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Abstract

This work focusses on testing and developing methods to find solutions to
the variational problem at the heart of orbital free density functional the-
ory (OF-DFT). OF-DFT is an inherently linear scaling quantum chemical
method which can, in theory, be used to simulate systems with millions
of atoms. However, there is a limited choice of OF-DFT codes which are
suitable for the development of the theory for chemical systems. In this
work we compare and contrast three methods: the Lopez-Acevedo scheme; !
the Chan, Cohen and Handy Scheme?3(CCH); and the trust-region image
method (TRIM) scheme.? We find that the scheme developed in this work
— the TRIM scheme — offers the most efficient methodology for converg-
ing the energy for a wide range of functionals in an all electron context for
finite chemical systems.

In Chapter 1 some mathematical topics are introduced which are required
to understand how the foundations of density functional theory (DFT)
built upon convex analysis underpins the variational principles of CCH and
TRIM. In Chapter 2 we introduce electronic structure theory and discuss
the theoretical foundations of DFT. We also include a discussion on Kohn-
Sham DFT.5 Following on from this in Chapter 3 we discuss OF-DFT
and introduce the concept of the orbital free approximation of the non-
interacting kinetic energy functional (OF-KEF). In addition, explanations
of various forms of OF-KEFs found in the literature are given.

We will then shift focus to discussing some established variational schemes
— Lopez-Acevedo and CCH — in the literature and discuss how we mod-
ified CCH to converge the energy for a wider range of OF-KEFs than had
been previously reported. The last section of Chapter 3 will discuss the
theory behind the TRIM method we have developed in this work. We will
see that the TRIM scheme relies on the fact that the optimisation problem
at the heart of OF-DFT is a saddle point optimisation problem.

In Chapter 4 a detailed description of the CCH scheme is given and how
we implemented this scheme in order to converge the energy for a wide
range of OF-KEFs. It is shown that most functionals predict very poor

energies and densities. Furthermore, most OF-KEFs do not predict molec-



ular binding. In Chapter 5 we discuss the form of the potentials generated
by the OF-KEFs. It is shown that the sum of the kinetic potential and the
effective potential approaches a constant in an oscillating manner, point-
wise in space, when using Gaussian basis sets. This means if one wants
to compute forces there is a Pulay like term in the equations. In addition,
the balances between the potentials in the Euler equation are examined.
This provides an explanation for the small chemical potential values one
computes using these OF-KEFs.

In Chapter 6 the TRIM scheme is presented and our implementation
of the scheme is discussed in detail. A demonstration of why the TRIM
scheme is more efficient than both the Lopez-Acevedo and CCH schemes is
provided. Furthermore, it is highlighted that the importance of the guess
density for molecular systems in ensuring convergence is optimal.

In Chapter 7 we examine a variation principle at the interface of wave-
function and density functional theories. A recently proposed variation
principle® is examined and is shown” that it can be expressed in terms
of the well known Lieb functional. The equivalence between the informa-
tion obtained from the two approaches is illustrated numerically by their
implementation in a common framework.

In Chapter 8 a summary of the work is presented and a view on the
future of research in OF-DFT is given. These views are supplemented with

results from preliminary investigations on these future research directions.
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Acronyms

CC Coupled Cluster.
CCH Chan, Cohen and Handy optimisation scheme.

CCSD Coupled Cluster theory with Single and Doubly excited determi-

nants.

DFT Density Functional Theory.
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ETOF-MOL Even Tempered Orbital Free basis set for MOLecular sys-
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GTO Gaussian type Orbitals.

HF Hartree-Fock.

HK Hohenberg-Kohn.

KE non-interacting Kinetic Energy.
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KS-DFT Kohn-Sham Density Functional Theory.
LDA Local Density Approximation.
MO Molecular Orbitals.

OF-DFT Orbital Free Density Functional Theory.
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Acronyms

OF-KEF orbital free non-interacting Kinetic Energy Functional.
PKSA Post Kohn Sham Analysis.

SC Self Consistent.
SCF Self Consistent Field.
SCOFA Self Consistent Orbital Free density functional theory Analysis.

SGA Second order Gradient Expansion of the non-interacting kinetic en-

ergy density.

STO Slater type Orbitals.

TF Thomas-Fermi non-interacting kinetic energy functional.

TFDAW Thomas Fermi + Dirac exchange +\-von-Weizsacker functional.
TFDW Thomas Fermi + von Weizsacker with Dirac exchange.

TFVW Thomas Fermi + Von Weizsacker.

TRIM Trust Region Image Method.
VW von Weizsidcker non-interacting kinetic energy functional.

XC eXchange Correlation.
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1. Mathematical Background

1.1. An Introduction to Topological and Metric

spaces

In this thesis we will be utilising ideas derived from the formulation of
density functional theory (DFT) using convex analysis by Lieb.® In this
chapter we will introduce and explain in some detail the mathematics re-
quired to understand this formulation. To begin with we will introduce the
concept of the topological space. As we will explain in Section 2.3.3 the
sets of ground state densities and potentials are examples of topological

910 called Lebesgue spaces which are also introduced in this chapter.

spaces
We will also discuss some tools from convex analysis required for under-
standing Lieb’s convex formulation of DFT discussed in Chapter 2. We
will finish this chapter by introducing saddle functions which are central to
the idea introduced in Chapter 3 and applied in Chapter 6.
We begin by defining the topological space which underlines the material

in this chapter.

Definition 1.1.1. A topological space T' = (X,7T) consists of a non-
empty set X with a fixed family T of subsets of X satisfying

1. X,0eT
2. The finite intersection of any members in T is also in T

3. The countable® union of any members in T is also in T

Where () denotes the empty set. The family 7 is called a topology for
X and its elements are the open sets on X. Given a set C' € X then it is
a closed set in X if its complement C* = X\C' is an open set. Or in other
words, if C'is in X but not in 7 then C is closed. In a topological space
it is often convenient to have some subfamily B of open sets such that any
open set in X can be constructed from a union of sets in B. This leads to

the concept of the topological basis.

* Either finite or countably infinite.
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Definition 1.1.2. Given a topological space (X,T) a basis for T is a
subfamily B C T such that every set in T is a union of sets from B.

The topological basis is the smallest set of open sets which can generate

the topology for X. We now need to introduce the concept of the metric

Definition 1.1.3. If X is a set, a metric on X is a functiond : X x X — R
such thatV xz,y,z € X:

1. d(z,y) >0 ;

2. d(z,y) =0z =y;

3. d(z,y) = d(y,z);

4. d(z,y) +d(y, 2) = d(z, 2).

A metric space consists of a set X together with a metric, d, where
X is given the metric topology induced by the metric. In other words, a
metric space is a special type of topological space. For example, we can

generate a topology using a basis consisting of open balls, B.(x)
Bi(z) = {y € X | d(x,y) < e}, (1.1)

with € X and € > 0. This metric topology is important for discussing
concepts such as convergence of a sequence. Let (X, d) be a metric space.
A sequence (z,,) in X is said to be a Cauchy sequence if, given € > 0, there
exists an integer ny such that d(z,,z,) < € V p,q > ng. Alternatively
if a sequence is Cauchy it cannot escape from any open balls it enters.
Obviously every convergent sequence is Cauchy. If every Cauchy sequence
in X converges to an element in X then we say this space is complete.
Now let V' be a linear space over a field F. A field is a set on which
addition, subtraction, multiplication, and division are defined for every
element of the field. An example of a field would be the positive real
numbers excluding zero. V being a linear space means that it is closed

with respect to the following operations: vector addition
r+yeV V (z,y) e VxV (1.2)
and scalar multiplication

ax €V V (a,z) € Fx V. (1.3)

2 Variational Solutions in OF-DFT M. S. Ryley
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A norm, ||.|| on V is a mapping from V' to the non-negative real numbers,

R, which satisfies, over the field F,
L ||z|]| >0 V 2z € X
2. lz+yll < llzll +lyll ¥V 2,y € X,
3. |Jazx|| = |af||z]] V () € F XV,
4. ||z||=0< 2z =0.

A linear space equipped with a norm is called a normed linear space or
normed space. The norm satisfies all the requirements for a metric and
so the normed space is a special type of metric space. This means we
can discuss the continuity and differentiability of functions acting on any
normed space using the norm.

We can now define the mathematical object that underpins so much of
DFT, the Banach space.

Definition 1.1.4. A normed space which is complete with respect to the

associated metric is called a Banach space.

We will explain in Section 2.3.3 that the sets of potentials and densities

used in Lieb’s formulation of DFT are in fact examples of Banach spaces.

1.1.1. Dual Spaces

Having introduced the concept of the normed space we now consider general
linear transformations between two such spaces which will give rise to the
concept of dual spaces. Dual spaces are crucial to the mathematical analysis
of DFT in which the set of ground state potentials is the dual space of the
set of densities. We will discuss this duality in the next chapter.

Let X and Y be linear spaces over the same field F. A linear mapping

T : X — Y is one that preserves the linear operations i.e.

T(x+a2")=T(x)+T(z) (1.4)
T(ax) = aT(z). (1.5)
for z,2’ € X and a € F.

Theorem 1.1.1. Let X andY be normed spaces over the same field F and
let T' be a linear mapping from X toY . Then the following statements are

equivalent

M. S. Ryley Variational Solutions in OF-DFT 3
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e T is continuous
e IM € R such that ||T(x)|| < M||z|]|] V z € X

Linear mappings into the field F underlying the linear field are called
linear functionals. For example, the ground state potential, v is a linear
functional acting on the set of densities. If the ground state potential is
linear functional of the density — which is the case in DFT where we
use the Coulomb potential — we are then guaranteed that [ v(r)p(r)dr is
finite. As we will see in the next chapter this integral is required in the
evaluation of the total energy.

We now denote the set of all linear mappings from X to Y by L(X,Y)
and the set of all continuous linear mappings from X to Y as LY(X,Y).
The set L(X,F) is known as the algebraic dual. We are more interested
in the set LY(X, F) which is known as the topological dual of X. As we
are only concerned with the latter we will just refer to this as the dual
space of X which we denote by X*. One can show that X* is a Banach
space even if X is not. A simple way of describing the dual space of X —
using Theorem 1.1.1 — is that this space is the set of all bounded linear
functionals whose domain is a subset of X.

We can continue by defining the bidual
X = LYX* F). (1.6)

which is the set of all bounded linear functionals whose domain is a subset
of the dual space of X. X is said to be reflexive if X = X*. If X € X**
then X is referred to as mon-reflerive. The Banach spaces underlining
DFT are non-reflexive. This is in contrast to quantum mechanics where
the spaces of wavefunctions are reflexive. The reflexive Banach spaces used
in quantum mechanics are called Hilbert spaces and will be introduced in
Chapter 2.

1.1.2. Convergence and Continuity in Banach Spaces

Another topic which we must discuss are the various types of convergence
one can have in a Banach space. This will allow us to define the various
concepts of continuity of functions in Banach spaces. The concepts in this
section are required in defining the set I' — introduced in Section 1.4 —
which contains the Lieb functional.

We will begin by considering sequences in a Banach space X and its

dual X*. There exists a duality between X and X* given by the bi-linear

4 Variational Solutions in OF-DFT M. S. Ryley
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functional

(x¥|z) =2 (x); ze€ X, 2" € X" (1.7)

This duality sets up a bounded linear functional  — (z*|x) on X and also
a bounded linear functional * — (z|z*) on X*. Only in reflexive spaces is
(a"]) = (ala).

For example, in quantum mechanics we often write (¥|¥) without con-
cern whether we are acting on the ket or bra space because of the reflexive
nature of the Hilbert space. However, in DFT the duality (v|p) # (p|v)
due to the non-reflexive nature of the Banach spaces. The form we use is
dependent on when we are evaluating the energy functional on the density
space — (v|p) — or the potential space — (p|v). In practice, however, we
are not strict on this.

We can now define both strong and weak convergence. Let {z,} be a

sequence in the normed space X.
Definition 1.1.5. Strong Convergence
||z, — || = 0 as n — oc.

This is usually denoted by z,, — = and we say {x,} converges strongly

to x.
Definition 1.1.6. Weak Convergence
vV oa* e X*||(a*x —2,)|| = 0 as n— oo.

This is usually denoted by x,, — x and we say {z,} converges weakly
to x. It’s important to note that, in a Banach space, strong convergence
implies weak convergence. If the Banach space is reflexive the reverse is
also true.

Now consider a {z}} in the dual space X*. Strong convergence is defined
in an obvious manner and weak convergence is defined using the bidual X**.
However, when discussing sequences in X* we have an even weaker notion

of convergence: weak star convergence.
Definition 1.1.7. Weak-star Convergence
Ve X, ||(z8—zi|x)|]| =0 as n— oo.

This is usually denoted by z* — z*. Weak convergence implies weak-
star convergence but the converse is true only when the Banach space is

reflexive. We use these ideas of convergence in defining the continuous

M. S. Ryley Variational Solutions in OF-DFT 5
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nature of functions acting on Banach spaces. In the Banach space X for a

given f: X — R*

T, = x = f(r,) = f(zr) strong continuity (1.8)

T, — 2 = f(x,) — f(z) weak continuity. (1.9)

For a function acting on the dual space X* we have three different forms

of continuity

x;, — " = f(x)) — f(2") strong continuity (1.10)
z, — 2" = f(a)) — f(z") weak continuity (1.11)
rh St = f(af) = f(2¥) weak-star continuity (1.12)

The relative strengths of continuity are given in the following theorem

Theorem 1.1.2. On the dual X* of a normed space X, weak-star con-
tinuity of g : X — R at x* implies weak continuity at x*, whereas weak
continuity implies strong continuity. The converse statements do not hold.
However, all x** € X** are both weakly and strongly continuous on X*,

whereas all x € X are weak-star, weakly, and strongly continuous on X*.

1.1.3. Gateaux Derivatives

This thesis is concerned with variational solutions in DFT. We will therefore
need to be able to compute how functionals vary with changes in electron
density. This requires knowledge of Gateaux derivatives which is closely
related to the more familiar directional derivative.

Let us consider a mapping f : V — R where R is the extended real
number system i.e RU{£o00}. If we change the argument z; in the direction
of x by adding ex to xy with € > 0 the directional derivative in this

direction is defined as

J(zo +ex) — f(fo)_

"(z9;2) = li 1.1
flevio) = Ly, 6 (113)
If fis linear in = then
e—0t —€ e—0t €

which shows the left and right hand derivatives are identical allowing us to

* R denotes the set of real numbers

6 Variational Solutions in OF-DFT M. S. Ryley
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write:
f/(ajo_ LIZ‘) — lim f(xO + EZE) B f(ZL‘()) .

e—0 €

(1.15)

So now let us consider a function f : X — R. The function is said to
be Gateaux differentiable at x if there exists a bounded linear functional

V f(zo) € X* known as the Gédteaux derivative

V (o) (@) = Tim L5 €0 = J(x0)

e—0t €

(1.16)

It should be clear that if the Gateaux derivative exists at zg then the
directional derivative also exists. However, the existence of a directional
derivative for all z at xy does not imply Gateaux differentiability unless

the directional derivatives are bounded and linear in x at xg.

1.2. Lebesgue Spaces

We will now introduce a special type of Banach space: Lebesgue space. !

As the properties of these types of spaces are used frequently in Lieb’s con-
vex formulation of DF'T we will explore this subject in greater depth than
we did for general Banach spaces. We will first discuss the concept of mea-
sure spaces and Lebesgue integration. Then we will introduce the Lebesgue
space and discuss important properties such as derivatives, dual spaces and

sum and intersections of these spaces.

1.2.1. Lebesgue vs Riemann Integration

The Riemann integral is the integration technique we are first introduced
to. Whilst powerful it does require that the integrand is finite over the
entire integration range. The Lebesgue theory of integration circumvents
this problem by enlarging the collection of functions for which the integral is
defined. This will become desirable in the formulation of DFT for example
Js Ir|~"dr is not Riemann integrable but is Lebesgue integrable.

Recall that we can have the following interval types in R:

la,b] = {z € Rla <z <b} closed interval; (1.17)
la,b) ={z € Rla <z < b} clopen interval; (1.18)
(a,b) = {x € Rla < x < b} open interval. (1.19)

We define the length of the interval to be b — a.

M. S. Ryley Variational Solutions in OF-DFT 7
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Definition 1.2.1. Let E be a set. Then the characteristic function of F,
XE, 1S defined by

xe(z)=1 if x € FE
=0 if v ¢ E.

We can now define a step function, ¢, as a linear combination of charac-

teristic functions, x, of intervals, [},
Y (120
j=1

where ¢; € R. If the end-points of the interval /; are a; and b; then one

can define an integral of ¢

/¢dr = ch(bj — a;). (1.21)

If ¢ is a bounded function over the entire interval then the Riemann inte-
gral of ¢ is defined to be the limit of the integrals of step-functions which
approximate ¢. To lift the bounded requirement we generalize the notion
of length to a suitable collection of subsets, X of R. To do this we need to

pause and consider measures.

1.2.2. The Lebesgue Measure

Let us begin by defining an important concept: the o-algebra
Definition 1.2.2. A family, X, of subsets of a set X is said to be a o-
algebra if:

1. 0,X e X,

2. If A € X then A° ( the complement) belongs to X,

3. If (Ay) is a sequence of sets in X, then the finite or countable union

of these sets belongs to X .

We call (X, X') a measurable space. Note that although similar to topolo-
gies, o-algebras are different. However, they can be reunited through the

construction of the Borel algebra.

Definition 1.2.3. Let X be the set R. The Borel algebra is the o-
algebra, B, generated by all open intervals in R. The elements of B are

called Borel sets.

8 Variational Solutions in OF-DFT M. S. Ryley
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The Borel sets are very important in many areas of mathematics — for
example, unifying topologies and o-algebras — but for us it is important as
it helps define the Lebesgue measure. So now we have defined a measurable

space what exactly is a measure?

Definition 1.2.4. Let X be a o-algebra generated by X. Let p be an
extended real valued function (its range is R U{+oc}), defined on X. We

call v a measure if
1. p(0) =0,
2. n(E)>0V EeX,

3. p is countably additive in the sense that if (E,) is any disjoint se-

quence of sets in X then

{(Us)-Sue
n=1 n=1
We call (X, X, 1) a measure space which really is a measurable space

(X, X) endowed with the specific measure . We are now in the position

to define the Lebesgue measure.

Definition 1.2.5. Let X = R and let its o-algebra be the Borel algebra
B then it can be shown that there exists a unique measure p defined on
B which equals the length of open intervals. We then define u to be the

Lebesgue measure.

For example, if E is a singleton — a set with only one element — then
1(E) = 0. We can now define the Lebesgue integral of a function f over

a measure space M = (X, X, u) as
/ fdp = lim S, = lim ZUiM(Ei) (1.22)

where p(E;) is the Lebesgue measure of the set E; of points on the x-axis
for which f(x) approximates 7;. The limit is known as a refinement of the
domain of f i.e. we split the domain into smaller and smaller intervals. So
imagine we have f that is bounded except at a finite, isolated, number of
points. We say that f is bounded almost everywhere (a.e.). What this
means is that whenever n; = 400, u(E;) = 0 and so its contribution to the
integral is zero. Whereas for the same function using Riemann integration

will yield a divergent integral. To briefly summarise, without proof,

M. S. Ryley Variational Solutions in OF-DFT 9
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Theorem 1.2.1. Let M be a measure space endowed with the Lebesgue
measure. Let dom(f) C M. Then if f is bounded everywhere the Riemann
integration and Lebesque integration are equal. If f is bounded a.e. then

the Riemann integral diverges but the Lebesgue remains finite.

It is clear that we would rather use the Lebesgue integral in our analysis
of DFT especially as some integrands in DFT diverge at isolated points.
For example, the integrand of the Coulomb energy diverges at the origin of

the integration range. We are now ready to introduce the Lebesgue space.

1.2.3. Lebesgue Space

Throughout this section p will denote the Lebesgue measure. In this section
we will impose a Banach space structure on the set of all (Lebesgue) inte-
grable functions on a measure space (X, X', ) and introduce the Lebesgue
spaces, L,, where 1 < p < oco. We will then discuss the properties of
L, spaces that are essential to understanding Lieb’s convex formulation of
DFT. Due to the importance of these spaces, proofs of some of the key

properties are included.

Definition 1.2.6. The space L(X, X, u) is a linear space of Lebesgue func-

tions whose domain is the measure space M(X, X, ).

To take a step closer to imposing the Banach structure on L we need to
make L a normed space. We define two functions to be equal a.e. if the
Lebesgue integral of these two functions are equal. The class of functions
that are equal a.e. are called pu-equivalence classes. So we are really
interested in the p-equivalence classes generated by the members of L. We
will denote them by [f].

Definition 1.2.7. The Lebesgue space L is a set of p-equivalence
classes generated by L(X, X, u). If [f] € Ly then it has a norm defined
through

H[f]Hl:/l[fHdu.

Theorem 1.2.2. The Lebesque space Li(X, X, 1) is a normed space.

Proof. Let [f],[g] € Li1(X,X,n). Firstly it is obvious that ||[f]||; = 0 if
and only if [f] = 0. It is also obvious that ||[f]||s > 0V L;. Now let o € R.
Then

II[a[f]]||1=/|a[f]ldu= |a|/|[f]!du= | [[A11-

10 Variational Solutions in OF-DFT M. S. Ryley
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And finally

|Hf+9]]1=/Hf+g]!du§/![f]|+![g\du=\\[f]\\1+!![g]!!1

[]

For notational ease we will drop the equivalence class notation but it
should be remembered that all results in this section are for equivalence
classes of functions not just for single functions.

We will now consider the spaces L, : 1 < p < oo.

Definition 1.2.8. If 1 < p < oo the space L,, consists of all j-equivalence
classes of functions f for which |f|P has a finite Lebesgue integral. We then

I = (/ Iflpdu>;

It can be shown that L, is a normed space, we will prove that it is also

set

as the norm of L,,.

complete and so is a Banach space. However, we need some intermedi-
ate theorems the first of which is key to proving a lot of the properties
of Lebesgue spaces and so has an accompanying proof for the interested

reader.

Theorem 1.2.3. Holders Inequality
Let f € L, and g € L, where p > 1 and pqg = p+q. Then fg € L, and

Fglly < 11 1lpllgllg
Proof. Let o € (0,1) and ¢t > 0. Consider
o) = at — t°.

Because ¢/'(t) < 0Vt € (0,1) and ¢'(t) > 0, V¢t € (1,400) then ¢(t) >
¢(1) with equality only if ¢ = 1. Therefore

t*<at+(1—a), t>0.
Assume ab > 0 and let ¢t = a/b, we get

a®b' ™ < aa+ (1 —a)b.
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Equality is reached if and only if a = b. Now let p € (1,00) and ¢~ =
1—p 1. Set o = p~ L. It follows that

if A and B are non-negative real numbers. Suppose now that f € L,
and g € Ly and ||fllllglly # 0. Tf we allow A = [f(x)|/||f]|, and B —
l9()[/[glly then we have

F@e@)] _ f@P  lg@)]
llelle = 2718 algl

As the RHS is integrable so is fg and so

[ fglh

<pl4qi=1L
1£11pllgllq
0

{p,q} are known as Holder conjugates. The next theorem can be

proved using the Holder Inequality

Theorem 1.2.4. Minkowski’s Inequality
If ffhe L, ifp>1, then f+h e L, and

1+ hllp < A1l + (7]

The following two theorems arise from the study of integration.

Theorem 1.2.5. Fatou’s Lemma

If (fn) is a sequence of functions bounded from below then
/(lim inf f,,)dp > lim inf/fnd,u.
n—oo n—oo

Theorem 1.2.6. Dominated Convergence Theorem

Let (f,) be a sequence of integrable functions which converge a.e. to a real-
value bounded function f. If there exists an integrable function g such that
|ful < g V n then f is integrable and

[ dn=tim [ fada

We are now in a position to prove that L, is a complete and so is a

Banach space for 1 < p < oc.
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Theorem 1.2.7. Riesz-Fischer Theorem

If p € [1,00) then L, is a Banach space under the norm

fllp = [/Iﬂpdu];. (1.23)

Proof. Let (f,) be a Cauchy sequence with respect to the norm || f]|,.
Hence if € there exists a N, such that if n,m > N, then

||fm - fn“g <€

There exists a subsequence (gi) of (f,) such that ||gry1 — gr]| < 27% for

some integer k. Now we define

9(x) = g1 ()] + Z |9+1(x) — gi(@)]

so we can apply Fatou’s Lemma in the following manner

/|g]pd,u < liminf/
n—oo

We can then write, using the Minowski Inequality,

1
[/ lgl”du} < lim inf (Hglll” + Z g1 — gk|!p>

k=1

n P
1| + Z |Gk+1 — 9k|] du.
k=1

< ||91||p+ 1

Hence if F = {x € X : y(z) < 400} then F € X and pu(X/E) = 0. So (g)

converges a.e. Now define
o0
f + Z gk+1 ))7 rek
k=1
=0,z ¢ FE
Since ||gx|| < ¢g and (gx) converges a.e. to f then by the dominated con-

vergence theorem (DCT), f € L,. Since |f — gi|P? < 2P¢? we infer using the
DCT that 0 = lim || f — gx||, such that (g) converges in L, to f. Then

/|fm — gi|Pdp < €.
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Applying Fatou’s lemma again we conclude

/|fm — fIPdu < liminf/ | frn — gr|Pdp < €° (1.24)

Hence (f,,) converges to f in the norm of L”. O

We have now discussed the Banach space of L, where p < +o0 but we
also need to discuss L, as this Banach space is important for DFT as we

will show that the set of potentials is constructed using this space.

Definition 1.2.9. The space Lo, = Loo(X, X, 1) consists of all the equiva-
lence classes of X -measurable real-valued functions which are bounded a.e.

If f € Ly and N € X with u(N) =0, we define
S(N) = sup{|f(z)]: x & N}

and
[[f]loo = inf {S(N)[N € X, u(N) = 0}

If f € Ly, then we say f is an essentially bounded function

What we mean when we say that f is a A-measurable function is that
{re X|f(z)<a} e X V a€R. The L, space is a normed space which
is easily proved. To complete our analysis of the types of Lebesgue space

we will prove the following theorem.

Theorem 1.2.8. The space L, is a Banach space with respect to the norm,
[

Proof. Let (f,) be a Cauchy sequence in Ly, Let M C X with u(M) =0,
such that |f, ()] < ||falloo for ¢ M,n = 1,2,--- and also such that
|fo(@) = f(@)] < ||fn — filloo ¥V x & M,n,m = 1,2,--- . Then the

sequence (f,,) uniformly convergent on X\ M and we let

f(z) =1lim f,(z),z ¢ M,
=0,z € M.

It follows that f is measurable and that ||f, — fx|| — 0. Hence L is
complete. O

Now that we have discussed the Lebesgue space we need to discuss how
one computes the dual of such spaces and the sum and intersections of

such spaces. Furthermore, we need to know how functional derivatives are
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computed in Lebesgue spaces. These concepts are important for under-

standing formal DFT where we will find that L, spaces contain densities

and potentials used in DFT. By utilising the fact these spaces are Banach

we will be able to derive some important properties of these spaces.
Consider, for example, the function

_ el
f(r)z—1 T (1.25)

This function is a monotonically decreasing function as |r| — oo and hence
is bounded and so f € L. For another example consider the function

€—|I“

g(r) = W

(1.26)
As [ g(r)>2dr ~ [r%g(r)dr as one goes from 3-dimensional to 1-dimensional
integration. Then [r2g(r)dr = [r~Y2¢75/2dr < oo and so f € Lsjs. As
the Coulomb potential energy can be expressed as the sum of g and f we
can expect that the Lebesgue space of the Coulomb potential to be a sum

of Lo and Ls/,. We will demonstrate this rigorously below.

1.2.4. The Dual Spaces of L,

In this section we will compute the dual space of a given Lebesgue space,
L, and we will let {p,q} be Holder conjugates. Dual spaces of Lebesgue
spaces are very important in the development of DFT. We will find that
the dual space of densities are the potentials for example. Therefore, we
must be able to compute the dual of a Lebesgue space. Recall that the dual
space of any Banach space (e.g. Lebesgue spaces) consists of all bounded
linear functionals on the space. If X is a real Banach space, the dual space

of X* consists of all bounded linear functionals F': X — R, with norm

|||+ = sup <|F<x)|> (1.27)

z€X\0 HIHX

Here we have introduced a new notational device ||.||s which signifies that
the we are using the norm associated with the normed space S. Holders
inequality implies that functions in L, define bounded linear functionals on

L, with the same norm.

Theorem 1.2.9. Let (X, X, ) be a measure space and 1 < p < oo. If

M. S. Ryley Variational Solutions in OF-DFT 15
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f € L,(X) then
F(g) Z/fgdu

defines a bounded linear functional F: L,(X) — R and

11 zpy- = 1l £1]z,

Furthermore, if X is o-finite, then the same result holds for p = 1.

A point to note here is that the Lebesgue measure is o-finite on the real
numbers. What this theorem says is that the map F' = J(f)

J LX) = (LX) J(f) g / Fodu, (1.28)

is a (isometric) map from L, to the dual space of L,. The main part of the
following theorem, which we shall sketch a proof, is that for 1 < p < oo
every bounded linear functional on L, arises from an L, function using J

as a map.

Theorem 1.2.10. Let (X, X, 1) be a measure space. Let p and q be Holder
conjugates. If 1 < p < oo then J defines an isometric isomorphism * of
L,(X) onto the dual space of L,(X)

Proof. The objective here is to show that every F' € (L,(X))* is given by
J(f) for some f € L,(X).
Suppose that (X) < oo and let

F:L,—-R

be a bounded linear functional on L,. If B € X, then xp € L,(X) ( the

characteristic function of B) and one may define m : B — R by
m(B) = F(xs).

If B=J;2, B; is a disjoint union of measurable sets, then

XB = Z XBi»
=1

* An isometric isomorphism is a bijective distance preserving map. To make this more
explicit, let f : X — Y be a bijective map. Then if d(f(a), f(b)) = d(a,b) then f is a

isometric isomorphism.
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and using the DCT it’s clear that

Tim [[xp —EXBZ- L, =0

Hence, since F'is a continuous linear functional on L,, m is a signed measure
on (X, X). One can show that there must exist a function f : X — R such
that

Fou) = [ fxadu ¥ Bex

Hence for all functions ¢,

P(o) = [ fod

and

\ / fcbdu) < MIléls,

where M = ||F||,)-- Taking ¢ = sgn(f) we see that f € L;(X). We
may then extend the integral of f against bounded functions by continuity.
Explicitly, if ¢ € Lo, then there is a sequence of simple functions {¢,}
with |¢,| < |g| such that ¢,, — g, and, therefore, also in L,. Since

[foul < gLl fl € Li(X),

the DCT and the continuity of F' imply that

such that
< Mllgllz, ¥ g € Loo(X).

‘ | fodu

We will now prove that f € L,(X), where ¢ is the Holder conjugate to p.

Let {¢,} be a sequence of functions such that
¢n — f pointwise a.e. as n — 00

and |¢,| < f. Now we define
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Then g, € Loo(X) and ||g,||z, = 1. In addition, fg, = |fgn| and

/ (ugaldis = l1ullz,.

Now using these equalities, Fatous Lemma, |¢,| < |f| and Section 1.2.4

one finds
1z, < liminf {[én]]L,
n—oo
Sliminf/|gz5ngn|d,u
n—oo
< liminf/\fgn\du
n—oo
<M
and so f € Lj. O

The extension to non-finite measure spaces is straightforward and unen-
lightening so we will not include it here. To summarise what we have just

proved:

Theorem 1.2.11. If 1 < p < oo and p,q are holder conjugates, then the
dual space of L, is L.

We may inquire into the nature of the bi-duals of Lebesgue spaces. We
say that a Banach space X is reflexive if and only if its bi-dual X** is equal
to X. So for 1 < p < o0 L, is reflexive.

So far we have not discussed the duals of the spaces L and L.,. Without

proof we state the following theorem

Theorem 1.2.12. The dual space of L1 is Ls. The dual of Lo, contains
Ly. Both Ly and L. are not reflexive.

1.2.5. The Sums and Intersections of L,

Having discussed the dual spaces of L, we now discuss another important
property of L, spaces, which is how do we combine two different Lebesgue
spaces? This is important for DFT as the space of densities and potentials

are combinations of Lebesgue spaces as we indicated previously.

Definition 1.2.10. The sums and intersections of Lebesque spaces are de-
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fined as

Lipg=L,NLy, p=>gq,
=L,+L, p<uq,

respectively. It follows that L, ) = Ly.

The intersection is constructed through
L,NL,={zlx € L,z € L} (1.29)
and the sum through
L,+L,={r+ylxr € L,y € L,}. (1.30)

For both the sum and intersection a new norm is induced by the combi-
nation of spaces. By repeated use of the Holder inequality it is not too

difficult to prove the following theorem

Theorem 1.2.13. Let p and q be Holder conjugates. Then

I leway = max([[f]lp: [ fla): » =4,

fqil}p:f<||fp’|p+||fq||q)a P<4q

So now we know how to construct the sum and intersection of L,, spaces
it is natural to inquire about the dual spaces of such constructions. We

state without proof the following theorem

Theorem 1.2.14. If 1 < p;q < 1 with Holder conjugates 1 < p';q" < oo,
then

(L(p,q))* = L(p’,q’) (1-31)

For example, the Banach space of densities which yield finite kinetic
energies is given by L3 N L. Its dual, the space of ground state potentials,
is given by L3/» + L. Based on the discussion we had at the end of the
previous section we expected that the Coulomb potential to be in the space
Lsj5 + L. From the Holder’s inequality one can show Ls/, C L3, which
means that the Coulomb potential is indeed a linear functional acting on
any p € L3N L;. The dual analysis also shows there can be more different
functional forms of the ground state potential other than the traditional

Coulomb form.
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1.2.6. Functional Derivatives in L, spaces

We have introduced Gateaux derivatives on a general normed space in
Section 1.1.3. It will be useful to us to refine this definition to a Lebesgue
space L, where 1 < p < oo. If the Gateaux derivative of I exists at po,
it is by definition bounded and linear in its argument. Therefore, it can
be represented by a function in the dual space, (L,)* and so in DFT the
ground state potentials can be related to the functional derivatives of the

energy functional with respect to the ground state density.

Theorem 1.2.15. The functional derivative of F' at py is denoted by

and satisfies

p(r)dr = V F(po)(p). (1.32)

p=po

/ 3F(p)
op(r)

It will be useful for us to consider a functional of the form

F(p) = [ Foe), Doty (1.33)
Using the definition of the Gateaux derivative

VF(po)(p) = % / f(po+ep, Vo +€eVp)dr (1.34)

e

e=0
dg
. Pt oVp

. p) dr (1.35)
p=po

p=p

pdr (1.36)

and, therefore,

0F(p) _ 09 . 99
dp(r)  Op oVp

This concludes our discussion of Lebesgue spaces. We now move onto

(1.37)

discuss an important topic for the development of DFT: convex analysis.
Convex analysis was used by Lieb®!314 to put DFT on a solid mathematical
footing. This will allow for us to define a new way of approaching the

variational problem in orbital free DFT.
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Figure 1.1.: The closed convex regular octagon, left panel, the open non-
convex octagon, middle panel, and the closed non-convex non-
regular pentagon, right panel.

1.3. Convex Analysis

15,16

Convex analysis is important for studying formal DFT. In particular

it will allow us to analyse the various universal functionals we will meet in
Chapter 2.

1.3.1. Convex Sets

Let V be a linear space over R. If u,v € V we can define a line segment

denoted by [u,v] through
[u,v] == {Au+ (1 —A)v]0 < X <1} (1.38)

Definition 1.3.1. Convex Sets
A set A CV is said to be convex if and only if

[u,v] €V V (u,v) e Ax A

In Fig. 1.1 we have displayed: a convex closed set in R?, left panel; a
non-convex open set in R?, middle panel; and a non-convex closed set in
R2.

If A is any subset of V', the intersection of all sets containing A4 is the
smallest convex set containing A. This set is called the convex hull,
denoted by co(A) and is formally defined through

=1 i=1

In other words the convex hull of A is the set of all convex combinations of

the elements of A. In Fig. 1.2 we have drawn the convex hull of a highly
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Figure 1.2.: The convex hull of a non-convex set in R3

Figure 1.3.: Plots of: the convex function x2, left panel; the concave

function —2%, middle panel; and the non-convex function

r? + exp{m} + 1, right panel.
irregular polyhedron.*

1.3.2. Convex Functions

Let V' be a normed space and consider mappings from A C V into cl(R).
Here the cl(R) denotes the closure of R. The closure of R is just the union

of the real numbers with +oo.

Definition 1.3.2. Convex Functions
Let A be a convex subspace of V and F : A — cl(R). Then F is said to be

a convex function on A if and only if
FAu+ (1=XMNv) <AF(u)+ (1= AN)F(v), Y uveAdA YV Xel0,1].

Additionally if —F' is convex then F'is concave. In Fig. 1.3 we have
plotted the following maps R? — R: convex function z?; the concave
function —2?; and the non-convex function 2 + exp{m} +1.

Let F': V — cl(R) be a convex function, then

dom(F) = {u|F(u) < +o0} (1.40)

is called the effective domain and is a convex set. We include the value

* Also known as a Triceratops
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Figure 1.4.: The epigraph of the function x? in R2.

400 s0 we can define the extended function, F: A — R by

F(u)=F(u) if ue A
Flu)=+o00 if u¢ A

So F is convex if and only if F is convex. Due to this extension, in convex
analysis we need only consider functions defined everywhere. We say a
convex function is proper if it is greater than —oo over its entire domain
and there exits a least one point on the domain such that the function value

is finite. If a convex function is not proper then we say it is improper.

Definition 1.3.3. The epigraph of a function F : V — cl(R) is the set
epi(F) = {(u,a) € V. x R|f(u) < a}.

In Fig. 1.4 the epigraph of the 22 map in R? is shown. The epigraph is
the set of points which lie above the graph of a function. One can prove
straightforwardly that a function F' : V' — R is convex if and only if its

epigraph is convex.

1.3.3. Lower Semi-Continuous Functions

Lower semi-continuous functions appear in DFT. We will find that the
universal functional in the convex formulation DFT is weak-star lower semi-

continuous function.

Definition 1.3.4. Let V be a convex set. Then the function F': V — cl(R)

1s lower semi-continuous on V if

epi(F) is closed,
V veV, liminf F(u) > F(v).

uU—v
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Figure 1.5.: The graph of a lower semi-continuous function, left panel, and
of an upper semi-continuous function, right panel. The red
point means the function takes this value evaluated at 0.

In addition, if —F is lower semi-continuous then F'is upper semi-continuous.
Weak versions of both upper semi-continuous and lower semi continuous
are defined as above but that v — v. The weak-star versions are defined
using the dual space and weak-star convergence. For example, weak-star

lower semi-continuity is defined through

Definition 1.3.5. Let V' be a convexr set. Then the function G : V* —

cl(R) is weak-star lower semi-continuous on V* if

epi(G) is closed
Vo't e V' liminfG(u) > G(v").
uf S

In Fig. 1.5 we have plotted examples of an lower semi-continuous and up-
per semi-continuous function on R2. It should be clear from these plots that
the epigraph of the lower semi-continuous function, left panel of Fig. 1.5, is
closed whereas it is open for the the upper semi-continuous function, right
panel for Fig. 1.5.

It can be shown that the point-wise supremum of lower semi continuous
functions is lower semi-continuous. Let G be a function that is not lower
semi-continuous. Set G to be the point-wise supremum of lower semi-
continuous functions everywhere less than G. Then G is the 'closet’ lower
semi-continuous approximation to G. This is called a lower semi-continuous
regularisation.

Now consider some lower semi-continuous convex functions which assume
a value —oo. These are known as improper functions. Then the following

theorem applies

Theorem 1.3.1. If F: V — cl(R) is a lower semi-continuous conver im-

proper function, then it cannot take a finite value anywhere on its domain.

Therefore, for example, the universal functional in the rigorous formu-
lation of DFT is a proper lower semi-continuous. This is discussed in the

next chapter.
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1.3.4. Sub-Derivatives

When formulating DFT in the next chapter we will be primarily concerned
with convex (concave) functions. We also will want to find the global min-
ima (maxima) of these functions which will require us to take derivatives.
However, not all convex functions are differentiable, as easily seen when
one considers |z|. However, the weak concept of sub-derivatives will allow
us to identity the global minima of all convex functions.

Let f: X — cl(R) where X is a linear space and let X* denote the dual.

Definition 1.3.6. Let zj; € X* and suppose
f(z) > f(xo) + xp(z —x9) Vr € X,

then xf is the sub-gradient of f at xo. The sub-differential, Of(xy), is the

set of all these sub-gradients.

The sub-differential is a closed convex set and can be linked to the

Gateaux derivative through the following theorem

Theorem 1.3.2. If the proper convex function f : X — R s continuous
at xg € X with a unique sub-gradient xj; € X*, then its Gatueaxr derivative

15 given by
V f(z0) = x;

The following theorem gives the converse

Theorem 1.3.3. If the convex function f : X — R has Gateaux derivative

V f(xo) at xg, then it is sub-differentiable at xo with a unique sub-gradient:

Of (zo) = {V f(z0)}

For concave functions we can define the super-differential, df (1), through

the following theorem

Theorem 1.3.4. For f : X — R, the super- and sub-differentials are

related as

Of (zo) = —0(—f)(x0)

To show how one can compute the sub-differential let us compute the

sub-differential of |z| : R — R at x = 0. The sub-gradients at this point,
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{z§}, are given through

|z = [0 + ap(z - 0)

. (1.41)
|z| > zjx Y € R.

Therefore, z§ € [—1,1] and so the sub-differential 9|0| = [—1, 1]. We know
that |x| is minimised at « = 0. The fact that 0 € 0|0| supports this can be
explained through the theorem,

Theorem 1.3.5. Let f : X — (—o0,+00| and let xg € dom(f). Then

xy € Of (x9) & x— f(x) — xjz has a global minimum at x

0 € df(xg) < f has global minimum at xy.

Proof. By Definition 1.3.5 we have, Vo € X, zox € 0f(z9) & f(x) >
f(xo) + a*(x — x9) & f(x) —xjr > f(xg) — xixre. This shows that xg
minimises f(x) — xx. Let of = 0. Then f(z) > f(xy) so z¢ is a global

minima of f. O]

1.4. Introducing I'(V)

In this section we will introduce I''® which is the set of all lower semi-
continuous convex functions which is an important space in DFT because
the universal functional is an element of this space. Therefore, some of the
variational principles are defined over this set in Lieb’s convex formulation
of DFT. This is discussed in Section 2.3.5. Let V be a convex set. The affine
continuous functions f : V — R are functions of the type f(v) = T'(v) + «

where T is a linear, continuous functional over V, v € V and a € R.

Definition 1.4.1. The set of functions F' : V' — cl(R) which are point-
wise supremeum of a set of continuous affine functions is denoted by I'(V').

Lo(V) denotes the set of continuous proper affine functions.

By definition all functions that are members of I' are convex and lower

semi-continuous Conversely
Theorem 1.4.1. The following properties are equivalent
1. FeI'(V)

2. F is conver and lower semi-continuous function from V into cl(R)

and if F takes the value —oo then F' is identically equal to oo.
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Additionally if I € I'o(V) then it is also closed. Equivalently one can
define T and Ty as the set of upper semi-continuous and proper semi-
continuous functions. As an example if G € [y we know that G is a
closed concave function.

We are most interested in the I'-regularisation of functions. The I'-
regularisation of any function gives us the closest approximation to it which

is convex lower semi-continuous function.

1.4.1. T'-regularisation

Definition 1.4.2. Let F' and G be two functions of V into c(R). The

following are equivalent to each other:

1. G 1is the point-wise supremum of the continuous affine functions ev-

erywhere less than F

2. G is the largest minorant of F in T'(V). G is then called the T'-

regularization of F'.

In general, we can construct the epigraph of the I'-regularization as the
closed convex hull of the epigraph of the function. To finish we will note
the relationship between F', its ['-regularization, G and its lower semi-

continuous regularization F.
Theorem 1.4.2. Let F': V — cl and G be its I'-regularization. Then
1. GESF<LF

2. if F is convex and admits a continuous affine minorant then F = G

1.4.2. Legendre-Fenchel Transformations

In this last subsection we will now combine our knowledge of dual spaces
and convex analysis to study Legendre-Fenchel Transforms - which lie at
the heart of DF'T optimisation theory.

In this section let V be a linear space and V* be its dual, and let (.|.) de-
note the bi-linear map between them. Furthermore, we supply topological
structures to each space so that concepts such as continuity can be applied
to the spaces.

Let F' be a function of V into cl(R). If u* € V* and a € R, the
continuous affine function u — (u|u*) — « is everywhere less than F if and

only if

VueV, a>(ulu")— F(u),
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or

if we define

F*(u*) = sup {(u|u*) — F(u)}. (1.42)

ueV

Definition 1.4.3. If F : V. — cl(R), then Eq. (1.42) defines a function
F*:V* = cl(R) and is called the Legendre-Fenchel (LF) transform
of F.

The LF transform is a weak-star continuous functional. It is very clear
that actually we can refine our supremum to the dom(F). This means
that F™* is just the point-wise supremum of the family of continuous affine
functions (u|.) — F(u), for v €dom(F). This means that F* € I['(V*)
and F' is a convex weak-star lower semi-continuous function. We have
the following properties all of which follow from the definition of the LF

transform
Theorem 1.4.3.
1. F*(0) = —infyuey F(u)
2. if F < G, we have F* > G*

3.

(R = e,

Cup " <
for every family (F;)icr of functions over V.
4. AF)*(u*) = AF* (%) ¥V A >0
5. (F+a)=F—aV aeR

6. YV a€V, wedenote by F, the translated function F,(v) = F(v—a).
Then

(Fo)™(u") = F*(u") + (afu’)

We can repeat the process and LF transform F*, the polar function, to

the F**, the bi-polar function. The bi-polar function is a function on V'
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into cl(R) and defined through

F™(u) = sug {(ulu*) — F*(u")}. (1.43)
=
F** is weakly lower-semi continuous. It is clear that F** € I'(V'), which
means that F** is the I'-regularisation of F. F € I'(V) if and only if
F** = I which leads to the following definition

Definition 1.4.4. The LF transform establishes a bijection between I'(V')
and T(V*). F € I(V) and G € T'(V*) are said to be in a duality if they

correspond to the bijection
F=G" and G=F~

The constants 00 on V' and +oo are in duality. Thus F' € I'(V) if and
only if F* € T'(V*). Furthermore, the LF transforms provide a duality
between I'(V') and T'(V*).

In DFT we use the Lieb functional, Fr,, which is introduced in the next
chapter, as a universal functional and is an element of I'(X’). X is an impor-
tant Banach space which will be introduced in Section 2.3.3. The ground
state energy corresponding to Fy,, Ey is found through a LF transformation
on F1, and Ey € fO(X *) which is the set of all proper upper semi-continuous

concave functions on X*.

1.5. Saddle Functions

We will see that the Hohenberg-Kohn variation principle becomes a mini-
max problem when one allows for variations in the density that allow for
changes in the electron number.® As we will show later this is essential for
practical orbital free DF'T. For a general minimax problem the optimisation
is described through both

sup inf K(z,y) (1.44)
€A YEB
inf sup K (z,y) (1.45)
YEB zcA

where sup, 4 inf ep K(x,y) < inf epsup,cq K(z,y). If the inequality is
saturated by (ag, by) € A x B then we say (ag,by) is the saddle point of
K :Ax B — R and K(ag,by) is the saddle value. Now let K : A x B —

cl(R) have a convex mapping x — K(x,y) and have a concave mapping
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y — K(z,y). This is known as a convex-concave function and —K is a
concave-convex function. We refer to both by the general name of saddle

functions.

1.5.1. Sub-Derivatives on Saddle Functions

It will be helpful to know how one takes the sub-derivatives of a convex-

concave saddle function K and a concave-convex function L.

Definition 1.5.1. The subdifferential of a concave—convex saddle function
K:XxY =R s

OK (z,y) = 01K (z,y) x oK (7,y) C X* x Y*

where 01K (z,y) = 5K(~,y){x C X* and 02K (z,y) = 8K(x,-)|y C X~
The subdifferential of a convez-concave saddle function L : X XY — R s

OL(x,y) = 01 L(x,y) x doL(x,y) C X* x Y*

where Oy L(x,y) = 8L(-,y)‘x C X* and Oy L(z,y) = OL(x, )|y cY*.

The following theorem links sub-derivatives to the saddle-points of saddle

functions

Theorem 1.5.1. Let K : X XY — R be a saddle function. Then

(x*,y") € 0K (z,y) < (u,v) — K(u,v) — (z"|u) — (y*|v)
has a saddle point at (x,y),
(0,0) € 0K (z,y) <= K has a saddle point at (x,y)

1.5.2. Constrained Minimisation

For each constrained optimisation problem discussed in this section there is
a corresponding unconstrained optimisation problem. In order to show this

we have to introduce the Lagrange function L : X x R — R through
L(xz,\) = f(x) + Ah(x) (1.46)

where A\ € R is known as the Lagrange multiplier. The Lagrange func-
tion L(x;\) is a convex—concave saddle function, inheriting from f con-
vexity in x and being affine and, therefore, concave in A\. The following
theorem establishes the usefulness of the Lagrange function and underlies

much of the later material,
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Theorem 1.5.2. Let f : X — (—o00,+00] be a proper convex-concave
function h : X — R be an affine function. Then xq € X is a minimiser of

the constrained problem
f(wo) = inf {f(x)[h(x) = 0}

if and only if there exists \g € R such that (xg, \o) is the saddle point of
the Lagrange function L(z,\) = f(x) + Ah(z). The saddle value of the

Lagrange function is equal to the constrained minimum f(xg)

Proof. Let f and h take the properties as ascribed in the theorem. If

o € X is the minimiser of the constrained problem then

F(x0) < (@) + Aoh().
Because h(zg) = 0 the we obtain
F(@o) + M) < flo) + Aoh(z0) < f(z) + Mh(z) ¥ A ER.
or equivalently
L(z, \) < L(zg, Ao) < Lz, M)

and hence (zg, \g) is a saddle point of L.

Conversely if (zg, Ag) is a saddle point of L, then the above inequalities
hold. If we assume that h(zp) # 0 then contradictions arise when one
considers A # A\g. Hence h(xy) =0 and so f(zg) < f(x) V =z € X. And so
L(zo, No) = f(x0). O

1.6. Summary

In this chapter we have introduced the mathematical concepts upon which
the rest of the thesis is built. The main concepts one needs from this

chapter are:

e Lebesgue spaces extend the range of integrable functions. The opti-
misation problems one comes across in DF'T are defined over Lebesgue

spaces.

e The dual space consists of functionals which are bounded from above.

This guarantees that the energy functional in DF'T is finite.
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32

e The dual space of a Lebesgue space is easily found using Holder con-

jugates. We will do this to construct the space of densities and po-

tentials.

Any Legendre-Fenchel transform is a duality which creates lower and
upper semi-continuous functions. These resulting functionals are also
convex and concave respectively. We will use this in the next chapter
when we show the construction of the universal functional in Lieb’s
formulation of DFT which is automatically convex. We will utilise

this in understanding Lieb’s convex formulation of DFT in Chapter

3.

The saddle value of a Lagrange function is equal to constrained min-
imum of the target function. This is central to this thesis as this
shows that the two methods presented in Chapter 4 and Chapter 6

are different ways of getting to the same solution.
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2. Density Functional Theory

2.1. Quantum Mechanics

In the early 20th century the scientific world had a problem. We had discov-
ered the existence of the atom, and its constituents, yet the contemporary
theoretical models, such as classical mechanics, predicted atoms cannot
exist. If one computed the trajectories of the electrons using classical me-
chanics one would discover that the electrons orbit would collapse to an
infinitesimal size. Thus everything around us, including ourselves, would
cease to exist! So in the early part of the 20th century a revolutionary the-
ory which adequately describe systems of electrons, and other sub-atomic
and atomic systems, was created — quantum mechanics.

The fundamental axiom of quantum mechanics is:

Definition 2.1.1. The state of the system contains the probability distri-
bution of all experimentally observable quantities. We call this the (pure)

quantum state and is denoted by | V).

A mixed quantum state is a convex combination of pure quantum states
and are best represented using density matrices, as discussed later. We can

characterise the set of all possible states of a system, Oy, through
Quw = {|¥) : [¥) € Ly(R%C?),(¥|W) = 1}. (2.1)

The first restriction on the set comes from |¥U) € Ly(R?;C?) which states
that Qyy is a type of Lebesgue space known as the Hilbert space. The
dependence on C?* is a result of the spin property of the electron which can
take two values, £1/2. As all the work presented in this thesis is not con-
cerned with relativity nor external electro-magnetic fields, the distinction
between |¥) € Ly(R?C?) and |¥) € Ly(R?) is not so important. There-
fore, we will use the latter from now on for notational ease. The second

restriction, (U|¥) = 1 i.e. normalisation to unity, means that Qyy is not

¥ (€2 is the space of two-dimensional complex numbers
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a genuine Hilbert space’ but we will refer to it as a Hilbert space where
(U|W) = 1 is understood. This second restriction is known as an inner
product and is a duality between |¥) and (¥| € (La(R?))* = La(R?). The
Hilbert space is a reflexive Banach space where the inner product defines
the norm.

So far we have discussed the quantum state in an abstract manner. To
proceed we need to discuss the representations of quantum mechanics. All
experimentally observable properties of the quantum state have an associ-
ated Hermitian operator. A Hermitian operator A has an eigenbasis {|a)}
if

Ala) =ala) aeR, (2.2)

where a is the eigenvalue. The position operator, X, and the momen-
tum operator, }5, are Hermitian operators and can be defined through the
cigenbasis of X, {|z)},

X|z) =x|z), (2.3)

Plz) = —m% |z) . (2.4)
This is called the co-ordinate representation of quantum mechanics. Note
that this is only one of the ways that we can represent these operators. One
could define them using the eigenbasis of P but that leads to an increase
in complexity in the equations central to quantum chemistry. |x) € Ly and
so one can define a duality between the eigenbasis {|z)} and a quantum
state |U) as

(x| U) = V(x) (2.5)
(W) = (o]0)" = 0 (a), (26)

U(x) is known as the wavefunction of the system. It has a topological
interpretation that W(z) is the component of the abstract vector {|¥)}
along the co-ordinate representation. It has the probabilistic interpretation
of being the probability amplitude for the existence of the system with co-
ordinate x. The eigenbasis of the co-ordinate representation is complete,

continuous and uncountably infinite which means that

/\x’)(m’\dx’ =1 (2.7)

t It is subset of the Hilbert space commonly called the physical Hilbert space which

retains the important topological features of the full Hilbert space
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where the integral must be conducted over the entire basis. The normali-

sation of this basis is defined by
(x|z")y = 6(x — 2') (2.8)

where ¢ is the Dirac distribution. This allows us to define the normalised

inner-product through

e = [[ (i) (o) ol ) dad
_ / / U (2)3(2 — o) 0 (z)dzda’
_ / T ()0 () de
- [1v@)ar =1,

(2.9)

where |¥(z)|? is known as the probability density. The wavefunction pro-
vides an intuitive interpretation of the normalisation of the quantum state.
From Equation (2.9) we can interpret (¥|¥) as the probability of measur-
ing the particle somewhere in space which must be 1 if it exists. Hence
(¥|¥) = 1 must be a restriction on the Hilbert space.

In quantum chemistry we are interested in N-particle systems where N
is an integer. The N-electron wavefunction is an element of Lo(R3™)T with

norm

(0|0 :/|\I/(r1,r2,-~~ y)Pdrdry - odey = 1 (2.10)

Here r; € R3 is the spatial co-ordinate of the ith particle. For notational
ease we define r = (ry,r9, -+ ,ry) and dr = drydry---dry. For the N-

particle system the operators X and P are defined, using the eigenbasis of

X, {IX)}

X |X) = X |X) (2.11)
P[P) = —ih) V;[X) (2.12)

where V; is the gradient with respect to the co-ordinates of particle i.

Using these one can define the kinetic energy operator T and the potential

t Technically an N-electron quantum state is an element of ®f11 Léi) (R3) which is
subtly different from Ly(R3M) but too subtle to have any impact on the discussions

here
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energy operator, V as

T(P) - XN: —JZV? (2.13)
V(X) — V_(X) (2.14)

for an N-electron system. The explicit form of V' (X) depends on the phys-
ical model.

We stated that the quantum state contains everything we can experimen-
tally verify about a system. The theoretical values that one compares with
experimental values are the expectation values. For a given operator O we
can define the expectation value of the operator, for a given normalised

wavefunction, through
<O>\Ij — (U[O[T) = /\p*(r)()\p(r)dr. (2.15)

If W(r) is an eigenfunction of O then <OA>\I/ is just the corresponding eigen-
value.

In quantum chemistry we are usually interested in computing the energy
of the system. This is yielded through the Hamiltonian operator, H , defined
by

A

H=T+V (2.16)
with the energy given by

By = <H> - <T> + <V> . (2.17)
7 7 7
From the spin-statistics theorem we have the following property for fermions

Theorem 2.1.1. If V¥ is a wavefunction describing a fermionic system then
swapping the space and spin coordinates of two identical fermions leads to

a change in sign of V.

This antisymmetry requirement is known as the Pauli principle . The
simplest example of an antisymmetric function is obtained by taking any
N one-electron spin orbitals, ¢;(x) € Lo(R?;C?),i = 1,...,N, that are
orthonormal i.e., | ¢;(x)$;(x) = d;;. Here x denotes spin-space coordinates.
These spin orbitals are simply a product of a spatial orbital times a spin
orbital i.e. ¢;(x) = ¢;(r) |o), where |o) is the spin orbital. The N-particle
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wave function in this case is given by

Blr) = o det o) 219
and is known as the Slater determinant. As the Hamiltonian used in this
work does not act upon the spin-orbitals we can effectively drop the explicit
dependence on the spin orbitals and just treat the quantum states as anti-
symmetric elements of Ly(R3N). This subspace is denoted by A" Ly(R?)
where /\ denotes the antisymmetric wedge product.

Throughout this thesis we are interested in finding the ground state

energy. Formally we can do this using the Variation Principle

Theorem 2.1.2.
N
Ey = inf {<H>\P U e /\LQ(R?’),/W U[2dr = 1}, (2.19)
A N
Uy = arg\pinf {<H>\P |V e /\LQ(R3), /Rw W[ dr = 1}. (2.20)

Where Ej is the ground state energy and VY, is the ground state

wavefunction of the system.

2.2. Electronic Structure Theory

The Born-Oppenheimer approximation (BOA) is an important approxi-
mation which simplifies the description of quantum states. The BOA is
based on the observation that the nucleus of an atom is thousands of times
heavier than its electrons. This allows one to treat the nucleus’ position
as fixed in space with respect to all electrons. This means the Hamilto-
nian is only parametrically dependent on the position of the nuclei, and so
the wavefunction of the system can be written as a product of the nuclear
and electronic wavefunctions. Therefore, in quantum chemistry we fix the
nuclei positions and solve for the electronic wavefunction. The N-electron

Hamiltonian required to yield electronic wavefunctions is, in atomic units,

T - al 1

A r
1<i<j<N

where we have neglected the kinetic energy due to the nuclei since in the

BOA nuclei are stationary. Therefore, to get the total energy of the system
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one needs to find Ey using Eq. (2.21) and Theorem 2.1.2 and then add the
constant nuclear-nuclear repulsion energy.
The external potential v : R — R corresponds to the Coulomb potential

generated by the nuclei. Its explicit form is

o) ==y A (2.22)

for a molecular system consisting of M nuclei, where nucleus A has a charge
z4 and is located at r4. For all but single electron systems we cannot solve
the resulting variational problem, defined in Theorem 2.1.2, analytically

using this choice of Hamiltonian.

2.2.1. Hartree-Fock Theory

The first approximate variational model is known as the Hartree-Fock
(HF) model.'"!® Tt begins with the ansatz that we should constrain the
variational space from /\N Ly(R3) to the space of all Slater determinants
{®}, defined in Eq. (2.18).

Let ® belong to the set of all molecular orbital (MO) configurations ,
Mo

Mo = {q) = {¢i}1§i§Na¢z’ € Lz(R3)7/3 ¢i(r)g;(r)dr = 6;;,1 <i,j < N}7
R
(2.23)
where ¢; is once again a one-electron orbital. In the HF model we find the

ground state energy and wavefunctions of a system through

dPeMe

where the HF energy functional is given by

N N
Bur(®) =Y [ [Voildr+ 3 [ vlofar
=1 =1

L/ (2.25)
+3 (Z D(|6il*,16[*) = D(@ie5, d)jqﬁi‘))
i,j=1
where )
Dipy, po) = / %drdr/. (2.26)

The energy terms in Eq. (2.25) are the kinetic energy, electron-nuclei inter-

action energy, the Coulomb and exchange energy respectively. The mathe-
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matical properties of this optimisation problem have been studied 2! and
it has been shown that a ground state in the HF optimization problem
exists for both neutral systems and positive ions.

An issue here is that the equations of the HF model are only defined up
to a unitary matrix transformation on ®. This is a type of gauge-invariance

and can be removed by formalising HF theory in terms of density matrices,

Tp

(z,y) = N U(z,(r—1))U*(y, (r—1))d(r — 1), (2.27)

R3N—1

where (r — 1)) = r/r;. The corresponding one-electron density is denoted
by pp(x) = 7p(z,x). The density matrix of an N-particle ¥ € Lo(R3YN)
can be associated with a density operator, D, defined through

Tr(D)=N and 0<D<I, (2.28)

such that the electron density, pp, is positive and is normalised to the
number of electrons in the system. It can be shown there is a bijective map

between the set of finite energy Slater type density operatorsf*
P ={D € £i| Ran(D) C H'(R*), D* =D, Tx(D) = N} (2.29)

and the set of all molecular orbital configurations up to a unitary matrix.
We can now rewrite Eq. (2.25) in the gauge-variant — but energetically

equivalent — density matrix form
1
Enr(D) = Tr(hD) + 3 Tr(G(D) - D) (2.30)
where h = —V? + v and for all ¥ € L, and for all x € R?

(G(D) - 0) = (pp \ |—;|) () 0() — %wwdy, (2.31)

where * denotes the convolution operation. The minimization problem of

HF becomes
Inf {&ur(D)}- (2.32)

t H(R?) is the first-order Sobolov space and £; denotes the linear space of trace-class
operators on Ly(R?) ¥ Let X be a topological space. Then Ran(X) is denotes a

topological space consisting of all nonempty finite sub-sets of X.
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One can also define the Fock operator, F associated with D by

F(D) = h+G(D), (2.33)
so that
(F(D)$)(x) = —V2(a)+v(z)o(x)+ (pp , |_;|> (2)(a)— %qxwdy,
(2.34)

which is the potential of the HF energy. Cancés and Le Bris?! proved the

following theorem
Theorem 2.2.1. The following statements are equivalent:
1. ® is a stationary point of Egr on Mp

2. There exists a hermitian matriz \;; such that Vi € [1, N|
N
]:(D) c ;= Z >\z’j¢j
j=1

3. There exists a unitary matriz, U such that V = U® and
F(D) -t =~y

4. F(D) and D commute.

Both 2 and 3 are called the HF equations in the molecular orbital basis.
The latter is known as the canonical HF equations. The set of eigenvectors
{1} form the ground state determinant — known as the HF ground state
— and ¢; are known as the HF orbital energies. In practice we solve these
equations by expanding the 1;, the MOs, in a finite basis of one-electron
functions — known as atomic orbitals.

In the basis set approximation we assert that each MO can be expressed
as a linear combination over a set of one-electron functions, {n;}, called

basis functions through

N bas

¢i(r) = Z a;;n;(r) (2.35)

where Ny, is the number of basis functions in the basis set. a;; is known
as the basis coefficient which tells us the fraction of 7; which will con-

tribute to ¢;. This means instead of varying the MOs one can vary these
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basis coefficients and keep the basis functions fixed which is a lot easier
for computational implementations of the HF method. There are a vast
range of possible choices of the basis set. One might be tempted say that
we should just use the eigenbasis of the one electron Hamiltonian as the

choice for one-electron functions. These are given through
nj(»L)(r) = ICr;rZTE exp{—(r} (2.36)

where /C is the normalisation factor and a + b+ ¢ = L which is the angular
momentum of the orbital. ¢ controls the width of the orbital (large ¢ gives
tight functions, small ¢ gives diffuse functions). These are known as Slater
type orbitals (STOs). One advantage for using STOs is that the resulting
MOs have a correct radial behaviour. The problem with them is that com-
puting the integrals in the HF equations using higher angular momentum
STOs (which is required for accurate energies, for example) is expensive
compared to a more popular type of basis function - the Gaussian type
orbital (GTO). These have the form

n§L)(r) = Krgrzrg exp{—CrZ} (2.37)

and greatly simplifies the evaluation of integrals involving higher angular
momentum basis functions. However, by changing the radial dependency of
the basis functions the resulting MOs now have physically incorrect radial
behaviour of the probability density. To fix this instead of a one-to-one
replacement of STOs with GTOs in the basis expansion we replace each
STO with a linear combination of GTOs. This is known as a contraction
scheme and does improve the radial dependency of the resulting MOs.
The HF equations are non-linear in the sense that the operators are
functions of our solutions, the set of MOs or expansion coefficients in the
basis set approximation. In quantum chemistry we tackle this non-linear
optimisation problem using a method called the self-consistent field
(SCF). This is an iterative fixed point procedure where we build a pseudo-
Fock operator F,, at the current iteration using density operators computed
in previous iterations. Using this F,, we define a new density operator D, .
We continue in this manner until there is a negligible change in the density
matrix and /or energy. To make this more explicit we will consider the SCF
algorithm called the direct inversion of iterative sub-space?*?? (DIIS). To
solve the HF equations, using the DIIS method, we compute F, using a

sample of density operators from previous iterations. To make this even
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more explicit we say

Fo=> " F(Dy), (2.38)
k=0

where m is the number of previous iterations we are using. The coefficients

cggn) are computed by solving the quadratic minimization problem

inf {II Yo alelli, > = 1} (2.39)
k=0 k=0

where the error vector is defined through

One can see from the fourth item in Theorem 2.2.1 the error vector goes
to zero as we close in on the stationary point on the HF energy surface.

The HF minimization problem takes place on a subset of the set of all
possible ground state wavefunctions. This means the HF energy is an upper
bound to the true ground state energy due to the variational principle. We
can define the energy difference E — Eyr as the correlation energy. The
correlation energy is actually due to two effects - static and dynamic
correlation. The latter can be understood using the physical interpretation
of the HF equations. The HF model can be interpreted as stating that
each electron interacts with the average electron density cloud of all other
electrons in the system. This clearly means that if this electron moves in
space the other electrons cannot individually respond instantaneously and
so the resulting energy is too high in the HF model.

Static correlation is related to the fact that in certain circumstances the
ground state Slater determinant is not a good approximation to the true
ground state. A typical example is provided by one of the famous labora-
tories in quantum chemistry, the Hy molecule. As we stretch the bond the
correlation energy in the limit of very large distances is around 0.25 Fj,.
This cannot be all due to dynamical correlation as the electrons on each
hydrogen atom very weakly interact with each other. If one expands the
determinant at these large distances we find that the HF model predicts
with equal probability that we end up with a proton and a H™ atom or
two neutral H atoms. The fact that the HF wave function even at large
internuclear distances consists of 50% of ionic terms, even though Hy dis-
sociates into two neutral hydrogen atoms, leads to an overestimation of the

interaction energy and finally to the large error in the dissociation energy.

42 Variational Solutions in OF-DFT M. S. Ryley



CHAPTER 2. DENSITY FUNCTIONAL THEORY

2.2.2. Coupled-Cluster Theory

One of the main tenets of electronic structure theory is how does one best
incorporate this small but important electron correlation energy into our
models. One such way is known as Coupled-Cluster (CC) theory?
which was developed by Coester and Kummel? 2®and about ten years later
the CC approach was transferred to the field of electronic structure by
Sinanoglu, Cizek, Paldus and Shavitt.2*3! CC theory lifts the restriction
of writing the state as a single determinant. We begin by assuming we
have been given a one-electron basis and we take the HF state, |HF), as
our reference state. Within a Hilbert space spanned by the one-electron
basis, any state |V) : (HF|¥) = 1, can be expanded by

V) =1+ Ui+ Uy +---+U,) HF) (2.41)

where U, is an excitation operator which creates n particle-hole pairs rel-
ative to the HF ground state. The above expression is equivalent to the

exponential form

|¥) = exp(T) [HF) T =) T, (2.42)

where T, again is an excitation operator. All excitation operators commute
and exp(7') describes all possible independent excitations from the HF
ground state. |¥) is known as the coupled-cluster state, which we will
rename |CC). The coupled-cluster wavefunction is given through Vee(z) =

(z|CC). To compute the energy, Ecc one considers the following equation
exp(—T)H exp(T) [HF) = Ecc [HF) . (2.43)

Projecting against the excited and HF reference states one obtains the

coupled-cluster equations

Ecc = (HF|exp(=T)H exp(T)|HF) (2.44)
0 = (ulexp(=T)H exp(T)|HF) (2.45)

where p is a generic index which counts the excitations. Some calcula-
tions in the literature are done using the singles-and-doubles approxima-
tion (CCSD) where T' = T} +T». However, the ‘gold-standard’ in quantum
chemistry is CCSD plus an inclusion of T3 using perturbation theory -
CCSD(T).3? This thesis will be focussed on density functional methods
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which incorporates the correlation energy using approximate functionals of
the density. CCSD will be used in Chapter 7 to generate accurate reference

densities to compare with DFT results.

2.2.3. Rayleigh-Ritz Variation Principle

In this and following sections we will consider an atomic or molecular sys-

tem with N-electrons with a Hamiltonian Hy given by

Hy(v) =Ty + Wy + > _v(r;) (2.46)

=1

where: Ty is the first term in Eq. (2.21) and measures the total kinetic
energy of an N-electron system; Wy is the third term in Eq. (2.21) and
measures the total electron-electron repulsion energy of an N-electron sys-
tem. The only thing that distinguishes the Hamiltonian of two different
N-electron systems is the analytic form of v - the external potential - which
describes how the electronic system interacts with the nuclei structure. For
the Hohenberg-Kohn (HK) theorems we require that v be multiplicative
and support a ground state. The set of all possible v which support a
ground state for a N-electron system is denoted by Vy. For a particular
element of this set we denote the corresponding ground state wave-function
by V¥, and the ground state energy by Ey : Vy — R. Let Wy be defined

in the following manner

N
Wy = {\If|\Il € /\LQ(R3),/ |U(r)?dr = 1, (Hy)y € R}. (2.47)
R33N
Then we can then state the Rayleigh-Ritz Variation Principle
Theorem 2.2.2. V(v, V) € Vy x Wy then
Eo(v) < (W[ Hy(v)]9).

Vv € Vy3aVU,, € Wy as the global minimisers of the Rayleigh-Ritz variation
principle, with ground state enerqy Fo(v)

Ey(v) = (U, |Hy(v)|¥,), ¥, € zgegvivnf (V|Hy(v)|V) .
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2.3. Formal Density Functional Theory

In density functional theory (DFT) we calculate the ground state energy
of the system using the ground-state electronic density p instead of using
the wavefunction ¥ through expectation values. To begin with we will
focus on the formal development of DFT. By this we mean the path from
the initial HK formulation of DFT to a more mathematically sound theory
based on convex analysis. This will give us the theoretical foundations
for the optimisers discussed later on in this work. We will also introduce
Kohn-Sham DFT (KS-DFT) as a model to approximate the functionals
introduced in the formal theory. We will discuss orbital-free DFT (OF-
DFT) — which is more akin to the ideas of the formal theory — in the

next chapter.

2.3.1. On the Development of DFT

To proceed we define the set of v-representable densities through
Ay = {pl¥, = p} (2.48)

where ¥, is the ground state of Hy(v) with v € V. When we are first
introduced to DFT we are taught that it rests on the following two theo-

rems 33

Theorem 2.3.1. First Hohenberg-Kohn Theorem

There is a bijective map between Ay and Vy modulo a constant.

Theorem 2.3.2. Second Hohenberg-Kohn Theorem
There is a ground state energy functional Ey : VN — R given by

Eo(v) = min (Fux(p) + (v|p))

pEAN

where (v]p) := [v(r)p(r)dr.

In the second theorem we have Fxuk : Ay — R which is known as the
HK wuniversal functional and can be decomposed as as sum of T'(p)
and W (p); the kinetic energy and potential energy functional respectively.
It is called universal as the Fyk is the same for systems with the same
number of electrons.

From a practical point of view the HK theorems are not that useful as
we do not know the exact form of the Fpx. Another problem is that the

sets A and Vy are unknown unless one solves the Rayleigh-Ritz variation
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principle - which is impossible for more than one electron. Furthermore,
we would like to lift the restriction of a fixed number of electrons and
so have a DFT formally defined over variable number of electrons. This
will be important for our optimisers presented in this work. We will first
consider how we extend the domain to a larger, known set of densities and

potentials.

2.3.2. Constrained Search Formalisms of DFT

In DFT it is essential that there is some way to distinguish between densi-
ties, p, that are formed from antisymmetric functions from those that are
not. The density must be normalised to the number electrons of the system

and be non-negative throughout space. Therefore, p € L) where

Ly = {plp € Li(R%), p >0, /

R3

p(r)dr = N}. (2.49)

Fortunately, one can prove that each p € L} is the density of some N-
electron antisymmetric wavefunction, which one can take as a Slater deter-
minant. In DFT we are actually interested in the subset of p € L} which
can be obtained from W € Wy. This set is known as the N-representable

densities and is characterised by
Iy =A{p|¥ — p, ¥ € Wy}. (2.50)

But its seems like we have run into the same issue as for the v-representable
densities — given a density how do we ascertain whether it’s an element of
InN?
Firstly we can express the density p € Zy as an inner product of ¥, €
Wn
p=N(V,|V,). (2.51)

Differentiation of the density with respect to the Cartesian basis denoted
by 9, is

|0ap] < 24/ N p[(OaplOup)]?. (2.52)
This can be written as
Vo> _ N
> _—(Vp|lV 2.53
-2 5 (Vv (25
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and integrating on both sides over R? one gets

V 2

[ < wimw, (254
rs 8p

where the left hand side defines the von- Weizsdcker functional Ty :

L — (0, 4+00].3* One immediately arrives at a useful theorem

Theorem 2.3.3. The von Weizsacker kinetic energy of p € Iy is a lower
bound to the kinetic energy of all N-electron wave functions with the same

density:
va<p) < inf <\I/|TN|\I/> <00, pE Iy.
Ui—p

Furthermore, using Tyw we can explicitly define Zy

Theorem 2.3.4. The set of N-representable densities is defined as

Ty ={p € LR), p20, [ p=N.Tyup) <400}
RS

As the set is explicitly defined we want to rewrite the HK variation prin-
ciple over this set. This means we need to extend the Fyuk to Fi1, : Zy =& R
— this is known as the Levy-Lieb constrained search functional.?> 37

The analytical form is given by
Fii(p) = inf (V|Ty + Wy|¥). (2.55)
U—=p

One can show that a minimising wavefunction does exist for all p € Zy
and so one can replace the infimum with a minimum. Furthermore, one
can show that Frp is always positive and always has a minimising N-
representable density. Without going into the details we will now restrict
the set of potentials Vy to the subset of such potentials which have a
Coulombic like form, V.

The ground-state energy of a system in an external Coulomb potential
may now be expressed as a HK variation principle over all N-representable

densities

Theorem 2.3.5. Hohenberg-Kohn variation principle with Fyy,

Eo(v) = inf (Frr(p) + (v|p)), Yv e Ve.

PELIN
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We are now in a position that we have an optimisation problem over well-
defined sets. However, F1, is non-convex and thus is quite difficult to use in
variational approaches. How can we solve this? The answer is that we alter
our approach to formal DFT from considering pure states to considering
ensemble states which we will discuss in Section 2.3.4. However, we first
need to consider the topological properties of our new spaces of densities

and potentials.

2.3.3. Topology of Density and Potential Sets

In the HK variation principle using Frp, we have introduced the sets Zy and
Ve but we do not yet know their topological structure. We will discover that
both are Banach spaces with very simple definitions. Firstly, we consider
Zn. In order for the normalisation and the kinetic energy of the density to
be finite we require

pe L |Vp2|€ L. (2.56)

1/2

We would like to transform the restriction on |V p'/?| to a restriction on p.

Using Holders inequality — see Section 1.2.3 — one can show

2 1
> —|lpll3- (2.57)

Vl
H' P?ll|, = 35

By comparing with the definition of Tyw we see that

1
Tvw(p) = 5“0“37 (2.58)

and hence p € L3 as Tyw is bounded from below. Therefore, one can

conclude that Zy must be a subset of the Banach space
X =Ly = L3N Ly, (2.59)

but it must be a strict subset as [ p = N and p > 0 also. So one defines
the following set

and so

Theorem 2.3.6. The set of N-representable densities is characterised through

In ={plp € Rn,Tvw(p) < +oo}
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To characterise V¢ first note that in order for the HK variation principle

to yield a finite value one must have that (v|p) is finite. Let us now define

To(p) = (vlp), (2.61)

such that T,(p) is a bounded linear functional, and so is a member of the
dual space X*. From the theory of Lebesgue spaces, see Section 1.2.5, we

can write
X" = (L))" = Lgj2,00) = Lzj2 + Lio. (2.62)

Ve is a strict subset of X* as only potentials in A* which support a ground

state can be also in V. Therefore, Vi is characterised through

Theorem 2.3.7. The set of admissible Coulomb-like potentials for an N-

electron system is given by

Ve = {vlv € X*, Hy(v) supports a ground state}

2.3.4. Lieb Ensemble DFT

As stated previously the Fpp, functional is non-convex. It will transpire
that generalising the Levy-Lieb DFT formalism from pure to ensemble
states will yield a functional that is convex.

So far our treatment of quantum systems has been using the pure state
|W) and its density matrix |[W)W|. However, for systems which have de-
generate ground states — like the O atom — this is not an appropriate
treatment. Instead one should be thinking of treating the system using an
ensemble density matrix, v which is a convex combination of pure state
density matrices. The set of all possible ensemble density matrices which
can describe an N-electron system is denoted by Dy. So, for any po-
tential v € L3/» + Lo = X one can define the ensemble state energy,
FEpvy : X* — R as

Epm(v) = inf tryHy(v). (2.63)

v€DnN
It is not difficult to show that the ensemble ground state energy equals the
pure state energy,’® and so we will denote Epy as Ey from now on. To
extend the HK theorems to ensemble states from pure states we denote
By as the set of all ensemble v-representable densities - i.e. a map exists
between a N-electron ground state density matrix and an element in By.
It should be stated that all pure-state v-representable densities are ensem-

ble v-representable but not vice versa. We can extend the HK existence
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theorem by stating: There is a bijective map between By and Vy modulo
a constant. The HK variational principle is extended to include variations
over all ensemble v-representable densities. The details aren’t important.
What is important is that these extensions restore the problem of unknown
domains — so once again we turn to the Levy-Lieb constrained search.
We begin noting that the set Zy is a convex set containing all ensemble
densities which are obtained from some v € Dy. One can show!? that By
is dense in Zy and hence that all N-representable densities may be approx-
imated, to any desired accuracy, by an ensemble v-representable density.
We finally observe that since each ensemble v-representable density is N-
representable and, therefore, obtainable from a pure state wave function,
they cannot easily be distinguished from a pure-state v-representable den-
sity. Therefore, a natural requirement for a satisfactory universal density
functional is that it should work equally well for pure-state and ensemble

densities. We can now split the ground state energy into two minimisations

Eo(v) = inf inf (tryHy(0) + (v]p)) (2.64)
PEIN VP
where we can now introduce the Lieb ensemble state constrained-search

functional, Fpm: Zy — R
Fpm(p) = inf tryHy(0) (2.65)
Y

which allows us to re-write the HK variation principle using Fpy.

Theorem 2.3.8. Hohenberg—Kohn variation principle with Fpy

Yu € X* one can define the ground state energy Ey : X* — R via

Eo(v) = inf (Fpu(p) + (vlp)

One can also prove!® that for every N-representable density a minimis-
ing density matrix exists for Fpy. If this density is also ensemble wv-
representable this density matrix minimises the expectation value of the
Hamiltonian. In the definitions above its not entirely clear what the differ-
ence between Fpy and Frp, is. Even though the domains of Fpyp and Fpyp,
are the same the density matrix search defining Fpy; is more exhaustive

than the wavefunction search defining Fy;, and so Fpy < Frr.
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Moreover, we can say more. Consider the following:

Fpum(p) = inf tryHy(0);

Yp

= jnf {Z)\ (W;|Hy (0 p—Z)\Zp“/\ >0, Z)\_l}
= 1}151{\1,12% Z)\ \IJ’HN p_ZAlpl, )\ >0 Z)\ —1}
= mf {Z)\FLL (pi) p—Z/\ZpZ, A >0, Z)\ —1}

Aispi

(2.66)

Then — using our knowledge of convex analysis (see Section 1.3.1) — it
is clear that Fpy is the convex hull of Frp, so Fpy is convex and the
closest convex approximation of Fij. Fpwu is very satisfactory for us as it
is convex and defined for every N-representable density - pure or ensemble.
This means that we enforce the existence of only global minima in the HK

variation principles.

2.3.5. Lieb’s Convex-Conjugate Theory

The pinnacle of formal DFT takes form using work by Lieb® who ap-
plied convex analysis to derive the Lieb functional Fj, which is the I'-
regularisation of all possible universal functionals. In other words Fj, is
the closed convex hull of all possible universal functionals. As Fj, has to
be bounded from below it cannot ever equal —oco over its domain and,
therefore, is an element of I'y, the set of all proper semi-continuous convex
functions. See Section 1.4 for details. This allows for genuine convex anal-
ysis of DFT which is crucial when we look to the optimisations presented

in this work. The corresponding HK variation principle is

Theorem 2.3.9. Let Ey be a weak-star closed concave function on X* and
let F, € To(X) then

Eo(v) = inf (Fi.(p) + (v|p))

peX

Fi(p) = sup (Eo(v) — (v]p))

veEX*

This means that the ground state energy and Fi, are Legendre-Fenchel
conjugates of each other. So, F1, is a weak-star lower semi-continuous

function. Furthermore, Fy, = Fpy when the density is N-representable.
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However, only Fi, is defined for every p € X and so allows for a more
rigorous analysis using the Lebesgue spaces. For example, this allows use
of such terms as semi-continuity for F, on the underlying Lebesgue spaces
and so provides the rigorous foundation for the formulation of DFT in
terms of saddle functions which is discussed in Section 3.4.1.

113 is bounded from below by

It can be shown that the Lieb functiona
the von Weizsiacker functional and equality between the two is achieved
when the system has one electron. Fj, is also strictly positive and one
can prove the following statement about the optimality conditions and

representability

Theorem 2.3.10. For (p,v) € X x X* then

Eqg(v) = inf tryHy(v) & —v € OFL(p) & p € OEy(v)
Y€EPN
Hence 0F,(v) contains ensemble ground-state densities supported by v
and hence that the solutions of the variational problem in Theorem 2.3.10
are exactly the same as the ensemble states arising from the Rayleigh-Ritz
variational problem. One can then re-write the existence theorem in terms

of 1, as

Theorem 2.3.11. The sub-differential OFy(p) determines the potential

uniquely up to a constant

—0F(p) =v+R, peBy

The effective domain of Fy, is Z. The algebraic interior of Zy is empty
which leads to problems when studying the derivatives of F}, with respect
to the density. Because of this topological property of Zn F1, is nowhere
differentiable, and so when deriving the equations for approximate DFT
models, for example see Section 2.4.1, we should be aware that this is
mathematically unsound. Recent work by Kvaal et al.3® has shown that one
can use a special type of regularisation® that allows us to get a functional
which is the closest approximation to Fy, whilst being differentiable. This
method relies on moving from the infinitely dimensional Banach spaces we
have used so far to finite ones, this allows one to formulate DFT in a Hilbert
space and so changes the topology greatly. The downside to this is that
in optimisation procedures one has now allowed the electron number to

vary— which we have not allowed so far. As we shall see later we can allow

* Moreau-Yoshida Regularization
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this without changing the topological structures of the variational spaces.
In this work, however, the approximate forms of the universal functional
are differentiable and so these differentiability problems are less of an issue.
The exception to this is in Chapter 7 where accurate densities are used to

define accurate forms of F7,, in which case regularization must be applied.

2.4. Kohn-Sham Density Functional Theory

So far we have discussed only formal DFT — we still don’t know the explicit
form of Fr,. The most common application of the formal theory is known
as Kohn-Sham DFT (KS-DFT).5 This has been very successful and is the
flavour of applied DF'T used ubiquitously by computational chemists. The
essence of KS-DF'T is that we consider a fictitious non-interacting system
which has the same density as the physical system. For this non-interacting
system, the kinetic energy (KE) is easily evaluated exactly using the curva-
ture of orbitals. The remaining contributions to Fj, of the physical, inter-
acting system may then be modelled explicitly, though approximately, in
terms of the density at sufficiently high accuracy to be useful for chemical
applications.

Kohn and Sham decomposed Fy, in the following manner
F(p) = Ts(p) + J(p) + Exc(p), Vp €Iy, (2.67)

where T : Zy — R is the non-interacting kinetic energy functional
(KEF),J : Iy — R is the Hartree functional and Exc : Iy — R is
the exchange-correlation functional (XC). They are defined through
the following

Ti(p) = {/n;% tr Ty, (2.68)
// : _r| dr,drs. (2.69)
Exc(p) = F(p) — Tu(p) — J(p). (2.70)

Exc contains all the effects of exchange and correlation, including the
correlation correction to the KEF. Furthermore, it is non-convex, unlike J
and F7,, and its exact form is unknown. A large body of research has gone

into developing accurate forms of Exc.%’
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The KS HK variational principle is given by

Eo(v) = inf (Tu(p) + J(p) + Exc(p) + (vlp)), Vv eVe (2.71)

PEIN
Ti(p) = Sup (Eo(vs) = (uvslp)), Vp € In, (2.72)
Us C
where T; is expressed as the Legendre-Fenchel transform of the non-interacting
ground state energy. The KS HK variational principle is similar to Theo-
rem 2.3.10 but we have changed the domains of the density and potential.
The first variation principle describes the physical, fully interacting system
in the external potential v; the second variation principle describes a ficti-
tious non-interacting system in an effective potential v, defined such that

the densities of the interacting and non-interacting systems are the same.

2.4.1. Solving the KS-DFT Equations

To proceed we assume that v € Vo and that the density is not only in-
teracting ensemble v-representable By but also non-interacting ensemble
v-representable BY,. With these assumptions the infimums and supremums
in Egs. (2.71) and (2.72) are achieved when the density and potentials v

and vy satisfy

—v € (Ti(p) + Exc(p) + J(p)) (2.73)
—vs € I(T4(p))- (2.74)

Assuming the differentiability of the above we obtain the following differ-

ential equations

0Ti(p)
5o = (7~ wle) —vxelp)() (2.75)
oT5(p) — —o(r
o)~ o) (2.76)
where
(o)) = 58
_ 9Bxc(p)

vxo(p)(r) == T(P)

This means the effective potential vy is equal to the sum of the Hartree
potential, vy, external potential, v, and the XC potential, vxc. We can

compute v through the ground state density yet we require vy to calculate
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the ground state density through

Eo(vs) = min (Ti(p) + (vs[p)). (2.77)

pPELN
So like the HF model we resort to solving this minimisation problem using
the self-consistent field. To see how one does this in application it’s con-
venient to write the minimisation problem using the ensemble formulation

discussed in the previous section where v is an ensemble density matrix,

Eo(vs) = vggtr Ho(vs)y = Ho(vs)s. (2.78)

The minimising density matrix, 45 is a convex combination of N-electron
Slater determinants, ®, which are degenerate for Hy(vs). This can be

expressed as

B =D P [O)(®s
k=1

. (2.79)
pr>0, > pe=1
k=1
Therefore, we can rewrite Eq. (2.77) as
Eo(vs) = > e (Pu Ho(vg)[ i), Ak > 0,) "X = 1. (2.80)
k K

This is just a convex combination of expectation values for the set of de-
generate determinants. As Slater determinants are comprised of a set of
orthonormal spin orbitals, {¢,} we can expand the expectation values as
expectation values of one-electron operators over these spin orbitals. This

yields,

(Pr|Ho(vs)|Pk) = anp (Dol fl9p)

2.81
fr) = 5V () =

<¢q’¢7*> = 5qr

where m is the total number of spin orbitals used in constructing the Slater

determinant’s and ny, is the occupation number of ¢, in ®;. By introducing
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the spin occupation numbers n, = ", Nk, Pk ONe arrives at

Eo(vs) = an (Dol fldp)

p_
n, €[0,1, n, =N, (2.82)
p

<¢q|¢r> = 5q7‘-

The density can be found through summing over all orbital contributions

weighted by the occupation number via

pr) =D nydy(r)dy(r). (2.83)

In KS-DFT one wishes to find the set of MOs {¢;} which minimises
Eo(vs). Using the theory of Lagrange multipliers it is easy to show that

this minimising set satisfies the following KS equations

Jksi = €i9i (2.84)

where fkg is the Kohn-Sham operator and is given by
1 oo
fxs = —§V + vg(r). (2.85)

Therefore, by the reintroduction of orbitals we can know the exact non-
interacting kinetic energy through the Laplacian operator. Like in HF
theory one expands the KS equations in a basis set and solves the SCF
procedure using algorithms like DIIS, which is what we have done in this

work.

2.4.2. Exchange-Correlation Functionals

In KS-DFT the only error left in approximating Ff, is in the choice of Fxc.
There are a vast array of choices but we will utilise only two in this work.
One is the Dirac exchange’* and the PBE XC functional.*! We will
discuss the Dirac functional in depth in the next chapter. The PBE XC
functional is constructed using p and Vp. Therefore, PBE is an example
of a generalised gradient approximation (GGA) functional. The Dirac ex-
change is a functional of the p only and is an example of a local density

approximation (LDA) functional. In comparison with LDAs, GGAs tend to

* This is sometimes reffered to as the Slater exchange
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improve total energies, atomization energies and energy barriers.*? 47 The
PBE XC functional was developed by improving the PW91 XC functional 42
in order to yield an accurate description of the linear response of p and have
a smoother potential. The PBE XC functional is formed from adding the
PBE exchange (PBEX) and PBE correlation (PBEC) functional.

The PBEC functional takes the form

Eulpasps) = [ drp[E(6).) + H(n(). €, 0] (2.86)
where 7y is the local Wigner-Seitz radius, 73(r) = 3/(4mp(r)), ¢ = 2a(51r§/2+
Bors + B3 + Byr2+) with B; = 7.5957, B, = 3.5876, B3 = 1.6382, and Si
= (0.49294.

t = |Vpl|/(2ksp) is a dimensionless density gradient factor with ks =
2(371p)1/6. gmif(ry, () is the exchange correlation energy per particle of a

C

uniform electron gas and whose form in the PBE C functional is

emif(rg ) = —2a(1 4 ayrg)In[l + Z], (2.87)
where a = 0.0310907 and «; = 0.21370. In Eq. (2.86) we have introduced
the concept of spin polarisation in the guise of p, and pg which are the
density profiles of the a spin electrons and [ spin electrons respectively.

The analytic form of H was derived by considering: the slowly varying
density limit (¢ — 0); the rapidly varying density limit (f — 00); and that
under the uniform scaling to the high-density limit* the correlation energy
must scale to a constant.®

These conditions lead to the analytical form

B, 1+ A
H = vln{l + ;t [T AP+ A2 (2.88)

where

At {exp{—gl{:if} - 1} h (2.89)

with 8 = 0.066725 and v = (1 — In2) /7%
PBEX was constructed by considering four further conditions. Firstly
under the uniform density scaling condition the exchange energy, Fx, must

scale® like . Secondly, the exchange energy must obey

2Ex(pas ps) = Ex(2pa) + Ex(2pp). (2.90)

* p(r) = Xp(Ar)

M. S. Ryley Variational Solutions in OF-DFT 57



CHAPTER 2. DENSITY FUNCTIONAL THEORY

The third condition was formulated by considering the fact that the linear
response of the spin un-polarised uniform electron gas is well respresented
by LDA exchange functionals®®®! but not GGAs.?? And finally the Lieb-
Oxford bound??

Ex(p) > —1.679/drp4/3. (2.91)

In order to satisfy these conditions the PBEX functional is defined through
Ex(pa, ps) = CreEx / drp*/? Fx(s) (2.92)

where s = |Vp|/(2(372)/3p*3) which is another dimensionless gradient
term, Cppex = 3%/37%/3 /4, and the enhancement factor Fx(s) given explic-
itly by

Fx(s)=1+k— (2.93)

K
1+ pus?/k
where k = 0.804 and p = (87%)/3.

2.5. Summary

In this chapter we have discussed a range of various optimisation problems
in quantum chemistry. We first began by discussing the variation principle
in quantum mechanics as a means of finding the energy of a system. How-
ever, the appropriate Hamiltonian for chemical systems yields a variational
problem which cannot be solved analytically. This led to introducing elec-
tronic structure theory where we discussed HF and CC theory. We then
moved on to discussing various formulations of DFT in terms of optimi-
sation problems cumulating in Lieb’s ensemble DFT and Lieb’s convex
conjugate theory. These were introduced in Section 2.3.4 and Section 2.3.5
respectively. We arrived at Fy, which has the following important proper-
ties: a domain of Zy; is nowhere differentiable; is convex; is bounded below
by Tyw. In the following chapters we will be treating the OF-KEFs and
XC functionals as approximations to F1,. We will also show how one can
generalise Lieb’s ensemble formulation to a DFT which allows variation
in particle number. This will turn out to be crucial to understanding the

optimisation scheme introduced in Chapter 6
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3. Orbital Free Density

Functional Theory

3.1. Orbital Free Density Functional Theory

Method development in electronic structure theory consists of reaching a
suitable compromise between accuracy and cost. Accuracy is evaluated
by comparing the predicted values from our theoretical methods against
experimental observations. The term cost encapsulates both the time it
takes to calculate values and the amount of computing power required to
get this value. There is a reasonably simple and good measure of cost; how
does the cost of the method scale with basis set size, N,,? For example, the
most expensive set of integrals to compute in the Hartree-Fock equations

are the two-electron-four-centre (2e-4c) integrals

(lpe) = [ [ dvidragieom o) (e (3

which are expressed over a given basis {7,}. The subscript notation in-
dicates that each function in the basis set can be used in four different
‘slots’ to form 2e-4c integrals. Consequently we have O(N}) different 2e-4c
integrals to compute. We, therefore, say that the cost of the HF method
formally scales O(N;}). Without going into the details CCSD’s computa-
tional cost scales as O(N?) and CCSD(T)’s as O(N]).

Usually, as one increases the accuracy of the method one increases the
cost of the method. This is why finding the appropriate balance of accuracy
and cost is at the core of method development in electronic structure theory.
This is also why KS-DFT has become the most utilised electronic structure
theory method in theoretical and experimental research. Its popularity is
due to the fact that whilst KS-DFT is in general more accurate than HF T,
KS-DFT scales formally as O(Ng). KS-DFT is cheaper than HF because

whilst one does need to solve the 2e-4c integrals techniques like integral

T HF treats the exchange energy exactly and ignores the correlation energy. KS-DFT

resorts to an approximate treatment of both the exchange and correlation energies
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54,55 55,56

screening, resolution of the identity and density fitting reduce
the cost of the integrals to O(N?). The most expensive step in the SCF
procedure for solving the KS equations is in the diagonalisation of the KS

Fock matrix, Fkg,

(Fks)uw = (Mul fislng) = <m|—%V2 + vs(r)[ny) - (3.2)

This diagonilisation step is equivalent to finding the eigenvalues of Fkg,
which are the KS orbital energies. This step has a cost O(N?).

Theoretical and computational studies on biochemical and soft-matter
systems have become more frequent over the last few decades. To get
accurate descriptions of such systems we need to study their electronic
structure. This of course means we would ideally use electronic structure
methods based upon quantum theory. But for systems of these sizes we
need millions of basis functions, and so, even standard KS-DF'T codes have
too high of a computational cost. There has been an intensive research
effort to reduce the cost of already established computational algorithms
for solving the KS equations. These can be classified as linear scaling
approaches. > 66

There are many different approaches to this but they all suffer with one
problem. They have a larger prefactor than the traditional approaches
to solving the KS equations. The prefactor is just a constant factor with
which the scaling behaviour is multiplied by. To see how the prefactor can
affect the cost of the calculation, let us consider two models with costs of
c1 = 0.1N? 4+ 0.1N? and ¢ = 10°N,,. We can then say a model with ¢; has
cost O(N?) and a model with ¢, is an O(N,,) method with a pre-factor of
10%. From the above discussions we would immediately say cs is a cheaper
method. But remember that the big-O-notation means that only in the
limit of an infinite basis is O(NZ) > O(NV,,) guaranteed. But what about
for finite basis sets? For the linear scaling model above to have a lower
cost than the cubic model we need a total of 3,163 basis functions. So by
the time the linear model becomes cost effective it is already an expensive
calculation.

This extreme example introduces the concept of the cross-over point.
This point is the minimum number of basis functions for which the linear
version of the model is cheaper than the original. It is not uncommon for
this number to be in the thousands for linear scaling versions of KS-DFT
codes. This means systems with millions of atoms are still out-of-reach

for linear scaling KS-DFT codes using computational resources available
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to the majority of computational and experimental chemists. So we want
to develop linear scaling methodologies with very low prefactors.

In the previous chapter we discussed the fact that the ground state energy
of any system can be found by minimising a functional of just the electron
density of the system, p. If we take the same partition of F1, as in KS-DFT,
Equation (2.67), but instead model the non-interacting kinetic energy (KE)
using the density — rather than the KS orbitals — we arrive at orbital
free DFT (OF-DFT). OF-DFT scales linearly with a very low prefactor
compared to linear scaling KS-DFT methods.®” The reason is that in OF-
DFT we construct the KE using just the density rather than a set of N-
orbitals as is done in KS-DFT. The question remains of how does one
accurately model the KE as a functional of the electron density? We start

by reviewing the Thomas-Fermi and von Weizsacker KE functionals.

3.2. Thomas Fermi and von Weizsacker Models

The Thomas-Fermi (TF)®%% and the von Weizsicker (VW) KE function-
als®! (KEFs) were proposed in the late 1920’s and early 1930’s. The TF
KEF was introduced through a theoretical study of the ground state den-
sity of a gas with a uniform electron density. The analytic form of the
TF functional can be derived as follows. Firstly we can divide the uniform
gas into small cubes, each with sides of length { and volume 6V = [3. In
each cell place 0N electrons. We treat each cell as having an infinite 3D
potential energy well. This means that inside the cell the potential energy
is zero and at the boundaries of the cell the potential energy is infinite.
By solving the corresponding Schrodinger equation, using this potential
and using a unit system where the mass of the electron is one, we get the

following orbital energies

h
€(ny, ny,ny) = @(ni +n+n?) (3.3)
h2

Where n; are the quantum numbers and one can treat R as a vector in the
space spanned by the quantum numbers. For large R we can approximate
the number of energy levels smaller than € by the volume of one octant of

a sphere defined through R. Explicitly this number is given by
1 [/ 47R3 T (8126 \
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Therefore, the number of energy levels between € and e+de can be expressed
through

g(e)de = N (e + de) — N (e)

T (8h_l22>3/2\/256 +O((6¢)?)

(3.6)

where g(e€) is the density of states with energy e. To compute the total
energy for a cell containing d N electrons we use the following step function,

which is strictly only valid for a system with a temperature of 0 Kelvin,

fle)=1, e<er

=0, e>e€p

where € is the Fermi energy of the system. Then to find the total energy of
the electrons in a given cell, dF, it follows — noting Fermi-Dirac statistics

and that we are treating spins separately— that

dE = 2/d6f(6)g(e)e

9 3/2 €p
:47T<ﬁ) l3/ dee/? (3.7)
0
/

Furthermore, the total number of electrons in the cell, dV, is

dN = Z/def(e)g(e)

3.8
_im(2) ey o
3\ h? r
Combining Equations (3.7) and (3.8) gives
(AN 3

where dl—gN = p and Op ~ 2.871. The p°/3 term is very important as it

satisfies the co-ordinate scaling — which we will introduce shortly — re-
quirement for KEFs. As a result most OF-KEFs in the literature contain
this p°/% quantity.

The energy in Equation (3.9) is comprised of only the kinetic energy of

the electron density inside the cell because we set the potential energy to
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zero. To find the total kinetic energy of the system we sum over all cells
with an infinitesimal volume and over each volume treat the density as a
function which yields the Thomas Fermi KEF

Tee(p) = C / /3 (x)dr. (3.10)

The Thomas Fermi universal functional, Frr : S — R is given by

Fre(p) = Tre(p) + J(p), (3.11)

with the energy counterpart, etp : S* — R given by
err(v) = inf (Fre(p) + (vlp)) (3.12)

for for a system defined with an external potential v.

In order to arrive at a complete identification of Frr one needs to charac-
terise S. Without going into details S = Ls;3M L; which is a superset of the
Banach space X = L3 N Ly, and so, takes finite values for non-admissible
densities. Note this is different from Fy,, and so ,is the first sign Frp is
not a good approximation of Fj, which is infinite for non-admissible densi-
ties. Another disparity is that Frp is differentiable everywhere unlike Fy,.
However, it is convex, non-negative and weakly lower semi-continuous like
F.70

The above issues are important but technical. Historically in KS-DFT,
where we develop approximations to the XC part of Fy, technical issues
such as domain dependence and differentiability are ignored if the final
answer is accurate. The problem with Frp is that it is not an accurate
approximation of Fy. Firstly the ground state density which minimises
Equation (3.12) has an unphysical divergence at the nuclei rather than a
finite cusp’ and the radial density solutions of Equation (3.12) for atoms
do not have shell structure.™ But the condemning fact about the TF model
is that it predicts that molecules immediately dissociate into their atomic
fragments. This is clearly problematic for chemical applications. The prob-
lem here is that the TF functional is dependent on the electron density only
and not on its spatial derivatives of any order. The following theorem was
first shown to be plausible by Teller”® on the back of some numerical find-
ings by Sheldon.™ However, Teller’s work lacked the rigour required by
contemporary mathematics. The rigorous proof of this important theorem

was built by Lieb and Simon™ and Balazas.™
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Theorem 3.2.1. Let the non-interacting kinetic energy be modelled in such
a way that its integrand is a function of the electron density only, i.e.
does not include spatial derivatives of any order. Then the resulting model
predicts that atomic subsytems are more stable than the molecule formed

from these atoms.

This theorem is known as Teller’s non-binding theorem. We first in-
troduced Tyw as a lower bound to F}, but historically the Tyw was first
introduced to induce molecular stability into the TF theory. We do this by

combining the Trr and Tyw in a linear combination, Frpyw : G — R,

Frevw(p) = Trr(p) + Tyw(p) + J(p). (3.13)

We shall explore this model more than we did for the TF model. In par-
ticular we will look at its optimisation problem which yields the energy of

the system through
errvw(v) = ;Ielg (Frevw(p) + (v]p)) Vv € G (3.14)

To ease the up-coming analysis we will express Tyw as

1
Tyw(p) = §/|Vp1/2\2dr (3.15)

which is equivalent to our original definition, see Eq. (2.54), as the density is
zero as |r| — oco. The function space of the Thomas Fermi von Weizsécker

(TFVW) optimisation problem, for an N electron system, is

G = {pl/Q

Vp1/2 S LQ, p1/2 € LgnN Llo/g, /p = N} (316)

where we have used the Holders inequality.” In addition G D X. The
TEFVW optimisation problem has the following properties.

Theorem 3.2.2. crpyw(p) is strictly convex in G
Theorem 3.2.3. crryw(p) has a minimum p on the set G and is unique.

Theorem 3.2.4. Any minimizing p'/?> € G satisfies

1
=SV Wyaa(r) | M) = —pp! ()

* For the mathematically inclined reader we have transposed the condition p € L1Nks/3

1/2 We have also used the same technique to transform the

1/2

from TF theory for p
V| € Ly requirement for Tyw into a condition on p'/# using Holders theorem and its

lemma — the Sobolev inequality.
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with

R |~ * (p1/2)2.

W(p'/?)(x) = Crr(p'/?)
Where *x denotes the convolution operation. Proofs of these theorems
are given by Lieb.?3 Both Theorem 3.2.3 and Theorem 3.2.4 allow for the
possibility of solving the optimisation problem using algorithms utilised in
KS-DFT by swapping the Kohn-Sham potential with W(,ol/z) and instead
of solving for a set of MOs we solve for one quantity, p'/2. Frpyw cannot be
[y, as it is differentiable everywhere. However, it is a model which predicts
bound states and has a minimising density which is finite at the nucleus.
Furthermore, Frpyw is a weakly lower semi-continuous convex function. ™
In the TEFVW model we have only so far included the KE, the Coulomb
energy, Eq. (2.69), and the electron-nuclei energy, (v|p), in the model.
What about the exchange and correlation energies? In the original for-
mulation of the TF and TFVW models one ignores the correlation en-
ergy and treats the exchange energy using the Dirac exchange functional,
Kp: LysNLy — R,

373 1/3

Kp(p) = CD/p4/3<r)dr, Cp = Z(;) : (3.17)
One can combine this with Frgyw to create Frppw = Frrvw — Kp. Once
again we find that Frppw cannot be the [y, as its differentiable every-
where and is not convex nor lower semi-continous’but is nevertheless an
important functional for historic and scientific reasons. It was the first
F1, approximation which could predict bound molecular states as well as

incorporating the effects of electronic interaction.
The energy functional for the Thomas-Fermi von-Weizsacker with Dirac

exchange (TFDW) model is given by

crrow(0) = Tow(p) + / B(p(e))dr + (u]p) + J(p), (3.18)

where
B(p) = Crpp®® — Cpp*. (3.19)

The function space for TFDW theory is the same as TFW theory i.e. G.
However, TFDW is not convex nor weakly lower-semi continuous due to the
— [ p*3 term in B. This means the analysis of the optimisation problem
of TFDW is more tricky than for TF or TFVW.?%

However, we would still like to know what the energy predicted using the
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TEFDW model is for a given potential v € Q. What is this Banach space
Q? Firstly we note that if Vp'/2 € Ly then p'/? € Lgt. It is easiest to
construct Q by noting that if p'/? € G then p € G’ defined through

G = {P|P € LsN L5/3,/P = N}- (3.20)
Due to the definition of erppw then Q = (G')*, and so,
Q = {v|v € Lyjs + Ls o }. (3.21)

Q D X, and so, Q contains all Coulomb like potential functions. Then

the ground state energy is

One can show that p minimizes Frepw(p) + (v|p) for [ p = N if and only
if p1/2 minimizes Frrpw(p'/2) + (v|p). This shows that one can treat the
square-root of the density as the objective target rather than the density.
We will use this fact in the optimisers presented in this thesis where we
solve the variational equation by expanding the square root of the den-
sity in a finite basis. There is a similar theorem to Theorem 3.2.4.%% The
only difference is a technical constant factor introduced to deal with the
non-convexity of the TFDW functional. The eigenvalue equations in Theo-
rem 3.2.4 give the justification of the work by Lopez-Acevedo et al.! which

is introduced and discussed in detail in Section 3.3.2.

3.3. The Non-interacting Kinetic Energy

Functional

As stated previously OF-DFT is desirable as it allows for a fully quantum
mechanical treatment of systems with millions of atoms. This has already
been done for solid state systems. """ However, for chemical systems it has
proven to be very difficult to derive good enough orbital free approximations
to the KE functionals (OF-KEFSs).

T Again we have used Sobolov’s inequality
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3.3.1. A Review on Functional Development

The Thomas Fermi functional introduced in the previous section is an LDA
functional for the KE and is exact for a uniform electron gas. The p°/3 in

the integrand of the functional ensures that the correct coordinate scaling
Ti(pr) = N°Ti(p), (3.23)

where

pa(r) = X’p(Ar), (3.24)

is adhered to. Therefore, p3(r) is present in all the OF-KEF’s in the
literature, usually multiplied by a dimensionless enhancement factor. As
discussed all LDA OF-KEF’s will predict unstable molecular states. The
first GGA OF-KEF was Tyw which we have already introduced. It is exact
for one electron systems and two electron singlet states and is exact in the
rapidly varying density limit.”” As seen it is also a lower bound to the true
KE. On the basis of Teller’s non-binding theorem, when developing OF-
KEF’s, one would want to include Vp(r), which forms a GGA OF-KEF or
in addition V?p(r), to form Laplacian level OF-KEF’s. It has been found

78,79 is the most

that the gradient expansion of the kinetic energy density
systematic way of achieving this. One can write the non-interacting kinetic

energy as

7.p) = [ tlptw)) dr. (3.25)

For densities that vary slowly over space the kinetic energy density, ¢(p)(r),
has the asymptotic gradient expansion (to fourth order) of the form derived

initially by Jennings et al.”™ then simplified by Hodges®

t=to+ty+ ta, (3.26)
where
= Crep”(1), (3.27)
ty = 712 !foz(lg)l : (3.28)
= O e (T) - T (Ve (VoY)
(3.29)
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It is accepted in the literature that the gradient expansion is exact for the
slowly varying density limit.

If one truncates after the second term one gets the second order gradi-
ent expansion (SGA). One commonly combines this functional with Dirac
exchange. In general we can talk about a class of functionals called the
Thomas-Fermi-Dirac-\-von- Weizsdcker functional (TFDAW). Pop-
ular choices of A include: A = 1 is the TFDW model introduced in the
previous section; A = 1/9 is the SGA model just discussed; A = 1/5 which
was chosen to minimise the error of energies predicted by the TFDAW
functional over a set of molecules and atoms.®" There are two main classes

of approximate Ty forms in the literature; one-point (local) functionals

immzjﬁ@®Mr (3.30)

and two-point (non-local) functionals

T.0) = [ Falpe)x(r, ) ol (331

where fi and foq are weighting functionals and x(r,r’) is a type of linear
response function. For example, both the Wang-Teter (WT) OF-KEF 8283
and the Wang-Govind-Carter (WGC) OF-KEF®%> are based on the form

Tu(p) = Tre(p) + Tuw(p) + D AaTx(p)", (3.32)
where the correction Tk has the form

Tx(p) = Crr {pa(r)| wa(r — r') |pa(r’)) . (3.33)

Here o € R takes on different values for different functionals. X is a dummy
label for the functional acronym e.g. WT or WGC. The kernel w,(r —r’)
is a Green’s function, which is determined by the requirement that the
Tx(p) must be compatible with Lindhard linear response theory.®¢ They
are reasonably accurate for very large metallic systems. 8™

There are two issues with this class of functionals which meant they were
not studied in this thesis. One was an implementation issue because the
Green’s function is usually found by solving an equation in reciprocal (mo-
mentum) space using fast Fourier transforms. This is suited to solid state
applications, where one uses plane wave basis sets, but is less convenient

in molecular applications, where one uses Gaussian basis sets. This also
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means that the cost of these calculations scale as O(NyInNy,) which is not
linear but is better than formal KS-DFT. Secondly non-local functionals
of the form in Egs. (3.32) and (3.33) with a density independent kernel,
e.g. WT OF-KEF, were shown to be ‘non-linearly unstable’ by Blanc and
Cancés.”! This means these OF-KEF’s are not bounded from below i.e.
these OF-KEF’s never predict an energy minima. It is a matter of fact
that non-linear stability is a strong indicator of the ability of a particular
functional’s proficiency at correctly describing the electronic structures of
a diverse range of chemical systems. Although it has not been mathemat-
ically shown, there is a strong likelihood that non-local functionals using
density dependent kernels, e.g. WGC OF-KEF, will also be non-linearly
unstable. Due to these issues, this thesis will from now on only be con-
cerned with local (one-point) functionals. What follows is a brief discussion
on the different approaches in developing local functionals.

As the literature is vast we will focus on the functionals tested in this
work. The exact KEF is homogeneous of degree 2 with respect to co-
ordinate scaling. To show this we can use the scaled wavefunction for an

N electron system

U(r:) o> a(r) = A2 Y(Ar) (3.34)

where r; is the position vector for the i-th electron. This is equivalent to
Eq. (3.24). This is because

pA(r) = )\3N/ [h(Ary - - Ary)[Pd(Arg) - - - d(Ary),
= )\3/|¢(>\1‘17/\1“2---/\rN)Izdrg---drN, (3.35)
= Np(Ar).

Then one can compute the KE using the scaled wavefunction through

<¢A|TN|¢A> =

/¢*(Ar1---ArN)< al )\r )1/1 (Ary - Ary)d(Ary) - - - d(Ary),

—x [ v ( )w r)dr - dry,

= N |y |v) .
(3.36)

Therefore, the exact KEF in DFT should have a homogeneity degree of
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two with respect to co-ordinate scaling. However, the full interacting case
is not homogeneous of any degree, as was shown by Levy and Perdew.*’

Therefore, most GGA functionals are of the form

Ti(p) = Crp / p*3H (s)dr (3.37)

where s is the dimensionless reduced gradient and is defined through

L [Vpn)
() = 3y i) (3.38)

and is dimensionless with respect to co-ordinate scaling such that Eq. (3.37)
automatically satisfies the quadratic response to this scaling. H(s) is known
as the enhancement factor. One very popular method to construct this is
using the conjointness hypothesis. Put simply, it postulates that enhance-
ment factors used in an exchange functional can be used (if slightly modified
by optimisation of parameters) as the enhancement factor for an approxi-
mate 7y functional. This hypothesis has been proved not to be fruitful in
developing accurate OF-KEFs though it can be a suggestive template to

explore future possible functional forms. Examples include: conj-B86A %2

bs)?
HB0A(5) = 1 0.00387(— 3.39
(s) =1+ 1+ 0.004(bs)?’ (3:39)
with b = 2(67%)'/3; conj-B8S6B 2
b 2
HBA(5) = 1+ 0.00403 (bs) (3.40)

(1+ 0.007(bs)2)¥/5’

conj-PW9192

1+ 0.19465 arcsinh(7.79565) + (0.2743 . 0.15086_10052> 52

HPW91 (S) — .
1 + 0.19645s arcsinh(7.79565) + 0.004.s ’
(3.41)
conj-PW862
HPWS () (1+ 1.2065% + 14s* +0.255) /"%, (3.42)
LCY4%
1+ 0.093907s arcsinh(76.32s) + <0.26608 . 0.080966_10082)82
HL094(S) —

1 4+ 0.093907s arcsinh(76.32s) + 5.7767 x 10~5s* ;
(3.43)
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TW02%
TWO02/ .\ _
where x = 0.8438 and u = 0.2319; T92%
0.0055(bs)? 0.072bs
H™(s) =1 - ; 3.45
() i + 0.0253bs arcsinh(bs) 1+ 25/3ps’ (3:45)
VT84
2, —as? 2
08
BV =1 = D5 ety 2y 4 28 3.46
(s) 1+582+( e ") (s )+ 3 (3.46)

where o = 1.2965 and [ = 2.778.

Using the conjointness hypothesis as a template for OF-KEF construc-
tion has not yielded kinetic functionals with the same successes as the
equivalent exchange functionals. One reason could be that the Dirac func-
tional is a better approximation to the exchange energy than the Thomas-
Fermi functional is to the KE. Another could be that, from the virial the-
orem, because the non-interacting kinetic term is the dominant term in
the total energy, any inaccuracies in the enhancement factor become more
noticeable when used in calculating the KE.

The Pauli potential is defined as the exact non-interacting kinetic energy
potential minus the von Weizsacker potential. An alternative explanation
for the errors using the above functionals was given by Karasiev et al.?”
They noted that the exact Pauli potential is non-negative over all space
and then showed that for the functionals they analysed based on the con-
jointness hypothesis their associated Pauli potential is negative at some
points in space. This is not a problem for exchange functionals (there is no
corresponding Pauli potential requirement), but this violates an important
constraint for the exact T,. Averill and Painter,”® derived an expression
which explained how one could use T, to calculate the forces in a molecule
using the virial theorem and the Hellmann-Feynman theorem. Karasiev et
al.97% used this as a starting point and in using the requirement of the

positivity of the Pauli term to formulate the PBE-n functionals,

n—1 2 )
S
1+ ;1 C, L . GSQ} ] (3.47)

C; and a are parameters which were found optimising the error in potential

Hppgn(s) =

energy curves and are displayed in Table 3.1.

As well as considering coordinate scaling one can also consider the density
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Table 3.1.: Parameters for the PBEn OF-NIKEFs
‘ a Cl CQ 03
PBE2 0.2942 2.0309 0 0
PBE3 4.1335 -3.7425 50.258 0
PBE4 1.7107 -7.2333 61.645 -93.683

scaling relationship
pe(r) = (p(r). (3.48)

It is important to note that density scaling, unlike its coordinate scaling
counterpart, does not maintain the normalization of the electronic density
to N (number of electrons). An important concept is homogeneity which
can be applied to all types of functional scaling. A functional L(p) is said

to be homogeneous of degree k in density scaling if it satisfies

L(pc) = ¢"L(p). (3.49)

For k # 0, the degree of homogeneity with respect to density scaling is
given by
B / p(r)%dr
L)

One can also say that if a functional L(p) is homogeneous of degree m under

(3.50)

coordinate scaling, then the degree of homogeneity in coordinate scaling is

given by
p(r)r - VoLdr
m = S oolr) (3.51)
L(p)
If an LDA functional is homogeneous of degree m under coordinate scal-

ing then it is also homogeneous of degree k = under density scaling.

m+3
3
However, for GGA functionals this relationship breaks down, and so, one
can use density scaling as another additional constraint. Unlike for coor-
dinate scaling, there seems to be no unique k that satisfies Eq. (3.50). In
their initial work Liu and Parr'® concluded that the KE is homogeneous
of degree one under density scaling (k = 1). Their proof was shown to be

102

incorrect by Gal,®! furthermore, Chan and Handy'%? also showed that a

functional that is homogeneous of degree one under density scaling does
not satisfy the Lieb-Thirring bound %

T.(p) > g(?;;)/ [ e (3.52)

They also established that the KE is inhomogeneous (system dependent)
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under density scaling. This was further highlighted by Borgoo, Teale and
Tozer'** who concluded that the functional was not homogeneous of any
degree but that the effective homogeneity, kg, associated with the potential
that averages over the integer discontinuity — which is most appropriate
for a continuum functional such as a GGA — did not exhibit significant
system dependence for systems with more than a few electrons. The integer
discontinuity in question refers to the plot of the exact total electronic
energy as a function of electron number which comprises of a series of
straight line segments, with derivative discontinuities at integer number of

electrons. 10°

Borgoo and Tozer also built upon the results from previous research, 194:106:107

by defining an average value of Keg, ke av, for a set of closed shell atoms

and molecules. This average value was used to determine
Qav = D — ke ay = 0.3434125, (3.53)

and defined the enhancement factor through

Hpro(x) = pa® (p)dr (3.54)
where x is yet another dimensionless quantity defined as

_ [Vo(r)]
{L‘(p) - ,04/3(1‘) )

and [ was optimised to 1.990328 from the zero intercept linear regression
between the quantity 757%/3 and the Kohn-Sham T} for a set of closed

shell molecules. They also went on to define the following functional

(3.55)

Hgrs(x) = yx®rt(p)dr (3.56)

where gope = 0.2 was computed by considering an intermediate exponent
to yield near optimal energies for their training set of molecules. ~ was
optimised to 2.397888 using an analogous procedure to the optimisation
of B. It was found that BT-2 and BT-3 gave good total energies for their
training set and it was shown that for a selection of molecules they even
predicted binding.

Levy and Ou-Yang considered how the exact exact KEF behaves under
non-uniform co-ordinate scaling.'®® Without going into the details they

showed that the gradient expansion SGA breaks this requirement, and so,
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they proposed the functionals!®® OL1

5 20
HOM(s) =1+ ESQ + 0.006775(379)*1/35 (3.57)

and OL2 213
) 0.0887 2(3
HOLI(S)Zl—l——SZ—}- (77-) s

27" T e T4 8(37) s (3:58)

It is well known that in the slowly varying density limit (s> — 0) the
enhancement factor should become 1 i.e. TF, and in the rapidly varying
density limit (s* — oo) the enhancement factor should become 1 + 552 /27
i.e. SGA. The easiest way to enforce an enhancement factor satisifies both
these limits is through the use of a Padé approximant. A Padé approximant
is just a ratio of two polynomials and is the ‘best’” approximation to analytic
function fixed at two limits. Examples of OF-KEFs derived using a Padé

approximant are: P92!10

1+ 88.3965% 4 16.3683s"

HP?? 3.59
(5) 1 + 88.210852 ’ (3.59)
DKlll
14+0.95 14.2811122 — 19.57962x3 + 26.64765x*
HPX(2) = + x4+ x x”+ x (3.60)
1 — 0.052 + 9.99802x2 + 2.96085x3
with z = 5s?/27;
E00112
135 + 28s% 4 5s*
HEOO(S) _ 35 + 28s* + 5s (3.61)

135 + 352

All the functionals discussed in this section where implemented as part
of this thesis into XCFun,'*® which is a program that computes the par-
tial derivatives of the functional with respect to the density, the norm of
the density gradients and the Laplacian of the density. These were then
incorporated into the construction of the required matrix elements for self-

consistent application of OF-DFT.

3.3.2. A Review on Solving the Optimisation Problem

The accuracy of the OF-KEFs introduced in the last section was assessed
using post Kohn Sham analysis (PKSA). In PKSA one calculates one-
shot KEs using an OF-KEF evaluated on a KS density solution. The
problem with this approach is that in self-consistent OF-DFT calculations
one will be solving the optimisation problems discussed previously where

the £y, is an approximate form depending on the choice of OF-KEF and
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XC functional. PKSA gives us no indication whether the functional is well
behaved or whether the optimisation problem is well defined i.e. does the
approximate Fj, have a minimiser?

For solid state systems self-consistent OF-DF'T codes are available such
as: ATLAS,'* which is a real space finite-difference method for the nu-
merical solution of OF-DFT in periodic systems; and PROFESS,®? which
is a quasi-linear scaling code and uses local pseudo-potentials. PROFESS
also relies on solving for the Coulombic energy and the KE in momentum
(reciprocal) space through the use of fast Fourier transforms and periodic
boundary conditions. In addition both PROFESS and ATLAS use plane
wave basis sets, not Gaussian basis sets. For a self-consistent OF-DFT
code which can aid the development OF-KEFs for chemical systems one
prefers an all electron treatment. This is because the core regions of the
density are essential for accurate KE calculations, and so, it is important
to treat these electrons explicitly when testing approximate KEF's.

As noted in Section 3.2 the TFAW models can be approached as a non-

1 115

linear eigenvalue problem. This was first realised by Sahni et a who

formulated the problem, for the TFDW model, in the following manner

her(r)p!/?(x) = pp'/?(r), (3.62)
where .
heg(r) = —§V2 + Vest(T) (3.63)
and
R p(r’) . 0Ts(p)  0Tvw(p) | dExc(p)
Ver(T) = v )+/ ‘r_r,‘d + 5o(0) 5(0) 5(0) (3.64)

w1 is known as the chemical potential. The chemical potential can be seen as
minus the first ionisation energy of the system if the potential goes to zero
as r — 00. It was claimed this would be easy to implement by modifying
existing KS-DFT codes, however, it has been extremely difficult to do so in
reality. Lopez-Acevedo et al.! made progress using this method by using
the TFDAW model to derive the following eigenvalue equation (referred

from now on as the Lopez-Acevedo scheme)

1 1 0
(—§V2 + ngﬁc(r)) pt/? = Xpl/Q(r), (3.65)
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Construct initial guess of {¢;}

Create initial
density matrix

Transform density
matrix to AO basis

Build "Fock’
Matrix

Create new
density matrix
using mixing

Transform to
orthogonal basis

Get current
MO coefficients

|

Converged

Output quantities

Figure 3.1.: A flow chart outlining the Lopez-Acevedo scheme

where

: p(r) 0Trr(p)  0Kp(p)
= d — . 3.66
viale) = ole) + [ L ar 4 IO Con (3.66)
As part of this thesis I have implemented the Lopez-Acevedo scheme
in to QUEST'6* using a similar algorithm to a traditional KS-DFT cal-
culation for a one orbital system. For a KS-DFT calculation (and other

quantum chemical models which rely on self-consistent methods) to reach

* A Python based code which is a rapid development platform for electronic structure
methods in quantum chemistry
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self-consistent (Self Consistent (SC)) convergence, one uses convergence ac-
celerators. A common tactic is to construct density matrices to be used in
the current iteration using density matrices from previous iterations. For
example, Pulay’s DIIS?2?3 is a very common SC acceleration technique us-
ing this approach. The set of MO coefficients {¢;}, is chosen to minimise
the commutator [F, D], where F' is the Fock matrix and D the density
matrix. This is because it is a necessary and sufficient condition that this
commutator becomes zero for a SC solution. However, it has been shown
to correspond to a projected quasi-Newton method, '"!*® which means it
requires the total energy to be a quadratic function with respect to the
MO coefficients in a neighbourhood of the minimiser. When we tried to
apply this to the Lopez-Acevedo scheme, DIIS failed because the total en-
ergy defined by the universal functional Frrpp)w is non-convex as discussed
previously and varies rapidly with D. This means Frppyw cannot meet the
quadratic requirement of DIIS.

We, therefore, had to use a simple mixing scheme for our convergence
accelerator. We used this to form the Coulomb, exchange and KE matri-
ces in the current iteration from the corresponding matrices of previous
iterations. For example, the Coulomb matrix for the (n + 1) iteration is

formed by

il T1n3) g1 = @ (ml T mj),, + (1= @) (il T 1),y (3.67)

where n denotes the iteration number,

occ

(il dIng) =23 > ewicuiligliw), (3.68)

where 7; denotes basis functions and the damping factor a = 0.001. Due
to the small magnitude of a we found that there was a large number of
iterations, thousands, needed before convergence was achieved. However,
if one sets a much higher then this prevents convergence. Furthermore, the
damping required changed with the choice of functional and atom type.

Fig. 2.1 is a flowchart of the Lopez-Acevedo scheme which I have imple-
mented into QUEST. The initial guess of MO coefficients {¢;} come from
the eigenvector corresponding to the lowest energy eigenvalue of the core
Hamiltonian. The ‘Fock’ matrix is given by

1 0Trr  0Fxc

1 1
Fi; = (ml—§V2|nj> 3 (s J + v|n;) + X <772‘|(5—p + W|77j> (3.69)
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where Exc is the Dirac functional. This is just —Kp which is defined in
Equation (3.17). Due to the transformations between the AO and MO
basis it is clear that our implementation is not linear scaling. However, in
principle, the same methods used to achieve linear scaling KS-DFT codes
could be applied here. We found that the number of iterations increased
greatly when one increased the number of electrons in the system. The
tolerance criteria is 1079 Hartree’s on the total energy, 107% a.u. on the
chemical potential and 107% on the norm of the density matrix. This was
implemented for both spin polarised and unpolarised formalisms.

The key issue we found with this scheme is that it can only converge the
energy for a very small subset of OF-KEFs. We could only converge for
calculations involving TFDAW functionals for A # 0. Indeed, more recent

19 where the

work using this scheme has focussed on a TFDAW functionals,
TF OF-KEF is scaled by a € R. In this most recent work the projector
augmented wave method was used to generate molecular densities from the
atomic densities. Therefore, the large increase in iteration count was less
of a problem than in the way we implemented this scheme. However, due
to the restricted range of functionals one can use in this scheme it is not
appropriate for general single point OF-KEF development.

A self-consistent scheme, which directly minimises the energy functional
without resorting to solving an eigenvalue problem was introduced by Chan,
Cohen and Handy (CCH).? This was done with the goal to investigate the
self consistent properties of the TFDAW models. Their method requires a

series of minimisations of the following Lagrangian

L(p;p) = E(p) — pNy (3.70)

where ;1 takes the role of the Lagrange multiplier and each minimisation
yields a density normalised to N,. The minimisation with respect to the

density yields the Euler-Lagrange equation

SE

o, 71
5y M (3.71)

Between each minimisation we conduct a one-dimensional root search to
find a new guess of p such that |N, — Neec| decreases, where N is the
correct normalisation of the density. We will discuss this method in detail
in Chapter 4.
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3.4. Solving the Optimisation Problem: A
Formal Approach

As we will see in Chapter 4 the CCH approach is slow to converge due
to the need to solve a series of optimisation problems. To arrive at a
more efficient optimiser we need to discuss DFT but for flexible, not fixed,
particle number.

Formally we have to solve the variational problem for a given orbital free

approximation to Fy,, For : P — cl(R), given through

E(v) = inf [For(p) + (v]p)] Vo€ P" (3.72)
Where we require that P at least contains X and P* contains the Coulomb
potentials i.e. contains A*. In all our formal development so far we have
kept the normalisation constraint on the density fixed. This means that
if one tried to self-consistently solve the optimisation problems it is not
possible to vary the number of electrons described by the density. The only
way to change the number of electrons would be outside of the optimisation,
Equation (3.72). We will see this is the case for CCH in Chapter 4. We will
find that we wish to minimise the energy and vary the density normalisation
stmultaneously. By this we mean we wish to only complete one functional
optimisation which ends at the correctly normalised ground state density.
This means we need to extend our formal approach we have developed so far
for fixed N-particle systems to grand canonical ensembles, encompassing

systems of varying V.

3.4.1. Grand Canonical Ensembles in OF-DFT

The goal in this section is to show a formulation of DFT which allows
for arbitrary variation of the particle number.!3 Up to now our variational
principles have been defined for a fixed number of electrons. The reason
for this is that we have been formulating DFT with reference to a version
of quantum mechanics formulated using a single Hilbert space to describe
a system. It is well known that this ‘first-quantised’ version of quantum
mechanics cannot treat any system where particle number is not conserved.
The improved formulation of quantum mechanics is quantum field theory
which allows for the description of systems with variable particle number.
It achieves this by having Fock spaces as its underlying mathematical struc-

ture rather than a single Hilbert space. Put simply, a Fock space is the
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sum of a set of Hilbert spaces describing zero particles, one particle, two
particles and so forth.

We will be following the formalism outlined by Helgaker et al.!® For a
system in an external potential v € X* and particle number N € N, T the
N-electron ground state energy eq : X* x N — cl(R) is

co(v, N) = inf triH(v) (3.73)

Y€DNn
where the hat signifies that the operators act on the Fock space not the
Hilbert space. Indeed Dy is defined using a new definition of Wy which is
now the set of admissible N-electron Fock space states. We can now state

the following theorem

Theorem 3.4.1. The grand canonical ensemble (Grand Canonical Ensem-
ble (GCE)) ground-state energy o : X* X R — cl(R) is defined through

+00, N € (—0,0).
eo(v, N) = q infsepy trAH (v), NeN,.
(1 (N))eolv, LVJ) + (N) o, INT), NV € (0, +00) /.

The conditions for 4, — p are
80(’U, N) = tr%ﬁ(v) = pE 5180(1}, N),\V/N S N+.

The map v — go(v, N) belongs to T*(X*) and increases monotonically.
The map N > eo(v, N) is lower semi-continuous on R and continuous on
(0, +00).

See Section 1.3.4 for the definition of 9. Also I'*(X*) denotes the set of
all weak-star upper semi continuous concave functionals operating on X'*.
See Chapter 1 for a review of the meaning of these terms.

One can also define the GCE density matrix, [, as a convex combina-
tion of ensemble density matrices of different particle numbers. The set
of admissible GCE density matrices, D, , is just the convex hull of the
union of all sets of admissible canonical density matrices. It should be
clear why D, is the density matrix representation of the Fock space, and
so, can describe any value of particle number. We can now define the GCE
ground-state energy Gy, : X* — cl(R) as being the greatest lower bound

to all the GCE expectation values of a Hamiltonian for a particular v € '™,

t where A, is the set of all positive integers and zero
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or more explicitly

Go(v) = inf trH(v) (3.74)

PeDy
which tells us that the GCE ground state energy can be found by a convex
optimisation over {ey(v, N)}x_,-
Now we can explain DFT formalised using GCE’s. We know that G, €
[*(X*) ,and so, we can introduce the GCE Lieb functional, Fi, € T'x(X)

as a Legendre-Fenchel conjugate to Gy, and so,

Theorem 3.4.2. The GCE energy Gy is related to F in the following

Hohenberg-Kohn variation principle:

Go(v) = inf (FL(p) + (vlp))

peEX

It can be shown that Fy, is non-negative and is the I'—regularisation and
lower bound to all admissible density functionals. See Section 1.4 for a
review of the I'y sets. What we are saying is that F; a weak-star lower

semi-continuous function on X. Its effective domain is the set Z, which is
defined through

T = {plp € Ry, (p'?|p'?) < +o0, (Vp'2|Vp!?) < oo} (3.75)

where R, is a generalisation of the set Ry, defined in Eq. (2.60), where
we lift the restriction [ p(r)dr = N. Since all admissible functionals are
bounded below by the von-Weizsacker functional, which is nowhere locally

bounded above, we have that

Theorem 3.4.3. An admissible GCE density functional (including the Lieb
functional) is nowhere locally bounded above, nowhere continuous, nowhere
differentiable

In OF-DFT one is trying to find approximations to the GCE density
functional, and so, must have the above properties to be considered admis-

sible from a purely theoretical perspective.

3.4.2. The Importance of Saddle Functions in OF-DFT

We can control the number of electrons in the system by shifting the poten-
tial using the chemical potential, u, which was introduced previously when
discussing the Lopez-Acevedo scheme. However, this is fairly indirect so
we will concentrate on the more direct approach to controlling the particle

number — which is what we require in our numerical optimisations. We
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can define the GCE energy bifunctional, G : X* x R — cl(R) and the GCE
universal density bifunctional F : X x R — cl(R) as

G(v,pu) =G(v—p,0) =Go(v —p), V(v,u) € X* xR, (3.76)

f(p,N)=FL(p),/p:N V(p,N) € X xR
(3.77)
——i—oo,/p;éN Y(p,N) € X x R

The bifunctionals are closed concave and closed convex functions respec-
tively i.e. G € IT*(X* x R) and F € ['(X x R). They are related through

G(v,p) = inf inf (F(p,N)+ (vlp) —pN), V(v,p) € X" xR (3.78)
One can show that the bifunctionals are the parents of an equivalence
class of closed concave-convex functions [¢] : X* x R — cl(R) and parents
of an equivalence class of closed convex-concave [K] : X x R — cl(R).
It turns out that!® these equivalence classes are singletons consisting of a
closed concave-convex energy saddle function € and a closed convex-concave
density saddle function IC, respectively.

One can then set-up a four way correspondence'® between GCE energy
and density functionals, much in the same way as one does in thermody-
namics where we relate the internal energy, enthalpy, Helmotz free energy
and Gibbs free energy as Legendre transforms. Indeed Nalewajski and Parr
have derived the ‘Maxwell relations’ for DFT.'2° The four functionals in-
troduced in this section are related as follows, see Theorem 3.4.4 for the
definition of H,

F(p,N) = sup (e(v, N) = (v|p)) = Sup (H(p, 1) + puN), (3.79)
e(v, N) = inf (F(p, N) — (vlp)) = sup (G(v, 1) + uN), (3.80)
H(p,p) = mf (Flp, N) = puN) = sup (G(v, 1) = (v]p)), (3.81)
G(v, p) = inf (H(p,u) + (vlp)) = jnf (e(v, N) — pN). (3.82)

We are most interested in the energy saddle function € : X* X R — cl(R)
which can be defined through

e(v, N) = inf sup (H(p, p) + (vlp) + pN) = sup inf (H(p, p) + (v]p) + pN).
PEX eR pER PEX
(3.83)
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Or in other words, (v, V) is the saddle value of the closed convex-concave
function (p, ) — H(p, 1) + (v|p) + pN. For a given (v, N) € X* X R a
saddle point may not exist in the Hohenberg-Kohn variation principle but
a finite saddle value always exists on the effective domain of €. One can
further show that

Theorem 3.4.4. The closed convez-concave saddle function H : X X R —
cl(R) is given by
Hip, ) = Filp) — (ulp) (3.84)

Therefore, H(p, 1) is lower semi-continuous in p for fized p and is contin-

uous affine in p for fixved p.

We are now in a position to state the constrained and unconstrained

grand-canonical Hohenberg-Kohn variation principles

Theorem 3.4.5. For each (v, N) € X* x R, the GCE ground-state energy

may be obtained from the constrained Hohenberg—Kohn variation principle

e(v,N) = inf (Fr(p) + (vlp)) (3.85)

PEIN

or from the unconstrained Hohenberg—Kohn (minimazx) variation principle:
e(v, N) = sup inf (Fr(p) + (v — plp) + uN)
MGR pEX

= inf sup (Fi(p) + (v — plp) + uN)

peEX LER

(3.86)

The minimax problem corresponds to Lagrange’s method for the constrained

problem, with multiplier p.

Proof. The variation principle in Eq. (3.85) can be arrived from the four-
way correspondence and by firstly noting that F(p, N) = Fi(p) on Xy
and +oo elsewhere. Then we note that dom(Fy,) = Z, giving Zy = Z, N
Xy. The mini-max variation principle, Eq. (3.86), is a trivial proof by
definition. In order to prove why the minimax problem arises from the

Lagrange method we write Eq. (3.85) as
(0, N) = inf {Filp) + ()N = N,) (3.87)

where N, = (1]p). So a minimising density py exists if and only if there

exists pp € R such that (po, po) is a saddle point for the Lagrange function

L(p, ) = Fr(p) + (vlp) + (N = Np) (3.88)
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Thus Eq. (3.86) is a minimax problem for the saddle value of the Lagrange
function L(p, u). O

In the CCH scheme p is fixed and £ is optimised with respect to p.
A new value of u is chosen, we will explain how later, such that (N —
N,) is minimised, and so, their final optimisation is just Eq. (3.85). In
the original work CCH? claimed that incorporating the particle number
constraint directly into the energy minimisation exacerbates the problems
found in optimisation procedures. In Chapter 6 we discuss how we achieved
this by utilising the saddle function L£(p, ). We will present how numerical
optimisations realising this fact are superior to the CCH scheme in terms
of computational cost.

We have now finished laying the theoretical foundation upon which the
rest of this thesis is built. In Chapter 4 we will outline how we improved
upon the CCH scheme by means of allowing the testing of a wide range of
possible Fr, approximations to be done simply and quickly. In Chapter 5
we will analyse the potentials of TFDAW functionals. In Chapter 6 we will
show how one finds the saddle point of a surface defined via an approximate
JF1, and why this is superior, in terms of computational cost, to the CCH
scheme. In Chapter 7 we focus on the variation principles at the interface

between DFT and wave-function methodologies.
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4. The Importance of Self
Consistency in Orbital Free

Density Functional Theory

4.1. Introduction

In this chapter we describe in detail the Chan, Cohen and Handy scheme
(CCH)? introduced at the end of Section 3.3.2. We also outline how we
expanded the number of functionals that can be used in this scheme. We
begin by reviewing the Lagrange optimisation method in DFT as applied
to OF-DFT in Section 4.1.1. We will then, in Section 4.2.1, move on to
discuss in some detail how this work was implemented into QUEST 6 with
a detailed outline of the equations of the gradient and Hessian required
for this optimisation. In Section 4.4 we present some results which clearly
demonstrate that one should be cautious using post Kohn Sham analysis to
determine the accuracy of kinetic energy functionals (KEFs). We will find
that the errors in the converged energies using KEFs are not comparable
with previous analysis using Kohn-Sham densities. We will also discuss the

errors in the ground state densities predicted by these KEF's.

4.1.1. Recap of Variation Principles

OF-DFT strictly adheres to Hohenberg and Kohn'’s first theorem. In OF-
DFT the electronic energy is written as a functional of the ground state

density p. The energy is partitioned in the same way as in KS-DFT,

E(p;v) =T(p) + Es(p) + Exc(p) + Eext(p; v). (4.1)

The notation F(p;v) means the energy is defined for a fixed external po-
tential, v.
The functionals in Equation (4.1) whose explicit analytical form using

p are unknown are: Ty — the non-interacting kinetic energy functional
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(KEF); and Exc — the exchange-correlation energy. This differs to KS-
DFT where the KEF is expressed using orbitals, not p. The advantage of
using just p rather than relying on the re-introduction of orbitals is that one
only has to solve one equation in OF-DFT to find the ground state density.
This is in contrast to KS-DF'T where one has to solve a set of equations.
As there is an equation for every orbital the number of equations increases
with the number of electrons in the system. In OF-DFT we only have one
equation to solve irrespective of the number of electrons in the system. This
means OF-DFT could, in theory, be a linear scaling ab-inito method with
a very low pre-factor such that biochemical and soft matter systems could
be studied exclusively using OF-DFT. For example, the PROFESS code®?
scales quasi-linearly (O(nlog(n)). So that no confusion can arise we will
refer to the KEF used in OF-DFT as the orbital free KEFs (OF-KEFs).
The remaining functionals in Equation (4.1) are known exactly. Ej is

known as the Coulomb or Hartree repulsion and is expressed as

Ey(p) = % / / iy, PTDP(T2) (4.2)

This is the energy arising from the electron density interacting with itself.

Eoxt(p; v) is given by

Bou(piv) = / drp(r)u(r) = (pl) (4.3)

and is the energy due to the electron density interacting with a attractive
external potential, v. In this work the potential is the sum of the Coulomb

potentials generated by a set of nuclei, {I},

v(r) = — AZ; ‘Rf—fir'. (4.4)

In this chapter and the subsequent chapters r,r; € R3.

4.2. The Chan Cohen Handy Scheme

4.2.1. Outline of the Scheme

We know from the discussion in Section 3.4.2 that the Lagrangian of an N

electron system is a saddle function defined by, see Equation (3.87),

L(p, 1) = Fr.(p) + (v]p) + p(N — Ny) (4.5)

86 Variational Solutions in OF-DFT M. S. Ryley



CHAPTER 4. THE IMPORTANCE OF SELF CONSISTENCY IN
ORBITAL FREE DENSITY FUNCTIONAL THEORY

and the ground state energy, Fgs : X* X R — R, is found through the

saddle point optimisation

Egs(v, N) = inf sup L(p, j1). (4.6)
peX LER
In this chapter we use the ideas of CCH? who, to avoid this saddle point
optimisation, carried out Equation (4.6) in a stepwise manner.
First one chooses a value of ;1 which is held fixed and then one performs

the optimisation
G(v;p) = inf L(p; p) (4.7)
peEX

where the notation (v; ) and (p; 1) denotes the fact that the p and v are
being allowed to change and p is kept fixed. The optimising density, p,,
for Equation (4.7) will be normalised to N, electrons. This quantity can

be calculated through
N, = / pu(r)dr. (4.8)

In general this will not be the correct number of electrons in the system
but it will be either an over or under estimate due to the initial guess of u.
Since p determines NN, the optimisation of Equation (4.6) can be repeated
for different values p’ until we have N, < N < N,. To search for the
1 which yields a correctly normalised density CCH proposed to bisect a
function B: R - R

B(p) =N, — N. (4.9)

We can identify B(u) as the particle number error for a given p and so, we
are searching for a p for which B(u) = 0.

Since 1 € R this can be achieved by a simple bisection. The bisection
method we used begins with two values of 1; ftiow and finign. These values
are chosen such that B(pey) < 0 and B(fthigh) > 0. Then we choose fimiq
which is computed by

T Hhigh 2_ Hlow ' (410)

Then Equation (4.7) is performed using finiq which yields B(fimiq) through
Equations (4.8) and (4.9). If B(pmia) < 0 then we set poy = fimia- Or
if B(ptmia) > 0 then we set fihigh = fmia. We then iterate through the
bisection until |B(pmiq)| < 107%. In Figure 4.1 we present an example of
B(p) and the bisection steps from an OF-DFT calculation. In the figure we
can see the computed values of p,;q — represented by dots in Figure 4.1
— become more tightly packed around the final value of p. Indeed this

is a symptom of all calculations in CCH: the bisection is a slow algorithm
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Figure 4.1.: B(p) generated using the E00 OF-KEF and PBE XC function-
als for the Ne atom.

when one nears the solution point.

4.2.2. The Choice of Basis Functions

To ensure that we are optimising in the correct space, i.e. p € X', we follow

CCH and expand the square root of the density as follows

PR = 3 ). (411)

The sum is conducted over the entire basis and the {c¢;} are the basis
coefficients. CCH proposed an even tempered basis set of real Gaussians
of the form

n=(x—2a)(y—ya)(z— zA)ke_“|r_rA|2 where o =3" (4.12)
and are centred around each nuclear centre, A. This basis set will be
referred to as the even-tempered orbital free basis (ETOF). For atomic
calculations CCH found that using an ETOF basis with n = —4,...,14
for all the TFDAW type models yields energies typically within 1 milli
Hartree (mH) of the basis set limit. As all atoms have spherically symmetric
charge distributions we also use ETOF in our atomic calculations. We
conducted an investigation into whether the basis set convergence analysis
conducted by CCH carries over in atomic calculations using a wider range

of functionals.
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Figure 4.2.: Comparison of basis set convergence using a range of OF-KEFs
introduced in Section 3.3
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In Figure 4.2 we plot the energy difference in Hartree (£}, ). The difference
is computed from the energy calculated using a basis set of the form in
Eq. (4.12), with the maximum value of n given as the greatest value of the
abscissa in the figure. We plot these values, for a fixed minimum value of
n = —4, as a function of ny,, using a range of OF-KEF's using the PBE XC.
We did this as adding more negative values of n did not change the energy
significantly. As one can see the energy rapidly changes until we reach
Nmax = 12. These results suggest that for trustworthy energies we need an
accurate description of the core in our basis set rather than the tail to close
in on the basis limit for multi-electron systems. Therefore, the basis set
requires a large amount of sharp Gaussians. We have found that with the
ETOF basis (nmax = 14) we can get to within a few pHartree of the basis
set limit for all functionals for all atomic systems. The only exception to
this was the TF functional which was also found in the original work.? As
explained in that work the TFD densities are singular at the nucleus and
contribute a significant proportion to the energy and, therefore, one cannot
expect to capture such behaviour using a basis set procedure such as the
one presented here. For the diatomic systems we studied in this work we
must consider adding higher angular momentum Gaussians to the basis set
in order to describe the polarisation of the density for molecular systems.
We, therefore, conducted a investigation in the convergence of the energy
when one increases the number of basis functions and increase the number
of functions with different angular momenta.

In Table 4.1 we show the ground state energies of the Ny molecule using
the TFPWOPT model — defined in Equation (4.29) — for F}, computed
using a wide range of basis sets for the expansion of p%. We began by
increasing the number of s-type Gaussian functions, denoted by ETSn. We
added a new, sharper Gaussian as n was increased because, as for atoms,
adding diffuse functions had limited effect on the energy. As one can see
in Table 4.1 the energies of the ETSn series decreases monotonically with
basis size. The error measure, AFE, in Table 4.1 is the difference between
the energy computed using a given basis and the energy computed using
the largest basis used — ETSPDF4. AF initially decreases quite quickly,
though when one has around 18 s functions the error stays fixed at about
6 x 1072Ey,. Therefore, in our molecular basis we choose to have 18 s-
functions. We then constructed the ETSPn series where we fix the number
of s functions to 18 and vary the p-functions from 1 to 10. Note one p

function actually corresponds to 3 Gaussian’s corresponding to p,,p, and

Dz-
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Table 4.1.: Energies in Ej, computed for Ny using TFPWOPT for a range of
basis functions. The form of the error measure, AFE, is discussed

in the text
Basis Composition Energy (E,) AFE (Ep)
ETS1 s —38.61915 6.973E4-01
ETS2 6s —53.83645 5.452E4-01
ETS3 7s —71.51687 3.684E4-01
ETS4 8s —82.95161 2.540E+401
ETS5 9s —93.99829 1.436E401
ETS6 10s —100.69089  7.663E+00
ETS7 11s —106.58877 1.765E+00
ETS8 12s —107.82407  5.299E-01
ETS9 13s —108.17835  1.756E-01
ETS10 14s —108.26202  9.194E-02
ETS11 15s —108.27971  7.426E-02
ETS12 16s —108.28328  7.069E-02
ETS13 17s —108.28400  6.996E-02
ETS14 18s —108.28414  6.982E-02
ETS15 19s —108.28417  6.979E-02
ETSP1 18s1p —108.28415  6.981E-02
ETSP2 18s2p —108.28635  6.761E-02
ETSP4 18s4p —108.34476  9.197E-03
ETSP5 18s5p —108.35241  1.600E-03
ETSP6 18s6p —108.35241  1.551E-03
ETSPT7 18s7p —108.35243  1.535E-03
ETSPS 18s8p —108.35243  1.533E-03
ETSP9 18s9p —108.35243  1.532E-03
ETSP10 18s10p —108.35243  1.532E-03
ETSPD1 18s5pld —108.35239  1.575E-03
ETSPD2 18sbHp2d —108.35239  1.576E-03
ETSPD3 18s5p3d —108.35300  9.579E-04
ETSPD4 18s5p4d —108.35386  1.033E-04
ETSPD5 18sHpdd —108.35392  4.598E-05
ETSPDF1 | 18sbpbdlf —108.35393  3.476E-05
ETSPDF2 | 18s5phd2f  —108.35395  1.208E-05
ETSPDF3 | 18sbhphd3f —108.35396  5.000E-09
ETSPDF4 | 18sbphd4f —108.35396 0
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Once again we see a monotonic decrease in the energy and we see the
error in the energy stabilises around ETSP8. Note by adding p-functions
to the basis set we lower the energy by around 50 mH. In Table 4.1 we see
that adding higher angular momentum functions does lead to a decrease in
energy. We, therefore, chose to use the ETSPDF4 basis set as we are confi-
dent we are at least within 0.1 mH of the basis set limit due to monotonic
decrease to the ETSPDF4 value and the stability of the error. We repeated
this analysis using several more functionals — E00, OL1, P92 and SGA —
and found the ETSPDF4 was at most 0.1 mH in error. To summarise
we are using the ETOF basis developed by CCH for atoms which consists
of s-type Gaussians with exponents of 3" for every n between and includ-
ing -4 and 14. For brevity this can be stated as the exponents are of the
form 3741 We are using the ETSPDF4 basis set which we will now call
ETOF-MOL. This basis consists of: s-type Gaussians with an exponent of
3[=6.11]: p-type Gaussians with an exponent of 3[74%; d-type Gaussians with
an exponent of 2.71-31: f-type Gaussians with an exponent of 2.71-%1. We
have used the aug-cc-pV5Z basis,21"12° utilising spherical harmonics and
with no contraction, for the KS-DFT calculations in this chapter for both

atoms and molecules

4.2.3. Convergence Properties of the CCH Scheme

Figure 4.3 outlines the CCH approach that has been implemented into
QUEST during this work. The tolerance value was set to 107% a.u. on the
bisection. In the minimisation of £ we set a tolerance on the gradient and
energy of 107% a.u. The starting guess of the chemical potential py was
always chosen to be 0. This choice had little impact on the convergence
performance of the scheme compared to the choice of the initial basis coef-
ficients, {cV}. For atomic calculations one can start with a random guess,
however due to using approximate forms of Ty and Ex¢ the Lagrangian
may have many saddle points. The CCH scheme makes it difficult to as-
certain whether we have converged to a first order saddle point or some
other higher order saddle point. This is in contrast to the TRIM scheme
which we introduce in Chapter 6. We have found that using {¢;} from the
ground state of the core Hamiltonian is a quick method to generate starting
guesses which allows convergence to the correct saddle points. However, for
molecules this is unsuitable as it yields very inaccurate starting guesses and
thus causes problems for the optimisation. For molecules we found that us-

ing the supposition of atomic densities (SAD) yields suitable initial guesses.
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Figure 4.3.: A flow chart for the self-consistent OF-DFT scheme discussed
in this thesis

We run atomic calculations in the ETOF-MOL basis for every atom type
in the molecule and then we combine these converged basis coefficients in
one coefficient vector which forms our starting guess molecule.

In Section 3.3.2 we discussed the Lopez-Acevedo scheme,'® see Fig. 3.1.
The CCH scheme, in contrast to the Lopez-Acevedo scheme, is a direct op-
timisation approach and no diagonalisation step is ever performed. Instead
the optimisation of L(p;u) is carried out via a quasi-Newton method by
differentiating L£(p; 1) with respect to the expansion coefficients, {¢;}. At
each step in the cycle in Figure 4.3 an optimising set of {¢;} is obtained.
When |B(u)| becomes small then using the set of {¢;} as the initial guess of
the next cycle significantly accelerates the optimisation of £(p; ). One of
the key advantages of the CCH scheme is that at the core of this scheme is
a minimisation problem which is well suited to a robust and simple (quasi)
Newton method. However, the major drawback is the nested nature of the

scheme which leads to a large number of Lagrangian optimisations to be
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performed and hence a large iteration count.

4.3. The Gradient and Hessian

We will now discuss how we calculate the gradient and Hessian elements
which are used in the CCH scheme. This is where this work diverges from
the original scheme developed by CCH. In the original work the gradient
and Hessians were explicitly derived and implemented for the TF and VW
OF-KEF and the Dirac exchange functional. In this section we will discuss
how we have implemented the optimisation scheme in a such a way that
the gradient and Hessians corresponding to any OF-KEF or XC functionals
can be calculated without the need for explicitly implementing derivatives
for each functional. We will show the general form of the gradient and
Hessian and discuss how we have used these in conjunction with XCFun '3
to generate any gradient and Hessian just by coding the integrand of a
functional into XCFun. This usually involves very little coding on behalf of

the user and is a more ‘black-box’ method than the original implementation.

4.3.1. The Line Search Algorithm

We have implemented a line search algorithm in order to find the set of
basis coefficients {cx},,, which minimise Equation (4.7). We have chosen
to base this on the Newton Search which relates the next guess of {cy},,
Zki1, from the previous guess z; through

Le+1 = Tk + Oéknglgl (413)

where aj, is known as the step size, g, is the gradient of Equation (4.7)
evaluated using z; and Hy is the Hessian of Equation (4.7) evaluated using
Tp. gpH 1'is known as the descent direction. In Sections 4.3.2 and 4.3.3
we will discuss the gradient and the Hessian respectively. Equation (4.13)
states that xy1; = x; when one has minimised Equation (4.7) and it is
an equation we have to solve iteratively due to the non-linear nature of
the problem. We must be careful in our choice of oy as if its too small
we would never make progress but if it is too large we could get trapped
between two points on the surface with equal values. We have tried two
different algorithms to find ay.

The first algorithm is the Armijo-backtracking search, which is a well-

known algorithm and suitable for most (quasi) Newton searches.'?0 This
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algorithm ensures that we chose a step size such that we take a step which
reduces the value of the objective function, which in our case is Equa-
tion (4.5). In addition to this, the backtracking iteration cycle ensures
that from an initial guess of oy we pick the largest possible «@ such that
L(zg+1) < L(xy). The algorithm to find «y, is set out in Algorithm 1 where
P = geH)
Algorithm 1: Armijo-backtracking search

Choose @ > 0,t € (0,1),c € (0,1);

Set a < a;

while f(z), +apy) > f(2x) + ctgi pr do

‘ o ta;

end

After some trial runs we found that setting ¢t = 0.5 and ¢ = 10~* yields
the most optimal convergence rates. Whilst this was a robust approach
we found that we could reduce the number of steps required to find an
appropriate ay, using quadratic and cubic interpolation.!?® This generates
a decreasing sequence of {ay}, but in such a way that each {ay}, is not too
small. Given a function f: R"™ — R and a step size a;, € R" the sufficient

decrease condition can be written as

flaw) < f(0) + carV £(0) (4.14)

where ¢ € R is a small number, which we have set to 10~ in this work.

Let ag be the initial guess. We can form a quadratic approximation fg(a)

to f by interpolating between f(0), V f(0) and f(ayp). Its explicit form is
— f(0) — oV f(0

fola) = (f<0‘°> J(0) = 2V ))a2+Vf(O)a+f(O). (4.15)

agp

If we minimise this with respect to o we obtain a new trial value, a;

V f(0)eq

2[f (o) — f(0) — Vf(0)exo] (4.16)

A = —
If Equation (4.14) is satisfied by setting oy = 7 we terminate the search.
Otherwise we construct a cubic approximation, fc(«) that interpolates

between f(0), V f(0), f(ap) and f(ay). Its explicit form is

fola) = aa® +ba® + aV £(0) + £(0), (4.17)
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where

” o [ of —a%] [f(al) — (0) = V(0
bl agat(an — ag) i | |[flao) = f(0) = Vf(0)ag

3
—Qy O

(4.18)

Minimising Equation (4.17) with respect to « yields the minimiser ay de-

fined through
b+ +/b* = 3aV f(0) (4.19)
N 3a ' '

(%)

If necessary this process is repeated i.e. forming fc using f(0), V f(0) and
the two most recent values of f until we find an « to satisfy Equation (4.14).

We have implemented the following algorithm

Algorithm 2: Armijo-backtracking with quadratic/cubic interpola-
tion

Choose o > 0,c € (0,1);

Set a < @

if f(a) < f(a) + capgi pr. then

‘ return o = ap;

end
Form «a; using Equation (4.16);
if f(a1) < f(a) + cargi pr. then
‘ return o = aq;
end
while a; > 0 do
Set p =0.3;
Calculate a,b using Equation (4.18);
if b* — 3agipr < 107° then
‘ Qg = 01p
else
‘ Calculate oy using Equation (4.19);
end
if f(as) < f(a) + casglpy then
‘ return ap = ao;
end
Set ag = ag;

Set ay = ap;

end

If a; < 0 exits while loop with error;

Each step in Algorithm 2 compared to Algorithm 1 is more expensive

due to the fact that we have to generate the Hessian and gradient twice
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as many times per step. However, the number of iteration cycles decreases
on average by a factor of five and so, we have found Algorithm 2 is much
more efficient and has been used to generate the results presented in this

work.

4.3.2. The Gradient

In Equation (4.13) we saw that the gradient, gz, and the Hessian Hj are
required to compute the step direction in the optimisation. The gradient

of the Lagrangian given in Eq. (4.5) is

g:(...,g_fi’...) (4.20)

This may be computed, using Equation (4.5) and expanding p'/? in a basis

set, Equation (4.11),
oL OF !
=9 | — = 2dr. 4.21
7, /m(ép M)P r (4.21)

Noting that %—ﬁ may be decomposed in the usual manner — as seen in KS-

DFT — and so, the evaluation of Equation (4.21) requires construction of

the following matrix elements

0Ty,  O0Exc OF;
|— — — . 4.22

The matrix elements involving v, 2£X%¢ and % are evaluated in the same

dp
manner as in KS-DFT calculations. For the 557;:5 we have implemented OF-

KEFs into the XCFun!!'® package, which we interfaced with QUEST, and
are then handled by the same numerical integration techniques employed

for XC functionals in standard KS-DFT calculations. The most costly
part of the evaluation of Equation (4.22) is for %. However, this may be

subject to the same acceleration and approximations techniques utilised in

KS-DFT. In particular one can use density-fitting or J-engine type evalu-
ations for these matrix elements, which should be pursued in future work.
These approaches have been enabled using existing routines in the QUEST
program. In this work we use conventional integral evaluations to allow
evaluation of the approximate KEFs. See Appendix A for further details

of the derivation of the gradient terms.
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4.3.3. Hessian

As highlighted above we are using a (quasi)Newton search which requires
a Hessian. Whilst one can use numerical approximations to the Hessian we
have decided to derive and implement the analytical Hessian for a general
pair of Fxc and T; functionals. The full details of the derivation of the
equations presented in this section are given in Appendix A. The reason
for using analytical rather than numerical approximations is that the in-
verses of numerical Hessians can be ‘spiky’ and can be very different to the

127 which our problem is. Furthermore

analytical for non-linear problems
numerical evaluations of the Hessian is a slow process.

The elements of the Hessian of the Lagrangian in Equation (4.5) are:

o*L O +82EXC N 0*Ey
Jc;0c; N Oc;0c; ~ Ocgic;  Oc;0c;

o (4.23)
Boe _ 2 i, dr.
acza M/nnj r
The fourth term in Equation (4.23) evaluates to
0? Eye 0Ene
_o nd 4.24
de.c; / T5p A (4.24)

The third term in Equation (4.23), using Equation (4.2), evaluates to

0’E)
=2 7|kl 2(1k| 4l 4.9
Dedc, ;cm[(m ) -+ 2(ik| 1)), (4.25)
where

For the first two terms in Equation (4.23) we assume the functionals can

be expressed as

— [ #6.Vp)de = (16, V). (4.27)

then one finds

PF | 0°p Of  0°Vp Of
Oc;0c; <acl8c] dp  de0c; 0—Vp>
f dp dp | O*f OVpIVp
<8p2 dc; 0c; OV p? e Oc; >
< 0 f {@GVp_F p 8V,0]>
OV pdp | Oc; Oc; — Oc; Ocy '

(4.28)

+
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In Appendix A we give the explicit equations for the Hessian which I derived
and implemented into QUEST. In our framework we have an interface with
XCFun which is an automatic differentiator developed for use in DFT.
Given the integrand of an OF-KEF (or XC) it will return a numerically
exact derivative of the integrand up-to any order at all grid points. The
integrands of all functionals discussed in this work have been coded into
XCFun.

The derivation and implementation of the Hessian was a long process. In
order to test the accuracy of the implementations of the gradient and Hes-
sian we used the Lagrangian and finite difference methods. Every element
of the gradient and Hessian were within 107% a.u. of the corresponding fi-
nite difference gradient or Hessian. We did this checking process for atoms
and molecules and for basis functions with angular momentum quantum

number upto three i.e an f orbital.

4.4. Results

We investigated the following OF-KEF's using the optimiser discussed above:
Borgoo and Tozer’s BT2 and BT3;!%" conj-B86A;%? conj-B86B;?? conj-
PW91;% conj-PW86;°2 DePristo-Kress (DK); ' E00; 12 Lembarki and Cher-
mette (LC94);%® Ou-Yang and Levy’s OL1 and OL2;'% P92;119 Karasiev,
Trickey and Harris’ PBE2, PBE3 and PBE4;°"% Thakkar (T92);% Tran
and Wesolowski (TW02);%* and Karasiev, Chakraborty, Shukruto and Trickey’s
VT84.% The accuracy of these functionals were assessed using post Kohn—
Sham analysis (PKSA) — see Section 3.3.2. In this section the KS orbitals
were expanded in the uncontracted, spherical aug-cc-pV5Z basis set. In
addition to these functionals we have also investigated functionals of the

form
T(p) = aTrr(p) + BTvw(p)- (4.29)

The coefficients o and 3 have the following values; for TFD a =1, 8 =0
and using the Dirac exchange; for SGA a =1, g = % and using the Dirac
exchange; for TFDO2W o =1, g = % and using the Dirac exchange; for
TFDW a =1, § = 1 and using the Dirac exchange; for TFDWOPT o =
0.697, 8 = 0.599 and using the Dirac exchange; for TFPWOPT a = 0.697,
£ = 0.599 and using the PBE XC functionals. To check we had reached a
global minima we ran atomic calculations with 26 randomly chosen different
sets of starting coefficients. We present the lowest energy found from these

sets for functionals with which 10 or less stationary values were found. In
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the majority of cases we converged to three or less stationary values. The
functionals which this occurred for were DK, E00, LC94, OL1, OL2, P92,
PBE2 and VT84, for all atoms with Z = 1,---,10. The lowest energy
solutions found are presented in this chapter.

Calculations using BT2 and BT3 failed to converge because their func-
tional derivatives diverge in some regions of space and, therefore, Equa-
tion (4.7) cannot be set-up. For GGA functionals divergences in their
functional derivatives are often encountered at the nuclei, however they do

STy

not, in general, contribute to the matrix element (7;| )

additional divergences of this derivative can cause these matrix elements

n;j). However,

to diverge and calculations cannot be carried out. These additional diver-
gences in the BT2/BT3 OF-KEF were caused by the functional form which
has the term /| WV p|F/ptk/3 104,106,107 A k-4 1 this term causes non-physical
divergences in the potential. This highlights that performing PKSA is not
helpful in designing functionals that can work in a self consistent OF-DFT
calculation.

For the other OF-KEFSs, we could not guarantee we had reached a global
minimum as different starting guesses usually yielded different final energies
even though the tolerance criterion had been met, which suggests these
functionals plus the PBE XC functional are not convex. This is in contrast
to our previous discussion on Fj, which was shown to be convex. This
should serve as warning about developing OF-KEFs without consideration

of the number of local minima a particular OF-KEFs.

4.4.1. Atomic Systems

In Table 4.2 we present the total energies for the neutral atomic series
Z =1---18. We have used the ETOF basis sets introduced in Section 4.2.2.
In addition we have included the mean absolute percentage error (MAPE)
and mean absolute error (MAE) with respect to the appropriate KS-DFT
value, see the figure for details. We see that in Table 4.2 the TFD02W
functional yields the most accurate energies with a MAPE and MAE of
4.3% and 0.79E), respectively. However, it has been shown that TFD02W
yields very small binding energies for diatomics.? Whereas the PBE2 and
VT84, which were developed to reproduce molecular binding not accurate
energies, perform the worst using this measure. The most pleasing results
were the TFWOPT numbers. This was a functional that was developed
to reproduce bound states but we find that it predicts relatively accurate

energies. We also find that the choice of XC functional does not alter the
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Table 4.3.: Self consistent Total energies in Ej from solving Equation (4.7) equation using an OF-KEF and a) PBE XC or b) Dirac X
as the XC functional. The MAPE/MAE was computed using the KS-PBE values for the former and the KS-D values for the

M. S. Ryley

CHAPTER 4. THE IMPORTANCE OF SELF CONSISTENCY IN

ORBITAL FREE DENSITY FUNCTIONAL THEORY

latter

OF-KEF Na Mg Al Si P S Cl Ar MAPE MAE
DK® —189.214981 —231.763581 —279.268295 —331.842789 —389.617795 —452.777376 —521.737512 —596.538561 14.6  46.60
E00? —174.110305 —213.847243 —258.386007 —307.871100 —362.439964 —422.223787 —487.348169 —557.933683 6.4 20.52
LC94> —177.561512 —217.749870 —262.752156 —312.716094 —367.784174 —428.093965 —493.779403 —564.963154 8.1 25.68
OL12 —175.006021 —214.831592 —259.455135 —309.020440 —363.664288 —423.517254 —488.704371 —559.345682 6.8 21.69
OL2* —175.703674 —215.652789 —260.407990 —310.112648 —364.903137 —424.909630 —490.256769 —561.064216 7.2  22.88
pP92a —176.800009 —217.003603 —262.044696 —312.067641 —367.209744 —427.602066 —493.370100 —564.634316 7.9  25.09
PBE2? —106.210734 —131.923977 —161.046146 —193.711239 —201.161631 —270.176755 —314.217568 —362.283078 33.9 109.91
VT84 —113.971813 —141.908091 —173.611614 —209.234504 —248.921528 —292.810900 —341.034918 —393.720546 274  88.10
TFPWOPT? | —166.144318 —206.263925 —251.649582 —302.499382 —359.002211 —421.338763 —489.682359 —564.199703 4.8 17.60

KS-PBE —162.172393 —199.955032 —242.236149 —289.234029 —341.115513 —397.952566 —459.974418 —527.345904
TFDP —215.909103 —263.560607 —316.683430 —375.418376 —439.899267 —510.253753 —586.603974 —669.067116 30.6 96.84
SGAP —175.234531 —215.264985 —260.130661 —309.976134 —364.938913 —425.150224 —490.735705 —561.815964 7.9  25.07
TFD02WP —161.749148 —199.138784 —241.122238 —287.843428 —339.439253 —396.040408 —457.772040 —524.754301 0.3 0.64
TFDWP —108.945471 —135.553361 —165.702098 —199.528676 —237.163770 —278.732434 —324.354651 —374.145854 30.3 97.32
TFDWOPT® | —164.656312 —204.597284 —249.800557 —300.464501 —356.778251 —418.922704 —487.071377 —561.391127 4.9 17.62

KS-D —160.644012 —198.248755 —240.358789 —287.182679 —338.88845 —395.523789 —457.345243 —524.517258

Variational Solutions in OF-DFT
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MAE/Ep

W PKSA
[l SCOFA

DK E00 LC94 oL1 PBE2

Figure 4.4.: Mean absolute error (MAE) for Z = 1-18 for OF-KEF/PBE
using KS-PBE as reference

MPE/%

DK

Figure 4.5.: Mean percentage error (MPE) for Z = 1-18 for OF-KEF /PBE
using KS-PBE as reference

E00 LC94 oL1 P92 PBE2 VT84 TFPWOPT

errors significantly as demonstrated by the TFPWOPT and TFDWOPT
which are the TFWOPT OF-KEF with the PBE XC and Dirac X respec-
tively. This suggests that the Ty approximation is the dominant source of
the errors we see.

In Table 4.3 we do the same analysis but for the neutral atomic series
Z =19---26 where as expected, the MAE increases but the MAPE fall.
More interestingly the TFDO02W is very accurate over this series with a
MAE and MAPE of 0.64F}, and 0.3% respectively.

In Figures 4.4 to 4.7 we have compared the MAE and MPE one would get
using a PKSA and a self-consistent OF-DFT analysis (SCOFA) by solving
the appropriate variational problem given in Equation (4.7). There is a
clear discrepancy between the PKSA and SCOFA and so, one should treat

conclusions reached using PKSA with some caution. For the most part both

M. S. Ryley Variational Solutions in OF-DFT 103



CHAPTER 4. THE IMPORTANCE OF SELF CONSISTENCY IN
ORBITAL FREE DENSITY FUNCTIONAL THEORY

MAE/E,

TFDO2W TFDW TFDWOPT

Figure 4.6.: Mean absolute error (MAE) for Z = 1-18 for OF-KEF/LDA
using KS-LDA as reference

MPE/%

W PKSA
[ SCOFA

TFD

Figure 4.7.: Mean percentage error (MPE) for Z = 1-18 for OF-KEF/LDA
using KS-LDA as reference

SGA TFDO2W TFDW TFDWOPT

the MAE and MPE increase as one moves from PKSA and SCOFA which

is expected by considering that the density in the SCOFA is qualitatively

different to the accurate KS density used in the PKSA. In Figure 4.8 we plot

0rel as a function of the atomic number Z. We have defined this measure

by

Eor(p°") — Exs(p™)
| Exs(p™%)|

where Eop is the energy functional using a given OF-KEF, Fxg is the

Srel = (4.30)

usual KS energy expression, p°F is the density obtained by solving the
variational problem defined in Equation (4.7) for a given OF-KEF and p*S
is the density calculated using the KS-DFT equations.

It is known that the VW functional is exact for one and two electron

singlet systems and that the TF functional is exact in the infinite nuclear
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Figure 4.8.: Relative error in Energy using an OF-KEF/LDA in SCOFA
against KS-LDA reference

charge limit. ™™ From Figure 4.8 it is clear that the TFD model becomes
more accurate for heavier nuclei, however convergence to zero error is slow.
Therefore, the infinite nuclear charge limit may be of limited use in de-
veloping accurate functionals for chemical systems. What is also clear is
that adding the VW functional to the TFD increases the predicted energy.
Therefore, to get the best energy one needs to optimise the amount of TF
and VW in the functional to get the best average energy. This was done —
for example — in the development of the TFDWOPT. The radial atomic

4nr p(r)

0.5

——— E00
TFPWOPT
VT84

——— oL1

041
03t i
0.2H §

01l f

. . . . L : — rfa.u.
2 4 6 8

Figure 4.9.: Radial densities for H using an OF-KEF/PBE compared with
KS-PBE reference

densities predicted by models of the form in Equation (4.29), TFAW func-
tionals, have been studied since the 1970’s.”"'?® The exact radial atomic
densities should have as many maxima as principle quantum shells occu-
pied in its ground state configuration. The reason for this is that each

principle quantum shell has different exponential decay and so, the super-
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Figure 4.10.: Radial densities for Ne using an OF-KEF/PBE compared
with KS-PBE reference

position of these shells leads to a bumpy radial atomic density. As there
are no orbitals in OF-DFT this is a hard thing to reproduce. Indeed the
studies on TFDAW have shown that no models exhibit shell structure. In
Figures 4.9 and 4.10 we show the ground state radial density for Hydrogen
and Neon resulting from solving the Equation (4.7) for these atoms for a
representative sample of OF-KEFs. We also find that no shell structure is
predicted.

4.4.2. Molecular Systems

Table 4.4.: Self Consistent Total Energies in Ej,

OF-KEF H, N, CO O, LiH MAPE MAE
E00 —1.338813  —119.548317 —123.532251 —163.946769  —9.000562 10.8  7.04
OL1 —1.396608  —120.536981 —124.524472 —165.129629 —10.188673 153 7.92
OL2 —1.408265 —121.115127 —125.113651 —165.881530 —10.248937 159  8.32
P92 —1.417248  —121.867599 —125.890462 —166.912645 —10.302172 16.6  8.84
VT84 —0.575150 —73.596430  —76.437654 —102.759470  —4.850818 375 24.79

TFPWOPT | —0.967572  —108.353962 —112.418561 —150.871517 —8.152645 4.1  0.57

KS-PBE —1.166681  —109.452999 —113.242362 —150.259157  —8.047317
SGA —1.417248  —120.074144 —124.092233 —164.797393  —8.920635 171 8.61

TFDO2W | —1.078431  —109.520579 —113.297489 —150.873377  —7.903418 22 1.28

TFDW —0.430446  —70.2473023  —72.978565 —98.265035  —4.469638 40.8  25.98
TFDWOPT | —0.854390 —106.7358153 —110.793175 —148.933531 —6.685150 6.7 0.73
KS-D —1.043670  —107.755887 —111.530478 —148.234074  —7.704249

We have also conducted a pilot study of how proposed OF-KEFs behave
in self-consistent calculations for molecular systems. In all OF-DFT cal-
culations we have used the ETOF-MOL basis. We have studied a small
range of diatomics. In Table 4.4 we note that the error measures are not

dissimilar to the atomic error measures, which seems to suggest that errors
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Figure 4.11.: Predicted Fyiq/Ey for CO for some OF-KEFS and KS-DFT.
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Figure 4.12.: Predicted Eyinq/Ey for Hy for some OF-KEFS and KS-DFT.

introduced by Ty do not accumulate going from atomic to molecular sys-
tems. Due to the issues discussed regarding T, approximations and their
ability to predict stable molecules we have we have plotted the potential
energy surfaces (PES’s) for a few OF-KEFs for: CO in Figure 4.11; Hy in
Figure 4.12; and Ny in Figure 4.13.

We have plotted the binding energy, Fy.q, as a function of nuclear sep-

aration,
N

Eyna(R) = E(R) = Y E; (4.31)

i=1
where E(R) is the total energy with internuclear distance R and E; is the
atomic energy for the ¢-th atom in an N atom molecule. We have also
given the equilibrium geometries if the PES displays a minimum. We see
that OL1 and EO0 predict no bound states for any of the diatomics studied
and this is typical for most of the functionals we have tested.

The only functionals to predict binding for all molecules in our test set
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Figure 4.13.: Predicted Epinq/Ey for No for some OF-KEFS and KS-DFT.

are VI'84 and TFPWOPT. This is to be expected considering that both
functionals were designed to reproduce accurate binding energies. It seems
that the Hy molecule is the hardest to reproduce accurate binding curves
despite the fact we know the exact Ty for this system — Tyw. But for the
iso-electronic CO and Ny both VT84 and TFPWOPT produce qualitatively
reasonable curves. But we should note that while VT84 predicts bound
states the energies of these states are inaccurate.

For an instructive example in describing why different choices for the OF-
KEF yield models which do or do not predict bound states, we look to the
Ny molecule, X 12;, previously studied using self-consistent codes.? For a
covalently bound molecule the density between the atoms, must be greater
than it is when the molecule is ‘unbound’. To measure this qualitatively

one can compute

AP = Pmol — Z Patoms (432)

where pme is, for example, the density of the molecule Ny and > patom is
the sum of the non-interacting atomic density profiles where the atoms are
located at the correct equilibrium molecular positions. In Figure 4.14 we
have plotted pping in the o, plane of the molecule for a KS-DFT calculation
using PBE XC. As we can see the red regions, which correspond to greater
density in the molecule with respect to the sum of the atoms, are where
we would expect the covalent bond between the two nitrogen atoms to be.
This is why we see KS-DFT predict a bound state in Figure 4.14.
Developing orbital free approximations to the Lieb functional which pre-
dict molecular binding is not guaranteed, even in PKSA studies. Take the
E00 OF-KEF with the PBE XC functional. We have seen in Figure 4.13

that this functional does not predict a bound state at the correct geometry
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Figure 4.14.: pping using KS-DFT (PBE) for the Ny molecule

- or anywhere in fact. In Figure 4.15 we have plotted pning using the KS-
DFT equilibrium geometry. As one can immediately tell this functional
does not yield a molecular density which is great enough in the ‘bonding’
region. Indeed a large part of the density accumulates near the nuclei and
this is the same story for any molecule and all functionals which do not
predict binding.

So let us look at pping at the equilibrium geometry predicted using TFP-
WOPT. In Figure 4.16 we have plotted pping generated using the SC scheme
presented in this paper and using the bond length req = 0.920A, see Fig-
ure 4.13 .It is interesting to find that there is indeed a red zone in the bond
region which indicates why the functional predicts a lower energy for Ny
at this bond length than the sum of two non-interacting atoms positioned
at either end of the bond. However, when one compares Figure 4.16 to
Figure 4.14 we see a marked difference. By considering the discussion for
the KS-DFT ppinq one can conclude that although the TFPWOPT does
yield a binding molecular density profile it is wholly inadequate physically
as it reproduces hardly any of the features predicted by KS-DFT.
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Figure 4.15.: pping from calculations using the E00 OF-KEF and the PBE
XC for the Ny molecule

In computational chemistry one is sometimes interested in more than just
than the ground state energy and potential energy curves. For example,
chemists often use DF'T to help predict chemical reaction mechanisms to aid
their experimental work. Clearly here we require an accurate representation
of the density as looking at the magnitude of the density gives possible sites
of nucleophilic attack, for example. OF-DFT is currently not suitable for
this kind of analysis but we hope that codes such as the one discussed in
this chapter can help progress towards using OF-DFT in computational

studies.

4.5. Conclusions

In this chapter we have discussed our implementation of the CCH scheme.
Our implementation allowed more OF-KEFs to be tested in an all-electron
self-consistent context. We have found that most OF-KEFs predict very
poor densities which has effected the predicted energies. The errors are
vastly greater than what is found when one uses post-Kohn Sham analysis.
Indeed post-Kohn Sham analysis missed the fact that some functionals can-
not be converged in self-consistent calculations due to their analytic form.
This should serve as a warning before one conducts post-Kohn Sham anal-
ysis. We found that various linear combinations of T and Tyw provided

the most accurate functionals. Indeed for molecular systems TFPWOPT

110 Variational Solutions in OF-DFT M. S. Ryley



CHAPTER 4. THE IMPORTANCE OF SELF CONSISTENCY IN
ORBITAL FREE DENSITY FUNCTIONAL THEORY

77—

014
012
0.0
0.08
0.06
0.04

a2

-0.02
-0.04
=0.08

[ CONNNENERENEEEEC |
=]

Figure 4.16.: pping from calculations using the TFPWOPT functional for
the Ny molecule

and TFDWOPT provided bound states for molecules. However, it is still
too inaccurate to be useful in chemical applications. The CCH scheme
whilst robust is quite slow in convergence. The reason for this is the nested
iterations which converge on the energy and density normalisation sepa-
rately. In Chapter 6 we will introduce a scheme which converges on both

simultaneously.
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5. Potentials in OF-DFT

The chemical potential of the system, u, for a given external potential v

can be computed in the CCH scheme, see previous chapter, through
p = UTs(T) + Vext (1) + v3(r) 4+ vxc(r). (5.1)

This equation is derived from the optimisation problem in Equation (4.7)
and is usually called the Euler equation. This section will be focussed on

the spatial dependence of the kinetic potential, vs(r) = fp—:&s), the Coulomb
SE.
5(0)
Because p € R the spatial dependence of each of the potentials

potential, vy(r) = and the exchange-correlation potential vxc(r) =

dExc
op(r) "
in Equation (5.1) should cancel. Therefore, there is a delicate balance

between vt and all the other potentials in Equation (5.1). To investigate
this delicate balance for the OF-KEFs discussed in this thesis we have
derived and implemented into QUEST the vry and vxc terms, for both spin
unpolarised and spin polarised potentials. In this chapter we will present
the equations in the spin unpolarised framework. The equations for these

potentials in the spin polarised framework are given in Appendix B.1.

5.1. Equations Implemented for Computing the

Potential

To derive the explicit form of the potential we define a functional with the

following form

Flol = / F(p(x), G2 (x), G*3(x), GP(x))dr. (5.2)

where
G () = Vi (x) - Vi (x). (5.3)

The reason for doing this is that we again use an interface with XCFun
which returns partial derivatives of the integrand with respect to G and

secondly some correlation functionals, like PBE C, have non-zero G*° be-
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cause of the inclusion of the spin-polarisation factor, (. We also know from

Section 1.2.6 that the functional derivative of a functional whose form is

= / fp(r), Vp(r))dr, (5.4)
is given by ) SEof . of 5.5
T p(x) () OVp(r)’ |

To get a potential expression more suitable for a functional of the form in

Equation (5.2) we use

of
IOV p(r)

= Vp(r) + 560 | (5.6)

of of of
9Goa(r) " 0GA(r) }

whose derivation is included in Appendix A.1. To reduce notational clutter

we write
of of of of
9Goa(r) T aGeAw) T 9GP — 2= aGer (5.7)

o>o’

Using this we rewrite Equation (5.5) as

vp(r) = of _ V. ( %Vp(r)). (5.8)

Ip(r)

Given a scalar valued function ¢ : R — R and a vector valued function
A :R"™ — R the following relation holds

V- (¢A)=V(d) - A+ ¢V -A. (5.9)

Using this we find that

0 0 0
vp(r) = ;o V( aG{g,) -Vp(r) — aG‘fJ, Vip(r). (5.10)

Using the chain rule on the second term we find

oy
vr() =500

- Z aGaa Z Z 8GO‘O’ Gmm VGmm Vp<r)

o>o’ m>m’ >0’

o Z aGG'O'

o>o’

(5.11)
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To continue we now have to find the analytic form of the terms involving

G. VG™ is a vector quantity which we define as

Ve = (Gglm’,Gglm’,G;nm’>, (5.12)
and G™ can be expressed as, using Equation (5.3),
G = aﬁpx agx 6Z‘?py aapy * aﬁpz 852 ' (5.13)
So, for example, G™ can be written as
e _ 0P O™ O Pp 9Pp Op™
v Oxdx Ox Ox JxOdx  O0xdy Oy (5.14)

apm a2pm’ 82pm 8pm’ N apm a2pm’
Ox 0x0z

Or O0xQdy  0xdz Ox

One again, to de-clutter the expressions we use the following notation for

the above expression

G = oy 4 Pr O+ Py 4 Py oy + PeT + el (5.15)
We can write every element of VG™™ as
G =Pl > ool (5.16)
J J
where the sum is over all co-ordinate basis vectors. Therefore,
VG Np =Y pipiel > il o (5.17)
]

ij

So the potential is now given by, suppressing explicit notational position

dependence,
_of 0*f 2
(3 _a_p - Z aGUJ/ap’Vp‘
o>o!

a2f m m’' m’ m
- Z Z Z W(pipijpj + Pipij P > (5.18)

o>0’' m>m’ ij

— Z 82{"' V2p.

o>o’
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For convenience let us write this as the following, with the summations

implied
B af a?f 9 a?f m m’ m m af 2
R P Te P I Te T TeT (polses” + it o) = 5 V0
(5.19)

In the spin unpolarised framework the total density, p, is given by p =
p™ + p™ and p™ = p™ and so, as a function the total density the potential
is given by

U P
BT 000G 9p

1 0? 0

92 8G00/8Gmm/ PiPijPj 9Go \Y% pP- (520)

XCFun returns values for all of the partial derivatives of the integrand we
require at every grid point using automatic differentiation techniques, from

which Equation (5.20) can be constructed.

5.2. The Basis Set Dependence of Potential

Terms

In order to study whether the chemical potential is a constant throughout
space when using finite Gaussian basis sets we created four even tempered

basis sets. The basis sets, centred on nuclei A, are
Bl = {e*3mi<f*“f“2|mi €[4, —2]}
{6—3"%’ (I‘—I‘A)2|mi c [_47 2]}

B3 — {6—3’"2‘<r—rA>2|mi € [—4,6]}

B2

(5.21)

Ba = {7 iy € [-4,14] .

The value of m; controls how sharp the basis function is. The greater the
value of m; the sharper the function is. This is exhibited in Figure 5.1.
Therefore, when going from B1 to B4 we are increasing the sharpness of
the basis.

We have explored how the spatial behaviour of the potentials is affected
by the choice of Gaussian basis. To do this we optimised the Lagrangian
for the He atom using the VW OF-KEF and the PBE XC functionals —
using the CCH scheme described in the previous chapter. Its important to
note that the VW is exact for the He atom and so, any inaccuracies in vy

is due to the choice of basis.
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1 2 3 4 5 6
Figure 5.1.: Plots of n(r) = exp[—mr?] for a range of m values
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Figure 5.2.: The Coulombic potential vy(r) = §E;/dp for a ground state

density of the He atom expanded in different basis sets. Func-
tional details given in the text.

In Figure 5.2 we have plotted the Coulomb potential, vy, evaluated on
the minimising density using various basis functions. Its explicit form is

given by

vy(r) = / ar' ) (5.22)

r—r'|
It is clear from the figure vy is relatively insensitive to the choice of basis.
In Figure 5.3 we have plotted the von-Weisacker potential, vy evaluated
on the minimising density constructed from various basis sets. Its explicit

form is ) )
v \v4

vre(r) = | @‘ X P
8p 4p

As one can see in Figure 5.3 there are significant differences between B1 and

(5.23)

the rest. The basis set B2 has large discrepancies near the nuclei but is close
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Figure 5.3.: The von-Weisécker kinetic potential vps(r) = dErs/dp for the
ground state density of the He atom expanded in different basis
sets. Functional details given in the text.
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Figure 5.4.: The PBE XC potential vxc(r) = 0 Exc/dp for the ground state
density of the He atom expanded in different basis sets. Func-
tional details given in the text.

to the B3 and B4 sets in the tail regions. B3 and B4 are indistinguishable
on this scale. It is clear that there is a convergence in the behaviour of
vUTs as one approaches the basis set limit. Its clear that one needs sharp
functions to accurately describe the potential in the core region.

In Figure 5.4 we have plotted the PBE XC potential, vxc evaluated on
the minimising density constructed from various basis sets. For the PBE
XC functional vxc is just the sum of the PBE X potential vx and the PBE

C potential ve. For reference these terms are

A s 3 dvyl
- _C 13| —2
Ux = 3PBEXS x+ (1 + ps?2k2)2 \ 4Cpprxp/?  dp ’
(5.24)
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Figure 5.5.: The external potential vey(r) for the ground state density of
the He atom expanded in different basis sets. Functional details
given in the text

and
unif
ve =™+ H + ,005C
dp
n 8
L (v(1 + A2 4+ A%tY) + B2 (A2 4+ 1)) (1 + A2 + A%t4)
(5.25)
[d|Vp| st N 2
P14 2A1%) — (1 4+ 2487 —
S 7 (11248%) — == (1+24¢)
unif
(At p(AL* + 2) exp(—e™f/) agﬁ
with
Y 2aaqIn(1 41+
(2a(1 + arr) (a(Birs 2 + 285 + 3Bsra’? + 4B4r2))
(v +1) '
(5.26)

One can refer to Section 2.4.2 for the exact values of all constants in these
expressions.

In Figure 5.5 we have plotted the external potential, ve,; evaluated on
the minimising density constructed from various basis sets. This potential
is independent of the ground state density and as one can see in Figure 5.5
is unaffected by the choice of basis.

In Figure 5.6 we have plotted the various vguer = Vs + U3+ Uxc + Vext fOr

the range of basis sets we have been using. Due to the fact the vgye = 1
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Figure 5.6.: Uguer = Vext + Uxc + s + U3 plotted using a range of basis sets

at the minimising density it is clear from these graphs that vgye is not a
constant over all space and tends to p only in the basis set limit. In other
words Equation (5.1) is only valid in the basis set limit when one uses
Gaussian basis sets. In the CCH scheme we reach a zero gradient because

Upuler OScillates over the region spanned by p'/2.

Furthermore, the value
of p one obtains from these calculations is the average of vy Over that

particular region.

5.2.1. The Implication for Computing Molecular Forces

The above discussion is important for future work when one would wish to
use the CCH scheme to run geometry optimisations. In these calculations
we require the force at each step in the calculation to compute a new
guess at the ground state geometry of the system. In wavefunction based
methods and in KS-DFT we expand the wavefunction ¥ in a finite basis

which means the force, F', is given by
0OH ov
—F = <\I/|8—R\‘Il>+2<a—R‘H‘\II> (5.27)

where H is the Hamiltonian of a given theory and R is the molecular
geometry. The first term in Equation (5.27) is what we expect from the
Hellmann-Feynman theorem and the second term in Equation (5.27) is
known as the Pulay force. The Pulay force is zero when one uses a complete
basis or basis functions that are not atom centred. In OF-DFT we are not
expanding the wavefunction but p'/2. To compute the force we note that

the total energy of the system can be expressed as

Etot(p) = E(p) + Eion (528)
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Figure 5.7.: Ugyer using the B4 basis and the final chemical potential, y =
—0.5792

where Fi,, is the Coulombic repulsion due to the nuclei. We will be most
interested in how the electronic interactions contribute to the force. Con-
sider a two nuclei system we wish to compute the electronic contribution
to the force on nuclei A with charge Z4 and a position vector R 4. This is

computed through

dE Za(r —Ry) JE Op(r)
- [ R [ e 69

The corresponding Fuler-Lagrange equations for the optimisation problem

state that %—E = i, where p a fixed number throughout space. Therefore,
p

the total force on atom A is given by

ZA(I' — RA) dEion

FA:/drp(r) R,  dR, (5.30)

This equation is just what we expect from Hellmann-Feynman theory so
it seems there are no Pulay forces in OF-DFT. However, this is only true
if one uses a non-atom centred basis sets — for example, plane wave basis
sets. However, we have just seen that using finite atom centred basis sets,
such as Gaussian basis sets, our assumption that p is constant over space
is not true. Therefore, when computing forces in OF-DFT using such basis
sets we must include a Pulay like term of the form

— /dru(r)% = —/dr[vext + vxc + vrs + vyl (r) 851(::) (5.31)

In the optimisation method described in this chapter x4 was the Lagrange

multiplier which is a number not a function. So is there a clear relationship
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Figure 5.8.: The radial atomic densities for the Neon atom. The accurate
density is computed using CCSD(T).

between the Lagrange multiplier we converge to in the bisections and Veyer
when one is using a finite Gaussian basis? In Figure 5.7 we have plotted
Ueuler USing the B4 basis and shown the final converged value of the Lagrange
multiplier. It is clear that veye oscillates around the origin and further
analysis has shown that the average function value of veye, equals . Future
work will be focussed on creating a geometry optimisation algorithm for
OF-DFT using the potential code we have introduced into the QUEST
code and bearing in mind the basis set dependence of the potentials spatial

behaviour.

5.3. The Effect of Potentials on the Density

The Euler equation can be expressed in the following form

T,
op

= —Us + [ (5.32)

where the effective potential vy is comprised of the Coulomb, external and
XC potential. Throughout this section we will be using the PBE XC func-
tional. As g should just be a number this means that the kinetic and
effective potentials must balance precisely. The self consistent procedure
leads to densities that are determined by this balance. Many failures of
approximate OF-KEFs can be understood in terms of this balancing act.
In Figure 5.8 we have plotted the radial atomic density computed using
TFVW and TF02W models for the Ne atom. We have presented the ac-
curate density profile using the CCSD(T)/aug-cc-pVTZ density. For all
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orbital dependent quantities —including KS-DFT calculations — in this
section were generated using aug-cc-pVTZ.21122 For all orbital free quan-
tities shown — including in Figure 5.8 — in this section were generated
using the ETOF basis. For all density functional calculations the PBE XC
are used. In Figure 5.8 we can see that decreasing the amount of Tyw
in the OF-KEF shifts the density towards the nucleus in the core region.
This is usually explained by the argument that the Trp atomic densities are
divergent at the nucleus and the Tyw dampens this. Hence reducing the
proportion of Tyw will force the density to accumulate around the nucleus.
We can also see from Figure 5.8 that both models yield a density that is
too diffuse in the tail regions. In this section we will explore if there is any
connection of these density profiles to the potentials in the corresponding
Euler equations.
In KS-DFT one computes the KE exactly via

Tl = —5 3 (09?0 5.3)

where ¢; are the KS-orbitals arising from the KS equations. Starting from

this and the Euler equation, Equation (5.32), King and Handy'?® derived

an equation to compute the kinetic potential vy exactly. Its explicit form

: 5 [ 506 V0u(x) — s (r)]
p(r)

In Equation (5.34) ¢; is the energy of ¢;. We also know that asymptot-

vrs(r) = + p. (5.34)

ically vpg — vy = p.To demonstrate this in Figure 5.9 we have plotted
Equation (5.34) and an accurate vg for the Neon atom. To compute v
we have used the equations and implementations discussed in Section 5.1.
From Figure 5.9 we can see that in the asymptotic regions the differences
between the two potentials one predicts the ionisation to be 0.59 Hartree.
The is slightly lower than the experimental value for the ionisation energy
and can be put down to the inaccuracy in the PBE XC functional. For
reference the experimental value for the first ionisation is 0.79 Hartree.!3°
In Figures 5.10 and 5.11 we see that the predicted ionisation energies are
too small. It seems that as one decreases the amount of Tyw included in
the functional one decreases |u| this suggests that the amount of Tyw in
the TFW type models controls the predicted ionisation energies. Indeed
it is known® that in exact TF theory the predicted chemical potential is
zero. The small magnitude of the chemical potential is a symptom of every

OF-KEF discussed in this work. One can now rationalise this by the in-
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Figure 5.9.: The King Handy kinetic potential and the vs.The difference
between the potentials asymptotically is p = —0.59Ey,
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Figure 5.10.: The ground state potential generated by TFVW using the
PBE XC and the corresponding vs. The difference between
the potentials asymptotically is u = —0.2Fy

accuracies in how the kinetic potentials and the rest of the Euler equation
interact. It is interesting that scaling the contribution to the Tyw in these
OF-KEFs is an easy way to correct for errors in the chemical potential. By
comparing Figure 5.9 with Figures 5.10 and 5.11 we see that the potentials
decay far too rapidly. The symptom of this is that the density leaks out
to large r because the potential is not strong enough to overcome the en-
ergy required to stop this leaking and so, decays to zero too rapidly. We
now investigate the possible link between potentials and the observation in
Figure 5.8 that the density of more compact for TFO2W near the nucleus
compared to the TFVW functional. In Figure 5.12 we have plotted the
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Figure 5.11.: The ground state potential generated by TF02W using the
PBE XC and the corresponding vs. The difference between
the potentials asymptotically is u = —0.1FEy
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Figure 5.12.: The kinetic potential error, Avrg, for the TEVW and TF02W
models for the neon atom.

kinetic potential error, Avr,,

Avpy = vipedel — yref (5.35)
where vl is Equation (5.34) and vi°de! is the potential defined by the OF-
KEFs. In the figure both functionals potentials are too positive near the
nucleus and so, there is a lower density than expected which can bee seen
in Figure 5.8. In the vicinity of the nucleus the Trg + 0.27%w is better and
so the density is more compact in this region. Therefore, there could be
a promising avenue in developing OF-KEFs with correct potential radial

dependency which could in turn lead to more accurate densities.
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5.4. Conclusions

In this chapter we have investigated the potentials of the Euler equation
— Equation (5.32) — involved in the optimisations at the heart of this
thesis. We have implemented methods to compute these potentials into
QUEST using an interface with XCFun which discussed in Section 5.1. We
discovered in Section 5.2 that having an accurate basis set is important
for computing and using potentials in applications and also in the balanc-
ing of the potentials of the Euler equation. In Section 5.3 we continued
the investigation into the balance of potentials in the Euler equation and
investigated the impact the potentials generated from OF-KEFs on the
variational solutions. We found that the chemical potential was affected
by the balance and demonstrated that, for atoms at least, the topological
features of the radial density are impacted by the kinetic potential. We
hope that starting from accurate approximate kinetic potentials will be an
alternative angle for developing OF-KEFs. However, one would have to
consider how sensitive this accuracy is to the choice of XC functional. Be-
cause as we have seen in this chapter the interaction of the potentials in

the Euler equation determines how accurate the density is.
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6.1. Introduction

Developing electronic structure methods with low computational cost is
an important strand of modern method development. Orbital-free density
functional theory (OF-DFT) is, in principle at least, a linear scaling ab-inito
quantum mechanical method which has the potential to be used in purely
quantum mechanical simulations of very large systems. In Chapter 4 we
discussed our work which extended the range of orbital free non-interacting
kinetic energy functionals (OF-KEFs) tested by optimising the correspond-
ing Lagrangian. We found that post Kohn Sham analysis (PKSA) is inad-
equate in assessing the accuracy of OF-KEFs due to the large errors in the
densities resulting from the optimisations using OF-KEFs.

We have demonstrated the need to solve the optimisation problem de-
fined by the OF-KEF's before making claims about their accuracy. However,
the extended CCH scheme presented in Chapter 4 was not an efficient way
of solving the optimisation problems because we were optimising the den-
sity and the chemical potential separately, leading to an inefficient solver.
The reason for this is that the CCH scheme is avoiding a saddle point op-
timisation using a nested iteration solver, with a higher overhead. In this
chapter we lay out a new way of optimising the Lagrangian defined by any
OF-KEF by conducting a saddle point optimisation. Therefore, this new
scheme optimises the density and the chemical potential simultaneously
and we demonstrate the dramatic improvement in efficiency compared to
our previous scheme.

In Section 6.2.1 we give a brief review of OF-DFT and restate what
we showed in Section 3.4.2 that the target functional in the optimisation
problems in OF-DFT is a saddle function. We then outline in Section 6.2.2
the optimisation scheme we have developed® to solve the Euler equation,
which is based on the Trust-Region Image Method (TRIM). 31133 Finally
in Section 6.3 we present a convergence illustration demonstrating why the
scheme presented in this paper is more efficient than our previous work.
We compare TRIM with both CCH and Lopez-Acevedo. We also discuss
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how the starting guess effects the convergence properties of the TRIM
scheme. The basis functions used for the density are the same as discussed
in Chapter 4.

6.2. Theory

6.2.1. OF-DFT Variational Recap

There are two ansatze in OF-DFT. The first is that we can partition the
energy functional, the existence of which was guaranteed by Hohenberg

and Kohn, in the following manner:

E(p) = Ts(p) + Es(p) + Exc(p) + Eue(p)- (6.1)

Where: Ti(p) is the KEF, E;(p) is the Coulomb (Hartree) energy due to
the electron density repulsion with itself, Fxc(p) is the exchange-correlation
energy and E,.(p) is the energy due to the interaction between the nuclei
and the electron density. The second ansatz is that all these terms should
be written as explicit functionals of the electronic density, p. This means
the first term in Eq. (6.1) is is known as the OF-KEF because this differs
to Kohn-Sham DFT (KS-DFT) where the KEF is treated exactly using
orbitals. Whilst removal of the orbitals leads to the difficult challenge of
accurately treating the KE, by doing so however we arrive at a method
which has a much lower cost, in theory. The reason is that the stationary
point with respect to variations in p, under the constraint [ pdr = N where
N is the number of electrons in the system, leads to a single non-linear

equation - the Euler equation

0T N 0E] N dExc N dFpe
op op op op

= K, (6.2)

where p is the Lagrange multiplier enforcing the constraint on the minimis-

ing p.
The Euler equation can be thought as the following optimisation problem

Egs(p) = inf sup {E(p) - #(/ pdr — N)} (6.3)

pEX LER

with E(p) as defined in Eq. (6.1). This unconstrained Hohenberg-Kohn
minimax variation principle corresponds to Lagrange’s method for the con-

strained problem, with multiplier u. See Section 3.4.2 for details. There-
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fore, we expect that the CCH and TRIM schemes converge to the same
point. We do indeed find that this is the case. Therefore, if one wants to
find the ground state energy, Fqs, the ground state density and chemical
potential of a given system in OF-DFT one can find the first-order saddle
point of the surface defined by the target functional in Eq. (6.3). This is
the idea behind the TRIM scheme.

6.2.2. A Second Order Optimization Scheme

In this section it will be convenient to define the following function, L :
D x R~ cl(R),

ﬁ(p,u)ZE(p)—u(/pdr—N) (6.4)

This is different to £(p; p) in the CCH scheme as we are allowing p to be
varied whereas in the CCH scheme g is kept fixed. We can rephrase the

optimisation problem as

Egs(p) = inf sup L(p, p). (6.5)

PED er

The infimum is conducted over set of densities, D, defined by
D={xp>0,p* e H}} (6.6)

where H] is a first order Sobolev space and ensures that the kinetic energy
of any p € D is finite. The easiest way to ensure this infimum is conducted
inside this set is to expand the square root of the density in a finite set of

real functions, {n;}

p(r) = D cilr) (6.7)

where the {¢;} are the basis set expansion coefficients.

The first-order saddle point of £ for a general OF-KEF's is usually not
possible to find using analytical methods. Therefore, we will be finding this
first-order saddle point using numerical optimisation techniques. We use
the trust-region image method'3! (TRIM) which was originally developed
in order to find transition states on potential energy surfaces. 32133

In the majority of numerical minimisation techniques we construct a
model of the surface about the current guess of the target (minimising)
point of the surface, *. We label this model by m(xy) where zy is the k-th

guess at the minimiser. The optimisation continues an iterative manner
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until it is no longer possible to find a step which goes to the minimum of
the model m. In other words m must be constructed so that its gradient
is zero at x* and its Hessian is positive definite at z*.

We can usually partition the optimisation into two regions based on
the accuracy of the model. If we are in the local region then we can
expect the model m(zy) to accurately represent the surface around some
small neighbourhood of z* e.g. some open ball centred, Bs(z*). Once the
optimisation enters Bs(z*) it will converge quickly to the solution point
as the gradient and Hessian of the model is close to the corresponding
quantities of the target surface. When this is not the case we say we are
in the global region. Almost all optimisations start in the global region,
which is trickier for optimisation algorithms than the local region where
all successful optimisations will end. The reason for why this global region
is difficult for optimisation algorithms is that the step generated from the
model about a point does not necessarily point towards the minimum of the
surface. Therefore, we chose to use two different algorithms in the TRIM
scheme. One for when the optimiser is in the local region and one for when
its in the global region. The TRIM scheme consists of a switch between
the two.

We begin by discussing the optimisation algorithm used in local regions.
This algorithm is the famous Newton method. The idea behind the Newton
method is that one should expand the surface to second order in displace-

ments, s, from the current point
T L 7
m(s) = f(xg) + g, 5 + 35 Hys (6.8)

where gy is the gradient of f evaluated at z, and Hy is the Hessian of f
evaluated at x;. The Newton method searches for a minimum of this model

and so finds the stationary point of m(s) which is given through

%—?:0 = s=—H, g (6.9)
Note that for this point to be a minimum the Hessian needs to be positive
definite. Furthermore, to find s the Hessian must be invertible i.e. it
cannot have zero eigenvalues. If this is not the case simple regularisation
techniques such as identity shift can resolve this. The identity shift is just
a small shift of the eigenvalues of a matrix.

This step is then used to calculate the next approximations to z* by

ZTry1 = Tp+S. This is then iterated through until x;,1 = x; or equivalently
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s = 0. It is important to note that if limy_,, x, = x* then the Newton
method converges quadratically.
To prove this assume xp,; — z* and define the error after the k-th

iteration through €, = x;, — x*. The expansion of f(xy) around z* yields
Gp ~ G, + H.,e, (6.10)

where G, and H, are the gradient and Hessian evaluated at x*. However,

by definition

€1 = € + (Tps1 — Tp)

o f()

TG, (6.11)
Gien + 3H.e}

~ ek G* + H*Ek

Using the following second order expansion

ae + LB + e
et B (6.12)
a + PBe + (€2 200

then one arrives at
H, ,

€k+1 — ﬁﬁk.
*

Hence Newton’s method converges quadratically. This is important for the

(6.13)

TRIM scheme as it means this scheme will converge quadratically once it
nears the solution point as the TRIM scheme reduces to a Newton step
method once we enter the local region. This will be explained later. Com-
pare that to the CCH scheme where we saw that convergence slows down
as one nears the solution point due to the reliance on the bisection method

The Newton method becomes unstable in the global region of the optimi-
sation for the obvious reason that the Taylor expansion around the current
point is no longer representative of the surface around the optimiser. In-
deed this how one practically defines the global region — it is the set of
all points where the Newton step does not decrease the value of the target
surface.

A simple demonstration of this can be seen in the maximisation of a

Gaussian function
fz) = exp(—2?), (6.14)

which one can find by analytic methods to be at x* = 0. Whilst the above

discussion concentrated on minimisation it’s trivial to adapt the Newton
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Figure 6.1.: A plot of f(z) = exp(—a?)(black line), x4 (red dotted line)
and x( blue dashed line)

method to find maxima rather than minima. The Newton step is fairly

easy to calculate given

g = —2x exp(—a}) (6.15)

and
Hy, = exp(—a3) [42; — 2]. (6.16)

Therefore, the Newton step computed at point z is given by

T

§= — (6.17)
227 — 1

and the new point by
273

— 6.18
2x2 —1 ( )

Tp41 =

We see in Fig. 6.1 that the Newton step converges only for points x; < 0.5

1/2

For larger values the method diverges and for x;, = 27/¢ it gives infinite

steps. This is a classic example of an optimisation problem having local
and global regions. 34

The Newton step works well in the local region but what algorithm should
we use for the global region? We have chosen the trust region method. In
the trust region we accept that our model can only accurately represent the
true surface in a small region — trust region —- around the current point.
This trust region is a hypersurface and in the trust region method we take
a step to the minimiser of the boundary points of this hypersurface if the
Newton step fails. When the true minimizer of the target surface is inside

this trust region this method becomes the Newton method.
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Figure 6.2.: r(w) as defined in Eq. (6.21), blue solid line. The black dotted
line corresponds to a choice of trust radius. Note that for every
trust radius there exists at least two minimising values of step.

We will now move on to the details of the trust region method. We
assume our trust region is a hypersphere of radius r. Therefore, our step,
s, should satisfy |s| < |r|. We once again expand the surface to second order
in displacements but when we compute the minimising step we must ensure

|s| < |r]. We can achieve this by minimising the following Lagrangian

L(s,w) =m(s) — %w(sTs —7r?) (6.19)

where m(s) is defined in Eq. (6.8) and w € R is a Lagrange multiplier.

Minimising £ with respect to all possible displacements yields

5. = 0= s(u) = —(Hi — w1) gy (6.20)

We see that w is a ‘level shift parameter’ in that it shifts the eigenvalues
of Hy downwards by w. This parameter is chosen such that we always step

to the boundary given through

r(w) = \/g;f(Hk —wl)2g. (6.21)

In Figure 6.2 we have plotted Equation (6.21) and chosen a trust radius
of 16. What this figure shows is that r(w) diverges when p is equal to an
eigenvalue of the Hessian. To find the value of u which corresponds to the
minimum boundary of the trust region one finds the intersection of r(u)
with this boundary. But as Figure 6.2 shows there exists at least two inter-

sections for every choice of trust radius. Note that in Figure 6.2 it seems
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that the dotted red line at » = 3 does not intersect with Equation (6.21)
but they do intersect twice once at +00 and once at —oo. This means that
for this small trust-region the Newton method will work. Figure 6.2 also
shows how to pick the value of y which corresponds to the minimum at the
boundary. We simply pick the smallest value of w for which Equation (6.21)
intersects with the trust-region boundary.

The strategy of the trust radius method now follows the obvious steps.
Firstly one calculates at each iteration the Hessian and gradient. Using this
information we compute the step s. When we are in local region, |s| < |r|

we take the step
s(0) = —H, ' gx (6.22)

which is just the Newton step. When we are in the global region, |s| > |r|
we take the step
s(w) = —(Hy, —wl) g (6.23)

where the level shift parameter is chosen such that s(w) corresponds to
taking a step to the minimiser on the boundary of the trust region. As
we have seen in practice that involves selecting a value of w smaller than
the lowest eigenvalue of the Hessian and it must be negative to ensure
this step is not longer than the Newton step. It is common in practical
implementations such as the one we have implemented into QUEST one
uses either bisection or linear interpolations to find the numerical value of
w which yields |s(w)| = |r|. This normally requires 3-4 iterations and we
preform the bisection or linear interpolation between zero and the lowest
eigenvalue of the Hessian.

There is an important part of the trust region algorithm which we have
not yet been discussed. It is clear that as we move from the starting guess
we should improve our confidence in our local model. This can be achieved
by increasing our trust radius. Indeed the size of the trust radius can be
interpreted as a measure of confidence in our local second-order Taylor
expansion. So between iterations one would like to be able to update the
trust radius if we believe our model is more accurate than we believed it
to be. To do this we compute the following ratio

T — f($k+1) - f('rk> (624)

gFs+ %STHkS

If T is close to one then we increase the trust radius if it is much less
than one we reduce it. The increase and decrease factors are arrived at by

experimenting with various atomic and molecular calculations. We have
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found that beginning with a trust radius of 0.4 and having an increase
factor of 2.0 and a decrease divisor of 1.2.

So far we have discussed minimisations. But we know from the mathe-
matical framework of DF'T that the variation principle at the heart of DF'T
is a first order saddle point (FOSP) optimisation. However, to utilise the
trust-region framework above we have to have a surface we wish to min-
imise. So the question is: can we identify a new surface which has a one-
to-one correspondence with our target surface defined by Equation (6.4)
such that this new surface has a minima which coincides with our target
surface FOSP?

To investigate this new surface, called the image surface, let us con-
sider the properties of the image surface at the minima. We know that in
all directions the gradient of the image surface should be ascending from
that point and all eigenvalues of the Hessian matrix should be non nega-
tive. Contrast that to the FOSP of the original surface where the gradient
should be descending in one direction and has a corresponding negative
eigenvalue in the Hessian. It is clear all one needs to do is change the sign
of the gradient and Hessian element in the diagonal representation corre-
sponding to the increasing direction of the FOSP. In doing so we have the
gradient and Hessian of the image surface. But how does one generate the
image surface from the original? The answer is that in general you can-
not but thankfully it doesn’t matter because the trust-region requires only
the gradient and Hessian at each iteration which is easy to generate from
the original surface as discussed above. TRIM was first used in quantum
chemistry by Helgaker'3! to find the transition states on a potential energy
surface.

In the application of TRIM for OF-DFT we allow for variations in the
chemical potential, u, and incorporate this into the gradient and Hessian
accordingly. We also must note that for our FOSP the increasing direction
is along the p eigenmode. The only modification of an existing trust-region

optimiser is in the computation of the step, p, which one computes through
p=—-Hg (6.25)

where ¢ is the gradient given by

oL oL
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and H is the Hessian

%L 8%L

H = 801‘% 901'.9# (6.27)
9L
ZE 0

where 0 = 9*£/0u*. The required modification in order to find the minima

of the image surface is simply

oL oL
(... 2= ... X D)

and taking the negative of the eigenvalue of H corresponding to the p
eigenmode. We have derived and implemented the analytic gradient and
Hessian. The elements corresponding to the basis coefficients, ¢;, are the
same as in Chapter 4 but we have included them here to be complete. The

elements of the gradient are

oL
— =N — d 2
on /pn (6.29)
oL or 1
—9 = _ adr. .
de; /771 ( op )p ar (650
The elements of the Hessian are:
0*°L 1
= -2 02 31
o [ ot (6.31)

and

L _ 0T OPBxc | 0
Qci(“)cj N 8ci80j 8c2-80j (‘)cﬁcj

6.32
+y%—2/-m .
Jc;0c; o
The fourth term in Eq. (6.32) evaluates to
62Ene 6Ene
Jc;0c; op it (6.:33)
The third term in Eq. (6.32) evaluates to
0?E;
=2 jlkl) + 2(ik|j1)]. 34
e, = 22 ekl + 2k (6:34
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For the first two terms in Eq. (6.32) we assume the functionals can be

expressed as

Fp) = / f(p. Vp)dr == (f(p, V1)) (6.35)

then one finds

O*F _< 0?p 8_f+82V,08_f>
0c;0c; Oc;0c; Op ~ Oc;0c; OV p
<(92_f8,0@+ o0 f 8Vp8Vp>
0p? Oc; Oc; OV p? Oc; Oc;
ol i
OV pdp | Oc; Oc; — Oc; Oc '

(6.36)

We have implemented this method into QUEST. This implementation has
an interface with XCFun, an automatic differentiator, which returns exact
values for all derivatives involving f at every grid-point. This means when
one wants to run this scheme for an OF-KEF one only needs to supply
the integrand, f, to XCFun instead of computing by hand the explicit

expressions of the required derivatives.

6.3. Results

6.3.1. Comparing Lopez-Acevedo, CCH and TRIM

We discussed the Lopez—Acevedo scheme in Chapter 3, we discussed our
implementation of the CCH scheme in Chapter 4 and in this current chapter
we have talked about our novel scheme the TRIM scheme. In this section
we will compare these schemes and provide a representative example of
convergence rates of the schemes. In Table 6.1 we compare and contrast the
three schemes discussed in detail in this work. The Lopez—Acevedo scheme
is the easiest to implement as all that is required is a minor modification
to existing KS codes. However, one should note that the DIIS and other
similar convergence accelerator techniques will not work so one has to resort
to a simple mixing technique. See Chapter 3 for a discussion on this. What
this results in is a scheme which requires a lot of iterations (up to 10000
depending on the system and functional). The CCH scheme is probably the
most difficult to implement due to the nested nature of the optimisation
algorithm. Recall from Chapter 4 that one is required to wrap a bisection
algorithm around a Lagrangian minimisation algorithm. The increase in
complexity does lead to a decrease in the number of iterations required

before convergence is reached compared to the Lopez—Acevedo scheme.
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Table 6.1.: Comparing the three methods discussed developed and/or im-
plemented in this work

Lopez—Acevedo CCH TRIM
Ease of Implementation EASY DIFFICULT INTERMEDIATE
Number of
Lagrangian Evaluations HIGH INTERMEDIATE LOW
Fixed Particle Number
In iterative process YES NO NO
Applicable to general
OF-KEF development NO YES YES
Derivative order required | | 1or 2 9
Quadrat%c convergence in | - NO YVES
local region

Table 6.2.: Number of calls to the objective functional that each method
uses for the Ne atom using the ETOF basis and the PBE XC
functional. The number in brackets for the Lopez—Acevedo val-
ues are the corresponding mixing parameter.

Number of objective functional calls
Method Tyvw TFVW SGA TFO2W
Lopez—Acevedo | 12(0.75) 237(0.05) 2046(0.005) 8593(0.001)
CCH 167 169 249 220
TRIM 12 17 28 20

However, more importantly the CCH scheme is applicable to a wider class of
functionals than the Lopez—Acevedo scheme. The Lopez—Acevedo scheme
is restricted to functionals which are linear combinations of Trp and Tyvy.

The TRIM scheme is by far the most efficient of the schemes and whilst
more complex to implement than the Lopez-Acevedo scheme is simpler
than the CCH scheme. The reason why it is much more efficient — in
terms of iteration number — than the other schemes is that it quadratically
converges once it is in a local region. The main drawback of this method
is that in its current implementation it requires diagonalisation in order to
find the eigenvalues of the Hessian. However, this can be eliminated since
only the lowest eigenvalue is required.

In Table 6.2 we present the number of objective functional evaluations
before convergence is reached for the Ne atom using the PBE XC function-
als and different OF-KEF models. The basis used was the ETOF basis and
for comparison running KS-DFT using the standard DIIS (subspace = 8)

acceleration technique took 7 iterations before convergence with compara-
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Figure 6.3.: Convergence in the energy for the Ne atom — using the ETOF
basis and TFVW for the OF-KEF and PBE XC — run using
the Lopez—Acevedo Scheme (Green Line), TRIM Scheme (Or-
ange Line) and CCH Scheme (Blue Line).

ble tight convergence criteria of 107® a.u. on |[|F'DS — SDF||. In the first
row of Table 6.2 the numbers in brackets are the required mixing factors.
For the Lopez—Acevedo scheme adding TF causes convergence to slow down
dramatically an increase giving of 225 functional evaluations. In addition
it should be clear that as one reduces the amount of Tyw present in the
functional convergences becomes dramatically slower. Indeed, we cannot
converge the energy using the Lopez—Acevedo scheme for Ty alone. For-
tunately the CCH and TRIM schemes are relatively constant though there
is a small increase in difficulty convergence from just using Tyw to using
the TFAW functionals. A similar convergence pattern is seen for all atoms
tested. For example, for the TFO2W functional for the neutral atomic
systems with Z = 1---10: the Lopez—Acevedo scheme averaged 1981 func-
tional calls before convergence; the CCH scheme averaged 231 functional
calls; and the TRIM scheme averaged 23 functional calls. Clearly the TRIM
scheme is the more efficient scheme.

To explain why the TRIM scheme is the most efficient of the three
schemes tested in this work it is clearest to examine the convergence graph-
ically. In Figure 6.3 we have plotted log(|AFE|) as a function of iteration.
AF is defined as the difference between the energy of the current iteration
and the final converged energy. The data shown in Figure 6.3 was gen-
erated using TFVW for the Ne atom. The blue line represents the CCH

M. S. Ryley Variational Solutions in OF-DFT 139



CHAPTER 6. TRIM SCHEME

Iteration
0 200 400 600 800 1000
= | ‘\
d -5/ -5
1) L
o)
S,
2 -10 1-10
5L 45
0 200 400 600 800 1000

Figure 6.4.: Convergence in p for the Ne atom — using the ETOF basis
and TFVW for the OF-KEF and PBE XC — run using the
Lopez—Acevedo Scheme (green Line), TRIM Scheme (orange
Line) and CCH Scheme (blue Line).

scheme — 169 function evaluations, the orange line represents the TRIM
scheme — 17 function evaluations and the green line represents the Lopez—
Acevedo scheme — 237 function evaluations. From Figure 6.3 we see that
whilst the Lopez—Acevedo scheme monotonically converges it does so very
slowly. We can also see the terraced convergence of the CCH scheme due to
the nested iterations. This is why it is slower to converge than the TRIM
scheme which we can see rapidly converges to the solution.

As can be seen from Figure 6.4 a similar convergence pattern occurs
for 4 — the chemical potential. In Figure 6.4 the TRIM scheme (orange
line) behaves erratically for the first 10 or so iterations. This is because
the optimisation starts in the global region and this becomes even more
noticeable for molecules. We will discuss how the initial guess effects the

starting iterations in Section 6.3.3.

6.3.2. Comparing CCH and TRIM

So far we have been comparing the Lopez—Acevedo, CCH and TRIM schemes
for the TEFAW models. We found that TRIM was the most efficient, how-
ever, we know that the CCH and TRIM methods can converge the energy
for a much wider range of model OF-KEF’s. In this section we will compare
the convergence rates for GGA OF-KEFS used in this work. Once again all
calculations use the PBE XC functional and the ETOF basis. In Table 6.3
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Table 6.3.: Difference in number of calls to the objective functional in the
TRIM scheme compared to the CCH scheme

DK E00 OL1 OL2 P92 PBE2 VT84
H 64 —69 —-144 —-166 —112 1 93
He | =387 =79 —-113 —-117 —189 16 195
Li | —122 =77 —-126 —-127 -—-127 —188 31

Be | =87 —75 —-116 -97 —-143 —194 -3
B |-104 -7 —-144 -156 -114 —-173 =30
C | -166 —-109 -8 —134 -153 —120 -9

N [ -215 —-90 -123 -—156 -—187 17 26
O |-302 -7 -160 —87 -—116 —-25 —43
F|-14 -9 -8 -63 -90 -162 —26
Ne | =165 —-103 —-160 —156 —128 57  —86
Na | —345 —-134 —-181 —-193 —-193 —165 —147
Mg | —269 —-173 —-182 —-206 —-204 —-323 72
Al | —202 -8 -—167 —139 —-139 —-195 —46
Si | —288 —185 —193 —-249 -249 —614 —149
P | -28 -129 -234 -8 -—-196 —262 —80
S | —283 —186 —127 -—125 —-193 —340 —95
Cl | -319 —-142 -—-171 -112 -192 —-186 —23
Ar | =320 —129 142 —-103 —-115 =239 —135

we present the change in objective functional calls when one uses the TRIM
scheme rather than the CCH scheme. In Table 6.3 negative values indicate
that the TRIM scheme is more efficient than the CCH scheme. Its clear
that for the majority of atomic systems it is indeed the case that TRIM is
much more efficient. The minority of cases where it isn’t can be improved,
if required, by altering the increase and decrease factors of the trust radius
for the optimisation. Though on the whole we have found that computa-
tions which are faster using the CCH scheme are outliers. This is shown
in Figure 6.5. The VT84 functional shows the least improvement. Fur-
ther analysis shows that the VT84 Hessian has a large number of negative
eigenvalues to begin with and hence spends a large number of iterations
trying to get out of the global region.

In Figure 6.6 we show the percentage change in the call to the objective
functional for the OF-KEFs used in this section. We can see that for
the majority of cases the lines are below zero i.e. TRIM converges faster
than CCH. Indeed a good proportion of the test cases are sped up by 50%.
There are systems/functionals where the CCH scheme performs better than
the TRIM scheme. For example, He/VT84 which has an increase in over
150%. However, these can be reduced by trailing different combinations
of increase and decrease factors. The increase and decrease factors stated

in Section 6.2.2 were found by ensuring we maximise the number of cases
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Figure 6.5.: The mean percentage change in calls to the Lagrangian build
function going from the first-order and TRIM scheme. This
avergae was computed over neutral atoms with atomic charge
Z =1---18 using the OF-KEF’s DK, E00 and OL1,0L2, P92,
PBE2 and VT84 with the PBE XC functional.

where TRIM is faster than CCH. As one can see in Figure 6.6 this pair of

values is normally successful at this.

6.3.3. Molecular Calculations and the Initial Guess

For optimisations on larger molecular systems we require a good initial
guess of the density to help us out of the local region. As discussed for
the CCH scheme we have found that the superposition of atomic densities
(SAD) greatly decreased the number of iterations required to converge the
energy. We calculate the densities for the constituent atoms with a given
OF-KEFs and form a superposition of these densities to begin the molecular
optimisation from.

In Figure 6.7 we present how the electronic energy E changes as we go
through a calculation. The particular calculation this behaviour is exhib-
ited for in Figure 6.7 is for N5 using the E00 OF-KEF and an even tempered
21s10p basis set. Without the SAD guess we require 602 iterations for the
molecular calculation. With the SAD guess we require 14 iterations and
a further 31 for the atomic calculation. Overall we do about 13 times less
iterations using a SAD guess. This we found to be true for all systems

investigated. Without the SAD guess convergence for the TRIM scheme is

142 Variational Solutions in OF-DFT M. S. Ryley



CHAPTER 6. TRIM SCHEME

2

2]

8 150}

= — DK — P92
.é 100! EO0 — PBE2
= OoL1 — VT84
e 0 — oL2

3 0 /N

O

(o]

C

< -50}

2

£ _100L. T
o 5 10 15

Zla.u.

Figure 6.6.: The percentage difference in calls to the objective functional
going from the first-order and TRIM scheme. This was done for
neutral atoms with atomic charge Z = 1---18 using the OF-
KEF’s discussed in this section with the PBE XC functional.

exceptionally slow as it seems to meander in the global region. Using the
SAD guess removes this issue. The explanation can be found in Figures 6.8
and 6.9.

In Figures 6.8 and 6.9 we have plotted the number of negative eigenval-
ues the Hessian contains at each iteration. From Figure 6.8 we see that we
start from a point in the optimisation space which has a very undesirable
structure and it takes the optimiser a long time to eventually settle in the
local region when we consequently achieve a single negative eigenvalue —
which is what we require — and converges. In Figure 6.9 we see that SAD
massively improves the situation. The optimiser takes only 31 iterations
for the atomic (N atom) — blue line in Figure 6.9 — to converge. The
superposition of the resulting density is then used in the molecular calcu-
lation (N3). We can see that we start from an ideal point with regards
to the negative eigenvalue count. Whilst this is not always the case the
SAD guess always yields dramatic improvement. The fact that the SAD
guess gives a starting point with either a correct or close to correct Hessian
structure is why we find that the SAD guess yields fast convergence rates

even when taking into account the calculations generating the SAD guess.
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Figure 6.9.: The number of negative values of the Hessian at every iteration
for Ny with E0O and an even tempered 21s10p basis. The blue
line is the atomic iterations and the red is from the molecular
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6.4. Conclusions

In this chapter we have introduced an OF-DFT scheme which optimises the
chemical potential and density simultaneously by utilising the fact that the
objective functional in DF'T is a saddle function. In this chapter we found
the first order saddle point of this functional using the trust-region im-
age method. We found, in Section 6.3.1, that this new scheme is much
more efficient than other all electron optimisation schemes highlighting the
importance of both recognising and using the underlying saddle point op-
timisation in DFT. We highlighted the fact that when one closes in on
the solution point this new scheme converges quadratically meaning that
convergence occurs in 10’s of iterations rather than the 100’s or 1000’s
required for convergence in the CCH and Lopez—Acevedo schemes respec-
tively. However, we have had to reintroduce diagonalisation to achieve this.
Future work will require implementation of numerical methods to avoid this
step.

In Section 6.3.3 we have highlighted the importance of the starting guess
in optimisation for molecular systems. We found that using a simple version
of SAD improves convergence rates dramatically. A case study showed that
the SAD helps provide a good initial Hessian. We found that the initial
Hessian formed using SAD had the correct structure at the beginning of
molecular calculations. Without SAD this was not the case. This means
that calculations using the SAD guess started in regions allowing for full
Newton steps to be taken almost immediately. This is in contrast to using
the core Hamiltonian or a random guess where we started at regions of
the surface where the Hessian structure was incorrect and thus only very
small steps were taken in line with the trust region algorithm. We have
found that the scheme introduced in this chapter alongside a SAD guess
is suitable to test a wide range of OF-KEF's for molecular systems and we
hope this will be a conduit for fruitful investigations in the development of

accurate OF-KEFs for chemical systems.
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7. Connections between

variation principles

7.1. Introduction

As we have seen, variation principles lie at the heart of many quantum-
chemical theories, giving practical prescriptions for how to obtain the best
electronic energy, wave function or electron density via optimization. They
may also offer insight into the connections between traditional ab initio
wave-function based approaches and density-functional theory (DFT). In
this chapter, we examine a new variation principle, proposed by Gidopoulos
in Ref. 6 for the determination of the non-interacting system of relevance
to Kohn—Sham theory.

The variation principle proposed by Gidopoulos consists of minimizing

the left-hand side of the inequality
(U|Hy(v)|¥) - Ey(v) >0, (7.1)

with respect to the variations in the potential v, for a fixed electronic wave
function ¥ corresponding to a system of interest - typically, the physical
ground-state wave function for the system. The energy Ey(v) in Eq. (7.1)
is the ground-state energy of a non-interacting system, associated with
the non-interacting Hamiltonian Hy(v) = T + > v(r;), where T is the
kinetic energy operator. As discussed in Ref. 6 the minimization of the
left-hand side of Eq. (7.1) yields the Kohn-Sham non-interacting potential
v associated with a non-interacting system that has the same density as
that of the chosen input wave function ¥. The same variation principle
was also described earlier by Davidson in a different context;®> here, we
refer to Eq. (7.1)) as the Gidopoulos—Davidson variation principle.

At first glance, the Gidopoulos—Davidson variation principle appears
to be markedly different from alternative approaches for determining the
Kohn—Sham system corresponding to a reference wave function or den-

sity. For example, in Levy’s constrained-search approach to DFT,!36:137
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a constraint on the electron density is explicitly applied to determine the
Kohn—Sham system. More closely related is the Lieb variation principle,
which for a non-interacting system corresponds to maximizing the left-hand

side of the inequality®

Eo(v) — (v]p) < To(p) (7.2)

with respect to variations in the potential v for a given input electron
density p. Both the Gidopoulos—Davidson and Lieb variation principles
involve an unconstrained optimization over v, yielding the Kohn-Sham
potential vg as their optimizer. Furthermore, their functional derivatives
are identical up to a sign.%®

These observations motivate us to explore the connection between the
Lieb and Gidopoulos-Davidson variation principles in Egs. (7.1) and (7.2),
respectively. We begin by reviewing standard variation principles in Sec-
tion 7.2. In Section 7.3, we highlight the connections between the Gidopoulos—
Davidson and Lieb variation principles, including extensions to general in-
teraction strengths and to mixed states. A brief review of the adiabatic
connection (AC) is then given in Section 7.4, providing a link between the
generalized functionals and the exchange-correlation energy DFT.

Having established the close connection between these alternative varia-
tion principles, we present some results from numerical implementation in
a common framework in Section 7.5 highlighting the equivalent information
they yield both in the non-interacting limit and for arbitrary interaction
strengths. In Section 7.6, we make some concluding remarks and discuss

possible directions for future work.

7.2. Variation Principles

In this section, we review the Rayleigh-Ritz variation principles for pure
and mixed electronic states, introduced in Section 2.2.3 and the Hohenberg—

Kohn and Lieb variation principles which were discussed in Section 2.3.

7.2.1. Rayleigh—Ritz Variation Principle

Consider an electronic system described by a Hamiltonian of the form

(o) = =5 SV + 3ol + Y wnllri = 1) -

=T+V+W,
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where T is the kinetic-energy operator, V the external potential opera-
tor, and W, the electron—electron repulsion operator for a given electron—
electron interaction strength A € [0, 1], such that wy = 0 (for non-interacting
systems) and w; = 1/|r; — r;| (for physical systems). At a given interac-
tion strength A, the ground-state energy of an N—electron eigenfunction ¥
of the Hamiltonian H)(v) can be defined in the context of wave-function
theory by varying the wave function ¥ according to the Rayleigh—Ritz
variation principle,

Byo) = nf (V(0)|) (7.4)
where Wy is the set of all antisymmetric N-electron wave functions with

a finite kinetic energy and a unit normalised inner product,
N
Wy = {\11| (T[T) =1; Y (Vi¥|V,0) < oo} (7.5)
=1

The Rayleigh-Ritz variation principle is well defined for all potentials v
belonging to the vector space X* = Ls/5 + Lo, which includes all Coulomb
potentials.®

It is often more useful to work with mixed rather than pure states, giving

the canonical-ensemble Rayleigh-Ritz variation principle

Ex(v) = inf tryH,(v) (7.6)

YeKn

where Iy is the set all admissible ensemble density matrices,

Ky = {Z% (WYl A >0, Ni=1,0; € WN}. (7.7)

Although the ground-state energy can always be defined as the greatest
lower bound in either Eq. (7.4) or Eq. (7.6), the formulation in terms of
ensembles is more flexible, allowing for mixed-state solutions. This extra
flexibility is important to establish correspondence between the optimizers
in the Rayleigh—Ritz variation principle commonly used in ab initio theory

and the Hohenberg—Kohn variation principle used in DFT. 138
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7.2.2. Hohenberg—Kohn and Lieb Variation Principles

In the context of DFT, the ground-state energy is obtained according to

the Hohenberg—Kohn variation principle

E\(v) = inf (FA(p) + (vp)) (7.8)

peX
where v is the external potential, p the electron density, (v]p) = [ v(r)p(r)dr
and F) Lieb’s convex-conjugate universal density functional, determined

from the Lieb variation principle:®

Fx(p) = sup (Ex(v) = (v]p)) - (7.9)
The functionals E and F) are a conjugate pair, related by mutual Legendre—
Fenchel transforms. The vector spaces of admissible densities and poten-
tials are the Banach spaces — see Section 2.3.3 for details — X = L3N L
and X" = L33 + Lo, respectively, encompassing all N-representable den-
sities p € X and all Coulomb potentials v € A*, with which the density
has a finite interaction energy.

As shown in Ref. 138, there is a one-to-one correspondence between
the ground-state densities obtained from the Hohenberg—Kohn variation
principle with the Lieb functional as in Eq. (7.8) and from the Rayleigh—
Ritz variation principle with ensembles as in Eq. (7.6) but not with pure
states as in Eq. (7.4).

7.3. Gidopoulos-Davidson Variation Principles

The variation principle of Gidopoulos in Ref. 6 allows for the determination
of the non-interacting system of relevance to Kohn-Sham theory and may
be written in the form

Do(W) = inf ((W|Hy(v)|¥) — Eo(v)), (7.10)
where ¥ € Wy is an electronic wave function corresponding to the physical
system of interest; typically the physical ground-state wave function of
H, (v) for some v € X*. The energy Ey(v) is the ground-state energy of the
non-interacting system, defined according to Eq. (7.4). Note that Dy(V)
is well defined since (U|Hy(v)|¥) — Eo(v) > 0 for each ¥ € Wy by the
Rayleigh—Ritz variation principle.
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7.3.1. Relationship to Lieb Variation Principle

The Gidopoulos—Davidson variation principle is related in a simple manner

to the non-interacting Lieb variation principle

Fylp) = sup (Eo(v) — (v]p)). (7.11)

veEX*

In previous chapters we denoted the Lieb functional by Fy, however in this
work we will be varying interaction strengths. We therefore use the sub-
script label to denote the value of this. To see the relation, we decompose

the non-interacting expectation value (¥|Hy(v)|¥) in the manner
(¥ Ho(v)|¥) = T(¥) + (v]pw), (7.12)

where T(¥) = (U|T|¥) and py are the kinetic energy and density yielded
by ¥, respectively. A comparison of the functionals in Egs. (7.10) and (7.11)
then gives,

Do(®) = T(W) - Folpa), (7.13)

showing that the Gidopoulos—Davidson functional of a given system is sim-
ply the total kinetic energy of this system minus the non-interacting Lieb
functional.

Since the non-interacting Lieb functional is the non-interacting Kohn—

Sham kinetic energy,
Fo(p) = Ti(p) (7.14)

we find that the Gidopoulos—Davidson functional is the Kohn—Sham kinetic-

energy correlation energy,

Do(9) = T(¥) — Ty(py). (7.15)
Introducing the constrained-search formalism, 3135137 we obtain
Do(W) = (U|T|¥) — inf (®|T|D) (7.16)

P—py

where @ is a single Slater determinant describing the non-interacting Kohn—
Sham system.

The relationship of the Gidopoulos-Davidson functional to the correla-
tion kinetic energy is well known.% Here we see that the non-interacting
Gidopoulos—Davidson and Lieb variation principles yield the same Kohn—
Sham system from different directions. The Lieb variation principle mini-

mizes the value of the non-interacting kinetic energy T;, subject to a density

M. S. Ryley Variational Solutions in OF-DFT 151



CHAPTER 7. CONNECTIONS BETWEEN VARIATION
PRINCIPLES

constraint, whilst the Gidopoulos-Davidson variation principle maximizes
the correlation kinetic energy T, = T — Ty subject to a similar density

constraint.

7.3.2. Objective Functions

Being related in such a simple manner, the optimizations of the Gidopoulos—
Davidson and Lieb functional are also related in a simple way. Expressing

the functionals in terms of their objective functions, we find

Do(¥) = inf Go(v, V) (7.17)
Fy(p) = sup Lo(v, p) (7.18)
where
Go(v, V) = <‘I”F[0(U>"I’> — Eo(v) (7.19)
Lo(v, p) = Ep(v) — (v]p). (7.20)

Hence, we obtain in agreement with Eq. (7.13),
Go(v, V) =T(¥) — Lo(v, py). (7.21)

The functional Ly(v, p) is concave in v and affine in p, whereas Go(v, ¥)
is convex in v. After a generalization to mixed states, Gy becomes convex

also in the second variable; see Section 7.3.4.

7.3.3. Functional Derivatives of the Objective Functions

To determine the stationary points of the Gidopoulos—Davidson and Lieb
variation principles, we note that ground-state energy Fy(v) is differentiable
with functional derivative p, if v supports a ground state with a unique
density p,. For a given W € Wy, the expectation value (¥|Ho(v)|¥)
is always differentiable with respect to v, with functional derivative py.

Hence, assuming differentiability of E, at v, we have

0G)

o = pula) = ). (7.22)
d Lo

&f(r) = polr) — pr). (7.23)
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When p = py, the functional derivatives are identical except for the sign
difference.

The second derivatives of Gy and Ly with respect to the potential v may
also be readily evaluated. They are equal to (minus and plus) one half the
non-interacting static density response function of the system,

52G0(U7 \Ij) 52L0(U7p) 1

so(r)ou(r’) — du(r)su(r) —EX()(I',I'/)_ (7.24)

The analytical expression of xq is found using first order perturbation the-

ory for the one electron Schrodinger equation,

XO(ra I‘/) _ Z (ﬁi(r)(br(r/)gba(r/)(ﬁ:;(r) + c.c, (725)

€ — Eq

where the indices ¢ and a denote occupied and virtual orbitals, respec-
tively, whose orbital energies are ¢; and ¢,. In Ref. 6 focus is placed on
the optimization of Gy with respect to v. In passing, we note that the
non-interacting Hamiltonian readily separates into one-electron contribu-
tions Hy(v) = Dok hy,(v) with fy(v) = —3V?2 + v(rg) and that the orbitals
entering Eq. (7.24) are the eigenfunctions of this one-electron Hamiltonian.
The non-interacting ground-state energy is the sum of the occupied or-
bital energies, Eo(v) = Y., &;. We also remark that, although 1y (r,1’)
is positive/negative semi-definite, this does not imply that Go/Lg are con-
vex/concave in v since the derivatives in Eq. (7.24) are not defined for all
potentials.

Throughout this discussion we have assumed the differentiability of Ly (v, p)
and Go(v, ¥). The functional Ly (v, p) is not straightforwardly differentiable
as discussed by Lammert,!3° however this issue can be avoided by using a
regularized form as discussed in Ref. 38. Since the derivative of Gy(v, V)
amounts to taking the derivative of —Lg(v, py) (see Eq. (7.21)), the same
regularization techniques can be applied to this functional.

In the Gidopoulos—Davidson and Lieb variation principles, the potential
plays the role of a Lagrange multiplier. To see this, we rewrite the Lieb

variation principle as a minimax problem

o) = s 1 <<‘I’|ﬁk(v)|‘1’> - (v|p)> (7.26)
AT <<‘I’|ﬁk(0)|‘1’> = (vlp = qu)) (7.27)

Since the search over v terminates when the stationary condition p(r) —
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pw(r) = 01is satisfied, the Lieb variation principle represents a minimization
of the expectation value (¥|H,(0)|¥) subject to the constraint that ¥ — p.
The potential plays precisely the same role in the Gidopoulos—Davidson
variation principle, which becomes clear in light of the relationship between

the two functionals given by Eq. (7.13).

7.3.4. Generalisation to Ensembles

In Section 2.3.5 the Lieb functional Fy(p)® was introduced and we found
that it is convex in p. It follows that —Fy(p) is concave in p but not that
the Gidopoulos-Davidson functional Dy(¥) = T'(¥) — Fy(py) is concave in
U since T'(V) is not. Generalizing the Gidopoulos-Davidson functional for
pure states U € Wy to canonical ensembles 4 € Ky, we obtain the concave
functional

Do(4) = inf_ (tHo(v) - Eo(v))

vEX*

=T () — sup (Eo(v) — (v|pw)),

veX*

(7.28)

where T(%) = tr4T. To show concavity, we select 41,4, € Kx and obtain
for each 0 < v < 1 the inequality

Dy(vy1 + (1 —v)72)
— vtr T+ (1 - v)tr ?yﬂj — Fo(vpr + (1 = v)pa) (7.29)
<vtr T+ (1 —v) tr 3T — vFy(p1) — (1 — v) Fy(ps)
= vDy(1) + (1 — v)Do(2)

where in the second step we have used the convexity of the Lieb functional.

Since ¥ occurs quadratically in Do (W), a similar proof is precluded for the
pure state Gidopoulos—Davidson functional, which is indeed not concave.
Note that, for pure states 4y = |¥)(¥/|, the ensemble Gidopoulos-Davidson

functional reduces to the original functional: Dy(jy) = Do(V).

7.3.5. Generalization to Arbitrary Interaction Strengths

The Gidopoulos-Davidson functional may be extended to interacting sys-

tems in the manner

Dy(W) = inf (B Ay(0)|W) — Ex(v)) (7.30)

vEX*

154 Variational Solutions in OF-DFT M. S. Ryley



CHAPTER 7. CONNECTIONS BETWEEN VARIATION

PRINCIPLES
which is related to the Lieb Functional via
D\(0) = (U|T + W, |¥) ~ jof (D|T + W,|®) . (7.31)
pw

The first derivative of the objective functional, Gy (v, ¥) = (U|H,(v)|¥) —

E\(v), is again a simple density difference, simple density difference,

(SG)\(’U, ‘If)

S = ) = ), (7.32)

and its second derivative can be expressed in terms of the A-interacting

density response function

52G,\(U,\I’) 1

dv(r)ov(r’) B —59()\(14, ). (7.33)

To perform practical optimizations using Eq. (7.30), we therefore re-
quire knowledge not only of the kinetic energy associated with the input
wave function ¥ but also the A-interacting two-electron interaction energy,
WA(W) = (W[, |W).

In practice, these quantities can be computed from the one- and two-

particle reduced density matrices, respectively.

7.4. Adiabatic Connection

The adiabatic connection considers the link between the non-interacting
Kohn—Sham auxiliary and physically-interacting systems. 40143 In this ap-
proach, the interaction strength A in Eq. (7.3) is varied between 0 and
1, whilst imposing the constraint that, at each interaction strength, the
electron density p) remains fixed at that of the physical system p;. Most
frequently, a linear path between these two limits is considered,'! where
the Coulomb operator is simply scaled linearly by the value of \. However,
generalized ACs'** have been explored along non-linear paths.'4%46 In the
present work, only the linear path is considered but the generalization to
non-linear paths is straightforward.

For the Hamiltonian in Eq. (7.3), the A-dependent universal density func-
tional can be written in the constrained-search®13%:137 form for canonical
ensembles,

Fx(p) = min tr Hy(0)4 (7.34)

F—p

where the minimization is over all density matrices 4 associated with the
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input electron density p. This functional is convex in p, concave in A and
non-negative for A > 0. The M-interacting functional can be related to its

non-interacting counterpart via

R =R+ [ 22, (7.35)

0

where the derivative is well-defined on the real axis as a right- or left-
derivative. Evaluation of the derivative and application of the Hellmann—
Feynman theorem 4748 leads to an ab initio expression for the exchange-

correlation energy
1
Eulp) = [ Wil (7.36)
0

where W, (p) is the AC integrand
Wi(p) = (WA|WWy) — E;(p). (7.37)

Furthermore, the exchange and correlation energies may be resolved into
separate components, resulting in an expression for the correlation energy

alone

Eu(p) = / Wa(p) — Walp)} di (7.38)

For a review of the adiabatic connection, see Ref. 149.

To make practical use of these expressions, approaches for the calculation
of the M-interacting wave functions yielding a chosen electron density are
required, see e.g. Refs. 150-152. The constraint that the density is fixed
for all A may be easily enforced by supplying fixed arguments p and ¥ to
Egs. (7.9) and (7.30)) for all \. We now discuss our implementation of the
(generalized) Gidopoulos—Davidson variation principle, exploring the close

connections to the generalized Lieb functional numerically.

7.5. Results

From the discussion in the Section 7.3, it is evident that the Gidopoulos—
Davidson and Lieb optimizations are sufficiently closely related that they
may be implemented in a common computational framework. We first dis-
cuss some details of our implementation; we then demonstrate the equiv-
alence of the two approaches by performing numerical optimizations for a

set of small atomic and molecular systems.
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7.5.1. Computational Details

The variation principle given in Eq. (7.30) allows a value to be obtained for
the generalized Gidopoulos-Davidson functional by evaluating its infimum
with respect to v. If the density yielded by the reference wave function py
is v—representable, the infimum becomes a minimum. To vary v such that
an optimization over the potential may be carried out in a practical com-
putational scheme, the potential is modelled using the basis-set expansion
of Wu and Yang %3154

UA(E) = Vet (1) + (1 = Nrer(r) + Y byga(r). (7.39)

Here vey (r) is the external potential due to interaction of the electrons with
the atomic nuclei, vyef(r) is a fixed reference potential chosen to ensure that
vx(r) has the correct asymptotic behaviour, and {g;} are a set of Gaussian
basis functions with coefficients {b;}. The reference potential employed in
the present work is the Fermi-Amaldi potential’® whose analytical form

is given by N )
- Pin\T
d
N v/ — r| "

Uref(T) = (7.40)

where py, is the given input density which in this work will be CCSD densi-
ties. With this choice of potential expansion, the derivatives corresponding
to Eq. (7.32) and Eq. (7.33) may be readily implemented as described in
Refs., 151:152.154 gllowing the objective functional to be effectively optimized
with respect to the set of coefficients {b;}.

An un-contracted form of the Gaussian basis set aug-cc-pVTZ 25156 in
the spherical-harmonic basis is used for both the orbital expansion and for
the potential expansion in Eq. (7.39), for all systems. An approximate New-
ton method is employed to accelerate convergence of the optimization ,'*7
in which the Hessian is regularized using a truncated singular value decom-
position with a threshold of 1075 a.u. In all calculations, the convergence
threshold was set to 107® a.u. on the L? norm of the objective functional
gradient. To obtain a reasonably accurate approximation to the Kohn—
Sham system, the input quantities for each functional F\(py) and D, (V)
were determined at the CCSD level of theory. All calculations were carried

116

out with the QUEST rapid development platform;**® an electronic-structure

code developed in Python and exploiting just-in-time compilation using the

Numba package. 198159
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7.5.2. Kohn—Sham Non-Interacting System

In Table 7.1, the optimized values of the non-interacting Lieb functional
Fy(py) and Gidopoulos-Davidson functional Dy(V) are presented for a
series closed—shell atoms and for the hydrogen molecule at several bond
lengths. Additionally, Kohn—Sham energy components are presented, in-
cluding the internuclear repulsion energy FE,,, the non-interacting kinetic
energy 715, the electron—nuclear attraction E,., the Coulomb energy Ej,
the exchange energy F,, and the correlation energy E.. These components
have the same definition when computed from Fy(py) and Do(W¥). For
comparison, the total kinetic energy 1" and total electron—electron interac-
tion energy W are included, along with the total interacting ground-state
energy Fj.

The consistency of the optimizations was verified by comparing the opti-
mized values of Fy(py) and Do(¥) presented in Table 7.1 with the energetic
components Ty and T respectively. The value of Ty was determined from
the Kohn—Sham orbitals obtained at A = 0 and the value of T, was obtained
by subtraction of T, from 7', where the latter was determined directly from
the A = 1 calculation. The Hy molecule provides a simple prototypical sys-
tem with which the variation between dynamic and static correlation may
be explored. At equilibrium geometry, the electron densities of the two
hydrogen atoms overlap substantially, thus binding the molecule and lead-
ing to both kinetic and potential contributions to the correlation energy.
As the interatomic bond is extended, the system approaches that of two
isolated hydrogen atoms, with no kinetic correlation energy; see Table 7.1,
where the value of the Gidopoulos—Davidson functional Dy decreases as the
interatomic bond length R increases, becoming just 0.0005 a.u. at R = 10.0

a.u.

7.5.3. General Interaction Strengths

In Fig. 7.1, results of optimizations pertaining to the generalized Lieb and
Gidopoulos-Davidson functionals, according to Egs. (7.9) and (7.30), re-
spectively, are presented for interaction strength A in the range 0 to 1. In
the right panel, the Lieb functional F)(py) is shown as a function of A for
the Hy molecule with bond length R = 0.7, 1.4, 3.0, 5.0, 7.0 and 10.0 a.u.
The variation of F)\(py) in A is broadly linear, indicating that T, y = 171 —T)
is relatively small and reflecting the dominance of the Coulomb and ex-
change energies in the two—electron energy W, both of which are linear in

A. The slope of Fy(py) in A becomes progressively smaller as the bond
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Figure 7.1.: F) of Eq. (7.9), right panel, and D, of Eq. (7.30), left panel,
in (a.u.) as functions of the interaction strength A for the Hy
molecule at internuclear separations R = 0.7, 1.4, 3.0, 5.0, 7.0
and 10.0 a.u.

length is increased. This behaviour reflects the fact that the Hy molecule
dissociates into two one-electron fragments with AE; + AEy + E. , — 0 as
R — oo (static correlation energy cancelling the Coulomb and exchange
energy).

In the left panel of Fig. 7.1, the Gidopoulos—Davidson functional D, =
Ty — T\ + X (W7 — W,) is also plotted as a function of interaction strength.
This functional adopts the value of T, at A = 0 and decreases with in-
creasing A to become 0 at A = 1. In contrast to the Lieb functional,
this small correlation contribution to the energy reveals the higher-order
dependence of the correlation energy on A at increasingly extended bond
lengths. As the bond length R increases and the system approaches one
of independent atoms, the value of the Gidopoulos—Davidson functional is
smaller at A = 0, reflecting a decrease in T.. However, it also exhibits more
pronounced curvature, indicating higher-order dependence on \ as static

correlation becomes more significant.

7.5.4. Constructing the Adiabatic Connection

As described in Section 7.4, the AC comprises a link between the non-
interacting Kohn-Sham auxiliary system and the physically interacting
system through variation in interaction strength, modulated by coupling—
constant A, with the density equal to the physical density of A = 1 for all A.
The AC integrand is expressed in Eq. (7.37), from which an exact definition
of the correlation energy may be constructed according to Eq. (7.38). Given
that the exchange energy scales linearly with A (for the linear—attenuation

AC path), the exchange contribution to Eq. (7.37) is simply a constant and
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may be subtracted to give the correlation component of the AC integrand,
Wealp) = Wi(p) — Wo(p). (7.41)

The Gidopoulos—Davidson variation principle of Eq. (7.30) and the Lieb
variation principle of Eq. (7.9) can both be exploited to calculate this in-
tegrand, using the same input py or ¥ but with a range of different values
of A, to construct the AC using Eq. (7.41).

The equivalence of the AC curves constructed from the Lieb and Gidopoulos—
Davidson functionals is confirmed numerically for the Hy molecule at the
same geometries considered in Table 7.1, with the AC integrands W, , plot-
ted as a function of A in Fig. 7.2. Here, values of W, , computed with the
Lieb functional Eq. (7.9) are represented by solid lines, whilst values ob-
tained from the Gidopoulos-Davidson functional Eq. (7.30) are denoted
by the point markers. It is evident from Fig. 7.2 that the AC curves of
these two methods agree to within the convergence of the optimization
procedures.

The correlation energy can be computed from these curves using Eq. (7.38)
and the numerical values of E, are presented in Table 7.1. The ratio |E.|/T,
has been used to assess the relative importance of static correlation.'®® The
|E.| corresponds to the area above each curve in Fig. 7.2, whilst 7, corre-
sponds to the area between each curve and a horizontal line defined by its
value of Wi (W). As R increases, this ratio grows and the curves approach
an L shape characteristic of systems dominated by strong correlation, indi-
cating that the value of T, is approaching zero, consistent with the effects

of hydrogen molecule dissociation discussed in Section 7.5.3.

7.6. Conclusions

The variation principle proposed in different contexts by Gidopoulos® and
Davidson '*® has been examined and shown to be closely linked to the Lieb
variation principle.® For the non-interacting system, the two functionals
approach the Kohn—Sham system from different directions. The Lieb func-
tional minimizes the non-interacting kinetic energy T subject to the con-
straint that the density is equal to that of the physical system, whereas
the Gidopoulos—Davidson functional maximizes the kinetic correlation en-
ergy T, under the same density constraint. In both cases, the optimization
can be cast in an unconstrained manner, with the external potential as a

Lagrange multiplier to impose the density constraint.
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Figure 7.2.: The correlation adiabatic connection integrand values (a.u.)
of Eq.(7.41), calculated using the optimization of Eq.(7.9),
lines, and Eq.(7.30), point markers, for the Hy molecule at
internuclear separations R = 0.7, 1.4, 3.0, 5.0, 7.0 and 10.0
a.u.

An extension of the Gidopoulos—Davidson functional to ensembles was
also presented, for which the associated functional can be shown to be con-
cave with respect to 4. This contrasts the pure-state functional which is not
concave with respect to W. The Gidopoulos—Davidson variation principle
has also been extended to general interaction strengths A, as has previously
been done with the Lieb functional.®!%9152 Utilizing this extension, it was
shown that either functional may be used to calculate the adiabatic connec-
tion between the Kohn-Sham system of non-interacting electrons and the
physically-interacting system, highlighting the close connection between

the approaches.
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8. Future Work and Summary

8.1. Future Areas of Research

The likelihood of using OF-DFT in applied chemical research in the near
future is low. Indeed even by using PKSA analysis one normally finds the
proposed OF-KEF yields inaccurate energies and cannot predict binding in
molecules. These errors are worsened when one tests how these function-
als perform in the optimisation procedures discussed in this work. Or in
other words testing these functionals in OF-DFT calculations show that no
current OF-KEFs is accurate enough to be used in chemical applications.
A damning statement considering we have had OF-KEFs since the 1930’s.
To conclude this thesis we will discuss some avenues for future functional
development and outline any initial findings we have found throughout this
work. We re-emphasise that all research undertaken in the following top-
ics should not be done using PKSA. We propose that the TRIM scheme

introduced in Chapter 6 is suitable for such studies.

8.1.1. Laplacian Level Functionals

Throughout this thesis we have assessed the performance of LDA and GGA
type functionals. If one expands the kinetic energy to fourth order, see
Equation (3.26), one gets the GEA4 functional which is a Laplacian depen-
dent functional. We can express a general Laplacian dependent functional
through

Fp) = / (1) f(p, Vp, V2p)dr, (8.1)

where f has differing analytic forms depending on the functional. Recent
work 1617163 has investigated the accuracy of new Laplacian functionals.
The research was conducted using PKSA which, as this thesis strongly
suggests, we should be sceptical of until one tries to optimise these func-
tionals. In QUEST we have implemented the Laplacian level Hessian. For
the implemented equations see Appendix A.3.3. In addition to some of the

Laplacian functionals introduced in this recent work we have also tested:
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GEA4; MGGA;'%* mGEA4;'%5 PP88; 66 MGEA4;'" RDA;"" and a range
of functionals proposed by King and Handy.'? In this limited study we
found that convergence was much more challenging for a general Lapla-
cian dependent functionals. However, for various modified (parametrised)
versions of GEA4 (mGEA4 and MGEA4) we found that convergence was
relatively simple. Future work should begin by investigating why Lapla-
cian dependent functionals are more difficult to converge the energy for
than their GGA counterparts.

8.1.2. Non-Local Functionals

In this thesis we have concentrated on local functionals. There has been
some recent nonlocal functionals which have demonstrated promising re-
sults for atoms. Liu and Parr'®® 17 studied the development of DFT in
terms of’well-behaved‘ functionals. These functionals have the following

form

P =C+ [tz

Y
1 3*F(p)
3 [ e gt 82

l r r r 63F<p) r|{drodr
- 3! /// plr)plra) ol 3)50(1“1)50(1"2)5/0(r3)d rcbeadrs

dr

The problem is that to implement the full expansion in Equation (8.2) one
has to know the functional derivative up to all orders

It was shown ™17 that the correlation energy, E.(p), and T'(p) — Ty(p)
can be expanded to good accuracy in a power series expansion where each
term had a different degree with respect to co-ordinate scaling. However,
this cannot be done for Ty as it has an exact degree of homogeneity with
respect to co-ordinate scaling of 2. Instead Liu and Parr'™ decided to
expand T in a power series of homogeneous functionals with respect to
density scaling.

Liu and Parr assumed that the series in Equation (8.2) existed and con-
verges uniformly such that it is sufficiently accurate after n terms. From
this assumption they then showed that F'(p) can be expanded in terms of
functionals with homogeneity of (n 4 1) with respect to density scaling.
They then proposed that the F(p) in Equation (8.2) can be expressed as a
power series of some local functionals D;(p). These functionals are homo-

geneous with respect to density scaling with a degree of homogeneity, n;,
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and are defined through

[ o0 = ;10 (53)

The power series expansion is then given by
F(p) = CiD;(p)V (8.4)
j=1

where C; € R are to be determined. In Liu and Parr’s work these coeffi-
cients were found by a least squares minimisation using the Hartree-Fock
reference values for the neutral atoms with Z = 1---18. These values are:
C1 = 3.26422; C5 = 0.02631; and C5 = 0.000498.
The functional
Fy(p) = G5[Dy}, (8.5)

where D; is homogeneous of degree m with respect to coordinate scaling,

has an explicit form of

fwm:c{/AH@um@{ (8.6)

Such that Fj is also homogeneous of degree m with respect to coordinate

scaling. The Liu-Parr expansion is then approximated through
Flp) =Y F, (8.7)
j=1

For T the degree of homogeneity with respect to coordinate scaling is 2

and, therefore, the Liu-Parr expansion of Ty takes the form

zxmzégq{/ﬂH@r. (5.5)

Liu and Parr truncated this expansion after n = 3. In more recent work

17 expanded up-to 7th order.

using the Liu-Parr expansion Karasiev et al.
They showed that energies do improve — using post-SCF methods — when
one includes higher order terms in the expansion as one expects. Further-
more, they showed that using a shell-by-shell mean square optimisation
of the expansion coefficients, {C;}, yields a dramatic improvement in the

errors.
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Table 8.1.: Self consistent total energies in E;, from solving the Euler equation using non-local OF-KEFs and Dirac X as the XC functional.

The basis used was the ETOF basis. The MAPE/MAE was computed with respect to KS-D/aug-cc-pV5Z value

OF-KEF H He Li Be B C N O F Ne MAPE MAE
NL1 —0.899946 —4.057250 —9.987866 —18.975405 —30.848279 —47.469683 —62.368489 —85.533084 —113.969828  —147.350529 33.7  8.200446
NL2 —0.903411 —4.085698 —10.088722 —19.144389 —31.537157 —48.391760 —69.218550 —89.177149 —117.731125  —147.350529 36.8  9.817259
NL3 —0.903357 —4.084844 —10.084231 —19.211264 —31.499453 —48.309774 —69.060140 —88.902693 —116.082433 —156.254700 37.3  10.493699

KS-D | —0.457073 —2.723591 —7.19339 —14.223277 —24.067774 —37.113587 —53.7092 —73.999839  —98.477731 —127.4904408

M. S. Ryley

Variational Solutions in OF-DFT

166



CHAPTER 8. FUTURE WORK AND SUMMARY

8077067 LeT— TELLLY'86— 6E8666 €L— G60L°€G— L8GETTLE—  PLLLIOVC— LLTECCVI— 6EE6TL—  T6S€cLC— €L0L87°0— | d-S¥
¥6L99¢°0 T¥ GO80TV LcT—  €0E€ST066— CILEELTL— T6CELETS— TPOESEV'LE— GOCBETVC— LCT69T¥I— GSPRLT'L— 9€00VLC— 09.8T9°0— €IN
0967770 €7 8I8LBC'8CT—  988LEG'66— G600€0°GL— 9€CCEGTE— €069TSLE— €CYELTVC— O9TCE/TVI— ITTERT'L— €EPCIVLC— €6L8T9°0— ¢'IN
€C00ST'T ¢'G L0C8TG'6CT—  8GCE9Y'S6— ELV6IGCL— 6690L6°CS— GP966S°9¢— TECTLY'EC— TG6CE6°ET— 9PG9L0°L— 99T90L°C— SG¥8IT90— T'IN

AVIN. ~ HdVIN °N Aq O N 9) d °d T °H H CICDICLO)

‘Teuor}ouN) 9URYDX0 PUR SISR JO 910D dUIRS oY) M So1310ud T, J(I-S 03 10adsor yam pajnduod sem qVIN/AJVIN
AU, SAAM-AO [B20[-U0OU I0] — 98URYDIXd JRII(] pue 7GAd-00-8ne Suisn — so13Isuop Gy SUIsn pajen[eas U5 Ul S9ISI0UL [RI0], :°E'S 9[qR],

167

Variational Solutions in OF-DFT

M. S. Ryley



CHAPTER 8. FUTURE WORK AND SUMMARY

In Table 8.1 we display the energies predicted by the non-local function-
als. Although Karasiev et al. parametrised up to the 7th order we found
that the functional potentials were unstable near the nuclei due to the high

/3 Thus we could not converge the energy

powers of the density e.g. p
when we include 4" order or higher terms. For the non-local functionals we
could converge the energy but, unfortunately we found that the predicted
energies were not as good as the TFDW models presented in Chapter 4.
Furthermore, if we compare Tables 8.1 and 8.2 we see there is a large in-
crease in the MAPE/MAE’s going from PKSA to self-consistent analysis.

The increase is around 700-800%. Again we see that we should really be
testing these functionals in codes such as TRIM.

Future work for non-local functionals should be focussed on re-parametrization
to minimize the errors in Table 8.1 rather than minimising the errors with
respect to Hartree-Fock values. Furthermore, it would be interesting to
study the potentials as in Chapter 5 to see how the kinetic potential be-
haves with respect to the KS potential. In addition it was noted by Liu
and Parr that these non-local functionals are not size consistent, however
recently '™ this issue of size consistency for exchange correlation functionals
in KS-DFT was corrected. It would be interesting to do something similar

for these kinetic functionals.

8.1.3. Machine Learning in OF-DFT

Machine learning (ML) is a topic which has garnered much interest in the
general population. For example, one can find plenty of videos online of-
fering instruction on the topic. Due to the increased computing power
available to researchers there has been lots of interest in using ML in com-
putational chemistry. For example, ML has been used to predict properties
of structures after being trained from DFT calculations.'"®17" ML has also
been used to study properties of solid state matter.!™ Furthermore, ML
has been used to approximate density functionals.'”™¥ Snyder et al.!8°
used a type of ML called kernel ridge regression to produce accurate self
consistent OF-DFT densities and energies. This OF-DFT scheme was only
been demonstrated for 1D systems only. See Li et al.'®! for details on this.
However, there has been recent work which extends this for 3D molecular
systems. 182

Recent work by Golub and Manzhos'®3 could provide a starting point for
future research utilising the TRIM scheme presented in this thesis. In this

work they used neural networks to re-parametrise the fourth order gradient
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expansion (GEA4) of the kinetic energy density (KED). Their calculations
were undertaken using the PROFESS®? code. This meant this work was un-
dertaken using a plane wave basis and a pseudopotential. In this work they
compared the KED from KS-DFT to the KED’s of their re-parametrised
gradient expansions for Al, Si, Mg, HyO and CgHg. They found the re-
parametrisation of GEA4 using neural networks lead to an improvement
in the KED errors with respect to the KS-DFT reference. However, they
pointed out that using the pseudopotential caused numerical instabilities
near the nuclei. They found that by treating more electrons explicitly they
could resolve these issues. As the schemes presented in this work are all-
electron and can converge the energy for GEA4 type functionals we are
in a good position to attempt the same re-parametrization, using neural
networks, of the KEDs (or indeed potentials) for a wide range of chemical
systems. It would be a good step forward in OF-DF'T research if the find-
ings by Golub and Manzhos can be extended to a wider range of chemical

systems.

8.2. Conclusions

Method development in electronic structure theory often strikes a compro-
mise between accuracy and computational cost. In this thesis we have been
primarily focussed on OF-DFT which is a method which promises to be a
method with ultra low computational cost. This has been used to study
metallic systems with millions of atoms using purely quantum mechanical
methods. %" In OF-DFT one computes the total energy using functionals
of the ground state density only. This is in contrast to KS-DF'T where one
uses orbitals. The use of which leads to an increase in computational cost
due to the fact in KS-DFT we have a set of non-linear eigenvalue equations
to solve. In OF-DFT there is only one non-linear variational problem to
solve. There are two main challenges in OF-DFT development for chemical
systems. One is in the development of accurate OF-KEFs. However, in this
work we have focussed on the second issue which is how one solves for the
ground state density and energy for a given OF-KEF for chemical systems.

In Chapters 2 and 3 we outlined the underlining theory of this work. The
main conclusion from this chapter is that the optimisation at the heart of
OF-DFT is a convex-concave saddle point optimisation. In Chapter 4
we discussed an approach to the optimisation problem which breaks down
the saddle point optimisation into a series of nested minimisations. This

approach was developed by CCH? and we have extended it so that we
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can converge the energy for and, therefore, investigate, a wide range of
OF-KEFs.? We found that some functionals could not be converged due to
their analytical form. This was not noted in the various papers introducing
these functionals because they relied on PKSA. For the functionals that we
could converge the energy for we found that the energy errors with respect
to KS-DFT for atoms and molecules were much poorer compared to the
energy errors generated using PKSA. Upon further analysis we discovered
this increase in error was due to the inaccurate densities one generates using
the KEFs in variational calculations. Once again PKSA did not provide any
indication of this. The overriding conclusion is that one should be sceptical
of conclusions based on PKSA of proposed KEFs and future research should
endeavour to use the optimisation methods of the type discussed in this
thesis.

In Chapter 5 we presented a small study on the potentials which are com-
ponents of the Euler equation generated from the optimisation discussed
in Chapter 4. We discovered that the balancing act between the potentials
is very susceptible to inaccuracies in the chosen basis. Furthermore, we
demonstrated that future work which relies on forces generated by OF-
KEFs, for example, geometry optimisations, one must include a Pulay like
term. This Pulay term, however, does not appear if one uses plane wave
basis sets. In Chapter 5 we also investigated how this balance of poten-
tials can affect the ground state density computed using the optimisation
procedures outlined in this work. This study concentrated on a few linear
combinations of Ty and Tyw. We demonstrated how the resulting poten-
tials can affect the predicted ionisation energy and radial density. In future
work it would be instructive to develop functionals which reproduce the po-
tentials exhibited in KS-DFT and to explore its effect on the densities and
energies for atomic and molecular systems.

In Chapter 6 we introduce an optimisation scheme,* TRIM, which ex-
ploits the fact that the ground state density is generated through a saddle
point optimisation. Unlike the CCH scheme the TRIM scheme simultane-
ously optimises the chemical potential and density. This yields a scheme
which is far more efficient in terms of iteration count. Indeed when com-
paring the TRIM, CCH and Lopez—Acevedo® schemes we found that the
TRIM scheme outperforms the rest when it comes to converging the energy
for a wide range of functionals and doing so efficiently. However, our cur-
rent implementation of the TRIM scheme requires a matrix diagonilisation
which is a costly step. Future development of the scheme should focus on

reducing the cost of this step. This matrix diagonilisation can be avoided
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as we do not need the full spectrum; only the lowest eigenvalue is required.
In this case numerical methods such as the inverse iteration method do
exist for this task.!8*

We also investigated the importance of the initial guess for density in
molecular calculations. We found that using superposition of atomic den-
sities (SAD) for this guess improves the convergence rates dramatically.
Indeed it is more efficient to conduct atomic optimisations to generate the
guess then run the molecular calculation compared to just running a molec-
ular calculation using a random guess. The reason for this was explored by
examining the structure of the Hessian in the initial stages of the calcula-
tion. We found that by using a SAD guess the Hessian structure is very
close to what it should be at the convergence point, that of a first order
saddle point, meaning the TRIM scheme rapidly becomes a simple Newton
step method. The TRIM scheme is suitable to be used for assisting the
development of accurate OF-KEFs and investigating desirable properties
such as potentials.

In Chapter 7 we investigated a proposed variation principle from Gi-
dopoulos® for the determination of Kohn-Sham effective potentials was
examined and extended to arbitrary electron-interaction strengths and to
mixed states. Comparisons were drawn with Lieb’s convex-conjugate func-
tional, which allows for the determination of a potential associated with
a given electron density by maximization, yielding the Kohn—Sham poten-
tial for a non-interacting system. The mathematical structure of the two
functionals was shown to be intrinsically related; the variation principle
put forward by Gidopoulos was shown to be expressed in terms of the Lieb
functional. The equivalence between the information obtained from the
two approaches was illustrated numerically by their implementation in a

common framework.
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A. Equations for the gradient
and Hessians used in this

work

A.1. Preliminaries

We wish to optimise the following Lagrangian:

Llp(r)] = Elp(x)] - N, (A1)

where F is the total energy, u is the chemical potential and N is the number
electrons associated with the current ground state density. We expand the

square root of the density to enforce positivity,
) 1
p2(r) = Ni Y cump(r). (A.2)
k

Where Nj is the correct number of electrons for a given system. From now
on the dependence on r will be implied, not explicitly stated. Our goal
is to optimise the Lagrangian, for a fixed chemical potential, to find a set
of optimised coefficients {copt}. We required analytic expressions for the
Hessians and gradients of the Lagrangian with respect to the expansion

coefficients, ¢;.

A.2. Gradient

The chemical potential , pu, is not constructed using a basis and so the

variation of the Lagrangian with respect to the basis is given by

oL OE DN
8cl- N 8ci M&cz ’

(A.3)
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We can also write, using Equation (A.2),

N = /pépédr = NO/chnchmldr. (A.4)
k !
This means
ON = NO/ ; Z CkMi + N Zcml dr = 2N0/mp§dr. (A.5)
dc; k !
The derivative of the energy can be split as the following,

oE 0T, OF oE 0 : 3
_ + YEXC + J + /drUeXtNOZ chnkNoz chnla (A6)
k l

aCi B 8ci (%i aCi 8c,~

with 7Ty the non-interacting kinetic energy, Fxc the exchange-correlation
energy, Fj the Coulomb/Hartree energy and ve the electron-nuclei at-
traction.

Equation (A.6) can be re-written as,

075 dp dExc Op / 6Ey dp / .
d d —_d 2N, Vi p2dr. (A
/ dp Jc; r+/ op O Tt Sp Oc r+2No [ nivesipzdr. (A7)

We now require the following derivative,

dp 0 .
de;  Oc; No;c,mk ;Cﬂ?l = 2Nonip=. (A.8)

Combining Equations (A.3), (A.5), (A.7) and (A.8) one gets the final and

implemented form of the analytic gradient,

(’35 5TS 6EXC 5EJ 1
= 2N, N p— — <t — 2dr. A.
o o/ﬁz(ap + =5, T 5, e u)p r (A.9)

A.3. Hessian

The Hessian is:

QL T, 0*Exc O°Ey | O ) 3 O°N
+ XC T 4 /drvext]\fo2 Z ke Ng Z GmMm—H
k l

Jc;0c; B Jc;0c;  Oc;0c;  Oc;dcj D0y Jc;0c;
(A.10)
The final term in Equation (A.10) evaluates as:
_uny [arZs > ek = —2 N/ 7;dr (A.11)
KN 8cj i . kT = WiNg [ T)75Ar. .
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The second term from the right in Equation (A.10) evaluates similarly

2Ny / VextNiN;dr. (A.12)

Now for the first of the slightly tricky terms, the third term in Equa-
tion (A.10). Firstly the Coulomb energy can be written as

// drldrz,
vy — 1"2|

_ Mo CLCrCmCr // 771 r1 TIk ry nm<r2)nn(r2)dr1dr2, (A13)

2 ’I']_ —rz‘

l,k;m,n

N2

CCkCmCn(lk|mn).

l,k;mmn

So now we can begin the differentiation of Ej.

O’Ey  N§ 0 {

dcde; 2 Oc D cxcnea(kimn)

kmn
+1; Z ciemen(ljlmn) + n; Z ccpen(lkljn) +n; Z clckcm(lk|mj)]
Ilmn lkn lkm
0 , :
_ N2a ( Z CrCmCn(Jk|mn) + n; chckcn(lkbn)).
kmn lkn

(A.14)

Evaluating the next derivative leads us to

0*FE . o .
80-—62» = N§ [777377]' Z CmCn(Jilmn) + min; Z cxen(Jh|mi) + n;mi Z cxcn(Jhlim)
i0C;j

mn km kn

ning Y cxen(ikln) +mimy > eer(kl|ji) + nim; Y Clcn<li‘jn):|
kn kl In

kl kl
(A.15)

The only two terms that remain are the second-derivatives of the non-
interacting kinetic energy functional and the exchange-correlation func-
tional. The form of these two change whether they are LDA,GGA or

Laplacian level. So, we can write a generic functional as

Flp,Vp,V?p] :/f(p, Vp, V2p)dr. (A.16)
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A.3.1. LDA

Using the chain rule and the product rule one finds that:
0 (OF Op (0 0f(p)\ , 0f(p) [ O 9p
— = — — dr. Al
ac; (002-) / <3ci (acj a0 ) T \ag o ))& AL
Applying the chain rule again gives,

OFlpl _ [ 9p &f(p) Dp , Of(p) ( p
Oc;0c; B / ¢ 8p(r)28_cj dp(r) (acjaci)dr. (A.18)

Now using Equation (A.2) we can write

0 0
% = ? (NO Z Co M Z Cyﬁy) = 2]\7077m Z CrMk- (Alg)
m m - Y &

In addition

e O > = 2N, (A.20)
acnacm B 8Cn 07lm . Crllk | = 0llm M- .

So we now find that
O°F 0 9
ol /4N§77ﬂ7‘$ Z am Z CiMk + Z@W(F)dr
1 k

aCiaCj N 0
)

- <m

In order to cast the derivatives in a form which is callable from XCFun, we

(A.21)

dp

0? o)
ANG ;p(f) Z am Z ank + 2NoM
I k

do the following;:

dp  Opa Op  Ops Op 2

+

A.22
Opa apﬁ ( )

of _ 0f 9pa afapﬁ_l[af af]

o2f  0%f
+
Op% ~ “OpaOps  Opj

. (A.23)

A.3.2. GGA

For a GGA, which is dependent on p and Vp. One can write

PFl)_ 0 [0pof  9Vp Of
Oci0c;  Oc; \Oc; 0p = Oc; OVp/’

(A.24)
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where we have used the following notation

(1) = [ fwar
The right hand side of Equation (A.24) expands to

Op of dp 0 [0f]  &Vp Of 0Vp O [ 0f A25)
dc;0c; Op — Oc; Dc; | Op Jc;0c; OV p ~ Oc; O¢; |OVp] /]~ '

With some manipulation one arrives at

< Pp Of 0*Vp Of 82f0p@>

Oc;0c; Op ~ 0c;0c; OV p — 0p? Oc; Oc;
O*f OVpoVp N 0% f Jp dVp  9pIdVp '
oVp? 0c; Oc;  OVpdp|0c; dc;  Oc; Ocj

(A.26)

The first term in Equation (A.26) is very straightforward as we have derived

it already for the LDA. It is given by

9% Of of
— ) = 2Ny (n;| = n;) . A2
(oo ) =20 (a3 1) (A27)

Before going any further we need to note three things. Firstly,

Vp = NQV (Z Cﬂ]l(I‘) Z CkT/k(I‘))

l k

=Ny (Z cenk(r)V (Z clm(r)) + Z am(r)V <Z cknk(r)> )

=2No > Vi(r) Y cm(r).
k l
(A.28)
Secondly,
oV
acf) — 2N, (an (r)> am(r) +m;) cka:(r)) :
J l k

PV (A.29)

= 2Ny (1:(r) V() + 1;(x) Vps(x))

Oc;0c;
= 2N0V(7]z(r>77] (I‘))
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And finally that XCFun does not return derivatives with respect to gradi-

ents but returns derivatives with respect to these two quantities,

Gag = V,Oa . Vpg

(A.30)
Goa = Vpa V.

The second term from Eq. (A.26) requires,

of _ 9f 9¥pa  Of av,ogzl( of . af)
OVp 0Vp, OVp  OVpg OVp OVp, OVpg

C1[0Gae Of  0Gas Of  0Gss Of  0Gag Of

§{avpaac:w OV pa 0Gas = OV pg 0G a5 anBaGaﬁ]

1 of of 8f of
{QV’)“ 9Go T VP50, StV aaaﬁ]

T{WJF@J“ 3f}

0Con  0Gay T 0G

(A.31)

and so,

*Vp Of of of of
) =N . , ,
<3Ciacj 3Vﬂ> ’ < [8Gaa T 9G, 8G55} VoV (mir)n; (1‘))>
(A.32)
The third term of Eq. (A.26) can be taken from LDA functional derivative,

82
ANG <77i77j Z Cr Tk Z sza—pé> : (A.33)
p I
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The fourth term from Eq. (A.26) requires some manipulation. Firstly,

82f_826f+8f+8f

OVp:  OVp| 2 |0Gaa 0Gas  0Gas

1/ 0

_f+8f+8f Vol 0 of 0 of 9 0f
8Gaa 8Ga5 8G55 2 8Vp 8Gaa (9Vp 8Ga5 8Vp 8G55

A Vp P’ >’f 0*f
_ 2, YP(y _9J _ 97
24 (V caGz TV GG G, Y 0G0,
>’f *f >’f
oV A S Y -
R LT e R TR L TE R TeRp
>’f >’f >’f
oVps— oy YT
VG Y P3G 0G0, Y P0G 0C s
2f >’f °f
TV GG Y G s0GS, T2V 8G§B>
A Vp-Vp[ &f  &f o2 o2
__+pp[r{+2f °2f+2 U /
> 1 oGz, 962, T 963, T0Gam0Gas | 0Ga0Gas
02 f
)P —
i aGﬁﬁaGaﬁ}
A Vp-Vp
_ A, Ve Vg
2T T 1
(A.34)
Therefore,
O?f OVpIVp ) Vp-Vp
<8Vp2 de; 6c,~>:2N0 v szlzcml -V mzl:cmz {A+ 5 D} .
(A.35)

The final part of Eq. (A.26), requires the following derivative,

of 0 1 8f+8f
OVpdp OVp|2\0pa Opg

1 82 62 2 82
== (Q—pra + —pr + o7 5~ Vpa+ —prg

9padCo 990G o 0padCan * P T 9padCiss
2 2 2 2
i 3%32% Vet 3ﬂjaéﬁa Vst 23%325/3 Vst 3ﬂjaéﬁa Vpa)
1 2 2 2
=qvr [apfa](;w * apfaéﬁa * apfa](;ﬁﬁ
2 2 2
i 8p§(‘9éw i 3pjaéﬁa i 3Pjaéﬁﬁ
= %Vp.

(A.36)

M. S. Ryley Variational Solutions in OF-DFT 191



APPENDIX A. EQUATIONS FOR THE GRADIENT AND HESSIANS
USED IN THIS WORK

Therefore

*f [9p9dVp N dp OV p
OVpdp | Oc; Oc;  Oc; Oc

N02 <GVP ) [ni Z Cnn V (nj Z C””") +1; Z Cnlln V <77i Z Cn”n)

(A.37)

A.3.3. Laplacian Level

We shall discuss the Hessian of Laplacian functional which are dependent

on p, Vp and V?p. The general form of a Laplacian functional is given by

X[p] = / f(p,Vp,V2p)dr = (f(p,Vp,V?p)). (A.38)

The first derivative with respect to variations of the expansion coefficients

18

X J0pdf 9Vp af 9V of
aCj N 8Cj ap aCj 8Vp aCj 8V2p '

The second derivative is

(A.39)

O*f & of Oplopdf 0OVp 9f oV3p 0°f

dc;j0c;  Oc;Oc; G_p 8_0J [801 0p? dc; OV pop Jc; 8V2pap}
PVpdf OVp[op O°f oVp 0*f OV?p  0*f
8ciacj8_p Jc; [8@ 8p8Vp+ dc; OV p? + ac; 8V2p8V,0}

0°V?p of oV3pl[op O0°f oVp  0*f ov?p 0*f
Jc;0c; Op Jc;
(A.40)

Only the fourth, eighth, ninth, tenth , eleventh and twelfth terms in Equa-
tion (A.40) are not known already from LDA and GGA level. We require
knowledge of how the Laplacian functional is expressed with respect to the
basis. We use the fact that

(f9)"=r"g+2f'd+ fq" (A.41)
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Then,
V?p = NV? (Z CkMk Z Cﬂ?z)
3 82
= NmZZI 0x2 (Z CrMk Z Cﬂ]z)
3 ) Z Z 5 Ok o
cka 2 am + ch Z l@xm
3 2
TR Eti ]
l k Lm=1 " "
= ZNZ Z CrCl [VQUWZ + Z gzk 85;71 ]
I & e
We will also need,
) - 3
8;@? =2N | ¢ (Vzmm + ZZl aam ;Z];) + ch (V hTle Z g:::?i é?gm)]
o 2 anz 87)[ 87}2 ank
= 2N ZC[V 77i771+zcl D O, +chV Ukﬁz‘FZCkZax Ox ]

— 9N chv nmz+2zckzaa;” gg’“ +chV M | -

(A.42)

(A.43)
For the fourth term we require the following derivative,
0 f B 2 1{ af of ]
0pOV2p  0p2 |0V, OV?ps
1 o0 f 0 f 0 f o0 f
U 2 + 2 + 2 + 2
410V paapa ov paapﬁ ov pﬁapa ov pﬁapﬁ
= Flp].
(A.44)

Therefore the fourth term in Equation (A.40) is given by,

O W) DA STED DR CVEE) i o )
k " y

(A.45)
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The eighth term in Equation (A.40) further requires,

*;fr 0 {2(8f+8f+8f)]
OV pdV3p V3| 2 \0Gaa 0Ga.3 0Ggs
_Vp 0% f *f O’ f

2 + 2 + 2
4 [0G4a0V?py  0Goa0V%ps  0Ga30V?p, (A.46)
Vp o2 f N Pf N 0 f }
4 |0G gav Pp 8G558V2pa 8G558V2p5
[ ]

+

Q

Therefore the eighth term in in Equation (A.40) is,

<N2VpG (773 Z Cl771> [Z aVenm + Z eV i + QZCk Z 86:;7@ ggk ] >

A 47)
The ninth term in in Equation (A.40) further requires,
9*Vp on; Oni.
=N | n,V? V2, + 2 b - A48
aCiaCj (77 77] + 17.7 77 + Z axm amm ) ( )
and also )
% = V2, = V2. (A.49)
Therefore the ninth term in Equation (A.40) is given by,
of of 2 n; Oni
N 'V V20 + 2 J
< (aVQPa " 8V2p5) (n CRRCA Z axm 0T,
(A.50)

The tenth term in in Equation (A.40) requires nothing new, so one can

immediately write down this term as

<N277i >k Flp)

k

ZCZV i +ZCkV M +2ch2 gz’ ggk]>

(A.51)
The eleventh term in in Equation (A.40) also requires nothing new and is

given by,

<N2VpG[p]V<77z‘ Zcml> [Z aV nm + chV kTl + chk Z gz] g:jk ] >

l (A52)
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The twelfth term of in Equation (A.40) further requires,

>*Pf 1 9 of n af
8V2p2 - QaVQP 8V2pa aVQpa
1, 0? 02 02
= zf + 2f +2-59 4 7—) (A.53)
4°0V<p: 0V pB OV=p,0V~<pg

Therefore, the twelfth term in in Equation (A.40) is

on; 0 .
<N2H [chv nim +Zc;€V Nk, —|—2ch Z 3;]] 8:;%] <—>]]> (A.54)

The notation [i <> j] stands for an expression which has the form to the

expression on its immediate left but with the ¢ and j labels interchanged.
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B. Equations for the
spin-polarised potential used

in this work

B.1. Derivation

For spin-polarised DFT we can consider a functional of the following form

Flp] = /f(Poanv V pa, Vpg)dr (B.1)

The functional derivative with respect to the total density can decomposed
into variations with respect to the o and 8 components of the density

through,
OF  OF  OF

_— =+ —. (B.2)
op 0pa 6/05
From the calculus of variations we know that
oF 0 0
— = —f -V- / ) (B.3)
0pa  Opa OV po
Here we should note that XCFun expects a functional with the following
form
Flpl = [ $(pu: 03 Gos G, Gos) (B.4)
where

Goor = Vg - V7.

Therefore we can write Eq. (B.3) as

af of

SF Of
o 0o Y P0G s |

0pa Opa

V. {2Vpa
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Expanding the dot product and use of the chain rule leads to ,

oF_of
8pa Opa

of 0*f O f O f
—9|wv? . A -4 )
[V P3G Y {Vp a0+ P0G+ 22 Y O G m0Ce

of o2 f o2 f o2 f
|2 ) _—J S 3|
[V P3G s {Vp“ DpedCim Y PG U,Z:UVG‘” 0G0 0Cin
(B.6)
So therefore,
oF _of  Of
5P apoz apﬁ
of o f o2 f o f
—_— 2 . — — ) ——
’ [V P3G {V” a0+ P TG+ 22 ¥ O G 0
of >’f O’ f >’ f
J— 2 . Y
[V Lrem {V’)aa 0o oG O_Z;UVG”" G 0Cim
of *f >’f >’f
- 2 2 aa . A~ GUU/—
[V Y55G0 + Vs - {Vp 8pa8053+v apﬁaGer;aV 56,0,

of 0°f o*f o*f
J— 2 . P .
[V pcx aGaﬁ + Vpa {Vpa a aGﬂa V B 81068G5a + O;T VGO'U 8G0013Gﬂa

(B.7)

To provide the explicit expressions which were coded into QUEST the only

remaining terms which require manipulation are of the following form

o2 f
. ) . B.
V {§ Voo aGw/aGm} (B.8)

o'>o0
Firstly,
B apg apg’ N apa apo" N apa apo"
- Or Ox oy Oy 0z 0z

Then the components of the spatial gradient are given by,

GUU’

(B.9)

aZpo' apo" N apo 82,00’ N 62,00 apo" N apo a2pa’ N 82p0' 8/)0’ N apa 62po"

(VGcro")i = 81;8% ax ax axaxz 8yaxl 8y ay ayaxz azaxl aZ aZ azaxz

= P00 Pe t PePaw, T Pywi Py Py Py + 0207 + LT
(B.10)
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The dot product can therefore be expressed as,

3
V" Goy = > 15 (pix,.pi’ + 050, + 050 0]+ P05, + 05007 + prZ;i) :
i=1
(B.11)
We have 3 unique pairs of spin in Eq. (B.8) to sum over; («, «), (8, 8)and(«, /).
The (o, «) part is,

3
Vp* Goa =2 Zpgz (PS5 + PowiPy + pe02). (B.12)
i=1
Similarly for the (3, 8) term is,
3
V" G =2 00 (0 + 0y + 02.02) (B.13)
i=1

The (a, 8) term does not have any symmetry and so just evaluates to

3
Vo Gag = 0 (o0l + P20, + 0%l + 0500, + 0502 + 0202,.).

=1
(B.14)
Therefore Eq. (B.8) is equal to
3 82f
2> A (P + ey + 0502) 5+
i=1 ao
3 82][.
205 (Pl iy P2ai2) 5
i=1 o
i ( B B B B8 B B8 ) 82f
Pa\PaeiPa + P Paz, T Pya, Py + Py Pya, + 0oz + P2 0%0,) 5 A
- 0G 0a0G.as
(B.15)
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