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Abstract  

The need for lighter structure in the airplane industry has led to wide 

applications of fibre-reinforced composites due to their higher specific strength and 

specific stiffness. The directionality of these materials has motivated the researchers 

to take advantage of this feature. An investigation has been performed in this thesis by 

using the optimisation process to enhance structural performance or minimize 

structural weight. It is possible to reduce stresses in the most concentrated regions in 

the composite structures, such as notches and holes, by steering the fibre paths in a 

curved manner. In general, steering the fibre can lead to a good-balanced distribution 

of the local fibre angles in the composite materials. The directional properties in the 

laminated structures can be designed. 

An optimisation framework has been developed and applied to find the optimal 

design variables for the optimisation design as present in this thesis. A genetic 

algorithm in a Matlab was used for its robustness to find the global minimum point 

and an excellent ability to work in a noisy environment of the objective function. In 

this framework, a technique of the client and server has been employed to facilitate the 

communications between the Matlab as the optimiser and Abaqus/Standard as stress 

analysis solver. Efforts have been made to avoid time delay during opening the startup 

session dialogue box when Abaqus/CAE is called for each iteration of the 

optimisation.  

Optimisation of different orders of variations of the local fibre angles has been 

investigated concerning their effects on the local stiffness, as the ability to resist 

buckling load. The first-order variation has approved to be the most significant, 

especially when the variation was perpendicular to the direction of the applied load. A 

gap of variable width is present between curved fibre tow paths. It leads to a non-

uniform distribution of fibre volume fraction. Therefore, the stiffness and buckling 

response have been influenced negatively. 

A laminated composite cylinder can be designed using steered fibre. Therefore, 

the influence of steered fibre has been investigated in terms of the structural 

performance of circular and elliptical cylindrical shells. The local fibre angles vary 

linearly around the circumference. Optimum local fibre angles have been obtained, 

that result in a maximum buckling capacity. Steering the fibre around the elliptical 
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cylindrical shells improves the structural performance by redistributing loads from the 

flatter areas to the higher curved areas. The influence of the aspect ratio of the elliptical 

shells on the enhancement of the ability of the structure to resist the buckling load has 

been studied. The directions of the applied bending moment for both circular and 

elliptical cylindrical shells have been investigated, to find the applicable range that 

offers an improvement in buckling load. 

The maximum stress criterion and Tsai-Wu criterion have been used to predict 

the failure load of curved fibre laminates. The gaps of variable width led to reduced 

strength with an exception for some patterns of curvilinear fibre panels, where no 

significant difference in failure loads has been found between the laminates of the 

uniform and non-uniform fibre volume fraction distributions.  

A mesoscale modelling of the curvilinear tow with its variable gap width has 

been established to determine the constitutive relationship of the material. The 

effective material properties for different configurations of local fibre angles have been 

predicted using a unit cell model based on translational symmetries. The periodic 

boundary conditions have been derived. The analysis has been carried out using the 

Python script, which is considered as a secondary development of Abaqus/CAE. 

Extensive verifications have been conducted. A good corresponding has been achieved 

between UC models and rule of mixtures (ROM) for the obtained effective material 

properties. 
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E22                      Transverse Young’s modulus  
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1 Introduction 

 Background  

Composite materials are widely used for aviation and aerospace applications 

because of their high strength and stiffness-to-density ratios. In the aerospace 

industry, the demands for high performance of aircraft drive need for weight 

savings. The weight savings in the structure of the aeroplane can contribute 

dramatically to the reduction of fuel consumption. However, this reduction in 

weight of structure must not compromise the safety, durability and the performance 

of the aeroplane. The consequence of weight savings varies with the applications 

that used the composite materials in their structures where each kilogram of weight 

saving could offer a monetary value as shown in Figure 1.1 according to the study 

of Jones (2014). 

 

Figure 1.1: Values of weight savings for different applications  
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From another point of view, the reduction in thickness leads to weight savings 

in the composite structures. However, this tends to reduce the buckling resistance 

of the structure. Therefore, the reduction must be balanced against the requirements 

of the structural stability, but the performance could be increased by steering the 

fibre inefficient way to tailor the stiffness of the structure and improve the structural 

stability. Consequently, the designers and engineers must be fully aware of the 

concerns of the collapse of structures and the means to avoid it by tailoring stiffness. 

The aircrafts structures are subjected to a wide range of static and dynamic 

loads emerging during flight, such as manoeuvres and the turbulent flow of the air, 

while on the ground, landing and taking off. In the particular case of landing, a 

significant bending moment to the fuselage is produced. This bending loading case 

produces compressive stresses in the skin on one side of the fuselage or the wings 

and tensile stresses on the other side as shown in Figure 1.2. Steering the fibres 

around the fuselage can redistribute the stresses. It could exploit all opportunities 

of composites that offer to reduce these stresses. Therefore, steering the fibres could 

be considered as one of the available solutions to improve the structural design of 

aircraft structures. 
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Figure 1.2: Subjected load on the aircraft during landing (Megson, 2007) 

Furthermore, in addition to the stiffness weight ratio, an attractive advantage 

of composite materials is that they can be moulded into more complex shapes than 

their metallic counterparts. This could reduce the number of parts needed to produce 

a complex component and reduce the number of fasteners and joints. Taking 

advantage of this feature of composites, the weaknesses and stress concentrations 

due to the fasteners and joints could be reduced, avoiding crack initiation in the 

structure as a result of the use of fasteners. Also, reduce the number of fasteners 

and joints could lead to reducing time in assembly and hence cost-saving. 

One of the methods that could produce a complex layout of fibre 

reinforcements without using fasteners and joint is steering the fibre in different 

ways by using automated fibre placement. This technology was developed in the 

mid-1980s (Evans, 1998) which allows for varying orientation of fibres along the 

structure by steering the fibre tow resulting in a variable stiffness laminate. This 

new type of laminate added more flexibility in the design process to achieve better 
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load redistribution, resulting in great potential of improvements in the structural 

performance. 

In order to investigate the inherent tailoring capacity of composite laminates 

for specific design cases, optimisation methods could be used to achieve that aim. 

Early work addressing composite optimisation can be traced back to the 

development of lamination parameters by Tsai et al. in the late 1960s. The 

employment of the high-performance computers has contributed to increasing 

applications of numerical optimisation solutions and enhances the performance of 

optimisation methods. Furthermore, in recent years, the new optimisation methods, 

such as genetic algorithms (Kramer, 2017) and simulated annealing (Arora, 2015) 

have been explored, which are considered new developments against the traditional 

searching methods. Consequently, these methods have contributed to improving the 

ability to find the optimum design for composite laminates under different 

constraints.  

 Aim and objectives 

Steering the tows along the curved paths of identical pattern one beside 

another inevitably results in forming of gaps or overlaps between the adjacent tows. 

Shifting the tows apart between the fibre tows can avoid the overlaps and deviation 

of the local angles between parallel tows but tends to produce a gap of variable 

width as shown in Figure 1.3, assuming the fibre tow width remains constant. This 

leads to non-uniformity of fibre volume fraction. Therefore, the aim and objectives 

of this research are to study and investigate the effects of such gaps of variable 

width on the performances of the composite.  
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Figure 1.3: Lamina with a variable gap width  

The study will endeavour to understand the influence of gaps of variable 

width and the effect of linear variation of local fibre angles on the buckling 

responses for different structures, equivalent stiffnesses and strengths. One aspect 

of the work is to demonstrate the significance of this gap by comparing the 

behaviours of composites between the uniform and non-uniform fibre volume 

fraction distributions. Attempts will be made to find the optimum design of a 

curvilinear fibre path for uniform and non-uniform of fibre volume fraction 

distributions of several composite structures to achieve maximum buckling load. 

According to the geometric considerations of the aeroplanes and their loading 

conditions, steering the fibre in cylindrical structures can improve their 

performances by redistributing the load in different parts of the fuselage. Further 

investigations could help to understand to what extent steering the fibre can 

improve the structural performance and how much the range of directions of the 

bending moment to a reference direction could contribute to this improvement. 

Efforts will be further extended to a non-circular cylindrical shell, such as elliptical 

Tow 

Gap 
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cross-sections that used as the fuel tank and a wing of aircraft. For instance, to what 

extent steering the fibre could improve the stability of this structure and why and 

how much the range of directions of the axis of bending moment to a reference 

direction that can affect positively. 

Furthermore, one of the objectives of this study is to establish a unit cell 

model for the curvilinear tow pattern with gaps of variable width that has not been 

investigated to yet, particularly the influence of the variability of the gap width 

along the composite structures. This is because the geometry of the gap requires an 

accurate finite element modelling that is not of easy conception using customary 

procedures. Therefore, proper mesoscale could be performed to predict the 

equivalent stiffness for different configurations of local fibre angles.  

 Thesis layout 

This thesis consists of nine chapters. Apart from the introduction as presented 

in this chapter, the layout of the remaining chapters is outlined as follows.  

Chapter two is devoted to the literature review which covers the main themes 

relevant to the present research. 

In Chapter three, background theoretical accounts have been presented about 

the micromechanics analysis, laminate theories of both classical laminate theory 

and first-order shear theory, and finally, the principles of the failure criteria 

(Maximum strain, Maximum stress, and Tsai-Wu criterion) for the subsequent 

applications in this thesis. 

The optimisation framework is established and presented with its 

verifications in Chapter four.  
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Chapter five explores different orders of variations of local fibre angles and 

different approaches of representing the fibre volume fraction for the curvilinear 

fibre path. Also, it includes the effect of different directions of variation of local 

fibre angles on the in-plain stiffness and buckling response for curvilinear fibre 

laminates.  

Chapter six focused on the influence of the curvilinear fibre paths on the 

buckling response of different cylindrical shells. In this chapter, the optimum fibre 

paths for different composite structures to sustain maximum buckling load are 

obtained and compared with the maximum buckling loads of straight fibre 

structures. Also, the applicable range of directions of bending moment has been 

studied.  

In Chapter seven, the strength evaluations of curved fibre panels according to 

failure criterion is implemented for uniform and non-uniform approaches of fibre 

volume fraction. The linearised Tsai-Wu failure criterion is employed. 

Chapter eight presented a unit cell model of complicated geometry for the 

curvilinear fibre architecture incorporating gaps of variable width. It is successfully 

formulated and applied to predict the effective material properties of the composites 

represented by the unit cell. In this chapter, the constraint for vertices, edges and 

faces involved in the unit cell model are derived in detail.  

In the last chapter, conclusions of this thesis have been drawn on the major 

achievements during this research as presented in this thesis, with a list of 

suggestions for future work. 
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2 Literature review 

 Introduction  

Fibre reinforced composites can be defined as a mixture of constituent 

materials (fibre and matrix) of different properties. The fibres are generally stiff and 

strong, while the matrix holds fibres and redistribute the load on fibres. The process 

of transmitted load in composite laminates is achieved optimally by using 

continuous fibre embedded in a matrix as a magnitude of the maximum value of the 

interfacial bond between the fibre and matrix phases. This feature could offer 

significantly improved performance for the structures. Besides, continuous fibres 

provide many benefits such as high strength, impact resistance, improved surface 

finish, dimensional stability and low shrinkage (Campbell, 2004). Therefore, most 

structural composites have continuous fibres with different forms. However, 

continuous fibres are more expensive to process than short fibres. 

Several composite fabrication processes involving continuous fibres will be 

reviewed first, including filament winding, 3D printing and automated fibre 

placement, in which fibre paths are curved. 

2.1.1 Filament winding  

The filament winding process is a fabrication technique of composites, 

which is used for manufacturing open cylinders or closed-end structures (pressure 

vessel). The filament winding process appeared in the early of the 1940s, and the 

first attempt was made to develop the filament winding as manufacturing method 

(McLaughlan et al., 2011). The filament winding machine was a straightforward 

design. It is used to perform the simple tasks by using two axes of motion, one 

rotational and one axial, like the configuration of a lathe, as shown in Figure 2.1. 
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Since then, the filament winding machine has been further developed and improved, 

and became more sophisticated in design, by adding the third axis of motion, which 

was a radial axis (Peters, 2011). By the 70s, high-speed computers allowed for more 

data processing and this was reflected in more regular motion and greater placement 

accuracy. A schematic of the filament winding machine guided by a computer is 

shown in Figure 2.2. In the 1980s and 1990s, the development of the computer 

technology allowed for further improvement of the filament winding machines by 

designing a motion card hardware, which became an essential part in every filament 

winding machine (Peters, 2011). Furthermore, the additional axes of motion of 

fibre-reinforced, allowing the four, five and six axes of motion as shown in Figure 

2.3(Peters, 2011). 

 

Figure 2.1: A lathe-type filament winding machine (Campbell, 2004) 
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Figure 2.2: Filament winding machine guided by a computer (Campbell, 2004) 

 

 

Figure 2.3: A six-axis filament winding machine (Peters, 2013) 

 

2.1.2 3D printing of continuous fibre reinforced polymer composites.  

 

The 3D printing of continuous fibre could be considered as one of the 

manufacturing processes that steers the fibre in a specific path. It is defined as a 

method of adding materials to manufactured object as layer by layer in order to 

create a three-dimensional model. Therefore it is known as additive manufacturing 

(AM) (Parandoush and Lin, 2017). The 3D printing as a technique in the 
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manufacturing processes of composite material offered an opportunity to produce 

a load carrying structures such as the lugs and joints (Zhuo et al., 2017). Hence, it 

offers the fibre continuity, which cannot be achieved by using the conventional 

methods of cutting such as drilling to produce a hole in a composite structure. 

Printing continuous fibre by using fused deposition modelling (FMD) 

technology is the widest technique. Matsuzaki et al. (2016) developed the new 

technique to impregnate the continuous fibre with thermoplastic resin in the nozzle. 

In this printer, the continuous fibre and the thermoplastic resin are supplied 

separately to the head of the printer, as shown in Figure 2.4. Then they are 

transformed directly to the small heater to melt the resin filament with continuous 

fibre. This process offers an adhesion between fibre and matrix in the printer head. 

Finally, the composite mixture is ejected on the printing bed to produce the printed 

path according to the wanted path. The path could be supplied through G-code text 

file to cover whole area pixel by pixel of a layer and then layer by layer to complete 

3D model. 

 

Figure 2.4: Drawing of 3D printer head for continuous fibre composite (Matsuzaki 

et al., 2016)  
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In addition, it can use a short form of fibre like fillers of cellular carbon fibre 

as reinforcement in the extruded matrix (Compton and Lewis, 2014). This type is 

known as a 3D extrusion printer, where the micro-nozzle of the printer head can 

align the fillers under the shear force and extensional flow, as illustrated in Figure 

2.5. This technique guides the fillers of short fibre in the printing direction to 

improve the stiffness of the printed composite. It could give a substantial 

improvement in the stiffness when compared with random orientation of fillers in 

the printed path. However, it still not comparable with a printed continuous fibre 

reinforced composite.  

 

Figure 2.5: Extrusion of the 3D printed path with the progressive alignment of 

fillers (Compton and Lewis, 2014) 

 

The most limitations in the 3D printing that are considered as dominant 

challenges are a lack in adhesion between fibre and matrix, void formation, 

blockage in the nozzle due to filler inclusion and increased curing times 

(Parandoush and Lin, 2017). Therefore, the mechanical properties for composite 

materials that are produced by the conventional manufacturing processes such as 

Prepreg/ Autoclave and RTM are better than that of 3D printing. In addition, the 



Chapter 2 

13 
 

deposition rate can be considered as one of the limitations of 3D printing, which 

depends on the nozzle size, the material used, required print resolution and 

complexity of part to be printed. 

The fibre volume fraction of the continuous printed composite is affected by 

the existence of an appropriate space between two adjacent lines of the printed path. 

This can allow the printed fibre to be uniformly compacted. Besides, using a 

compaction system such as a roller could increase the compaction pressure to 

reduce the voids and prevent the deboning between the layers (Zhuo et al., 2017). 

2.1.3 Fibre placement machine 

In recent years, there has been an increasing trend of using curvilinear fibre 

paths in composite laminates. This new configuration offers excellent potential for 

performance improvements over the conventional straight fibre laminates. The 

manufacturing of laminates with curvilinear fibre paths is carried out by employing 

the fibre placement technology, which gives the capability of steering individual 

fibre tows through the surface of a mould or the build-up of previously laid laminae 

(Lozano et al., 2015). 

There are two leading manufacturing technologies for the automated 

placement that can be classified according to the width of the tow or tape into 

Automated Tape Laying (ATL), and Automated Fibre Placement (AFP). Each tow 

or tape consists of a set of unidirectional fibres. With AFP technology, multiple 

individual fibre tows are placed automatically onto a mandrel. Tows are typically 

1/8, 1/4 or 1/2 in. wide, whereas tapes are wider, typically 3, 6 or 12 in. wide. Each 

band of simultaneously placed tows is called a course (Blom, 2010b). 

Fibre placement technique is applicable for different materials, including 

thermoset and thermoplastic materials, as well as the dry fibres. A fibre placement 

machine as shown in Figure 2.6, typically consists of a control system, a robotic 
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arm, a materials storage centre and the fibre placement head. In addition to the 

degrees of freedom due to the robotic arm, an extra degree of freedom is available 

due to the mandrel rotation, which is allowed for more flexibility of the fibre 

placement head to access every point on the surface of processing. Also, the 

individual supply of fibre tows and their small width, material type and the size of 

compaction roller allow placing the prepreg tows on the complex surface. Tows can 

also be cut and restarted individually, and that contributes to manufacturing parts 

similar to their final shape; hence, reducing scrap rates. In addition, the ability of 

this apparatus to regulate the speed of the tows individually, known as differential 

tow payout, provides the main potential of AFP, as it enables the lay-up of 

curvilinear paths within each ply on complex surfaces (Waldhart, 1996). With the 

fibre placement technique, the stiffness and strength parameters, which depend on 

the fibre orientation angle, can be altered spatially from point to point as fibre path 

be in a curved manner as shown in Figure 2.8 to tailor the structure to the designated 

loads and stresses. 
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Figure 2.6: Fibre placement machine with typically mean parts (www.coriolis-

composites.com) 

 

Figure 2.7: Machine head (Evans, 1998) 

 

Figure 2.8: Curved fibre path with different orientations 
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Furthermore, applying the fibre placement technique allows for enhancing 

the performance of the structure without an increase in weight over traditional 

laminates. As a result, the varying fibre angle orientation, the stiffness properties 

will vary across the laminate plane. Hence, this kind of laminate is termed as the 

variable stiffness laminates (Olmedo and Gurdal, 1993). 

2.1.3.1 Applications of fibre placement technology 

 

The increasing interest in composite materials and their applications in 

aerospace, automotive and other structures puts an increasing demand on the 

manufacturing automation. The first company which applied the fibre placement 

technology was Boeing Helicopters in the early 1990s. Boeing developed a process 

to produce the aft fuselage section by the fibre placement technology. The aft 

fuselage section was manufactured by dividing it into nine individual panels built 

using hand lay-up. By using fibre placement in order to produce the aft fuselages, 

the required amount of fasteners are reduced, the trim and assembly labour is 

reduced, and the amount of materials scrap are also reduced (IJsselmuiden, 2011b). 

Lightweight bicycle components such, as brake boosters, link plates and 

bicycle frames can be produced applying the fibre placement technology because it 

allows to arrange the reinforcing fibres in any direction and for any complex shape 

(Mattheij, Gliesche et al. 1998). 

Fibre placement technology has advantages when producing large and 

complex structures. It allows reducing the costs without compromising efficiency 

and quality. However, it is still an expensive technology. As such, it is commonly 

applied in the aerospace industry, where the relatively expensive large parts are 

produced over a long time. Recently, there has been a decrease in machine costs 

and an increase in the production rate. Therefore, the fibre placement process 
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applicability is expanding to other industries, such as automotive, maritime and 

wind energy.  

2.1.3.2 Manufacturing limitations of the fibre placement technology  

 

In the manufacturing process of fibre placement, some issues are rising to 

the surface, which affect the practical applications of variable stiffness laminates. 

For instance, sometimes the boundaries of neighbouring courses do not match at 

some locations, i.e. they do not lay parallel to an adjacent one. This generates 

variable regions between the tows courses. When the one tow laid on the other, so, 

it is called overlap defects, while in other instances when space is left between the 

tows, forming a gap, as shown in Figure 2.9(a) (Lopes et al., 2008a). The overlaps 

could be useful because a thicker region can serve as an integral stiffener, which 

enhances the load-carrying ability of the structure. One more type of defects is the 

tow drop, which happens when the fibre placement machine cuts the tow 

individually to prevent the overlap regions and thickness build-up, as shown in 

Figure 2.9(b), (Lopes et al., 2008a). In this case, during the laminate curing process, 

the small fibre-free area could be a region of a resin-rich pocket, where the stress 

concentration can occur. 

Furthermore, a collision of the machine head with the model and fibre 

bridging of concave surfaces or complex geometries must be one of the limitations 

which takes through the design considerations (Lozano et al., 2015). Also, the 

steered fibre route could deviate from the design route, for example, when the dry 

fibre is used. The fibre angles at the boundaries of the course will deviate from the 

centre line of a steered course as the result of the fibres being placed parallel to one 

another as illustrated in Figure 2.9(c). The amount of deviation could be influenced 

by the fibre path and the course width (IJsselmuiden, 2011b). Therefore, the 
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designer should consider that defining fibre angles according to the angle at the 

course centreline could result in the differences between the model and the 

manufactured parts. Deposition rate can be considered as a crucial aspect in 

manufacturing limitations of fibre placement that describes the amount of materials 

that can be laid per unit time. It is the usual performance metric for fibre placement 

(Lozano et al., 2015). The deposition rate could be affected by process speed, the 

chosen staking sequence, the desired amount of steering, and the shape of the part.  

 
(a)  

 
(b)  

 
(c)                

 

Figure 2.9: Defects of the AFP machine; (a) gaps and overlap, (b) tow drop, and (c) 

deviation of fibre angle through the course centre 
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Furthermore, steering the tow in a curved path could result in the 

compression of the inside of the fibre tows where the tows bend. The maximum 

allowable steering curvature of each course depends on the type of fibre used and 

the course width, as shown in Figure 2.10. The wrinkling of the tows appears inside 

of tows when the excessive steering is applied to the tows, and this could lead to a 

reduction of the quality, and the wall thickness of the structure may increase 

(Lozano et al., 2015). Another limitation is when the boundaries of the tow are not 

cut in normal directions to lay up, forming the so-called jagged or saw-tooth edge, 

forming small gaps, overlaps or a combination of both. 

 

Figure 2.10: Wrinkling due to increasing steering curvature 

 

Furthermore, in the AFP, within a single course, the local fibre angles could 

vary over its cross-section. A difference between the local angles on both sides of 

the course centre in relation to that of the centre of the tow can often be observed 

as illustrated in Figure 2.9(c) This deviation results from the variation of the width 

in the course. Without such variation in tow width, either a gap or overlap between 

neighbouring courses will emerge. In order to avoid the overlap, a certain shift 

between adjacent tows needs to be introduced. However, this produces a gap with 

variable width along the tow paths. Also, some tows in the course are not 

Under tension 

Under compression  
Wrinkled 

Straight tow Slightly curved tow Excessively curved tow 
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continuously placed from side to side of the panel; they are cut to fit the geometry 

of the structure to be manufactured. This could undermine the load transformation, 

e.g. in a panel under tensile load. Therefore, placement a continuous tow, as 

presented in this thesis, could be a subject to these considerations in the AFP. 

 

2.2 Composite laminates 

Composite laminates are composed of a number lamina of fibres set in a 

matrix. Composite laminates have been commonly used in aerospace, civil and 

mechanical structures because they offer high strength to weight ratio over 

traditional materials. In addition, an excellent corrosion resistance, thermal 

insulation, good damping coefficient and long fatigue life are considered as 

additional factors in favour of using the composite laminates. The mechanical 

behaviour of composites laminates is strongly dependent on their laminate 

configurations, i.e. layer fibre orientation, layer thicknesses and the layup sequence. 

Laminates are efficiently used in structural design because it is relatively easy to 

tailor their mechanical properties to meet the specific design requirements. Gürdal 

et al. (1999b) have demonstrated that laminates also have their problems, for 

instance, the mismatch of materials properties between the laminas may result in 

shear stress between layers and especially near the edges of the laminate, and this 

may lead to delamination in the laminates.  
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2.2.1 Constant stiffness laminates (CS) 

In the conventional laminates, which consist of many laminae having a 

straight fibre path, i.e. the fibre orientation of lamina is constant, as shown in Figure 

2.11. Hence, these laminates would have constant stiffness (CS). The [A], [B] and 

[D] stiffness matrices that depend on fibre angle orientation are constant over the 

laminate. In general, some elements of the [A], [B] and [D] matrices could vanish 

depending on the type of laminate. In these laminates, the design variables for CS 

laminates include ply angles, the ordering of the plies, and number of the plies and 

material type, which should be considered in order to obtain the preferred design. 

 

Figure 2.11: Straight fibre laminate  

 

Fibres in the lamina are principal reinforcement responsible for its load-

carrying capacity. The fibres are stiffer and stronger than the matrix. Whereas, the 

matrix could support the fibres and distribute the load among the fibres (Jones, 

1998). Therefore, the composite laminate properties (strength and stiffness) are 

significantly dependent on the fibre orientation of the lamina. The directional nature 

of the fibres in the composite laminates introduces a directional dependence for 

composite material properties. Consequently, the laminates are classified as an 

anisotropic material. Different types of laminates that can be constructed depending 

on fibre orientation of lamina and stacking sequence such as symmetric, 
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antisymmetric, balanced, quasi-isotropic, cross-ply and angle-ply laminates. Most 

laminated structures are symmetric laminates, as shown in Figure 2.12, where the 

material type, thickness and fibre orientation of laminas are symmetric for the 

middle plane of the laminate. 

 

Figure 2.12: Symmetric configuration of the laminates  

 

2.2.2 Variable stiffness laminates (VS) 

The variable stiffness laminate is a laminate that having stiffness matrix 

varies from one location in the laminate to another according to the thickness and 

fibre angle orientation that dictate the stiffness matrix. Therefore, the variable 

stiffness laminates could be classified into two groups as follows.  

2.2.2.1 Variable stiffness laminates through fibre path variations  

The laminates that have a variable fibre path in their laminae lead to local 

variation in stiffness. The variable stiffness is based on the spatial change of the 

local angles that could be achieved in the lamina by 3D printer and fibre placement 

machine. Since the variation of local angles is continuous through the lamina, the 

variation of stiffness is also continuous. Also, because of the spatial variation of the 

local angle, the design variables that describe the variable stiffness laminates will 

be more than that of constant stiffness laminates and the structural design will be 

more complex. Wu et al. (2012) carried out the buckling analysis and the 
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optimisation of the variable stiffness laminates having a variable angle of tow. They 

calculated the critical buckling load according to the Rayleigh-Ritz approach. It was 

found that variable stiffness laminate gives the designer more flexibility in 

improving the load distribution as compared to the traditional fibre reinforced 

composite laminates, whereas the elements of the [A], [B] and [D] matrixes are 

related to the x-and y-coordinates. Lopes et al. (2008a) revealed that variable 

stiffness laminates were more efficient as compared to straight fibre laminates in 

terms of finding the maximum buckling load and first-ply failure load. Gürdal et al. 

(2008) showed that the spatial variation of fibre orientation, which varied 

perpendicular to the loading direction in the rectangular composite laminates, 

improved the buckling load, as a result of redistribution of the loads from the centre 

of the panel to the simply supported sides of the panel.  

The redistribution of the load shown in Figure 2.13 gives a clear picture of 

the changing stiffness in the laminates, where the relationship between the load and 

stiffness is directly related. This led to non-uniform in-plane stresses distribution 

that will have a significant influence on the buckling load of panels. Also, the 

variable stiffness of layers of curvilinear fibre paths provides more adjustability to 

the designer for balancing between overall panel stiffness and buckling load for 

different applications. 

 Actually, the improvement in the buckling load as a result of variation of 

local angles could be affected by the ratio of the lamina material properties (Ex/Ey), 

as well as with aspect ratio of the characteristic dimensions. Also, the in-plane 

boundary condition along the edges of the panels could be affected. 
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Figure 2.13: Load redistribution of variable stiffness laminates (Gürdal et al., 2008) 

 

  Steering the fibre in the variable stiffness laminates could be done in 

different ways. Olmedo and Gurdal (1993), presented the shifted method, which 

depends on the one-dimensional of local angles variation. In order to achieve the 

required variation of local angles along the whole lamina, the centreline of the 

steered tow should match the curvilinear path reference to cover a course. Then, 

covering the entire surface of the laminate is accomplished by placing subsequent 

courses and moving them perpendicularly to the direction of variation. A parallel 

method was suggested by Waldhart et al. (1996). The main course is placed on the 

surface, and the neighbouring courses were adjusted parallel to the main course, 

whereas the entire surface, of the laminate, is covered by steered fibres. The 

shortage of control over the fibre angle distribution has been considered as a 

deficiency of this method because the fibre local angles of only the first course 

could be actively controlled and the others will have a deviation in the local angles 

of the main one. When larger surface needs to be covered, the maximum curvature 

in the parallel approach increases with each successively placed path and results in 

a large deviation in the local angles of the parallel tows, which can be considered 

the second disadvantage of this method.  
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2.2.2.2 Variable stiffness laminates through thickness variations.  

One way to change the stiffness of a thin laminate is by altering the number 

of plies per location, which changes the thickness of the laminate, as well as the 

stiffness characteristics of the shell. According to the classical laminate theory, the 

stiffness matrix of laminate could be calculated by integrating the wall thickness. 

Therefore, the effect of thickness variations is completely considered within the 

[A], [B], and [D] stiffness matrices. The dropped ply construction is shown in 

Figure 2.14, where the thickness of each ply is tp, and H is the thickness of the 

original laminate with no thickness variation (Tatting, 1998). The additional plies 

are assumed to be symmetric about the mid-surface of the laminate and consist of 

 𝜑𝑝  and − 𝜑𝑝 layers so that the structure remains balanced. The addition to the 

stiffness terms of the original stiffness laminate can then be calculated for 

symmetric laminates as follows (Tatting, 1998): 

𝐴𝑖𝑗 = 4𝑡𝑃. 𝑄𝑖𝑗(𝜑𝑝) ,  𝐵𝑖𝑗 = 0,  𝐷𝑖𝑗 =
1

12
[(𝐻 + 4𝑡𝑃)

3 − 𝐻3]𝑄𝑖𝑗(𝜑𝑝)  𝑗 ≠ 6      (2.1)  

𝐴𝑖𝑗 = 0,                      𝐵𝑖𝑗 = 0,    𝐷𝑖𝑗 =
2

3
[(3𝐻𝑡𝑃

2 + 7𝑡𝑃
3)]𝑄𝑖𝑗(𝜑𝑝)       𝑗 = 6        (2.2) 

 

 

Figure 2.14: Geometry of dropped ply construction (Tatting, 1998) 

 

Therefore, the change in the wall thickness is reflected on the value of the 

stiffness of laminates that have been changed to the thicker structure. For laminates 

have a smooth variation in thickness over a region of varying thickness, the method 

for dropped/added plies also could be applied (Tatting, 1998). Curry et al. (1992) 
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showed that both the tensile and the compressive strengths reduced significantly 

because of the discontinuity of the thickness that occurs in the dropped plies. They 

stated that the reduction in the tensile strength is smaller than the reduction in 

compressive strength for a given configuration of dropped plies. Paschero and Hyer 

(2009) have shown that variation of the wall thickness along the circumferential 

direction of the cylinder could enhance the axial buckling capacity of cylindrical 

shells with an elliptical cross-section. They applied the stress of the buckling 

relation of uniform thickness of the circular cylindrical shell to the elliptical 

cylindrical shell, to design the variable wall thickness of elliptical shells having 

buckling load of the circular shells.  

Adali et al. (1993), used the variable wall thickness as a design variable to 

maximise the internal pressure and minimise the weight of pressure vessel 

structures by taking the Tsai-Wu failure criterion as a constraint. They found there 

is an improvement to increase the internal pressure capacity for variable shell 

thickness about 20% more than the constant thickness shell at low internal pressure, 

but this improvement decreases with high pressure applications.  

Actually, changing the wall thickness of the composite structures to change 

the stiffness matrix is an undesirable method. Since if the thickness is increased, the 

structure weight will be also increased, and that not acceptable with a principle of 

using composite materials. In addition, using the method adding or trimming plies 

to vary the stiffness of the laminate could produce the unwanted out-of-plane stress 

concentrations in tapers that can initiate in-plane matrix cracking and delamination. 
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2.3 Design of curvilinear fibre path 

In a traditional straight fibre laminate, fibre orientation within every layer is 

represented by a constant angle, while in a variable stiffness layer, the fibre 

orientation changes on the xy-plane as a function of both coordinate directions 

θ=θ(x, y). In order to study the variable stiffness laminates, a model for of curved 

fibre path is required. Several approaches have been developed to model the curved 

fibres, and these are outlined in the subsections below. 

 

2.3.1 Functional fibre path definition 

The functional fibre path is defined as function describes the path of fibre in 

term of the x and y coordinates. It has the advantage of ensuring the continuity of 

the fibre path and implementation of AFP manufacturing constraints in the 

curvilinear fibre path definition. It can be classified into two parts according to the 

variation type of the curve path. 

2.3.1.1 The linear variation of the local angles 

 

A simple description employed to model the continuous variation of the 

laminate stiffness properties is based on the linear function of variation in terms of 

x- or y-directions of a panel for the local fibre angles of the individual layers 

proposed by study of Gurdal and Olmedo (1993). This definition assumes that the 

local fibre angles of the reference of fibre path varies linearly from the value T0 in 

the centre of the panel to T1 at a specified distance d. Tatting and Gürdal (2001) 

have developed the model of Gurdal and Olmedo (1993), where they generalised 

the fibre path by rotating the axis of fibre orientation by an angle  from the 

geometric axis of the panel. The local fibre orientation can be denoted by  (T0│T1), 
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and vary linearly along the r direction, rotated from the x-axis by  from T0 at the 

centre to T1 at the characteristic dimension of the panel as shown Figure 2.15. 

The piecewise continuous functions which define the fibre path orientation 

could be determined in terms of , T0, T1 and r according to Tatting and Gürdal 

(2001) as follows.  

𝜃(𝑟) = 𝜑 + (𝑇1 − 𝑇0).
𝑟

𝑑
+ 𝑇0 , −𝑑 ≤ 𝑟 < 0                                                       (2.3) 

𝜃(𝑟) = 𝜑 + (𝑇0 − 𝑇1).
𝑟

𝑑
+ 𝑇0 ,   0 ≤ 𝑟 < 𝑑                                                         (2.4) 

 

Figure 2.15: Curvilinear fibre path (Tatting and Gürdal, 2001) 

 

2.3.1.2 Circular arc (Constant Curvature Path) 

Gürdal et al. (2005) developed a new definition for fibre orientation variation 

based on circular arcs representation as an alternative of linear variation of the local 

fibre angles. This approach had the advantage of producing courses of constant 

curvatures, which more accurately represented the manufacturing constraints of a 

tow placement machine. Furthermore, Ungwattanapanit and Baier (2012) showed 

that placing the fibres along the periphery of the circular holes substantially reduced 

the stress peaks at the cut-out edges when tensile, or to a lesser extent, shear loads 

were applied. The in-plane shear deformation could be used to generate the circular 

arc for fibre placement as in the study of the Tam and Gutowski (1990). The shear 
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deformation was applied for incremental parts of fibre that kept the fibre remaining 

perpendicular to the radius.  

2.3.2 Discrete approach  

The linear and constant variations, which have been described in the 

previous sections, are the predefined curves that represent the limited classes of 

fibre orientation variations in a continuous way. These types of curves result in a 

small design space where the fibre path could be described using a specific number 

of parameters. On the contrary, for an expanded design space, the fibre orientation 

angles can be modelled to provide laminate stiffness variation of a steered fibre 

laminate by dividing the structure domain into several discrete regions and 

assigning an independent laminate stiffness to each region as shown in Figure 2.16 

(Huang and Haftka, 2005, Hyer and Charette, 1991). The discontinuity of the 

optimum stacking sequence between discrete regions was considered as one of the 

disadvantages of assigning independent laminate stiffness properties to different 

discrete regions of the structure. The independent stiffness properties could be 

assigned to each element in order to improve the compressive strength of a plate 

with a hole (Huang and Haftka, 2005). The weakness of this approach was that it 

was difficult to impose the fibre continuity and ensuring convergence for fibre angle 

variation between nodes of the adjacent elements. Also, the dependency of the 

number of design variables to the mesh density was challenging to consider, since 

the with each integration points there was a certain value of the local fibre angle 

that is not defined by a specific function. Also, it tended to consume a lot of time 

and computational efforts as compare with functional fibre path.  
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Figure 2.16: Distribution of curvilinear fibres in [+45°,θ 8]s laminate (Hyer and 

Charette, 1991) 

2.4 Design types of laminated composite cylindrical shells  

Laminated cylindrical shells are one of the widely used in structural 

components of aircraft and aerospace vehicles (e.g. fuselage and rocket motors), 

containers (e.g. tanks, reservoirs, pressure vessels), pipes and tubes, submarines, 

etc., due to high specific stiffness/strength of laminated composites. Therefore, they 

are considered as the most important motives for the design and manufacture of 

lightweight and efficient structures.  

The stiffness of a laminate is strongly dependent on fibre orientation in its 

constitutive plies. Consequently, the design types for laminated cylindrical shells 

can be defined based on the way of placing the fibres in the laminates. 

2.4.1 Conventional or straight fibre laminated cylinders 

Tailoring the stiffness of straight fibre cylindrical laminates has been 

developed for many applications, such as aerospace systems to reduce costs and 

weight, and improve the safety and stability of the structure. Tailoring the stiffness 

of straight fibre laminated cylinders could be achieved in two ways. The first one 

is by varying the number of plies, ply angle orientation and the stacking sequence 
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as design variables in order to achieve a specific stiffness. The second way uses 

lamination parameters in order to design the required stiffness of cylindrical 

laminates. 

Several studies of tailoring the stiffness of the straight fibre laminated 

cylinders have used the first type. Koide and Luersen (2013) investigated the 

optimal stacking sequence design of laminated cylindrical composite shells with 

and without cut-out to maximise the fundamental frequencies. Topal (2009) used a 

predefined set of ply angles as discrete design variables, to maximise the natural 

frequencies and buckling loads of laminated composite cylindrical shells. The 

optimisation problem was formulated as the weighted combinations of the two 

objective functions of the natural frequencies and buckling loads. Mian et al. (2013) 

used the fibre orientations in each ply as design variables to achieve the minimum 

weight for different ply laminate of the composite pressure vessel by using finite 

element method as a procedure of optimisation. They used different sets of 

predefined laminates such as cross-ply [0°/90°] s, angle-ply [±θ] ns, [90°/±θ]ns and 

[0°/±θ]ns. As an outcome of that research, the angle-ply [±54°] ns configuration, was 

found to provide the minimum weight of pressure vessel, as compared with others.  

In other studies, the ply angles were not predefined and were considered as 

continuous design variables in the optimisation problems. For instance, Silva et al. 

(2010), considered fibre orientation of each ply angle as a continuous design 

variable that can vary 0° to 90° to find the optimum orientation that would ensure 

the minimum weight design of laminated composite tubes under different loading 

cases. They found under axial force the optimal fibre orientation is at 0°, for torque 

loading the optimum fibre angle was [+45°,-45°] for internal pressure it was 

approximately [+54°/-54°], while for the external pressure it was [90°/90°]. Nine 
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design variables, including fibre orientation, thickness, the volume fraction of fibre 

and material type for each ply, were employed by Azarafza et al. (2009), to 

determine the optimum design of a circular cylindrical composite shell under 

compressive axial and transverse transient dynamic loads. The lamination design 

affect the natural frequencies of the structures, as was shown by Abouhamze and 

Shakeri (2007), who studied stacking sequence optimisation of laminated 

cylindrical shells according to the weighted sum of the first natural frequency and 

buckling load as optimisation of multi-objective functions. 

  The second type of optimisation involves the lamination parameters being 

used as design variables, instead of ply orientation angles and the stacking 

sequence. The lamination parameters are introduced as functions of stacking 

sequence and ply thickness and orientation. Five material invariants (four of which 

are independent) and 12 lamination parameters are introduced as parameters that 

only depend on the stacking sequence, in order to express the [A], [B] and [D] 

matrices (IJsselmuiden, 2011b). Fukunaga and Sekine (1993) have applied a 

technique of lamination parameters for tailoring the mechanical properties of 

laminated composites to meet desired requirements. Diaconu et al. (2002) used a 

numerical code to obtain the optimum lamination parameters and the equivalent 

laminate configurations, including the ply angle and thickness, in laminated long 

cylindrical shells subjected to combined axial compression and torsion, to maximise 

the buckling load. Todoroki and Ishikawa (2004) have adopted lamination 

parameters as design variables of approximation design function of the design space 

instead of the ply angle, to find the optimum stacking sequence, for a response 

surface of buckling load of cylindrical laminated shells.  
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 This approach of lamination parameters has the advantage of allowing 

continuous design variables and this result in more flexibility in the implementation 

of the optimisation function. The other advantage is the design variables are 

independent of the number of plies in the laminate. However, post-processing is 

required in order to find local angles distribution from the lamination parameter.  

In the conventional laminated cylindrical shell, the design space of the 

optimisation problem is not too large, could be limited by the orientations, number 

and staking sequence of the layers that make the composite laminates. Also, this 

design space could be reduced by considering a combination of predefined ply 

laminates. Therefore, the search process to find the optimum design for the 

conventional laminated cylindrical shell is easier and less time-consuming.  

2.4.2 Segmented laminated cylindrical shells 

Division of a laminated cylindrical shell into equal segments in the 

longitudinal direction or circumferential direction relying on the loading conditions 

could provide a good performance. A laminated cylindrical shell in which the 

laminate stacking sequence varies circumferentially with a certain value of stacking 

sequence along the segment is called segmented stiffness laminates (Riddick and 

Hyer, 1997). These segments had one laminate stacking sequence for the crown and 

keel and another laminate stacking sequence for the two sides depending on the 

load case variation, as shown in Figure 2.17 and hence, resulted in a variation of 

the laminate properties at circumferential locations. Hyer and Riddick (1999) 

obtained a range of predictions related to a response of segmented-stiffness 

composite cylinders, constructed from pseudo-isotropic laminates and subjected to 

internal pressure while maintaining no overall axial extension. They concluded that 
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the feature, which distinguished these segmented stiffness cylinders from the 

conventional single-laminate cylinders, was the circumferential displacement.  

The segmented construction could give an interesting response as a result 

of differences in coefficients of thermal expansion in segmented cylinder shells that 

could be used in some applications of measurements. Furthermore, a number of 

segments offered more design freedom when designing laminated cylindrical shell, 

as well as increase the number of design variables.   

 

Figure 2.17: Segmented cylinder construction (Riddick and Hyer, 1997) 

 

 Abosbaia et al. (2003) have segmented a composite tube into three different 

materials regions in the axial direction, each one with its material properties as 

shown in Figure 2.18. They studied the effects of segmentation on the crushing 

behaviour of woven roving laminated tube experimentally under axial compressive 

load. They found segmented composite tubes offered a good energy absorbing 

ability and more stable load-carrying capacity. Segmentation of the tube with the 

axial segments offered a minimum volume structure that could absorb a given 

amount of energy in a crushing process.   
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Figure 2.18: Schematic diagram of a segmented composite tube. (Abosbaia et al., 

2003) 

2.4.3 Steered fibre in laminated circular cylinders shells 

The technology of controlled fibre placement allows for the fabrication of 

advanced composite structures, defined here as those in which the fibre orientation 

varies continuously in a structure within a particular ply. In order to overcome the 

dominant bending loading in the fuselage of aircraft Wu (2008) steered the tows 

along the fuselage length on the crown and keel for high extensional stiffness to 

resist the bending loads as shown in Figure 2.19. In addition, the shell sides have 

high shear stiffness which could provide resistance for the relative deflection of the 

crown and keel. Also, he investigated the effect of using a straight fibre laminate 

for the crown and keel and concluded that significant improvements in the shell 

bending stiffness are also possible for this pattern. 
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Figure 2.19: Developed view of a cylindrical shell with the steered tow (Wu, 2008) 

 

 Blom et al. (2009c) noted that small dimensions of shell required a small 

turning radius of tows because it could lead to the formation of local wrinkling in 

tows (called puckering) during lay down, which could be invisible on the 

completion of the product. On the other hand, a larger turning radius of tows could 

be used with larger dimension to get the same stiffness variation and reduce the 

puckering. The structural parameter of cylinders, like radius (R) and aspect ratio 

(L/R), could affect the structural improvement of the variable stiffness cylinders, as 

was shown by Rouhi et al. (2014). Also, they found the improvement in the 

structural performance of the cylinder by keeping a constant fibre steering was 

≅25% after increasing the aspect ratio to L/R ≥ 0.3. Blom et al. (2010b), studied 

circumferential tailoring of a circular cylinder to carry a maximum buckling load 
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under bending by using a multiple-segment of constant curvature fibre path 

variation in the circumferential direction and including the Tsai-Wu criterion as a 

constraint. They concluded that circumferential tailoring produced improvements 

of up to 17% in increasing the buckling load of a cylinder with respect to quasi-

isotropic laminates. In addition, they defined the desired fibre orientation angle φ, 

with respect to the longitudinal axis, as shown in Figure 2.20. The fibre angle was 

assumed to vary as a function of the circumferential coordinate θ and to vary in 

each of the multiple circumferential segments of the cylinder. They chose the path 

definition of the curvature constraints to be constant in-plane curvature within a 

segment, and the angle variation was defined as follows (Blom et al., 2010b):  

cos𝜑(𝜃) = cos 𝑇𝑖 + ( cos 𝑇𝑖+1 − cos 𝑇𝑖)
𝜃−𝜃𝑖

𝜃𝑖−1−𝜃𝑖
                                               (2.5) 

The in-plane curvature k within a segment is: 

𝑘 =
cos𝑇𝑖−cos𝑇𝑖+1

𝑅(𝜃𝑖−1−𝜃𝑖)
                                                                                                           (2.6) 

where 𝑇𝑖 is the fibre angle at the 𝜃𝑖 the location around the circumference and R is 

the radius of the cylinder. 

 

Figure 2.20: Fibre angle and segment definition (Blom et al., 2010b) 
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 Blom et al. (2009b) tested and analysed the conventional lay-up cylinders 

and varying fibre orientation lay-up cylinders and achieved good agreement 

between the measured and calculated stiffness values. Furthermore, they stated that 

as a result of the higher laminate bending stiffness in the circumferential direction, 

the fundamental frequencies of the conventional shell are higher than those of the 

variable stiffness shells, which could play an essential role in the formation of 

waves in a circumferential direction. Blom et al. (2010a) showed that improvements 

in bending obtained analytically could also be achieved experimentally. They stated 

that the maximum tensile strains in the variable stiffness cylinder in the preferred 

orientation were about 35% smaller than in the baseline cylinder, and the maximum 

compressive strains were about 10% lower than those of the baseline cylinder. 

 

2.4.4 Steered fibre in laminated non-circular cylinder shells  

Thin laminated composite shells are usually used in aerospace applications. 

In structures of these applications, the reduction in the thickness of the skin to gain 

weight savings must be balanced against the structure stability. For that reason, the 

buckling response of thin laminated composite shells must be carefully studied. 

According to the geometric considerations of the structure of the aeroplane, a non-

circular cross-section could be used such as an elliptical in the fuel tank and wing 

of aircraft. The elliptical cross-section has the non-equality of curvature, where 

there is a larger radius of curvature with a flat portion that is more likely to buckle 

than that of smaller curvature part, causing a clear reduction in the buckling capacity 

as compared with circular section (Sun and Hyer, 2008). It could be described 

alternatively as the lack of structural performance. Therefore, in order to 

compensate for the lack of structural performance, an efficient way to increase the 
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stiffness of the structure locally on the circumference. For instance, in an isotropic 

material, improvement of structural performance could be achieved by several 

means, including changing the wall thickness, using stiffeners, etc. (Paschero and 

Hyer, 2009). For structures of composite material, the compensation of structural 

performance could be done by using reinforcement fibres follow a curvilinear path 

to tailor the stiffness in the required way. Along the curvilinear path, the variation 

of stiffness is smooth, and the structure called variable stiffness composite (VS). 

Ghayoor et al. (2017) investigated the influence of using curvilinear fibre paths on 

the buckling load for the elliptical composite cylindrical shell. They employed a 

metamodeling approach for the optimisation problem to obtain the optimum fibre 

path. Indeed, a metamodeling approach could reduce the time of the optimisation 

process. However, a metamodeling approach could not give the actual results as the 

objective function since it based on statistical analysis.  

To consider the fuselage of an aircraft under multi-loading conditions, Rouhi 

et al. (2015) used a multi-objective function to investigate the effect of using two 

opposite directions of load cases on variable stiffness composite cylinders. They 

used the Pareto frontier as the main decision-making tool with different 

combinations of weight factors for the loading ceases.  

Apparently, the non-circular cross-section of the cylindrical shell could offer 

a good opportunity for steered fibres in curvilinear paths on the circumference to 

improve structural performances as introduced in Chapter 6 of this thesis. 
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2.5 The prediction of failure load of steered fibres laminates  

In order to predict the failure load in the composite laminates, it is crucial 

to understand failure in a composite. The failure of composites is a substantially 

more complex mechanism than that of the metals. The failure depends on the 

fundamental properties of composite material and strengths. Analysis of failure in 

the laminates is based on the two major elements, laminate stress analysis and 

lamina failure criteria type. The laminate stress analysis deals with the stress 

distribution in the laminate and the failure in the laminates can be either First Ply 

Failure (FPF) or the Progressive Ply Failure (PPF). In the First Ply Failure (FPF), 

the laminate is considered to have failed with the first ply fail. It is numerically 

straight forward and easy to use. However, this approach predicts a conservative 

failure load relative to the actual failure load of laminate since when the first ply 

fails, there are other plies that can carry more load. While in the Progressive Ply 

Failure (PPF), the predicted failure load is assumed when the last ply fails in the 

laminate. Therefore, it could be considered as ply by ply failure and modelled as a 

stiffness reduction for each failed ply in the laminate. It is similar to a continuous 

cycle of stress analysis until the whole laminate fails.  

The second element of the laminates failure analysis is the type of failure 

criteria, which can predict the failure mode or not. For instance, the Maximum 

Stress/Strain failure criteria can predict the failure mode as fibre breakage, 

transverse matrix and shear matrix failure. While, the Tsai-Wu and Hill-Tsai criteria 

could not predict the failure mode of the lamina (Knops, 2008). 

To determine the optimum design for the composite laminates, designers 

often apply failure criteria in their optimisation problems as constraints or objective 

functions (Akbulut and Sonmez, 2008, Silva et al., 2010 and Mian et al., 2013). 
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Some of them used the First Ply Failure (FPF) and other used Progressive Ply 

Failure (PPF). Akbulut and Sonmez (2008) applied the Tsai-Wu and Maximum 

stress criteria together in order to improve the safety of the optimised design of 

composite structures. It helped to avoid false optimum design for some loading 

cases resulting from use of a single criterion, due to the particular feature of its 

failure envelope. In a study of Silva et al. (2010) the FPF was used as the criterion 

to define when the laminate failed, while the maximum stress and the Tsai-Wu 

criteria were applied to identify the failure in a lamina. 

Blom et al. (2009a), used the progressive failure analysis and LaRC failure 

criteria to study the influence of tow drops in the steered fibre laminates on the 

strength of the structure. They revealed that the damage onset at tow-drop areas, 

mostly in the regions where local fibres are orientated at large angles concerning 

the axis of the applied load. They found for the wider tows the tow-drop areas were 

larger and could decrease the strength of design. Ijsselmuiden (2011a) used the 

lamination parameters approach that has a continuous nature and reduced number 

of the design variables, in the Tsai-Wu failure criterion. They derived the failure 

envelope equation in term of strains to obtain a safe region of strain space. This 

equation is considered as the objective function required to find the optimum values 

of the lamination parameters. They established the laminate strength was more 

sensitive to the layup than laminate stiffness. In the work of the Falcó et al. (2014), 

numerical procedures  were developed for a three-dimensional structural simulation 

to predict the failure load. They used the first-ply failure analysis, and they found 

the fibre tensile failure stress was directly affected by the local fibre angle relative 

to the axis of the applied load. 
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The strength of the steered fibre laminates could be calculated according to 

failure criteria that depend on the stress analysis of the unidirectional laminates. 

Whereas each local point in a steered fibre laminate could be described as a 

unidirectional laminate with a certain layup. Therefore, the elastic properties and 

strengths of the UD lamina could be used to represent the steered fibre laminate. 

Based on the variation of the local angles in the steered fibres that could vary over 

a wide range, the UD lamina failure criteria must be evaluated in order to predict 

the failure load for that range of local angles. 

 

2.6 Homogenisation of composite materials 

 The combination of composite produces a new material has a significantly 

different effective property that cannot be achieved with either of the constituents 

acting alone. According to this definition, the effective properties are strongly 

affected by the internal micro/mesostructures of the composite. Hence, representing 

the material properties of constituent materials at the micro-level as a single 

monolithic equivalent effectively, i.e. the composite, at the meso or macro-level is 

usually considered as a process of homogenisation. 

In order to calculate the effective properties of the composite, generally, 

there are three types of approaches: (a) analytical methods (b) semi-empirical 

methods (c) finite element methods(numerical). 

In analytical methods, the effective properties of the unidirectional 

composites could be estimated by using the rule of mixtures (Voigt, 1889 and 

Reuss, 1929 ) as a simple approximation. The rule of mixtures is based on 

assumptions of perfect bonding between fibre and matrix, fibre uniformly distrusted 

in the matrix, and both fibre and matrix are behaving linearly elastically. The 
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longitudinal stiffness is calculated based on equal longitudinal strains in fibre and 

matrix, while the transverse stiffness is obtained based on equal stresses in fibre and 

matrix in the transverse direction. The longitudinal Young’s modulus is predicted 

more accurately compared with the experimental data than transverse Young’s 

modulus because the assumed stress state in the former is closer to the reality than 

that in the latter.  

Many studies and researches have used sophisticated assumptions to predict 

the effective elastic properties, for instance, the cylindrical assemblage model by 

Hashin and Rosen (1964) and the periodic microstructure model (PMM) analysed 

using the Fourier series (Luciano and Barbero, 1994).  

In the semi-empirical methods, the effective material properties are 

predicted by using some experimental data along with a certain analytical 

formulation. A better prediction for the transverse stiffness can be obtained with the 

semi-empirical as revealed in the study of Halpin and Tsai (1969). 

Analytical and semi-imperial methods have been successfully used for 

composites of relatively simple microstructures. Attempts made for 3D textile 

composites had to resort to a lot of assumptions, given the challenges faced. 

Shokrieh and Mazloomi (2012) introduced a new analytical model of the 3D four-

directional braided composites. They divided a volume of three-dimensional 

braided composite into three different types interior, surface and corner. Each one 

of them possess unique mechanical properties and was treated as a unidirectional 

composite. The stiffness of the original cell was calculated by using a volume 

averaging method for the three cells. Mukhopadhyay and Adhikari (2016) 

developed an analytical approach to calculate the equivalent elastic properties of 
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irregular honeycombs cells. They used a representative volume element (RVE) 

approach to generate a closed-form formula.  

Analytical and semi-imperial methods can be considered computationally 

efficient and less tedious than the expensive finite element modelling and 

simulation. However, it can be seen that these methods are based on various 

assumptions of either uniform stress distribution or uniform strain distribution. In 

addition, these methods disregard some of the geometric complications of the 

structure within the composite. Consequently, the predictions of effective stiffness 

of composites from them could have inaccurate. Also, they are difficult to 

implement in an automated manner.  

In the meso-FE modelling of the composite, the effective material properties 

can be predicted based on the micromechanics of composite. Thus, the properties 

of the constituents and architecture of composite in the representative volume 

element (RVE) must be known. In the micro or mesoscale, if the 

micro/mesostructure appears to be periodic, a unit cell (UC) can be introduced 

which is always an RVE (Li and Sitnikova, 2018b). Therefore, the terminology of 

RVE can be replaced by the unit cell when the condition of the periodicity is 

satisfied. 

Implementing the FE model of the unit cell needs to follow the steps as 

shown in Figure 2.21 and described in detail in Chapter 8 of this thesis. The 

geometry characterisation of the composite unit cell is considered as the key to 

identifying mechanical behaviour correctly. Actually, most of the challenges faced 

by the researchers are related to the complicated geometry of the unit cell and 

appropriate boundary conditions for the unit cell. To impose the boundary 
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conditions correctly, identical meshes on the opposites faces of the unit cell are 

essential.  

 

Figure 2.21: Chart of FE modelling of unit cells 

 

A simple geometry of the unit cell for UD composite having unidirectional 

fibre reinforcement is implemented for two typical packing system of square and 

hexagonal arrays ones in the study of Li (2000). He stated that the hexagonal 

packing system has large fibre volume fraction and more sophisticated than that 

from a square packing. A two-dimensional UC analysis is used in that work. 

However, using 3D analysis, it could give a clear picture of the nine constants that 

are required to describe the orthotropic material. Liu et al. (2019) introduced a 

complicated geometry of woven composite for the pressure pipes. The geometry of 

the UC is of a pie shape and consists of a hoop weft yarns, axial warp yarns and 

radial binders, as shown in Figure 2.22. They illustrated that using the woven 

composite for pressure pipe could overcome the delamination and weakness of 

interlaminar bonding of filament-wound pressure pipes. This way of using woven 

composite in the pressure pipes could not offer a better solution as filament winding 

process to control the hoop and longitudinal stresses to obtain a maximum design 

Geometry  

Relative displacement boundary conditions    

Material properties    

Solving FE 

Homogenisation     Stress-strain 

Mesh  Load 
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pressure without bursting. However, it offers a good chance to investigate a more 

complicated UC for woven composites. A more complicated yarn architecture was 

presented in the study of Guo-dong et al. (2009), where the 3D four-directional 

braided composites were analysed. In this study, the squeezing effect of the braided 

yarns against each other was modelled by varying the yarn cross-section along the 

path of the yarn. 

 

Figure 2.22: Pie shape of the woven unit cell (Liu et al., 2019) 

 

 Different yarn architectures and geometries of the composite unit cells in 

the mesoscale lead to different values of the effective material properties. The 

conditions of the identical tessellations are considered as the key requirement in the 

modelling of the unit cells to satisfy the relative displacement boundary conditions 

(Li et al., 2015, Li, 2008, Li and Wongsto, 2004). Identical tessellations on 

corresponding faces of the unit cell cannot be achieved automatically usually. This 

could be accomplished by using appropriate facilities in the pre-processing tools 

available in commercial FE codes by copying the tessellation from one face to 

another of the unit cell. The complexity of the geometry and size of the unit cell 

could be reduced by taking advantage of additional rotational and/or reflectional 

symmetries as present in the mesostructure. A good example of this kind was shown 

through the application to the plain weave textile composite in the study of Li et al. 
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(2011b). Indeed, this did not just reduce the size and the complexity of the geometry 

of the unit cell; it also reduced the computational time and efforts. 

In the present study, the curvilinear paths of tows that are generated based 

on their linear variation of local fibre orientation along the path with its variable 

gap being considered as a single unit cell in the mesoscale structure as present in 

Chapter 8 in order to predict the effective material properties of the composite 

panel. This approach could be a new attempt that has been used to facilitate a model 

of the unit cell. This argument is based on the multiscale nature of the composite.  

 

2.7 Summary  

This chapter briefly reviews the literature related to the different aspects of 

composites of curvilinear fibre paths. The aspects that included in this chapter are 

mostly associated with the composite fabrication processes in which continuous 

fibres are steered when placed on different surfaces, such as a filament winding, 3D 

printing and automated fibre placement. The manufacturing limitations and 

applications of the fibre placement technology have been included. According to 

the composite fabrication processes above the stiffness of composite laminates 

could be in a spatially variable form as included and compared with constant 

stiffness laminates in this review. Also, the ways of designing the curvilinear paths 

such as a linear variation of the local orientations of fibre paths, constant curvature 

paths and discrete approach have been reviewed. 

Furthermore, the effect of the implementing the curvilinear paths of fibre for 

different kinds of structures such as flat panels, circular cross-section cylinders, and 

elliptical cross-section cylinders on the mechanical performances, has also been 

included. The prediction of the failure load and damage model for this kind of 
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laminates has been reviewed. Finally, attention has been paid to homogenisation 

and predicting the effective material properties by using the unit cell models and 

the use of unit cell models for complicated composite architecture.  

In this review of the relevant literature it is indicated that most researchers 

assumed the curvilinear paths of steered fibres in a uniform distribution and a 

constant fibre volume fraction. No gaps have been recognised between fibre tows. 

Other researchers included the effect the gaps and overlaps according to the 

procedure of cut and restart as in the automated fibre placement. However, this 

approach results in the fibre could not transmit the applied load perfectly as 

compared with continuous steered fibres. It can produce the deformation of matrix 

around trimmed fibres, and reduction in the strength of the composites. Therefore, 

implementing the continuous steered fibre in the presence of the realistic gaps in 

this thesis would help to obtain improved predictions of the stiffness and strength 

of composites structures.  
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3 Background theories 

 Micromechanics analysis 

The mechanics of materials deal with deformation, strains and stresses of an 

elastic body subjected to mechanical and/or thermal loads. In the microscopic scale, 

the concept of micromechanics is used based on the representative volume element 

(RVE). The analysis of micromechanics deals with the collection of both 

constituents of composite materials, fibre and matrix. Therefore, understanding the 

interaction between the constituents and effective properties as functions of the 

fibre volume fraction could help the designer to select the appropriate type of fibre 

and matrix to be used in the composite materials in order to achieve the required 

stiffness, strength and thermal expansion coefficients. The micromechanics 

formulations underpin the elastic and thermal properties of a lamina. It will serve 

as the basis for the mechanical analysis at a macroscopic scale where the predicted 

effective material properties are obtained from homogenisation. 

 In order to predict the material properties of the unidirectional lamina, basic 

assumptions and simplifications must be made as follows. 

1- Fibres are distributed uniformly in the matrix in a statistic sense to help the 

definition of an RVE. 

2- Perfect bonding is present between the two phases of composite, fibre and 

matrix. 

3- The two phases of the composite behave linearly elastically. 
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The unidirectional lamina could be described as transversely isotropic 

material with an axis of symmetry in the fibre direction. The plane that 

perpendicular to fibres is a plane of reflectional symmetry. The effective material 

properties of the composite lamina can be classified as follows.  

3.1.1 Longitudinal Young’s modulus (E1) 

It is a feature that describes the elasticity of lamina in the fibre direction. It 

could be calculated from their constituent marital proprieties by using the rule of 

mixtures (ROM) (Voigt, 1889). The formula of this rule is derived based on the 

assumption that the deformations of fibre and matrix in the fibre direction are equal. 

In other words, the constituent materials have the same strains in the longitudinal 

direction in which the material is stressed as shown in Figure 3.1. 

                  

Figure 3.1: RVE under longitudinal uniform strain 

According to the definition of strain the longitudinal strain of composite in 

the direction of fibres can be written as follows. 

𝜀11 =
∆𝐿

𝐿
                                                                                                                   (3.1)   

where ∆𝐿 and L are the elongation and the original length. 

 

∆L L 

ε11 Fibre 

Matrix 
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The applied load in the direction of fibres equal to on the resultant of stresses 

over the fibre and matrix, hence it can be described as follows: 

 𝑃 = 𝜎11𝐴 = 𝜎𝑓𝐴𝑓 + 𝜎𝑚𝐴𝑚                                                                                    (3.2)  

where 𝜎11, 𝜎𝑓 , and 𝜎𝑚 are the equivalent stress on the RVE cross-section A, the 

stress of fibre on fibre cross-section 𝐴𝑓 and stress of matrix act on matrix cross-

section 𝐴𝑚, respectively.  

Then, stresses 𝜎𝑓 and 𝜎𝑚, in Equation (3.2) can be given in term of longitudinal 

strain which has been assumed to uniform in the longitudinal direction in all phases, 

i.e. 

𝜎11 = 𝜀11(𝐸𝑓𝑉𝑓 + 𝐸𝑚𝑉𝑚)                                                                                        (3.3) 

where the 𝐸𝑓, 𝐸𝑚, 𝑉𝑓 and 𝑉𝑚 are Young’s moduli and volume fractions of fibre and 

matrix, respectively. Finally, the longitudinal Young’s modulus can be written as 

follows. 

 𝐸1 = 𝐸𝑓𝑉𝑓 + 𝐸𝑚𝑉𝑚                                                                                               (3.4) 

3.1.2 Transverse Young’s modulus (E2) 

In order to calculate the transverse Young’s modulus of the lamina, the 

transverse load have to be applied with the assumption of the stresses on the fibre 

and matrix are the same as shown in Figure 3.2. Therefore, the total deformation of 

the REV in the transverse direction is equal to the sum of the deformation of fibre 

and matrix in the same direction, as a result of the perfect bonding.  
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Figure 3.2: RVE under transverse uniform stress 

The total elongation in the transverse direction can be written as follows. 

∆𝑊 = 𝜀22𝑊 = 𝜀𝑓𝑉𝑓𝑊+ 𝜀𝑚𝑉𝑚𝑊                                                                         (3.5)  

where 𝜀22, 𝜀𝑓and 𝜀𝑚 are the strains of composite, fibre and matrix, respectively, in 

the transverse direction. 

According to the assumption, the transverse stress of composite is equal to those in 

fibre and matrix. 

𝜎22 = 𝜀22𝐸2 = 𝐸𝑓𝜀𝑓 = 𝐸𝑚𝜀𝑚                                                                                (3.6) 

Then the transverse strain could be written as follows.  

𝜀22 =
𝜎22

𝐸𝑓
𝑉𝑓 +

𝜎22

𝐸𝑚
𝑉𝑚                                                                                               (3.7) 

Hence, Equation (3.7) can be re-written in term of the transverse modulus as 

follows. 

1

𝐸2
=

𝑉𝑓

𝐸𝑓
+

𝑉𝑚

𝐸𝑚
                                                                                                           (3.8) 

Finally, the transverse modulus, according to Equation (3.8) that known as the 

inverse rule of mixtures (IROM) Reuss, 1929, can be written as follows. 

𝐸2 =
𝐸𝑓𝐸𝑚

𝐸𝑓𝑉𝑚+𝐸𝑚𝑉𝑓
                                                                                                     (3.9) 

W 

Matrix 

Fibre  

𝜎22 

𝑉𝑓 
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3.1.3 In-plane shear modulus (G12) 

The in-plane shear modulus of the composite lamina is derived by assuming 

the shear stresses of composite, fibre and matrix are equal, i.e. 𝜏𝑐 = 𝜏𝑓 = 𝜏𝑚. Pure 

shear stress 𝜏12 is applied to an assembly and it produces shear deformation of the 

composite 𝛿𝑐 that equal to the sum of deformations in the fibre 𝛿𝑓 and in matrix𝛿𝑚. 

𝛿𝑐 = 𝛿𝑓 + 𝛿𝑚                                                                                                         (3.10) 

From the definition of shear strain, Equation (3.10) leads to:  

𝛿𝑐 = 𝛾𝑐𝑊 = 𝛾𝑓𝑉𝑓𝑊+ 𝛾𝑚𝑉𝑚𝑊                                                                            (3.11) 

where 𝛾𝑐, 𝛾𝑓 and 𝛾𝑚 are the shear strains of the composite, the fibre and the matrix, 

respectively.  

Then, according to Hooke’s law, Equation (3.11) is given as follows. 

𝜏𝑐

𝐺12
=

𝜏𝑓𝑉𝑓

𝐺𝑓
+
𝜏𝑚𝑉𝑚

𝐺𝑚
                                                                                                (3.12)  

where 𝐺𝑓and 𝐺𝑚 are the shear modulus of fibre and matrix, respectively. 

Finally, according to the assumption of the equality of shear stress of the composite, 

fibre and matrix, the in-plane shear modulus of composite will be as follows. 

1

𝐺12
=

𝑉𝑓

𝐺𝑓
+

𝑉𝑚

𝐺𝑚
                                                                                                        (3.13) 

3.1.4 Major Poisson’s ratio (v12) 

The Poisson’s ratio is defined as minus the quotient of the normal strain in 

the transverse direction to the normal strain in the fibre direction when the 

composite is loaded uniaxially in the fibre direction. Since the transverse 

deformation of composite equal to the amount of the transverse deformation of 

matrix 𝛿𝑚
𝑇  and that of the fibre 𝛿𝑓

𝑇. 
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𝛿𝑐
𝑇 = 𝛿𝑓

𝑇 + 𝛿𝑚
𝑇                                                                                                        (3.14) 

According to the strain definition, Equation (3.14) becomes as follows. 

𝜀𝑐
𝑇 = 𝜀𝑓

𝑇𝑉𝑓 + 𝜀𝑚
𝑇 𝑉𝑚                                                                                                (3.15) 

where 𝜀𝑐
𝑇 , 𝜀𝑓

𝑇and 𝜀𝑚
𝑇  are the transverse strains of the composite, the fibre and the 

matrix, respectively. 

Then by substituting these strains in term of the Poisson’s ratio, the Equation (3.15) 

would be as follows.  

𝜈12𝜀𝑐
𝐿 = 𝜈𝑓𝜀𝑓

𝐿𝑉𝑓 + 𝜈𝑚𝜀𝑚
𝐿 𝑉𝑚                                                                                   (3.16) 

where 𝜀𝑐
𝐿 , 𝜀𝑓

𝐿and 𝜀𝑚
𝐿  are the longitudinal strains of the composite, the fibre and the 

matrix, respectively. 

Finally, according to the equality of the strains in the composite, the fibre and 

the matrix, the major Poisson’s ratio of a composite is derived as follows. 

𝜈12 = 𝜈𝑓𝑉𝑓 + 𝜈𝑚𝑉𝑚                                                                                               (3.17) 

where 𝜈𝑓 and 𝜈𝑚 are the Poisson’s ratio of the fibre and the matrix, respectively. 

The above derivations of effective elastic properties of composites from those 

of their constituents are all based on the so-called rules of mixtures, one way or 

another. They are meant to offer a first approximation as a rough estimate to 

facilitate the early stage of design, although some of them, e.g., the effective 

longitudinal modulus, could be rather accurate. Serious evaluations should come 

from more realistic models and validated by experiments. 
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 Laminate theories  

To analyse the composite laminates, there are three categories of the 

structural theories that could be used. These categories are Equivalent Single Layer 

(ESL) approaches, Layer Wise (LW) methods and 3D Elasticity theories. In the 

equivalent single layer approaches, the laminate is considered as two-dimensional 

(2D) equivalently monolithic layer with effective properties. In the LW methods, 

each layer is dealt with as a monolithic material and joined together with 

surrounding layers over perfectly bonded interfaces. While the displacement field 

within the entire domain must satisfy basic continuity requirements, the distribution 

of the in-plane stress over the thickness can appear in a zig-zag manner. In the 3D 

Elasticity theories, 3D anisotropic elasticity is employed to derive displacement or 

stress field before the constitutive equations can be characterised.  

This chapter will deal with ESL approaches by using appropriate assumptions 

of stress and deformation state along with shell thickness. The ESL approaches are 

classified according to the distribution of displacements over the thickness of the 

laminate into the classical laminate theory (CLT), first-order shear deformable 

theory (FSDT) and the higher-order shear deformable theory (HSDT) (Reddy and 

Liu., 1985) 

3.2.1 Classical laminate theory (CLT) 

It is the simplest form of ESL theory, based on the definition of the 

displacement field across the thickness of the laminate. It is formulated based on 

the assumption that the straight line normal to the mid-plane before deformation 

remain normal and straight to that plane after deformation (Reddy, 2004). As a 

result, the influence of the transverse shear strains has been neglected to reduce the 
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problem of the deformation of laminated structures into a 2D idealisation. It was 

first introduced by Kirchhoff in the nineteenth century. The benefit of this theory is 

the simplification of structural plates or shell as 3D entities into their 2D 

equivalence. Also, it reduces the total number of degrees of freedom and governing 

equations, thus saving time and reduce the computational efforts. Furthermore, it 

gives reasonable results for symmetric and balanced laminate under loading 

conditions of pure tension or pure bending. This theory is related to neglected effect 

of the transverse shear deformation. This effect increases for the thick laminates of 

composites and especially for laminates having a low ratio of longitudinal to the 

transverse shear stiffness. The displacement field in the shell could be described as 

Kirchhoff-Love hypothesis as follows. 

𝑢(𝑥, 𝑦, 𝑧) = 𝑢0(𝑥, 𝑦) − 𝑧
𝜕𝑤0
𝜕𝑥

 

𝑣(𝑥, 𝑦, 𝑧) = 𝑣0(𝑥, 𝑦) − 𝑧
𝜕𝑤0

𝜕𝑦
                                                                            (3.18) 

𝑤(𝑥, 𝑦, 𝑧) = 𝑤0(𝑥, 𝑦)                         

where 𝑢0, 𝑣0 and 𝑤0 are the displacements in x-, y- and z-direction respectively on 

the reference plane, while 
𝜕𝑤0

𝜕𝑥
  and 

𝜕𝑤0

𝜕𝑦
 are the rotation of normal towards the y-  

and x-axis, respectively.  

The strains associated with the displacement field can be determined as 

follows.  

{

𝜀𝑥𝑥
𝜀𝑦𝑦
𝛾𝑥𝑦

} =

{
 
 

 
 

𝜕𝑢

𝜕𝑥
𝜕𝑣

𝜕𝑦

(
𝜕𝑣

𝜕𝑥
+
𝜕𝑢

𝜕𝑦
)}
 
 

 
 

=

{
 
 

 
 

𝜕𝑢0

𝜕𝑥
𝜕𝑣0

𝜕𝑦

𝜕𝑢0

𝜕𝑦
+
𝜕𝑣0

𝜕𝑥}
 
 

 
 

− 𝑧

{
 
 

 
 
𝜕2𝑤0

𝜕𝑥2

𝜕2𝑤0

𝜕𝑦2

𝜕2𝑤0

𝜕𝑥𝜕𝑦}
 
 

 
 

                                             (3.19) 
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According to Kirchhoff’s hypothesis, all transverse shear strains 𝜀𝑧𝑥 and 𝜀𝑧𝑦 

and the transverse normal strain 𝜀𝑧𝑧 are equal to zero. The normal stress 𝜎𝑧𝑧 does 

not appear in the virtual work expression and, as a result, it is neglected. 

The linear constitutive relation of any orthotropic lamina in the local 

coordinates of a lamina could be described as follows. 

 {

𝜎11
𝜎22
𝜏12
}

𝑘

= [
𝑄11 𝑄12 0
𝑄21 𝑄22 0
0 0 𝑄66

]

𝑘

{

𝜀11
𝜀22
𝛾12
}

𝑘

                                                                    (3.20) 

where 𝑄𝑖𝑗 is the plane stress stiffness matrices of the kth lamina in its material 

coordinate system and defined as follows in terms of material properties of a lamina.  

𝑄11 = 𝐸1 Δ⁄   , 𝑄12 = 𝑄21 = 𝑣12 𝐸2 Δ⁄  ,     𝑄22 = 𝐸2 Δ⁄  

𝑄66 = 𝐺12,    𝛥 = 1 − 𝑣12
2 𝐸2 𝐸1⁄                                                                                     (3.21)                                                

where 𝐸1, 𝐸1, 𝐺12  and 𝑣12 are the longitudinal, transverse and shear moduli and 

poison ratio of that lamina, respectively.  

Since of the laminate is made by stacking several laminae with different 

material properties and orientation with respect to the laminate coordinates, the 

constitutive equations of each lamina should be transformed to the laminate 

coordinate system to present the stress-strain relations of that lamina in the laminate 

coordinate system as follows. 

{

𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑥𝑦

}

𝑘

= [

𝑄̅11 𝑄̅12 𝑄̅16
𝑄̅12 𝑄̅22 𝑄̅26
𝑄̅16 𝑄̅26 𝑄̅66

]

𝑘

{

𝜀𝑥𝑥
𝜀𝑦𝑦
𝛾𝑥𝑦

}

𝑘

                                                                           (3.22) 

where 𝑄̅𝑖𝑗s are the transformed stiffness matrices of the kth lamina as shown in 

Figure 3.3, and defined as follows. 
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𝑄̅11 = 𝑄11cos
4𝜃 + 2(𝑄12 + 2𝑄66)sin

2𝜃cos2𝜃 + 𝑄22sin
4𝜃 

𝑄̅12 = (𝑄11 + 𝑄22 − 4𝑄11)sin
2𝜃cos2𝜃 + 𝑄12(sin

4𝜃 + cos4𝜃) 

𝑄̅22 = 𝑄11sin
4𝜃 + 2(𝑄12 + 2𝑄66)sin

2𝜃cos2𝜃 + 𝑄22cos
4𝜃                           (3.23) 

𝑄̅16 = (𝑄11 − 𝑄22 − 2𝑄66)sin𝜃cos
3𝜃 + (𝑄12 − 𝑄22 + 2𝑄66)sin

3𝜃cos𝜃       

𝑄̅26 = (𝑄11 − 𝑄22 − 2𝑄66)sin
3𝜃cos𝜃 + (𝑄12 − 𝑄22 + 2𝑄66)sin𝜃cos

3𝜃 

𝑄̅66 = (𝑄11 + 𝑄22 − 2𝑄12 − 2𝑄66)sin
2𝜃cos2𝜃 + 𝑄66(sin

4𝜃 + cos4𝜃)             

By substituting Equation (3.19) in (3.22)  

{

𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑥𝑦

}

𝑘

= [

𝑄̅11 𝑄̅12 𝑄̅16
𝑄̅12 𝑄̅22 𝑄̅26
𝑄̅16 𝑄̅26 𝑄̅66

]

𝑘

{
 

 
{

𝜀𝑥𝑥
0

𝜀𝑦𝑦
0

𝛾𝑥𝑦
0

} + 𝑧 {

𝜅𝑥
𝜅𝑦
𝜅𝑥𝑦

}

}
 

 
𝑘

                                           (3.24) 

where 𝜀𝑥𝑥
0 , 𝜀𝑦𝑦

0, 𝛾𝑥𝑦
0, 𝜅𝑥, 𝜅𝑦  and 𝜅𝑥𝑦 are the membrane strains and curvatures of 

kth lamina in the xy-plane, respectively.  

 

Figure 3.3: Geometry of a laminate with n layers 

Equation (3.24) states that stresses could vary linearly with the thickness. In 

addition, it describes the discontinuous stresses through the thickness of the 

laminate, unlike the strains that give a smooth distribution through the thickness in 

the laminate. In order to eliminate coordinate z from the problem so that the problem 

for the laminate can be expressed in terms of only two variables x and y. The stress 

resultants and moments resultant are obtained as follows. 

z1 

z2 z3 
𝑥 

zn+1 

zn 

t 
Reference plane 

z 

h 
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{

𝑁𝑥
𝑁𝑦
𝑁𝑥𝑦

} = ∑ ∫ {

𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑥𝑦

}
𝑧𝑘
𝑧𝑘−1

𝑛
𝑘=1 𝑑𝑧                                                                               (3.25) 

{

𝑀𝑥

𝑀𝑦

𝑀𝑥𝑦

} = ∑ ∫ {

𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑥𝑦

}
𝑧𝑘
𝑧𝑘−1

𝑛
𝑘=1 𝑧 𝑑𝑧                                                                            (3.26) 

By substituting the stresses of each layer from Equation (3.24) in Equations (3.25) 

and (3.26) the constitutive equation for the laminate is obtained as follows. 

{
  
 

  
 
𝑁𝑥
𝑁𝑦
𝑁𝑥𝑦
𝑀𝑥

𝑀𝑥

𝑀𝑥𝑦}
  
 

  
 

=

[
 
 
 
 
 
𝐴11
𝐴12
𝐴11

𝐴12
𝐴22
𝐴11

𝐴16
𝐴26
𝐴66

𝐵11
𝐵12
𝐵16

𝐵12
𝐵22
𝐵16

𝐵16
𝐵16
𝐵66

  

𝐵11 
𝐵12 
𝐵16 
𝐷11  
𝐷12 
𝐷16 

 𝐵12
 𝐵22
 𝐵26
 𝐷12
 𝐷22
  𝐷26

  
𝐵16
 𝐵26
 𝐵66
  𝐷16
  𝐷26
  𝐷66 ]

 
 
 
 
 

{
  
 

  
 
𝜀𝑥𝑥

0

𝜀𝑦𝑦
0

𝛾𝑥𝑦
0

𝜅𝑥
𝜅𝑦
𝜅𝑥𝑦 }

  
 

  
 

                                          (3.27) 

where: 

𝐴𝑖𝑗 =∑ Q̅ij
k  (𝑧𝑘 − 𝑧𝑘−1)

𝑛

𝑘=1
                                                                               (3.28) 

𝐵𝑖𝑗 =
1

2
∑ Q̅ij

k  (𝑧𝑘
2 − 𝑧𝑘−1

2 )
𝑛

𝑘=1
                                                                             (3.29) 

𝐷𝑖𝑗 =
1

3
∑ Q̅ij

k  (𝑧𝑘
3 − 𝑧𝑘−1

3 )
𝑛

𝑘=1
                                                                             (3.30)  

The coefficients 𝐴𝑖𝑗, 𝐵𝑖𝑗 and 𝐷𝑖𝑗 are functions of the material properties, 

laminar thickness, stacking sequence and orientation of the lamina. Matrix [𝐴𝑖𝑗] 

represents the in-plane stiffness matrix that relates membrane strains to in-plane 

stress resultants. Matrix [𝐵𝑖𝑗] is called bending extension coupling matrix which 

relates the membrane stresses to the curvatures and the moments to the membrane 

strains of a laminate. [𝐷𝑖𝑗] is the flexural or bending stiffness matrix, which relates 

the curvatures of the preference surface to the moments of a laminate. These 

coefficients are constant for a given laminate. However, they can be defined as a 
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function of x- or y-coordinates or both for laminates of curved fibre paths (variable 

stiffness laminates). 

3.2.2 First-order shear deformation theory (FSDT) 

In this theory the Love-Kirchhoff hypothesis is relaxed. It assumes the 

transverse straight lines will remain straight after deformation but they are not 

normal to the reference plane after deformation (Reissner, 1945). Also, it requires 

that the displacement component w be independent of coordinate z in the thickness 

direction. Similar to the classical laminate theory, with the help of the above 

assumption, the displacement field of the first-order shear deformable theory would 

be as follows. 

𝑢(𝑥, 𝑦, 𝑧) = 𝑢0(𝑥, 𝑦) + 𝑧𝜙𝑥(𝑥, 𝑦) 

𝑣(𝑥, 𝑦, 𝑧) = 𝑣0(𝑥, 𝑦) + 𝑧𝜙𝑦(𝑥, 𝑦)                                                                        (3.31) 

𝑤(𝑥, 𝑦, 𝑧) = 𝑤0(𝑥, 𝑦)          

where 𝑢0, 𝑣0, 𝑤0 are the displacement components of an arbitrary point on plane 

z=0, while the 𝜙𝑥 and 𝜙𝑦 are the rotations of a transverse normal towards y-and x-

axis, respectively, and they are defined as follows. 

𝜙𝑥 =
𝜕𝑢

𝜕𝑧
 , 𝜙𝑦 =

𝜕𝑣

𝜕𝑧
                                                                                               (3.32) 

The strains associated with the displacement field and rotations can be 

determined as follows.  

{
 
 

 
 
𝜀𝑥𝑥
𝜀𝑦𝑦
𝛾𝑦𝑧
𝛾𝑥𝑧
𝛾𝑥𝑦}

 
 

 
 

=

{
 
 
 
 

 
 
 
 

𝜕𝑢0

𝜕𝑥
𝜕𝑣0

𝜕𝑦

𝜕𝑤0

𝜕𝑦
+ 𝜙𝑦

𝜕𝑤0

𝜕𝑥
+ 𝜙𝑥

𝜕𝑣0

𝜕𝑥
+
𝜕𝑢0

𝜕𝑦 }
 
 
 
 

 
 
 
 

+ 𝑧

{
  
 

  
 

𝜕𝜙𝑥

𝜕𝑥
𝜕𝜙𝑦

𝜕𝑦

0
0

𝜕𝜙𝑦

𝜕𝑥
+
𝜕𝜙𝑥

𝜕𝑦 }
  
 

  
 

                                                         (3.33) 
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Then, following the same procedure as in the CLT, the constitutive 

relationship of the laminate in FSDT can be derived giving extra terms related to 

the transverse shear stresses in the material coordinates as follows. 

{
𝜎44
𝜎55

}
𝑘

= [
𝑄44 0
0 𝑄55

]
𝑘

{
𝛾44
𝛾55
}
𝑘

                                                                              (3.34) 

where 𝑄44 and 𝑄55 are the intralaminar stiffness matrix and defined as follows. 

𝑄44 = 𝐺23 , 𝑄55 = 𝐺13                                                                                        (3.35) 

Then the transverse shear stresses in the laminate coordinates would be as follows. 

{
𝜎𝑦𝑧
𝜎𝑥𝑧

}
𝑘

= [
𝑄̅44 𝑄̅45
𝑄̅45 𝑄̅55

]

𝑘

{
𝛾𝑦𝑧
𝛾𝑥𝑧
}
𝑘

                                                                              (3.36) 

where 𝑄̅44, 𝑄̅45 and 𝑄̅55 are the transformed intralaminar stiffness matrix and 

defined as follows. 

𝑄̅44 = 𝑄44cos
2𝜃 + 𝑄55sin

2𝜃                                                                               (3.37) 

𝑄̅45 = (𝑄55 − 𝑄44) sin𝜃 cos𝜃                                                                              (3.38) 

𝑄̅55 = 𝑄44sin
2𝜃 + 𝑄55cos

2𝜃                                                                               (3.39) 

Finally, the laminate constitutive equations will be the same as CLT with extra 

terms related to the transverse shear resultant as follows. 

{
𝑁
𝑀
} = [

𝐴 𝐵
𝐵 𝐷

] {𝜀
°

𝐾
}                                                                                                (3.40) 

{
𝑉𝑦
𝑉𝑥
} = 𝐾 [

𝐻44 𝐻45
𝐻45 𝐻55

] {
𝛾𝑦𝑧

0

𝛾𝑥𝑧
0
}                                                                                (3.41) 

where K is the shear correction factor and 𝐻𝑖𝑗 are the transverse shear stiffness given 

as follows. 

𝐻𝑖𝑗 =∑ Q̅ij
k  (𝑧𝑘 − 𝑧𝑘−1)  

𝑛

𝑘=1
        ,  i,  j = 4, 5                                                             (3.42) 
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According to the assumptions of FSDT that provide for a more realistic 

situation as compared with CLT, the shear stresses are not continuous across the 

boundaries of the two adjacent layers. This theory is more accurate as the 

deformation allows the plane of the cross-section of the laminate to rotate relative 

to the reference plane. The accuracy of results in the FSDT depends on the shear 

correction factor to determine the accurate value of transverse shear stiffness. It 

accounts for the disparity in the assumed distributions in transverse stresses and 

strains across the thickness of the laminate. The purpose of this theory is to include 

the effect of the transverse shear deformation in the calculation of FEM that is 

relevant to the finding of the next chapters.  

 Failure criteria 

The objective of the failure criterion is to specify an envelope that defines the 

strength of the UD lamina under combined stresses. The failure of the composites 

is usually in a substantially more complex mechanism than that of the metals. The 

difficulties of defining, verifying and validating failure criteria for the composites 

are partially related to the definition of failure in composites. Two types of the 

failure criteria which are employed to predict the failure in the UD composites can 

be identified according to their association with individual failure modes. The first 

type of criteria is failure mode-based failure criteria, such as the maximum 

stress/strain and Hashin criteria (Hashin, 1980) distinguish the mechanisms of 

failure between different modes. The second type, such as Tsai-Hill and Tsai-Wu 

failure criteria defines the failure as a single function of the strengths of material 

independent of the failure modes.  
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3.3.1 The maximum strain criterion 

The maximum strain criterion can distinguish between the failure modes. It 

is a straight forward criterion expressed in terms of strains rather than stresses (Li 

and Sitnikova, 2018a). To avoid a failure of the material, the strains must violate 

the following inequalities (Tsai, 1984). 

𝜀11 > 𝜀1𝑡 ; if 𝜀11> 0 or abs (𝜀11 ) > 𝜀1𝑐 ; if 𝜀11 < 0 

𝜀22 > 𝜀2𝑡 ; if 𝜀22 > 0 or abs (𝜀22) >𝜀2𝑐 ; if 𝜀22 < 0                                       (3.43) 

abs (𝛾23) >𝛾23_𝑢 ; abs (𝛾13) > 𝛾13_𝑢; abs (𝛾12) > 𝛾12_𝑢 

where 𝜀11,𝜀22, 𝛾12, 𝛾23 and 𝛾13 are strains components in the material’s principal 

directions, while 𝜀1𝑡, 𝜀1𝑐, 𝜀2𝑡, 𝜀1𝑐, 𝛾12_𝑢, 𝛾13_𝑢 and 𝛾23_𝑢 are ultimate strains 

components for tension and comparison and shear load corresponding directions. 

Furthermore, the ultimate strains must be determined experimentally in their 

corresponding uniaxial and pure shear stress states. It delivers a slightly skewed 

failure envelope in the plane of the two direct stresses as results of the effect of 

Poisson ratio.  

 

3.3.2 The maximum stress criterion 

This criterion predicts the failure of a lamina when at least one of the stresses 

in the material coordinates (𝜎11, 𝜎22, 𝜎12, 𝜏12, 𝜏23, 𝜏13) exceeds its corresponding 

strength value. The failure envelope is represented as a rectangular shape in the 

plane of any two stresses since the stress strength ratio is a constant for a failure 

mode. The criterion states that failure occurs if any one of the following inequalities 

is true (Tsai, 1984).  
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𝜎11 > 𝑋𝑡 if 𝜎11 > 0 or abs (𝜎11) > 𝑋𝑐 if 𝜎11 < 0 

𝜎22 > 𝑌𝑡 if 𝜎22 > 0 or abs (𝜎22) > 𝑌𝑡 if 𝜎22 < 0                                                   (3.44) 

abs (𝜏23) > 𝜏23 𝑢𝑙𝑡  ; abs(𝜏13) > 𝜏13 𝑢𝑙𝑡 ; abs (𝜏12) > 𝜏12 𝑢𝑙𝑡  

where 𝑋𝑡, 𝑋𝑐, 𝑌𝑡,and 𝑌𝑐  are tensile and compressive strengths of material along and 

transverse to the fibre direction respectively, while 𝜏12 𝑢𝑙𝑡 , 𝜏23 𝑢𝑙𝑡 and 𝜏13 𝑢𝑙𝑡  are 

the shear strengths in the material’s principal planes.  

This criterion could predict three separate failure mode fibre breakage, 

transverse matrix fracture, and shear matrix cracking with a certain angle of fibre 

orientation called the critical angle. This angle depends on the material type of 

lamina. The criterion has a weakness in considering the interactions between the 

stresses components. 

3.3.3 Tsai-Wu Failure Criterion 

One of the most commonly applied failure criteria for composite materials is 

the Tsai-Wu criterion (Tsai and Wu, 1971). In tensor notation, it is expressed for 

anisotropic materials where full interactions between stresses are present as follows. 

𝐹𝑖𝜎𝑖 + 𝐹𝑖𝑗 𝜎𝑖𝜎𝑗 + 𝐹𝑖𝑗𝑘𝜎𝑖𝜎𝑗𝜎𝑘 ≥ 1                                                                          (3.45) 

where 𝐹𝑖, 𝐹𝑖𝑗  and 𝐹𝑖𝑗𝑘 are associated with the lamina strengths in the principal 

material directions. The  𝐹𝑖𝑗𝑘 the term is usually neglected, due to a large number 

of material constants required. Therefore, the criterion for the orthotropic materials 

is given as follows. 

𝐹𝑖𝜎𝑖 + 𝐹𝑖𝑗 𝜎𝑖𝜎𝑗 ≥ 1                                                                                                (3.46) 

For in-plain stress problem and transverse isotropy, Equation (3.46) is reduced to 

𝐹1𝜎1 + 𝐹2𝜎2 + 𝐹11𝜎1
2 + 𝐹22𝜎2

2 + 𝐹66𝜏12
2 + 2𝐹12𝜎1𝜎2 ≥ 1                                 (3.47) 
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where: 

𝐹1 = (
1

𝑋𝑡 
−

1

𝑋𝑐
), 𝐹2 = (

1

𝑌𝑡
−

1

𝑌𝑐
)   ,   𝐹11 = 

1

𝑋𝑡 𝑋𝑐 
 

 𝐹22 =  
1

𝑌𝑡 𝑌𝑐 
,  𝐹66 = (

1

𝜏12 𝑢 
)
2

 and   𝐹12 = −
1

2
√𝐹11 𝐹22                                    (3.48) 

where 𝑋𝑡, 𝑋𝑐, 𝑌𝑡 and 𝑌𝑐 are tensile and compressive strengths of material along and 

transverse to the fibre direction respectively, while 𝜏12 𝑢  is the shear strength in the 

plane of a lamina. 

The Tsai-Wu failure criterion is considered to be a quadratic polynomial 

equation of all stress components and tensorial coefficients (Li et al., 2017). 

Therefore, the failure envelope is smooth and curved as compared with the envelope 

of the maximum stress/strain criterion. The Tsai-Wu criterion does not specify the 

mode of failure for lamina. The mode of failure could be determined resorting to 

other means, e.g. the maximum stress criterion. In addition, it takes into 

consideration the effect of the difference between compression and tension 

strengths. It requires a biaxial test to experimentally determine the interaction 

term 𝐹12, in general. The interaction term between the normal stresses defines the 

inclination of the ellipse in the  𝜎1 − 𝜎2 plane. Therefore, this interaction term 

could be considered as a factor to identify the shape of failure envelope.  
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4 Optimisation framework 

 Introduction  

The optimisation is widely applied in engineering and science to achieve 

optimum outcomes. The process of optimisation includes searching for the 

optimum solution within a domain of possible solutions. Optimum design can be 

described as a process whereby a selected group of design variables varies 

automatically according to an algorithm in order to obtain the desired outputs 

(Antoniou and Lu, 2007). Hence, the desired output would usually show an 

optimised objective, such as performance or cost. As part of the present project, a 

procedure has been developed to facilitate optimisation of composite components 

with steered fibre paths. 

In general, optimisation is concerned with achieving the optimum outcome 

for a given function while satisfying certain constraints (Thompson, 2012). Each 

optimisation problem consists of the following elements in its formulation: 

1- Objective function: a measure of effectiveness or efficiency of the design 

problem. There can be more than one objective function the problem associated 

with, which is generally called (multi-objective optimisation). 

2- Design variables: the parameters that are altered during the optimisation 

process. They can take continuous or discrete values (Daniels, 1978). 

Performing optimisation with discrete values is usually more complicated than 

solving the problem with the continuous design variables. 
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3- Constraints: the limits that constrain the range of the design variables. The 

constraints which define the upper or the lower limits on quantities are called 

inequality constraints, while the others are called equality constraints (Daniels, 

1978).  

The standard formulation of the optimisation problem is: 

Minimise f (X) 

            gj(X ) ≥ 0 , j=1,….,ng                                                                              (4.1) 

            hk (X) =0,  k=1,….,nk 

where X is a vector of design variables with components Xi, i=1,…,n, hk(X) are the 

equality constraints and gj(X) are the inequality constraints. 

Depending on the objective function and constraints, the optimisation 

problem can be classified as linear or nonlinear. In a linear optimisation problem, 

both the objective function and constraints involve linear functions of the design 

variables, while in a nonlinear optimisation problem either the objective function 

or some of the constraints are nonlinear. 

 Development of the optimisation framework 

The developed framework draws optimisation functionalities from Matlab, 

which offers different optimisation algorithms, while the stress analysis is 

conducted in Abaqus/Standard (2017), which is driven by a Python script. The 

framework introduces a Client/server technique, which is an organic relationship 

between two programs. The first program (the client) requests a service or resource 

from the second program (the server), as shown in Figure 4.1. Programs within the 

same computer can use the client/server model. It also applies to different 

computers through an appropriate network, although it is more sophisticated when 
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the client creates a connection to the server over a local area network (LAN) or 

wide-area network (WAN), such as the internet. The framework runs from a Matlab 

script file (Client file), which then communicates with the server file (Python file), 

thus providing interaction between Abaqus/CAE and Matlab. The other benefit of 

using client and server files is to prevent opening the start session dialogue box 

when Abaqus/Standard is called for each optimisation iteration. Since during the 

analysis, Abaqus must be called a large number of times, this technique helps to 

reduce the duration of the analysis. The client file runs a built-in genetic algorithm 

GA solver (MATLAB2017a).  

 

Figure 4.1: Flow chart events of client and server  

 

The optimisation framework, as shown in the flowchart that introduced in 

Figure 4.2 integrates the high fidelity finite element (FE) analyses of steered fibre 

laminate model and the GA solver in Matlab. After a round of GA analysis, a set of 

Socket ( ) 

Accept ( ) 

Listen ( ) 

Bind ( ) 

Connect ( ) 

Close ( ) 

Send and 

receive  

Server Client 

Socket ( ) 

Close ( ) 

Send and 

receive  

https://searchnetworking.techtarget.com/definition/local-area-network-LAN
https://searchenterprisewan.techtarget.com/definition/WAN
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design variables is fed into the Python script that generates an FE model and the 

model then runs with the Abaqus solver. Python script sends the outcomes of the 

stress analysis back to the client, including the coordinates of integration points of 

elements, the local material properties and orientations. Such information is usually 

generated by the UMAT and ORIENT user subroutines. The flowchart of this 

procedure is shown in Figure 4.3. The acquisition of the required data from the 

stress analysis requires post-processing which can be carried out using Python 

scripts.  

The initial parameters of GA solver are set up, including the population size, 

maximum number of generations, elite number and the fitness function. A fitness 

function is a Matlab script that collects the design variables selected by the GA, 

sends them to a data file in user subroutine, opens a connection between the client 

and the server, and then runs the Python scripts. It also returns the desired results 

from Abaqus/Standard back to the client. All the required data are extracted from 

the resulting Output Data Base (ODB) file through the post-processing, also 

conducted using the Python scripts, which plays an important part in the main client 

Python scripts. In addition, GA solver finds optimum outcomes by selecting the 

better individual that have lower fitness value in each generation as elite passed to 

a new generation. Hence the procedure of choosing the better individuals will 

continue and halts when one of the termination conditions is satisfied. The 

termination condition is either the number of generations reaches the specified 

maximum number, or there is no difference between the subsequent individual 

generations.  



Chapter 4 

70 
 

 

Figure 4.2: Flow chart of the optimisation framework 
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Figure 4.3. Analysis scheme (fitness function) 
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The objective function which the user desires to minimise or maximise is 

defined as a fitness function, as indicated in Figure 4.3. It could be considered as a 

link between the real system and the GA. 

The process of submitting FE jobs inside the optimisation framework is serial 

processing. In addition, it could be used as a parallel algorithm to submit the jobs 

simultaneously, because the GA produce many individuals of design variable in 

each generation. However, this method is considered impractical because of the 

constraints on the number of Abaqus licences available. The framework submits 

the Python script of the FE model that is modified directly by Matlab, for each 

iteration of optimisation.  

The computational time of the optimisation framework depends on three areas 

that use computational resources. They are identified as modelling, analysing and 

optimisation. Therefore, the complexity of each one of them could increase the 

computational efforts, hence the computational time.  

Apparently, the type of analysis to obtain the outcome of the problem at each 

iteration of optimisation is more significant for the computational cost. For instance, 

analysing of buckling response is more time consuming than that of finding a static 

analysis. Furthermore, predicting the maximum failure load of laminates according 

to the progressive failure process is more complicated and computationally 

expensive than that used first ply analysis of failure.  

Model complexity is associated with a way that used to implement the model 

to achieve a more accurate solution. For instance, modelling one-quarter of a plate 

by using the symmetries reduces the computational time significantly, while the 

accuracy of solution remains the same as modelling the whole plate. In addition, 
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for a case of the discrete representation of the fibre angle that the design variables 

rely on the number of elements in the model. Hence, this will increase the 

complexity of the optimisation problem. Therefore, fibre path representation has 

been employed, in which the number of elements does not affect the number of 

design variables. 

The optimisation objective function complexity contributes to increasing the 

computational time in terms of the number of design variables and their types, such 

as discrete or continuous. The relationship between design variables, either linear 

or nonlinear, makes a significant difference. 

 Optimisation function (Genetic algorithm) 

The genetic algorithm, which is employed for optimisation in the present 

project, is a stochastic algorithm and search method to model some natural 

phenomena such as genetic inheritance and Darwinian strife for survival (Kramer, 

2017). Also, it could be defined as mimic natural selection processes to enable the 

robust version of the individuals to pass to the next generation and weak ones to 

diminish. The algorithm begins with creating an initial population that represents a 

range of possible solutions in the domain of design space to the optimisation 

problem. The population consist of the set of individuals with encoded genes. 

Through the optimisation process, the principle of survival of the fittest individual 

identifies the next generation of individuals. The size of the population is 

considered as an important factor that affects the computing time consumption 

during the optimisation process. If the population size is too large, the 

computational time will be increased, while if the population size is small, the GA 

will converge quickly with a high probability of unreliable results. The new 
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generation is created according to the three operators, which are selection operator 

(Elite), crossover and mutation. The selection operator could be defined as a 

selection models nature’s survival mechanism of the fittest. It selects the fittest 

individuals and allows them to pass to the next generation. The mutation can be 

defined as an operator used to preserve the diversity of the population from one 

generation to the next generation. Therefore, it could change the solution for the 

best. In addition, it allows the genetic algorithm to achieve the global minimum 

point by preventing the individuals in the generation from being too similar to each 

other and reduce the chance of obtaining the local minimum points. The crossover 

is considered the most significant phase in the GA. Since it recombines the portions 

of good parent solution (chromosomes) and produces a child of next generation. 

Therefore, the new generation consists of the children of the elite, crossover and 

mutation. The GA could be employed with linear and nonlinear constraints as well 

as other optimisation functions  

A GA has been used in the framework because it is especially appropriate when 

the search space of design variables is huge, and the number of design variables is 

high (Michalewicz, 2013). 

4.3.1 Case study. 

This case illustrates an example to show how the genetic algorithms can be 

employed to find the global minimum point in a problem involving multiple local 

minimum points in the Rastrigin's function as given in Equation (4.2). 

𝑓(𝑥, 𝑦) = 20 + 𝑥2 + 𝑦2 − 10 ∗ (cos 2𝜋𝑥 + cos 2𝜋 𝑦)                                     (4.2) 

The Rastrigin's function is a function that used as a test for the optimisation 

algorithms because it has many local minimum points and only one global 
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minimum points. However, the locations of the minimum points are uniformly 

distributed as shown in the surface plot in Figure 4.4. It is difficult to find the global 

minimum point by using standard methods of optimisation.  

 

Figure 4.4: Surface plot of Rastrigin's function 

 

Based on the number of design variables and population size, the GA starts 

by creating an initial population as red points randomly distributed within the 

domain of interest, as shown in Figure 4.5(a). After a number of iterations in the 

optimisation process, the number of generation increases and the individuals in the 

latest generation of the population become very close as a group of red points 

approach the global minimum point at (0,0) as shown in Figure 4.5(b). Therefore, 

the GA halted, as the convergence criterion is achieved.  
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(a)  

 

(b)  

Figure 4.5: Contour plot of the Rastrigin's function presents the populations; (a) 

initial population, and (b) last population  

Table 4.1 shows the effect of the population size on the fitness value. It 

worth noting that with increasing the population size, the fitness value becomes 

more stable and approaches to the value of the global minimum. Practically, 

specifying the population size depends on the many parameters such as problem 

size, searching space, number of design variables and number of the objective 

functions (MATLAB2017a). 

 

 

 

 

 

 

 

Local minima  

Global minima  
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Table 4.1: Fitness value of the Rastrigin's function for different population size 

Population 

size 

CPU 

time(s) 

Fitness 

function  

Error %  Design 

variables  

No. 

generation  

Fun 

count 

1 0.425 3.0653 306.53 
1.121 

-0.584 
51 52 

2 0.169 0.2227 22.27 
0.016 

-0.335 
100 202 

3 0.095 9.40E-10 9.4E-08 
-8.524E-06 

-2.003E-05 
80 243 

4 0.416 6.59E-08 6.6E-06 
1.652E-04 

7.701E-05 
100 404 

5 0.159 5.98E-09 6E-07 
5.271E-05 

-1.547E-05 
97 490 

6 0.077 3.54E-09 3.5E-07 
-2.739E-05 

-3.216E-05 
60 366 

7 0.075 1.89E-09 1.9E-07 
1.914E-05 

2.429E-05 
76 539 

8 0.087 6.75E-09 6.7E-07 
5.789E-05 

7.206E-06 
86 696 

9 0.085 6.37E-09 6.4E-07 
2.863E-05 

4.892E-05 
71 648 

10 0.078 1.38E-10 1.4E-08 
8.340E-06 

-3.528E-07 
70 710 

100 0.921 3.041E-12 3E-10 
-4.681E-07 

1.146E-07 
69 7000 

150 1.254 5.126E-11 5.1E-09 
5.166E-07 

5.057E-06 
62 9450 

200 1.524 5.452E-11 5.5E-09 
1.512E-06 

5.021E-06 
65 13200 
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 Verification of the optimisation framework  

To verify the developed optimisation procedure, an optimisation case was 

considered, where composite laminates were optimized by minimising their 

thickness to have the smallest weight while sustaining a given load without failure. 

Two approaches have been used to conduct the optimisation, and then the 

outcomes of both analyses were compared. The first approach (referred to as 

Approach I hereafter) was to use the Matlab code, which conducts laminate analysis 

analytical as defined by Classical Laminate Theory (CLT) and uses (fmincon) 

function (MATLAB2017a) as an optimisation problem solver. The flow chart of 

the code is shown in Figure 4.6. The second approach (referred to Approach II) was 

to use the developed optimisation framework to solve the same problem.  

The optimisation problem and the inequality constraints have been represented 

mathematically as follows.  

          Minimise the thickness  𝑛 = ∑ 𝑚𝑖
𝑘
𝑖=1                                                 (4.3) 

          Constraints                                𝐹({𝜎𝑖}) − 1 ≤ 0                                        (4.4) 

                                                           
𝑚𝑖

𝑛
  ≥

1

10
         (i=1, 2, 3… k)                       (4.5) 

                                               𝜃𝑖 − 𝜃𝑖+1 ≥ 30
°                                          (4.6) 

                                                             𝑚𝐿  ≤ 𝑚 ≤ 𝑚𝑈                                         (4.7) 

       𝜃𝐿  ≤ 𝜃 ≤ 𝜃𝑈                             (4.8) 

where k is the total number of ply angles, m is a number of plies with certain ply 

angle θ between the upper and lower values.  
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Figure 4.6: Flow chart of Matlab laminate optimisation code 
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One set of design 
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The flat laminates that have been used in the optimisation problem for the two 

approaches are subjected under combined in-plane loading of the follows: Nx =3 

kN/mm, Ny =2 kN/mm, Nxy=1 kN/mm, and the number of ply angles are k=4, 6 and 

8. The material properties of unidirectional carbon fibre/epoxy composites 

(IM7/8552) are given in Table 4.2. 

Table 4.2: Material properties ( Kaddour et al., 2013) 

Property Value 

E11 165 GPa 

E22=E33 9 GPa 

G12=G13 5.6 GPa 

G23 2.8 GPa 

v12= ν13 0.34 

Ply thickness(t) 0.125mm 

ν23 0.5 

Xt 2560MPa 

Xc 1590MPa 

Yt 73MPa 

Yc 185MPa 

S12 90MPa 

 

As can be seen in Table 4.3, the results obtained from the two approaches 

were found to be in a good agreement. The analyses were conducted for two options 

for the design variables. The first option, referred to as layup not equal one, was to 

allow variation of the number of plies that corresponds to each ply angle while 

keeping the angle orientations of each ply angle fixed. 
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Table 4.3: Verification results 

Approach 

No. 
Layup 

No. of 

ply angle 
Ply orientation, ° 

No. of plies per ply 

angle 

Total No. 

of plies 

1 0 4 -45°, 0°, 0°, -45° 24, 92, 92, 24 232 

2 0 4 -45°, 0°, 0°, -45° 33, 83, 83, 33 232 

1 1 4 -90°, 0°, 0°, -90° 20, 30, 30, 20 100 

2 1 4 -90°, 0°, 0°, -90° 21, 28, 28, 21 98 

1 0 6 
-30°, 0°, 30°, 

 30°, 0°, -30° 
14, 12, 28, 28, 12,14 108 

2 0 6 
-30°, 0°, 30°, 

 30°, 0°, -30° 
17, 11, 24, 24, 11, 17 104 

1 1 6 
-60°, -30°, 30°,  

30°, -30°, -60° 
8, 6, 16,16,6, 8 60 

2 1 6 
-60°, 0°, 30°,  

30°, 0°, -60° 
7, 6, 14, 14, 6, 7 54 

1 0 8 
-22.5°, 0°, 22.5°, 45° 

45°, 22.5°, 0°, -22.5° 
8, 8, 8,14, 14, 8, 8, 8 76 

2 0 8 
-22.5°, 0°, 22.5°, 45° 

45°, 22.5°, 0°, -22.5° 
9, 7, 7, 12, 12,7, 7, 9 70 

1 1 8 
-45°, -15°, 15°, 45°,  

45°, 15°, -15°, -45° 
6, 6, 6, 10, 10, 6, 6, 6 56 

2 1 8 
-45°, -15°, 15°, 45°,  

45°, 15°, -15°, -45° 
5, 5, 5, 9, 9, 5, 5, 5 48 

 

The second option, referred to as layup (1), was to allow variation of both 

angle orientation and a number of plies for each ply angle. Consequently, in the 

second option, the number of design variables doubles, therefore it has a larger 

search space and naturally leads to better designs.  
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It is worth noting that in most cases, Approach 2 gave a smaller number of 

plies. This is reasonable, since the genetic algorithm, which is used in this approach, 

determines the global minimum point, while (fmincon) solver, as used in Approach 

1, can converge at a local minimum. 

 Based on verification outcomes as presented above, it can be concluded the 

developed optimisation framework is valid to use in problems that couple FE 

software with Matlab. 

 Summary 

A framework has been developed for the optimisation process that used two 

different pieces of software, Matlab as an optimiser and Abaqus/Standard package 

as stress analyser. The client and server technique have been used to connect 

between these two software packages and to avoid time delay during opening the 

start session dialogue box when Abaqus/CAE is called. A framework has been 

verified with a simple optimisation case of composite laminates that were optimised 

by minimising their thicknesses to have the smallest number of plies and the lightest 

weight, without causing a failure under given combined loading. A comparison 

between the (fmincon) optimisation function and the genetic algorithm has been 

performed. It has been demonstrated that the GA has a good ability to capture the 

global minimum point, while (fmincon) function can dwell at a local minimum 

point. In addition, GA can be used to run the FE calculation in the fitness function 

as a parallel scheme. The consumed time of the optimisation framework and 

computational effort is more substantial than that of Matlab optimisation code 

(Approach 1) since the computational effort of Abaqus (Approach 2) is large.
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5 Optimisation of steered fibre paths on the flat panels 

 Introduction 

 In terms of the design of composite materials, the most significant advantage 

is that the designers can tailor the stiffness and strength properties for the needs of 

a specific application by changing the orientation of the single lamina and the 

stacking sequence in the laminates (Gürdal et al., 1999a). In addition, the 

percentage of the layers having certain orientations with respect to the reference 

direction could be used to design and predict the in-plane stiffness properties of a 

laminate as in the ten percent rule (Hart-Smith, 1992). On the other hand, the 

bending properties of laminate are influenced by the location of the layers through 

the thickness of the laminate, as well as the percentage of certain layers inside the 

laminate. Therefore, the rearrangement of the stacking sequence through the 

thickness in the laminate could be considered as a method to design composite 

laminate.  

In recent years, there has been an increasing tendency toward the 

development of the so-called unconventional laminates, where the fibre paths in the 

individual laminae are curved. In practice, this is realised by placing the tows of 

fibre in the curved style, with straight paths of fibre being a special case of curved 

ones. Steering the fibre that way could be done by varying the orientation of 

continuous fibre locally from point to point in the single lamina to produce the 

curved fibre path. This format of fibre placement can result in more beneficial stress 

distributions, and it can increase the size of design space as compared with a straight 

fibre format. The improvement in the mechanical performance of curved fibre 
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laminates, in particular, in response to the applied buckling load will be explored 

and demonstrated in this chapter via the range of carefully designed numerical 

studies. In this chapter, the analyses will be conducted on square panels, which is 

the most basic type of laminated structure, to establish the methodology and reveal 

the effects of fibre variation on mechanical performance. The study will be 

continued in the next chapter addressing the structures of larger practical 

significance, such as cylindrical shells.  

 Different order of variations of local angles  

Varying the local angle of the fibre within the composite panel results in a 

change of the stiffness of the panel spatially. The influence of fibre variation on the 

stiffness of the panel can be rationalised by assessing the improvements in the 

buckling response as compared with that of the panels with straight fibre.  

The variation of local fibre angle along x-direction can be described by the 

polynomial equation as follows. 

𝜃(𝑥) = ∑ 𝐴𝑖𝑥
𝑖𝑛

𝑖=0                                                                                                 (5.1)      

where n is the degree of the polynomial equation and 𝐴𝑖 are the coefficients of the 

polynomial equation.  

According to the Equation (5.1), the variation of the local angles can be 

classified by polynomial degree n as follows. 

5.2.1 No variation (constant local angles)  

With this type of variation of local angles, n=0 in Equation (5.1), which 

becomes. 

𝜃(𝑥) = 𝐴0                                                                                                           (5.2) 
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Based on the Equation (5.2), the local angles do not change along the path 

of fibre, hence the coefficient 𝐴0 is the value of constant fibre angle, which will be 

denoted as T0 for consistency with notations that will be introduced in the sections 

to follow. This type of variation defines a conventional straight fibre lamina. Such 

laminae can be stacked as shown in Figure 5.1(a) to produce a laminate where plies 

with fibre angle T0 are alternated with those having fibre angle T0. The stiffness of 

such laminate is constant in the plane of the laminate; hence these laminates are 

sometimes referred to as constant stiffness (CS) laminates. The design variables for 

CS laminates include stacking sequence with certain fibre angles, number of the 

plies and material type which should be considered to find the desired design. 

5.2.2 Linear variation of local angles (first-order) 

For a linear variation of local angles, n=1 in Equation (5.1), which can then 

be written as follows. 

𝜃(𝑥) = 𝐴0 + 𝐴1𝑥                                                                                                (5.3) 

where the 𝐴0 and 𝐴1 are the coefficients of the polynomial equation that can be 

determined using the pre-defined values of the local angles T0 at the centre of panel 

and T1 at the edge of the panel as shown in Figure 5.1(b). Therefore, Equation (5.3) 

can be rewritten as follows. 

𝜃(𝑥) = 𝑇0 +
(𝑇1−𝑇0)2𝑥

𝐿
  , 0 ≤ x ≤ 

𝐿

2
                                          (5.4)                                                                                            

where L is the length of the panel.  

With varying paths of fibre in lamina with linear local angle variation, the 

stiffness of the laminates based on such lamina, as shown in Figure 5.1(b), will vary 

continuously and hence the laminates are referred to as variable stiffness laminates. 

The same terminology applies to laminates with higher-order local angle variations 
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as will be addressed in the next two subsections. In terms of manufacture, the 

continuous curved fibre path in the lamina can be produced by automated fibre 

placement (AFP) of pre-impregnated tows, embroidery machine for dry fibres and 

3D printing technique. 

5.2.3 The nonlinear variation of local angles 

The nonlinear variation of local angles is defined by polynomial given by 

Equation (5.1) when n>1. In this work, two cases of nonlinear variation are 

considered, namely, quadratic and cubic. 

5.2.3.1 Quadratic variation of local angles (second-order) 

The quadratic variation of local angles (second-order variation) is defined as 

follows. 

𝜃(𝑥) = 𝐴0 + 𝐴1𝑥 + 𝐴2𝑥
2                                                                                 (5.5)         

 where A0, A1 and A2 are the coefficients of the polynomial equation that can be 

determined using the pre-defined values of the local angles T0, T1 and T2 at the 

centre, quarter and edge of a panel, respectively, as shown in Figure 5.1(c).  

Hence the Equation (5.5) can be rewritten as follows.  

𝜃(𝑥) = 𝑇0 +
2𝑥

𝐿
(4𝑇1 − 3𝑇0 − 𝑇2) +

8𝑥2 

 𝐿2
(𝑇2 + 𝑇0 − 2𝑇1) , 0 ≤ x ≤ 

𝐿

2
                (5.6)    

5.2.3.2 Cubic variation of local angle (third-order)          

The third order of the polynomial equation can be expressed as follows. 

𝜃(𝑥) = 𝐴0 + 𝐴1𝑥 + 𝐴2𝑥
2  + 𝐴3𝑥

3                                                                   (5.7)     

where A0, A1, A2 and A3 are the coefficients of the polynomial equation that can be 

calculated using the pre-determined values of the local angles T0, T1, T2 and T3 in the 

middle, at one third of half-length of the panel, two thirds of half-length of the panel 

and the edge of the panel, respectively, as shown in the Figure 5.1(d). 
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Hence the Equation (5.7) can be re-written as follows  

𝜃(𝑥) = 𝑇0 +
𝑥

𝐿
(18𝑇1 − 11𝑇0 − 9𝑇2 + 2𝑇3) +

18𝑥2 

 𝐿2
(4𝑇2 − 5𝑇1 + 2𝑇0 − 𝑇3) +

36𝑥3 

 𝐿3
(3𝑇1 − 3𝑇2 − 𝑇0 + 𝑇3)  ,                 0 ≤ x ≤ 

𝐿

2
                                                     (5.8)  

  

 
(a)  

 
(b)  

 
(c)  

 
(d)  

Figure 5.1: Fibre path according to different variations of local angles; (a) straight 

fibre (zero-order), (b) first-order variation of local angles, (c) second-order 

variation of local angles, and (d) third-order variation of local angles  
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 Definition of uniform fibre volume fraction distribution in curvilinear 

fibre lamina 

The placement and steering of the continuous tows having a linear variation 

of their local angles, one beside another, can produce the gaps and overlaps of the 

tows. The latter one can be prevented by shifting the centre line of the tow at a 

specific distance. Consequently, covering the entire surface of the structure with the 

tows in such a way prevents the thickness build-up (Gurdal and Olmedo, 1993). On 

the other hand, shifting of the tows will generate a gap of variable width between 

the two adjacent tows. Using the capability of automated fibre placement machine 

(AFP) to cut and restart a placement of the tow, the gap area could be filled locally 

with segments of tows, which is a technique employed when producing the course 

of tows (Wu et al., 2009). The size of the gap to be filled depends on the tow width 

and the variations of local angles. It should be noted that, for some configurations 

of the local angles, the maximum gap width can be smaller than the tow width. 

After filling the gaps, small areas not covered by the fibre tows can still be 

present; these typically occur near the cut end of the tows. However, they can be 

considered to be negligibly small as compared to the entire area of the panel. 

Therefore, the panel can be considered to have a uniform fibre volume fraction 

distribution over it. The main drawback of this approach of fibre placement is the 

segmentation of tows that affects the ability of the panel to sustain the applied 

tensile load. Excessive deformation of the matrix can occur near the cut ends of the 

tows, which leads to the reduction in the strength of the composite. Therefore, in 

order to achieve the best performance in terms of load bearing, the tow should be 

continuous along the panel especially when the tensile load is applied.  
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 Definition of non-uniform fibre volume fraction distribution in 

curvilinear lamina 

 The overlapping of tows leads to the thickness build-up. This produces local 

areas having higher fibre volume fraction and high stiffness. However, some fibre 

tows, such as carbon ones, are brittle, and can easily fail in areas where the tows 

overlap. Therefore, the overlapping of tows should be avoided to keep a constant 

thickness of the laminated structure.  

In order to avoid such thickness build-up, tows can be shifted perpendicularly 

to the direction of variation of the local angles. Consequently, they would come into 

contact only at the edges of the panel, as shown in Figure 5.2. This leads to non-

uniformity of fibre volume fraction and material properties distributions over the 

laminate. In particular, local reduction the stiffness and strength may occur. 

Alternatively, the effect of gaps on the fibre volume fraction variation can be 

neglected, and the uniform distribution of volume fraction can be assumed. In this 

chapter, both of these approaches have been applied in the analyses to identify their 

impacts on predicted structural behaviour.  

Based on the curvilinear path of tows on the flat plates (Gürdal et al., 2008), 

The variation of the gap width can be derived analytically. In the xy-plane, locally, 

the local angle is defined as follows. 

𝑑𝑦

𝑑𝑥
= tan(𝜃(𝑥))                                                                                                      (5.9) 
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Figure 5.2: Schematic drawing for curvilinear lamina with a representative volume 

element being highlighted in yellow 

 

The path definition can be written as an explicit function of x-coordinate by 

integrating both sides of Equation (5.9) as follows. 

𝑦 = ∫ tan(𝜃(𝑥)) 𝑑𝑥
𝐿

2
0

                                                                                                   (5.10)      

by substituting Equation (5.4) of linear variation into Equation (5.10) yield the 

expression of the curved path as. 

𝑦 = −
ln|cos (

2𝑥 (𝑇1−𝑇0)

𝐿
+𝑇0)|

(𝑇1−𝑇0)
2

𝐿

+
ln|cos (𝑇0)|

(𝑇1−𝑇0)
2

𝐿

                                                              (5.11) 

where 𝑇0 and 𝑇1 are local angles at the centre and at the edge of the panel, 

respectively, and L is the length of the panel. 
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Referring to the geometry of the single tow as shown in Figure 5.2, the upper 

boundary of tow,𝑦𝑢, will be as follows. 

𝑦𝑢 = 𝑦 +
𝑡

2∗cos(
2𝑥 (𝑇1−𝑇0)

𝐿
+𝑇0)

                                                                                    (5.12)             

where t is the width of tow. 

Similarly, the lower boundary of a single tow 𝑦𝑙 is defined as 

𝑦𝑙 = 𝑦 −
𝑡

2∗cos(
2𝑥 (𝑇1−𝑇0)

𝐿
+𝑇0)

                                                                                    (5.13) 

Then lower boundary of upper tow 𝑦𝑙+1 is defined as follows. 

𝑦𝑙+1 = 𝑦 − 
𝑡

2∗cos(
2𝑥 (𝑇1−𝑇0)

𝐿
+𝑇0)

+𝑊                                                                       (5.14) 

where W is the vertical distance of the representative volume element (RVE) tow 

and gap, as marked by yellow in Figure 5.2 and defined as follows. 

𝑊 = 𝑡 cos( 𝑇1)⁄                                                                                                     (5.15) 

The gap width is defined as the difference between the lower boundary of 

upper tow, given by Equation (5.14) and the upper boundary of the reference tow 

Equation (5.12), resulting in the expression as follows.  

𝑦𝑙+1 − 𝑦𝑢 = 𝑊 −
 𝑡

cos(
2𝑥 (𝑇1−𝑇0)

𝐿
+𝑇0)

                                                                      (5.16)                    

In order to determine the variation of fibre volume fraction over the panel, 

the percentage of the vertical distance of tow to the vertical distance of the 

representative volume element (RVE) is defined as follows. 

𝑉𝑎𝑟(𝑥) =
𝑦𝑢−𝑦𝑙

𝑦𝑙+1−𝑦𝑙
                                                                                               (5.17)   

Finally, by substituting Equations (5.12), (5.13) and (5.14) into (5.17) the 

variation of fibre volume fraction becomes as follows. 

𝑉𝑎𝑟(𝑥) =
cos (𝑇1)

cos ((2𝑥(𝑇1−𝑇0)/𝐿)+𝑇0)
                                                                          (5.18) 
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Making use of this relation, the local variation of fibre volume fraction in the x-

direction can be determined as follows. 

𝑉𝑙𝑜𝑐𝑎𝑙 =
cos (𝑇1)

cos ((2𝑥(𝑇1−𝑇0)/𝐿)+𝑇0)
∗ 𝑉𝑡𝑜𝑤                                                                      (5.19) 

where 𝑉𝑡𝑜𝑤 is the fibre volume fraction within the tow. 

 Optimisation formulation  

In order to investigate the influence of different variations of the local angles 

on the distribution of variable stiffness over the panel, according to their 

configurations of local angles. The buckling response of laminates has been 

simulated. In order to determine the maximum buckling load for the variable 

stiffness laminates of different configurations, the optimisation formulation for that 

problem has been set up as follows.  

                                             𝑚𝑎𝑥𝑖𝑚𝑖𝑠𝑒    𝑏𝑢𝑐𝑘𝑙𝑒(𝑿)                            (5.20) 

where the 𝑏𝑢𝑐𝑘𝑙𝑒 is the objective function that calculates the buckling load and X 

is the vector of design variables that represents the local angles. 

Variation of the local angles corresponds to a variation of stiffness along the 

structure that could be captured by obtaining the buckling response. The 

optimisation function is used to find the optimum design that delivers the maximum 

buckling load based on the results of finite element simulation. The computational 

time of simulation is considered to be one of the most influential factors when 

establishing the optimisation procedure. A large number of coefficients in the 

higher-order variations of local angles could increase the computational cost of the 

optimisation. Therefore, a comparison of the outcomes of the different orders of 

local angles variation could avoid higher computational effort and longer time, by 

neglecting the order that has an inefficient improvement in the buckling load. The 
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detailed description of the optimisation process and its framework has been given 

in Chapter 4. 

Table 5.1: Material properties of the constituent fibre and matrix (Kaddour et al., 

2013) 

Property  Glass fibre  IM7 8552 epoxy  

Longitudinal modules E11 (GPa) 74 276 4.08 

Transverse modules E22 (GPa) 74 19 - 

Transverse modules E33 (GPa) 74 19 - 

In-plane shear modules G12 (GPa) 30.8 27 1.478 

Transverse shear modules G23 

(GPa) 
30.8 7 - 

Major Poisson’s ratio v12 0.2 0.2 0.38 

Fibre volume fraction of tow  60% 

 Finite element model 

The major objective of the finite element method is to find an estimated 

solution for complex engineering problems which are difficult to solve analytically. 

In the present study, a commercial FE code Abaqus/Standard (2017) has been 

employed to model the buckling response of square laminated panels based on 

lamina with different tow paths as outlined in Sections 5.2 - 5.4.  

The variation of the local angles that produces variable stiffness and changing 

gap width is given by Equations (5.1) - (5.4) according to their order of variation. 

They were implemented into an FE model through the ORIENT user-defined 

subroutine. This subroutine is a user-written FORTRAN code that defines the 

direction cosines with respect to the global coordinates at each integration point. In 

addition, due to the gap width being variable, the material properties of the panel 

also change from point to point. To account for this in the model, the material 
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properties have been calculated locally according to the rule of mixtures (Reuss, 

1929) and (Voigt, 1889) as mention in Chapter 3. The non-uniform distribution of 

the local fibre volume fraction of linear variation of local angles as defined by 

Equation (5.19) was implemented through the UMAT subroutine, which is 

employed to define the mechanical constitutive behaviour of the material at each 

integration point. The constitutive material model used in the present study relates 

the stresses and strains under the assumption of the plane stress state. 

The FE model of the panel has been meshed with a general-purpose shell 

elements S4, which are appropriate for modelling both the thick and the thin shells. 

This element has six degrees of freedom and defines the transverse shear 

deformation according to the Mindlin-Reissner theory. The S4 elements are 

applicable to modelling the thin shells having very small transverse shear 

deformation. The formulation of the element implies that the transverse shear stress 

distribution should be constant through the thickness, whilst in reality, it is 

parabolic. To account for that, the shear correction factor is required and defined 

by matching the transverse shear energy with the shear energy in the three-

dimensional structure due to the pure bending (Vlachoutsis, 1992). The shear 

correction ensures that the transverse shear stress is equal to zero at the outer 

surfaces of the layer to satisfy the boundary conditions. In the cases analysed in this 

work, as the thickness of layers was small, the transverse shear stiffness was small. 

Therefore, the effect of shear correction factor on the transverse shear stiffness 

could be negligible. 

In order to solve any problem of solid mechanics, the boundary conditions 

need to be specified. In the finite element model of the panel under the buckling 

load, the panels were simply supported, which was modelled by constraining the 



Chapter 5 

95 
 

displacement in the z-direction at all edges as shown in Figure 5.3. The compression 

load was defined by applying uniform displacement on two opposite edges of the 

panel. In order to predict the equivalent in-plane stiffness, different loading cases 

were modelled, where the uniaxial tensile load was also applied on the two opposite 

edges. 

                 

Figure 5.3: Boundary conditions of the panel 

Under the applied uniform displacement, the panels produce sectional forces 

that resist the buckling load. The distribution of the sectional forces over the panels 

can be uniform, as in case of constant stiffness laminates, or non-uniform for 

variable stiffness laminates. In the latter case, the average sectional forces were 

calculated by integrating the variable sectional force with respect to the length as 

follows. 

𝑁𝑥
𝑎𝑣 =

1

𝑏
∫ 𝑁𝑥(𝑎, 𝑦)𝑑𝑦 
𝑏

0
                                                                                        (5.21) 

𝑁𝑦
𝑎𝑣 =

1

𝑎
∫ 𝑁𝑦(𝑥, 𝑏)𝑑𝑥 
𝑎

0
                                                                                                   (5.22)                         

𝑁𝑥𝑦
𝑎𝑣 =

1

𝑎
∫ 𝑁𝑥𝑦(𝑥, 𝑏)𝑑𝑥 
𝑎

0
                                                                                      (5.23)   

W=0 

W=0 

W=0 W=0 𝑢0 𝑢0 

 

a 

b 
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Therefore, the in-plane overall stiffness of the variable stiffness laminates can be 

derived as follows. 

𝐸𝑒𝑞_𝑥 =
𝑎 𝑁𝑥

𝑎𝑣

2𝑢0ℎ
               (5.24) 

𝐸𝑒𝑞_𝑦 =
𝑏 𝑁𝑦

𝑎𝑣

2𝑢0ℎ
                                                                                                     (5.25)       

𝐺𝑒𝑞_𝑥𝑦 =
𝑏 𝑁𝑥𝑦

𝑎𝑣

2𝑢0ℎ
                                                                                                   (5.26)       

where a, b, h and 𝑢0 are the width, length, thickness of the panel and the applied 

displacement, respectively, as shown in Figure 5.3. 

In the model, the panel was comprised of twelve symmetric layers and was 

defined in term of local angles as [±<T0| T1>]3s lay-up, and its constitutive material 

properties are listed in Table 5.1. In buckling analysis, the material properties of 

glass fibre and 8552 epoxy have been used. While in the case of predicting the in-

plane equivalent stiffness the material properties of IM7 fibre and 8552 epoxy have 

been used. The thickness of each layer was 0.4mm, resulting in the total thickness 

of the laminate being 4.8mm, and the side length of the panel was 100mm. 

However, the laminate is very thin, the in-plane strengths larger than buckling 

failures have been considered. Thus, the concerns of the in-plane failure of material 

were avoided. 
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 Results and discussions 

5.7.1 The effect of different orders of variations of the local angles  

Different orders of variations of local angles are investigated by determining 

the optimum fibre path for each order that can offer the maximum buckling capacity 

as an indication of the local stiffness. The column chart, as shown in Figure 5.4 

illustrates the improvement in buckling load as a result of different orders of 

variation of the local angles in the x-direction. These columns are normalized with 

respect to a maximum buckling load of the straight fibre laminate with 𝑇0 =𝑇1 =45°, 

represented by the red column, which was chosen to be a benchmark case. As can 

be seen from Figure 5.4, with the first, second and third-order local angle variations, 

the curved fibre laminates show improvement in maximum buckling load by 4%, 

6.3% and 6.4%, respectively, as compared with the benchmark case. This indicates 

that both the second and third-order variations offer just over 2% improvement in 

maximum buckling load as compared with the linear angle variation. The 

configuration of the fibre path as obtained by the optimisation is shown in Figure 

5.5(a) and it corresponds to parameter values 𝑇0 =74° and 𝑇1 =39°. The distribution 

of the variable stiffness of the panel having this configuration of fibre paths can be 

assessed by considering the compressive stress resultant Nx, as shown in Figure 

5.5(b). It is worth noting that the shape of deformed panels is concave in a centre 

of the panel because the Poisson’s ratio is smaller in the centre than at the edge of 

panel. This concave is an indication of the high stiffness portion that provides more 

resistance to bear the buckling load. 
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Figure 5.4: Improvement in buckling load due to different order variations in the x-

direction with respect to the straight fibre  

 

(a)  

 

(b)  

Figure 5.5: Optimum panel of first-order variation of local angle in x-direction; (a) 

fibre path with T0=73° and T1=39°, and (b) Axial compressive stress resultant Nx 
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The improvement in the maximum buckling load delivered by laminates 

with different orders of variation of the local angles in the y-direction is shown in 

Figure 5.6. It can be seen the curvilinear laminates with first, second and third-order 

of local angle variation deliver the same gain in maximum buckling load of 40% as 

compared to straight fibre laminates. Given that curvilinear laminates with the 

second and third-order of local angle variations do not offer a substantial 

improvement in a maximum buckling load, if any, as compared with laminates with 

linear variation of local angle, and the fact that the former two cases are 

substantially more computationally costly, further analyses will be conducted on 

curvilinear laminates with linear variation of local angle, unless otherwise 

specified. The optimum pattern fibre path with the linear variation of local angle in 

the y-direction is presented in Figure 5.7(a), and it corresponds to 𝑇0 =90° and 

𝑇1 =15°. With this arrangement of fibre tows, the local axial stiffness in the centre 

of the panel along the direction of the applied load is high, whilst the axial stiffness 

is low at the edges of the panel, where the fibre tend to align with the direction of 

the load applied. Having higher stiffness in the centre of the panel improves the 

buckling capacity, where the panel is expected to buckle in the centre. This 

explanation for the enhanced buckling performance is supported by the predicted 

axial stress resultant contours shown in Figure 5.7(b), where the axial compression 

force resultant at the edges of the panel is lower than that of the centre of the panel.  
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Figure 5.6: Improvement in buckling load due to different orders of local angles 

variations in y-direction 

 

 
(a)  

 
(b)  

Figure 5.7: Optimum panel of first-order variation of local angle in y-direction; (a) 

fibre path with T0=90° and T1=14°, and (b) axial compressive stress resultant Nx 
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buckling load plotted against the parameter T1 that was varied continuously from 

0° to 90°. All curves were normalised with respect to the maximum buckling load 

of straight fibre laminate with 𝑇0 = 𝑇1 =45°, marked by the black point in Figure 

5.8. Each curve of this family intersects with that corresponding to straight fibre 

laminate at points where 𝑇0 =𝑇1. Moreover, it can be seen, the maximum 

improvement that could be achieved in the buckling load of the curvilinear fibre 

with respect to straight fibre is 4% for the configuration of local angles 𝑇0 =70° and 

𝑇1 =40°. It is worth noting, for a certain value of the buckling load in Figure 5.8 

there are only two possibilities of the orientation of the straight fibre laminates to 

match this value. While for variable stiffness laminates there are many possibilities 

of configurations to match the same value of the buckling load. Therefore, that 

could be considered as one of the most advantages of the curvilinear format of fibre 

path for offering more flexibility in design.  

 

Figure 5.8: Normalized buckling load for different configurations of curved fibre 

panels having a linear variation of local angle x-direction 
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Similar plot has been produced for curvilinear laminates with the variation 

of local angles in the y-direction as shown in Figure 5.9. Same as before, all the 

curves have been normalized for the maximum value of buckling load obtained for 

straight fibre laminate with 𝑇0 = 𝑇1  =45°, as marked by the black point. The family 

of the curves that represent the steered fibre panels, having the various values of 𝑇0  

(from 0° to 90° with increments of 10°). It was observed that each curve of this 

family intersects with a straight fibre curve (dashed curve) at points T0=T1, same as 

in the previous case. However, the peak value of the maximum buckling load was 

obtained for a curvilinear laminate panel with 𝑇0 =90° and 𝑇1 =10°, as illustrated in 

the orange point, which indicates the improvement in the buckling load of around 

40% compared to straight fibre laminate. In addition, the number of curvilinear 

laminate panels capable of delivering a buckling load larger than the maximum 

buckling load of straight fibre laminate is greater than that in the previous case. This 

is due to the fact that the direction of variation of the local stiffness is perpendicular 

to the direction of the applied load. As a result, the upper and lower edges of the 

panel to remain straight and this increases the axial stress resultant in the direction 

of the applied load, thus increasing the buckling capacity. 
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Figure 5.9: Normalized buckling load for different configurations of curved fibre 

panels having a linear variation of local angle in y-direction 

 

5.7.2 Buckling response at uniform and non-uniform fibre volume fraction 

distributions.  
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increases, the gap becomes wider and its effect on the buckling response of the 

panel becomes significant. The general outlines of the curves obtained for the two 

approaches are similar. However, the buckling loads of in laminates with non-

uniform fibre volume fraction distribution tends to be lower than those in the 

laminates with the uniform volume fraction distribution. This is due to the fact that 

the distribution of local stiffness remains the same for both types of fibre volume 

fraction distribution, but the fibre volume fraction at non-uniform distribution is 

generally lower because of the presence of the gap.  

 

 

(a)  

 

(b)  

Figure 5.10: A comparison of buckling load in panels with uniform and non-

uniform fibre volume fraction distributions for θ= θ(x); (a) laminates having T0=0°, 

and (b) laminates having T0=30° 
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behaviour observed in this case is essentially similar to the previous one, and the 

same explanations for the behaviours observed apply in this case. 

 

(a)  

 

(b)  

Figure 5.11: A comparison between the uniform and non-uniform fibre volume 

fraction distribution for θ= θ(y); (a) laminates having T0=0°, and (b) laminates 

having T0=30° 
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where overall stiffness of curved fibre panels is greater than that of straight fibre 

panels is shaded in grey. As can be seen, in all such cases 𝑇0 < T1. In Figure 5.12, 

the results in the area shaded in grey were obtained for the panels in which tows 

orientation at the centre along the vertical direction of the panel tended to align with 

the loading direction, with one of the examples of such tow arrangements being 

shown in Figure 5.14(b). Because of that, such panels had high stiffness in this area 

and hence under the uniaxial tension applied at the longitudinal edges they had a 

higher resistance to deformation in the centre and lower at the edges of panels as 

shown in the contour plot of sectional force in Figure 5.14(a). On the other hand, in 

panels for which T0 >T1, the local stiffness in the centre was smaller than the other 

areas as shown in contour plot in Figure 5.14(e), for which tow arrangement was as 

shown in Figure 5.14(f). Therefore, there is more shrinking in the centre of the 

panel.  

In Figure 5.13, the grey area is larger than that in Figure 5.12, due to the fact 

that the local angle variation in y-direction tends to deliver higher overall stiffness 

under uniaxial tension. The mechanism of the panel resisting the deformation, in 

this case, can be assessed considering the stress resultant distribution in Figure 5.15. 

In this case, the direction of the applied load is perpendicular on the direction of 

angle variation. In other words, local angles of fibre remain constant along x-

direction, and the local stiffness is distributed in the horizontal stripes that act as 

single spring stiffness; therefore, the equivalent stiffness can be considered as a 

parallel combination of the stiffnesses of springs in y-direction.  
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Figure 5.12: Equivalent stiffness of curved fibre panels with uniform fibre volume 

fraction distribution having θ= θ(x) under the uniaxial tension  

 

Figure 5.13: Equivalent stiffness of uniform fibre volume fraction distribution for 

curved fibre panels having θ= θ(y) under the uniaxial tension 
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Through this exercise, it has been established that in terms of overall 

stiffness, curvilinear laminates can outperform the straight fibre ones when 𝑇0 <T1. 

Furthermore, such improved performance can be delivered with different tow 

configurations, which gives extra flexibility in the design process. In addition, 

Figure 5.12 and 5.13 that show the curves of the overall stiffnesses of curved fibre 

panels compared with straight fibre panels, can be employed to predict the overall 

stiffness of any mixed laminate following a similar procedure as in the ten percent 

rule.  

The sign of variation of local angles plays a significant part as far as the 

stiffness of the panel is concerned. When the variation of local angles changes from 

positive to negative, the distribution of local stiffness changes accordingly. This 

effect is presented in Figure 5.14 and Figure 5.15 for the variation in x- and y-

direction, respectively. The effect of positive variation of the local angles panel is 

demonstrated through in the contour plot of the sectional force and the fibre path as 

shown in Figure 5.14(a) and (b), respectively. This variation produces a large local 

stiffness in the middle of the panel as an indication of the bulge out. Figure 5.14(c) 

and (d) show axial stress resultant and fibre path of a straight fibre panel with T0= 

T1=45°, respectively. The variation of the local angle is zero; therefore, the axial 

stress resultant is constant along the panel as a result of constant stiffness. The 

negative variation of local angle is illustrated by the sectional force and the fibre 

path as shown in Figure 5.14(e) and (f), respectively. This variation represents the 

local angles T0=45° and T1=0°. The smaller value of the local stiffness in the vertical 

central area, where shrinking of the panel is observed, corresponds to the larger 

value of the local angles. 
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(a)  

 
(b)  

 
(c)  

 
(d)  

 
(e)  

 
(f)  

Figure 5.14:Contour plot of a sectional force and fibre path for different variations 

of local angles in x-direction ; (a) sectional force at T0=0° and T1=45°, (b) fibre path 

at T0=0° and T1=45°, (c) sectional force at T0=45° and T1=45°, (d) fibre path at 

T0=45° and T1=45° (e) sectional force at T0=45° and T1=0° and (f) fibre path at 

T0=45° and T1=0° 
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 In Figure 5.15 similar plots are shown for the variation of the local angles in 

the y-direction. The effects of positive variation of local angles when T0=0° and 

T1=45° on the sectional force can be seen Figure 5.15(a), where its contour plot is 

shown with fibre path, in this case, being shown in Figure 5.15(b). Based on the 

contour plot of the sectional force that resists the extension, the higher local 

stiffness is in the horizontal central area. Figure 5.15(c) and (d) show the uniform 

distribution of the sectional force and fibre path for this case, respectively. Finally, 

the negative variation of local angles was indicated in the sectional force and the 

fibre path as shown in Figure 5.15(e) and (f), respectively. One can see the smaller 

value of the local stiffness is at the centre, corresponding to the larger local angle 

T0=45°. 

 The influence of local angles variation on the equivalent in-plane shear 

stiffness in the curvilinear fibre panels can be assessed by comparing the equivalent 

shear stiffness of curvilinear laminates with that in straight fibre laminates. To 

produce pure shear, panels were loaded by applying uniform shear displacement in 

opposite directions at the opposite edges of panel. The equivalent shear stiffness 

was calculated according to the Equation (5.26) and presented for different 

configuration of the local angles as shown in Figure 5.16, which was produced 

following the same procedure as was employed for equivalent stiffness Ex earlier 

on. 
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(a)  

 
(b)  

 
(c)  

 
(d)  

 
(e)  

 
(f)  

Figure 5.15: Contour plot of a sectional force and fibre path for different variations 

of local angles in y-direction ; (a) sectional force at T0=0° and T1=45°, (b) fibre path 

at T0=0° and T1=45°, (c) sectional force at T0=45° and T1=45°, (d) fibre path at 

T0=45° and T1=45° (e) sectional force at T0=45° and T1=0° and (f) fibre path at 

T0=45° and T1=0° 
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Figure 5.16: Equivalent shear stiffness of uniform fibre volume fraction 

distributions for curved fibre panels having θ= θ(x) 

 

The dashed curve in Figure 5.16 corresponds to equivalent in-plane shear 

stiffness of the straight fibre panels and its maximum value was achieved at 

𝑇0 =𝑇1 =45°, since the pure shear is equivalent to the equal bi-axial tensile and 

compressive stress state and the maximum tension is expected at 45. In the 

broadest sense, this figure can describe the in-plane shear stiffness for all 

configurations of the local angles. These numerical results reveal that there are 

many configurations of the tows with which curved fibre panel produce the same 

value of stiffness as the straight fibre panel, hence their use can increase the 

flexibility of the design process.  
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The effect of variability of the gap and the fibre volume fraction as calculated 

according to the Equation (5.18), on the material properties, was assessed via a 

comparative study, in which material properties were obtained for a layer of 

composite with the uniform and non-uniform fibre volume fraction distribution. 

The arrangement of tows of constant thickness in a single layer with 𝑇0 =0 and 

𝑇1 =45° is shown in Figure 5.17(a). As can be seen, the tows do not overlap and 

because their thickness is constant, a gap is present between the adjacent tows. The 

arrangement of the tows corresponding to uniform fibre volume fraction 

distribution is shown in Figure 5.17(b). Figure 5.17(c) illustrates the variability of 

the gap along the width of layer based on the Equation (5.18) as represented by 

parabolic function in terms of width of the layer. Since in the layer with a uniform 

fibre volume fraction there are no gaps between the tows, its variability along the 

layer is represented by the constant line as shown Figure 5.17(d). The contours of 

fibre volume fraction distribution in the two cases are shown in Figure 5.17(e) and 

(f), respectively.  
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(a)  

 
(b)  

 
(c)  

 
(d)  

 
(e)  

 
(f)  

Figure 5.17: A comparison between non-uniform and uniform fibre volume fraction 

distribution for a lamina has T0 =0°, T1=45; (a) analytical pattern of non-uniform 

distribution, (b) a pattern of uniform distribution, (c) variability of gap of non-

uniform distribution, (d) variability of gap of uniform distribution, (e) contour plot 

of fibre volume fraction of non-uniform distribution, (f) contour plot of fibre 

volume fraction of uniform distribution  
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The variability of a gap results in non-uniform fibre volume fraction 

distributions, which has an effect on the material properties, the distribution of 

which along the panel also becomes non-uniform. Specifically, contours of the 

longitudinal, transverse and in-plane shear moduli over the layer with non-uniform 

fibre volume fraction distribution are shown Figure 5.18(a), (c) and (e), 

respectively. It can be seen that all material properties vary accordingly along the 

width of the layer. In contrast to, the layer with uniform fibre volume fraction 

distribution has a constant longitudinal, transverse and in-plane shear moduli along 

the layer, as shown in Figure 5.18(b), (d) and (f), respectively.  

 To clarify how the direction of the variation of the local angles affects the 

equivalent stiffness, a comparison has been made for panels having a variation in 

the x- and y-direction with values of T0=0° and T0=20° as presented in Figure 

5.19(a) and (b), respectively. The results shown suggest that when the difference of 

𝑇0  and 𝑇1  is small or zero, the equivalent stiffness of the curvilinear laminates panel 

having a variation in the x- and y-direction are similar and approach to the overall 

stiffness of the straight fibre panels. When T0 and T1 are sufficiently different, the 

equivalent stiffnesses of variation in the x- and y-direction tend to diverge, and the 

value of stiffness of the variation in the y-direction is higher than that of the x-

direction.  
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(a)  

 
(b)  

 
(c)  

 
(d)  

 
(e)  

 
(f)  

Figure 5.18: Distribution of local material properties according to the non-uniform 

and uniform fibre volume fraction distribution for T0=0° and T1=45°; (a) 

distribution of E11 of non-uniform distribution, (b) E11 of uniform distribution, (c) 

E22 of non-uniform distribution, (d) E22 of uniform distribution, (e) G12 of non-

uniform distribution, and (f) G12 of uniform distribution  
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(a)  

 

(b)  

Figure 5.19: A comparison of equivalent stiffness of panels having the variation of 

local angles in x- and y-direction for different configurations; (a) laminates having 

T0=0°, and (b) laminates having T0=20°  

 

Figure 5.20(a) and (b) show the effect of uniform and non-uniform fibre 

volume fraction distributions on the equivalent stiffness for 𝑇0 =0° and 𝑇0 =20°, 

respectively. It is easy to see that as the difference between 𝑇0  and 𝑇1  increases, so 

does the difference between the equivalent stiffnesses in panels with uniform and 

non-uniform fibre volume fraction distributions. 
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(a)  

 
(b)  

Figure 5.20: A comparison of equivalent stiffness between the uniform and non-

uniform for different configurations; (a) laminates having T0=0°and θ= θ(x) (b) 

laminates having T0=20° and θ= θ(x). 

 

In Figure 5.21 and Figure 5.22, the equivalent stiffnesses in the direction of 

the applied load are plotted for curved fibre panels with non-uniform fibre volume 

fraction distribution having the linear local angles variation in the x- and y-

directions, respectively. The same conclusions regarding the performance of curved 

fibre panels compared to straight fibre ones apply here as were made when 

discussing the stiffness of laminates with uniform fibre volume fractions 

distribution in Figure 5.12 and 5.13. However, the values of the equivalent stiffness 

are smaller in this case.  

For the curve corresponding to panels having T0= 90°, one can notice an 

abrupt change in stiffness when T0= T1=90°. The explanation for this is as follows. 

For these types of panels, the overall stiffness is equal to the stiffness value of 

matrix and changes directly to the stiffness value of the straight fibre panel at T0= 

T1=90°. The reason for this is that with these configurations of local angles, gaps 

between the tows are along the vertical axis of the panel, which disappear rapidly 
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when the local angles become T0= T1=90°. It worth noting that in this case, the size 

of gap does not have any influence on the stiffness value. 

 

Figure 5.21: Equivalent stiffness of curved fibre panels with non-uniform fibre 

volume fraction distribution with local angle variation in x-direction under the 

uniaxial tension 

 

Figure 5.22: Equivalent stiffness non-uniform fibre volume fraction distribution for 

curved fibre panels having θ= θ(y) under the uniaxial load 
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5.7.4 Determining experimentally the distribution of local volume fraction 

and in-plane stiffness of 3D printed panel. 

In addition to the automated fibre placement (AFP), a 3D printing capability 

of continuous fibre can be employed to steer the fibres. This technique was 

employed to manufacture a 3D printed carbon reinforced nylon layer as shown in 

Figure 5.23(a). It was fabricated by using an open-sourced Velleman K8400 

RepRap 3D printer, which was customised at the University of Nottingham by Zhuo 

et al. (2017), who modified the printer so it could print a continuous composite tow 

rather than plastic. The modification was required for the continuous fibre to allow 

free movement for filament without clogging inside the nozzle. The new nozzle was 

designed to be flat instead of conical shape to flatten the printed filament.  

The printed fibre as shown in Figure 5.23(a) was steered along a continuous 

path as shown in Figure 5.23(b) which was defined via a G-code representing a list 

of commands prescribing the continuous movement of the printer head of the 3D 

printer. G-code is created by a simple algorithm of Matlab, considering the tow 

width, the variation of the local angles and the dimension of the panel.  

 
(a)  

 
(b)  

Figure 5.23: 3D printed; (a) carbon fibre layer and (b) continuous path 
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In order to characterise the geometry of the variable gap of the 3D printed 

carbon fibre layer, the image processing was used. A photograph of the 3D printed 

layer with curvilinear tows was taken with image resolution being around 25 pixel 

per mm. The raw image was processed employing image processing tool in Matlab 

to calculate the changing in the gap width along the layer. Once the image was 

accessed in the image processing, it was converted into a binary image of black and 

white, with black and white pixels corresponding to the tows and the gap, 

respectively. The number of pixels of each type was calculated using Matlab code 

prepared specifically for the purpose. The variability of the gap was calculated as a 

function of x-coordinate according to its definition given by Equation (5.18).  

 The measured curve of the variability of the gap is shown in Figure 5.24. As 

can be seen, it is reasonably noisy, but it shows a certain trend that can be revealed 

by fitting it by a smooth and nonlinear function as presented by the red curve shown 

in Figure 5.24 of Equation (5.27). This equation of the gap width variation was 

implemented as a UMAT subroutine that was employed to define the distribution 

of the local material properties along the layer as shown in the Figure 5.25, based 

on the individual properties of fibre and matrix as specified in Table 5.1. With local 

material properties defined, the FE stress analysis can be conducted to determine 

the equivalent in-plane stiffness of the layer.  

𝑉(𝑥) = 𝑎1 sin(𝑏1 𝑥 + 𝑐1) + 𝑎2 sin(𝑏2 𝑥 + 𝑐2) + 𝑎3 sin(𝑏3 𝑥 + 𝑐3) +

𝑎4 sin(𝑏4 𝑥 + 𝑐4)  + 𝑎5 sin(𝑏5 𝑥 + 𝑐5)  + 𝑎6 sin(𝑏6 𝑥 + 𝑐6) + 𝑎7 sin(𝑏7 𝑥 +

𝑐7)+ 𝑎8 sin(𝑏8 𝑥 + 𝑐8)                                                                                        (5.27) 

where the coefficients a, b and c are, respectively, as follow. 

a1 = 2.771; b1 = 0.3571; c1 = 0.221  

a2 = -0.2742; b2 = 2.367; c2 = -0.2147 
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a3 = 0.2864; b3 = 4.241; c3 = 0.9891 

a4 = 0.8669; b4 =7.486; c4 =3.487  

a5 = 0.3835; b5 = 6.078; c5 = -1.543  

a6 = 1.148; b6 = 9.713; c6 =0.6747  

a7 = -0.6468; b7 = 12.46; c7 = 0.8829  

a8 = -0.1641; b8 = 15.19; c8 = -2.111  

 

Figure 5.24: Measured and fitted gap variation in a 3D printed layer 

 

 

Figure 5.25: Distribution of Young’s modulus in the fibre direction E11 
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The data reported in the previous sections were obtained assuming idealised 

gap width variation with its typical example shown in Figure 5.17(c) and uniform 

fibre volume fraction distribution as shown in Figure 5.17(d). Comparing Figure 

5.17(c) and Figure 5.24, it is clear that the gap width variations are different in the 

idealised case and in an actual 3D printed layer. In order to assess how this 

difference affects the mechanical performance of the layer, the in-plane stiffnesses 

have been calculated for the layers with uniform and non-uniform fibre volume 

fraction distribution and for the layer having a gap width variation as have been 

measured from a 3D printed layer. The comparison of stiffnesses is presented in the 

form of column chart in Figure 5.26. It can be seen the in-plane stiffnesses of the 

3D printed layer is smaller than that of the layers the uniform and nonuniform fibre 

volume fraction distributions. This difference between the in-plane stiffnesses of 

3D printed layer (actual gap) and non-uniform distribution (analytical gap ), is 

15.9% for the Ex and 13.7% for the Ey these percentage could be considered 

acceptable. It was related to the fitting function that used to approximate the real 

distribution of the variability of a gap. In addition, it can be because the 3D printed 

path does not match the actual one that supplied by the G-code as manufactured 

issues. Also, the more accurate results could be obtained by using a high resolution 

camera to increase the number of pixels per mm. This difference of the in-plane 

stiffness is due to the melted filament of carbon reinforced nylon expand more in 

the middle of layer than that at the edge layer where the printed filament was 

restricted with next filament. Another issue affects the results, the cross-section of 

the printed filament is not rectangular as assumed in the analytical geometry of the 

tow. 
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Figure 5.26: A comparison of the in-plane stiffness for different fibre volume 

fraction distributions  

 Summary  

The objective of this chapter was to explore the influence the curved 

arrangement of the tows has on the mechanical response of square panels. The 

optimisation of panels with three different orders of variations of local angles have 

been conducted in order determining the optimum fibre path that could carry the 

maximum buckling load for each order of variation. The optimisation results 

revealed that all three orders of variation lead to an increase in the maximum 

buckling load compared to panels with straight tows. However, the improvement 

of buckling load obtained the higher-order variations (second and third-order) is 

only marginally larger than that obtained with a linear variation. Given the large 

computational costs associated with using higher-order variations, on balance, use 

of linear order variation was considered to be the most advantageous. 

For a linear variation of local angles, the panels that could hold the maximum 

buckling load have a variation direction perpendicular to the direction of the applied 

load, and this variation has an apparent effect on the buckling load and the overall 
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stiffness of laminates. Hence, steering the fibre according to that variation provides 

an improvement in structural performance due to the re-distribution of the applied 

loads along the laminates. Also, steering the fibre offers extra flexibility in the 

design process by allowing the designer to choose between different combinations 

of local angles of T0 and T1. 

The gain value of the buckling load for the curvilinear fibre laminates is 

influenced by the distribution of local stiffness. Consequently, it is influenced by 

the aspect ratio of the overall stiffnesses, Ex/Ey. The overall stiffness of panels that 

have the variation of local angles in the direction of the applied load could be 

represented as a serial combination of the stiffness of springs, whilst for panels that 

have variation in the direction perpendicular to the applied load could be 

represented by a parallel combination of the stiffness of springs. The calculations 

of the overall stiffness of different configurations could provide a reasonable 

approximation to predict the overall stiffness of any mixed laminate as approach 

followed in a ten-percent rule.  

One more aspect of employing curved fibre that was explored is the non-

uniformity of fibre volume fraction distribution due to the presence of gap of 

variable width between the adjacent tows. Consequently, this results in non-uniform 

distribution of the material properties over the panels. It has been shown that this 

reduces the overall stiffness is detrimental to the ability of the structure to resist the 

buckling load, compared to the analysis where a uniform fibre volume fraction was 

assumed. However, the gap between the adjacent tows is a genuine feature in curved 

fibre laminates, as has been demonstrated by producing a layer with curved fibres 

employing 3D printing rig. Therefore, it must be accounted for in the analyses of 

curved fibre laminates when considering their practical applications. 
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6 Optimisation of steered fibre on the cylindrical shells 

 Introduction  

One of the advantages of employing the fibre reinforced composites in 

engineering design is that their stiffness can be tailored, through which more 

efficient designs can be achieved. The use of composites can improve the structural 

performance in terms of stiffness and save the weight of the structure. Steering the 

fibre is employed to produce composite part of a cylindrical shape, which may 

represent the fuselage of aircraft, appropriate placement of the fibres can improve 

the resistance to bending, which is a typical loading mode. In addition to cylindrical 

parts with a circular cross-section, some structures, such as fuel tanks and wings, 

can be idealised as cylinders with elliptical cross-sections.  

In this chapter, circular and elliptical cylinder shell models with the curved 

fibre reinforcements are analysed to predict the maximum buckling load under 

constant bending moment as an application of the variable stiffness laminates. Due 

to a spatial change of the local angles from point to point in the circumferential 

direction of cylindrical shells, an enhancement for the structural performance in 

terms of the resistance of flexural load that varies along the circular cross-sectional 

area can be achieved through appropriate design. For the elliptical cross-sections, 

there is a larger radius of curvature with a flat portion that could be expected to 

buckle more than that of the small curvature part, causing an apparent reduction in 

the buckling capacity as compared with circular section. 
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 Steered fibre orientation on cylindrical shells  

The path of steered fibre in the cylindrical coordinate system of cylindrical 

shells, schematically shown in Figure 6.1. The position of any point, P, on this path 

can be expressed in terms of the distance, R, from a reference axis, which was 

chosen to be an x-axis, the angle θ, and the axial coordinate x. The intersection of 

the tangent to the fibre paths on the shell surface with the axial directions is defined 

by the fibre local angle 𝜑. Referring to Figure 6.1, the fibre local angle, 𝜑, can be 

expressed at any θ and x as follows . 

𝑅
𝑑𝜃

𝑑𝑥
= tan𝜑                                                                                                                     (6.1)    

 

Figure 6.1: Schematic representation of the cylindrical coordinate system for 

prescribing steered fibre path 
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Similar to the definition of local fibre orientation as was addressed in the 

previous chapter for composite panels, the fibre local angles in cylindrical shells 

can have different degrees of nonlinearity. In this chapter, only the linear variation 

of local angles is considered. In cylindrical coordinates, the directions of variation 

of local fibre angle variation can be classified into the axial and the circumferential 

directions of cylinder. 

6.2.1 Axial linear variation of fibre local angles cylindrical shell surface 

The linear local fibre angle variation along the length of the shell can be 

employed to describe multiple segments of local angle variation along the length of 

the cylindrical shell, in order to expand the design space. Every segment can be 

considered as a separate cylinder with its own local angles. At the boundary 

between every two segments, in order to satisfy the continuity and ensure the 

manufacturability, the local angles can be defined to be identical according to 

(Blom, 2010a)  

𝜑(𝑥) = 𝑇𝑖 + ( 𝑇𝑖+1 − 𝑇𝑖) 
𝑥−𝑥𝑖

𝑥𝑖+1−𝑥𝑖
                                                                           (6.2)  

where i is the number of a segment along the length of the cylinder, 𝑇𝑖 is the local 

fibre angle at 𝑥𝑖 location along the axial direction.  

The circumferential coordinate of the fibre path in terms of the x-coordinate 

can be obtained by substituting Equation (6.2) in (6.1) to be as follows(Blom, 

2010a). 

𝜃(𝑥) =
−𝐿

𝑅 𝑁(𝑇𝑖+1−𝑇𝑖)
ln |cos 𝜑(𝑥)| +

𝐿

𝑅 𝑁(𝑇𝑖+1−𝑇𝑖)
ln (cos 𝑇𝑖)                                        (6.3) 

where L and N are the length of the cylindrical and the total number of segments, 

respectively.  
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6.2.2 Circumferential linear variation of local fibre angles 

The linear variation of fibre local angle 𝜑 in the circumferential direction is 

defined as a function of the circumferential coordinate θ (Blom, 2010a) as follows. 

𝜑(𝜃) = 𝑇𝑖 + ( 𝑇𝑖+1 − 𝑇𝑖) 
𝜃−𝜃𝑖

𝜃𝑖+1−𝜃𝑖
                                                                           (6.4) 

where i is the number of the shell segments along the circumference, 𝑇𝑖 is the local 

fibre angle within the respective segment at the 𝜃𝑖 location along the circumference. 

For instance, a cylindrical shell, as shown in, Figure 6.2 has been partitioned into 

six segments on the left part and the same partitioning was applied to the right part 

of the shell, to increase the flexibility of design process of fibre path. 

 

Figure 6.2: Segments division and fibre path definition.  

 

By substituting Equation (6.4) into Equation (6.1), the axial coordinate of the tow 

at any point on the circumference will be as follows (Blom, 2010a).  

𝑥(𝜃) = 𝑅
𝜃𝑖+1−𝜃𝑖

( 𝑇𝑖+1−𝑇𝑖)
 [ln sin 𝜑(𝜃) − ln sin 𝑇𝑖]                                                     (6.5) 

The circumferential distance of the tow centre line on the surface of the shell at any 

𝜃 is as follows. 

𝐶 = 𝑅𝜃                                                                                                                (6.6) 

x 
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Based on the trigonometric relations, the dimension W of the steered tow in 

the axial direction at any point on the circumference, as shown in Figure 6.3, is 

given by  

𝑊(𝜃) =
𝑏

sin 𝜑(𝜃)
                                                                                                      (6.7) 

where the b is the tow width. 

The upper edge of the tow xu is defined as follows. 

𝑥𝑢 = 𝑥(𝜃) +𝑊/2                                                                                                   (6.8) 

whilst the lower edge xl is given as follows.  

𝑥𝑙 = 𝑥 −𝑊/2                                                                                                         (6.9) 

Then the lower edge of the adjacent fibre tow with the coordinate of the centre line 

xl+1 is given as follows. 

𝑥𝑙+1 = 𝑥 −
𝑊

2
+ 𝑉𝑅                                                                                              (6.10) 

where 𝑉𝑅 is the vertical distance of the representative volume element (RVE) of the 

tow and the gap as shown in Figure 6.3. It is defined as follows. 

𝑉𝑅 =
𝑏

sin (𝑇𝑚𝑎𝑥)
                                                                                                    (6.11) 

where the 𝑇𝑚𝑎𝑥 is the maximum value of the local angles, Ti. Using this value allows 

to avoid overlapping of the tows. 

The percentage of the vertical distance of tow to the vertical distance of the RVE at 

any point is defined as follows. 

𝑃𝑟𝑒_𝑣𝑜𝑙(𝜃) =
𝑊

𝑉𝑅
                                                                                               (6.12) 

Finally, the local fibre volume fraction in RVE is obtained as follows. 

𝑉𝑙𝑜𝑐𝑎𝑙(𝜃) = 𝑃𝑟𝑒_𝑣𝑜𝑙 ∗ 𝑉𝑡𝑜𝑤                                                                                         (6.13) 
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Figure 6.3: Characteristic dimensions of the curved tow and its gap on the unfolded 

circular cylindrical shell 

 Formulation of the optimisation problem  

Cylindrical shells with circular and elliptical cross-sections have been 

optimised to determine the optimum fibre paths with which the curvilinear laminate 

can sustain the maximum buckling load under a pure bending moment. The local 

fibre angle in each lamina was a function of the circumferential coordinate θ. This 

can help to improve the structural performance as a result of bending moment 

results in loads to vary around the circumference of the cylinder. 
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The purpose of this design study is to find the optimum vector of the values 

of local angles describing a fibre path on a cylindrical shell surface to increase its 

ability to sustain maximum buckling load. The optimisation framework as was 

employed in the present study was described in Chapter 4.  

The circumference of the cylindrical shell has been divided into 12 segments 

to offer more flexibility in the design of the curved path, as shown in Figure 6.2. 

Further partitioning of the circumference will make the problem more 

computationally expensive. It can be considered as a balance between the 

computational efforts and design flexibility. Therefore, 14 design variables are 

required to define each layer in the laminated structure. However, the local angle at 

the common point between two segments is the same in order to achieve the 

continuity, and orientation of segments of the laminated structure was assumed 

symmetric as shown in Figure 6.2. This reduced the number of required design 

variables to 7. These variables are presented as a vector of the local angles Ti,. The 

value of these variables identifies the fibre path according to Equation (6.5) of the 

linear variation for each segment. 

Five different layups of 16 layers were considered for circular and elliptical 

laminated cylindrical shells, defined as [θ/-θ/θ/-θ/-θ/θ/-θ/θ]s, [0°/θ/90°/-θ/-

θ/90°/θ/0°]s, [0°/φ/90°/-φ/-φ/90°/ φ/0°]s, [-φ/45°/ φ/-45°/-45°/ φ/ 45°/-φ]s, and [φ/-

φ/ φ/-φ/-φ/ φ/ -φ/ φ]s. The first two layups represented a straight fibre laminate of 

constant stiffness (CS), while the remaining three corresponded to curved fibre 

laminates of variable stiffness (VS). 

Another issue to be addressed when analysing laminated circular cylindrical 

shells, is the variable gap width, which can have a significant effect on the buckling 

performance, as has been shown in Section 5.7.2 of Chapter 5. Therefore, the 
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optimisation process was repeated for the same layup as defined above, but with 

non-uniform fibre volume fraction distributions in the laminae. The effect of non-

uniform fibre volume fraction distributions for the elliptical cylindrical shells was 

not studied, since the radius of the elliptical shell is a function of circumferential 

coordinates.  

The mathematical optimisation problems of maximising the critical bending 

moment (Mcr), with a constraint of applied buckling load being lower than that 

could cause material failure (Mf), was defined as:  

Maximise                      buckling load  (Mcr)         

         Subjected to                  90° ≥ Ti   ≥ 0°     for i = 0, 1……, 7 

              Mf       >     Mcr                                                    (6.14) 

 

 The finite element model  

In order to determine the buckling load of cylindrical shells having a curved 

fibre format, the finite element package Abaqus/Standard (2017) was used. The 

local angles of each point in the shell were calculated according to Equations (6.2) 

and (6.4). They were implemented as the user-defined ORIENT subroutine, which 

allows to define material orientation at each integration point of the shell element. 

With material orientation defined via ORIENT subroutine, the stress state can be 

output for each layer individually, based on which the failure index per each layer 

can be calculated. In this respect, it is different from UGENS subroutine that was 

employed in the study of Blom et al. (2010b), which passes the stiffness (ABD 
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matrix) of laminate shell section for each integration point in Abaqus, and hence 

does not give any indication about the features of each layer. 

To account for the non-uniform fibre volume fraction distribution, the effect 

of variability of the gap was defined by introducing the ratio of the tow area to the 

total area of the gap and tow combined, using which the local fibre volume fraction 

as given by Equation (6.13). The UMAT subroutine was used to implement the 

constitutive model based on the local mechanical properties varying with the local 

fibre volume fraction. The rule of mixtures was used to calculate the local 

mechanical properties of composite from the constituent properties as defined in 

Table 6.1.  

In the FE model, a laminated cylindrical shell with 16 layers and dimensions 

of the length and diameter of 500mm, were used. The bending moment was applied 

at the reference point, which was connected to the nodes at the one edge of the shell 

through the multipoint constraint (MPC), as available in Abaqus, as shown in 

Figure 6.4. Therefore, edges remain circular during deformations to enable 

following the elementary beam theory, and it was free to move along the axial 

direction of the cylinder. Another end of the cylinder was simply supported. The 

model was meshed with S8R5 shell elements having 8 nodes, 4 integration points 

and five degrees of freedom in each node. 
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Figure 6.4: Loading conditions and the multipoint constraints for a cylindrical shell 

 

For the elliptical cylindrical shells, the horizontal axis a and vertical axes b 

were defined to ensure that the perimeter of the elliptical cross-section is identical 

to that of a circular cylindrical shell. Two types of the elliptical cylindrical shell 

were analysed as shown in Figure 6.5. In the first one, the horizontal axis a =300mm 

was larger than the vertical one b =194.33mm, whilst in the second, the horizontal 

axis a=194.33mm was smaller than the vertical one b=300mm. Each elliptical 

cylindrical shell was divided into twelve segments, as shown in Figure 6.5, the same 

as the circular cylindrical shell.  

 

(b) 
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Figure 6.5: Two types of the elliptical cross-sections with the segmentation of the 

local angles; (a) a>b, and (b) a<b  

 

 

Table 6.1: Material properties of the constituents (Kaddour et al., 2013) 

Property  Glass fibre  8552 epoxy  

Longitudinal modules E11 (GPa) 74 4.08 

Transverse modules E22 (GPa) 74 - 

Transverse modules E33 (GPa) 74 - 

In-plane shear modules G12 (GPa) 30.8 1.478 

Transverse shear modules G23 (GPa) 30.8 - 

Major Poisson’s ratio v12 0.2 0.38 

Fibre volume fraction of tow  60% 

Thickness of layer (mm) 0.125 
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 Results and discussion  

6.5.1 The buckling response of circular cylindrical shells 

Before analysing the structural performance, a mesh sensitivity study was 

conducted to identify the appropriate mesh size of the structure. In the finite element 

analysis, the mesh convergence can be considered as a verification. As it can be 

seen in Figure 6.6, where the buckling load is plotted against the number of 

elements, the curved fibre model requires more number of elements for the mesh to 

be converged as compared with the straight fibre model. 

 

Figure 6.6: Mesh convergence of the buckling load for the variable stiffness and 

constant stiffness laminate 

 

 The optimisation results of the optimum fibre path which only included the 

failure load Mf of material as a constraint are presented in Table 6.2 and 6.3 for the 

uniform and non-uniform fibre volume fraction distributions, respectively. In both 

cases, same five layups were considered, as defined in Section 6.3, which included 
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both the CS laminates (C0 and C1) as well as VS laminates (C2, C3 and C4). The 

optimum tow path corresponding to case C0 with θ =72° is shown in Figure 6.7. 

The optimum fibre path for case C1 with θ =45° is shown in Figure 6.8, which 

indicates that the optimised laminate is essentially quasi-isotropic (QI). Both cases 

C0 and C1 are considered as benchmarks to which VS laminate cases will be 

compared.  

The optimum results obtained through FE modelling for cases C0 and C1 

were compared with a theoretical estimation of buckling load that is also given in 

Table 6.2. The latter was obtained using the expression for critical buckling load 

derived by Fuchs et al. (1997), who studied laminated cylindrical shells under 

buckling load. The analytical expression for buckling load was as follows (Fuchs et 

al., 1997) 

 𝑀𝑐𝑟 = 2𝜋𝑅√𝐸𝜃𝐻𝐷11                                                                                           (6.15) 

where D11 is the axial bending stiffness of the laminate, Eθ is the laminate’s 

effective circumferential stiffness, H is the laminate thickness, and R is the radius 

of the cylinder. 

As can be seen from data in Table 6.2, a good agreement was obtained for 

cases C0 and C1 between the theoretical estimation of buckling load and the finite 

element results.  

 For cases, C2, C3 and C4 in Table 6.2, the optimum fibre paths on the 

surface of the cylindrical shell are given in terms of the coefficients Ti. The optimum 

fibre path of C2, C3 and C4 on the unfolded cylindrical shell are presented in Figure 

6.9, 6.10 and 6.11, respectively. It can be seen that at the keel region of the cylinder 

the fibre paths are in the axial direction to sustain more tensile load, whilst in the 
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crown region that resisting the compressive load, the local fibre angles are 45° or 

more. In  

Figure 6.12 the linear variation of the local angles along the circumference of a 

cylindrical shell have been presented for all five cases.  

The optimum results of the non-uniform fibre volume fraction distributions 

are shown in Table 6.3. The maximum buckling loads for the C2, C3 and C4 are 

smaller than those for their respective counterparts in Table 6.2. It is a result of the 

stiffness reduction due to the presence of variable gap as predicted in Section 5.7.3 

of Chapter 5. Specifically, because of the non-uniform distribution of fibre volume 

fraction, the material properties vary locally from point to point. Therefore, the 

stiffness is reduced locally as compared with uniform fibre volume fraction 

distributions. 

Table 6.2: Optimisation results of the circular cylindrical shells having a uniform 

fibre volume fraction distributions 

Cases Stacking sequence for the laminated circular 

cylindrical shell  

Buckling load (kN.m) 

FEM Theoretical 

estimation 

C0 [θ/-θ/ θ/-θ/-θ/ θ/-θ/ θ]s, θ=72°  34.5023 31.633 

C1 [0°/θ/90°/-θ/-θ/90°/θ/0°]s, θ=45° 42.0107 40.856 

C2 [0°/φ/90°/-φ/-φ/90°/ φ/0°]s 

T1=1°, T2=1°, T3=65°, T4=1°, T5=23°, T6=49°, 

T7=53° 

50.9622 - 

C3 [-φ/45°/ φ/-45°/-45°/ φ/ 45°/-φ]s 

T1=1°, T2=0°, T3=50°, T4=0°, T5=18°, T6=90°, 

T7=90° 

47.0915 - 

C4 [φ/-φ/φ/-φ/-φ/ φ/ -φ/ φ]s 

T1=1°, T2=19°, T3=63°, T4=24°, T5=45°, T6=67°, 

T7=74° 

49.0192 - 
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Table 6.3: Optimisation results of the circular cylindrical shells having a non-

uniform fibre volume fraction distributions  

Cases  Stacking sequence for the laminated circular 

cylindrical shell  

Buckling load 

(kN.m) 

C0 [θ/-θ/ θ/-θ/-θ/ θ/-θ/ θ]s, θ=72° 34.5023 

C1 [0°/θ/90°/-θ/-θ/90°/θ/0°]s, θ=45° 42.0107 

C2 [0°/φ/90°/-φ/-φ/90°/ φ/0°]s, 

T1=48°, T2=50°, T3=80, T4=53°, T5=48°, T6=48°, T7=49° 

41.7326 

C3 [-φ/45°/ φ/-45°/-45°/ φ/ 45°/-φ]s 

T1=29, T2=54, T3=63, T4=58, T5=45, T6=60, T7=77 

35.653 

C4 [φ/-φ/ φ/-φ/-φ/ φ/ -φ/ φ] s 

T1=36, T2=51, T3=49, T4=39, T5=52, T6=61, T7=68 

37.865 

 

 

Figure 6.7: Optimum fibre path of case C0 of a single layer  

 

Figure 6.8: Optimum fibre path of case C1 of a single layer  
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Figure 6.9: Optimum fibre path of case C2 of a single layer 

 

Figure 6.10: Optimum fibre path of case C3 of a single layer 

 

Figure 6.11: Optimum fibre path of case C4 of a single layer 
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Figure 6.12: Variation of the local angles in circumferential coordinate 

 

The variation of axial strain ɛz along the circumference of laminated 

cylindrical shells having uniform fibre volume fraction distributions in all five cases 

considered is shown in  

Figure 6.13. It can be seen that the strain variations of all five cases resemble 

a sine wave. The highest tensile strain was predicted at the keel of the cylinder, 

while the highest compressive strain (absolute value) is at the crown. It is worth 

noting that circumferential distance along which the strain is compressive is larger 

for VS laminated cylinders than that for the CS laminated cylinder.  

The variation of sectional force in the axial direction Nx as shown in Figure 

6.14 is associated with both the local stiffness and the axial strain variation along 

the circumference of the cylinder. As can be seen, for VS laminates, the tensile load 

is higher than that for the CS laminates as a result of the higher local stiffness in 

this region. Because of the variation of the local angles that produce variable 

stiffness, the variation of the axial force along the circumferential distance in the 
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VS laminates as shown in Figure 6.14 deviated from a sine wave shape predicted 

for the CS laminates. One can see there was an expansion in the area that resists a 

compressive axial force for the VS laminates. It could be considered as an indication 

of the stiffness variation of the laminated cylindrical shell.  

 

Figure 6.13: Axial strain of different cases of circular cylindrical laminated shells 
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Figure 6.14: Axial stress resultant of different cases of circular cylindrical 

laminated shells  

 

As shown in Figure 6.15(a) and (b), the most apparent difference between 

the first buckling modes of case C1 (CS) and case C2 (VS) is an area on the 

cylindrical shells that undergoes buckling. It can be seen such surface area in the 

former case is smaller than that in the latter case. Therefore, the value of the 

buckling load of the laminated cylindrical shells is affected by the size of that 

surface area that resists buckling load. 
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(a)  

 

(b)  

Figure 6.15: Buckling mode of laminated cylindrical shells; (a) case C1 (CS), and 

(b) case C2 (VS) 

 

6.5.2 Buckling performance of circular cylindrical shells in terms of the 

directions of the applied bending moment  

For all cases mentioned above, the bending moment was applied to the 

cylindrical shells in one specific direction, which could be determined based on the 

right-hand rule. However, the effect of different directions bending moment could 

give a clear picture of the improvements or losses in the buckling capacity in VS 

cylinders having steered fibres in a circumferential direction. In other words, the 

fibre path that offers an improvement of buckling load when load is applied in a 

certain direction can be detrimental to buckling performance when the direction of 

the load is reversed. In particular, such loading scenarios are encountered in 

aerospace structures such as fuselage and wing, during the landing and take-off.  

The effects of applying load in different directions are assessed based on the 

results shown in Figure 6.16 and 6.17. The variations of buckling loads with polar 

coordinates that represent the direction of the applied bending moment are 

presented. In Figure 6.16, buckling load in CS circular cylindrical shell (case C1) 

is compared with that in VS circular cylindrical shell (case C2). One can see that in 

the former case the buckling load was constant in all directions of loading, whilst 
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in the latter case, there was a gain in the buckling load for specific directions, whilst 

overall, the reduction in buckling load is apparent as compared with case C1. In this 

case, same as in all the cases to follow, the buckling load in polar plot varies from 

a maximum to minimum value symmetrically since the local fibre angles are 

symmetrically arranged with respect to the vertical axis as shown in Figure 6.2. 

Figure 6.17 shows a comparison between cases C0 and C4 cases with fibre 

orientation as specified in Table 6.2. Same as before, the buckling load for the entire 

range of directions in polar coordinates is constant for CS shell (case C0), whilst 

for case C4 that was of the same layup as C0 but with curved fibre laminates. It can 

be seen that for the cases C2 and C4 shown in Figure 6.16 and 6.17, respectively, 

the maximum value of buckling load was achieved when the axis of rotation of 

bending moment was at 180°. 
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Figure 6.16: Buckling load of laminated circular cylindrical shells against the 

direction of the applied moment for case C1 and C2  

 

Figure 6.17: Buckling load of laminated circular cylindrical shells against the 

direction of the applied moment for case C0 and C4 
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6.5.3 Effect of geometric parameters of the cylindrical shell on buckling 

performance  

The effect of the geometric parameters, namely, the length and the radius of 

the cylindrical shells have been investigated for all five cases specified in Table 6.2. 

It can be seen in Figure 6.18(a) that the increase in the length of shells generally led 

to reduction of the buckling load for all the cases considered. As can be seen, there 

were no specific qualitative differences between the curves obtained for CS and VS 

shells, because the variation of stiffness was along the circumferential coordinate 

and it was not affected by the change in length of the cylinder. In Figure 6.18(b) the 

buckling load was found to increase linearly with the radius in all cases. Therefore, 

the expanding circumference of the circular cylinder does not influence on the 

variation of the local angles; hence, a variation of stiffness does not change with 

increasing the radius of the cylinder.  

 

(a)  

 

(b)  

Figure 6.18: Buckling load of laminated circular cylindrical shells against 

geometric parameters; (a) length, and (b) radius 
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6.5.4 The buckling response of the elliptical cylindrical shells 

As has been stated in Section 6.4, the elliptical cylindrical shells have a 

different structural performance compared to circular cylindrical shells due to 

different curvatures in their elliptical cross-sections. To explore the differences in 

structural performance, optimisation of cylindrical shells of elliptical cross-sections 

was conducted for the same types of lay-up as were defined in Section 6.3. The 

optimisation cases were denoted using the same notations as employed previously 

for circular cylindrical shells, where cases C0 and C1 were the CS laminates, and 

cases C2, C3 and C4 were the VS laminates. These cases of the elliptical cylindrical 

shells were considered just the uniform distributions of the fibre volume fraction. 

The optimisation results for the elliptical cylindrical shell with horizontal 

axis larger than the vertical axis, i.e. a>b, are given in Table 6.4. One can see that 

there was an improvement in buckling load for the VS laminates as compared to 

CS laminates. The optimisation results for elliptical cylindrical shells having a<b 

were summarised in Table 6.5. It can be seen that the buckling loads for all such 

cases are larger than those for their counterparts a>b. Also, the buckling loads of 

the CS cylinders were generally smaller than those of VS cylinders. This is 

attributed to the inefficient definition of the fibre path in case C0 and C1, where the 

local angles are kept constant for the whole structure. In the cases, C2, C3 and C4, 

the fibre is steered on the surface of the elliptical cylindrical shell to produce a 

continuous change of stiffness. Consequently, it improves structural performance 

by increasing the ability to resist buckling load. 

The axial strain distribution for the five cases with a>b was produced as 

shown in Figure 6.19, where it was plotted as a function of the circumferential 

length. It can be seen in the strain distribution curves varied in sinusoidal form as 
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in of circular case. It gives an induction for the local stiffness in a circumferential 

direction.  

Table 6.4: Optimisation results for different cases of elliptical cylindrical shells 

having a>b  

Cases Stacking sequence of a laminated elliptical 

cylindrical shell  

Buckling load 

(kN.m) 

C0 [θ/-θ/ θ/-θ/-θ/ θ/-θ/ θ]s, θ=72° 16.3373 

C1 [0°/θ/90°/-θ/-θ/90°/θ/0°]s, θ=53° 20.2843 

C2 [0°/φ/90°/-φ/-φ/90°/ φ/0°]s 

T1=1°, T2=0°, T3=2°, T4=0°, T5=13°, T6=54°, T7=54° 

27.0 

C3 [-φ°/45°/ φ°/-45°/-45°/ φ°/ 45°/-φ°]s 

T1=0°, T2=0°, T3=0°, T4=0°, T5=0°, T6=67°, T7=90° 

25.7759 

C4 [φ°/-φ°/ φ°/-φ°/-φ°/ φ°/ -φ°/ φ°] s 

T1=3°, T2=0°, T3=53°, T4=1°, T5=32°, T6=72°, T7=73° 

30.7963 

 

Table 6.5: Optimisation results for different cases of elliptical cylindrical shells 

having a<b  

Cases Stacking sequence of a laminated elliptical cylindrical 

shell  

Buckling load 

(kN.m) 

C0 [θ/-θ/ θ/-θ/-θ/ θ/-θ/ θ]s , θ=72° 47.8082 

C1 [0°/θ/90°/-θ/-θ/90°/θ/0°]s, θ=53° 59.0242 

C2 [0°/φ/90°/-φ/-φ/90°/ φ/0°]s 

T1=0°, T2=5°, T3=90°, T4=1°, T5=50°, T6=53°, T7=28° 

68.9439 

C3 [-φ/45°/ φ/-45°/-45°/ φ/ 45°/-φ]s 

T1=1°, T2=7°, T3=71°, T4=3°, T5=21°, T6=36°, T7=0° 

60.1338 

C4 [φ°/-φ°/ φ°/-φ°/-φ°/ φ°/ -φ°/ φ°] s 

T1=0°, T2=2°, T3=9°, T4=40°, T5=73°, T6=72°, T7=37° 

57.9523 
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The variation of axial stress resultant that causes buckling load for all cases 

with a>b is presented in Figure 6.20. As can be seen, the circumferential distance 

along which the axial stress resultant is compressive is larger than the distance 

where the axial stress resultant was tensile for VS laminates, whilst for the CS 

laminates the two distances were equal. This indicates that properly designed VS 

shell can be more efficient in resisting buckling deformation since the part of the 

shells sustaining the compressive load is larger than that in conventional CS shells. 

 

Figure 6.19: Axial strain of different layups of laminated elliptical shells having 

a>b 
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Figure 6.20: Axial stress resultant of different layups of laminated elliptical shells 

having a>b  

 

In the case a<b, the axial strain and axial stress resultant variations were 

obtained as shown in Figure 6.21 and 6.22, respectively. It can be seen that the axial 

strain has a sine wave profile along the circumference of the cylindrical shell. The 

value of the strains in all five cases considered is larger in their respective 

counterparts with a>b that are shown in Figure 6.19. Since the direction of the 

applied bending moment is around the horizontal axis, and the curved parts of the 

elliptical cylindrical shell with a<b, which are more structurally stable, can sustain 

larger buckling load. Consequently, the maxima of the axial stress resultants in 

Figure 6.22 are significantly larger than whose for cases with a>b in Figure 6.20. 

The similarity between the two cases was that the axial load remained compressive 

over larger circumferential distance than it stayed tensile.  
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Figure 6.21: Axial strain of different layups of laminated elliptical shells having 

a<b 

 

Figure 6.22: Axial stress resultant of different layups of laminated elliptical shells 

having a<b 
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6.5.5 Buckling performance of elliptical shells in terms of the directions of 

the applied bending moment  

The direction of the axis of applied bending moment on the edges of the CS 

and VS laminated cylinders can have a significant effect on buckling response. To 

explore this effect, a range of parametric studies have been carried out where the 

direction of the axis of the bending moment was varied from 0° to 360°.  

Figure 6.23 shows the variation of buckling load with respect to the 

directions of bending moment for the elliptical shell with a<b for cases C0 (blue 

curve) and C4 (red curve). Both of curves are symmetric with respect to the 

horizontal axis and the maximum values of buckling load are achieved 0° and 180° 

directions. The range of directions where the value of buckling load for VS laminate 

(case C4) was higher than that for CS laminate, was relatively small, from 173° to 

187°, with the maximum being at 180°. A similar scenario was observed comparing 

cases C1 and C2 in Figure 6.24. However, the buckling loads in these two cases in 

were larger than those in respective cases C0 and C4 as shown in Figure 6.23. 

Similar polar graphs with buckling load being plotted against different 

directions of bending moment for shells of elliptical cross-sections with a>b are 

shown in Figure 6.25 and 6.26. In Figure 6.25, showing the results for cases C0 and 

C4, the largest improvement of buckling load as compared with CS laminate (case 

C0) was predicted when direction was 180°, whilst the range of directions where 

buckling load in VS laminate is higher than in CS laminate is from 103° to 253°. 

Figure 6.26 shows a comparison of buckling load variations for cases C0 and C4. 

In this case, improvement in buckling load for VS cylinder (case C4) in comparison 

with CS cylinder (case C0) was between 120° and 240°. The magnitudes of 

buckling load in all directions were larger than in respective cases in Figure 6.25 as 

a result of different sequences of layups. Overall, for the elliptical cylindrical shells 
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with a>b, the ranges of the directions of the applied bending moment that offer a 

gain in buckling load are wider than those for elliptical cylindrical shells with a<b. 

This offers a good assessment for the applicable range of directions of the axis of 

bending moment, which must be taken as a consideration in design process.  

 

 

Figure 6.23: Buckling load of elliptical shells with a<b plotted against the directions 

of the applied bending moment for cases C0 and C4 
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Figure 6.24: Buckling load of elliptical shells with a<b plotted against the directions 

of the applied bending moment for cases C1 and C2 

 

Figure 6.25: Buckling load of elliptical shells with a>b plotted against the directions 

of the applied bending moment for cases C0 and C4 
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Figure 6.26: Buckling load of elliptical shells with a>b plotted against the directions 

of the applied bending moment for cases C1 and C2 

 

6.5.6 Effect of geometric parameters of the elliptical cylindrical shell.  

The effect of cross-sectional aspect ratio (b/a) on buckling performance of 

the elliptical cylindrical shell has been investigated, with the results being shown in 

Figure 6.27. The circumference of the cross-section was kept constant to ensure that 

the same amount of material was used for shell types considered in resisting the 

buckling load. It can be seen in Figure 6.27 that the buckling load increases as the 

aspect ratio b/a approaches unity, that is, the cross-section approaches a circular 

shape; hence, the curved parts of the elliptical cross-section become wider to 

approach the circular shape. Hence, the buckling capacity is reduced. It is worth 

noting, that for some VS cylindrical shells, the variation of the buckling load with 

aspect ratio b/a is non-monotonic, where it starts to decrease after a certain aspect 

ratio following the initial increase. This is since the influence of the variation of 
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local angles is more efficient on the flatter portions than that on the curved portions. 

It is worth noting whilst the difference between buckling loads for different cases 

is pronounced at large aspect ratios, at small aspect ratios the buckling load is very 

small and approximately same for all five case. This is to be expected since at small 

aspect ratio elliptical cross-section can essentially be viewed as two flat plates 

connected at their ends.  

The results demonstrating the effects of the shell length on buckling loads 

in CS and VS elliptical cylindrical shells are shown Figure 6.28(a) and (b) for shells 

with a>b and a<b, respectively. It can be seen that the buckling load tends to 

decrease for both CS and VS elliptical cylinders, approaching the asymptotic values 

as the length increases. 

 

Figure 6.27: Buckling load as the function of the aspect ratio of elliptical laminated 

cylindrical shells 
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(a)  

 

(b)  

Figure 6.28: Buckling load against different lengths of the laminated elliptical 

cylindrical shells having cross-section; (a) a>b and (b) a<b 

 

 Summary  

Steering the fibre on cylindrical part allows for varying its stiffness, which 

can help to redistribute the loads, thus improving its structural performance. It was 

shown that the ability of the VS circular cylindrical shells to sustain buckling load 

under bending moment can be improved as compared with CS shells. The 

improvement becomes more apparent in shells with larger number of layers with 

curvilinear steered fibres.  

The presence of the variable gap between the adjacent tows results in a non-

uniform distribution of fibre volume fraction and hence the variation of local 

material properties over the cylindrical shell. Overall, the values of the local 

material properties are smaller than those obtained assuming uniform fibre volume 

fraction distributions. Local reduction of stiffness in circumferential direction 

reduces the ability of laminated cylindrical shells to sustain buckling load.  

 

0

5

10

15

20

25

30

35

0 200 400 600

B
u

ck
lin

g 
lo

ad
 (

kN
.m

)

Length (mm)

C0 C1 C2
C3 C4

40

45

50

55

60

65

70

75

0 200 400 600

B
u

ck
lin

g 
lo

ad
 (

kN
.m

) 

Length (mm)

C0 C1 C2

C3 C4



Chapter 6 

160 
 

The numerical study was carried out where the direction of bending moment 

was varied. It revealed that in general, the buckling load in a cylindrical shell based 

on VS laminates was lower than that in the CS shells. However, ranges of directions 

of the applied bending moment were identified for VS shells offer a substantial gain 

in the buckling load. The prediction obtained also suggest that the range of 

directions of the applied bending moment at which VS elliptical cylindrical shells 

outperform CS elliptical cylindrical shells in terms of buckling load was wider for 

elliptical cylindrical shell with the dimensions of cross-section such that a>b than 

for shells where a<b. Therefore, when designing VS shells, one must be aware of 

such ranges where superior performance can be offered by VS shells. 

 In the elliptical laminated cylindrical shells steering the fibre along the 

circumference allows the axial stresses resultant force to redistribute in the way that 

the compressive load is partially moved from the area of a larger radius of curvature, 

which is less structurally stable, to the area of a smaller radius of curvature. 

Therefore, steering the fibre can help to compensate for the reduction in structural 

performance occurring in structures of certain geometries.  

This indicates that properly designed VS shell can be more efficient in resisting 

buckling deformation, since the part of the shells sustaining the compressive load 

is larger than that in conventional CS shells. 

It has been shown that in properly designed VS shells the compressive load is 

distributed over the larger area than in CS cylindrical shells, making them more 

efficient in resisting the buckling deformations. In overall, steering the fibre showed 

a good-balanced distribution of the local angles in the composite materials. Hence, 

the directional feature in the material properties in the laminated structures was 

fully utilized. 
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7 Strength evaluations of steered fibre laminates 

 Introduction 

The application in the aerospace structures of high-performance composite 

laminates that have a curvilinear path of tows was made possible by automated fibre 

placement machines for large components and 3D printing for small components. 

However, these structures still consist of many laminae having a conventional 

quasi-isotropic layer. The curvilinear tow pattern produced by the tow placement 

process and based on the linear variation of local angle could yield overlaps or gaps 

in the lamina. This affects the fibre volume fraction of the laminates locally. The 

definition of a curved path could be considered as a set of small segments of straight 

tows. Every such segment of a curved tow could be considered as a unidirectional 

tow with specific local fibre orientation. The strength of each segment could be 

determined in terms of the stress state or strain state according to the failure criterion 

employed.  

The stresses and strains of layers in the laminate depend on the laminate 

loading conditions, local angle orientation and material properties. The stress or 

strain usually reach critical values in one layer before any other layers. Hence, the 

failure estimation in the present study is based on the failure in such a layer. 

However, the remaining layers could still carry more load after failure in one ply in 

a stable manner, which is often described as progressive failure. The first-ply failure 

is mainly caused by the in-plane components of the stress tensor in the ply. 

Delamination between the plies usually does not occur in the laminate before the 

onset of intralaminar failure and it will not be dealt with in this chapter. Khani et al. 
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(2011) investigated the maximum strength that could be reached by the variable 

stiffness laminates using lamination parameters as a continuous design variable. 

They used a method which incorporated the Tsai-Wu failure criterion with the 

lamination parameters domain by using a traditional failure envelope. The failure 

index of Tsai-Wu criterion of unidirectional fibre composites is used in Honda et 

al. (2013) as the objective function in the optimisation approach of curvilinear 

fibres, which were defined by a continuous polynomial function to impose 

continuity in the fibre direction. They dealt with each local point of fibre direction 

in the curved path as a single point of UD laminate and did not take in consideration 

of the effect of the gap width variation on the strength value. Lopes et al. (2008b) 

studied the compressive failure prior to buckling since the variable stiffness 

laminates can substantially improve the ability to carry more load before buckling. 

It was found that the first ply failure occurs in the outer 45° plies for compressive 

loads because of the local strengths of those plies were smaller than it others. Blom 

et al. (2009a) investigated the effects of the tow–drop produced by cutting the 

individual tow in the course of many tows to prevent their overlapping. They 

concluded the failure due to the compressive load took place in the tow-drop area, 

which had resin-rich pocket, and in the area with sharp turns in the fibre paths. 

As reviewed above, calculations of failure load due to the compression were 

carried out, and some works involved tensile loads. However, the effect of the 

variable gap width on the strength parameters of the composite has not been 

considered. 



Chapter 7 

163 
 

 Ultimate strengths of unidirectional lamina 

It is well established from a variety of studies (Kaddour et al., 2013), 

(Sapozhnikov and Cheremnykh, 2013) and (Torres et al., 2017) that the composite 

architecture has a great effect on the damage and failure modes of laminates 

consisting of brittle fibres embedded in a ductile matrix. A curvilinear lamina could 

be considered as being comprised of multiple small unidirectional elements, with 

each element being as single point in a lamina. Therefore, the approach used to 

calculate the mechanical properties from the individual properties of UD laminate 

could be used for that small part.  

Prediction of the strength properties of the unidirectional lamina is more 

complicated than the calculation of stiffness because the strengths are more 

sensitive to the fibre-matrix interfaces, geometric non-homogeneities, 

manufacturing process. For instance, the lack of bonding between the fibre and 

matrix could result in premature failure in composites when a transverse load is 

applied. To some extent, it could increase the longitudinal strength of composites. 

Therefore, in order to determine the ultimate strengths, some assumptions have to 

be made.  

7.2.1 Longitudinal tensile strength (Xt) 

It is assumed that the composite consists of continuous fibres and matrix 

and they are considered to be perfectly bonded, isotropic and linearly elastic up to 

failure. The failure of composite takes place when the strain in fibre direction 

reaches the failure strain value of the brittle fibres, which are considered to be the 

first constituent to fail. Depending on the amount of the fibres in the composite and 

its minimum value (threshold), there are two possible scenarios to calculate the 
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strength as shown in Figure 7.1 (Kaw, 2005). Variables appearing in Figure 7.1 will 

be defined with the implications of Figure 7.1 fully elaborated. The two possible 

scenarios of failure classified as follows. 

 

Figure 7.1: The variation tensile composite strength in fibre direction against fibre 

volume fraction 

 

7.2.1.1 Strength calculations at 0<𝑉𝑓 <𝑉𝑓𝑚𝑖𝑛 

In this case, there is a minimal amount of fibres in the composite, and hence 

the stresses in the unidirectional lamina can go high enough to tear the fibres. After 

the fracture of fibres, they can no longer carry any load, and the fibres will be 

considered as holes in the cylindrical form embedded in the matrix. Therefore, the 

effect of these holes on the composite lamina increases the stresses at any given 

strain. This effect will be more realistic when the failure strain of the matrix is 

higher than that of the fibre, which is usually true. Therefore, this amount of fibres 

reduces the strength of lamina instead of improving it; hence, the failure in lamina 
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becomes dominated by matrix in this scenario. The longitudinal tensile strength of 

the composite is obtained as follows (Kaw, 2005). 

𝑋𝑡 = 𝑌𝑚(1 − 𝑉𝑓)                                                                                                       (7.1) 

where 𝑋𝑡, 𝑌𝑚 and 𝑉𝑓 are the composite tensile strength in the longitudinal direction, 

the strength of matrix and fibre volume fraction, respectively. 

The minimum fibre volume fraction that known as a threshold is defined as follows. 

𝑉𝑚𝑖𝑛 =
𝑌𝑚−𝜎𝑚

′

𝑋𝑓−𝜎𝑚
′ +𝑌𝑚

                                                                                                         (7.2) 

where 𝜎𝑚
′  is the stress carried by matrix at the fibre failure strain as shown in Figure 

7.2. 

7.2.1.2 Strength calculations at 𝑉𝑓𝑚𝑖𝑛 < 𝑉𝑓 < 1 

In this scenario, the fibre volume fraction is greater than the value of the 

minimum volume fraction. The maximum value of the fibre volume fraction is a 

function of fibre packing geometry. For instance, the square packing of the fibres 

of circular cross-sections leads to maximum theoretically achievable fibre volume 

fraction of 𝜋/4 ≅ 78.54%, while the maximum achievable fibre value fraction for 

hexagonal packing is 𝜋/2√3 ≅ 90.69% (Li, 2000). The whole composite lamina 

is assumed to fail when the brittle fibres fail. This scenario is called fibre failure 

dominated. The longitudinal composite strength is defined as follows (Kaw, 2005).  

𝑋𝑡 = 𝑋𝑓𝑉𝑓 + 𝜎𝑚
′ (1 − 𝑉𝑓

𝜎𝑚
′ = 𝑋𝑓

𝐸𝑚

𝐸𝑓
                                                                                                                                    (7.4) 

 where 𝑋𝑓 , 𝐸𝑚 and 𝐸𝑓 are the tensile strength of fibre, Young’s moduli of matrix 

and of fibre, respectively.   
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Figure 7.2: Schematic illustrates the stress-strain curve for unidirectional composite 

and its components 

 

In order to determine which scenario could be applied to each configuration 

of the curvilinear laminate, the minimum value of local fibre volume fraction needs 

to be calculated. The local fibre volume fraction changes spatially according to the 

variation of gap width as a result of linear variation of local orientation along the x-

axis and can be obtained from Equation (5.19) in Chapter 5 as follows. 

𝑉𝑙𝑜𝑐𝑎𝑙 =
cos (𝑇1)

cos ((2𝑥(𝑇1−𝑇0)/𝐿)+𝑇0)
∗ 𝑉𝑡𝑜𝑤                                                                         (7.5) 

where 𝑉𝑙𝑜𝑐𝑎𝑙, 𝑇0, 𝑇1 , 𝐿 and 𝑉𝑡𝑜𝑤 are the local fibre volume fraction, the local angle 

at the centre of the panel, the local angle at the edge of the panel, length of the panel 

and fibre volume fraction of the tow, respectively.  

The minimum value of the local fibre volume fraction can be obtained as follows: 

 𝑉𝑚𝑖𝑛 = 𝑀𝑖𝑛[𝑉𝑙𝑜𝑐𝑎𝑙]                                                                                                   (7.6) 



Chapter 7 

167 
 

7.2.2 Longitudinal compressive strength (Xc) 

The compressive strength of a composite of parallel fibres embedded in the 

homogeneous matrix is strongly affected by many considerations, such as 

premature modes of failure, micro-flaws, dislocation mobility of fibre. 

Compressive load in the fibre direction could produce different types of failure 

modes. 

7.2.2.1 Fracture of matrix and/or fibre-matrix bond due to tensile strains in a 

matrix 

This mode of failure is based on an assumption that the failure of composite 

in the transverse direction occurs because of the transverse tensile strains that are 

produced as a result of the longitudinal compressive load (Kaw, 2005). This 

assumption has to be criticised, since the transverse tensile strain that is considered 

as uniaxial strain causing the failure of composite, is not equivalent for the uniaxial 

stress state as elaborated in the study of Li and Sitnikova (2018a). The applied 

compressive load in the direction of fibres produces the longitudinal compressive 

strain. However, according to the major Poison’s ratio of composite, the transverse 

strain that causes the fracture of matrix and/or fibre-matrix bond is the transverse 

tensile strain of composite and is defined as follows:  

𝜀2 = 𝑣12
𝜎1

𝐸1 
                                                                                                               (7.7) 

where the 𝑣12, 𝜎1 and 𝐸1 are the major Poison’s ratio, compressive stress in the fibre 

direction and Young’s modulus of the composites in the fibre direction, 

respectively. 
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According to the maximum strain failure criterion, the composite is 

considered to have failed in the transverse direction if its transverse strain greater 

than the ultimate tensile strain 𝜀2 𝑢𝑙𝑡
𝑇  . 

Hence, the longitudinal compressive strength will be as follows:  

𝑋𝑐 =
𝐸1  𝜀2 𝑢𝑙𝑡

𝑇

𝑣12
                                                                                                             (7.8) 

The value of the ultimate tensile strain 𝜀2 𝑢𝑙𝑡
𝑇  can be derived according to the 

mechanics of material by assuming a perfect fibre and matrix bonding, uniform 

spacing of fibres, fibre and matrix following Hooke’s law in absence of residual 

stresses. 

By the definition of strain, the extensions can be defined as follows: 

𝛿𝑐
𝑇 = 𝑆𝜀𝑐

𝑇                                                                                                                 (7.9) 

𝛿𝑓
𝑇 = 𝑑𝜀𝑓

𝑇                                                                                                                (7.10) 

𝛿𝑚
𝑇 = (𝑆 − 𝑑)𝜀𝑚

𝑇                                                                                                     (7.11) 

where d and S are the diameter of the fibre and the distance between centres of 

neighbouring fibres, respectively, as shown in Figure 7.3 and the 𝛿𝑓
𝑇 , 𝛿𝑚

𝑇  𝑎𝑛𝑑 𝛿𝑐
𝑇 

are the transverse extensions of fibre, matrix and composite, respectively. 

The total transverse extension of a composite is defined as follows. 

𝛿𝑐
𝑇 = 𝛿𝑓

𝑇 + 𝛿𝑚
𝑇                                                                                                         (7.12) 
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Figure 7.3: Representative volume element shows the transverse tensile load 

 

Hence, the transverse strain of composite will be as follows:  

𝜀𝑐
𝑇 =

𝑑

𝑆
𝜀𝑓
𝑇 + (1 −

𝑑

𝑆
) 𝜀𝑚

𝑇                                                                                          (7.13) 

where 𝜀𝑐
𝑇 , 𝜀𝑓

𝑇and 𝜀𝑚
𝑇  transverse strains of composite, fibre and matrix, respectively. 

By assuming equal transverse stresses in the fibre and matrix, the strain of fibre will 

be as follows. 

𝜀𝑓
𝑇 =

𝐸𝑚

𝐸𝑓
𝜀𝑚
𝑇                                                                                                              (7.14) 

Hence, the transverse strain of composite will become 

𝜀𝑐
𝑇 = [

𝑑

𝑆

𝐸𝑚

𝐸𝑓
+ (1 −

𝑑

𝑆
) ] 𝜀𝑚

𝑇                                                                                      (7.15) 

According to the assumption that the transverse failure of composites takes place 

as a result of the failure of a matrix, the transverse failure strain of composite is as 

follows. 

 𝜀𝑐_𝑢𝑙𝑡
𝑇 = [

𝑑

𝑆

𝐸𝑚

𝐸𝑓
+ (1 −

𝑑

𝑆
) ] 𝜀𝑚 𝑢𝑙𝑡

𝑇                                                                            (7.16) 

By substituting Equation (7.16) to the (7.8) the longitudinal compressive strength 

is obtained as follows. 
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𝑋𝑐 =
𝐸1 

𝑣12
[
𝑑

𝑆

𝐸𝑚

𝐸𝑓
+ (1 −

𝑑

𝑆
) ]

𝑌𝑚

𝐸𝑚
                                                                                 (7.17) 

7.2.2.2 Micro-buckling of fibres in shear or extensional mode 

The failure is due to the fibre micro-buckling when individual fibres buckle 

inside the matrix. The buckling of fibres that causes the failure under the 

compressive load also identifies the mode of failure as either extensional mode or 

shear mode. The extensional mode occurs when the fibres buckle in opposite 

directions to the adjacent fibres. This mode causes an extension to the matrix in a 

direction perpendicular to fibre. The shear mode occurs when all fibre buckle in the 

same wavelength. Therefore, the deformation of the matrix between the fibres is a 

shear deformation. That buckling is affected by fibres misalignment, shear 

modulus, and shear strength of composite (Kaw, 2005). 

The compressive strength of extensional mode as follows. 

 𝑋1
𝑐 = 2 [𝑉𝑓 + (1 − 𝑉𝑓)

𝐸𝑚

𝐸𝑓
]√

𝑉𝑓𝐸𝑚𝐸𝑓

3(1−𝑉𝑓)
                                                                     (7.18) 

with the compressive strength of shear mode being. 

𝑋2
𝑐 =

𝐺𝑚

1−𝑉𝑓
                                                                                                               (7.19) 

Then, the final expression of the compressive strength of composites is given by: 

𝑋𝑐 = min[𝑋1
𝑐 , 𝑋2

𝑐]                                                                                                 (7.20) 

7.2.2.3 Shear failure of fibres  

This mode of failure could occur when unidirectional laminates are under 

compressive load, as a result of direct shear failure of fibres. In this case, the rule 

of mixtures could be used to calculate the shear strength of the unidirectional 

composite as follows (Kaw, 2005). 
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 𝜏12 𝑢𝑙𝑡 = 𝜏𝑓 𝑢𝑙𝑡 𝑉𝑓 + 𝜏𝑚 𝑢𝑙𝑡𝑉𝑚                                                                                (7.21) 

where 𝜏𝑓 𝑢𝑙𝑡 and 𝜏𝑚 𝑢𝑙𝑡 are the ultimate shear strength of the fibre and ultimate shear 

strength of the matrix, respectively. 

Since the maximum shear stress in the lamina is half of the longitudinal 

compressive load, the compressive strength can be defined as follows. 

 𝑋𝑐 = 2[𝜏𝑓 𝑢𝑙𝑡 𝑉𝑓 + 𝜏𝑚 𝑢𝑙𝑡𝑉𝑚]                                                                                 (7.22) 

The minimum value of the compressive strength that obtained by the micro-

buckling of fibres should be compared with that obtained by shear failure of fibres, 

whereas the minimum value will be used as the compressive strength. 

7.2.3 Transverse tensile strength (Yt) 

The transverse tensile strength is obtained according to a mechanics of 

materials approach, by assuming a complete fibre matrix bonding, the uniform 

distance between the fibres as shown in Figure 7.3 and the absence of residual 

stresses (Kaw, 2005). 

The transverse strain of composites under transverse tensile load can be given as 

follows. 

𝜀𝑐
𝑇 = [

𝑑

𝑆

𝐸𝑚

𝐸𝑓
+ (1 −

𝑑

𝑆
) ] 𝜀𝑚

𝑇                                                                                      (7.23) 

Hence, the ultimate transverse tensile strength will become as follows. 

𝑌𝑡 = 𝐸2 [
𝑑

𝑆

𝐸𝑚

𝐸𝑓
+ (1 −

𝑑

𝑆
) ]

𝑌𝑚_𝑢𝑙𝑡
𝑡

𝐸𝑚
                                                                             (7.24) 

where 𝐸2 and 𝑌𝑚_𝑢𝑙𝑡
𝑡  are the transverse Young’s modulus of the composite and 

ultimate tensile strain of matrix, respectively. 
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7.2.4 Transverse compressive strength (Yc)  

Equation (7.24) for the transverse tensile strength can be employed to 

calculate the transverse compressive strength of the lamina (Kaw, 2005). The 

imperfect fibre/matrix bond and longitudinal fibre splitting reduce the actual 

compressive strength of composites. The transverse compressive strength is 

obtained as follows: 

𝑌𝑐 = 𝐸2𝜀𝑐
𝐶                                                                                                                  (7.25) 

where 𝐸2 and 𝜀𝑐
𝐶 are the transverse Young’s modulus of composite and the 

compressive strain of composite, respectively. 

𝑌𝑐 = 𝐸2 [
𝑑

𝑆

𝐸𝑚

𝐸𝑓
+ (1 −

𝑑

𝑆
) ]

𝑌𝑚_𝑢𝑙𝑡
𝑐

𝐸𝑚
                                                                              (7.26) 

where 𝑌𝑚_𝑢𝑙𝑡
𝑐  is the ultimate compressive strain of the matrix. 

7.2.5 In-plane shear strength (τc) 

To determine the in-plane shear strain of unidirectional lamina by using a 

mechanics of materials approach, one can assume that shear stress of 𝜏12 is applied 

to composite and the shear deformation of the representative volume element is 

equal to the sum of the deformation of fibre and matrix (Kaw, 2005). 

The total shear deformation of the composite is given as: 

 Δ𝑐 = Δ𝑓 + Δ𝑚                                                                                                       (7.27) 

where Δ𝑓 and Δ𝑚 are the shear deformation of fibre and matrix, respectively. 

The shear strains of composite, fibre and matrix material could be defined, 

respectively, as follows: 

𝛾12𝑐 =
Δ𝑐

𝑆
                                                                                                               (7.28) 
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𝛾12𝑓 =
Δ𝑓

𝑑
                                                                                                               (7.29) 

𝛾12𝑚 =
Δ𝑚

(𝑆−𝑑)
                                                                                                          (7.30) 

Hence, the in-plane shear strain of composite is rewritten as follows: 

 𝛾12𝑐 =
𝑑

𝑠
𝛾12𝑓 + [1 −

𝑑

𝑠
] 𝛾12𝑚                                                                             (7.31) 

Assuming the shear stress of fibre is equal to the shear stress of the matrix under 

the shear load yields 

𝛾12𝑚𝐺𝑚 = 𝛾12𝑓𝐺𝑓                                                                                                  (7.32) 

Then the expression of the shear strain of composite is obtained as follows: 

 𝛾12𝑐 = [
𝑑

𝑠

𝐺𝑚

𝐺𝑓
+ (1 −

𝑑

𝑠
)] 𝛾12𝑚                                                                               (7.33) 

If the shear failure of the lamina occurred due to the failure of the matrix, the 

ultimate shear strain of composite would be as follows. 

𝛾12𝑐 𝑢𝑙𝑡 = [
𝑑

𝑠

𝐺𝑚

𝐺𝑓
+ (1 −

𝑑

𝑠
)] 𝛾12𝑚 𝑢𝑙𝑡                                                                     (7.34) 

Finally, the in-plane shear strength of composites is defined as follows: 

𝜏𝑐 = 𝐺12  [
𝑑

𝑠

𝐺𝑚

𝐺𝑓
+ (1 −

𝑑

𝑠
)]

𝜏𝑚

𝐺𝑚
                                                                               (7.35) 

 

 Linearisation of Tsai-Wu failure criterion 

The Tsai-Wu failure criterion is considered to provide a classical 

representation of global strength. It is described as a simple interpolation 

polynomial constructed from strength values of the unidirectional lamina and does 

not consider the effect of the dominated value of strength.  
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The polynomial of the Tsai-Wu Tsai and Wu, 1971 can be written as follows 

(Puck et al., 2002). 

𝐹({𝜎}) = ∑𝐿 + ∑𝑄                                                                                              (7.36) 

where ∑ 𝐿 and ∑𝑄  are the summation of linear and quadratic terms, namely  

∑𝐿 = (𝐹1𝜎1 + 𝐹2𝜎2)                                                                                             (7.37) 

∑𝑄 = (𝐹11𝜎1
2 −√𝐹11𝐹22𝜎1𝜎2 + 𝐹22𝜎2

2 + 𝐹66𝜎12
2 )                                              (7.38) 

In order to simplify the Equations (7.37) and (7.38), a common factor, which 

will be referred to as load factor, can be extracted from the stress state vector as 

follows: 

{
 
 

 
 
𝜎1
𝜎2
𝜎3
𝜏23
𝜏13
𝜏12}
 
 

 
 

= 𝜆

{
 
 

 
 
𝜎1
𝜎2
𝜎3
𝜏2̅3
𝜏1̅3
𝜏1̅2}
 
 

 
 

                                                                                                    (7.39) 

Hence, the Tsai-Wu criterion will become a function of the load factor 𝜆, as 

the concept of Puck et al. (2002), and the second-order equation is rewritten as 

follows: 

𝐹({𝜎}) = 𝐹(𝜆, {𝜎 }) = 𝜆∑ 𝐿̅ + 𝜆2∑ 𝑄̅                                                                 (7.40) 

where ∑ 𝐿̅ and ∑ 𝑄̅ are the summation of linear and quadratic terms, respectively, 

after extraction of the common factor. 

In order to linearise Tsai-Wu criterion such that it would capture the value 

of unity of the failure index, one can assume the linear form of failure index as 

follows: 

𝐹𝑙({𝜎}) =
1

2
(∑ 𝐿 + √(∑𝐿)2 + 4∑𝑄)                                                                 (7.41) 
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Rearranging Equation (7.41), one has 

2𝐹𝑙 − ∑𝐿 = √(∑𝐿)2 + 4∑𝑄                                                                              (7.42) 

and 

4𝐹𝑙
2 − 4𝐹𝑙 ∑𝐿 + (∑𝐿)

2 = (∑𝐿)2 + 4∑𝑄                                                           (7.43) 

Equation (7.43) is simplified to 

𝐹𝑙
2 = 𝐹𝑙 ∑𝐿+∑𝑄                                                                                                 (7.44) 

When 𝐹𝑙 = 1 then the Equation (7.44) becomes 

 ∑ 𝐿 + ∑𝑄 = 1                                                                                                      (7.45) 

As shown in Figure 7.4, the line corresponding to the linearised form of Tsai-Wu 

criterion given by (7.45) intersects curve obtained using conventional Tsai-Wu 

criterion at unity, i.e. 

 𝐹𝑙 = 𝐹 = 1                                                                                                            (7.46) 

Finally, by taking the common factor 𝜆 from the stress vector, the linear 

form can be written as follows:  

𝐹𝑙 =
𝜆

2
(𝐹1𝜎1 + 𝐹2𝜎2 +

√(𝐹1𝜎1 + 𝐹2𝜎2)2 + 4(𝐹11𝜎̅1
2 −√𝐹11𝐹22𝜎1𝜎̅2 + 𝐹22𝜎2

2 + 𝐹66𝜎12
2 ))               (7.47) 

 

Figure 7.4: Schematic illustrates the quadratic form and the linear form of Tsai-Wu 

failure index 
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In order to understand the relationship between the quadratic and linear 

forms of Tsai-Wu failure index and to ensure that the former works well, it was 

implemented as UMAT subroutine. Simple calculations of failure index for a 

different range of unidirectional laminates were carried out. Figure 7.5 shows the 

linear form and quadratic form intersecting at unity for each orientation of the 

unidirectional laminates with the material properties given Table 7.1. It can be seen 

the failure load could be predicted for both cases of uniaxial loading, tensile or 

compressive. Linearisation the Tsai-Wu criterion is beneficial in terms of reducing 

computational costs. It does not require as many increments to capture the failure 

load as the quadratic polynomial form of Tsai-Wu criterion. In addition, it could be 

used to determine the failure envelope of in-plane stress state according to the state 

of the interactive strength property F12, as mentioned in the study of Li et al. (2017). 

 

Figure 7.5: The linear and quadratic form of a failure index of Tsai-Wu for different 

orientations of the unidirectional lamina 
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Table 7.1: Material properties according to Kaw (2005). 

Material property Glass fibre Epoxy  

Axial modules (GPa) 85 3.4 

Transverses modules (GPa) 85 3.4 

Shear modules (GPa) 35.42 27 

Major Poisson’s ratio 0.2 0.3 

Axial tensile strength (MPa) 1550 72 

Axial compressive strength (MPa) 1550 102 

Transverses tensile strength (MPa) 1550 72 

Transverses compressive strength (MPa) 1550 102 

Shear strength (MPa) 35 34 

Fibre volume fraction of tow  60% 

 

 The finite element model 

In order to predict the failure load of laminates having curved tows and 

compare it with that in conventional laminates, the finite element analysis has been 

implemented by using the Abaqus/Standard (2017). Each element of the FE model 

of VS laminates is associated with a certain local angle, unlike in straight fibre 

laminates, where the same orientation applies to the whole element domain. The 

particular orientation of each element is defined at each integration point by user-

defined subroutine ORIENT. The composite laminate of 12 layers is generally 

assumed symmetric and balanced with [±<T0|T1>]3s. This definition of lay-up refers 

to a variable-stiffness laminate with curved tows has a local angle of T0 at the centre 

of the laminate and T1 at the edges. The local angle between T0 and T1 varies 

linearly.  

The maximum stress and Tsai-Wu failure criteria have been implemented 

as UMAT subroutine. The analysis was conducted over two increments, which were 

sufficient to capture the load level corresponding to the unity value of failure index 
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in the linearised Tsai-Wu criterion. As was explained in the previous section, a 

small number of increments required is one of the advantages of using this form of 

the criterion. According to the first ply failure, once the failure index of any element 

of any lamina reached the unity, this lamina and the entire laminate is considered 

to have failed.  

The FE models have been meshed with S4 and shell elements where each 

shell element is considered as a small unidirectional lamina with a local variation 

of material properties due to variation of gap width and a specific local angle. The 

element size was defined according to mesh convergence study for the case of rapid 

change of local angles, where the panel has the largest difference between the values 

of T0 and T1. The results of the convergence study are shown in Figure 7.6, based 

on which the element size of 0.4mm was chosen for all models. The laminates were 

loaded by applying the uniform displacements in an axial direction on the left and 

right edges of the panel. In addition, the boundary conditions have been applied to 

constrain rigid body movement of the panel. The material properties and strengths 

of fibre and matrix are specified in Table 7.1.  

 

Figure 7.6: Mesh convergence for a curvilinear fibres having raped change of local 

angles between T0=0° and T1=90° 
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 Results and discussion 

7.5.1 Calculations of the minimum value of fibre volume fraction  

  The minimum value of fibre volume fraction can be calculated based on the 

strength material properties and the variable gap width as mentioned in Section 

7.2.1, to specify which scenario is applicable to calculate the longitudinal strength 

of the composite. Figure 7.7 shows the distribution of the minimum of local fibre 

volume fraction defined by Equation (7.6) over the entire domain of local angles T0 

and T1. As can be seen, the largest value of this minimum is obtained when T0=T1, 

that is, when the tows in a lamina are straight. The lowest value of the minimum 

volume fraction is obtained in lamina with a large difference between T0 and T1.  

 

Figure 7.7: The minimum value of fibre volume fraction due to a different 

configuration of curvilinear fibre lamina  
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Figure 7.8 state the minimum value of fibre volume fraction calculated 

based on the strength parameters and the variation of local angles according to the 

Equation (7.2) and (7.6), respectively. The minimum value based on the strength 

parameters is 0.0064 (threshold). It was represented by a horizontal plane. Below 

this value, the fibres inside the lamina will behave reversely and reduce the strength 

of the composite. In addition, it can be seen there is no intersection between the 

horizontal plane and the curved surface of the minimum value of fibre volume 

fraction based on the variable gap width. Therefore, the varying of the local angles 

of T0 and T1 does not reduce the value of minimum fibre volume fraction below 

0.0064. 

 

Figure 7.8: The fibre volume fraction due to constituent materials of composite and 

due to pattern of curvilinear fibre. 
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7.5.2 Failure load of lamina has curvilinear tows. 

The failure criteria were defined earlier for a single lamina based on 

curvilinear tows, with their local angles changing linearly from T0 at a centre to T1 

at the edge of lamina. Locally, at each point in a lamina can be considered to be a 

UD lamina. The variation of local gap width has been accounted for by employing 

it in definition and calculation of the non-uniform fibre volume fraction.  

Figure 7.9 and 7.10 show the failure load according to the maximum stress 

criterion of a lamina having curvilinear tows with a variation of local angle in x- 

and y-direction, respectively. Each figure shows a family of curves, each 

representing a set of laminae having various values of T0 (from 0° to 90° with 

increments of 10°). In both cases of local angle variation, the curves with T0= T1 

and T0=0° have three parts, each corresponding to a different mode of failure, 

namely, the fibre failure, the shear failure and transverse matrix failure. The curves 

T0=10°, T0=20°, T0=30° and T0=40° have two parts, corresponding to shear and 

transverse matrix failure modes. For the remaining curves, all the laminae failed in 

the same mode, namely, the transverse matrix failure. It can be seen there is some 

difference between the respective curves in Figure 7.9 and 7.10. This is due to the 

direction of variation of local angle, since in case of a variation in the x-direction 

the local angles at the edges of the panel where the load is applied are the same, 

while for variation in y-direction the local angles on the edges where load is applied 

are different. For two different directions of local angle variation, the local stiffness 

distributions can be considered to be in parallel and in series forms as discussed of 

Section 5.7.3 of Chapter 5. 
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Figure 7.9: Failure load for different configurations of curved fibre lamina 

according to MAXSTRS criterion for laminae having θ= θ(x) 

 

Figure 7.10: Failure load of different configurations of curved fibre lamina 

according to MAXSTRS criterion for laminae having θ= θ(y) 

 

Figure 7.11(a) and (b) show a comparison of failure load according to the 

maximum stress criterion under uniaxial load for laminae with uniform and non-

uniform fibre volume fraction distributions having a variation of local angle in x- 

and y-direction, respectively. Angle T0 in all cases was kept constant at 20°. They 

reveal that the difference between the failure loads gradually increases with 
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increasing value of the local angle T1, during which the gap width also increases. It 

can be seen in Figure 7.11(a) that the failure of the lamina is first predicted in the 

point within the lamina corresponding to the largest value of the local angle. As was 

elaborated in Section 5.7.3 of Chapter 5, in panels having variation of local angles 

in the x-direction the in-plane stress resultant Nx(y) was constant along the edges 

where the load was applied, while for panels having the variation of local angle in 

the y-direction Nx(y) varied as a function of y-coordinate. This explains differences 

in appearances of the curves in Figure 7.11(b) when compared to those in Figure 

7.11(a), in particular, absence of horizontal straight part in curves in Figure 7.11(b).  

 

(a)  

 

(b)  

Figure 7.11: A comparison of failure load based on MAXSTRS between uniform 

and non-uniform fibre volume fraction distributions; (a) laminae having θ= θ(x) and 

T0=20°, and (b) laminae having θ= θ(y) and T0=20° 
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7.13 that the curves with T0=T1, and T0=0° are smooth because the Tsai-Wu 

criterion is quadratic and allows the stress interactions. The remaining curves have 

straight and curved parts which state the dominated failure load at the largest value 

of local angles. The boundary between the two parts is at the intersection point with 

a curve defining failure load in straight tows laminae.  

Figure 7.14(a) and (b) show a comparison of failure load according to the Tsai-

Wu criterion under uniaxial load in laminae with the uniform and non-uniform 

distributions of fibre volume fraction having a variation of local angle in x- and y-

direction, respectively. As can be seen, when the difference between the local 

angles T0 and T1 increases, the difference between failure loads in laminates with 

uniform and non-uniform fibre volume fraction also increases.  

 

Figure 7.12: Failure load in curved fibre laminae of different configurations with 

θ= θ(x) according to Tsai-Wu criterion 
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Figure 7.13: Failure load in curved fibre laminae of different configurations θ= with 

θ(y) according to Tsai-Wu criterion 

 
(a)  

 
(b) 

Figure 7.14: A comparison of failure load based on Tsai-Wu criterion in laminae 

with uniform and non-uniform fibre volume fraction distributions; (a) laminae 

having θ= θ(x) and T0=20°, and (b) laminae having θ= θ(y) and T0=20° 
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analysis. As can be seen in Figure 7.15 the failure load for the curves with T0=T1 

and T0=0° have three part corresponding to three modes of failure, fibre failure, 

shear and transverse matrix failure. The curves with T0=10°, T0=20°, T0=30° and 

T0=40° suggest that the failure can be in either of two failure modes, i.e. shear or 

transverse matrix failure. For the remaining curves, the failure was in just one 

failure mode, the transverse matrix failure. The failure load curves in Figure 7.16 

which were calculated accounting for non-uniform fibre volume fraction are 

generally similar to those in Figure 7.15 with a little difference for the cases having 

a significant difference between T0 and T1.  

 

Figure 7.15: Failure load according to maximum stress criterion of curved fibre 

laminates [±<T0 | T1>]3s having a uniform fibre volume fraction and θ= θ(x) 
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Figure 7.16: Failure load according to maximum stress criterion of curved fibre 

laminates [±<T0 | T1>]3s having a non-uniform fibre volume fraction and θ= θ(x) 
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(a)  

 
(b)  

Figure 7.17: A comparison of failure load based on maximum stress criterion 

between uniform and non-uniform fibre volume fraction distributions: (a) laminates 

having θ= θ(x) and T0=0°, and (b) laminates having θ= θ(x) and T0=30° 
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Figure 7.18: Failure load according to maximum stress criterion in curved fibre 

laminates [±<T0 | T1>]3s having a uniform fibre volume fraction and θ= θ(y) 

 

Figure 7.19: Failure load according to maximum stress criterion in curved fibre 

laminates [±<T0 | T1>]3s having a non-uniform fibre volume fraction and θ= θ(y) 
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Figure 7.20(a) shows the difference between the failure load curves 

calculated based on the maximum stress criterion in laminates with the uniform and 

non-uniform of fibre volume fraction distributions at T0=0° with a variation of local 

angles in the y-direction. The curves of failure tend to diverge when the gap size 

increases as the difference between T0 and T1 increases. Figure 7.20(a) shows the 

effect of the direction of the variation of local angles on the failure load based on 

the maximum stress criterion for laminates having T0=0 and uniform fibre volume 

fraction distributions. It can be seen, there is no difference in the failure load at 

smaller values of T1, as fibres in such laminates are relatively straight. Then, that 

difference becomes clear since the failure load of the laminates having variation in 

the y-direction is higher than that in the x-direction. 

 
(a)  

 
(b)  

Figure 7.20: Failure loads calculated based on maximum stress criterion in 

laminates with; (a) uniform and non-uniform fibre volume fraction distributions 

when θ= θ(y) and T0=0°, and (b) uniform fibre volume fraction distribution when 

local angles are varied in x- and y-directions 

 

 

0

10

20

30

40

50

60

70

0 20 40 60 80

Fa
ilu

re
 lo

ad
 (

kN
/m

)

T1(Deg)

Non_T0=0 Uni_T0=0

0

10

20

30

40

50

60

70

0 20 40 60 80

Fa
ilu

re
 lo

ad
 (

kN
/m

)

T1(Deg)

Uni_T0=0,XX Uni_T0=0,YY



Chapter 7 

191 
 

The failure load curves calculated based on Tsai-Wu criterion are shown 

Figure 7.21 and 7.22 for the laminates having the local angles varying in the x-

direction with a uniform and non-uniform distributions of fibre volume fraction, 

respectively. They have the same trends of failure load. However, the failure load 

latter case is smaller than in the former case. The failure load curve corresponding 

to laminates with T0=0° has the highest value compared to all other curves.  

 

Figure 7.21: Failure load calculated based on the Tsai-Wu criterion for curved fibre 

laminates [±<T0 | T1>]3s having uniform fibre volume fraction and θ= θ(x) 
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Figure 7.22: Failure load calculated based on the Tsai-Wu criterion for curved fibre 

laminates [±<T0| T1>]3s having a non-uniform fibre volume fraction and θ= θ(x) 

 

Figure 7.23 and 7.24 show the failure load of the laminates having the local 

angles varying in the y-direction with a uniform and non-uniform distributions of 

fibre volume fraction, respectively. Qualitatively, the curves calculated for 

laminates with uniform fibre volume fraction distribution are similar to their 

counterparts obtained assuming non-uniform distribution. However, in the latter 

case, the values of failure load are smaller than in the former case.  
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Figure 7.23: Failure load according to the Tsai-Wu criterion for curved fibre 

laminates [±<T0 | T1>]3s having a uniform fibre volume fraction and θ= θ(y) 

 

Figure 7.24: Failure load according to Tsai-Wu criterion for curved fibre laminates 

[±<T0 | T1>]3s having a non-uniform fibre volume fraction and θ= θ(y) 
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A comparison of failure load curves calculated based on the Tsai-Wu 

criterion for laminates having T0=0° with a uniform and non-uniform distributions 

of fibre volume fraction is shown in Figure 7.25(a). They reveal a slight difference 

since local volume fraction of fibres of non-uniform distribution is approximately 

same of the uniform distribution of fibre volume fraction at a single point where 

failure takes place. For this configuration of laminates, the largest value of the 

failure index is achieved at the edge of laminate as can be seen in failure index 

contours in Figure 7.26. Also, there is little variation in the local fibre volume 

fraction in this case since the placement the tows, in this case, produces a very small 

gap between them. Therefore, the failure load in panels with non-uniform fibre 

volume fraction is slightly smaller or the same as in panels with the uniform volume 

fraction. A comparison between failure loads calculated based on Tsai-Wu criterion 

for laminates having the variation of local angles in x- and y-direction with T0=0° 

Figure 7.25(b). The curves show the failure loads for the panels with variation in 

the y-direction are higher than those with variation in the x-direction. 

 
(a) 

 
(b) 

Figure 7.25: Failure loads calculated based on Tsai-Wu criterion in laminates 

having; (a) uniform and non-uniform fibre volume fraction distribution, with θ= 

θ(x) and T0=0°, and (b) a variation of local angle in x- and y-directions for uniform 

volume fraction distribution 
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The contour plots of failure index are shown in Figure 7.26(a)-(d) for the 

laminates having the uniform and non-uniform of fibre volume fraction 

distributions. They were obtained for different sets of local angles varying in the x-

direction. As can be seen, the maximum failure index of Tsai-Wu criterion based 

on the uniaxial load is at the edges of the laminate when T0 < T1, while at T0 > T1, 

the failure index was equal one at the centre of laminate. In addition, the effect of 

the gap on predictions of failure index can clearly be seen. Specifically, the area 

where the failure index is the smallest (dark blue contour) is larger in laminates 

having a non-uniform fibre volume fraction distribution than in laminates with a 

uniform fibre volume fraction distribution. 

 
(a)  

 
(b)  

 
(c)  

 
(d)  

Figure 7.26: Comparison of contour plots of failure index for laminates having 

uniform and non-uniform distributions and θ= θ(x): (a) T0= 0°, T1=45° uniform 

distribution, (b) T0= 0°, T1=45° non-uniform distribution, (c) T0= 45°, T1=0° 

uniform distribution and (d) T0= 45°, T1=0° non-uniform distribution 
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Typical examples of the contour plots of Tsai-Wu criterion failure index for 

laminates having a variation of local angles in y-direction and perpendicular to the 

applied load are presented in Figure 7.27(a)-(d). Contours in Figure 7.27(a) and (c) 

were obtained for laminates with uniform fibre volume fraction distribution, whilst 

those in Figure 7.27(b) and (d) for laminates with non-uniform of fibre volume 

fraction distribution. As can be seen, the failure index varies according to the 

variation of the local angles in the y-direction.  

 
(a)  

 
(b)  

 
(c)  

 
(d)  

Figure 7.27: Comparison of contour plots of failure index for laminates having 

uniform and non-uniform distribution and θ= θ(y): (a) T0= 0°, T1=45° uniform 

distribution, (b) T0= 0°, T1=45° non-uniform distribution, (c) T0= 45°, T1=0° 

uniform distributions and (d) T0= 45°, T1=0° non-uniform distribution 
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7.5.4 Optimum fibre path of uniform and non-uniform fibre volume fraction 

distributions laminates having a cut-out. 

To demonstrate the improvement of failure load that could be gained by using 

the curvilinear tows with laminates having a cut-out, the case study was carried out 

where a simply supported laminate with a circular cut-out with a ratio of diameter 

to the length equal to 0.5 was analysed. The uniaxial tensile load was applied in x-

direction on the laminate edges. The optimum combinations of T0 and T1 that should 

give maximum failure load based on the Tsai-Wu criterion for laminates with 

uniform and non-uniform fibre volume fractions have been obtained using 

optimisation framework that was elaborated in Chapter 4. The results are 

summarised in Table 7.2, along with those obtained for equivalent quasi-isotropic 

laminate which was used as a benchmark case. The optimum patterns of curvilinear 

tows are shown Figure 7.28(a) and (b) for laminates with the uniform and non-

uniform distributions of fibre volume fraction, respectively.  

Table 7.2: Optimum design of the laminates with circular cut-out  

Composite laminates with circular cut-

out  

Optimum design Failure 

load  

(kN/m) 

Quasi isotropic  [+45°, -45°, 0°, 90°]s 0.71985 

Uniform distribution of fibre volume 

fraction  

[±<23°|5°> ]2s 3.10539  

Non-uniform distribution of fibre 

volume fraction 

 [±<16°|29°>]2s 3.1251 

 

It can be seen the failure load in optimised laminates with both the uniform 

and the non-uniform fibre volume fraction distributions around four times greater 

than that for the quasi-isotropic laminate. In addition, the maximum failure load for 

the laminate with the non-uniform volume fraction was approximately same of the 

laminate with uniform volume fraction. 
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(a)  

 
(b)  

Figure 7.28: Optimum pattern of a laminate with cut-out; (a) uniform distribution, 

and (b) non-uniform distributions 

 

 Summary  

Failure in the lamina with a curvilinear path of tows under a uniaxial tensile 

load has been analysed numerically. Lamina was assumed to have failed when 

failure was predicted in single point of the lamina. Three failure modes were 

accounted for, namely, the fibre failure, shear and transverse matrix failure. To 

predict the failure modes a maximum stress criterion has been employed, and failure 

load curves were generated, which could comprise up to three parts corresponding 

to different failure modes. When using Tsai-Wu criterion, the failure load curves 

were predicted to be smooth since the criterion is defined by polynomial equation 

and does not allow for distinction between different failures modes. 

In order to apply failure criteria, such as maximum stress or Tsai-Wu 

criteria, local material strengths should be obtained first, since the fibre volume 

fraction changes locally as a result of changing the gap width along the lamina. 

They were calculated based on the properties of fibre and matrix properties. A 

number of assumptions were employed to determine local strengths from the 

micromechanics considerations. In order to determine the strengths, minimum 
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(threshold) value of fibre volume fraction has been calculated and compared with 

that calculated for cases where a change in gap width along the lamina was 

accounted for. The minimum (threshold) value of fibre volume fraction calculated 

based on the strength parameters is smaller than that in laminae with a variable gap.  

The linearisation of the Tsai-Wu failure criterion has been conducted. Use 

of this form of criterion helps to reduce the computational costs when applying it 

in FE modelling, as it requires only two load increment to predict the load 

corresponds to a unity failure index in the conventional Tsai-Wu criterion. This 

approach does not calculate the failure index below and above the unity, just gives 

a point that corresponds to the unity of the failure index. 

The failure indices were calculated based on the maximum stress and Tsai-

Wu criterion for laminae as well as the laminates with different configurations on 

curvilinear tows having a variation of local angle in x- and y-directions. The failure 

load in laminates has been obtained by first ply failure. The calculations were 

carried out for laminates with both the uniform and non-uniform fibre volume 

fractions. Since the failure load was defined as the load when the failure criteria are 

first satisfied in single point of a lamina, the failure load for some patterns of 

curvilinear fibre panels with non-uniform fibre volume fraction show only a 

marginal or no difference with that in panels with a uniform fibre volume fraction 

even if the gap size in the lamina is large. The failure in lamina initiated at a location 

of the large value of the local angles and this is stated clearly in the contour plot of 

the failure index. For the variation of local angles in the y-direction, the in-plane 

resultant Nx(y) varies as function of y-coordinate, and this could increase the 

predicted failure load than that for the case of variation in the x-direction.  
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The local angles in curved fibre laminates can generate a variable gap width 

which would lead to a redistribution of the stresses. Therefore, the failure index at 

every single point in a laminate can be locally dependent on the local angle and 

local gap width. The laminate was considered to have failed when a single point in 

any lamina failed. This approach to failure definition was employed in the 

optimisation study aiming to maximise the failure load of laminate with cut-out. 

The numerical results of curved fibre laminates showed around four times 

improvement in the failure load as compared with quasi-isotropic laminates. 
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8 Unit cell model for curved tows with gaps 

 Introduction  

One of the most important advantages of fibre-reinforced laminated 

composites is that change the stiffness and strength properties of the laminate can 

be changed by changing the orientation of fibres and/or changing the stacking 

sequence. In addition, the ability of steering fibre tows along a curved path offers 

more flexibility in the design of laminates of the required stiffness and strength 

properties. The study of Gurdal and Olmedo (1993) introduced a linear variation of 

local orientation for the fibre path. The local angles vary along the x-axis or y-axis 

in the model. Gürdal et al. (2008) generalised the procedure of varying the local 

angles relative to an auxiliary axis at a given angle  to the x-axis, instead of limiting 

varying the angle only to the x- or y-direction.  

A constant thickness of ply without overlaps is ensured by placing the curved 

tows that having a linear variation of local angles, side by side. Therefore, a gap 

with a variable width between the neighbouring tows is present, as shown in Figure 

8.1. This results in the local fibre volume fraction, which changes from point to 

point and causes the mechanical properties to change locally. In order to define 

these local material properties via a single value of the effective material properties, 

many assumptions have been made and numerous techniques adopted such as rule 

of mixtures (Voigt, 1889), the inverse rule of mixtures (Reuss, 1929), modified rule 

of mixtures and Halpin–Tsai model (Halpin and Kardos, 1976). However, the 

existence of the periodicity in the geometry of the composite structure and the 

multiscale nature allow to use a finite element-based numerical approach using a 
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unit cell (UC) model (Li, 2001, Li and Wongsto, 2004, Li, 2008 and Li et al., 2011a) 

which can homogenise the composite and evaluate the effective elastic stiffness 

properties. 

 

Figure 8.1: The curved fibre of linear variation of orientation with gaps 

 

 Relative displacement field under uniform microscopic strains 

In order to implement the unit cell procedure, the stress and strain states at 

the macroscopic scale are assumed to be uniform. In addition, periodicity is 

assumed in the architecture of the material. These assumptions allow the use of a 

unit cell to predict the effective properties. The relative displacements will be given 

in a state corresponding to uniform strains at the macroscopic scale. UCs in Figure 

8.2 will be referred to in order to illustrate the relative displacement for the periodic 

geometry as follows. 

Gap 

Tow 

Tow 
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Figure 8.2: A periodic geometry and the relative displacements 

 

In Figure 8.2, point P is an arbitrary point that acts as a reference on a certain 

unit cell that could reproduce itself to cover all areas of geometry; P′, P″, P‴ are the 

images of P in other cells, u and v the in-plane displacements in the x- and y-

directions, respectively, at point P, and (u′,v′), (u″,v″) and (u‴,v‴) are those at P′, 

P″, P‴, respectively. The relationship between displacements of point P and any 

point of P′ can be described as in the study of Li and Wongsto (2004), and the 

similar relationships can also be obtained for P″ and P‴ as well. 

 𝑢′ − 𝑢 = (𝑥′ − 𝑥)𝜀𝑥
0 + (𝑦′ − 𝑦)𝛾𝑥𝑦

0 + (𝑧′ − 𝑧)𝛾𝑥𝑧
0   

 𝑣′ − 𝑣 = (𝑦′ − 𝑦)𝜀𝑦
0 + (𝑧′ − 𝑧)𝛾𝑦𝑧

0                                                                        (8.1) 

𝑤′ − 𝑤 = (𝑧′ − 𝑧)𝜀𝑧
0 

where 𝑥, 𝑦 and 𝑧 are the coordinates of point P, 𝑥′, 𝑦′ and 𝑧′ are the coordinates of 

point 𝑃’, and 𝜀𝑥
0, 𝜀𝑦

0, 𝜀𝑧
0, 𝛾𝑥𝑦

0 , 𝛾𝑥𝑧
0  and 𝛾𝑦𝑧

0  are the macroscopic strains.  

When expressing the relative displacement in terms of macroscopic strains, the 

rigid body rotational degrees of the x-axis about the y- and z-axes and the y-axis 

u 

v 

P 

u' 

v' 

P′ 

u

v‴ 

P‴ 

u″ 

v″ 

P″ 
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about the x-axis have been eliminated by assuming the following as elaborated in 

the study of Li and Wongsto (2004). 

𝜕𝑤

𝜕𝑥
=

𝜕𝑣

𝜕𝑥
=

𝜕𝑤

𝜕𝑦
= 0                                                                                                   (8.2)         

In addition, to prevent rigid body movement in the model, the three rigid body 

translations are eliminated by constraining the displacements at an arbitrary point 

by assuming  

u=v=w=0.                                                                                                                (8.3) 

Different ways of constraining the rigid body rotations lead to different 

coefficients of Equation (8.1) and may result in different presentations for periodic 

boundary conditions. The difference between them is by a rigid body rotation and 

hence does not affect the strain field.  

 The geometry of the unit cell model  

The unit cell model consists of a curved tow with its gap. The curved tow has 

its local orientation that varies linearly along the x-axis according to the Gürdal et 

al. (2008) from T0 at the centre of model and T1 at the end of positive x, as follows: 

𝜃(𝑥) = 𝑇0 + (𝑇1 − 𝑇0)
2𝑥

𝑎
                                                                                       (8.4) 

The actual path y(x) of the centre line of the tow, as shown in Figure 8.3 in blue 

dash-dot can be found by integrating the Equation (8.4) as follows:  

 𝑦 = ∫ tan(𝜃(𝑥)) 𝑑𝑥  
𝐿/2

0
                                                                                            (8.5) 
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Figure 8.3: A sketch showing the dimensions of the UC model (tow plus gap) 

 

The centre line of the tow will be as follows:  

𝑦 = −
ln|cos(

2𝑥 (𝑇1−𝑇0)

𝑎
+𝑇0)|

(𝑇1−𝑇0)
2

𝑎
)

+
ln|cos𝑇0|

(𝑇1−𝑇0)
2

𝑎
)
                                                                  (8.6) 

where a is the length of UC in the x-direction.  

The upper edge of the tow 𝑦𝑢 is calculated by adding half of the vertical distance of 

the tow and can be given as follows: 

𝑦𝑢 = 𝑦 + 𝑣/2                                                                                                          (8.7) 

where v is the vertical distance of tow and defined as follows: 

𝑣 =
𝑡

cos(
2𝑥 (𝑇1−𝑇0)

𝑎
+𝑇0)

                                                                                               (8.8) 

where t is the tow width in the direction perpendicular to the centre line.  

The lower edge of tow 𝑦𝑙 is as follows: 

a 
W 

x 

y 

∆y 
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𝑦𝑙 = 𝑦 − 𝑣/2                                                                                                           (8.9) 

It will be taken as the lower boundary of the UC. Since the gap is formed by placing 

tows next to each other while following the identical path but shifted above, each 

UC will have to include a gap, and the upper boundary of the UC model is therefore 

defined by 𝑦𝑢𝐺  as follows 

𝑦𝑢𝐺 = 𝑦 − 𝑣/2 +𝑊                                                                                             (8.10) 

where 𝑊 is the vertical distance of the UC model 

𝑊 = 𝑡 cos 𝑇1⁄                                                                                                        (8.11) 

One can define the difference between the y-coordinates ∆𝑦 of both ends of the 

centre line of the model (tow and gap) as follows: 

∆𝑦 = 𝑊𝑁/2                                                                                                          (8.12) 

where N is the number of models that cross one model to cover the area.  

 Geometric periodicity and periodic boundary conditions 

Given the complicated geometry, FE modelling is necessary to analyse the 

UC while incorporating geometrical characteristics of the structure. With the linear 

variation of the orientation of curved tow in the x- or y-direction as defined in 

(Gurdal and Olmedo, 1993), the way of placing the tows next to each other, 

avoiding overlapping between the neighbouring tows, would leave a gap between 

the tows. The geometry of the gap varies along the path of tow. A regular pattern 

forms as gaps and tows repeat themselves and are joined together to cover all area 

of the layer. Alternatively, one may consider that the complete layer has been 



Chapter 8 

207 
 

tessellated into an array of unit cells as shown in Figure 8.4. Several studies (Meijer 

et al., 2000 and Li and Wongsto, 2004) have used different idealised particle-matrix 

packing systems and differently shaped UCs have been obtained. The tessellation 

of gap and tow can be incorporated into a pattern, as shown in Figure 8.4 

representing a ply in an angle-ply laminate with two layers. With one of the blocks 

from each ply, a unit cell as shown in Figure 8.5 can be introduced. Translating it 

up, down, left and right will cover the complete volume of the laminate. 

 

Figure 8.4: Front view of the cells for periodic pattern 

 

 

Figure 8.5: A single unit cell with curved tows with and companion gaps 

 

Leg1  

Leg2  
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The periodic boundary conditions (PBCs) are a set of boundary conditions of 

any representative volume element (RVE) that satisfy the geometric periodicity of 

the microstructure. They are necessary requirements as a part of the formulation of 

the physical problem. In a mechanical problem of deformation, for example, PBCs 

of displacement field are required by the deformation kinematics as the 

displacement continuity condition to avoid non-physical deformations in the 

deformable body. The PBCs could be obtained according to the state of symmetry. 

8.4.1 PBCs of translation symmetries 

This type of PBCs is based on the translational symmetry, where the location 

of UC can be in any of the directions of the translational symmetries by any distance 

as the multiplicity of the corresponding distances of translation. The UC reproduces 

itself by the vector of distances ∆𝑥, ∆𝑦, ∆𝑧. The existence of translational symmetry 

for the geometry and the physical properties is a necessary condition for the 

symmetry of physical fields (Li, 2001). 

The relationship between a point in the original cell and its image in another 

cell could be identified for leg 1 and leg 2, respectively, in a cell as shown in Figure 

8.5. In order to describe the periodicity of in the ply represented by leg 1, the two 

translations along axes i and j (i.e. y), respectively, are employed, as shown in 

Figure 8.4. Thus, the mapping of any point to its image can be described by integers 

i and j and the relationship between their coordinates becomes as follows:  

𝑥′ − 𝑥 = 𝑖 𝑎                                                                                                        (8.13) 

𝑦′ − 𝑦 = 𝑖 ∆𝑦 +𝑊 𝑗                                                                                                  (8.14) 
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where the (x, y) is the coordinate of a point on the origin cell in leg1, and (x′, y′) is 

the coordinate of the image point on the cell (i, j) in leg1. ∆𝑦 is defined by Equation 

(8.12). 

Leg 2 can be obtained by a 180° rotational symmetry of leg 1 about the y-

axis as shown in Figure 8.6. The relationship of x-coordinate of a point in origin 

cell in leg 2 and its image in leg 2, should be similar to that of leg 1 but with a 

negative sign to the x-coordinate, while the relationship of y-coordinate stays to the 

same as that of leg 1, given as follows: 

𝑥′ − 𝑥 = −𝑖 𝑎                                                                                                     (8.15) 

𝑦′ − 𝑦 = 𝑖 ∆𝑦 +𝑊 𝑗                                                                                         (8.16) 

In order to avoid redundant constraints of PBCs, the edges in UC model 

should be excluded from the faces, and the vertices should be excluded from the 

edges, with the constraint equations for the edges and vertices defined separately. 

Figure 8.6 describes the names and position of faces of the UC model, and their 

constraint equations are summarised in Appendices 

Appendix A. Figure 8.7 specifies 24 edges of UC model and each leg has 

12 edges, the constraint equations of these edges are given in Appendix B. The 

vertices positions and their constraint equations are given in Figure 8.8 and 

Appendix C, respectively. According to the rules for equation constraints in 

Abaqus/Standard (2017) the first degree of freedom on the left side of the equation 

is eliminated. Therefore, all equations of constraints have been prepared in a 

manner that prevents a single degree of freedom appearing in the first term of two 

different constraint equations. 
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Figure 8.6: Faces of a unit cell 

 

Figure 8.7: Edges of a unit cell 
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Figure 8.8: Vertices of a unit cell 

 

8.4.2 PBCs of Translation symmetries in the interface area. 

The interface area refers to the surface area that is formed between two 

adjacent laminae in a continuous fibre composite. In order to model the laminate 

(two laminae) and fulfil load transfer between the adjacent laminae over the 

interface area, the perfect bonding is assumed. This assumption could be 

implemented by using periodic boundary conditions in this area, requiring the 

displacements on the right and left side of the interface area to be equal. The 

proposed unit cell consists of two legs (tow and its gap) as shown in Figure 8.5, and 

the laminate is produced by arranging cells in a periodic manner. The effect of 

perfect bonding between cells over the interfaces implies that stacked legs from 

different cells are involved. Therefore, the legs of the unit cell have to be divided 

into many segments as shown in Figure 8.9, and the number of segments on the left 
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or right side of a leg could be defined as the number of legs that cross another leg 

in one cell 𝑁 =
2∗∆𝑦

𝑊
. Furthermore, each segment within the interface area of leg 1 

should be related to the corresponding segment on leg 2 by the equation of periodic 

boundary conditions as illustrated in Appendix D, to satisfy the continuity, i.e. 

perfect bonding achieved.  

The equations of PBCs in the interface area are obtained from the distances 

of translations in the vertical direction between the segments of the lower and upper 

legs. 

 

Figure 8.9: Interface area with a divided area 

where FL1i and FL2i are faces at segment i of leg 1 and leg 2, respectively. EL1Ui, 

EL1Li and EL1Ci are the upper, lower and crossing edges, respectively, at segment i 

of the leg 1. EL2Ui, EL2Li, EL2Ci are the upper, lower and crossing edges, 

respectively at segment i of the leg 2. VL1Ui and VL1Li are upper and lower vertices, 
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respectively, at segment i of the leg 1 and finally, the VL2Ui and VL2Li are upper 

and lower vertices, respectively, at segment i of the leg 2 as shown in Figure 8.9. 

 Effective material properties. 

According to the micromechanical analyses that are used in a unit cell, the 

response of the unit cell under the applied load offers microscopic stress, strains 

and displacement distributions, whilst in order to obtain the effective material 

properties of the unit cell, the macroscopic or average responses are required, since 

the effective material properties are defined from the relationships between the 

macroscopic stresses and strains. With the formulation of the UCs employed here, 

either macroscopic stresses or strains can be applied as the load and others will be 

the response. For instance, if the macroscopic strain is applied to the unit cell, the 

macroscopic stresses need to be calculated. As the finite element analysis used for 

unit cell analyses, the reaction forces at the key degrees of freedom are obtained 

directly and are related to the macroscopic stresses as follows (Li and Sitnikova, 

2018b):  

𝐹𝑥 = 𝜎𝑥
0𝑉                                                                                                               (8.17) 

𝐹𝑦 = 𝜎𝑦
0𝑉                                                                                                               (8.18) 

𝐹𝑥𝑦 = 𝜏𝑥𝑦
0 𝑉                                                                                                            (8.19) 

where V is the volume of the unit cell and F is the reaction force with a dimension 

of force time length. 
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The in-plane effective material properties can be described as follows: 

𝐸𝑥
0 =

𝜎𝑥
0

𝜀𝑥
0 = 𝐹𝑥/𝑉𝜀𝑥

0                                                                                                (8.20) 

𝐸𝑦
0 =

𝜎𝑦
0

𝜀𝑦
0 = 𝐹𝑦/𝑉𝜀𝑦

0                                                                                                (8.21) 

𝐺𝑥𝑦
0 =

𝜏𝑥𝑦
0

𝛾𝑥𝑦
0 = 𝐹𝑥𝑦/𝑉𝛾𝑥𝑦

0                                                                                           (8.22) 

 Mesh  

In finite element analysis, a reasonable mesh is required for numerical 

convergence, especially in applications that have non-uniform stress distribution 

and stress concentrations. On the other hand, additional requirements must be 

involved in the mesh to implement the UCs. To implement the periodic boundary 

conditions that satisfy the continuity, the opposite corresponding faces must share 

the same mesh pattern. The identical mesh pattern could be achieved by using the 

copy function and seed the edges in Abaqus/Standard (2017) to duplicate a mesh 

pattern from one face to another. One may also use the Python script to automate 

the process. The appropriate mesh density that satisfies the convergence of the 

effective material properties could be achieved relatively easier than other aspects, 

such as stress distribution. 

For more complex geometries of composites like in textile composites, UC 

models can be meshed with voxel mesh in TexGen developed by the University of 

Nottingham (TexGen, 2014). A model of the unit cell with voxel mesh would be 

acceptable to calculate the effective elastic material properties. However, it 

becomes unsuitable for implementing the curved tow and its variable gap because 

the stress distribution at the interface (matrix/tow) would be unrealistic. Thus, the 

predicted effective strengths would become irrelevant. In addition, the voxel mesh 
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cannot describe the right variability of the gap in the model because the interface 

between the two faces would not be smooth as shown in Figure 8.10 in the case of 

plain weave textile preform. Such artificial discontinuity will also be imposed on 

the material properties which are assigned to the elements and will not reflect the 

real geometric characteristics. 

The mesh quality also depends on the type of elements used in the unit cell 

model. For instance, the hexahedral elements are economic in terms of the number 

of elements because at the same number of degrees of freedom for one hexahedral 

element it corresponds to six tetrahedral ones. Therefore, the CPU time required to 

calculate the stiffness matrix and mass matrix is less than that used in the case of 

tetrahedral elements (Cifuentes and Kalbag, 1992 and Tadepalli et al., 2011). In 

addition, the hexahedral elements could be considered a good choice to avoid the 

mesh distortion problem in textile composites. The tetrahedral elements have been 

used a lot because they fit very well arbitrarily shaped geometries with their simple 

topology and their surface patterns can be easily copied from one face to another to 

accomplish the requirements of PBCs. 

 

Figure 8.10: Voxel mesh for textile wave model in TexGen 
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 Verification 

Verification for the unit cell model has been performed to ensure FE model is 

working perfectly and is defined as follow. 

8.7.1 Sanity check verification 

When any new FE model is produced, its verification is essential. ‘Sanity 

checks’ are some simple checks to quickly evaluate whether boundary conditions 

have been imposed correctly, or if the calculated results make sense. These checks 

have been conducted for the model developed here to ensure that the opposite faces 

have been tessellated identically, the boundary conditions have been imposed 

appropriately, and the macroscopic strain states have been defined correctly for the 

unit cell. A correct procedure should give uniform stress and strain distribution if 

the material properties of two phases are the same and isotropic. The results of such 

analyses employing the same material properties should not be affected by the mesh 

density because of the uniform stress distribution and uniform deformation. Most 

errors that appear during the production of the analysing unit cell from formulation 

and implementation can be eliminated at this step. Passing the ‘sanity checks’ is a 

necessary step, and usually the most demanding step, for the establishment of any 

unit cell model. 

8.7.2 Checking by modelling with straight tow  

 Since a straight tow can be considered as a special case of the curved tow, 

where the variation of orientation is equal to zero, and there is no gap between the 

adjacent tows. The outcome of this case should reproduce the available theoretical 

results of UD laminates having the same orthotropic material properties and angle 

orientation.  
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This verification used the same procedure as was followed in the study of Xia 

et al. (2003). It used the FEM micromechanical analysis for unidirectional and angle 

ply laminates subject to multiaxial loading conditions. This study showed a good 

agreement between the micromechanical results obtained based on the properties 

of two constitute (fibre and matrix) and the experimental results.  

Verification of the UC model with the straight tows is based on comparison 

with the results obtained based on the classical laminate theory (CLT), using which 

one can find strains, displacements and curvatures that are produced in the 

laminates as a result of the thermal and mechanical loading as described in Chapter 

3. The calculated stresses and strains are used to determine the stress resultant force 

in order to calculate the equivalent in-plane stiffness and compare it with that of the 

UC model. 

Table 8.1: Material properties of constituents (Kaddour et al., 2013) 

Property  Glass fibre Matrix (8552 epoxy)  

Elastic modulus E (GPa) 74 4.08 

Major Poisons’s ratio v12 0.2 0.38 

Elastic shear modulus G (GPa) 30.8 1.478 

Fibre volume fraction of tow  60% 
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 Results and discussion  

In order to determine the effective elastic properties accounting for variable 

gap and variation in local fibre orientation, three different cases of unit cell models 

are considered to be presented sequentially. The constituent material properties of 

fibre and matrix used in these cases are extracted from Kaddour et al. (2013) as 

shown in Table 8.1 

To determine the in-plane effective elastic constants, three kinds of the load 

should be applied, namely, the uniaxial loads in both vertical and horizontal 

direction and pure shear. These loading cases are applied on faces, edges and 

vertices according to the constraint equations.  

The first case considered a UC with a single straight tow without a gap. It is 

dealt with as a UD composite with a uniform fibre volume fraction at 60%. The 

purpose of this case is to check how well results obtained with a straight tow UC 

model and compare with results obtained from the CLT.  

The second case was conducted for a UC with a single curved tow according 

to the linear variation of local angles.  

The third case deals with the two layers of curved tows with their 

corresponding gaps in configuration ± 𝜃. This UC model, in this case, is more 

complicated because of the existence of the connection area between the two curved 

tows. It illustrates the difference between the responses of the laminate and the 

lamina. 
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8.8.1 Case one 

The first case involves a single straight tow inclined at T0=T1 =15° with 

respect to the x-axis, under three kinds of applied load to obtain in-plane stiffnesses, 

is shown in Figure 8.11. When a homogeneous isotropic material is employed for 

the tow, a uniform stress field has been obtained as shown in Figure 8.11(a). It is 

equal to the applied macroscopic stresses. This result confirms that the periodic 

boundary conditions were imposed correctly. If there were any mistakes, it would 

be clear during that stage as non-uniform stresses or abnormal shapes of 

deformation would be predicted. In order to reproduce the in-plane effective 

material properties, three loading conditions have been considered, where common 

boundary conditions were shared. Figure 8.11(b), (c) and (d) present the local 

stresses 𝜎11, 𝜎22 and 𝜎12, respectively, for the respective loading conditions. These 

stresses over the UC represent the effective stresses from which one can calculate 

the effective properties of the material represented by the UC. The effective 

properties can be obtained from the reactional forces at the key degrees of freedom 

after dividing them by the volume of the UC (Li et al., 2011a).  
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(a)  

 

(b)  

 

(c)   

 

(d)  

Figure 8.11: UC model of straight tow with T0=T1=15°; (a) 𝜎11  of isotropic material 

under loading in x-direction, (b) 𝜎11 of UD material under loading in x-direction, 

(c) 𝜎22 of UD material under loading y-direction, and (d) 𝜎12 of UD material under 

shear loading 

 

 

Figure 8.12 and 8.13 present a comparison between the effective material 

properties Ex and Gxy, respectively, from the UC model and their counterparts 

obtained based on the CLT. They show good agreement.  

 



Chapter 8 

221 
 

 

Figure 8.12: A comparison of effective elastic modules Ex for straight fibre UC 

obtained with CLT and UC FE modelling 

 

Figure 8.13: A comparison of effective shear modules Gxy for straight fibre UC 

obtained with CLT and UC FE modelling 
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8.8.2 Case two 

The results of the second case were obtained for a UC model having a single 

tow of a linear variation of local angles with T0=0 and T1=45 and a gap of variable 

width. Figure 8.14(a) presents the obtained stress in the UC model of homogenous 

isotropic material with the gap filled with the same materials under an applied 

macroscopic strain of 10% in the x-direction. Uniform stress field was obtained, 

verifying that the model passed the ‘sanity check’.  

A more realistic UC has been analysed where the gap and the tow were 

prescribed with appropriate material properties. The stress in the fibre direction 

when the UC is under tension in the x-direction is shown in Figure 8.14(b). The 

maximum stress is predicted in the middle of fibre tow where the tow orientation is 

the most closely aligned with the direction of applied load, while the minimum 

stresses are observed at both ends when T1=45°.  

The applied load for the case as shown in Figure 8.14(c) is tensile in the y-

direction. It can be seen that stress in fibre direction σ11 reached its maximum at 

both ends of the fibre tow and it takes its minimum at the centre. The trend is 

opposite to that of Figure 8.14(b).  

Under applied pure shear loading, Figure 8.14(d) shows that the 𝜎11 along the 

fibre,  direction tend to maximise when the local orientation approaches 45 and 

minimise when angles approach 0. This is because pure shear is equivalent to the 

equal bi-axial tensile and compressive stress state and the maximum tension is 

expected at 45.  
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(a)  

 

(b)  

 

(c)  

 

(d)  

Figure 8.14: UC model of curved tow with T0=0° andT1=45°; (a) 𝜎11 of isotropic 

material under loading in x-direction, (b) 𝜎11 of UD material under loading in x-

direction, (c) 𝜎11 of UD material under loading in y-direction, and (d) 𝜎11 of UD 

material under shear loading 

 

The local orientation varies linearly from T0 at the centre to T1 at the end. 

Therefore, different sets of values of T0 and T1 lead to different UC models. Figure 

8.15(a) presents the effective material properties of Ex. The highest value of the 

effective material property Ex is associated with the curve of T0=0 when the effect 

of the gap on the effective material property Ex, becomes least pronounced. Increase 

in either T0 or T1 tends to rotate the orientation of the gap away from the x-axis. As 

a result, the effective elastic modulus decreases. Figure 8.15(b) presents the 

effective Young’s modulus in Ey as a family of curves corresponding to various 

values of T0 as indicated with T1 varying from 35 to 55 with an increment of 5. 

It can be seen the effective material property Ey decreases with increasing the value 
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of T1. Furthermore, this figure shows the curve for T0=20 has the largest value 

among the range of values chosen for T0 as this is to closest to the case of a straight 

tow. The effective shear modulus Gxy is predicted as shown in Figure 8.15(c). It 

seems to be predominantly determined by T0 while T1 has little effect on the 

predicted shear modulus from the UC model. Within the range of T0 as shown in 

Figure 8.15(c), Gxy increases with T0 as fibres deviate from x-axis towards 45° 

direction which is most effective in resisting shear stress.  

 
(a)  

 
(b)  

 
(c)  

Figure 8.15: Effective elastic property of single layer of curved tows (a) Ex moduli, 

(b) Ey moduli, and (c) Gxy moduli  
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The performance of the material represented by the UC is apparently affected 

by the presence of the gap. The size of the gap can be employed as a measure of its 

presence. In Figure 8.16, the gap size is plotted against T1 at T0 =0. Apparently, it 

increases with T1. This is accompanied by the reduction in the Effective elastic 

properties of Ex, Ey and Gxy.  

 

Figure 8.16: A comparison of o effective material properties with gap size of UC 

models having T0=0° 

 

In Figure 8.17 the percent ratio of the gap size to the total size of the UC 

model has been plotted over a range of different values of T0. It is clear that, while 

it increases with T1 as has been shown previously, it reduces with T0 over the range 

as indicated. This is because the fibre tow tends to straighten up as T0 increases at 

fixed T1. The presence of the gap is due to the variation of the curvature along the 

tow path. The less the variation, the lower the volume percentage of the gap. 
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.  

Figure 8.17: Gap size percent against local angles 

 

A comparison has been made between the predictions from the rule of the 

mixtures and the unit cell model on the obtained effective material elastic moduli 

in the x- and y-directions respectively. The predictions of the in-plane stiffness 

based on the role of mixtures is done as a procedure used in Chapter 5. However, 

the used material properties and characteristic dimensions are the same as the UC 

model to keep the comparison sensible. In Figure 8.18(a) the effective elastic 

modulus Ex is plotted against T1 at T0=0°. Both approaches result in very similar 

predictions. This is because, with the range of fibre orientation as involved, Ex is 

approximately dictated by local effective elastic modulus in the fibre direction for 

which the rule of mixtures is meant to be very accurate. The disparity can be 

observed in Ey as shown in Figure 8.18(b) because of the limited accuracy the rule 

of mixtures for effective properties in directions other than along fibres. Ey of the 

material represented by the UC here is no longer dictated by the local effective 

elastic modulus over the range of fibre orientation involved. Even so, it can be seen 

that if one can put up with the amount of errors as presented, the rule of mixtures 
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results can offer a rough approximation. However, it is deemed to be rather 

inaccurate if one expects more reasonable approximations. 

 
(a)  

 
(b)  

Figure 8.18: A comparison of effective material properties obtained by the ROM 

and UC model; (a) Ex moduli, and (b) Ey moduli 

 

8.8.3 Case three 

The two cases in the two previous sections have been examined as a measure 

of verifications at different levels of sophistication. The third case is meant to be 

more relevant to applications. A two-layered laminate of curved tows with their 

companion gaps in the ± 𝜃 configuration is modelled as the UC with two legs. The 

UC is first loaded in the x-direction with its materials for the fibre tows and the gaps 

assumed to be the same, homogenous and isotropic. A uniform stress field is 

obtained, as shown in Figure 8.19, as a ‘sanity check’ to verify the model.  
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Figure 8.19: Stress in x-direction for isotropic material of two layers model of UC 

due to the tensile load in x-direction 

The UC model has been analysed where the fibre tows are considered 

transversely isotropic with their material properties as given in Table 8.1, while the 

gaps are genuinely voids of a matrix. The local stresses in the fibre tows under 

tensile loading in the x- and y-directions and in-plane shear loading are shown in 

Figure 8.20-8.23, respectively, for local angles T0=0° and T1=45°.  

 

Figure 8.20: Stress in fibre direction for orthotropic material of two layers model of 

UC due to the tensile load in x-direction 

 



Chapter 8 

229 
 

 

Figure 8.21: Stress in a direction perpendicular to the fibre for orthotropic material 

of two layers model of UC due to the tensile load in y-direction 

 

Figure 8.22: Shear stress in local coordinate for orthotropic material of two layers 

model of UC due to shear loading 

 

The effective material properties Ex, Ey and Gxy were also extracted from these 

loading cases. Figure 8.23(a) states the effective material property Ex for the 

different sets of T0 and T1 of two layer UC model. The largest value of Ex is for the 

family of points having T0 = 0° and the lowest value for the set of point having 

T0=20°. It could be because the variable gap does not have a vital effect on the Ex. 

In addition, the local angles of UC models are converted from a zero angle with 
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increasing T0. Figure 8.23(b) presents the effective material Ey for a different range 

of local angles. It shows the Ey increases with the shrinking of the gap due to the 

decreasing the difference between the T0 and T1. The effective shear modules Gxy 

for certain range of T0 and T1 has been presented in Figure 8.23(c). It can be seen 

that the value of Gxy is still approximately the same for each family of T0. The reason 

behind that is the presenting range of T1 is small, between 35 and 45, and 

increasing the size of the gap.  

 
(a)  

 
(b)  

 
(c)  

Figure 8.23: Effective elastic property of two layers of curved tow: (a) Ex moduli, 

(b) Ey moduli, and (c) Gxy moduli  
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In Figure 8.24 the gap size is inversely proportional to the effective material 

properties of Ex, Ey and Gxy. as a result of the linear variation of the local angle of 

the tow with T0=0. Figure 8.25(a) and (b) illustrate the comparison between the 

effective material properties Ex and Ey obtained using the rule of mixtures and out 

of UC FE analysis, respectively. It can be seen that effective material property in 

the x-direction compare well, while there is a clear difference for the effective 

material property in the y-direction. However, that difference does not suggest that 

the UC model is not valid for getting the transverse effective material properties, 

because of the rule of mixtures offers upper bound for longitudinal stiffness and 

lower bound for transverse stiffness.  

 

Figure 8.24: A comparison of o effective material properties with gap size of UC 

models having T0=0° 
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(a)  

 
(b)  

Figure 8.25: A comparison of properties obtained by the ROM and out of UC FE 

modelling; (a) Ex moduli (b) Ey moduli 

 

 Summary 

Estimating the effective material properties of composite material can be 

extremely challenging. In particular, the numerical results may not be in a good 

agreement with test data, for example when employing ROM for calculating a 

transverse property of such as E22 and G12. A homogenization approach based on 

the use of the representative volume element or UC is more accurate and effective 

in its FE implementation. 

The correct definition and application of periodic boundary conditions can 

guarantee the displacement and the traction continuity at the boundaries of the UC 

model. Periodic boundary conditions have been derived for the UC model with 

translational symmetries along two axes as a template that could be used for 

different UC models having different local angles in a direct way. The translational 

symmetry transformations are employed to satisfy the condition of continuous tow. 
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Also, the boundary conditions based on translation symmetry transformation have 

been used to employ perfect bonding the interface area of the adjacent legs of the 

UC. 

UC models have been implemented in Abaqus/Standard, and the process of 

generating the models was fully automated using a Python script as a secondary 

development of Abaqus/CAE. Specifically, it creates the UC geometry with 

different local angles, generates a periodic mesh to suit the PBCs, creates and 

imposes the equations of PBCs, runs the FE analysis and extracts the effective 

material properties. 

Extensive verification has been carried out, such as comparing the prediction 

of a straight tow model with the results obtained using CLT and ‘sanity checks’ for 

all cases of UC models analysed. The results from UC FE modelling and those 

obtained ROM were found to be in a good agreement in terms of the effective 

material property in the x-direction. The transverse effective material property 

predictions from FE analysis and ROM calculations have the same tendency yet 

quantitatively, and there is some difference between them.  

The size of the gap between tows causes a drop in the effective material 

properties. The linear variation of local angles has an important effect on the size 

of the gap, whereas the gap size increases with increasing the difference between 

T0 and T1. 
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9 Conclusions and Future Work 

 Conclusions  

It is the interest of this thesis to investigate the effects of controlled fibre 

placement on the performances of the composite structure produced and to make 

use of such effects in order to optimise the performances of structures. The main 

outcomes of the research are summarised as follows. 

1. An optimisation framework has been devised to carry out the optimisation 

using Abaqus/Standard as an FE solve for stress analysis and Matlab as the 

optimiser. The technique of the client and server has been established as the 

key for in the framework which facilitates the communications between these 

two independent commercial packages so that the optimisation can be 

performed in an automated manner with less time. 

2. Based on the optimisation of different orders of variations of local fibre angles, 

the effect of higher-order variations (second and third-order), is considered as 

not effective in improving the buckling load as compared with that obtained 

with a linear variation, given the substantial increased computational efforts 

and time consumed. Therefore, the improvement in the buckling load from the 

first-order variation is considered as sufficiently representative.  

3. The first-order variation of local angles in the direction transverse to the 

loading direction offered a significant improvement in buckling load around 

40%, while for the variation in the loading direction the improvement was 

negligible. 
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4. The overall stiffness of the steered fibre laminates having linear variation in 

the direction transverse to loading was higher than that of variation in the 

loading direction.  

5. Steering the fibre with a linear variation of local angle improved the structural 

performance as a result of the re-distribution of the applied loads. Also, 

provided more flexibility in the design process to achieve the optimum 

performances.  

6. A gap of variable width between adjacent tows, which produces a non-uniform 

of fibre volume fraction distribution, offered a negative impact on the buckling 

load and the overall stiffness of laminates. The negative effect was proportional 

directly with the size of the gap, which increases with increasing the difference 

between the local fibre angle variations.  

7. The structural performance of cylindrical shells improved by steering the fibre 

path, which enables the structures to sustain higher buckling load as a result of 

the improved local stiffness. Since steering, the fibre in the circumferential 

direction increased the surface area of a cylindrical shell, which is exposed to 

axial compression by redistributing the load. 

8. The improvement of the buckling load of the cylindrical shell depended on the 

direction of the applied bending moment, where the gain in the buckling load 

could turn into a loss if the load is applied in other directions.  

9. The time and the computational effort to predict the failure load of the steered 

fibre laminates was reduced by using linearisation technique for the Tsai-Wu 

criterion. 

10. In general, the variable gap width in the laminates reduced the strength of the 

laminates. However, the variable gap width that changes with variation of local 
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angle does not significantly affect the strength of some patterns of the 

curvilinear laminates. 

11. The effective material properties of the steered fibre with gaps of variable 

width were achieved by using a unit cell (UC) model in conjunction with the 

finite element method. 

12. The equations of PBCs, which were derived based on the translational 

symmetry transformations satisfied the continuity conditions by the 

verification through ‘sanity checks’. In addition, the results of the UC models 

having straight fibre paths with results of the classical laminate theory and 

showed a good agreement. 

 Future Work  

After achieved what has been presented in the thesis, a number of areas have 

been identified where more efforts could be made in order to extend the 

understanding but have not been attended due to the limited resources and time 

allowed. There have therefore been provided here as future work. 

1) Performing a multi-objective design optimisation to include multiple loading 

cases instead of single load case since in real life the structures, e.g. in fuselage 

of airplane, are subjected to multi-loading cases. 

2) A post-buckling analysis could be as a recommendation in future work for 

variable stiffness laminates.  

3) The variable stiffness laminates could be used to tailor the coefficient of thermal 

expansion in the aerospace structure. Therefore, performing the thermal 

expansion analysis to minimise thermally produced stresses could be 

considered as future work. 
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4) The unit cell model employed in the prediction of the effective material 

properties could be used to model the effects of damage so that analysis could 

be more reliable. 

5) The analysis of the unit cell model of the curved tow with its variable gap could 

be developed into a toolbox as a plug-in of ABAQUS to allow more automated 

simulations in future 
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Appendices 

Appendix A 

Constraint equations for faces of unit cell model 

Faces (excluding 

edges) 
Constraint equations 

F1, F8 

at z=b, at z=-b 

Free 

 

F2 & F7 

at z=0, at z=0 

Interface area 

followed 

F3 & F4 

at x=a/2, at x=-a/2 

on leg 1 

 {
∆𝑢
∆𝑣
}
(𝐹3−𝐹4)

= [𝜀0] {
𝑎
∆𝑦} = {

𝑎𝜀𝑥 + ∆𝑦𝛾𝑥𝑦
∆𝑦𝜀𝑦

} 

 

F9 & F10 

at x=a/2, at x=-a/2 

on leg 2 

 {
∆𝑢
∆𝑣
}
(𝐹10−𝐹9)

= [𝜀0] {
−𝑎
∆𝑦} = {

−𝑎𝜀𝑥 + ∆𝑦𝛾𝑥𝑦
∆𝑦𝜀𝑦

} 

F5 & F6 

on leg 1 
 {
∆𝑢
∆𝑣
}
(𝐹5−𝐹6)

= [𝜀0] {
0
𝑊
} = {

𝑊𝛾𝑥𝑦
𝑊𝜀𝑦

} 

F11 & F12 

on leg 2 
 {
∆𝑢
∆𝑣
}
(𝐹11−𝐹12)

= [𝜀0] {
0
𝑊
} = {

𝑊𝛾𝑥𝑦
𝑊𝜀𝑦

} 

 

Appendix B 

Constraint equations for edges of unit cell model 

Edges 

(excluding 

vertices) 

Constraint equations 

Edges// z-axis 

on the leg 1 

[E1,E2,E3, 

E4] 

 

 {
∆𝑢
∆v
}
(𝐸2−𝐸1)

= [𝜀0] {
0
𝑊
} = {

𝑊𝛾𝑥𝑦
𝑊𝜀𝑦

} 

 {
∆𝑢
∆v
}
(𝐸3−𝐸1)

= [𝜀0] {
𝑎

∆𝑦 +𝑊} = {
𝑎𝜀𝑥 + ∆𝑦𝛾𝑥𝑦 +𝑊𝛾𝑥𝑦

∆𝑦𝜀𝑦 +𝑊𝜀𝑦
}  

 {
∆𝑢
∆v
}
(𝐸4−𝐸1)

= [𝜀0] {
𝑎
∆𝑦} = {

𝑎𝜀𝑥 + ∆𝑦𝛾𝑥𝑦
∆𝑦𝜀𝑦

} 

Edges //z-axis  

 on the leg 2 

 {
∆𝑢
∆v
}
(𝐸16−𝐸13)

= [𝜀0] {
0
𝑊
} = {

𝑊𝛾𝑥𝑦
𝑊𝜀𝑦

} 

 {
∆𝑢
∆v
}
(𝐸15−𝐸13)

= [𝜀0] {
−𝑎

∆𝑦 +𝑊} = {
−𝑎𝜀𝑥 + ∆y𝛾𝑥𝑦 +𝑊𝛾𝑥𝑦

∆y𝜀𝑦 +𝑊𝜀𝑦
}  
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[E13,E14,E1

5,E16] 
 {
∆𝑢
∆v
}
(𝐸14−𝐸13)

= [𝜀0] {
−𝑎
∆y} = {

−𝑎𝜀𝑥 + ∆y𝛾𝑥𝑦
∆y𝜀𝑦

} 

Edges// y-axis 

 on the leg 1 

[E5,E8] 

 {
∆𝑢
∆v
}
(𝐸8−𝐸5)

= [𝜀0] {
𝑎
∆𝑦} = {

𝑎𝜀𝑥 + ∆𝑦𝛾𝑥𝑦
∆𝑦𝜀𝑦

} 

Edges// y-axis 

 on the leg 2 

[E19,E20] 

 {
∆𝑢
∆v
}
(𝐸19−𝐸20)

= [𝜀0] {
−𝑎
∆y} = {

−𝑎𝜀𝑥 + ∆y𝛾𝑥𝑦
∆y𝜀𝑦

} 

 

Edges// y-axis 

 on the leg 

1&2 [E6,E7, 

E18,E17] 

 

 {
∆𝑢
∆v
}
(𝐸7−𝐸6)

= [𝜀0] {
𝑎
∆y} = {

𝑎𝜀𝑥 + ∆y𝛾𝑥𝑦
∆y𝜀𝑦

} 

 {
∆𝑢
∆v
}
(𝐸17−𝐸6)

= [𝜀0] {
𝑎
0
} = {

𝑎𝜀𝑥
0
} 

 {
∆𝑢
∆v
}
(𝐸18−𝐸6)

= [𝜀0] {
0
∆y
} = {

∆y𝛾𝑥𝑦
∆y𝜀𝑦

} 

Curved edges  

 on the leg1 

[E9, E10] 

 {
∆𝑢
∆v
}
(𝐸10−𝐸9)

= [𝜀0] {
0
𝑊
} = {

𝑊𝛾𝑥𝑦
𝑊𝜀𝑦

} 

Curved edges  

 on the leg2 

[E23, E24] 

 {
∆𝑢
∆v
}
(𝐸23−𝐸24)

= [𝜀0] {
0
𝑊
} = {

𝑊𝛾𝑥𝑦
𝑊𝜀𝑦

} 

Curved Edges 

on the leg 1 & 

leg 2 

[E11,E12, 

E21,E22] 

Interface area 

followed 
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Appendix C 

Constraint equations for vertices of unit cell model 

Vertices Constraint equations 

[V1,V2, 

V3, V4] 

on leg 1 

 {
∆𝑢
∆v
}
(𝑉2−𝑉1)

= [𝜀0] {
0
𝑊
} = {

𝑊𝛾𝑥𝑦
𝑊𝜀𝑦

} 

 {
∆𝑢
∆v
}
(𝑉3−𝑉1)

= [𝜀0] {
𝑎

∆y +𝑊} = {
𝑎𝜀𝑥 + ∆y𝛾𝑥𝑦 +𝑊𝛾𝑥𝑦

∆y𝜀𝑦 +𝑊𝜀𝑦
}  

 {
∆𝑢
∆v
}
(𝑉4−𝑉1)

= [𝜀0] {
𝑎
∆y} = {

𝑎𝜀𝑥 + ∆y𝛾𝑥𝑦
∆y𝜀𝑦

} 

 

[V5,V6, 

V7,V8, 

V9,V10, 

V11, V12] 

on leg 1 

&2 

 

 {
∆𝑢
∆v
}
(𝑉6−𝑉5)

= [𝜀0] {
0
𝑊
} = {

𝑊𝛾𝑥𝑦
𝑊𝜀𝑦

} 

 {
∆𝑢
∆v
}
(𝑉7−𝑉5)

= [𝜀0] {
𝑎

∆y +𝑊} = {
𝑎𝜀𝑥 + ∆y𝛾𝑥𝑦 +𝑊𝛾𝑥𝑦

∆y𝜀𝑦 +𝑊𝜀𝑦
} 

 {
∆𝑢
∆v
}
(𝑉8−𝑉5)

= [𝜀0] {
𝑎
∆y} = {

𝑎𝜀𝑥 + ∆y𝛾𝑥𝑦
∆y𝜀𝑦

} 

 {
∆𝑢
∆v
}
(𝑉12−𝑉5)

= [𝜀0] {
0
∆y
} = {

∆y𝛾𝑥𝑦
∆y𝜀𝑦

} 

 {
∆𝑢
∆v
}
(𝑉11−𝑉5)

= [𝜀0] {
0

∆y +𝑊
} = {

∆y𝛾𝑥𝑦 +𝑊𝛾𝑥𝑦
∆y𝜀𝑦 +𝑊𝜀𝑦

} 

 {
∆𝑢
∆v
}
(𝑉10−𝑉5)

= [𝜀0] {
𝑎
𝑊
} = {

𝑎𝜀𝑥 +𝑊𝛾𝑥𝑦
𝑊𝜀𝑦

} 

 {
∆𝑢
∆v
}
(𝑉9−𝑉5)

= [𝜀0] {
𝑎
0
} = {

𝑎𝜀𝑥
0
} 

[V13, 

V14, V15, 

V16] 

 

 {
∆𝑢
∆v
}
(𝑉14−𝑉13)

= [𝜀0] {
0
𝑊
} = {

𝑊𝛾𝑥𝑦
𝑊𝜀𝑦

} 

 {
∆𝑢
∆v
}
(𝑉15−𝑉13)

= [𝜀0] {
−𝑎

∆y +𝑊} = {
−𝑎𝜀𝑥 + ∆y𝛾𝑥𝑦 +𝑊𝛾𝑥𝑦

∆y𝜀𝑦 +𝑊𝜀𝑦
}  

 {
∆𝑢
∆v
}
(𝑉16−𝑉13)

= [𝜀0] {
−𝑎
∆𝑦} = {

−𝑎𝜀𝑥 + ∆𝑦𝛾𝑥𝑦
∆𝑦𝜀𝑦

} 
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Appendix D 

Constraint equations for interface area of the unit cell model 

Faces 

(excluding 

edges) Constraint equations 

FL1i , FL2i 
on interface area 

of leg 1 & leg 2 

on the right part 

of unit cell 

 {
∆𝑢
∆v
}
(𝐹𝐿1𝑖−𝐹𝐿2𝑖)

= [𝜀0] {
0

𝑖 ∗ 𝑊
} = {

𝑖 𝑊𝛾𝑥𝑦
𝑖 𝑊𝜀𝑦

} 

FL2i , FL1i 
on interface area 

of leg1 & leg2 

on the left part of 

unit cell 

 {
∆𝑢
∆v
}
(𝐹𝐿2𝑖−𝐹𝐿1𝑖)

= [𝜀0] {
0

𝑖 ∗ 𝑊
} = {

𝑖 𝑊𝛾𝑥𝑦
𝑖 𝑊𝜀𝑦

} 

Edges 

(excluding 

vertices) 
Constraint equations 

EL1Ui, EL1Li, EL1Ci 

EL2Ui, EL2Li, EL2Ci 

 

on interface area 

of leg1 & leg2 

on the right part 

of a unit cell 

 

 {
∆𝑢
∆v
}
(𝐸𝐿1𝐿𝑖− 𝐸𝐿2𝐶𝑖)

= [𝜀0] {
0

(𝑖 − 1)𝑊
} = {

(𝑖 − 1)𝑊𝛾𝑥𝑦
(𝑖 − 1)𝑊𝜀𝑦

} 

 {
∆𝑢
∆v
}
(𝐸𝐿1𝑈𝑖− 𝐸𝐿2𝐶𝑖)

= [𝜀0] {
0
𝑖 𝑊

} = {
𝑖  𝑊𝛾𝑥𝑦
𝑖  𝑊𝜀𝑦

} 

 {
∆𝑢
∆v
}
(𝐸𝐿2𝑈𝑖− 𝐸𝐿2𝐿𝑖)

= [𝜀0] {
0
𝑊
} = {

𝑊𝛾𝑥𝑦
𝑊𝜀𝑦

} 

 {
∆𝑢
∆v
}
(𝐸𝐿1𝐶𝑖− 𝐸𝐿2𝐿𝑖)

= [𝜀0] {
0

(𝑖 − 1)𝑊
} = {

(𝑖 − 1)𝑊𝛾𝑥𝑦
(𝑖 − 1)𝑊𝜀𝑦

} 

EL2Ui, EL2Li, EL2Ci 

EL1Ui, EL1Li, EL1Ci 

 

on interface area 

of leg1 & leg2 

on the left part of 

unit cell 

 

 {
∆𝑢
∆v
}
(𝐸𝐿1𝑈𝑖− 𝐸𝐿1𝐿𝑖)

= [𝜀0] {
0
𝑊
} = {

𝑊𝛾𝑥𝑦
𝑊𝜀𝑦

} 

 {
∆𝑢
∆v
}
(𝐸𝐿2𝐶𝑖− 𝐸𝐿1𝐿𝑖)

= [𝜀0] {
0

(𝑖 − 1)𝑊
} = {

(𝑖 − 1)𝑊𝛾𝑥𝑦
(𝑖 − 1)𝑊𝜀𝑦

} 

 {
∆𝑢
∆v
}
(𝐸𝐿2𝐿𝑖− 𝐸𝐿1𝐶𝑖)

= [𝜀0] {
0

(𝑖 − 1)𝑊
} = {

(𝑖 − 1)𝑊𝛾𝑥𝑦
(𝑖 − 1)𝑊𝜀𝑦

} 

 {
∆𝑢
∆v
}
(𝐸𝐿2𝑈𝑖−𝐸𝐿1𝐶𝑖)

= [𝜀0] {
0

𝑖 ∗ 𝑊
} = {

𝑖 ∗ 𝑊𝛾𝑥𝑦
𝑖 ∗ 𝑊𝜀𝑦

} 

 

Vertices Constraint equations 

VL1Ui , VL1Li 

VL2Ui , VL2Li 

on interface area 

of leg1 & leg2 

on the right part 

of unit cell 

 

 {
∆𝑢
∆v
}
( 𝑉𝐿2𝑈𝑖− 𝑉𝐿2𝐿𝑖)

= [𝜀0] {
0
𝑊
} = {

𝑊𝛾𝑥𝑦
𝑊𝜀𝑦

} 

 {
∆𝑢
∆v
}
(𝑉𝐿1𝐿𝑖− 𝑉𝐿2𝐿𝑖)

= [𝜀0] {
0
𝑖 𝑊

} = {
𝑖 𝑊𝛾𝑥𝑦
𝑖 𝑊𝜀𝑦

} 

 {
∆𝑢
∆v
}
(𝑉𝐿1𝑈𝑖− 𝑉𝐿2𝐿𝑖)

= [𝜀0] {
0

(𝑖 + 1)𝑊
} = {

(𝑖 + 1)𝑊𝛾𝑥𝑦
(𝑖 + 1)𝑊𝜀𝑦

} 
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VL2Ui , VL2Li 

VL1Ui , VL1Li 

 

on interface area 

of leg1 & leg2 

on the left part of 

unit cell 

 {
∆𝑢
∆v
}
(𝑉𝐿1𝑈𝑖− 𝑉𝐿1𝐿𝑖)

= [𝜀0] {
0
𝑊
} = {

𝑊𝛾𝑥𝑦
𝑊𝜀𝑦

} 

 {
∆𝑢
∆v
}
(𝑉𝐿2𝐿𝑖− 𝑉𝐿1𝐿𝑖)

= [𝜀0] {
0
𝑖 𝑊

} = {
𝑖𝑊𝛾𝑥𝑦
𝑖 𝑊𝜀𝑦

} 

 {
∆𝑢
∆v
}
(𝑉𝐿2𝑈𝑖− 𝑉𝐿1𝐿𝑖)

= [𝜀0] {
0

(𝑖 + 1)𝑊
} = {

(𝑖 + 1)𝑊𝛾𝑥𝑦
(𝑖 + 1)𝑊𝜀𝑦

} 
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