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Abstract

Localization is one of the fundamental technologies for many applications such as

location-based service ( LBS ), robotics, virtual reality ( VR ), autonomous driving,

and pedestrians navigation. Traditional methods based on wireless signals and in-

ertial measurement unit (IMU) have inherent disadvantages which limit their applica-

tions. Although image-based localization methods seem to be promising supplements

to previous methods, their applications in the indoor scenario have many challenges.

Compared to the outdoor environments, indoors are more dynamic which adds diffi-

culty to map construction. Also indoor scenes tend to be more similar to each other

which makes it difficult to distinguish different places with similar appearance. Be-

sides, how to utilize widely available 3D indoor structures to enhance the localization

performance remains to be well explored.

Deep learning techniques have achieved significant progress in many computer vi-

sion tasks such as image classification, object detection, monocular depth prediction

amongst others. However, their application to indoor image-based localization has

not yet been well studied. In this thesis, we investigate image-based indoor localiza-

tion through deep learning techniques. We study the problem from two perspectives:

topological localization and metric localization. Topological localization tries to obtain

a coarse location whilst metric localization aims to provide accurate pose, which in-

cludes both position and orientation. We also study indoor image localization with

the assistance of 3D maps by taking advantage of the availability of many 3D maps of

indoor scenes. We have made the following contributions:

Our first contribution is an indoor topological localization framework inspired by the

human self-localization strategy. In this framework, we propose a novel topological

map representation that is robust to environmental changes. Unlike previous topologi-

cal maps, which are constructed by dividing the indoor scenes geometrically, and each

region is represented by the aggregation of features derived from the whole region,

our topological map is constructed based on the fixed indoor elements and each node

is represented with their semantic attributes. Besides, an effective landmark detector is
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devised to extract semantic information of the objects of interest from the smart-phone

video. We also present a new localization algorithm to match the detected semantic

landmark sequence against the proposed semantic topological map through their se-

mantic and contextual information. Experiments are conducted on two test sites and

results show that our landmark detector is capable of accurately detecting the land-

marks and the localization algorithm can perform localization accurately.

The second contribution is that we advocate a direct learning-based method using con-

volutional neural networks (CNNs ) to exploit the relative geometry constraints be-

tween images for image-based metric localization. We have developed a new convolu-

tional neural network to predict the global poses and the relative pose of two images

simultaneously. This multi-tasking learning strategy allows mutual regularizations for

both the global pose regression and the relative pose regression. Furthermore, we de-

signed a new loss function that embeds the relative pose information to distinguish

the poses of similar images of different locations. We conduct extensive experiments

to validate the effectiveness of the proposed method on two image localization bench-

marks and achieve state-of-the-art performance compared to the other learning-based

methods.

Our third contribution is a single image localization framework in a 3D map. To the

best of our knowledge, it is the first approach to localize a single image in a 3D map.

The framework includes four main steps: pose initialization, depth inference, local map

extraction, and pose correction. The pose initialization step estimates the coarse pose

with the learning-based pose regression approach. The depth inference step predicts

the dense depth map from the single image. The local map extraction step extracts a lo-

cal map from the global 3D map to increase the efficiency. Given the local map and gen-

erated point cloud, the Iterative Closest Point (ICP ) algorithm is conducted to align the

point cloud to the local map and then compute the pose correction of the coarse pose.

As the key of the method is to accurately predict the depth from the images, a novel

3D map guided single image depth prediction approach is proposed. The proposed

method utilized both the 3D map and the RGB image where we use the RGB image to

estimate a dense depth map and employ the 3D map to guide the depth estimation. We

show that our new method significantly outperforms current RGB image-based depth

estimation methods for both indoor and outdoor datasets. We also show that utiliz-

ing the depth map predicted by the new method for single indoor image localization

can improve both position and orientation localization accuracy over state-of-the-art

methods.
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RelRLoss Relative Pose Regression Loss

RFID Radio Frequency Identification

RPRU Relative Pose Regression Unit

SfM Structure from Motion

SLAM Simultaneous Localization and Mapping

ST Stairs

UWB Ultra Wide-band

VLSIL Visual Landmark Sequence-based Indoor Localization

VR Virtual Reality

WDL Wrongly Detected Landmarks

WLL Wall

WMTT Women’s toilet tag
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CHAPTER 1

Introduction

According to the report from the Environmental Protection Agency ( EPA ), people

spend above 90 percent of their time indoors. One of the basic needs of people in in-

door environments is to know where they are. The purpose of indoor localization is to

address such a problem. Various approaches and systems have been proposed based

on wireless signals or inertial measurement unit (IMU). However, due to the strict re-

quirements on deploying sensors for wireless signal-based methods and the decreasing

accuracy of IMU-based methods over time, they are limited to certain scenarios.

Image-based indoor localization methods have attracted researchers’ interests, and

grow into a hot research topic as they do not have the limitations that previous methods

face. Besides, they have been a vital component of many location-based applications,

such as augmented reality, tourist navigation and movement tracking, as well as many

computer vision tasks such as robotics, structure from motion ( SfM ) and simultaneous

localization and mapping (SLAM ). The image-based indoor localization problems can

be categorized into topological and metric localization. Topological localization pre-

dicts a location that represents a region of scenes. A topological map is a graph and its

nodes indicate the regions of the scenes. The topological localization intends to find the

node where the images are taken. It is a highly abstract and sparse representation of

the environment and is very suitable for navigation. It is also user-friendly and can be

easily understood by the human being. Metric localization aims to estimate the exact

position (X,Y,Z) as accurate as possible. The map of the scene is expressed by continu-

ous coordinates. Metric localization is very important in many applications like robot

navigation and virtual reality.

This thesis deals with the image-based topological and metric localization for indoor

scenes. For topological localization, we intend to find an effective and understandable

representation of nodes and study new localization algorithm for the new presentation.
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For metric localization, we aim to develop fast and accurate image-based localization

methods in two cases: without referenced 3D models and with referenced 3D models.

In the following sections, we first give a basic introduction to the wireless signal-based

localization approaches, topological localization and metric localization as well as the

convolutional neural networks in section 1.1. Then we illustrate the motivations behind

this thesis and analyse the challenges of image-based indoor localization in section 1.2.

Finally, we present our contributions to the solution to these challenges in section 1.3

and the arrangement of the thesis in section 1.4.

1.1 Background

1.1.1 Wireless Signal-based Indoor Localization

A number of technologies have been proposed for indoor localization by utilizing

wireless signals such as WiFi [1–3], Blue-Tooth [4, 5], Ultra Wide-band (UWB ) [6, 7],

and radio-frequency identification (RFID ) [8–10]. Three typical location estimation

schemes are used to implement localization, including triangulation, scene analysis,

and proximity. Triangulation estimates the target location through triangulating the-

ory. Given two reference points in 2D space or three reference points in 3D space, the

target location can be predicted by measuring its distance or angle direction to the ref-

erence points. The distance and the angle direction are estimated from the wireless

signals strength based on the law of the signal propagation. These approaches have

certain disadvantages. Distances or angle directions can not be accurately estimated

from electromagnetic wave signal strengths as they are seriously influenced by the en-

vironmental change, leading to low accuracy. Besides, multiple path effect also brings

the challenges to estimate the accurate distance and the angle direction .

Scene analysis is based on the retrieving strategy. The on-line measurement is matched

to a number of pre-collected measurement with known locations, which are also called

fingerprints. And the location of the querying measurement is attained by the loca-

tion of the most similar fingerprint. Due to requirements of constructing numerous

correspondences between locations and measurements, this type of methods is quite

laborious and time-consuming. For large scenes, large storage needs to be satisfied

to store the collected fingerprints. Besides, the matching process is quite inefficient as

the querying measurement has to be compared with all the fingerprints. Furthermore,

since the fingerprints and the querying measurements are captured with different de-

vices at different times, an additional calibration is required to obtain good results.

2
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Proximity algorithms provide a coarse location by identifying sensors with known po-

sitions. The location information is given with position of the detected unit or that of

the strongest signal if multiple units are detected. These methods depend on the dense

distribution of electronic sensors to obtain high accuracy, which could be costly. Be-

sides, installing the electronic device in the indoor environment can damage the deco-

ration. Pedestrian Dead Reckoning (PDR ) approaches rely on an Inertial Measurement

Unit (IMU) to measure the velocity and angle changes, and further estimate the posi-

tion by accumulating them over time. Due to persistent influence of the measurement

noise, the localization accuracy drops [11–13] over time.

1.1.2 Image-based Topological Localization

Topological localization is proposed in the late 1970s. It summarizes the real world as

a graph, and the location is given by a node [14]. In this manner, the memory demand

can be significantly reduced, hence it is very suitable for representing large-scale envi-

ronments. The topological approaches allow robust performance against getting lost

due to the multi-modal representation of locations.

Topological localization algorithms are developed based on the directed graph, which

is also called topological map. In topological map, nodes indicate locations, and the

arrow arcs represent the adjacency relationships from bottom location to the arrowed

location. Each node is associated with a feature derived from the measurements of en-

vironments. The main task of topological localization is to correctly match the current

captured information to the topological map based on certain similarity metric. Many

devices have been utilized to construct the topological map, including the laser scan-

ner, sonar, light, and wireless signal emitters et al. Among them, camera has been an

important one, because it not only provides rich and robust visual appearance infor-

mation but also is human-understandable.

In general, visual topological localization approaches can be divided into two cate-

gories: visual appearance-based approaches and landmark-based approaches. Visual

appearance-based approaches take into considerations all the visual information and

derive various visual features to present the location. Figure 1.1 shows the general pro-

cedure of visual appearance-based approaches. Landmark-based methods pay more

attention to the salient and distinctive information and refer them as landmarks. They

provide the locations information by identifying the landmarks. It mainly contains two

steps: landmark detection and landmark recognition. Landmark detection searches

the salient region of the images and the landmark recognition aims to identify the de-

tected node in the topological map. Topological maps are constructed without metric

3
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Figure 1.1: Demonstration of appearance-based localization framework. It includes

two main steps: feature extraction and feature matching. The location of

new captured image is estimated as that of matched location.

information, which means that the distance and directions between nodes can not be

computed from it. However, metric maps contain such information.

1.1.3 Image-based Metric Localization

For metric localization methods, the environment is represented by a metric map in

which every position is denoted by a coordinate with respect to certain coordinate sys-

tem. On contrary to the topological localization, which provides a coarse localization

result, metric localization obtains the exact position expressed with coordinates. Image-

based metric localization tries to obtain precise location. Generally, it is achieved un-

der three schemes: image retrieval-based methods, SfM-based methods, and learning-
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based methods.

Image retrieval-based methods are very similar to the aforementioned appearance-

based topological localization, which also is composed of feature extraction and feature

matching. The main difference is that for appearance-based approaches, the visual fea-

ture is associated with a region of the scenes, while for image retrieval based metric

localization, the feature is associated with a coordinate. In addition, the latter stores

more features as metric map is a denser representation of the scenes.

SfM-based methods estimate the exact position by constructing the 2D-to-3D corre-

spondences. 2D-to-3D associations follow the camera pinhole geometry as shown in

Figure 1.2, which not only relates about the position and orientation of the camera, but

also the camera internal parameters. Such geometric information can be expressed by

equation (1.1.1). [
x

y

]
= K×

[
R T

]
×


XW

YW

ZW

 , (1.1.1)

where [x, y]t represents the coordinates of key point p on the image, [XW , YW , ZW ]t

indicates the coordinates of the corresponding 3D point P in the real word, K is the

intrinsic matrix that is related to the camera, and R, T represent the orientation and po-

sition respectively. Generally, the internal parameters are known if the camera is given.

Image-based metric localization assumes that each 3D points are associated with visual

features, which are usually produced with SfM algorithms. Then the 2D image points

can only be matched with 3D map points by comparing visual features. To solve the

equation, at least three pairs of matched points are needed to estimate the position and

orientation of the captured image. Considering that there exist the wrong matching

pairs, the RANSAC algorithm [15] is utilized to filter them to achieve high accuracy.

However, this scheme is vulnerable to inaccurate 2D-3D matches and suffers from ex-

pensive computation, especially in large-scale environments.

Learning-based methods utilize machine learning techniques to model the latent rela-

tionship between images and positions. It takes an image as input and directly esti-

mates the position.

1.1.4 Convolutional Neural Networks

Convolutional neural networks (CNNs) are one of the special types of neural networks,

which have been widely used for many computer vision tasks such as image classifi-

cations, objects detection, and face recognition. A typical CNN consists of a series of
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Figure 1.2: The projection geometry between the 2D image and 3D scenes. The

(Xc, Yc, Zc, Oc) represents the coordinate system of the real world scene.

The xoy indicates the image 2D coordinate system. P(x, y) and

P(XW , YW , ZW) are corresponding points from 2D images and 3D scenes.

convolutional operation, pooling operation, fully connected layer, and a classifier to

estimate the probability (between 0 and 1) of an object. Figure 1.3 gives an example of

the CNN.

Regular neural networks also are referred to the multilayer perceptions, where each

neuron in one layer is connected to all neurons in the next layer. Regular neural net-

works believe that each neuron is related to the whole feature map of previous layers

while CNNs simplify it with local connection and assemble the information with more

convolutional layers. It is also helpful to avoid over-fitting. Since the feature is more

related to its neighbours, CNNs achieve better results than the regular ones on many

computer vision tasks. The filter is much smaller than regular neural networks due to

the local connection, thus it is more efficient.

Another property of CNNs is parameter sharing. In regular network, the weights of

filters are tied with the input while CNN filters slide over the whole input image with

the same parameters. The last attribute is the pooling strategy. CNNs contain many

pooling operations, which extract the statistical information from the local regions. For

instance, max-pooling function finds the maximum value to represent the local area.

Besides, pooling operation makes it invariant to the slight transition of the input since

it derives dominant information from a region.

The convolutional module is the central component of CNNs, which consists of three

main operations: convolution, activation, and pooling operation. In the context of a

convolutional neural network, convolution operation is a linear operation that involves
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Figure 1.3: Example of the CNN architecture. It is composed of an input layer, an out-

put layer, a fully connected layer (FC) and two consecutive convolutional

blocks, which are consisted of convolutional layer (Conv), relu layer (Relu)

and pooling layer (Pooling).

the multiplication of a set of weights with the input. Given that the technique is de-

signed for two-dimensional input, the multiplication is performed between an array of

input data and a two-dimensional array of weights, called a filter or a kernel. The filter

is smaller than the input data and the type of multiplication is applied on a filter-sized

patch of the input and the filter, thus it is a dot product.

The convolutional operation has four parameters: kernel size, stride, padding and di-

lation. Kernel size determines the receptive field of the filter. The larger it is, the more

neurons are used for convolution. The stride indicates the step size when the filter

slides over the input, which usually is one to compute for the every position of the

input. When the filter reaches the boundaries of the input, the part of it will be out of

the data. Padding parameter indicates whether the boundary region is computed or

not. If it is true, the input will be extended with zeros, otherwise, the filter will not

slide over the boundary position. To enlarge the receptive field without increasing the

computational complexity, dilated convolution is used. Instead of computing all the

pixel in the local region, dilated convolution computes it at intervals of T position. T is

the parameter related to the receptive field, and the large it is, the larger receptive area

is.

In a neural network, the activation function is responsible for transforming the sum of

weighted input from the node into the activation of the node or output for that input.
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Sigmoid and tanh functions are used to serve as activation functions for regular neural

networks. They are not suitable for CNN because they saturate, which means that large

values snap to 1.0 and small values snap to -1 or 0 for tanh and sigmoid respectively.

Besides, they are sensitive to changes around their mid-point of their input, such as

0.5 for sigmoid and 0.0 for tanh. The limited sensitivity and saturation of the function

happen regardless of whether the summed activation from the node provided as input

contains useful information or not. Once saturated, it becomes challenging for the

learning algorithm to adapt the weights to improve the performance of the model.

Finally, very deep neural networks using sigmoid and tanh activation functions are

difficult to be trained.

In order to back-propagate errors to train deep neural networks, an activation function

is needed that looks and acts like a linear function, but is a non-linear function allowing

complex relationships in the data to be learned. The function must also provide more

sensitivity to the activation sum input and avoid easy saturation. The rectified linear

activation function is a simple calculation that returns the value provided as input di-

rectly, or the value 0.0 if the input is 0.0 or less. Because rectified linear units are nearly

linear, they preserve many of the properties that make linear models easy to optimize

with gradient-based methods.

The deep layers can not guarantee the better performance as in large networks more

layers using these non-linear activation functions fail to receive useful gradient infor-

mation. Error is back-propagated through the network and used to update the weights.

The amount of error decreases dramatically with each additional layer through which it

is propagated, given the derivative of the chosen activation function. This is called the

vanishing gradient problem and prevents deep (multi-layered) networks from learning

effectively.

Pooling layers can reduce the number of parameters when the images are too large.

Spatial pooling also called sub-sampling or down-sampling, which reduces the dimen-

sionality of each map but retains the important information. Common spatial pool-

ing includes Max Pooling, Average Pooling, and Sum Pooling. Max pooling takes the

largest element from the rectified feature map. Taking the largest element could also

take the average pooling. Sum of all elements in the feature map is called as sum pool-

ing. The fully connected layer is much like the regular neural network, in which we

flattened the feature map of the convolutional layers into a vector and feed it into a

fully connected layer to further aggregate the information.
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1.2 Motivations and Challenges

Indoor localization is one of the fundamental components for location-based service

and many other applications such as navigation, robotics and virtual reality. It aims

to estimate the position given a map of the indoor scene. The position can be repre-

sented by a node of the topological graph, or a coordinate of a metric map. Unlike the

outdoor environment, the well-developed GPS techniques endow us the high real-time

position in the outdoor environment. However, GPS-based technologies fail to work

in the indoor scenes as GPS signals are blocked or weakened to perform localization.

Many researchers proposed to exploit wireless signals like WiFi, mobile phone signals,

and ultrasonic band sound to address the problem based on triangulation or finger-

prints matching. The main drawback of them is their vulnerability to the environment

change due to moving pedestrians or furnitures, which occurs frequently in the in-

door environments. Furthermore, these methods are expensive and labour-extensive

for large-scale deployments and suffer from discontinuous tracking during pedestrian

movement.

Due to the limitations of previous methods, image-based localization grows into a pop-

ular solution to indoor localization problems. It is attractive mainly for two reasons.

First, cameras have been an essential component of mobile phone, thus no special

equipment is needed to collect information compared with RFID-based methods. An-

other important reason is that image-based localization approaches utilize the natural

appearance of the indoor scenes and have no requirement to change the infrastructure

of the indoor scenes. Furthermore, the availability of 3D indoor models can be utilized

to further boost the image-based localization performance.

Many image-based localizations are proposed and have shown their effectiveness in

the outdoor environment. They mainly depend on structure from motion techniques

or image retrieval techniques. When it comes to the indoor case, they are likely to fail.

It is because the surfaces of indoor scenes are usually textureless and repetitive, and

indoor scenes are of high similarity. It is not feasible to extract enough key points from

textureless surface to perform structure from motion and similar appearance of the

indoor scenes confuses image retrieval-based methods to correctly localize the query

image and lead to mismatches of SfM-based methods.

For indoor topological localization, two main problems are the place similarity and dy-

namic environment change. Unlike outdoor environments, indoor scenes are of similar

structure and decoration, which results in the high visual similarity of different loca-

tions. The locations can not be distinguished with visual appearance only. Another

9



Chapter 1. Introduction

problem is that the indoor environment changes more frequently, which causes the

appearance changes at different time. How to derive the robust representation of the

locations remains a difficult problem.

Conventional image-based localization methods perform metric localization by con-

structing the 2D-3D correspondences. It works well in the outdoor environment, as

outdoor scenes contain complex texture. On the contrary, indoor scenes usually are

textureless and repetitive, making it difficult to detect key points and extract local fea-

ture. Besides, the blur caused by camera motion and image occlusion also influence

the accuracy of such methods. Another challenge is that it has to store a number of 3D

points, which is storage overhead and inefficient to perform match.

Deep learning-based methods have shown the potential to solve the aforementioned

problems. A deep convolutional neural network is trained with a loss formulated from

the difference of predicted poses and targeted poses. However, this type of methods

fail to distinguish the image of high similarity. It is mainly caused for two reasons:

firstly, the indoor images are of high similarity; secondly, the down-sampling effect of

convolution operation neglects the tiny differences between images.

Traditional image-based metric localization methods construct the 2D-3D match through

local features based on the 3D models built through structure from motion techniques.

It is difficult to build indoor 3D models with structure from motion techniques which

is still due to the textureless surface of indoor scene. With the development of LiDAR

sensors such as Kinect and various types of LiDAR scanners, many 3D models have

been built for indoor scene with them instead of using SfM algorithm. However, it still

remains a challenge to localize images in 3D LiDAR map. Unlike 3D model built from

structure from motion (SfM) where each 3D point is associated with a local image fea-

ture, 3D LiDAR model only contains geometric information. The key challenge is to

bridge the gap to match 2D geometry and 3D geometry.

1.3 Contributions

In this thesis, we make the following contributions:

• Visual Landmark Sequence-based Indoor Localization (VLSIL ) framework for

topological localization. We propose a novel Visual Landmark Sequence-based

Indoor Localization (VLSIL) framework to acquire indoor location through smart-

phone videos. We propose a novel topological node representation using seman-

tic information of indoor objects. Moreover, we present a robust landmark de-
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tector using convolutional neural network for landmark detection that does not

need to retrain for new environment. We present a novel landmark localization

system built on a second order hidden Markov model to combine landmark se-

mantic and connectivity information for localization, which is shown to relieve

the scene ambiguity problem where traditional methods have failed.

• Relative geometry aware Siamese neural network for image-based metric local-

ization. We present a novel relative geometry-aware Siamese neural network to

enhance the performance of deep learning-based methods through explicitly ex-

ploiting the relative geometry constraints between images. We perform multi-

task learning and predict the absolute and relative poses simultaneously. We reg-

ularize the shared-weight twin networks in both the pose and feature domains

to ensure that the estimated poses are globally as well as locally correct. We em-

ploy metric learning and design a novel adaptive metric distance loss to learn

a feature that is capable of distinguishing poses of visually similar images from

different locations. We evaluate the proposed method on public indoor and out-

door benchmarks and the experimental results demonstrate that our method can

significantly improve localization performance. Furthermore, extensive ablation

evaluations are conducted to demonstrate the effectiveness of the different terms

of the loss function.

• Single image localization in 3D map framework. Unlike previous methods that

require the 3D map to be constructed from a number of RGB images using struc-

ture from motion , our 3D map is composed of 3D point cloud without any colour

features. We propose a new framework to address the problem by perform-

ing geometry matching in the 3D space. The framework consists of four main

stages: initial pose estimation, local map extraction, depth prediction, and pose

refine through Iterative Closest Point algorithm (ICP) [16]. We exploit the deep

learning-based single image depth prediction to generate the dense depth map,

and simply transform it into the 3D point cloud with the camera intrinsic parame-

ters and initial pose prediction. Given the generated 3D point clouds, we register

the generated 3D point clouds into the 3D map. To reduce the time cost on search-

ing corresponding points, we use local 3D map extracted from the global 3D map

as alternative to the global map to perform 3D match. The key component of

proposed method is to accurately predict the dense depth map. To address it,

we propose a novel 3D map guided single image depth prediction method. The

method is also based on the convolutional neural network. Instead of taking a

single RGB image as input , we feed RGB image initial depth into the network to

11



Chapter 1. Introduction

handle the scale ambiguity problem that RGB-based depth prediction methods

always suffers from. Initial depth is generated by projecting the 3D point cloud

into the coarse localization results from other localization algorithms. We conduct

experiments on both indoor and outdoor benchmarks and the results show that

our method outperforms RGB-based methods over RGB image depth prediction.

We also conducted experiments to show that the proposed method can increase

the localization performance than the learning-based methods.

1.4 Outline

This thesis is composed of six chapters. Chapter 1 provides the background infor-

mation on wireless indoor localization, image-based topological localization, metric

localization and the deep convolutional neural networks. The challenges and moti-

vations are illustrated as well. We also elaborate the main contributions of the thesis

in this chapter. Chapter 2 reviews the image-based localization methods and related

techniques on both topological localization and metric localization along with the re-

lated techniques for single image localization in 3D maps. Chapter 3 describes our new

topological localization framework with semantic landmark sequence for indoor envi-

ronments in detail. We also illustrate the proposed topological map and localization

algorithms in this chapter. Chapter 4 elaborates the proposed novel convolutional neu-

ral network for direct pose regression by exploiting the relative geometry constraints.

Chapter 5 introduces our single image localization in 3D map framework as well as

RGB image depth prediction approach. Finally, we conclude the thesis in chapter 6.
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CHAPTER 2

Literatures and Methods

This thesis aims to address the image-based indoor localization problem with regard to

the topological localization, and metric localization with and without 3D models assis-

tance respectively. Therefore, in this chapter, we give an overview of related methods

and literatures in two tasks to clarify the research gaps. Besides, we also review the

related works on monocular image depth prediction and 3D matching, which are vital

components for single image indoor metric localization in a 3D map.

This chapter is organized as follows: Section 2.1 reviews current methods for image-

based topological localization over the place representation and matching strategies,

and discusses the limitations. Section 2.2 reviews image-based metric localization in

three categories: image retrieval-based methods in section 2.2.1, SfM-based methods in

section 2.2.2, and learning-based methods in section 2.2.3. Their advantages and disad-

vantages are analysed respectively. We also review the methods on monocular image

depth prediction in section 2.3 and 3D matching in section 2.4, which are essential com-

ponents for single image localization in 3D space.

2.1 Image-based Topological Localization

2.1.1 Place Representation

The place representation, which is also called node description, aims to characterize the

place with discriminant information according to visual appearance. It should be rep-

resentative among nodes, and fast to compute and compare. It can be categorized into

two groups: appearance-based representation and landmark-based representation.

Appearance-based representation takes all the visual information of the location into

consideration and represents it with various visual feature descriptors. One of widely
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used descriptors is the local feature. Local features are computed at pixel level within

a local neighbourhood of key points in the image. It mainly contains two steps: key

point detection and feature description. Key point detection finds the salient points in

the image, and the feature description depicts the key points based on their neighbour-

hood region. SIFT features have been widely used for place representation. It utilizes

the Hessian-affine detector [17] to detect the salient points and is described with SIFT

[18] descriptor. Many important descriptors have been devised based on it. RootSIFT

[19] is introduced and achieves better results in matching step by slightly adding com-

putational load. SURF descriptor [20] relieves the computational overhead and attains

real-time performance in [21–23]. To decrease the storage demand, Feng et al. [24]

employ binary BRISK descriptor [25] at the expense of the slight precision decrease.

Aforementioned local features describe the place according to the colour and gradient

information, while primitive geometric shapes like line and contour can also be ex-

ploited to describe the place. For example, vertical lines have been widely used for

building representation in urban environments [26–28]. Contour is employed to obtain

the pose of the captured image in [29]. Normal vectors or planar surfaces have been

extracted from point clouds generated from image to represent the places in [30, 31].

Besides, they can also be combined with other descriptors to present the place.

Another type of feature is global feature. It takes consideration of information from

the whole images. Compared to the local features that require numerous descriptors

to depict the place, the global features generate one high dimensional feature vector to

represent the locations. Although it is less robust to the view perspective differences, it

is still favoured as it is fast to compare and decrease storage requirement.

GIST descriptor [32] is one of the most used global descriptor for place representation

[29, 33, 34]. It convolves the images with Gabor filters at different scales and orienta-

tions, and aggregates all the information to a vector. The raw image can also serve as a

global descriptor, and perform the pixel-wise comparison [34, 35]. Histogram derived

from colour [36], or depth [37] can also be viewed as a global feature. There are also re-

searchers who transform the images into frequency domain through Fourier Transform

(FT) to represent the place [38].

With the recent emergence of deep CNN, they have been introduced to learn global

representations for images. Their high capacity has boosted the the performance of

urban image retrieval [39–42]. The simple way to create the global feature is to use

the output of the fully-connected layers. The global feature can also be generated by

combing the feature maps from different layers with weights into a vector [43]. Many

researchers have shown that features extracted from mid-level convolutional layers
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achieve better performance than that of fully-connected layers [43, 44].

Appearance-based representation pays attention to all visual information of the lo-

cations, and is capable of discriminating different locations. However, the matching

performance drops significantly due to the slight environmental changes, which often

happen in indoor scenes. On the contrary, landmark-based representation utilizes the

discriminant information to represent localization. This method is suitable for indoor

scenes as background information has no impact even bad impact on place representa-

tion.

Visual landmarks can be divided into two categories: artificial landmarks and natural

landmarks. Artificial landmarks are purposefully designed to be salient in the environ-

ment. Ahn et al. [45] design a circular coded landmark that is robust with perspective

variations. Basiri et al. [46] develop a landmark-based navigation system using QR

codes as landmarks and user’s location is determined and navigated by recognizing

quick response code registered in the landmark’s location. Briggs et al. [47] utilize self-

similar landmarks based on barcode and is able to perform localization in real-time.

Artificial landmarks can be precisely detected since they are manufactured based on

prior rules. Those rules allow them to stay robust facing challenges of varying illumi-

nations, view points and scales in images and help to devise the landmark detectors.

Their position can also be coded in the landmark appearance. However, deploying

artificial landmarks changes building decoration which might not be feasible due to

economic or owners’ tastes. Natural landmarks avoid changing indoor surface by ex-

ploiting physical objects or scenes in the environment. Common objects like doors,

elevators and fire extinguishers are good natural landmarks. They remain unchanged

in a relatively long period and are common in the indoor environment.

Many methods have been proposed to represent locations using natural landmarks

[48–50]. Some of them are based on hand-crafted features, which are devised to make

use of colour, gradient or geometric information. Planar and quadrangular objects are

viewed as landmarks and are detected based on geometric rules [48, 49]. Tian et al. [50]

identify indoor objects like doors, elevators and cabinets by judging whether detected

lines and corners satisfy indoor object shape constraints. SIFT feature is chosen to per-

form natural landmark recognition in [51, 52]. SerrÃčo et al. [53] propose a natural

landmark detection approach by leveraging SURF feature and line segments. It per-

forms well in detecting doors, stairs and tags in the environment. Kawaji et al. [54] use

omnidirectional panoramic images taken from different positions as landmarks and

PCA-SIFT is applied to perform image matching. Besides, shape [55, 56], light strength

[57] or region connection relations [58] are also exploited to represent as landmarks for
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localizations. Kosmopoulos et al. [59] develop a landmark detection approach based

on edges and corners.

2.1.2 Matching Methods

When the amount of data is acceptable, brute-force match approach can be employed

to find the exact nearest feature. This is usually used for the case when a single vector

is used to describe a place.

The most common matching method is to compute the distance between two feature

descriptors. For example, [39, 40] represent the location with the global feature trained

by CNN and match the query descriptor against every visual feature in the database.

Brute-force comparison is performed in [60, 61], where the place is represented with

local features or hybrid features. Graph matching is also exploited for feature match-

ing [62]. In this case, the query image is presented with a graph, in which the nodes

are described with the visual words that are defined in advance and the edges denote

the co-visibility of two words in an image. This formulation allows the integration

of geometric relationship between visual words. A graph kernel is chosen to com-

pute the similarity between the query image and the database. Note that graph-based

approaches are often employed when scenes are described by spatially organized se-

mantic clues such as office furnitures [63] and street equipments [64]. Area correlation

algorithms can also be used for computing feature similarity. The sum of two corre-

sponding patches are used to indicate the similarity of two image features [65, 66]. Wan

et al. [38] propose a Phase Correlation on images that are transformed after Fourier

transformation in order to relieve shadow artefacts.

Brute-force comparing scheme becomes unacceptable when the amount of the features

is too large, especially for local features where each place consists of numerous lo-

cal features. Many approaches try to find the approximate nearest neighbour to trade

precision for efficiency at the expense of certain errors of retrieved results. Hashing

methods [67] and quantization frameworks [68–70] are two common strategies to be

used.

Machine learning techniques have been utilized to relieve the computational overhead

by grouping the database images. SVM classifier has been widely used in many works

[71–74]. In [72], database images are initially clustered into several groups based on the

visual similarity of the images. For each group, a SVM classifier is trained for each clus-

ter to determine which cluster the query image belongs to. During the querying time,

the query image is fed into all the classifiers to find the best matched group. Then, the
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query image will be compared with the images in the matched group. [72, 73] train

linear classifiers over HOG descriptors to robustly find the similar images. Aubry et

al. [71] utilize linear discriminant analysis (LDA) data representation instead of SVM

for efficiency reason. Kim et al. [75] use SVM classifier to predict the confidence of ex-

tracted descriptors, which improves the matching efficiency by reducing the number of

features comparing against the database. [37, 76] localize an input query among a set of

predefined places by embedding the recognition process into probabilistic framework.

Another strategy to relive computational requirement to perform feature dimensional

reduction. Dimension reduction of descriptor is often performed to reduce matching

time and memory footprint. The most used technique is the principal component anal-

ysis (PCA). In [39, 40], PCA is applied on high dimension vector extracted from CNN

layers. PCA has also been used to reduce the size of local features aggregated vec-

tors [75] and global descriptors [37]. Gaussian Random Projection is applied in [77, 78]

and in a different work, binary locality-sensitive hashing [44] is used instead [79]. To

reduce data redundancy, various pooling strategies could be applied to final features

before the similarity search [39, 40, 42, 44, 80, 81].

Many positioning algorithms have introduced landmarks for indoor localization. Basi-

cally, landmarks are taken as supporting information to reduce the error drift of dead

reckon approaches [82–84]. It can also be utilized for indoor topological localization

since landmarks play an important role in localizing and navigating pedestrians in an

unfamiliar environment [85]. Many approaches perform landmark-based localization

under geometric scheme. Triangle intersection theory is applied to localize users using

more than 3 landmarks [86]. Another type of landmark-based localization utilizes the

landmark recognition techniques. It assumes that users are near to the detected land-

marks. The landmark is identified based on their visual representations [48, 49, 57].

However, in indoor environment, it is usually not feasible to match landmarks just

based on visual feature, due to numbers of locations of the similar appearance. Addi-

tional information is needed to distinguish different landmarks. Tian et al. [50] exploit

text information around doors to address the problem. However, it is not always pos-

sible to have tags of text around doors. Contextual information between landmarks is

exploited through hidden Markov model (HMM) to recognize landmarks and achieves

good results in [87–89]. However, HMM model only takes one previous landmark to

recognize current landmark, and it fails in scenes of high ambiguity.
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2.2 Image-based Metric Localization

Many image-based metric localization have been proposed to use smart-phone camera

for indoor localization [54, 90–102]. These methods exploit computer vision techniques

to estimate people’s location and mainly fall into three categories: image retrieval-

based methods, SfM-based methods, and deep learning-based methods.

2.2.1 Image Retrieval-based Methods

Many approaches and systems are proposed based on image retrieval technique [21,

103–112]. They determine the pose of the query image by matching it with images

rendered from 3D scene models. The key component of the technique is image repre-

sentation. Global descriptors are often used, such as colour histogram [113] and gradi-

ent orientation histogram [114]. GIST descriptor [32] and GIST-based descriptors [115]

are applied to represent panoramic images in [116–118]. SeqSLAM [119] generates the

global descriptors from a sequence of consecutive images instead of a single image.

Global descriptors are fast to compute, but they are not robust to occlusion and illu-

mination changes. Local features like SIFT [120] and SURF [20], have been used in

[104] for image representation. Compared with the global descriptors, they are less

sensitive to occlusion and view variations. However, the storage requirement of the

method is high for large scenes. The pooling features like BoW [121] and VLAD [81] are

able to relieve the challenge. They aggregate local features and represent the locations

with a compact feature vector instead of a large number of local features [103]. Im-

age retrieval-based methods use images captured by the smart-phone camera to search

for similar images in the image dataset whose positions and orientations are already

known. The pose of the query image is determined with poses of the similar images.

This approach not only requires significant offline processing but can also easily get

stuck in the situations where different locations have similar appearance.

2.2.2 SfM-based Methods

Another type of methods solves the problem by utilizing camera projection geome-

try between 2D pixels and 3D models. They estimate the pose by constructing the

correspondence between 2D pixels and 3D points of the scene [122–126]. Local point

features, like SIFT [120], SURF [20] and ORB [127], are frequently used to describe the

detected 2D points. 3D points, generated using the SfM technique, are also described

with local features to perform 2D-3D matching. It can achieve accurate results when
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enough correct pairs are provided. The main challenge is to establish enough correct

2D-3D correspondences, which is difficult for two reasons. Firstly, local feature de-

scriptor fails when a scene has repetitive texture or texture-less surface; and secondly,

the process is inefficient for large scenes.

To increase the efficiency of the 2D-3D matching, prioritized search approaches [124,

125] are proposed to construct enough matching pairs instead of matching all detected

2D points. Scene coordinate random forest (SCRF) [128, 129] utilizes machine learning

techniques to directly predict 3D coordinates of image pixels by training a random

forest. Similar to SCRF, deep learning technique is employed to predict 3D coordinate

of the centre point of an image patch in [130]. However, these methods require 3D

model for the network training, which limits their application. To filter out the wrong

matches, co-visibility information is exploited in [123, 124]. However, they do not work

in low texture environments and they also suffer from image blurring caused by camera

motion. In addition, environment change significantly decreases the performance of

the two types of methods, which frequently occurs in the indoor environment.

2.2.3 Deep Learing-based Methods

Deep learning has achieved extraordinary performance in image classification, object

detection, and image retrieval tasks. Many researchers have employed it to solve the

camera relocalization problem [131–139]. PlaNet [131] regards the problem as a clas-

sification task. It divides the map into grids and predicts the grid in which the query

image belongs to through deep learning technique. Many other researchers consider

it as a regression problem instead. They directly estimate the pose through a convo-

lutional neural network. PoseNet [132], built on the GoogLeNet model [133], is the

first attempt to adopt this paradigm in an end-to-end manner. It is further extended to

Bayesian PoseNet [134] to estimate the confidence of the result as well. HourglassNet

[135] utilizes the encoder-decoder network structure with skipped connections to ag-

gregate features from both lower and higher layers for pose regression. It achieves bet-

ter performance than PoseNet. LSTM-Net [136] believes that high dimensional output

of fully connected layer in PoseNet is not optimal. It adds a LSTM- network after the

last fully connected layer in PoseNet to reduce information redundancy. VidLoc [137]

exploits smooth constraints of a video to address the perceptual aliasing problem. It

takes a video clip as input instead of a single image and proposes a bidirectional re-

current neural network structure to fuse the previous and next images information to

increase predicted pose accuracy. Laskar [140] proposes a new triangulating strategy

that predicts the pose by estimating the relative pose between the query image and the
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images in the database. Its main drawback is low efficiency since the relative pose of

all the images in the database has to be computed. PoseNet2 [138] introduces the re-

projection error with global pose error and improves the performance. However, 3D

points are required in their method. MapNet [139] fuses the inertial information with

image information through deep learning to enhance the network performance.

The proposed method in this thesis is also based on convolutional neural networks.

However, it has a number of distinctive features. For example, we use an innovative

Siamese network architecture to exploit the relative geometry of images in addition to

predicting the absolute poses. Unlike [138] and [139], we only rely on the 2D images

for training. Compared to [134, 134–136], we take a pair of images as input and utilize

their relative pose error for training. In contrast to [140], we directly regress the image

pose instead of performing triangulation.

A very recent work that also uses multi-task learning and explicitly models relative

poses of two frames appears in [141, 142]. However, our system architecture differs

from that of [141, 142] in a number of significant ways. Whilst we use a Siamese net-

work and metric learning loss to model the relative geometrics of two frames, [141, 142]

use two separate networks to model the relative geometrics of two consecutive frames

(Although [141, 142] refer their two networks as Siamese network, strictly speaking it

is not a Siamese network architecture because the two networks do not share weights).

Furthermore, while our method can model the relative geometrics of two arbitrary

frames, but [141, 142] can only model two consecutive frames.

2.3 Monocular Camera Depth Prediction

Predicting depth of a scene can be obtained from multi-view stereo (MVS), structure

from motion (SfM), optical flow, shape-from-shaping (SfS), simultaneous localization

and mapping (SLAM), and shape from defocus [143]. However, these methods need

more than one image and large resources. Therefore, researchers have recently pay

more attention to a challenging per-pixel prediction task, i.e. monocular depth esti-

mation, where there is only a single still RGB input image. Up to now, a variety of

methods have been proposed, which can be divided into two categories: hand-crafted

features based methods and deep neural network based methods.
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2.3.1 Hand-crafted Features-based Methods

Early works on the monocular depth estimation have mainly used hand-crafted fea-

tures ( HOG [144]). Saxena et al. [145] firstly leverage learning approach to tackle

this problem based on hand-crafted features, and employ a discriminatingly trained

MRF to incorporate multi-scale local and global features. Saxena et al. [146] extend the

previous model to infer 3D scene structure from a single image by over-segmenting

the input image to many homogeneous regions using superpixels. Hoiem et al. [147]

group superpixels to multiple constellations for constructing a 3D model of the sin-

gle input image. Following this work, Liu et al. [148] exploit a simple MRF model to

perform the monocular depth estimation from predicted semantic segmentation labels.

Being aware that depth estimation and scene semantic labelling are closely tied to the

property of perspective geometry, Ladicky et al. [149] propose a pixel-wise classifier

to jointly predict the depth labels and semantic labels from a single image. Except for

the above parametric approaches, non-parametric approaches are also used to estimate

monocular depth. Karsh et al. [150] exploit RGBD datasets to match the input image by

using SIFT Flow, and then make a global optimization procedure to produce a monoc-

ular depth map. Likewise, Liu et al. [151] utilize the availability of RGBD images to

perform monocular depth estimation, while they formulated this task as a discrete-

continuous optimization problem.

However, these traditional approaches heavily rely on hand-crafted features, and need

preprocessing or post-processing operation. They are not suitable for complicated

scenes, and are shown to be inefficient and ineffective.

2.3.2 Deep Neural Network-based Methods

Thanks to the emergence of publicly available RGBD datasets, DCNN has been shown

to be a more efficient and high-qualified method for monocular depth estimation. Eigen

et al. [152] firstly utilize DCNN for monocular depth estimation, which incorporates a

coarse-scale network (based on AlexNet [153]) and a fine-scale network. A skip connec-

tion between two networks is used to refine the original prediction of the coarse-scale

network. Moreover, they firstly exploit a scale-invariant loss function to regress this

depth problem. Then, they extend this model to three disparate tasks (depth, surface

normals, and semantic label) based on a deeper CNN (VGG-Net [154]), and three-scale

skip connections are used to further refine the output [155]. Laina et al. [143] use a

much more deeper architecture (ResNet-50 [156]) to infer depth, and further use up-

projection blocks to attain a high-resolution output depth map. And, they firstly adopt
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Berhu loss to reduce the long-tail effect of depth values. Deviating from these depth re-

gression approaches, some works [157, 158] have treated monocular depth estimation

as a classification task, and also achieved high performance. However, these methods

cause the mosaic artefacts due to the discretization of the continuous depth.

The aforementioned methods have demonstrated that DCNN is good at extracting the

deep global features. However, it is weak in attaining the fine-grained depth map due

to a series of pooling layers and stride operations. Recently, some works [159–161] have

demonstrated that skip-connections between the encoder and decoder can produce

fine detail predictions in the pixel-level tasks. Nevertheless, there is a gap between

the RGB image and the depth map, as mentioned in the previous section. Therefore,

the straightforward skip connection between the RGB features in the encoder and the

depth features in the decoder brings much noise in the output depth map. Besides, CRF

is believed to be another effective way to enhance the details of the depth map. Since

Lafferty [162] exploit CRF for segmenting and labelling sequence data, the CRF has

attracted a lot of attention in the past two decades. In the early stage, CRF is regarded

as a post-processing operation. Due to the efforts of Krahenbuhl et al. [163], Zheng et

al. [164] and Teichmann et al. [165], they embed the CRF as a module in CNN, whose

parameters can be learned by the training of the deep neural network. In order to im-

prove the details of the depth map, Li et al. [166] introduce a hierarchical continuous

CRF as post-processing to refine the depth output from CNN. Liu et al. [144] design

a continuous CRF loss layer with super-pixels for CNN to better refine the depth pre-

diction. Xu et al. [167] propose a CNN implementation continuous CRF to aggregate

multi-scale features from the decoder of CNN. However, CRF mainly uses the original

colour and spatial information of the RGB image to constrain the depth map, which

will bring much irrelevant information to the depth map.

All the aforementioned methods belong to supervised learning methods that require

the ground truth labelling of the depth. Some works exploit the unsupervised learn-

ing to predict the depth to avoid the demand of ground truth depth label. Garg et al.

[168] use stereo pairs to train a network to predict the depth with the loss function for-

mulated from the photometric difference between the true right image and synthesized

one generated from the left image and the predicted depth. Godard et al. [169] improve

the depth estimation by introducing the symmetric left-right consistency loss. Kuzni-

etsov et al. [170] propose a semi-supervised learning framework by using sparse depth

maps for supervised learning and dense photometric error for unsupervised learning.

Zhou et al. [171] propose an approach which jointly predicts the image depth and its

pose in a single network.

22



Chapter 2. Literature and Methods

Additional information is also exploited with RGB data to perform depth prediction

using a convolutional neural network. Ma et al. [172] predict full resolution depth

from a few depth samples and images. Liao et al. [173] utilize sparse laser scanner

points to aid RGB image depth prediction. Cadena et al. [174] propose a network to

learn depth from the RGB image as well as the semantic labels. Zhang et al. [175]

generate dense depth map by taking RGB-D image as input.

2.4 3D Localization

Traditional methods predict the location of the query image in a 3D map through estab-

lishing 2D-3D correspondences by matching local features like SIFT [120], SURF [176]

or ORB [127, 177, 178]. Those approaches are not feasible for localizing against the 3D

LiDAR map as its lack local visual features. The main difficulty of localizing single im-

age within a LiDAR map is to handle the inherent modal differences between 2D RGB

image and 3D point clouds. Recent works can be divided into two categories: match-

ing in 2D space and matching in 3D space. Methods based on 2D matching synthesize

images from 3D points based on LiDAR reflectance or distance and compare it with

the query RGB images. For instance, Wolcott et al. [179] construct a LiDAR reflectance

image database and perform localization under the image retrieval framework. The

similarity metric is designed with the normalized mutual information (NMI). Newman

et al. [180] propose a method by matching the query images against generated LiDAR

intensity images, and they solve the localization problem through a Quasi-Newton op-

timization. Newber et al. [181] produce a depth image from two images and match

it to the intensity image from the LiDAR 3D map. Xu et al. [182] present a method

by matching the depth images against the LiDAR reflectance images. Kim et al. [183]

synthesize depth images and formulate the cost function with the difference of synthe-

sized depth image and depth images generated from a stereo camera. They also utilize

Quasi-Newton optimization to localize the query image. Performing 2D-matching in-

volves a huge number of images rendering on-line or off-line, thus it suffers from poor

efficiency issues. Moreover, it is vulnerable to the scene changes.

3D matching-based methods perform localization by exploiting the geometry in 3D

space. They generate a sparse point cloud through SfM or bundle adjustment and

perform the localization using the 3D point cloud registration approaches [184]. Forster

et al. [185] localize the query images by aligning the generated 3D points to a 3D map

constructed from a depth sensor. Caseliz et al. [186] use similar strategy and align the

3D sparse structure to a prior 3D map. Bao et al. [187] utilize the stereo camera to
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reconstruct the side view of the scene and match it against the map. Methods based on

matching in 3D space obtain high accuracy without the large storage requirement to

store the images. The main drawback is that it is costly to get the 3D geometry of the

scene.

Localization in 2D space cost huge time in rendering 2D images especially for large

scenes. Furthermore, comparing the query image with large numbers of rendering

images also influences the efficiency. For localization methods in 3D space, most of

time is spent on the matching space.

2.5 Summary

In this chapter, we have reviewed related image-based localization methods and the

literature in topological localization and metric localization. For topological localiza-

tion, node representation and matching strategies are reviewed and the limitations are

analysed. With regarding to metric localization, three types of methods are reviewed

and analysed including image retrieval-based methods, SfM-based method, and deep

learning-based methods. Their advantages and disadvantages are presented respec-

tively. We also have reviewed the related methods on image depth prediction and 3D

matching, which are important for single image depth prediction.

In next chapter, we will describe our topological localization method with semantic

landmark sequences in detail.

24



CHAPTER 3

Indoor Topological Localization

using Semantic Landmarks

This chapter presents a novel indoor topological localization method based on mo-

bile phone videos. Conventional methods suffer from indoor dynamic environmental

changes and scene ambiguity. The proposed Visual Landmark Sequence-based Indoor

Localization (VLSIL) method is capable of addressing the problems by taking the in-

door objects as landmarks. Unlike many feature or appearance matching-based lo-

calization methods, our method utilizes highly abstracted landmark semantic infor-

mation to represent locations, and thus is invariant to illumination changes, temporal

variations and occlusions. We match consistently detected landmarks against the topo-

logical map based on occurrence order in the videos. The proposed approach contains

two components: a convolutional neural network (CNN)-based landmark detector and

a topological matching algorithm. The proposed detector is capable of reliably and ac-

curately detecting landmarks. The other part is the matching algorithm built on the

second order hidden Markov model and it can successfully handle the environmental

ambiguity by fusing semantic and connectivity information of landmarks. To evaluate

the method, we conduct extensive experiments on the real world dataset collected in

two indoor environments, and the results show that our deep neural network-based in-

door landmark detector accurately detects all landmarks and is expected to be utilized

in similar environments without retraining, and that VLSIL can effectively localize in-

door landmarks.

This chapter is organized as follows. Section 3.1 describes the applications of the topo-

logical localization and the advantages of the proposed semantic topological map. In

Section 3.2, we illustrate the basic concept of visual landmark sequence-based indoor

localization. Section 3.3 presents the detail of CNN-based detector which detects land-
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marks from smart-phone videos. Section 3.4 elaborates the proposed matching algo-

rithm based on second order hidden Markov model. Section 3.5 presents extensive

experimental results and Section 3.6 concludes the chapter.

3.1 Introduction

Topological localization is one of the fundamental components for pedestrians and

robots localization, navigation and mobile mapping [188, 189]. It is compatible with

human understanding as topological maps utilize the highly abstracted knowledge

to present locations. Represented by a graph, a topological map is a compact and

memory-saving approach to represent the environment, and thus is suitable for large

scale localization [190]. Each node indicates a region of the environment and is associ-

ated with a visual feature vector. The vital problem of the technique is to design robust

and distinctive features to represent nodes distinctively.

Many hand-crafted features have been devised based on colours, gradients [190], lines

[55] and distinctive points to represent the nodes. Previous work also learn the repre-

sentation of the nodes using machine learning techniques. However, most of them fail

in dynamic indoor environments due to camera noise, illumination and perspective

changes and temporal variations. Another serious problem is that there are numbers

of visually similar locations in the same environment, which further adds the difficulty

of finding the proper visual location representation. Therefore, it still remains a chal-

lenging problem for vision-based indoor localization.

Exploiting semantic information from videos for localization is more feasible and human-

friendly compared to conventional feature or appearance matching-based methods.

Finding matched features in large scenes is inefficient, and it often fails due to the

numbers of visually similar locations. Besides, matching multi-modality images is also

a problem. Steady elements in the environment are robust representations for locations

as they are salient and insensitive to occlusions, illuminations and view variations. In

addition, their ground truth locations are fixed and known.

In this thesis, we propose a robust landmark representation using semantic informa-

tion. A CNN-based landmark detector is proposed to extract landmark semantic infor-

mation. Unlike previous approaches using hand-crafted features, our detector learns

the distinctive features to distinguish target objects and background. Moreover, it can

be used off-the-shelf scenes without retraining. The learned features are not derived

from a single space but a combination of colour, gradient and geometric space. With

proper training dataset, it stays robust to landmarks variations caused by illumination
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and other deformations. CNN is selected due to its high performance in image classifi-

cation [191] and indoor scenes recognition[192] and outperforms approaches based on

hand-crafted feature.

Besides, we also propose a novel visual landmark sequence-based approach for indoor

topological localization. In the approach, semantic information of steady objects is used

to represent locations, and their occurrence orders in the video are used for localization

in combination with their semantic information. A topological map constructed with

the prior of floor plan map of the environment is used to indicate connectivity infor-

mation between landmarks. Each node on the map indicates a local region of the envi-

ronment and is represented by the landmark. To address the environmental ambiguity

problem, we extract landmark sequence from a mobile phone video, and match them

using the proposed matching algorithm. We make the following original contributions:

1. We propose a novel Visual Landmark Sequence-based Indoor Localization (VL-

SIL) framework to acquire indoor location through smart-phone videos.

2. We propose a novel topological node representation using semantic information

of indoor objects.

3. We present a robust landmark detector using convolutional neural network for

landmark detection that does not need to retrain for new environment.

4. We present a novel landmark localization system built on a Second order hid-

den Markov model to combine landmark semantic and connectivity information

for localization, which is shown to relieve the scene ambiguity problem where

traditional methods have failed.

3.2 Visual Landmark Sequence-based Indoor Localization (VL-

SIL)

We propose a novel Visual Landmark Sequence-based Indoor Localization (VLSIL)

framework and we first illustrate its basic idea. Suppose there is an indoor space

that has 7 locations as shown in Figure 3.1a. For each location, there is a landmark

representing it as shown in Figure 3.1b, and the colour indicates the landmark type.

Pedestrians can only walk from one location to the others linked by a path. Suppose

pedestrians reach the location L(2) without knowing it and observe the red landmark.

Their locations can not be determined since there are more than one locations denoted

by the red landmark (e.g. LM(5) and LM(7)). Suppose pedestrians observe red, green
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(a) (b)

Figure 3.1: (a) Topological map of an indoor space, where there are 7 locations. (b)

In each of the locations of the space, there is a landmark representing it.

Landmarks of the same colour are identical (e.g. office doors). A person

can only walk from one location to the next linked by a path.

and blue landmarks in sequence in their path, then they can be sure they start from

LM(2), go through LM(4) and arrive at LM(6), because LM(2), LM(4) and LM(6) are

the only valid path. The VLSIL achieves localization through taking photos (video)

of a location to determine the current position by matching a sequence of previously

discovered landmarks against the topological map of the space.

3.3 Landmark Detection

Landmark detection process consists of two phases: offline phase and online phase.

During offline phase, landmark types are pre-defined from the common indoor objects

and scenes, and a convolutional neural network is trained to recognize them. Online

phase performs the landmark detection from captured videos. It includes frame ex-

traction, region proposal and landmark type determination. Figure 3.2 illustrates the

whole process. The offline phase is highlighted with light blue background and the rest

is online phase.

In the real scene, majority of the extracted images only capture the background in-

formation, which are usually walls. Applying selective search to these images is not

necessary and decreases the efficiency. Therefore, we first determine whether the ex-
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Figure 3.2: Flowchart of indoor landmark detection. It is comprised of two main

phases: online phase and offline phase (highlighted with light blue back-

ground). The online phase consists of frame extraction, region proposal,

indoor object recognition and landmark type determination.

tracted image belongs to wall (background). If so, next image is proceeded. If not,

selective search is performed and to find the landmarks.

The rest of section gives a detailed introduction of offline phase and online phase of the

process.

3.3.1 Offline Phase

Landmark Definition. Landmarks are defined using common indoor objects like doors,

fire extinguishers and stairs, and indoor structure locations. Some examples of com-

mon objects are shown in Figure 3.3. Other indoor objects like chairs and desks are not

used because their positions are not fixed.

Three types of landmarks are defined : single object landmarks, multiple-object land-

marks, and scene landmarks. Single object landmarks consist of one object such as a

fire extinguisher or an elevator. multiple-object landmarks are defined with more than

one objects. For instance, office doors are multiple-object landmarks, which include a

doorplate and a door. Combining multiple objects enlarges the landmark distinctive-

ness and reduces ambiguity of the map. We do not utilize the texts in the doorplate

to further distinguish the office doors because motion blur makes the text recognition

very challenging. Scene landmarks are key locations of the indoor structure such as

corners, intersections or halls that have unique visual patterns.

Training CNN-based indoor object classifier. Our landmark detection relies on the ob-

ject detection results of the extracted images. High accuracy and real-time performance

of CNN on object detection inspires us to choose it for our application [193]. In the ap-
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(a) Fire extinguisher (b) Stair (c) Door

(d) Elevator (e) Toilets tag (f) Intersection

Figure 3.3: Common indoor objects and locations of interest.

plication, we develop our CNN-based landmark detector by modifying AlexNet [194].

The modified AlexNet contains 5 convolutional layers and two fully connected layers.

Each convolutional layer is tailed by a max pooling layer. Two fully connected layers

are used to assemble information from the convolutional layers. AlexNet is selected

for two reasons. The first is that it has proved its high performance in image classifi-

cation in ImageNet competition. Secondly, it is relatively easy to converge since it has

relatively fewer layers compared to other more complex networks.

Several tricks are applied to train AlexNet for our indoor object detection. Firstly, the

output layer has to be adjusted to recognize the target indoor objects. AlexNet is orig-

inally designed for ImageNet competition, which aims to recognize 1000 types of ob-

jects. However, not all indoor objects of our interest are included. We replace output

layer with new one, in which the number of neurons equals to the number of our inter-

esting indoor objects. Softmax function is chosen as the activation function of output

layer neurons. Secondly, we retrain AlexNet with fine-tuning technique. Only the

newly added layer is allowed to retrain, while the weights of the rest of the layers are

fixed. Finally, to eliminate the object variations caused by illuminations, rotations and

movement, we conduct data augmentation by pre-processing original images. For each
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original image, we change its brightness by adding 10, 30, -10, and -30 to produce new

images. We rotate original image by 5◦, 10◦, -5◦ and -10◦. The movement of pedestrians

leads to the partial occlusion of targets of interest. We also generate new image by ran-

domly cropping original image into size of 224× 224 pixel. Altering the brightness and

rotating images are done with the original images and cropping step is done during the

training stage. In this way, we enlarge the training dataset and the trained network is

robust to those variations.

3.3.2 Online Phase

The online phase consists of frame extraction, region proposal, indoor object recogni-

tion, and landmark type determination. We elaborate the procedures in detail, except

the indoor object recognition step which simply feeds the image patches into the clas-

sifier.

Frame Extraction. During the online phase, smart-phone videos are sampled at a given

rate. Sampling rate is a vital parameter as it impairs landmark detection accuracy and

efficiency. Low sampling rate results in low overlap or even no overlap between suc-

cessive images, which leads to the lost of track of certain objects in the image sequence.

High sampling rate leads to large information redundancy, resulting in low landmark

detection efficiency as more images are to be processed. Overlap can be roughly esti-

mated using equations (3.3.1) and (3.3.2). They are applied in two scenarios: walking

along a line and turning to another direction.

Overlap = 1− V
2H tan( θ

2 )Hz
× 100% (3.3.1)

Overlap = 1−
Vang

Hzθ
× 100% (3.3.2)

where V represents walking speed and H is the average distance between camera and

surrounding environment. θ is the field of view of camera in each mobile phone. Hz

represents sampling rate. Vang is the angular velocity. Empirically, the sampling rate

of 3-5 frames per second would work well according to the general walking speed of

human beings.

Region Proposal. Cutting target objects out of extracted images is crucial for landmark

detection. Feeding images that contain background, and target objects directly into the

classifier decreases the object recognition accuracy. It is because training samples are

covered with indoor objects in the majority of image space, while in extracted images,
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target objects may occupy only a small part of the extracted image. Therefore, we have

to crop the patches with target objects taking up most of the space. Here we choose the

selective search algorithm to generate patches of interest from images [195]. Selective

search employs a bottom-up strategy to generate patches. The process contains two

steps. At first, an over-segmentation algorithm is applied to generate massive initial

regions in a variety of colour space with a range of different parameters. Then a hi-

erarchical grouping approach is performed based on diverse similarity measurements

including colour, texture, shape and fill, with various starting points. Hundreds or

thousands of patches are produced from this algorithm. However, we do not need

to process all of them to identify the target objects since eligible patches may be too

many. Normally, the selective search generates thousands of patches using default pa-

rameters, and from these we randomly chose 300 patches for accuracy and efficiency

reasons.

Landmark Type Determination. Landmark type is determined based on the indoor ob-

jects recognition results. For single object landmarks and scene landmarks, their types

are given with their corresponding indoor objects. For example, if an elevator is de-

tected, an elevator landmark is detected. Regarding to multiple-object landmarks, their

types are determined when their components are correctly detected. For instance, if the

doorplate and door are detected in the same image image or a short image sequence,

then an office door landmark is detected.

A sequence of images are used to perform landmark type determination instead of

a single image. The main reason is that components of multiple objects landmarks

might not appear in the same image. The recognition result of a sequence images can

address the problem as the components are sequentially detected. Besides, it is helpful

to eliminate the wrong recognition results. In this thesis, indoor objects that are not

seen in 3 successive images is taken as the false detection. Exploiting images sequence

for localization also helps determine the landmark occurrence order when more than

one landmarks are observed in a single image.The first landmark detected prior to the

current landmark is viewed as the previous landmark of the current detected landmark

in the sequence. Sequence image length is set automatically based on the recognition

results. A sequence starts from an object is robust recognized and ends at the images

that are walls.
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3.4 Visual Landmark Sequence Localization using Second Or-

der Hidden Markov Model

Knowing a sequence of landmark types from a video, we match them with the prede-

fined topological map. In this section, we illustrate the defined topological map and

the matching algorithm based on Second Order Hidden Markov Model for our appli-

cations. We also extend the Viterbi algorithm for our application.

3.4.1 Topological Map

The topological map provides the information of the distribution of landmarks of the

indoor environment and indicates the connectivities between landmarks. In our case,

topological map is a directed graph, and is created from the floor plan map of the in-

door environment. It consists of two types of elements: nodes and edges. Nodes indi-

cate regions of the environment. Its colour represents landmark type. In this thesis, we

use red nodes for fire extinguishers, black for intersections, blue for offices, silver for

elevators, yellow for stairs, light green for the disabled toilets, green for man’s toilets

and dark green for Woman’s toilets. Edges denote the connecting information between

landmarks. An edge starting from node i to node j indicates the sequential direction

that landmark j is detected after landmark i. Arrowed line indicates one way connec-

tion. In certain situation, two landmarks might be spatially close to each other. They

are viewed as two regions, and are represented with the corresponding landmarks.

3.4.2 Second Order Hidden Markov Model for Indoor Localization

Second order hidden Markov model (HMM2 ) takes context information to perform

tasks. It contains 5 elements: observations set, states set, initial probability, emission

matrix and transition matrix. For our application, observations set includes all land-

mark type and states set indicates the landmark locations. Initial probability represents

the starting position of a route. In the rest of the section, we detail the emission matrix

and transition matrix of HMM2 in our scenario. We also introduce a new parameter to

handle unidentified multiple objects landmarks.

Emission Matrix of HMM2. Emission matrix represents the state probabilistic distri-

bution over observation set [196]. Its row count equals to the number of states and its

column count is the number of the observations classes. For our problem, the entry val-

ues of emission matrix indicate the probability of an observed landmark type, which

belong to a certain state. We assign the emission matrix value based on landmark types
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of a landmark location. The emission matrix is defined as follows: ei,j = 1, if landmark

type j corresponds to state i; ei,j = 0, otherwise.

Transition Matrix of HMM2. Unlike transition matrix of hidden Markov model which

is a 2-dimensional matrix, the transition matrix of HMM2 is 3-dimensional [196]. Its

value ti,j,k indicates the probability that next state is k, given the condition that previous

state is i and current state is j. For landmark-based indoor localization problem, it

represents probability of going through certain landmark position given previous two

landmarks positions. The matrix is defined as: ti,j,k = 1, if there is a path from i through

j to k; ti,j,k = 0, otherwise.

Probabilistic Matrix of Landmark Type. Ideally, multiple object landmark type should

be correctly recognized. But in some cases, only a component of the landmark is de-

tected for various reasons. To deal with the problem, a probabilistic matrix, pi,j, the

probability of landmark type i given detected object j, is defined. This parameter does

not affect single object landmark and scene landmark. For them, when the object or

scene is detected, its landmark type is determined. It aims to solve the confusion of

multiple objects landmark when part of landmark is observed. It works for the situ-

ations where an object is detected but its landmark type still remains undetermined.

The matrix value pi,j = 1, if landmark i is a single object landmark and j is the object to

form it, pi,j = 0, otherwise. For multiple objects landmark, if the detected object is not

able to be used to recognize landmark, we split the probability evenly. For example,

if a door is detected, its matrix value equals to 0.25 since it could belong to either an

office or a toilet.

3.4.3 Extended Viterbi Algorithm for Indoor Localization

Given modified HMM2 for landmark localization, we extend Viterbi algorithm to find

the landmarks sequence corresponding to the sequence of landmark types using Bayesian

theory. The details are as below. Assume that the HMM2 has M states for landmarks,

and the initial state parameter is πi, which represents the probability when the process

starts from landmark i. Transition matrix value tij is the transiting probability that the

process move from landmark i to landmarkj. There are n detected landmarks in the ob-

servation sequence, represented by Y = {y1, y2 . . . yn}. The corresponding locations

are represented by X = {x1, x2 . . . xn} . We aim to find the landmark location se-

quence X of the maximum probability, given the landmark type sequence Y. Therefore,

our objective function is to maximize P(X|Y). From Bayesian theory,

P(X|Y) = P(Y|X)P(X)

P(Y)
(3.4.1)
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where P(Y|X) denotes the probability distribution of landmark type sequence Y, given

state sequence X. In Hidden Markov Model(HMM), it is represented by emission ma-

trix. P(X) is the prior probability distribution of state sequence X. P(Y) is the proba-

bility distribution of observation sequence. It is a constant value. Hence the solution to

maximizing P(X|Y) and maximizing gu(X) are the same.

gu(X) = P(Y|X)P(X) (3.4.2)

Taking logarithm of gu(X), equation (3.4.2) is changed to equation (3.4.3).

lgu(X) = log(gu(X)) =
n

∑
j=1

logP(yi|xi) + logP(x1, x2, . . . xn) (3.4.3)

Since logarithm function is monotonically increasing, lgu(X) and gu(X) share the same

solution for the maximization problem. Note that HMM requires that the next state

only depends on the current state. LogP(x1, x2 . . . , xn) can be simplified to equation

(3.4.4).

logP(x1, x2, . . . xn) = (
n

∑
j=2

logP(xj|xj−1)) + logP(x1) (3.4.4)

Equation (3.4.3) is transformed to equation (3.4.5).

lgu(X) =
n

∑
j=1

logP(yi|xi) + (
n

∑
j=2

logP(xj|xj−1)) + logP(x1) (3.4.5)

The Viterbi algorithm is used to find solution to the maximization of lgu(X). It recur-

sively computes the path. Two parameters are updated in the process. At any step

t, Vt,k is used to record the maximum probability of the landmarks sequence ending

at landmark k , given t observations. Ptr(k, t) records the previous landmarks before

landmark k in the most likely state sequence. The process is as follows.

V1,k = ey1,k × πk (3.4.6)

Vt,k = max(eyt,k × txt−1,k ×Vt−1,xt−1) (3.4.7)

Ptr(k, t) = arg max
k

(eyt,k × txt−1,k ×Vt−1,xt−1) (3.4.8)

Viterbi algorithm has shown its good performance in solving HMM problem. It has to

be modified to solve HMM2 problem because HMM2 takes both the previous state and

the current state into consideration when predicting next step. Thus equation (3.4.4)

has to be extended as follows.
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logP(x1, . . . , xn) =
n

∑
j=3

logP(xj|xj−1, xj−2) + logP(x2|x1) + logP(x1) (3.4.9)

Another issue is that during landmark detection the landmark type might not be clearly

recognized. The modified equation is equation (3.4.9). A parameter is added to repre-

sent such unclear observation. The Viterbi algorithm for HMM2 is initialized by equa-

tions (3.4.10) and (3.4.11) followed by iteration equations (3.4.12) and (3.4.13), and is

summarized in Algorithm 1.

V1,k = max(py1,s1 × ey1,k × πk) (3.4.10)

V2(x1, k) = V1,x1 × t1(x1, k)×max(py2,s2)× ey2,k (3.4.11)

Vt(xt−1, k) = max(Vt−1(xt−2, xt−1)× t2(xt−2, xt−1, k))×max(pyt,st × eyt,k) (3.4.12)

Ptrt(xt−1, k) = arg max
xt−2

(Vt−1(xt−2, xt−1)× t2(xt−2, xt−1, k)) (3.4.13)

Where St is the object type of detected landmark t.

Algorithm 1: Extended Viterbi finds the location sequence of maximum probabil-

ity
Input: A sequence of observations Y, transition Matrix T1, T2, emission matrix E,

probabilistic matrix P initial location π

Output: A sequence of States X

1 Def: N, number of locations; M, number of landmark type; n, number of

observations

2 Initialization:

3 V1 = T1 × π × E× P

4 Recursion:

5 Vt = Vt−1 × T2 × Et × Pt

6 Ptrt = arg max (Vt−1 × T2)

7 Back trace:

8 XK = arg maxcol (VN) column index of the V

9 XK−1 = arg maxrow (VN) row index of the V

10 Xt = Ptrt+1(Xt+1, Xt+2)

11 Return X;
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3.5 Evaluation

3.5.1 Setup

To evaluate the proposed method, we conducted our experiments on B floor of the Busi-

ness South building (BSB ) and B floor of the School of Computer Science building (CSB

) at the University of Nottingham, UK. The two sites are typical office environments

containing many corridors and office rooms. Floor plan maps of two sites are shown

in Figure 3.4 and Figure 3.5 respectively, and their corresponding topological maps are

shown in Figure 3.6 and Figure 3.7. We selected eight types of landmarks from the two

places: office room, stair, elevator, fire extinguisher, men’s toilet, women’s toilet, dis-

abled toilet and intersection (corner). Among them, fire extinguisher, stair and elevator

belong to single-object landmarks. Office rooms and toilets are multiple-object land-

marks. Intersection is scene landmark. BSB is a relatively simple environment while

CSB building is more complex. In the School of the BSB, there are 54 landmarks in total,

and 65 landmarks in the CSB.

Two female and three male participants were asked to collect videos in both sites using

smart-phones. Three models of mobile phones were used: an Huawei Honor, a Sam-

sung Note 3 and an iPhone 6s Plus. Each participant wore a mobile phone on their

upper arm, with the camera looking sideways. The participants are required to walk

forward smoothly without standing still. They also should not shake their arms while

walking to avoid the image blur caused by rapid motion. Taking side-viewed videos

provides more information about landmarks as it is orthographic projection on land-

marks. Compared to front-view, view variations are relieved. Another reason is that

side-view capturing has a narrow field of view, which facilitates the determination of

the landmark occurrence order, since the landmarks appear one by one in the video.

Participants were asked to walk freely along the corridors in two experimental sites. In

our experiments, a real world mobile video dataset of 1.9 hours in total was collected

for the evaluation of the proposed method. The videos from the CSB are collected in

the morning of the weekends; participants walked at normal speed. The videos from

BSB are captured in the afternoon. The walking speed was about 1.5 metres per second

on average.

Seven routes were used as testingbed to evaluate our method. Two of them were col-

lected in the BSB and five of them from CSB. Route 1-2 are from the BSB and Route 3-7

are from CSB. The overview of the 7 routes are as follows:

Route 1: The route begins at node 43 and goes through 28 landmarks, ending at node

47.
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Figure 3.4: Floor plan map of B floor in the BSB.

Figure 3.5: Floor plan map of B floor in the CSB.
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Figure 3.6: Landmark topological map of B floor in the BSB.

Figure 3.7: Landmark topological map of B floor in the CSB.
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Route 2: The route starts from the node 44 and turns left at all four turns before ending

at node 46. There are 16 landmarks in this route.

Route 3: This route goes through 15 landmarks. It starts from an office door (node

52) and ends in the intersection (node 14). It walks through a sequence of office door,

containing a corner and a left turn.

Route 4: The route starts from the left stair and goes straight to the end corner of the

corridor. In total, 10 landmarks are included in this route.

Route 5: This route contains 14 landmarks. It begins from an intersection (node 16) and

goes through a sequence of office doors, turn, elevator and finally reaches the left stair.

Route 6: This route starts from a turn (node 16) and ends at an office (node 65) , going

through 3 turns, containing 17 landmarks.

Route 7: The route begins from a turn named node 16 and goes to the end of the corner

before turning left. It goes straight until reaching the turn (node 19). It goes down to

the turn (node 17). There are 22 landmarks in this route.

3.5.2 Landmark Detection

Indoor Objects Recognition. The selected landmarks are comprised of nine classes

of indoor objects, including eight classes of indoor objects: door (DR ), women’s toilet

tag (WMTT ), men’s toilet tag (MTT ), disabled toilet tag (DTT ), fire extinguisher (FE ),

door plate (DP ), elevator (ELV ), and stair (ST ) and one class of scene object (corner or

intersection)(CN ). Together, they form 8 types of landmarks. We also introduce back-

ground as a type class during training process, which are uninteresting object (walls

mostly (WLL )). Uninteresting objects act as negative training samples. This increases

the determinativeness and generalization ability of the classifier.

We collected about 1300 images containing these ten types of indoor objects (nine of

them are objects of interest and one is background). About 1000 of them were used

for training (fine-tuning the CNN pre-trained on ImageNet data) and the rest for test-

ing. The distribution of training and testing dataset are shown in Table 3.1 These data

came from two sources, images on the Internet and video frames of collected data. We

leveraged images from the Internet for two reasons. Firstly, the training dataset could

be enlarged, and thus the discriminative capacity of trained classifier over targeted in-

door object is improved. Another reason is that our detector can be used in a new

environment without retraining.

We selected AlexNet as the basic network and fine-tuned it for our application. The
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Table 3.1: Distribution of training and testing data.

Type CN DTT DR DP ELV FE MTT ST WLL WMTT

Training 56 60 155 63 60 250 58 113 104 55

Testing 29 25 33 22 23 36 24 37 31 20

output layer was modified by changing the number of neurons from 1000 to 10. Its

parameters were initialized with a normal Gaussian distribution. The other layers were

initialized with weights that won Visual Recognition Challenge in 2012. Parameters

of the convolutional layers and fully connected layers were kept fixed and only the

parameter of output layer were learned during the training phase. The CNN network

was implemented using the Caffe framework [197]. The learning rate was 0.05 and

the maximum iteration was 40000. The network was trained in an MSI laptop in GPU

mode. The laptop features a Windows 10 operating system and the processor is Intel

i7, and the laptop is fitted with 8GB of RAM. The graphics processing unit is an Nvidia

GTX970M.

We further compare the proposed the landmark detection method with traditional

hand-crafted feature-based methods. Gist feature [32] is used to represent the visual

objects and the objects are recognized using the SVM-based and ANN-based methods.

We report the result with the accuracy and the F1 value. F1 value is a measure of clas-

sification accuracy, which takes both precision and recall into consideration. Precision

represents the number of correct classification results divided by all positive results re-

turned by the classifier. Recall is the number of correct results divided by all the ground

true positive samples. The F1 value ranges from 0 to 1, and the higher the value is, the

better the performance. F1 can be computed with equation (3.5.1).

F1 = 2× precision× recall
precision + recall

(3.5.1)

The comparison results are shown in Table 3.3 and in Table 3.2 respectively.

Table 3.2: Performance comparison on indoor objects recognition in terms of accuracy.

Methods CN DTT DR DP ELV FE MTT ST WLL WMTT Overall

SVM 17.2% 64.0% 90.9% 68.2% 0.0 % 100% 0.0% 56.8% 3.2% 0.0 % 44.3%

ANN 82.8% 80.0% 97.0% 86.4% 73.9% 97.2% 87.5% 70.3% 61.3% 80.0% 81.8%

Ours 100% 96.0% 100% 95.5% 95.7% 100% 100% 100% 100% 95.0% 98.6%

The results show that our method achieves best results compared to SVM-based and

ANN-based methods on both average accuracy and F1 value. For each type of objects,
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Table 3.3: Performance comparison on indoor objects recognition in terms of the F1

value.

Methods CN DTT DR DP ELV FE MTT ST WLL WMTT AVERAGE

SVM 0.29 0.78 0.50 0.77 Nan 0.44 Nan 0.67 0.06 Nan Nan

ANN 0.89 0.87 0.84 0.90 0.76 0.77 0.88 0.78 0.70 0.86 0.82

Ours 1 0.96 1 0.98 0.98 1 1 1 0.98 0.93 0.98

our method outperforms the other two on accuracy and F1 value. SVM-based method

fails to recognize the elevator and toilets tags. ANN-based method also obtains high

accuracy but it tends to classify the wall into other objects. This affects the localization

application as it adds non-existing landmarks to the sequence.

Some cases are shown in Figure 3.8a, 3.8bFigure 3.9 and Figure 3.10 with regarding to

the illumination and view change as well as the blur image. It can be seen from that

the trained landmark detector is capable of staying robust to the illumination and view

change as well as the image blur.

Landmark Detection Performance. All videos of seven routes were empirically sam-

pled at the rate of three frames per second. Seven visual landmark sequences are shown

in Figures 3.11, 3.12, 3.13, 3.14, 3.15, 3.16, and 3.17. Sampled images were processed

with the selective search algorithm to generate 300 patches. Landmarks were deter-

mined from the classification results according to the strategy described in Section 3.3.2.

We applied this trained detector and ANN-based detector to the landmark detection on

the 1.9 hours indoor mobile phone videos. SVM-based detector is not used due to its

low performance on objects detection. The results are shown in Table 3.4, DL represents

detected landmarks, CDL represents the correctly detected landmarks, WDL denotes

wrongly detected landmarks.

Table 3.4: Landmark detection performance in the real data test.

Route Landmarks Counts
ANN Ours

DL CDL WDL DL CDL WDL

1 28 30 25 5 28 28 0

2 16 16 16 0 16 16 0

3 15 20 15 5 15 15 0

4 10 10 10 0 10 10 0

5 14 18 14 4 14 14 0

6 18 26 18 6 18 18 0

7 22 29 22 7 22 22 0
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(a) high illumination image (b) low illumination image

Figure 3.8: Object detection of different illuminations.
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Figure 3.9: Object detection result of the blur images.
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Figure 3.10: Object detection result of doors with different views.

Figure 3.11: Landmark sequence of Route 1.
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Figure 3.12: Landmark sequence of Route 2.

Figure 3.13: Landmark sequence of Route 3.

Figure 3.14: Landmark sequence of Route 4.
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Figure 3.15: Landmark sequence of Route 5.

Figure 3.16: Landmark sequence of Route 6.

Figure 3.17: Landmark sequence of Route 7.
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Our method correctly detected all landmarks in all routes. ANN-based detector cor-

rectly detected landmarks in Route 2 and Route 3. Some walls are wrongly detected as

doors in Route 3, 5, 6 and 7. This demonstrates that our detector outperforms the de-

tector using hand-crafted feature. Currently, the proposed method can not be achieved

in real time. The majority of time are spent on landmark detection. Although the av-

erage time of classifying an image is short using our convolutional neural network

(about 0.012s on our machine), the average time to process a landmark image is about

7 seconds. The process is time-consuming for two reasons. Firstly, we choose the effec-

tive selective search algorithm to generate patches from landmark images, which costs

about 3 to 4 seconds to generate reliable patches. Secondly, we feed the 300 patches

of a landmark image to the network to correctly detect landmark, which takes up ex-

tra 3 seconds. It should be noted that the detection process can be optimized with the

development of object detection technologies in computer vision.

3.5.3 Localization

Performance. We match the detected landmarks with topological map on two situ-

ations: with known start and with unknown start. The ground truth routes and the

predicted routes are shown in Figure 3.18. The red line indicates the ground truth tra-

jectory. The green line represents the predicted trajectory with unknown start while

the blue line represents the predicted trajectory with known start. The route start is

represented with node of cyan edge and the route end is denoted as node of red edge.

For Route 1, 2, 4, 5 and 7, predictions of both known and unknown start are correctly

localized since the blue and green line are in accordance with the red line. For Route

3 and 6, the two blue lines are in accordance with the red lines, indicating that they

are accurately localized under known start condition. For unknown start case, Route

3 has two predictions: one starts from node 27 and ends at node 13 and the other one

starts from node 52 and ends at node 14. The latter is the correct path. Route 6 also has

two predictions: one starts from node 10 and ends at node 30, and the other one be-

gins at node 16 and stops at node 65, the latter of which is correct. This shows that the

two routes can not be localized with current observations and further observations are

required to be localized eventually. This problem can be solved by giving the start posi-

tions since all 7 routes are correctly localized under known start condition. The results

demonstrate that our method is capable of localizing users accurately with known start

and it also works well in some cases with unknown start. Compared to the landmark

detection, the localization process barely costs time. We spend about 0.043 second in

average to localize each route.
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(a) Route 1 (b) Route 2

(c) Route 3 (d) Route 4

(e) Route 5 (f) Route 6

(g) Route 7 (h)

Figure 3.18: The localization results of 7 routes.
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We further make comparison with HMM-based method in two situations and the sta-

tistical results are shown in Table 3.5. The number of possible paths is used to report the

comparing result. It is notable that HMM fails to localize all landmark sequences with-

out known start and only Route 5 is accurately localized given start position. Besides,

our method outperforms the HMM-based method in 7 routes with the same conditions.

Table 3.5: Statistical comparison landmark sequence localization results of 7 Routes.

Route
HMM HMM2

Without With Without With

1 18 9 1 1

2 8 2 1 1

3 1137 82 2 1

4 2 2 1 1

5 12 1 1 1

6 18346 5556 2 1

7 4 2 1 1

Offline performance. Offline matching is done after all the landmarks are detected,

and we match the whole landmark sequence with the topological map. The ground

truth routes and the predicted routes are shown in Table 3.5. The result shows that the

proposed method is capable of localizing users accurately except for Routes 3 and 6

with unknown starting position. This happens for the same reason: the environment is

of high ambiguity. This problem can be solved when more landmarks are observed.

Analysis. In this section, we evaluate localization performance of the proposed method

regarding to the number of observed landmarks. The number of possible paths are

used to report performance. We perform experiments in two scenes using Route 1 and

Route 7 along with the number of the observed landmarks under unknown start con-

ditions. The performance is shown in Figure 3.19. It is shown that Route 1 is localized

with 6 landmarks and Route 7 is localized at 9th landmark. It is because Computer

Science building is more complex compared with the Business South building.

We also conduct experiments to analyse the effects of given route start regarding to

the number of observed landmarks. Route 1 from Business South building and Route

3, 7 from Computer Science building are used to perform experiments. It can be seen

from the Figure 3.20 that Route 1 is localized from 3rd landmark with known start

and from 6th landmark with unknown start. Route 7 is localized given 9 landmarks

with unknown start and 3 landmarks with known start. Proposed method is not able

to localize Route 3 giving unknown start but localizes route from 2nd landmark with
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Figure 3.19: Localization performance with the number of observed landmarks in two

scenes.

knowing start. It demonstrates that knowing start significantly improves the localiza-

tion performance in two scenes.

(a) Route 1 (b) Route 7

(c) Route 3

Figure 3.20: Influence of known start on localization results.
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3.6 Concluding Remarks

In this thesis, we present a visual landmark sequence-based indoor topological local-

ization method. We propose an innovative representation of landmarks on topological

map, a robust landmark detector and an effective sequence matching algorithm for lo-

calization. Semantic information of stable indoor elements is exploited to represent the

environmental locations. Compared to traditional landmark represented by local key

point features, combined geometric elements or text information, our representation is

able to stay robust facing dynamic environmental change caused by view changes and

image blurring. This high-level representation reduces the storage requirement and can

be extended to large indoor environment. We present a robust CNN-based landmark

detector for landmark detection. Previous landmark detecting methods are devised

based on the predefined rules or colour and gradient information. Slight environment

change could significantly influence the landmark detection performance. Background

also has significant influence to the detection accuracy. We develop the novel land-

mark detector using deep learning technique. Instead of designing the feature with the

landmark prior, it learns a deep feature representation for landmarks. Experimental

results demonstrate that previous designed feature is confused with background while

our detector are capable of reliably detecting landmarks from the background.

Our matching algorithm achieves good performance to handle indoor scene ambiguity

as it involves more contextual information. Taking objects types as landmark repre-

sentation saves the storage demand but discards the landmark details. This further

increases the scene ambiguity. Methods depending on feature matching fails to work

with scene ambiguity problem. HMM helps relieve it in certain degree but still does

not solve it. The experiments show that our methods provides better result than HMM

to the problem.

For future work, we plan to investigate the fusion of low-level visual features with

semantic features, as well as the geometric features. This would decrease the scene

ambiguity and require fewer landmarks for localization. Another direction to pursue

is to construct the topological map automatically. Currently, we build our topological

map manually based on the floor plan map. When there are no floor plan maps of the

scenes, constructing the map from massive videos is necessary. Localization approach

is not able to handle the situation that the camera stops working for a while as we

rely on the landmark occurrence sequence to perform localization. If the camera stops

working for a period of time, there will be two video segments. The approach will treat

the two video segments as independent videos to perform localization. Two landmark

sequences are not able to constrain each other because any number of the landmarks
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and any type of the landmarks could be observed during the breaking time.
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CHAPTER 4

A Relative Geometry-aware Siamese

Neural Network for Image-based

Metric Localization

Metric localization, also referred to the 6DOF camera relocalization, is an important

component of autonomous driving and navigation. Deep learning has recently emerged

as a promising technique to tackle this problem. In this chapter, we present a novel

relative geometry-aware Siamese neural network to enhance the performance of deep

learning-based methods through explicitly exploiting the relative geometry constraints

between images. We perform multi-task learning and predict the absolute and relative

poses simultaneously. We regularize the shared-weight twin networks in both the pose

and feature domains to ensure that the estimated poses are globally as well as locally

correct. We employ metric learning and design a novel adaptive metric distance loss to

learn a feature that is capable of distinguishing poses of visually similar images from

different locations. We evaluate the proposed method on public indoor and outdoor

benchmarks and the experimental results demonstrate that our method can signifi-

cantly improve localization performance. Furthermore, extensive ablation evaluations

are conducted to demonstrate the effectiveness of different terms of the loss function.

The chapter is organized as follows: Section 4.1 describes the camera relocalization.

Section 4.2 elaborates the basic idea of deep learning-based camera relocalization meth-

ods. Section 4.3 describes the architecture of the proposed network and its loss function

items. We present the details of our experiments and evaluation in Section 4.4. Finally,

we conclude our work in Section 4.5.
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4.1 Introduction

Camera relocalization, or 6 degrees of freedom (6DOF ) estimation, refers to the prob-

lem of estimating the pose (position and orientation) of an image (camera). It is a hot

research topic in structure from motion (SfM), simultaneous localization and mapping

(SLAM) and robotics, and it is also an essential component of autonomous driving and

navigation.

Global Positioning System (GPS) has been widely used for vehicle localization but its

accuracy significantly decreases in urban areas where tall buildings block or weaken

its signals. Many image-based methods have been proposed to complement GPS.

They provide position and orientation information based either on image retrieval

[113, 118, 198–200] or 3D model reconstruction [201]. However, these methods face

many challenges, including high storage overheads, low computational efficiency and

image variations, especially for large scenes.

Recently, rapid progress in machine learning, particularly deep learning, has produced

a number of deep learning-based methods [131–139]. They have attained good per-

formances in addressing the aforementioned challenges but their accuracies are not as

good as traditional methods. Another severe problem of deep learning-based methods

is that they fail to distinguish two different locations that have similar objects or scenes.

In this thesis, we present a novel relative geometry-aware Siamese neural network,

which explicitly exploits the relative geometry constraints between images to regular-

ize the network. We improve the localization accuracy and enhance the ability of the

network to distinguish locations with similar images. It is achieved with three key new

ideas:

1. We design a novel Siamese neural network that explicitly learns the global poses

of a pair of images. We constrain the estimated global poses with the actual rela-

tive pose between the pair of images.

2. We perform multi-task learning to estimate the absolute and relative poses simul-

taneously to ensure that the predicted poses are correct both globally and locally.

3. We employ metric learning and design an adaptive metric distance loss to learn

feature representations that are capable of distinguishing the poses of similar vi-

sual images of different locations thus improving the overall pose estimation ac-

curacy.
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4.2 Deep Learning-based Camera Relocalization

Deep learning-based camera relocalization methods use an end-to-end learning strat-

egy to predict the positions and orientations directly. They do not perform image

matching or solve 2D-3D correspondence as traditional methods do. Instead, they

regard the task as a regression problem and utilize convolutional neural networks

to model the hidden mapping function between the images and their corresponding

poses. The networks are supervised by the distance between the predicted poses and

the ground truth. This section focuses on discussing the pose representation and de-

scribing the loss function formulation.

4.2.1 Pose Representation

The image (camera) pose is comprised of the positional component and the orienta-

tional component. The position is denoted by a 3-dimensional vector x of the arbitrary

coordinate space. Orientation can be represented in 3 forms: Euler angle, transforma-

tion matrix, and quaternion. Euler angle is not a good choice because it suffers from

the gimbals lock problem. Transformation matrix is over-parametrized for orienta-

tion because it contains 9 parameters to represent the orientation of 3D space, while

the orientation only has 3 degrees of freedom. Previous works [132, 135–137] choose

the quaternion to represent orientation, because it is a smooth and continuous rep-

resentation. The quaternion is a 4-dimensional unit vector q and is easy to perform

back-propagation. The main concern for the quaternion is that each orientation has

two different quaternion representations. This can be addressed by constraining the

quaternion to one hemisphere.

One simple and obvious way to represent pose is to form a 7-dimensional vector, com-

bining position and orientation together. However, previous works demonstrate that

the 7-dimensional vector representation does not achieve good performance due to the

difference of scale between position and orientation. Therefore, two pose components

are usually regressed separately. In this thesis, instead of training two separate convo-

lutional neural networks to estimate position and orientation, we train one model to

predict the two components simultaneously. This is reasonable because both position

and orientation come from the same image content.
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4.2.2 Loss Function

The loss function (GlobalLoss ) is normally designed based on the distance between the

predicted pose and the ground truth, serving as the optimization objective for training

the networks. It consists of two components, i.e. position loss and orientation loss, as

shown in equation (4.2.1).

LG = LGx + LGq, (4.2.1)

where LGx is the position loss and LGq denotes the orientation loss. Here, Euclidean

distance is chosen to calculate the position loss and orientation loss as it is continu-

ous and smooth. The two components are computed by equations (4.2.2) and (4.2.3)

respectively.

LGx = ‖x− x̂‖2 , (4.2.2)

where x represents the real position and x̂ denotes the predicted one.

LGq =

∥∥∥∥q− q̂
‖q̂‖

∥∥∥∥
2

, (4.2.3)

where q is the ground truth orientation, q̂ denotes the predicted orientation and ||q̂||
represents the length of the predicted orientation quaternion. q̂

‖q̂‖ is performed to nor-

malize the predicted quaternion to the length of 1 since the network prediction does

not guarantee it.

Due to the quantity and scale difference between the position loss and the orientation

loss, a hyperplane parameter β is introduced to balance the influence of the two loss

components. The loss function is represented as equation (4.2.4).

L = LGx + β× LGq, (4.2.4)

Previous works choose to set β manually and achieve good performance in their ex-

periments. However, fine tuning β for different scenes is labour-intensive. PoseNet2

addresses this issue by introducing two learnable variables, i.e. ŝx and ŝq, which cor-

respond to the loss of position and orientation respectively. Then equation (4.2.4) is

transformed into equation (4.2.5):

L = LGx × exp(−ŝx) + ŝx + LGq × exp(−ŝq) + ŝq. (4.2.5)
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4.3 Relative Geometry-Aware Siamese Network for Camera Re-

localization

Our network is built on Siamese network originally introduced by Bromley and Le-

Cun in [202]. A traditional Siamese neural network architecture consists of twin net-

works which accepts distinct inputs. The loss function computes a metric between

the highest-level feature representation on each side given certain threshold. We uti-

lize this structure to learn a robust feature representation for mapping positions and

orientations by introducing relative geometry constraints of the training images. The

process is supervised by both global pose and relative pose constraints. The proposed

network architecture is illustrated in Figure 4.1. Compared to the conventional Siamese

network structure, it has an additional component for relative pose prediction and per-

forms multi-task learning. In the following subsections, we will present the network

architecture and the relative geometry losses for the network training in detail.

4.3.1 Network Architecture

Each of the twin networks consists of a modified ResNet50 [203] and a global pose

regression unit (GPRU ). The modified ResNet50 consists of 5 residual blocks and an

average pooling layer. Each residual block has multiple residual bottleneck units that

are comprised of three convolutional layers with kernel sizes of 1× 1, 3× 3, and 1× 1

in sequence. Each convolutional layer is followed by rectified linear unit (ReLU) and

batch normalization operation. The average pooling layer is used to aggregate the fea-

ture information from the previous layers. The GPRU contains 3 fully connected layers.

The first fully connected layer has 1024 neurons and the followed two has 3 and 4 neu-

rons respectively for regressing the position and orientation. For the relative pose of

the two inputs, we design a relative pose regression unit (RPRU ). It has a similar struc-

ture as the GPRU. The difference lies in their inputs. While the GPRU takes the output

vector of the modified ResNet50 as input, the RPRU takes the concatenation of the two

modified ResNet50 output vectors as input. The dropout technique is applied after

each fully connected layer to reduce feature redundancy. The parameter of dropout

layer is set to be 0.2 empirically.

4.3.2 Relative Geometry Losses

We design three relative geometry losses based on the relative geometry constraints of

the training images including the relative pose loss (RelLoss), the relative pose regres-
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Figure 4.1: Relative Geometry-Aware Siamese neural network architecture for 6DOF

camera relocalization. Units of the same colour share the same weights.

The silver and grey unit represent the outputs of the modified ResNet50.

Gx, Gq denote the positional and orientational components of the predicted

global pose, and Rx, Rq denote two components of the predicted relative

pose. The global pose regression unit (GPRU) and the relative pose regres-

sion unit (RPRU) are represented with dashed-boundary boxes.

sion loss (RelRLoss ) and the adaptive metric distance loss (MDLoss). They function in

both the feature and the pose spaces to regularize the network. They will be discussed

in detail in the following sections.

Relative Pose Loss. Previous deep learning-based pose estimation methods train the

network on the global poses of the images, i.e. given an input image, they estimate its

global (absolute) position and orientation while the relative pose between two training

images is ignored. However, the relative pose information of two images is important.

In this thesis, the network not only explicitly estimates the global pose of the input im-

age but also explicitly requires that the difference between the estimated global poses

of two images is consistent with their actual (ground truth) difference. The relative

pose loss (RelLoss ) is designed to preserve the relative geometry in the pose space by

comparing the distance between two predicted global poses, and the actual distance of

the global poses of the two images. RelLoss is able to keep the relative pose of paired

images consistent with their ground truth. It works in the pose space and constrains

the pose error of two images.

Suppose that the position and orientation of the current image I and a reference image
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Ire f are (x, q) and (xre f , qre f ), respectively. The relative position xrel and orientation qrel

can be computed with equations (4.3.1) and (4.3.2).

xrel = x− xre f , (4.3.1)

qrel = q∗re f × q, (4.3.2)

where q∗re f represents the conjugate quaternion of qre f . Note that when calculating the

relative orientation from the predicted orientation quaternion with equation (4.3.2),

the quaternion has to be normalized. The RelLoss also contains the positional loss

component and the orientational loss component as shown in equation (4.3.3).

LC = LCx + LCq, (4.3.3)

where LCx denotes the RelLoss positional component, and LCq is the orientational com-

ponent.

The two loss components are formulated with Euclidean distance as shown in equa-

tions (4.3.4) and (4.3.5).

LCx = ‖x̂rel − xrel‖2 , (4.3.4)

LCq = ‖q̂rel − qrel‖2 , (4.3.5)

where x̂rel , q̂rel are the predicted relative position and orientation, and xrel , qrel denote

the ground truth.

Relative Pose Regression Loss Whilst RelLoss captures the relative geometry of two

images through estimating their global poses, we here introduce another loss to esti-

mate the relative pose distance of a pair of images directly from the input images. The

relative pose regression loss (RelRLoss) is defined as shown in equation (4.3.6).

LR = LRx + LRq, (4.3.6)

where LRx denotes the positional component, and LRq denotes the orientational compo-

nent. The two component loss functions are computed by equations (4.3.7) and (4.3.8).

LRx = ‖xrel − x̃rel‖2 , (4.3.7)

LRq =

∥∥∥∥qrel −
q̃rel

‖q̃rel‖

∥∥∥∥
2

, (4.3.8)
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where xrel , qrel represent the ground truth relative position and orientation, and x̃rel , q̃rel

represent the directly predicted relative position and orientation. The ground truth

relative position and orientation can be obtained using equation (4.3.1) , (4.3.2). Note

that q̃rel needs to be normalized as it is directly regressed by the network.

It should be noted that LR in equation (4.3.6) and LC in equation (4.3.3) are different.

One is computed from the difference of two predicted global poses while the other is

predicted directly by regression. Furthermore, it is the LR that joins the twin networks

together (please refer to Figure 4.1). The purposes of introducing RelRLoss is to ensure

that the features extracted by the ResNet50 network will not only enable an accurate

estimate of the global pose but also an accurate relative pose estimation.

Adaptive Metric Distance Loss. Deep learning-based methods often fail to accurately

predict the poses of similar images of different locations. Distinguishing similar inputs

belonging to different classes is one of the major difficulties in computer vision. Here,

we take advantage of the Siamese network architecture of Figure 4.1 and propose the

adaptive metric distance loss (MDLoss ) to address the problem. It is inspired by met-

ric learning [204–206]. The basic idea of metric learning is to learn a metric distance

adaptive to the problem of interest. For many problems, including camera relocaliza-

tion, hand-crafted representations fail badly in capturing the notion of similarity. Deep

learning regression-based camera relocalization approaches are based on the visual

contents of the input image to estimate its pose, therefore simple metrics measuring

the visual content similarity fails to capture the pose dissimilarity in the above cases.

In the case of our Siamese architecture in Figure 4.1, the 6DOF camera pose is estimated

by the GPRU. The input to the GPRU unit (the output of the ResNet50) should reflect

the pose difference rather than the visual similarity of the images. We therefore introduce

the adaptive metric distance loss (MDLoss) to address this issue.

The MDLoss is built on the contrastive loss, which employs semantic information (data

label) to force the convolutional neural network to learn an embedding representation

that complies with a notion of similarity of the problem domain. In our scenario, we

define the metric distance loss by embedding the relative pose of two images. The

relative information is used to define the margin of feature representation. The loss

function is shown in equation (4.3.9).

LMD =
1

2N

N

∑
n=1
{max(dx + α× dq − d, 0)}2, (4.3.9)

where N denotes the number of the training samples, d = || f − fre f ||2, f and fre f are

the outputs of the modified ResNet50 network taken for the current image and the

reference image respectively, dx = ||x − xre f ||2 is the Euclidean distance of the actual
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relative position while dq = ||q − qre f ||2 is the Euclidean distance of the actual rela-

tive orientation of the current image and the reference image, α is a positive constant

to balance the influence of the relative position and orientation. It is set equal to 10

empirically.

An explanation of LMD is that, if d is smaller than dx + α× dq, we want to make it as

large as dx + α× dq. On the other hand, if d is larger than dx + α× dq, this cost function

is not utilized and other cost functions will function to ensure f and fre f to take the

appropriate values. This is a reasonable strategy because the reference image is always

taken at a different location from that of the current image.

4.3.3 Comprehensive Loss

We train the proposed neural network jointly with GlobalLoss, RelLoss, RelRLoss and

MDLoss. The comprehensive loss can be represented by equation (4.3.10).

L = LG + LC + LR + LMD (4.3.10)

Equation (4.3.10) can also be written in the form of equation (4.3.11).

L = Lx + Lq + LMD, (4.3.11)

It consists of three components: position loss Lx, orientation loss Lq and metric distance

loss LMD. Positional loss and orientational loss each has three components and can be

written as equations (4.3.12) and (4.3.13) respectively.

Lx = LGx + LCx + LRx, (4.3.12)

Lq = LGq + LCq + LRq. (4.3.13)

We choose a learning strategy to balance the position loss Lx and orientation loss Lq

similar to PoseNet2. Therefore, the comprehensive loss can be further reformulated as

equation (4.3.14):

L = Lx × exp(−ŝx) + ŝx + Lq × exp(−ŝq) + ŝq + LMD. (4.3.14)

where ŝx and ŝq are learnable coefficients.
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4.4 Experiments

In this section, we test our method on two publicly available camera relocalization

benchmark datasets, one indoor and one outdoor, to demonstrate its effectiveness. Ex-

perimental results are presented and compared with state-of-the-art methods in the

literatures. We also investigate the role of various components of the loss function and

analyze how the choice of reference image affects the performance of the proposed

method.

4.4.1 Datasets

The two public datasets we used are: 7Scene [128] and Cambridge Landmarks [132]. To

make our results exactly comparable to previous methods, we use the same split of

training set and testing set as in the original datasets. The details of the two dataset can

be seen in Table 4.1.

7Scene is an indoor image dataset for camera relocalization and trajectory tracking. It

is collected with a handhold RGB-D camera. The ground truth pose is generated using

the Kinect Fusion approach [207]. The dataset is captured in seven indoor scenes. For

each scene, it contains several image sequences, which has already been divided into

training and testing sets. The images are taken at the resolution of 640× 480 pixel with

known focal length of 585. The dataset is quite challenging as motion makes the images

blur. Besides, the indoor scenes are usually texture-less, which makes the localization

problem even more difficult.

Cambridge Landmarks is an outdoor dataset collected in four sites around Cambridge

University. It is collected using a Google mobile phone while pedestrians walk. The

images are captured at the resolution of 1920× 1080 pixels and the ground truth pose

is obtained through VisualSFM software [208]. The dataset is also very challenging as it

is taken in different weather and lighting conditions. Besides, the occlusion of moving

pedestrians and vehicles further increases the difficulty.

4.4.2 Setup

Training phase: in this phase, all parts of the proposed network are involved. It takes in

a pair of images and outputs the corresponding global poses of them. It is important

to note that, the twin networks are identical. One takes the current image as input and

produces its global 6DOF pose information, while the other takes the reference image

as input and outputs its corresponding pose.
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Table 4.1: The details of the 7Scenes and Cambridge landmark dataset.

Scene Training Testing Spatial scope(m)

Chess 4000 2000 3 × 2

Fire 2000 2000 2.5 × 1

Heads 1000 1000 2 × 0.5

Office 6000 4000 2.5 × 2

Pumpkin 4000 2000 2.5 × 2

Red Kitchen 7000 5000 4 ×
Stairs 2000 1000 2.5 × 2

KingsCollege 1220 343 140 × 40

OldHospital 895 182 50 × 40

ShopFacade 231 103 35 × 25

StMarysChurch 1487 530 80 × 60

Testing phase: in the testing phase, only one of the twins is necessary. Since they are

identical, any one can be used. The middle part that linking the twins is no longer

necessary in this stage. Once training is completed, an image is fed to one of the twin

networks and the 6 degree global pose information of the camera can be estimated.

We use the same image pre-processing approaches as previous methods [132]. We

firstly resize the image to 256 pixels along the shorter side and normalize it with the

mean and standard deviation computed from the ImageNet dataset. For the training

phase, we randomly crop the image to 224× 224 pixels. For the testing phase, images

are cropped to 224× 224 pixels at the center of the image. Training images are shuffled

before they are fed to the network.

The modified ResNet50 is initialized with pre-trained weights of ImageNet dataset.

The GPRU component and the RPRU are initialized with the Xavier initialization [209].

We choose the Adam optimizer to train the network with parameters β1 = 0.9 and β2 =

0.999. The weight decay is 10−5 . We train the network with different learning rates

from 10−3 to 10−7 and find that 10−5 gives best performance as well as the efficiency.

The batch-size is set to be 32 for computational resource reasons. We also initialize the

ŝx and ŝq with 0 and -3.0 respectively in our experiments. We implement the network

with PyTorch and train the network on an Ubuntu 16.04 TS system with a NVIDIA

GTX 1080Ti GPU. Training is stopped until the network is converged.
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4.4.3 Results

We compare the results of the proposed method with that of state-of-the-art deep learning-

based methods such as PoseNet, Bayesian PoseNet, PoseNet2, Hourgrlass-net, LSTM-

Net,Vidloc and RelNet on the 7Scene dataset, and with PoseNet, Bayesian PoseNet,

PoseNet2 and LSTM-Net on the Cambridge Landmarks dataset. It is perhaps worth men-

tioning that unlike these methods, VLocNet [141] and VLocNet++ [142] can only work

on image sequence and crucially, these two methods require to know the exact pose

of the starting frame of the sequence before they can predict the poses of subsequent

frames. Therefore, these two methods are not directly comparable with our method

and those methods we compare against in this thesis. Similar to others, we report each

scene’s median error. We also compare the average median accuracy over all scenes in

each dataset. The comparative results are shown in Table 4.2 and Table 4.3. Table 4.2

Table 4.2: Comparison of median errors with other deep learning-based methods on

the 7Scene dataset. The reported values are referred to their respective pa-

pers.
Scene PoseNet [132] Bayesian PoseNet [134] LSTM-Net [136] Vidloc [137] HourglassNet [135] PoseNet2 [138] RelNet [140] Ours (Median) Ours (Best)

Chess 0.32m, 8.12◦ 0.37m, 7.24◦ 0.24m, 5.77◦ 0.18m, N/A 0.15m, 6.53◦ 0.13m, 4.48◦ 0.13m, 6.46◦ 0.099m, 5.19◦ 0.001m, 0.20◦

Fire 0.47m, 14.4◦ 0.43m, 13.7◦ 0.34m, 11.9◦ 0.26m, N/A 0.27m, 10.84◦ 0.27m, 11.3◦ 0.26m, 12.72◦ 0.253m, 11.64◦ 0.001m, 0.15◦

Heads 0.29m, 12.0◦ 0.31m, 12.0◦ 0.21m, 13.7◦ 0.14m, N/A 0.19m, 11.63◦ 0.17m, 13.0◦ 0.14m, 12.34◦ 0.126m, 13.20◦ 0.002m, 0.14◦

Office 0.48m, 7.68◦ 0.48m, 8.04◦ 0.30m, 8.08◦ 0.26m, N/A 0.21m, 8.48◦ 0.19m, 5.55◦ 0.21m, 7.35◦ 0.161m, 7.71◦ 0.001m, 0.10◦

Pumpkin 0.47m, 8.42◦ 0.61m, 7.08◦ 0.33m, 7.00◦ 0.36m, N/A 0.25m, 7.01◦ 0.26m, 4.75◦ 0.24m, 6.35◦ 0.163m, 6.61◦ 0.001m, 0.15◦

Redkitchen 0.59m, 8.64◦ 0.58m, 7.54◦ 0.37m, 8.83◦ 0.31m, N/A 0.27m, 10.15◦ 0.23m, 5.35◦ 0.24m, 8.03◦ 0.174m, 8.24◦ 0.001m, 0.14◦

Stairs 0.47m, 13.8◦ 0.48m, 13.1◦ 0.40m, 13.7◦ 0.26m, N/A 0.29m, 12.46◦ 0.35m, 12.4◦ 0.27m, 11.82◦ 0.26m, 13.13◦ 0.005m, 0.23◦

Average 0.44m, 10.4◦ 0.47m, 9.81◦ 0.31m, 9.85◦ 0.25m, N/A 0.23m, 9.53◦ 0.23m, 8.12◦ 0.21m, 9.30◦ 0.177m, 9.39◦ 0.002m, 0.16◦

shows the results for the 7Scene dataset. It is seen that compared with 7 state-of-the-art

deep learning-based camera relocalization methods, the proposed method achieves the

best performance on positional accuracy in all 7 scenes. Our method improves the av-

erage median positional accuracy by 16% over the best reported result. It is interesting

to note that our method has obtained even better result than PoseNet2, which utilizes

3D reference as additional constraints.

For orientational accuracy, we achieve the best result compared to methods based on

direct regression. It is not surprising that the results are not as good as PoseNet2 and

RelNet since PoseNet2 requires additional 3D models and RelNet triangulates the pose

with all referencing images by estimating the relative poses instead of directly regress-

ing results.

Table 4.3 shows the results for the Cambridge Landmarks dataset. It can be seen that

our method obtains the best positional accuracy on the KingsCollege and the Shop-

Facade scenes, reaching accuracies of 0.865m and 0.834m respectively. We improve

the state-of-the-art orientational accuracy of the OldHospital and the StMarysChurch

scenes from 3.29◦ and 3.32◦ to 2.42◦ and 2.98◦, achieving 26% and 10% improvement
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Table 4.3: Comparison of median errors with other deep learning-based methods on

the Cambridge Landmarks dataset. The reported values are referred to their

respective papers.
Scene PoseNet [132] Bayesian PoseNet [134] LSTM-Net [136] PoseNet2 [138] Ours (Median) Ours (Best)

KingsCollege 1.92m, 5.40◦ 1.74m, 4.06◦ 0.99m, 3.68◦ 0.88m, 1.04◦ 0.865m, 1.96◦ 0.036m, 0.01◦

OldHospital 2.31m, 5.38◦ 2.57m, 5.14◦ 1.51m, 4.29◦ 3.20m, 3.29◦ 1.617m, 2.42◦ 0.113m, 0.01◦

ShopFacade 1.46m, 8.08◦ 1.25m, 7.54◦ 1.18m, 7.44◦ 0.88m, 3.78◦ 0.834m, 5.56◦ 0.045m, 0.01◦

StMarysChurch 2.65m, 8.46◦ 2.11m, 8.38◦ 1.52m, 6.68◦ 1.57m, 3.32◦ 1.650m, 2.98◦ 0.087m, 0.01◦

Average 2.08m, 6.83◦ 1.92m, 6.28◦ 1.30m, 5.52◦ 1.62m, 2.86◦ 1.24m, 3.23◦ 0.070m, 0.01◦

respectively. The average positional accuracy over all scenes is improved from 1.30m

to 1.24m. The average orientational accuracy over all scenes is only a little worse than

that of PoseNet2, which is trained with 3D model constraints.

It is interesting to note that of all the methods presented in the two tables, some did bet-

ter in positional accuracy and some did better in orientational accuracy, none of them

seems to comprehensively beat the others in both measures. Our method achieves the

best average positional accuracy amongst all methods in both datasets. For orienta-

tional accuracy, our method achieves competent results, which is only slightly worse

than the best method (PoseNet2) but better or at least as good as the other methods.

4.4.4 Discussion

In this section, we perform analysis on the influence of various loss function compo-

nents and the reference image selection strategy. The experiments are also done on the

7Scene and Cambridge Landmarks.

Loss Analysis. We perform ablation analysis on the loss function. Recall from equation

(4.3.10), the overall loss function is L = LG + LC + LR + LMD, consisting of the the

global loss LG, the relative pose loss LC, the relative pose regression loss LR, and the

adaptive metric distance loss LMD. In order to assess the role these loss components

play, we formulate 4 loss functions based on the following combinations:

1. G: GlobalLoss;

2. G+C: GlobalLoss + RelLoss;

3. G+C+R: GlobalLoss + RelLoss + RelRLoss;

4. Ours: GlobalLoss + RelLoss + RelRLoss + MDLoss.

We train the proposed network by the 4 aforementioned loss functions separately. The

results are shown in Table 4.4 for the 7Scene dataset and in Table 4.5 for Cambridge land-

marks. It is seen that as more loss terms are added to the loss function, both positional
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Table 4.4: Comparison of different loss combinations with median error on 7Scene

dataset.

Scene G G+C G+C+R Ours

Chess 0.135m, 7.62◦ 0.118m, 5.10◦ 0.116m, 6.50◦ 0.099m, 5.19◦

Fire 0.285m, 13.13◦ 0.258m, 12.93◦ 0.258m, 12.48◦ 0.253m, 11.64◦

Heads 0.185m, 14.01◦ 0.140m, 14.77◦ 0.144m, 13.82◦ 0.126m, 13.20◦

Office 0.180m, 8.18◦ 0.173m, 7.65◦ 0.175m, 8.19◦ 0.161m, 7.71◦

Pumpkin 0.215m, 7.77◦ 0.226m, 7.87◦ 0.214m, 6.80◦ 0.163m, 6.61◦

Redkitchen 0.266m, 8.21◦ 0.253m, 9.20◦ 0.201m, 8.24◦ 0.174m, 8.24◦

Stairs 0.345m, 13.51◦ 0.324m, 12.07◦ 0.279m, 13.18◦ 0.260m, 13.13◦

Average 0.230m, 10.34◦ 0.213m, 9.94◦ 0.198m, 9.89◦ 0.177m, 9.39◦

error and orientational error decrease for all scenes of the 7Scene dataset and the Cam-

bridge Landmarks dataset. The average positional error and orientational error for the

7Scene dataset and Cambridge Landmarks dataset are shown in Figure 4.2 and in Figure

4.3 respectively. We can see that average position and orientation errors show a de-

creasing trend by adding more constraints. This demonstrates the usefulness of each

loss component combinations.

Table 4.5: Comparison of different loss combinations with median error on Cambridge

Landmarks dataset.

Scene G G+C G+C+R Ours

KingsCollege 1.07m, 4.22◦ 0.932m, 2.69◦ 0.97m, 2.14◦ 0.865m, 1.96◦

OldHospital 1.76m, 4.97◦ 1.650m, 3.38◦ 1.67m, 3.01◦ 1.617m, 2.42◦

ShopFacade 1.00m, 6.65◦ 0.930m, 6.23◦ 0.858m, 5.92◦ 0.834m, 5.56◦

StMarysChurch 1.76m, 4.03◦ 1.720m, 4.06◦ 1.684m, 4.83◦ 1.615m, 2.98◦

Average 1.396m, 4.97◦ 1.308m, 4.09◦ 1.296m, 3.98◦ 1.242m, 3.23◦

Comparison of Relative Geometry Losses. We have designed three relative geometry-

based losses. In order to evaluate their performance separately for pose prediction, we

formulate new losses by combining each of them with the global pose loss. We also

use global pose loss and our comprehensive loss as baselines. The details of the loss

combinations are listed as follows:

1. G : GlobalLoss;

2. G+M: GlobalLoss + MDLoss;

3. G+C: GlobalLoss + RelLoss;
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Figure 4.2: The loss analysis over the average errors on 7Scene dataset.

Figure 4.3: The loss analysis over the average errors on Cambridge Landmarks dataset.
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Table 4.6: Evaluation of each relative loss function with median error on 7Scene

dataset.

Scene G G+M G+C G+R Ours

Chess 0.135m, 7.62◦ 0.116m, 4.82◦ 0.118m, 5.10◦ 0.117m, 5.05◦ 0.099m, 5.19◦

Fire 0.285m, 13.13◦ 0.271m, 11.91◦ 0.258m, 12.93◦ 0.262m, 12.64◦ 0.253m, 11.64◦

Heads 0.185m, 14.01◦ 0.128m, 13.37◦ 0.140m, 14.77◦ 0.147m, 13.21◦ 0.126m, 13.20◦

Office 0.180m, 8.18◦ 0.177m, 7.17◦ 0.173m, 7.65◦ 0.189m, 7.13◦ 0.161m, 7.71◦

Pumpkin 0.215m, 7.77◦ 0.198m, 6.26◦ 0.226m, 7.87◦ 0.196m, 5.82◦ 0.163m, 6.61◦

Redkitchen 0.266m, 8.21◦ 0.217m, 7.55◦ 0.253m, 9.20◦ 0.218m, 7.79◦ 0.174m, 8.24◦

Stairs 0.345m, 13.51◦ 0.265m, 11.98◦ 0.324m, 12.07◦ 0.281m, 11.49◦ 0.260m, 13.13◦

Average 0.230m, 10.34◦ 0.196m, 9.01◦ 0.213m, 9.94◦ 0.201m, 9.02◦ 0.177m, 9.39◦

4. G+R: GlobalLoss + RelRLoss;

5. Ours: GlobalLoss + RelLoss + RelRLoss + MDLoss.

For each loss function, we repeat experiments using the same training setup in previous

experiments. The results on 7Scene and on Cambridge Landmarks are shown in Table 4.6

and in Table 4.7 respectively. The average localization errors of the two datasets are

shown in Figure 4.4 and Figure 4.5.

Table 4.7: Evaluation of each relative loss function with median error on Cambridge

Landmarks dataset.

Scene G G+M G+C G+R Ours

KingsCollege 1.07m, 4.22◦ 0.960m, 2.79◦ 0.932m, 2.69◦ 0.980m, 2.31◦ 0.865m, 1.96◦

OldHospital 1.76m, 4.97◦ 1.650m, 3.31◦ 1.650m, 3.38◦ 1.615m, 3.77◦ 1.617m, 2.42◦

ShopFacade 1.00m, 6.65◦ 0.876m, 5.11◦ 0.930m, 6.23◦ 0.868m, 5.19◦ 0.834m, 5.56◦

StMarysChurch 1.76m, 4.03◦ 1.617m, 5.83◦ 1.720m, 4.06◦ 1.664m, 4.68◦ 1.615m, 2.98◦

Average 1.396m, 4.97◦ 1.275m, 4.257◦ 1.308m, 4.09◦ 1.282m, 4.06◦ 1.242m, 3.23◦

As shown in the two Figures, relative geometry-related losses (G+M, G+C, G+R) achieve

better accuracy than global pose alone in most scenes of the two datasets. This further

demonstrates their effectiveness on global pose prediction. It can also be seen that G+M

obtains a larger average accuracy increase compared with the other two in average. In

addition, G+C acquires the smallest accuracy improvement on both datasets, lower

than G+R. This implies that relative geometry constraints work better in feature space

than in the pose space since RelRLoss and MDLoss are in the feature space while Rel-

Loss is in the pose space. It should also be noted that the results of our proposed loss

(G+C+R+M) outperforms all the other single relative geometry-related losses, which

further demonstrate the effectiveness of our comprehensive loss function.

Comparison of Metric Losses. To further evaluate the proposed adaptive metric dis-
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Figure 4.4: The relative loss analysis over the average errors on 7Scene dataset.

Figure 4.5: The relative loss analysis over the average errors on Cambridge Landmarks

dataset.
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tance loss, we conduct experiments to compare it with conventional Siamese loss [210]

and triplet loss [211], since the two losses can also help make visually similar image

distinctive as the proposed metric distance loss does. The Siamese loss is shown in

equation (4.4.1) and the triplet loss is shown in equation (4.4.2). The major difference is

that the conventional metric losses set the margin to be a fixed value while our loss is a

function of the relative pose of two images.

LSiamese =
1

2N

N

∑
n=1
{(1− y)d2 + y{max(m− d, 0)}2}, (4.4.1)

LTriplet =
N

∑
n=1

[
∥∥ f (xa

i )− f (xp
i )
∥∥2

2 − ‖ f (xa
i )− f (xn

i )‖
2
2 + m]+ (4.4.2)

where [x]+ represents max(x, 0) as hinge loss, N is the number of training samples, m

is the margin, d is the feature distance of the paired image, y always equals 1, since

the two images are not from the same location. f (xa
i ), f (xp

i ) and f (xn
i ) are the feature

vectors of the ith training image, its reference images, and the image after the reference

image, respectively. In the Siamese loss of equation (4.4.1), it explicitly forces the fea-

tures of the two images to be different because they are from two different locations.

In the triplet loss (4.4.2), it explicitly enforces that the difference between the ith im-

age and its reference should be smaller than the difference between it and the image

after the reference image. In the experiments, we simply replace the MDLoss with the

Siamese loss and the triplet loss respectively and repeat the experiment. The margin

parameter m of the Siamese loss and the triplet loss is empirically set to be 0.001, which

gives the best accuracy. Three comparative losses are listed as below.

1. LossSiamese: GlobalLoss + RelLoss + RelRLoss + SiameseLoss;

2. LossTriplet: GlobalLoss + RelLoss + RelRLoss + TripletLoss;

3. Ours: GlobalLoss + RelLoss + RelRLoss + MDLoss.

We repeat the experiments on the two datasets using the above losses and the results

are shown in Table 4.8 for 7Scene and Table 4.9 for Cambridge Landmarks. The average

localization errors of the two datasets are shown in Figure 4.6 and Figure 4.7.

It can be seen that our method achieves the best average position accuracy on 7Scene

dataset, and both average position accuracy and average orientation accuracy on the

Cambridge Landmarks dataset. The LossSiamese acquires the best orientational accuracy

on the 7Scene dataset. LossTriplet performs badly on the 7Scene dataset but obtains

better performance than LossSiamese on the Cambridge Landmarks dataset. Although
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Figure 4.6: The metric loss analysis over the average errors on 7Scene dataset.

Figure 4.7: The metric loss analysis over the average errors on Cambridge Landmarks

dataset.
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Table 4.8: Comparison between metric loss functions and adaptive metric distance

loss with median error on 7Scene dataset.

Scene LossSiamese LossTriplet Ours

Chess 0.127m, 5.17◦ 0.139m, 5.42◦ 0.099m, 5.19◦

Fire 0.273m, 13.57◦ 0.276m, 12.94◦ 0.253m, 11.64◦

Heads 0.128m, 13.45◦ 0.125m, 14.76◦ 0.126m, 13.20◦

Office 0.188m, 7.77◦ 0.192m, 7.60◦ 0.161m, 7.71◦

Pumpkin 0.198m, 6.13◦ 0.216m, 6.03◦ 0.163m, 6.61◦

Redkitchen 0.219m, 8.32◦ 0.224m, 8.30◦ 0.174m, 8.24◦

Stairs 0.277m, 10.59◦ 0.279m, 11.07◦ 0.260m, 13.13◦

Average 0.201m, 9.29◦ 0.207m, 9.44◦ 0.177m, 9.39◦

Table 4.9: Comparison between metric loss functions and adaptive metric distance

loss with median error on Cambridge Landmarks dataset.

Scene LossSiamese LossTriplet Ours

KingsCollege 0.867m, 4.87◦ 0.839m, 2.03◦ 0.865m, 1.96◦

OldHospital 1.675m, 5.73◦ 1.683m, 3.82◦ 1.617m, 2.42◦

ShopFacade 0.861m, 5.76◦ 0.847m, 5.01◦ 0.834m, 5.56◦

StMarysChurch 1.728m, 7.06◦ 1.650m, 4.10◦ 1.615m, 2.98◦

Average 1.282m, 5.86◦ 1.258m, 3.74◦ 1.242m, 3.23◦

the LossSiamese achieves the best orientational accuracy, our method obtains more

best performances of the two datasets shown in Table 4.8 and in Table 4.9. The results

show that our adaptive metric distance loss outperforms the conventional Siamese loss

and the triplet loss.

Reference Image Analysis. In this section, we evaluate two strategies of choosing the

reference image. One obvious strategy is to pair every two different images, but it will

result in exponential increase of the training time and high information redundancy. To

make the training phase efficient, we generate only one reference image for each image.

Specifically, reference images are selected in two ways: 1) select the next image in the

same image sequence as the reference image; 2) randomly select a different image of

the dataset that is not a reference image of any other images. It should be noted that the

next image is visually similar to the current image. Randomly chosen reference image

has no such property. To evaluate the effectiveness of the two reference image selection

strategies on the adaptive metric loss (MDLoss), we train the proposed network with

the comprehensive loss function. In addition, we use the result of the networks trained

without MDLoss (G+R+C) as baseline to compare the results.
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Table 4.10: Comparison of median errors of two reference image selection strategies

on the 7Scene dataset.

Scene G+R+C Random Next

Chess 0.116m, 6.50◦ 0.109m, 5.46◦ 0.099m, 5.19◦

Fire 0.258m, 12.48◦ 0.265m, 12.54◦ 0.253m, 11.64◦

Heads 0.144m, 13.82◦ 0.138m, 13.72◦ 0.126m, 13.20◦

Office 0.175m, 8.19◦ 0.172m, 8.17◦ 0.161m, 7.71◦

Pumpkin 0.214m, 6.80◦ 0.207m, 6.33◦ 0.163m, 6.61◦

Redkitchen 0.201m, 8.24◦ 0.202m, 8.89◦ 0.174m, 8.24◦

Stairs 0.279m, 13.18◦ 0.287m, 11.89◦ 0.260m, 13.13◦

Average 0.198m, 9.89◦ 0.197m, 9.57◦ 0.177m, 9.39◦

Figure 4.8: The average median errors of two reference image selection strategies on

7Scene dataset.
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Comparative median error results for the different reference selection strategies for the

7Scene and Cambridge Landmarks are shown in Table 4.10 and Table 4.11. The average

positional and orientational errors are shown in Figure 4.8 and in Figure 4.9. It can be

seen that strategy of choosing the next image as reference image obtains higher image

similarity score than that of randomly choosing in two datasets since it achieves lower

feature distance.

From Table 4.10, it is seen that compared to the random reference selection strategy, tak-

ing the next image as reference image increases the average positional accuracy from

0.197m to 0.177m and the average orientational accuracy from 9.57◦ to 9.39◦. It is also

seen that for both reference image selection strategies, the inclusion of MDLoss im-

proves performance. One probable explanation is that MDLoss makes the network

learn to keep similar images of different poses apart in the feature space.

Table 4.11: Comparison of median errors of two reference image selection strategies

on Cambridge Landmarks dataset.

Scene G+C+R Random Next

KingsCollege 0.970m, 2.14◦ 1.120m, 2.09◦ 0.865m, 1.96◦

OldHospital 1.670m, 3.01◦ 1.618m, 2.80◦ 1.617m, 2.42◦

ShopFacade 0.858m, 5.92◦ 1.000m, 4.91◦ 0.834m, 5.56◦

StMarysChurch 1.684m, 4.83◦ 1.714m, 3.26◦ 1.650m, 2.98◦

Average 1.296m, 3.98◦ 1.363m, 3.26◦ 1.242m, 3.23◦

As shown in Table 4.11, the results of taking the next image as reference are better

than that of the random reference selection strategy on both the average positional

and orientational accuracy. It is also seen that randomly choosing the reference image

achieves the worse performance on positional accuracy than the baseline. This may be

explained by the fact that images of the Cambridge Landmarks are of large difference so

that the metric distance loss fails to work. To verify the explanation, we measure image

similarity of the two pairing strategies. The average Euclidean distance of GIST fea-

tures of paired images are employed to quantify paired image similarity. The average

feature distances of the scenes are shown in Figure 4.10.

Table 4.12 shows that for each scene, taking the next image as reference achieves higher

similarity between paired images than that of randomly chosen. This confirms our

explanation that MDLoss works better in scenarios where paired images are similar.
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Figure 4.9: The average median errors of two reference image chosen strategies on

Cambridge Landmarks.

Figure 4.10: Average paired image similarity (measured with average Gist feature dis-

tance) on two datasets.
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Table 4.12: Statistic of image similarity (measured by average Gist features distance)

of two image pairing strategies.

Scene Training Testing Spatial scope(m) Next Random

Chess 4000 2000 3 × 2 0.0700 0.5044

Fire 2000 2000 2.5 × 1 0.0968 0.5187

Heads 1000 1000 2 × 0.5 0.0613 0.4866

Office 6000 4000 2.5 × 2 0.0600 0.4366

Pumpkin 4000 2000 2.5 × 2 0.0540 0.4390

Red Kitchen 7000 5000 4 × 3 0.0749 0.4993

Stairs 2000 1000 2.5 × 2 0.0540 0.5220

KingsCollege 1220 343 140 × 40 0.2816 0.5531

OldHospital 895 182 50 × 40 0.3338 0.6127

ShopFacade 231 103 35 × 25 0.3133 0.5730

StMarysChurch 1487 530 80 × 60 0.3411 0.6471

4.5 Concluding Remarks

In this thesis, we enhance the camera relocalization performance of deep learning-

based methods by introducing the relative geometry constraints. This is achieved

by designing a relative geometry-aware Siamese neural network and three relative

geometry-related loss functions. The proposed network is capable of predicting the

poses of two images as well as the relative pose between them. Another advantage of

the network is that it is able to predict the global pose by feeding a single image into

one stream of it. The new pose space relative loss and feature space relative regression

loss functions can be combined with traditional global pose loss to enhance the posi-

tion and orientation accuracy. The metric distance loss enables the network to learn

deep feature representation that can distinguish similar images of different locations,

thus helping improve localization accuracy. We also find that pairing similar images

outperforms random paring. Most of time are spent on training the networks for pose

regression. The training time varies according to the size of the training images. The

test phase barely costs time especially in GPU mode. In future work, we plan to in-

vestigate the combination of deep learning-based methods and 3D modelling-based

methods to further enhance the performance.

In the following chapter, we will describe our learning-based metric pose regression

method through deep convolutional neural networks, which fully takes advantages of

the training datasets.
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CHAPTER 5

Single Image-based Indoor Metric

Localization in 3D Maps

Image localization is an important supplement to GPS-based methods, especially in

indoor scenes. Traditional methods depending on image retrieval or structure from

motion (SfM) techniques either suffer from low accuracy or fail to work due to the

texture-less or repetitive indoor surfaces. With the development of LiDAR technolo-

gies, 3D maps are easily constructed in indoor scenes. Image-based indoor localization

within a 3D map is a timely but unsolved research problem. In this chapter, we present

a new approach to addressing single indoor image localization. In contrast to previous

methods that require multiple overlapping images or videos, our new approach can

achieve high localization accuracy using only a single image. We achieve this through

estimating the depth map of the input image and performing geometry matching in the

3D space. We have developed a novel depth estimation method by utilizing both the

3D map and RGB images where we use the RGB image to estimate a dense depth map

and use the 3D map to guide the depth estimation. We will show that our new method

significantly outperforms current RGB image based depth estimation methods for both

indoor and outdoor datasets. We also show that utilizing the depth map predicted by

the new method for single indoor image localization can improve both position and

orientation localization accuracy over state-of-the-art methods.

This chapter is organized as follows: Section 5.1 describes the problem of single image

localization in a 3D map. Section 5.2 describes each component of the proposed single

indoor image localization approach. Section 5.3 elaborates the details of the proposed

depth prediction method. Experimental results are shown in Section 5.4. Finally, we

conclude our work in Section 5.5.
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5.1 Introduction

Single image localization is a promising alternative to GPS for indoor localization as

GPS signals are mostly blocked in indoor environments. It is also a key component

of many computer vision tasks like structure from motion (SfM), simultaneous lo-

calization and mapping (SLAM) as well as many applications such as robotics and

autonomous driving. It refers to the problem of estimating the 6 DoF parameters

of the query image. Traditional methods address it either through image matching

[106, 107, 118] or constructing point-to-point associations between the query images

and a 3D model built with SfM algorithms [124–126]. However, they are not feasible

for many indoor scenes as image matching-based methods are not accurate, and 3D

models are difficult to construct using SfM if the environment is comprised of texture-

less surfaces like white walls or repetitive decoration.

The rapid development of LiDAR instruments makes it easy to build 3D model of in-

door scenes as it only relies on the geometry information without any requirements

for the surface. However, point-to-point matching methods still do not function on

3D models built from LiDAR sensors which lack the colour information compared to

that generated from SfM. Image localization in a LiDAR map is a hot research topic

due to widely available 3D LiDAR maps and cameras embedded on the smart phones.

Directly matching 2D images and 3D LiDAR model is a very challenging problem as

image geometry are ambiguous compared to 3D LiDAR models. Two strategies can be

used to tackle it: (1) matching in 2D space; (2) matching in 3D space. Methods based

on matching in 2D space are similar to image retrieval methods. The key problem of

them is to design similarity metric between two source information. Another strategy

is to match in 3D space. It infers depth of RGB images to generate the 3D point cloud

and matches against LiDAR map through 3D geometry matching. The key problem

of it is to accurately estimate the RGB image depth. Traditional methods estimate the

image depth with SfM algorithms and require multiple overlapping images [212, 213].

But they fail in low-texture indoor scenes. Besides, it is time-consuming to estimate the

dense depth.

In this thesis, we present a new approach to addressing single image localization in

3D LiDAR maps through depth inference from RGB images. The proposed method ex-

ploits the deep learning technique to perform single image depth inference and local-

izes the query images based on 3D geometry alignment. Our method firstly estimates

the coarse pose using our previous work on camera 6DoF relocalization in previous

chapter and we warp the 3D map into an initial depth image of the RGB images. In-

stead of only inferring from RGB image, we predict depth from RGB image with the
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initial depth as well. Attaching additional depth information is able to enhance the

depth prediction performance as it gives an initial guidance to the RGB images instead

of being totally blind. An example is shown in Figure 5.1. Compared to the real depth

map, the initial depth is sparser and the structure has tiny misalignment. Given the

predicted dense depth, a 3D point cloud is generated and aligned to the 3D LiDAR

map to finally localize the image. The process of the proposed method is illustrated

in Figure 5.3. The whole approach is a coarse-to-fine process. At first, we estimate a

coarse pose with deep regression as proposed in previous chapter [214]. Then, the ICP

algorithm is used to align the point cloud produced from predicted depth to correct the

initial pose.

(a) RGB (b) initial depth

(c) ground truth (d) prediction

Figure 5.1: A deep learning-based RGB image depth prediction approach with the

guidance of initial depth image generated from a 3D map.

In summary, we make the following contributions in this chapter:

1. We present a new approach for image-based indoor localization in a 3D map. In

contrast to previous methods that require multiple overlapping images or videos,

our new approach can achieve high localization accuracy using only a single im-
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age. We achieve this through estimating the depth map of the input image and

performing geometry matching in the 3D space.

2. We propose a novel depth estimation approach by utilizing both the 3D map

and RGB images. We use the 3D map to generate an initial depth map and thus

guide the RGB image to produce a fine depth map. Our new method significantly

outperforms current RGB image based depth estimation methods for both indoor

and outdoor datasets.

3. We present extensive experimental results to demonstrate the effectiveness of our

new depth estimation method and the new single indoor image localization ap-

proach.

The rationale behind our approach is that we believe monocular depth prediction and

image-based 3D localization are two interleaved problems: once the depth is accurately

predicted, the image localization accuracy should be on par with the 3D point cloud

registration approaches; once the image is accurately localized, it should generate an

accurate depth prediction result that is well aligned with the 3D point cloud map.

5.2 Single Image Localization within a 3D Map

We consider a scenario as shown in Figure 5.2 where we are given a single 2D RGB

indoor colour image and the 3D map of the scene and our aim is to estimate the pose

(6 DoF) of the 2D image. While past research has considered the case where multiple

overlapping images or a video is available, we consider the more challenging case that

only a single RGB image is available. It is a very difficult problem as it tries to register

an image to a point cloud, as each comes from a different modality. Images contain

colour information in 2D space and the point cloud contains the geometric information.

Since no colour information can be utilized from point cloud, we propose an approach

to addressing the problem by inferring the geometry information for 2D colour images.

It is achieved by predicting the corresponding depth images of the RGB images. Given

the depth images, we can obtain point clouds from the them. Then, the iterative closest

point (ICP) algorithm is applied to register the produced point clouds with the 3D map

through geometry matching.

This section describes the proposed approach of localizing a single image in a 3D Li-

DAR map. Figure 5.3 shows the process of the proposed method, including four steps:

pose initialization, local map extraction, point cloud generation and ICP-based geome-

try matching. Pose initialization step provides a coarse pose. Given the coarse pose, we
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Figure 5.2: Demonstration of single indoor image localization in a 3D map.

extract a local map to perform geometry match instead of the global map for efficiency

reason. The local 3D map is also utilized to generate the initial depth, and the initial

depth is used to perform dense depth prediction with RGB image. The point cloud

generation produces a point cloud with the coarse pose and the dense depth image.

Eventually we exploit the ICP matching strategy to align the generated point cloud

into the local 3D map to obtain the pose correction. By adding the correction to the

initial pose, we obtain the accurate pose in the 3D maps. In the rest of this section, we

describe the details of each step.

5.2.1 Pose Initialization

Pose initialization is the key component of the proposed approach. It provides the

initial guess to extract the local 3D map from the global one and the ICP algorithm

heavily relies on it to achieve good results. In this step, we utilize our previous ap-

proach in Chapter 4 to initialize the pose of the image, which can also be replaced with

other localization methods. The pose initialization approach is also a learning-based
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Figure 5.3: Image localization process. It includes four stages: (1) initial pose esti-

mation, (2) local map extraction, (3) point cloud generation, (4) geometry

matching.

method. A Siamese neural network structure is designed to exploit the relative geom-

etry between images in both feature space and label space. The network consists of

two shared-weighted ResNet50, two global pose regression units and a relative pose

regression unit, which are made of three fully connected layers. Three loss functions
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are designed in conjunction with the global pose loss function to train the network. The

proposed network is capable of estimating the global poses and relative poses of two

images. In addition, it can also predict a single image by feeding the image into one

branch of the network. This strategy performs multi-task learning and adding relative

geometrical constraints to regularize the network. It is capable of performing localiza-

tion in low texture indoor environments. Although the localization accuracy is not as

high as traditional 3D model-based methods, it is enough to generate a coarse pose

estimate which will be refined in later steps.

5.2.2 Local 3D Map Extraction

The global map contains a large number of points, and matching against the global map

is quite inefficient because many of which are not necessary as only a small portion of

it is seen in the field of view of the query images. To increase the efficiency of warping

3D point cloud and ICP matching, we extract a local 3D map based on the initial pose.

In [183], they generate the 3D local map by choosing points within a distance threshold

to the initial position. Many points that are out of view still appear in the map, which

results in low efficiency. Points of long distance are filtered, which are important for

the further localization. Therefore, we propose an approach based on the image field of

view that is able to avoid the problems. Given the initial pose, we calculate the angle of

the global points in the polar coordinates system. Points within an angular window are

selected as local 3D maps. The size of the window is determined based on the initial

pose and image size. Given the image intrinsic parameters, the field of view (FOV) can

be computed using equations (5.2.1) and (5.2.2).

f ovh = arctan
w

2× f
, (5.2.1)

f ovv = arctan
h

2× f
, (5.2.2)

where f ovh and f ovv represent the horizontal and vertical view of the camera, f is

the focal length, and w, h are the width and height of the image. To include points

that appear in the camera view on the local map, we set the window larger than the

camera FOV size. Empirically, 15◦ on both vertical and horizontal works well on all the

experiment settings.
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5.2.3 Point Cloud Generation

We estimate the corresponding point cloud of the query image with two steps. Firstly,

we predict the depth image of the query image using the approach proposed in section

5.3 and generate its corresponding point cloud with equation (5.3.1). Secondly, we

filter point clouds based on the density distribution of indoor 3D points. The filtering

is essential since not all depth values are predicted accurately, which will affect the final

results of geometry in 3D space. The depth values of large errors exhibit as the floating

points in the 3D space. To eliminate them, we use a simple point cloud filtering strategy,

which is based on the number of points within the given radius. Let Ni denotes the

number of points near point i, T represents the threshold, R denotes the given radius.

If Ni < T, then the point i is reserved, otherwise the point i is abandoned. In our

approach, the radius R is set to 1m and the point count threshold T is 100.

5.2.4 ICP-based Geometry Matching

Given the local 3D map and the predicted point cloud from an image, we perform

the ICP algorithm [184] to align them. Like other point cloud alignment algorithms,

the correspondences between the local map and generated point cloud are searched.

Instead of building hard associations between two point clouds, the ICP approach up-

dates the data associations in each iteration. For each iteration, the corresponding map

points of the estimated point cloud are assigned with the nearest points in the local

map. We select the point pairs with distance lower than the given threshold to com-

pute the pose correction. The alignment result is added to the initial pose to obtain the

final localization results.

The key to the above single image localization approach is estimating the depth image

of the 2D RGB image. In the next Section, we will present a new approach that fuse

the RGB image with the 3D map information to estimate the depth image of the RGB

image.

5.3 Single Image Depth Prediction with 3D Map Guidance

Traditional single image depth prediction methods are performed directly from RGB

images, and suffer from the scale ambiguity problem. To relieve it, we exploit the 3D

maps to guide the process. The 3D maps information is utilized by generating an initial

depth image of the input RGB images. Then both the RGB image and the initial depth

image are fed into network to infer the correct depth image. In the rest of this section,
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we elaborate on the details of warping 3D map to provide the initial depth image, and

we also describe the architecture of the proposed convolutional neural network for

depth prediction and the formulation of loss functions.

5.3.1 Initial Depth Generation

Initial depth images are generated by projecting the local 3D points into a plane that is

defined by the camera intrinsic parameters and coarse pose. The camera position de-

termines the camera plane position, and the camera orientation determines the normal

of the camera plane. Depth image size and camera focal length determine the field of

view (FOV) of the camera. According to the principle of the camera geometric projec-

tion, each pixel corresponds to a 3D point. More specifically, the 3D coordinates and

the 2D corresponding points obey the pinhole camera geometry that can be expressed

by equation (5.3.1):
X

Y

Z


i,j

= R−1 × Di,j × K−1 × [i, j, 1] +


X

Y

Z


cam

, (5.3.1)

where R represents the rotation matrix. K =


f 0 u0

0 f v0

0 0 1

 is the intrinsic matrix,

(u0, v0) is the principal point in the camera plane. The pixel value indicates the distance

between the 3d points and the camera position. The image coordinate i, j on the depth

image of a 3D points is jointly determined by camera position, orientation, depth image

size, and camera focal length. The value of the depth image is the distance between the

3D points and the camera position, which can be computed with the equation (5.3.2):

Di,j =

∥∥∥∥∥∥∥∥∥


X

Y

Z


i,j

−


X

Y

Z


cam

∥∥∥∥∥∥∥∥∥ , (5.3.2)

where Di,j denotes the depth value at position (i, j) of the projecting plane, ‖∗‖ repre-

sents the Euclid distance,
[

X, Y, Z
]T

and
[

X, Y, Z
]T

cam
denote the 3D point and the

camera position in the 3D map respectively.
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Their position (i, j) on the depth map can be computed with the equation (5.3.3):


i

j

1

 = K×
[

R T
]
×


X

Y

Z

1

 , (5.3.3)

where T =
[

X, Y, Z, 1
]T

cam
represents the camera position in the homogeneous coor-

dinate system.

We compute the corresponding depth image position of every points from the local 3D

maps for efficiency reason. Positions out of the depth images are abandoned and the

positions without the corresponding 3D points are filled with zeros.

5.3.2 Depth Prediction Network

Network Architecture. The network architecture is illustrated in Figure 5.4. Our net-

work structure is designed based on [172] which achieved state-of-the-art results in

depth prediction from RGB images. The network is composed of two components: an

encoder and a decoder. We use the modified ResNet50 to encode the image informa-

tion for the NYU-Depth-v2. For the KITTI dataset, we use the ResNet18 because of GPU

limitation, since the size of the KITTI images is too large to process with ResNet50 en-

coder. We modified ResNet by replacing the last pooling layer and the fully connected

layer with a convolutional layer and a batch normalization layer. We fuse the initial

depth images and RGB images after the first convolutional layer. The decoder consists

of four successive uppool up-sampling layers and a bilinear up-sampling layer.

Loss Function . The loss function is designed based on the difference between the

estimated depth image and the ground truth. Three common depth-wise losses are

exploited for training the network, i.e. the mean squared error (l2), the mean absolute

error (l1), and the reversed Huber loss (berHu) [215]. The BerHu loss can be seen as a

compromise of l2 and l1 as it is equivalent to the l1, and otherwise is approximate to l2
. It is defined as:

LberHu(err) =

{
|err|, if |err| ≤ c
err2+c2

2c , otherwise
(5.3.4)

where c is a parameter that is computed as 20% of the rank of the absolute depth error

of all pixels for a batch, err represents the absolute depth error .

Depth-wise losses lead to smooth boundaries. Therefore, we further test gradient loss

and SSIM loss [216] to keep the boundaries sharp. The SSIM loss aims to constrain the
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Figure 5.4: The architecture of the proposed network. The red blocks are the feature

maps of residual blocks in ResNet, and blue blocks indicate the feature

maps of upconv up-sampling layers. The green block is the cropped initial

depth image which is concatenated with the RGB image.

difference of the predicted depth and the ground truth in appearance from a whole

image. The SSIM loss is formulated as in equation (5.3.5).

SSIM(x, y) =

(
2µxµy + C1

) (
2σxy + C2

)(
µ2

x + µ2
y + C1

) (
σ2

x + σ2
y + C2

) , (5.3.5)

where µx, µy are the average depth of images, the σ represents the standard deviation of

two images, and C1, C2 are constant values, which equal to 0.012, 0.032 respectively. The

gradient loss is defined as in equation (5.3.6), which try to preserve detail information

on the depth images.

Lg =
∥∥dx− d̃x

∥∥+ ∥∥dy− d̃y
∥∥ , (5.3.6)

where the Lg denotes the gradient loss, dx, dy are the gradients computed from the

ground truth depth image in x, y directions and d̃x, d̃y are the gradients of the pre-

dicted depth image. The pixel-wise gradient loss encourages the gradient of the pre-

dicted depth image to be consistent with the ground-truth depth image. We will do

experiments to compare the performance of different loss functions.
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5.4 Experiments

In this section, we evaluate the performance of depth prediction and image localization

respectively. We compare the depth estimation performance with the state-of-the-art

on two benchmarks: the NYU-Depth-v2 [217] and the KITTI dataset [218]. Ablation

studies are conducted on the network structure and loss functions. For localization, we

evaluate our method on the 7Scene dataset [128].

5.4.1 Depth Prediction

Datasets. The NYU-Depth-v2 dataset is collected from 464 different scenes with a

Kinect device. It is officially split into training an testing dataset, where 249 scenes

are selected for training and 215 scenes for testing. To facilitate comparison with the

previous methods, we also evaluate our method on 654 images as in previous works

[219–222]. Following previous work [172], we resize the image into 320× 240 pixels

and crop a patch of 304× 228 pixels from the centre. The KITTI dataset is collected on

a mobile car and the depth is obtained using a Velodyne LiDAR sensor. We use the

split proposed by [221] in which 22,600 images are used for training and 697 images

for testing. Only the bottom crop (912× 228 pixels) is performed to eliminate the sky,

where no depth information is acquired by the sensor.

Since both datasets have no accurate pose information, we simulate the initial pose

for them. Three random numbers within [−3t, 3t] are used to simulate initial position

and three random numbers within [−3θ, 3θ] act as the initial orientation, where θ and

t are the median position error and orientation error in previous chapter [214]. For

the NYU-Depth-v2 dataset, the t and θ are 0.2m and 10◦ respectively, according to the

localization results on indoor scenes. For the KITTI dataset, the t and θ are 1.2m and

3.2◦ according to the performance in our outdoor localization results.

Setup. We follow the same data augmentation strategy as in [172] by random trans-

formation on scale, rotation, colour, and flips on RGB images. Training images are

shuffled before they are fed to the network. We choose Adam optimizer to train the

network with parameters β1 = 0.9 and β2 = 0.999. The weight decay is 1× 10−5. We

train the network with a learning rate of 1× 10−4 and the batch size of 12. We imple-

ment the network with PyTorch and train the network on an Ubuntu 16.04 LTS system

with a NVIDIA GTX 1080Ti GPU. Training is stopped until the network is converged.

Evaluation Metrics. We evaluate the performance of current depth prediction with the

following metrics:
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The root mean square error (rmse):

rmse =

√√√√ 1
N

N

∑
i=1

(
d̂i − di

)2
. (5.4.1)

The mean relative error (rel):

rel =
1
N

N

∑
i=1

∥∥∥d̂i − di

∥∥∥
di

. (5.4.2)

The percentage of the relative depth prediction within threshold 1.25j:

δj =
N
(

d̂i : max
{

d̂i
di

, di
d̂i

}
< 1.25j

)
N (di)

, (5.4.3)

where di and d̂i are the ground truth depth values and the predicted ones respectively,

and N is the number of element of a set, j = 1, 2, 3. A higher δi indicates better predic-

tion.

Comparison with State-of-the-art. We compare with existing monocular image depth

prediction methods [172, 173, 219–226] on the depth prediction performance on NYU-

Depth-v2 [217] and the KITTI dataset [218]. Among them, [173] and [172] also utilize

the depth image whilst all other approaches only use the RGB image. The comparative

results are shown in Table 5.1.

It can be seen from Table 5.1 that compared to RGB-based methods, RGBD-based meth-

ods achieve better performance on both error and accuracy. It is because RGB images

only contain the relative distance information between pixels in them, and they need

a target to convert the relative depth to their absolute corresponding depth values.

RGBD-based methods jointly utilize the texture information from RGB images and ab-

solute scale information from additional depth information, thus obtaining better re-

sults. Some qualitative examples are shown in Figure 5.5. It also is seen that RGB

images can be used for relative depth estimation as the structure can be seen from the

predicted depth images. RGBD-based results are more accurate as their pixel value is

closer to that of the real depth image. By comparing RGBD-based methods, our method

achieves comparable performance with Ma et al. [172] and outperforms the approach

in [173]. It demonstrates the effectiveness of our proposed method. Although our

depth map is not accurate, the initial depth is very dense and only has slight errors,

which helps to enhance the depth prediction results.

The KITTI dataset is more challenging compared to NYU-Depth-v2 dataset because it

has larger distance up to (100m) than that (10m) of the NYU-Depth-v2 dataset. Besides,
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Table 5.1: Comparison with the state-of-the-art on the NYU-Depth-v2 dataset. The

reported values are referred to their papers respectively. The best perfor-

mance is highlighted in bold.

Problem Method
Error (lower is better) Accuracy (higher is better)

rmse rel δ1 δ2 δ3

RGB Karsch et al. [219] 1.200 0.250 - - -

Liu et al. [220] 1.060 0.335 - - -

Li et al. [223] 0.821 0.232 62.1 88.6 96.8

Roy et al. [224] 0.744 0.187 - - -

Liu et al. [225] 0.824 0.230 61.4 88.3 97.1

Eigen2014 et al. [221] 0.877 0.214 61.4 88.8 97.1

Eigen2015 et al. [222] 0.641 0.158 76.9 95.0 98.8

Laina et al. [215] 0.573 0.127 81.1 95.3 98.8

Xu et al. [226] 0.586 0.121 81.1 95.4 98.7

RGBD Liao et al. [173] 0.442 0.104 87.8 96.4 98.9

Ma et al. [172] 0.230 0.044 97.1 99.4 99.8

Ours 0.225 0.070 94.9 99.1 99.7

Table 5.2: Comparison with the state-of-the-art on the KITTI dataset. The reported

values are referred to their respective papers. The best performance is high-

lighted in bold.

Problem Methods
Error (lower is better) Accuracy (higher is better)

rmse rel δ1 δ2 δ3

RGB

Liu et al. [225] 6.986 0.217 64.7 88.2 96.1

Eigen et al. [221] 6.179 0.197 69.2 89.9 96.7

Cao et al. [227] 4.712 0.115 88.7 96.3 98.2

Garg et al. [168] 5.104 0.169 74.0 90.4 96.2

Godard et al. [169] 5.381 0.126 84.3 94.1 97.2

Zhang et al. [175] 4.310 0.136 83.3 95.7 98.7

RGBD

Ma et al. [172] 3.378 0.073 93.5 97.6 98.9

Liao et al. [173] 4.50 0.113 87.4 96.0 98.4

Ours 2.710 0.068 95.1 98.3 99.3
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(a) RGB (b) Eigen2014 (c) Eigen2015 (d) Laina (e) Ours (f) GroundTruth

Figure 5.5: Qualitative depth prediction results on the NYU-Depth-v2 dataset. The

first column shows RGB images and column (b)-(d) are the results of simi-

lar methods, and the results of the proposed method are shown in column

(e), and (f) shows the real depth images.
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it was collected in outdoor environments, the scene geometry of which is complex and

challenging due to plants and shallows. We also compare both RGB-based methods

and RGBD-based methods for the KITTI dataset.

A similar conclusion can be drawn from Table 5.2 that RGBD-based methods achieve

significantly better performance than RGB-based methods in the outdoor environment

by comparing the results of group RGB and group RGBD. Comparing with the other

two RGBD-based methods, our approach obtains a better performance. Compared to

the NYU-Depth-v2 images, the images of the KITTI dataset are larger and the depth

maximum is larger. Sparsely labelled depth images need more real depth values to

achieve better results. Our initial depth images projected from LiDAR data are rela-

tively denser to work that is better for large image and large scenes. We also give some

the qualitative prediction results in Figure 5.6, which demonstrates that our method

can effectively infer the depth of the RGB images.

Analysis of Taking Different Input Data. We compare the depth prediction results

of three kinds of input data including initial depth map (I), RGB images (RGB), and

RGB images with their corresponding initial depth map (RGBI). For I and RGB, the

input channels are 1 and 3 respectively. For RGBI, the output of the Conv1 layer from

I and RGB are concatenated for depth prediction. The rest of the networks are the

same. The setup is the same with that in 5.4.1. The results are listed in Table 5.3 and

5.4, respectively.

Table 5.3: Results of different input data on the NYU-Depth-v2 dataset.

Input
Error (lower is better) Accuracy (higher is better)

rmse rel δ1 δ2 δ3

I 0.320 0.108 89.1 98.4 99.7

RGB 0.514 0.143 81.0 95.9 98.9

RGBI 0.228 0.070 94.3 98.9 99.8

The results of I in Table 5.3 demonstrate that the proposed method is able to correct the

depth value prediction from the inaccurate depth maps. The probable reason is that

the structure of depth information is learned by the convolutional neural network after

properly trained. Better results can be obtained if it is fused with RGB images as RGBI

contains both the correct structure information and global scale information.

For the KITTI dataset, the depth prediction results from initial depth alone are signifi-

cantly worse than that from other input data. It is because unlike the NYU-Depth-v2,

the ground truth depth for training network is sparse. Structure information is not
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(a) RGB (b) Eigen2014 (c) Ours (d) GroundTruth

Figure 5.6: Qualitative depth prediction results of the KITTI dataset. (a) RGB images;

(b) prediction results of Eigen ; (c) prediction of our method; (d) ground

truth depth images.
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Table 5.4: Results of different input data on the KITTI dataset.

Input
Error (lower is better) Accuracy (higher is better)

rmse rel δ1 δ2 δ3

I 16.38 0.56 6.6 24.4 41.0

RGB 6.33 0.21 53.7 92.5 97.8

RGBI 2.71 0.068 95.1 98.4 99.3

able to be inferred by the network with sparse distributed ground truth depth values.

However, although the initial map alone is not able to restore the dense depth, it is still

capable of improving the results compared to results from RGB image alone.

Loss Analysis.

To find the proper loss function to train the network, we conduct ablation experiments

to validate the effectiveness of three depth-wise losses and gradient loss, and SSIM

loss. The experimental setup is repeated for each experiment as in section 5.4.1 except

the loss function. To compare the loss function, we use the same network architecture

in which the initial depth and RGB image information are concatenated after the first

convolutional layer. We conducted the experiments on the NYU-Depth-v2 dataset. l1,

l2, and berHu loss are used to perform the comparison as well as their combination

with the gradient loss and the SSIM loss. For the KITTI dataset, we only evaluate the

l1, l2, and berHu losses. It is because the ground truth depth is sparsely distributed in

the KITTI dataset while the prediction is dense. Thus the SSIM loss and the gradient

loss do not help in this case. The results are listed in Table 5.5 and Table 5.6 respectively.

To obtain the best localization accuracy, we pay more attention to the RSME since it

represents the average absolute difference between the predicted depth values and the

real ones.

In Table 5.5, it can be seen that l1, l2, and berHu loss alone achieve good results and

l2 loss gets a slight better performance than the other two. We can also see that the

gradient loss and the SSIM loss fails to work as performance decreases by adding them

to the depth-wise loss. The reason might be that further loss makes the networks over-

fit to the training data and decrease the generality to the testing data.

It can be seen from Table 5.6 that l1, l2, and berHu losses have similar performance

and the l2 achieves slightly better performance than the other two on the rmse. As

for localization, the rmse value is more important. Thus, we choose the l2 to train our

network.

Analysis of Fusion Strategy. To find the best fusion strategy of the initial depth image
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Table 5.5: Evaluations of loss functions on the NYU-Depth-v2 dataset.

Additional loss
Error (lower is better) Accuracy (higher is better)

rmse rel δ1 δ2 δ3

l1

+SSIM Loss 0.304 0.091 95.6 97.7 99.9

+Gtradient Loss 0.275 0.092 91.5 98.7 99.8

- 0.228 0.070 94.3 98.9 99.8

berHu

+SSIM Loss 0.598 0.153 80.5 97.6 99.3

+Gtradient Loss 0.323 0.109 90.3 97.5 99.6

- 0.243 0.075 94.1 98.9 99.8

l2

+SSIM Loss 0.327 0.097 93.2 98.9 99.8

+Gtradient Loss 0.303 0.104 90.2 98.0 99.7

- 0.225 0.070 94.9 99.1 99.8

Table 5.6: Comparison of loss functions on the KITTI dataset.

Loss
Error (lower is better) Accuracy (higher is better)

rmse rel δ1 δ2 δ3

l1 2.73 0.057 95.9 98.3 99.1

berHu 2.74 0.058 95.8 98.2 99.2

l2 2.71 0.068 95.1 98.4 99.3
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and the RGB image, we conduct experiments to fuse the initial depth and RGB data in

different layers, which are listed as below.

1. Input : Initial depth image and RGB image are concatenated before feeding into

the network.

2. Conv1 : Initial depth image and RGB image are fused after the convl layer.

3. Res1 : Initial depth image and RGB image are fused after the Res1 block.

4. Res2 : Initial depth image and RGB image are fused after the Res2 block.

5. Res3 : Initial depth image and RGB image are fused after the Res3 block.

6. Output : Initial depth image and RGB image are fused before the last convolu-

tional layer.

We use the same training setup in section 5.4.1 on NYU-Depth-v2 dataset. The training

loss is l1. The results are shown in Table 5.7.

Table 5.7: Evaluation of different fusion strategies on the NYU-Depth-v2 dataset.

architecture
Error (lower is better) Accuracy (higher is better)

rmse rel δ1 δ2 δ3

Input 0.231 0.066 96.2 99.3 99.8

Conv1 0.228 0.070 94.3 98.9 99.8

Res1 0.242 0.075 94.2 99.2 99.9

Res2 0.297 0.107 89.4 97.1 99.5

Res3 0.400 0.134 84.9 96.9 99.5

Output 0.600 0.191 71.8 93.0 98.0

It can be drawn from Table 5.7 that fusion in later layers gives worse results. In general

the later the layer is, the worse the results are. The best performance is achieved in

Input and Conv1 layers. Earlier network layers contain the spatial information, which

is highly related to depth prediction. To fully maintain the spatial information, we also

conduct experiment by adding initial depth information before last depth prediction

layer, the results is the worst, which implies that the network requires the complex

operation to fuse two sources information to get the best results.
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5.4.2 Localization

Datasets. 7Scene [128] is used to evaluate the performance of the localization. 7Scene

is an indoor image dataset for camera relocalization and trajectory tracking. It is col-

lected with Kinect in a handhold manner. The ground truth pose and the 3D maps are

generated using the Kinect Fusion approach [207]. The dataset is captured in 7 indoor

scenes. For each scene, it contains several image sequences as well as the depth images

sequence, which has already been divided into training and testing sets. The images

are taken at the resolution of 640 × 480 pixels with the known the intrinsic parame-

ters. We use officially split of the training set and testing set to train and test our depth

estimation network.

Depth Prediction. We use the same setup for depth prediction of the 7Scene dataset as

in the NYU-Depth-v2 and perform the depth prediction from RGB images and RGBI

data. The initial map is generated from the corresponding depth image by adding the

certain position and orientation noise to the real pose as we did in the experiments of

the NYU-Depth-v2. The l2 loss is used to train the network. The results are shown in

Table 5.8.

(a) chess (b) fire (c) heads (d) of-

fice

(e) pump-

kin

(f) red-

kitchen

(g) stairs

Figure 5.7: Qualitative depth prediction on 7Scenes dataset. The top row represents

the RGB data, the second row are the prediction results from RGB image,

the third row represents the results from RGBI data and the bottom row

are the ground truth depth.
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Table 5.8: Depth prediction results of the 7Scene dataset.

Dataset Input
Error (lower is better) Accuracy (higher is better)

rmse rel δ1 δ2 δ3

chess
RGB 0.215 0.076 93.9 98.8 99.7

RGBI 0.186 0.167 95.5 99.1 99.9

fire
RGB 0.108 0.048 97.5 99.5 99.9

RGBI 0.140 0.070 95.2 99.4 99.9

heads
RGB 0.160 0.140 78.7 94.1 98.8

RGBI 0.112 0.109 90.3 98.7 99.8

office
RGB 0.243 0.093 91.2 98.6 99.7

RGBI 0.184 0.069 95.4 99.1 99.8

pumpkin
RGB 0.155 0.054 97.6 99.5 99.8

RGBI 0.149 0.049 97.4 99.4 99.8

redkitchen
RGB 0.228 0.087 92.6 99.0 99.9

RGBI 0.208 0.079 94.6 99.3 99.9

stairs
RGB 0.344 0.091 87.4 96.4 99.3

RGBI 0.268 0.072 91.6 98.0 99.4
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By comparing the depth prediction results on the 7Scene from RGB and RGBI informa-

tion, we find that RGBI achieves better performance, which further verifies our idea

on more datasets. Some qualitative prediction examples of 7 scenes are listed in Figure

5.7. It shows that the RGBI-based method also help improve the details on the structure

than using RGB data alone.

Given the predicted depth, The ICP algorithm is applied to perform localization as

described in section 5.2. The overlap parameter is set as 0.7 to eliminate the depth

prediction of large error. The max iteration is set to 30 and the threshold to stop the

iteration is set to 0.01. The localization result is shown in Table 5.9. RGB-depth repre-

sents the method that the depth maps are directly estimated from the RGB images and

used for 3D localizations. RGBI-depth represents the method that the depth maps are

estimated from the RGB images for 3D localizations. The results are reported with the

median error to facilitate the comparison.

Table 5.9: Comparison with the CNN-based localization over the 7Scene dataset. The

best localization results are highlighted in bold.

Dataset
PoseNet2[138] Relnet [140] Our CNN[214] RGB-depth RGBI-depth (ours)

Orientation Position Orientation Position Orientation Position Orientation Position Orientation Position

chess 4.48◦ 0.13m 6.46◦ 0.13m 5.19◦ 0.099m 2.99◦ 0.07m 2.49◦ 0.077m

fire 11.3◦ 0.27m 12.72◦ 0.26m 11.64◦ 0.253m 3.12◦ 0.07m 1.22◦ 0.035m

heads 13.0◦ 0.17m 12.34◦ 0.14m 13.20◦ 0.126m 16.77◦ 0.29m 6.44◦ 0.140m

office 5.55◦ 0.19m 7.35◦ 0.21m 7.71◦ 0.161m 4.94◦ 0.15m 4.66◦ 0.141m

pumpkin 4.75◦ 0.26m 6.35◦ 0.24m 6.61◦ 0.163m 4.60◦ 0.15m 4.03◦ 0.154m

redkitchen 5.35◦ 0.23m 8.03◦ 0.24m 8.24◦ 0.174m 2.86◦ 0.15m 2.45◦ 0.086m

stairs 12.4◦ 0.35m 11.82◦ 0.27m 13.13◦ 0.260m 7.56◦ 0.23m 2.48◦ 0.078m

average 8.12◦ 0.23m 9.30◦ 0.21m 9.39◦ 0.177m 6.12◦ 0.17m 3.40◦ 0.102m

By comparing CNN-based pose regression methods [138, 140, 214] and depth prediction-

based method, we can draw a conclusion that depth prediction helps increase the pose

localization performance in both position and orientation. The accurate depth pre-

diction results provide better localization by comparing RGB depth prediction-based

method and RGBI depth prediction-based method. compared with the results in the

previous chapter, shown as our CNN The positional error decreases from 0.177m to

0.102m and the orientational error drops from 9.39◦ to 3.40◦.

5.5 Concluding Remarks

Single image indoor localization in 3D map is very important for many applications.

This chapter presents a new framework to localize single images in 3D maps through

RGB images depth inference and matching them based on their geometry similarity

in 3D space. Moreover, we propose a new depth prediction method by warping the
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3D maps information into initial depth for depth prediction. The depth prediction re-

sults outperform the state-of-the-art. We also evaluate our localization approach on the

7Scene dataset, the experimental results demonstrate the effectiveness of our method

in enhancing the localization accuracy. In principle, our method can be equally ap-

plied to single outdoor image localization. In fact, we have tested the algorithm on the

outdoor dataset. However, due to the difficulty in obtaining an accurate 3D map, the

performance is not as good as that of the indoor images. Our future work will focus on

applying the method to the outdoor scenario. ICP algorithm takes up the most of time

for localization as it needs to establish the 3D correspondences between the predicted

point cloud and the 3D map iteratively. Depth prediction and initial pose estimation

barely cost time.

In the next chapter, we will summarize the contents of this thesis, and we will re-

strengthen our contributions and discuss certain limitations of our current approaches

and give some advice for the further improvements.

101



CHAPTER 6

Concluding Remarks

In this thesis, we have studied image-based indoor localization problems from topolog-

ical localization and metric localization perspectives. In this chapter, we will summa-

rize the major contributions of the thesis, point out the limitations, and provide some

suggestions for further improvements.

6.1 Main Contributions

Our first contribution is to propose an indoor visual topological localization frame-

work, called Visual Landmark Sequence-based Indoor Localization (VLSIL), which ex-

ploits the semantic information and contextual information derived from the videos.

In this framework, we present a new topological map representation, in which the in-

door environment is divided into many regions based on the existing fixed objects, and

each region is represented with the semantic information of the fixed objects in it. This

new representation scheme is invariant to the light or slight view change as well as

the environmental change, as it concerns more about the high-level information rather

than the visual and geometric information. We also propose a powerful landmark de-

tector relying on convolutional neural network, which has been demonstrated to be

more effective than the detectors based on conventional machine learning techniques

for extracting semantic information from videos. Besides, a novel localization algo-

rithm is proposed through exploiting both the semantic information and contextual

information to match the detected landmark sequences against the topological map.

Experiments on two challenging indoor test-beds show that it can accurately perform

localization and achieve better performance than hidden Markov model-based meth-

ods.

Our second contribution is to propose a new deep learning-based approach for image-
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based metric localization by utilizing the relative geometric constraints between im-

ages. Learning-based image pose estimation methods have many advantages com-

pared to the traditional image retrieval-based method and SfM-based methods. They

are efficient and have low storage and computational requirements. Moreover, they

can handle scenes of low texture. Many learning-based methods only focus on the dif-

ference between real global poses and the predicted ones, while the relative geometry

between images are ignored, which can further regularize the network for global pose

estimation. We present a novel relative geometry-aware Siamese neural network to

enhance the performance of deep learning-based methods through explicitly exploit-

ing the relative geometry constraints between images. We perform multi-task learning

and predict the absolute and relative poses simultaneously. We regularize the shared-

weight twin networks in both the pose and feature domains to ensure that the esti-

mated poses are globally as well as locally correct. We employ metric learning and

design a novel adaptive metric distance loss to learn a feature that is capable of dis-

tinguishing poses of visually similar images of different locations. We evaluate the

proposed method on public indoor and outdoor benchmarks and the experimental re-

sults demonstrate that our method can significantly improve localization performance.

Furthermore, extensive ablation evaluations are conducted to demonstrate the effec-

tiveness of different terms of the loss function.

The third contribution is a single image metric localization in 3D maps framework.

With the development of 3D sensors, many 3D models are built using them. 3D infor-

mation is very helpful for image localization. However, such 3D information is seldom

used for image localization because previous methods require the 3D information to

be associated with visual local features while 3D models collected with LiDAR devices

have no visual information. We propose a new framework to address it by matching

geometry between a single image and a 3D map. The framework includes four main

steps: pose initialization, local map extraction, depth prediction, and geometry match-

ing. The depth prediction is the key for single image localization in a 3D map. Previous

methods only generate sparse depth information from multiple overlapped images and

the procedure is quite slow. We propose a new dense depth map estimation method

by utilizing the convolutional neural network. Compared to other CNN-based depth

prediction methods, which take only RGB images as input, our method predicts the

depth map from an RGB image and an initial depth map generated from 3D maps. The

new depth method is evaluated on both indoor and outdoor depth prediction datasets,

and achieves the state-of-the-art results. The results on an indoor localization dataset

demonstrate the effectiveness of the proposed method and the 3D maps can help im-

prove the accuracy of image-based localization.
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6.2 Limitations and Suggestions for Improvement

This thesis provides several new methods for indoor image localization using deep

learning techniques.

For topological localization, the proposed approach has been demonstrated to be effec-

tive in the indoor scenes when landmarks are all correctly detected. Our localization

algorithm is not able to handle the case that the landmarks are wrongly detected or

missing in the landmark sequence. The probable reason is that our localization algo-

rithm only considers the connecting information between adjacent nodes, and takes the

landmark detection results for granted without considering the probability of wrong

detection of the landmarks. The localization algorithm can be improved by incorporat-

ing the landmark detector confidence and the probability of the skipped connection of

non-adjacent nodes.

For learning-based single image metric localization, we predict the single image pose

by exploiting the relative geometric information between training images. We have to

train a deep learning model for every single scene and a general model for the universal

scenes is still an open problem. In our method, we exploit the visual constraints to

further regularize the network. Traditional local point geometry constraints are not

exploited to further regularize the networks. It is a promising direction to introduce

photometric constraints to train the network.

In term of image metric localization with 3D map assistance, the key lies in generating

an accurate depth map. We design a network structure in an encoder-decoder manner

and the predicted depth image has smooth boundaries. The probable reason is that part

of the image spatial structure information are abandoned due to down-sampling layers

such as convolution and pooling operation. The structure information is extracted by

the encoder layers of the network, thus designing an effective fusion strategy to predict

the depth with the features of both encoder layers and decoder layers of the network

may be capable of increasing the performance.

6.3 Summary

In summary, we have investigated indoor image-based localization problem through

deep learning techniques on both topological localization and metric localization in

the thesis. Topological localization aims to predict the coarse position while the metric

localization tries to estimate the accurate pose, which consists of both position and

orientation. We have developed a novel topological localization framework to conduct
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localization with smart phone videos. It takes consideration of semantic information

of fixed objects in the indoor environments. A novel topological map is presented, and

a localization algorithm is devised to match the detected semantic information against

the topological map.

However, for certain applications like robots navigation or autonomous driving, the

accurate poses are needed. We employ the deep learning-based method to fast and

accurately predict the pose. Although previous works [132, 138, 140] also adopt this

strategy, they usually take the single image as input and ignore the relative geometry

constraints between training images. In contrast, we design a loss function that consid-

ers the relative geometry between training samples to further constrain the network.

Besides, we also perform multi-task learning to jointly predict the relative pose and

global pose.

Since there are many available 3D models of indoor scenes, we develop a metric local-

ization approach with a single image, which as far as we know is the first to perform

single image localization in 3D maps. The method localizes the single image through

geometry matching in 3D space by inferring the depth image from the RGB data. To

address the scale ambiguity problem, we warp the 3D map to generate an initial depth

image to guide the depth prediction, and experiments on indoor and outdoor bench-

marks demonstrate that such depth prediction method is superior to the RGB-based

methods.

Topological localization and metric localization are mutually beneficial solutions. Topo-

logical localization can divide the scene into many local maps, and thus perform met-

ric localization in each local maps reduces the computational and storage requirements

that metric localization suffers from. Besides, it can avoid the trouble caused by differ-

ent locations of similar appearance. Metric localization results can improve the repre-

sentation of the topological map as it can register many images taken under different

conditions. We have made improvements in the two areas separately in this thesis. In

the future, we will attempt to solve the problem simultaneously.
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[19] Relja Arandjelović and Andrew Zisserman. Three things everyone should know

to improve object retrieval. In 2012 IEEE Conference on Computer Vision and Pattern

Recognition, pages 2911–2918. IEEE, 2012.

[20] Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool. Speeded-up

robust features (surf). Computer vision and image understanding, 110(3):346–359,

2008.

[21] Mark Cummins and Paul Newman. Fab-map: Probabilistic localization and

mapping in the space of appearance. The International Journal of Robotics Research,

27(6):647–665, 2008.

[22] Xiaozhi Qu, Bahman Soheilian, Emmanuel Habets, and Nicolas Paparoditis.

Evaluation of sift and surf for vision based localization. International Archives

of the Photogrammetry, Remote Sensing & Spatial Information Sciences, 41, 2016.

[23] Elena Stumm, Christopher Mei, Simon Lacroix, Juan Nieto, Marco Hutter, and

Roland Siegwart. Robust visual place recognition with graph kernels. In Pro-

ceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages

4535–4544, 2016.

[24] Youji Feng, Lixin Fan, and Yihong Wu. Fast localization in large-scale environ-

ments using supervised indexing of binary features. IEEE Transactions on Image

Processing, 25(1):343–358, 2015.

[25] Stefan Leutenegger, Margarita Chli, and Roland Siegwart. Brisk: Binary robust

invariant scalable keypoints. In 2011 IEEE international conference on computer

vision (ICCV), pages 2548–2555. Ieee, 2011.

[26] Clemens Arth, Christian Pirchheim, Jonathan Ventura, Dieter Schmalstieg, and

Vincent Lepetit. Instant outdoor localization and slam initialization from 2.5 d

maps. IEEE transactions on visualization and computer graphics, 21(11):1309–1318,

2015.

[27] Brittany Morago, Giang Bui, and Ye Duan. 2d matching using repetitive and

salient features in architectural images. IEEE Transactions on Image Processing, 25

(10):4888–4899, 2016.

[28] Srikumar Ramalingam, Sofien Bouaziz, and Peter Sturm. Pose estimation using

both points and lines for geo-localization. In 2011 IEEE International Conference

on Robotics and Automation, pages 4716–4723. IEEE, 2011.

108



[29] Bryan C Russell, Josef Sivic, Jean Ponce, and Helene Dessales. Automatic align-

ment of paintings and photographs depicting a 3d scene. In 2011 IEEE inter-

national conference on computer vision workshops (ICCV workshops), pages 545–552.

IEEE, 2011.

[30] Shuda Li and Andrew Calway. Absolute pose estimation using multiple forms

of correspondences from rgb-d frames. In 2016 IEEE International Conference on

Robotics and Automation (ICRA), pages 4756–4761. IEEE, 2016.

[31] Eduardo Fernández-Moral, Walterio Mayol-Cuevas, Vicente Arévalo, and Javier

Gonzalez-Jimenez. Fast place recognition with plane-based maps. In 2013 IEEE

International Conference on Robotics and Automation, pages 2719–2724. IEEE, 2013.

[32] Aude Oliva and Antonio Torralba. Modeling the shape of the scene: A holistic

representation of the spatial envelope. International journal of computer vision, 42

(3):145–175, 2001.

[33] Charbel Azzi, Daniel C Asmar, Adel H Fakih, and John S Zelek. Filtering 3d

keypoints using gist for accurate image-based localization. In BMVC, 2016.

[34] James Hays and Alexei A Efros. Im2gps: estimating geographic information from

a single image. In 2008 ieee conference on computer vision and pattern recognition,

pages 1–8. IEEE, 2008.

[35] Peter Corke, Rohan Paul, Winston Churchill, and Paul Newman. Dealing with

shadows: Capturing intrinsic scene appearance for image-based outdoor locali-

sation. In 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems,

pages 2085–2092. IEEE, 2013.

[36] Andrew P Gee and Walterio W Mayol-Cuevas. 6d relocalisation for rgbd cameras

using synthetic view regression. In BMVC, volume 1, page 2, 2012.

[37] Kai Ni, Anitha Kannan, Antonio Criminisi, and John Winn. Epitomic location

recognition. IEEE transactions on pattern analysis and machine intelligence, 31(12):

2158–2167, 2009.

[38] Xue Wan, Jianguo Liu, Hongshi Yan, and Gareth LK Morgan. Illumination-

invariant image matching for autonomous uav localisation based on optical sens-

ing. ISPRS Journal of Photogrammetry and Remote Sensing, 119:198–213, 2016.

[39] Relja Arandjelovic, Petr Gronat, Akihiko Torii, Tomas Pajdla, and Josef Sivic.

Netvlad: Cnn architecture for weakly supervised place recognition. In Proceed-

109



ings of the IEEE conference on computer vision and pattern recognition, pages 5297–

5307, 2016.

[40] Albert Gordo, Jon Almazan, Jerome Revaud, and Diane Larlus. End-to-end learn-

ing of deep visual representations for image retrieval. International Journal of Com-

puter Vision, 124(2):237–254, 2017.

[41] Hyo Jin Kim, Enrique Dunn, and Jan-Michael Frahm. Learned contextual fea-

ture reweighting for image geo-localization. In 2017 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pages 3251–3260. IEEE, 2017.
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