS 

Reference (Foxlin, 2005) (Hsu et al., 2017) This Study 

Methods ZUPT  ZUPT +  
Probabilistic Neutral 
Network Classification 

Self-calibration + 
Mean and Slope 
Change Detection 

Total Height (m) 3 7.84 13.07 
Device  InertiaCube3 Self-created  

Prototype 
Huawei Mate8/ 
iPhone7 Plus 

MAE (m) 0.06 0.50 0.50 

 

4.6.4. 3D System Validation  

The above experiment described in Section 4.6.1 to 4.6.3 is based on the 

data of a single user, and its accuracy is better than the targeting 

requirements (Rantakokko et al., 2007, Rantakokko et al., 2010). In order to 

validate the robustness of the designed 3D system, more variations of 

participants have been introduced with similar experimental setups, which can 

be found in Section 5.2.3.1.1 in Chapter 5 with more females and males 

moving between floors via the staircases. In addition, this study also has 

involved a group of the same number of males and females who are 
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unfamiliar to the selected building, i.e. PMB, to participate in the experiment. 

The acquired results have both achieved similar accuracy and precision as 

listed in Table 4.6.2.1.2 and 4.6.3.1. This has suggested a relatively stable 

performance of the designed 2D system with various users. 

In addition, similar experimental setups have also been tested in another 

building with similar structure at UNNC, which is used for 3D building model 

establishment (Chen et al., 2018). According to the achieved accuracy (Chen 

et al., 2018), the horizontal and vertical MAEs are also similar as those in this 

study. Together with the previous 2D validation in Section 3.8.2.5, it has 

suggested the reliability of the application of the designed 2D system under 

various environments. 

4.6.5. 3D Localization and Comparison to Other Studies 

A 3D path is produced after the integration with previous calibrated results of 

2D PVINS by similar time stamps (Fig.4.6.4). However, as not all the steps 

are detected, there are some additional errors being introduced into PDR-

based positioning system besides the errors from the barometer 

measurements, especially for Android-running system as it has more 

undetected steps. Moreover, as the step event frequency is not perfectly 

matching with that of height data, which will be another error source for the 3D 

localization. Thus, 3D positions estimated by Android-running system will have 

larger total MAE (1.55m) than that by the iOS-based system (1.52m). The 

errors mainly come from the transition areas, where there is no calibration 

from visual positioning and the barometer cannot deal with the quick changes 

of insignificant changes of height by walking downstairs (Fig.4.6.4), which has 

also been proved by (Ebner et al., 2015) with similar conclusions. When 

comparing to the other systems with precise IMU sensors (Foxlin, 2005, 

Zhang et al., 2015), their performances are not affected by the missing 

detection of steps during sensor fusion. Therefore, their previous higher 

accuracies in both 2D positioning and height estimation will lead to a relatively 

better 3D positioning accuracy, with 0.3% in (Foxlin, 2005), and 1.1% in 

(Zhang et al., 2015) (the accuracy here is the ratio between estimated error 

and the total distance of referential path). The accuracy of the proposed 

system is about 0.9%, which can be regarded as comparable to these studies. 
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Moreover, this is also better than the previous study using multi-sensor 

system including Wi-Fi, iBeacons, and barometer for positioning with a 3D 

positioning accuracy of 1.7% (Ebner et al., 2015), while having no additional 

cost for installation or infrastructure management. The accuracy of the 

proposed system may be improved in future with the PDR algorithm or the 

advancement of embedded IMU sensors to have higher sensitivity to detect 

the correct number of steps. Considering the requirements of a suitable 3D 

indoor positioning system, which is high precision, low-cost and offers an 

improved user experience, this system is a good solution, while the other 

precise 3D indoor positioning solutions need either a specific attachment of 

body sensors on the foot (Foxlin, 2005, Zhang et al., 2015) or additional 

installations of infrastructures (Ebner et al., 2015).  

Fig.4.6.4. The 3D view of the estimated path by smartphone-based PDR 

(Android in light blue and iOS in dark blue) and the locations of main errors in 

dash boxes. 

However, the requirement of 3D positioning accuracy is less important for real 

applications as it usually requires 2.5D positioning instead of real 3D 

positioning. The user positions can then be represented as             by 

providing the horizontal positions         and the correct floor number  . By 

integrating floor number information into the previous 2D system based similar 

time stamps, the overall performance of the system will not be significantly 

affected as this time the 2D positions are more important and the floor 

detection accuracy is high enough to handle automatic floor plan changes.  

4F 

3F 

2F 

1F 
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4.7. LIMITATIONS OF SYSTEM BEFORE BEING APPLIED INTO REAL PRACTICAL 

According to the previously acquired results from the experiments in the 

selected building, it can be found out that the designed prototype can satisfy 

the proposed requirements in Section 1.2.1.1, which is low-cost, high 

accessibility and accuracy. However, the application of this prototype in real 

practical may have some other difficulties. This is because that the 

environmental conditions in a real fire scene can be harsher than those under 

the experiments, which may affect the functionality of the system. The 

following sections will focus on some potential effects caused by high 

temperature, low visibility, and power outage. It will also investigate whether 

the designed 3D PVINS has the potential to be transferred from the current 

offline-mode into a real-time processing system.  

4.7.1. Tolerance to High Temperature 

As this system will be applied at a fire scene, the environmental temperature 

could be an important factor as it is involved in the process of height 

estimation. As the designed system is supposed to have a remote processing 

centre out of the managed building for building manager, the data processing 

during the fire will not be significantly affected by the high temperature of the 

fire scene. The main threats are on the user devices and surveillance system 

which need to be functional at the fire scene for position identification.  

According to the previous studies, the highest temperature limit for human 

survival during fire evacuation is about 60°C (Kenney et al., 2004, Zhang et al., 

2011a, Wang et al., 2015), and a higher temperature may cause difficulty on 

human movements and threats to human life. Meanwhile, the safe zone of 

smartphone functioning and surveillance camera working is also at a similar 

level (65°C). This has set the upper limit temperature to the system as well for 

moving occupants (60°C) and trapped victims (65°C).  

The impacts on the embedded barometer will be investigated first, as the 

identification of the floor level is the first priority for corresponding map 

information selection. It will focus on whether the maximum change of 

temperature will affect the accuracy of height estimation and whether this 

effect is tolerated for floor identification. According to Formula (4.4.1.6) and 
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Fig.4.4.3, the relative height    based on the pressure data can be rewritten 

as:  
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Meanwhile, according to the Gay-Lussac's Law (Poling et al., 2001), the 

relationship between pressure and temperature can be described as: 

                                                 (4.7.5.3) 

where   represents the gas volume,   represents the molarity of air, and   is 

the gas constant (                  ). The ratio between air pressures 

of different temperatures can then be written as: 
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It can then be interpolated with the integration of Formula (4.7.5.2) to acquire 

the corresponding    under different temperatures as:  
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The maximum ratio between 
   

   
 is then only be determined by the maximum 

change of the temperature, which is in the range from 20°C to 60°C, and the 
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result of this study is about 0.90. With the integration of the previous results of 

accuracy of height estimation, the new error with the maximum available 

increasing temperature for safe human movement at a fire scene is supposed 

to be 0.55m, and it will not cause great difference for floor detection when 

applying the similar height ranges. The accuracy of floor detection is still 98%, 

showing a relatively high tolerance to height/floor estimation.  

Moreover, the change of the temperature can also lead to the drift of IMU 

sensors (Aggarwal et al., 2008, Niu et al., 2013) and the failure of the 

surveillance cameras. The latter will be discussed later as it can be treated 

similarly as the result of low visibility. For the drift of the gyroscopes, it can be 

calibrated in the visible area. However, it will become worse if without enough 

heading calibration from visual tracking system due to high occlusion. 

However, for the drift of accelerometer, the current algorithm may need to be 

modified as the current threshold for step detection is more suitable for 

measurement under 20°C. The designed 3D PVINS needs some further 

works on the performances analysis of accelerometer under different 

temperatures from 20°C to 60°C. Moreover, the future development of system 

may need the integration of a thermometer for temperature recording, in order 

to derive the corresponding accelerometer performances.  

However, if the room temperature is over 60°C, the occupants are under the 

risk of unsafe evacuation movements. Thus, they are suggested to stay inside 

the room other than moving by themselves while the designed system is 

supposed to record their last position before stopping functioning. However, 

this information may not be very reliable as people may keep moving after the 

crash of the system, which can cause some difficulties for later rescue when 

the fire brigades try to utilize the last reported information to identify the 

trapped victims. When the temperature is over 65°C, the entire system will 

stop working.  

4.7.2. Tolerance to Low Visibility 

The visibility condition at a fire scene also needs careful considerations as it is 

normal to face a situation of low visibility caused by the insufficient illumination 

or heavy smokes (Proulx et al., 1999, Jeon et al., 2011, Zeng et al., 2017). 
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This may cause difficulties for the applications of the proposed system, on 

both aspects of the sensors and the users.  

On the aspect of the sensors, it may affect the utilization of the surveillance 

cameras, as it requires LoS for proper functioning. These two effects may lead 

to higher errors of pedestrian detection or even failure of the visual tracking. 

The factors which can lead to the low visibility during the operation at the fire 

scene can be divided into three categories based on different environmental 

conditions as insufficient illumination, heavy smoke, and entire failure of 

proper functioning. Thus, the corresponding approaches to deal with these 

situations are also different based on the specific factors.  

For low visibility caused by the deficient illumination, it may be overcome 

depended on the model of the surveillance camera applied in the building. If 

the camera is able for IR Imaging, it may still be functional with the 

modification of the Faster R-CNN based pedestrian detection system into 

multispectral detection. It can be achieved by the combination of the Visual-

Optical (VOS) and IR spectra to improve the situation of weak image contrast 

for pedestrian detection (Leykin et al., 2007, Hwang et al., 2015, Choi et al., 

2016, Liu et al., 2016, Konig et al., 2017). However, the detection accuracy 

may be slightly lower than that under the situation better illumination due to 

the poor image quality. The heat radiation effects from the fire scene should 

also be realized as an unneglectable environmental factor, which may add 

unwanted noise to pedestrian detection.  

For low visibility caused by heavy smoke, it may lead to haze effect inside the 

images and this effect can also be removed to some extent with the 

introduction of atmospheric scattering model (Ju et al., 2017) to the Faster R-

CNN based pedestrian detection by the application of an additional Multi-

Scale CNN (MSCNN) for medium transmission estimation (Cai et al., 2016, 

Ren et al., 2016, Li et al., 2017). Some recent studies have also introduced a 

more advanced deep network called Generative Adversarial Network (GAN) 

with higher accuracy and faster computation speed to deal with the heavy 

haze problem (Zhang et al., 2017, Suárez et al., 2018) and the de-hazed 

images can later be used for pedestrian detection. However, the level of the 

smoke should not be too high to make the targets entirely invisible, otherwise 
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the algorithm may not function properly. In this case, the integration of Near IR 

can also help to remove the haze effects to improve the detection accuracy. 

However, there is still some future work required to deal with that situation 

(Suárez et al., 2018).  

When the surveillance system completely fails to work, regardless due to 

power outage or too many people in the view with no entire detectable body, 

there is still a solution to deal with that situation if the temperature at the fire 

scene has not exceed the upper limit (60°C). As the designed system enables 

the independent working of the sub-systems, the smartphone-based PDR is 

still functional even under the situation of low visibility and provide the 

positioning information of the users. However, the failure of surveillance 

cameras does not happen at the very initial state as the fire expansion 

requires some time before the crash of the surveillance system. Thus, the 

surveillance system can still work for a short time before the final failure. After 

that, as without the heading calibration from the visual tracking, the accuracy 

of the provided results by PDR may be deteriorated depended on the specific 

moving path. If passing a long distance with an open loop, it may lead to 

larger drifts than moving across a short distance with a closed loop. For the 

situation of temperature within 60°C to 65°C, it may be used for trapped user 

localization though problematic as mentioned before, while it will stop working 

when over 65°C.  

On the user aspect, the low visibility may also raise difficulties for pedestrians 

to follow the guidance services as they need to check the screens of 

smartphones as well as the surrounding environment to figure out their 

current positions and the planned path for evacuation. When the low visibility 

is caused by insufficient illumination, this may not cause difficulties for 

positioning and path reading as the screen can still be visualized with its own 

illumination. In addition, the screen light can help people to have a rough 

check of the surrounding environment. On the other hand, if the low visibility is 

caused by heavy smoke, it may raise difficulties of checking screens and 

surroundings as people may not be able to see very clearly even when they 

are using a bending posture. In this situation, the vocal guidance may help to 

resolve the problem. However, as the low visibility can cause panic of the 
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pedestrians (Trivedi and Rao, 2018), it may raise the unwillingness of people 

to follow the navigation guidance, which has also been suggested in the later 

investigations mentioned in Section 6.3.3. When low visibility is caused by a 

power outage, this can be treated as the same situation of insufficient 

illumination when the temperature in the indoor environment is not over the 

extreme condition (60°C). When temperature is over 60°C, the system should 

strongly suggest people to stay inside the room via either visual or vocal 

guidance, in order to avoid hurt and ensure the last record of their trapped 

position can help the fire brigade to localize them in a short time.  

4.7.3. Consequences of Power Outage 

The cut-off of the electric power during a fire event can also be considered as 

a challenge as it will disable the functionality of both the surveillance-camera-

based visual tracking and data transfer of the entire system via WLAN. For 

the failure of the surveillance system, it has been discussed in the previous 

section as it can be compensated by the smartphone-based PDR to some 

extent, though with lower accuracy. For the data transfer via WLAN, it may be 

overcome by using the alternative mobile data option (3G/4G). However, both 

these two solutions are limited by the temperature of fire scene, and it is only 

feasible when it has not exceeded 65°C. As the safe temperature for human 

movement is 60°C, the worst case may not happen for tracking moving 

occupants. However, for the trapped victims, it may raise the issue of false 

identification of their current locations.  

4.7.4. Possibility of Transferring into Online Mode 

Like other similar studies (Jiang and Yin, 2015, Jiang and Yin, 2017, Zhang 

and Zhou, 2018, Foxlin, 2005, Huang et al., 2010a, Zhang et al., 2015, Meng 

et al., 2014, Hsu et al., 2017, Fourati, 2015, Fang et al., 2005, Yun et al., 2012, 

Kothari et al., 2012), the data in this study is post-processed after 

transmission to the desktop. This is mainly limited by the visual data 

acquisition due to the privacy policy in the university and the visual data is not 

allowed to be transmitted to the desktop in real time. Meanwhile, the inertial 

and pressure data can be sent to desktop and processed during the 

movement via WLAN and the positions of the user will be stored in the system. 
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The current offline system can be used for low-cost 3D mobile mapping, which 

can provide the moving trajectories for 2D laser scanning to build 3D indoor 

models (Chen et al., 2018, Yang et al., 2019). It also can provide historical 

paths of the indoor pedestrians for security checking. In the future, one of the 

limitations of turning this system into an online system will be the live 

streaming speed of surveillance videos. This is determined by the available 

bandwidth of the existing WLAN in the building. For the current system, the 

bandwidth should be approx. 6 Mbps for each camera, while the university’s 

WLAN bandwidth is 10 Mbps and it can fully support its live streaming. The 

storage of the data may be another problem. However, this system is 

designed for a whole building with a powerful processing centre and it is 

assumed to finish all processing in the mainstream and send the data back to 

the user’s device via the network, like the idea mentioned in (Fang et al., 

2005). The requirement of the computation power for real-time detection is not 

very high. In this study, the computer has a CPU in Intel Core i7-7700, a GPU 

in NVIDIA GTX 1080, and 16G RAM, which is commonly used in the field of 

computer vision industry. This makes the design of this system highly possible 

to be applied as a real-time system in real scenarios with fewer barriers to 

overcome for industrial applications in fire evacuations.  

4.8. SUMMARY 

The previous studies (Jiang and Yin, 2015, Jiang and Yin, 2017, Zhang and 

Zhou, 2018, Abdulrahim et al., 2011, Yan et al., 2018b, Yan et al., 2018a, Yan 

et al., 2018c) mentioned in Chapter 3 only provide 2D user locations, while to 

enable a continuous positioning service, particularly for the time the user is 

walking up or downstairs, a 3D (or the recognition of the floors) are required 

(Tanigawa et al., 2008, Shen et al., 2015, Ye et al., 2016). This chapter 

introduces embedded barometer from smartphone and provides the height 

and floor estimation using a novel floor detection algorithm with the integration 

of pre-stored camera locations for precise floor identification. It achieves a 

vertical accuracy of 0.5m with 98% accurate floor detection. However, the 

results are still limited by the precision of barometers and the limited capability 

of algorithm itself for sudden change detection.  

This study has designed a novel low-cost 3D PVINS that uses multi-cameras, 
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smartphone-based PDR and embedded barometer, and provides a 

comparable 3D accuracy of 0.9%. The novelty of this system is:  

a) a modified Faster R-CNN based passive visual tracking, with simple 

implementation, high accuracy, and real-time detection;  

b) a novel algorithm for multi-scene shifting with automatic PDR turning 

detection; 

c) a novel data fusion method with simple operation and high effectiveness, 

achieving more than 20% 2D accuracy improvement for severe occlusion-

affected areas than previous 2D PVINSs;  

d) a novel algorithm for height/floor estimation with more detailed floor-level 

division using single embedded barometer in a smartphone;  

e) the acquired results with absolute coordinates to be directly used in 

outdoor systems;  

f) the application on both Android-running and iOS-running smartphones 

with better robustness than previous Android-only systems.  

This system can provide 2D positions of each floor with an accuracy of 0.16m 

while identifying the current floor level of the users with 98% detection 

accuracy (0.5m vertical accuracy), which has already reached the 

requirement by Federal Communications Commission (FCC), with 50m 

horizontal accuracy and 3m vertical accuracy (FCC, 2015). Another 

advantage of this 3D PVINS is no special requirement of attaching 

instruments on user bodies or using specific sensor-suite as settlements in 

other self-contained systems, which makes them more accessible for future 

applications. However, the PDR algorithm used in this study needs further 

improvement, because there are more missing steps with the accumulation of 

distance. This may be due to the data logging mechanism, and it may be 

solved by temporary data storage on a user’s device and resuming data 

transmission when having Wi-Fi connection again. This problem mainly 

happened in the staircase area as the RSS of WLAN is significantly 

weakened, while it is not a big problem in previous chapter as the WLAN RSS 

in the floor area is stronger and more stable. Moreover, as this system is 
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currently designed for single user tracking, it still has the potential to be 

developed into a multi-user system, which needs to improve the algorithm of 

visual tracking. The acquisition of surveillance data may be another limitation 

before turning the current system into a real-time system as it will raise the 

issue of personal privacy and this time the permission is pre-applied for data 

downloading. The floor identification approach can also be more precise to 

identify exact user 3D locations inside buildings. 
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Chapter 5.  AGENT-BASED INDOOR 

EVACUATION MODELLING OF TWO 

EVACUATION STRATEGIES WITH 

PHYSICALLY MEASURED 

PARAMETERS 

5.1. INTRODUCTION 

The preparation of the proper safety measures, e.g. the calculation of the 

evacuation time, have become more important for building life safety 

assessment (Kuligowski et al., 2010, Wagner and Agrawal, 2014). This study 

will provide a design of a simulation model with the integration of ABM and 

continuous-network based indoor environment driven from real CAD plans of 

a four-floor building, to simulate and analyse occupants’ movement from 

indoor area to the outside before and after fire alarm in the venues of ordinary 

campus-office area with the change of available exits. It will attempt to 

compare the efficiency of two evacuation strategies called randomly 

movement and nearest exit assignment.  

When using the ABMs, the occupant characteristics is one of the important 

human factors to accurately represent the whole process and features 

involved in the evacuation models (Proulx, 2002, Muhdi et al., 2006, Kady and 

Davis, 2009a), which is defined as the abilities or behaviours of people before 

and during a fire by Life Safety Code ((N PA and  ot , 2015). Among them, 

the pedestrian speed and ID (Inter-Person Distance) are two important factors 

that require careful specification (Shi et al., 2009b). This study mainly focuses 

on speed and diameter change of different genders under the condition of 

using two different types of the stoop-walking (SW) postures with simulated 

scenarios of emergency and non-emergency. The corresponding setups of the 

parameters can then be measured based on the data collected by 
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smartphone-based sensors following the same methods mentioned in 

Chapter 4, which may help to improve the reality of the simulation results. The 

pre-evacuation period is summarized based on the practical survey data 

instead of estimation (0~120s) (Daamen et al., 2007, Tang and Ren, 2008, 

Spearpoint and Xiang, 2011) or be ignored as previous studies (Shiwakoti and 

Sarvi, 2013, Wagner and Agrawal, 2014, Kasereka et al., 2018, Trivedi and 

Rao, 2018).  

Meanwhile, a simplified and self-defined fire model is also integrated into the 

simulation process based on the spread of the flame, in order to predict the 

percentage of the population in danger during the process of evacuation and 

figure out possible solutions. The simulated models will help to predict the 

average as well as the maximum evacuation time of the occupants for the 

whole building and for each exit. Moreover, it will find out the potential 

congestion areas inside the building. Based on comparisons of simulated 

evacuation performances by using two evacuation strategies, it will provide an 

answer about which strategy is more suitable in order to improve the 

efficiency of future evacuation planning and guidance.  

The following sections will separately describe the detailed setups of the 

spatial environment, the person movement, and fire expansion during 

simulation followed by simulated results.  

5.2. DESIGN OF THE ABM AND ATTRIBUTES OF THE AGENTS 

The fire evacuation simulation is a complicated system, which can be divided 

into three parts as the building environment, occupants and fire (Fig.5.2). This 

study proposes a hybrid ABM to model a four-floor campus teaching building, 

which is created as a GIS-based building environment and is proportional to 

the real world coordinates with offices, staircases, and exits. The system is 

designed for simulating the process of crowd movement before the fire drill 

and crowd evacuation after firm alarm. The movements of the individual 

agents are based on the mixture of SF and ABM modelling approaches. The 

former will provide the interactions between individuals and the environment, 

while the latter can support the heterogeneous individual characteristics 

description. The integration of these two modelling methods will provide a 
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continuous description of the crowd evacuation process inside the building. 

There are two types of agents included in this model, i.e. occupants and the 

fire. The initial locations of the occupants will be created according to the 

distribution of rooms and move randomly inside the building before the fire 

alarm is triggered. After the fire alarm, there will be a random distribution of 

occupants inside the building moving to the exits based on their random 

decisions of the routes (i.e. behavioural model), and the number of exits will 

increased from two to five with the availability of emergency exits. The 

average time for survivals will then be estimated depended on the different 

exits and for the entire building. In addition, a density distribution map will be 

acquired during the movement in order to discover the bottlenecks inside the 

building. Meanwhile, a simplified fire model will be integrated into the 

evacuation model, in order to estimate the ASET and to evaluate the 

percentage of the population in danger during the process of the evacuation.  

This system is implemented under the environment of AnyLogic, which is able 

to provide quick and high-fidelity agent-based modelling and simulation with 

an user-friendly interface, Java-based programming environment, and multi-

purpose supportive component libraries (Borshchev, 2013). It will be helpful in 

the planning of the fire evacuations with the following four advantages to the 

emergency managers: 

1) The GIS-based building environment can be modified to fit the different 

requirements of floor plans with similar spatial characteristics as rooms, 

staircases and changing number of exits. This allows the quick replication of 

different kinds of buildings of multi-floors (not very high building as it may 

require a refuge layer) with the availability of their floor plans to execute the 

similar simulations and acquire the results close to the reality;  

2) The fire model is simplified and thus requires less computational power as 

previously using Fire Dynamics Simulation (FDS) model to render the 

expansion of flames; 

3) The fire and occupant model can be specified based on different user 

definitions, with various spread rate, locations, ID and behavioural rules;  

4) The model can be tested for multiple solutions of evacuation strategies, 

with a relatively low cost and risks.  
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Fig.5.2. The general architecture of the ABM-based fire evacuation model.  

The attributes of the agents are acquired in two ways. For the occupants, their 

moving attributes are acquired from the experiments, using the system called 

PVINS with the integration of smartphone-based IMUs, surveillance cameras, 

and the smartphone-based barometer. The experiments will be able to 

provide the moving velocity and preferences of using different postures, i.e. 

UW, Trunk-flexion-only SW (TSW) and Trunk-and-Knee-flexion SW (TKSW). 

The preference of the bending postures and the pre-movement time are 

depended on the survey data of occupants regularly work inside the building 

and then be applied to the model. For the fire dynamics, as it is simplified as a 

spatial-temporal model, the key parameter related with the fire simulation 

model is the spread rate of the fire and this data is based on the summary 

from the previous studies (Galea et al., 2008, Wagner and Agrawal, 2014, Niu 

and Song, 2016).  

5.2.1. Spatial Setups 

The fire evacuation is related with both the geometric/static features and the 

dynamic features from the fire and the pedestrian movement (Galea et al., 

2008, Tang and Ren, 2008, Shi et al., 2009a, Tang and Ren, 2012, Tan et al., 
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2015). In this study, the establishment of the spatial environment is supported 

by the Space Markup Elements in Pedestrian Library in AnyLogic, which can 

develop a continuous graphical model in a real-scale (Borshchev, 2013). For 

the static features, it is represented as a GIS-based model with multiple layers 

established based on the floor plans imported from the GIS shapefiles 

(Fig.5.2.1.1). The topological relationships can then be simply acquired based 

on the spatial analysis, which is usually stored as the external attributes with 

the GIS shapefiles, in order to identify corridors, doors, rooms, staircases and 

exits. Meanwhile, these features can help to shape the potential routes for 

pedestrians, as only the opening space is allowed to pass through. For the 

dynamic features, such as the pedestrian distribution and flame expansion, 

can be represented as a temporal series, with the provision of initial locations. 

These can also be determined due to the spatial attributes from the static 

features, as the pedestrians are usually located inside the room and the fire 

location is user-defined. The simulation results can also be imported to the 

GIS model with the accumulation of the time, and the corresponding dynamic 

features inside the GIS models can be updated with the time stamps. The 

quantity of spatial statistics during the evacuation process, such as the 

changes of the pedestrian density distribution in different floors and the fire 

expansion can also be automatically acquired by analysing the corresponding 

variables (Fig.5.2.1.2).  

 

               (a)                                                                   (b) 

(a) (b) 
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                (c)                                                                          (d) 

Fig.5.2.1.1.The GIS-based simulation environments from 1st floor to 4th floor 

(a)-(d) established by AnyLogic with pedestrian density identifications (The 

rooms enclosed by walls are in orange, the doors and exits are in green, and 

the staircase areas are in grey). 

   
      (a)                                                              (b) 

Fig 5.2.1.2. An example of fire expansion and pedestrian density distribution 

(person/m2) on the 1st floor of the tested building in 2D (a) and 3D (b).  

5.2.2. Fire Dynamics 

In previous studies, the fire data is usually represented by a Computational 

Fluid Dynamics (CFD) model, which can simulate the expansion of flames, 

smokes and other relative combustion products in relatively realistic way (Jia 

et al., 2006, Grandison et al., 2007, Galea et al., 2008, Tang and Ren, 2008, 

Shi et al., 2009a, Tang and Ren, 2012). However, this may require more 

computational power for rendering. As mentioned before, the fire data can be 

(c) (d) 
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simply represented by a simplified temporal-spatial model with the linear 

increasing of the detrimental areas, without the considerations of 

characteristics of flaming materials (Wagner and Agrawal, 2014, Niu and Song, 

2016). The fire will expand in a random direction from a user-defined ignition 

location with a specified spreading rate. In this study, the fire agents are 

treated as fluid-based agents as the fire event initiates inside the room and 

will fulfil the ‘room’ space first before being released into the corridors by using 

the ‘valve’ for controlling. They are first created from the ‘source’, and then be 

transferred to the fluids by using ‘agentTo luid’ module while randomly 

expanding inside using ‘queue’ module. When it is moving to outside of the 

room (also treated as the triggering of the fire alarm), it is transferred back to 

normal agent by using ‘fluidToAgent’ with a lateral spreading rate. With 

consideration of the fire-proof doors, the flames will only move along the 

corridors without the re-entering of the other rooms by using ‘moveTo’ module. 

The fire will keep expanding until it fulfil the open spaces inside the building 

and stopped at the exits by using the ‘delay’ and ‘hold’ modules (Table 5.2.2).  

TABLE 5.2.2 

THE ALGORITHM OF FIRE EXPANSION 

Algorithm 1 Fire Dynamics Model 

1 Initialize fire at the selected office ⊳ Using Source 
Start of Event ←  urrent Time 

Transfer fire agents into fluid-based agents ⊳ Using AgentToFluid 

2 
3 

4 If room is not full then         

⊳  Current room is not fulfilled  by the smoke/flame 
5      Fire agents accumulate in the room with specified rate  

     ⊳  Using Tank  
6 else 
7      Release the agents from room ⊳ Using Valve 
8      Transfer fluid-based agents back ⊳ Using FluidToAgent 
9      for each agent Є  ire do 

           Exit {Exit , …, Exit 5}← Uniform Probability  10 
11            Move to Exit ⊳ Using MoveTo 

           Fire has been blocked before being released to outdoor 

           ⊳ Using Hold 

12 

13       End for 
14 End if 
15 Return Time before Alarm = Current Time – Start Time 

 

The pedestrians who are located within a specified distance to the fire after 

being released into the corridors are treated as hurt. The smoke cannot not 
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visualized in the GIS-based environment provided by AnyLogic but with the 

calculation of the production rate, due to no corresponding agent symbols. 

When the amount of smoke reaches the specified threshold after certain time 

period (i.e. the calculation of the ASET), all remaining people inside the 

building area are treated as trapped.  

5.2.3. Pedestrian Movement 

In this study, the movement of the pedestrians is supported by the Pedestrian 

Library in AnyLogic, which allows the modelling of pedestrian behaviours 

based on a SF model in a microscale with a continuous manner. The custom 

attributes and behaviours of the people will be assigned to the specific types 

of the agents, i.e. people. AnyLogic can randomly assign the initial values of 

the physical attributes to the agents, such as the velocity and group 

population, based on a certain probability distribution by the ‘PedSource’ 

function. In this study, it assigns a triangular distribution of the velocity 

attributes to the populations based on the survey data of preferred bending 

postures and the specific velocities of the corresponding postures are 

acquired by the experiments based on the using of the PVINS mentioned in 

the previous chapters.  

5.2.3.1. Individual Agent Design 

5.2.3.1.1. Moving Velocity of Different Postures 

1) Subjects Selection  

The moving velocities of different bending postures, i.e. TSW and TKSW, are 

collected by the PVINS with the selected subjects based on the survey data of 

user knowledge during indoor evacuation. The survey has been conducted 

among undergraduate students with 28 females and 22 males, who regularly 

work inside the tested building, i.e. PMB building from the UNNC. The overall 

height and weight distribution of anticipated female volunteers are listed below 

(Fig. 5.2.3.1.1).  

In this survey, the majority of the anticipated female volunteers have a height 

in the range of 160~165cm and their weights are in the range of 50~55kg. 

Meanwhile, the representative height and weight of male anticipants are in the 

range of 175~180cm, and 65~75kg respectively. All the participated 
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volunteers have a BMI (Body Mass Index) at a healthy stage (19.9~24.2), 

getting rid of the effects from the overweight and age (Grasso et al., 2000, 

Kobes et al., 2010a, Hora et al., 2012, Hora and Sladek, 2014, Hora et al., 

2017). These physical conditions will be also applied for searching for 

potential representative volunteers in both genders to testify how different 

postures during the movement will affect the walking speed and step length. 

10 subjects (5 males and 5 females) meeting the above requirements from 

UNNC are selected for the walking posture experiment. The study was 

approved by UNN ’s Ethics Review Board and all attendees have signed the 

informed consent.  

  
(a)                                                                (b) 

Fig.5.2.3.1.1. The height (a) and weight (b) distribution of male and female 

participants.  

2) Experimental Design for Horizontal Movement  

The subjects are required to walk through a 92.75m test track, which is a 

corridor located at the fourth floor on the test building. The way of applying the 

PVINS by the users is similar to the setups as that applied in the previous 

studies (Yan et al., 2018a, Yan et al., 2018b, Yan et al., 2019) (Fig.5.2.3.1.2a). 

The subjects will be filmed by the surveillance system inside the building with 

the installation of the MATLAB Mobile apps to transfer their PDR data to the 

data-control desktop. Other than the other studies about the user velocity of 

different postures (Kady and Davis, 2009b, Davis, 2011b, Gallagher et al., 

2010, Gallagher et al., 2011, Cao et al., 2014, Cao et al., 2018), which use a 

specific set of multi-camera/motion capture system with professional sensors 

for acquiring the walking speed during the process, the method applied in this 
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study, which is mentioned in Chapter 3, is much simpler as it does not need a 

large number of professional cameras/sensors, but the existing indoor 

infrastructures and available user devices.  

Before the test, all the subjects will have 10 minutes to learn to use the 

installed data collection app on smartphones and the required postures based 

on the designed reduction of body height (30%). The reduction limitation for 

the height is based on the previous findings that the maximum available 

height for long-term SW is 70% of the height for the females (Morrissey, 1980, 

Morrissey et al., 1985). During the experiment, each subject will first use a 

UW posture before reaching to the first camera, which accounts for 60.9m of 

the track. The participants are required to stop here if they are informed that 

the current scenario is under a relaxed state. Otherwise they will be required 

to finish the rest of the track, using a SW posture in the form of TSW or TKSW 

in a random order (Fig.5.2.3.1.2b). Meanwhile, every two subjects will be 

treated as a group and one people will start walking first while the other will 

start one-step later, in order to study the ID between people. The groups are 

settled as two females, two males, and a mixture of male and female, and the 

postures used within one group are settled as two TSWs and two TKSWs, 

without the mixture setting. This is due to the distance between every two 

people is actually decided by the second people’s distance to the first people 

as the first moving user does not have any limitations of moving forward.  

 
(a) 
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(b) 

Fig.5.2.3.1.2. The test track for the horizontal walking speed changes (a) with 

different postures (b). 

3) Results of Horizontal Movement  

According to the previous studies, the comprehensive analysis and 

processing of acceleration data from the smartphones, especially at the 

vertical directions (z-axis), can help to detect different activities, such as 

jumping, walking, running and falls (Zhang et al., 2006, Yang, 2009, Khan et 

al., 2010, Lee and Carlisle, 2011, Zintus-art et al., 2011, He et al., 2012, 

Sucerquia et al., 2018). This study also takes the idea but to detect a certain 

continuous changing pattern of the speed to distinguish the different SW 

postures as the change of the accelerations is not as significant as in the 

previous studies. The acquired synthesized accelerations of the detected 

steps will be processed for velocity and step lengths of each subjects. These 

data will then be processed based on the finding the sudden changes of the 

average values, in order to investigate a periodical velocity changes affected 

by the changes of postures during the process. The patterns of speed and 

step length changes for different SW postures can be found in the provided 

examples under the simulated emergency scenarios (Fig.5.2.3.1.3 and 

5.2.3.1.4).  
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(a) 

 
(b) 

Fig.5.2.3.1.3. An example of the walking speed changing patterns for using 

TSW (a) and TKSW (b) (I~IV represent the different periods of the walking 

process).  

According to the provided examples, both of the two processes for UW have 

experienced an initialization period and reaching a stable state of comfortable 

speed, represented as Phase I and II in Fig.5.2.3.1.3. The velocity changes 

under a relaxed scenario also experienced a similar pattern, though the 
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II 

III 

I 

II 

III 
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average values are slightly lower. This may be caused by the effect from the 

panic, as it can accelerate the motions of the pedestrians during the 

evacuation process (Helbing et al., 2000, Shen et al., 2018, Trivedi and Rao, 

2018). The speed of using either of the SW postures have reduced from the 

stable state, which is agreeable to the findings in the previous studies (Kady 

and Davis, 2009a, Gallagher et al., 2010, Cao et al., 2014, Cao et al., 2018), 

caused by hip and/or knee flexion (Ivanenko et al., 2000, Gard et al., 2004, 

Orendurff et al., 2004, Hora et al., 2017). The main difference between the 

two postures are in the following periods, although the velocity shows a 

significant decrease from the Phase II after using either of these two SW 

postures. The user who uses a TSW posture directly transfers to another 

stable state (III) with lower velocity, while for who uses a TKSW posture, it 

need a transition state (IV) before reaching to the second stable state (III). 

This may be explained by the more significant changes of accelerations at z-

axis for the TKSW as the smartphone with IMU sensors are held horizontally 

in front of the lower chest. The bending of the trunk alone will not cause great 

changes of COM while the bending of the knees will lead to greater decreases 

of the COM. Meanwhile, the speed after using the TSW is higher than that of 

using TKSW. The former (TSW) is even higher than that in Phase I (initial 

UW), while the latter (TKSW) is lower than that in Phase I. The above patterns 

for the two different postures are shared by all the selected participants of the 

experiment and this can help for future identification for the different SW 

postures. This study also summarizes the average ranges of the speed of 

different postures for corresponding genders based on the results from the 

repeated experiments (Table 5.2.3.1.1& 5.2.3.1.2). It also supports the 

conclusion from the previous studies that the gender can also be a factor 

which affects the walking speed (Kady and Davis, 2009a, Cao et al., 2014, 

Cao et al., 2018).  
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(a) 

 
(b) 

Fig.5.2.3.1.4. An example of the step length changing patterns for using TSW 

(a) and TKSW (b) (I~IV represent the different periods of the walking process).  

The step length changes for this two SW postures follow the similar patterns 

(Fig.5.2.3.1.4). The users have also experienced a process of familiarization 

of their walking behaviours when using UW posture, from an initial state to a 

comfortable state under both normal and emergency scenarios. The 

characteristics of changing to different SW postures also follows the similar 

pattern of as the velocity changes, which the TSW posture does not have a 
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transition state before reaching to a new stable state while the TKSW does. 

However, the average step lengths for the final stable state for the two SW 

postures are both lower than that of UW at Phase II due to limitations from the 

lower limb length (Hora et al., 2017) but still higher than that of the Phase I, 

which is different from the corresponding phases of the speed changes. 

Moreover, the step length of the TKSW are even higher than that of the TSW. 

This may be caused by the different attempts of keeping a relatively fast 

speed when people are using the TKSW posture. Some of the people tries to 

move a larger step though the step length are limited by the lower limb length 

while the others move a smaller stance in order to keep a relatively high 

frequency of steps. In this study, the former kind of the subjects occupy the 

majority of the participants. However, this requires further investigation in 

future studies due to the limited number of the participants in this study. 

Moreover, the observed patterns of velocity and step length changes can be 

further used for posture recognition, with increasing number of participants. 

TABLE 5.2.3.1.1 

 THE AVERAGE VELOCITY AND STEP LENGTH (MEAN ± SD) OF DIFFERENT 

POSTURES FOR BOTH GENDERS UNDER EMERGENCY SCENARIO 

 

TABLE 5.2.3.1.2 

THE AVERAGE VELOCITY AND STEP LENGTH (MEAN ± SD) OF DIFFERENT 

POSTURES FOR BOTH GENDERS UNDER NORMAL SCENARIO 

 
 

 

 

 

 

 

For the ID between every two people, there is no great differences between 

two genders under two scenarios. The major difference is mainly caused by 

  Posture 

  UW  TSW TKSW 

State  Initial (I) Comfortable (II) TSW (III) Transition to 
TKSW (IV) 

TKSW (III) 

Velocity (m/s) Male 1.12±0.10 1.36±0.16 1.16±0.16 0.82±0.24 1.02±0.12 

 Female 1.01±0.09 1.23±0.13 1.13±0.15 0.62±0.22 0.97±0.10 

Step Length (m) Male 0.66±0.10 0.74±0.12 0.68±0.11 0.62±0.18 0.69±0.21 
 Female 0.60±0.09 0.70±0.11 0.62±0.10 0.56±0.17 0.64±0.10 

  Posture 

  UW  

State  Initial (I) Comfortable (II) 

Velocity (m/s) Male 0.66±0.10 1.10±0.12 

 Female 0.60±0.09 1.01±0.11 

Step Length (m) Male 0.56±0.10 0.65±0.12 
 Female 0.50±0.09 0.60±0.11 
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applying different postures. For UW, the mean ID between people is about 

0.40±0.05m. When turning to using bending postures, the mean ID for TSW is 

about 0.80±0.10m, while for the TKSW, the mean ID is about 0.60±0.10m. All 

the above information will be applied to be used in the setups of the 

pedestrian movement model.  

4) Experimental Design for Vertical Movement 

For the movements between the floors, it will be risky to require people using 

these two SW postures on the staircases as the SW postures may lead to 

falls with corresponding injuries with relatively high possibility (Campbell, 2013, 

Ferraz and Saba, 2017). Therefore, the walking speed of moving along the 

staircases are inferred from using UW. For UW, the participants are required 

to move downstairs from fourth floor to the first floor, passing a track about 

36.12m (Fig.5.2.3.1.5). In the test site, the average riser height of the stairs is 

0.15m and the average thread length of the stairs is 0.29m. This time, both 

the barometer and the PDR data are required to be recorded at the 

smartphones held by the participants. The method applied for speed 

measurement is based on the algorithm mentioned in Chapter 4 (Yan et al., 

2019).  

During the experiment, the participants are required to hold the smartphones 

horizontally in front of the lower chest when walking downstairs. They also 

move in groups with two people in each group. One people will start walking 

first while the other will start two-stair later, in order to study the ID between 

people. The groups are settled as two females, two males, and a mixture of 

male and female.  

Fig.5.2.3.1.5. The test track for the vertical walking speed changes.  
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5) Results of Vertical Movement  

The movement of the pedestrians at the staircases can be treated as 

repeated height change patterns based on the previous findings in Chapter 4 

(Yan et al., 2019). This study considers one staircase plus one transition 

platform as one group of the characteristically repeated pattern, and thus it 

has six groups in the experiment according to the results of floor identification. 

In order to eliminate the effects from the initialization of the speed in the 

beginning, the first group will be removed during the process of speed 

calculation. The average UW speed for vertical movement is then calculated 

from the rest five groups and the value is about 0.82±0.16m/s for the males 

and 0.74±0.16m/s for the females. When comparing to the horizontal speed of 

using UW, it can be found out that the ratio between vertical speed and the 

horizontal speed is a constant based on the results in this study, which is 

about 0.6. This ratio can be applied to the model in order to infer the potential 

instantaneous speed in the staircases based on the actual speed of the 

horizontal movement during the simulation process. For the ID between two 

people, there is still no great differences between two genders and its value is 

close to that of horizontal movement (0.29m), which is about one-stair away 

between each other. Thus, the previous ID of other SW postures can still be 

applied into the evacuation model with the same value.  

5.2.3.1.2. Application of the Velocity inside the Simulation 

When applying the pedestrian velocity to the simulation, it needs be within a 

specific range which is based on the integration of experimental and survey 

data. This study also investigates the preferences of the TSW and the TKSW 

during evacuation among the students in order to determine the specific 

triangular model of the speed in the simulation model. According to the 

acquired results, 66% of the interviewees prefer to take a TKSW posture 

during the evacuation requiring bending. For different genders, their choices 

do not have a significant differences as the majority (66%) of them seems to 

prefer to take a TKSW posture. With the integration of the corresponding 

velocity and ID information, the triangular model for the parameters of the 

pedestrian movement can then be determined based on the formula below 

(Samuel, 2004): 
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 (5.2.3.1.2) 

Where the Min, Max and Mode represents the minimum, maximum and mode 

value of the parameters. The horizontal velocity required for the model under 

different scenarios can be acquired from the previous experiments. For the 

non-emergency scenario, the minimum is taken from female’s average 

velocity of UW postures at both initial and comfortable states and maximum is 

taken from same states of males. For the emergency scenario, it varies from 

different postures, the minimum and maximum values will be taken from the 

lowest (female with TKSW) and highest speed (male with UW) for all different 

postures of two genders. This is due to that the average speed of the males 

are always higher than that of the females, regardless of the postures. For the 

mode value for the both postures, as there are more females inside the tested 

building based on the survey data and the TKSW is the preferred posture, 

they are acquired from the female’s velocity with TKSW.  or the vertical 

movement, as it is proportional to the horizontal speed, its range can also be 

determined with the above information. The ID data is also settled by following 

the similar rules. These data can then be applied into the designed simulation 

model of evacuation in each floor. 

5.2.3.2. SF Model-Based Personal Interaction 

The AnyLogic utilize an SF-based model to describe the interactions between 

agents and agent to the environment, which is affected by the panic 

level       updated every second. During the movement inside the building, 

the pedestrians tends to form small groups/crowds. The agent   inside the 

group of mass      moves with a certain desired velocity   
     in a certain 

direction    
    , and the instantaneous speed        will be updated 

correspondingly within a certain characteristic time period   . Meanwhile, the 

agent   will keep certain safe distances to other agents   and walls   due to 

the effects of repulsive interactions forces, which can be represented 

as     and     respectively (Helbing et al., 2000, Lin et al., 2006, Zheng et al., 

2009, Xi et al., 2011). The overall dynamic model can be represented as: 
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     is the desired velocity at the initial state and the        

      is the 

maximum desired velocity, which are already acquired from the above 

process of individual agent design. The repulsive forces     and     can be 

further interpreted as: 
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where      is the sum of radii of agent   (  ) and agent   (  ),     and      

represent the physical distance between agent   and agent   (ID) and the 

distance between agent   and wall   respectively,     is the unit vector 

pointing from agent   to  ,     is the perpendicular vector to wall  ,     and 

    represent the tangential direction to agent   and wall   respectively, 

and     
  is the velocity difference in tangential direction to agent  . The rest 

parameters,  ,  ,  , and   are all constants and their values are 2000 N, 0.08 

m, 1.2×105 kg/s2, and 2.4×105 kg/m·s. According to previous studies,    is 

within the range of 0.25m to 0.4m according to the shoulder length (i.e.     

         ) (Helbing et al., 2000, Trivedi and Rao, 2018). As the measured ID 

(   ) in this study is with the range of 0.4m to 0.8m, it suggests that         is 

always positive in formula (5.2.3.2.5), meaning all agents are touching with 

each other.  

5.2.3.3. Behavioural Rules 

5.2.3.3.1. Pre-Alarm 

Before the fire alarm, the pedestrians inside the building are randomly moving 

around based on personal choices of the routes, starting from different rooms 

of each floor (Table 5.2.3.3.1). They are assumed to initially move out from the 
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rooms, and thus the agents are created at the doors of the rooms by using 

‘pedSource’ modules. The possibilities of pedestrians’ choices of the different 

staircases and exits to pass through, which are represented by 

‘pedSelectOutput’ modules, are evenly distributed as the average familiarity to 

the different exits are prone to the mid-high level according to the survey 

taken among the participants regularly working inside the building. Then, their 

processes of moving to the selected staircases or exits are represented by 

using ‘pedGoTo’ modules. Moreover, for people of the upper floors, i.e. not on 

the first floor, they need to change between floors by using 

‘ped hangeGround’ modules. Meanwhile, their average decision time as well 

as the potential queuing time are also considered in the simulation, which are 

represented by ‘PedWait’ modules in the model. The amount of the people 

inside the building will reach to an equilibrium as people keep moving in and 

out.  

TABLE 5.2.3.3.1. 

THE ALGORITHM OF PRE-ALARM MOVEMENT 

Algorithm 2 Pre-Alarm Movement 

1 Initialize Population of each floor based on rooms with limited capacity 
⊳  Using PedSource                (pedestrians of each floor) 

2 Start of Movement ←  urrent Time 
3 While (Time < Time Before Alarm) 

⊳  The fire alarm has not been triggered 
4      for each Ped Є Population do  
5             if Ped Є PedSource      then  
6                 Stairs       _Floor   ← Uniform Probability 
7                 Goto Stairs   _Floor    ⊳ Using PedGoto 
8                 Change to Floor      ⊳ Using PedChangeGround 
9             else 

                {Stair_Floor   , Exit , Exit }← Uniform Probability  10 
11                  If Goto Stair_Floor    then ⊳ Using PedGoto 

                     Change to Floor      ⊳ Using PedChangeGround 
                 else 

12 
13 

14                      Goto Exit    ⊳ Using PedGoto 
15                      Remove Pedestrians from Population ⊳ using PedSink 
16                  End if 
17             End if 
18       End for 
19 End While 

 

The postures applied in this period is UW and the corresponding speed and 

ID of the people will be all set up based on the previous data of initial and 
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comfortable state for UW postures. All these pedestrians’ activities under 

normal mode will be cancelled when being transferred to the evacuation mode. 

The fire alarm will be triggered based on the expansion of the fire/smoke 

when meeting the condition that fire/smoke fulfil the blocked space according 

to the fire dynamics model introduced in Section 5.2.2. Meanwhile, ASET is 

also calculated based on the smoke expansion inside the entire building, and 

in this study, the fulfilment of the smoke within an entire floor is considered to 

be the end of the ASET.  

5.2.3.3.2. Post-Alarm 

After triggering fire alarm, the goal for the people inside the building is moving 

to all available exits as quickly as possible based on personal choices under 

corresponding evacuation strategies, i.e. evacuation with and without 

guidance (Table 5.2.3.3.2).  

TABLE 5.2.3.3.2a.  

THE ALGORITHM OF EVACUATION WITHOUT GUIDANCE 

Algorithm 3 Post-Alarm: Random Walking 

1 Stop all pre-alarm movements  

⊳  Cancel PedSource, PedGoto, and PedChangeGround 
2 Start of Evacuation ←  urrent Time 
3 Response Time ← Delay{Long-Wait, Short-Wait} 
4 While (Time < Delay) ⊳ People have not decided to move 
5      People wait at their current locations ⊳ Using PedWait 
6      if (Time > Delay) then ⊳ Pedestrians decide to evacuate 
7          for each Ped Є Population do  
8                 Floor   ← Ped.Z 

                ⊳  Get pedestrians’ current floor number 
9                 if Floor    > 1 then ⊳ pedestrians not at the 1st floor 
10                    Stairs       _Floor   ← Uniform Probability 
11                    Goto Stairs   _Floor    ⊳ Using PedGoto 
12                    Change to Floor      ⊳ Using PedChangeGround 
13                          
14                 else 
15                    Exit             ← Uniform Probability 

                   ⊳ Exit number changes with fire expansion 
16                    Goto Exit    ⊳ Using PedGoto 
17                    Count the number of pedestrians passing Exit    
18                    Remove Pedestrians from Population ⊳ using PedSink 
19                    RSET = Current Time – Start of Evacuation 
20                 End if 
21             End for 
22       End if 
23 End While 
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 TABLE 5.2.3.3.2b.  

THE ALGORITHM OF EVACUATION WITH GUIDANCE 

Algorithm 4 Post-Alarm: Searching Nearest-Exits 

1 Stop all pre-alarm movements  

⊳  Cancel PedSource, PedGoto, and PedChangeGround 
2 Start of Evacuation ←  urrent Time 
3 Response Time ← Delay{Long-Wait, Short-Wait} 
4 While (Time < Delay) ⊳ People have not decided to move 
5      People wait at their current locations ⊳ Using PedWait 
6      if (Time > Delay) then ⊳ Pedestrians decide to evacuate 
7          for each Ped Є Population do  
8                 Floor   ← Ped.Z 

                ⊳  Get pedestrians’ current floor number 
9                 if Floor    > 1 then ⊳ pedestrians are not at the 1st floor 
10                    Ped{X,Y}← {Ped.X, Ped.Y} 

                   ⊳  Get pedestrians’ current  D locations of each floor 
11                    Stairs   _Floor   ← Nearest Stair from Ped{X,Y} 
12                    Goto Stairs   _Floor    ⊳ Using PedGoto 
13                    Change to Floor      ⊳ Using PedChangeGround 
14                          
15                 else 
16                    Exit             ←Nearest Exit from Ped{X,Y} 

                   ⊳ Exit number changes with fire expansion 
17                    Goto Exit    ⊳ Using PedGoto 
18                    Count the number of pedestrians passing Exit    
19                    Remove Pedestrians from Population ⊳ using PedSink 
20                    RSET = Current Time – Start of Evacuation 
21                 End if 
22             End for 
23       End if 
24 End While 

 

The number of available exits has increased from two to five after the alarm. 

However, this number will decrease with the expansion of the fire. Before 

evacuation, there is a pre-movement period requiring consideration, which is 

the response time of people after hearing the fire alarm. It will be summarized 

based on the survey data, which can also be described in a triangular 

distribution format with two different choices, i.e. ‘Short-Wait’ and ‘Long-Wait’. 

The postures applied in this period is a mixture of UW, TSW and TKSW under 

emergency scenario. For the evacuation of pedestrians, there are two 

strategies being applied in this study for comparison. One strategy is that all 

pedestrians will be randomly assigned to the available exits of each floor, 

regardless of their current locations. The other strategy is that all pedestrians 
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are assigned to the nearest available exits based on their current locations. 

The number of survivals in ASET and the average RSET for survivals at 

different exits will be compared, in order to figure out a more efficient strategy. 

5.3. SIMULATION SETUPS 

The above described design of ABM will be applied to simulate the fire 

expansion and pedestrian evacuation within the PMB building in UNNC, which 

is a four-floor building with multiple office rooms, staircases, entrances and 

exits. There are only two exits available under normal condition, and the other 

three exits are blocked until the fire evacuation. The whole processing is 

achieved by using AnyLogic 8.4, running on a computer with CPU in Inter 

Core i5-6500, and 16GB RAM. It can simulate pedestrian movement with an 

SF-based ABM algorithm, which has a continuous and more realistic 

description of pedestrian movement (Zheng et al., 2009, Vermuyten et al., 

2016) with the integration of CAD floor plans. The specific environmental 

setting are already mentioned in Fig.5.2.1.1. The parameters for pedestrian 

movement are acquired from experiments (Table 5.3), which can help to 

improve the reality of the simulated results.  

TABLE 5.3  

 THE PARAMETERS OF THE PEDESTRIAN MOVEMENT AND FIRE DYNAMICS MODEL 

 

Parameter Value 

Population 180~230 

Initial Speed (m/s) Triangular (0.6,0.7,0.6) 

Comfortable Speed before Alarm (m/s) Triangular (1.0,1.1,1.0) 

Initial Speed After Alarm (m/s) Triangular (0.9,1.5,1.0) 

Diameter of the pedestrians (m) Triangular (0.5,0.8,0.6) 

Level of Panic 0~1 

Pre-evacuation Time (Short Decision) (min) Triangular (0.0,0.8,1.0) 

Pre-evacuation Time (Long Decision) (min) Triangular (1.0,1.2,3.0) 

No. of Exits before Evacuation  2 (Main Entrances) 

No. of Exits before Evacuation 5 (2 Main Entrances + 3 Emergency Exits) 

Fire Location  Room 118 at 1st floor Near Exit 1 

Fire Spread Rate (m/s) 1 

Smoke Spread Rate (m/s) 0.1~1 

Evacuation Strategy #1 Randomly to the available exits 

Evacuation Strategy #2 To the nearest available exits 
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Meanwhile, the simplified fire expansion model are integrated into the 

pedestrian model. The parameters for this model is summarized from the 

applications in previous studies under similar situations (Table 5.4.2). The 

ignition location of fire in this study is manually selected at the first floor, which 

is one of the highly risky places inside the building as it is the chemistry lab. 

Once the fire/smoke expands out of the room, the surrounding environment, 

especially the staircases nearby connected to the second floor and exits to 

the outdoor will be blocked. This may increase the risk of evacuation and lead 

to the injuries of pedestrians who need to pass through these specific places.  

The pre-evacuation time is deduced from the survey answers and the results 

is summarized in Fig.5.3. The answers for the short decision time, which are 

‘Immediately’ and ‘Wait for the  nd round’, the latter is more popular, 

especially for the females.  or long decision choices, which are ‘Waiting until 

others move’, ‘Move after being informed by security people’ and ‘Move after 

being informed by the security people and packing personal belongings’, the 

first choice are the most popular answers. According to the code for the fire 

alarm, one round of the alarm bells is about 36s and each bell signal of one 

round is about 12s. Moreover, the entire period of the fire alarm is about 180s 

(NFPA, 2010). According to the observations of the fire drills, most of the 

people will move at the first or the second strike of the bell of the 2nd round of 

the fire alarm and thus the range of the pre-evacuation time is about 0 to 1 

min. Meanwhile, the majority of people start to move after the 2nd round of 

the alarm (1.2 min).  
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Fig.5.3. The distribution of user responses of pre-evacuation for both genders.  

5.4. SIMULATION RESULTS 

5.4.1. Before Fire Alarm 

Before the evacuation, the pedestrians are assumed to be all staying at rooms 

before the simulation and move randomly inside the room after the 

initialization of the modelling, with similar possibilities to different staircases 

and exits and the results can be viewed in both 2D and 3D (Fig.5.4.1). The 

entire time period for the free movement is around 240s, which is calculated 

based on the expanding rate of the fire and smoke.  

During this process, the entire population inside the building tends to reach an 

equilibrium with a population around 180 to 230 after the simulations have 

been repeated for 10 times (Fig.5.4.2.3). According to the density maps of 

different floors, the places nearby the connection regions between the floors, 

i.e. the staircases, tend to higher pedestrian density than the corridors. This is 

due to the more frequent using of these functional places for floor transitions, 

especially at the peak time. According to the average results of ten 

simulations (Table 5.4.1), the peak-time pedestrian density of each floor 

gradually reduces with floor levels. The maximum pedestrian density appears 

at the 4th floor, while the 1st floor have the lowest peak pedestrian density. 

This may be due to the longest distance from the 4th floor to the 1st floor, and 

people from this level need a longer time before leaving the building. 

Moreover, the staircases to the 1st floor are more easily occupied by the 

0 

0.1 

0.2 

0.3 

0.4 
Immediately 

Wait for 2nd round 

Wait for others to move 
Security informing + 

Immediately  

Security informing + 
Packing up  

Waiting Period Before Evacuation 

Female 

Male 



170 

pedestrians from the other lower floors, leading to longer time of queueing. 

For the 1st floor, people works in this level have closer distances to the exits 

and they are unlikely to queue at staircases. Therefore, they are less affected 

by the people from the upper levels, though the places nearby the staircases 

are still more possible to have a relatively higher density of pedestrians.  

 
(a)                                                                 (e) 

    
(b)                                                                      (f) 
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(c)                                                               (g) 

 
(d)                                                             (h) 

Fig.5.4.1. An example of simulation results before the fire alarm from the first 

floor to the fourth floor in 2D (a)-(d) and corresponding 3D visualization (e)-(h).  

TABLE 5.4.1.  

 THE AVERAGE PEAK PEDESTRIAN DENSITY OF EACH FLOOR 
 
 
 
 
 
 
 

 

5.4.2. After Fire Alarm  

After the alarm is triggered, the fire and smokes are expanding into the indoor 

space. Due to evacuation code in the indoor area that all doors needs to be 

closed after leaving the room. The paths for fire and smoke to expand is along 

Floor Number Maximum Pedestrian Density (person/m2) 

4 2.3 

3 2.0 

2 1.7 

1 1.5 
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the corridors and other empty spaces (Fig.5.4.2.1). The ASET is calculated 

based on this principle and it is about 10 min for the whole building. The exit 

nearby the fire location, which is Exit 1, is unavailable for evacuation after 

about 32s. This will lead to the rest of the pedestrians to choose other exits 

and the staircases close to that exits will be unavailable after 171s for people 

from upper than 2nd floor, and 342s for people from upper then 3rd floor, and 

totally unavailable after 512s for all people who need to use these staircases 

to move to the 1st floor. Meanwhile, other exits will also become risky with the 

expansion of the fire. These will gradually limit the available paths for the 

pedestrians, regardless what strategy is taking.  

 

Fig.5.4.2.1. An example of the simulated fire expansion. 

As some of the simulation inputs are under random control, the simulation 

results under same environmental and parameter settings may be various for 

each individual run. These inputs include the people distribution after pre-

alarm period and the specific pedestrian velocity and reaction time. For 

example, with the number of people distributed at each floor, the simulation 

results can still be different as people may concentrate at different exits. For 

pedestrian velocity and reaction time, as they are settled in ranges instead of 

certain values, the applied values can still be different for individual runs. In 

order to reduce these variations, the simulations for both two strategies have 

been repeated for 10 times in order to acquire their average performances 

(Table 5.4.2.1). The evacuation process using Strategy #1 (random walking) 



173 

has also been validated to some extent by comparing to the result from a fire 

drill in another four-floor building with similar indoor structure and population 

level, but about half of the available exits. The maximum RSET of survivals 

estimated in this study of the building under the situation without guidance 

support is about 6 minutes while for that of the fire drills, it reaches 12 minutes 

due to fewer exits. This may help to demonstrate the effectiveness of the 

applied ABM used in this paper and the acquired results are more convincible. 

TABLE 5.4.2.1 

 THE AVERAGE PERFORMANCES OF SIMULATION OF USING TWO EVACUATION 

STRATEGIES 

 

According to the simulation, when moving without navigation guidance 

(Strategy #1), the average level of survivals is 90.95%, with approx.19 people 

in average cannot escape from the indoor area within the calculated ASET. 

On the contrary, when moving with assistance of guidance (Strategy #2), the 

average level of survivals is 93.33%, with approx.14 people being trapped in 

danger according to calculated ASET. Moreover, both the average and 

maximum RSET for survivals of using Strategy #2 are significantly shorter 

than those of using Strategy #1. These findings suggest that moving with 

guidance support is more efficient than moving without guidance, due to lower 

level of trapped people and shorter average RSET. Moreover, it can be found 

that the maximum speed during evacuation is slightly faster than that of pre-

alarm (Table 5.3 and 5.4.2.1), regardless of the evacuation strategies being 

applied. Meanwhile, it can be found that the average maximum evacuation 

speed of 2nd strategy are slightly lower than of the 1st strategy while the 

average evacuation distance of 2nd strategy is shorter than that of 1st strategy. 

This also suggests that the 2nd evacuation strategy have a better efficiency 

due to the better planning of the evacuation routes with shorter distances. It 

Simulation Result Strategy 
#1 

Strategy 
#2 

No. of Injuries 19 14 
Survival Level (%) 90.95 93.33 
Mean Average RSET of Survivals (s) 206.14 148.55 
Mean Maximum RSET of Survivals (s) 351.39 185.25 
Mean Maximum Evacuation Speed of Survivals (m/s) 1.49 1.40 
Mean Travel Distance (m) 274.3 211.3 
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may also help to reduce the level of panic, inferring based on the less 

increase of the evacuation speed as there is a moderately positive 

relationship between evacuation distance and evacuation speed (Fig.5.4.2.2). 

 
Fig.5.4.2.2. An example of the relationship between evacuation distance and 

evacuation speed.  

An example of the changing pattern of the entire process of using two 

strategies are listed in Fig.5.4.2.3. It can be found out that after the beginning 

the evacuation, the evacuation population applying the 2nd strategy decreased 

more quickly than that of applying the 1st strategy. This can be explained by 

the reason that people may spend more time on searching for potential routes 

to the targeted places than being directed by the navigation system with the 

shortest distances. This can also be proved by the distribution of average 

RSET and the corresponding queuing population of different exits in Table 

5.4.2.2. According to its results, when using the Strategy #1, all exits other 

than Exit 1 have a significantly longer average evacuation time than that of 

using Strategy #2. Meanwhile, their distribution of the average queuing 

population at all exits are only slightly different to each other. This can be 

regarded as an evidence of the hypothesis that the rest of the trapped people 

are on their way of searching for potential route to the exits rather than being 

blocked in the queues in front of the exits before escaping to the outside. 

Moreover, the width of the exits plays a more important role when applying 
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Strategy #1 as Exit 2 and 3 with smaller widths requires longer evacuation 

time than those for Exit 4 and 5. 

On the other hand, the distance to the exit, both from fire and current user 

location, plays a more important role when using Strategy #2. It can be found 

out that the Exit 2 have the second shortest average evacuation time as it is 

close to the fire location and once the Exit 1 is blocked, the affected 

occupants may choose it for evacuation while it is also soon affected by the 

fire expansion. Exit 4 and 5 could also be the second optimal alternative 

choices after the blocking of the Exit 1. However, as Exit 5 is closer to the fire 

location, the average available evacuation time is shorter than that of Exit 4. 

The distance between Exit 3 and the pedestrians who located at the regions 

closer to Exit 1, is much farther than to the Exit 4. Thus, it is less likely to be 

chosen by these people. However, it has longer average evacuation time than 

that of Exit 4, due to the narrower gate of the Exit 3. The Exit 4 have the 

advantages of closer and safer distance and the larger width, leading to a 

relatively shorter evacuation time than using Strategy #1, but a second 

longest average RSET due to its higher preference among evacuees. 

Moreover, the queueing population at this exit is also the second largest 

among all exits, due to closer distances and wider exit gate. It also agrees 

with the hypothesis of the previous studies that people prefers the main 

exits/entrances during evacuations (Benthorn and Frantzich, 1999, Helbing et 

al., 2000, Kobes et al., 2010a, Sarshar et al., 2013, Shiwakoti and Sarvi, 

2013), which are Exit 4 and Exit 5 in this study.  

TABLE 5.4.2.2 

THE AVERAGE EVACUATION TIME OF DIFFERENT EXITS 

 Strategy #1 Strategy #2 

 Mean Evacuation 
Time (s) 

Queuing Population Mean Evacuation 
Time (s) 

Queuing 
Population 

Exit 1 31.89 0 28.08 0 
Exit 2 173.53 2 46.50 1 
Exit 3 174.55 2 78.19 3 
Exit 4 148.34 2 73.53 2 
Exit 5 126.21 1 72.77 1 
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Fig.5.4.2.3. An example of the evacuation patterns for two strategies.  

This can be a good example showing the advantages of using the guidance 

service during evacuation, as the main principle of 2nd strategy is similar to 

that of emergency navigation, which can efficiently support the evacuation 

process by helping people find the nearest available exits and avoid the risks 

of fire. Moreover, the final survival rate is also relatively higher than that of 

using randomly searching strategies. However, the acceptance of the 

smartphone-based navigation during fire evacuation, which is also an 

important factor affected by the user familiarity to the service and 

corresponding decision time to the orders, have not been integrated into this 

model due to the simplification purpose. Moreover, the approaches of 

displaying guidance information is also worth investigation in future research.  

5.5. SUMMARY 

This chapter has proposed a design of SF-based ABM in order to simulate 

pedestrian movements in a four-floor campus teaching building in University 

of Nottingham Ningbo China before and after the fire alarm with lower risk and 

cost. The developed ABM system has integrated with a self-designed 

simplified temporal-spatial model of fire expansion, in order to improve the 

reality of the ABM-based simulation, which is usually not included in the 

previous studies using ABM. It is created in a GIS-based building environment 

with pre-defined behavioural rules by using a quick-processing software with 
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relatively low requirement of computation power called AnyLogic. The 

application of this model can help identify potential bottlenecks of the test 

building by providing the pedestrian density maps of different floors under the 

normal conditions. Moreover, it has compared the efficiency of two evacuation 

strategies, i.e. random-walking and nearest-exits. The latter can be treated as 

the evacuation process with the support of the previously developed 

smartphone-based indoor navigation system while the former is regarded as 

the evacuation process without navigation assistance. This study will find a 

more efficient solution by comparing the survival rate within the calculated 

ASET as well as the average evacuation time and evacuation distances for 

the survivals. During the evacuation process, the developed model has 

adopted the mixture of two SW postures during the evacuation period. The 

parameters applied for this model are acquired from the physical experiments 

with self-developed user-friendly and effective sensing system as well as the 

field survey data, which will help to improve the accuracy of the simulated 

results. After repeating the simulations of 10 times for using each evacuation 

strategy, the results suggest that assigning pedestrians to the closest 

exits/staircases is better than allowing them moving randomly inside the 

building with higher survival rate within ASET, the shorter average and 

maximum evacuation RSET as well as the average evacuation distance for 

survivals. The hypothesis that navigation can help to improve evacuation 

efficiency is then proved in this case. The results also suggest the width and 

distribution of the exits can be important factors for user selections of the 

evacuation routes and efficiency. According to the acquired results, the 

pedestrians prefer exits with wider door gate and closer distance to their 

current locations.  

Moreover, the model applied in this study can be easily replicated in the 

environments with similar indoor structures, which is beneficial to building 

managers for easier operations. Meanwhile, the simulation process is able to 

be viewed both in 2D and 3D, which is more direct for visualization of different 

purposes and preferences. It can also help for further investigation of the 

evacuation procedure under different time stamps.  

In future, this can be further integrated with the investigation of the guidance 
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service provided by the smartphone-based navigation. However, the effects 

from other potential parameters, such as the physical body parameters (e.g. 

height), personalized indoor familiarities, potential sources of the panic level, 

the effects from the personal sensation, familiarity to smartphone guidance, 

and the potential supportive information for guidance, have not been 

integrated into this model. They need to be further investigated and quantified 

when integrating with the results provided by the above model to give a 

thorough evaluation of the application of the smartphone-based indoor fire 

evacuation guidance. The following chapter will focus on these parameters 

and their potential effects on the application of navigation services during 

indoor fire emergency.  
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Chapter 6. INVESTIGATION OF 

COGNITION FACTORS OF FIRE 

RESPONSE PERFORMANCES BASED 

ON SURVEY 

6.1. INTRODUCTION 

The design of an indoor navigation system for fire evacuation support requires 

not only the physical feasibility but also a relatively thorough consideration of 

the human factors of cognition. The previous chapters have already tested the 

physical feasibility of the designed indoor navigation system, by conducting a 

simulation model based on the physical parameters of the pedestrians and 

fire. However, the evacuation capability is not only based on the physical 

mobility of people, their response performance to the fire, i.e. Fire Response 

Performance (FRP) also merits consideration (Kobes et al., 2010a). The 

factors which affect the FRP can be divided into three categories from fire, 

human and building environments (Kobes, 2008, Kobes et al., 2010a, Xiong 

et al., 2014). This study will first focus on the more detailed influences from 

human and environments, and the impacts from the fire and pedestrian 

mobility have already been simulated in Chapter 5.  

In order to assess the responses of participants in an environment that they 

are accustomed to, this study selected the PMB building and students in the 

faculty of Science and Engineering as the test site and volunteers in the 

survey. This is because this building is the common workplace for these 

students in daily campus life and they are supposed to have more knowledge 

about the indoor infrastructures of the environment, which are very important 

during the evacuation process. This study also tries to understand the 

relationship between participants’ familiarity with the indoor environments and 

their intuitive psychological conditions with different walking postures. It also 

gauges users’ potential attitudes to the smartphone-based guidance, and 
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potential causes of decision making during movement.  

6.2. FACTORS OF FIRE RESPONSE PERFORMANCE (FRP) 

6.2.1. Indoor Familiarity  

For the environmental factor of FRP, this study mainly focuses on the 

wayfinding aspect of situational factors, which can be divided into five classes 

as visibility, the directionality of indoor structures, the complexity of layouts, 

the familiarity with the building and the implementation locations of path 

markings (Raubal and Egenhofer, 1998, Kobes et al., 2010a). Among these 

classes, this study is more interested in investigating the effects of the indoor 

familiarity and the locations of existing indoor signs based on the collected 

answers from the interviewed participants, as the other factors are all fixed by 

using the same building for the survey. The reason for treating the familiarity 

to the indoor environments as an important factor for fire evacuation is due to 

the unfamiliarity with the building context is also considered as a special 

vulnerable group of disability (Aedo et al., 2012, Koo et al., 2012, Manley and 

Kim, 2012, Trivedi and Rao, 2018). Meanwhile, the decision making during 

the fire evacuation, which is time consuming due to floor plan discovery and 

escape route formulation (Kuligowski, 2016, Mohan et al., 2016), is quite 

related to the familiarity with the indoor layouts as people prefer using familiar 

paths/exits for evacuation (Graham and Roberts, 2000, Shi et al., 2009a).  

This survey takes three aspects to evaluate the degree of indoor familiarity of 

participants, which are the familiarity to the evacuation exits, risky places and 

the clearance of guiding signs. According to the collected answers, the 

majority of both participated males (54%) and females (61%) have at least 

mid-level knowledge (‘3 to 4’) of the locations of all exits in their daily working 

indoor environment. Among them, the male has a higher average familiarity 

(2.77) with the exits than the female (2.64) (Fig. 6.2.1.1a). There is one male 

participant has the full confidence of familiarity with all the exits while there is 

none for female. Meanwhile, for the familiarity of indoor risky places, the 

participants from both genders have less knowledge of these areas, and more 

male participants (5 %) have a relatively higher degree of the familiarity (‘3 to 

5’) than females (46%) ( ig.6.2.1.1b). These may be partially explained by the 

satisfaction of indoor signs, as about half of the interviewed male students are 
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relatively satisfied with the current setups of the indoor evacuation signs (with 

the high score as ‘4’), while for the female participants, they tend to have 

fewer people with similar degree of satisfaction (Fig.6.2.1.1c).  

  
(a)                                                                      (b) 

 
(c) 

Fig.6.2.1.1. The distribution of the feedback of the familiarity to the indoor 

exits (a), risky places (b), and satisfaction of Indoor signs (c) from lowest (0) 

to Highest (5).  

The problem of the current installation of the indoor guidance signs may be 

related to the height of the installed signs. According to the analysis of the 

relationship between user height and satisfaction degree of indoor signs, they 

are positively related to each other with at least medium strength of the 

correlation, which is about 0.311 for female and 0.559 for the male. The 
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overall pattern of satisfaction keeps growing with height except for the 

‘ 7 ~ 75cm’ group and this trend is more significant based on the male’s data 

than the female’s ( ig.6.2.1.2). This also suggests that height can slightly 

affect the satisfaction of indoor signs as male participants have higher 

average heights than the female participants, which may help them more 

easily to recognize the existence of the indoor signs.  

 
(a) 

 
(b) 

Fig.6.2.1.2. The comparison of indoor familiarity based on different heights of 

male (a) and female (b).  

Meanwhile, the correlation analysis between heights and familiarity to exits 
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also suggests similar conclusions as males’ data shows a stronger positive 

relationship ( .56 ) between these two factors while the females’ showing a 

weak correlation (-0.145) (Table 2.1.1 and Table 2.1.2). According to the 

changing pattern shown in Fig 2.1.2, the males have a similar growing trend 

of familiarity to exits based on the heights as the satisfaction of the indoor 

signs, while for the females, this trend is affected with the majority of the 

people in different height groups with similar average level of familiarity to 

exits. On the other hand, it also implies the current height of the indoor signs 

may not be ideal for all populations, especially for people with lower body 

heights. This finding is also supported by a previous study that occupants 

during the evacuation are less likely to realize the existence of guidance signs 

at the ceiling level, and their choices of evacuation path are less dependent 

on them (Johnson, 2005). However, the growth of heights does not 

significantly affect the familiarity with the risky places for both genders, 

suggesting people’s ubiquitous lower awareness of that information. 

In addition, people’s knowledge of indoor exits and risky places are also 

positively correlated with the satisfaction levels of indoor signs (Table 6.2.1.1 

and Table 6.2.1.2). Between these two factors, the familiarity to the exits has 

stronger impacts on the sign satisfaction, with 0.532 for the female and 0.414 

for the male than 0.31 for indoor risky place awareness of both genders. 

According to the previous findings, there are more females have higher 

familiarity with the indoor risky places. However, it does not affect their 

correlation to the indoor sign satisfaction as there is no great difference 

between the two genders. This implies that the current indoor signs do not 

give a very clear direction to the risky places. On the other hand, the 

increasing familiarity with the indoor exits signs can lead the growth of the 

satisfaction with at least moderate possibility. This suggests that people are 

more interested in the sign for exit guidance rather than the guidance to the 

risky places, which also agrees to the findings from the relationship analysis 

between height data. This hypothesis is supported by the correlation between 

the familiarity between exits and risky places. Before the survey, it is assumed 

that people with higher familiarity with the exits may also highly familiar with 

risky places. However, after calculating their correlation efficient, the positive 
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relationship seems to be weak with approx. 0.27 for the female and 0.21 for 

the male (Table 6.2.1.1 and Table 6.2.1.2).  

TABLE 6.2.1.1 

CORRELATION BETWEEN HEIGHT AND OTHER INDOOR FAMILIARITY FACTORS 

FOR MALES  

  Height (cm) Familiarity with the Exits Risk Place Awareness 

Familiarity with the Exits 0.561 1 
 Risk Place Awareness 0.265 0.213 1 

Indoor Signs Satisfaction 0.559 0.414 0.315 

 
TABLE 6.2.1.2 

CORRELATION BETWEEN HEIGHT AND OTHER INDOOR FAMILIARITY FACTORS 

FOR FEMALES 

  Height (cm) Familiarity with the Exits Risk Place Awareness 

Familiarity with the exits -0.145 1 
 Risk Place Awareness 0.284 0.271 1 

Indoor Signs Satisfaction 0.311 0.532 0.314 

 

When integrating the effects from the familiarity of exits and indoor risky 

places from both genders, their correlation coefficients can achieve 0.471 

(male) and 0.556 (female), reflecting a strong bonding relationship between 

the integrated factors. In other words, people who are more familiar with the 

current indoor environment may be potentially more satisfied with the current 

installation of the indoor environment. However, the familiarity with the 

selected factors for this experiment is only about the exits and risky places, 

this may be limited as other indoor infrastructures (e.g. temporary shelters for 

blocked people) may also be important for the evacuation process. Integrating 

with the factor from the height to the indoor familiarity, the correlations with the 

indoor sign satisfaction of both genders are stronger than only considering the 

effects from familiarity to the exits and risky places, with 0.562 for the female 

and 0.479 for the male. When comparing to the previous results, the height 

has higher effect for the male as it has a 1.49% improvement of correlation 

while the female only has 1.08% (Table 6.2.1.3). On the contrary, the height 

factor integrated with the satisfaction to the signs may also help people to 

familiarize their surrounding environments, supported by the increasing 

correlation with the exit and risky places for both genders (Table 6.2.1.4). 
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TABLE 6.2.1.3 

CORRELATION BETWEEN INDOOR SATISFACTION AND OTHER INDOOR 

FAMILIARITY FACTORS WITH AND WITHOUT THE EFFECT OF THE HEIGHT 

  
Indoor Signs 
Satisfaction 

 Male Female 

Familiarity with the exits+ Risk Place Awareness 0.471 0.556 
Height+ Familiarity to the exits+ Risk Place 
Awareness 0.479 

0.562 

 

TABLE 6.2.1.4 

CORRELATION BETWEEN DIFFERENT INDOOR FAMILIARITY FACTORS WITH AND 

WITHOUT THE EFFECT OF THE HEIGHT 

 Male Female 

Factors 
Familiarity with 
exits 

Familiarity with 
risky places 

Familiarity with 
exits  

Familiarity with 
risky places 

Satisfaction to the 
signs 

0.41 0.31 0.53 0.31 

Height + Satisfaction 
to the signs  

0.43 0.32 0.54 0.32 

 

6.2.2. Psychological Stress 

The level of psychological stress is one of the most important personal 

characteristics for consideration during the evacuation, as it can impede 

people’s cognition and response process, leading to irrational and 

uncontrolled behaviours (Aguirre, 2005, Kobes et al., 2010a, Drury et al., 

2013, Sarshar et al., 2013, Trivedi and Rao, 2018), such as stampede, 

leading to casualties or great loss (Helbing et al., 2000, Saloma et al., 2003, 

Heide, 2004, Fahy et al., 2012, Shi and Wang, 2013, Cocking and Drury, 2014, 

Kasereka et al., 2018). This section mainly concentrates on the psychological 

effects on the individual level, which is about the evacuation knowledge and 

experience, the capability of observation and decision-making, and 

evacuation mobility (Kobes et al., 2010a, Xiong et al., 2014). 

The level of panic during the evacuation can be affected by the human’s 

psychology characteristics, such as gender, age, and the level of experience 

(Sarshar et al., 2013, Shen et al., 2018), and specific environmental 

conditions (Sarshar et al., 2013). This study aims to investigate the possible 

reactions of people of different genders during their movements under a 

special case of using bending posture due to smoke expansion. It wants to 
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discover whether the utilization of bending posture will cause some increase 

in psychological stress during people’s movements. It evaluates the user 

responses based on their cognition of the moving difficulty, the nervousness, 

and change of moving speed when forcing to move under a bending posture. 

The reason to set up that special situation for the participants is due to the 

potential threats from the smoke inhalation in both the physical and 

psychological aspects and the possible panic caused by the growing fall risk 

by using the bending posture (Campbell, 2013, Brown, 2017). In this section, 

it aims to find out whether the posture can be regarded as a physical force 

which is highly related with psychological stress, as a previous study suggests 

that the actions can affect the psychological stress level (Sillem, 2005).  

According to the collected data, the psychological hardness of using a 

bending structure is more polarized for male participants as the majority of 

their responses are concentrated on the ‘ ~ ’ (36%) and ‘3~4’ (46%); while 

the female participants’ responses are more prone to a moderate level in the 

range of 2 to 3 (54%) (Fig.6.2.2.1a). However, their average levels of 

hardness sensing are similar, with 2.27 for males and 2.25 for females. 

Meanwhile, for the aspect of nervousness, about 41% of male participants are 

considered vulnerable population of experiencing such stress by using 

bending movements with a score of level from ‘4-5’, while only about 36% of 

the female have scored in the same range (Fig 6.2.2.1b). However, the 

females still have a slightly higher average level of nervousness during 

movement with bending (3.11) than male participants (2.86). This may be 

explained by the fact that there are still more female participants who have a 

moderate level of nervousness (score ‘3’) when using stoop-walking posture 

to move while the responses from the male participants tend to more evenly 

distributed. This finding is also supported by the previous suggestion that man 

is more prone to maintain calm during the evacuation (Shen et al., 2018). 

Under the physical pressure of using bending posture, about half of the male 

interviewees have scored ‘4’ for speed reduction sensation with an average 

level of 3.5,  while only about 29% of female participants have same 

responses with an average score of 3.29 (Fig.2.2.1c). This may be explained 

by that the females’ responses to the speed reduction are more evenly 
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distributed while the males’ responses are more concentrated at ‘4’, showing 

a greater capability of the male participants to control the reduction of the 

moving velocity during fire emergency than the females.  

  
(a)                                                           (b) 

  
(c) 

Fig.6.2.2.1. The distribution of the feedback of the psychological difficulty (a), 

nervousness (b) and the awareness feeling of speed (c).  

Among these three factors of psychological stress, they have a positive 

correlation between each other from mid-level to high-level (Table 6.2.2.1 and 

6.2.2.2). According to the acquired results, the correlation between 

psychological difficulty and nervousness are much stronger for male 

participants (0.74) than that of females (0.45). This may be explained by the 

influence from the height factor, as the height has a stronger negative impact 

on males’ nervousness (-0.427) of using stoop-walking posture than females 

(-0.133) and the average height of the males are also higher than that of the 

0.0 

0.1 

0.2 

0.3 
0 

1 

2 

3 

4 

5 

Psychological Difficulty 

Female 

Male 
0.0 

0.1 

0.2 

0.3 

0.4 
0 

1 

2 

3 

4 

5 

Nervousness 

Female 

Male 

0.0 

0.1 

0.2 

0.3 

0.4 

0.5 
0 

1 

2 

3 

4 

5 

Awareness of the Speed Reduction 

Female 

Male 



188 

females based on the above acquired results. This hypothesis is supported by 

integrating the height factor and psychological feeling of difficulty, as the 

correlation coefficient for both genders have slightly increased and the 

improvement for the males (0.54%) are more significant than that of females 

(0.22%) (Table 6.2.2.1). 

TABLE 6.2.2.1 

HEIGHT EFFECTS ON CORRELATION BETWEEN NERVOUSNESS AND 

PSYCHOLOGICAL DIFFICULTY  

  Nervousness 

 Male Female 

Psychological Difficulty  0.741 0.450 
Height + Psychological Difficulty 0.745 0.451 
Improvement 0.54% 0.22% 

 

TABLE 6.2.2.2 

 CORRELATION AMONG THREE PSYCHOLOGICAL FACTORS  

  Awareness of Speed 
Reduction 

 Male Female 

Psychological Difficulty 0.448 0.476 
Nervousness 0.557 0.640 
Psychological Difficulty + Nervousness 0.542 0.656 
Height + Psychological Difficulty + Nervousness 0.543 0.656 

 

The awareness of speed reduction is more positively correlated with the level 

of nervousness, especially for the female participants (0.64). This may be due 

to that psychological stress can affect the cognition of the changing speed 

(Kobes et al., 2010a). With the growth of the nervousness level, it will be 

easier to feel the reduction of the moving velocity, though it may not be as 

significant as that in reality.  

On the other hand, panicking people will try to move faster than at the normal 

state, in order to evacuate from the danger as soon as possible (Helbing et al., 

2000, Shen et al., 2018, Trivedi and Rao, 2018). This may lead to a vicious 

circle as the adage goes ‘Faster is slower’, because the behaviours such as 

jamming and stampede may also occur with blocking sights and narrowing 

paths (Helbing et al., 2000, Mawson, 2005, Hu et al., 2007b, Hu et al., 2007a, 

Parisi and Dorso, 2007, Soria et al., 2012, Suzuno et al., 2013, Shahhoseini 
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et al., 2018). Based on the findings from this study, it may be due to their 

exaggeration of the speed reduction, leading to lower control of their decision 

process and action execution. Meanwhile, the level of difficulty perception of 

using a bending posture also has a moderate impact on the cognition of the 

velocity reduction, and this impact is more significant for the females. It is 

understandable as the perception of difficulty may raise the feelings of 

diffidence and discomfort, exaggerating people’s feelings on the speed 

reductions.  

When integrating the impacts from both the psychological difficulty and 

nervousness level, it can be found that the correlation to the awareness of 

speed reduction has become stronger for the females while for the males, it 

has become slightly weaker. This may be due to the lower level of 

nervousness from the male participants, which may weaken the effects of the 

nervousness.  

According to the previous results in Section 6.2.1, the height factor may also 

affect the perception of the difficulty. Thus, this study has put forward a 

hypotheis that the height factor may also affect the level of speed reduction 

perception. However, after integrating the effects from the heights and the 

other two psychological stresses, the strength of the correlation does not 

change significantly, especially for the females. It can be inferred that the 

current level of the height does not have great impacts on speed reduction 

recognition.  

The impacts from the indoor familiarity can be treated as a critical and 

comprehensive factor for the psychological stress, especially for the level of 

the nervousness. According to the previous study, one reason for panic is due 

to the non-efficient using or ignorance of the alternative exits (Helbing et al., 

2000, Sarshar et al., 2013, Shiwakoti and Sarvi, 2013, Benthorn and Frantzich, 

1999, Kobes et al., 2010a). On the other hand, the occupants with better 

indoor familiarity may not be limited to using the shortest routes as people 

tend to use their familiar routes for evacuation (Graham and Roberts, 2000, 

Shi et al., 2009a, Tan et al., 2015). This study also evaluates the correlations 

between the factors of different indoor familiarity and psychological stress and 

the results are shown in Table 6.2.2.3 and 6.2.2.4.  
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TABLE 6.2.2.3 

CORRELATION BETWEEN FACTORS OF INDOOR FAMILIARITY AND 

PSYCHOLOGICAL STRESS FOR MALES 

  
Familiarity with 
 the Exits 

Risk Place 
 Awareness 

Indoor Signs 
 Satisfaction 

Indoor 
Familiarity 

Psychological Difficulty -0.395 -0.064 -0.477 -0.509 

Nervousness -0.293 -0.151 -0.431 -0.432 
Awareness of Speed 
Reduction 

0.262 -0.015 -0.176 0.401 

 

TABLE 6.2.2.4 

CORRELATION BETWEEN FACTORS OF INDOOR FAMILIARITY AND 

PSYCHOLOGICAL STRESS FOR FEMALES 

  Familiarity with 
the Exits 

Risk Place 
 Awareness 

Indoor Signs 
 Satisfaction 

Indoor 
Familiarity 

Psychological Difficulty 0.187 0.074 0.049 0.172 
Nervousness 0.355 -0.054 -0.084 0.436 
Awareness of Speed 
Reduction 

0.264 0.152 0.104 0.256 

 

According to the acquired results, the hypothesis that the growing familiarity to 

the exits can help reduce the nervousness is strenghtened by the results to 

some extent due to the moderately negative correlation based on the males’ 

responses. However, the situation for the females is reverse, as their level of 

nervousness has a moderately positive relationship between the familiarity to 

the exits. This may be due to the higher average level of indoor familiarity and 

composure of the male participants as well as different decision process from 

two genders.  

Similar findings can also be found for the sensation of the difficulty as the 

familiarity to the exits has a moderately negative effect for the males, while 

having a weakly positive effect for the females. This may be due to the 

physical limitations of different genders as the females are more easily getting 

tired using an energy-consuming posture. However, there is no great 

difference in the impacts on the speed reduction awareness, which is 

positively related to the familiarity to the exits at a mid-level. This can be 

explained by the aspiration of escaping from the danger (Helbing et al., 2000, 

Shen et al., 2018, Trivedi and Rao, 2018), which may also increase when 

approaching to the known exits regardless the effects from the gender.  
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As the prior knowledge to the risk places for both genders is at a low level, its 

correlation between all different psychological stresses is all relatively weak. 

Meanwhile, the satisfaction level of the indoor signs has a mid-level negative 

effect on both the level of the sensation of difficulty and the nervousness 

feelings for the males, while for the females, the strength of the correlation is 

nearly neglectable. This may be due to the relatively higher level of 

satisfaction to the indoor signs based on the replies from the males. It can be 

helpful during the evacuation process as the males can better utilize the 

guidance provided by these signs than the females, leading to a decrease of 

cognition of difficulty and nervousness.  

When integrating all indoor-familiarity-based factors together to investigate the 

relationships between each psychological factors, it can be found out that that 

males’ psychological stresses, such as difficulty and nervousness sensation, 

may be moderately released with the increasing indoor familiarity, except for 

the speed reduction awareness. This may be due to the effects from the 

familiarity to the exits and satisfaction of indoor signs, as males have higher 

average levels of these two items and a better level of physical abilities. The 

increasing possibility of speed reduction awareness can be explained by the 

similar reason mentioned before, i.e. the growing desire of escaping to the 

outside, which may be affected by the increasing indoor familiarity during the 

process of moving to the exits. While for the females, their psychological 

stresses do not follow a similar pattern as the males. All the psychological 

factors are likely to increase with the growing indoor familiarity, though the 

correlation coefficients are relatively lower than those for the males. This may 

be due to the overall higher average levels of psychological stresses and less 

knowledge of the indoor environments, as well as their physical limitations 

comparing to the males. Moreover, males have a higher average sensitivity of 

the speed reduction, showing greater controllability of their own moving 

velocity and lower vulnerability from the other potential factors. Meanwhile, 

the previous choices of each factor between the two genders have no 

significant differences (      ), however, when integrating them together 

into a comprehensive factor, there are significant differences between the 

choices made by the two genders (      ). It indicates that the effects from 
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indoor familiarity need to be treated as an entirety before analysing their 

correlations to the psychological effects.  

With the above analyses, it suggests that factors from indoor familiarity are 

correlated with the psychological effects to some extent, especially from the 

aspects of the familiarity to all building exits and the satisfaction to the indoor 

guidance signs. Thus, it suggests that when integrating effects from all the 

indoor familiarity factors together with the impacts from the cognition of 

difficulty and nervousness, it may have a comprehensive effect on the 

perception of the speed reduction. The reason of concentrating on the effects 

to the people’s moving velocity is due to that the moving velocity is one of the 

decisive factors for the establishment of the evacuation models, and it is 

usually used to evaluate the capability of moving out of the indoor area (Sime, 

2001, Kobes, 2005, Oomes, 2006, Kobes et al., 2010a). If the occupants are 

subject to less than ideal conditions, regardless of the physical or the 

psychological aspects, this kind of the evacuees can be treated as in a mode 

with temporarily reduced mobility (Oomes, 2006, Kobes et al., 2010a), which 

can affect the process of evacuation to some extent.  

When integrating the indoor familiarities with the other two psychological 

effects, it can be found out that these factors have a slightly greater impact on 

the awareness of the speed reduction for the female participants (0.655) than 

that for the males (0.617). This is consistent with the previous findings that the 

male participants have higher controllability of their speed than the females, 

although they may still be affected by the effects of the indoor environments. 

Moreover, the psychological factors have a higher overall impact on the speed 

reduction awareness than that on the males, while the males’ activities are 

more affected by the indoor environments based on results from Table 6.2.2.5.  

TABLE 6.2.2.5 

 CORRELATION BETWEEN FACTORS FROM SPEED REDUCTION AWARENESS AND 

INDOOR FAMILIARITIES PLUS PSYCHOLOGICAL STRESSES 

 Awareness of Speed Reduction 

 Male Female 

Indoor Familiarity  0.401 0.256 
Psychological Difficulty + Nervousness 0.542 0.656 
Indoor Familiarity + Psychological Difficulty + 
Nervousness 

0.617 0.655 
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With the above information, it has proved in this case the hypothesis that the 

awareness of moving speed reduction during the evacuation will be affected 

by both environmental and psychological stresses, with a moderately positive 

relationship. The increase of the environmental familiarity and psychological 

relief can be achieved by using a personalized and supportive navigation 

system. This information needs to be considered into the future applications of 

the smartphone-based emergency guidance as it will affect the user’s current 

psychological state, leading to the variations of the performances of the 

evacuation strategies.  

6.3. THE ACCEPTANCE DEGREE TO THE SMARTPHONE-BASED EMERGENCY 

GUIDANCE 

In addition to the above analysis of the effects from the FRP, the attitude of 

the users to the smartphone-based navigation also plays an important role in 

future applications of an indoor fire evacuation. It is considered one of the 

major challenges to the promotion of the previously designed system to be 

applied to a wide range of the population. This study has investigated the user 

attitudes to emergency navigation from four main aspects:  

1) the familiarity to the existing smartphone-based navigation service; 

2) the willingness of following guidance service during the evacuation; 

3) the obedience to the directions provided by the navigation system under 

some extreme cases; 

4) the decision time for the corresponding situations 

These factors will help pinpoint potential problems based on the user 

responses to the emergency navigation, which needs to be considered and 

helps to provide corresponding suggestions in the future improvements before 

providing customizable navigation services to the users.   

6.3.1. The Familiarity with the Smartphone-based Navigation Service 

Navigation services have been widely used by people around the world (Bao 

et al., 2015, Bentley et al., 2015), which is affected by the popularization of 

smart devices (Duggan and Smith, 2013, Yun et al., 2013). Thus, this study 

has proposed an assumption that the current smartphone users should be 

familiar to the smartphone-based navigation services as it is widely used in 
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daily life.  

However, according to the results from the survey data of this study 

(Fig.6.3.1), the average level of the familiarity (2.64) is not as high as 

expected before the survey, which is only slightly higher than the mid-level. 

This may suggest that the participants for the survey may have experienced 

the navigation services but still not be very familiar with the mechanism of 

how it works. This may be also due to the sense of direction as well as the 

guidance services provided by the navigation systems still require people to 

have the capability of spatial cognition, which is based on interaction between 

human and environment (Darken et al., 1998, Geary et al., 2000, Jones and 

Healy, 2006, de Goede, 2009).  

 

Fig. 6.3.1. The familiarity with the smartphone-based navigation of two 

genders.  

When comparing the differences between the two genders, it can be found 

out that the male participants have a slightly higher average level (2.91) of the 

familiarity to the smartphone-based navigation services than the females 

(2.43). This finding also agrees with the findings from the previous studies that 

males usually outperform females on navigation-based tasks (Geary et al., 

2000, Jones and Healy, 2006, de Goede, 2009). This may be due to the 

different cues utilized by two genders for spatial tasks, as the males prefer 

identifying the geometric properties and cardinal directions while the females 

are good at landmark memorization (Jones and Healy, 2006, de Goede, 2009, 
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He et al., 2015b). It suggests that the future applications of the smartphone-

based emergency navigation may still need some training, especially for the 

female users before providing navigation services to the users.  

6.3.2. The willingness of Following Smartphone-Based Guidance during 

Evacuation 

This factor is to test whether the users are willing to have a smartphone-

based app to assist their movement during the evacuation, which is also 

regarded as the premise of the other following questions. According to the 

results, the participants of both genders show a positive attitude to the future 

emergency navigation app, as none of them shows an attitude of rejection to 

this service (‘ ’) (Fig. 6.3.2). This shows a relatively good acceptance from the 

users to this kind of service, which can help to reduce the difficulty from the 

promotions of this service in future applications.  

 
Fig.6.3.2. The willingness of following the guidance service provided by the 

smartphone app.  

The average score of the males (3.41) is still higher than that of the females 

(3.29), which may be related to the higher familiarity of the male users to the 

existing smartphone-based navigation. Moreover, the majority of the females 

(79%) tend to have an at least mid-level positive attitude (‘3-5’) to the 

acceptance of the guidance service, while the choices for the rest of them are 

more evenly distributed. Meanwhile, about 73% of the males have an at least 
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mid-level of positive acceptance of using a longer route, with more population 

having a relatively higher score (‘4-5’) of the willingness of following the 

guidance, and the overall distribution of their acceptance level to the 

navigation is more uniform than that of the females. 

6.3.3. The Obedience to the Guidance under Two Extreme Cases 

The familiarity and the willingness of following guidance can be integrated 

together as a comprehensive index of the user attitude to the smartphone-

based navigation during evacuation. Although the selected participants show 

a positive attitude of following the guidance during the evacuation, it does not 

mean that they will still follow that guidance under some extreme conditions. 

The navigation service without the threats from the fire expansion will provide 

the shortest route based on the current location of the users (Fahy et al., 

2012), which has been simulated in the previous chapter. This survey is 

interested in the responses of the users when they are required by the 

navigation system to change from the original planned path when facing the 

dangers. The two extreme cases selected for this study are the willingness of 

using a longer path due to risk assessment and changing to an alternative exit 

during the movement with the original plan. The aim of testing these two 

cases is to find out the degree of the confidence of users to the potential 

guidance under the fire evacuation.  

For the first case, i.e. the navigation system provides a longer path instead of 

the shortest path due to the higher risk of the latter, the majority of the 

participants are willing to follow the provided directions. Comparing the 

responses from two genders, the majority of females (86%) show a positive 

attitude while there are only 55% of the males having the confidence of 

trusting the guidance provided by the smartphones (Fig.6.3.3.a). The effects 

of the above differences may come from three aspects, i.e. indoor familiarity, 

psychological stress and attitude to the smartphone-based navigation (Table 

6.3.3.1). For indoor familiarity, people who are more familiar with indoor 

structures are more willing to use an alternative but safer path, while the 

people with the opposite situation may prefer a shorter path (Graham and 

Roberts, 2000, Shi et al., 2009a, Tan et al., 2015). When comparing the 

correlations between different factors, it can be inferred that psychological 
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stress plays a more important role in the decision of using a longer but safer 

route, especially for the males. With the increase of psychological stress, 

people are less likely to use a longer route rather than the shortest route. This 

may be due to that the psychological stress will affect the decision making 

during evacuation (Kobes et al., 2010a, Xiong et al., 2014), and the average 

level of the psychological stress of the males is lower than that of the females. 

The integrated effect from the above two factors moderately contributes to the 

decision of following a longer but safer route, and this impact is more evident 

on the males (0.413) than that on the females (0.350). The effect from the 

acceptance of the smartphone-based navigation is more correlated with the 

decision of using a longer route for the females, which may be related to 

males’ better performances on geometry identification and lower willingness to 

use a longer path (Jones and Healy, 2006, de Goede, 2009).  

TABLE 6.3.3.1 

CORRELATION BETWEEN FACTORS FROM WILLINGNESS OF USING A LONGER 

ROUTE AND INDOOR FAMILIARITIES, PSYCHOLOGICAL STRESSES, AND ATTITUDE 

TO NAVIGATION 

 

For the situation of changing to an alternative exit during the process of the 

evacuation, most of the participants keep showing the confidence in the 

guidance provided by the app. When comparing the responses from two 

genders, the percentage of the population, who shows a positive attitude, of 

the females (79%) are not significantly higher than that of the males (73%) 

(Fig.6.3.3b). For the male participants, their decision is more related with the 

indoor familiarity while for the female participants, their decision is more 

affected by the acceptance of the navigation services. This may also due to 

males’ better performances on geometry identification and sensation of the 

cardinal directions (Jones and Healy, 2006, de Goede, 2009). This leads to 

 The willingness of Using A 
Longer but Safer Path  

 Male Female 

Indoor Familiarity  0.276 0.256 
Psychological Stress -0.376 -0.288 
Attitude to Navigation 0.187 0.269 
Indoor Familiarity + Psychological Stress 0.413 0.350 
Indoor Familiarity + Psychological Stress + Attitude 
to Navigation 

0.428 0.389 
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the integrated effects from the indoor familiarity and psychological stress are 

more correlated with the males’ decision of the using an alternative exit ( .377) 

than females (0.352). After integrating with the effect from attitude to the 

navigation services, the overall comprehensive effects from the three factors 

shows a greater correlation with the females’ decisions ( .5 5) rather than the 

males (0.406) (Table 6.3.3.2). 

TABLE 6.3.3.2 

CORRELATION BETWEEN FACTORS FROM WILLINGNESS OF USING AN 

ALTERNATIVE EXIT AND INDOOR FAMILIARITIES, PSYCHOLOGICAL STRESSES, 
AND ACCEPTANCE OF NAVIGATION 

 

  

(a)                                                    (b) 

Fig.6.3.3. The attitude of choosing a longer route (a) and alternative exit (b) 

from two genders.  

6.3.4. The Decision Time for the Corresponding Situations 

The decision time for different cases is also an important factor to evaluate 

people’s confidence to the provided navigation services. This time period 

needs be reduced in order to improve the efficiency of the evacuation. 
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 The willingness of Using An 
Alternative Exit 

 Male Female 

Indoor Familiarity  0.311 0.265 
Psychological Stress -0.301 -0.243 
Attitude to Navigation 0.206 0.393 
Indoor Familiarity + Psychological Stress 0.377 0.352 
Indoor Familiarity + Psychological Stress + Attitude 
to Navigation 

0.406 0.515 
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According to the acquired results, the females tend to have a longer decision 

time, regardless of the situations of extreme cases (Fig.6.3.4). It suggests that 

the females are more hesitant to make decisions under extreme cases. This 

may be related with their relatively higher level of the psychological stress 

than the males, leading to the increase of the difficulty of decision making 

especially for complicated situations. Thus, females may need some 

additional comforting service to persuade them keep trusting the guidance. 

Meanwhile, the average time for choosing an alternative exit during 

evacuation other than the original planning is longer than that of choosing a 

longer route in the beginning of planning, regardless of the gender. It suggests 

that changing the direction during the movement is more difficult than making 

decisions in the beginning and people have the tendency to keep the original 

guidance during the evacuation movement. This problem needs to considered 

in the approach design of providing navigation services to people, making the 

provided information more acceptable to people.  

  

(a)                                                             (b) 

Fig.6.3.4. The decision time of two genders for choosing longer route (a) and 

alternative exit (b).  

6.4. THE SERVICE FOR TRAPPED PEOPLE DURING EVACUATION 

Based on the simulation model, the evacuation system designed for this study 

should be able to provide the location of the fire, the potential expansion of 

the fire, and the nearest exits. However, according to the simulated results in 

the previous chapter, not all people can evacuate outside the building in the 

limited evacuation time. For these people, the navigation system should be 
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able to help people to stay calm in their original locations rather than 

movement (Fahy et al., 2012).  

This study has first investigate whether people can stay calm after being 

trapped inside the building. The responses from the two genders are 

significantly different (Fig.6.4.1). The majority of the females (68%) cannot 

stay calm after being trapped while the males are prone to staying in a calm 

state (55%). This finding is in agreement to the previous results that the males 

have a lower average level of psychological stress during the process of 

evacuation.  

 

Fig.6.4.1. The psychological state of people after being trapped inside the 

building.  

In order to help people stay calm and stay in the original locations before 

being rescued by the firefighters, this study has also provided some options to 

the interviewees and investigated their preferences of these factors to help 

them stay calm after being trapped (Fig.6.4.2). The responses from different 

genders both psychologically prefer the factor of “distances to the nearest 

firefighters” as the top option to help them stay calm during the evacuation. 

This suggest that the future design of the navigation app should be able 

provide the positions of the nearest firefighters based on the current user 

locations. Meanwhile, their considerations of the top three least helpful 

information of calming assistance are also the same, which is related with the 
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situations of other trapped pedestrians inside the building. This may be due to 

that people are more self-concerned in a situation of high risks. The future 

development of the app can remove these kinds of information to help people 

more concentrated on key notifications.  

 

(a) 

 

(b) 

Fig.6.4.2. The factors help people to stay calm after being trapped in fire for 

different genders.  

For the second and third options for calming assistance, both of the genders 
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have chosen the options of “the current conditions of the fire” in the 

surrounding environment and the “locations of all the firefighters”. However, 

among these two factors, the male participants are more interested in the 

locations of the rest firefighters while the females are more concentrated on 

the current status of the fire expansion around their locations. This suggest 

that the condition of the fire plays an more important role on threatening for 

females and this may be a possible reason of their higher level of the 

psychological stress than males during evacaution. Meanwhile, the males’ 

better spatial cognition may also plays an important role and they have a 

higher level of the indoor familiarity, which may help them have more 

confidence on their current situation of the indoor risks. However, the 

expansion of the fire is also regarded as an important information for the 

males as they have selected as the third important factor for calming down. 

The above acquired information can be used to customize personalized 

navigation for indoor fire evacuation and they can help to ease the 

psychological burden while waiting for the rescue. It can also help persuade 

people to stay in the orignial shelters rather than irrationally rushing into 

danger under a relatively high level of panic. 

6.5. SUMMARY 

The design of an indoor navigation system for fire evacuation support requires 

not only the physical feasibility but also a relatively thorough consideration of 

the human factors of cognition. This study has taken a survey to investigate 

the FRP of the indoor occupants with a median age of 22 in a virtual 

environment for their routine life, focusing on the aspects of indoor familiarity 

(spatial cognition), psychological stress, and decision making. For indoor 

familiarity, it focused on three factors, i.e. the familiarity to the exits, familiarity 

to risky places, and the satisfaction degree of the current indoor sign 

installation. According to the analysis, males have a higher average familiarity 

to the indoor exits while both genders have a relatively low level of risky place 

awareness. These two factors are positively correlated with satisfaction 

degree of the current installation of the indoor signs, and this correlation is 

more evident for exit familiarity. To explain this correlation, the height can be 

regarded as an important factor as it has shown a positive relationship to the 
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indoor sign satisfaction, especially for the males with an average higher level 

of height. After integrating with the effects from the indoor sign satisfaction, 

their correlations to the familiarity with either exits or risky places are 

strengthened, though this phenomenon is not very significant for the familiarity 

to the risky places, being affected by the generally low awareness of the risky 

places. On the other hand, the integration of the height factor with the other 

two indoor familiarity factors can also improve the degree of the indoor sign 

satisfaction. This also suggests that future installations of the indoor signs 

require a pre-survey of the height information of indoor occupants, which may 

better help for their indoor evacuation processes.  

For psychological stress, this study concentrates on the situated cognition of 

moving difficulty, nervousness, and speed reduction when using a bending 

posture during the fire evacuation to avoid smoke inhalation. The results have 

shown that both genders have a similar mid-level of hardness sensation. 

Meanwhile, the females have a higher average level of nervousness while 

males have a higher average level of speed reduction sensation. Moreover, 

there is at least a mid-level positive correlation between the sensation of 

moving difficulty and nervousness when using a bending posture, and this 

correlation will be strengthened after integrating the impacts from the height, 

especially for the males. The sensation of speed reduction is more closely 

correlated with nervousness, especially for the females who have an average 

level of that factor. This time, the impact from the height is not significant to 

affect the speed reduction awareness. When analysing the relationships 

between the factors of indoor familiarity and psychological stress, the 

increasing familiarity with the indoor areas can help to improve the sensation 

to the changes in speed. This study has assumed that the growing level of the 

indoor familiarity can help ease the psychological hardness and nervousness. 

However, it only seems to be true after reaching a certain threshold, otherwise 

it will lead to a unexpected reverse effect. When integrating the effects from 

indoor familiarity and the other two psychological factors, the sensation of 

speed change can be strengthened, based on a stronger positive correlation 

with the integrated factors. This has raised the importance of increasing 

indoor familiarity and psychological relief, and the development of a 
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personalized supportive indoor navigation can help with these situations.  

This study has also investigated the participants’ attitude to navigation support 

during evacuation. All the participants have shown positive attitudes to the 

guidance support that can be applied in indoor fire evacuation while the 

females may need some more training before using this service. For following 

the guidance under duress, i.e. changing to a longer path and to an 

alternative exit other than the originally planned one, the majority of the 

people have shown trust in the real-time guidance. Moreover, these decisions 

are both affected by the combined influences from indoor familiarity, 

psychological stress, and attitude of using navigation services. For the 

decision time of the selected extreme cases, it costs more time in average for 

deciding to use an alternative exit than to use a longer route, and this situation 

is more evident for the female participants. This requires further 

considerations when designing a personalized smartphone-based app. This 

study has also investigated the calming factors for people being trapped. 

According to the results, the top consideration is the distance to the nearest 

firefighters, and the other important considerations are the current fire 

conditions in the surrounding environment and the locations of all firefighters. 

The ranking of the latter two considerations are very gender-dependent 

according to the results. All these investigated cognition factors should be 

carefully considered in future design of navigation support for indoor fire 

evacuations.  
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Chapter 7. CONCLUSIONS AND THE 

FUTURE WORKS 

7.1. CONCLUSIONS 

This study has tested the hypothesis whether the application of a self-

developed intelligent indoor navigation system with acceptable positioning 

accuracy can help to improve the efficiency of indoor fire evacuation process 

in the period before the arrival of firefighters, which the evacuation 

movements are entirely depended on the self-decision and mobility.  

During the process, it has first developed a prototype of a self-adaptive indoor 

evacuation system, with the advantages of: 

1) Real-time tracking of indoor 3D pedestrian locations with seamless 

transition between indoor and outdoor environment; 

2) Constantly identifying pedestrian postures from upright walking, stoop-

walking with and without knee flexion; 

3) Dynamic route planning during a fire event based on real-time user 

locations with changing of exit number and path closure; 

4) Spatial visualization of indoor environment in both 2D and 3D; 

5) Information updating during the fire event via user devices for decision 

making; 

6) Bottleneck identification based on pedestrian density; 

7) Trapped people reporting for later rescue; 

The developed self-adaptive system will be applied to run the simulations 

based on a self-established hybrid ABM system, with the user velocity and 

inter-person distance provided by a real-time and accurate self-developed 

novel 3D indoor tracking system. The hypothesis of this study is that the 

indoor fire evacuation process with the support of the navigation system to 

find nearest exits is more efficient than moving randomly inside the building 

for evacuation. This hypothesis can be treated as the comparison of two 

different evacuation strategies and it is tested by the simulation results 

provided by the ABM system designed in this research. Moreover, the 
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designed system is able to handle the changing environments, such as the 

changing of the exit number, the expansion of the fire and availability of 

certain paths.  

According to the above requirements, the development of an accurate, 

reliable and flexible 3D indoor positioning system is one of the most important 

and novel components of this study. The development of such system is 

achieved with the following steps. 

First, it has designed a low-cost, highly accurate, intuitive and user friendly 

advanced 2D indoor positioning system with highly stable performances to the 

occlusions. This is achieved based on the integration of smartphone-based 

PDR and surveillance-based visual tracking. The rationale for choosing these 

two technologies are the higher accessibility of the sensors required for using 

these two technologies, which are native to the user devices and the existing 

indoor surveillance system, based on the comparison to the other 

infrastructure-based indoor positioning technologies. The smartphone-based 

PDR can continuously provide the relative user positions in indoor area by 

using embedded accelerometers and gyroscopes for step detection as well as 

step length and heading estimation, with a novel algorithm for automatic 

turning detection and step-length calibration. Meanwhile, the visual tracking 

system is used to calibrate the user positions in the visible areas, by using the 

estimated user positions from the synthesized results acquired from a 

modified Faster R-CNN based pedestrian detection and a novel algorithm of 

depth information transformation, with a relatively higher accuracy. This 

research has also shown the robustness of system from handling only single 

camera to multiple cameras, with the development of a novel automatic scene 

shifting algorithm.  

Both sub-systems can work independently and their results are required to be 

transformed into absolute coordinates before further integration, with the 

support from GIS-based digital map information in WGS84. These maps are 

pre-stored in the system and can be integrated into the 2D PVINS results by 

automatic selection based on the current floor. During the movement, the 

smartphones are held horizontally and pointing forward. Meanwhile, the video 

recording is triggered once the user starts moving. Once entering the LoS 



207 

area of each camera and a significant change is detected from the estimated 

PDR headings, the  D visual positions will be calculated based on BBs’ 

positions by pedestrian detection and the estimated depth information in 

corresponding frames. This study has proposed two methods for integrating 

the data from two sub-systems: position replacement based on time 

synchronization and heading calibration for PDR with corresponding step 

lengths. The latter has been selected due to its better positioning performance 

based on the experimental results. The 2D visual headings are then 

determined by visual positions in every two consecutive frames. The system 

in the 2D PVINS aspect provides a calibrated 2D path in WGS84, with a 

relatively higher accuracy (0.08m) than other 2D positioning systems 

investigated in this study under similar conditions of environmental occlusion 

and complexity, but having the advantage of simpler implementation and 

higher flexibility. The acquired results, for the first time, can be directly used in 

outdoor systems and visualized in corresponding floor plan, while none of the 

other investigated studies has achieved that.  

This study also compares the performances between two types of common 

smartphone models, other than the previous studies using only Android-

running smartphones, which has improved the ubiquity of the system for 

different kinds of smartphones. The operating systems of the smartphones 

applied in this experiment are in Android 6 and iOS 11, respectively.  

The 2D system is then upgraded into a 3D version, with the integration of a 

self-designed novel algorithm for height estimation and floor identification by 

using a single smartphone-based barometer, with the advantages of simple 

operation and fewer requirements of sensor. The algorithm is developed from 

the fingerprint based pressure-height transformation model and finally it uses 

a linearity-average model, by detecting certain patterns during vertical 

movements. This algorithm, for the first time, is even able to detect transition 

areas between floors, by following the pattern of two changes of linearity and 

three different means of the height, while none of the other studies has 

achieved that. Moreover, it has first introduced a self-calibration mechanism of 

using two smartphone apps other than using two barometers. The acquired 

height estimation accuracy (0.5m) with 98% floor identification is more 
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accurate than other studies and is then used for later integration with 2D 

PVINS for 3D positioning.  

The height estimation with floor identification is synthesized with the previous 

2D PVINS by finding similar time stamps and this 3D system is tested in a 

severe-occlusion environment with fewer visible areas. The acquired 2D 

accuracy (0.16m) is highly comparable to the other studies with less occlusion, 

regardless of using 2D PVINS or alternative foot-mounted systems. After 

integration with the height estimation data, the acquired 3D positioning 

accuracy is still comparable to other foot-mounted or signal-based 

approaches, with the advantage of more accessible sensors, lower cost and 

better user experiences than other studies.  It has also satisfied the 

requirements by the Federal Communications Commission (FCC) for fire 

emergency with 50m horizontal accuracy and 3m vertical accuracy.  

With the above novel and accurate 3D indoor positioning system, this study is 

able to measure the user velocity and inter-person distance by taking 

experiments in the building of case study, with advantages of simpler 

operation than previous studies using more dense distribution of professional 

cameras. The measured parameters are important to describe the social force 

model between pedestrians for the establishment of the hybrid ABM-based 

simulation. Meanwhile, the previously acquired GIS-based floor plans can 

also be used in the ABM-based simulation, as the software applied in this 

study, AnyLogic, requires a GIS-based simulation environment.  

The established ABM is used to simulate two scenarios as pre-alarm and 

post-alarm, with a combination with a novel fire expansion model. The fire 

expansion model is usually ignored in previous ABM-based simulations, as 

the pedestrian movement is a continuous process while the fire expansion is 

more matrix-based. However, this study has simplified it as a spatial-temporal 

process, and it has first enabled the integration of fire expansion model with 

ABM. The pre-alarm scenario is used for identification of the bottlenecks 

inside the building. The post-alarm scenario aims to compare the efficiency of 

two evacuation strategies, the evacuation with or without navigation 

assistance, by comparing the number of survivals, the mean and maximum 

RSET of survivals, and their average evacuation distance. The overall 
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hypothesis of this thesis is supported by the acquired results from the ABM 

simulations. Moreover, it has suggested the effects from the exit width and 

distribution for evacuation route selection.  

This study also suggested more cognition factors worth investigating for the 

fire response performances of people, before the further development and 

adoption of an intelligent and personalized fire evacuation support system. In 

this study, these factors are classified into three aspects as indoor spatial 

cognition, the psychological stress and the decision making for different 

situations. This study has first conducted a survey of these factors among the 

occupants with a median age of 22 inside the building for the case study, 

under a virtual situation of using bending posture during evacuation. There 

are some interesting findings being discovered after analysing the results:  

For indoor spatial cognition, the study is interested in familiarity to exits and 

risky places as well as the satisfaction to the current indoor sign installation. 

The acquired results are gender-dependent to some extent and the familiarity 

to the indoor exits and the risky places are positively correlated with 

satisfaction degree of the current installation of indoor signs. The height factor 

can also affect these correlations.  

For psychological stress, this study concentrates on the situated cognition of 

moving difficulty, nervousness, and speed reduction when using a bending 

posture to avoid smoke inhalation. The results are also gender-dependent. 

After reaching certain levels, the growing indoor spatial cognition can help 

ease the psychological hardness and nervousness conditions. Moreover, it 

can help strengthen the sensation of speed reduction, with the integration of 

the other factors of psychological stress.  

For decision making aspect, the majority of the participants all have shown a 

positive altitude to the future navigation guidance during evacuation, even 

under some extreme situations, i.e. using a longer route or an alternative exit. 

The decision time of different situations are also different and gender-

depended to some extent.  

Meanwhile, people tend to stay in a state of high psychological stress when 

being trapped inside the building during a fire event. This study has first 
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discovered that the knowledge of the provision of distance to the nearest 

firefighters, the current fire condition in users’ surrounding environment, as 

well as the distributions of all firefighters inside the building induces people to 

stay calm. These factors are useful information for future development of a 

personalized indoor navigation system for indoor fire evacuation. This study 

has achieved the first step of the development of a customizable system with 

much future work to be done based on the findings.   

7.2. FUTURE WORKS  

Some of the potential developments from this work are listed below: 

1) Improve the current indoor 3D positioning from single-person to multi-

person tracking; 

2) Improve the current system from offline processing to online tracking by 

achieving video live streaming;  

3) Validation of the designed 3D indoor positioning system in different types 

of the buildings; 

4) Increase the number of participants for velocity and inter-person distance 

measurement; 

5) Increase the diversity of participants for the above experiment, with 

different groups of age, height, weight and availabilities; 

6) Improve the ABM design with more factors for considerations, e.g. 

different levels of indoor familiarity, psychological stress and attitude to the 

navigation support; 

7) More repentance for ABM-based simulations with more stable 

performances of simulated results; 

8) More evacuation strategies testing for ABM-based simulations, e.g. the 

timely arrangement for different floors with different starting time with or 

without navigation support; 

9) More environmental scenarios for the ABM-based simulations, e.g. 

different fire locations, different number of fire events, and different types 

and buildings; 

10) Development of real-time fire expansion monitoring by sensors to validate 

and improve the current fire expansion model; 
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11) The development of a smartphone-based app for indoor fire evacuation 

and user feedback collection for that specific app for further improvement.  
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APPENDIX A: QUESTIONNAIRE OF 

INDOOR EVACUATION KNOWLEDGE 

AND BEHAVIOURS 

This survey is a part of my PhD study of Indoor Guidance for Public Evacuation. 

It aims to test your knowledge and responses under certain situations of indoor 

evacuation. This survey only costs you 3 minutes to answer all the questions. 

 

1. What is your gender?  * 

○Male 

○ emale 

 

2. What is you approximate height?  * 

○≤ 6  cm 

○ 6 ~ 65cm 

○ 65cm~ 7 cm 

○ 7 cm~ 75cm 

○ 75cm~ 8 cm 

○≥ 8 cm 

 

3. What is your approximate weight?  * 

○≤5 kg 

○5 ~55kg 

○55~6 kg 

○6 ~65kg 
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○65~7 kg 

○7 ~75kg 

○75~8 kg 

○8 ~85kg 

○85~9 kg 

○9 ~95kg 

○95~   kg 

○≥   kg 

 

4. Are you familiar with all emergency exits in PMB building? Please mark out the 

degree from 0 (none) to 5 (very well known).  * 

○  ○  ○  ○3 ○4 ○5 

 

5. Are you aware of the risk places inside the PMB building (e.g. chemical labs, 

mechanical labs with high voltage electrical machines, biological labs, etc.). 

Please mark out the degree from 0 (none) to 5 (very well known).  * 

○  ○  ○  ○3 ○4 ○5 

 

6. Would you agree that the current indoor signs are clear and useful during your 

movement to the emergency exits? Please mark out the degree from 0 (none) to 

5 (very clear).  * 

○  ○  ○  ○3 ○4 ○5 

 

7. When you hear a fire alarm, how long will it take you to respond (stand up and 

start moving outside)? Please select the top two choices. * 

□Immediately 

□Wait until it rings for the second round 

□Wait until other people start to move 
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□Wait until being informed by security people/broadcast and move immediately 

□Being informed by security people/broadcast and move after packing up your 
belongings 
 
8. During your movement, there may be smog or smokes in the air, requiring you 

to walk in a bending pose. Will you feel it hard to walk in a bending pose than in 

upright pose? Please mark out the degree from 0 (none) to 5 (very hard).* 

○  ○  ○  ○3 ○4 ○5 

 

9. When you have to walk in a bending pose during evacuation, will you feel a bit 

nervous/panic than walking in erected pose? Please mark out the degree from 0 

(none) to 5 (definitely).  * 

○  ○  ○  ○3 ○4 ○5 

 

10. When you have to walk in a bending pose during evacuation, will you feel 

that you are moving more slowly than walking erectly? Please mark out the 

degree from 0 (strongly disagree) to 5 (strongly agree).  * 

○  ○  ○  ○3 ○4 ○5 

 

11. Under some extreme conditions, you have to bend and keep your head 
close to your pelvis. Which bending posture will you prefer? * 
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○A. Bending without knee flexion but more trunk flexion 
 

 
○B. Bending with knee flexion but less trunk flexion 

 
12. Are you familiar with smartphone-based guidance? Please mark out the 

degree from 1 (least) to 5 (very well known).  * 

○  ○  ○3 ○4 ○5 

 

13. If you have an app on smartphone which can help you move outside during 

evacuation, will you be happy to use it and follow its guidance? Please mark out 

the degree from 0 (none) to 5 (definitely).  * 

○  (Go to  8) ○  ( 14) ○  ( 14) ○3 ( 14) ○4 ( 14) ○5 ( 14) 
 

14. When you find out the app not giving you the shortest way to move outside 

because the shortest way may be risky, will you still trust its guidance?  * 

○Yes 

○No 

 

15. For the last question, how long will it take you to make your decision under 

this evacuation condition?  * 

○Immediately 

○Less than one minute 

○More than one minute 

 

16. During your movement to the outside following the mobile guidance, it 

suddenly asks you to change to another exit because the planned exit is blocked, 

will you still follow its guidance?  * 

○Yes 
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○No 

 

17. For the last question, how long will it take you to make your decision under 

this evacuation condition?  * 

○Immediately 

○Less than one minute 

○More than one minute 

 

18. If you are trapped in the indoor area during evacuation, can you still stay 

calm before the firefighters coming?  * 

○Yes (Jump to finish) 

○No (Go to  9) 

 

19. If you cannot stay calm when trapped, will the following information help you 

to calm down? Please mark the following choices from 0 (strongly disagree) to 5 

(strongly agree). * 

 0 1 2 3 4 5 

Fire condition around your location ○ ○ ○ ○ ○ ○ 

The total number of people trapped in the building ○ ○ ○ ○ ○ ○ 

The distribution of all people trapped in the building ○ ○ ○ ○ ○ ○ 

The distribution of people trapped in the surrounding 
environment 

○ ○ ○ ○ ○ ○ 

The total number of all firefighters in the building ○ ○ ○ ○ ○ ○ 

The locations of all firefighters in building ○ ○ ○ ○ ○ ○ 

The distance between you and nearest firefighters ○ ○ ○ ○ ○ ○ 

 

20. Please rank the previous options from most important (1) to least important (7) 

* 

[  ]Fire condition around your location 
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[  ]The total number of people trapped in the building 

[  ]The distribution of all people trapped in the building 

[  ]The distribution of people trapped in the surrounding environment 

[  ]The total number of all firefighters in the building 

[  ]The locations of all firefighters in building 

[  ]The distance between you and nearest firefighters 

 
 
 
 
 
END 
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APPENDIX B: 2D POSITIONING 

ACCURACY COMPARISON TO OTHER 

STUDIES USING MAGNETOMETER-

BASED HEADING CALIBRATION 

This study also compares its 2D positioning performance under the both 

conditions with and without severe occlusions to some other studies, who 

investigate alternative approaches to improve the performances of Dead 

Reckoning (DR) based Indoor Inertial Systems (Foxlin, 2005, Huang et al., 2010a, 

Zhang et al., 2015, Meng et al., 2014, Hsu et al., 2017, Fourati, 2015, Fang et al., 

2005, Yun et al., 2012, Kothari et al., 2012). They use magnetometers for 

heading calibration instead of passive OPS. The majority of these studies apply 

self-developed hardware-suite without support from additional sensing system for 

precise positioning. Their preferred position for sensor wearing is on the foot, 

such as (Fourati, 2015, Hsu et al., 2017, Huang et al., 2010a, Meng et al., 2014, 

Yun et al., 2012, Foxlin, 2005). Their algorithms are mainly based on Zero-

Velocity Updates (ZUPT), with data fusion and error control based on EKF 

(Foxlin, 2005, Hsu et al., 2017) or Complimentary Filter (CF) (Yun et al., 2012, 

Fourati, 2015). Some of the studies even integrate ZUPT and Step-and-Heading 

System (SHS) together for position estimation (Meng et al., 2014, Huang et al., 

2010a). Others hold the device in hand (Kothari et al., 2012, Zhang et al., 2015) 

or put it on the waist (Fang et al., 2005). These studies apply SHS for position 

estimations, with either Peak-Detection-based (PDT) or Zero-Detection-based 

(ZDT) algorithm for step detection. Among these methods, the accuracy and 

experimental conditions of these studies are shown in Table B. As almost all path 

types in other studies are close-loops and their accuracies are evaluated as 

Start-to-End radial distance, thus the positioning accuracy for this study is treated 
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as the ratio between the largest error during estimation and total walking distance 

for reference. The distance error is also treated as the ratio between the overall 

length of the predicted distance and the ground truth, due to the different lengths 

of the designed paths. However, as the testing conditions and the application 

scenarios for these studies are not very similar as mentioned in this study, the 

comparison of their positioning accuracies may not be very convincible. This is 

partially due to that different environmental factors, such as the indoor structures 

and the design of the moving paths. Meanwhile, the constraints from the human 

aspects, such as the accuracy validation of their referential paths and the 

requirement of the positioning accuracy under certain scenarios, can also have 

affect the final achieved 2D positioning accuracy. Thus, the following 

comparisons are just showing rough idea about the potential superiority of the 

designed system proposed in this study.  

When comparing the positioning accuracy, the performance of the system is 

superior than these relatively precise foot-mounted INS systems with commercial 

IMU sensors under limited-occlusion conditions, such as 0.3% in Foxlin (2005) 

and 0.4% in Fourati (2015). This makes this method very competitive in the future 

development. However, when under the conditions of severe occlusions, its 

performance is not as good as these relatively precise foot-mounted INS systems, 

though they are still comparable. This can be explained by the following reasons. 

First, this system is only calibrated in LoS areas while the accuracy listed in Table 

V is the overall performance of both the visible and the invisible areas. The 

positioning accuracy in the LoS areas is 0.06%, which is much better than that in 

previous studies (Fourati, 2015, Foxlin, 2005). The largest error actually appears 

in the invisible areas with frequent turnings, by only using smartphone-based 

PDR. This can be affected by the precision of applied hardware. The precision of 

the IMU sensors embedded in smartphones is not comparable to that of 

commercial foot-mounted sensors (Harle, 2013). Moreover, as this system is 

tested on an open-loop path when having severe occlusions, it cannot have 

reverse-calibration as testing on a close-loop path (Harle, 2013). Meanwhile, the 

foot-mounted systems have higher accuracy of step detection due to the position 
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of sensor installation and the mechanism of ZUPT. However, this system has an 

advantage of higher accessibility as it only requires having a specific smartphone 

app for data collection and transfer, while the foot-mounted systems with 

comparable accuracies (Fourati, 2015, Foxlin, 2005) require the wearing of 

specific body-attached sensors, cables, or batteries. Meanwhile, considering the 

user experience, it can be hard to persuade the users to wear specific sensor 

suites on body as in (Fourati, 2015, Foxlin, 2005) while this system only requires 

current buildings to install a surveillance system. Although it also needs the 

potential costs of camera installation and calibration for the application, it may not 

be a problem as the installation of surveillance cameras is necessary not only for 

the tracking but also for the security purpose and the calibration is required only 

once. In addition, the surveillance system installation will be a ubiquitous 

requirement for the future buildings, which shows potential market for this system. 

Moreover, it shows a relatively higher accuracy of total distance estimation than 

the previous studies by using the camera calibration (0.1%). For processing 

algorithm, the computation cost for deep learning is higher than that for EKF, 

however, this will be compensated by its higher accuracy in the LoS areas 

(0.06%). 

When compared to Zhang et al.’s study with better overall performance among 

SHS-based systems (Zhang et al., 2015), the system in this study has 

comparable performance on positioning accuracy. However, for the step 

detection, the accuracy of this system (98.4%) is slightly lower than that of 

(Zhang et al., 2015) (98.67%) when having vertical movements on the stairs. This 

may be also partially due to the hardware precision as mentioned above. 

Moreover, Zhang et al.’s study divides the steps modes into four classes by SVM 

classification and introduces a Band-Pass Filter (BPF) for step detection under 

different walking modes (Zhang et al., 2015). This may require more manual 

preparations before the test. However, this system does not have this process 

and just treats the whole process with one mixed class. Moreover, the difference 

between step-detection accuracies is not significant and the performance of this 

system is acceptable for positioning. Another advantage of this handheld system 
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is the deployed sensor suite is already available in daily life and will be more 

easily accepted by users.  
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TABLE B 

POSITIONING ACCURACY COMPARISON BETWEEN MAGNETOMETER-BASED STUDIES  

 

Reference 
Foxlin 
(2005) 

Hsu et al. 
(2017) 

Yun et al. 
(2012) 

Fourati 
(2015) 

Huang et 
al. (2010a) 

Meng et al. 
(2014) 

Fang et al. 
(2005) 

Kothari et 
al. (2012) 

Zhang et al. 
(2015) 

This Study 
without 
Severe 

Occlusion 

This Study 
with Severe 
Occlusion 

Algorithm ZUPT-EKF ZUPT-EKF ZUPT-CF ZUPT-CF ZUPT-SHS ZUPT-SHS SHS-PDT SHS-ZDT SHS-
(BPF)PDT 

SHS-ZDT SHS-ZDT 

PDR Data 
Collection 
Devices 

Inertia-
Cube3 

Self-created 
prototype 

MicroStrain  
3DM-GX1 

MTi & 
MTi-G 

NanoIMU ADIS16405 NavMote Nexus S 
Self-
created 
prototype 

Huawei 
Mate7/  
iPhone7 Plus 

Huawei 
Mate8/ 
iPhone7 Plus 

Device 
Positions  

On Foot On Foot On Foot On Foot On Foot On Foot On Waist Hand-held Handheld Handheld  Handheld 

Path Type Close loop Close loop Close loop Close loop Close loop Close loop Close loop Close loop Close loop Close loop Open loop 

Total 
Distance (m) 

118.5 239.9 437.50 80 60 132 400 120 400 178.29 168.0 

Positioning 
Accuracy 
(%)  

0.3 2.01 1.0 0.4 2.0 3.26 3.0 4.2 1.8 0.07 0.6 

2D Distance 
Error (%) 

  / 3.47 0.27   / 2.0   / 3.0 1.7-6.7 1.9 0.06 0.1 

Data 
Transfer 

Radio 
Frequency-
Receiver 

Bluetooth Sony UXP-
180  
Mini-
computer  

USB  Data Cable Bluetooth NetMote USB ARM 
Processor 

WLAN WLAN 


