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ABSTRACT

This thesis describes a design-based research project to develop, implement and
evaluate lessons intended to help middle school students learn about three-
dimensional shapes and in particular orthogonal and isometric drawings of

polycubes.

In an initial study, four classes from two schools in Turkey were observed during the
regular teaching of three-dimensional shapes, and then students were asked to
complete a worksheet to examine the outcomes of this teaching. The study found that
students’ performance on orthogonal and isometric questions of the types asked in
national exams were lower than desired. It also analysed the types of mistakes
students made and noted the difficulties which may have led to these. Informed by
these findings and the wider literature, a model was developed which suggests that
teaching of three-dimensional shapes can be: realistic, exploratory, technology-
enhanced and active, hence the RETA principles. These principles informed the
design of four lessons on orthogonal and isometric drawings of polycubes, which

were researched in the remaining studies of this thesis.

The second, third and fourth study aimed to see whether the RETA-based lessons
were engaging and effective and improve them if they were found not to be. Each
cycle reported how the RETA-based lessons were experienced by participants and

the outcomes they achieved.

Specifically, the second study explored eight students’ experiences of the RETA-
based lessons in an after-school mathematics course. In general, the results showed
that students mostly experienced the lessons positively, and the lessons had the
potential to improve their drawings. The third study focused on a teacher’s
experiences of teaching with the RETA-based lessons in a class of 30 students and
its outcomes. The teacher was a typical Turkish maths teacher, having a very
different pedagogical approach and background to that of the researcher. This study
explored her experiences in teaching in this way and found statistically significant
improvement in students’ orthogonal and isometric drawing performance with the
RETA-based lessons. The final study was a quasi-experiment with 205 students and

four teachers where the RETA classrooms were compared to business as usual



classes. The results showed that RETA-based lessons were significantly more

effective than traditional methods.

This thesis offers insights and contributions into both the theory and the practice as
expected from a design-based research project. The first of these is the RETA
principles, which provide a basis for designing lessons on how three-dimensional
shapes can be taught. The second contribution is the designed lessons on orthogonal
and isometric drawings of polycubes, which are complete and detailed lesson plans
that can be reused and adapted by mathematic teachers and researchers. These lesson
plans were iteratively improved through three cycles, and by providing accounts of
the design changes after each study together with the process involved, the outcomes
of the lessons, and what worked and what did not, they are intended to offer detailed

information to inform future research and practice.
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1. INTRODUCTION
1.1. Personal Background

When | was 15 years old, | started taking pedagogy courses in addition to core
curriculum courses in Bandirma Teacher Training College for four years. After that,
| entered the Elementary Mathematics Education programme of the Middle East
Technical University. This programme trained mathematics teachers to work with
middle school children (aged 11- to 15-year-old), as well as prepare students for
graduate programs with research courses and projects. The last year of this
programme was mostly devoted to teaching experience in classroom settings. As a
trainee mathematics teacher, | taught different mathematical topics in middle school
classes and effectively developed my pedagogical skills under the guidance of the
headteacher. | obtained my teaching certificate by successfully completing the

placement.

Following my teacher training, | studied for a master’s degree in the Elementary
Science and Mathematics Education programme of the same university. My thesis
was a case study on a trainee mathematics teacher’s use of technology in
mathematics classrooms, which aimed at developing a deep understanding of the
change in her technological pedagogical content knowledge throughout the
placement (Saralar, 2016a; Saralar, Isiksal-Bostan & Akyliz, 2018). Meanwhile, |
started working in a middle school as a mathematics teacher where | had the
opportunity to observe students’ learning processes. During my teaching practice in
middle schools over three years, | experienced difficulties in teaching units requiring
spatial thinking in addition to noting the difficulties students face while learning
three-dimensional geometry. | attempted to solve this problem by integrating
different software packages (e.g., Cabri, 2016; GeoGebra, 2016) into my classroom.
GeoGebra was the main software | used, as it is suggested by the Ministry of Turkish
National Education as key to integrate into mathematics classes, and a number of my
colleagues used it too. Hence, | decided to investigate those middle school
mathematics teachers’ beliefs and goals regarding GeoGebra while | was doing my
second masters in Learning, Technology and Education at the University of

Nottingham. This resulted in a list of challenges teachers and their students face in



the process of integrating GeoGebra (Saralar, 2016b; Saralar & Ainsworth, 2017),
leading me to the idea of collaborating with teachers so that students will be given
chance to study three-dimensional geometry with the support of effective

technology-based interventions. This was how this PhD has started.

Following the successful results in language competency tests (YDS), a written
exam (ALES) and interview, | won the scholarship of the Turkish government in the
field of educational technologies. My scholarship is called YLSY which stands for
Selecting and Appointing the Candidates to Send Abroad for Postgraduate
Education. After successful completion of my PhD degree, I will be promoted to
work as an education specialist at the Ministry of Turkish National Education’s

Educational Technology department.

| was aware that bringing technology into the classroom was not enough for deep
and meaningful learning hence | looked for further ideas to make most of
technology, and these were affected by my stance. At the beginning of the thesis, |
feel that it is important to set out my pedagogical orientation. I am interested in
students’ constructing their own understanding, and it leads to the RETA model that
is developed and trialled with sample lesson plans in this thesis. Although there are
more than one constructivist theories of learning, many agree on the importance of
social interaction in the process of knowledge construction and that learners are
active in this construction (Bruning, Schraw & Norby, 2011; Woolfolk, 2016).
Taking this into consideration, | agree with Woolfolk (2016) and believe in that
“learning comes from the learner” and for this to happen ‘“schools must create
effective learning environments” (p.396). This is to say, | support active participation
of the students in constructing their own understanding of maths rather than direct
teaching methods through which a teacher tries to impose their understanding to
students. | believe in the importance of the interaction both between students and
between students and a teacher throughout the lesson. | also think that oftentimes it
is a teacher’s job to provide students effective learning environments where students
engage in their own knowledge-building. | have held this constructivist thinking
throughout the thesis with the hope that learning as an outcome of this constructivist
approach not only helps students answer school maths problems correctly but also
aids them in reasoning about real-life issues and it facilitates transferring the

information that they learned in the classroom to this reasoning.
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1.2. Context of the Thesis

Given this information in Section 1.1, it would not be wrong to say that at the
beginning of this PhD, the context of the research was ready to investigate.

The Ministry of Turkish National Education has a large budget for bringing the latest
technology of time into classrooms since the beginning of the FATIH Project
(Movement of Enhancing Opportunities and Improving Technology Project). The
project first aimed at providing interactive whiteboards and infrastructure which
enable schools to access Moodle (called EBA). It also suggested making use of
various dynamic tools and programmes and offered a-day in-sessional training
sessions to in-service teachers from all disciplines. The sessions were on effective
ways of technology integration. Some of these sessions were given by the
technology experts and did not go any further than how to use Moodle. Only a
limited number of the sessions were given by prospective teachers who are familiar
with teaching in real classrooms. Moreover, the training sessions, unfortunately,
were not subject-specific and therefore might be argued to have limited practical

implications.

It is positive that the Turkish government is spending a big budget for education and
particularly for technology integration. On the other hand, bringing technology
together only with limited and superficial training on effective ways to use it as
suggested by the government may neither be enough for effective technology
integration and so better learning outcomes (than the current national and
international exam results). Therefore, the government followed a new strategy and
started recruiting teacher-researchers to study abroad and then to come back to
Turkey to work in the ministry from 2013. Some of these researchers started to
design sample technology-enhanced lessons for teachers to be used in their teaching.
The researcher of this thesis was one of the seven researchers who came to the UK in
2015 for this purpose. Specifically, the present study would like to explore
possibilities in geometry education —in relation to redesigning practice of teaching
spatial geometry to explore possibilities of using technology to improve middle

school students’ learning of two-dimensional drawings of three-dimensional shapes.



1.3.  Two- and Three-dimensional Shapes

As two-dimensional drawing and three-dimensional shapes are general terms, this
section describes their use in Turkish middle school programme and what they refer
to in this thesis.

A three-dimensional shape is defined typically as any shape or object that takes up
air space. Mathematically, 3D shapes or solids can be defined as shapes having
height, width and depth. A cube, cylinder, cone, pyramid, sphere or prism are all
examples of 3D shapes. A 3D shape, in this study, is a shape constructed from unit
cubes and having a non-empty base and no hidden blocks (see red solid in Figure
1.1).

A two-dimensional drawing is any planar shape with height and width such as a
triangle or a square. In this thesis, a 2D drawing refers to an orthogonal drawing or
an isometric drawing. Before describing the terms (orthogonal drawing and isometric
drawing) for their use in this thesis, it is important to understand what orthogonal
and isometric are. The term orthogonal originated in the “late 16th century from
French, based on Greek orthogonios (right-angled)”, it means “of or involving right
angles” (‘Orthogonal’, 2019). As the meaning indicates an orthogonal drawing is a
type of drawing which involves right angles to draw separate two-dimensional views
(from the front, top, left, right and back). An orthogonal drawing of a view (a single
view of a 3D shape constructed from unit cubes, e.g., front view), in this context, can
be thought of as a combination of squares. For example, Figure 1.1 illustrates
orthogonal drawings of views (from the front, top, left, right and back) of a 3D shape

constructed from unit cubes.

Isometric comes from the “mid-19th century from Greek isometria (equality of
measure) from isos (equal) and -metria (measuring)”, it means “of or having equal
dimensions” (‘Isometric’, 2019). An isometric drawing is a type of drawing in which
all dimensions (length, height and width) are drawn in full scale or equally
foreshortened instead of foreshortening them to the true projection. In true
projection, a 3D shape’s dimensions along the line of sight are drawn shorter than
those across the line of sight. A key feature of an isometric drawing is that horizontal
edges are drawn with 30 degrees angle from the horizontal axis while vertical edges

stay vertical in the drawing. An isometric drawing, in this thesis, refers to the



isometric projection of cube constructions. An isometric drawing of a cube has three
visible faces as equilateral parallelograms that allows drawing all parallel edges as
parallel lines (as shown in the blue isometric drawing in Figure 1.1).

------

Use cubes to build
this shape, and draw it.

Figure 1.1. Orthogonal and isometric drawings of a shape (Van De Walle, Karp &
Bay-Williams, 2010, pp. 431)

1.4.  Organization of the Thesis

This thesis has been organised in nine chapters. Following this introductory chapter,
Chapter 2 reviews and critiques the literature relevant to the current research. It has
three main sections on spatial thinking and geometry education. While the first
section introduces spatial thinking and its place in teaching geometry, the second
reviews the literature on geometry education, particularly spatial (3D) geometry. The
third is about the relationship between the two areas. The literature review ends with

the outline of the research questions.

Chapter 3 explains the methodology underpinning this thesis. This methodology is
used to explore the research questions first described in the literature review. It
outlines design-based research and how it is used throughout the thesis and discusses

the ethical procedures for the studies.

Chapter 4 pertains to the first study which is a case study of current mathematics
teaching on 3D shapes in middle schools in Turkey. The current literature and results
of this first study fed into a model for teaching 3D shapes, called RETA (realistic,
exploratory, technology-enhanced and active) teaching model. Chapter 5 proposes
this model for 3D shapes teaching and presents the initial RETA-based lesson plans

on orthogonal and isometric drawings of polycubes.
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Chapter 6, 7 and 8 are all studies that trial the RETA-based lessons in classroom
settings. While Chapter 6 and Chapter 7 further focus on students’ and teachers’
experiences with the RETA-based lessons, respectively Chapter 8 presents the
results of an experimental study on teaching 3D shapes with and without RETA-
based lessons.

Finally, Chapter 9 summarizes and discusses the findings of the thesis around the
research questions. Additionally, it considers the limitations and implications and
proposes future directions for further research on 3D shapes with the RETA model.



2. LITERATURE REVIEW

This chapter consists of three sections. Section 2.1 analyses current discourse about
spatial thinking including the domain specificity of spatial thinking and approaches
to measure spatial thinking. The immediate proximal aim of this doctoral research is
to provide lesson plans to help teachers support their students to do better in the
Turkish government geometry exam but the ambition of this thesis goes beyond this
exam. This section (2.1) is important because a longer-term aim of this research is to
improve students’ spatial awareness’ by giving them an opportunity to work with
two- and three-dimensional representations of 3D shapes, so that they can better deal
with the spatial problems in their future lives. Thus, it needs to set out if this goal is,
in principle, achievable. Section 2.2 presents a review of the literature which seeks to
provide an overview of current discourse and understandings about student
performance in 3D geometry. It describes students’ performance in geometry and
main factors that it has been argued to affect this including spatial abilities, drawing
abilities, and 3D geometry thinking. Section 2.3 describes spatial thinking and its
relation to geometry education. The chapter ends by drawing these literatures

together to propose research aims and questions.
2.1.  Spatial Thinking

Spatial thinking is an inseparable part of our lives. It starts when the infant first
experiences the world, and it never ends. Whether you are a child playing blind
man’s bluff or an adult packing a suitcase and putting it into a car truck, you always
need spatial thinking. From understanding floor plans of a shopping mall to reading
complex maps, from deciding to places of the furniture in your house to actually
doing the design drawings of furniture and plans of buildings, it is necessary to think

spatially. But what is spatial thinking?

! Spatial awareness is a cognitive skill which requires an organisation of object understanding in
reference to another object and in reference to oneself, and it also includes understanding objects’
relationships when they alter position in order to use this information in a systematic way for planning
movement (Jenkinson et al., 2008; Yarmohammadian, 2014).



Spatial thinking is an overarching and generalizable term that refers to numerous
aspects related to space. Before describing the term, it is important to understand the
spatial of spatial thinking. Although the word spatial seem to be understood as
universal and absolute, the literature offers three possible interpretations of it
(Witelson & Swallow, 1988). The first of these interpretations uses the term spatial
to describe perception as it relates to visual and physiological sense modalities (e.g.,
Landau, Spelke and Gleitman's (1984) study with blind and blindfolded children for
finding new routes using motor control). Secondly, researchers might use the term
spatial to refer to mental or physical manipulation of objects in Euclidean space (e.g.,
two-dimensional and three-dimensional mental rotation tasks). Finally, a third way
that researchers use spatial is locative purposes and familiarity with one’s
environment (Uttal, 2000). Moreover, some researchers have not defined what
spatial is, they have had to concentrate on defining what spatial is not; here the
contrast is primarily linguistics (Linn & Petersen, 1985). All of these are widely
accepted descriptions for the term spatial found in the literature.

To understand the term spatial thinking, it is, of course, important to understand both
the term spatial and the term thinking (Ness & Farenga, 2007). Probably, therefore,
many ideas arrived from psychology to describe spatial thinking and many
psychology-based definitions were offered for spatial thinking. One of them
describes the construct of spatial thinking as a subset of mental imagery (one’s
thinking using mental images®) (Gleitman, Gross & Reisberg, 1995). Gleitman and
colleagues (1995) claim that spatial thinking is about people’s “referring to their
mental images as mental pictures and comment that they inspect these pictures with
the mind’s eye” (p.343). The other considers the term as cognitive processes
associated with spatial entities where these entities are events or objects which
happen and/or take place in space (Casati & Varzi, 1999). Casati and Varzi (1999)
argue that “Spatial thinking, whether actual or hypothetical, is typically thinking
about spatial entities of some sort. ... For instance, we can imagine a decomposition

of objects and events into their parts. The table has four legs (actual); the take-off

2 Mental images are “mental representations that resemble the objects they represent by directly
reflecting the perceptual qualities of the thing represented” (Gleitman, Gross, & Reisberg, 1995,
p.343).



was the most exciting part of the flight (hypothetical).” (pp.1-3). Although both
definitions are commonly cited in the reviewed literature, one could see that while
Gleitman et al.'s (1995) definition excludes the process and steps of spatial events,
Casati and Varzi’s (1999) definition includes them.

This thesis follows a relatively recent and more comprehensive definition by a
committee of researchers working on spatial thinking to describe domain-
independent spatial thinking. The committee defines spatial thinking as a
combination of three elements: concepts of space, the process of reasoning and tools
of representation (Committee on Support for Thinking Spatially, 2006a). Concepts of
space are considered as the main element which distinguishes spatial thinking from
other forms of thinking. The concepts involve an understanding of space so that one
could use its properties, such as continuity, dimensionality and proximity, in order to
understand and set problems. There are many characteristics of an object in space
that are spatial: parts of an object (the tail of a cat), orientation of an object (relative
place of a vase, it might be on the table and next to the pencil case), and size of an
object (a bird might be smaller than a cat, and bigger than a mouse). The process of
spatial reasoning needs to be considered and becomes important during problem-
solving. It involves the ability to reason by comparing, manipulating and
transforming mental pictures in order to suit the problem-solving process; for
example, when visualising the shortest distance between two points (Hegarty &
Waller, 2005; Newcombe & Shipley, 2015). Spatial transformations including
rotation and scaling and using these transformations to figure out, infer and find
solutions to problems are also described as being a part of the process of reasoning.
Finally, tools of representation play a role both in understanding space and in the
process of reasoning, for example, when working on the relationships among
different views (plans versus elevations of buildings). By tools of representation, the
committee basically talks about the Vygotskian representation tool. Hence,
representations refer to a wide range of things which can be auditory, graphic (e.g.,
text, image and video), kinaesthetic and tactile and they are used to describe, clarify
and communicate about objects’ structure, operation and function and their
relationships (Committee on Support for Thinking Spatially, 2006b). These
representations are needed because of the existence of objects in different spatial

scales. For example, a chemist may treat a molecule as an object and an



astrophysicist may treat a planet as an object. Different tools and programs are used
to form and understand objects through their representations. Such tools are also
utilised in many fields in comparing various representations, such as comparing
orthogonal and perspective maps in geography and comparing plans and elevations
of buildings in architecture.

The terms visual-spatial thinking (Wickens et al., 2005) and visuospatial thinking
(Shah & Miyake, 2005; Wu & Shah, 2004) are sometimes interchangeably used for
spatial thinking. However, in this thesis, the term spatial thinking was chosen
following the suggestions of Ness and Farenga (2007) because it is the most
commonly accepted term in geometry literature. Finally, despite this general
description of spatial thinking, it should still be noted that the term has been
described by many researchers in different ways (e.g., Lohman, 1988) and the

majority of these descriptions are specific to the researchers’ disciplines.

2.1.1. Domain-specificity of Spatial Thinking (Spatial Thinking in Disciplinary
Contexts)

Research on spatial thinking is distributed across many different disciplines. The
term spatial thinking can be and has been found in many disciplines including
architecture (March & Stiny, 1985), chemistry (Small & Morton, 1983), engineering
(Hsi et al., 1997), geography (Kastens & Ishikawa, 2006; Lee & Bednarz, 2012),
medicine (Hegarty et al., 2007), physics (Kozhevnikov et al., 2007), science
(Sanchez, 2012) and, most related to the current PhD research, in mathematics
education (Cheng & Mix, 2014; Newcombe, 2018). While some of these disciplines
are somewhat similar and so one could find a basis for the comparison such as
chemistry (e.g., drawings of organic molecules and representing them as 3d
structures) and mathematics (e.g., drawings of polycubes and representing the
elevations of them), some are rather disparate fields such as architecture and
medicine. Because of this distributed nature of relevant research, it is challenging for
researchers to uncover all the relevant work and to keep up with the available
research. Perhaps, as a result, spatial thinking literature(s) has many definitions and
descriptions of the term spatial thinking. In most of the cases, spatial thinking is
defined in a disciplinary context and used to mean domain-specific spatial reasoning

and skills. For example, while spatial thinking may refer to the relative geographical
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locations of social phenomena in social sciences or particularly in geography (Lee &
Bednarz, 2009; Logan, 2012), it may refer to mental visualisations of the molecules

in chemistry.

In this thesis, spatial thinking within a discipline will be considered to include the
spatial aspects of a discipline hence it is a part of the discipline. This is, a discipline
(or domain) and spatial thinking will be thought of as two different sets that overlap
where the overlap of the sets represents common parts in the discipline and spatial
thinking (disciplinary spatial thinking, Section 2.3.1 specifies this for geometry
education: geometric spatial thinking) (as suggested by Battista, Frazee, & Winer,
2018; Pittalis & Christou, 2010; Widder & Gorsky, 2013). Hence, when reporting
students’ performance on a task, what is improved or not improved could be spatial
thinking, disciplinary knowledge and the intersection between these two things so
both of them. In line with this, Section 2.1.2 is devoted to describing the

measurements of spatial thinking.
2.1.2. Measuring Spatial Thinking

Given the broadness of the definition of spatial thinking that we can see in Section
2.1, it is unsurprising that studies attempting to measure spatial thinking have
actually suggested that it is composed of multiple factors (Cornoldi & Vecchi, 2003;
Hegarty & Waller, 2005). Spatial thinking has been measured in the literature in
three ways: through spatial tests independent of an academic subject, disciplinary

tests and their combination.

Spatial tests mainly focus on items to assess three factors corresponding to the most
demanding types of processes of spatial reasoning, namely: spatial visualisation,
spatial relations and perceptual speed. The first and the most studied factor is spatial
visualisation, which is recently described as “piecing together objects into more
complex configurations or visualising and mentally transforming objects often from
2D to 3D or vice versa” (Newcombe & Shipley, 2015, p.185). Spatial visualisation
test items assess multistep mental manipulations of spatially presented information,
for example, determining which combination of small objects would fill a larger one
or determining which of the images corresponds to the places of the holes when one
opens a folded then drilled image (Carroll, 1993; Linn & Petersen, 1985). Example

spatial tests assessing spatial visualisation include Paper Folding Test, Minnesota
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Paper Form Board Test, Block Design Test, Mental Cutting Test, Space Relations
Test, Surface Development Test and Guilford-Zimmerman Spatial Orientation Test
(Hegarty & Waller, 2005; Uttal, Meadow, Tipton, Hand, Allen, Warren &
Newcombe, 2013).

The second factor is spatial relation (sometimes called speeded rotation) which
implies recognising the relationships among various visual elements of an object
(Bosnyak & Nagy-Kondor, 2008; Turgut, 2015). It is often conceived of as the
mental rotation of 2D or 3D objects, and it describes how these objects are located in
space in relation to a reference object. Mental rotation requires a cognitive process to
mentally transform or rotate 2D or 3D objects in any direction indicated through
spatial visualisation (Carroll, 1993). Similar to spatial visualization test items, spatial
relations test items come with the requirement of mental transformations. Their
difference is that they assess single step mental manipulations of two-dimensional
objects (usually, rotations on a plane) and they tend to emphasize speed (Carroll,
1993; Miyake, Friedman, Rettinger, Shah, & Hegarty, 2001). Examples of spatial
relations measures include Card Rotations Task, Flags Test, Vandenberg Mental
Rotation Test (VMRT), Cube Comparison Test, Primary Mental Abilities Space Test
(PMA), Thurstone Spatial Relations Test (TSRT), Children’s Mental Transformation
Task (CMTT) and Purdue Spatial Visualization Test: Visualization of Rotations
(PSVT:R) (Hegarty & Waller, 2005; Uttal et al., 2013). This factor is sometimes
seen together with the spatial orientation (i.e., imagining the appearance of objects
from different perspectives; see Kozhevnikov and Hegarty’s 2001 study) and named
as spatial relations and orientation in the early literature (e.g., Michael, Gilford,
Fructer, & Zimmerman, 1957 as cited in Hegarty & Waller, 2005). Alternatively,
spatial orientation may be found as a separate factor in the literature (e.g., Lohman,
1988; McGee, 1979). This thesis accepted spatial orientation as a part of spatial
visualisation following the suggestions of Carroll (1993) who does not include it as a
factor to her factor-analysis considering relatively smaller number of tests to

measure it compared to spatial visualization.

The third factor is the perceptual speed which is described as perceiving objects,
routes or spatial configurations in the presence of distracting information, sometimes
even without all the information present (Newcombe & Shipley, 2015). This

includes navigation which refers to coordinated and goal-directed moves in an
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environment, and they can be either physical movements or metaphorical
movements, for example, navigating through a detective story or a mathematics
problem (Montello, 2005; Wang & Carr, 2014). Perceptual speed test items assess
individual differences in speed and efficiency by looking at relatively easy
perceptual judgements that can be made them, for example identifying which of the
given pictures is the same as the model picture. Examples of perceptual speed
measures are Embedded Figures Task, Flexibility of Closure Test, Identical Pictures
Test, Morris Water Maze and Radial Arm Maze (Hegarty & Waller, 2005; Uttal et
al., 2013). There are also other factors such as closure speed (i.e., spotting figures in
a more complex environment, measured by Snowy Pictures Test), visual memory
(i.e., remembering the configurations, locations and orientations of figures, measured
by Silverman-Eals visual memory task) and spatial perception (i.e., being aware of
one’s relationship with the environment, measured by Water-level task, Rod and
Frame Test), some of which were regarded as minor in the literature (Lohman,
1988). To note, although the debate is still raging as to the number of factors that
spatial thinking might be composed of, some studies distinguished spatial orientation
(Lohman, 1988; McGee, 1979), but other studies (e.g., Carroll, 1993) have not been

able to separate it.

Disciplinary tests are the tests which include domain-specific tasks to measure
spatial thinking. These tests measure the change in the participants’ spatial thinking
through the disciplinary test items. In other words, disciplinary tests measure both
spatial and disciplinary knowledge hence the intersection (e.g., Bednarz & Lee,
2019; Huynh & Sharpe, 2013; Lee & Bednarz, 2012). They assess spatial aspects of
the discipline by asking disciplinary-specific spatial questions, for example, making
orthogonal drawings and cross-sections of a prism in geometry or creating map
cross-sections of a landform in geography. In the literature, it is common to see these
tests named by the researchers as spatial tests, spatial skill tests, spatial ability tests
etc. In this thesis, they are consistently called disciplinary tests (similar to Battista et
al., 2018; Uttal et al., 2013).

Finally, there are some studies which use a combination of spatial tests and
disciplinary tests and relate the outcomes to each other (e.g., Casey, Nuttall, &
Pezaris, 2001; Delgado & Prieto, 2004; Kyttdld & Lehto, 2008). Researchers who

use both spatial tests and disciplinary tests mostly aim to find a relationship between
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disciplinary-independent and disciplinary-specific spatial (disciplinary spatial)
performance. Moreover, both spatial and disciplinary tests were observed to be used
after disciplinary-specific and disciplinary independent training sessions. While
some of the training interventions were in respect of disciplinary-independent spatial
outcomes (e.g., improving performance in the computer game Tetris), there were
many studies in respect of disciplinary-specific spatial outcomes. Lastly, the same
test can be both spatial and disciplinary depend upon the expertise of the participant.
Studies show that dentists and chemists initially solve mental rotation problems of
teeth/chemical structure in ways that are drawn upon their general spatial skills but
with experience, these people solve them using (at least in part) disciplinary skills
(Hegarty et al., 2009, 2013; Stieff & Raje, 2010, 2008). In other words, both Hegarty
and colleagues (2009) and Stieff and Raje (2008) found that at the beginning
students are only able to draw on domain-general spatial skills but by the end of an
intervention, they now not only improve their domain-general spatial skills but they
may have developed disciplinary spatial skills.

2.1.3. Malleability of Spatial Thinking

Recent research has provided overwhelming evidence that spatial skills can be
trained through spatial interventions (Newcombe & Stieff, 2012; Uttal, 2009; Uttal et
al., 2013). That is, research has found that spatial test performance can be improved

when participants engage in activities that require spatial thinking.

Training sessions involving these activities are often either called video game
training or spatial task training (Baenninger & Newcombe, 1989). This thesis does
not discount these influences but is particularly concerned with whether spatial
reasoning can be improved through educational interventions in classroom
environments. Such interventions are called course training, which is a spatially
relevant course that used to improve spatial reasoning or rather spatial aspects of

disciplinary reasoning (Baenninger & Newcombe, 1989).

Uttal et al.’s (2013) meta-analysis with 206 studies is the first spatial training meta-
analysis available in the literature, which included all types of training (video games,
courses and spatial task training) described by Baenninger and Newcombe (1989).
The meta-analysis found solid evidence to conclude that spatial skills are malleable

(overall: g=0.47, SE=0.04). This outcome involves all studies irrespective of the
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design of the study and indicates that spatial skills are generally moderately
malleable. Their study also discovered that students in the training group showed an
observable improvement (within design: g=0.62, SE=0.04) even when in comparison
to a control group (mixed design: g=0.45, SE=0.04). On average, spatial training
increased spatial test performance by nearly half of a standard deviation.

Uttal and colleagues (2013) already showed that training may change spatial skills.
Their meta-analysis also showed that the spatial skills gained through training are
durable. Considering tests administered immediately after the training as post-tests,
and those administered after a couple of days, weeks or over a month as delayed
post-test (they define delayed post-test as broadly), no significant differences were
reported either between the results of delayed post-tests having varying time delays
(p>.67) or between post-tests and delayed post-tests (p>.19). The meta-analysis
showed that the effects of training are enduring (post-test: g=0.48, SE=0.05; delayed
post-tests: g=0.44, SE=0.08).

Finally, research has found that spatial skills are transferable across tasks if sufficient
training or experience is provided and if the tasks share some common underlying
psychological spatial skill (Uttal et al., 2013; Wright et al., 2008). Transferability
was observable even when studies involved small samples. For example, Wright and
colleagues (2008) asked 31 participants (17 female, 14 male) to do daily mental
rotation and paper folding activities to practice their spatial skills over three weeks.
They divided participants into two conditions; while one group practised mental
rotation tasks, the other practised paper folding tasks. Both conditions were asked to
complete a mental rotation test and a paper folding test before and after the
intervention. The results showed that spatial skills transfer across mental paper
folding task and mental rotation task. This is, although there is a greater gain for
practised task, significant gains were also revealed for the unpractised task. For

example, mental rotation group significantly improved not only in mental rotation
(p<.0001, 77;2):.87) but also in paper folding (p<.0001, ’7;2):.60) by only practising

mental rotation tasks, and a similar case was observed for the paper folding group.

Similarly, Uttal and colleagues’ (2013) meta-analysis found that specific spatial
skills are transferable with a moderate effect size (g=0.48, SE=0.04). They further

assessed the degree of the transfer to see how much training in one task transfer to
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other types of tasks. In order to do the analysis, they classified the spatial tasks in
two dimensions: intrinsic vs extrinsic and static vs dynamic. Authors define intrinsic
information as “the specification of the parts, and the relation between the parts, that
defines a particular object” and extrinsic information as “the relation among objects in
a group, relative to each other or to an overall framework” (pp.358-59). This process
involved one by one consideration of each spatial task in order to put them into four
categories. For instance, they classified a) recognition of an object as a rake as
intrinsic and static, b) mental rotation of the same object as intrinsic and dynamic, c)
reading maps as extrinsic and static, and d) one’s thinking about an object’s relations
to oneself from a changed position in the same environment involving extrinsic and
static information. The analysis was conducted with a 2x2 classification of spatial
skills, for example, intrinsic and dynamic, and extrinsic and static. The amount of
transfer within cells of the 2x2 (g=0.51, SE=0.05) and across cells of the 2x2
(9=0.55, SE=0.10) were more than a half of a standard deviation, indicating that
spatial skills are transferable to not only within cells in which training and transfer
tasks require similar skills but also across cells which may be anticipated to involve

distinct skills and representations.

To sum up, research has shown that spatial skills respond to training and that the

improvement or benefit gained from training is long-lasting and transferable.
2.1.3.1. Training to Improve Disciplinary Spatial Performance

There are many disciplinary-specific spatial (disciplinary spatial) training studies
which aimed to improve disciplinary-specific spatial performance, hence academic
achievement in science and mathematics (Hsi, Linn, & Bell, 1997; Onyancha, Derov,
& Kinsey, 2009; Sorby, Casey, Veurink, & Dulaney, 2013; Uttal, 2009). Researchers
who reviewed disciplinary spatial training studies to date argued that such training
seems promising for increasing students’ success in STEM (science, technology,
engineering and mathematics) domains (Stieff & Uttal, 2015) and more recent

studies have confirmed their results (Sorby, Veurink, & Streiner, 2018).

The effectiveness of disciplinary spatial training is exemplified in many studies
aiming to improve academic success in technology courses (e.g., Hsi et al., 1997;
Onyancha et al., 2009). For example, Hsi et al. (1997) examined the effects of spatial

technological-design training on students’ performance in a technological design
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course. Their training included hands-on technological design activities, computer
courseware and problem-solving assessments on orthogonal and isometric drawings.
They found that the disciplinary spatial training significantly improved overall
course grades (p=.003; no effect size reported), and that there was a significant
relationship between spatial skills measured by a disciplinary test and overall course
performance (pre: r=.28, p<.0001; post: r=.35, p=.0004), hence they started to design
their course curriculum building on the skills that gathered through this training.
Similarly, Onyancha et al. (2009) investigated the effects of a spatially based
computer-assisted design course on students’ success in object geometries and
rotation measured by a subset of PSVT:R questions (a test which requires single step
mental manipulations of two-dimensional objects in a limited time, described in
section 2.1.2 as spatial relation measure (Guay, 1976)) for engineering. They worked
with engineering students and measured their spatial skills by using PSVT:R, and
divided them into three groups: low group (those who got 60% of the maximum
possible PSVT:R score), intermediate group (those who scored between 60% and
80%) and high group (those who scored above 80%). They only invited students
with limited spatial skills to the course (approximately 60%, experimental group)
and the remaining students were in the control group. The course included work with
engineering software packages Physical Model Rotator and Alternative View Screen.
While students in the experimental group attended the spatially based computer-
assisted design course, the control group did not receive any training. The results
showed a significant improvement in the PSVT:R subset questions for engineering
scores of experimental group after the four-week course (p<.001, d=1.94) while no
difference was observed in the control group (p=.009, d=0.69). Experimental group
which is low group not only outperformed control group (pre: p=.79, post: p=.013)
but also closed the gap between them and intermediate group (pre: p<.001, post:
p=.22). However, it should be noted that this is a study which is pre-screened to
include only low scorers. This is, the control group and intervention group did not
start from similar levels of knowledge prior to the training which makes it hard to

compare groups and interpret the results of the study.

Similar to those of improving achievement in technology courses, studies
encouraging disciplinary spatial training to improve academic achievements in

mathematics and mathematics-based science courses report an important increase in

17



the students’ performance after the training (e.g., Miller & Halpern, 2013; Sorby,
2009; Sorby et al., 2013). Sorby et al.'s (2013) study with almost 700 students is a
good illustration of how improvements in spatial skills, measured by PSVT:R,
resulted in improved grades in a calculus course. They provided spatially based
engineering course to 675 (133 female, 542 male) first-year engineering students and
gave lessons on isometric sketching, orthographic projection (orthogonal drawing),
transformations of objects and cross-sections during the course. Students were also
required to attend a calculus course offered by the same instructor and they studied
trigonometry, functions, differentiation and integration as a part of the calculus
course. They used a previously-designed workbook for their spatial engineering-
maths training (Sorby, 2009). The workbook included problems requiring 2D
isometric sketching, orthogonal drawing, transformations of objects and drawing
cross-sections. Sorby and colleagues’ (2013) findings showed a significant
improvement in calculus scores (measured by a disciplinary test, p<.05, d=.20) for
those students who attended the spatially based computer-assisted design course
compared to the control group who did not attend the design course. This illustrated
a case to how a calculus course that supported with a spatial disciplinary training
resulted in improvements in spatial disciplinary performance; however, it is not clear
how spatially based engineering course and calculus course were linked to each
other, how spatial disciplinary training would help calculus performance and vice
versa and how the improvement in spatial disciplinary performance happened as
there were many activities in the spatial training course from isometric sketching to

study of cross-sections.

Another example of this type of research is Miller and Halpern’s (2013) study which
supported the findings of Sorby et al. (2013). They used 12 hours of Sorby’s (2009)
spatial engineering-maths training to improve gifted students’ performance in a
calculus-based physics course. This was known as a challenging course and students
who took the course were initially tested and found to have high spatial abilities
(spatial visualization measured by paper folding and mental cutting test and spatial
relation measured by mental rotation test). Miller and Halpern’s (2013) study
showed that the training not only improved students’ exam scores approximately 0.4
standard deviations in this physics course but also improved their mental rotation

and spatial visualization skills (measured by various spatial tests including the
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Mental Rotation Test, Mental Cutting Test and Novel Cross Sections Test), and
these lasted for a few months after the training. This study is important because it
shows that disciplinary spatial training might also help students with already well-

developed spatial skills in improving their academic performance.

It should also be noted that the above-explained studies were not the only studies
reporting similar results, there were many other researchers who reported similar
findings in STEM domains since years (in mathematics: Brinkmann, 1966; Cheng &
Mix, 2014; in engineering: Hsi et al., 1997; in science: Hegarty, 2014; Lord, 1985;
Sanchez, 2012; in chemistry: Small & Morton, 1983; in medicine: Stransky, Wilcox,
& Dubrowski, 2010). Moreover, examples are not only limited to STEM courses.
There are examples from social sciences disciplines including archaeology,
sociology, economics and criminology (e.g., Hespanha, Goodchild, & Janelle, 2009;
Jimenez & Chapman, 2002). This doctoral research focused particularly on spatial
geometric training in respect of spatial geometric academic achievement that is

further described in Section 2.3.
2.1.4. Gender Differences in Spatial Thinking

That there is a gender difference is almost certainly the most widespread assumption
in the popular media about spatial thinking and it is tended to be reported in favour
of male participants. The literature does suggests that this may be partially true but
there is not any consensus as yet. The majority of the studies report that males
outperform females in mental rotation tests but it is not consistent for all types of
tests (Newcombe & Stieff, 2012; Vandenberg & Kuse, 1978). There are a few meta-
analyses on gender differences in spatial thinking, and the following paragraphs

provide a review of them.

The first available meta-analysis on gender differences in spatial thinking was
conducted in the early 1970s and it included spatial perception and spatial
visualisation (Maccoby & Jacklin, 1974 as cited in Linn & Petersen, 1985). For
spatial perception, 16 of 21 studies included in the analysis were reported
statistically significant differences in favour of males. For spatial visualisation, of 32
studies included in the analysis, only eight of them reported statistically significant
differences; five were in favour of males and three were in favour of females. Thus,

they reported no consistent gender differences in spatial visualisation. A decade
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later, Linn and Petersen (1985) published a meta-analysis of 172 studies dated after
Maccoby and Jacklin’s (1974) review until 1982. They showed that there were some
gender differences in some of the factors of spatial thinking but not in all of them.
That is, there were large gender differences in mental rotation (d=0.73, p<.05) and
medium in spatial perception (d=0.44, p<.05) both favouring males but there was not
any gender difference in spatial visualization (d=0.13, p>.05). These results
confirmed the results of the earlier meta-analysis on spatial visualisation and added

that gender differences in mental rotation and spatial perception was robust.

Voyer, Voyer and Bryden (1995) conducted a more comprehensive meta-analysis on
gender differences in spatial thinking from 1974 to then-date. The analysis included
286 studies, which covered Maccoby and Jacklin's (1974) and Linn and Petersen's
(1985) studies. The results indicated that there were significant gender differences in
spatial thinking favouring males (d=0.37, p<.01). Specifically, confirming the results
of the earlier studies, they found a large effect size gender difference in mental
rotation (d=0.53, p<.05) and a medium one in spatial perception (d=0.44, p<.05), but
no gender difference in spatial visualisation (d=0.19, p>.05). Voyer and colleagues
(1995) reported that they faced difficulties while synthesizing effect sizes coming
from various tests. Hence, the next meta-analysis stated this and only focussed on the
mental rotation measured by the PSVT:R (Maeda & Yoon, 2013). It was conducted
to estimate the magnitude of gender difference in 3D mental rotation and to see
whether and how variables linked to the test conditions influence gender difference
in spatial thinking. The analysis included 40 studies published between 1976, when
the test was developed, and 2011. The results of Maeda and Yoon’s (2013) analysis
indicated that males outperformed females in 3D mental rotation (g=0.57, p<.05),
and the differences were larger when the test was implemented with strict time limits

(<30 seconds per item, g=0.68, p<.05).

Reilly and Neumann (2013) conducted another meta-analysis on gender differences
and spatial thinking, measured by various mental rotation tests. The analysis
included 12 peer-reviewed empirical studies and reports dated after 1986 to then-
date. The studies were from the United Kingdom, the United States of America,
Canada, Poland and Croatia. The meta-analysis found statistically significant
relationships between masculinity and mental rotation for both females (r=.23,

p<.001) and males (r=.30, p<.001). The analysis also showed that these results did

20



not change according to the country of the study. Moreover, the results indicated that
type of test can affect gender difference in mental rotation (VMRT: r=.38, p<.001;
Generic mental rotation tasks: r=.22, p<.05; Card Rotations Task: r=.22, p=.07;
TSRT: r=.21, p=.06).

Finally, there are two recent meta-analyses of gender differences in spatial thinking,
published in 2019. The first one is Lauer, Yhang and Lourenco’s (2019) meta-
analysis with 128 studies to date published in English. It aimed at exploring the age
range at which male advantage emerges and the influence of variables linked to the
test conditions to gender differences in spatial thinking, measured by mental rotation
tests. The results showed a significant developmental change in the magnitude of
gender difference. This is, they reported a small male advantage in childhood (3 to 7
years: g=0.20, p<.05) which increased with age (8 to 12 years: g=.40, p<.05; 13 to
17 years: g=0.54, p<.05). Moreover, the results indicated that variables including
dimensionality of task (2D: g=0.30, p<.05; 3D: g=0.50, p<.05), administration mode
(digital: g=0.28, p<.05; paper and pencil: g=0.41, p<.05) and test setting (individual:
g=0.26, p<.05; group: g=0.45, p<.05) moderate the magnitude of gender differences
in mental rotation in addition to the type of test (CMTT: g=0.19, p<.05; PMA:
g=0.37, p<.05; VMRT: g=0.58, p<.05).

The second one is Yuan and colleagues’ (2019) study which aimed at exploring
whether gender differences in spatial thinking differ by the spatial skill. They
divided the processes of spatial reasoning into two groups: those requiring small-
scale spatial skills (being spatial visualisation and spatial relations) and those
requiring large-scale spatial skills (being spatial orientation and navigation). They
described small scale spatial skills as mentally representing and transforming 2D and
3D images which can be apprehended from a single perspective (Hegarty & Waller,
2004; Hoffler, 2010), and large-scale ones as carrying out the processing in a large
environment where the viewer’s perspective changes whilst spatial relationship
between objects remains (Jansen, 2009; L. Wang et al., 2014). They obtained 98
effect sizes from 44 studies, 14 of which reporting large-scale and 84 of which
reporting small-scale spatial skills. Yuan et al.’s (2019) meta-analysis found that
males outperformed females in spatial thinking overall (g=0.72, p<.001) as well as in
both spatial skill types but with a larger effect size in large-scale spatial skills
(9=1.34, p<.001) than small-scale spatial skills (g=0.62, p<.001).
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It is noteworthy that most of the meta-analyses include only one of the processes of
reasoning described in Section 2.1.2, mostly spatial relations measured by mental
rotation measures and even sometimes using only one particular measure. For
example, Maeda and Yoon’s (2013) meta-analysis includes studies which measure
spatial relation by the PSVT:R but do not include studies with other mental rotation

tests and studies measuring spatial visualisation or any other factor.

To sum up, consistent gender differences in favour of male participants were found
in some processes of spatial reasoning, and they were particularly visible in mental
rotation. These findings set the basis of gender consideration in all aspects of this
PhD thesis.

2.1.4.1. Alternative Explanations for Gender Differences in Spatial Thinking

Even when it is accepted that there are gender differences in spatial thinking, the
underlying mechanism can also still be hotly debated. The reviewed literature
suggests at least two distinguishable factors that may explain the nature of gender
differences in spatial thinking: biological factors (e.g., neural, hormonal, genetic and

evolutionary) and environmental factors (e.g., dissimilar experiences) or indeed both.

On the one hand, many researchers attributed gender differences in spatial thinking
to biological differences between females and males. They argue that females are
born different to males, so the differences are in the genes. For example, Jordan,
Wiistenberg, Heinze, Peters and Jiancke (2002) and Koscik, O’Leary, Moser,
Andreasen and Nopoulos (2009) suggest that functional and morphological
differences in the brains of males and females contribute to gender differences in
spatial thinking. Jordan and colleagues’ (2002) study found that females and males
display different cortical activation patterns during mental rotation tasks. Koscik and
colleagues (2009) reported that females have smaller parietal lobe surface area and
proportionally greater disadvantageous grey matter volume in the parietal lobe,

which is thought to be involved in spatial reasoning.

Other researchers further suggested that hormonal differences may lead to the gender
differences in spatial thinking (e.g., Kimura & Hampson, 1994). For example,
unique biological development mechanisms for each gender were indicated as the
cause of gender differences in spatial tasks (Geiser et al., 2008; Linn & Petersen,

1985). Meta-analyses reported that gender differences in spatial thinking favouring
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males were found to increase by age (Geiser et al., 2008; Lauer et al., 2019). These
differences particularly tend to accelerate around the time of puberty and have been
related to hormone levels of oestrogen and testosterone (Broverman et al., 1981).

Others have not specified precise mechanisms but argue that there is an evolutionary
basis in gender differences in spatial thinking (Gaulin & FitzGerald, 1986;
Silverman & Eals, 1992). Their findings with other species supported the idea that
males perform better than females in spatial navigation. In an evolutionary context,
navigation only refers to the physical movement (e.g., navigating a maze but not
navigating through a detective story or a maths problem). As an extension of studies
with other species, studies conducted with people proposed that a similar
evolutionary process might underlie gender differences in spatial skills of human
(Gaulin & Hoffman, 1988). Both Moffat, Hampson and Hatzipantelis's (1998) and
Burkitt, Widman and Saucier's (2007) studies in virtual mazes reported a significant
main effect of gender in favour of males on the performance in a virtual water maze.
These results were considered as an extension of gender differences in diverse
species. They reported that spatial skills reflect the division of labour in hunter-
gatherer societies where males developed the skills about spatial navigation and

females developed skills of memory for objects and their locations.

Nevertheless, this perspective has not escaped significant criticism from academics
(Newcombe, 2010a; Newcombe & Stieff, 2012). For example, Newcombe's (2010)
chapter with many examples demonstrated “how the zealotry of many evolutionary
psychologists has led them to neglect their obligation as scientists to formulate and
defend testable chains of hypotheses” especially for gender differences in spatial
thinking (p.261). She pointed out that evolutionary effect is not sensible for many
reasons. According to Newcombe (2010), the evolutionary writing mostly start with
the words about differences in the cognitive functioning between females and males
however available research (Guiso et al., 2008; Hyde, 2005; Hyde et al., 2008)
provides a satisfying data for the gender similarities hypothesis in various cognitive,
emotional and social domains, including mathematics. Moreover, despite obvious
differences in some spatial tests (e.g., mental rotation tests), not all spatial tests show
the gender differences including some of the tasks which are widely claimed by
evolutionary perspective to show such differences such as navigation and memory of
objects (Voyer et al., 1995).
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On the other hand, gender differences in spatial thinking have also been attributed to
environmental factors. Many researchers support the idea that girls just get different
types of experiences as children to boys, so the differences that results are not due to
genes (e.g., Baenninger & Newcombe, 1989; Terlecki, Newcombe, & Little, 2008).
They report that dissimilar previous experiences may result in gender differences in
spatial thinking. For instance, Johnson and Meade (1987) and Waber, Carlson and
Mann (1982) explained more pronounced gender differences about the time of
puberty in terms of the process of childhood socialisation. Studies found that some
spatial activities may prevail more among boys than girls, such as playing with
certain types of toys or doing some kinds of sports. Deno (1995) found that playing
with building and construction toys such as blocks and Lego improves spatial
visualisation. Ginn and Pickens (2005) reported that doing some kinds of sports
(e.g., basketball, football and soccer) increase the performance in mental rotation
tasks. Both Cherney (2008) and Feng, Spence and Pratt (2007) found that playing
video games improves mental rotation skills. All these activities are more common
among boys than girls hence give boys more spatial experiences than girls that lead
to gender differences in spatial thinking. This could be linked to the malleability of
spatial thinking in a sense that experience and training have a potential to change

spatial thinking, as discussed in Section 2.1.3.

Others studies have found that socioeconomic status and culture are also related to
the differences in spatial thinking. For example, students from higher socioeconomic
environments tend to outperform those coming from lower socioeconomic
environments in both spatial tests (Levine et al., 2005) and disciplinary tests
including spatial activities such as drawing in geography (Levine et al., 2005) and
modelling in geometry (Fuson & Murray, 1978). Finally, de la Fuente, Santiago,
Roman, Dumitrache and Casasanto (2014) illustrated variations in spatial differences
across different cultures (Arabic and Spanish cultures) as evidence of how culture

shapes spatial thinking.

The third argument is that gender differences in spatial thinking are caused by both
biological and environmental factors. A number of authors argue that biological
factors such as hormones and genes may interact (in a complex manner) with
environmental factors (Halpern & Collaer, 2005; Wallen, 1996). These biological

factors may change spatial skills by influencing girls and boys to seek out or avoid
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certain activities. For example, boys tend to play with building and construction toys
that are known to support spatial thinking (Baenninger & Newcombe, 1989; Tracy,
1987; Verdine et al., 2014). Hence, it is argued that genes cause expression of pre-
existing differences and people’s seeking out opportunities that then modify and
impact on environmental features (which, for example, lead to changes in brain
structure). For example, those who chose to be taxi drivers as their career practice
their navigation skills as a part of this job. In a study conducted with licenced
London taxi drivers, it was found that there is a positive correlation between the grey
matter volume in their brains (which is thought to be involved in spatial reasoning)
and their years of working experience (Maguire et al., 2000).

To sum up, there are three arguments about the cause of any gender differences in
spatial thinking: they are caused by either biology alone or environment alone or
both interactively. The reviewed literature is complex and shows that there are many
possible explanations. The position taking in this thesis is that as spatial thinking is

clearly malleable, there must be at least some strong environmental component.
2.2. Learning and Teaching Geometry

This section presents a review of literature which seeks to provide an overview of
relevant current discourse and understandings about student performance in maths,
particularly in geometry. The section goes from general to the specific; it first
describes students’ performance in mathematics by discussing research on geometry
performance and reviews national and international test results with a particular
interest in geometry performance. It then presents studies on 3D shapes and factors
argued to be affecting students’ performance in geometry, especially the geometry of

3D shapes.

As geometry is a general term, it is important to understand what geometry refers to
in this thesis. In general, geometry deals with the study of properties of space, the
measurement of forms that can be designed in space, and the relationships of these
forms in Euclidean, elliptic, three-dimensional non-Euclidean, and hyperbolic
geometries (Karakas, 2011). Specifically, in many curricula, middle school geometry
includes study of only Euclidean geometry, which indeed constitutes a relatively
small part in the actual field of geometry. That is, middle school geometry includes

the study of two- and three-dimensional shapes together with their representations
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and transformations, and mathematical calculations of the measurement of lengths,

areas and volumes in Euclidean geometry (Altun, 2013; Clements, 2003).
2.2.1. Research on Geometry Performance

Research into students’ performance in geometry has been seen as an important
research subject in mathematics for a long time (Clements, 2003; Clements &
Battista, 1992). For more than 30 years, a large number of these studies reported that
students usually perform worse than expected in geometry (e.g., Fuys, Geddes, &
Tischler, 1988; Usiskin, 1982, 1987). Although there is often the reaction of students
are doing poorly, there may of course be many reasons for this including too high
expectations of what students should be able to achieve at specific ages, badly
designed tests to measure students’ performance and insufficient quality or quantity

of teaching.

Early examples of research into geometry performance include many studies from
the United States of America. For example, Galbraith's (1981) study through clinical
interviews with 170 students concluded that more than 67% of the 12 to 15-year-olds
achieved lower than what was expected in simple geometric proofs. Carpenter and
colleagues (1983) reported that only 20% of 13-year-old students (out of 45,000
tested) were able to calculate the length of hypotenuse from the given two (opposite
and adjacent) sides. In a similar vein, Fuys (1988) argued that 19% of the sixth-grade
middle school students are ‘geometry deprived’ (which includes their performance in
3d geometry) and 31% of these students are only able to name the shapes and
reference them to visual prototypes. Moreover, Usiskin's (1982, 1987) studies found
that students’ performance when dealing with two- and three-dimensional shapes
also did not meet expectations. Usiskin (1982) collected data from 2699 middle
school students attending to year seven to twelve, all enrolled in a one-year geometry
course in the USA. His study evaluated students’ performance at the beginning and
end of the course, without affecting the ongoing geometry programme. In the
beginning, students were asked to complete a geometry test (Entering Geometry
Test, EGT) as a pre-test which measured their general geometry knowledge. At the
end of the project, students’ performance measured by using two geometry tests, one
measuring the objectives they learnt throughout the term (Comprehensive

Assessment Program Geometry Test, CAP in short) and other measuring their
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geometry proof performance (Proof Test). Students were also asked to complete van
Hiele Level Test at the beginning and at the end of the project in order to see
whether students’ geometry performance was related to their van Hiele levels of
knowledge (described in Section 2.3.1.1). Usiskin (1982) concluded that on the
average, students answered 54% of the pre-test questions correctly, and no item was
correctly answered by more than 80% of the students in the pre-test. Unfortunately,
at the end of the course, there was not much change. Usiskin (1982) reported the
results for each of the test item one by one for both geometry tests, rather than a
comprehensive result for the tests. For both CAP and Proof Test, students’
performance, in general, was reported as low. Regarding this, Usiskin (1982) said
that

“It is hard to believe that, after a year of geometry, 18% to 20% of
students cannot identify vertical angles. 44% to 47% cannot find
the perimeter of a square from its area, and 65% to 68% cannot
calculate and subtract the areas of two circles to find the area of
the space between then. (Only about half the students can do any
more than simple proofs.) If so little is learned, what is being
taught?” (p. 71-72).

Usiskin's (1982) study also found that van Hiele levels (described in Section 2.3.1.1)
that are assigned to students are good descriptors of performance both in pre-test and
post-tests. This is, students’ poorer geometry performance in the tests were strongly
associated with being at the lower van Hiele levels. However, Usiskin’s study
assessed students’ knowledge prior to and after the lesson by using different tests,
hence it could not report any direct change in the students’ performance and only

reported the performance on these tests separately.

While most of the early studies reported poor performance, only a few also provided
possible solutions to this performance problem after defining what does not work in
their context. One of the most influential works from the eighties regarding this is
from Usiskin (1987). His report included discussion on 3d geometry, particularly on
transformation geometry. The report not only concluded that middle school
geometry was facing performance problems but also provided six dimensions to

teach to help students perform better at geometry. The problem as stated in this

27



context was that only half of the students encounter the curriculum and only about
one-third of this half understands it. “The lack of success that characterizes so many
Students’ experiences in geometry discourages other students from taking geometry”
(p.19), he reported. Although there could be many other contributing factors to not
enrolling to geometry courses such as students’ own experiences with geometry and
their career choices, the report argued previous students’ poor performance to be one
of the main contributing factors which led to only half of the middle school students
enrolling in geometry classes in high school at the time. It suggested a possible
solution to solve this problem by considering geometry not as a separate part of
maths but as an integral part of it; composed of six dimensions. Usiskin (1987)
claimed that in order to perform better at geometry, students need to learn about

these six dimensions:

1) The measurement-visualization dimension considers geometry as the
visualization, construction and measurement of figures and emphasises that
visualization and drawing are generally neglected but should not be in the
study of geometry. Hence, including questions such as “count numbers of
cubes on which visible cubes lie” and “Tell what a figure looks like after

being turned” is suggested.

2) The physical real-world dimension considers geometry as the study of the
real and physical world. It emphasizes that even though geometry evolved
from the real world, connections with the world when teaching geometry are

largely ignored but should be included in teaching school geometry.

3) The representation dimension considers geometry as a vehicle for
representing not only geometry but also other mathematical concepts. It
emphasizes that the geometry of physical objects (e.g., Cuisenaire rods and
dienes blocks) is largely used to represent many maths topics from numeracy

to algebra.

4) The mathematical underpinnings dimension considers geometry as an
example of a mathematical system; therefore, it suggests teaching geometry
as a branch of maths not as a separate course only including ideas and proofs
of geometry basically because these ideas are connected to other branches of

maths.
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5) The socio-cultural dimension considers geometry as a socio-cultural
phenomenon. It suggests studying geometry together with its history and
development of ideas.

6) The cognitive dimension considers geometry together with one’s mental
images and cognition, which are mostly available in the studies from

psychology.

These highly influential studies were all conducted in the United States, however,
more recent research has also been conducted outside of the United States as well.

The findings of more recent studies are barely different from those of the 1980s.
Students’ difficulty in geometry, its causes and possible solutions, is still the subject
of much active research (e.g., Battista, Clements, Arnoff, Battista, & Borrow, 1998;
Devichi & Munier, 2013; Fuson, Clements, & Beckman Kazez, 2010; Kaleli-
Yilmaz, Ertem, & Giiven, 2010; Mbugua, Kibet, Muthaa, & Nkonke, 2012; Oksuz,
2014). For example, Battista (2007) reported in his extensive review of geometry and
spatial thinking that many students have difficulties in learning 2D and 3D geometry
and concluded his review by saying that “Despite geometry’s importance in
mathematical theory and application, students continue to have difficulty learning it
with genuine depth” (p.903). In a similar vein, Fuson and colleagues (2010) reported
for the U.S. students (K-12) that geometry and measurements are two of their
weakest topics in maths. Studies which looked at the geometry performance in
particular topics reported similar findings to those of overall geometry performance.
Devichi and Munier (2013), for instance, reported that French students (9-10 years
old) encounter difficulties in learning about the concept of angle and listed their
misconceptions® (and offered lessons to overcome these misconceptions through
providing concrete manipulatives and real-life examples). Dagli and Peker (2012)
conducted a study on Turkish middle school students’ understanding of the perimeter
and reported that only about half of the students managed to find the circumference

of a circle and about 10% of the students did not even attempt to answer questions;

® The word misconception is purposefully chosen to refer ‘conceptual or reasoning difficulties that
hinder mastery of a discipline’ as defined by (Crawford, 2001, p.11) rather than the word error which
is ‘a simple symptom of a misconception’ (Luneta, 2008, p.386). A misconception could be a
consequence of ‘a misapplication of a rule, an over- or under-generalization or an alternative
conception of the situation” (Drews, 2005, p.18).
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the case was not dissimilar for the calculations of perimeters of other shapes such as
squares, rectangles, rhombuses and parallelograms. Similarly, Ulusoy and Cakiroglu
(2017) concluded that Turkish middle school students (11-12 years old) struggle
acquiring the concept of parallelogram and listed a number of misconceptions
including over- and under-generalization. It appears therefore that this list goes on

and on.

Hence, the common thread amongst all these studies is that students have lower
performance in geometry than expected. Some have therefore suggested to consider
some dimensions in the teaching of it to improve students’ achievement. The
following section discuss therefore whether it is specifically geometry performance
which is not meeting the expectations or whether it is a part of a broader pattern of

difficulty including other areas of mathematics such as algebra and measurement.
2.2.2. National and International Test Performance

Another way to understand student performance in mathematics is to use different
national and international tests. For this purpose, Section 2.2.2.1 reviews the largest
well-known national tests, and then Section 2.2.2.2 particularly focuses on the

national and international maths test performance of Turkish students.
2.2.2.1. Middle School Students’ Performance on Well-known National Tests

The United States of America and the United Kingdom are two of the main countries
which started to administer the earliest national assessments in mathematics. This
section reviews the results of their national tests in mathematics with a particular

interest in geometry performance.

The American National Assessment of Educational Progress (NAEP) is one of the
largest continuing and well-known national tests. The test has assessed students’
performance (most frequently) in mathematics, reading, science and writing since
1969. Many researchers in the field of mathematics report and interpret the results of
this national exam every year. One of the first large mathematics assessments within
NAEP was conducted in 1986. The test measured students’ performance in three
main areas: algebra, geometry and fundamentals of mathematics (e.g., proofs). In
geometry, the assessment included items evaluating the ability to “visualise an object

or scene from a different perspective than the one given in a diagram” (Brown et al.,
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1988, p.341). Sample items included choosing a picture of the top view of a block
and choosing a picture that represented the given view of the scene from another
perspective, these correspond to orthogonal and isometric drawings respectively.
Brown and colleagues (1988) reported the results of this years’ exam for middle
school students at year seven (12-13 years old). They concluded that American
middle school students had low academic achievement in mathematics, especially in
geometry, in the study of both two- and three-dimensional shapes and their
properties. The students had particular difficulty in answering the items on
orthogonal and isometric drawings, which are called “spatial visualisation tasks” by
Brown et al. (1988, p.341). More than half of the students who were entered in the

exam did not answer these items correctly.

The results of the most recent NAEP assessments were barely different than those of
the eighties (National Centre for Education Statistics, 2018b). The last NAEP test
was conducted in 2017 and the test included similar items to those of the eighties
with an observable difference in the presentation of the questions in realistic
contexts, for example, questions on polycubes were asked in the context of building
a block tower (see Figure 2.1). In 2017, each question assessed one of the five areas:
geometry, measurement, algebra, number properties and operations, and finally data
analysis, statistics and probability. Specifically, the assessment of geometry focused
on the identification of 2D and 3D shapes and their transformations and
combinations. Students in the middle school and beyond were expected to have
increased understanding of two- and three-dimensional shapes and to show adequate
knowledge of symmetry and transformations of these shapes, for example,
identifying shapes resulting from rotations (NCES, 2011). Geometry items
constituted 16% of the point marks in the most recent exam (target was 20%)
(NCES, 2018a). Similar to percentages in the eighties, more than half of the students
answered most of the geometry items incorrectly. Particularly, for example, 44% of
students answered the item asking students to determine the number of unit cubes
used to build a figure incorrectly (Figure 2.1). The item asking for identifying which
figures are composites of two given shapes in geometry got only 7% (of the) correct
response (NCES, 2018b). Students’ performances in the other areas of mathematics
were much better than they were in geometry, for example, in number properties and

operations, most of the children answered the questions correctly. To illustrate this,
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one of the questions that measured number properties (a multiplication question
which gave the product and asked for finding the factors by arranging the given set
of digits; OO0x0=4284, digits that will be used are 1, 2, 6 and 7) got 79% correct
response. Hence, it was specifically geometry which the U.S. students found much
harder than other areas of mathematics such as number properties and operations.

It should be noted that it is difficult to draw completely firm conclusions about this
because of how the results are presented on the NAEP website (the analysis for each
of the items). It is not very helpful in evaluating students’ overall performance in
separate areas of mathematics because students performed differently in different
items. Nonetheless, the NAEP’s selected items do appear to show the difference
between the percentages of correct responses in geometry and other areas (e.g., 7%
correct response for a geometry item, and 79% for a number property item) (NCES,
2018c).

4 ft

1 ft 1

A
= 4 ft -+71 ft

37. Sierra built the block tower with 1-foot cubes. How many cubes did she use?

Figure 2.1. Sample item from American national maths assessment (NCES, 2018c)

Standard Attainments Tests (SATS) in England and Wales are another well-known
national curriculum assessment, which was introduced between 1991 and 1995 in
key stage one (aged between five and seven years) and gradually introduced to key
stages two (aged between seven and eleven) and three (aged between eleven and
fourteen) as each cohort completed a full key stage. The tests include the assessment
of core subjects: mathematics, reading, writing and science, and available grades are

above expected, expected standard and below expected. It is compulsory for key
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stage two children to attend the exam, and maths is a core subject assessed as a part
of SATs. The most recent mathematics test (at the time of writing) was administered
mainly in two main areas: arithmetic and reasoning with a total of three papers, two
of them concerning reasoning (Standards and Testing Agency (STA), 2019a).
Geometry is a part of reasoning and has a place in both of the reasoning papers, with
4 questions out of 23 in each paper, although only one of these questions were from
3D geometry (see Figure 2.2). Despite the emphasis on geometry in the English
national curriculum (see the objectives in section 2.3.2), the same emphasis was not
observable in the assessments. Hence, it is hard to draw a firm conclusion

concerning 3d geometry performance with only one item.

E Amina made this cuboid using centimetre cubes.

Not actual size

Am

Stefan makes a cuboid that is 5em longer, 5¢m taller and 5em wider
than Amina’s cuboid.

6cm

What is the difference between the number of cubes in
Amina’s and Stefan’s cuboids?

Show
your
method

cubes

Figure 2.2. Sample item from English national maths assessment (STA, 2019b)

Overall, the results show that each year 20 to 30% of the children in key stage two
do not reach the expected standards in mathematics (DfE, 2019). For example, 21%
of students did not reach this standard in 2019; 25% in 2018 and 2017, and 30% in
2016 (DfE, 2019). Positively there is an overall increase in the students’ mathematics
performance over these three years (as seen in the decreasing percentages),
nonetheless, the results show that, in 2019, one-fifth of the students did not meet the

expected standard in mathematics in England and Wales.
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The cases in the United States of America and England and Wales are very similar in
respect to the achievement of nationally set goals in mathematics, and both
concluded lower performance in mathematics than expected by the governments.
American test results were further related to students’ low achievement in
mathematics to their geometry performance, by particularly presenting the
percentage of the correct responses to geometry and number properties and

operations items.
2.2.2.2. Turkish Middle School Students’ Test Performance

This thesis has a particular interest in improving Turkish middle school students’
performance hence it is important to particularly focus on the international and

national tests which have been conducted in Turkey.

The PISA (Programme for International Student Assessment) Education Test has
assessed 15-year-old students’ knowledge of mathematics, science and reading every
three years since 2000. Results of the test are calculated by setting the mean of the
participating OECD* countries at 500 with a standard deviation of 100 in 2003, and
these are linked to tests in the following years. A specific focus on geometry,
particularly on space and shape can be observed in both PISA 2015 and PISA 2018,
and the same strategy is followed in the new PISA mathematics framework for 2021
(OECD, 2018). According to the framework,

“Geometry serves as an essential foundation for space and shape,
but the category extends beyond traditional geometry in content,
meaning and method, drawing on elements of other mathematical
areas such as spatial visualisation and measurement. ... The
recognition, manipulation and interpretation of shapes in settings
that call for tools ranging from dynamic geometry software to

machine learning software are included in this content category”

(p.25).

* Organisation for Economic Co-operation and Development (OECD) is an international organization
with 36 member countries, aiming to shape policies that promote prosperity, equality, opportunity
and well-being for all.
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The framework listed area of space and shape as one the main areas to assess in
mathematics with the questions looking for the understanding of “transforming
shapes with and without technology, interpreting views of three-dimensional scenes
from various perspectives and constructing representations of shapes” and gave
approximately 25% of score points in overall maths performance to space and shape
(OECD, 2018, p.25).

Turkey joined PISA from 2003. As we can see in Table 2.1, Turkey’s ranking in the
PISA mathematics test results between 2003 and 2018 is always at the bottom end of
the distribution (OECD, 2019). Turkey ranked 49™ (mean score: 420) in PISA 2015
among 72 countries, with the lowest mean maths score in Turkey’s PISA history. Its
closest score to OECD is in the last PISA (ranked 41%), still with 35 points lower
than the OECD mean score. Hence, international test results do not paint a rosy

picture of Turkish mathematics education.

Table 2.1. PISA Mathematics ranking and maths mean scores of Turkey by year

Year Ranking of Turkey Mean score of Mean score of OECD
Turkey countries
2003 35" 423 500
(out of 41 countries)
2006 43" 424 494
(out of 57 countries)
2009 43" 445 495
(out of 74 countries)
2012 44" 448 494
(out of 65 countries)
2015 49" 420 490
(out of 72 countries)
2018 41 454 489

(out of 79 countries)

*Adapted from OECD (2019) **At the .05 level of significance

Similar to these international test results, the governmental test scores of Turkey
have brought to light that many middle school students do not achieve the goals of
national mathematics curriculum (Ministry of Turkish National Education (MoNE),
2013, 2018b). There is a big emphasis on geometry in the Turkish national middle
school maths curriculum (Section 2.3.2 will further discuss this); and this was
observable in the government exam questions. For example, in 2018 and 2019,
almost half of the questions in the mathematics test were from geometry (9 out of 20
in both), and at least three of the geometry questions in each year were from 3D
geometry (MoNE, 2018a, 2019).
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Over a million students enter the government mathematics test each year in Turkey.
The distributions of the number of correct answers in the exam by percentage were
more or less the same every year. As displayed in Figure 2.3, which shows the
distribution of the number of correct answers in the 2019 Turkish government maths
test, the distribution is right-skewed. This means most of the students (given as a
percentage, 89%) were clustered around the left (lower) end of the distribution and
answered 0 to 10 questions on the test correctly. There were a smaller number of

students who answered more than half of the questions correctly (11%).

14 — ___

7,90

Percentage (%)
[=p]
s

Number of correct answers

Figure 2.3. Distribution of the number of correct answers in 2019 Turkish

government maths test (MoNE, 2019, p.22, used after the permission of the authors)

After the last update in the maths curriculum in 2018, two mathematics exams were
conducted in Turkey. Table 2.2 shows Turkish middle school students’ maths test
performance by gender in the last two years. When we look at students’ maths
scores, on the average, they answered 6.99 (SD=3.99) mathematics questions
correctly out of 20 in 2018, with only 83 students answered all of the questions
correctly. With this mean, mathematics was the test which students showed the
lowest performance in the 2018 exam (other tests being science and technology,
history of Turkish revolution and Kemalism, Turkish language, foreign language of
choice and religious studies). The average score dropped to 5.09 (SD=4.24) in 2019,
with 5794 students answered all of the questions correctly. In neither the 2018 nor
2019 tests did the scores of girls and boys differ. Indeed, in 2019, maths test was

reported as having the closest mean between girls and boys among all tests. The
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number of students who answered all maths questions correctly varied between 2000
and 6000 out of over a million students each year in the last ten years (well under
one per cent of people taking the test), except for 2018 when the first exam after the
update in the curriculum was conducted. Although the number of students at the very
high end is not the best interpretation of the performance (means and SDs reported
above are a better way of doing this), it is included here to show how small the
proportion is (between 0.002 and 0.006).

Table 2.2. Turkish middle school students’ performance in maths exam by year and

gender

Year Mean (/20) SD Girls’ mean Boy’s mean
2018 6.99 3.99 6.83 7.15

2019 5.09 4.24 5.07 5.11

*SDs for girls and boys are not available.

All of these results show that Turkish middle school students’ maths performance
was poorer than desired. The middle school students’ low performance in the
mathematics tests could be due to many different reasons, including the validity and
reliability of the tests (there are serious reservations about them) to the preparation of
the students, and from changes in the curriculum (update in 2018) to parental
involvement. Specifically, despite the reliability scores of the maths tests in the last
ten years were around KR-20 = 0.80 (e.g., 0.84 in 2019), the reliability score was
0.65 in 2018 (Kuder & Richardson, 1937). The reason for lower reliability on
mathematics test (<0.70) in 2018 is reported as the number of unanswered questions
which is arguably because the questions were harder. Moreover, there can be an
effect of the calculation of exam points where a student got a full mark for each
correct answer and one-third of the mark was deducted for every wrong answer.
Hence, students might have tended to leave the questions unanswered if they are not
sure about their answer. Finally, this thesis will discuss teachers’ contribution to

students’ performance in Section 2.2.3.2.2.

This picture means that research which seeks to foster middle school students’
improvement in mathematics and to support pedagogical practice is crucial. Given
the challenges of delivering a mathematics curriculum and student learning of the
entire curriculum, the need for research into innovative classroom practices to

improve students’ maths performance seems necessary.
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Turkish national government mathematics test items set the basis of the questions on
the worksheet (described in Section 4.1.2) which is used throughout the thesis.

2.2.3. Teaching and Learning of 3D Geometry

This section is divided into two parts. The first of these presents the current
discourse about the study of geometry of 3D shapes with further sub-sections on
polycubes and frameworks for teaching and learning 3D geometry, and the second
reviews the factors argued to be affecting students’ performance in geometry,

especially the geometry of 3D shapes and their 2D representations.
2.2.3.1. Studies on 3D Shapes

In this section, studies that looked at student difficulties in learning 2D
representations of 3D shapes in geometry will be reviewed. There are not a large
number, but this section synthesizes the results from studies that could be identified,
which will subsequently be used in the RETA principles proposed in Chapter 5. It is
helpful to know about the difficulties and error types reported earlier because they

will be used to analyse the difficulties and the errors students made in Study One.

It is argued that 3D geometry is one of the most difficult topics in middle school
geometry both for teachers and students (Bako, 2003). 2D drawings are the most
common representations which are used to represent 3D shapes in middle schools
(Berthelot & Salin, 1998). The need to visualize 3D shapes from 2D (e.g., orthogonal
and isometric) drawings has often built barriers for both teachers’ teaching and
students’ learning (Christou et al., 2006; Kali & Orion, 1996; McGee, 1979; Parzysz,
1988; Widder & Gorsky, 2013).

Parzysz (1988) reported that in France, the teaching and learning of spatial geometry
is reputed to be difficult both among teachers and students. His study found that
decoding (reading) and coding (producing) 2D representations of 3D shapes was
hard for teachers to teach and middle school students (11- and 12-years old) to learn.
It was even harder for students to decode a 3D shape (a square-based regular
pyramid in this case) from the visible parts of it in a 2D drawing because of a loss of
information when moving the 3D shape to its drawing. Later, Bako (2003) reported
the French Ministry of Education’s survey which showed that only ten per cent of

teachers taught spatial geometry. Teachers’ most common reason for not teaching
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spatial geometry was ‘not having enough time to teach it’; however, the author
suggests the real reason was found to be students’ not being able to visualize 3D
shapes from teacher’s drawing on the board, or that “students cannot see in 3D”

(Bako, 2003, p.1).

Similarly, Duval (1998) who studied teaching 3D shapes from a cognitive
perspective, argued that looking at 2D drawings of 3D shapes was not enough to see
what the drawings represent, mostly because of the dimensional change in the
perceptive organization of the way of seeing. His observation of 13- and 14-years old
students’ processes of making 2D drawings of 3D shapes showed that the
perception/reduction of a 3D shape to its 2D representation was cognitively complex
but the dimensional change® between 2D and 3D was necessary for processing.
However, it is questionable whether everyone processes the given information in the
same way and whether there is a common way of looking at 2D representations of
3D shapes. That is to say, some students may not see what a teacher sees without the
teacher having to explain it to them and without the teacher pointing out what the

students should have seen.

Another study conducted by the French Institute for Research on Mathematics
Education (IREM) was reported by Bayart, Gos, Hindelang and Keyling (2000). Its
results suggested that some students consider given 2D representations of 3D shapes
as if they were 2D originally, and students do not actually see the shape as 3D. For
example, when students were asked if four points chosen on a cube (G, N, M and P
in Figure 2.4, original draft) were at the same straight line segment (i.e., collinear),
the majority of the students were certain that they were collinear and they did not see
any other possibility although there were many other equally viable possibilities such

as the two possibilities in Figure 2.4.

® The dimensional change is “a basic cognitive process in the way of looking at a 2D representation”
(Duval, 1998, p.44).
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Original draft First possibility Second possibility

G
G G

Figure 2.4. Two possibilities of locating the given four points G, N, M and P;
adapted version obtained from Widder and Gorsky (2013, p.92)

In a similar vein, Bako's (2003) experiment with around a hundred 14- and 15-years
old students in Hungary showed that the case was not dissimilar there, and students
experienced some obstacles in visualizing 2D representations (plane sections) of 3D
shapes (cubes). For example, when students were asked to identify as many plane
sections of a cube as possible with pen and paper, about a quarter of the students
were only able to identify square (32 students), equilateral triangle (25) and rectangle
(20), with only a few of them identifying regular hexagon (4), isosceles triangle (2),
symmetric trapezoid (2), hexagon (1) and parallelogram (1). Moreover, none of them
was able to identify the right triangle, trapezoid, right trapezoid, symmetric
trapezoid, rhombus, and pentagon as a plane section of a cube. Presentation of the
topic using different representations in dynamic software environments (DOS
programs in Pascal) did not change the rate of identifying square, rectangle and
equilateral triangle but increased the likelihood of identifying all other plane sections

up to 31 students.

More recently, Pittalis and Christou (2010) described and analysed the structure of
3D geometry thinking by identifying different types of reasoning emerging from the
literature. They argued that there were four types of 3D geometry reasoning and
listed sample tasks which belong to them. The first of these types of reasoning is
called representing 3D shapes. Activities listed for this type of reasoning are divided
into two secondary factors. The first factor included activities such as drawing a 2D
representation of a 3D shape (e.g., an orthogonal drawing), constructing a 3D shape
from its orthogonal views (e.g., constructing a polycube from its orthogonal views)
and translating a 2D representation of a 3D shape to another 2D representation of it
(e.g., from orthogonal drawings to isometric drawing). The second factor was about

recognizing and constructing nets of 3D shapes (e.g., identifying nets of a square

40



pyramid). The second type of 3D geometry reasoning is called spatial structuring as
a latent factor. Activities requiring this type of reasoning included manipulating 3D
arrays of 3D shapes including cubes, constructing 3D arrays of cubes and giving
numbers to cubes that fill a larger 3D shape by spatially structuring the object. The
third type they called conceptualization of mathematical properties. Activities
requiring this type of reasoning loaded on two secondary factors: recognizing
properties (e.g., edges, faces and vertices) of 3D shapes, and comparing and
contrasting properties and relations of 3D shapes (e.g., a square prism such has six
faces and eight vertices but a triangular prism has five faces and six vertices, and the
base of cuboids and pyramids can be a square). The fourth, and final, type is named
measurement and was considered as a latent factor. The tasks measuring this
reasoning included estimations of the volumes of 3D shapes without using a formula
and calculation of surface areas of 3D shapes. Pittalis and Christou (2010)
established the validity of these factors using the data generated from 269 11-14
years old Cypriot students. This empirical work showed that all factor loadings were
statistically significant and that each task in their study loaded to one of the six
factors described; hence, they concluded that each of these factors could represent

different 3D geometry skills, as a part of these four distinct 3D geometry reasoning

types.

Moreover, Pittalis and Christou's (2013) study investigated students’ skills of
interpreting 2D representations of 3D shapes. They administered a geometry test
consisting of 18 coding and decoding tasks to 279 11- to 15-year-old Cypriot
students and interviewed 40 of them to enrich the profile of coding and decoding
skills. The researchers specified coding and decoding skills of Parzysz (1988) for
their context. For this particular study, coding was described as producing 2D
representations of 3D shapes (e.g., making an isometric drawing of a prism or a
polycube), while decoding referred to interpretations of 3D shapes based on their 2D
representations and included the process of determining structural elements and
geometric properties of 3D shapes from their 2D representations for drawing
different parts of them based on the interpretations (e.g., determining visible faces of
cubes from an isometric drawing of a polycube for constructing its orthogonal
drawings). The results of their mixed-methods analysis identified four categories of

student behaviours when interpreting 2D representations of 3D shapes, namely:
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e Two-dimensional: Students identified in the two-dimensional category
considered 2D representations of 3D shapes as if they were 2D and failed in
all coding and decoding tasks because of their lack of conceptualization of
the third dimension. This confirms the findings of Bayart et al. (2000) who

also reported this type of behaviour.

e Intuitive: Students in the intuitive category managed to correctly answer
simple decoding tasks such as identifying structural elements of 3D shapes in
plane representations but did not do any of the coding tasks correctly. They
were intuitively aware of the third dimension but were not able to manipulate

3D shapes mentally.

e Implicit-conventional:  Students categorised as implicit-conventional
answered almost all of the decoding tasks correctly and had a satisfactory
performance in coding tasks. They did not face any difficulty in tasks asking
for interpretations of structural elements of a 3D shape but found it a little
harder to interpret geometrical properties and nets.

e Conventional: Students who are in the conventional category answered
almost all of the coding and decoding tasks correctly. They were able to
interpret 2D representations of 3D shapes by mentally visualizing them and
to produce 2D representations of 3D shapes including translations of 2D

representations of 3D shapes to each other.

Although the overall percentage in each category is not available, authors reported
that 75% of the fifth graders were in the first two categories while almost 50% of the

ninth graders were in the last two categories.

Finally, Fujita, Kondo, Kumakura and Kunimune (2017) assessed Japanese students’
reasoning in 3D geometry lessons, particularly when they are solving 3D geometry
problems of cube representations. They constructed their assessment based on
existing literature to date having 12-15 years old students as participants. They
administered this geometry assessment to 570 11- to 15-year-old Japanese students.
The test included five questions requiring interpretations of 3D shapes (in this case
measurements of a cube, such as length of a straight line within a cube). The analysis

of the students’ tests showed that only 7% of the students answered all five questions
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correctly. Of the remaining 93% of the students, 15.4% did not attempt to answer
questions; 41.8% only answered questions intuitively or by using the visual
information; 20% of them judged questions as if they are 2D and 15.8% of them
were aware of the 3D representation but did not come up with the correct answer.
These categorization of the answers were very similar to four types of students’
behaviour to interpret 2D representations of 3D shapes in Pittalis and Christou
(2013). Fujita et al. (2017) also coded answers for the nature of the mistakes and
reported that the incorrect responses were because of either incorrect reasoning about
the properties of a cube or incorrect manipulation of the shape in students’ minds

(visualization problems) or both.

This thesis will therefore consider the error types/categories reported in these studies
when coding the worksheets of students for the nature of errors. However, with its
more specific focus it will describe the errors in a much more detailed way for the

orthogonal and isometric drawings of polycubes, respectively.
2.2.3.1.1. Studies on Orthogonal and Isometric Drawings of Polycubes

It is not unlikely to see orthogonal and isometric drawings of polycubes in the spatial
thinking literature. Such drawings are often reported as a part of the tasks loading on
spatial visualization factor (described in section 2.1.2) together with other tasks,
rather than being a separate entity. Studies reporting this factor (e.g., Linn &
Petersen, 1985; Miller & Halpern, 2013; VVoyer et al., 1995) are included throughout
spatial thinking sections: 2.1.3.1, 2.1.4 and 2.1.4.1. This section focuses on studies
coming from geometry education literature and synthesizes these studies
chronologically. It is helpful to know about the earlier studies on orthogonal and
isometric drawings of polycubes because they (and the insights gathered from them)
will be considered when designing sample RETA-based lesson plans on orthogonal

and isometric drawings of polycubes (see Chapter 5).

Studies on 2D geometry (which includes the study of basic shapes such as parallel
lines and angles, study of polygons particularly triangles and quadrilaterals,
calculations of perimeter and area, and sample geometric proofs) dominate the
geometry education literature. There is a relatively smaller number of studies on 3D

geometry (described in Section 2.2.3.1) compared to studies on 2D geometry, and
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even fewer especially when specified to the geometry of polycubes and their

orthogonal and isometric drawings.

As a reminder, the literature on orthogonal and isometric drawings has many names
for the terms; for example, orthogonal drawings can be found as orthogonal
projections (Jones et al., 2012), orthographic projections/drawings (Moyer-
Packenham & Bolyard, 2002), plan/top view and elevations/side views (Yeo et al.,
2005), whilst isometric drawings can sometimes be referred isometric projections
(Gambari et al., 2014) and perspective drawings (Oldknow & Tetlow, 2008), and
sometimes very vaguely as a building or a picture of a building (Ben-Haim et al.,
1985). This thesis considered these different names for these 2D representations as
synonyms and chose to use orthogonal and isometric drawings which both stand as
one of the earliest names for these types of representations in the literature, following
the suggestions of Cooper and Sweller (1989). Similarly, polycubes are referred in
various names such as polycubical shapes/objects (Cooper & Sweller, 1989), (solid)
cube constructions (Ben-Haim et al., 1985) and a solid or an object constructed by
unit-sized cubes (Pittalis & Christou, 2010). In this thesis, these names are

considered and used as synonyms.

One of the earliest available studies on middle school students’ interpretations of 2D
representations of polycubes is from Ben-Haim et al. (1985). Ben-Haim and
colleagues (1985) conducted a study with 978 years five to eight students (10-13
years old) in the U.S.A. They designed lessons with the activities including matching
solid cube constructions to isometric drawings and orthogonal drawings and vice
versa and tested students’ performance prior to and after these activities. The test
was consisted of multiple-choice items asking questions on orthogonal and isometric
drawings, such as the number of cubes required to build given isometric drawing, a
particular orthogonal view of an isometric drawing (question 2 in Figure 2.5) and
symmetric orthogonal views such as the views from the back and front (question 8 in
Figure 2.5). The maximum possible score was 32. Lesson observations and
interviews with the students showed that students experience difficulty mostly in
relating isometric drawings to their constructions from unit cubes. Moreover,
descriptive statistics appeared to demonstrate that the mean scores increased as the
grade level increases both for the pre-test (year five: M=7.39, SD=4.89; year eight:
M=13.23, SD=6.00) and post-test (year five: M=12.22, SD=6.28; year eight:
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M=20.56, SD=6.53, no inferential statistics reported) but even in the post-test of year
eight, students on the average scored about 12 points less than the maximum
possible score (of 32).

2. You are given a picture of a building drawn from the FRONT-RIGHT corner.

Find the BACK VIEW.
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8. You.are given the BACK VIEW of a building.
Find the FRONT VIEW.
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Figure 2.5. Sample questions from Ben-Haim et al.'s (1985) test (p.399)

Another polycubes study was conducted in Australia by Cooper and Sweller (1989).
The study examined students’ performance to interpret 2D representations of
polycubes. For this purpose, students at year seven (ages 11-12), nine (ages 13-14)
and eleven (ages 15-16) were provided with various 2D representations of 3D
shapes, including orthogonal drawings and isometric drawings (see Figure 2.6). Each
student was sequentially presented with different 2D representations and asked to
build polycubes corresponding to the 2D representations on a card from the wooden
unit cubes provided. The students were also asked to build polycubes based on
verbal descriptions and prototypes. Cooper and Sweller (1989) found that building
polycubes from the wooden unit cubes when the isometric drawing and the prototype
was provided was significantly easier for students than when orthogonal drawings,
layer plans, coordinates and verbal descriptions were provided. However, students
did not find it any easier to build shapes when the prototype was provided than the

isometric drawing was provided.
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Figure 2.6. 2D representations of polycubes as in Cooper and Sweller's (1989) study
(p.205)
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Moyer-Packenham and Bolyard (2002) provided an applet to integrate into the
teaching of 2D representations of polycubes. Their review explored representations
used in the middle grades and highlighted the role of representations in promoting
geometric thinking. The authors claimed that students’ creation of their own
representations can help geometric reasoning and visualization; hence they suggested
students’ own use of an applet during lessons on orthogonal and isometric drawings
of polycubes (see Figure 2.7). The authors also proposed various tasks with the tool.

For example, a brief description of one of the tasks they designed is as follows:
Step 1: Pair work or individual work to build random polycubes from snap cubes

Step 2: Practice of orthogonal and isometric drawings of these polycubes in the

applet

Step 3: Exchange of the printed drawings from Step 2 with other pairs and

individuals to build the drawn shapes from unit cubes
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Figure 2.7. Screenshots from matti.usu.edu’s virtual geoboards applet (p.24)

Moyer-Packenham and Bolyard (2002) further argued that students’ engagement
with such tasks provides them with various representations for exploration, which
hopefully would result in a better understanding of orthogonal and isometric
drawings. It should be noted that these claims are based on the literature they
reviewed and their own reflections hence they are not supported specifically with

their own empirical work.

Similarly, Yeo and colleagues (2005) explored year seven and eight students’ (13-
and 14-year-old) experiences of learning orthogonal views of 3D shapes using a
dynamic geometry software (ProDesktop). The software in this study used by
students to construct and rotate 3D shapes to visualize their orthogonal drawings.
The authors included various 3D shapes in their study such as polycubes and prisms
and random 3D shapes with slant and inclined surfaces. As a part of the study,
students were first taught orthogonal drawings by traditional methods. After a
month, the same group of students studied orthogonal drawings with lessons
facilitated by ProDesktop. Students were tested prior to and after the lessons with
ProDesktop with a worksheet asking for orthogonal drawings of various 3D shapes
including polycubes (See Figure 2.8 for a sample test item). They were also asked to

complete a survey about their experiences with the tool.
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1 Draw the orthographic views (front elevation, end elevation and plan) of
Figure 1 on the square grid paper provided.
(Take 1 square to represent Smm on the square grid paper)

\{

Figure 2.8. Sample test item and a student answer from Yeo and colleagues' (2005)

study

Yeo et al. (2005) found that the majority of the students indicated that ProDesktop
motivated them to study orthogonal drawings and that the tool facilitated their
visualization and their learning of orthogonal drawings. Although the worksheet data
was collected, the authors only reported the students’ performance vaguely by saying
the analysis of the worksheets pointed toward the same conclusion with the survey
results that students’ answers got better. However, 30% of the eighth-graders and

50% of the seventh graders found the tool difficult to use.

More recently, Jones and colleagues (2012) reported on data they collected from 570
Japanese students aged 12-15. They asked students a question where students were
required to draw and interpret isometric drawings and/or oblique parallel perspective
drawings of cubes. Oblique parallel perspective drawings are very similar to
isometric drawings with a difference that they are set out using 45-degree angles
while cubes in isometric drawings are set out using 30-degree angles. The results
showed that only about 15% of the students were capable of making the correct
drawings, which lead them to a correct solution. Many students’ choices of 2D
representation to solve the problem was poorer than expected. For example, Jones et
al. (2012) illustrated an episode from one of their lesson observations where many of
the students chose to draw nets of cubes to solve the problem rather than any of the
expected drawings. They also concluded that teachers’ prompt of shifting nets of
cubes to isometric or oblique parallel perspective drawings increased students’

chances to see geometric relationships.
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Finally, Zilkova and Partova (2019) conducted a series of studies following a design-
based research approach. After five design cycles, they developed an applet to help
learners visualize orthogonal drawings of cube constructions. Each cycle trialled a
version of the applet hence there were five different versions of the applet, all of
them were aimed to help visualisation of orthogonal drawings of cubes. All five
versions were free and available to use for learners and teachers at the time of
writing this thesis.

These studies provide a rich account of students’ difficulties in learning 3D geometry
with regard to orthogonal and isometric drawings of polycubes (Ben-Haim et al.,
1985; Cooper & Sweller, 1989; Jones et al., 2012). Some of these studies take a step
forward by suggesting the integration of various dynamic geometry software
packages into the teaching of these drawings to improve students’ performance in
these drawings (Moyer-Packenham & Bolyard, 2002; Yeo et al., 2005). This
literature fed into the sample lessons on orthogonal and isometric drawings of
polycubes with the principles that are evaluated in the empirical work conducted for

this thesis.
2.2.3.2. Factors Affecting Student Success in 3D Geometry

The current literature provides an account of a range of factors influencing student
success in two-dimensional and three-dimensional geometry. Some of the underlying
reasons for low student performance in spatial geometry have been argued to be the
following. Rather than presenting the factors as separate entities, this section
synthesizes these factors in two categories: those that are related to cognition and
individual differences (section 2.2.3.2.1) and those which are more about choices

made in the lesson context and the policy context (section 2.2.3.2.2).

2.2.3.2.1. Factors related to human beings’ cognition and their individual

differences

Firstly, some of the factors affecting student success in spatial geometry are related
to human beings’ cognition and their individual differences. These factors are spatial

skills, difficulties with drawings and working memory limitations.
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e Spatial skills

Not surprisingly, when we think of 3D geometry performance, one of the first factors
that comes to one’s mind is spatial skills. The research has established that there is a
relationship between spatial skills and geometry performance (Pittalis & Christou,
2010; Winarti, 2018). It will be described in Section 2.3.1 and its subsections 2.3.1.1
and 2.3.1.2 that it is not fully determined whether better spatial skills lead to better
geometry or vice versa, but research argued for both (e.g., Buckley, Seery, & Canty,
2019; Lubinski & Benbow, 2006; Widder & Gorsky, 2013). Either way, it is
important to note spatial skills is one of the factors that has been argued to contribute

to students’ performance in 3D geometry.
e Difficulties with drawings

Drawing skills are often considered as fundamental sources for understanding spatial
geometry. Some researchers believe that drawings are simply tools for representing
space but drawings are not related to understanding space (Kosslyn et al., 1977).
Others argue that drawings are indicators of children’s understanding of space
(Goodnow, 1977; Olson, 1970). They suggest that the difficulties with diagrams and
drawings could be worth thinking of as a factor which may influence student success
in 2D and 3D geometry (Battista, 2007; Kaplan & Ozturk, 2014).

The literature often considers learner-generated drawing as a strategic process for
learning similar to summarization and self-questioning (Gobert & Clement, 1999;
van Meter, 2001; van Meter & Garner, 2005). 2D drawings of 3D shapes in
geometry do not quite fit this consideration. The nature of drawings in spatial
geometry is different than free drawing to learn in terms of the aim and the process.
This is to say, for example, students do not necessarily construct isometric drawings
as a strategy to learn some other concept in geometry. In school geometry, these
drawings are mostly constructed ‘fo learn to represent’ 3D shapes and ‘t0 reason
with them’ to come up with a solution to a geometry problem, as they are in science
(Ainsworth, Prain, & Tytler, 2011, p.1096). Jones et al.'s (2012) study which is
described by the end of the previous section (section 2.2.3.1.1) is a typical example

of making isometric drawings to reason in geometry.

Although difficulties with drawings are worth taking into consideration, empirical

evidence concerning the link between students’ difficulties with drawings and their
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understanding of geometry does not find any systematic relationship (Cohen &
Jones, 2008; Lehrer, Jenkins, & Osana, 2009; McManus et al., 2011).

e Working memory limitations

Another level of factors argued to be affecting student success in spatial geometry is
working memory limitations. The majority of the studies on 2D drawings of 3D
shapes show that making isometric drawings is hard for students (Jones et al, 2012;
Ben-Haim et al., 1985) and some further found evidence that it is much harder for
students to make isometric drawings than to make orthogonal drawings (e.g., Cooper
& Sweller, 1989). The literature argues that one’s geometry performance on 2D
drawings of 3D shapes might be related to working memory limitations. According
to what we know from human memory capacity, it is harder to have more elements
simultaneously in mind than one when performing a task (Ayres, 2006). Both Ayres
(2006) and Paas, Renkl and Sweller (2003) argue that this also applies to 2D
geometry drawing (of 3D shapes). They explain the reason for students’ difficulty in
isometric drawings is the need of having more simultaneous relations in mind to
make isometric drawings than of orthogonal drawings. This is to say, one needs to
have more elements (orthogonal drawings) simultaneously in mind in order to
construct an isometric drawing, while in constructing orthogonal drawings, one

could only focus on one element such as only the front view, or only the right view.

Moreover, Halford (1980, 2005) points to particular age groups having difficulties in
representing 3D shapes. Within Halford’s neo-Piagetian framework, children have
specific difficulties because they are younger, and their working memory has not all
developed yet. He supported his framework with experimental evidence from his
studies with children of varied age ranges. To illustrate, Halford (1980) conducted an
experiment on children’s construction of 2D and 3D shapes. He had four groups of
children between 6.6 and 12.5-year-old (grouped according to their chronological
ages). Children were asked to reproduce 2D and 3D shapes presented to them.
Halford's (1980) study found significant effect of age and he reported a linear

increase in students’ performance of 3D shapes with age.

Thus, both cognitive load theory (Ayres, 2006) and Halford's (1980) neo-Piagetian

framework argue that working memory has a limited capacity which might
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eventually affect students’ geometry drawing. Hence, working memory limitations

are another explanation of students’ spatial geometry performance.
2.2.3.2.2. Some choices that are made in the lesson context

Turning now to the other factors, there are some choices that are made in the lesson
context by the teachers and policy makers. These include the geometry curricula that

students are following, textbooks, teachers’ beliefs and their teaching:
e Changes in the geometry curricula students are following — policy level

Geometry programmes and curricula have been claimed to be one of the underlying
reasons for low student performance (Aksoy & Bayazit, 2012; Battista, 2007; Duru
& Korkmaz, 2010; Kutluca & Aydin, 2010; Ural, 2015). Particularly in Turkey, the
curriculum radically changed two times in ten years (MoNE, 2009, 2013). The most
recent curriculum has been updated in 2018 with further suggestions (MoNE,
2018b). One of the reasons for the ongoing reduction in Turkish middle school
students’ success, therefore, could be a consequence of these changes because there
are not small but radical changes from 2009 curriculum to 2013 one in teaching
units, student assignments and portfolios, and suggested teaching methods and
technologies (Oksiiz, 2015).

The new programme increased the impact of technology on the Turkish education
system by suggesting (in fact, telling) the use of educational technologies such as
games and educational software packages in classes. Policymakers expected a
noticeable improvement in students’ academic achievement as a result of this new
programme. Thus, it was important for them to examine what the new mathematics
programme has brought and how it affected the teacher’s geometry teaching. Recent
case studies have revealed that Turkish pre-service and in-service teachers believe in
the effectiveness of the current maths programme and like its technology-emphasis
(Bayrakdar-Ciftgi et al., 2013; Ciftci & Tatar, 2015; Tekalmaz, 2019). However,
some case studies also show that teachers are not ready to use these technologies in a
student-centred environment and that they would rather prefer to use suggested
classroom technologies (e.g., educational software Cabri, EBA, and GeoGebra)
themselves in order to teach topics in geometry (Balgalmis, 2013; Balgalmis et al.,
2014; Ocak & Cimenci-Ates, 2015; Saralar, 2016b; Saralar & Ainsworth, 2017). For
example, Balgalmis et al. (2014) attempted to understand three teacher candidates’
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use of GeoGebra within the context of their teaching practices in middle schools.
They found that pre-service teachers dominated the use of such technology during
class time; they rarely asked students to go to a computer lab to discover a
geometrical relationship, and never asked students to use their own tablets in the
class time. However, learning with such technology requires interaction with the
software in order for the students to explore the topic and relate that with their prior
knowledge (Hohenwarter & Jones, 2007; Lavicza & Papp- Varga, 2010). Therefore,
these activities may not involve anything more achievable for students than the
memorisation of the technique the teacher uses unless students themselves
experience and actively engage with the geometry concepts through provided
technology.

e Late and misleading presentation of topics in mathematics textbooks

Furthermore, students’ low performance could be related to the fact that the
mathematics textbooks usually do not present geometric problems in the early
grades, nor at the middle school level, especially in Turkey (Boz et al., 2016; Kiigiik
& Demir, 2009), therefore, students may not understand geometry concepts as they
have received little geometry knowledge from these textbooks. American textbooks,
for instance, are not designed to require complex geometrical thinking even by the
6™ and 7™ grades which correspond to the last year of primary school and the first
year of middle school (National Governors Association Center for Best Practices &
Council of Chief State School Officers, 2010). In this context, reasoning about and
inferences with 3D shapes in order to solve real-world and mathematical problems
count as complex activities. Turkish mathematics textbooks are very similar to
American textbooks in their presentation of geometrical content (see Avcu, 2019).
Geometrical concepts requiring three-dimensional thinking almost do not take place
in the textbooks until the 5™ grade, which corresponds to the age of nine and ten
years old (MoNE, 2013). Consequently, late introduction of these spatial geometry
concepts might influence children’s ways of interpreting spatial geometry and/or
may result in children facing difficulty when they are asked to solve geometry
problems requiring 3D geometrical thinking. It should be noted that teaching topics
requiring complex geometrical thinking too early also potentially cause problems

with learning 2D and 3D geometry including various misconceptions (Yenilmez &
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Yasa, 2008); thus, finding the appropriate age range and development level to
introduce these concepts could lead to positive results.

Furthermore, textbooks might have potentially misleading 2D drawings which may
have caused low student performance. An 2019 study (Widder et al., 2019) used the
same question presented in Figure 2.4 together with other similar items. The study
exemplified potentially helpful geometrical information (PHI, e.g., supplementary
verbal explanation of the given 2D drawing that elicits visualization) and potentially
misleading geometrical information (PMI, i.e., hidden information or altered
information). Its aim was to see whether the presented PHI and PMI in geometry
textbooks are a-priori measures of visualization difficulty in achieving correct (or
desired) comprehension of 2D drawings of cubes (Widder et al., 2019). Hidden
information was described as “geometric elements (vertices, edges, surfaces, and
intersections of edges) that are occluded by coinciding elements such as one of the
two coinciding vertices of a 2D sketch of a cube, is considered hidden.” (p.496).
Altered information was considered to be consisted “of altered ratios of lengths of
edges, altered ratios of sizes of angles, confluent edges that are not confluent in
reality, or intersecting edges that do not intersect in reality” (p.496). Its results
showed that the interaction between potentially helpful and potentially misleading
geometrical information was largely captured by spatial visualization difficulty in
geometry for 16-17-year-old students. This is to say, the difficulty of 2D drawings of
cubes increases (i.e., students’ scores on the test for correct or desired
comprehension decreases) when the detail and number of PHIs decreases and PMIs
increases (i.e., PHI/PMI decreases) in the textbooks. Hence, the authors found that
geometrical information presented (the ratio of PHI/PMI) is an a-priori measure of
visualization difficulty in learning 2D drawings of cubes so the information
presented in the textbooks might potentially be a reason for poor performance in

interpreting 2D representations of 3D shapes.

e Teachers’ teaching

Insufficient and inappropriate geometry instruction is noted by many researchers as a
key factor affecting student success in spatial geometry. Research shows that
students’ errors in maths occur also because students have difficulties in

understanding teachers’ instruction methods (Confrey, 1990). Particularly, in
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geometry education, different levels of the communication of information between
the teachers and students can be another cause of misconceptions (Lim, 2011; Pusey,
2003), particularly in transformation geometry (Luneta, 2015). In other words,
students may not understand a geometry topic the teacher teaches unless s/he
explains the topic at a students’ level of geometric reasoning (Pusey, 2003). Hence,
Pusey (2003) claims that it is necessary for teachers to be aware of their students’
level of geometrical reasoning before attempting to deliver lessons. Some
researchers further claim that if teachers design their lessons in higher levels of
geometric reasoning than their students have, poor performance in geometry is
inevitable (Luneta, 2015; Pusey, 2003).

Moreover, teachers’ responsibilities do not end after being aware of their students’
level of geometrical reasoning. Teachers’ classroom management skills, the
supportive climate they provide in the classroom and their choice of activities for
cognitive activation are all identified as dimensions of instructional quality which
link teachers’ teaching with students’ geometry outcomes (Klieme et al., 2006;
Kunter et al., 2007). While classroom management and supportive climate are likely
self-explanatory, cognitive activation requires a little more explanation. “Cognitive
activation is an instructional practice that encourages students to engage in higher-
level thinking and thus to develop an elaborated knowledge base” (Lipowsky et al.,
2009, p.529). Challenging tasks, activation of prior knowledge and a content-related
discourse practice are reported as constructs of cognitive activation (Klieme et al.,
2006). In cognitively activating geometry lessons, the mathematics teacher
encourages students to share and compare their thoughts and solution strategies by
giving them challenging tasks, conflicts and contradictory ideas and interpretations
(Grouws & Cebulla, 2000). Such challenging tasks were found to be positively
correlated with the students’ performance in various maths areas, including spatial
geometry (Klieme et al., 2001; Wenglinsky, 2002). Moreover, Lipowsky et al.'s
(2009) study with 19 Swiss and 19 German maths classes found empirical evidence
that both classroom management and cognitive activation have positive effects on
geometry outcomes (case of triangles). Hence, if students are not engaged with the
cognitive activities and only being invited to solve geometry problems previously
demonstrated by the teacher through applying known procedures, this is nothing

more than rote learning (i.e., rule and cue following), if at all, and might result in a
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low geometry performance (Ding & Jones, 2006; Nardi & Steward, 2003; van Hiele-
Geldof, 1984).

e Maths teachers’ beliefs and conceptions of students’ 3D geometry

learning

Moreover, another reason for low student performance has been offered as being
teachers’ beliefs and conceptions concerning students’ 3D geometry thinking
(Barrantes & Blanco, 2006; Even & Tirosh, 2014; Lopez & Nieto, 2006). For
example, McKnight, Travers, Crosswhite and Swafford (1985) claimed that teachers
believe that students are less likely to learn geometry than other courses in middle
school and thus teachers’ beliefs could contribute as cause of students’ poor
performance in geometry. Particularly, Turkish middle school mathematics teachers
believe that geometry, especially geometry of 3D shapes, is at the top of the list of
mathematics topics where many students have difficulties in understanding and
practising (Kiiciik & Demir, 2009). The majority of research has supported
McKnight et al.'s (1985) proposal and reported that teachers’ beliefs might influence
the way they teach, and students’ learning can eventually be affected by this (Hew &
Brush, 2007; Sanders et al., 1997; Schoenfeld, 1998; Thompson, 1984). It is of note
that in contradiction to the teachers’ beliefs, some more recent studies showed that
students are open to and equally willing to learn science and mathematics at the very
beginning of the academic year and they need a certain amount of time to become
disaffected (Aktas-Arnas, 2009; Aktas-Arnas et al., 2014).

Finally, teachers’ beliefs are also related to the tools and representations they (chose
to) use in the classroom. Ainsworth (2006) reports that research provides abundant
evidence that external representations support students’ learning. Studies (diSessa,
2004; Novick et al., 1999; Zacks & Tversky, 1999) further argue that students can
select the representation which fits their needs and learn better with the help of it. On
the other hand, particularly in Turkey, teachers of geometry mostly choose the
representations they think are effective and do not give students an opportunity to
choose the representation which students think it could help them, believing that
students do not have necessary competency and skills to choose and use these
representations for their learning. This is, for example, many of these teachers do not

integrate dynamic geometry tools to represent geometric shapes as these teachers
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think that their students might not use the tool effectively, students might be
distracted from the tool and therefore teacher themselves might not be able to
manage the classroom during the activities with these tools (Agyei & Benning, 2015;
Saralar & Ainsworth, 2017; Yorganci, 2018). Teachers’ arguments are legitimate
that not all students were found to have the skills to choose effective representations
for themselves (Chi et al., 1981; Kozma & Russell, 1997), particularly in 3D
geometry (Jones et al., 2012). However, teachers’ beliefs on the effectiveness of
representation and their way to integrate to the class have not escaped from being

argued to contribute to students’ low performance in 3D geometry.

To note, while the reasons in Section 2.2.3.2 and its subsections constitute the
majority of the literature on this topic, some researchers also suggested that
children’s out-of-school experiences and social forces including parents’ attitudes
toward maths contribute to students’ performance in mathematics, and in geometry
as a part of it (Eccles & Jacobs, 1986; Goodall et al., 2017; Hong & Ho, 2005; Soni
& Kumari, 2015).

Hence, there is no single factor which could magically be changed the geometry
teaching so that the achievement problem in spatial geometry could immediately be
cured. One needs to consider all of these factors and others in order to help students

get better learning outcomes in spatial geometry.
2.2.3.3. How to Improve Teaching and Learning of 3D Geometry

As described in the two previous sections, students’ geometry performance can be
seen as problematic because of several reasons. These reasons are further discussed
in 2.2.3.2. This section focuses on how to improve teaching and learning of

geometry though designing lessons based on some frameworks.

More recently, some mathematics education researchers who focussed more on the
ways to improve mathematics performance as Usiskin (1987) did in the eighties (see
Section 2.2.1), intended to provide frameworks for maths teaching. Studies on 2D
representations of 3D shapes have focused more on building frameworks which
describe and analyse ‘3D geometry thinking’. This thesis inspired from these

frameworks when developing the RETA principles for geometry teaching.
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As a reminder, while some researchers (e.g., van Nes & van Eerde, 2010) describe
3D geometry thinking as a part of spatial thinking and use the factors of spatial
thinking —which are described in Section 2.1.2— to describe 3D geometry thinking,
the majority of recent research (e.g., Fujita, Kondo, Kumakura, & Kunimune, 2017;
Widder & Gorsky, 2013) describes 3D geometry thinking as a separate domain and
uses the definition of Pittalis and Christou (2010). 3D geometry thinking is defined
by Pittalis and Christou (2010) as “the conception of thoughts and ideas about 3D
geometry concepts by amalgamating various types of reasoning”; and reasoning in
this concept refers to “a set of processes and abilities that act as a feasible tool in

problem-solving and enable us to go beyond the information given” (p.192).

For example, Yeh and Nason (2004) proposed and examined a framework to teach
3D geometry with technology. They argued that 3D geometry is composed of three
inseparable components: communication, objects and spatial thinking. The
communication referred to (a) spoken and written language to describe 3D geometric
entities (including the language such as front-back and up-down) and (b) non-verbal
2D representation of objects in a technological environment. While objects were
described as any 3D shapes regardless of whether they are a part of maths curricula
or not, their spatial thinking was geometric spatial thinking, this will be described in
section 2.3.1. Taking these three components into consideration, they developed a
software package called VRMath, in which realistic representations of 3D geometry
problems were presented in various colours together with an available link to a
discussion forum. Authors claimed that their “initial work with primary school
children indicated that VRMath is a very effective tool for facilitating construction of
knowledge about 3D geometry concepts and processes” (p.6). It is of note that this
claim is stronger than the evidence have; the study was with only two primary school

children (six and seven graders) in a lab environment.

Recently Goodall, Johnston-Wilder and Russell (2017) suggested a framework to
teach mathematics that many pupils can experience at home or at school in the UK
(not specified in but including 3D geometry). According to them, the mathematics
teaching should be ALIVE (accessible, linked, inclusive, valued and empowering) in
contrast to TIRED (tedious, isolated, rote, elitist and depersonalised) mathematics
found by Nardi and Steward (2003). In order to understand ALIVE, we first need to
understand TIRED framework. Nardi and Steward's (2003) study in the UK with 13-
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14 years old students found that mathematics teaching can be experienced by
students as TIRED:

1)

2)

3)

4)

5)

Tedious: Most of the students viewed maths as a boring and irrelevant
subject with no transferable skills to real-life. Moreover, they reported that
learning maths offers little opportunity for being active.

Isolated: Students perceived mathematics as an isolated subject where
students mostly needed to work individually to come up with a solution to a
maths problem.

Rote: Many students viewed maths as a set of rules to follow hence, for them,

there were unquestionable and unique solutions to answer maths problems.

Elitist: Students experienced maths as a challenging subject and developed
the belief that only exceptionally smart or gifted students can excel in maths.

Depersonalised: Most of the students in the study believed that their maths
learning is not but can be facilitated by somehow making teaching suitable to

each student’s needs.

As a contrast to this TIRED maths, Goodall and colleagues (2017) introduced five

principles to improve performance in mathematics:

1)

2)

3)

4)

Accessible principle refers to the use of appropriate enactive tasks through
which students can establish their own understanding. The principle is
suggested with the belief that these activities leave almost no reason for

students to be excluded from developing mathematical thinking.

Linked principle implies the referral of the previous knowledge so that
students can link the new information to what is already known and

understood.

Inclusive principle suggests including all students to the process of learning
maths through various activities as opposed to the belief that only

exceptionally smart students can learn maths.

Valued principle emphasizes the integration of real-life examples into the

teaching of mathematics to understand the value of maths. The researchers
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further suggested that the examples should be chosen from those which are
valued by people as worthwhile both personally and culturally.

5) Empowering principle refers to the students’ agency that empowers students
to take ownership of their learning. The aim is to help students develop an
understanding of lifelong learning while making as much progress with
mathematics as possible. This principle further suggests ideas on how
students can be empowered in their learning through purposefully designed
mathematical tasks whilst developing skills needed for the 21% century, skills
such as creativity and technology literacy.

2.3.  Spatial Thinking and Geometry
2.3.1. The Relationship between Spatial Thinking and Geometry

This section explains the relationship between spatial thinking and geometry. After
the description of the position taking in this thesis, it continues with two sections that

review historical and recent studies on this relationship, respectively.

There is no doubt that the relationship between geometry and spatial thinking is
contested. On the one hand, some researchers support the idea that spatial thinking
and geometry are independent of each other mostly because of the complex nature of
spatial thinking (Clements & Battista, 1992; Pittalis & Christou, 2010; Tartre, 1990).
They believe that the process of spatial thinking (such as cognitive processes while
creating mental representations for mapping and navigation) makes it more complex
than what is needed for learning basic geometry. On the other hand, a number of
authors have concluded that geometry and spatial thinking are interrelated (Cheng,
Huttenlocher, & Newcombe, 2013; Guven, 2012; Lean & Clements, 1981;
Wheatley, 1990; Widder & Gorsky, 2013); for example, citing studies that have
found a positive correlation between spatial ability and academic performance in
maths, and specifically geometry (Cheng et al., 2011; Fennema & Sherman, 1977,
1978; GriiBing, 2011; Guay & McDaniel, 1977; Ishida, 2011). Many researchers
have developed geometry activities such as tessellations, isometric dot paper and
block building activities to improve children’s spatial thinking, measured by
disciplinary tests (Battista, 2007; Clements & Battista, 1992). It is also argued that
gaining spatial thinking skills brings advantages to students including expertise in

mathematics and specifically in geometry (Clements, 1998; Jones, 2002b;
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Schoenfeld, 2006; Uttal & Cohen, 2012), and geometrical intuition® (Jones, 2002a).
The balance of evidence suggests that there is a link between geometry and spatial
thinking and these two have a mutually beneficial relationship (Battista, 2007,
Clements & Battista, 1992; Gergelitsova, 2007; Jones, 2002a).

Geometry and spatial thinking have the study on the properties of and the
measurement in space in common although each covers more than that. In this thesis,
geometry and spatial thinking will be thought of as two different sets that overlap,
where the overlap of the sets represents common parts of geometry and spatial
thinking. That is to say, geometry and spatial thinking have shared parts regarding
the study of space such as orientation and visualization of two- and three-
dimensional shapes but they individually are more than these parts (see Figure 2.9).

Spatial

thinking Rl

Figure 2.9. Venn diagram of spatial thinking and geometry (size is not meant to be

implied)

Moreover, even though an ongoing debate on the nature of spatial thinking exists,
this thesis focused on spatial aspects of geometric reasoning which are thought of as
a cluster of cognitive processes that are important for constructing mental two-
dimensional representations for three-dimensional objects and changing them to suit
problem-solving process in geometry (Battista, 2007; Clements & Battista, 1992).
Specifically, in the context of this thesis, the process of reasoning involves the skills
to visualise three-dimensional shapes constructed from unit cubes and to create and
manipulate internal mental images in order to make orthogonal and isometric
drawings. Therefore, this PhD research focusses on spatial aspects of geometry
reasoning to improve spatial geometric academic achievement (i.e., spatial and

geometric thinking in the words of Ness and Farenga (2007)).

® Geometrical intuition is a mental phenomenon that describes the skill to acquire without reasoning
and inference in geometry (Fujita et al., 2004).
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2.3.1.1. Spatial Thinking and Geometry: Historical Review

“Geometry literature often seems to have a life of its own outside the broader study
of spatial thinking” (Cheng et al., 2013, p. 1050). A lot of what we know about
spatial thinking in geometry today classically started with the Van Hiele who sees
geometric thinking as a part of spatial thinking. Van Hiele (1959) and Van Hiele-
Geldof (1984) asserted that the progress of students’ geometric thinking depends on
a series of sequential and hierarchical levels ([0. precognition,] 1. visual, 2.
descriptive-analytic, 3. abstract-relational, 4. formal deductive, 5. rigour-
mathematical) to accomplish desired thought in geometry. They argue that effective
learning in middle schools can be achieved only if students reach to descriptive-
analytic or abstract-relational levels. In a study based on Van Hieles’ theory with
children at age eight, Rosser, Lane, and Mazzeo (as cited in Clements & Battista,
1992) asserted that those children’s spatial skills dealing with the transformations
(such as iterations, and rotations) is at the third level in the hierarchical development
order, after matching figures (level 1) and recalling and reconstruction of figures
(level 2). However, this position is not without its controversy. As previously
discussed, spatial skills are malleable, and age and level and experience of schooling
appear to be factors affecting the spatial skills needed in geometry. Similar studies to
that of Rosser and others have continued to be conducted and some evidence on
different age ranges has been found by researchers (see Clements & Battista, 1992).
Even though student ages have been reported, such studies relate students’ geometric
thinking to the instruction in addition to their out of school experience rather than
their ages as Halpern and Collaer (2005) suggests. Moreover, Van Hiele’s theory of

geometric thinking is solely based on two-dimensional geometry.

Gutierrez (1992) extended Van Hiele’s model to 3D geometry by analysing students’
behaviour when they compare or move solids (3D shapes) in the ground based on the
results of her experiment which aimed at improving spatial visualisation in sixth
graders through practising questions from 3D geometry (e.g., orthogonal and
isometric drawings, and cube rotations). The following summarizes her claims for
students’ abilities for each extended van Hiele level. She claimed that students at
level 1 compare 3D shapes paying attention to certain elements such as faces and
vertices without paying sufficient attention to mathematical properties (e.g.,

parallelism and sizes of angles) or only using them with a visual role. They are not
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able to visualise 3D shapes or invisible parts of them, neither their movements in an
orientation question. Students at level 2 still focus on the elements of 3D shapes but
base their explanations on elements that lead to the differences in mathematical
properties. Of note, while some of these properties are known by them from the
name of a 3D object (e.g., a rectangular prism has a rectangular base), some are more
obvious from their observation of it. Students at this level are able to visualise 3D
shapes if their current and final positions are available, but are not able to plan a
position in the next movement. Students at level 3 make informal justification based
on the mathematical properties which are either previously known by them or found
by the analysis of the observation of the 3D representations and their elements.
These students are able to visualise hidden parts of 3D shapes in addition to their
visualisation of the shape and to plan the next movements. Students at the fourth
level examine 3D objects before attempting any manipulation by focussing on
elements and properties, some of which are not observable hence are formally
deducted from definitions and other properties. They have well-developed spatial
visualisation skills which allow them to make accurate decisions on the basis of the
formally deducted properties through less number of movements than those at level
3.

Piaget and Inhelder (1967, 1971) proposed an alternative to Van Hieles and
Gutierrez that sees spatial thinking as an innate ability. While Van Hieles (1959,
1984) and Gutierrez (1992) did not specify age ranges or possible effects of innate
factors, Piaget’s four stages correspond with the age of children. The claim is that
spatial thinking — or, in this context, organising objects in two- and three-
dimensional frames — is an innate ability which develops with children’s interaction
with 3D objects. Piaget and Inhender believe that improvement in geometrical
thinking leads to better spatial thinking. They maintained that children need to be at
about nine years old to have wider geometrical reference frames (than young
children) and this allows them to make spatial inferences. These were also discussed
at an earlier section, which was on nature of gender differences in spatial thinking
(Section 2.1.4.1).

Clements and Battista’s (1992) review on geometry and spatial thinking suggests
building a new model on Piaget’s and Van Hiele’s which combines their strengths.

They noted in their review that some of the students in the studies they reviewed,
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aged 11 to 14, were less competent than the younger children; and not all of them
managed to achieve Piaget’s task. Indeed, some of the studies they reviewed showed
that only half of the students in this age range mastered such tasks. Nonetheless, for
Piaget, this age group (formal operational) is expected to be capable of interpreting
information in abstract forms, finding analytic solutions to problems, and also

making formal and deductive reasoning.

Thus far one it can be seen there is some inconsistency or discrepancy in the
historical literature review. However, these studies are considered as the basis of the
growth of studies on spatial reasoning in geometry and should not be discounted
when considering new approaches. These also showed that more studies including
different age groups (especially those of aged between 11 and 14 as discussed above)
are required to measure spatial thinking in geometry. Therefore, it seems important
to investigate spatial thinking in middle school curricula, which corresponds to this
age group in the Turkish education system. It is crucial to note that teaching Turkish
middle school students to help them improve spatial awareness for the achievement

of curricular goals in three-dimensional geometry is a goal of the present research.
2.3.1.2. Spatial Thinking and Geometry: Recent Research

Before presenting more recent research, section begins by describing its relationship
to sections 2.1.3 and 2.1.3.1. Section 2.1.3 looked at whether spatial skills can be
trained through spatial interventions and reported the results of studies including all
types of training (video-games, courses and spatial task training). Section 2.1.3.1
reported on disciplinary-specific spatial training studies which aim to improve
disciplinary-specific spatial performance with examples from across disciplines from
STEM domains (e.g., engineering courses and technology courses). This section
specifies the discipline as mathematics with a further focus on geometry where
possible and reviews studies that look for a relationship between spatial thinking and

mathematics.

The literature has argued that there is a relationship between spatial thinking and
mathematics for more than 30 years (see Lubinski & Benbow, 2006); but it has not
fully determined whether better spatial reasoning leads to better mathematics or the

reverse or whether they most depend upon some other underlying skill.
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The recent research has found that an increase in spatial skills may lead to better
learning outcomes in mathematics and particularly in geometry (Casey et al., 2001;
Cheng & Mix, 2014). For example, Cheng and Mix’s (2014) study suggests a causal
relationship between spatial reasoning and maths that starts early in the development.
Specifically, Cheng and Mix (2014) worked with six- to eight-year-old children and
divided them into two groups. While the intervention group received spatial training
by practising mental rotation tasks, the control group completed crossword puzzles.
Both groups completed a mental rotation test, a spatial relations test and a maths test
on calculations. The results showed that students in the intervention group (but not in
the control group) improved on the mental rotation test (p<.001, 72=.23) and maths
calculations test (p=.005, 5 >=.14). These findings were attributed to the possibility of
spatial training’s priming children to reorganise the questions spatially. However,
this is just one study with 58 children which reports such results; hence, more studies
are needed for generalisation. Moreover, as discussed later in sections 3.1.1 and
3.1.4, while such experimental research is crucial to understand the causal
relationship between spatial thinking and mathematics, research that bridges these
lab-based interventions and classroom practice (such as research following DBR

approach and designing course training) is also needed.

Hawes, Moss, Caswell and Poliszczuk (2015) described major branches of
mathematics where the research has concluded that spatial reasoning (the second
component of the committee’s spatial thinking definition in section 2.1) is an
important aspect. They argued that while branches such as algebra and mental
arithmetic appear to heavily rely on spatial thinking, geometry goes further in that it
is an inherently spatial branch of mathematics. Concerning the various skills
considered as spatial reasoning, it is argued that mental rotation plays a big role in
geometry achievement (Bruce & Hawes, 2015; Casey et al., 1995). Moreover,
mental rotation skills were found to be related with students’ geometry performance
(Battista, 1990; Delgado & Prieto, 2004). Hence, it is not surprising to see studies
that relate spatial thinking to geometry performance commonly use performance on
mental rotation tasks. For example, Casey and colleagues’ (2001) study with 187
eighth-graders found that students’ spatial skills measured by mental rotation tests
were correlated with their scores on the related parts of the Trends in International
Mathematics and Science Study (TIMSS, 1995). Despite the fact that their aim was
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to explore gender differences in maths performance, their study also showed links
between Vandenberg mental rotation test results and maths performance.

Researchers have also looked at how different initial spatial skills might influence
problem-solving strategies in STEM domains. Typically, research has found that
students with different initial spatial skills use different problem-solving strategies
(Gilligan et al., 2017; Hegarty et al., 2013; Tuvi-Arad & Gorsky, 2007). Particularly
in geometry, research has suggested that spatial skills affect the way one interacts
with the available sources and change their problem-solving strategies (Buckley et
al., 2019; van Garderen, 2006; Widder & Gorsky, 2013). For example, Widder and
Gorsky (2013) focused on secondary school students’ learning processes when they
were asked to use a 3D computerised software in order to visualise three-
dimensional geometric objects (a cube, triangular prism, and square-based pyramid).
Before observing the school students’ learning processes, students were asked to
complete a disciplinary test with questions including measurements in cube
representations (spatial geometry test). The test included two types of items; a-type
items which probe understanding based on verbal information together with formal
geometric knowledge (e.g., items expecting one to conclude base of a triangular
prism is an isosceles right-angled triangle given a 2D sketch of the prism and
complementary verbal description) and b-type items which probe understanding
based on visualization (e.g., visualizing a 3D shape from its orthogonal drawings).
Widder and Gorsky (2013), first, found that students with high spatial skills used the
tool less than those with low spatial skills. Moreover, students with high and low
spatial skills had different purposes for using the tool. While students with limited
spatial skills used the tool to discover the relationships, to see the structures and to
calculate the measurements, students with well-developed spatial skills used the tool
only for the reflection of the structures, such as rotations, to see perspective

drawings.

Finally, research has further found that “the spatial skills rely on neuronal networks
partially shared with mathematics” (Tosto et al., 2014, p. 462). Tosto and colleagues’
(2014) study with 4174 pairs of 12 years old twins observed an overlap between
spatial reasoning and mathematics (r>.40). They measured spatial reasoning through
spatial tests including jigsaw items and hidden shape items, and mathematics

performance through a test with items corresponding to English curriculum
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components, namely (a) non-numerical processes (e.g., rotational and reflective
symmetry in geometry), (b) understanding numbers (e.g., 27 + 27 + 27 =27 x ") and
(c) computation and knowledge (e.g., straightforward calculations). While genes
explained 60% of the overlap between spatial reasoning and mathematics,
environmental factors explained the remaining 40%. These factors equally affected
female and male students in spatial thinking and mathematics at the age of 12.

The longer-term aim of the work underpinning this thesis is improving spatial
awareness of students by providing them with the opportunity to work with
representations of 3D shapes so perhaps in future, they can better cope with spatial
problems. Given the relationship between spatial thinking and geometry, in
principle, this seems achievable.

2.3.2. What spatial thinking is taught in various countries’ mathematics

curricula?

In various national mathematics curricula, objectives requiring spatial thinking
mostly can be found in three-dimensional geometry. Mathematics curricula include
three-dimensional geometry in many countries, such as Canada, England, France,
Germany, Japan, the Netherlands, Poland, Singapore, Switzerland, and the Turkish
Republic (Department for Education [DfE], 2009; Hoyles, Foxman, & Kiichemann,
2002; Ministry of Turkish National Education [MoNE], 2013).

In the Turkish Middle School Mathematics Curriculum (year five to eight), it has
been argued that providing spatial thinking education is one of the goals, for the
following reasons: (1) spatial thinking is important to understand a multitude of
situations in real life since it helps students improve skills of producing and using
information; (2) spatial thinking aids students to understand various mathematical
concepts and to relate those with each other, and they could use these relationships in
everyday life and in other disciplines; (3) spatial thinking helps students express
their own thoughts and reasoning in the problem-solving process; (4) spatial thinking
guides students to understand the necessary mathematical knowledge and skills —
rather than rote learning/ memorization of formulas and concepts — to receive further
education in mathematics and/or related fields (MoNE, 2013). The curriculum,

which was designed in 2013, is still in use but was updated in 2018.
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The Turkish Middle School Mathematics Curriculum integrates spatial thinking in
all years of the middle school program and identifies objectives related to spatial
thinking by calling them spatial relationship objectives (MoNE, 2018b). It gives
specific hours of teaching time to teach each unit. Students study mathematics for
four lesson hours (each being 40 minutes), and applications of mathematics for two
lesson hours each week. Although there is a set program for the maths lessons,
teachers are allowed to choose what they want for their students to practice in the
maths application lessons. Spatial relationship objectives from the curriculum for
each year are as follows.

In year five (nine and ten years old), students learn about cuboids with three spatial
relationship objectives: At the end of the teaching unit on geometrical shapes for
eight to ten lesson hours, students should be able to

e describe a rectangular prism (i.e. cuboid) and properties of it; realise square

prism and cube are special forms of a rectangular prism

e draw faces of rectangular prisms and decides whether given drawing belongs

to a rectangular prism (dynamic software can be used)
e calculate surface areas of rectangular prisms (MoNE, 2018b, pp.56-57).

In year six (ten and eleven years old), students learn about geometric shapes with
five main spatial relationship objectives: At the end of the teaching unit on

geometrical shapes for fifteen lesson hours, students should be able to

e understand that if one places unit cubes into a rectangular prism so that
there is no space in the prism, the number of unit cubes equals to the volume

of that prism

o form different rectangular prisms having the same volume by using unit
cubes and explain the relationship as the volume of a rectangular prism

equals to the multiplication of the base area and the height

e derive and apply the volume formula of a rectangular prism (requires the

knowledge of area and lengths)

e recognise standard volume units, and convert m*, dm®, cm®, and mm? to each

other
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estimate volumes of rectangular prisms (MoNE, 2018b, p.63).

In year seven (eleven and twelve years old), students study geometrical shapes with

two spatial relationship objectives (these two are the objectives of the lesson plans in

the current thesis): At the end of the teaching unit on geometrical shapes for four to

six hours, students should be able to

draw orthogonal views (views from the top, left, right, and front) of the 3D
shapes which are constructed from unit cubes and relate them with each

other (e.g. left-right views are symmetric)

construct 3D shapes from the given orthogonal views and make an isometric
drawing corresponding to given views (the use of isometric paper is
suggested) (MoNE, 2018b, pp.69-70).

In year eight (twelve and thirteen years old), students learn about geometric shapes

with six spatial relationship objectives: At the end of the teaching unit on

geometrical shapes for eight to ten lesson hours, students should be able to

identify right prisms and list their common properties (identical ends, flat

faces and the same cross-section all along its length)

determine the main elements (two circular bases and one rectangular side) of

a right circular cylinder, construct and draw them
derive and apply the surface area formula of a right circular cylinder
derive and apply the volume formula of a right circular cylinder

identify a right circular pyramid, determine its elements (a base and a face),

construct and draw its face

recognise the right cone and determine its main elements (MoNE, 2018b,
pp.75-76).

Moreover, an elective preparatory mathematics course was designed to prepare

middle school students for their first year of secondary school (for year eight

students to prepare them for year nine). The teacher guidelines for the course further

suggested teachers to integrate spatial geometry games into their teaching with the

hopes of better learning outcome (Ministry of Turkish National Education, 2016b).
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Another example is the English National Curriculum Mathematics Programmes for
key stages one (years one and two), two (years three to six) and three (years seven to
nine) (Department for Education and Employment [DfEE], 1999; Department for
Education [DfE], 2013c, 2013b) in which 2D and 3D shapes, the language to analyse
and interpret their properties and strategies to solve problems including these shapes,
have had an important role. In a report on the previous curriculum, for instance,
spatial intuition was emphasised as “enormously powerful tool and that is why
geometry is actually such a powerful part of mathematics” (The Royal Society/ Joint
Mathematical Council, 2001, p.7). The report further claimed that students can
develop geometrical intuition and extend their spatial thinking through playing with
3D shapes.

In the English National Curriculum Mathematics Programmes, objectives on 3D
shapes can be found from Key stages one to three; the objectives are called statutory
requirements and they are as follows for key stages one and two: “Pupils should be

taught to

e recognise and name common 3D shapes, for example, cuboids including
cubes, pyramids and spheres; describe position, direction and movement,
including whole, half, quarter and three-quarter turns (year one, five and six

years old)

e identify and describe the properties of 3D shapes, including the number of
edges, vertices and faces; identify 2D shapes on the surface of 3D shapes,
[for example, a circle on a cylinder and a triangle on a pyramid]; compare
and sort common 2D and 3D shapes and everyday objects (year two, six and

seven years old)

e draw 2D shapes and make 3D shapes using modelling materials; recognise
3D shapes in different orientations and describe them (year three, seven and

eight years old)
e no objective on 3D shapes was listed for year four

e identify 3D shapes, including cubes and other cuboids, from 2D

representations (year five, nine and ten years old)
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e recognise, describe and build simple 3D shapes, including making nets (year
six, ten and eleven years old)” (DfE, 2013b, pp.10-44).

In key stage three, statutory requirements are not divided into years but given as a
whole for years seven to nine (eleven to fourteen years old) and they are as follows:

“Pupils should be taught to

e derive and apply formulae to calculate and solve problems involving
perimeter and area of triangles, parallelograms, trapezia, volumes of

cuboids (including cubes) and other prisms (including cylinders)

e use the properties of faces, surfaces, edges and vertices of cubes, cuboids,

prisms, cylinders, pyramids, cones and spheres to solve problems in 3D

e interpret mathematical relationships both algebraically and geometrically
(DfE, 2013a, p.6).

Yet another example is the American National Mathematics Curriculum, which has
been amended to integrate spatial reasoning into geometry teaching after the
suggestions of the National Council of Teachers of Mathematics, NCTM in short
(Fuson, Clements, & Beckmann Kazez, 2010). The council (2010) suggested
integrating spatial reasoning into mathematics curriculum starting from the early
stages and provided an alternative teaching unit. This unit is named as Geometry,
Spatial Reasoning and Measurement and is integrated into mathematics curriculum
in the US from pre-kindergarten to year eight (Fuson, Clements, & Beckman Kazez,
2010b, 2010a; Schielack, 2010a, 2010b). In the first book of the series (for pre-
kindergarten to year eight), the council noted that “Geometry, spatial reasoning and
measurements are topics that connect to each other and the other mathematics, and
that connects mathematics to real-world situations” (Fuson, Clements, & Beckman
Kazez, 2010b, p.57). The council’s (2010b) list of ideas and key skills for geometry

and spatial reasoning included:

e recognize and name common three-dimensional shapes (including real-world

objects) including spheres, cylinders, prisms, and pyramids

e use the relational language of right and left; identify and create symmetric

figures (e.g., mirrors as reflections)
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e build simple 3D structures from pictured models

e compose and decompose solid shapes, thus building an understanding of

part-whole relationships” (p.59).

A final example is the German National Mathematics Programme, whose developers
believe that “work with three-dimensional objects strengthens students’ spatial
ability” while including three-dimensional geometry into their curriculum (Hoyles et
al., 2002, p.17). They expect that further work with three-dimensional objects from
the counting of unit cubes to rotation, translation and reflection of 3D shapes is
important for improving students’ spatial thinking, which will be required in their
practical life. Although there are at least 13 curricula followed in 16 German states at
the primary level, all are informed by national mathematics programme. One
example from Germany is North Rhine-Westphalia’s primary mathematics
curriculum in which two of the content domains are devoted to spatial thinking and
3D shapes. This curriculum aims for students (seven to eleven years old) to reach the

following content-based competencies:
“Spatial orientation and spatial visualisation, and solid figures

e trace lines with a pen (eye-hand coordination), name overlapping figures

(figure-ground discrimination), and identify forms (visual consistency)
e make orientations in two-dimensional space using a map

e describe spatial relations on the basis of pictures, arrangements, plans, etc.,

as well as from imagination

e visualize the movement of shapes and objects and describe the results of

movement in advance

e identify geometrical objects, sort them according to geometrical
characteristics, and describe them using mathematical terminology (e.g.,

area, edge)

e construct wireframe and solid models of objects and build more complex

cube constructions

e find various nets for cubes
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e identify two- or three-dimensional views of buildings and construct buildings

according to a plan

e define and compare volumes of objects with unit cubes” (Mullis, Martin,
Goh, & Cotter, 2016, pp.2-3).

It is possible to see how specific the learning objectives are in the Turkish
curriculum which is very similar to how the objectives are described in the NCTM
books for each year in America. Curriculums in Turkey and America are different
than most of the European curriculums, such as English mathematics curriculum
(which specifies statutory requirements for key stages, not for a particular year) and
German maths programme (which describes learning objectives for six years in
general and is needed to adapted to 13 different curriculums at primary level).

Although spatial thinking is a part of numerous countries’ mathematics curricula,
students’ poor performance in geometry, especially in topics related to spatial
thinking objectives, have been reported by many researchers from different nations
(Battista, 1999; Battista, Clements, Arnoff, Battista, & Borrow, 1998; Fuson,
Clements, & Beckman Kazez, 2010b). The focus of my work, as a design-based
research project, is to provide lessons to aid teachers so that they can help students

improve their performance in the Turkish government geometry exam.
2.3.3. Summary of Section 2.3

To conclude, there is a complicated relationship between spatial thinking and
geometry. There are many descriptions of the same terms because of the distributed
nature of spatial thinking across different disciplines (e.g., psychology and maths
education), and this makes working on spatial geometry hard. Hence, not
surprisingly, this literature review shows that spatial geometry is an under researched
area compared to many other areas in mathematics, for example, number sense. The
research does show that it is not easy or trivial for students to understand 3D
geometry. Students are not doing as well as many people including researchers,
practitioners and policy makers think they should and the reasons for that are
multifaceted. Attempting to resolve aspects of this problem directly motivated the

research questions addressed in this thesis.
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2.4. Research Questions

Review of the literature on spatial thinking and geometry resulted in the

development of five research questions. These questions are:

1.

How do the seventh-grade middle school students learn 3D shapes in

Turkey?
a. What are the students’ difficulties in learning about 3D shapes?
b. What are the students’ errors in representing 3D shapes?

What principles can inform how 2D representations of 3D shapes are best

taught to grade seven students in Turkish middle schools?

a. What are the important elements of 3D shapes lesson plans?
b. How can specific lessons be designed to teach 3D shapes?
How do seventh grade students experience these lessons?

What are the opportunities and challenges for a maths teacher when adopting

these lessons?
What are the outcomes of these lessons for these students?

a. How do learning outcomes (orthogonal and isometric drawings) differ
between students who participate in the new lessons and those who study

traditional lessons?

b. Are these results influenced by gender?

These questions are further refined and investigated in the relevant chapters
(Chapters 4 to 8).
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3. METHODOLOGY

In this chapter, the choice of methodology, specific methods that were used in this
thesis and ethical issues are addressed. This chapter is divided into three sections. It
begins with the description of the nature of the overarching methodological
approach: design-based research and explains how the four studies in this thesis fit
into a design-based research project. This includes an introduction to design-based
research and its phases, a justification for the approach and a discussion concerning
issues with design-based research. It then describes the specific methods that were
used throughout the thesis, including data generation, analysis and presentation. The
final section discusses ethical issues. It should be noted that the specific methods
(e.g., interview questions) employed in each study are described in detail in their

own chapters.

3.1.  Choice of Methodology: Design-based Research

Design-based research is pragmatic and it aims to improve educational practice in
innovative ways, often together with technological interventions. This PhD research
aims to improve Turkish middle school students’ learning of orthogonal and
isometric drawings through designing a new model and lesson plans and benefitting
from the available technology in this context. As explained in the Introduction, the
researcher is a mathematics teacher herself and is funded by the Ministry of Turkish
National Education to find effective ways of integrating the available technology (a
tablet for each student and a smartboard for each classroom) to improve current
maths teaching practices. It was considered important to investigate existing
practices and identify any missing components in order to propose suggestions to
improve these practices. Hence, DBR fits the goals of the research by giving the
researcher the opportunities to not only investigate and note the problems in teaching
orthogonal and isometric drawings in the regular lessons, but also design and test
interventions for overcoming these problems and propose a possible solution to them

by suggesting a design for teachers to use in their practice.
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3.1.1. Introduction to Design-based Research

In this thesis, a design-based research (DBR) approach was employed. In some
countries (e.g., the United States), this approach was initially named design
experiments and was intended to overcome the perceived limitations of experiments
that compare intervention and control groups (Collins, 1990). DBR was developed in
response to the need to develop methodological solutions to explore interventions in
authentic educational contexts rather than laboratories (Brown, 1992; Collins, 1992).
In other countries (e.g., the Netherlands), design-based research emerged to develop
and improve curriculum materials (Gravemeijer, 1998), and it was initially called
developmental research (Freudenthal, 1998; Goffree, 1979). The terms design
experiment (Collins, 1992), design research (Edelson, 2002), development research
(van den Akker, 1999) and developmental research (Richey & Nelson, 1996) are
sometimes interchangeably used for design-based research. In this thesis, the term
design-based research was chosen to use, following the suggestions of Bakker (2018)
who describes the term as “the research that is possible due to the existence of a new
design” (p.29). Design-based research, in this thesis, refers to a family of related
research approaches with similarities which are together with differences in aims of
characteristics including design experiments, developmental research and others
(Phillips, 2006; van den Akker, Gravemeijer, McKenney, & Nieveen, 2006b; Wang
& Hannafin, 2005).

There are some characteristics of design-based research that often go together
(Bakker, 2018c; Cobb et al., 2003; Collins et al., 2004; Phillips, 2006; Plomp, 2006).
Simply, researchers who use this approach to methodology, create, test and refine
their interventions based on their findings, often acting as a teacher or collaborating
with one in classrooms in order to develop new models, artefacts and practices that
can be generalised to other contexts. The following paragraphs described the main

characteristics of design-based research.

First of all, DBR has an interventionist nature similar to experimental studies.
Researchers who use this approach create, test and refine their interventions based on
their findings. Hence, DBR differs from ethnographic traditions which do not affect
the researched context. It is true to say that DBR is a test-bed for innovation with its

characteristic of creating and testing new interventions (Cobb et al., 2003).
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Secondly, DBR is iterative in the sense that it has cycles (DBR studies) of an
intervention. It involves putting the first version of intervention into a real life
situation to see how it works. The analysis of this cycle feeds a new cycle, and its
analysis informs the next one. Each cycle consists of preparation, design of an
intervention or its refinement, implementation of the intervention and retrospective
analysis. Moreover, design-based research often has one overarching purpose but
different stages and cycles of the research might have other purposes. If one
considers a project that aims to provide guidance on how to teach a specific topic in
mathematics, it could have multiple phases. It is likely to begin with a description
and evaluation of current learning and teaching environments such as students’ prior
understanding of the topic and existing teaching practices, an innovative design to be
tested such as activities and lesson plans, and a comparison and an evaluation of a
design through various forms (e.g., performance tests and interviews) from different

perspectives (e.g., students’ experiences and teachers’ experiences).

The third characteristic is that DBR is process-oriented so it is both prospective and
reflective. Educational ideas (for students or teachers) which are developed in the
design can be adapted and tailored throughout the empirical work (e.g., when a
design idea does not work as intended). Reflection can be done after each lesson
even if there is more than one lesson and lead to changes in the designed activities
for the next lesson. Design and testing are not separated, as opposed to many other
interventionist approaches to research (Bakker, 2018c), instead, they are intertwined
with each other and interwoven together. This is one of the main characteristics of
design-based research, which distinguishes it from some experimental approaches

that focus on a hypothesis before and after an intervention.

The fourth characteristic is that DBR is theory-oriented and grounded in relevant
research, theory and practice. It, at least partly, uses theory at the beginning of the
research and aims for generating one at the end for learning and means (or design
artefacts) to support this learning. The generated theories are domain-specific and
related to the design so humble, which reflects its pragmatic roots. A humble theory
is not a grand theory of learning, it is, in fact, a theory which is “accountable to the
activity of design”, explaining and framing both what works and what does not work

in a specific domain with accounts for them coming from practice (Cobb et al., 2003,
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p.10). This characteristic distinguishes DBR from action research which does not as
directly aim at informing theory.

Another and a key characteristic is that DBR is utility-oriented in the sense that “the
theory must do real work™ (Cobb et al., 2003, p.10). DBR aims to tide over the gap
between educational practice and theory (Bakker & van Eerde, 2014; Cobb et al.,
2003; Edelson, 2006; van den Akker, 1999). It proposes and explores a design
artefact such as designed activities and lesson plans (Kelly, 2006) but not in a lab
rather in a real-world setting such as a classroom and mostly collaborating with real
practitioners (van den Akker et al., 2006b). It refines both theory and practice. “The
value of a DBR theory lies in its ability to produce changes in the world” (Barab &
Squire, 2004, p.6). This again reflects its pragmatic roots. This is, DBR has an
advisory purpose which is to provide theoretical insight and understanding into how
to support or promote a specific way of learning and teaching in practice (van den
Akker, Gravemeijer, McKenney, & Nieveen, 2006a). It focuses on the development
of a design artefact (e.g., activities and lesson plans) and provides information and

knowledge to similar practices.

The final characteristic is that DBR is integrative and flexible and thus allows the
researchers to use various types of data and different methods to work through
research questions. DBR is mostly associated with the use of mixed methods
(Sandoval & Reiser, 2004). Most researchers who follow a DBR approach would
agree with Maxcy (2003) who asserted that “It is perfectly logical for researchers to
select and use differing methods, selecting them as they see the need, applying their
findings to a reality that is both plural and unknown” (p. 59). The selection of
methods in DBR for investigating issues in authentic real-world settings is once
again in line with its pragmatic roots (Anderson & Shattuck, 2012). Furthermore, the
combination of qualitative and quantitative methods helps to increase objectivity,
validity and applicability. However, it is crucial to mention that DBR does not
normally focus on replicability and generalisation to a population, instead it uses
these methods for the exploration of the researched context. DBR potentially sets
foundations and bases of experiments (e.g., randomised control trials) which could
also be a part of DBR in later cycles (Kelly, 2006). This extension may start with

controlling some of the variables in a later cycle and may end up with randomised
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control trials having control and experimental groups if the particular DBR project

has the capacity and need.

Given these characteristics, DBR is neither interpretivist nor positivist. It is
pragmatic and it comes with the belief that methods of the study should be chosen
according to the needs of the research questions in order to answer them better
(Reimann, 2011; Walker, 2011). DBR with a pragmatic philosophy is flexible and
thus allows the researcher to use various types of data and different methods to work
through research questions hence it is mostly associated with the use of mixed
methods (Biddle & Schafft, 2015; Johnson & Onwuegbuzie, 2004). It acknowledges
issues in the debate of using mixed methods and settles them by arguing that
qualitative and quantitative approaches are compatible (House, 1994; Howe, 1988;
Tashakkori & Teddlie, 1998).

Design-based research can be adapted to and used in various contexts from language
teaching (Bergroth-Koskinen & Seppala, 2012) to gifted education (Jen et al., 2015),
from mathematics education (Evans, 2018) to game-based learning (Squire, 2005)
but not specialised in one. Thus, reviewed literature suggests a variety of criteria for
DBR (e.g., see Wang & Hannafin, 2005, p.7), which is not possible to follow all at
the same time. It can be used in formal and informal education. Accordingly, Collins
et al. (2004) suggest not embodying each and every idea they proposed for DBR but
to move in the direction of embodying as many of them. The following points,
therefore, describes characteristics which are often associated with DBR but were

not followed in this thesis.

e Involvement of practitioners as co-investigators (Kelly, 2006; van den Akker,
1999): In this thesis, opportunities were created for students during the
classroom discussion at the end of the lessons and during the interviews to
share their opinions about the lessons and how they could be improved. In
addition to this, teachers as practitioners were given opportunities during
both pre-interviews on lesson plans and debrief sessions to share their ideas
about how lessons should be. Despite these beginnings of involvement, the
term co-investigator implies a deeper involvement with the research.

e Involvement of multidisciplinary research teams (Cobb et al., 2003; Collins

et al., 2004): Different research teams that have specialists in different roles
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would probably have deepened the understanding of the phenomenon under
investigation. Although there were not separate teams for different roles, the
research involved a mathematics educator, a cognitive scientist and a local
practitioner in addition to the PhD researcher.

e Separation of roles as designer, evaluator and implementer (Collins, 1992;
Plomp, 2006): It is true that the researcher created opportunities for teachers
to adapt and implement the lesson plans in Study 3 and 4 unlike Study 2
where she acted as a teacher in an after-school course. Nonetheless, she
played the roles of primary intervention designer and evaluator and all other
necessary roles because of the requirements of a doctoral thesis; along with
the support of her supervisors.

3.1.2. Phases of Design-based Research

This section outlines the characteristics of the phases of design-based research.
e Phase One — Exploration and analysis of the problem

The first phase of design-based research can be thought of as the exploration and
analysis of the problem; both in context and though existing literature (Herrington et
al., 2007). In this phase, similar to ethnographic studies, the researcher observes the
researched context without intending to influence it, mostly by using a set of
qualitative methods to generate a rich account of design in practice. The exploration
phase may also include quantitative methods such as tests for measuring students’
performance in a specific domain in order to better investigate the problem (e.g., the
errors made by the students). Moreover, the researcher reviews the literature and
seeks advice from the experts in the field. This phase is the time to start establishing
the researcher’s perspective on learning, design principles, particular lesson

objectives to be investigated and the research questions.

e Phase Two — Design and construction

After redefining the problem in its setting in detail and reviewing the literature
concerning it, DBR then begins to develop “solutions informed by existing design
principles and technological innovations” and applying them in the real settings,
which can also be thought as the second phase of a design-based research
(Herrington et al., 2007, p. 4093). In this phase, DBR differs from ethnographic
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studies as the researcher interferes with the researched context. With the insights
gained in Phase One, the researcher designs the intervention (i.e., lesson plans with
necessary materials and activity sheets) and instruments to measure its
implementation (e.g., worksheets and interview questions). These instruments may
be revised in later iterations. In this phase, the researcher should be careful to
consider how s/he will assess the intervention. A range of instruments might be
needed to measure whether the intervention is working and it worked in an intended
way. As such, in addition to an instrument to measure students’ performance,
observation protocols, questionnaires in various forms (e.g., evaluation forms), and
interviews with participants are suggested to assess participants’ experiences and

outcomes for them (Collins et al., 2004).

e Phase Three — Evaluation and reflection

In the third phase, the researcher collects the data by implementing the proposed
intervention in Phase Two. Unavoidably, the intervention will not be enacted exactly
as it was anticipated. Hence, necessary refinements are taken into consideration
including changing and removing some of the activities in the design or adding some
others according to the needs of the participants. The next iterations are implemented
after these changes in order to get better results - mostly seen as better learning
outcomes in design-based research in education (Cobb et al., 2014; Herrington et al.,
2007). These iterations are named differently (e.g., year, cycle, case study) by
different design researchers. The aim of these iterations is to use the lessons learnt in
each iteration to design a better one. The iterations also allow the researcher to
collect more detailed information about the case in order to generate or perhaps
propose a local and humble theory (Cobb et al., 2003, 2014) as explained in Section
3.1.1. A humble theory, for this PhD thesis, is a domain-specific instructional theory
as of Stephan and Akyuz (2012) — who built a humble theory about teaching integer
addition and subtraction in middle schools based on other theories such as

constructionism and realistic mathematics education.
3.1.3. The Current Thesis as a Design-based Research

In this section, how the phases of design-based research were performed with this

PhD thesis are considered.
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As discussed in the literature review, studies show that students struggle to represent
three-dimensional shapes in two dimensions. This thesis aimed to improve Turkish
middle school students’ orthogonal and isometric drawings of 3D shapes by
providing insights into how it was already taught in Study 1 (Chapter 4) and what the
literature suggests could improve this. This resulted in the RETA (Realistic,
Exploratory, Technology-enhanced, and Active) model and associated lesson plans
(Chapter 5). It then tested and refined the model and the lesson plans through cycles
of DBR focussing on students’ experiences of the lessons and outcomes for students
in Study 2 (Chapter 6) and a teacher’s experiences of teaching with the RETA-based
lesson plans and its outcomes in Study 3 (Chapter 7). Finally, results of a quasi-
experimental study with more than 200 students are reported in Study 4 (Chapter 8).
All cycles helped the researcher to understand the problem from different
perspectives to refine the design in support of the overarching aim. The following
paragraphs describe the four studies of this thesis and how they fit the phases of
DBR.

In line with Phase One of DBR, Study 1 explored the current teaching of 3D shapes
and the learning outcomes associated with this teaching in its naturally occurring
situation, i.e., Turkish middle school classrooms. It was helpful to explore students’
learning experiences and current pedagogy in natural classroom settings in order to
better understand the reasons underlying the struggle in representing three-
dimensional shapes that was largely reported in the literature (and noted in the public
exam performance). One could relate this with the exploratory endeavour of design-
based research, which aims to explore the problem in detail in its own setting instead
of testing pre-determined variables as in experimental methods. This study explored
particular problems including students’ orthogonal and isometric drawing errors on
the worksheets with a detailed investigation of the nature of the errors (Section
4.2.1), students’ perceptions of their performance in these drawings and the
challenges they faced (Section 4.2.2) and the current pedagogy which could have
caused them (Section 4.2.3). As might be expected from DBR, mixed methods were
used throughout the study. A set of qualitative (e.g., observations and interviews)
methods were used to explore students’ difficulty in representing 3D shapes
orthogonally and isometrically. It was also necessary to understand the learning

outcomes associated with current practice. Hence, quantitative methods (e.qg.,
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worksheets) were used to test orthogonal and isometric drawing performance. These
guided the researcher to design the first version of the RETA model (Section 5.2)
and the lesson plans (Section 5.3).

In Phase Two, based upon the insights gained in the first phase, the researcher
drafted a model -which is called the RETA 3D shapes teaching model - and lesson
plans to teach orthogonal and isometric drawings of 3D shapes. Lesson plans were
supplemented with documents such as activity sheets and slides. These were revised
in later iterations in order to better fit the needs of the students and the teachers.
Moreover, the researcher carefully considered how the intervention would be
evaluated in this phase. As such, in addition to preparing worksheets to measure
students’ performance, observation protocols, lesson evaluation forms and interview
questions were drafted to assess participants’ experiences of the lessons and
outcomes of the lessons for them in accordance with the suggestions of DBR

researchers.

In accordance with Phase Three of DBR, the data were generated by implementing
the RETA-based lessons. Modifications were made to some activities in the lessons
as they were changed, removed and new activities were added as analysis suggested.
As expected from DBR, the iterations permitted the collection of more detailed
information from different perspectives. Study 2 explored students’ experiences of
the lessons and outcomes for students and Study 3 focused on a teacher’s
experiences of teaching with the RETA-based lesson plans and their outcomes.
Finally, Study 4 (Chapter 8) employed a quasi-experimental study with 205 students
where RETA classrooms were compared to business as usual classes. Implementing
DBR that ended with an experiment brought an additional value to research for the

Turkish government.
3.1.4. Justification for the Research Approach

Many research methods are criticized for either not having or having only a slight
aim of contributing to practice (Levin, 2013; Nuthall, 2004). Levin (2013) who
criticised this in his review of the relationship between research findings, policy and
practice reported that research rarely shapes practice in education even though there
were recent attempts of the policymakers in the last decade. Researchers have argued

that teachers rarely benefit from research findings (Broekkamp & Hout-Wolters,
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2007) and it does not help teachers as practitioners much to know whether one
intervention is better than the other (Nuthall, 2004). Rather, teachers need to
understand the mechanism which makes it effective so that they can adapt it to their
classroom contexts. Moreover, they need research findings free from complex
research terms, in a straightforward (to apply), familiar and concrete form, which are
called design artefacts (e.g., developed interventions such as lesson plans and
activities as in this PhD thesis) in DBR (Kelly, 2006).

Unlike many research methods, DBR does not only contribute to the theory or the
practise; it is intended to tide over this gap between theory and practice. McKenney
and Reeves (2018) who performed an extensive literature review reported that DBR
allows for contributions in various forms both to the theory and the practice. Its
contributions to the theory to date have included setting design standards for a
particular teaching method, developing educational software and making a district-
wide reform in curricula. These theories were always together with practical
contributions to educational practice. The main practical contribution of DBR is the
design artefact, which is intended to solve everyday problems in a classroom context.
Similarly, the goal of this research was improving students’ performance, theorising
what made it difficult and easy and suggesting a design for teachers to use in their

practice.

In relation to the implementation context, DBR provides evidence about the process
of learning and the factors affecting these processes in real classroom contexts rather
than laboratory settings. In short, DBR mostly works in real classrooms (or other
contexts) so as to overcome the criticisms of researching in artificial and fixed lab
contexts. Barab and Squire (2004) argue that it is not valid to report laboratory
settings as natural environments as the findings might be inadequate. For example,
participants might guess questions of the research (in)correctly and behave
accordingly rather than doing what they normally do (Goodnow, 1976) or they might
not relate the lab setting with the real context and again behave different than normal
(Brown, 1992). Hence, it is not possible to interpret participants’ behaviour
independent of the researched context. Working in real educational contexts allows
DBR to better understand how the designed intervention works or does not work in
the complexity of a classroom. Correspondingly, all of the studies of this PhD

research are in real middle school classrooms. The research started with the
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observation of middle school classrooms in two schools to explore the current
teaching of orthogonal and isometric drawings in Study 1. It continued with an after-
school course in a middle school in Study 2, which was followed by two more cycles

in regular middle school classrooms in Study 3 and 4.

Structured principles are needed to clarify the mechanisms by which the results were
achieved and DBR provides these for researchers and practitioners (Cobb &
Gravemeijer, 2008). These can help to appreciate the degree of transferability of the
intervention by applying them to different iterations of the intervention in selected
classrooms (Gobo, 2007). This is, researchers can start realising the things in
common among contexts by studying how the results were achieved in different
contexts for generalisability — to a humble but analytic theory rather than a
population. In DBR, these structured principles are called design principles and
design principles of this thesis are described in Section 5.2.

3.1.5. Issues with Design-based Research

Design-based research intends to bridge the gap between theoretical research and
practice but such work also brings challenges. It is important to provide an overview
of criticism about DBR which reveals its limitations as a research method. The
following paragraphs do not represent a complete account, rather highlights
challenges concerning this research and describes some criteria that emerge from
concerns to be taken into account in design-based research in mathematics education

and their relation to this thesis.

One of the issues is the degree of fidelity of the intervention to the designers’
intentions. Design researchers do not expect to have full fidelity to their intention
because of the context of the implementation being classrooms rather than labs.
However, core aspects of the intervention still need to be implemented as intended to
help the researcher answer the research questions. These should be shared with
practitioners prior to the implementation so that when they adopt the design into
their lessons, the main parts of the design should still be there. In cases which this is
not possible, it is unlikely to collect data to answer research questions hence the
cycle must be repeated (Brown & Campione, 1996). Researchers have suggested
good practice involves a) describing the intervention fully and explicitly to the

practitioners and b) having practitioners as co-designers in the research wherever
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possible in order to implement it with fidelity (Kelly, 2006; Stears, Malcolm, &
Kowlas, 2005; van den Akker, 1999). Moreover, c) showing that the intervention is
based on research, d) testing the intervention in a friendly environment and e) micro-
cycles are all suggested to reduce this risk of losing fidelity. In this thesis, the
researcher tested early stages of the intervention with other PhD students in
Education prior to Study 1. Furthermore, the intervention was trialled with small
number of students in an after-school course context in Study 2. Hence, this study
could be thought of as a micro-cycle of the next study. In Study 2 (cycle 1), the
researcher acted as a mathematics teacher in an after-school course and she noted her
reflections whenever she needed to make certain choices (e.g., the lesson plans
suggested students’ work in pairs; however, the researcher needed to decide how the
pairs were composed). It was the closest implementation of the RETA model
therefore the difference between intended model and enacted model are
correspondingly small. Finally, the researcher met with teachers several times before
their implementation. These meetings included the discussion of research aims,
design principles, lessons plans and the corresponding activities including how to
use the tool in the lessons and trying to represent some of the shapes on it. In Study 3
(cycle 2), the researcher collaborated with a mathematics teacher to adapt and adopt
the lessons to use in her own classes. She conducted four semi-structured interviews
prior to lessons. The aims of these interviews were to get to know the teacher and to
discuss her opinions about the lesson plans and underlying pedagogical stance. One
of the interviews focused on the discovery of the software which was used in the
lesson plans. Moreover, there were debrief discussions after each lesson and the aim
of the debrief discussions was to discuss how the lessons went including strengths,
problems and issues to consider for the next lesson (and in the future). In Study 4

(cycle 3), the same procedure was repeated with a number of teachers.

Another issue is the complexity of working in a real classroom. Brown (1992)
describes a real classroom as “rich, complex and constantly changing” environment
in which many things might go wrong (p.144). She discussed how a real classroom
consists of many components and these constantly change. Unexpected things and
problems might occur in any classroom whilst the interventions are expected to be
working in a smoothly functioning learning environment. This makes a real

classroom difficult to research and from which to make inferences. Because of the
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complex nature, working in a real classroom brings the challenge of collecting a big
amount of data including recordings of the lessons, observation notes, interviews and
students” work. Handling a big amount of data in DBR might be challenging for the
researchers. It makes the analysis of the data harder because of the time and
resources required (Collins et al., 2004). Lack of analysis may cause
misinterpretations and conclusions might be speculative and local (Cobb et al.,
2003). The data of this thesis generated from real classrooms as expected in DBR.
This data included lesson recordings, observation notes, interviews with both
teachers and students and students’ work including worksheets and GeoGebra
constructions. Report on all the data generated in all four studies has been impossible
given the word length constraints of a PhD. Instead, separate studies reported
different angles of the data after their detailed analysis and in respect of specific
research questions. For example, Study 2 (cycle 1) reported students’ experiences of
the RETA-based lessons and outcomes for them whilst Study 3 (cycle 2) reported a

teacher’s experiences of adopting and using these lessons.

The final issue is the time delay during iterations. DBR involves iterative cycles of
testing and refinement. As explained in phases of DBR, the intervention is refined by
using the results of a previous cycle, and this process continues until having the best
version of the intervention which meets the research aims. For projects with time
constraints and/or limited funding as of a PhD thesis and programme/course
development, compromises might be needed in completing the whole analysis before
starting to the next cycle because of the tight deadlines. This thesis included four
studies in three-year time. In order to maximise the time for the analysis, the data
generation started in the first year. Moreover, the challenge of time delay during
iterations was reduced by focussing on different perspectives in each cycle as

explained in the previous paragraph.

3.1.5.1. Argumentative Grammar for DBR in Mathematics Education and this
Thesis

Other than the issues above, there is a criticism concerning the existence of
argumentative grammar in DBR. Kelly (2004) — who defines an argumentative
grammar as “the logic that guides the use of a method and that supports the

reasoning about its data” (p.118) — argues that argumentative grammar for DBR is
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not explicit and agreed-upon like that of more mature methodologies, such as
ethnographies and randomised trials. Consequently, some researchers argue that
design-based researchers “lack a basis for a warrant for their claims” (e.g., Kelly,
2004, p.119). However, many researchers have now contributed to and proposed
argumentative grammars for design-based research in different fields (Bakker,
2018a; Cole et al.,, 2014; Penuel & Frank, 2015). A decade after Kelly's (2004)
argument, Cobb et al. (2014) proposed an argumentative grammar for design-based

research in mathematics classrooms.

The first step proposed was that research following a DBR approach should show
that “students would not have developed the documented forms of mathematical
reasoning but for their participation” in design-based research (p. 21). This step is
clear because DBR seeks to explore innovative types of thinking that can be argued
to rarely arise in traditional mathematics teaching. Therefore, the first study of this
thesis was devoted to understanding current learning practices and its outcomes. It
also looked for the errors made by the students in orthogonal and isometric drawings
and the nature of these errors and current pedagogy which may have caused them.
Students were interviewed on their performances and explained their reasoning when
drawing the answers on the worksheet. Building upon the results of Study 1, Study 2

and consequent studies were conducted to explore and trial possible solutions.

Secondly, necessary aspects of the learning environment which have the potential to
“support the emergence of successive forms of mathematical reasoning” should be
identified (Cobb et al.,, 2014, p.24). Manipulated aspects of the classroom
environment should be highlighted in the research report instead of
unchanged/constant aspects. DBR should show the means to support the learning in
various forms. This thesis proposes the RETA model with four principles (realistic,
exploratory, technology-enhanced and active) for teaching 3D shapes in
mathematics. It recommends integrating lesson plans which are supported with these
principles for teaching orthogonal and isometric drawings of 3D shapes in the

researched context.

Moreover, Cobb and colleagues (2014) describe the overall aim of DBR as
improving students’ learning by means of innovative methods together with new

directions in educational technology. Hence, they put the design of the intervention
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together with an educational tool and a set of designed activities around it and
suggest adding a clear description of the educational technology utilised in the
designed mathematics lessons, if any. In accordance with this, the technology-
enhanced principle of the RETA model refers to the strategic use of dynamic
geometry tools in teaching orthogonal and isometric drawings of 3D shapes to
provide multiple representations of them. The potential benefits and disadvantages of
integrating dynamic tools are discussed in Section 5.2.3.

Finally, the findings of DBR should be potentially generalizable. This is difficult in a
PhD thesis where a single researcher is conducting mostly small-scale research. In
order to handle this limitation, Cobb et al. (2014) suggest that the context and
procedures should be explained in detail. The intent for this is not preparing an
environment for other researchers to replicate the study by following the same
procedures but informing them about the procedures so that they can modify and use
them according to the needs of their classrooms. Hence, in this thesis, the context of
the research, all data collection materials and time spent in each phase of the data
generation (e.g., time spent for the observation and interviews) are provided by

giving examples in each study chapter.

To sum up, even though there are these issues, they were mitigated in the ways
explained in this section leading the researcher to conclude it is a good choice and
design-based research fits the needs of this research which was intended to design
lessons to improve Turkish middle school students’ orthogonal and isometric
drawing performance by providing insights into how it was already done/taught and

how the practices could or should be (improved).
3.2. Methods
3.2.1. Data Generation

In all studies, the data were generated through interviews, observations and students’
work. In Study 2, students also completed lesson evaluation forms, however these
were found not straightforward for them to complete and hence they were eliminated
for the next iterations. The sample is strategically selected to match the research
questions. The researcher conducted interviews with a) students in Study 2 to answer

the third research question on students’ experiences of her teaching and b) a teacher
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in Study 3 in order to answer the fourth research question about investigating the
opportunities for a teacher and challenges of her.

3.2.1.1. Sampling

As explained in the literature, many researchers believe that the optimal age for
training spatial ability for academic achievement is around twelve years old which
corresponds to middle school age (Ben-Chaim et al., 1989; Piaget & Inhelder, 1967;
Rafi et al., 2005), that is grade seven in Turkish schooling system. Considering this,
the researcher had access to two public middle schools throughout her PhD and
worked with the seventh graders in these schools. These schools in Turkey were the
ones the researcher was already in contact with. This comes with both advantages
and disadvantages. For example, this limits the possibilities to straightforwardly
generalise the findings to other schools as they may not be representative. However,
this disadvantage is weighed by the benefits of working in these schools. The
researchers’ prior relationship with the schools, where she did her teacher training
high school internship and conducted the study of her MA dissertation, assisted her
in sampling and in data generation as she knew the selected schools had enough
technological infrastructure for the future cycles and enough number of students for
a quasi-experimental study in the final cycle. There were three to four seventh grade

classes in each middle school and about 25 to 30 students in each classroom.

Study 1 was conducted in both schools where two mathematics teachers in each
agreed to be a part of the study and invited the researcher to observe their lessons
while they were teaching two-dimensional representations of 3D shapes. Study 2 and
3 were conducted in one of these schools. Study 2 was an after-school course where
the researcher acted as a teacher to teach the same topic to eight volunteer students.
In Study 3, the intention was to collaborate with a teacher to adapt and adopt the
lessons to use in her own class hence the number of students was increased to a class
of students around 30. Finally, Study 4, which included intervention and control
groups, was conducted in both of the schools including a number of teachers who
volunteered to be involved. The characteristics of the participants of each study are

described in detail in their own chapters.

The spatial ability which affects geometry performance is believed to be influenced

by gender (e.g., see da Costa, 2017); therefore, gender was considered in all studies.
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An equal number of female and male students were interviewed in all studies.
Moreover, an equal number of them was selected for a particular study where
possible; for example, four female and four male students were chosen as

participants from all volunteer students to participate in Study 2.
3.2.2. Data Analysis
3.2.2.1. Analysis of Quantitative Data

Parametric tests were chosen to analyse quantitative data and ANOVA was the main
statistical test used in this thesis together with a number of post-hoc tests as mostly
questions concerned differences between pre and post-tests. Data were checked for
the various assumptions of parametric tests including independence of observations,

homogeneity of variances and normality prior to the analysis.

One of the assumptions of ANOVA is data has a normal distribution. Social
research, however, often creates non-normal datasets. On the one hand, authors such
as Field (2013) suggest using non-parametric tests if the data is not normally
distributed. However, using non-parametric tests decreases the power to detect an
effect particularly whilst using small datasets (Coolican, 2014b, 2014a). Moreover,
Glass, Peckham and Sanders (1972) found that skewed distributions which are
analysed using ANOVA have almost no impact on significance levels or on
statistical power if the test is two-tailed and the kurtosis and skew are within certain
recommended limits. Harwell, Rubinstein, Hayes and Olds's (1992) meta-review on
using ANOVA with non-normal distributions found considerable support for such an

analysis to be robust to non-normal data given that variances are equal.

The Shapiro-Wilk test is used in this thesis to test normality when using ANOVA
(Shapiro & Wilk, 1965). The group variance, skew and kurtosis of the distributions
were considered when the variables differed significantly from normality. The
analysis proceeded if measurements were within the limits of Glass et al.'s (1972)
paper. In addition, although outliers have been shown to influence parametric tests
(Zimmerman, 1994), they were not removed unless they were considered extreme
and unless there is a significant difference between results with and without the
outliers (Kruskal, 1960).
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Finally, the agreement between the raters for coding of the worksheets was
investigated by Cohen’s Kappa after meeting the assumptions of the test (Cohen,
1960). These assumptions were: using nominal scale coding rubrics, drawing data
from paired observations (repeated measures design), having the same number of
categories for each variable, providing independent scoring of two raters and same
two raters' judging all observations in a study (Carletta, 1996).

3.2.2.2. Analysis of Qualitative Data

A thematic coding strategy was used to analyse observation and interview data.
Although it is widely used in education, the term can be problematic as it has also
been applied to other methods (e.g., discourse analysis and content analysis) or it is
not identified as a method at all and hidden under the words of qualitative analysis
(Braun & Clarke, 2006).

In this thesis, a thematic coding strategy refers to the active role of the researcher’s
identification of the patterns in data, selection of the ones that are of interest and
their reports (as in Taylor & Ussher, 2001). This strategy was chosen as it provides
rich and detailed data analysis and it is flexible, in a sense that it could be used in
both methods stemming from a particular theory and those independent of a theory
or aiming for one (Braun & Clarke, 2006). Through this freedom, it fits design-based
research that includes a design which at least partly based on a theory or a theoretical
framework and generates or perhaps proposes a humble theory (van den Akker et al.,
2006b). Moreover, because a detailed theoretical understanding of approaches like
those of grounded theory and discourse analysis is not required for the thematic
coding strategy, it provides a more accessible and flexible style of analysis which is
suitable for novice researchers in qualitative analysis (Braun & Clarke, 2006).
Finally, any philosophical worldview with its assumptions of the nature of data can
orient a thematic coding strategy. In other words, this strategy can be shaped to
different theoretical orientations which should be made clear in the analysis. In this
thesis, it is pragmatic or perhaps pragmatic post-positivist orientation which guided
the thematic analysis of the data as expected from a DBR project. All this freedom
sometimes brings the critique of anything goes (Antaki et al., 2003). Hence, this

thesis followed the guidelines of Braun and Clarke (2006) throughout the analysis.
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In Study 1, this included the inductive process of open coding to analyse and
interpret data. As Marshall and Rossman, (2011) suggest, the analysis procedure
followed the sequence of organising and coding the data, generating themes, testing
understanding and searching for alternative explanations and writing the report. All
interview transcripts were analysed for meaningful statements, significant phrases
and sentences directly related to the interview questions, which were then contrasted
with lesson observations and significant actions of students and the teacher by the
researcher. In Study 2, the researcher deductively analysed the data and looked for
the experiences of and outcomes for students, particularly focusing on the RETA
principles. That is, she looked for whether and how the RETA principles are working
in the lessons through how they impacted students’ experiences and outcomes.
Individual extracts of data (a sentence or a sentence group) were coded as many
different themes as they fit into therefore some extracts coded only once, some more
than once and some were not coded. Analyses of Study 3 looked for how these
principles were experienced by a teacher and what the outcomes of them for the
students were. Analysis scheme was described in detail in the particular study

chapters.

The interpretation of data raised two main issues which have also been discussed by
early DBR researchers. One of them was the consequence of the researcher’s having
different roles such as intervention designer and the researcher who evaluates the
intervention that is somehow related to the first one (Collins, 1992). The proposed
solution to this is having separate researchers for different roles. However, as
explained earlier, the researcher carried out all of the roles because it was necessary
for a PhD thesis. To minimise this risk arising from this issue, she actively searched

for negative and contradictory evidence throughout the analysis.

The second issue was the Bartlett effect, which is the bias that happens when the
researcher selects from the data only the parts confirming her earlier proposal
(Brown, 1992). In order to minimise this, the researcher followed three strategies
suggested by Robson (2011) for improving the quality of the analysis. Firstly, she
used triangulation techniques which could be described as looking for evidence from
different sources to see whether they confirm or supplement each other. For
example, if the researcher took an observation note on a students’ struggle on a

particular activity during a lesson, evidence about this from the interview with the
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same student and from the student’s lesson evaluation form was checked to see
whether they point toward the same conclusion. In addition to using triangulation
techniques, she particularly looked for negative evidence and noted the contradictory
examples in the data (to what she was concluding) during the analysis. She
challenged herself by looking at negative evidence and contradictory examples and
included them in the findings. Finally, the technique of weighing the evidence was
used. The researcher looked at the frequency of evidence as to the number of
participants. For instance, whether eight participants share a similar experience or
only one was taken into account. Although the generalisation is not possible with the
number of participants available, this technique is still helpful given the study’s

scope.
3.2.3. Presentation of Findings

There are a number of common features to how the research is presented in each

study. Some are outlined below:

Each study chapter includes a brief introduction, methods, results and summary of
results. Study 2 was the first empirical study which the intervention was trialled.
Therefore, starting from this chapter, chapters on the subsequent studies include a
design changes section which describes refinements to the design of the intervention
and the measuring instruments. As the nature of Study 1 is different from the other
three studies (analysis of existing practice, not intervention), it does not include a
design changes section, instead, it is followed by a chapter on design principles and

sample lesson plans.
3.3. Ethical Issues

All research in this thesis was conducted within the guidelines of the University of
Nottingham’s Code of Research Conduct and Research Ethics (The University of
Nottingham, 2016) and the School of Education in particular which has adopted
Revised Ethical Guidelines for Educational Research (BERA, 2011). All information
collected was anonymised, confidential and only available to the researcher and her
supervisors. Pseudonyms were used throughout the studies to replace teachers’ and

students’ real names.
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Particular ethical issues related to each study and ethical permission numbers from

the University of Nottingham are noted in the following sections.

3.3.1. Working with Children and Teachers

There were some ethical issues regarding working with children and teachers. The

following describes these issues and how they were handed in this thesis:

Working with children: First of all, the research involves work with
children (delivery of lessons, discussion and interviews) which might bring
some risks such as students might feel uncomfortable or not safe (Fraenkel et
al., 2015). However, being a qualified middle school mathematics teacher
who worked in middle schools for a few years, the researcher had experience
in working with middle school students so she understands the practices and
protocols of working within the school environment and with middle school
students. Moreover, the students who were involved in the research worked
in a school setting which is familiar to them and they were assured that they
could withdraw from the study anytime without any consequence if they
would like to so.

Children volunteering to be a part of the lessons: The researcher only
asked volunteers to be a part of all cycles of the research as suggested (Berg,
2001). Yet, not all students who volunteered were able to part of the research
in Study 2. Study 2 was the first trial of the intervention. It offered an after-
school course run by the researcher. The intent was to test the intervention
with a small number of students in detail before collaborating with a teacher
to use it in her regular lessons. Hence, this trial of the intervention was with
eight students and investigated their experiences of the lessons and outcomes
of the lessons for them in detail. This situation was handled by collaborating
with the mathematics teacher of the students. The teacher informed the
researcher that there were ongoing after-school classes in the school for some
of the lessons including mathematics. These classes were open for those who
need and/or want to do extra practice. Hence, students who were already
registered for the maths classes were not chosen for the study so that they can
continue their existing classes, and all remaining students being four girls and

four boys were accepted for Study 2 — despite the first intention was to work

95



with six students. Moreover, volunteer students had the right to withdraw
themselves from research at any point, as well as schools’, teachers’ and
parents’ having the right to withdraw the children.

Children having to discuss with the researcher about her teaching: The
researcher acted as the teacher of the after-school course. At the end of the
course, she conducted one-to-one interviews with students and some of the
interview questions asked students'’ comments on her own teaching.
Researching about the researcher's own teaching might bring the risk that
students could feel nervous or uncomfortable (Mercer, 2007). Hence, the
researcher stressed to them that they would not be judged for their answers,
this was not a test and it was important for her to understand their
experiences to design better lessons to help them.

Teachers not being judged or criticized: The thesis included teachers as
participants in Study 1, 3 and 4. Teachers were asked about their teaching
experiences, the methods and strategies they use to teach 3D shapes and the
reasons for their choices during the interviews. Interviews with the teachers
who adapted the RETA-based lessons included questions about their
experiences of teaching with these lessons, any problems faced and their
actions to overcome these problems. These questions might bring the risk of
teachers feeling judged or criticized. Nonetheless, being a mathematics
teacher herself, the researcher shared her experiences and talked about her
teaching journey including both good and bad experiences at the start to
make the teachers feel comfortable as in Mullings's (1999) study. By doing
so, she followed the suggestions of early researchers who argue that sharing
experiences both helps to develop trust between the interviewer and the
interviewee (Logan, 1984; Oakley, 1981) and encourages the interviewee
who has the opinion of “I will show you mine, if you show me yours” to
share their experiences more openly (Mercer, 2007, p.8). She also ensured
the teachers that they would not be judged for their answers and the answers
would only be used for research purposes.

The formal nature of the system: The researcher started working for the
Ministry of Turkish National Education in 2014 and she was funded by the

ministry for her PhD research. After successful completion of her degree, the
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researcher will be promoted to work as an education expert at the ministry.
Knowing that she came from the ministry, headteachers and teachers might
feel obligated to be a part of the research because of the status of the
researcher as a ministry officer (Merton, 1972). As Drever (1995) says,
“people’s willingness to talk to you and what people say to you are
influenced by who they think you are” (p.31). This was handled by asking
their consent, as well as their own willingness to volunteer. Even if the
ministry was the gatekeeper, the participants were not affected by the
gatekeeper in any manner. They had the right to say no both at the beginning
and during the research. The head teachers and teachers were volunteered to
be a part of the research and gave their consents. All head teachers involved
in the research were assured that they could withdraw their school from it
anytime without any consequence if they would like to; the same applied for
the teachers involved in the research as well. In Study 1, four teachers out of
six volunteered to be in the study and agreed for their lessons to be observed
during their regular teaching of 3D shapes. In Study 3, a volunteer teacher
adapted the RETA-based lessons and agreed for her lessons to be observed.
In Study 4, four teachers volunteered to be in the study and two of whom also
volunteered to adopt the RETA-based lessons whilst other two teachers chose
to be in the control group and continue their normal practice.

Recording the lessons and interviews: Lessons and interviews were
recorded during all four studies. Considering that some of the teachers who
want to be in the study may not want to be recorded, hence in the later cycles,
separate tick boxes were added to consent forms for being in the study and
for being recorded during the lessons and for being recorded during the
interviews. The researcher only recorded the lessons of the teachers who gave
their consent for it. She took observation notes in five-minute intervals in
cases that she could not get teachers' consent for recording the lessons.
Moreover, the teacher in Study 3 gave her consent for the recording during
interviews at the beginning but she did not want to be recorded during the
interview on the use of GeoGebra. This request was accepted by the
researcher and she was not recorded during this particular interview. Similar

tick boxes were used in the parent consent forms, too. This procedure was
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particularly helpful when recruiting participants who might otherwise refuse
to take part in the study (Berg, 2001).

3.3.2. Approval from the Ethics Committee

The Ethics Committee of the School of Education at the University of Nottingham
approved all of the studies of this thesis. This section summarises the steps to receive

approval.

Before the submission, the researcher needed to obtain a Disclosure and Barring
Service (DBS) check to have access to schools. She previously had received it with
an F0104171462 reference number. After a discussion with the head of the ethics
committee, it was decided that the researcher did not need another one for further
studies. Instead, she needed its equivalent from Turkey and collected a valid, up-to-
date certificate of good conduct from there separately for each study. This showed
the committee that the researcher does not have any criminal or problematic records.

After obtaining this, the researcher submitted the ethics form of the University of
Nottingham together with the necessary documentation. These included three types
of documents: certificate of good conduct, research instruments (interview questions,
observation protocol, sample activities and sample worksheet questions) and
participant information sheets together with the consent forms. Participant
information sheets (Appendix A) and consent forms (Appendix B) were separately
prepared for the head of the schools, teachers, parents and guardians and children.
Especially, for the children, the language of the forms was simplified and was made

easy to understand for them.

Study 1 did not cause any concerns for the committee. It was a case study which
observes how teachers teach 3D shapes in regular classrooms and there was no
interruption of the researcher to the naturally occurring case. The ethics committee
only asked the researcher to remove a marginal comment which was mistakenly
forgotten while submitting the ethics documents. Ethics was received on May 23",
2017; Ref: 2017/64 (Appendix C).

Study 2 was based on the implementation of the intervention in a class environment,
and the researcher as the after-school mathematics teacher. Lesson activities were

not harmful and there was not any sensitive topic for the children. The study
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included completion of worksheets and interviews with students on their experience
of learning 3D shapes including questions asking their comments on the researcher’s
own teaching. Students were ensured that there would not be any consequence of
their comments other than the improvement of the lessons. There was not an issue
raised by the ethics committee about the submitted documents. The ethics committee
commented that this was an exemplary ethics submission. Ethics was received on
October 19", 2017; Ref: 2017/94 (Appendix D).

Study 3 was almost the same as Study 2 except for a collaboration of a teacher to
adapt and deliver the lessons rather than the researcher. Therefore, it required only
an amendment and no separate ethical permission. The researcher sent the interview
questions with the teacher and the amendment in the information sheet and consent
form where a teacher was expected to teach the lesson in a regular maths classroom
instead of the researcher teaching it in an after-school course. No issue was raised by
the ethics committee. Amendments for this study were submitted together with the

previous ethics submission hence no further action was needed.

Another amendment was required for Study 4 as it included a number of teachers
who volunteered to be in intervention and control groups. It was also the time the
university started including the European Union General Data Protection Regulation
(the EU GDPR) in the ethics form. The researcher declared in the ethics form that
she familiarised herself with the GDPR and carried out the research complying with
it. No issue was raised by the ethics committee. Amendments were accepted on
September 20", 2018.

All the ethical procedures described in the documentation were approved by the
committee and were followed in practice. In addition to these, all of the instruments
were translated into Turkish and got the approval of the Ethics Committee of the
Directorate General of Innovation and Educational Technologies of Ministry of

Turkish National Education.
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4. STUDY 1: AN INVESTIGATION OF STUDENTS’ LEARNING OF 3D
SHAPES

The current study explored middle school students’ progress within the context of
learning two-dimensional representations of three-dimensional shapes. The aims of
this study were investigating how 3D shapes currently taught in natural classroom
settings in Turkish schools in order to better understand the reasons underlying the
difficulty in representing 3D shapes (that was largely reported in the literature).

Specifically, this chapter tries to answer the following research question.

1. How do the seventh-grade middle school students learn 3D shapes in

Turkey?
a. What are the students’ difficulties in learning about 3D shapes?
b. What are the students’ errors in representing 3D shapes?
4.1. Methods
4.1.1. Participants

The study was conducted in two public middle schools (explained in Section 3.2.1.1
Sampling) where two mathematics teachers from each school agreed to be a part of
the study and invited the researcher to observe their lessons while they were teaching
two-dimensional representations of three-dimensional shapes. These teachers
volunteered as they had an interest in developing their understanding and practices

within their own school context.

The student sample was drawn from the seventh grade middle school students within
these two schools. The sample consisted of 199 students (107 females and 92 males)
aged between 12 and 14 years. In-depth understanding of students’ reflections on the
lessons and their reasoning and solution strategies was generated by inviting 16
students (8 females and 8 males) to an artefact-based interview. The interviewed
students were selected randomly from those who answered at least two questions of
the worksheet correctly to ensure that they have the basis of the knowledge to answer

the questions in the interview.
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4.1.2. Materials

Worksheets had ten questions in total with two types of two-dimensional
representations of three-dimensional polycubical shapes and five questions from
each. The first of these was about constructing orthogonal drawings of the given
isometric drawing of a polycubical shape (orthogonal drawing questions) and the
second half of the questions were about constructing an isometric drawing
corresponding to the given orthogonal drawings of a polycubical shape (isometric
drawing questions).

Orthogonal drawing questions asked students to draw the orthogonal views from the
top, front, left and right on a squared paper. The first question was purposefully
asked as an easy question as a warm-up and was therefore judged as easier than ones
on the ministry exams (available online, Ministry of Turkish National Education,
2016a). What makes questions more or less difficult involves multiple factors. Two
possibilities are the change in the number of cubes and the change in-depth, and
therefore the orthogonal drawing questions are organised accordingly to increase in
complexity according to these factors. Table 4.1 shows the shapes on the questions
and summarises the height and the depth of the shapes and the least number of unit

cubes needed to construct them.
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Table 4.1. Orthogonal drawing question items

Question Height  Depth # of Unit Cubes
1 unit 1 unit 4
1 _
2 units 1 unit 5
2 _
2 units 2 units 6
3 _
= 2 units 2 units 8
4 —
i 77 ] ]
A4 2units 3 units 10
5 _

Isometric drawing questions asked students to construct isometric drawings
corresponding to given polycubical shapes’ orthogonal drawings from the top, front,
left, and right on an isometric paper. Isometric drawing questions started with an
easy question as warm-up as above. The number of cubes was fixed to seven after
the first question and only the places of the cubes changed to create another
isometric drawing question. The difficulty of these questions can also be increased in
various ways. Two possibilities are increasing the difficulty by the changing height
and depth with the same number of cubes and therefore, the isometric drawing
questions organised accordingly. The isometric drawing questions have a fixed
number of cubes with an increase in height. Table 4.2 demonstrates the questions
and summarises the height and the depth of the shapes and the least number of unit
cubes needed to construct them. For each question, students are scored out of four

for both orthogonal and isometric drawing questions, and partial credits are given for
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separate views. The scoring is explained in Section: 4.1.3.2 Worksheets in more
detail.

Table 4.2. Isometric drawing question items

Question Height Depth # of Unit Cubes
FRONT VIEW TOP VIEW
1] 1]
11 111 ) )
T viEw RIGHT VIEW lunit 21unit 3
T 1
1 1 1
FRONT VIEW TOP VIEW
R 2 units 3 units 7
RIGHT VIEW
2 —
FRONT VIEW TOP VIEW
LeFT viEw I 3units 2 units 7
3-
FRONT VIEW TOP VIEW
LEFT VIEW S 3units 3units 7
4—
FRONT VIEW TOP VIEW
3units 3units 7
LEFT VIEW RIGHT VIEW
5_
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4.1.3. Data Generation
The data were generated through observations, worksheets, and interviews.
4.1.3.1. Observations

The participants in the study were observed for four lesson hours during their regular
mathematics lessons while they were learning how to construct 2D representations of
polycubical shapes. Each lesson was 40 minutes in duration. Thus, in total 16 lessons
(four classes x four lessons), were observed by the researcher as a non-participant
observer. The researcher sat at the back of the classroom with her laptop and took
field notes in five-minute intervals. A sketch of each classroom was drawn prior to
the field notes. An observation protocol with descriptive and reflective observation
notes in separate columns was used to structure the field notes during classroom
observations (Creswell, 2007). In the descriptive notes, observations related to the
classroom environment and students’ and teachers’ actions were noted. In the
reflective notes, the researcher noted her comments and opinions on the actions
taken. Copies of the materials used during the lessons (presentations, activity sheets,

and book pages) were also collected as additional data.
4.1.3.2. Worksheets

Students were asked to complete a worksheet after the last teaching sessions
(Appendix E). They were given two lesson hours (80 minutes) to complete the
worksheet. The worksheet questions were adapted by the researcher from the past
ministry middle school exam questions. The questions were ordered in a manner
where they were getting more difficult to construct in the next question. They were
piloted with 16 students (8 females and 8 males) from one school and same age

group and necessary changes made prior to the study.
4.1.3.3. Interviews

The interviews were conducted in students’ schools after the students’ completion of
the worksheets and were designed to allow in-depth exploration of their perspectives
on and understanding of the topic. The researcher acted as an interviewer during the
interviews. Interviews were audio-recorded to allow for transcription to be used

during the analysis. They took 15 to 30 minutes to complete.
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The interview process was started with participants being asked to consent to be
involved in the study in addition to their parents’ consent. Students who have
decided to take part were reminded that the interview would be recorded. Then,
participants were re-informed of the purpose of the research and were given a
general introduction about the researcher. After the introduction, participants were
encouraged to talk on minor topics as a warm-up, such as what they have been doing
on their favourite holiday and introducing themselves and their families. Some of the

warm-up questions addressed students’ background characteristics.
e Where were you born? Can you tell me about the city?

The main interview included two types of questions. The first half of the interview
questions were prepared to explore students’ opinions about and experiences with
2D representations of 3D shapes and the difficulties they faced when learning. For
example, the following question asked students to rate the difficulty of constructing
2D representations of 3D shapes on a ten-point scale, in which one is too easy and
ten is too difficult. After that, the students were asked to explain the reasons behind
their choices and their suggestions to make the topic easier to understand if they
found it difficult.

e For the last four lessons, you have worked on 2D representations of 3D
shapes. Was it a difficult topic compared to other topics in mathematics?
Let’s assume a scale in which one is too easy and ten is too difficult, where
about is this topic out of ten?

e You said you think it is a difficult topic to learn, why, what do you think
makes it difficult to learn? What do you think should change to make the
topic easier? OR You said you think this is an easy topic to learn but some
parts are difficult, which parts are they? What do you think should change to

make those easier?

There were also further questions about their understanding that aimed at exploring

their verbalising of their understanding.

e |If you were to tell what you have learnt about 3D shapes to somebody who

has not studied this unit yet, what would you say?
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e What could you tell the next year’s class about the relationship between left
and right views of the same 3D shape? How did you use this information
during the last four lessons?

The second half of the interview questions were based on the students’ drawings on
the worksheets, completed after the last teaching session on 2D representations of
3D shapes. They were developed to help the researcher understand students’
reasoning behind the incorrect answers. At this point, participants were reminded
that this was not a test and they could say what they think without any hesitation.
After that, they were provided with the worksheets they completed beforehand and
asked to explain their strategies to draw the required 2D representations. The
researcher took notes during the interviews to record the actions of the interviewees,
e.g., pointing to a specific part of a shape. Below is an example statement which was

used to start a discussion about a question in the interviews.

e Please talk me through how you have decided where and how many cubes to

draw in this question.

At the end of the discussion of all problematic questions on the worksheet,
participants were asked whether they have anything to add. The interviews ended

with the participant being thanked for the involvement in the research.

All materials (consent forms, information sheets, worksheets, and interview
questions) were translated into and used in Turkish which is the researcher’s and

participants’ mother language.
4.1.4. Data Analysis
4.1.4.1. Observations and Interviews

The first research question answered how seventh-grade middle school students learn
two-dimensional representations of 3D shapes in Turkish classrooms. To be more

specific about the research addressed by this study, two sub-questions were defined.

e What are the students’ difficulties in learning about three-dimensional

shapes?

This question was necessary to understand students’ difficulties so that the

researcher could design better lessons to improve their understanding of the topic.
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The researcher followed a systematic and rigorous analysis of the observation and
interview data. A thematic analysis of observation and interview data was carried out
as the purpose was to capture student experiences when they learn two-dimensional
representations of polycubical shapes following the approach described in Chapter 3.
This included the inductive process of open coding to analyse and interpret data. As
Marshall and Rossman (2011) suggest, the analysis procedure followed the sequence
of organising and coding the data, generating themes, testing understanding and
searching for alternative explanations and writing the report. All interview
transcripts were analysed for meaningful statements, significant phrases and
sentences directly related to the interview questions, which were then contrasted with

lesson observations and significant actions.

In order to preserve the validity of interviews, audio-recorded interview data were
transcribed, in Turkish. The transcribed interview data were coded by the researcher,
then 10% of it was blind coded and back-translated by another researcher in the
field. Moreover, to help increase validity, peer evaluation and member checks were
used in this study. The first strategy was peer evaluation. Despite the fact that the
researcher started the coding independently, she worked with two other researchers
to discuss the analysis of her study after the open coding stage. They listened to and
commented on the researcher’s evaluation of the data, and validated the emerging
themes. Disagreements were solved through discussion. Member checking was used
as the second strategy. During the interview, the researcher paraphrased the
sentences of the interviewees to ensure that they shared the same understanding. The
researcher was also aware of the possibility of reactivity, which may occur when the
participants behave differently than they normally do with the awareness of being
observed. The researcher attended their lessons for four hours prior to the actual
observation and both teachers and their students had time to get used to her presence

in their classrooms.

Moreover, although all of the participants knew that the researcher was interested in
technology-enhanced geometry lessons, none of them attempted to use any digital
software in their lessons and they followed their previously designed lesson plans so
hopefully the change in their actions to impress the researcher was minimal. The
researcher was also aware that she interpreted the data according to her knowledge

and understanding and how she was receiving the data as a pattern.
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The discussion of the findings is organised into two sections: Sections 4.2.2
Students’ Perceptions of their Performance and the Challenges they faced and 4.2.3
Current Pedagogy and Students’ Learning Experiences. Section 4.2.2 explains the
difficulty theme where the difficulty of representing three-dimensional shapes in
two-dimension through orthogonal and isometric drawings discussed. The particular
difficulties appeared to be visualisation and drawing, which constructed the codes of
this theme. Section 4.2.3 describes the teaching practices theme where current
pedagogy and teachers’ existing teaching practices are described focussing on
similar and different activities in each phase of the lessons. Table 4.3 presents
themes, codes and subcodes of Study 1.

Table 4.3. Themes, codes and subcodes of Study 1

Themes Codes Subcodes
Difficulty Visualisation

Drawing
Teaching practices Use of manipulatives Teacher use

Student use

Exam-focused pedagogy

Use of technology Teacher use
Student use

4.1.4.2. Worksheets

The second sub-question addressed students’ errors in representing three-

dimensional shapes.
e  What are the students’ errors in representing three-dimensional shapes?

Students’ worksheets were scanned to produce an electronic copy for the data
analysis. A rubric with all possible correct drawings for each of 10 questions was
used to analyse them (Appendix E). The completed worksheets were coded by the
researcher. No points were given for either incorrect or not attempted answers and
one point was given for correct answers for each aspect of an item. That is, each

question is scored out of four for different views: front view (one point), top view
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(one point), left view (one point), and right view (one point). Therefore, for each
question, students are scored out of four for both orthogonal and isometric drawing
questions. Another expert in the field also coded 20 random worksheets out of 199.
The agreement between the raters for the coding tested using Kappa and found to be
Kappa= 0.97 (p<.001), suggesting a very high agreement. The worksheets were also
coded for the nature of the mistakes (described in Section 4.2.1 and exemplified in
Figure 4.2 and Figure 4.4). There were only 10 different descriptions out of coded
124 student mistakes in the jointly coded 20 worksheets, and disagreements between
the raters were solved through discussion. The interview data were also used as
complementary data to explain students’ reasoning and solution strategies when

completing the worksheets.
4.1.5. Ethics

The University of Nottingham approved the research ethics of this study on May
23" 2017; ref: 2017/64 (see Appendix C). The researcher considered all issues
related to anonymity, privacy and data security. All named participants were given

pseudonyms.
4.2. Results

This section starts with the analysis of students’ worksheet performance with a
further focus on students’ common errors in orthogonal and isometric drawings of
3D shapes. It continues with students’ perceptions of their performance and their
challenges. It then represents current pedagogy which could have caused these. The

section ends with the summary of the findings which leads to the proposed model.
4.2.1. Analysis of Students’ Worksheet Performance

Before going into the detailed investigation of the errors in each type of drawings, a
mixed measures ANOVA was conducted to examine the effect of question type
(orthogonal and isometric) and gender (female and male) on students’ performance.
The dependent variable was the students’ performance which was the summed
scores of the orthogonal drawing questions and isometric drawing questions, with a

possible range of 0-20 (see Table 4.4).

Table 4.4 shows the participants’ mean scores split by question type and gender. The

ANOVA results show a significant effect of question type on students’ performance,
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F(1,197)=265.255, p<.001, n,=.574. The analysis revealed a significant difference
in students’ orthogonal drawing scores and isometric drawing scores with a large
effect size, that means students performed better on the orthogonal drawing
questions (M=11.92, SD=6.31) than the isometric drawing questions (M=5.27,
SD=5.58). However, there was no significant effect of gender, F(1,197)=2.108,

p=.148, 1,=.011 and no significant interaction between question type and gender,

F(1,197)=2.239, p=.136, "1, =.011.

Table 4.4. Test scores for orthogonal and isometric drawing by gender

Orthogonal drawing(/20) Isometric drawing(/20)
Gender n M SD M SD
Female 107 12.14 6.54 6.06 5.98
Male 92 11.66 6.06 4.35 5.42
Total 199 11.92 6.31 5.27 5.78

Students found it challenging to construct both orthogonal drawings and isometric
drawings —even though they performed better in orthogonal drawings. Students’
most common mistakes in orthogonal drawings were categorised as redrawing the
given shape as the front or a part of it as a side view (E1), drawing the cubes at the
back onto another column (E2), drawing the part only at the very front (E3),
swapping the left and right views (E4) and drawing the view upside down (E5). All
of these mistakes are exemplified below in Figure 4.2 using sample student answers
to Question 3 in orthogonal drawings on the worksheet. This question was
purposefully chosen to present as it has a medium level of difficulty out of five
questions. As a reminder, Question 3 in the orthogonal drawings asked students to
draw orthogonal views (i.e., the views from the front, top, left and right respectively)

of the blue polycubical shape, whose correct answer is in Figure 4.1.
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Description Example student mistakes

Front View Front View
Redrawing the given shape ‘4 ] 4\
as the front or as a part of it *
as a side view (E1) V !/
Front View Front View
T r |

Yz Zz
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Drawing the cubes at the |
back onto another column |
(E2) '

=

Top View Top View
Drawing the part only at the |
very front of the shape (E3) 1

Left View Left View
Swapping the left and right ;+*
views (E4)

Lod

Left View Left View
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Drawing the view upside f
down (E5) ‘ :

Lol

Figure 4.2. Orthogonal drawing errors

Table 4.5 shows the number of errors for orthogonal drawing questions by above
error types and by gender. The numbers next to the questions show the number of
incorrect answers out of the number of students attempted (e.g., 50 students
answered Q1 incorrectly out of 199 students attempted to draw it). The sum of the
number of errors (E1 + E2 + E3 + E4 + E5) may not be equal to the total number of
students who made these errors (e.g., 61 # 50 for the Q1, 140 # 124 for the Q2). The

reason for this is that some students made more than one type of error and their
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incorrect answers coded for all error types. Moreover, given research reviewed in
section 21.4 on gender, the table presented the number of errors made by females
and males separately. As presented in Table 4.5, both genders made a similar number

of errors in different error types in orthogonal drawings.

Table 4.5. Number of errors for orthogonal drawing questions by error type by

gender
n El E2 E3 E4 ES
Q1 (50/199) Female 107 16 N/A 9 N/A 6
Male 92 13 N/A 11 N/A 6
Total 199 29 N/A 20 N/A 12
Q2 (124/194) Female 104 12 18 30 N/A 9
Male 90 14 20 26 N/A 11
Total 194 26 38 56 N/A 20
Q3(106/192) Female 104 10 6 31 12 3
Male 88 12 7 16 13 2
Total 192 22 13 47 25 5
Q4 (117/185) Female 101 5 17 38 4 3
Male 84 8 20 36 3 3
Total 185 13 37 74 7 6
Q5 (151/188)  Female 100 8 23 21 10 13
Male 88 7 22 28 5 21
Total 188 15 45 49 15 34
Totals* Female 51 64 129 26 34
Male 54 69 117 21 43
Total 105 133 246 47 77

*Totals were calculated by adding the number of mistakes in a particular error type
in all questions; for example, total female error in errorl was calculated by adding
the number of females’ errors in Q1 to Q5 (16+12+10+5+8=51).

Redrawing the given shapes (E6), drawing only one of the views isometrically
(mostly the front view) (E7), and constructing a drawing which combines the given
views side by side either orthogonally or isometrically (E8) were found to be the
most common errors in the isometric drawings (see Table 4.6). In addition to these,

there were many mistakes because of the linking problems in drawings, which were
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also important to mention (E9). The following figure illustrates two student drawing
examples of each common mistake and also linking problems (Figure 4.4). While the
first column of the figure shows descriptions of the errors, the second and third
columns show sample student errors. Similar to the choice of orthogonal drawing
question, sample student answers of Question 3 on the isometric drawings was
purposefully chosen to present as Q-3 has a medium level of difficulty out of five

isometric drawing questions.

As a reminder, Question 3 in the isometric drawings asked students to construct an
isometric drawing which combines given blue shaded orthogonal views (i.e., the
views from the front, top, left and right) in Figure 4.3. This figure also shows
possible correct answers to the question.

FRONT VIEW TOP VIEW

LEFT VIEW RIGHT VIEW

Figure 4.3. Q-3 in isometric drawings and its possible correct answers
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Description Example Student Mistakes

L O VAL ; ; : , . ;
Redrawing the given shapes = ‘“——V—— - - o e

- . . - . - kd - - }Mv.vw'
(EG) _ Sa\éw\ I ‘Sg:géaf\. . . .\. i ;3 ;

B8

Combining the orthogonal

views side by side (E7)

Drawing only one of the
views (E8)

Linking problems (E9)

*Onde de bir tane var ama ¢izemedim (TR). = There is one more (cube) in the front

but I couldn’t draw it (EN).
Figure 4.4. Isometric drawing errors and linking problems
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Table 4.6 shows the number of errors for isometric drawing questions by error type
and by gender. Similar to the orthogonal drawings, the numbers next to the questions
shows the number of incorrect answers out of the number of students attempted (e.g.,
56 students answered Q1 incorrectly out of 190 students attempted to draw it). The
sum of the number of errors may not be equal to the total number of students who
made these errors as above. Again, similar to the orthogonal drawings, given the
interest in gender, the table presented the number of errors made by females and
males separately. As presented in Table 4.6, both genders made a similar number of
errors in different error types in isometric drawings. The biggest difference was with
80-64=14 (more errors made by male students) in error 6, which corresponds to
redrawing the given orthogonal drawings.

Table 4.6. Number of errors for isometric drawing questions by error type by gender

n E6 E7 E8 E9

Q1 (56/190)  Female 103 8 N/A 11 8
Male 87 12 N/A 11 9

Total 190 20 N/A 22 17

Q2 (136/175) Female 93 18 14 22 18
Male 82 13 19 21 16

Total 175 31 33 43 34
Q3(131/167) Female 85 14 10 26 19
Male 82 18 8 29 14

Total 167 32 18 55 33

Q4 (115/151) Female 79 13 10 23 11
Male 72 19 14 18 16

Total 151 32 24 41 27

Q5 (136/155) Female 80 11 19 15 23
Male 75 18 20 15 16

Total 155 29 39 30 39

Totals Female 64 53 97 79
Male 80 61 94 71

Total 144 114 191 150
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Moreover, the mistakes in both orthogonal and isometric drawings were not
consistent across all answers of a student and they were sometimes not consistent
within the answers of one orthogonal drawing question of a student, probably since

some students have two or more errors in a question at the same time.

4.2.2. Students’ Perceptions of their Performance and the Challenges they

faced

In this section, the main data were gathered from the observations and students’
answers to the interview questions which were supported with the worksheets. As
explained in Section 4.2.1, students found isometric drawing much harder than
orthogonal drawing. This study also looked at students’ perceptions to find possible
reasons for why this might happen. The findings showed that students experienced
two main difficulties in learning 2D representations of 3D shapes.

First of all, it is important to mention that it was observed that many students had
difficulty to understand, imagine and construct orthogonal and isometric two-
dimensional representations of 3D shapes during the observed 16 lessons. Most of
the students (69%) reported that the topic is difficult for them to understand and gave
scores on a ten-point scale between five and ten as their perceived difficulty of the
topic. Below are two students’ explanations for their scoring, they were chosen from
those who scored high and low in the test respectively. One of the students who gave

seven out of ten to the difficulty of the topic said in the interview that

Well, seven. It is not as difficult as ten but | have to admit that |
still find it pretty difficult.

Here, it could be concluded that students who scored higher than the average on the
test may still consider the topic considerably challenging. In contrast, one of the
students, who scored lower than the average on the test gave two out of ten to the
difficulty of the topic, added that

I'm giving two. I am bad at mathematics. I think I couldn’t do most
of the questions on the worksheet correctly. | rarely answer my
maths teacher’s questions correctly but I think ‘3D shapes’ is an

easy topic for others.
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Thus, it could be concluded that students who rated the difficulty as low still may not
consider the topic as an easy one for themselves.

Interviews about students” worksheet answers confirmed the observation results
where mental visualisation of the shape (all of the students) and drawing the
visualised shape on a paper sheet (half of the students) came up as students’ two
main difficulties to learn these drawings.

Students were unanimous in stating that mental visualisation of 3D shapes is difficult
for them. They clearly explained their difficulty in combining separate views to build
a 3D shape in their minds. One of them who tried to create separate 3D shapes for
each orthogonal drawing said that

I just couldn’t combine them [orthogonal drawings] in my mind,
you know, for me, all orthogonal views separately create their own
shapes but combining them in just one shape is so difficult [Figure
4.5].

In the worksheet, rather than combining given orthogonal drawings in an is