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Abstract

The sprouting of new blood vessels from existing blood vessels, called angiogenesis,

plays a vital role in many biological processes, including tumour growth. Angiogen-

esis is initiated by angiogenic signals sent to the endothelial cells of an existing blood

vessel. However, to prevent migration of all the cells along the blood vessel wall,

a type of cell signalling called Notch signalling causes so-called lateral inhibition

between neighbouring cells, where cells activated for migration inhibit their neigh-

bour cells from adopting the same fate. Lateral inhibition has been represented in

previous models of angiogenesis using discrete agents, which have limitations such

as presuming a fixed cell size for all endothelial cells and forcing selected cells to

migrate immediately.

This thesis aims to develop a continuous model of lateral inhibition that is not

limited with respect to cell sizes and locations, and to couple this new continuous

model to a model of angiogenesis. This is achieved by developing continuous mod-

els of lateral inhibition from existing discrete models, where the lateral inhibition

is represented with a nonlocal term. The continuous model can be thought of as

an average representation of variables from an irregular distribution of cells. The

results of the model were comparable to those of the previous discrete models. The

model is then extended to a surface to allow the model to be able to simulate the

cell signalling along a capillary surface.
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The surface continuous model of lateral inhibition is then combined with a model

of angiogenesis to obtain an almost fully continuous coupled lateral inhibition-

angiogenesis model. Numerical simulations show results which closely resemble

blood vessel formation in angiogenesis, where cell migration is not forced. Results

are presented that are relevant to both physiological and tumour angiogenesis. The

coupled model could be used in the future to investigate further implications of

angiogenesis, such as the effect it has on tumour growth and tumour drug delivery,

and even the effect of antiangiogenic therapies on the growth of a tumour.
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Notation

The derivatives used in this thesis are sometimes denoted as

∂f

∂x
= ∂xf.

For ease a model from a paper by several researchers will sometimes be referred

to as the first author’s model. For example, a model by Jones et al. may

sometimes be referred to as Jones’ model, or the Jones model.

9



Chapter 1

Introduction

The biological process known as angiogenesis has a vital role in many living

beings. Angiogenesis is the growth of new blood vessels from an existing ves-

sel. This occurs when delivery of oxygen or some other nutrient is required in

areas where such nutrient levels are low. It is needed during wound healing

in particular, where the cells need higher amounts of nutrient than average

while mending the wound [50]. It is also prominent in cancerous, or “malig-

nant” tumours, where the tumour tissue needs access to nutrient to continue

growing and become invasive [63].

An important stage of angiogenesis is the selection of the locations along

the original blood vessel where the new blood vessels will emerge from. This

is achieved through cell signalling between the endothelial cells of the blood

vessels, where cells activated for new blood vessel formation inhibit nearby

cells from also activating. This is called lateral inhibition and is controlled in

angiogenesis by a signalling mechanism known as the Notch signalling path-

way [84].
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Previous mathematical models of angiogenesis have limitations in their repre-

sentation of lateral inhibition, which is currently implemented using restrictive

assumptions. Such models are hybrid models and simulate lateral inhibition

by setting an inhibited radius around any activated cells using a discrete part

in the model, but the main dynamics of the model are dictated by contin-

uous equations (see [139, 1]). This causes the model to need to define the

locations and layout of the cells, and it can also make the simulation more

time-consuming than a fully continuous model [143].

The aim of this work is to create a mathematical model of cell signalling

that can be easily coupled with a model for angiogenesis, and to show the

benefits of this new cell signalling representation. The thesis will hopefully

motivate further research in this area where this new idea of cell signalling can

be used for not only extensions to an angiogenesis model but also to model

other process which involve similar cell signalling. The aim is supported by

the following thesis objectives:

1. To develop a continuous model for lateral inhibition cell signalling by

redefining the way the lateral inhibition is implemented in existing cell

signalling models

2. To extend the continuous lateral inhibition model to include extra bio-

logical features

3. To simulate the cell signalling model on a surface using a surface ap-

proximation method

4. To study a hybrid model for angiogenesis that uses discrete cell signalling

components
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5. To successfully couple the continuous cell signalling model to the an-

giogenesis model and use the coupled model to simulate the activation

of angiogenesis in both healthy conditions and cases where a tumour is

present.

The thesis will first detail the biological background of this research. Chapter

2 will discuss the destructive nature of cancer and the hallmarks cancerous

tumours have, including angiogenesis. The stages of angiogenesis will then

be discussed, in particular the initiation stage when the lateral inhibition sig-

nalling occurs.

Chapter 3 gives a literature review of mathematical models related to this

work, which includes cell signalling models and angiogenesis models. It also

discusses the relatively new technique of phase field modelling which is a type

of model that shall be implemented in this work. This chapter also comments

on the different models of tumour growth that currently exist.

After examining the existing mathematical models, the mathematical con-

tent of this work will commence. The first stage is to develop a mathematical

model on the cell signalling that determines new capillary locations. Chapter

4 defines a continuous variant of a cell-signalling model by Collier et al. [45]

and presents simulations of this new model. This chapter discusses the dif-

ferences between the discrete model and the continuous version. Chapter 5

introduces another continuous model of cell signalling based on an extension

of the Collier model by Owen and Sherratt [117].

As the cell signalling in angiogenesis only occurs in the endothelial tissue

in the blood vessel wall, the Delta-Notch model will need to be defined only
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on the interface between the endothelial tissue and extracellular matrix before

being coupled to an angiogenesis model, and therefore will need to be solved

on a surface. This shall be accomplished in Chapter 6, using an approxima-

tion method which defines a function that only exists on this interface. The

capability of the surface model shall be tested on stationary and moving sur-

faces.

A continuous model of angiogenesis by Travasso [139] will be introduced in

Chapter 7 and then coupled to the surface lateral inhibition model in Chapter

8. The angiogenesis model will make use of the phase field theory mentioned

earlier. A comparison between physiological and pathological angiogenesis

will also be given through simulations of the angiogenesis models.

Chapter 9 will then conclude the thesis with a summary of this work and

the research carried out, and will also include a discussion on the potential

for future research in this area, such as the application of the coupled angio-

genesis model to a tumour growth model. The benefits of the introduction

of the continuous cell signalling model are given, but the disadvantages are

also acknowledged, and further improvements to the model which were not

covered in this work are suggested.
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Chapter 2

Biological background

2.1 Introduction

Cancer is a disease that every person at sometime in their life will be affected

by, either by being diagnosed themselves or by knowing someone who has

been diagnosed. There are many types of cancer which develop and behave

differently, and depending on the type and the stage at diagnosis, it is often

fatal. The unpredictability and high mortality rates of particular types has

motivated a great deal of research by both biologists and mathematicians try-

ing to understand what cancer is and how to cure it. Despite this, cancer is

still poorly understood to this day, and treatment for it has varying results

[121].

Cancer does not usually emerge suddenly, as much as it appears to; it devel-

ops over time in stages due to its acquiring of so-called Hallmarks of Cancer,

as stated by Hanahan and Weinberg [80]. One stage of tumour growth vi-

tal to its development into cancer is angiogenesis, during which the tumour

promotes the growth of new blood vessels from pre-existing vessels to acquire
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its own vascular network and therefore its own nutrient source. Angiogenesis

itself has multiple stages, each of which act differently in physiological and

pathological angiogenesis. A tumour vascular network is often uncontrolled

and poorly functioning as a result of overexpression of some growth factors

and underexpression of other proteins [24].

This chapter starts by examining cancer and what is currently known in more

detail; mainly how and why a tumour develops and describing existing treat-

ments for cancer. This is discussed in Section 2.2, and then the hallmarks

of cancer are outlined in Section 2.3. An explanation of each stage of an-

giogenesis is given in Section 2.4, with particular focus on the onset stage of

angiogenesis, which is when the Notch cell signalling takes place. The chapter

is concluded in Section 2.5. By the end of this chapter there will be a general

understanding of angiogenesis and the role it plays in cancer development.

2.2 Cancer and therapies

Cancer develops when normal cells are somehow able to multiply out of con-

trol. The body is unable to regulate this multiplication and the cells manage

to invade local healthy tissue. As discussed by Hanahan and Weinberg [80]

and later in Section 2.3, for such abnormal and uncontrollable behaviour to

arise a mutation must occur in the cells that allows them to overcome certain

regulatory conditions that normal cells obey. Normally, cells grow and form

new cells when needed. When a cell becomes damaged it is either repaired by

certain mechanisms or signalled to die if the damage is beyond repair. How-

ever, if a damaged cell is able to multiply before these repairing mechanisms

reach it, the damage remains and these mutated cells may form growths, bet-
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ter known as tumours.

The way these cancer cells form is through a genetic mutation which affects

the functioning of certain cellular processes. As the definition of cancer is so

vague, there are many ways it can develop. It can prevail over time as a result

of a combination of faults as cells divide, or it can be caused by exposure to

carcinogens, such as ultraviolet (UV) rays and tobacco smoke [156, 157]. The

variation of the mutations in cancer cells means it can be more relevant to

group types of cancer based on mutation type instead of location of the cancer

in the body. For example, breast cancer is a type of carcinoma which is a

common mutation in epithelial cells [53].

Therapy for cancer varies depending on the type, stage, and location. Ac-

cording to Pratt et al. [121], the three most commonly used therapies are

chemotherapy, radiotherapy and surgery. Chemotherapy is the use of drugs

to treat cancerous cells. Many chemotherapy drugs are inhibitory factors and

stop cells from proliferating. The drawback to this is that the drug is often

not cancer cell specific and affects the patient’s healthy cells as well. This

results in many side effects, particularly those linked to growth suppression,

such as nausea, hair loss, higher risk of infection, and anaemia. However,

chemotherapy may still be the best course of action if the cancer has spread

to multiple areas of the body.

A relatively new category of chemotherapy is called targeted therapy, where

proteins that are present in cancer cells or which play a vital part in cancer

development are targeted by the drug. For example, one of the first targeted

drugs was Trastuzumab, which targeted the Human Epidermal growth fac-
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tor Receptor 2 (HER2) protein responsible for tumour growth in some breast

cancers [146]. Other therapies have targeted the capillary growth activator

Vascular Endothelial Growth Factor (VEGF), thus inhibiting angiogenesis

[57].

Radiotherapy uses high-energy waves to destroy cancer cells. There is ex-

ternal radiotherapy which aims radiation beams, normally x-rays, directly at

the tumour, and internal radiotherapy, which can take the form of a radioac-

tive liquid or implant [127]. Radiotherapy is used if the cancer is located in

one area of the body, or for killing any remaining cancer cells after chemother-

apy or surgery. Surgery is also best when the cancer is in one area and has

not spread far, as treatment involves attempted removal of a solid tumour.

The surgeon will remove the tumour and normal cells around it to attempt

to remove all cancer cells. Often a Computed Tomography (CT) or Magnetic

Resonance Imaging (MRI) scan will determine the likely tumour boundary

pre-surgery, along with the vascular network of blood vessels of the tumour.

Sometimes surgery is used to only temporarily prolong life and, as stated by

Eyüpoglu et al. during their research of the highly invasive brain tumour

Glioblastoma Multiforme, should be used alongside another treatment [59].

As explained by Bednarz et al. [13] and depicted in Figure 2.1, there are

other changes in cell proliferation which are not cancerous as they do not

invade healthy tissue. Some of these changes are not even abnormal, such as

when a high number of healthy cells appear in the event of an injury. However,

other changes are abnormal and can develop into cancer if not treated. Car-

cinoma in-situ in particular is often classified as a cancer due to the amount

of damaged cell proliferation, but it is technically not, as these damaged cells
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Figure 2.1: Different types of changes in cells. (a) Hyperplasia, occurs when
cells within a tissue proliferate faster than normal, (b) Dysplasia, a pathological
buildup of mutated cells where the tissue structure may change, such as in a mole,
(c) Carcinoma in-situ, a developed case of dysplasia, often called cancer despite the
lack of spread to normal tissue, often solved through surgical removal, (d) Cancer,
where the cells have started to invade the nearby healthy tissue. Picture from
Bednarz et al. [13].

have not invaded healthy tissue.

2.3 The Six Hallmarks of Cancer

Cancer cells have the ability to proliferate uncontrollably and invade normal

cells, which are more restricted and obey physiological control signals. Cancer

cells are unlike normal cells in that they no longer obey any specific function

and are able to continue to multiply endlessly. There has been a large amount

of research into how exactly cancer cells are able to do this. Given the previ-

ously mentioned changes in cell behaviour which are not cancerous, there has

also been much debate on how to define cancer. It has been a mystery for some

time and many experiments have attempted to demystify cancer (see [66, 21]).
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A paper which is now widely used to define cancer was published in 2000 by

Douglas Hanahan and Robert A. Weinberg, and was called “The Hallmarks

of Cancer” [80]. Six hallmarks of cancer were suggested in this paper; that

is, characteristics believed to be found in all cancers, where the presence of

all six confirms the presence of cancer. This groundbreaking paper suggested

that preventing any one of these hallmarks from emerging would prevent a

tumour from developing into cancer. There was some debate as to whether

more hallmarks should be considered, and an update was published by the

authors of the original paper in 2011 [81], detailing the developments made

in cancer research since 2000. The hallmarks from the original paper are now

described.

Self production of growth signals

One ability of cancer that makes it so dangerous is that the cells become

self-sufficient; after a while they no longer rely on the host to grow. The pro-

duction of their own growth signals is one of the ways in which these tumour

cells become self-sufficient.

Normal cells require external growth factors in order to enter a mitogenic

(proliferative) state, because normal cells release growth factors that activate

cells of a different type, which is called heterotypic signalling. Cancer cells

are able to copy their own growth factors and signal themselves, also called

autocrine signalling, causing a positive signalling loop. Examples of growth

factors created by cells in this way are Tumour Growth Factor α (TGFα)

[41] and Platelet-Derived Growth Factor (PDGF) [91]. Alternatively cancer

cells will sometimes signal normal cells to release their growth factors; ep-

ithelial cell growth factors released from fibroblasts have been found by both
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Bhowmick et al. [20] and Cheng et al. [42] to play more of an active role in

tumour growth than previously thought. The growth factor receptors in can-

cer cells are often overexpressed, allowing much more growth signalling than

allowed in normal cells. All of these characteristics contribute to uncontrolled

proliferation of tumour cells.

Evasion of growth suppressors

Once the need for growth signals is met, the tumour cells must then avoid

growth suppressors that are activated when too much proliferation has oc-

curred. A normal cell will only proliferate when it is signalled by growth

promotors, but also when it is not signalled by growth suppressors. Cancer

cells are able to avoid this suppressive signalling to free themselves from this

restraint on proliferation.

Growth suppressors stop proliferation by controlling the movement of the

cell through its cell cycle. A cell decides if it will proliferate when in the

G1 phase of the cycle; the transcription factor E2F plays an important role

during this phase. If E2F is unaffected the cell moves into the S phase, where

the DNA is synthesized, and then the cell prepares in the G2 phase to divide

in the mitotic M phase [47]. Alternatively the tumour suppressor protein

pRb (retinoblastoma) is released and binds to E2F which causes cells to ei-

ther temporarily or permanently move from G1 straight into the quiescent G0

phase [29]. Cancer cells avoid this with some disruption to pRb, which allows

E2F to play its role unaffected. pRb disruption can involve deactivation of

the protein through a process called phosphorylation, or mutation of its gene,

both of which prevent pRb from binding to E2F.
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Evasion of apoptosis (cell death)

When abnormalities are detected in the body, apoptotic effectors produce

death factor receptors in these abnormal cells, which are then destroyed and

absorbed by nearby cells. The p53 gene codes a p53 tumour suppressor pro-

tein, which is the main apoptotic sensor used to identify DNA damage. Ac-

cording to Junttila and Evan [90], most cancers must lose their p53 gene

during mutation due to its severity on mutated cells, which is why they are

able to evade apoptosis.

The gene is lost through deletion of DNA sections or mutation, which some-

times results in the release of tumour activators [85]. The gene can also

undergo alternative splicing, which is when the mRNA transcripted from the

DNA is rearranged before translation into amino acid chains, and produces

an isoform of the original protein [112]. The restoration of the p53 gene from

the mutation is now a popular idea in targeted cancer therapy, and some of

these therapies have even reached the clinical trial stage and have started to

show encouraging results, such as results shown by Nemunaitis et al. [108]

and Duffy et al. [55].

Limitless replicative potential

Even after a tumour possesses all of the above hallmarks, it still needs to

overcome the limit on cell replication. Normal cells have limited replicative

potential independent of the restrictions related to cell signalling; a cell can

only multiply a certain number of times before it becomes permanently qui-

escent. Cancer cells seem to have no such limitation. When a normal cell

multiplies, it loses DNA to the new cell from the ends of its chromosomes.

These ends, called telomeres, protect the regular DNA from damage, and
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get shorter and shorter as the cell continues to multiply, until eventually the

telomeres are completely lost and the cell cannot multiply anymore, which is

referred to as senescence. Cancer cells are able to maintain their telomeres so

that the chromosome strands always stay above the critical length required.

They achieve this by increasing production of the enzyme telomerase, which

replicates the DNA in the telomeres to extend them [28]. The cancer cells

will never cease to multiply, which is why this hallmark is also often called

replicative immortality.

Sustained angiogenesis

Angiogenesis is a biological process where new blood vessels grow from existing

vessels to transport required nutrients to areas that need them. It is impor-

tant in normal growth and development, and in the healing of wounds [50].

However, tumour angiogenesis is also vital to a tumour’s continued growth. A

tumour uses angiogenesis to acquire its own network of blood vessels, which

is also called tumour vascularisation. Cancer cells are able to signal nearby

blood vessels and induce the formation of new vessels that supply the tumour

with oxygen and nutrients.

During normal processes such as wound healing a controlled amount of angio-

genic factor such as Vascular Endothelial Growth Factor, or VEGF, is sent to

nearby capillaries, along with angiogenic inhibitors such as thrombospondin

1, or TSP1, which results in an organised and efficient vascular system [24].

In tumour angiogenesis, there is little to no regulation of these proteins, allow-

ing a large amount of angiogenic factor to be created and angiogenic inhibitor

production is limited. This results in a less organised vascular system (see

Figure 2.2).
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(a) (b)

Figure 2.2: Illustrations of a vascular network created by angiogenesis, taking place
during (a) physiological processes, such as wound healing, and (b) pathological
processes such as tumour vascularisation. Notice the vast difference in number and
thickness of capillaries. Pictures taken from Ledet and Mandal [97].

The earliest stages of tumour development involve direct diffusion of nutrient

to and from the host tissue. Experiments on in-vitro or in-vivo isolated tu-

mours show that growth of a tumour by diffusion alone eventually leads to a

dormant steady state [62, 64]. In most cases it is not until after angiogenesis

that a tumour is able to invade the nearby healthy tissue. Antiangiogenic

therapies have become more popular, as the importance of angiogenesis in

cancer has become more evident [161].

Invasion of healthy tissue and metastasis

Cancer is defined by the invasion of healthy tissue by mutated cells [149], so

it is understandable that invasion is a hallmark. Cancer cells proliferate out-

side their main tumour boundary into healthy tissue and destroy cells in this

tissue. Proteins responsible for keeping cells within their own tissue include

cell-cell adhesion molecules (CAMs) and cell-extracellular matrix adhesion

molecules called integrins. Their genes are mutated in cancer cells, affecting

the adhesiveness of the resulting protein and allowing cells to escape their

original boundary.
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After angiogenesis has taken place, there is less restriction on nutrients and

tumour cells are able to grow a lot faster. This allows tumours to spread to

other organs in a process known as metastasis. Cancer cells use the vascu-

lar system created through angiogenesis to form metastatic tumours in other

parts of the body. Metastatic tumours cause severe damage to how the body

functions and, according to Jones, most cancer deaths (90%) are caused by

metastatic cancer, as once a tumour starts to spread it becomes increasingly

difficult to treat. The primary goal of metastatic cancer treatment is usually

to control its growth or to relieve symptoms caused by it [89].

The hallmarks are not necessarily acquired in the above order, although the

order given is highly probable, especially considering the link between angio-

genesis, invasion and metastasis. Since the publication of the “Hallmarks of

Cancer” paper, attempts have been made to prove these hallmarks are indeed

required for cancer, and mathematical models of each of these hallmarks have

been developed which simulate them and look at possible ways each can be

combated by therapy. See for example the model on tumour cell adaptation

by Quaranta et al. [122], and the model by Spencer et al. [132] that predicted

the times at which each of the hallmarks emerge during a tumour’s growth.

More detail on some existing tumour growth models can be found in Chapter

3.

2.4 Angiogenesis

One of the hallmarks mentioned in Section 2.3, angiogenesis, has been stud-

ied in both biological and mathematical fields. Its vital role in not only the
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vascularisation of a tumour but also in normal physiological processes such as

embryonic growth and wound healing has made it a prominent area of study.

The fact that angiogenesis is present in a normal healthy body means that

antiangiogenic therapies for cancer may have dangerous consequences, and

therefore must be targeted carefully. Although a link between angiogenesis

and cancer was speculated previously, Folkman first proposed the necessity of

angiogenesis for invasive growth in 1971 [62].

According to Bussolino et al. [31], there are multiple stages of angiogenesis.

They are each important to the formation of an efficient vascular network.

These stages are briefly described here.

Initiation

Initiation is the onset of angiogenesis, where the endothelial cells in a blood

vessel begin to change shape and have increased permeability. Angiogenic

factors such as Vascular Endothelial Growth Factor (VEGF) are released and

bind to the corresponding receptors on the surfaces of the endothelial cells.

During this onset stage, some cells are chosen to migrate and form the vessel

tips and others are chosen to remain as part of the original vessel wall and

proliferate to create the walls of the new blood vessels.

This selective activation occurs though a type of cell-cell signalling where

active cells inhibit their neighbour cells from sharing the same fate. This

Delta-Notch signalling, named after the participating ligand Delta and its

receptor Notch discovered by John S. Dexter in 1914 after noticing notches

on the wings of the fruit fly Drosophila melanogaster [147], is an example of

juxtacrine signalling, where the ligand remains anchored to its original cell so
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Figure 2.3: A simple depiction of Delta-Notch juxtacrine signalling between two
cells. Delta activates neighbouring Notch receptors which inhibit Delta production
in their own cell. This leads to inactive Notch receptors in the original cell and
more Delta is produced as a result.

that only receptors in adjacent cells are activated [7]. The ligand Delta in a

cell binds to the Notch receptors in adjacent cells, which inhibits Delta pro-

duction in their own cell. Notch receptors in cells adjacent to this cell remain

inactivated, which allows for further production of Delta in those cells. Cells

with high Delta activity become surrounded by cells with low Delta activity

and this signalling causes a pattern to emerge. Figure 2.3 portrays this Delta-

Notch signalling between two cells.

Hellström et al. [84] discovered that Notch signalling occurs during angiogen-

esis with so-called Delta-Like Ligand 4 (DLL4); the activation of Notch recep-

tors by DLL4 causes a down-regulation of VEGF receptors such as VEGFR2

[155] and thus only cells with higher DLL4 levels will migrate. This same

Notch signalling is observed in many important biological mechanisms such

as wing development in the fruit fly and proper functionality of the nervous

system [23].
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In tumour angiogenesis the Notch signalling is different; high levels of DLL4

in all endothelial cells cause the breakdown of effective Notch signalling and

uncontrolled blood vessel growth [75]. It was believed that this increase of

DLL4 production was simply due to an increase of Tumour Angiogenic Fac-

tor, or TAF production in the tumour cells; however, experimentation has

proved that tumour vasculature has higher DLL4 levels than usual even in

the absence of TAF [101].

Progression

Progression is the stage after the endothelial cells have been activated by

VEGF; the tip cells chosen in the earlier onset stage start migrating and the

other cells proliferate behind the tip cells to start the formation of a new

blood vessel. The extracellular matrix (ECM) is degraded by Matrix Metal-

loproteinases (MMPs) to release proteins important to angiogenesis such as

pericytes and growth factors [27].

The structure of the vascular network forms during this stage, where the tip

cells move towards the angiogenic factor source via chemotaxis, which causes

migration in the direction of increasing factor gradient. Branching blood ves-

sels is common in angiogenesis as a faster way to reach the factor source.

Overexpression of VEGF in tumour angiogenesis causes a large amount of

branching to occur to provide the tumour with a vascular supply as soon as

possible. However, the cells have not yet formed blood vessels at this stage;

the cells have not rearranged into the shape of a vessel with a hollow passage.
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Differentiation and maturation

Now the cells have started to migrate and proliferate, they need to form a

new blood vessel with a lumen (passage where the blood flows). The new

blood vessels are currently immature; with only endothelial cells present and

no muscle cells, these vessels cannot function as they should. The muscles

and pericytes, which regulate blood flow and stabilize the vessels, are needed

for the blood vessels to function properly and are acquired during the matu-

ration stage. The surrounding ECM is also reformed during this stage, where

proteins that were destroyed in the progression phase are replaced.

In tumour vasculature, there is a lack of mature vessels, and so these poorly

constructed vessels are often permeable, allowing blood to leak out. Some-

times there is even blood flow in both directions within the same vessel [107].

The absence of important adhesion proteins in the ECM causes the vessels to

collapse easily. This provides difficulty in treatment; a treatment which relies

on the vascular network to travel to affected areas will not be able to reach

all tumour cells due to this vascular collapse.

Remodelling

The reorganising of the blood vessel structure is sometimes carried out dur-

ing the progression stage, but once the vascular network has developed and

is fully functional, there may be an excess of blood vessels that are no longer

required. During remodelling, the structure of the whole vasculature is reor-

ganised into the most efficient arrangement by pruning any unnecessary blood

vessels.

Vascular corrosion casting has previously been used to demonstrate remod-
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elling in angiogenesis, where a solidifying liquid is poured into drained vas-

culature, allowed to solidify, and then the capillary walls are corroded away

leaving a 3D cast [51]. This remodelling stage seems to be neglected in tu-

mour angiogenesis, as there is little to no control in how the vascular system

is structured (refer back to Figure 2.2).

Each stage listed above has been observed in physiological angiogenesis, but

not always in tumour angiogenesis, in particular the maturation and remod-

elling stages. The defective nature of tumour angiogenesis can alone cause

problems. Many biologists have been working on antiangiogenic therapy in

cancer by preventing the onset of angiogenesis in the first instance, either

by downregulating the angiogenic factor receptors or causing less angiogenic

factor to be released from the tumour [141]. Such therapies do not work in all

cases and sometimes cause issues by preventing angiogenesis required for nor-

mal function as well. Perhaps future antiangiogenic therapies could focus on

the differences between physiological and pathological angiogenesis, or even

on the Notch cell signalling to see if Notch receptor behaviour can be used

against tumour growth.

2.5 Conclusion

This chapter presented a biological background of cancer and the mechanisms

that drive it, including a brief explanation of each of Hanahan and Weinberg’s

hallmarks of cancer, and the stages in angiogenesis. Scientists have made a

lot of discoveries regarding cancer development and treatment; there are now

many ways to treat cancer and new treatments are continually being tested.

However, it is still astounding how little is known about cancer as a whole
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even after decades of dedicated research.

The Notch signalling in the onset of angiogenesis was described in Section

2.4. The importance of effective Notch signalling in the later stages of angio-

genesis such as maturation and quiescence, as stated by Ehling et al. [56],

explains the common absence of these stages in tumour angiogenesis, as Notch

signalling is inadequate in tumour angiogenesis and therefore tumour vascu-

lature is disorganised and defective. However, Notch signalling is still present

and has been seen to have a positive effect on tumour growth. Research has

found that blocking Notch signalling completely results in a decrease in tu-

mour growth, but an increase in (non-functional) capillary formation [124].

Therefore one important aspect of tumour angiogenesis seems to be Notch sig-

nalling in earlier stages that is suppressed later. This realisation has inspired

recent research into therapies that inhibit Notch signalling in angiogenesis

(see for example [137, 160]). The coupling of a mathematical model of lat-

eral inhibition to a model for angiogenesis could be used to investigate such

therapies.
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Chapter 3

History of mathematical models

3.1 Introduction

Mathematical models can investigate aspects of research that other meth-

ods cannot. Particularly within the field of medicine, where clinical trials

and testing carries risk, mathematical models can fill in gaps in research and

answer many questions. With appropriate parameter selection using exper-

imental data, mathematical models have been shown to be highly accurate.

Angiogenesis models by Balding and McElwain [11] and Levine et al. [99]

very accurately recreated the behaviour of angiogenesis observed during in

vivo experiments by Muthukkaruppan et al. [106], and a model of tumour

growth by Byrne and Chaplain [33] even accurately simulated the growth of

a tumour with a necrotic core independent of experimental data, and was

confirmed to be accurate from research by Groebe and Mueller-Kliese [76].

Mathematical models are not just used to imitate systems in the real world;

they can also be used to predict behaviour of systems in certain events. As

just a small example, they can be used to simulate cancer therapies that
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haven’t yet been trialled, or to find weaknesses in tumour growth that can be

exploited by therapy. Mathematical modelling has the benefit of being able to

research any aspect of tumour growth without life-threatening consequences.

This chapter will examine more existing mathematical models in the areas of

mathematical biology relevant to this work. An introduction to cell signalling

models is given in Section 3.2, followed by a detailed review of angiogenesis

models in Section 3.3. The history of phase field modelling, a useful mod-

elling technique for moving boundary problems, is investigated in Section 3.4.

Finally, in Section 3.5, there is a brief summary of the vast history of cancer

models, and then the conclusion in Section 3.6 discusses the existing models

and the research gaps in these areas.

3.2 Cell signalling models

This section covers models of cell signalling, in particular juxtacrine signalling,

as named by Anklesaria et al. [7]. As mentioned in Chapter 2, juxtacrine sig-

nalling is defined as the signalling of cell receptors from ligands that remain

anchored to the cell membrane. Therefore it is only neighbouring cells that

partake in juxtacrine signalling. The first mathematical modelling of this

neighbour signalling was studied by Othmer and Scriven in 1971 [116].

There has been research on modelling the Delta-Notch signalling mentioned in

Chapter 2, Section 2.4. For example Collier et al. [45] analysed the pattern

formation of this lateral inhibition-type juxtacrine signalling. Monk [105]

suggested a further model of Delta-Notch signalling, which considered the

inclusion of a third variable related to cell compliance to receptor activity.
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Owen and Sherratt suggested a more complex version of the Collier model

[117] which assumed much less, and therefore was a more general model. The

model included decay of the ligand and receptors and internalisation of acti-

vated receptors. A later paper by Owen et al. mentioned potentially making

the model continuous as a further step [118]. There have been continuous

models to model cell interactions published by Gerisch and Chaplain [69] and

Sherratt et al. [131], where cell-cell and cell-ECM adhesion in cancer were

modelled using nonlocal integrals.

More recently, a model of Delta-Notch signalling by Shaya et al. [130] made a

few biological conclusions about the predicted behaviour of the cell signalling,

such as the properties of cells that are more likely to produce signals. Another

model by Cohen et al. [44] used a lateral inhibition mechanism to simulate

the pattern formation of hair cells in the mammalian ear.

3.3 Models of Angiogenesis

The importance of angiogenesis in tumour growth was first discussed in the

1970s, after Folkman made the “angiogenic switch hypothesis”, which sug-

gested a strong link between angiogenesis and cancer development [62]. Al-

though experimental research into angiogenesis began not long after Folkman

proposed this hypothesis, mathematical models of angiogenesis emerged later

in the 1980s and 1990s. An early model of angiogenesis by Deakin included

an angiogenesis factor released by a tumour that activate receptors in the

endothelial cells and initiates new capillary growth towards the tumour [49].

The results obtained were shown to be similar to results of laboratory experi-

ments. Another presented in a paper by Balding and McElwain [11] modelled
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capillary wall density and tip cell density separately. The migration of the tip

cells depends on random motion and chemotaxis towards the source of angio-

genic factor. Most other spatial models use this basic idea of modelling the

reaction between capillary endothelial cells and tumour angiogenesis factors,

and many take into account other biological mechanisms and chemical concen-

trations as well. Anderson and Chaplain, for example, introduced fibronectin

into their model, a protein present in the extracellular matrix (ECM) which

causes cell-ECM adhesion and has an important role in angiogenesis [4, 3].

3.3.1 Current methods of tip cell selection

As covered in Section 2.4, endothelial cells either become tip cells and mi-

grate towards the source of VEGF, or they become stalk cells and proliferate

to create a new blood vessel. The selection of tip cells is determined through

juxtacrine signalling between cells. There are multiple approaches mathemati-

cians have adopted to replicate this tip cell selection in models of angiogenesis.

Recall that Balding and McElwain treated the tips and walls of capillaries

as separate entities [11], so that the different behaviour of tip cells and stalk

cells can be modelled easier. Another idea is used in a discrete model by

Travasso et al. [139] where some endothelial cells are assigned the migratory

“tip” property and others the proliferative “stalk” property. An endothelial

stalk cell can then only become a tip if none of its neighbours are tip endothe-

lial cells.

Other methods of tip cell selection have been implemented, for example a

model by Orme and Chaplain included the density of endothelial cells within

the original capillary, and a cell in an area with high cell density would be
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assigned the tip cell phenotype [113]. Orme and Chaplain later extended

this model to two dimensions [114]. Levine et al. [98] developed a model

that assigned tip cells based on cell-level processes such as the creation of

sprout-forming enzymes. A model by Addison-Smith et al. [1] considered the

presence of antiangiogenic factors that regulate sprouting.

The tip cell selection processes that take cell-level lateral inhibition into ac-

count have meant angiogenesis models including these have needed to be

discrete or a hybrid discrete-continuous multiscale model. This has computa-

tional drawbacks when analysis of further aspects of angiogenesis such as the

later stages (maturation, remodelling, etc.) is required. Although some hy-

brid models have been shown to work on a tissue level, the discrete aspect of

the model can cause complexity in its coupling to the continuous component

such as the possible locations of the discrete components not aligning with

the continuous mesh, as discussed by Vilanova [143].

3.3.2 Differences between discrete and continuous mod-

els

There is an abundance of both discrete and continuous models of angiogene-

sis; both have benefits and drawbacks which will now be discussed. Discrete

models are able to model individual cell dynamics which is particularly useful

when considering cell signalling. There are different types of discrete models

depending on the purpose of the model; agent-based models allow for more

detail and focus on individual “agents”, but are harder to compute, whereas

cellular automata models often assume a uniform distribution of elements us-

ing a grid, and is one of most widely used computational methods, but can

lack detail. Stokes and Lauffenburger used an agent-based stochastic model to
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simulate branching [135, 134]; the probability of a new branch would increase

the larger the distance from the vertex of an existing branch. The agents

of this model are defined as each branch. An agent-based model of lateral

inhibition in angiogenesis has been produced; Bentley et al. investigated the

tip selection by Notch signalling in endothelial cells and how this relates to

angiogenesis [14, 15]. The model focuses mostly on the cells in the original

capillary; it is limited regarding the bigger picture of angiogenesis.

Anderson and Chaplain discretised a continuous model of theirs [3] into a

cellular automata model which used probabilities dependent on TAF and fi-

bronectin. They later extended this model in many subsequent papers to

account for other features of angiogenesis [5, 6, 40]. A different type of dis-

crete model called the Cellular Potts Model, while introduced by Graner and

Glazier in 1992 [72], was not applied to angiogenesis until later [12, 136].

Many of the discrete models used cause predictability in the structure of the

vasculature formed, mainly from the setting of the cell locations and sizes.

When the aim is to produce more general, larger-scale simulations of an-

giogenesis and therefore a computationally efficient method is required, or if

an average representation of irregular cell distributions is required, a discrete

model may not be suitable. This is when continuous models are useful. Con-

tinuous models of angiogenesis normally use a reaction-diffusion type equation

to model the spatial change in blood vessel density. Angiogenesis is a complex

process and continuous models are able to incorporate a number of the mech-

anisms involved; there have been models which consider ECM degradation

[99] and even antiangiogenic therapies [4], and very recently the effect angio-

genesis has on metastases [67]. Some models of angiogenesis onset mentioned
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earlier, such as those by Orme and Chaplain [113, 114] and Levine et al. [98],

are fully continuous. A continuous model by Anderson et al. [5] studied the

role of angiogenesis in the suppression of a secondary tumour by the primary

tumour, which results in the apparent sudden emergence of the previously un-

detected secondary tumour when the primary tumour is surgically removed.

A drawback of continuous models is that they cannot focus on individual

discrete events easily; a multiscale model is required for this. A discrete

multiscale model by Bauer et al. modelled angiogenic factor diffusion and

endothelial cell behaviour on seperate scales [12]. Multiscale models can also

be continuous, such as Chaplain and Anderson’s model with extracellular fi-

bronectin interactions [39]. A more detailed review of multiscale models was

written by Qutub et al. [123]. A multiscale model by O’Dea and King [111]

investigated the effect Delta-Notch signalling has on macroscopic scales by

deriving a continuous model based on the discrete Collier model using a so-

called homogenisation technique where the microscale is assumed to be so

small compared to the macroscale that its behaviour is considered to be ho-

mogeneous on the macroscale [115].

Multiscale models are often also hybrid models, where cellular scales are rep-

resented by discrete components and tissue scales use continuous equations.

Hybrid models attempt to overcome the drawbacks of both discrete and con-

tinuous models by combining ideas behind each type. Travasso et al. models

tumour angiogenesis using a continuous model but with a discrete represen-

tation of the tip endothelial cells [139]. Most hybrid models take the same

form; Harrington et al. simulated angiogenic inhibitors as well a factors us-

ing contnuous equations [82] and Das et al. used probabilities of cell state
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transition in the discrete parts of their model [48]. A model by Carlier et

al. consisted of three scales; an intracellular scale which modelled the cell

signalling, a cell scale for the capillary formation, and a tissue scale modelling

bone regeneration which requires angiogenesis [38].

3.4 Phase field modelling

A moving boundary problem describes a domain with two (or more) phases

separated by a boundary. The movement of the boundary is determined by

a set of evolution equations and boundary conditions. A moving boundary

problem that uses phase change to model the moving boundary is called a Ste-

fan problem, named for the physicist who first introduced these problems by

modelling the solidification of water [133]. These moving boundary problems

with different phases can also be used to model a variety of other multiphase

systems, such as concentration or density levels of some description (such as

concentration of tumour cells in a tumour growth model or endothelial cells in

an angiogenesis model), or even different materials altogether (such as metals

present in an alloy [96]).

The model equations for a moving boundary problem normally consider the

boundary as a discontinuous change in phase, and thus are normally called

sharp interface models. These sharp interface models are sometimes difficult

to define due to this discontinuity at the interface. This means that suitable

interface conditions are required, which can be challenging to find. Sharp

interface models are also difficult to numerically simulate for several reasons,

one being boundary-boundary interaction in the model, for example when

boundaries collide and are supposed to merge [71].
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Consider instead a problem with a boundary of a certain thickness, so that the

phase smoothly changes across the boundary. These types of model introduce

a new spatial variable that defines the phase. This so-called “order parame-

ter”, or “phase field variable”, will give one value for one phase, another value

for the other, and vary between these two values over the boundary. The idea

behind these diffuse interface or phase field models is that they will behave

like their sharp interface equivalent if the boundary thickness is sufficiently

small. An example of a graph of such a phase field parameter φ for both the

sharp and smooth interface cases is shown in Figure 3.1

Phase field models have been developed for a variety of moving boundary

problems; the first were solidification models such as for dendrite formation

on snowflakes, for example. These first phase field models of solidification

were derived by Fix in 1982 [61], Collins and Levine in 1985 [46], and Langer

in 1986 [95]. Many phase field models of solidification followed these, along

with models for various other multiphase systems, such as the tumour growth

model by Hawkins-Daarud et al. [83] with not only tumour and healthy tissue

phases but also nutrient-rich and nutrient-poor extracellular matrix phases,

and Kobayashi’s model of the formation of crystal dendrites from metal cast-

ing [94].

Phase field models have been used for various purposes, but each of them use

the original thermodynamic phase field theory derived by Cahn and Hilliard

[36], and Allen and Cahn [2]. There are two types of phase motion; those

where the mass in each phase is conserved, called phase separation, and those

where the mass is not conserved, called phase transition. The Cahn-Hilliard
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(a)

(b) (c)

Figure 3.1: An example of how a phase field parameter is defined for a system with
two phases. Shown is the values of φ (a) over the whole two-dimensional domain
(b) Along the line shown in (a) where there are sharp interfaces between the phases
(c) Along the line shown in (a) where there are smooth interfaces. The phase field
parameter φ gives the value φ = −1 for the dark phase, φ = 1 for the light phase,
and −1 < φ < 1 indicates a phase transition.
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equation is derived from a mass balance law for conservation of mass and

the Allen-Cahn equation from a law for non-conservation. Other models have

been built using these two equations, such as the Navier-Stokes-Cahn-Hilliard

equations for fluid flow [78], and various models that add extra reaction terms,

such as Makki’s model which considered the effect of internal microforces on

the Allen-Cahn equation [102].

The use of phase field models for angiogenesis is a recent development; a

model which was used to simulate angiogenesis in the presence of an angio-

genic factor was proposed by Travasso et al. in 2011 [139] and variation of

the amount of angiogenic factor produced at the factor source gave results

which could be compared to the difference observed in normal and tumour

angiogenesis. Vilanova [144] presented a version of this model that accounted

for haptotaxis, which is the migration of cells towards active adhesion sites.

As stated in Section 3.3 the Travasso model chooses the endothelial cells in

the capillary that will become tip cells during angiogenesis by setting rules so

that no two neighbouring cells can both be tip cells.

The phase field method shows huge potential for more applications; many

more examples of how phase field modelling has been implemented can be

found in the Encyclopedia of Computational Mechanics [71].

3.5 Mathematical modelling of cancer

This section reviews models of tumour growth and other aspects of cancer. It

is broken down into three parts; Section 3.5.1 reviews some of the first models

of cancer, which primarily covered early stages of tumour growth; Section 3.5.2
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reviews vascular tumour growth models, and Section 3.5.3 reviews tumour

growth models which have made important discoveries and have in some cases

motivated medical research.

3.5.1 Early models of carcinogenesis and avascular tu-

mour growth

Many mathematical models of cancer have surfaced over the last seventy years;

some model tumour growth in general but there are others that focus on a

specific aspect, such as the hallmarks of cancer, or the different stages of can-

cer development (although as hallmarks often develop at particular stages of

development, these two are not entirely independent). One of the most inves-

tigated hallmarks, second only to invasion and metastasis, is the promotion

of angiogenesis, which was discussed in greater depth earlier in Section 3.3.

Carcinogenesis is defined as the initial stages in cancer formation, which

sometimes involves one or more of the hallmarks. A 1954 paper by statis-

tician Armitage and epidemiologist Doll first suggested a model for the stages

of carcinogenesis [10]. They considered cancer as the outcome of many pre-

vious genetic changes, and therefore mortality rates of cancer should differ

with patient age. The model confirmed this theory by showing that the effect

of carcinogenic factors differs with time. They also suggested that genetic

changes could occur as a result of external factors, such as tobacco, inspired

by Doll’s earlier discovery that smoking can lead to lung cancer [52]. Another

early and prominent model of the initiation of cancer was that of Knudson

[93]. The model was of a particular type of retinal cancer that required two

types of mutations occurring at specific times to develop. Knudson mentioned

that it has been found that most cancers are thought to develop from more
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than one type of mutation.

An area of mathematical cancer research that has been studied in depth

by many researchers is tumour growth modelling. Early papers in tumour

growth modelling were scarce compared to the vast research available now.

Most tumour growth papers were written after 1990. There were a few papers

released in the 1970s, but many people credit Greenspan for publishing one

of the first models on avascular tumour growth in 1972 [73].

Imagine a small prevascular tumour that relies on diffusion only for obtaining

nutrient and disposing of waste products. All cells are proliferating and well

nourished at first. However, the more the tumour grows, the farther the nutri-

ent has to travel to the centre. The concentration of the nutrient in the centre

consequently decreases. The cells in the centre start to proliferate slower and

soon become quiescent. Eventually the nutrient concentration falls below

some critical value required to keep the cells alive and a necrotic core forms.

With a decreasing number of proliferating cells as the tumour gets larger, the

growth rate slows asymptotically and becomes essentially dormant. After a

necrotic core emerges, there are three layers of different cell states; a thin

outer layer of proliferating cells, an inner layer of non-proliferative, quiescent

cells, and a necrotic core (see Figure 3.2).

The paper by Greenspan describes a mathematical model that represents this

very simple reliance on diffusion only. A subsequent paper by Greenspan

builds on this model by considering irregular growth, where the direction of

growth is not strictly normal to the tumour surface [74]. This demonstrates a

more realistic description of tumour growth which includes cell displacement,
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Figure 3.2: A diagram of an avascular tumour which relies on diffusion, with
three different cell states; the outer proliferative rim Rg < r ≤ R0, the quiescent
layer Ri < r ≤ Rg and the necrotic core r ≤ Ri, for distance r from the centre.

where cell density is not always constant. To represent such displacements in a

model the dynamics which cause these cell movements must be considered. It

is generally understood that the internal and external forces counteract each

other which keeps the tumour’s shape and therefore keeps the system stable,

but if the external forces such as surface tension are overcome at some stage

then future growth is unstable and the tumour becomes asymmetric, which

leads to a further increase in instability. Greenspan performs a linear stability

analysis on this model to see under which conditions the tumour loses stability.

There were a few earlier models of avascular tumour growth which Greenspan

himself credited with motivating his work; however, Greenspan’s work was

more fundamental to cancer research and those models are the most referenced

in later tumour growth work. The earlier models are similar to Greenspan’s

first model. One model by Thomlinson and Gray focuses on squamous cell

carcinoma and in particular the cylindrical shape the tumours commonly form

[138]. Burton also developed a model of spherical tumour growth similar to
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Greenspan [30].

These earlier models of avascular tumours rely on diffusion only to trans-

port nutrients and waste products. They will often reach a steady state

where the proliferation rate is smaller than the rate of necrosis and tumour

growth is paused. These avascular models make it clear that diffusion is no

longer enough for further growth and a tumour is unlikely to become invasive

without a sufficient blood supply.

3.5.2 Models of vascular tumour growth: introducing a

blood supply

Models of vascular tumour growth emerged to support antiangiogenic can-

cer therapy research motivated by Folkman’s angiogenic switch hypothesis

[62] linking angiogenesis and invasion. Another reason vascular mathematical

models are so important is that experimental techniques by nature are more

restricted than for the avascular case, as experiments must be conducted in

vivo. Due to the complexity of such models, most did not surface until the

1990s. Among the first vascular models was a model by Hahnfeldt et al. [79]

which looked at the effect of angiogenic activators and inhibitors on tumour

growth, and suggested a potentially more effective antiangiogenic drug dosing

method than the methods that existed at the time. A three-species multi-

phase model by Breward et al. with the locations of tumour cells, extracellular

matrix and blood vessels [26] was a variation of an earlier avascular model

[25] which had a healthy host tissue phase instead of a blood vessel phase.

Vascular models use different ways of representing the presence of blood ves-

sels; the Breward et al. model represents blood vessels as a phase allowing

for change in the vasculature shape, but some models include some nutrient
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source and uptake to make the tumour vascular. The vascular version of the

Greenspan model developed by Byrne and Chaplain, for example, altered the

nutrient uptake rate by the tumour cells to represent different levels of tissue

saturation [32]. A paper by Araujo and McElwain modelled the effect vas-

cular collapse has on a tumour [9]. There have also been models which were

coupled with angiogenesis models that already existed, such as a model of

tumour growth by Xu et al. [159] which used the angiogenesis model devel-

oped by Travasso et al. [139], and a model from Cai et al. [37] that used an

angiogenesis model they had developed previously [158].

A few vascular tumour models investigated the growth of tumour cords, which

form when tumour cells gather around blood vessels instead of signalling the

blood vessels to grow towards them. This time the outer surface is often hy-

poxic (oxygen-starved) or necrotic. Basic models by Bertuzzi et al. have a

similar idea to early avascular models, with a nutrient source in the centre

of a cylinder of cells [17]. Additions to the model such as radioresistance of

the outer cells and the presence of a chemotherapy drug were later taken into

account [18, 19].

3.5.3 Discoveries of tumour growth models

A vast number of models are inspired by experimental findings, or by gaps

in research which have led to implementation in experimental studies. For

example, tumour encapsulation is a feature of tumours that is often used to

determine a patient’s prognosis; many benign tumours are encapsulated by

a collagenous tissue but experiments failed to determine how these capsules

form. There are two main theories on encapsulation; the “Expansive Growth

Hypothesis” that states the growth of a tumour compresses the capsule into
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the extracellular matrix and so a capsule forms passively when the tumour is

not growing, and the “Foreign Body Hypothesis” that proposes an active in-

volvement of the host tissue where the cancerous cells are recognised and the

host responds by over-expressing collagen. Mathematical models by Jackson

et al. simulate conditions representing the two theories separately and com-

pare them [86, 100]. The models conclude that it is likely both hypotheses

are true, as tumour suppression is not strong enough with just one hypothesis

in action.

Internalisation of proliferating tumour cells into the central necrotic region

of multicellular spheroids was also modelled in an attempt to prove this be-

haviour is due to passive migration following internal pressure gradients [103].

Results by Netti et al. [109] on the negative effect high blood pressure has on

drug delivery were found to match experimental data, and the model has been

used in attempts to find a solution to combat the problem [87]. As mentioned

in the introduction of this chapter, a model by Byrne and Chaplain [33] suc-

cessfully supported experimental evidence that a tumour’s size remains fixed

once a necrotic core forms.

Models that investigate existing and potential cancer treatments have resulted

in major breakthroughs in cancer research. An early model on cancer treat-

ment by Wheldon et al. calculated optimal radiotherapy treatment schedules

that result in the highest possible tumour death rate while maintaining a low

healthy cell death rate [153, 154]. A model on chemotherapy drug delivery

by Jain and Wei had a significant focus on the role of the vasculature [88].

A review paper which describes in further detail the impact mathematics has

had on cancer research was written by Byrne et al. in 2006 [34], and Roose
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et al. wrote a review on mathematical contributions to research in avascular

tumour growth specifically [126].

This literature review is by no means exhaustive, and many other more de-

tailed reviews of specific areas have been written by various authors. Araujo

and McElwain for example wrote a review on tumour growth models [8] and

Vilanova et al. shared the history of angiogenesis models [145], noting the

huge diversity of models with regards to model type, numerical methods, and

specific areas of research within angiogenesis. The review of mathematical im-

pact on cancer research by Byrne et al. [34], mentioned above, even discussed

the need for further collaboration between the clinical sciences and mathe-

matics, as there is still a lack of use of mathematical research for clinical

purposes.

3.6 Conclusion

Detail of the existing mathematical literature on cell signalling, angiogenesis

and cancer was covered in this chapter. There are too many types of avascular

model in existence to mention all of them here as this was the main area of

tumour growth researched before the angiogenic switch hypothesis [62]. There

is a lack of mathematical material on cancer compared to the biological ma-

terial; while this is understandable, as it is biological experimentation that

ultimately proves theories, there are many unconfirmed hypotheses in oncol-

ogy that could be supported or explained using mathematics. For example,

therapies which are too risky to test on humans could be simulated to gauge

the behaviour and risks of the drug.
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A brief explanation and summary of phase field models were also given, which

included a short description and the background of these models. A more in-

depth mathematical explanation of phase field models is given later in Chapter

6, which will include the derivation of the Cahn-Hilliard and Allen-Cahn mod-

els [36, 2].

Most existing angiogenesis models select the migratory or tip endothelial cells

in blood vessels by fixing an inhibition radius around every existing tip en-

dothelial cell. This means the inhibition is very artificial in the way it is

defined. The use of a model for Notch signalling would be a more accurate

description. However, discrete models of Notch signalling require the loca-

tions of the endothelial cells to be defined, and coupling a discrete model to

a continuous angiogenesis model would be complex.

The drawbacks of both discrete and continuous models were briefly men-

tioned. Recall that discrete models are computationally expensive on a tissue

level, while continuous models are unable to simulate cellular level mecha-

nisms in detail. Hybrid models overcome some of these drawbacks, but the

computation is often still limited by the complexity of the coupling. Further-

more, the coupling of the discrete and continuous components could become

complex especially if the angiogenesis model needs to be coupled further, such

as to a tumour growth model.

A way to simulate lateral inhibition that avoids the above issues is an open

problem in angiogenesis research. The work in this thesis aims to fill this

research gap by producing a continuous model of lateral inhibition-type cell

signalling to be coupled to a model of angiogenesis.
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Chapter 4

A model of lateral inhibition

4.1 Introduction

As mentioned in Chapter 2, one of the six hallmarks of cancer is the ability

to induce angiogenesis, the process during which new capillaries sprout from

existing ones. Angiogenesis is required by hypoxic tissue to deliver oxygen; it

is needed for normal growth and development, and damaged tissue requires

oxygen to heal [50]. While it plays an important role in a healthy human

body, it is also important for the continued growth and invasiveness of a tu-

mour, providing it with its own source of nutrient [63].

Recall that angiogenesis is initiated though the activation of endothelial cells

in the capillary wall by angiogenic factors released by a nearby hypoxic region,

and the endothelial cells migrate and proliferate towards the factor source.

Notch juxtacrine signalling enables tip cells selected for migration to inhibit

their neighbour cells from also being selected [84]. The production of a ligand

called Delta-Like Ligand 4 (DLL4) is induced by receptors for the angiogenic

factor Vascular Endothelial Growth Factor (VEGF). DLL4 activates Notch
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receptors in neighbouring cells, which inhibit the VEGF receptors in their

own cell, as well as production of DLL4.

The Notch signalling works differently in pathological angiogenesis, especially

in the later stages, given the high levels of DLL4 in all endothelial cells [75].

The particular reason for these elevated levels are still unclear, as removal

of VEGF did not show much change in DLL4 production in experiments on

tumour growth [101]. The onset of angiogenesis appears to be an important

mechanism taken advantage of by cancer.

Chapter 3 discussed how existing models of angiogenesis select the migratory

“tip” cells; some allocate them in initial conditions while others set simple

conditions on tip cell emergence [139]. There are few models which have ap-

plied a lateral inhibition model to a model of angiogenesis, and those that

have are discrete models such as the model by Bentley et al. [14].

A number of papers have already developed discrete models of lateral inhibi-

tion such as those by Collier et al. [45] and Owen and Sherratt [117], which

presented the models that will be used in the next two chapters. Some of these

models assume a homogeneous distribution of both cells and Notch receptors

per cell, which from a biological point of view is not realistic. Consider a

continuous model of lateral inhibition instead, which represents an average of

endothelial cell locations and behaviour. A continuous model of receptor and

ligand activity across the surface of a capillary could be applied to a continu-

ous angiogenesis model to make the computation more straightforward and to

limit unnecessary assumptions. Developing a continuous model to represent

a discrete biological mechanism requires care.
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The lateral inhibition model used is a model of Delta-Notch signalling, which

is equivalent to the lateral inhibition-type signalling in angiogenesis onset ex-

cept with ligands for different types of cell. The aim of this chapter and the

next is to develop a fully continuous model of Notch and Delta activity. The

chapters will each explore a different model; this chapter will derive a continu-

ous extension of a model first published by Collier et al. [45] using a nonlocal

weight function to represent the neighbour cell signalling, perform a linear

stability analysis on the model, and produce simulations to demonstrate the

similarities and differences from the discrete model. The aim is to show that

the continuous model gives similar results to the discrete case and therefore

can be used to represent lateral inhibition between endothelial cells in models

of angiogenesis.

The chapter starts by discussing the challenges of modelling a discrete mecha-

nism continuously in Section 4.2. In Section 4.3 the discrete lateral inhibition

model which shall be converted is stated, followed by explanations on how the

discrete components of the model will be made continuous. The continuous

implementation of this model is then carried out in Section 4.4. A stability

analysis defines the parameter values which cause unstable solutions for spa-

tial perturbations in the model and therefore produce patterns in the results.

These results are given in Section 4.5. Finally Section 4.6 concludes the chap-

ter and discusses the benefits the model will provide to the later work in this

thesis.
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4.2 Continuous modelling of a discrete mecha-

nism

Chapter 3 briefly discussed the differences between discrete and continuous

models, and why one type may be chosen over the other. These differences

will be discussed in a little more detail here. Discrete models are used when

information about individual cells is required, as their treatment of each com-

ponent in the model separately means they can keep track of cell locations

and behaviour. They can look at discrete mechanisms such as interactions

between components in more detail than continuous models can. Some mod-

els, such as agent-based models, focus on each individual element, which can

record individual agent information.

Continuous models of biological systems are normally used when informa-

tion is required on a larger scale. Because they are not as limited in space

or time, continuous models allow for more effective computation. They can

therefore provide insight into phenomena that a discrete model could not

provide. Hybrid models couple discrete and continuous models to gain the

benefits of both types, but the coupling can be highly complex, and even more

so when further coupling is to occur.

The benefits of using a continuous model can also be applied to a discrete

mechanism such as cell signalling. A discrete model will require cell location

information to determine the cell behaviour, often resulting in the assumption

that cells are regularly distributed, as depicted in Figure 4.1(a), and can be

represented by a geometrical mesh, for example squares or hexagons. Contin-

uous models have the advantage that the locations of the cells do not need to
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(a) (b)

Figure 4.1: (a) A regular cell distribution often used in discrete models (b) A
more realistic, irregular cell distribution, which can be represented generally by not
setting cell locations and using a continuous model.

be known; they can take average data and work out the likely cell signalling

behaviour from that information. The predicted ligand and receptor levels

can be found for each point, as continuous models are not restricted to a

mesh. Continuous models such as this can be used to represent the average

behaviour of many types of cell distribution without changing the layout of

the model each time. This is also more realistic, as both the cellular dis-

tribution in real life biological systems and the cells’ shapes themselves are

often irregular (see Figure 4.1(b)). A continuous model of cell behaviour can

be coupled to other continuous models more easily, such as an angiogenesis

model, to make a fully continuous multiscale model.

There are common problems in interpreting a continuous model in a biological

setting, especially if it models discrete components. If a continuous model is

used, the biological meaning must be preserved. The continuous model will

consider endothelial tissue where the average ligand and receptor levels at a

point are affected by the surrounding area, and locations at a distance of one

average cell length from the point will have the greatest effect.
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The spatial dependence of the Delta-Notch model comes in the form of the

juxtacrine neighbour interactions. There are a variety of ways these interac-

tions can be represented mathematically; a discrete model may find the ligand

and receptor levels for each neighbouring cell and take the average, whereas a

continuous model must introduce a spatially dependent weight function. The

change in how this juxtacrine signalling is represented mathematically will be

the main variation between the discrete and continuous versions of the model.

4.3 A Delta-Notch model

4.3.1 An existing discrete model

A one-dimensional discrete model of Delta-Notch signalling derived by Collier

et al. [45], which will be used in the subsequent analysis, is stated here.

The model is based on the signalling relationship between a cell j and its

neighbours jn shown in Figure 4.2. The one-dimensional model only considers

the behaviour of a line or a ring of cells. The model is given as:

∂nj
∂t

= f(d̄j)− nj,

∂dj
∂t

= ν(g(nj)− dj),

f(x) =
A1x

p

ap + xp
, g(x) =

A2b
q

bq + xq
,

(4.1)

with the levels of Notch receptor and Delta ligand activity in the cell j at

time t denoted as nj(t), dj(t) respectively. ν > 0 is a ratio of the decay

rates of Delta and Notch, which also means it is a ratio of the time scales

of Delta and Notch activity, and a, b, p, q, A1 and A2 are chosen constants.

d̄j is a spatial function determined by the Delta activity of the neighbours

of cell j, which represents the juxtacrine signalling between Notch receptors
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Decay← Ligand (Delta)
in cell j

f−−−→ Bound receptor
(Notch) in cell jn

→ Decayx g y g
Decay← Bound receptor

(Notch) in cell j
f←−−− Ligand (Delta)

in cell jn
→ Decay

Figure 4.2: Relationships of the Delta-Notch model by Collier et al. [45], where jn
represents a neighbour cell of cell j. The model (4.1) is based on these relationships.

in cell j and Delta in neighbouring cells to cell j. This “average neighbour

function” and its discrete and continuous forms will be discussed in detail

next in Section 4.3.2. Delta activates Notch in neighbouring cells, which is

why the function f is chosen to be an increasing Hill function. Notch inhibits

Delta in its own cell which sets function g as a decreasing Hill function.

4.3.2 The average neighbour function

This section discusses the neighbour function which provides the spatial vari-

ation in the model, and considers potential forms this function could take in

the continuous case in order to comply with the discrete case. The discrete

equations (4.1) use the average neighbour function, which for a variable u

takes the values of u in the neighbours of a cell j and finds the average. In

one dimension, and therefore for two neighbours j−1, j+1, this is calculated

as

ūj =
uj−1 + uj+1

2
. (4.2)
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The continuous equivalent ū(x, t) to the discrete average ūj was defined by

Owen et al. [118] as

ū(x, t) =

∫ ∞
−∞

w(s)u(x− s, t)ds, (4.3)

where x is the current position and s is the distance from position x. The

weight function w(s) is a function to be chosen such that
∫∞
−∞w(s)ds = 1.

The Fourier transform ŵ(k) of the weight function w(s) will be important

in the stability analysis of the continuous model in Section 4.4, where it is

found that unstable solutions will require ŵ(k) < 0 for some k. Therefore

a potential weight function will have a Fourier transform that is sometimes

negative.

This section investigates the potential weight functions that w(s) in (4.3)

could take the form of. Some of the weight functions are derived by averaging

other more basic weight functions that are based on different cell sizes and

locations. In one-dimension, this could be considered as an average represen-

tation of a two-dimensional irregular cell distribution, where the x-direction

locations of neighbour cells for each cell in an irregular distribution, such as

the one shown earlier in Figure 4.1(b), are recorded, and the average of these

neighbour locations are taken.

Averaging using rectangle functions

There are a number of types of function that w(s) could be set as; the func-

tion selected will depend on the model itself and the desired outcome of the

model. The weight function perhaps most analogous to the discrete neighbour
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function (4.2) is two rectangle functions with the weighted sections covering

the most likely locations of two neighbour cells to a cell in the centre. This

weight function is shown in Figure 4.6(a), and the function is written

w(s) =


1
2

0.5 < |s| 6 1.5,

0 otherwise,
(4.4)

with Fourier transform

ŵ(k) =
2 sin(k

2
) cos(k)

k
= sinc

(
k

2

)
cos(k), −0.6651 6 ŵ(k) 6 1. (4.5)

One of the reasons for using a continuous model is to be able to model using

average cell locations, because the cells in a biological setting are unlikely to be

all the same size and distributed evenly, as shown in Figure 4.1(b). However,

the rectangle weight function (4.4) contradicts this and still suggests a regular

array of cells. To find a weight function that does not assume a regular array,

an average weight function must be found using randomised cell distributions.

To do this, five cells are defined over a space of five times an average cell

length by randomising the distribution of each cell edge. A restriction that

the cell lengths must fall between 0.5 and 1.5 of the average cell length is

applied. Numerically this is achieved by applying a uniform probability dis-

tribution to the locations of the cell edges, restricting them to fall within

0.5 of the regular cell edge locations. The leftmost boundary of cell one and

the rightmost boundary of cell five are fixed at 0 and 5 respectively, for all

randomisations. A weight function similar to the rectangle weight function

(4.4) is then calculated at the centre of cell three of each randomisation, and

depends on the varying size and location of cells two and four. The average
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Figure 4.3: Possible cell distributions of five cells over five average cell lengths.
The points P1-P6 shown represent the edges of the cells. The first distribution is a
regular cell distribution, with edges at 0, 1, 2, 3, 4, and 5 average cell lengths. Three
randomised distributions are then shown. The cell lengths and locations are found
using uniform probability distributions by setting P1 = 0, P6 = 5, and restricting
P2−P5 to the corresponding red area indicated (i.e. 0.5 < P2 6 1.5, 1.5 < P3 6 2.5,
etc.). The shape of the corresponding rectangle functions are shown with dotted
lines, and the general shape of the average of these four weight functions is shown
at the bottom. Notice that the most weight in the average function is located at
the centre of cells 2 and 4 of the regular distribution.

of these weight functions is then taken. This idea is represented visually in

Figure 4.3. If enough random cell distributions are used to find an average

weight function, they give a graph that looks similar to two triangle func-

tions with a maximum of 0.5 at a distance of 1 and -1 away from the centre

point. As expected, locations that are one average cell length away will have

the most impact. An average graph produced from 100 cell randomisations

is shown in Figure 4.5(a). The triangle weight function that can be used to
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estimate this average takes the form

w(s) =



|s|
2

|s| 6 1

(2−|s|)
2

1 < |s| 6 2

0 otherwise,

(4.6)

which has Fourier transform

ŵ(k) =
2 cos(k)(1− cos(k))

k2
, −0.4726 6 ŵ(k) 6 1. (4.7)

The average graph Figure 4.5(a) has curves which are slightly steeper than the

straight lines of the corresponding triangle function, shown in Figure 4.6(b),

which means the maximum height is at around 0.557 to maintain the total

area of one.

The average weight function calculation is strongly affected by the way the cell

distributions and sizes are selected; the above selection uses a uniform proba-

bility distribution for each cell edge with uniform probability for potential cell

edge locations. This gives a triangular shaped probability distribution for the

lengths of the cells, ranging from lengths of 0 and 2, and peaking at 1. The

cell lengths determine the locations of the rectangles in the weight function;

therefore it stands to reason that the average of all these weight functions will

take the same shape as the probability distribution for the lengths.

Another way to determine the cell edge locations is to use a normal prob-

ability distribution instead, with a mean µ equal to the individual locations

of the regular cell distribution edges and a standard deviation of the mean of
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Figure 4.4: The regular cell distribution followed by three random cell distributions
found using normal probability distributions shown in red. Any crossover of points
during selection, for example if P4 < P3, is corrected by relabelling (e.g. P4 becomes
P3 and vice versa).

σ = 0.5, of the form
1√

2πσ2
e−

(x−µ)2

2σ2 . (4.8)

The edge locations are no longer restricted to an interval. The normal distri-

bution allows cell edges to cross over, which effectively means cells overlap. To

fix this the edges are sorted in space order after selection. This new cell distri-

bution allocation method is demonstrated in Figure 4.4. The corresponding

probability distribution for the length is also a normal distribution, with a

mean of 1 and a standard deviation of 1.

Because the centre of the domain (x = 2.5 in Figure 4.4) does not necessarily

lie in the same cell for each distribution this time, the centre cell will change.

The cell which contains the centre of the domain is found and designated the

centre cell for each randomisation.

These normal probability distributions result in a similarly shaped weight
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function, shown in Figure 4.5(b). It has maxima at distances of 1 and -1

away from the centre, with a value of around 0.3433, and a local minimum

of zero at the centre. This can be closely estimated by the product of an

absolute value function and a Gaussian function, which has the general form

w(s) = l|s|e−ms2 . (4.9)

Setting m = 0.5 gives the required maxima at s = 1 and s = −1. The value

of l then needs to be set so that the integral of the weight function equals

one. The integral of lse−ms2 is − l
2m

e−ms2 , giving the whole integral

∫ ∞
−∞

w(s)ds =
[
−le−

s2

2

]∞
0

+
[
le−

s2

2

]0

−∞
= 2l = 1, (4.10)

which sets l = 0.5. The appropriate weight function, which shall be denoted

the Gaussian-derived weight function, is then

w(s) =
|s|
2
e−

s2

2 , (4.11)

and its graph is shown in Figure 4.6(c). Its Fourier transform is

ŵ(k) =

∫ ∞
−∞

|s|
2
e−

s2

2
−iksds, (4.12)

and the minimum value of this is found to be ŵmin = −0.2847. The graph

of this Fourier transform, along with the Fourier transforms of the rectangle

and triangle weight functions ((4.5) and (4.7) respectively), can be found in

Figure 4.7.
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(a) (b)

Figure 4.5: The weight functions found by averaging different rectangle functions
which were calculated from randomised cell distributions. (a) A triangle-type weight
function found using uniform cell distributions, which can be estimated by equation
(4.6), the sum of two triangle functions. (b) A smoother weight function found
using normal cell distributions, estimated by the product of an absolute value and
Gaussian function (4.11).

Averaging using delta functions

The rectangle weight function (4.4) used to produce the triangle and Gaussian-

derived weight functions (4.6) and (4.11) above may not be an accurate choice,

although it first appears to be the natural continuous version of the discrete

neighbour function. The issues become clear when the biological implications

are considered; the contribution made by a cell to its neighbouring cell should

not emerge from everywhere in the cell, as the above weight functions suggest.

A weight function that shows a contribution from only one small area of the

cell may be more accurate. It must not be forgotten that although the model

will be continuous, the fact that cell signalling is a discrete process will not

change.

A more realistic weight function uses the Dirac delta function (not to be

confused with the ligand Delta). The Dirac delta δ(s) has a value of zero
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(a) (b) (c)

Figure 4.6: The weight functions considered; (a) the Rectangle weight function
(4.4), (b) the Triangle weight function (4.6), (c) the Gaussian-derived weight func-
tion (4.11).

(a) (b) (c)

Figure 4.7: The Fourier transforms of the (a) Rectangle weight function, (4.5),
(b) Triangle weight function, (4.7), (c) Gaussian-derived weight function, (4.12).

everywhere except at s = 0, at which it is infinite, and it has the property

that its integral equals one. Using a weight function where a half-delta func-

tion (with area 1/2 instead of 1) is placed at the centre of each neighbouring

cell gives a neighbour function which is comparable to the discrete neighbour

function (4.2). One possible approximation of a delta function shifted to a

location x with area 1/2 takes the form

1

2l
√
π
e−

(s−x)2

l2 , (4.13)
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(a) (b)

Figure 4.8: The weight functions calculated by averaging delta weight functions of
1000 cell realisations; (a) using a uniform distribution to randomise the cell edges
(b) using a normal distribution to randomise the cell edges.

where l is small and positive. Therefore the delta weight function, with neigh-

bour cell centres at x1 and x2, is

w(s) =
1

2l
√
π

(
e−

(s−x1)
2

l2 + e−
(s−x2)

2

l2

)
. (4.14)

Averaging weight functions based on equation (4.14), corresponding to many

random cell realisations for both uniform and normal distributions for the cell

edges, gives the graphs shown in Figure 4.8.

Notice that the resulting weight functions from the averaging of the delta

functions are fairly similar shapes to the weight functions found when the

rectangle functions were used instead. Therefore this suggests that the weight

functions (4.6) and (4.11), which estimate these average functions, are still

both suitable for use in this continuous model.
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The two-dimensional function

Neighbour cell locations in a two-dimensional model are somewhat more com-

plicated, mainly because of the greater number of options of two-dimensional

lattices, and hence the greater variation in the possible number and location of

neighbour cells. A new two-dimensional average neighbour function is needed.

One example of a two-dimensional average neighbour function for the discrete

model, where each cell is considered to have four neighbours, takes the form

ūj,k =
uj−1,k + uj,k−1 + uj,k+1 + uj+1,k

4
, (4.15)

where up,q is the u-value in the cell in row p, column q. The options for neigh-

bour selection are greater in particular for irregular cell distributions, such

as the one pictured in Figure 4.1(b). For example, choosing a four-neighbour

square lattice and randomising the x and y lengths of each element, using the

delta function method above, would place delta functions at the centres of

each of the four neighbours. Averaging would result in a triangle or absolute-

Gaussian function with peaks at each centre, and the same result would be

achieved for a hexagonal six-neighbour lattice. However, continuous models

do not require a lattice for cells, and maintaining a mean equal to one for

the distance between the centres of adjacent cells means a two-dimensional

weight function can be derived by rotating the one-dimensional weight func-

tion about the w-axis to give rotational symmetry.

The two-dimensional version of the rectangle weight function for example

forms an annulus shape with some value h to be determined, with outer ra-
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dius 1.5, inner radius 0.5, and is defined in cylindrical polar coordinates as

w(r, θ) =


0 r 6 0.5,

h 0.5 < r 6 1.5,

0 r > 1.5.

(4.16)

To satisfy
∫ 2π

0

∫ 1.5

0.5
w(r)rdrdθ = 1, h is set as h = 1

2π
.

The Fourier transform f̂(ρ, φ) of a two-dimensional function f(r, θ) in po-

lar coordinates, where Cartesian wavenumbers k1 and k2 can be written in

terms of polar wavenumbers ρ and φ as k1 = ρ cosφ, k2 = ρ sinφ, is

f̂(ρ, φ) =

∫ ∞
0

∫ 2π

0

f(r, θ)e−irρ(cosφ cos θ+sinφ sin θ)rdθdr,

=

∫ ∞
0

∫ 2π

0

rf(r, θ)e−irρ cos(θ−φ)dθdr, (4.17)

which for an f with rotational symmetry can also be written as

f̂(ρ, φ) =

∫ ∞
0

2πrf(r)J0(−ρr)dr, (4.18)

where the zero-order Bessel function of the first kind J0 is defined as

J0(x) =
1

2π

∫ 2π

0

eix cos(θ−φ)dθ. (4.19)

Therefore the Fourier transform for the two-dimensional rectangle function

(4.16) is

ŵ(ρ, φ) =

∫ 1.5

0.5

rJ0(−ρr)dr, −0.2337 6 ŵ(ρ, φ) 6 1. (4.20)
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The weight function (4.16) in one dimension reduces to the one dimensional

rectangle weight function (4.4).

The similar two-dimensional version of the triangle weight function is

w(r, θ) =



r
2π

r 6 1,

(2−r)
2π

1 < r 6 2,

0 r > 2,

(4.21)

and the two-dimensional Gaussian-derived weight function is of the form

w(r, θ) = hre−
r2

2 . (4.22)

The required value h for a total volume of one is found using the known value

of the Gaussian integral:

∫ ∞
−∞

e−mx
2

dx =

√
π

m
. (4.23)

Integrating by parts finds

∫ 2π

0

∫ ∞
0

hre−
r2

2 rdrdθ = 2πh

∫ ∞
0

r
(
re−

r2

2

)
dr,

= 2πh

∫ ∞
0

e−
r2

2 dr,

= 2πh

(
1

2

√
2π

)
= hπ

√
2π = 1, (4.24)

which sets h = 1/
√

2π3. The two-dimensional rectangle, triangle and Gaussian-

derived weight functions are shown in Figure 4.9.
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(a) (b) (c)

Figure 4.9: The two-dimensional continuous weight functions, which are exten-
sions of the one-dimensional (a) Rectangle weight function, (4.16), (b) Triangle
weight function, (4.21), (c) Gaussian-derived weight function, (4.22).

The Fourier transforms for the two-dimensional triangle and Gaussian-derived

weight functions are

ŵ(ρ, φ) =

∫ 2

1

r(2− r)J0(−rρ)dr +

∫ 1

0

r2J0(−rρ)dr, (4.25)

−0.1692 6 ŵ(ρ, φ) 6 1,

and

ŵ(ρ, φ) =

∫ ∞
0

√
2

π
r2e−

r2

2 J0(−rρ)dr, (4.26)

−0.0826 6 ŵ(ρ, φ) 6 1,

respectively, and are shown in Figure 4.10.

4.4 Implementation of the continuous version of

the model and stability analysis

The continuous model replaces nj(t), dj(t) with n(x, t) and d(x, t), the aver-

ages of Notch and Delta activity at position x. Here the endothelium of a
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(a) (b) (c)

Figure 4.10: Fourier transforms for the two-dimensional versions of the (a) Rect-
angle weight function, (4.20), (b) Triangle weight function, (4.25), (c) Gaussian-
derived weight function, (4.26), at k2 = 0, for −20 6 k1 6 20.

capillary wall is considered, instead of a particular endothelial cell in a system

of cells. The continuous model is written as:

∂n

∂t
= f(d̄)− n,

∂d

∂t
= ν(g(n)− d),

f(x) =
A1x

p

ap + xp
, g(x) =

A2b
q

bq + xq
,

(4.27)

where the average neighbour function is given in equation (4.3) as

ū(x, t) =

∫ ∞
−∞

w(s)u(x− s, t)ds. (4.28)

A linear stability analysis, based on the work of Turing [140], shall now be

performed on this model (4.27)-(4.28). For steady state solutions, the ac-

tivated Notch and Delta values ne, de are the same for all cells. Therefore

d̄e = de and

f(de) = ne, g(ne) = de. (4.29)
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Applying small perturbations ñ(x, t), d̃(x, t) to these steady states of the form

ñ(x, t) = Neαt+ikx, d̃(x, t) = Deαt+ikx, (4.30)

where N and D are constants and α and k are the growth rate and wavenum-

ber, gives the average Delta as

d̄(x, t) =

∫ ∞
−∞

dew(s)ds+

∫ ∞
−∞

d̃(x− s, t)w(s)ds,

= de +

∫ ∞
−∞

d̃(x, t)w(s)e−iksds,

= de + d̃(x, t)ŵ(k), (4.31)

where ŵ(k) is the Fourier Transform of w(s). Substituting this in to equations

(4.27) and using Taylor expansions, the equations become

αñ = F d̃ŵ − ñ,

αd̃ = ν(Gñ− d̃),
(4.32)

with f ′(de) = F , g′(ne) = G. Recall function f is an increasing function and

function g is a decreasing function, which means F > 0 and G < 0. Equations

(4.32) can also be written in matrix form:

 α + 1 −Fŵ

−νG α + ν


 ñ

d̃

 = 0. (4.33)

The characteristic equation for this matrix is

α2 + (1 + ν)α + ν − ŵFGν = 0. (4.34)
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Solutions ñ(x, t), d̃(x, t) are stable over time for Re(α) < 0, so that

ñ = Neαt+ikx → 0, d̃ = Deαt+ikx → 0,

for large t. Patterning requires stability (both solutions have Re(α) < 0) for

homogeneous spatial perturbations (wavenumber k = 0) and instability for

inhomogeneous spatial perturbations. A little observation finds that stability

requires

1 + ν > 0, 1− ŵ(k)FG > 0. (4.35)

Recall that ν > 0, which makes the first condition always true. Therefore

the stability of the system depends on the second condition (4.35)2, which is

true if ŵ(k) > 0, due to the product FG being negative. For homogeneous

perturbations, ŵ(k) = ŵ(0) =
∫∞
−∞w(s)ds = 1, therefore the system is always

stable for homogeneous perturbations.

To achieve unstable solutions for inhomogeneous perturbations, as the first

stability condition is true everywhere, the second stability condition must be

violated, so that
1

FG
> ŵ(k). (4.36)

For this to happen, ŵ(k) must be negative for some value of k. The weight

functions proposed earlier in Section 4.3.2 all have Fourier transforms which

are negative for some k, as shown in Figure 4.7.

To find the most unstable solution, the most negative, or smallest value of ŵ

must be used, i.e. ŵmin, to find the most positive, or largest value of α, i.e.

αmax. For the rectangle weight function (4.4) the minimum value of its trans-
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Figure 4.11: Dispersion curve (k, α) for the rectangle weight function (4.4)
where the function w(s) has Fourier transform ŵ(k) = sinc(k2 ) cos(k)), for
FG = −1,−2,−3,−4, and −5. As |FG| increases, the value for αmax increases.
FG can be changed by changing the parameter values a and b.

form is ŵmin = −0.6651. The wavenumber k = k∗ for which α is the largest

gives ŵ(k∗) = ŵmin and wavelength λ∗ = 2π
k∗
. The critical value of FG for

which the stability of the system changes is FGcrit = 1/ŵmin ≈ −1.504. Figure

4.11 shows the dispersion curve for the rectangle weight function which shows

the highest value for α = αmax is obtained at wavenumber k = k∗ ≈ 2.8686

and wavelength λ ≈ 2.1903.

4.5 Simulation of the lateral inhibition model

Simulations of the model (4.27) were produced for two different types of

boundary conditions, which are only required for Delta as Notch does not

have a spatial effect. For domain size L and mesh size h, the periodic bound-

ary conditions set the Delta concentrations near the edges of the domain to

affect those on the other edge (d(0, t) = d(L + h, t)), and the fixed Dirichlet

conditions set values on the boundary to zero (d(0, t) = 0, d(L, t) = 0). The

area where the pattern first emerges depends solely on the initial condition for
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periodic boundary conditions; however, the fixed boundary conditions gener-

ate a perturbation which causes the pattern to very rapidly emerge at the

boundaries first, which was also observed in results by Collier et al. [45]. The

initial conditions for Notch and Delta provided the required inhomogeneous

spatial perturbation to make it possible for patterns to emerge:

n(x, 0) = 1− r(x) d(x, 0) = 1, (4.37)

where for each x, r(x) is a random number between 0 and 0.05. The Delta-

Notch model is simulated using a Runge-Kutta fourth-order method. The

integral (4.28) is estimated at each mesh point x using a rectangle method,

where the values of w(y)d(x− y) are calculated for each mesh point y and are

summed together.

Parameters in equations (4.27) were set by Collier et al. as

a = 0.1, b = 0.1, p = 2, q = 2, ν = 1, A1 = 1, A2 = 1,

to achieve unstable results. These are the parameter values taken for all re-

sults in this section, unless specifically stated otherwise. The time scale of

the model is proportional to the decay rate of Notch, which for the selected

ν-value is also equal to the decay rate of Delta. Continuous results with fixed

boundary conditions that use the rectangle weight function are given in Figure

4.12 and show similarities to the discrete results found by Collier et al. [45],

where the values seem to converge to their steady states before destabilising

and forming a pattern, although the continuous results reach their final state

at a later timestep; they take about twice the amount of time to develop as

the discrete results with the same FG value. This is related to the change in

the average neighbour function and the minimum value ŵmin.
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(a) t=0 (b) t=10

(c) t=30 (d) t=60

Figure 4.12: Continuous results with fixed boundary conditions at (a) t = 0, (b)
t = 10, (c) t = 30, and (d) t = 60 for Delta levels over a domain size of 50. The
mesh size is h = 0.01. The weight function used for the average neighbour function
in this simulation is the rectangle weight function. The wavelength is λ∗ ≈ 2.1903,
compared to λ∗ = 2 for the discrete case. The slightly larger wavelength causes
fewer peaks to emerge.

The discrete solution has ŵ(k) = e−ik+eik
2

= cos(k) and its critical value

of FG is therefore FGD = 1/ŵmin = −1. The critical value of FG for the

continuous solution using the rectangle weight function was stated earlier as

FGcrit ≈ −1.504, which gives a smaller growth rate α for the same parameter

values and therefore has more stable solutions.

The growth rate α of the simulation is the change in amplitude of the Delta
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(a) Discrete model (b) Continuous model

Figure 4.13: Graphs log(damp(t)) ≈ log(D) + αt of the amplitude
damp(t) = dmax(t)− dmin(t) of the Delta solution over time, for (a) the discrete
model, finding α ≈ 0.547, (b) the continuous model, with α ≈ 0.266. The growth
rate α calculated from these graphs can be used to find the wavenumber k and
wavelength λ.

concentration wave solution over time. The amplitude is defined as

damp(t) = dmax(t) − dmin(t), where dmax(t) = d(xl, t) and dmin(t) = d(xs, t)

are the largest and smallest Delta values at time t respectively. As the fixed

boundary conditions cause large waves at the boundaries early on before waves

in the middle develop, the amplitudes will be calculated from periodic bound-

ary solutions. Taking the logarithm of the amplitude will nearly give a straight

line graph with respect to time t:

log(damp(t)) ≈ log(D) + αt, (4.38)

where D is constant. An approximation of α can be found from the gradient

of this graph, which is plotted in Figure 4.13.

The growth rate α can be used to find ŵmin and then an approximation of the
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dominant wavenumber k∗, once ŵ(k) is calculated. The wavenumber can be

checked by finding the wavelength of the Delta solution from the results and

comparing this to λ∗ = 2π/k∗, which should be similar. The wavenumber for

the discrete model is k∗ = π, which gives a wavelength of λ∗ = 2. This is

expected, as there are two cells per wave period. The wavenumber for the con-

tinuous case is found from the minimum value of the Fourier transform of the

weight function, which for the rectangle function is ŵmin ≈ −0.6651 giving a

dominant wavenumber of k∗ ≈ 2.8687, and a wavelength of λ∗ ≈ 2.1903. The

wavelength is slightly greater in the continuous solutions than for the discrete

solution; this has resulted in fewer peaks in total over the given domain.

Stability and formation of a pattern depends on the value of FG, which de-

pends on the parameters a and b. Figure 4.14(a) shows a bifurcation curve

for bifurcation parameter a, found by setting b = 0.1 and calculating the fi-

nal amplitude of the solution for different values of a. The curve identifies for

which value of a the homogeneous steady state becomes unstable, and has the

characteristics of a supercritical pitchfork bifurcation where the steady state

becomes unstable as it reaches its critical value at a ≈ 0.02. Figure 4.14(b)

plots a against FG instead; the critical value FGcrit ≈ −1.504 is reached for

the same critical a-value a ≈ 0.02, but stability is reached again for a ≈ 1.96

where FG meets FGcrit again. The critical values of FG are also shown for

the triangle and Gaussian-derived weight functions.

Results using the other weight functions suggested in Section 4.3.2 vary from

the results using the rectangle function. As shown in Figure 4.14(b), the

critical FG values FGcrit change due to the change in the Fourier transform

ŵ(k), and hence in its minimum value ŵmin. The triangle function (4.6),
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(a) (b)

Figure 4.14: (a) Bifurcation curve which plots changing a between 0 and 0.12
against the amplitude of the resulting final solution, with the other parameter values
the same as previously stated. (b) A graph of a between 0 and 2.5 against FG, where
the critical FG values are shown for each of the three weight functions introduced
earlier; the rectangle weight function’s value in blue, the triangle function’s value in
red, and the Gaussian-derived function’s value in yellow. Note that the critical FG
value for the discrete model is FGD = −1 and so the discrete solutions are unstable
for the stated parameter values for b, p, q, ν, A1, A2, and all values 0 6 a 6 2.5.

with ŵmin = −0.4726 and therefore a harder to reach critical FG value of

FGcrit = −2.1161, gives results shown in Figure 4.15(a), which has a smaller

amplitude for the same parameter values as the earlier results for the rect-

angle function in Figure 4.12. The Gaussian-derived function (4.11) has

ŵmin = −0.2847, FGcrit = −3.5125, meaning results with the original pa-

rameter values are stable to all perturbations, which can be deduced from the

earlier a-FG plot Figure 4.14(b). The solution shown in Figure 4.15(b) has

values a = 0.05 and b = 0.005 instead, and still only shows a small amplitude.

The bifurcation curves for the results of the triangle and Gaussian-derived

weight functions are given in Figure 4.16, and shows the critical value of sta-

bility at a = 0.06 for the triangle function and critical values of a = 0.02 and

a = 0.81 for the Gaussian-derived function.
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(a) Triangle WF (b) Gaussian-derived WF

Figure 4.15: Periodic solutions which show the final Delta levels over a domain
size of 50 average cell lengths using (a) the triangle weight function, where a = 0.1,
b = 0.1, and the amplitude of the solution is about 0.39, and (b) the Gaussian-
derived weight function, which has a = 0.05 and b = 0.005, with an amplitude of
around 0.14.

(a) Triangle WF (b) Gaussian-derived WF

Figure 4.16: Bifurcation curves for changing a from 0 to 1 with original parameter
values for all other parameters except b, where the weight function used is (a) the
triangle function with b = 0.1, showing a maximum amplitude of 0.65 at a ≈ 0.4 and
critical stability value a = 0.06, (b) the Gaussian-derived function with b = 0.005,
and a maximum amplitude of about 0.4 at a = 0.2 and two critical stability values
at a = 0.02 and a = 0.81.
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In the model as it is, once the pattern emerges it spreads everywhere. How-

ever, in angiogenesis, new capillaries only form in areas where the angiogenic

factor VEGF is present; the pattern does not continue to spread along the

capillary. To adjust the model to take this into account, consider the bifurca-

tion parameters a and b. If one of these is made a spatial function dependent

on x, then stability (and patterning) can be varied across the domain. The

function a(x) is set to

a(x) =
1

2
e−

(x−xVEGF)2

10 , (4.39)

with its most unstable point at x = xVEGF, a = 0.5 and then a decrease

in instability on either side. The bifurcation diagram shows that the critical

value for a is around 0.02. Therefore the function is divided by 2 to allow more

x-values to be stable (i.e. a(x) < 0.02). In terms of angiogenesis, a(x) can be

considered the VEGF-function, with the point of highest VEGF concentration

at x = xVEGF. Simulations implementing this function are shown in Figure

4.17, with xVEGF = 10. The values of a and b affect the steady state solutions,

which is why when the values appear to converge to their steady states at the

beginning, the steady state levels approached vary in space (see 4.17(b)).

A two-dimensional version of the Delta-Notch model is not as similar to one-

dimension as perhaps first assumed, especially given the similarities between

the one and two-dimensional discrete models as shown by Collier et al. [45].

However, the two-dimensional weight functions considered in Section 4.3.2

make some of the differences between the one and two-dimensional models

clearer. The two-dimensional version of the rectangle weight function is used

here, which is given in equation (4.16). The two-dimensional model is simply
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(a) t=0 (b) t=10

(c) t=30 (d) t=60

Figure 4.17: Delta results with a(x) = 1
2e
− (x−10)2

10 , at the same times as before:
(a) t = 0, (b) t = 10, (c) t = 30, and (d) t = 60, with fixed boundary conditions,
and with the rectangle weight function. The pattern only emerges in one area of
the domain, due to the VEGF function a(x).
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written as follows:

∂n(x, t)

∂t
= f(d̄(x, t))− n(x, t),

∂d(x, t)

∂t
= ν(g(n(x, t))− d(x, t)),

(4.40)

with x = (x, y), and average Delta concentration d̄(x, t)

d̄(x, t) =

∫ ∞
−∞

w(s)d(x− s, t)ds. (4.41)

The minimum value that the 2D rectangle Fourier transform (4.20) can take

is ŵmin ≈ −0.2337, giving the critical FG value as FGcrit ≈ −4.2793. The

functions f(d̄), g(n) with their current parameter values for p and q are unable

to reach this value for FG, even with changes to a and b; therefore the p and

q values must be changed. Two-dimensional results with periodic boundary

conditions, first without and then with a VEGF-function implemented, both

produce a hexagonal pattern, and are shown in Figures 4.18 and 4.19. This

pattern suggests the hexagonal lattice used for the discrete model is the most

realistic layout of cells.

Without a VEGF function, the pattern again covers the whole domain; whether

it emerges everywhere at once, like in Figure 4.18, or if it emerges in one lo-

cation and eventually spreads everywhere. The introduction of the VEGF

function limits the pattern to a small area of the domain.

4.6 Conclusion

This chapter has introduced and simulated a continuous mathematical model

of Delta-Notch signalling and has shown that such a model produces sta-
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(a) t=0 (b) t=20

(c) t=40 (d) t=60

Figure 4.18: Two-dimensional periodic results for Delta concentrations on a 20×20
domain and a 140× 140 mesh, for (a) t = 0 (b) t = 20 (c) t = 40 and (d) t = 60.
The weight function used is the 2D rectangle weight function. Parameters are p = 3,
q = 3, a = 0.1, b = 0.1, A1 = 1, A2 = 1, and ν = 1.

(a) t=0 (b) t=20

(c) t=40 (d) t=60

Figure 4.19: Two-dimensional Delta results with a VEGF function

a(x) = 1
5e
− (x−10)2

5
− (y−6)2

5 applied, with VEGF source at x = 10 and y = 6, us-
ing the 2D rectangle weight function. Parameters are p = 3, q = 3, b = 0.1, A1 = 1,
A2 = 1, and ν = 1.
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tionary spatial patterns for particular parameter values when inhomogeneous

perturbations are applied. The perturbations were applied using random ini-

tial conditions for Notch receptor activity. The spatial patterns obtained

reflect the behaviour expected of endothelial tissue activated for lateral inhi-

bition when compared to both biological data and mathematical data from

its discrete model equivalent.

The discrete model shows pattern formation from an array of identical cells.

The continuous model gives the estimated levels of Delta and Notch at a point

by averaging suitable neighbour functions for different shaped and sized cell

layouts, so that unrealistic identical cell layouts are not assumed. The discrete

model is more useful when components need to be tracked and the locations

of individual cells need to be known; this can be particularly useful when

components are in motion. However, the cells in this model are stationary

and an estimated pattern of lateral inhibition is sufficient for coupling to an

angiogenesis model.

For parameters which give unstable solutions to inhomogeneous perturba-

tions, the discrete model gives an on-off pattern. The continuous model gives

similar results for the rectangle function, but the “on” and “off” peaks are

smoother, and give a larger wavelength. The behaviour varies also with the

change of weight function; using the triangle weight function for example

yields solutions with sharper peaks, which vaguely resembles the triangle func-

tion itself. The rectangle function appears to affect solutions in a similar way,

with flatter troughs than both the triangle and Gaussian-derived weight func-

tion solutions.
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For a ring of cells where each cell has exactly two neighbours, the discrete

model has one possible neighbour function. There are a few continuous neigh-

bour functions which could be considered the equivalent of the discrete func-

tion which gives options for the form of this continuous neighbour function,

and choosing the most appropriate proved challenging. Rectangle weight func-

tions that covered everywhere in neighbour cells were investigated, along with

delta functions with weight in the centre of neighbours cells only. However,

it may have been more accurate to have delta functions on the edges of the

neighbour cells instead, as this is where juxtacrine signalling occurs in real-

ity. The wavelength is generally larger for the continuous model, which is

expected because of the change in the neighbour function and therefore in the

dominant wavenumber k∗ for ŵ(k∗) = ŵmin.

The two-dimensional model has extra choices for neighbour functions in the

discrete model, as there are more options for the locations of the neighbour

cells. The most used layouts include a square lattice with four neighbours,

and a hexagonal lattice with six neighbours. The continuous version in two

dimensions again assumes irregular cell distributions and averages the neigh-

bour locations to get weight functions with cross sections that are the same

as the weight functions used in one dimension. The two-dimensional mod-

elling makes an important advantage of the continuous model apparent; it

does not require a lattice and therefore does not end up being restricted by

one. The resulting 2D solutions form peaks of high Delta levels laid out in a

hexagonal pattern, similar to the results achieved by the discrete model when

using a hexagonal lattice. This result is unsurprising, as a hexagonal lattice

is the most efficient and most commonly seen pattern in nature [92]. It is

also expected to be seen in angiogenesis, where tip endothelial cells emerge at
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the spots with high Delta activity, at a reasonable and efficient distance from

each other.

This continuous extension of Collier’s model was developed with lateral inhi-

bition in angiogenesis in mind; however, the model can easily be applied to

many biological circumstances. Lateral inhibition occurs as a result of many

cellular signalling systems, for example, the original focus of Collier’s model

was on embryonic nervous system development of the fruit fly Drosophila

melanogaster [45]. It is also possible to use the model for longer-range sig-

nals, such as Webb and Owen’s model which investigated intra-membrane

diffusion [152], and Cohen et al. who modelled nonneighbour juxtacrine sig-

nalling, which occurs using thin antennae-like parts of a cell called filopodia

[43]. The model could also be adjusted to represent mechanisms which feature

a purely positive feedback loop, such as signalling for migration and prolifer-

ation of tissue during wound healing, the original motivation of the model by

Owen and Sherratt, which the model in the next chapter is based on [117].

While this model provides a good starting point for modelling lateral in-

hibition, it is very basic and ignores many important features of the Notch

signalling pathway, such as production of both receptors and ligands, and the

absorbing of activated receptor-ligand complexes by the cell. The paper by

Collier et al. in which the discrete model was published acknowledges the

limitations of this model and that many biological factors are overlooked; in

fact, the model is described in the paper as an adaptable framework, which

can be easily extended to include some of these features mentioned [45]. The

next chapter will introduce an existing extension of the discrete Collier model

and derive its continuous version.
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Chapter 5

An extended model of lateral

inhibition

5.1 Introduction

The Delta-Notch model in Chapter 4 is a very basic model of lateral inhibi-

tion, where the ligand and receptor activity is described with only a reaction

and decay term in each equation. It may be easier than other models with

regards to coupling, but its simplicity overlooks many important aspects of

Delta-Notch signalling.

This chapter examines another model of lateral inhibition with extensions

that include some of these aspects. Section 5.2 introduces this new continu-

ous model of lateral inhibition, which is based on a discrete model by Owen

and Sherratt [117]. The link between this model and the model from Chapter

4 is also explained. Section 5.3 presents a stability analysis of the model and

derives the instability conditions for which patterns will emerge. The exten-

sions to the model make the stability analysis and the stability conditions
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Figure 5.1: Relationships in the model of lateral inhibition (5.1) by Owen and
Sherratt [117], where jn represents a neighbour cell of cell j.

much more complex, giving many more options for the possible types of solu-

tions obtained. Various results for different conditions are then presented in

Section 5.4, and the conclusion of the chapter is given in Section 5.5.

5.2 The extended model

The model in Chapter 4 was a very simple case, which is clear when examining

the relationship diagram Figure 4.2. A more detailed discrete model by Owen

and Sherratt [117] on cell signalling in epidermal wound healing is based on

the relationship diagram shown in Figure 5.1, where cell jn is a neighbour cell

to cell j.

Production rates of the receptors f and ligands a are influenced by the number

of occupied receptors b. Internalisation is the absorption of the complex by

the cell. The model, which includes entirely positive feedback between the

ligand Transforming Growth Factor α (TGFα) and the receptor Epidermal

Growth Factor Receptor (EGF-R), must be adjusted to reflect the lateral

inhibition of Delta by Notch receptors. The mathematical equations for the

88



levels of unoccupied receptors fj, ligands aj, and occupied receptor complexes

bj for cell j are written:

∂fj
∂t

= −kaājfj + kdbj + Pf (bj)− dffj,

∂aj
∂t

= −kaf̄jaj + kdb̄j + Pa(bj)− daaj, (5.1)

∂bj
∂t

= kaājfj − kdbj − kibj,

with binding, dissociation and internalisation rates defined as ka, kd and ki

respectively, and ligand decay rate da and free receptor decay rate df . These

parameters are all positive. The average value of variable u in a neighbour

of cell j is again denoted by ūj. The functions Pf (bj) and Pa(bj) are the

production rates in cell j of the free receptor and the ligand respectively, and

are defined as the Hill functions

Pa(x) =
C1x

m

Cm
2 + xm

and Pf (x) = C3 +
C4x

n

Cn
5 + xn

, (5.2)

where positive power m or n represents activation, and negative power repre-

sents inhibition, of production by bound receptors. A production increase of

free receptors and decrease of ligand in the presence of bound receptors are

required for lateral inhibition, which is achieved with negative m and positive

n. The continuous equations take the same form as (5.1) but the j subscripts

are removed. As before, the continuous average will take the form

ū(x, t) =

∫ ∞
−∞

w(s)u(x− s, t)ds, (5.3)

with a suitable weight function w(s).
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5.2.1 Nondimensionalisation

The continuous version of this extended model will now be nondimension-

alised. The variables f , a and b represent receptor and ligand concentrations.

The dimensions of these variables shall be denoted N , so that

[f ] = [a] = [b] = N, [ka] = N−1T−1,

[kd] = [ki] = T−1, [da] = [df ] = T−1.

Setting t∗ = df t, f ∗ = fka/df , a∗ = aka/df , and b∗ = bka/df , and then

removing asterisks derives the dimensionless equations

∂f

∂t
= −āf + µb+ pf (b)− f,

∂a

∂t
= −af̄ + µb̄+ pa(b)− δa, (5.4)

∂b

∂t
= āf − µb− λb,

where

δ =
da
df
, µ =

kd
df
, λ =

ki
df
.

The new Hill functions pa(b) and pf (b) are defined as

pa(b) =
C6b

m

Cm
7 + bm

, and pf (b) = C8 +
C9b

n

Cn
10 + bn

, (5.5)

for

C6 =
ka
d2
f

C1, C7 =
ka
df
C2, C8 =

ka
d2
f

C3,

C9 =
ka
d2
f

C4, C10 =
ka
df
C5.
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5.2.2 Reduction of the extended model to the first model

The model (5.4) can be reduced to the Collier model (4.27) from Chapter 4

by making assumptions about the dynamics, as demonstrated by Webb and

Owen [151]. This reduction is briefly shown here to highlight both the link

between the models and the assumptions made by the Collier model. Recall

the Collier equations from Chapter 4

∂n

∂t
= g1(d̄)− n,

∂d

∂t
= ν(g2(n)− d),

g1(x) =
D1x

p

(D2)p + xp
, g2(x) =

D3(D4)q

(D5)q + xq
,

(5.6)

with the Hill functions and some parameters relabelled to avoid confusion.

The extended model equations are now re-stated here:

∂f

∂t
= −āf + µb+ pf (b)− f,

∂a

∂t
= −af̄ + µb̄+ pa(b)− δa, (5.7)

∂b

∂t
= āf − µb− λb,

Firstly, if it is assumed in (5.7) that the free and bound receptor total is

always fixed at some constant, i.e. f + b = r0, then the free receptor variable

f can be eliminated from the model:

∂b

∂t
= ā(r0 − b)− µb− λb,

∂a

∂t
= −a(r0 − b̄) + µb̄+ pa(b)− δa.

(5.8)
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Rearranging these equations, the model becomes

∂b

∂t
= (R(ā)− b)(µ+ λ+ ā),

∂a

∂t
= δ

(
−a(r0 − b̄)

δ
+
µ

δ
b̄+

pa(b)

δ
− a
)
,

(5.9)

where

R(ā) =
ār0

µ+ λ+ ā
. (5.10)

For p = 1 in the Collier model, and for small binding and dissociation terms

a(r0 − b̄) and µb̄ compared to the production and decay terms pa(b) and δa,

the equations (5.9) can be written as

∂b

∂t
= (f(ā)− b)(D2 + ā),

∂a

∂t
= ν

(
pa(b)

δ
− a
)
,

(5.11)

where parameters have been set as δ = ν, r0 = D1, µ+ λ = D2 and therefore

R(ā) = g1(ā). These equations (5.11) share the same homogeneous and inho-

mogeneous steady states with the equations (5.6).

The Collier model (5.6) assumes decrease in ligand creation when Notch is

activated, as the Collier model is for Delta-Notch signalling specifically. The

Owen model (5.4) is more general and allows for alternative reactions by

changing parameters in the production rates of ligand and receptor pa and pf .

Both of these models are able to simulate the cell signalling of angiogenesis.
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5.3 Stability analysis

This section presents a stability analysis of the extended model (5.4). The

steady states ae, fe, be for the model, where ū = ue, give

ae =
(µ+ λ)be

fe
,

pa(be) = λbe + δae, (5.12)

pf (be) = λbe + fe.

Applying a small perturbation of the form ũ(x, t) = Ueαt+ikx to the

base states of f , a and b gives f(x, t) = fe + f̃(x, t), a(x, t) = ae + ã(x, t),

b(x, t) = be + b̃(x, t), and the averages are of the form

ū(x, t) = ue + ũ(x, t)

∫ ∞
−∞

w(s)e−iksds

= ue + ũ(x, t)ŵ(k), (5.13)

where ŵ(k) is the Fourier Transform of w(s). The linearised versions of equa-

tions (5.4) are

(α + ae + 1)f̃ + feŵã− (µ+ F )̃b = 0,

aeŵf̃ + (α + fe + δ)ã− (µŵ +A)̃b = 0, (5.14)

−aef̃ − feŵã+ (α + µ+ λ)̃b = 0,

where A = p′a(be), F = p′f (be).
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Written as a matrix this is:
α + ae + 1 feŵ −(µ+ F)

aeŵ α + fe + δ −(µŵ +A)

−ae −feŵ α + µ+ λ




f̃

ã

b̃

 = 0, (5.15)

giving characteristic equation

α3 + a1α
2 + a2(ŵ)α + a3(ŵ) = 0, (5.16)

where

a1 = fe + ae + 1 + δ + µ+ λ,

a2 = −ŵ2fe(ae+µ)−ŵfeA+δ+(δ+1)(µ+λ)+fe(ae+1+µ+λ)+ae(δ+λ−F),

a3 = −ŵ2fe(ae(λ−F) + µ)− ŵfeA+ (fe + δ)(ae(λ−F) + µ+ λ).

A spatial pattern occurs only for steady states that are stable for homoge-

neous perturbations (where wavenumber k = 0, i.e. ŵ =
∫∞
−∞w(s)ds = 1) and

unstable for inhomogeneous perturbations. The steady state is stable when a

perturbation is applied if the real parts of all three roots of the characteristic

equation are negative.

Roots a, b, c to the above cubic equation define a1 = −(a+ b+ c),

a2(ŵ) = ab + ac + bc, and a3(ŵ) = −abc. If all roots have real negative part

(a, b, c < 0), the following is true:

a1 > 0, a1a2(ŵ)− a3(ŵ) > 0, a3(ŵ) > 0. (5.17)
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Some further analysis was undertaken and proved that these conditions are not

only necessary when all roots have negative real part, but are also sufficient

to ensure it. Note that the first condition a1 > 0 already holds for all k,

as the parameters and steady states are positive. These stability criteria are

now used to find solutions that are stable to homogeneous perturbations and

unstable to inhomogeneous perturbations.

5.3.1 Solutions stable to homogeneous spatial perturba-

tions

The last two stability criteria give a region of stability for homogeneous per-

turbations in the A−F plane, bounded by the lines

S1 : F = λ+ δ +
fe + δ + (δ + 1)(µ+ λ)

ae

+
δ2(1 + µ+ λ) + δ(fe + δae) + λfe(a1 − 1)

ae(a1 − δ)
(5.18)

−fe(a1 − 1)

ae(a1 − δ)
A,

S2 : F = λ+
feλ

δae
+
µ+ λ

ae
− fe
δae
A, (5.19)

where the region of stability is below both these lines. Both lines cross the

F -axis at positive F , and they both have negative gradient determined by

the decay rate ratio δ, where for δ < 1 (df > da), a1−1
a1−δ < 1, making line S1

steeper than line S2. This is the opposite for δ > 1 . Furthermore, for δ < 1

the lines intersect at positive F and for δ > 1 the lines intersect at positive

A. Therefore there are four different forms, two for each of δ < 1, δ > 1, that

the graph plotting both lines can take, as illustrated in Figure 5.2.
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Figure 5.2: Graphs showing the four possible forms of the stability regions made
from the two lines S1 (5.18) and S2 (5.19).

5.3.2 Solutions unstable to inhomogeneous spatial per-

turbations

The stable conditions found in Section 5.3.1 will now be assessed on their

stability for inhomogeneous spatial perturbations. Patterning requires insta-

bility for inhomogeneous perturbations, i.e. for at least one of the three roots

α to have positive real part. Therefore at least one of the following must hold:

a1 < 0, a1a2(ŵ)− a3(ŵ) < 0, a3(ŵ) < 0. (5.20)

a1 is always positive so one of the other two conditions must be met instead.

Consider weight functions w(s) for which the Fourier transform ŵ(k) lies be-

tween κ and 1, for some κ < 0. This is consistent with all the plausible weight

functions discussed earlier in Section 4.3.2, where ŵ(κ) = ŵmin. Therefore
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only solutions to one of the above inequalities for κ < ŵ(k) < 1 need to be

sought. The discrete model had κ = −1, which means the solutions for the

continuous model, with −1 < κ < 0, will be different.

There are two cases where solutions are unstable to inhomogeneous perturba-

tions; the case where a1a2(ŵ)− a3(ŵ) < 0 shall be referred to as Case 1, and

a3(ŵ) < 0 shall be called Case 2. Each case will now be considered separately.

Case 1: σ(ŵ) = a1a2(ŵ)− a3(ŵ) < 0.

σ(ŵ) = a1a2(ŵ) − a3(ŵ) is a quadratic function of ŵ. As all solutions are

stable to homogeneous perturbations, it is known that σ(1) > 0. Consider-

ing the instance where the smallest value of σ(ŵ) within [κ, 1) is σ(ŵ) = 0

(when unstable solutions first emerge), the only possibilities for σ(ŵ), which

are demonstrated in Figure 5.3, are where either the stationary point ŵstat of

the quadratic function σ(ŵ) is a minimum between κ and 1 (Figure 5.3(a)),

a minimum outside [κ, 1) (Figure 5.3(b)), or it is a maximum (Figure 5.3(c)).

Due to the stability condition σ(1) > 0, for each of the above possibilities

there is no more than one root ŵcrit (i.e. σ(ŵcrit) = 0) between κ and 1.

The possibilities make up two disjoint regions of the A− F plane, such that

solutions where σ(ŵ) has a minimum that lies in the interval [κ, 1) (Figure

5.3(a)) make up one region, which shall be called Region 1, and anything else

(Figures 5.3(b), 5.3(c)) makes up the other region, Region 2:

Region 1: σ(ŵ) has a minimum ŵstat that lies within [κ, 1), so that

σ(ŵcrit = ŵstat) = 0 at a repeated root.

Region 2: σ(ŵ) either has a minimum ŵstat that lies outside [κ, 1), or it has

a maximum, so that σ(ŵcrit = κ) = 0 at a single root in [κ, 1).
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(a) (b) (c)

Figure 5.3: The possible forms of σ(ŵ) = a1a2(ŵ) − a3(ŵ) in Case 1, in the
instance where the smallest value of σ(ŵ) in [κ, 1) is σ(ŵ) = 0. (a) Graphs where
the stationary point is a minimum between κ and 1 make up Region 1, (b) graphs
where the stationary point is a minimum outside κ and 1, or (c) where the stationary
point is a maximum, make up Region 2. The critical point ŵcrit where σ(ŵcrit) = 0
is marked with a cross on each graph.

Finding the conditions for σ(ŵ) = 0 for each region finds the inequality con-

ditions for instability; i.e. for σ(ŵ) < 0. There will be different conditions for

each region.

The stationary point ŵstat of σ(ŵ), where σ′(ŵstat) = 0, is given by

ŵstat = − A(a1 − 1)

2(ae(a1 + F − λ) + µ(a1 − 1))
. (5.21)

For Region 1, this point lies between κ and 1, and the quadratic coefficient

−fe(ae(a1 + F − λ) + µ(a1 − 1)) is positive. Region 1 is therefore defined by

three inequalities:

Rκ : F < λ− a1 −
(A+ 2κµ)(a1 − 1)

2κae
,

R1 : F < λ− a1 −
(A+ 2µ)(a1 − 1)

2ae
,

Rq : F < λ− a1 −
µ(a1 − 1)

ae
,
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where Region 2 is the opposite region. A change in stability in Region 1

occurs when σ(ŵstat) = 0. Solving this for F after substituting in ŵstat yields

Us± : F =
−β2 ±

√
β2

2 − 4β1β3

2β1

,

where

β1 = −4a2
e(ae + 1 + µ+ λ),

β2 = 4ae(ae + 1 + µ+ λ)(fe(a1 + δ) + ae(δ + 2λ− a1)

−µ(a1 − 1) + (δ + 1)(δ + λ+ µ)),

β3 = 4(ae(a1 − λ) + µ(a1 − 1))(ae + 1 + µ+ λ)(fe(a1 + δ)

+ae(δ + λ) + (δ + 1)(δ + λ+ µ)) + fe(a1 − 1)2A2.

Region 2 has a change of stability at σ(κ) = 0, giving

Uκ : F = δ + λ+
(1− κ2)fe(a1 + δ)

feκ2 + (ae + 1 + µ+ λ)

+
(1− κ2)feµ(a1 − 1) + fe(a1 − λ)

ae(feκ2 + (ae + 1 + µ+ λ))

+
((δ + 1)a1 − δ)(µ+ λ) + aeδ

2 + a1(δ + feλ)

ae(feκ2 + (ae + 1 + µ+ λ))

− feκ(a1 − 1)A
ae(feκ2 + (ae + 1 + µ+ λ))

.

Instability arises when σ(ŵcrit) < 0; this is when Us− < F < Us+ in Region 1,

and F > Uκ in Region 2. The parts of these new unstable regions of Regions

1 and 2 that are also stable to homogeneous perturbations are denoted Region

1I and Region 2I.
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Case 2: a3(ŵ) < 0.

This case can be treated similarly to Case 1, as homogeneous stability again

sets a3(1) > 0, and a3(ŵ) is also a quadratic function. The stationary point

of a3(ŵ) is at

ŵstat = − A
2(ae(λ−F) + µ)

.

Similarly to Regions 1 and 2 for Case 1, Regions 3 and 4 of the A−F plane

are described as

Region 3: a3(ŵ) has a minimum ŵstat that lies within [κ, 1), so that a3(ŵcrit =

ŵstat) = 0 at a repeated root.

Region 4: a3(ŵ) either has a minimum ŵstat that lies outside [κ, 1), or it has

a maximum, so that

a3(ŵcrit = κ) = 0 at a single root in [κ, 1).

In Region 3, the stationary point ŵstat of a3(ŵ) satisfies ŵstat ∈ [κ, 1), and the

quadratic coefficient fe(ae(F − λ)− µ) > 0. This gives Region 3 as

Tκ : F > λ+
2κµ+A

2κae
,

T1 : F > λ+
2µ+A

2ae
,

Tq : F > λ+
µ

ae
,

and Region 4 is the opposite of Region 3. The change of stability in Region

3 occurs where a3(ŵstat) = 0:

Vs± : F = λ+
1

2ae

(
2µ+ λ±

√
λ2 − feA2

fe + δ

)
,
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and where a3(κ) = 0 for Region 4:

Vκ : F = λ+
fe((1− κ2)µ+ λ) + δ(µ+ λ)

ae((1− κ2)fe + δ)
− κfeA
ae((1− κ2)fe + δ)

.

Instability occurs where either F < Vs− or F > Vs+ in Region 3, and F > Vκ

in Region 4. The regions in these which are also stable to homogeneous per-

turbations are called Region 3I and Region 4I.

To summarise, the four regions of the A− F plane where pattern formation

can occur are:

Region 1I: F < S1, F < S2,

F < Rκ, F < R1, F < Rq, (5.22)

Us− < F < Us+ ,

Region 2I: F < S1, F < S2,

F > Rκ OR F > R1 OR F > Rq, (5.23)

F > Uκ,

Region 3I: F < S1, F < S2,

F > Tκ, F > T1, F > Tq, (5.24)

F < Vs− OR F > Vs+ ,

Region 4I: F < S1, F < S2,

F < Tκ OR F < T1 OR F < Tq, (5.25)

F > Vκ.

These regions with selected parameter values are illustrated in Figure 5.4.
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(a) Case 1 (b) Case 2

Figure 5.4: Plots of the stability conditions on the (A,F) plane for parameter
values µ = 4, λ = 2, δ = 1/3, fe = 90, be = 90, and κ = −0.4726; consistent
with the triangle weight function. The shaded regions are the values of A and F
for which patterns form; i.e. stability occurs for homogeneous spatial perturbations
of a steady state and instability occurs for inhomogeneous perturbations. The four
pattern-forming regions are shown: (a) Region 1I in blue, Region 2I in red, (b)
Region 3I in blue and Region 4I in red.

5.3.3 Bifurcation analysis

A change of stability occurs when the real part of the growth rate α passes

through zero. Therefore, an insight into the types of bifurcations that occur

is gained by setting α = iγ so that Re(α) = 0 and substituting into the

characteristic equation (5.16):

− iγ3 − a1γ
2 + a2iγ + a3 = 0. (5.26)

Equating real and imaginary parts gives

γ2 =
a3

a1

, (5.27)

a2 = γ2 =
a3

a1

. (5.28)
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For γ 6= 0 the imaginary part of α exists, which means there is an oscillatory

Hopf bifurcation here. There is a change of stability at a1a2 − a3 = 0 which

corresponds to the instability condition σ(ŵ) = a1a2(ŵ)− a3(ŵ) < 0 in Case

1 above.

For γ = 0 there is a change of stability at a3 = 0 and there is no imagi-

nary part of α here. This corresponds to Case 2 with instability condition

a3(ŵ) < 0, and the bifurcation is stationary.

It is also worth noting that for oscillatory solutions (i.e. γ 6= 0), a3 > 0

is also required as γ2 = a3/a1 and a1 > 0 always. Therefore oscillatory so-

lutions arise only where the instability condition is met in Case 1 and the

stability condition is met in Case 2.

5.4 Simulation of the extended lateral inhibi-

tion model

5.4.1 Parameter values

Before running the simulations, the constants of the Hill functions pa(b) and

pf (b) are set specific values to make navigation of the A − F plane easier,

as suggested by Owen and Sherratt [117]. Recall the Hill functions given in

equation (5.5) are

pa(b) =
C6b

m

Cm
7 + bm

, and pf (b) = C8 +
C9b

n

Cn
10 + bn

, (5.29)
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with

A = p′a(be) =
mbm−1

e

Cm
7 + bme

(C6 − pa(be)), (5.30)

and F = p′f (be) =
nbn−1

e

Cn
10 + bne

(C9 − pf (be) + C8). (5.31)

The last two steady states from (5.12) are

pa(be) = λbe + δae, pf (be) = λbe + fe,

which by substituting into (5.29) give

C6 = (λbe + δae)
Cm

7 + bme
bme

, and C9 = (λbe + fe − C8)
Cn

10 + bne
bne

. (5.32)

In the absence of ligand, the number of bound receptors b = 0, and

pf (0) = f0, (5.33)

where f0 is the regular number of free receptors when unstimulated by ligand.

With (5.29)2, this gives C8 = f0. Further, selecting C7 = C10 = be sets (5.32)

as

C6 = 2(λbe + δae), C9 = 2(λbe + fe − f0), (5.34)

and A and F are now linear functions in terms of m and n of the form

A = p′a(be) =
m(λbe + δae)

2be
and F = p′f (be) =

n(λbe + fe − f0)

2be
. (5.35)

Experimental data taken from Waters et al. [148], Oberg et al. [110] and

Pandiella and Massague [120] (along with parameters used by Owen and Sher-

104



ratt [117]) suggests the following parameter values:

ka = 0.0003 molecule−1min−1, kd = 0.12 min−1, ki = 0.019 min−1,

da = 0.01 min−1, df = 0.03 min−1,

fe = 3000, be = 3000, f0 = 3000, ae =
kd + ki
ka

=
1390

3
,

recalling that fe, be, ae represent the steady states of the numbers of free re-

ceptors, bound receptors, and ligands. The lower number of ligands is caused

by the lower production rate of ligand compared to the production rate of free

receptors, which results in higher numbers of free receptors in neighbouring

tissue and so ligands are constantly being bound. Using some of this data

where appropriate, the parameters of the dimensionless model (5.4) are set as

µ = 4, λ = 2, δ =
1

3
,

fe = 90, be = 90, f0 = 90, ae = µ+ λ = 6,

for all numerical simulations in this chapter, so that the stability of all solu-

tions are determined by the powers of the Hill functions (m and n) only.

5.4.2 Numerical Simulation

The numerical simulation of this extended model of lateral inhibition is similar

to the simulation of the first model performed in Section 4.5. The extended

model also uses a fourth-order Runge-Kutta scheme; however this time all

three variables f , a and b are used in a spatial average function at some

point in the model. Therefore, any spatial element of the simulation must

take into account all three variables. For example, the periodic boundary

conditions that all simulations in this chapter use must set f(L+h, t) = f(0, t),

105



a(L + h, t) = a(0, t), b(L + h, t) = b(0, t), for domain size L and mesh size h.

The initial conditions here are set at or near the steady states:

f(x, 0) = fe − r(x), a(x, 0) = ae, b(x, 0) = be, (5.36)

where for each x, r(x) is a random number between 0 and 0.1.

All simulations presented in this chapter use the triangle weight function

for the average neighbour function. The results of the continuous extended

model of lateral inhibition show similarities to results of the simpler model

from Chapter 4; however, the stability analysis this time yielded more stability

conditions, each of which behaves differently. The brief bifurcation analysis in

Section 5.3.3 shows that oscillatory-type patterns are expected for Regions 1I

and 2I, and stationary patterns are expected in Regions 3I and 4I. Numerical

results were obtained for Regions 2I, 3I, and 4I, with Region 1I unable to pro-

duce pattern-forming solutions for suitable parameters, as shown by Figure

5.4. A particular stationary pattern observed in Region 4I, shown in Figure

5.5, is the most similar to the behaviour seen in the first model. This pattern

emerges the same way as the pattern from the first model; the perturbation

grows and forms a wave; however, after the solution reaches a particular am-

plitude, the edges of the wave peaks continue to rise without the middle of the

wave peak and form spikes for the ligand and free receptor solutions, but not

for the bound receptor solutions. The free f and bound b receptor solutions

have the opposite pattern to the ligand a solutions, but much higher values,

as shown in Figure 5.6.

The spikes in the solutions are likely caused by the conflicting terms in the

model, in particular the equation for f . When binding first occurs and the

number of bound receptors b starts to rise, this causes the number of free
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receptors, f , to fall slightly at the same time as the free receptors become

bound (from the binding term −āf). Once receptors are bound, they induce

production of free receptors, so the number of free receptors starts to rise

again (from the production term pf (b)). This causes a high number of free

receptors where there is a high number of bound receptors, but the number of

free receptors is not as high as it would be without the binding term. This be-

haviour presumably occurs in the discrete model as well, although this hasn’t

been proven. The wave peaks have a dip in the middle as a result, where the

effect of the binding term is larger and there are actually higher levels of free

receptors on the peak edges, where there are slightly lower levels of bound

receptors.

Stationary patterns were also observed in Region 3I. This pattern is similar to

patterns in Region 4I except the pattern undergoes a type of amplitude mod-

ulation where the actual amplitude is maintained, but the peak and trough

values vary across space, as depicted in Figure 5.7(a). Figure 5.7(b) shows a

solution in Region 4I that is closer to stability, which has a regular sinusoidal-

type wave with the amplitude decreasing as the solution approaches stability,

in agreement with the first model results in Chapter 4.

Given that pattern-forming solutions were not obtained for Region 1I, the

only oscillatory solutions obtained were in Region 2I. A simulation in this

region shows evidence of a Hopf bifurcation; the wave first oscillates around

the base state ae as it grows in amplitude, and as it approaches the limit cycle

at its maximum amplitude it stops oscillating and becomes a travelling wave.

A pseudocolor plot of this solution over space and time is shown in Figure

5.8. As expected from the bifurcation analysis, instability for inhomogeneous
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(a) t=0 (b) t=3

(c) t=5 (d) t=14

Figure 5.5: Results for the ligand a of the numerical simulation of the extended
lateral inhibition model within Region 4I, for (a) t=0, (b) t=3, (c) t=5 and (d)
t=14, over a domain of 30 average cell lengths and with periodic boundary condi-
tions. This and all other simulations use the triangle weight function. The powers
of the Hill functions are set as m = −20, n = 3.
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Figure 5.6: Final patterns of a simulation in Region 4I with periodic boundary
conditions and m = −20, n = 3, for (a) free receptor f , (b) ligand a, and (c)
bound receptor b.

(a) Region 3I (b) Region 4I

Figure 5.7: (a) Dominant pattern for ligand a in Region 3I at m = −20, n = 7.
There appears to be some underlying, larger wavelength related to the amplitude
of the main pattern. (b) Pattern for ligand a in Region 4I close to stability with
m = −20, n = 1.1, which has the form of a sinusoidal wave.
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Figure 5.8: Region 2I results of oscillatory solutions at different times for ligand
a, for parameter values m = −24, n = 0.2, for a domain of 30 cells and times
0 < t < 569. (a) The wave grows and oscillates around its base state ae = 6. (b)
As the solution approaches its limit cycle at around t = 400, the wave begins to
travel in space; the direction depends on the random initial condition. Once the
stable limit cycle is reached, the wave continues to travel at a constant speed (from
t = 500).

perturbations in Region 3 or 4 as well as in Region 2 (i.e. where Regions 2I

and 3I, or 2I and 4I overlap) produces a stationary pattern similar to patterns

observed in Regions 3I and 4I.

Figure 5.9 is a bifurcation diagram for Region 4, obtained by finding the max-

imum and minimum values of ligand a for different values of the parameter n

once a stable final solution is reached. The diagram suggests a supercritical

pitchfork bifurcation.

Just as in the first model, this model can also set parameters as spatial func-

tions to restrict the formation of a pattern, just like the growth of blood ves-

sels when exposed to VEGF in only one area. For the localised results shown

in Figure 5.10, parameters can be set using bifurcation diagram Figure 5.9;

m = −20 sets the region as Region 4I and a spatially dependent function for
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Figure 5.9: A bifurcation diagram of results from Region 4 showing the minimum
and maximum values of ligand a once a stable final solution is reached, for different
values of bifurcation parameter n, with m = −20.

n determines the stability for each position. The VEGF function n(x) is set

in Figure 5.10 as

n(x) = 3e−
(x−10)2

5 . (5.37)

The result is similar to the earlier model from Chapter 4; the stable and

unstable areas are still clear, and the perturbation does not grow in the stable

areas. However, the peaks with the largest amplitude have spikes on their

edges, as seen earlier in Figure 5.5.

5.5 Conclusion

The extension of the Collier model that was developed by Owen and Sherratt

[117] considered additional and important factors such as production rates

of ligand and receptors, and internalisation of active receptors. The Collier

model only included the minimum information necessary for a juxtacrine sig-

nalling system; the neighbour feedback terms and the decay terms. The Owen
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(a) t=0 (b) t=6

(c) t=9 (d) t=20

Figure 5.10: The pattern of ligand activity in Region 4I with localised stability
as expected when only a small area of endothelium in blood vessels are exposed
to angiogenic factor, at times (a) t=0, (b) t=6, (c) t=9, (d) t=20. The VEGF

function is set as n(x) = 3e−
(x−10)2

5 , for VEGF source at x = 10.
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model also considered free and bounded receptors separately, and therefore

had more in-depth neighbour interaction terms than the Collier model, which

only defined bound receptors by assuming there is a fixed number of total

receptors and no new receptors are produced. “Production” of n in the Collier

model is in fact binding of Notch receptors. Although the model was origi-

nally used by Owen and Sherratt to model signalling used in wound healing

with a purely positive feedback loop, the effect of bound receptors on ligand

production levels was set as negative in the continuous model (5.4) by choos-

ing the production function of Delta, Pa(b), to be a decreasing Hill function to

achieve results which simulate lateral inhibition. The added detail of this ex-

tended model meant there were multiple stability conditions which produced

several regions of stability, each with different behaviours.

The stationary patterns from Regions 3I and 4I were the most similar to the

patterns of the earlier continuous Delta-Notch model from Chapter 4. The

results show alternating high and low ligand level areas, with both the free

and bound receptor results taking high values at low ligand levels as bound

receptors have a positive influence on the production of free receptors. How-

ever, when a large enough amplitude is reached, the ligand and free receptor

results form spikes on the edges of each peak. Changes to the mesh size proved

that a coarse mesh was not the cause. Consideration of the model mechanics

suggested that the conflicting terms causing both increase and decrease of free

receptor levels at the same location could be the culprit.

Solutions which emerge from other instability regions do not reflect the be-

haviour expected of a cell signalling system. Oscillatory solutions are found

in Regions 1I and 2I; although only solutions in Region 2I were obtained. The
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behaviour of Region 1I could be vastly different from Region 2I, especially

considering the reason results could not be found for Region 1I was because

of the extreme parameter values required. However, it is still known that

these oscillatory results, whether they feature a travelling wave or an oscillat-

ing standing wave, are not biologically feasible as a representation of Notch

signalling.

The model still overlooks some important biological factors, namely those

related to the intracellular kinetics, such as the transcription and translation

times of ligand and receptor proteins, and also of internalised ligand-receptor

complexes. An extended version of this work could investigate these delays

caused by gene expression and their effect on the final solutions. Such models

which incorporate delay terms have been studied by Veflingstad et al. [142]

and Momiji and Monk [104], which were studied when the authors noticed a

lack of delays in existing lateral inhibition models. These models found ad-

ditional homogeneous oscillations emerge before a stationary steady state is

reached. Another potential extension to this model could be to consider the

behaviour and distribution of ligands and receptors on the cell membrane, as

this model currently assumes a homogeneous distribution of ligands and re-

ceptors, where each cell is affected by exactly half of the ligands and receptors

of each neighbour cell. This is unlikely when considering irregular cell distri-

butions, as is the aim of this work. Webb and Owen derived a discrete model

which tracked receptor and ligand levels on individual membrane sections of

individual cells [152]. This would be difficult to implement into a continuous

model, but the membrane could at least be split into the left and right sides

of the cell, with the left side only interacting with the right side of the left

cell and the right side interacting with the left side of the right cell.
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An important issue in the cell signalling models which must be addressed is

the distinction between active and inactive/inhibited areas. The importance

of this distinction will become clearer later in Chapter 8 when a continuous

lateral inhibition model is coupled to a model of angiogenesis and the en-

dothelial tissue needs to be defined as either activated or not activated for

migration. As Wearing et al. [150] indicated, the discrete model solutions

show ligand and receptor levels which mostly take one of two values; the cell

either has a high level of Delta and is activated, or has a lower level of Delta

and is inhibited. The activation/inhibition grouping in the continuous models

are less clear; when the pattern switches from high Delta to low Delta over

space a continuum pattern will have a changeover period where there will be

medium Delta levels near the homogeneous steady state. However, impos-

ing a threshold on the Delta levels in the angiogenesis model where meeting

this threshold promotes migration of endothelial tissue will distinguish active

from inactive endothelial tissue. The migration rate could increase as the

Delta levels rise, as observed in vivo.

These continuous lateral inhibition models introduced in Chapters 4 and 5

can be used in a model of angiogenesis to control the onset of angiogenesis

and also to control the branching along new capillaries. Using this method

for new capillary selection will mean the angiogenesis model will not be as

restrictive with regards to cell sizes and locations. However, the cell signalling

occurs along the moving capillary surface the whole time during angiogenesis,

and the models developed in these chapters only simulated the cell signalling

in Cartesian coordinates. The next part of this work will simulate a continu-

ous model of lateral inhibition on a surface.
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Chapter 6

Modelling lateral inhibition on a

surface

6.1 Introduction

The continuous Delta-Notch model formulated in Chapter 4 was simulated on

both one-dimensional and two-dimensional domains. The main objective of

this thesis is to use a Delta-Notch model to simulate the lateral inhibition sig-

nalling between endothelial cells along a capillary surface that is undergoing

angiogenesis. Therefore, to be able to couple this model with an angiogenesis

model, it must be able to be simulated on a moving surface. The method

used to simulate the model uses phase field theory so that the surface approx-

imation can be applied easily to the phase field angiogenesis model that will

be used. Motivation for choosing a phase field model for angiogenesis will be

discussed later in Chapter 7.

There are other methods for defining PDEs on surfaces, such as the method

defined by Bertalmío et al. [16] which uses a level set to define the surface,
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and can make the computation easier by performing all calculations within

a narrow band around the surface. Another technique involves mapping so-

lutions on a line to the surface. While some of these methods will also be

suitable, in this case none will be as easily applied as the phase field approx-

imation method, and may be complicated to implement in an angiogenesis

model which will already have the complication of two coupled models.

The method used here is called a phase field approximation method, sug-

gested by Ratz and Voight [125], which defines the Delta-Notch model over

the whole domain and uses a spatial function that takes the value of zero

everywhere except on and near the blood vessel interface to approximate the

model on this interface. This diffuse interface method is ideal for when the

interface is not known analytically and is defined using a so-called phase field

parameter or order parameter.

In this chapter, Section 6.2 will briefly recall the idea of phase field modelling

already covered in Chapter 3, Section 3.4, although more detail is given later in

Chapter 7, when the phase field angiogenesis model is presented. Section 6.3

describes the phase field approximation method and performs an asymptotic

analysis on such an approximation of a set of simple reaction-diffusion equa-

tions, to demonstrate that the approximation reduces to the exact original

equations when the interface parameter ε approaches zero. A similar surface

approximation and asymptotic analysis of the continuous Delta-Notch model

from Chapter 4 is then given. The numerical results of this surface Delta-

Notch model on a variety of surfaces are shown in Section 6.4, and some

concluding remarks are presented in Section 6.5.
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6.2 Phase field modelling

Many physical systems have two or more phases, separated by an interface

between the phases. It is this transition between phases which can be difficult

to simulate numerically, especially if the transition is sudden. One way to

simulate this is to instead represent the interface between phases as a smooth

interface, which changes from one phase to another gradually rather than

suddenly. The interface is prescribed a particular thickness, often represented

with the parameter ε.

Models involving phases sometimes use a parameter to define the phases.

In this chapter, the parameter φ will be known as the phase field or order

parameter, and holds a particular value in each of the phases. Recall Figure

3.1 in Chapter 3, where an example of a phase field parameter was given for

both sharp and diffuse interfaces.

In this chapter the phase field parameter will be φ = 0 outside the surface and

φ = 1 inside. A tanh function is a common choice for a phase field parameter.

Here, φ will take the form

φ(x) = ϕ
(r
ε

)
=

1

2

(
1− tanh

(
s(x)

ε

))
, (6.1)

where ε is proportional to the interface thickness, and r is the distance of

x from the surface, with r positive outside the surface and negative inside.

s(x) = 0 is the equation of the surface, e.g. for a unit circle,

s(x) = x2 + y2 − 1 = 0. φ is a decreasing function of s(x), and the graph of

φ(s(x)) is given in Figure 6.1.
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Figure 6.1: The order parameter φ(s(x)), given by equation (6.1), with φ = 0
outside the surface s(x) = 0 and φ = 1 inside the surface, for ε = 0.2.

6.3 The phase field approximation method

The details of the phase field approximation method by Ratz and Voight [125]

are described in this section. A function B(φ) is introduced, which has the

following form:

B(φ) = φ2(1− φ)2, (6.2)

which sets B = 0 everywhere except on the surface (i.e. B(φ = 0) = 0,

B(φ = 1) = 0, B(φ = 1
2
) = 1

16
). B(φ) can be altered depending on the values

of φ in the different phases, for example, for phases at φ = 1 and φ = −1

instead, set

B(φ) = (φ+ 1)2(φ− 1)2. (6.3)

The inclusion of this function B(φ) ensures that the equations are only de-

fined on the given interface. The graph (6.2) of B(φ(x)), both in terms of φ

and in terms of s(x), is given in Figure 6.2.

A matched asymptotic analysis of a phase field approximation, first demon-
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(a) (b)

Figure 6.2: The graphs of B(φ(s(x))) = φ2(1 − φ)2, for ε = 0.2, in terms of
(a) φ, where B = 0 in phases φ = 0, φ = 1, and (b) s(x), where B = 0 everywhere
except at and near the interface s(x) = 0. Note that as ε→ 0, B(s(x)) will become
a delta function, with a non-zero value at s(x) = 0 only.

strated by Fife [60] and Caginalp [35], is conducted when the suitability of

the approximation must be demonstrated. The aim is to show that the phase

field approximation of the lateral inhibition model across the whole domain

reduces to the original model on the surface as ε→ 0. To introduce the pro-

cedure of the matched asymptotic analysis, the first example will be a simple

reaction-diffusion model.

6.3.1 Reaction-diffusion equations

The general form of a reaction diffusion system is

∂u

∂t
= ∇2

Γu+ f(u, v) on Γ,

∂v

∂t
= D∇2

Γv + g(u, v) on Γ,

(6.4)
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with chemical concentrations u, v, reaction terms f(u, v), g(u, v), and diffusion

coefficient D. The phase field approximation is then given as

B(φ)
∂ũ

∂t
= ∇ · ((δ(ε) +B(φ))∇ũ) +B(φ)f(ũ, ṽ) on Ω,

B(φ)
∂ṽ

∂t
= D∇ · ((δ(ε) +B(φ))∇ṽ) +B(φ)g(ũ, ṽ) on Ω,

(6.5)

where the presence of the parameter δ in the first term on the right-hand side

ensures dissipation of the variables away from the interface, but is negligible

nearer the interface as δ(ε) � ε. The first step in the matched asymptotic

analysis is to redefine variables in a new coordinate system which represent

the directions tangent and normal to the interface Γ:

x = X(s, ε) + r(x, ε)n(s, ε), (6.6)

where X : S → R represents the surface for s ∈ S, n(s, ε) is the unit normal

to the surface and r is the normal component of the location x. Variables

u(x, t, ε), v(x, t, ε) and φ(x, ε) are redefined as

û(r, s, t, ε) = u(x, t, ε) = u(X + rn, t, ε), (6.7)

v̂(r, s, t, ε) = v(x, t, ε) = v(X + rn, t, ε), (6.8)

φ̂(r, s, ε) = φ(x) = φ(X + rn) = ϕ
(r
ε

)
. (6.9)

Define the stretched variable z = r
ε
to be able to focus on the diffuse interface.

For the purposes of the matched asymptotic expansions, the diffuse interface
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is labelled here as the “inner boundary layer”. Using this new variable z:

U(z, s, t, ε) = û(r, s, t, ε), (6.10)

V (z, s, t, ε) = v̂(r, s, t, ε), (6.11)

Φ(z, s, ε) = φ̂(r, s, ε) = ϕ(z), (6.12)

and the derivatives must also be rewritten in the new coordinates:

∇u = ∇ΓU +
∂U

∂r
n

= ∇ΓU + ε−1∂zUn, (6.13)

∇2u = ∇ · (∇ΓU + ε−1∂zUn)

= ∇2
ΓU +

∂

∂r
(ε−1∂zU) + ε−1(∇ · n)∂zU

= ∇2
ΓU + ε−2∂2

zU + ε−1κ∂zU, (6.14)

with a similar definition for ∇v, ∇2v. κ = ∇ · n is the mean curvature (i.e.

the sum of the principal curvatures) of Γ. Using the Laplacian (6.14) above,

and assuming that δ(ε) << ε,

∇ · ((B(φ) + δ(ε))∇u) =B(Φ)∇2
ΓU + ε−2∂z((B(Φ) + δ(ε))∂zU)

+ ε−1κ(B(Φ) + δ(ε))∂zU +O(ε),
(6.15)

as B(φ) varies normal to the surface only. The time derivatives are

∂tu = ∂tU + ∂sU
∂s

∂t
+ ∂rU

∂r

∂t
, ∂tv = ∂tV + ∂sV

∂s

∂t
+ ∂rV

∂r

∂t
, (6.16)

which, for a surface that is fixed over time, reduce to

∂tu = ∂tU, ∂tv = ∂tV. (6.17)
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For small ε, the series expansions for all of the variables and all of the new

coordinates are

u(x, t; ε) = u0(x, t) +O(ε), (6.18)

û(r, s, t; ε) = û0(r, s, t) +O(ε), (6.19)

U(z, s, t; ε) = U0(z, s, t) + εU1(z, s, t) + ε2U2(z, s, t) +O(ε3), (6.20)

v(x, t; ε) = v0(x, t) +O(ε), (6.21)

v̂(r, s, t; ε) = v̂0(r, s, t) +O(ε), (6.22)

V (z, s, t; ε) = V0(z, s, t) + εV1(z, s, t) + ε2V2(z, s, t) +O(ε3), (6.23)

φε(x) = φ0(x) +O(ε), (6.24)

φ̂(r, s; ε) = φ̂0(r, s) +O(ε), (6.25)

Φ(z, s; ε) = Φ0(z, s) = ϕ(z), (6.26)

The third and sixth equations are written out to a higher order because they

will be multiplied by terms of orders ε−1 and ε−2; therefore these higher order

terms are required. The inner boundary layer mentioned when the stretched

coordinate was introduced is the area close to the interface Γ and is defined

by −∞ < z <∞. The outer layer is the term used for the rest of the domain

not in the immediate neighbourhood of Γ. In the transition region between

these outer and inner layers it is assumed that the two expansions will give

the same result, accomplished by requiring that the value of U0 while leaving

the boundary layer (z → ±∞) is equal to the value of û0 while entering the

boundary layer (z → ±0). Therefore the matching condition

lim
z→±∞

U0(z, s, t) = lim
z→±0

û0(r, s, t) (6.27)
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holds, and similarly

lim
z→±∞

V0(z, s, t) = lim
z→±0

v̂0(r, s, t), (6.28)

lim
z→±∞

Φ0(z, s) = lim
z→±0

φ̂0(r, s). (6.29)

As φ0 = 1 inside the surface and φ0 = 0 outside, the matching conditions give

lim
z→−∞

Φ0(z, s) = lim
z→−0

φ̂0(r, s) = 1 (6.30)

and

lim
z→+∞

Φ0(z, s) = lim
z→+0

φ̂0(r, s) = 0. (6.31)

Substituting (6.15) and expansions (6.20), (6.23) and (6.26) into the phase

field approximation (6.5) gives

B(Φ0)∂tU0 = ε−2∂z(B(Φ0)∂zU0) + ε−1(∂z(B(Φ0)∂zU1) + κB(Φ0)∂zU0)

+∂z(B(Φ0)∂zU2) + κB(Φ0)∂zU1 +B(Φ0)∇2
ΓU0

+δ(ε)(ε−2∂2
zU0 + ε−1∂2

zU1 + ε−1κ∂zU0)

+B(Φ0)f(U0, V0) +O(ε), (6.32)

B(Φ0)∂tV0 = D[ε−2∂z(B(Φ0)∂zV0) + ε−1(∂z(B(Φ0)∂zV1) + κB(Φ0)∂zV0)

+∂z(B(Φ0)∂zV2) + κB(Φ0)∂zV1 +B(Φ0)∇2
ΓV0

+δ(ε)(ε−2∂2
zV0 + ε−1∂2

zV1 + ε−1κ∂zV0)]

+B(Φ0)g(U0, V0) +O(ε). (6.33)

The terms of order ε−2 find ∂zU0 = 0 and ∂zV0 = 0, which give ∂zU1 = 0 and

∂zV1 = 0 from the terms of order ε−1. Using both of these, the terms of order
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ε0 give

B(Φ0)∂tU0 = ∂z(B(Φ0)∂zU2) +B(Φ0)∇2
ΓU0 +B(Φ0)f(U0, V0),

B(Φ0)∂tV0 = D[∂z(B(Φ0)∂zV2) +B(Φ0)∇2
ΓV0] +B(Φ0)g(U0, V0).

(6.34)

Integrating these equations with respect to z gives∫ ∞
−∞

B(Φ0)dz∂tU0 =

∫ ∞
−∞

B(Φ0)dz∇2
ΓU0 +

∫ ∞
−∞

B(Φ0)dzf(U0, V0),∫ ∞
−∞

B(Φ0)dz∂tV0 = D

∫ ∞
−∞

B(Φ0)dz∇2
ΓV0 +

∫ ∞
−∞

B(Φ0)dzg(U0, V0).

(6.35)

The second term in each equation disappeared as

lim
z→∞

B(Φ0) = lim
z→−∞

B(Φ0) = 0. (6.36)

Dividing by
∫∞
−∞B(Φ0)dz gives

∂tU0 = ∇2
ΓU0 + f(U0, V0),

∂tV0 = D∇2
ΓV0 + g(U0, V0).

(6.37)

With

lim
z→±∞

U0 = lim
r→±0

u0 = u0|Γ, lim
z→±∞

V0 = lim
r→±0

v0 = v0|Γ, (6.38)

the equations (6.37) is simply the reaction diffusion system (6.4) on the in-

terface, which shows that the phase field approximation (6.5) over the whole

domain converges to the original model on the interface when ε→ 0.

Now that the asymptotic analysis process has been demonstrated, a surface

approximation of the Delta-Notch model from Chapter 4 shall be derived
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and an asymptotic analysis on the approximation will be used to prove its

suitability.

6.3.2 The lateral inhibition model

A continuous Delta-Notch model based on the model by Collier et al. [45]

was derived in Chapter 4. The equivalent model on a moving surface Γ takes

the form

∂n

∂t
+ V · ∇Γn = f(d̄)− n,

∂d

∂t
+ V · ∇Γd = ν(g(n)− d), on Γ

f(x) =
A1x

p

ap + xp
, g(x) =

A2b
q

bq + xq
,

(6.39)

where V is the velocity of the surface and the neighbour function has the form

ū(x, t) =

∫ ∞
−∞

w(y)u(x− y, t)dy. (6.40)

The presence of this nonlocal neighbour term adds a degree of complexity to

the asymptotic analysis; thus the corresponding phase field approximation of

the model across the whole domain has a different form to the approximation

for the reaction-diffusion model given in Section 6.3.1. The absence of a

Laplacian here and the presence of the functions f and g does not give the

desired dissipative behaviour away from the interface. Therefore a Laplacian

is introduced outside the inner boundary layer to fix this. The approximation
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becomes

B(φ)
∂ñ

∂t
+ V · ∇(B(c)ñ) = B(φ)f̃B(d̄B)−B(φ)ñ+ δA1∇2ñ,

B(φ)
∂d̃

∂t
+ V · ∇(B(c)d̃) = ν(B(φ)g̃(ñ)−B(φ)d̃) + δA2∇2d̃,

f̃B(x) =
A1x

p

(Ca)p + xp
, g̃(x) =

A2b
q

bq + xq
,

(6.41)

where

ūB(x, t) =

∫ ∞
−∞

B(φ(x− y))w(y)u(x− y, t)dy, (6.42)

and C is a coefficient to be determined from the asymptotic analysis so that

the approximation will reduce to the surface model. The model is transformed

into the tangential and normal coordinates using

x = X(s, ε) + r(x, ε)n(s, ε), (6.43)

and the stretched variable over the inner boundary layer is introduced again

as z = r
ε
. As the velocity V is defined only on the interface, it is uniformly

stretched over the inner boundary layer and as a result V is constant in the

direction of z.

The variables n, d and φ are redefined for equations (6.41) using these co-

ordinates. They are redefined in the same way as the variables u, v and φ

in the reaction diffusion model (6.4) were redefined in Section 6.3.1, and the

127



gradient terms on the left-hand sides of the equations take the form

V · ∇(B(φ)n) = V · (B(Φ)∇ΓN +
∂(B(Φ)N)

∂r
n)

= V · (B(Φ)∇ΓN + ε−1∂z(B(Φ)N)n), (6.44)

V · ∇(B(φ)d) = V · (B(Φ)∇ΓD +
∂(B(Φ)D)

∂r
n)

= V · (B(Φ)∇ΓD + ε−1∂z(B(Φ)D)n), (6.45)

using equation (6.13). However, the nonlocal neighbour term f̃B(d̄B) must

also be redefined in the new coordinates. This can be achieved using a version

of Lemma 2.1 from Du et al. [54]:

Lemma. Let Γ be a smooth surface of dimension N − 1, within some N-

dimensional domain Ω. Let Γε be the phase field approximation of the surface

Γ which converges to Γ as ε→ 0. Let d be the signed distance from Γ and let

p be an integrable function and g be a continuous function. Furthermore let

p and g satisfy

max
|t|>s
|p(t)t| 6 C

sm
m > 1. (6.46)

Then

lim
ε→0

1

ε

∫
Ω

p

(
d(x)

ε

)
g(x)dx =

∫ ∞
−∞

p(t)dt

∫
Γ

g(z)dS(z). (6.47)

Applying this Lemma to the nonlocal term in the Delta-Notch model yields:

lim
ε→0

d̄B(x, t) = lim
ε→0

∫
Ω

B

(
ϕ

(
x− s

ε

))
w(s)d(x− s)ds

= ε

∫ ∞
−∞

B(ϕ(x− r))dr
∫

Γ

w(s)d(x− s)dS

= C

∫
Γ

w(s)d(x− s)dS = Cd̄(x, t), (6.48)
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where C is set as

C = ε

∫ ∞
−∞

B(ϕ(x− r))dr.

The function f̃B can now be rewritten

f̃B(d̄B) =
A1d̄

p
B

(Ca)p + d̄pB
=

A1C
pd̄p

Cp(ap + d̄p)
= f(d̄), (6.49)

and the model (6.41) in the new coordinates becomes

B(Φ0)∂tN0 + V · [B(Φ0)∇ΓN0 + ε−1∂z(B(Φ0)N0)n + ∂z(B(Φ0)N1)n]

= B(Φ0)f(D̄0)−B(Φ0)N0 +O(ε), (6.50)

B(Φ0)∂tD0 + V · [B(Φ0)∇ΓD0 + ε−1∂z(B(Φ0)D0)n + ∂z(B(Φ0)D1)n]

= ν(B(Φ0)g(N0)−B(Φ0)D0) +O(ε). (6.51)

Recalling that V is constant in the direction of z, integrating the ε0 terms

gives

∫ ∞
−∞

B(Φ0)dz∂tN0 +

∫ ∞
−∞

B(Φ0)dzV · ∇ΓN0

=

∫ ∞
−∞

B(Φ0)dzf(D̄0)−
∫ ∞
−∞

B(Φ0)dzN0 +O(ε), (6.52)∫ ∞
−∞

B(Φ0)dz∂tD0 +

∫ ∞
−∞

B(Φ0)dzV · ∇ΓD0

= ν(

∫ ∞
−∞

B(Φ0)dzg(N0)−
∫ ∞
−∞

B(Φ0)dzD0) +O(ε). (6.53)

It is now straightforward to obtain

∂tN0 + V · (∇ΓN0) = f(D̄0)−N0,

∂tD0 + V · (∇ΓD0) = ν(g(N0)−D0),
(6.54)
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which with the matching conditions

lim
z→±∞

N0 = n0|Γ, lim
z→±∞

D0 = d0|Γ, (6.55)

is the lateral inhibition model (6.39); therefore the approximation reduces to

the lateral inhibition model on the interface when ε→ 0.

6.4 Simulation of the surface lateral inhibition

model

The surface lateral inhibition model given in Section 6.3.2 was simulated on

multiple different interfaces, both stationary and moving, using domains of the

form [−L,L]2. The simulation uses a simple forward Euler scheme. Backward

Euler would have been too complex to implement with the presence of the f(d̄)

and g(n) functions. Periodic boundary conditions, now needed for both Notch

and Delta due to the addition of the diffusion term ∇2n, were used at the

edges of the domain (n(−L, y, t) = n(L+ h, y, t), n(x,−L, t) = n(x, L+ h, t),

d(−L, y, t) = d(L+h, y, t), d(x,−L, t) = d(x, L+h, t)), and initial conditions

used were similar to those in Chapter 4:

n(x, 0) = 1− r(x), d(x, 0) = 1, (6.56)

for uniformly distributed random number 0 < r(x) < 0.1 for each x. These

initial conditions were set across the whole domain, not just on the surface.

The phase field surface model causes the initial perturbation to dissipate when

away from the interface.

In all of the following simulations, the parameters of the Delta-Notch model
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are set as

a = 0.1, b = 0.1, p = 3, q = 3, ν = 1, A1 = 1, A2 = 1,

and the phase field parameters are set as ε = 0.5, δ = 10−3. The mesh size

used is h = 0.125. The interface Γ is selected by setting s(x) in equation (6.1)

for φ:

φ(x) = ϕ
(r
ε

)
=

1

2

(
1− tanh

(
s(x)

ε

))
. (6.57)

The two-dimensional rectangle weight function

w(r, θ) =


1

2π
0.5 < r 6 1.5,

0 otherwise,
(6.58)

is used for all simulations in this chapter.

6.4.1 Results with a stationary interface

A stationary interface has velocity V = 0. The equation of the interface Γ is

s(x) = 0. To set Γ as a circle of radius 2, s(x) takes the form

s(x) =
√
x2 + y2 − 2. (6.59)

The circle has a circumference of 4π ≈ 12.5664. The wavelength λ is close to

2, therefore the wave should repeat approximately 6 times along the surface.

Figure 6.3 shows a simulation of the Delta-Notch model on this circle at

different times, for the domain [−4, 4]2. Adjusting the circle radius will change

the number of waves of the pattern. Figure 6.4 shows final Delta and Notch

concentrations simulated on a circle of radius 5 (with circumference
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(a) Notch Delta (b) Notch Delta

(c) Notch Delta (d) Notch Delta

Figure 6.3: Notch and Delta concentrations over the domain [−4, 4]2 with mesh
size h = 0.125 on a circle of radius 2 (where the equation for the interface Γ is (6.59)),
at times (a) t=0, (b) t=1, (c) t=7, (d) t=14. The circumference 4π ≈ 12.5664
and the wave repeats approximately 6 times around the circle.

10π ≈ 31.4159 and about 15 wave cycles) in the domain [−10, 10]2.

Changing the definition of the interface Γ is simply a matter of changing s(x)

in the equation (6.1). Figure 6.5 shows the simulation of the Delta-Notch

model around an ellipse

s(x, y) =

√(x
5

)2

+
(y

2

)2

− 1. (6.60)

Figure 6.6 shows the results along a sine wave

s(x, y) = y − sin(x), (6.61)

which is the most similar surface here to the capillary surfaces that will form

in the angiogenesis model in Chapter 7, and that the Delta-Notch model will

be simulated on in the coupling in Chapter 8.
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Figure 6.4: Solutions for Notch and Delta concentrations over the domain
[−10, 10]2 on a circle of radius 5, circumference 10π ≈ 31.4159, at time t = 375.

6.4.2 Results with a moving interface

The model was also simulated on a moving surface, as the angiogenesis cou-

pling will involve a moving interface. The simulations used the same 2D

rectangle weight function and periodic boundary conditions. The interface

used was the circle given in equation (6.59), but with time-dependent terms

added:

s(x) =
√

(x− sin(ωt))2 + (y + cos(ωt)− 1)2 − 2, (6.62)

where ω is some constant used to control the velocity of the circle. The mo-

tion created by this function is simply an anticlockwise circular translation.

The patterning of the Delta-Notch model on this interface is successful when

a suitable choice for ω is made where it is not too large, such as ω = π
10
, but

there are minor issues observed around the interface when the interface thick-

ness ε is smaller, where large fluctuations of the Delta and Notch levels occur.

With a sufficient interface thickness, these numerical errors can be resolved,

and the results found here are still evidence enough that the approximation
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Figure 6.5: Final solutions of Notch and Delta on an ellipse with a major axis
(horizontal length) of 10 and minor axis (vertical length) of 4 (interface equation
(6.60)). The domain is [−10, 10]2.

is sufficient.

6.5 Conclusion

The Delta-Notch model from Chapter 4 has been approximated on a sur-

face by using a phase field parameter to define the variables across the whole

domain and then introducing a function which is non-zero on the interface.

Approximating the model using a phase field parameter will enable easier

coupling to the phase field angiogenesis model later. The integrity of this

approximation was tested using an asymptotic analysis to prove the conver-

gence of the approximation to the surface model for ε→ 0, complicated by the

presence of the nonlocal term which was not present in phase field approxima-

tions by others. The model works on different types of stationary interface,

as demonstrated in Section 6.4, and also works on moving interfaces for lim-

ited speeds. Changing the interface was straightforward, which is ideal for

the moving boundary angiogenesis model that will be introduced in Chapter
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Figure 6.6: Final solutions for Notch and Delta concentrations when solved along
a sine wave (with interface equation (6.61)), in the domain [−4, 4]2.

7, which will require updates of the phase field parameter after every timestep.

The way the phase field approximation method works may cause issues which

should be acknowledged. The Delta-Notch variables need to be defined ev-

erywhere across the whole domain, instead of just along the capillary surface.

This may cause a problem when the interface is a complex shape, as sections

along the capillary surface which are not adjacent may be considered adjacent

by the model if they are within inhibition range. Such a problem may occur

in an angiogenesis model involving a lot of branching.

Numerical issues arose with the moving interface when the interface thick-

ness was small and the velocity of the interface was large. This is to be

expected; however, these issues may improve with a more sophisticated time-

stepping scheme, such as a Runge Kutta scheme. Adaptive mesh refinement

along the interface would also be a useful development, given the peaks that

will emerge in the angiogenesis model. A finer mesh around points on the

interface with higher curvature may improve the solution; however a signif-
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icant improvement may not be seen unless the interface thickness ε is also

changed. The problems caused away from the interface when the surface is

moving would also benefit from an adaptive timestep, for example a timestep

with a reverse correlation with the interfacial velocity.

The developments made in this chapter have prepared the Delta-Notch model

for use in a phase-field angiogenesis model. Such a phase field model will be

introduced next in Chapter 7, and the coupling of the two models will be

shown in Chapter 8.

136



Chapter 7

A phase field model of

angiogenesis

7.1 Introduction

The Delta-Notch model was developed to simulate activity along a surface in

Chapter 6 so that it can be coupled to an angiogenesis model. This chapter

will introduce the angiogenesis model to be used, and this and the surface

Delta-Notch model will be coupled in Chapter 8. The angiogenesis model in-

troduced in this chapter is a phase field model. The use of a phase field model

will make the coupling to the surface Delta-Notch model later in Chapter 8

easier.

The angiogenesis process is triggered in a capillary by an angiogenic factor

called Vascular Endothelial Growth Factor, or VEGF, which is released from

cells that require oxygen, otherwise known as hypoxic cells. When VEGF

reaches the endothelial cells in the capillary wall, some cells are chosen to mi-

grate and are labelled tip endothelial cells (TECs) and the others proliferate
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and become stalk endothelial cells (SECs). A TEC is only activated if there

are no other TECs nearby, as TECs inhibit other cells within a certain radius

from becoming TECs.

In this chapter, the model will simulate the formation of TECs in a sim-

ple way by having a TEC instantly form when a VEGF threshold is reached,

as long as it is not within the inhibition radius of another TEC. Chapter 8

will see a more sophisticated representation of TEC selection by coupling to

the surface lateral inhibition model from Chapter 6.

This chapter will start with a derivation of the Allen-Cahn and Cahn-Hilliard

models using mass balance equations and the laws of thermodynamics in Sec-

tion 7.2 to show the origin of phase field models, before introducing in Section

7.3 the discrete-continuous hybrid angiogenesis model by Travasso [139] that

will be used. Results from simulating this hybrid model are shown in Section

7.4, and Section 7.5 is the concluding section.

7.2 Derivation of the Allen-Cahn and

Cahn-Hilliard models

Phase field models are mainly used for easier numerical computation, as the

smooth interface removes the jump between phases and the exact location of

the interface does not need to be defined; only the locations of the phases.

Phase field models can also be used as an accurate depiction of certain phe-

nomena, as there may actually be an interface between phases with a thick-

ness. One example of this is solidification of ice, where water does not in-

stantly turn to ice but is for a time between phases as it freezes [36].
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Phase field models follow the laws of thermodynamics. They can be derived

from an existing sharp interface model, which is sometimes called the

“diffusification” of the problem, as stated by Gomez and Van der Zee [71].

However, diffusification does not guarantee the method will obey the classical

laws of thermodynamics. Another way to derive a phase field model is to

apply the laws of thermodynamics to mass balance and free energy equations.

The most well-known phase field models are the Allen-Cahn and Cahn-Hilliard

models [2, 36]. They are gradient flows, which means the energy of the system

is minimized over time. This section follows derivations by Gomez and Van

der Zee [71] to see how the Allen-Cahn and Cahn-Hilliard equations can be

derived using the laws of thermodynamics.

The free energy, or thermodynamic potential, is given by Ψ(φ,∇φ). To find

the total free energy across the entire domain Ω, integrate to get the free

energy functional: ∫
Ω

Ψ(φ,∇φ)dx. (7.1)

A common choice for the free energy Ψ is the free energy derived by Cahn

and Hilliard [36], which takes the form

Ψ = W (φ) +
ε2

2
|∇φ|2,

where W is a function of φ and ε is proportional to the interface thickness.

The corresponding Ginzburg-Landau energy functional [70] is used by both

the Allen-Cahn and Cahn-Hilliard models. The Ginzburg-Landau functional
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has the form

∫
Ω

Ψ(φ,∇φ)dx =

∫
Ω

(
W (φ) +

ε2

2
|∇φ|2

)
dx. (7.2)

The second law of thermodynamics states that free energy decreases over time,

i.e. the free energy dissipation D(Ω) > 0. IfW(Ω) is defined as the work from

external forces through the domain boundary, the energy dissipation in the

system can be shown as

d

dt

(∫
Ω

Ψ(φ,∇φ)dx

)
= W(Ω)−D(Ω) (7.3)

=

∫
Ω

∂φΨ∂tφ+ ∂∇φΨ · ∂t(∇φ)dx. (7.4)

Using the chain rule and integration by parts

d

dt

(∫
Ω

Ψ(φ,∇φ)dx

)
=

∫
Ω

∂φΨ∂tφdx +

∫
Ω

∂∇φΨ · ∂t(∇φ)dx

=

∫
Ω

∂φΨ∂tφdx +

∫
∂Ω

∂∇φΨ · n∂tφda

−
∫

Ω

∇ · ∂∇φΨ∂tφdx

=

∫
∂Ω

∂∇φΨ · n∂tφda+

∫
Ω

µ∂tφdx, (7.5)

for unit normal n to domain boundary ∂Ω, and for variational derivative

µ =
δ

δφ

∫
Ω

Ψdx = ∂φΨ−∇ · ∂∇φΨ. (7.6)
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7.2.1 The Allen-Cahn Equation

The Allen-Cahn equation models non-conserved phase systems, and can be

derived using the balance equation

∂tφ = −R(φ,∇φ, µ), (7.7)

where R is a energy dissipative function to be found. Substituting this into

equation (7.5) gives

d

dt

∫
Ω

Ψdx =

∫
∂Ω

∂∇φΨ · n∂tφda−
∫

Ω

µRdx. (7.8)

The first term of (7.8) is the external work termW(Ω), as it is defined on the

boundary. The second term is therefore the dissipation term, and

D(Ω) =
∫

Ω
µRdx. Choosing R = m(φ)µ for some m(φ) > 0 satisfies the free-

energy dissipation law. Therefore the mass balance equation (7.7) becomes

∂tφ = −m(φ)µ. (7.9)

Calculating the variational derivative µ from the Ginzburg-Landau functional

(7.2) gives the Allen-Cahn equation:

∂tφ = −m(φ)
(
W ′(φ)− ε2∆φ

)
. (7.10)

7.2.2 The Cahn-Hilliard Equation

Deriving the Cahn-Hilliard equation is similar, but it models conserved phase

systems, and so the following mass conservation equation is used:

∂tφ = −∇ · h. (7.11)
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Substituting into (7.5) yields

d

dt

∫
Ω

Ψdx =

∫
∂Ω

∂∇φΨ · n∂tφda−
∫

Ω

µ∇ · hdx. (7.12)

Integrating by parts gives

d

dt

∫
Ω

Ψdx =

∫
∂Ω

∂∇φΨ · n∂tφda−
∫
∂Ω

µh · nda+

∫
Ω

∇µ · hdx

=

∫
∂Ω

(∂∇φΨ∂tφ− µh) · nda+

∫
Ω

∇µ · hdx. (7.13)

The dissipation is therefore D(Ω) =
∫

Ω
−∇µ · hdx, and h = −m(φ)∇µ is

chosen to satisfy the free-energy dissipation law. Substituting this into (7.11)

derives the Cahn-Hilliard equation:

∂tφ = ∇ ·
(
m(φ)∇

(
W ′(φ)− ε2∆φ

))
. (7.14)

7.3 A phase field model for angiogenesis

This section presents the hybrid angiogenesis model by Travasso et al. [139]

that will be used. Angiogenesis models have an equation for the movement of

the endothelial cells, and another equation for the diffusion and uptake of the

angiogenic factor VEGF. The location of the endothelial tissue, or endothe-

lium, will be modelled here using a phase field parameter c, where c = 1 is

the endothelium phase and c = −1 is the Extracellular Matrix (ECM) phase,

so that −1 < c < 1 represents the interface between the endothelial tissue

and the ECM. The model will simulate early stages of angiogenesis, where the

system is not yet mature and has not yet developed into blood vessels with a

lumen for the blood to flow through, and therefore the phase field model has

no lumen or blood phase.
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The phase field model uses a Cahn-Hilliard-type equation to represent the in-

terfacial dynamics, with an extra term added for the proliferation of endothe-

lial cells which is triggered by interaction with VEGF. A simple reaction-

diffusion equation represents the dynamics of the VEGF concentration f ,

where the reaction term represents the uptake of factor by the nearby capil-

laries. The other vital elements which should be included in such a model,

such as the source of VEGF and the initiation of a new branching capillary,

will be incorporated in the discrete part of the model. The continuous equa-

tions take the following form:

∂f

∂t
= D∆f −BufcH(c),

∂c

∂t
= M∆(µc − λ2∆c) +Bp(f)cH(c),

(7.15)

where the initial condition for c is set using a tanh function similar to the

equation for φ in (6.1):

c(x, 0) = − tanh

(
y − 2RV√

2λ

)
, (7.16)

for capillary radius RV . This model has many parameters which are described

in more detail in Section 7.3.2. As stated before, the equation for VEGF

concentration (7.15)1 is a simple reaction-diffusion equation with diffusion

coefficient D. The reaction term represents uptake of VEGF by endothelial

cells with uptake rate Bu and this term only exists where c > 0, as ensured

by the Heaviside function H(c). Equation (7.15)2 is a Cahn-Hilliard equation
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with a reaction term, where

Bp(f) =


Bpf for f < fp,

Bpfp for f > fp.

(7.17)

M is a coefficient related to the mobility of the endothelial cells. The chem-

ical potential is µc − λ2∆c where µc is found from the variational derivative

definition as µc = c3 − c. λ is the interfacial thickness between the phases.

7.3.1 The discrete component

The other important parts of angiogenesis which have not yet been included

in the model, specifically the presence and behaviour of the tip endothelial

cells and hypoxic cells (which act as a VEGF source), will be covered by

discrete components in the model. The incorporation of these components in

the model will be detailed here.

The tip endothelial cells

The way tip endothelial cells activate, migrate and deactivate again is rep-

resented discretely in this chapter, but these discrete components will be

replaced by the continuous lateral inhibition model in Chapter 8. If a spatial

point x∗ meets certain criteria, a new tip endothelial cell will be created with

x∗ as its centre. The criteria that must be met involve the values of c(x∗),

f(x∗), and ∇f(x∗), which must meet certain thresholds for a tip cell to acti-

vate. The motivation behind these criteria are clear; any new TECs must be

above a certain value of c to be considered part of the endothelium phase, and

the VEGF concentration and its gradient must be high enough to activate a

cell. Also, the distance from other tip endothelial cells is needed to check
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if TEC activation is blocked through lateral inhibition. Mathematically, the

criteria the centre of a new tip endothelial cell x∗ must meet is as follows:

• c(x∗) > cact,

• f(x∗) > fact,

• ∇f(x∗) > Gact,

• |x∗ − xjTEC | > δ4, ∀j = 1, ..., NTEC(tn),

where δ4 is the range of the lateral inhibition signalling and xjTEC is the centre

of the jth existing TEC. It should be noted that if more than one location

exists that meets the above criteria, then the location with the highest VEGF

level is selected as a tip endothelial cell, as only one is formed per timestep to

prevent activation of many at the same time that are closer than the inhibition

range. As soon as any one of the above criteria is no longer met by a TEC,

the TEC is deactivated. Once the centres of the tip endothelial cells have

been found, a subdomain for each centre xlTEC which defines the domain of

each tip endothelial cell is found as

Ωl
TEC(tn+1) = {x ∈ Ω|x− xlTEC | 6 REC}. (7.18)

The c-values within these tip endothelial cell subdomains will be overwritten;

within each TEC i defined by the subdomain Ωi
TEC , the new c values are

defined as

ciTEC =
Bp(f

i
TEC)πREC

2|viTEC |
, (7.19)

where REC is the average radius of endothelial cells, f iTEC is the concentration

of VEGF at the centre of the TEC, and viTEC is the velocity of the TEC,
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calculated at the centre of the TEC with a formula used by Travasso:

viTEC = χ∇f(xiTEC)L(|∇f(xiTEC)|), (7.20)

with chemotactic constant χ. The limiting function L(|∇f(xiTEC)|) is defined

as

L(|∇f(xiTEC)|) = 1 +

(
GM

|∇f |
− 1

)
H(|∇f | −GM), (7.21)

which gives a maximum velocity of viTEC = χGM , where GM is a prede-

termined parameter for the value of ∇f that corresponds to the maximum

velocity. Equation (7.19) is a ratio of endothelial tissue produced and area

swept by the tip endothelial cell per timestep.

To implement these discrete components for the tip endothelial cells compu-

tationally and combine them with the continuous equations (7.15), a diffuse

approximation for the c-values is calculated to combine with the phase field

model, using another interface thickness ε. Noting that c must take values

−1 6 c 6 1, and recalling that the centre of the kth TEC is denoted xkTEC ,

the approximation for the c values in each of the subdomains Ω is

gic(x) =

(
ciTEC − 1

2

)
−
(
ciTEC + 1

2

)
tanh

(
|x− xiTEC | −REC

2ε

)
, (7.22)

and the combination of these gic is given as

gc(x) = max(gic(x)). (7.23)

Figure 7.1(a) graphs gic(x) for two tip endothelial cell locations with the result-

ing gc(x). The c values cD(x, tn) that will be used in the continuous equations
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for the nth timestep (t = tn) are found using

cD(x, tn) = max(c(x, tn−1), gc(x)). (7.24)

The hypoxic cells

The source of VEGF (f) in the model is represented by the presence of hypoxic

cells. Initially a number of hypoxic cells NHC are randomly distributed. A

change in the number of hypoxic cells in this model occurs only if a hypoxic

cell xHC is saturated and thus deactivated. This is when there exists a x such

that c(x) > cact and

|xHC − x| < fsat, (7.25)

where fsat is the nutrient diffusion range, which is the distance from a capillary

at which nutrient has dissipated below some tissue saturation threshold. Any

hypoxic cells with centre within this nutrient diffusion range will be saturated.

The subdomain Ωl
HC for hypoxic cell with centre xlHC is

Ωl
HC(tn+1) = {x ∈ Ω|x− xlHC | 6 RHC}. (7.26)

As with the tip endothelial cells, the values of f in the hypoxic cell subdomains

are also overwritten, but they are simply overwritten with a predetermined

parameter fHC equal to the VEGF concentration in the hypoxic cells:

f iHC = fHC . (7.27)

The computational implementation uses a different diffuse approximation to

the diffuse approximation of the c values in the tip endothelial cells, as f

takes values 0 6 f 6 1. The values of f to be input into continuous equations
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(a) (b)

Figure 7.1: Approximations of the discrete components using example TECs and
HCs; (a) the functions gic(x), which approximate the values of c in the TEC with
centre x1

TEC , shown in blue, and the TEC with centre x2
TEC , shown in red, with

the combination of both, gc(x), shown with a dashed line, (b) the functions gif (x)

which approximate the values of f in the hypoxic cell with centre x1
HC , shown in

blue, the hypoxic cell with centre x2
HC , shown in red, and the hypoxic cell with

centre x3
HC , shown in green, with the combination of them all, gf (x), shown with a

dashed line.

(7.15) at the nth timestep are

fD(x, tn) = max(f(x, tn−1), gf (x)), (7.28)

using the approximation

gif = f iHC

(
1

2
− 1

2
tanh

(
|x− xiHC | −RHC

2ε

))
, (7.29)

and

gf (x) = max(gif (x)). (7.30)

Figure 7.1(b) shows the gif (x) functions for three example hypoxic cell loca-

tions and the resulting gf (x) function.
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7.3.2 Biological interpretation of the phase field model

It can be difficult to interpret phase field models in a biological sense. In this

case, the smooth interface has no physical meaning and is used for compu-

tational ease, as when simulating the Delta-Notch model on the surface in

Chapter 6. In reality, the thickness of the interface would be zero; the inter-

face between capillaries and the extracellular matrix does not exist (see again

Figure 3.1 from Chapter 6).

The values of f representing the angiogenic factor VEGF only vary between

zero and one and can be thought of as being relative to the maximum (f = 1)

and minimum (f = 0) concentration of VEGF. The values of c are similar,

but cannot be thought of as an exact ratio in the same way. If the values of

c are thought of as being analogous to the maximum (c = 1) and minimum

(c = −1) density of endothelial cells, this would be inaccurate, as the interface

−1 < c < 1 does not exist biologically. A better visualisation would be to

think of c as being analogous to the presence (c = 1) and absence (c = −1) of

endothelial cells instead (recall that the blood passages of the capillaries have

not yet formed in this early stage of angiogenesis), which supports the earlier

statement about the interface −1 < c < 1 not existing in biological terms.

Behaviour observed in laboratory experiments is used to assign quantitative

values to the parameters. The diffusion of VEGF D, set at around D = 10−1

micrometres squared (µm2) per second (where 1µm = 10−6m), is based on

values from Schugart et al. [129], as is the value for the endothelial cell

mobility M , set at M = 10−3 µm2 s−1. The proliferation constant Bp is

found as Bp = 8.981 × 10−4 s−1, as the maximum proliferation rate is fixed

at max(Bp(f)) = Bpfp = 0.97 hr−1, as it is in the Travasso model, and the
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dimensionless parameter fp is set by Vilanova as fp = 0.3. The uptake con-

stant Bu is set as Bu = D
R2
EC

, as endothelial cell walls cause the uptake of

factor to decrease with cell size. From Gebb and Stevens [68], the cell radii

are REC = RHC = 5 µm, which fixes Bu = 0.004 s−1. The value for the radius

RV is set at 12.5 µm.

The range of lateral inhibition is twice the endothelial cell diameter, as noted

when selecting the lateral inhibition weight functions in Chapter 4, so δ4 = 20

µm. The saturation distance is set as fsat = 25 µm, as the distance away

from a capillary that tissue is still saturated with oxygen is stated by Grote

to be 25µm [77].

cact is a dimensionless quantity, as it is a value of the phase field. It is set

at cact = 0.9, which is chosen to be moderately high as it must define the

capillary phase. Similarly, fact, fp and fHC are all also dimensionless. The

value given to the VEGF level at maximum proliferation, fp, was stated ear-

lier when setting the proliferation rate. The amount of VEGF found in the

centre of the hypoxic cells is set as fHC = 1, because it is in the hypoxic cells

where the largest ratio of VEGF is found. The VEGF threshold where tip

cells can activate, fact, is taken from Travasso, who made sure fact was lower

than the maximum value of f that can be found in the endothelium phase;

this value was found to be at f = 0.061, so the threshold for emerging TECs

is set at fact = 0.055. VEGF gradient-related parameters Gact and GM are set

at values estimated by Travasso after a parametric study of the model; these

are Gact = 0.008 µm−1 and GM = 0.024 µm−1. The chemotactic constant

χ is given the value χ = 14.583 µm2 s−1 by setting the maximum velocity

χGM ≈ 0.35 µm min−1.
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The dimensionless versions of the parameters must be calculated to be used

in the dimensionless equations. These can be found using the length and time

scales, set by fixing the cell radii as REC = RHC = 4 length units, which

means the length scale is 1 length unit=1.25 µm, and fixing M = 1 sets the

time scale as 1 time unit=1.252

10−3 ≈ 26 minutes.

Lastly the interface parameters λ and ε are set. The interfacial width of

the endothelium-ECM interface λ is an important parameter in a phase field

model; choosing the optimal value is vital. As the interface is non-existent

in reality, λ will ideally be as close to zero as possible. A simple paramet-

ric study on λ (which is shown later in Section 7.4, Figure 7.9) verified that

setting the interfacial width as one length unit (λ = 1) is a sufficient choice;

λ = 1 still produces similar results to those produced for smaller λ values,

but without the numerical errors that result from these smaller values for the

selected mesh size. The interfacial width for the diffuse approximations of

the discrete components is set as ε = 0.1. This is because the mesh for these

approximations is finer than that used for the continuous part of the model.

Table 7.1 summarises all the values allocated to each parameter in this section

with their dimensional and dimensionless forms. These allocated values are

the control values, and are the values used in all simulations of Section 7.4

except where a parameter value is clearly stated otherwise.
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Parameter Symbol Real value Dimensionless
value

Length scale L 1.25 µm 1

Time scale T 1560s 1

Diffusion coefficient of f D 10−1 µm2 s−1 100

Mobility coefficient of c M 10−3 µm2 s−1 1

Tip endothelial cell radius REC 5 µm 4

Hypoxic cell radius RHC 5 µm 4

Radius of the initial capillary RV 12.5 µm 10

Uptake rate of VEGF Bu 0.004 s−1 6.25

Proliferative rate of ECs Bp 8.981× 10−4 s−1 1.401

Range of lateral inhibition δ4 20 µm 16

Nutrient diffusion length fsat 25 µm 20

TEC threshold for EC phase cact N/A 0.9

VEGF level in hypoxic cells fHC N/A 1

TEC VEGF threshold fact N/A 0.055

VEGF cap on EC proliferation fp N/A 0.3

TEC VEGF gradient threshold Gact 0.008 µm−1 0.01

VEGF gradient cap on velocity GM 0.024 µm−1 0.03

Chemotactic constant χ 14.583 µm2 s−1 242.67

Interfacial width for the continu-
ous equations

λ 1.25 µm 1

Interfacial width for the discrete
component approximation

ε 0.125 µm 0.1

Table 7.1: Dimensional and dimensionless values of the parameters of the model.
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7.4 Simulation of the angiogenesis model

The initial condition for the phase field c was given in equation (7.16) as

c(x, 0) = − tanh

(
y − 2RV√

2λ

)
, (7.31)

which imitates an original capillary located at the bottom of the domain. For

VEGF concentration f , the initial condition sets f(x, 0) = fHC in all hypoxic

cells and f(x, 0) = 0 elsewhere. The locations of the hypoxic cells will be

specified in Section 7.4.2.

The model applies periodic boundary conditions in the horizontal direction,

but symmetric Neumann boundary conditions in the vertical direction, to pre-

vent the bottom capillary from sprouting through to the top of the domain.

Finite differences are used in the surface Delta-Notch model and therefore

are also used here in the angiogenesis model. The mesh used by the discrete

components and the simulation plots is twice as fine as the mesh used by the

continuous equations to make the mesh size used as small as possible without

significantly affecting the simulation speed. The finer mesh is calculated by

interpolating the results of the continuous part of the model.

7.4.1 Convex splitting

A fully explicit scheme for the simulation will need to rely on a small timestep

to maintain stability, as the Cahn-Hilliard equation is a nonconvex gradient

flow and therefore a unique stable solution is not guaranteed. To improve

performance, a semi-implicit scheme can be used instead which is split across

timesteps in a way that causes the scheme to be unconditionally gradient sta-

ble, which means the simulation remains stable for all timesteps. The splitting
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is found using Eyre’s convex splitting method [58].

The method can be used to find an appropriate numerical scheme for a gra-

dient flow of the form
∂u

∂t
= −∇F(u), (7.32)

for function F : R → R, which does not increase over time (i.e. d(F(u))
dt

6 0).

If F(u) is convex, that is, if its second derivative F ′′(u) is never smaller than

zero, then a unique stable solution already exists and the flow is contractive.

For nonconvex F(u), the convex splitting method splits F(u) into a contrac-

tive stable term and an expansive growth term, and rewrites F(u) as the

difference of two convex functions Fc(u), Fe(u):

F(u) = Fc(u)−Fe(u). (7.33)

Figure 7.2 shows an example of such a splitting into two convex functions.

The new scheme is unconditionally stable as it expresses the expansive term

−Fe(u) explicitly and the contractive term Fc(u) implicitly:

Un+1 − Un
τ

= ∇Fe(Un)−∇Fc(Un+1). (7.34)

Proof of the unconditional stability of this scheme is given by Eyre [58].

The convex splitting method is used to split the Cahn-Hilliard part of equa-

tion (7.15)1 to make the simulation of the angiogenesis model run faster. This

is achieved by finding a splitting for the gradient flow

∂c

∂t
= M∆(µc − λ2∆c), µc = c3 − c. (7.35)
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Figure 7.2: The function F(u) = u4 − u2, shown in blue, is a non-convex func-
tion. This can be rewritten in terms of two convex functions Fc(u) and Fe(u):
F(u) = Fc(u)−Fe(u), where Fc(u) = u4 is in red and −Fe(u) = −u2 is in green.

There are many ways to define the contractive and expansive terms Fc(u)

and Fe(u), as the only requirement for stability is that both must be convex

functions. However, is it also desirable that:

• The truncation error is small, and

• The resulting scheme is straightforward to simulate.

To find a splitting with the lowest truncation error possible, set Fe(u) as the

sum of the expansive terms of F(u) and Fc(u) as the sum of the contractive

terms, as no extra terms are added and subtracted in the splitting. Consid-

ering each term of equation (7.35) individually, the term −λ2∆2c represents

diffusion and is stable. As for the chemical potential terms, −∆c is expansive

and causes the interesting behaviour of the flow, and ∆c3 stabilises the flow.

Therefore a potential splitting is

Cn+1 − Cn
τ

= M∆[(Cn+1)3 − λ2∆Cn+1]−M∆Cn. (7.36)
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However, the implicit nonlinear term c3 will make the scheme difficult to

simulate, so a linearly stabilised splitting scheme will be found instead. Such

a scheme is linear in Cn+1, and is given by

Cn+1 − Cn
τ

= M∆[2Cn+1 − λ2∆Cn+1] +M∆[(Cn)3 − 3Cn], (7.37)

and the scheme used for equation (7.15)1 in the simulation of the angiogenesis

model is

Cn+1 − Cn
τ

= M∆[2Cn+1 − λ2∆Cn+1] +M∆[(Cn)3 − 3Cn]

+Bp(Fn)CnH(Cn), (7.38)

with the addition of the proliferation term.

7.4.2 Results

The domain used for most of the simulations shown is of size 128×128, which

using the length scale is equivalent to 160µm× 160µm. As mentioned earlier

in this section, the initial condition for the VEGF levels f has locations of

high f -values, which represent hypoxic cells in the model. All simulations

with a domain size of 128 × 128 use the exact same initial condition of 50

hypoxic cells distributed over the domain.

Figure 7.3 shows a simulation over time for the control parameters given in

Table 7.1. The simulation shows the initiation and progression stages of angio-

genesis over a time period of 8 hours and 14 minutes (or 19 time units). While

branching from growing capillaries does occur, the model favours sprouting

from the initial capillary at the start. Capillaries grown from secondary
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(a) t=0 (b) t=5

(c) t=9 (d) t=19

Figure 7.3: Simulation of Travasso’s angiogenesis model on a domain of size 128×
128, at times (a) t=0, (b) t=5, (c) t=9, and (d) t=19, with endothelium/ECM
phase field parameter c on the left and VEGF levels f on the right. Parameters
are as given in Table 7.1. The initial conditions represent a capillary at the bottom
of the domain, and 50 randomly distributed hypoxic cells with centres indicated by
the red crosses.

sprouting are not particularly long, and tertiary sprouting seems almost non-

existent, even on larger domains, as seen in Figure 7.4, which shows a run on

a larger domain of 256× 256, or 320× 320 µm. The total time taken for this

simulation is just under 16 hours.

When the nutrient diffusion length fsat is altered, the number of capillaries

and the amount of branching changes. For a shorter diffusion length, some

hypoxic cells previously saturated by capillaries are no longer saturated and

deactivated, as the capillary is not close enough anymore. This causes ad-

ditional branching as the capillaries migrate closer to deactivate the hypoxic

cells. See Figure 7.5 for a simulation with a smaller fsat.

Figure 7.6 shows a parametric study with the final results of nine simulations
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(a) t=0 (b) t=8

(c) t=21 (d) t=37

Figure 7.4: Simulation on a larger domain of size 256×256, with 200 hypoxic cells
initially, at (a) t=0, (b) t=8, (c) t=21, and (d) t=37, and with parameter values
from Table 7.1.

(a) t=0 (b) t=5

(c) t=9 (d) t=17

Figure 7.5: Simulation of the angiogenesis model with nutrient diffusion length
fsat = 10, at times (a) t=0, (b) t=5, (c) t=9, and (d) t=17.
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when two parameters, the chemotactic constant χ and proliferation rate Bp,

are changed. The figure shows what effect changing these parameters has;

increasing χ results in thinner capillaries, as does decreasing Bp. Increasing

χ also results in longer capillaries as the TECs’ higher velocity allows them

to migrate further before they get deactivated, and increasing Bp results in

more capillary sprouting. Therefore when both chemotaxis and proliferation

are fast the capillary network is very compact and covers a lot of the domain.

Parametric studies for other parameter combinations are shown in the Ap-

pendix.

Figure 7.7 shows the results of the different values of χ used before, but at

three different time stages to see the effect χ has on the speed of angiogen-

esis development. The simulation where χ is set as half its control value of

χ = 242.27 takes almost twice as long as the simulation at the control value,

which takes almost twice as long as the result with double the control value.

Figure 7.8 shows the difference in the final condition when the tip endothelial

cells form on the interface of the capillary instead of in the endothelium phase

itself. This causes more tip cells to form. These simulations show that tip

cells can be created in the interface without problems in the results, which

is important as when it comes to coupling the surface Delta-Notch model to

this angiogenesis model in Chapter 8, the tip cells will be formed within the

phase interface.

The interfacial thickness is set as λ = 1. As mentioned in Section 7.3.2, the

selection of λ is important because it needs to be large enough to make the

numerical computation easier, but it needs to be small enough to make the
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Bp =
2.802

(a) χ = 121.33 (b) χ = 242.67 (c) χ = 485.34

Bp =
1.401

(d) (e) (f)

Bp =
0.701

(g) (h) (i)

Figure 7.6: Parametric study where changes of the parameters χ and Bp are
studied. Results shown are solutions where no VEGF is left (VEGF levels have
dropped below the TEC threshold fact everywhere). The values of χ for each column
and Bp for each row are shown on the top and left.
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t=12

(a) χ = 121.33 (b) χ = 242.67 (c) χ = 485.34

t=19

(d) (e) (f)

t=34

(g) (h) (i)

Figure 7.7: Simulations for different values of χ at times t = 12, t = 19, and
t = 34. See the different speeds at which the capillary networks form.
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(a) Endothelium TEC formation (b) Interface TEC formation

Figure 7.8: Final values of phase-field parameter c where (a) TECs form in the en-
dothelium phase (c > 0.9) (b) TECs form on the interface between the endothelium
and ECM phases (−0.9 6 c 6 0.9).

numerical results as accurate as possible. Figure 7.9 shows final conditions

with different values of λ; the results with the smallest λ is for λ = 0.1. This is

clearly too small, as the thin interface has caused the phases to mix. λ = 0.5

has no mixing, and results are very similar to the results with λ = 1, but the

interface is not smooth, and so the mesh size is too large for this value of λ.

λ = 2 is also shown, with a clearly visible interface. For the selected mesh

size of h = 1, λ = 1 has the best balance for efficiency, between not being too

large and allowing the computation to run effectively. The interface thickness

could be made smaller for smaller mesh sizes, but this was not investigated

in this work due to long computation times.

Mesh refinement showed that a mesh size of h = 1 (128×128 mesh points) was

sufficient. Figure 7.10 shows results with different mesh sizes, and a coarser

mesh of 64× 64 does not have smooth phase transition. Finer meshes do not

show much improvement from 128 × 128; however these finer meshes would

allow smaller values of λ, as discussed above.
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(a) λ = 0.1 (b) λ = 0.5

(c) λ = 1.0 (d) λ = 2.0

Figure 7.9: Simulations for different values for the phase interface thickness λ:
(a) λ = 0.1, (b) λ = 0.5, (c) λ = 1, (d) λ = 2. Poor results are seen for λ < 1.

Figure 7.11 shows results with two clusters of high VEGF levels representing

the release of Tumour Angiogenesis Factor (TAF) from a multifocal tumour.

The domain size is 256×256 and the size of each tumour is 80 length units, or

100 µm in diameter, in agreement with data of TAF-releasing tumours in vivo

from Folkman and Kalluri [65]. The total time of this simulation is longer

at 26 and a half hours, which can be explained by the initial hypoxic cell

locations being further away from the initial capillary, and when the VEGF

reaches it the concentration of VEGF is still very low; thus TEC migration

is initially slow. Tertiary sprouting now occurs due to the more localised
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(a) 64× 64 (b) 128× 128

(c) 192× 192 (d) 256× 256

Figure 7.10: Simulations for the same domain size of 128 × 128 units but for
different mesh sizes; (a) h = 2 (64 × 64 mesh points), (b) h = 1 (128 × 128),
(c) h = 0.667 (192× 192), (d) h = 0.5 (256× 256).

hypoxic areas.

7.5 Conclusion

This chapter has introduced the angiogenesis model by Travasso et al. [139]

and produced simulations of the model. These simulations will be used to

compare to simulations of the coupled model, which will be derived in Chapter

8. The model was given by a Cahn-Hilliard equation with an added reaction

term for the phase variable coupled to a reaction-diffusion equation for the
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(a) t=0 (b) t=20

(c) t=32 (d) t=61

Figure 7.11: Simulations with two main hypoxic locations, much like a multifocal
avascular tumour releasing Tumour Angiogenesis Factor (TAF), at times (a) t=0,
(b) t=20, (c) t=32, and (d) t=61. Model parameters used are still given by
Table 7.1. The time taken for this simulation is much longer because the angiogenic
factor takes longer than normal to reach the initial capillary via diffusion.

angiogenic factor variable, and had a discrete definition for the formation of

the tip cells and the hypoxic cell locations.

The diffuse interface in the model required investigation into the most ap-

propriate value for the interface thickness λ. A parametric study on λ with a

fixed mesh size of h = 1 found that λ = 1 produced the most accurate results

with no numerical issues. However, this is still a large value for the interface

thickness. A finer mesh would have allowed for a smaller λ value; however

this was not pursued due to much larger computation times for finer meshes.

There are biological factors in angiogenesis that are not considered by this

particular model. For example, the time between initial migration and pro-

liferation of endothelial cells and the formation of the blood vessel lumen

is ignored, which means endothelial cells that are not yet mature nutrient-
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carrying blood vessels are given the ability to saturate hypoxic cells in this

model, and a hypoxic cell in the model is defined as saturated as soon as the

endothelium is in proximity.

Another factor overlooked by the model is related to the way tip cell inhi-

bition is defined. In real systems the tip cell inhibition only takes effect along

the capillary, not across ECM space. The mathematical model does not ac-

count for this and as a result there may be a few instances in the model where

a tip cell inhibits endothelial tissue that is not of its own capillary. This also

occurs in the surface lateral inhibition model, as already stated in the conclu-

sion of Chapter 6. Another issue is that the boundary conditions of the model

affect the VEGF levels in particular, as the system is closed which means if

the domain is too small, the VEGF will not be able to diffuse far away. A

large domain size compared to the length scale of the simulation is ideal where

possible.

Avascular tumours that release TAF are still growing, and therefore more

hypoxic cells are created since the start of the initiation of angiogenesis. The

final condition portrayed in Figure 7.11 does not necessarily represent the

final vascular structure of the tumour; as the tumour grows the new parts

of the tumour will need vascularisation and will release TAF later. The fact

new hypoxic areas are not created during the simulation is a limitation of this

model. Coupling Travasso’s model with a tumour growth model has already

been achieved by Xu et al. [159], where the supply of VEGF depends on a

phase-field tumour equation.

The discrete definition of the tip endothelial cells in this model is very lim-
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iting, which causes rather predictable behaviour. The fixed lateral inhibition

radius for each TEC means that no TECs can form within this radius, but

can form just outside. There is no smooth change in the TEC formation

probability which clashes with the continuous definition of the endothelium

in the angiogenesis model. In the continuous lateral inhibition models, recall

the triangle and smooth weight functions for lateral inhibition which would

give a more continuous TEC selection process, where the areas of activated

and inhibited tissue are found. The surface Delta-Notch model and the an-

giogenesis model have been successfully simulated and will now be combined

to construct a coupled model in Chapter 8.
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Chapter 8

A coupled lateral

inhibition-angiogenesis model

8.1 Introduction

Chapter 7 introduced an angiogenesis model by Travasso et al. [139] that de-

fined the tip endothelial cells and their behaviour using discrete components.

In this chapter, a coupled angiogenesis-lateral inhibition model is created by

using the surface lateral inhibition model calculated in Chapter 6 to replace

the discrete tip endothelial cell formation in Travasso’s angiogenesis model.

The ligand in angiogenesis signalling is named Delta-Like Ligand 4 (DLL4),

due to its homology with Delta. While Delta exists in the fruit fly “Drosophila

melanogaster” to determine the lateral inhibition in a number of functions,

DLL4 is present in mammals and controls endothelial cell migration. The

Delta-Notch model and its surface counterpart from Chapters 4 and 6 respec-

tively are still accurate models of capillary signalling in angiogenesis. In this

chapter the model will sometimes be referred to as the DLL4-Notch model.
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Numerically, the models will be progressed in time together as the time scales

of lateral inhibition and angiogenesis are similar. The DLL4 and Notch levels

will be calculated on the surface of the capillary defined by phase field pa-

rameter c from the angiogenesis model. There will be a threshold for DLL4

levels which will trigger capillary surface migration when reached. The lateral

inhibition model will then calculate the DLL4-Notch behaviour again on the

updated surface.

This process reflects real-life angiogenesis; the angiogenic factor VEGF trig-

gers the migration of cells towards the VEGF source. The sprouting pattern

is caused by Notch receptors in the endothelial cells, where VEGF receptors

in cells with a high level of active Notch are downregulated and these cells do

not migrate.

This chapter will first introduce the equations of the fully coupled model

in Section 8.2, as well as the representation of the VEGF source through dis-

crete definitions of hypoxic cells. All the new components of the model are

described. The numerical process of the coupling and the parameter values

to be used are discussed in Section 8.3, and numerical results are also shown

in this section. This section has a discussion of the differences between the

original angiogenesis model and the coupled angiogenesis model. Section 8.4

is the conclusion, which talks further about the benefits of such a model and

mentions potential for further work, as a preface to the Conclusion chapter.
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8.2 The lateral inhibition driven angiogenesis

model

This section will detail the equations used in the new coupled model, describe

the parameters involved and explain the introduction of any new terms. The

equations themselves are variants of the equations from Chapters 6 and 7;

the surface DLL4-Notch equations and Travasso’s model of angiogenesis. The

newly coupled equations include a dependence of Notch on VEGF f , as well

as a dependence of the endothelial tissue-ECM phase on DLL4.

8.2.1 The angiogenesis equations

For coupling to a set of DLL4-Notch equations, the following equations for

angiogenesis are used:

∂f

∂t
= D∆f −BufcH(c),

∂c

∂t
= M∆(µc − λ2∆c) +Bp(f)cH(c) +BM(c, d, f).

(8.1)

These equations (8.1) are similar to the equations (7.15) of the Travasso model

shown in Chapter 7, with the exception of a new migration term in the phase

equation to replace the discrete allocation of tip endothelial cells. The func-

tion H(c) once more represents the Heaviside function and BM(c, d, f) is a

migration function dependent on phase field parameter c, DLL4 concentration

d, and VEGF f . It takes the form

BM(c, d, f) =

 V(f)B(c)dcH(c) for d > dact

0 for d < dact,
(8.2)
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where the interface equation B(c) will be defined in Section 8.2.2 with the

DLL4-Notch part of the model. This term only exists in the presence of a

sufficient amount of DLL4; specifically when the DLL4 concentration is above

a threshold dact. The idea of having an activation threshold for the lateral

inhibition model was briefly discussed in the conclusion of Chapter 5. In this

model, presence of DLL4 can be thought of as analogous to the presence of

VEGF receptors, and high Notch levels (or low DLL4 levels) represent down-

regulation of VEGF, which is in agreement with the role Notch receptors have

in downregulating VEGF receptors in angiogenesis.

V(f) is the continuous equivalent of viTEC in equation (7.20) from Chapter 7:

V(f) = χ∇fL(|∇f |), (8.3)

based on the chemotactic constant χ, the velocity gradient, and the limiting

function

L(|∇f |) = 1 +

(
GM

|∇f |
− 1

)
H(|∇f | −GM). (8.4)

The hypoxic cells, from which VEGF is secreted, are determined in the same

way as before; with subdomains

Ωl
HC(tn+1) = {x ∈ Ω|x− xlHC | 6 RHC} (8.5)

for cell with centre xlHC , and deactivation of a hypoxic cell if

|xlHC − x| < fsat (8.6)

and c(x) > cact. The f -values inside the subdomains are once again set as

f iHC = fHC .
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8.2.2 The DLL4-Notch equations

The DLL4-Notch equations suggested are

B(c)
∂n

∂t
+ V · ∇(B(c)n) = B(c)FB(d̄B)− (B(c) + δ)n,

B(c)
∂d

∂t
+ V · ∇(B(c)d) = ν(B(c)G(n)− (B(c) + δ)d), (8.7)

FB(x) =
A1x

p

(B(c)a(f))p + xp
, G(x) =

A2b
q

bq + xq
,

where V is the velocity of the interface and

ūB(x, t) =

∫ ∞
−∞

B(c(x− s))w(s)u(x− s, t)ds. (8.8)

These equations are slightly modified versions of the surface Delta-Notch

equations in Chapter 6, where B(c) takes the form

B(c) = (c+ 1)2(c− 1)2, (8.9)

which was mentioned briefly in Chapter 6, equation (6.3), to satisfy the con-

dition that B(c) 6= 0 on the phase interface only.

The variable n depends on the presence of VEGF f through the VEGF func-

tion a(f) found in the Hill function FB, much like the VEGF function first

defined in Chapter 4, equation (4.39) to localise the pattern of Delta and

Notch. The VEGF function is set as a(f) = apf for VEGF-Notch reaction

parameter ap.

The difference in the endothelial cell size REC and the inhibition length δ4

from those used in Chapter 6 will affect the form of the weight function. A
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Figure 8.1: Cross section of the 2D triangle weight function (8.10) for the coupled
angiogenesis model. Notice the larger number of s-values that are now assigned a
weight, as a result of the selection of the new radius REC = 4 and inhibition radius
δ4 = 16.

2D triangle weight function is used in the coupled angiogenesis model, which

is written

w(s) =


2|s|
δ24

|s| 6 δ4
2
,

2(δ4−|s|)
δ24

δ4
2
< |s| 6 δ4

0 otherwise,

(8.10)

where REC = 4 and δ4 = 16, is displayed in Figure 8.1.

8.3 Simulating the coupled model

There are two ways to advance the time in the model. One way is to use

a multiscale approach where DLL4 and Notch are calculated on the surface

c = 0 (given by the initial condition for the phase field c) and the lateral inhi-

bition model is then advanced on its own. The angiogenesis equations will be

advanced once a threshold for DLL4 is passed. The VEGF levels and phase

field parameter will be updated, and the lateral inhibition will be calculated
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on this new interface. This method means the interface is treated as fixed

in the case of the lateral inhibition equations, and the lateral inhibition time

scale is instantaneous compared to the angiogenesis time scale.

However, as stated by Wearing et al. [150], the time scale for the lateral

inhibition model ranges from hours to days, and Chapter 7 established that

the time scale for the angiogenesis model on a 160µm× 160µm domain is eight

hours. Therefore, evolving the two sets of equations in successive timesteps

is more appropriate. Using this staggered approach, and starting with the

initial conditions for DLL4 D0, Notch N0, phase parameter C0 and VEGF F0,

the equations are evolved from timestep s to s+ 1 as follows:

Step 1: Use values Ds Ns, Cs and Fs in the angiogenesis equations (8.1) to find

Cs+1 and Fs+1

Step 2: Use values Cs+1, Fs+1, Ds and Ns in the DLL4-Notch equations (8.7) to

find Ds+1 and Ns+1

Step 3: Repeat with s = s+ 1 until no hypoxic cells remain.

The coupling of these models will introduce a delay to the pattern formation

in the DLL4-Notch model, as the initial condition for VEGF will cause the

VEGF function a(f) to correspond to a stable solution at the surface initially

and the pattern will only begin to form later when VEGF diffuses to the sur-

face. An important question to be considered is whether this delay will cause

any qualitative difference in the results. However, Veflingstad et al. [142] wit-

nessed no change in the final solution of their Delta-Notch model with a delay

and the only effect witnessed was the time elapsed before reaching the final

solution. Once the hypoxic sources of VEGF are deactivated, a(f) will drop

again at the surface and the DLL4 levels will fall and cease surface motion.
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Another delay in the model relating to the time DLL4 takes to appear and

activate tip cells is discussed later in this chapter (see Figure 8.4).

For the simulations of the coupled model, tip cells will only be allowed to

form on the interface of the capillary to make the coupling with the surface

lateral inhibition calculations possible. Chapter 7 showed that the behaviour

when tip cells form on the interface causes more initial sprouting than when

they form within the endothelium, but the behaviour is still typical of angio-

genesis (see Figure 7.8).

The lateral inhibition model (8.7) uses the 2D triangle weight function (8.10)

in all simulations.

8.3.1 Parameter values

Many of the parameter values used in the angiogenesis model in Chapter 7

are also used here and should be assumed the same except the ones given a

different value here, or where specified different later in Section 8.3.2 due to a

parametric study. The length and time scales are unchanged from Chapter 7.

Parameters from the angiogenesis equations that take a different control value

here to that taken in Chapter 7 are the radius of the initial capillary, which

is taken as RV = 8, and the two interfacial thicknesses which are changed

to λ = 2 and ε = 0.2 to regulate the large fluctuations in the DLL4 and

Notch values near the moving interface when the interface thickness is too

small, as mentioned previously in Chapter 6. The new parameter for tip cell

activation, dact, is dimensionless and set at dact = 0.25. The length and time

scales, and all angiogenesis parameters, are given in Table 8.1. As the DLL4-

Notch model is dimensionless, all the parameters are too, and are set the same
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as in Chapter 6, except the VEGF parameter ap which is set as ap = 0.4 so

that at the activation threshold dact = 0.25, the VEGF function a(f) = 0.1.

The lateral inhibition parameters are given in Table 8.2.

8.3.2 Results

The results here intend to show that the coupled angiogenesis model (8.1),

(8.7) is comparable to the behaviour of tip cell selection and branching in

angiogenesis. The convex splitting method used for Travasso’s angiogenesis

model in Chapter 7 is also used for the coupled model here, with an explicit

method to simulate the DLL4-Notch equations. Boundary conditions are set

the same as in Chapter 7, with periodic boundary conditions horizontally and

symmetric Neumann boundary conditions vertically. The initial condition set

in Chapter 7, Figure 7.3(a) is used here for better comparison of the two

models, with locations of f(x, 0) = fHC to represent hypoxic cells, and an

initial capillary at the bottom of the domain, of thickness 2RV . The initial

conditions for DLL4 and Notch sets Notch at its base solution everywhere and

DLL4 as a small perturbation of its base solution. For the DLL4 and Notch

parameter values given in Table 8.2, the initial conditions are set as

n0 = ne ≈ 0.24, d0 = de + d̃ ≈ 0.07 + d̃, (8.11)

for random perturbation d̃ ∈ [0, 0.1], where the base solutions ne, de are ap-

proximated with a(f) = 0.1. These particular initial conditions are selected

to allow the DLL4 and Notch patterns to emerge faster, as the values start

to converge to the base states ne, de before the pattern starts to form.

The simulation of the coupled angiogenesis model using the parameter values
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Parameter Symbol Real value Dimensionless
value

Length scale L 1.25 µm 1

Time scale T 1560s 1

Diffusion coefficient of f D 10−1 µm2 s−1 100

Mobility coefficient of c M 10−3 µm2 s−1 1

Tip endothelial cell radius REC 5 µm 4

Hypoxic cell radius RHC 5 µm 4

Radius of the initial capillary RV 10 µm 8

Uptake rate of VEGF Bu 0.004 s−1 6.25

Proliferative rate of ECs Bp 8.981× 10−4 s−1 1.401

Range of lateral inhibition δ4 20 µm 16

Nutrient diffusion length fsat 25 µm 20

TEC threshold for EC phase cact N/A 0.9

VEGF level in hypoxic cells fHC N/A 1

TEC VEGF threshold fact N/A 0.055

VEGF cap on EC proliferation fp N/A 0.3

TEC VEGF gradient threshold Gact 0.008 µm−1 0.01

VEGF gradient cap on velocity GM 0.024 µm−1 0.03

Chemotactic constant χ 14.583 µm2 s−1 242.67

TEC DLL4 level threshold dact N/A 0.25

Interfacial width for continuous
equations

λ 2.5 µm 2

Interfacial width for discrete com-
ponent approximation

ε 0.25 µm 0.2

Table 8.1: Dimensional and dimensionless values of the length and time scales of
the coupled model, and the parameters from the angiogenesis equations.
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Parameter Symbol Real value Dimensionless
value

VEGF-Notch reaction coefficient ap N/A 0.4

Hill function parameter in g b N/A 0.1

Exponent for f p N/A 3

Exponent for g q N/A 3

DLL4-Notch ratio ν N/A 1

Hill function coefficient for f A1 N/A 1

Hill function coefficient for g A2 N/A 1

Table 8.2: Dimensionless values of the parameters from the surface DLL4-Notch
equations of the coupled model.

given in Tables 8.1 and 8.2 gives values for the angiogenesis and DLL4-Notch

variables as shown in Figures 8.2 and 8.3 respectively. Notice that the time

elapsed until all hypoxic cells are deactivated is longer due to the new delay

caused by the presence of the DLL4-Notch model. The activation of Notch by

DLL4 in surrounding tissue inhibits tip endothelial cells close to existing ones.

Tip endothelial cells can easily be identified in Figure 8.3(c) as the locations

with high DLL4 levels.

The method of tip endothelial cell activation greatly differs from other an-

giogenesis models which use discrete methods for TEC allocation. While

Travasso’s angiogenesis model treats the activation of TECs as instantaneous

once the VEGF conditions are met, here the VEGF activates the DLL4-

Notch patterning, which has a threshold for endothelial cell migration. This

delay means the VEGF released from the hypoxic cells has diffused across the

ECM and has reached more of the original capillary surface before migration

starts. Therefore more tip cells emerge along the original capillary than in
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(a) t=0 (b) t=5

(c) t=17 (d) t=37

Figure 8.2: Phase field parameter c and VEGF f values from simulations of the
coupled angiogenesis model with DLL4-Notch tip cell selection at times (a) t=0,
(b) t=5, (c) t=17, and (d) t=37, with parameter values as given in Tables 8.1 and
8.2. The initial condition for VEGF is the same as the initial condition used in
Chapter 7 for most simulations of Travasso’s angiogenesis model (see Figure 7.3).
The times indicate that the pattern takes around 16 hours to reach the final solution
shown in (d).

(a) t=0 (b) t=5

(c) t=17 (d) t=37

Figure 8.3: Notch n and DLL4 d values which correspond to the results for c and
f in Figure 8.2, at times (a) t=0, (b) t=5, (c) t=17, and (d) t=37.
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the Travasso model, which had new capillaries emerge earlier and therefore

hypoxic cells begin to deactivate earlier.

Figure 8.4 shows results where VEGF evolution is paused while the lateral in-

hibition pattern is emerging, to be able to more accurately compare the results

to those from Chapter 7. This is accomplished by setting the VEGF values

equal to those of the previous timestep. The periods where VEGF evolution

is paused are controlled by the DLL4 concentration on the interface; when

the TEC threshold, dact, is reached on the interface, the VEGF equations are

activated again. The results here are more similar to those from Chapter 7,

with more branching and a lower number of tip cells forming from the original

capillary compared to Figure 8.2. The rest of the simulations discussed in this

chapter return to the original simulation, and VEGF evolution is no longer

paused.

When the nutrient diffusion length fsat is reduced and there is a need for

capillaries to migrate closer to hypoxic cells before they are deactivated, more

branching is expected, as seen earlier for the non-coupled model in Chapter

7, Figure 7.5. The time taken is shorter as the capillaries get closer to hy-

poxic cells without deactivating them and cause the VEGF gradient to be

higher. This makes chemotaxis of the TECs towards the hypoxic cells faster,

TECs will advance quicker and thus the angiogenesis process as a whole will

be quicker. Figure 8.5 shows such results with lower diffusion length fsat.

A parametric study similar to the one shown in Chapter 7, Figure 7.6 is shown

in Figure 8.6. The chemotactic constant χ and the proliferation rate Bp are

the parameters varied once again, and the results seen are similar to those in
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(a) t=0 (b) t=10

(c) t=17 (d) t=35

Figure 8.4: c and f values in a simulation where VEGF evolution is temporarily
paused until the DLL4-Notch solutions on the capillary surface are stable. This
is done to compare the results of this model to the results from Chapter 7. The
time elapsed is close to the original solution in Figure 8.2, with (a) t=0, (b) t=10,
(c) t=17, and (d) t=35.

(a) t=0 (b) t=7

(c) t=19 (d) t=32

Figure 8.5: Results of phase field parameter c and DLL4 levels d with a shorter
nutrient diffusion distance fsat = 10, which causes more branching and a more
crowded domain. Times are (a) t=0, (b) t=7, (c) t=19, and (d) t=32.
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Bp =
2.802

(a) χ = 121.33 (b) χ = 242.67 (c) χ = 485.34

Bp =
1.401

(d) (e) (f)

Bp =
0.701

(g) (h) (i)

Figure 8.6: Parametric study for χ and Bp, which shows final solutions for nine
different parameter settings. The values of χ for each column and Bp for each row
are shown on the top and left. All other parameters are set at the values given
in Tables 8.1 and 8.2. The results vary in capillary thickness and the amount of
branching.

Figure 7.6; an increase in Bp causes thicker capillaries, and a more complex

network of capillaries is again observed for high Bp and χ. However, higher χ

does not give faster capillary formation or thinner capillaries for this model.

This may be due to the spatial uniformity of the VEGF levels, which will

increase the proliferation along the capillary stalk but also decrease the gra-

dient of VEGF and consequently the TEC velocity.
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A simulation for the case where a tumour represented by two clusters of hy-

poxic cells is present is shown in Figures 8.7 and 8.8. Comparing to the

tumour simulation in Chapter 7 Figure 7.11, the main differences in the cou-

pled version which stand out are the increased amount of time taken, which

is caused by the delay as discussed earlier, the lower number of capillaries,

and the reduced amount of branching. However, the tumour simulation for

the coupled model still shows more branching than in all previous runs of the

coupled model with scattered hypoxic locations.

8.4 Conclusion

It has been shown in this chapter that a continuous model of lateral inhibition

signalling can be coupled to an angiogenesis model to provide a novel way of

simulating the onset of angiogenesis. The simulations show that sensible re-

sults are achieved for appropriate parameter values and unstable solutions to

inhomogeneous perturbations in the DLL4-Notch model.

There is a lot more research to be conducted on this topic. The numerical

results from Section 8.3 study changes in parameters related to the angio-

genesis equations but the coupling to the DLL4-Notch model involves more

parameters that also need investigating. For instance, studies on the effect

of the Hill function parameters may yield interesting results, but care must

be taken to not choose parameters that cause the DLL4-Notch pattern to no

longer form. The VEGF function could be investigated and given a different

form to a(f) = apf , although such a suitable form is currently elusive.

Many other biological mechanisms have been ignored for ease of simulation,
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(a) t=0 (b) t=23

(c) t=41 (d) t=90

Figure 8.7: Results of c and f on a 256 × 256 domain with two large hypoxic
regions resembling a multifocal tumour, at times (a) t=0, (b) t=23, (c) t=41,
(d) t=90, using parameter values from Tables 8.1 and 8.2.

(a) t=0 (b) t=23

(c) t=41 (d) t=90

Figure 8.8: Notch and DLL4 values of the same simulation as shown in Figure 8.7
of a multifocal tumour, at times (a) t=0, (b) t=23, (c) t=41, (d) t=90.
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but could be implemented. The time scale for the whole angiogenic process

is different to the time scales seen in this model as many individual processes

are not considered, such as formation of the lumens within the capillaries and

diffusion of oxygen from the capillaries into the hypoxic tissue.

The DLL4-Notch model used here is the continuous version of Collier’s Delta-

Notch model [45] introduced in Chapter 4 and later defined on a surface in

Chapter 6, Section 6.3.2. Another area not explored here is the use of the

continuous Delta-Notch model introduced in Chapter 5, which was an exten-

sion of Collier’s model developed by Owen and Sherratt [117].

The model would improve with a faster and more stable numerical method.

While convex splitting was used to stabilise the Cahn-Hilliard equation, the

DLL4-Notch equations used an explicit method which meant the timestep

could not be set too large. As stated in the conclusion of Chapter 6, the

surface equations would benefit from a time adaptive scheme which depends

on the velocity of the capillary surface. A faster numerical method would also

allow a finer mesh to be used, which would allow a smaller interface thickness

to be set than the current thickness of λ = 2. Another area for improve-

ment would be the computation of the nonlocal term in the Notch equation

(8.7)1. The calculation of the nonlocal term was improved, but it remains

time-expensive and further work on the numerical efficiency of this model is

required.

The model is still not fully continuous due to the discrete setting of the hypoxic

cell locations which act as a source for VEGF. However, a fully continuous

model is possible through a source term in the VEGF equation. Introduction
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of such a source term in the Travasso model has already been demonstrated

with success by Xu et al. [159], where the source term depends on a tumour

variable defined by its own equation. The only discrete part of the model used

by Xu et al. involves the tip endothelial cells, which means their model can

be combined with this chapter’s lateral inhibition-driven angiogenesis model

to produce a fully continuous model for angiogenesis.

Coupling to a full tumour growth model is possible, and should not be too

challenging once a VEGF source term is introduced as detailed above, and

the model is fully continuous. Both avascular and vascular stages of tumour

growth are able to be simulated with the addition of this model, with TAF

being released from hypoxic tumour tissue which is present once the tumour

has grown to a particular size. The vascular network will saturate the hypoxic

tissue when close enough and will encourage the further growth of the tumour.

Antiangiogenesis therapies are a rising treatment for tumours; so much so

that mathematical models on such therapies are becoming increasingly pop-

ular. Many models of angiogenesis have been extended to include a drug

which restricts angiogenesis (see Cai et al. [37]) but the possibility of antian-

giogenesis therapies taking advantage of the link between Notch signalling

and angiogenesis has still not been fully explored. Future work may involve

research into the effects of a drug that increases Notch potency of DLL4 in-

hibition or of VEGF-R downregulation.

The main objective of the thesis has been reached in this chapter. There

are many applications of this model now available and many improvements

and extensions to the model can be made.
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Chapter 9

Conclusion

The aims of this thesis were to create a continuous mathematical model of

lateral inhibition and to couple it to a model of angiogenesis. These were to

be accomplished using the objectives:

1. To develop a continuous model for lateral inhibition cell signalling by

redefining the way the lateral inhibition is implemented in existing cell

signalling models, in order to avoid using fixed cell locations and to

model average signalling based on average cell distributions instead

2. To extend the continuous lateral inhibition model to include extra bio-

logical features

3. To simulate the cell signalling model on a surface using a surface ap-

proximation method

4. To study a hybrid model for angiogenesis that uses discrete cell signalling

components

5. To successfully couple the continuous cell signalling model to the an-

giogenesis model and use the coupled model to simulate the activation
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of angiogenesis in both healthy conditions and cases where a tumour is

present.

After the Introductory Chapter 1, the biological background of the research

was explored in Chapter 2. This chapter included a discussion of cancer and

how it develops, as well as background information on angiogenesis and the

Notch signalling that occurs during the onset of angiogenesis. It was explained

that the reason cancer is so unpredictable and uncontrollable is because it is

able to become self sufficient in everything it needs, and overcome cell signals

that control abnormal cell activity. To do this, cancer cells acquire certain

abilities, named by Hanahan and Weinberg as the Hallmarks of Cancer [80].

One important hallmark required for malignant growth is a tumour’s abil-

ity to induce angiogenesis, so that it is able to gain its own blood supply.

Angiogenesis is activated in endothelial cells of nearby blood vessels by an-

giogenic factors, such as Vascular Endothelial Growth Factor (VEGF), which

bind to VEGF receptors in the endothelial cells and promote migration of the

cells towards the VEGF source. Notch signalling between endothelial cells

ensures that not all cells are activated for migration, where a ligand named

Delta-Like Ligand 4 (DLL4) binds to Notch receptors in adjacent cells, which

prevent VEGF binding in their own cell, so that there are rarely neighbouring

cells that are both activated for migration.

Chapter 3 discussed the history of mathematical models related to the work

in this thesis. Existing models of cell signalling and angiogenesis were men-

tioned, and the concept of phase field modelling, that has already been used to

simulate many processes including angiogenesis ([139, 144]), was introduced.

This chapter highlighted a significant gap in the literature; most existing an-
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giogenesis models, such as the model by Travasso et al. [139], use discrete

rules to allow some cells to become tip (migratory) cells and prevent their

neighbours from exhibiting this same migratory behaviour. These discrete

rules often assume a lot of information about the cells, such as unanimous

sizes and shapes. A continuous model of lateral inhibition used to replace

these discrete rules would remove assumptions on the information about the

cells, and would represent averages of the ligand and receptor levels instead.

Such a continuous model of lateral inhibition was derived in Chapter 4 from

a discrete model by Collier et al. [45]. An extended version of this Collier

model was derived by Owen and Sherratt [117], and a continuous version was

simulated in Chapter 5. The average neighbour function which represents the

juxtacrine cell signalling in the model had to be redefined to better resemble

the average signalling of a range of possible cell distributions. Results were

found for the model in Chapter 4 in both one and two dimensions, and the

models from both Chapters 4 and 5 included results which simulated con-

ditions similar to the behaviour observed in angiogenesis, where the pattern

only emerges in one area due to the localised presence of the angiogenic factor

VEGF. This was achieved with the use of a VEGF function to replace the

parameter a, which varied the stability of the model over space.

The model from Chapter 4 only included the minimum features required in a

cell signalling model. The extended model in Chapter 5 had more detail but

still omitted some biological mechanisms, such as the intracellular processes

that play a vital role in cell signalling. The first model was acceptable for

producing the results desired in this work, but models such as the model from

Chapter 5 that include more information can be used if particular mechanisms
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wish to be considered.

The lateral inhibition models from Chapters 4 and 5 were defined in Cartesian

coordinates and were not dependent on a surface, which will be required for

coupling to the angiogenesis model as the model will need to be able to work

along an interface that will represent a moving capillary. Chapter 6 rectified

this by using a phase-field surface approximation method to reproduce the

first model from Chapter 4 on a given surface, where a phase field φ repre-

sented the surface at φ = 0.5, and the surface was assigned a thickness ε. The

approximation method defined the variables over a whole two-dimensional

domain and used a function B(φ) that was non-zero on the interface only

to define the model on the interface. The accuracy of this phase field ap-

proximation method was analysed using an asymptotic analysis to prove the

model reduces to the regular surface model when the interface thickness ε→ 0.

The results of the surface lateral inhibition model simulated conditions on

stationary and moving interfaces. Results for a moving interface were as ex-

pected on the interface when the constant ω proportional to the velocity was

not too large. A suitable value for the interface thickness must be chosen to

avoid inaccuracies further away from the interface. A Runge-Kutta scheme

may also improve these numerical issues. A feature of the surface method

that was addressed in Chapter 6 is that parts of the interface that are not

considered adjacent to each other may still inhibit each other if they are close

enough, caused by the fact the equations technically exist across the whole

domain. This is also a feature of the Travasso angiogenesis model [139], but

in the Travasso model tip cells cannot be inhibited as they are already tip

cells. A threshold for migratory endothelial tissue could be introduced in the
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coupled angiogenesis model so that if endothelial tissue meets the threshold,

it is not inhibited.

The angiogenesis model to be coupled to the surface lateral inhibition model

was introduced in Chapter 7. The model was a hybrid model of angiogene-

sis by Travasso et al. [139], where the angiogenic factor source and the tip

endothelial cells were represented by discrete components, and the other dy-

namics of the model were represented by a Cahn-Hilliard equation with a

reaction term for the phase field c and a reaction-diffusion equation for the

angiogenic factor f . Results simulated both physiological and pathological

angiogenesis by adjusting the locations of angiogenic factor sources, where a

tumour was imitated by setting the initial condition as a cluster of hypoxic

cells.

The results for the Travasso model were largely used to investigate parameter

changes in the model, such as the proliferation and uptake rates, the chemotac-

tic constant, and the nutrient diffusion length. The interfacial thickness λ was

also trialled to find its optimal value. Results mainly showed a small amount

of branching from the original capillary and secondary branches sprouting

from these new capillaries, with possible variation in density of the vascular

system or capillary thickness depending on the parameter values. The re-

sults which started with clusters of hypoxic cells saw focused vascular growth

around those areas, as expected from the presence of a TAF-releasing tumour.

The assignment of the TECs in the Travasso model used discrete definitions

to assign the centre of a TEC from the VEGF levels f , defined the domain of

this new TEC from the fixed TEC radius, and inhibited other points within
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an inhibition radius from being designated a TEC centre. The complication

of coupling the discrete TEC and hypoxic cell components to the continuous

equations of the model can slow down the computation and makes further

coupling harder.

The replacement of this discrete TEC selection method with a continuous

model of lateral inhibition in the angiogenesis model was executed in Chap-

ter 8. The surface lateral inhibition model from Chapter 6 was coupled to

Travasso’s angiogenesis model from Chapter 7 by including a migration term

BM(c, d, f) dependent on DLL4 d in the phase field c equation of the angio-

genesis model, and a VEGF function a(f) dependent on angiogenic factor f

in the Hill function FB(d̄B) from the Notch n equation of the lateral inhibition

model.

Results for the coupled model showed less branching than the Travasso model,

which was caused by the removal of the forced TEC allocation where a TEC

would always form immediately when the conditions were met. There was a

delay in the coupled model caused by the time taken for the DLL4-Notch pat-

tern to form. Time scales of Notch signalling models [150] and the previous

angiogenesis model support this delay, and suggest a similar time scale for

both of these processes. The reason the delay resulted in less vessel branching

in the coupled model was because of the near-uniform angiogenic factor levels

this caused.

The signalling of endothelial tissue across the extracellular matrix is present

in the angiogenesis models from both Chapters 7 and 8, but Travasso’s model

in Chapter 7 does not inhibit endothelium that is already designated a tip
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cell. This is why two tip cells can meet and combine in the model, a process

that is called anastomosis in real life angiogenesis. This is not frequently ob-

served in the coupled model of Chapter 8, but could be introduced through

the migration term BM(c, d, f). If this term is not equal to zero then the

tissue could be labelled “migratory” and be made immune to inhibition.

Both angiogenesis models from Chapters 7 and 8 unrealistically assume in-

stant creation of fully functioning blood vessels as soon as the endothelial

cells have migrated, where the endothelial phase in the model is able to satu-

rate and deactivate hypoxic cells instantly when near enough. A development

on the coupled angiogenesis model therefore could include the later stages

of angiogenesis, where a model could simulate the formation of a lumen and

perhaps even the remodelling of the vascular system.

As in Chapter 7, Chapter 8 also used different hypoxic cell locations, defined

discretely, to simulate physiological and pathological angiogenesis, where a

cluster of hypoxic cells resembled the presence of a tumour. Coupling fully to

a tumour growth model, where the tumour is affected by the presence of the

blood vessels as well as the converse, and the release of TAF from the tumour

replaces the need for the discrete hypoxic cell components, is discussed in

more detail later in Section 9.1.1.

Another aim of the thesis was to demonstrate the benefits of replacing the dis-

crete rules for lateral inhibition in the angiogenesis model with the continuous

lateral inhibition model. Information on the endothelial cells in the model is

not known, and by using this continuous average representation of the ligand

and receptor levels, no information is assumed about the cells to match this.
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Coupling to the angiogenesis model also took away the assumptions on cell

information made by the discrete TEC components of this model.

9.1 Potential for Future Work

Further work on the content of this thesis may come in many forms, such as

additions to the model, changes, or numerical improvements. Some potential

future work has already been mentioned earlier in this chapter.

The weight functions derived in Chapter 4, Section 4.3.2 were calculated by

averaging different types of standard weight functions such as rectangle func-

tions and Dirac delta functions. However, most of the weight functions derived

were not used in the final coupled model in Chapter 8. Results comparing

simulations that implement these different weight functions may produce in-

teresting results.

The continuous model in Chapter 5 included many mechanisms of cell sig-

nalling, such as production of free receptors, and internalisation of bound

ligand-receptor complexes. However, further extensions to a lateral inhibition

model suggested by Wearing et al. could consider the movement of ligands

and receptors on the surface of the cell (cell polarisation), unequal distribution

of receptors on the cell membrane, or even cleavage from the cell altogether

and the occurrence of paracrine signalling [150].

An assumption made by the angiogenesis models from Chapters 7 and 8,

as mentioned earlier in this chapter, is that the differentiation and matura-

tion stages of angiogenesis are instantaneous. The fact that the endothelial
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phase can instantly deliver nutrient to nearby hypoxic areas in the model is

unrealistic, as the formation of the capillary lumens, which are the passages

through which the nutrient-carrying blood travels, occurs after the progres-

sion stage where the endothelial cells migrate and proliferate. Mathematical

models exist that include the differentiation and maturation stages of angio-

genesis [22]. The model also ignores the remodelling stage of angiogenesis,

where ineffective blood vessels are pruned to improve efficiency of the vascu-

lar system. Remodelling is more complicated to implement, as decisions on

pruning depend on the blood flow of the model, as demonstrated in a model

by Owen et al. [119]. The coupled angiogenesis model could be extended to

incorporate some or all of these states of angiogenesis.

The two-dimensional results of the Delta-Notch model in Chapter 4 could

be used for another extension to this work. The model could be applied to

a three-dimensional model of angiogenesis, where the two-dimensional Delta-

Notch model is simulated on the now-2D capillary surface. This 3D model

will give a more in-depth simulation of angiogenesis.

Another important application that was not covered is drug delivery, in par-

ticular antiangiogenic therapies. Examples of some of these therapies include

those that target existing vasculature and cause vascular collapse, and those

that target proliferating endothelial cells early in angiogenesis [119]. The lat-

ter therapies in particular provide interesting ideas for the application of the

coupled lateral inhibition-angiogenesis model, where perhaps therapies that

target the Notch signalling can be investigated.
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9.1.1 Application to a tumour growth model

An area of research that was briefly investigated in this work was tumour an-

giogenesis. Chapters 7 and 8 both investigate results with an initial condition

of a cluster of hypoxic cells to imitate the release of angiogenic factor from a

tumour, but tumour growth itself was not included. A fully continuous model

of tumour growth and angiogenesis could be developed by extending the cou-

pled angiogenesis model, where the avascular, vascularisation, and vascular

stages of tumour growth can be simulated at once.

A model by Xu et al. [159], mentioned briefly in the Conclusion of Chapter

8, altered the Travasso model to replace the discrete hypoxic cell components

for the angiogenic factor source by coupling the model to a tumour growth

model, where the angiogenesis equations would become

∂f

∂t
= D∆f −BufcH(c) + ϕ(1− f)G(σ),

∂c

∂t
= M∆(µc − λ2∆c) +Bp(f)cH(c),

(9.1)

where ϕ is a phase field variable representing the density of tumour cells and

σ is the nutrient variable, both with their own separate equations, and G(σ)

is some function of the nutrient σ. Xu et al. mention that the only feature

keeping their model from being fully continuous is the discrete components for

TEC selection. The coupled model from Chapter 8 has successfully removed

these discrete rules for the phase field parameter c, and can be coupled to

the Xu model to create a completely continuous model with angiogenesis
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equations

∂f

∂t
= D∆f −BufcH(c) + ϕ(1− f)G(σ),

∂c

∂t
= M∆(µc − λ2∆c) +Bp(f)cH(c) +BM(c, d, f).

(9.2)

This tumour growth model could potentially be extended further by exam-

ining the point when the tumour tissue begins to invade some healthy tissue

phase, and is henceforth defined as cancer. The model may be able to simu-

late tumour invasion by activating an invasion ability in the tumour when it

surpasses some parameter related to the growth, which will likely only hap-

pen in the presence of high nutrient levels, and therefore show that the model

supports the fact that angiogenesis is required for cancer to develop.
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9.2 Final thoughts

This thesis has provided the first coupling of a continuous model of lateral in-

hibition to an angiogenesis model. In my opinion, one of the most important

potential areas of future research that was not accomplished in this work was

the extension of the angiogenesis model to include later stages of angiogen-

esis, in particular the inclusion of lumen formation and diffusion of nutrient

only able to originate from fully functioning blood vessels with a lumen. This

could be implemented by including an extra “lumen” phase which emerges in

the middle of a vessel once it reaches a certain thickness. Another important

future development, which was an original aim when work on this thesis be-

gan, is coupling the angiogenesis model to the angiogenesis-tumour growth

model by Xu et al. [159] discussed in Section 9.1.1.

The Delta-Notch model also has many further applications outside of an-

giogenesis, for example the role of Delta and Notch in cell differentiation,

which occurs in cell generation processes such as gliogenesis (the generation

of glial cells, which support the nervous system) [128], and the angiogenesis

model itself can also be used to simulate other uses of angiogenesis. I believe

that the applications of the ideas developed in this thesis are vast.
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Appendix

A.1 Parameter studies for the angiogenesis model

from Chapter 7

Figure 9.1 is a parametric study of the chemotactic constant of TECs χ and

the uptake rate of angiogenic factor, Bu. Lower Bu and higher χ shows a

compact vascular system. The faster consumption of angiogenic factor by the

endothelial cells has a similar result to slower proliferation, seen earlier in

Figure 7.6.

Figure 9.2 shows a change of the proliferation rate Bp and the uptake rate

Bu together. High Bp and low Bu results in a denser vascular system than

the other results. Both high Bp and low Bu result in thicker capillaries, but

higher Bp has more of an effect on capillary thickness. A higher uptake rate

results in a lower number of capillaries because the number of TECs activated

is lower from the angiogenic factor levels dropping below the TEC threshold

quicker.
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Bu =
12.50

(a) χ = 121.33 (b) χ = 242.67 (c) χ = 485.34

Bu =
6.25

(d) (e) (f)

Bu =
3.13

(g) (h) (i)

Figure 9.1: A parametric study where changes of parameters χ and Bu are studied.
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Bu =
12.50

(a) Bp = 0.701 (b) Bp = 1.401 (c) Bp = 2.802

Bu =
6.25

(d) (e) (f)

Bu =
3.13

(g) (h) (i)

Figure 9.2: Parametric study where changes of parameters Bp and Bu are studied.
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