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Chapter 1

Introduction

This thesis focuses on inverse problems. Similar concepts are known as, e.g., data assimila-

tion in historical matching and numerical prediction, parameter estimation (optimization)

in estimation theory (optimum control theory), and model training in machine learning

and deep learning. The class of inverse problems that we studied are aimed to infer

unknown parameters as inputs of forward models when the outputs are given/observed.

This chapter introduces inverse problems and discusses how they arise in applications.

Then, we present an abbreviation of objectives, contributions, and layouts of this thesis.

1.1 Overview of inverse problems

In this section, inverse problems will be discussed as follows. Firstly, we will intuitively

describe what inverse problems are. Secondly, we will list real applications of inverse

problems. Thirdly, we will consider some infinite-dimensional inverse problems governed

by three basic types of second order (hyperbolic, parabolic, and elliptic) partial differential

equations (PDEs).

1.1.1 Descriptions of inverse problems

Inverse problem is a general concept, that means, for a system, to calculate causal factors

(inputs of the system) from given observations (outputs of the system). This process is

the ‘inverse’ of forward problem which starts with inputs and calculates outputs.
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There exist some simple examples that forward problems and inverse problems are

equivalent: consider a finite-dimensional full-rank square matrix A, so that, y = Ax if

and only if x = A−1y; consider the exponential and logarithm functions on the real line,

so that, y = exp(x) if and only if x = log(y). However, these kinds of trivial examples are

less interesting. In most real applications, the direction of ‘forward’ and ‘inverse’ cannot

be inverted, because of two facts: 1) physically, there exist consequences from causes to

effects e.g. the second law of thermodynamics, and 2) mathematically, inverse problems

are usually ill-posed even though forward models are well-posed.

The concept of well-posedness was proposed by Jacques Hadamard [47]. A problem is

well-posed if it has a unique solution continuously depending on conditions. A problem

is ill-posed if it is not well-posed. In order to explain the idea more specifically, consider

a continuous map G : X → Y from a separable Banach space X to another separable

Banach space Y . Then, the forward problem is to compute y = G(x) given x ∈ X .

Clearly, the forward problem is well-posed, as there exists a unique y given x, and y is

continuous in x. On the other hand, the inverse problem is to find x ∈ X , such that,

the equality y = G(x) holds given y ∈ Ran(G). However, the inverse problem could be

ill-posed because of two facts: 1) there may be multiple solutions of x, and 2) the solution

x may not be continuously depending on data y. In the following, we use two examples

to show the ill-posedness of inverse problems.

Example 1.1.1 (under-determined system of linear equations). This example shows

that an under-determined linear system has multiple solutions. Consider a system of

linear equations y = Ax, where A is an n ×m real-valued matrix with n < m (under-

determined). Assume A is full-rank. Then, given any y ∈ Rn, the solution x ∈ Rm exists

but not unique. Thus, the inverse problem is ill-posed.

Example 1.1.2 (Fredholm integral equation). This example shows that the solution of

Fredholm integral equation [60] is not continuous. Let K ∈ L2([a, b] × [a, b];R) be a

symmetric positive-semi-definite kernel. Given a data g ∈ L2([a, b];R), we aim to find

the solution f ∈ L2([a, b];R), such that, the Fredholm integral equation holds, for all

s ∈ [a, b],

g(s) =

∫ b

a

K(s, t)f(t) dt (1.1.1)
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More clearly, let λi be the eigenvalues (sorted from the largest value to the lowest value)

and let ϕi be the corresponding (orthonormal) eigenfunctions, such that, the following

equation holds for all s ∈ [a, b],

λiϕi(s) =

∫ b

a

K(s, t)ϕi(t) dt (1.1.2)

Thus, {ϕi : i ∈ N1} form an orthonormal basis in the separable Hilbert space L2([a, b];R).

Furthermore, for any i = 1, 2, ..., we have∫ b

a

g(s)ϕi(s) ds =

∫ b

a

(∫ b

a

K(s, t)f(t) dt

)
ϕi(s) ds (1.1.3)

=

∫ b

a

(∫ b

a

K(s, t)ϕi(s) ds

)
f(t) dt (1.1.4)

= λi

∫ b

a

ϕi(t)f(t) dt (1.1.5)

We will show that the solution f is not continuous depending on g. Let g1, g2 ∈ L2([a, b];R)

be two different data, and let f1, f2 ∈ L2([a, b];R) be the corresponding solutions. Equation

(1.1.5) tells that the difference of the solutions satisfies

〈f1 − f2, ϕi〉L2 = 〈g1 − g2, ϕi〉L2/λi (1.1.6)

Therefore, we have

‖f1 − f2‖2
L2 =

∞∑
i=1

〈f1 − f2, ϕi〉2L2 =
∞∑
i=1

〈g1 − g2, ϕi〉2L2

/
λ2
i (1.1.7)

Notice the fact that, 〈g1 − g2, ϕi〉L2 is non-zero, but lim
i→+∞

λi = 0. Thus, f1 − f2 is un-

bounded. Although a discrete subspace with finite dimensions is adopted numerically, the

condition number of the discrete matrix can be very large.

Ill-posed inverse problems need to be regularized. We should mention two pioneers

who made contributions in this area. They are two Russian mathematicians, Tikhonov

and Morozov. Nowadays, Tikhonov regularization is regarded as the fundamental theory

in inverse problems. He suggested that, an ill-posed inverse problem can be regularized

by adding a penalty functional, such that the regularized problems is well-posed. In addi-

tion, Morozov’ discrepancy principle suggests how to determine the penalty functional in

Tikhonov regularization. Their main works were published in journals 1960s and 1970s
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(see Tikhonov’s collection book [10] and references therein). After Tikhonov, there ap-

pear many regularization methods using different penalty functionals, e.g. total variation

regularization, low-rank regularization, etc. (see reference [67] for a collection of modern

regularization methods). In conclusion, these approaches form a branch of inverse prob-

lems, called variational inversion, which aims to minimize an objective functional (cost

functional plus penalty functional).

On the other hand, the Bayesian approach [8] adopts prior distributions (from ex-

perience) to regularize ill-posed inverse problems, and interprets posterior distributions

(via the Bayes’ formula) to infer unknown parameters. Bayesian inversion becomes more

popular nowadays, since there is an explosive growth of computer science after 1990s,

which enables Markov chain Monte Carlo (MCMC) methods [24] numerically solving the

Bayesian estimation. Bayesian inversion accounts for an entire distribution of all possible

estimates rather than a point estimate, which requires much more computational work.

According to the history of MCMC [19], although Hasting proposed the rejection sam-

pling algorithm in 1970 [103], MCMC methods only came to mainstream statisticians

after the realization by Gelfand and Smith in 1990 [5]. However, the Bayesian approach

has advantages in information update and uncertainty quantification, since Bayesian in-

ference naturally determines how to learn information from data, and also determines

the implications of probability distributions.

1.1.2 Applications of inverse problems

Inverse problems are very important and widely appear in science and engineering.

There are numerous applications in optics, acoustics, quantum chemistry, astronomy, geo-

physics, hydrology, oceanography, atmospheric sciences, systems biology, medical imag-

ing, nondestructive testing, signal processing, artificial intelligence, and many other fields.

This subsection tries to list and discuss academic literature for each of the applications

mentioned above, in order to help reader achieve intuitive senses of inverse problems in

the real world.
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Inverse problems in fluid mechanics

consider imcompressible non-thermal fluids. The physical behavior of fluid flow is gener-

ally governed by the Navier-Stokes equations [43, 45], which describes states (e.g. velocity

and pressure) of fluid flow. For convenience, we classify two types of fluid flow: flow in

free space, such as winds and rivers, and flow in porous media, such as water flow through

soils and sands.

In free space This case mainly results in an inverse boundary problem, as fluid flow

passes through a solid which is a part of boundaries of the fluid flow

domain. This is the so-called fluid-structure interaction problem [52].

For this problem, one is likely to know the flow states on the boundary

by collecting experimental data. For example, [34] investigates how to

obtain the inflow velocity field from the knowledge of wind loads around

bridge sections. This kind of inverse problem is valuable in civil engi-

neering, because the interaction of winds and buildings is important in

construction design.

In porous media This case mainly results in an inverse coefficient problem, as the viscous

resisting forces of fluids depend on the properties of the porous medium

(the dependency is usually described by the Darcy’s law in pracice). In

this inverse problem, one can thus estimate the medium properties by

measuring the flow states. For example, [62, 64, 66, 63, 61] investigate

how to obtain subsurface permeabilities by measuring pressures of un-

derground flow. This kind of inverse problems is meaningful in reservoir

engineering, as it is helpful to improve the characterization of the geo-

physical properties of the subsurface.

Inverse problems in acoustic waves

Consider non-fluid non-thermal acoustic waves. In continuum mechanics, acoustic waves

occur due to vibration of sources. Since stress-strain responses of media are different,

the speeds of propagation of acoustic waves in these media are also different, and this

makes acoustic waves scatter at the interfaces of media. Thus, an acoustic wave field in
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a domain implies information of the media and sources inside. One can infer properties

of the media or locations of the sources from data of acoustic waves. Generally speaking,

the forward problems in this area are about solving the wave equation in different cases,

and the inverse scattering problems consist of object identification or source detectation.

Acoustic waves are widely used in geophysics, engineering, and medical sciences. For

example, determination of hypocenters in earthquakes [89], seismic tomography of the

earth [51, 107], sonar used for several purposes in oceanography [105, 84], ultrasounds used

for medical imaging [90] and nondestructive testing [53]. However, in these applications,

the sizes of objects are different, so frequencies of applied acoustic waves are also different.

More specifically, sonar applies frequencies higher than seismic waves but lower than

ultrasounds.

Inverse problems in electromagnetic waves

Electric currents, radio waves, microwaves, lights, and X-ray are about electromagnet

fields, but there exist differences. Electric fields in electrical circuits are assumed to be

conservative fields (a special case of the Maxwell’s equations), since the frequencies are

very low or zero. Radio waves and microwaves used in telecommunication engineering

are governed by the Maxwell’s equations. Lights (infrared, visible, ultraviolet) studied

in optics are also governed by the Maxwell’s equations, but sometimes the photoelectric

effect (beyond the Maxwell’s equations) should be considered, especially for ultraviolet.

For X-ray, the wave-particle duality (beyond the Maxwell’s equations) has to be accounted

due to the very high frequencies of these kinds of electromagnetic fields such that X-ray

photons carry enough energy penetrating objects (e.g. human body).

Electromagnetic waves are widely applied in the scenarios of inverse problems. Since

attenuation and scattering effects of electromagnetic waves in media are different, objects

can be identified by applying electromagnetic waves and collecting the response data. As

discussed in the last paragraph, the physical behaviors of electromagnetic fields vary with

respect to different frequencies. Therefore, various inverse problems arise under different

regimes: 1) in low frequency, the interaction is dominated by the Ampère’s circuital law

(electrostatics); 2) medium frequency, in the interaction is dominated by the Maxwell’s

equations (electrodynamics); 3) in high frequency, the interaction is dominated by the
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photoelectric effect (wave-particle duality); and 4) in intrinsic frequency of nucleus, the

interaction is dominated by the Bloch equations (nuclear magnetic resonance).

Low frequency This is a special case governed by Ampère’s circuital law (with Maxwell’s

addition), since this case is (quasi)-electrostatic. The inverse prob-

lem aims to investigate electrical properties of materials by applying

electrical currents into media and measuring the resulting voltages.

This is similar to the inverse coefficient problem of Darcy’s flow, but

the coefficient here is an electrical property. Two typical examples

are electrical impedance tomography (EIT) used in medical imaging

[69, 57] and electrical resistivity tomography (ERT) used in geophys-

ical imaging [102, 7]. These applications focus on different electrical

properties due to different objects, but mathematically they are the

same.

Medium frequency This is a more general case governed by the Maxwell’s equations

and leading to the wave equation. Thus, it is similar to the inverse

scattering problem of acoustic waves, but the wave here is an electro-

magnetic wave. Theis has several applications in atmospheric optics

[58, 56, 4], radar [12], and astronomy [14]. The main idea is to moni-

tor or identify objects by analyzing signals of electromagnetic waves.

High frequency This case results in the inverse problems that uses the penetrating

property of high-energy photons, in order to recover inside images of

objects. For example, X-ray photography is used in medical imaging

[18] and nondestructive testing of mateirals [86].

Magnetic resonance The previous three cases discuss the interaction between media and

electromagnetic fields. An additional case studies the effects of nu-

clear magnetic resonance [99, 40], which involves the interation be-

tween nuclei and magnetic fields (not electric fields). Its applica-

tions are well-known as the techinique: magnetic resonance imaging

(MRI), which is more and more popular in clinical science nowadays
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[95, 55, 72].

Inverse problems in probability waves

In quantum mechanics, a quantum state is described by a wave function Φ(x, t), whose

amplitude is the probability that the particle appears in location x at time t, so it

is also called a probability wave. Generally, the wave function Φ(x, t) is governed by

the Schrödinger equation with a Hamiltonian operator [48]. Specially, the Schrödinger

equation of a single nonrelativistic particle describes the interaction between the potential

energy and the wave function of the particle.

In inverse problems, the most natural examples include finding the potential energy

curves from the knowledge of the ro-vibrational spectra, or determining Hamiltonian ma-

trix elements from the knowledge of experimental energy levels. These inverse problems

are discussed in [48].

Inverse problems in gravitational waves

The Einstein field equations are widely accepted to describe gravity. In astronomy, re-

searchers use the Laser Interferometer Gravitational-wave Observatory (LIGO) to detect

cosmic gravitational waves and to develop gravitational-wave observations as an astro-

nomical tool [13]. The inverse problem for a network of laser interferometer gravitational

wave detectors is discussed in [27] as the analysis of cosmic signals.

Inverse problems in complex systems and artificial models

For some complex systems (e.g. weather forecasting [109], system biology [41, 68]), there

is lack of perfect theoretical characteration, or it is impposible to excatly solve the physical

governing euqtaions because of the complexity of PDEs and the chaotic behaviour of the

systems, so some empirical models with charaterizing parameters are adopted. On the

other hand, for some modern applications especially in computer science and machine

learning, researchers construct artificial models (e.g. neuron networks [76]) to deal with

some challenging problems such as computer vision [21] and natural language processing

[87, 25]. The inverse problems consist of training parameters involved in artificial models.
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1.1.3 PDE-constrained inverse problems

Inverse problems constitute a branch of applied mathematics, and in practice, there are

many implementations of the general theory of inverse problems (as discussed in the last

subsection). This subsection classifies some commonly used inverse problems governed

by linear second-order PDEs, which helps reader obtain further understanding of inverse

problems with more mathematical views. Since these PDE-constrained inverse problems

are in function spaces (infinite-dimensional), there may be some theoretical difficulties

for readers who are not familiar with this area, but the theory of inverse problems has

been well established even for infinite-dimensional cases [8].

Inverse problems with hyperbolic equations

Consider two kinds of waves: 1) (non-fluid non-thermal) acoustic waves, and 2) electro-

magnetic waves (governed by the Maxwell’s equations). Mathematically, they have the

same structure as follows. The (source-free) wave equation of a scalar potential v in an

isotropic homogeneous and linear medium is a hyperbolic partial differential equation,

∂2v

∂t2
= c2∇2v (1.1.8)

where v is the acoustic pressure in the context of acoustic waves [82] or the electric

potential (under Lorenz gauge) in the context of electromagnetic waves [15], t is time,

c > 0 is the speed of wave propagation in the medium, and ∇2 is the Laplace operator

on spatial domain. By considering time-harmonic wave or applying Fourier transform

from time domain to frequency domain, the wave equation (1.1.8) can be rewritten as

Helmholtz equation,

∇2v̂ + k2v̂ = 0 (1.1.9)

where v̂ is the spectrum of v, k = 2πξ/c is the wavenumber, and ξ is the frequency.

Inverse scattering problems are widely studied for the purpose of target identification

in many applications of radar, optics, sonar, and ultrasound. Mathematically, given the

Sommerfeld’s radiation condition at infinity [11, 92] and the (Lipschitz) boundary ∂D of

an object in R3, the Helmholtz equation (1.1.9) has a solution v̂. The inverse problem

is following: given the (partially and inaccurately) observed data of v̂, to recover the

boundary ∂D of the object [23].
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However, in general, it is not easy to analytically solve the forward problems as well

as the inverse problems. Practically, the solution v̂ of the Helmholtz equation (1.1.9) can

be represented by an integral form involving the Green’s function, and then is estimated

by some approximation methods, such as Born approximation and Rytov approximation

[100, 39]. The simplest but widely used method is the eikonal approximation [26], which

only considers the leading component of the Helmholtz equation, that means only the

direct wave is captured and any other scattered waves are ignored. Then the distance

between the target and the observer can be calculated from the travel time of wave

propagation.

Inverse problems with parabolic equations

The (source-free) heat equation of a scalar potential v in an isotropic homogeneous and

linear medium is the simplest example of parabolic partial differential equations,

∂v

∂t
= α∇2v (1.1.10)

where v is the temperature, t is the time, α > 0 is thermal diffusivity of the medium,

and ∇2 is the Laplace operator on spatial domain. To solve the heat equation (1.1.10),

one needs the boundary condition of the temperature v on ∂D and the initial condition

(t = 0) of the temperature v on D, where D is a Lipschitz domain. The inverse initial

condition problem is the following: given the boundary condition and the final condition

(t = T ) of the temperature v, to calculate the unknown initial condition.

Solving the inverse initial condition problem is much harder than solving the forward

problem of the heat equation (1.1.10). In physics, according the second law of thermo-

dynamics, it is well-known that heat transfer is irreversible. Mathematically, the inverse

initial condition of the heat equation is ill-posed [101, 70, 8]. For this reason, finding the

initial condition of the heat equation is a typical example showing the ill-posedness in

inverse problems.

Beyond the simple heat equation (1.1.10), consider the more general parabolic equa-

tion [35, 36, 37],

∂v

∂t
+

1

2

d∑
i,j=1

aij(x, t)
∂2v

∂xi∂xj
+

d∑
i=1

bi(x, t)
∂v

∂xi
+ c(x, t)u+ f(x, t) = 0 (1.1.11)
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where v is the state, d is the number of dimensions of the spatial domain, and the co-

efficient aij must strictly satisfy the elliptic condition (positive-definiteness). Note: this

is a backward parabolic equation, that means to solve this equation, the final condition

(t = T ) rather than the initial condition (t = 0) should be given. The parabolic approach

(represent the sate v in equation (1.1.11) as an expectation of underlying diffusion pro-

cesses) is related to solving the Navier-Stokes equations in fluid mechanics, also related to

pricing derivatives in quantitative finance. The inverse problem, e.g. for option pricing,

is parameter calibration of aij, bi, and c with respect to market data.

Inverse problems with elliptic equations

Consider two scenarios: 1) the Darcy’s law for fluid flow in porous media, and 2) the

Ampère’s circuital law (with Maxwell’s addition) for electromagnetic fields in electrical

media. Mathematically, they have the same structure as follows. The static equilibrium in

an isotropic heterogeneous and linear medium is described by an elliptic partial differential

equation,

−∇ · (κ∇v) = f (1.1.12)

where v is the scalar potential (e.g. v is the pressure for Darcy flow or the voltage for

electrical circuits), κ > 0 is the property of the isotropic heterogeneous medium (e.g. v is

the permeability for Darcy flow or the impedance for electrical circuits), ∇ is the nabla

operator on spatial domain, and f is the source recharge.

The inverse problem is to recover the coefficient κ with observed data of v. Since

the number of observation is finite and κ is a infinite-dimensional (a function on the

spatial domain), the inverse problem is highly underdetermined [70, 8]. Since the elliptic

equation is coercive and it is easy to be solved with finite element methods, so elliptic

equation is also commonly used as a benchmark for testing inverse algorithms.

1.2 Abbreviation of this thesis

This section introduce motivations, contributions and layouts of this thesis.

There exist computational challenges in real applications of inverse problems, as in-

verse estimation usually requires multiple (from tens to millions) forward simulations,
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but forward simulation of complex models (e.g. PDE-constrained problems) is computa-

tionally expensive. It is needed to design efficient and robust inverse algorithms for both

academic research and real applications.

Mathematicians and statisticians consider inverse problems with two different ap-

proaches, the varitional approach and the Bayesian approach. The former is related to

mathematical optimization and the latter is related to statistical inference. These two

approaches sometimes can be connected, since in some cases, the varitional approach is

equivalent to the maximum a posteriori (MAP) estimation in the Bayesian approach,

e.g. Tikhonov regularization method and the MAP estimation with Gaussian error and

Gaussian prior. Both of the variational approach and the Bayesian approach will be

introduced in this thesis.

Another question is how to find the minimum point of an objective functional, or

how to calculate the posterior distribution from the Bayes’ formula. For linear inverse

problems, there exists the closed form of solutions (details will be discussed later in this

thesis). For nonlinear inverse problems, numerical algorithms (details will be discussed

later in this thesis) are needed:

• Firstly, Tikhonov regularization is a method using objective functionals formulated

in L2 norm. Optimization in L2 norm is well-known as the least-square method

(minimization of sum of squares). The standard numerical methods solving nonlin-

ear least-square problems are the Gaussian-Newton algorithm (GNA) [2, 22] and the

Levenberg-Marquardt algorithm (LMA) [22]. LMA is a modification of GNA using

a trust region approach with damping factors. Conversely, GNA can be regarded

as a special case of LMA with the damping factors equaling to zeros. Generally,

LMA with suitable damping factors is more robust than GNA.

• Secondly, the objective of Bayesian inversion is to draw samples from the posterior

distribution. The most popular sampling algorithms are known as the MCMC

methods [24] or some variants e.g. sequential Monte Carlo methods with MCMC

mutations [3, 1]. For infinite-dimensional sampling, it should be very careful about

the proposal transitions in the Metropolis-Hastings rejection sampling, in order to

avoid singularity of probability measures. This thesis adopts the preconditioned
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Crank-Nicolson (PCN)-MCMC method [94], which is a mesh-invariant sampler

regardless of number of dimensions.

However, there are some drawbacks of the standard algorithms: 1) LMA searches

for a local optimum, which may be far from the global optimum for a highly nonlinear

problem, and there lacks uncertainty quantification; 2) MCMC methods are accurate and

can capture the entire distribution of multiple estimates, but these sampling algorithms

are very inefficient in practice. In order to solve these issues, we aim to apply some

approximate methods. These heuristic algorithms are related to the Kalman filter [38, 33].

How to come up with the Kalman-like methods for inverse problems is briefly introduced

as follows:

1. Inverse problems can be rewritten in a tempering setting (see formula (3.1.20) and

formula (3.1.21)). This technique is widely applied in simulated annealing [104],

annealed importance sampling [88], sequential Monte Carlo method [3, 1], etc. The

terminology ‘tempering/annealing’ originally comes from metallurgy. Statisticians

borrow the similar idea to design mathematical algorithms. The motivation is that:

it could be inefficient to directly draw samples from a distribution with multiple

sharp peaks, because numerically the samples may be sticky around one peak and

other peaks cannot be captured. However, it is easier to gradually sample from a

sequence of distributions from the prior to the posterior (from the flat to the sharp)

as the ‘temperature’ goes down. The tempering setting here is a mathematical

concept rather than a physical fact, i.e. it is ‘simulated’ annealing rather than

‘real’ annealing. The terminology, simulated annealing, usually indicates a special

type of mathematical optimization algorithms. To void confusion, this thesis uses

a different terminology, tempering setting, that indicates the general mathematical

formulation.

2. Inverse problems formulated via the tempering setting (will be simply called tem-

pered inverse problems) can be equivalently regarded as filtering problems. Thus

filtering algorithms, e.g. Kalman filter and its variants like extended Kalman fil-

ter (EKF) and ensemble Kalman filter (EnKF), can be applied. Kalman filter

is the linear filtering algorithm with a closed form; EKF and EnKF are nonlin-
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ear (approximate) filtering algorithms. Then, the Kalman-like filters can be used

to (approximately) solve the tempered inverse problems, which is very efficient in

practice. We should mention that, using the Kalman-like filters on the tempered

inverse problems is different from the common sense of ‘filter’, since the ‘filtering’

here is not for a real process but for the tempering setting. Therefore, this the-

sis prefers to use different names as Kalman inversion, extended Kalman inversion

(EKI), and ensemble Kalman inversion (EnKI), in order to specify the fact that

Kalman-like approaches are used to solve tempered inverse problems.

This thesis mainly focuses on the two approximate algorithms: EKI and EnKI. The

former is more like a deterministic optimization algorithm; and the latter is more like a

statistical sampling algorithm. On one hand, EKI is a point estimation method searching

for a sub-optimum. The performance of EKI is similar like LMA, but EKI can further

(approximately) quantifies the uncertainty via covariance update. EKI works for prob-

lems with continuously differentiable forward models. On the other hand, EnKI is an

approximate sampling algorithm. EnKI only works for problems whose parameters and

observations have strong linear dependence, but this method is derivative-free and much

more efficient than MCMC sampling.

The layouts of this thesis are arranged as follows. Chapter 1 is an introduction

of inverse problems including descriptions and applications. Chapter 2 discusses two

standard approaches dealing with inverse problems, including variational approach and

Bayesian approach. The fundamental theories and standard algorithms can be fond in this

chapter. Chapter 3 is the main part of this thesis, where we propose a new framework for

computational inverse problems. The tempering setting and the approximate algorithms

(e.g. EKI and EnKI) can be found in this chapter. Chapter 4 gathers all theoretical

discussions and proofs which support the results in previous chapters. Chapter 5 conducts

numerical tests of the proposed algorithms with a PDE-constrained inverse problem.

Chapter 6 is a summary which highlights the main contents and contributions of this

thesis.
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Chapter 2

Inverse Problems on Hilbert Spaces

This chapter introduces inverse problems placed in infinite-dimensional spaces. Finite-

dimensional parameter estimation is well-known in many fields including engineering,

physics, econometrics. Although, after discretization, the number of parameters is always

finite, it is benifitial to keep the mathematical structure in infinite-dimensional spaces and

leave the discretization in the last step [8]. There are two main approaches dealing with

inverse problems, variational inversion and Bayesian inversion. Both will be discussed

and compared in detail.

This chapter can be regarded as a structured literature review. Section 2.1 represents

preliminaries about functional analysis and probability theory. Section 2.2 introduces

the two standard approaches (variational and Bayesian) for inverse problems. Section 2.3

discusses Karhunen-Loève expansion that is used to represent prior random fields. For

posterior estimation, sections 2.4 and 2.5 introduce the Levenberg-Marquardt algorithm

(LMA) and Markov chain Monte Carlo (MCMC) methods as the standard algorithms

for the variational inversion and the Bayesian inversion, respectively. Section 2.6 is a toy

example showing how to apply LMA and MCMC to solve infinite-dimensional nonlinear

inverse problems.

2.1 Preliminaries

We consider infinite-dimensional inverse problems placed in function spaces. This section

presents a list of relevant definitions and theorems.

19



The required theories can be found in any books or well-structure lecture notes re-

lated to functional analysis and probability/measure theory. In functional analysis, we

need to know compact operators in separable Hilbert spaces, and theorems like Riesz rep-

resentation theorem, spectral theorem, and Mercer’s theorem (we will cite results from

references [29, 50, 106, 46, 44] about functional analysis). In probability/measure theory,

we need to know probability/measure space in separable Hilbert spaces, and theorems

like Radon-Nikodym theorem, Fernique’s theorem, and Cameron-Martin theorem (we will

cite results from [8, 32] about probability/measure theory).

2.1.1 Functional analysis

Let H be a Hilbert space over R, equipped with an inner product 〈·, ·〉H. The inner

product 〈·, ·〉H : H×H → R is a symmetry bilinear operator such that, for all u ∈ H,

〈u, u〉H ≥ 0 (2.1.1)

where the equality holds if and only if u = 0. In addition, the norm ‖ · ‖H : H → R is

induced from the inner product such that, for all u ∈ H,

‖u‖H :=
√
〈u, u〉H (2.1.2)

Let H be a Hilbert space over R. The dual space of H is denoted by H∗, which is a

set of all bounded linear maps from H to R. For any u ∈ H, the dual of u is denoted by

u∗ ∈ H∗ such that, for all v ∈ H,

u∗(v) = 〈u, v〉H (2.1.3)

Let H1 and H2 be two Hilbert spaces. For any bounded linear operator A : H1 → H2,

the Hermitian adjoint of A is the bounded linear operator A∗ : H2 → H1 such that, for

all u1 ∈ H1 and u2 ∈ H2,

〈Au1, u2〉H2
= 〈u1,A∗u2〉H1

(2.1.4)

Existence and uniqueness of (·)∗ follows from the Riesz representation theorem. In fact,

the Riesz representation theorem shows that a real-(complex-)valued Hilbert space and

its dual space are isometric (anti-)isomorphism.
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Theorem 2.1.1 (Riesz representation theorem [29]). Let H be a Hilbert space. For any

g ∈ H∗, there exists a unique u ∈ H, such that for all x ∈ H, g(x) = 〈u, x〉H. Moreover,

‖u‖H = ‖g‖H∗.

Let H be a Hilbert space. A bounded linear operator A : H → H is said to be

self-adjoint if

A∗ = A (2.1.5)

A self-adjoint operator A : H → H is said to be positive-semi-definite if for all u ∈ H

〈Au, u〉H ≥ 0 (2.1.6)

and is said to be positive-definite if the equality in above formula only holds on the

condition u = 0.

Let H be a separable Hilbert space. Let {ei} be an orthonormal basis of H. A linear

operator A : H → H is said to be trace-class if

Tr(A) :=
∞∑
i=1

〈
(A∗A)1/2ei, ei

〉
H <∞ (2.1.7)

The sum is independent on the choice of orthonormal bases. A linear operatorA : H → H

is said to be Hilbert-Schmidt if

Tr(A∗A) =
∞∑
i=1

‖Aei‖2
H <∞ (2.1.8)

The sum is independent on the choice of orthonormal bases. The concepts of trace-class

and Hilbert-Schmidt are closely related.

Proposition 2.1.2. [44] A bounded linear operator is trace-class if and only if it is a

multiplication of two Hilbert-Schmidt operators.

Proposition 2.1.3. [44] A trace-class operator must be a Hilbert-Schmidt operator, a

Hilbert-Schmidt operator must be a compact operator.

For self-adjoint compact operators in Hilbert spaces, a fundamental result is the spec-

tral theorem.
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Theorem 2.1.4 (Spectral theorem for compact operators in Hilbert spaces (more gen-

eral discussions are in [106])). A self-adjoint compact operator A in a Hilbert space H

is unitarily diagonalizable. Namely, there exists a (countable) sequence of eigenvalues

{λi : i ∈ N1} (|λi| is sorted from largest to smallest) and corresponding (orthonormal)

eigenvectors {ϕi : i ∈ N1},

Aϕi = λiϕi (2.1.9)

such that the eigenvalues vanish to zero, i.e.

lim
i→+∞

λi = 0 (2.1.10)

and the eigenvectors form an orthonormal basis of the range of operator A, i.e. for any

bounded x ∈ H,

Ax =
∞∑
i=1

λi 〈x, ϕi〉H ϕi (2.1.11)

Closely related to the spectral theorem, another important theoretical tool is Mercer’s

theorem, which is used to characterize symmetric positive-semi-definite kernels.

Theorem 2.1.5 (Mercer’s theorem [50]). Let K ∈ C(D×D;R) be a continuous symmet-

ric positive-semi-definite kernel on a compact set D ⊂ Rd. Then K can be represented

by,

K(s, t) =
∞∑
i=1

λiϕi(s)ϕi(t) (2.1.12)

with absolute and uniform convergence in D, where {λi} and {ϕi} are the eigenvalues

and (orthonormal) eigenfunctions,

λiϕi(s) =

∫
D

K(s, t)ϕi(t) dt (2.1.13)

In order to regularize an ill-posed inverse problem on a separable Hilbert space H,

usually a self-adjoint positive-semi-definite trace-class operator C : H → H is applied,

which restricts the ill-posed problem from the original Hilbert space H to the reproducing

kernel Hilbert space/the Cameron-Martin space1, E = Ran
(
C1/2

)
. The essential prop-

erty here is trace-class, which means that the eigenvalues of C are summable. Also, it

1the terminology reproducing kernel Hilbert space [46] is usually used in functional analysis when

discussing integral operators, and the terminology Cameron-Martin space [8] is usually used in probability

theory when discussing Gaussian measures.
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implies C1/2 is Hilbert-Schmidt, so C1/2 is a compact operator. Thus the Cameron-Martin

space/reproducing kernel Hilbert space E = Ran
(
C1/2

)
is a relatively compact subspace

of H, equipped with the inner product

〈·, ·〉E ≡ 〈·, ·〉C :=
〈
C−1/2(·), C−1/2(·)

〉
H (2.1.14)

In the next, we make a typical example of a trace-class operator, and the associated

reproducing kernel Hilbert space.

Example 2.1.6. Let ∆ be the Laplace operator over the interval [−π, π] with the ho-

mogeneous Dirichlet boundary condition. The eigenfunctions of the Laplace operator are

sin(nx), x ∈ [−π, π], for all n ∈ N1, and the corresponding eigenvalues are −n2 for all

n ∈ N1. Now, let C = −∆−1 be an operator on the Hilbert space L2
0([−π, π];R). Then,

the eigenvalues of C are 1/n2 for all n ∈ N1, which are summable
∑∞

n=1 1/n2 = π2/6.

Thus, C is a trace-class operator. Furthermore, the associated reproducing kernel Hilbert

space is

E = Ran
(
C1/2

)
=
{
u ∈ L2

0([−π, π];R) :
∥∥C−1/2u

∥∥
L2
0([−π,π];R)

< +∞
}

(2.1.15)

=
{
u ∈ L2

0([−π, π];R) :
〈
u, C−1u

〉
L2
0([−π,π];R)

< +∞
}

(2.1.16)

=
{
u ∈ L2

0([−π, π];R) : −〈u,∆u〉L2
0([−π,π];R) < +∞

}
(2.1.17)

=

{
u ∈ L2

0([−π, π];R) : −
∫ π

−π
u(x)∆u(x) dx < +∞

}
(2.1.18)

=

{
u ∈ L2

0([−π, π];R) :

∫ π

−π
∇u(x) · ∇u(x) dx < +∞

}
(2.1.19)

which is exactly the Sobolev space W 1,2
0 ([−π, π];R).

2.1.2 Probability/measure theory

Definition 2.1.7 (Bochner space [32]). Let (X,Σ, µ) be a measure space, that is X is a

set, Σ is a σ-field over X, and µ is a measure on (X,Σ). Let E be a real-valued separable

Banach space equipped with a norm ‖ · ‖E. For any p ≥ 1, the notation Lp(X,µ;E) is

used to denote the set of all measurable functions f : X → E such that

1. either p ∈ [1,∞),

‖f‖p :=

(∫
X

‖f(x)‖pE µ(dx)

)1/p

<∞ (2.1.20)
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2. or p =∞,

‖f‖∞ := inf {b ∈ R : µ({x ∈ X : ‖f(x)‖E > b}) = 0} <∞ (2.1.21)

Lp(X,µ;E) is a seminorm space equipped with the seminorm ‖ · ‖p. In order to obtain a

norm space, let Lp(X,µ;E) be the Bochner space of equivalence class up to µ-null set such

that, the equivalence relation ∼ is defined as f ∼ g ⇐⇒ µ({x ∈ E : f(x) 6= g(x)}) = 0.

Definition 2.1.8 (Gaussian measures on Euclidean spaces). A measure µ on an Eu-

clidean space Rm is called a (non-degenerate) Gaussian measure, if the map µ : B(Rm)→

[0, 1] is determined via, for all Ω ∈ B(Rm),

µ(Ω) =
1√

(2π)m det(C)

∫
Ω

exp

(
−1

2

∥∥C−1/2(x−m)
∥∥2

Rm

)
dx (2.1.22)

where m ∈ Rm is mean, and C : Rm → Rm is the covariance matrix which is an

m-dimensional symmetric positive-(semi-)definite matrix. A Gaussian measure on an

Euclidean spaces is noted by N (m,C).

Definition 2.1.9 (Gaussian measures on separable Banach spaces). A measure µ on

a real-valued separable Banach space X is called a (non-degenerate) Gaussian measure,

if its pushforward measure ϕ∗(µ) is a (non-degenerate) Gaussian measure on R for all

bounded (non-zero) linear functional ϕ ∈ X∗, where the pushforward measure is defined

as, for all U ∈ B(R),

[ϕ∗(µ)](U) = µ(ϕ−1(U)) (2.1.23)

In the next, we will show an example about how to apply the abstract definition of

Gaussian measures on separable Banach spaces in the special case when the separable

Banach spaces are Euclidean spaces.

Example 2.1.10. Let µ = N (m,C) be a (non-degenerate) Gaussian measure on Rm,

i.e., the map µ : B(Rm)→ [0, 1] is determined via formula (2.1.22). Let g ∈ Rm be a (non-

zero) element, and let g∗ : Rn → R be the dual of g, i.e., g∗ is a linear functional, such

that, g∗(x) = 〈g,x〉Rm for all x ∈ Rm. Let P : B(R)→ [0, 1] be the pushforward measure

of µ corresponding to g∗. By using the definition of pushforward measure (2.1.23), P is

represented as the measure on R, such that, for all U ∈ B(R),

P(U) =
1√

(2π)m det(C)

∫
A(U)

exp

(
−1

2

∥∥C−1/2(x−m)
∥∥2

Rm

)
dx (2.1.24)
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with the integral domain

A(U) = {x ∈ Rm|g∗x ∈ U}) (2.1.25)

Furthermore, by using the coordinate transformation x = g∗x, the pushforward measure

P can be rewritten as

P(U) =
1√

2πσ2

∫
U

exp

(
−(x− λ)2

2σ2

)
dx (2.1.26)

where

λ = g∗m σ2 = g∗Cg (2.1.27)

Thus, P is exactly the (non-degenerate) Gaussian measure on R with mean λ and variance

σ2. This result holds for all bounded (non-zero) linear functional g∗.

Theorem 2.1.11 (Radon-Nikodym theorem [8]). For two σ-finite measures ν and µ on

a measurable space (X,Σ), if ν is absolutely continuous with respect to µ, then there exits

a measurable function f : X → [0,+∞) such that, for all S ∈ Σ,

ν(S) =

∫
S

f(u) dµ (2.1.28)

where f is unique up to a µ-null set, and called the Radon-Nikodym derivative of the

two measures, noted by dν
dµ

. For convenience, this thesis will sometimes use the notation

ν(dx)
µ(dx)

:= dν
dµ

(x) to denote a point value at x ∈ X.

An application of Radon-Nikodym theorem is to determine probability density func-

tions with respect to Lebesgue measures in Euclidean spaces. In the next, we will show

an example of Gaussian densities.

Example 2.1.12. Consider the Gaussian measure µ = N (m,C) defined in formula

(2.1.22). Then, the integrand in the right hand side of formula (2.1.22) is the Radon-

Nikodym derivative of the Gaussian measure µ with respect to the Lebesgue measure on

Rm. This integrand is thus defined as the probability density function f : Rm → [0,+∞)

of the normal distribution, i.e., for all x ∈ Rm,

f(x) =
1√

(2π)m det(C)
exp

(
−1

2

∥∥C−1/2(x−m)
∥∥2

Rm

)
(2.1.29)
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Theorem 2.1.13 (Fernique’s theorem [8]). For a zero-mean Gaussian measure µ on a

separable Banach space X, there exists α > 0 such that∫
X

exp
(
α‖x‖2

X

)
µ(dx) <∞ (2.1.30)

Corollary 2.1.14. A natural corollary follows the Fernique’s theorem is that: a Gaussian

measure µ has any finite moment for k ≥ 0,∫
X

‖x‖kX µ(dx) <∞ (2.1.31)

Proposition 2.1.15. [8] The covairance operator of a (non-degenerate) Gaussian mea-

sure on a real-valued separable Hilbert space is a self-adjoint positive-(semi-)definite trace-

class operator. Conversely, a self-adjoint positive-(semi-)definite trace-class operator

forms the covairance operator of a (non-degenerate) Gaussian measure on a real-valued

separable Hilbert.

Above proposition tells that, a Gaussian measure on a real-valued separable Hilbert

H is uniquely determined via the mean and covariance. Thus, a Gaussian measure on H

is usually noted by its mean and covariance as N (m, C), where m ∈ H is the mean, and

C : H → H is the covariance operator. An example of Gaussian measures on real-valued

separable Hilbert spaces can be explicitly shown in the special case when the separable

Hilbert spaces are Euclidean spaces. In this special case, the Gaussian measure has an

explicit form only relying on the mean and covariance, shown in formula (2.1.22).

Theorem 2.1.16 (Cameron-Martin theorem [8]). Two Gaussian probability measures

µi = N (mi, Ci), i = 1, 2, on a Hilbert space H are either singular or equivalent. They are

equivalent if and only if the following three conditions hold:

1. Ran
(
C1/2

1

)
= Ran

(
C1/2

2

)
:= E,

2. m1 −m2 ∈ E,

3. The operator T :=
(
C−1/2

1 C1/2
2

)(
C−1/2

1 C1/2
2

)∗
− I is Hilbert-Schmidt in E.

For regularization of an inverse problem on a separable Hilbert space H, a prior

covariance operator C0 : H → H is considered, which leads to the reproducing kernel
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Hilbert space/the Cameron-Martin space E = Ran
(
C1/2

0

)
. Moreover, a prior mean

m0 ∈ H sometimes is also used for translation of space E → m0 + E. If m0 ∈ E, then

the space keeps the same after the translation, i.e. E = m0 +E. Furthermore, if m0 ∈ E,

the Gaussian measures also keep the equivalence under the translation, as shown in the

Cameron-Martin theorem.

2.2 Well-posed inverse problems

This section introduces how to define an inverse problem with well-posed mathematical

structures via the two standard approaches, variational approach and Bayesian approach.

2.2.1 The formulation

We consider inverse problems with finite observations and countable parameters. Namely,

let Rn be the observation space, where n is the number of observations, and let H be

the parameter space, where H is a real-valued separable Hilbert space. The simplest way

connecting observations and parameters is the additive noise model,

y = G(x) + e (2.2.1)

where y ∈ Rn is the observation, x ∈ H is the hidden parameter, G : H → Rn is the

forward map for mathematical prediction, and e ∈ Rn is the error between the real

observation y and the mathematical prediction G(x).

‘Inversion’ means to infer the unknown parameter x ∈ H given the observation y ∈ Rn.

We assume that y is in the range of operator G, namely y ∈ Ran(G). This assumption

makes sure that there exists at least a solution u ∈ H such that y = G(u). However, in

general cases, the direct approach finding the solution u as an estimate of the truth x

is ill-posed, because of the following two facts: 1) for under-determined problems, there

could be multiple solutions; 2) even though there exists a unique solution, the solution

may be unstable, that means a little change in the data may lead to a big change in the

solution, so that, the estimation is not reliable for noisy data.

An ill-posed inverse problem needs regularization. There are two standard approaches

for prior regularization, i.e. variational approach and Bayesian approach. Variational ap-
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proach determines a point estimate of the truth by minimizing an objective functional.

The objective functional is usually the sum of a cost functional and a penalty functional,

where the cost functional quantifies the difference between real observations and math-

ematical predictions, and the penalty functional is required for additional regularization

if minimization of the cost functional is ill-posed. On the other hand, Bayesian approach

characterizes the probability distribution of all possible estimates. The initial guess of

estimates is characterized by a prior distribution, which also provides the prior regular-

ization of ill-posed problems. The conditional distribution (from the Bayes’ rule) given

observations is thus regarded as the posterior distribution of estimates. More precisely,

these two approaches are formulated as follows:

1. The variational method regards inversion as deterministic optimization, which aims

to find the minimum point x̂(y) ∈ H of an objective functional,

x̂(y) = arg min
u∈H

{Φ(u|y) +R(u)} (2.2.2)

where Φ(·|y) : H → [0,+∞) is the cost functional given observation y ∈ Rn, and

R : H → [0,+∞) is the penalty functional. For the additive noise model (2.2.1),

the cost functional can be expressed as Φ(·|y) = ρ(y − G(·)) with a non-negative

function ρ : Rn → [0,+∞) which quantifies the utility of the error ε ≡ y−G(u) for

any u ∈ H. Moreover, the penalty functional R is user-specified. A typical example

is Tikhonov regularization, which assumes the penalty functional is determined by

using L2 norm.

2. The Bayesian method regards inversion as statistical inference, which aims to in-

terpret the conditional probability measure P(·|y) : B(H) → [0, 1] via the Bayes’

formula,

P(du|y) ∝ L(u|y)P(du) (2.2.3)

where L(·|y) : H → [0,+∞) is the likelihood function given observation y ∈ Rn,

and P : B(H)→ [0, 1] is the prior probability measure of estimates. For the additive

noise model (2.2.1), the likelihood function can be expressed as L(·|y) = π(y−G(·))

with a probability density function π : Rn → [0,+∞) which characterizes the

distribution of the error ε ≡ y−G(u) for all u ∈ H. Moreover, the prior probability
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P is user-specified. A common example is Gaussian prior, which assumes the prior

probability is a Gaussian measure on H.

Now, we consider a specific form of the varitional approach (2.2.2) and the Bayesian

approach (2.2.3). Namely, we consider 1) Tikhonov regularization for variational ap-

proach, and 2) Gaussian error and Gaussian prior for Bayesian approach. Tikhonov

regularization considers minimization in L2 norm, that means the cost functional and the

penalty functional are in the form of sum of squares2. On the other hand, for Bayesian

inversion, Gaussian distributions are exactly corresponding to the L2 norm used for the

variational inversion. Thus, Gaussian distributions build a bridge from variational in-

version to Bayesian inversion. More precisely, the variational inversion (2.2.2) and the

Bayesian inversion (2.2.3) can be specified in the quadratic form:

1. Tikhonov regularization for the variational approach,

x̂(y) = arg min
u∈H

{
1

2

∥∥γ−1/2(y − G(u))
∥∥2

Rn +
1

2

∥∥∥C−1/2
0 (u−m0)

∥∥∥2

H

}
(2.2.4)

2. Gaussian error and Gaussian prior for the Bayesian approach,

P(du|y) ∝ exp

(
−1

2

∥∥γ−1/2(y − G(u))
∥∥2

Rn

)
P(du) with P = N (m0, C0) (2.2.5)

where γ : Rn → Rn is a symmetric positive-definite bounded matrix (the covariance

matrix of error), m0 ∈ H is a bounded element (the prior mean), and C0 : H → H is

a self-adjoint positive-semi-definite trace-class operator (the prior covariance operator).

The Tikhonov regularization (2.2.4) and the Bayesian inference with Gaussian error and

Gaussian prior (2.2.5) are connected as the minimum point of (2.2.4) equals to the MAP

(maximum a posteriori) estimate of (2.2.5) [8].

In conclusion, inversion is a general concept about inference of inputs of a system

provided with observed outputs. Mathematically, an inverse problem is usually treated

2Minimization in L2 norm is also known as the least squares method, but the least squares method typ-

ically has more special meaning, i.e. to regress data in a finite-dimensional over-determined system (the

number of observations is finite and more than the number of parameters). In order to avoid confusion,

the terminology ‘minimization in L2 norm’ used in this thesis indicates more general meaning regardless

of its applications in over-determined or under-determined, finite-dimensional or infinite-dimensional,

linear or nonlinear problems.
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as a mathematical optimization problem (variational inversion) or a statistical inference

problem (Bayesian inversion). For the variational inversion (2.2.2), our purpose is to find

an optimum x̂(y) given the observation y ∈ Rn. The optimum x̂(y) is regarded as a point

estimate of the unknown parameter x ∈ H. For the Bayesian inversion (2.2.3), our pur-

pose is to interpret the entire posterior distribution P(du|y) rather than a point estimate.

The posterior distribution characterizes all possible estimates of the unknown parameter

x ∈ H given the observation y ∈ Rn. Practically, we need to conduct mathematical

optimization algorithms (e.g. gradient descent, Gauss-Newton, Levenberg-Marquardt)

for variational inversion, and conduct numerical sampling algorithms (e.g. importance

sampling, MCMC) for Bayesian inversion.

2.2.2 The well-posedness

This subsection aims to show the well-posedness of method (2.2.4) and method (2.2.5).

First of all, we consider linear problems whose solutions have a closed form, so the well-

posedness can be shown explicitly. After that, we consider more general cases of nonlinear

problems, where the well-posedness is described in a more abstract way.

For linear problems

Now, we consider the simplest case that the forward map G is an affine operator. Namely,

there exists a bounded linear operator A : H → Rn and a bounded element b ∈ H, such

that, the forward map G : H → Rn can be represented by

G(·) = b−A(·) (2.2.6)

(Note: a negative sign is used of the operator A, because this is more convenient for us

to keep the sign consistently in this thesis. Mathematically, it does not matter to use

negative sign or positive sign. The most important thing is to keep the consistency of

the signs.)

Theorem 2.2.1. If the forward map G : H → Rn can be represented by formula (2.2.6),

then the posterior probability measure P(·|y) in formula (2.2.5) is well-defined and it is

a Gaussian measure P(·|y) = N (m1(y), C1), where the mean m1(y) ∈ H and covariance
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C1 : H → H are determined by

m1(y) = m0 − C0A∗ (γ +AC0A∗)−1 (Am0 − b+ y) (2.2.7)

C1 = C0 − C0A∗ (γ +AC0A∗)−1AC0 (2.2.8)

Proof. See Example 6.23 in [8].

Remark 2.2.2. Since the posterior distribution P(·|y) = N (m1(y), C1) is Gaussian, the

posterior mean m1(y) is also the MAP estimator. Furthermore, the MAP estimator

exactly equals to the minimum point of the Tikhonov regularization. Thus, formula (2.2.7)

also provides the unique solution x̂(y) = m1(y) of the Tikhonov regularization (2.2.4) as

long as the forward map G has a form of (2.2.6).

According to theorem 2.2.1, the solution has a closed-form for linear problems. The

well-posedness of the solution is clear. Since the covariance matrix γ is positive-definite,

the matrix inversion (γ +AC0A∗)−1 exists and it is bounded. Thus the posterior mean

m1(y) and covariance C1 exist and they are bounded. Furthermore, formula (2.2.7) shows

that m1(y) is continuously depending on data y. As the result, for linear problems, both

the variational inversion and the Bayesian inversion are always well-posed.

For nonlinear problems

For nonlinear problems, the situation is more challenging. In order to ensure the well-

posedness of the inverse problems, some regularity properties of the forward map G are

needed. See the following statement of the assumptions:

Assumption 2.2.3 (Assumption 2.7 in [8]). Assume that the forward map G : H → Rn

satisfies the following two conditions:

1. For every ε > 0 there is an M = M(ε) ∈ R such that, for all u ∈ H,∥∥γ−1/2G(u)
∥∥
Rn ≤ exp(ε‖u‖2

H +M) (2.2.9)

2. For every r > 0 there is a K = K(r) > 0 such that, for all u1, u2 ∈ H with

max {‖u1‖H, ‖u2‖H} < r,∥∥γ−1/2(G(u1)− G(u2))
∥∥
Rn ≤ K‖u1 − u2‖H (2.2.10)
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Condition 1 in assumption 2.2.3 ensures that the cost functional
∥∥γ−1/2(y − G(·))

∥∥
Rn

has an exponential tail, so it is integrable with respect to Gaussian measures according to

the Fernique’s theorem. Condition 2 in assumption 2.2.3 ensures the Lipschitz continuity

of the cost functional constrained on any bounded subsets.

With the two conditions in assumption 2.2.3, it is sufficient to show that the Bayesian

inversion (2.2.5) is well-posed. See the following theorem.

Theorem 2.2.4. If the forward map G : H → Rn satisfies condition 1 and condition

2 in assumption 2.2.3, then the posterior probability measure P(·|y) in formula (2.2.5)

is well-defined. Furthermore, the posterior distribution is Lipschitz continuous in data y

with respect to the Hellinger distance: for all r > 0 there is a C = C(r) > 0 such that,

for all y1, y2 ∈ Rn with max
{∥∥γ−1/2y1

∥∥
Rn ,
∥∥γ−1/2y2

∥∥
Rn

}
< r,

dHell (P(·|y1),P(·|y2)) ≤ C
∥∥γ−1/2(y1 − y2)

∥∥
Rn (2.2.11)

Proof. See Theorem 4.1, Theorem 4.2, and Corollary 4.4 in [8].

The Hellinger distance mentioned in theorem 2.2.4 is defined as follows.

Definition 2.2.5 (Hellinger distance). The Hellinger distance of two probability measures

ν and µ on a measurable space (X,Σ) is defined as,

dHell(ν, µ) =

√√√√1

2

∫
X

(√
dν

dλ
−
√

dµ

dλ

)2

dλ (2.2.12)

where ν and µ are absolutely continuous with respect to a third probability measure λ.

The definition is independent on choice of λ.

For the variational inversion (2.2.4), it is easy to show the existence of a minimum

point, but it is much more difficult to show the uniqueness and Lipschitz continuity in

the data. Nevertheless, a weaker statement holds. See the following theorem.

Theorem 2.2.6. If the forward map G : H → Rn satisfies condition 2 in assumption

2.2.3, then there exists a minimum point x̂(y) in formula (2.2.4) and every minimum

must belong to a compact subset, i.e.∥∥∥C−1/2
0 (x̂(y)−m0)

∥∥∥
H
≤
∥∥γ−1/2(y − G(m0))

∥∥
Rn (2.2.13)

32



Furthermore, let {yk} and {xk} be sequences where yk → y and xk ≡ x̂(yk) is a minimizer

of (2.2.4) with y replaced by yk. Then there exists a convergent subsequence of {xk} and

the limit of every convergent subsequence is a minimizer of (2.2.4).

Proof. This proof consists of two parts. In the first part, we need to prove that, for any

(bounded) data y ∈ Rn, there exists a minimum x̂(y) and the inequality (2.2.13) holds.

For this part, please see theorem 4.1.4 in section 4.1. In the second part, we need to

prove that, there exists a convergent subsequence to the minimizer. For this part, we use

the result of the first part that, the sequence of minimums {xk} exists corresponding to

the sequence of data {yk}, and for any k, we have∥∥∥C−1/2
0 (xk −m0)

∥∥∥
H
≤
∥∥γ−1/2(yk − G(m0))

∥∥
Rn (2.2.14)

Since every data yk is bounded, then we can define a constant c as

c := sup
k

{∥∥γ−1/2(yk − G(m0))
∥∥
Rn

}
(2.2.15)

Therefore, every element in the sequence {xk} satisfies∥∥∥C−1/2
0 (xk −m0)

∥∥∥
H
≤ c (2.2.16)

that means, for any k, xk is in the compact set U :=
{
u ∈ H :

∥∥∥C−1/2
0 (u−m0)

∥∥∥
H
≤ c
}

.

Thus, the forward map G : H → Rn can be constrained from the entire Hilbert space H

to the compact subset U , which leads to G : U → Rn. Since G is a continuous operator

on the compact set, we can apply Theorem 1, Theorem 2 in [97] and Theorem 2.1 in

[42] to show the existence of convergent subsequence. (Note: [97] considers forward maps

between Banach spaces, and [42] considers forward maps between Hilbert spaces. We

consider a special case with the forward map G : U → Rn from the compact set to the

Euclidean space. In fact, the compact subset U is used instead of the entire Hilbert space

H in order to satisfy the ‘coresive’ property discussed in [97].)

2.3 Random fields for prior construction

To deal with an inverse problems, a prior probability measure needs to be predetermined.

A typical example is using a Gaussian measure specified with mean and covariance. How-
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ever, there exists some mathematical difficulties when consider infinite-dimensional ran-

dom variables. It is not difficult to generalize the concept of random variables from the

real line to an Euclidean space, but it seems not intuitive with an infinite-dimensional

random variable. On a Euclidean space, probability distributions can be deduced by using

the Lebesgue measure which leads to probability density functions, but this is not possi-

ble on infinite-dimensional spaces since there are not analogues of the Lebesgue measure.

Nevertheless, Gaussian measures on infinite-dimensional spaces still exists. Moreover,

given an infinite-dimensional random variable, it is desired to explicitly represent the

random variable in a simple way. A techinique is know as the Karhunen-Loéve (KL) ex-

pansion [8, 85]. The core idea is using eigen-decomposition and basis transformation, such

that, an infinite-dimensional random variable can be represented by a sum of uncorrelated

one-dimensional random variables. In this section, we introduce random fields.

2.3.1 Square-integrable random fields on D ⊂ Rd

There are two equivalent ways describing random fields. The first way regards an R-

valued random field as a collection of R-valued random variables, and another way regards

a random field as an infinite-dimensional random variable in a function space.

In applied mathematics, the terminology ‘random field’ usually indicates the first way.

Let (Ω,F ,P) be a probability space, where Ω is a set, F is a sigma-algebra over Ω, and

P : F → [0, 1] is a probability measure on the measurable space (Ω,F). Let D ⊂ Rd

be a bounded domain and D be the closure of D. Then a random field u : D × Ω → R

is a collection of R-valued random variables indexed over the set D, such that, for each

r ∈ D, u(r, ·) : Ω → R is an R-valued random variable. The real-valued random field u

is called square-integrable if ∫
Ω

∫
D

u(r, ω)2 drP(dω) <∞ (2.3.1)

If u is square-integrable, then its mean m : D → R and autocovariance C : D ×D → R

are defined as the functions, such that, for almost every r, s ∈ D,

m(r) =

∫
Ω

u(r, ω) P(dω) (2.3.2)

C(r, s) =

∫
Ω

(u(r, ω)−m(r))(u(s, ω)−m(s)) P(dω) (2.3.3)
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In probability theory, a random field can be described as an infinite-dimensional

random variable with a probability measure over a function space (this thesis consid-

ers Hilbert spaces). Let (H,B(H)) be a measurable space, where H is a separable

Hilbert space, and B(H) is the Borel sigma-algebra over H. Let u : Ω → H denote

an H-valued random variable (measurable function). Then, the pushforward measure

of P is the probability measure µ : B(H) → [0, 1] over the Hilbert space, such that,

µ(S) = P({ω ∈ Ω|u(ω) ∈ S}) for any S ∈ B(H). The H-valued random variable u is

called square-integrable if ∫
H
‖x‖2

H µ(dx) <∞ (2.3.4)

If u is square-integrable, then the mean m ∈ H and the covariance operator C : H → H

are defined as, for all bounded v, w ∈ H,

〈m, v〉H =

∫
H
〈x, v〉H µ(dx) (2.3.5)

〈v, Cw〉H =

∫
H
〈v, x−m〉H 〈x−m,w〉H µ(dx) (2.3.6)

The two ways describing random fields are equivalent, since the random field u :

D × Ω → R over D can be also treated as an infinite-dimensional random variable

u : Ω → L2(D;R) in the separable Hilbert space L2(D;R), and the covariance operator

C : L2(D;R) → L2(D;R) is determined by the autocovariance function C : D ×D → R

via integral transform, such that, for all bounded w ∈ L2(D;R) and for almost every

r ∈ D,

[Cw](r) =

∫
D

C(r, s)w(s)ds (2.3.7)

Explicitly, given the mean m and the autocovariance C, the square-integrable random

field u can be expressed by the KL expansion with mean-square convergence,

u = m+
∞∑
j=1

√
λjξjϕj (2.3.8)

∫
D

C(r, s)ϕj(s) ds = λjϕj(r) (2.3.9)∫
D

ϕi(s)ϕj(s) ds = δij (2.3.10)

where {λi : i = 1, 2, ...} and {ϕi : i = 1, 2, ...} are the eigenvalues and eigenfunctions, and

{ξi : i = 1, 2, ...} are uncorrelated R-valued standard random variables. If the random
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filed u is Gaussian, then ξi are i.i.d. from N (0, 1). If the autocovariance function C is

continuous on D×D, then the infinite sum (2.3.8) uniformly converges on D, ensured by

the Mercer’s theorem for continuous symmetric positive-semi-definite kernels on compact

sets. The property of uniform convergence does not hold for discontinuous autocovariance

functions.

2.3.2 Gaussian random fields on D ⊂ Rd

The regularity properties (Hölder continuity and Sobolev embedding) of random fields

should be considered. This thesis particularly focuses on Gaussian fields.

To show the regularity properties, we need make some assumptions: according to [8],

a linear operator L is called ‘Laplacian-like’ on L2(D;R) if the following assumptions

hold:

Assumption 2.3.1 (Assumption 2.9. in [8]). L is a linear operator, densely defined on

a Hilbert space H ⊂ L2(D;R), that satisfies the following properties.

1. L is self-adjoint, positive-definite and invertible.

2. The eigenfunctions/eigenvalues {ϕk, κk} of L, indexed by k ∈ K ⊂ Zd \ {0}, form

an orthonormal basis for H.

3. There exist C± > 0 such that the eigenvalues satisfy, for all k ∈ K,

C− ≤ κk
|k|2
≤ C+ (2.3.11)

4. There exists C > 0 such that

sup
k∈K

{
‖ϕk‖∞ +

1

|k|
‖Dϕk‖∞

}
≤ C (2.3.12)

Proposition 2.3.2 (Lemma 6.25 [8]). Let the operator L satisfies assumptions 1-4 in

2.3.1. Consider a Gaussian measure µ = N (0, C) with C = L−α with α > d/2. Then a

draw u ∼ µ is almost surely s-Hölder continuous for all 0 < s < min {1, α− d/2}, where

the s-Hölder continuity means that there exists a constant C such that, for all x, y ∈ D,

the following condition holds almost surely,

|u(x)− u(y)| < C‖x− y‖s (2.3.13)
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Proposition 2.3.3 (Lemma 6.27 [8]). Let the operator L satisfies assumptions 1-3 in

2.3.1. Consider a Gaussian measure µ = N (0, C) with C = L−α with α > d/2. Then

a draw u ∼ µ is in Hs almost surely for all s ∈ [0, α − d/2), where Hs is the separable

Hilbert space associated with the operator L,

Hs = {u ∈ H : u∗Lsu <∞} (2.3.14)

Consider a centered Gaussian field on D with the covariance operator C = L−α, where

L is the operator satisfying assumption 2.3.1. Then, for any α > d/2, the draws from the

Gaussian random filed are almost surely in L2(D;R) (proposition 2.3.3), and the draws

are almost surely Hölder continuous (proposition 2.3.2) so that they are almost surely in

C(D;R). For any non-centered Gaussian field, if the mean m is in the Cameron-Martin

space E = Ran
(
C1/2

)
, then the draws are also almost surely in C(D;R) ⊂ L2(D;R)

for any α > d/2, because the non-centered Gaussian measure N (m, C) with m ∈ E is

equivalent to the centered Gaussian measure N (0, C), according to the Cameron-Martin

theorem.

2.3.3 Whittle-Matérn random fields on D ⊂ Rd

A weak-stationary random field is a square-integrable random field with translation-

invariant mean and autocovariance. More specifically, let µ ∈ R and σ > 0 be the mean

and standard deviation of the steady state, and let ACF : Rd → R be the autocorrelation

function of the weak-stationary field. Then the mean m : D → R and autocovariance

C : D ×D → R of the random field is determined by, for all r, s ∈ D,

m(r) = µ (2.3.15)

C(r, s) = σ2ACF(r − s) (2.3.16)

Moreover, its covariance operator C : L2(D;R) → L2(D;R) is determined by, for all

w ∈ L2(D;R) and for almost every r ∈ D,

[Cw](r) := σ2

∫
D

ACF(r − s)w(s)ds (2.3.17)

For a weak-stationary field, the most important thing is the autocorrelation function,

which determines the behavior of the random field. A function ACF : Rd → R is an
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autocorrelation function of a weak-stationary field if ACF can be represented by con-

volution ACF = g ∗ g, where g : Rd → R is an even function with ‖g‖2 = 1 and ∗ is

the convolution on Rd. g is even which ensures that ACF is even, ‖g‖2 = 1 ensures the

normalizing condition ACF(0) = 1, and the convolution property ACF = g ∗ g ensures

the positive-semi-definiteness of the kernel ACF since its Fourier transform is squared

and thus never negative.

There are many choices of autocorrelation functions in applications of machine learn-

ing and signal processing [16]. One of them, Whittle-Matérn fields form an important

class of stationary Gaussian fields with specified autocorrelation functions,

ACF(·) =
21−ν

Γ(ν)

(√
2ν
∥∥L−1(·)

∥∥)ν Kν

(√
2ν
∥∥L−1(·)

∥∥) (2.3.18)

where ν ∈ (0,+∞] is the smoothness parameter, L : Rd → Rd is the length-scale param-

eter which is a lower triangular matrix with positive and bounded diagonal entries, Γ is

the gamma function, and Kν is the modified Bessel function of the second kind of order

ν. The smoothness parameter determines different types of autocorrelation functions, for

example ν = 0.5 leads to the exponential kernel,

ACF(·) = exp
(
−
∥∥L−1(·)

∥∥) (2.3.19)

and ν = +∞ leads to the Gaussian kernel,

ACF(·) = exp

(
−1

2

∥∥L−1(·)
∥∥2
)

(2.3.20)

The Fourier transform of the Whittle-Matérn autocorrelation function (2.3.18) has an

analytic form,

ÂCF(·) =
det(L)(2π/ν)d/2Γ(ν + d

2
)

Γ(ν)

(
1 +
‖2πLT(·)‖2

2ν

)−(ν+d/2)

(2.3.21)

Formula (2.3.21) represents the spectrum, where the base κk = 1 + ‖2πLTk‖2
2ν

with k ∈

K ⊂ Zd \ {0} is positive-definite and grows in square rate, and the power α = ν + d/2

with ν > 0 is greater than d/2. Thus, the draws of the Whittle-Matérn field are almost

surely continuous, as the consequence of proposition 2.3.2 and proposition 2.3.3.

Some examples of Whittle-Matérn fields are shown in figure 2.1, figure 2.2 and figure

2.3. Figure 2.1 presents the autocorrelation functions with respect to different smoothness
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Figure 2.1: The Whittle-Matérn au-

tocorrelation functions with different

smoothness parameters.

Figure 2.2: 1D examples of Whittle-

Matérn fields on [−1, 1] with the fixed

length-scale parameter L = 0.4.

Figure 2.3: 2D examples of Whittle-Matérn fields on
{
s ∈ R2 : ‖s‖ < 1

}
with the fixed smooth-

ness parameter ν = 2.

parameters. Figure 2.2 presents some draws from 1D Whittle-Matérn fields on [−1, 1]

with a fixed length-scale parameter and different smoothness parameters. Figure 2.3

presents some draws from 2D Whittle-Matérn fields on {s ∈ R2 : ‖s‖ < 1} with a fixed

smoothness parameter and different length-scale parameters.

2.3.4 Discretization of random fields on D ⊂ Rd

For numerical implementation, random fields should be discretized. We consider to use

the KL expansion to numerically construct prior random fields. KL expansion of a random

filed are shown in formulas (2.3.8) (2.3.9) and (2.3.10). We consider to use piece-wise
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constant approximation and derive the matrix form after discretization.

Consider a discrete mesh on a Lipshitz domain D ⊂ Rd. We use the following notation

to describe the discrete mesh.

• Let M be the number of discrete elements.

• Let Di ⊂ Rd be the domain of the ith element such that,

1. for any i = 1, ...,M , Di is a non-empty convex set;

2. for any i, j = 1, ...,M , i 6= j =⇒ Di ∩Dj = ∅;

3. ∪Mi=1Di = D.

• Let si ∈ Rd be a point in the ith element such that,

1. for any i = 1, ...,M , si ∈ Di, where Di is the closure of Di;

2. for any i, j = 1, ...,M , i 6= j =⇒ si 6= sj.

• Let hi = ‖Di‖ be the volume of the ith element, where ‖ · ‖ denotes the Lebesgue

measure on Rd.

• For all s ∈ D, let 1(s) be an M -dimensional column vector whose ith component

is the indicator function 1i(s), where 1i(s) is defined as

1i(s) =

1 if s ∈ Di

0 if s ∈ D \Di

(2.3.22)

With above notation, the functions in formulas (2.3.8) (2.3.9) and (2.3.10) are dis-

cretized and then represented by the matrix system,

• The random field u: ∀s ∈ D,

u(s) ≈ 1T(s) · u (2.3.23)

where u is the discrete random vector, defined as an M -dimensional column vector

such that, for any i = 1, ...,M , the entry is a random variable given by

ui = u(si) (2.3.24)
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• The mean m: ∀s ∈ D,

m(s) ≈ 1T(s) ·m (2.3.25)

where m is the discrete mean vector, defined as an M -dimensional column vector

such that, for any i = 1, ...,M , the entry is given by

mi = m(si) (2.3.26)

• The autocovariance function C: ∀r, s ∈ D,

C(r, s) ≈ 1T(r) ·C · 1(s) (2.3.27)

where C is the discrete covariance matrix, defined as an M ×M matrix such that,

for any i, j = 1, ...,M , the entry is given by

Cij = C(si, sj) (2.3.28)

• The eigenfunction ϕj for any j = 1, ...,M : ∀s ∈ D,

ϕj(s) ≈ 1T(s) ·Φ·j (2.3.29)

where Φ·j is the jth column of the discrete eigenfunction matrix Φ, and Φ is defined

as an M ×M matrix such that, for any i, j = 1, ...,M , the entry is given by

Φij = ϕj(si) (2.3.30)

As the results, substitute the piece-wise constant approximations (2.3.23) (2.3.25)

(2.3.27) and (2.3.29) into formulas (2.3.8) (2.3.9) and (2.3.10), which leads to

1T · u = 1T ·m +
M∑
j=1

√
λjξj1

T ·Φ·,j (2.3.31)

∫
D

1T(r) ·C · 1(s) · 1T(s) ·Φ·,j ds = λi1
T(r) ·Φ·,j (2.3.32)∫

D

ΦT
·i · 1(s) · 1T(s) ·Φ·j ds = δij (2.3.33)

Calculating and rearranging above formulas results in the following eigenvalue problem

in matrix system (with m, C, H, ξ as inputs and Λ, Φ, u as outputs),

u = m + Φ ·Λ1/2 · ξ (2.3.34)
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C ·H ·Φ = Φ ·Λ (2.3.35)

ΦT ·H ·Φ = I (2.3.36)

where ξ is an M -dimensional column vector whose entries are uncorrelated standard

random variables, Λ is the discrete eigenvalue matrix that is an M ×M diagonal matrix

with {λi : i = 1, ...,M} as the diagonal entries, and H is the discrete mesh size matrix

that is an M ×M diagonal matrix with {hi : i = 1, ...,M} as the diagonal entries.

2.4 Levenberg-Marquardt algorithm

Levenberg-Marquardt algorithm (LMA) is a modification of Gauss-Newton algorithm

(GNA). LMA is also known as damped Gauss-Newton algorithm or damped least-squares

method, as LMA is the Gauss-Newton using trust region approach with damping factors.

Same as GNA, LMA aims to find a local optimum minimizing a sum of squares, though

LMA is more robust than GNA because of the damping factors.

This section is a short introduction about LMA. First of all, we introduce the gen-

eral form of LMA for minimization in L2 norm. After that, we classify LMA by two

types. The first type deals with regularized problems (over-determined, well-posed), and

the second type deals with unregularized problems (under-determined, ill-posed). The

essential difference between the two types are the stropping criteria: 1) for regularized

problems, the LMA keeps iterations until the solution converges to a stationary point; 2)

for unregularized problems, the solution (minimum) is not stable, so iterations must be

stopped by a discrepancy principle before the algorithm loses stability.

2.4.1 LMA as an iterative method

This subsection introduces LMA as a standard and robust algorithm for minimization

of sum of squares. Without loosing generality, consider the form of minimization in L2

norm below,

min
x∈X

{
1

2
‖H(x)‖2

Y

}
(2.4.1)

where H : X → Y is a function from a separable Hilbert space X to another separable

Hilbert space Y . Assume that H is continuously differentiable. Let DH(x) : X → Y
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denote the Fréchet derivative of H at x ∈ X . Let H̃(x′;x) denote the first order expansion

of H at x ∈ X , such that for all x′ in a neighborhood around x,

H(x′) ≈ H̃(x′;x) := [DH(u)](x′ − x) +H(x) (2.4.2)

GNA and LMA are iterative algorithms minimizing (2.4.1): pick an initial value

x0 ∈ X , and for k > 0, xk is determined by the following iterative algorithms:

• GNA: the basic method without damping,

xk = arg min
x∈X

{
1

2

∥∥∥H̃(x;xk−1)
∥∥∥2

Y

}
(2.4.3)

where H̃ is the linear expansion (2.4.2) of H. Explicitly, the above formula has a

closed form,

xk = xk−1 − (DH(xk−1)∗DH(xk−1))−1 DH(xk−1)∗H(xk−1) (2.4.4)

In general cases, GNA is not robust because of two facts. First of all, the matrix/op-

erator inversion in the above formula could be almost singular. If DH(xk−1)∗DH(xk−1)

is singular or has a very large condition number, then it additionally requires sin-

gular value decomposition (SVD) [81]. In fact, by using SVD, the entire of ex-

pression (DH(xk−1)∗DH(xk−1))−1 DH(xk−1)∗ is replaced by the pseudoinverse of

DH(xk−1). Moreover, if the objective function H is highly nonlinear, the GNA

iteration xk−1 → xk is unstable and sometimes performs badly, because the next

point xk may be too far from the last point xk−1 missing sensitive areas between

the two points. If so, the GNA points x0, x1, x2, x3... would be fluctuating and/or

jagged, but not convergent.

• LMA: modified GNA with damping factors λk > 0,

xk = arg min
x∈X

{
1

2

∥∥∥H̃(x;xk−1)
∥∥∥2

Y
+
λk
2
‖x− xk−1‖2

X

}
(2.4.5)

where H̃ is the linear expansion (2.4.2) of H. Explicitly, the above formula has a

closed form,

xk = xk−1 − (DH(xk−1)∗DH(xk−1) + λkI)−1 DH(xk−1)∗H(xk−1) (2.4.6)
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If λk is large, LMA is like gradient descent with small step size; if λk is small, LMA

is like Gauss-Newton. The dampping factor is initially chosen as a relatively large

number (starts as gradient descent), and finally becomes to relatively small number

(ends in Gauss-Newton). LMA predicts the next point xk within a quadratic surface

depending on the damping factor λk. The proposal xk is accepted or rejected by

comparing the actual reduction aredk = 1
2
‖H(xk−1)‖2

Y − 1
2
‖H(xk)‖2

Y relative to the

predicted reduction predk = 1
2
‖H(xk−1)‖2

Y− 1
2
‖H̃(xk;xk−1)‖2

Y [22]. If aredk/predk <

c (c ≥ 0 is user-specified), then xk is rejected and the damping factor should be

increased for another trial.

The iterations must stop with a stop criterion. As we mentioned before, the stopping

rules for regularized problems and unregularized problems are different. In the next

subsection, we will explain the two kinds of situations associated with the corresponding

stopping rules.

2.4.2 Apply LMA on regularized/unregularized problems

In the last subsection, we generally discussed an objective function H : X → Y between

two separable Hilbert spaces. In this subsection, we make a slight restriction, such that,

the observation space Y is finite-dimensional. Then, we consider a function Z : H → Rn

from a separable Hilbert space H to an Euclidean space Rn, where Z is called the data-

misfit function. Assume Z is continuously differentiable. Let DZ(u) : H → Rn denote

the Fréchet derivative of Z at u ∈ H. Let Z̃(u′;u) denote the first order expansion of Z

at u ∈ H, such that for all u′ in a neighborhood around u,

Z(u′) ≈ Z̃(u′;u) := [DZ(u)](u′ − u) + Z(u) (2.4.7)

Moreover, let (m0, C0) be a pair of parameters (for prior regularization), where m0 ∈ H

is a bounded element, and C0 : H → H is a self-adjoint positive-semi-definite trace-class

operator.
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For regularized problems

With Tikhonov regularization, the objective is to minimize

min
u∈H

{
1

2
‖Z(u)‖2

Rn +
1

2
‖u−m0‖2

C0

}
(2.4.8)

The regularized minimization (2.4.8) is well-posed. Thus, we aim to search for a stationary

point x̃ such that the derivative of the objective functional is nearly zero,∥∥∥C−1/2
0 (x̃−m0) + C1/2

0 DZ (x̃)∗Z (x̃)
∥∥∥2

H
≤ ε0 (2.4.9)

where ε0 > 0 is a user-specified parameter for accuracy control, e.g. ε0 = 0.01.

Apply the LMA to minimize formula (2.4.8): for k = 0, let v0 = m0 be the initial

point; for k > 0, let λk > 0 be the kth damping factor, and then vk is determined via the

iteration below,

vk = arg min
u∈H

{
1

2

∥∥∥Z̃(u; vk−1)
∥∥∥2

Rn
+

1

2

∥∥∥C−1/2
0 (u−m0)

∥∥∥2

H
+
λk
2

∥∥∥C−1/2
0 (u− vk−1)

∥∥∥2

H

}
(2.4.10)

where Z̃ is the linear expansion (2.4.7) of Z. The above minimization has the unique

solution vk satisfying,

vk = vk−1 − αk (C0DZ(vk−1)∗z̃k + vk−1 −m0) z̃k = Z̃(vk; vk−1) (2.4.11)

where αk ≡ 1/(1 + λk). The above implicit equations can be explicitly solved, and z̃k

equals to

z̃k = (I + αkDZ(vk−1)C0DZ(vk−1)∗)−1 (Z(vk−1)− αkDZ(vk−1)(vk−1 −m0)) (2.4.12)

The LMA iteration (2.4.11) should stop at the first time for some K ≥ 0 when the value

of derivative satisfies condition (2.4.9), i.e.,∥∥∥C−1/2
0 (vK −m0) + C1/2

0 DZ (vK)∗Z (vK)
∥∥∥2

H
≤ ε0 (2.4.13)

Then, vK is the final estimate for the regularized problem.

For unregularized problems

Without any prior regularization, the direct approach is to minimize the L2 norm of the

data-misfit,

min
u∈H

{
1

2
‖Z(u)‖2

Rn

}
(2.4.14)
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However, the unregularized minimization (2.4.14) is ill-posed. For this issue, we have to

use other estimator instead of the minimum since the minimum estimator is unstable.

The Morozov’s discrepancy principle [98, 80, 96] suggests to find an estimator x̃ such

that,

‖Z(x̃)‖Rn ≤ τδ (2.4.15)

where τ > 1 is an accuracy control parameter, and δ > 0 is the given noise level satisfying

‖Z(x)‖Rn ≤ δ (2.4.16)

where x ∈ H is the true value of the unknown parameter.

The LMA provides regularization within iterations for the unregularized problem

(2.4.14) such that: for k = 0, let v0 = m0 be the initial point; for k > 0, let λk > 0 be

the kth damping factor, and then vk is determined via the iteration below,

vk = arg min
u∈H

{
1

2

∥∥∥Z̃(u; vk−1)
∥∥∥2

Rn
+
λk
2

∥∥∥C−1/2
0 (u− vk−1)

∥∥∥2

H

}
(2.4.17)

where Z̃ is the linear expansion (2.4.7) of Z. The above minimization has the unique

solution vk satisfying,

vk = vk−1 − βkC0DZ (vk−1)∗ z̃k z̃k = Z̃(vk; vk−1) (2.4.18)

where βk ≡ 1/λk. The above implicit equations can be explicitly solved, and z̃k equals to

z̃k = (I + βkDZ(vk−1)C0DZ(vk−1)∗)−1Z(vk−1) (2.4.19)

The LMA iteration (2.4.18) should stop at the first time for some K ≥ 0 when the

discrepancy principle (2.4.15) holds, i.e.,

‖Z(vK)‖Rn ≤ τδ (2.4.20)

Then, vK is the final estimate for the unregularized problem.

2.4.3 Determine the damping factors

By now, we have had the formulation of the LMA for regularized/unregularized problems.

Furthermore, another question is how to determine the damping factors λk. In practice,
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the damping factors are usually determined by trials (acceptance or rejection of propos-

als). Sometimes, there are theoretical approaches in particular cases. In the following

two subsections, we will introduce two approaches. One is the trust region approach,

which is a general procedure about acceptance or rejection of proposals. Another is the

regularizing Levenberg-Marquardt scheme (RLMS), which requires some good properties

of the data-misfit function.

The trust region approach

LMA is usually regarded as a trust region approach using quadratic approximation in

each iteration. The radius of the trust region is equivalently characterized by the damping

factor. In practice, the damping factor is usually determined by trials. Several damping

strategies are suggested in references [28, 22, 73]. The main idea can be summarized as

follows:

1. Propose an initial value (sufficiently large) of the damping factor λ ← λ0, where

λ0 > 0 is user-specified.

2. Calculate the actual reduction aredk and the predicted reduction predk in each

iteration from xk−1 to xk, where k = 1, 2, ..., N is the number of iterations, and

aredk =
1

2
‖H(xk−1)‖2

Y −
1

2
‖H(xk)‖2

Y (2.4.21)

predk =
1

2
‖H(xk−1)‖2

Y −
1

2
‖H̃(xk;xk−1)‖2

Y (2.4.22)

3. Decide whether accept or reject the proposal, depending on the value of the ratio

ρ = aredk/predk. If ρ ≥ c, the proposal is accepted, otherwise rejected, where c ≥ 0

is user-specified.

4. Adjust the value of the damping factor for the next iteration, depending on the

value of the ratio ρ = aredk/predk obtained in the current iteration. If ρ ≥ c1,

λ ← ωdownλ is decreased for the next iteration; if c1 > ρ ≥ c0, λ ← λ remains the

same for the next iteration; if c0 > ρ, λ← ωupλ is increased for the next iteration,

where 0 ≤ c0 ≤ c1 and 0 < ωdown < 1 < ωup are user-specified.
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However, sometimes, it is not convenient to choose these algorithmic parameters,

since the choices are highly depending on users’ experience or numerical tuning. Even

though the tuning parameters are suitable for one model, it does not mean they are

suitable for other models. Nevertheless, there are some suggestions from references. The

initial damping factor is usually large, which can be selected between
√
J(x0)/n and

J(x0)/n, applied in [63], where n is the number of observations and J(·) ≡ 1
2
‖H(·)‖2

Y is

the objective functional. The parameter c = 10−4 or c = 0.25 is suggested in [22]. The

multipliers ωup = 10, ωdown = 1/10 was originally suggested by Marquardt [28]. Other

literature [73] suggests ωup = 2, ωdown = 1/3 for moderate size problems, and ωup = 1.5,

ωdown = 1/5 for larger problems. There is no a benchmark. How to choose the damping

factors depends on practical trials.

The regularizing Levenberg-Marquardt scheme

Relevantly, there is an adaptive scheme determing damping factors for LMA. This scheme

is called the regularizing Levenberg-Marquardt scheme (RLMS), proposed by Hanke [71].

The main idea of Hanke’s method is that: under some assumptions, the proposal vk

determined via the LMA iteration (2.4.18) with damping factor λk determined via the

RLMS is always a better estimate than vk−1.

However, we should mention that, it is not easy to check the priority assumption

of RLMS in practice, and sometimes the assumption does not hold. In this situation,

RLMS may fail due to two facts: 1) there is no solution of the damping factor, and 2)

even though the solution exists, RLMS may lose the property of better and convergent

estimation. If the priority assumption of RLMS does not hold, we have to use the trust

region approach (by trials). Nevertheless, once the priority assumption of RLMS holds,

then RLMS works well. In the following is a brief introduction of the RLMS, on the

condition that the priority assumption holds.

The RLMS has a priority assumption (which is formula (2.1) in Hanke’s paper [71])

such that, the estimates {vj} produced by the LMA in all iterations satisfy, for all j =

0, 1, 2, ..., K, where K is the number of iterations,∥∥∥Z̃ (x; vj)
∥∥∥
Rn
≤ ρ

τ
‖Z(vj)‖Rn (2.4.23)

48



where Z̃ is the linearization of Z (2.4.7), x is the true value of the unknown parameter,

{vj : j = 0, 1, ..., K} are the LMA points determined via the iterative formula (2.4.18),

and 0 < ρ < 1 < τ are fixed parameters. Then, RLMS determines the damping factor λk

in the kth iteration by making the following equation hold

‖z̃k(λk)‖Rn = ρ ‖Z(vk−1)‖Rn (2.4.24)

where z̃k relying on λk is determined in formula (2.4.19). Hanke has proved that vk in

formula (2.4.18) with the dampping factor λk determined by the RLMS (2.4.24) is a

better estimate of x than vk−1 (proposition 2.1 in [71]) based on the priority assumption

(2.4.23).

Furthermore, a suitable stop criterion has to be supplied. As discussed by Hanke,

“for the present version of the Levenberg-Marquardt iteration the discrepancy principle

is an appropriate stopping rule for this purpose”. Namely, the stopping rule (2.4.20) is

adopted. In order to ensure convergence and stability of the algorithm (theorem 2.3 in

[71]), the following conditions should hold:

1. The parameter τ in the stop rule (2.4.20) should satisfy τ > 1/ρ;

2. The function Z should be locally bounded;

3. There exists a constant C > 0 such that, the Taylor remainder of Z is bounded by∥∥∥Z(u′)− Z̃(u′;u)
∥∥∥
Rn
≤ C ‖u′ − u‖C0 ‖Z(u′)−Z(u)‖Rn (2.4.25)

Some numerical success of RLMS has been shown by Hanke [71], where the Darcy flow

model (an elliptic PDE) is used as the testing model. This is a very special application,

since the forward model governed by the elliptic PDE has good convex properties. For

more general use, there are some concerns of the RLMS, because the priority assumption

(2.4.23) may not hold. From our experience, (2.4.23) practically holds if the forward

model has good convex properties, and if the LMA initial point is chosen carefully. How-

ever, the priority assumption seems not hold for highly nonlinear functions.
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2.5 Markov chain Monte Carlo methods

Markov chain Monte Carlo (MCMC) methods are the most popular numerical sampling

algorithms for Bayesian inference. In this thesis, we will firstly introduce the ergodic

theorem which shows that the time average equals to the spatial average. This property

hence leads to the construction of ergodic Markov chains with an invariant measure, such

that, the Markov chains convergent to the steady state. After that, we will introduce

the fundamental concepts of the Metropolis-Hastings algorithm, which provides the core

idea of MCMC methods about rejection sampling of Markov transitions. Finally, we will

introduce a class of Langevin MCMC methods, and PCN-MCMC is the simplest example.

It will be emphasized that the Langevin MCMC methods are suitable for functional

settings (infinite dimensions) whereas the vallina random-walk MCMC methods collapse

as the number of dimensions goes to infinity [94].

2.5.1 The ergodic theorem

Let (V,Σ, µ, T ) be a measure-preserving dynamical system, i.e.

1. V is a non-empty set.

2. Σ is a σ-algebra over V .

3. µ : Σ→ [0, 1] is a probability measure on the measurable space (V,Σ).

4. T : V → V is a measurable transformation preserving the measure µ, i.e. µ(T−1(S)) =

µ(S) for all S ∈ Σ.

Theorem 2.5.1 (Ergodic theorem [83]). If T is ergodic, i.e. given S ∈ Σ, T−1(S) = S

implies either µ(S) = 0 or µ(S) = 1, then for all f ∈ L1(V, µ;R) and for almost every

v ∈ V , the following equation holds

lim
K→∞

1

K

K−1∑
k=0

f
(
T kv

)
=

∫
V

f(ξ)µ(dξ) (2.5.1)

Ergodic theorem tells that the expected value of a random variable under a proba-

bility measure can be equivalently calculated by a chain of samples under any measure-

preserving transformation. This is the core idea to develop Markov chain Monte Carlo

methods.
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2.5.2 Markov chain with invariant measure

Let K : V × Σ→ [0, 1] be a Markov kernel, i.e.

1. The map v 7→ K(v, S) is measurable for all S ∈ Σ.

2. The map S 7→ K(v, S) is a probability measure for all v ∈ V .

The ergodic theorem tells that in order to draw samples from measure µ, it is possible

to apply the indirect way that constructs an ergodic Markov chain with an invariant

transition kernel K preserving measure µ, i.e.

µ(dw) =

∫
V

K(v, dw)µ(dv) (2.5.2)

Above formula is called the balance equation in [49]. Sometimes, a stronger but easier

condition is adopted instead of formula (2.5.2), that is

K(w, dv)µ(dw) = K(v, dw)µ(dv) (2.5.3)

Notice that formula (2.5.2) is implied by integrating both sides of formula (2.5.3) with

respect to the dummy variable v, but the converse is not true. Formula (2.5.3) is called

the detailed balance equation in [49].

2.5.3 The Metropolis-Hastings algorithm

As discussed in the last subsection, the key point of MCMC methods is to construct

a measure-preserving transition kernel K of a Markov chain with respect to the target

measure µ. The Metropolis-Hastings algorithm [49] is a reject sampling method that

constructs the transition kernel by

K(v, dw) = α(v, w)q(v, dw) (2.5.4)

where q : V × Σ → [0, 1] is a user-proposed transition kernel, and α is the acceptance

rate of the proposal,

α(v, w) := min

{
1,
q(w, dv)µ(dw)

q(v, dw)µ(dv)

}
(2.5.5)

Let η denote the measure η(dv, dw) = q(w, dv)µ(dw), and let η⊥ denote the measure

by reversing the roles of v and w, i.e. η⊥(dv, dw) = q(v, dw)µ(dv). If η and η⊥ are
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equivalent, then the Radon-Nikodym theorem leads to a well-defined α. Otherwise, the

acceptance rate is only α = 0, that means all proposals are rejected and the Markov chain

is draped in sticky points, so the chain is not ergodic and the algorithm fails.

If α is well-posed (the Radon-Nikodym derivatives exist), then it is easy to check that

equation (2.5.4) associated with equation (2.5.5) satisfy the detailed balance equation

(2.5.3), shown below.

1. Assume that q(w,dv)µ(dw)
q(v,dw)µ(dv)

≥ 1. Then α(v, w) and α(w, v) are given by

α(v, w) := min

{
1,
q(w, dv)µ(dw)

q(v, dw)µ(dv)

}
= 1 (2.5.6)

α(w, v) := min

{
1,
q(v, dw)µ(dv)

q(w, dv)µ(dw)

}
=
q(v, dw)µ(dv)

q(w, dv)µ(dw)
(2.5.7)

Consequently, K(v, dw)µ(dv) and K(w, dv)µ(dw) are given by

K(v, dw)µ(dv) = α(v, w)q(v, dw)µ(dv) = q(v, dw)µ(dv) (2.5.8)

K(w, dv)µ(dw) = α(w, v)q(w, dv)µ(dw) =
q(v, dw)µ(dv)

q(w, dv)µ(dw)
q(w, dv)µ(dw) = q(v, dw)µ(dv)

(2.5.9)

Thus, we have

K(v, dw)µ(dv) = K(w, dv)µ(dw) (2.5.10)

2. Assume that q(w,dv)µ(dw)
q(v,dw)µ(dv)

< 1. Then α(v, w) and α(w, v) are given by

α(v, w) := min

{
1,
q(w, dv)µ(dw)

q(v, dw)µ(dv)

}
=
q(w, dv)µ(dw)

q(v, dw)µ(dv)
(2.5.11)

α(w, v) := min

{
1,
q(v, dw)µ(dv)

q(w, dv)µ(dw)

}
= 1 (2.5.12)

Consequently, K(v, dw)µ(dv) and K(w, dv)µ(dw) are given by

K(v, dw)µ(dv) = α(v, w)q(v, dw)µ(dv) =
q(w, dv)µ(dw)

q(v, dw)µ(dv)
q(v, dw)µ(dv) = q(w, dv)µ(dw)

(2.5.13)

K(w, dv)µ(dw) = α(w, v)q(w, dv)µ(dw) = q(w, dv)µ(dw) (2.5.14)

Thus, we have

K(v, dw)µ(dv) = K(w, dv)µ(dw) (2.5.15)
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2.5.4 The Metropolis-adjusted Langevin algorithm

In MCMC methods, there is a particular class of algorithms using the Langevin diffusion

as proposals [9, 79]. Langevin MCMC methods are placed in function spaces so they

are suitable for infinite-dimensional problems, i.e. the Langevin proposals ensure the

well-posedness of formula (2.5.5). We will introduce a Langevin proposal conditioned to

Gaussian prior. The clue of this subsection is: Itô diffusion → Langevin diffusion →

Langevin diffusion with invariant Gaussian measure.

Consider an Itô diffusion {Xt : t ≥ 0} on V (for simplicity, we only formulate the

diffusion in finite-dimensional case V = RM),

dXt = b(Xt)dt+ σ(Xt)dWt (2.5.16)

where b : V → V and σ : V → {V → V } are Lipschitz continuous functions, and Wt is

the standard Wiener process on V . b(Xt) is known as the drift coefficient and σ(Xt) is

known as the diffusion coefficient. In fact, an Itô diffusion is a special type of Itô process

as the drift and diffusion coefficients only rely on Xt. What’s more, the probability

density function π(t, ·) of the Itô diffusion Xt is governed by the Fokker-Planck equation,

which is a partial differential equation related to the drift field b and the diffusion field

σ,

∂

∂t
π(t, x) = −

M∑
i=1

∂

∂xi
[bi(x)π(t, x)] +

M∑
i,j=1

∂2

∂xi∂xj
[Kij(x)π(t, x)] (2.5.17)

where 2K(x) =
√

2K(x)
√

2K(x)
T

= σ(x)σT (x).

For a stationary diffusion process Xt, the probability density function π(t, ·) = π(·)

is time-invariant. Furthermore, if the stationary process Xt has invariant diffusion coef-

ficient σ(x) = σ. Then, the Fokker-Planck equation (2.5.17) becomes to a simple form,

0 = −
M∑
i=1

∂

∂xi
[bi(x)π(x)] +

M∑
i,j=1

∂2

∂xi∂xj
[Kijπ(x)] (2.5.18)

This directly leads to the relation below,

b(·) = K∇ log(π(·)) (2.5.19)

Substituting above formula into the Itô diffusion (2.5.16) results in the Langevin diffusion

below,

dXt = K∇ log(π(Xt))dt+
√

2KdWt (2.5.20)
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The Langevin diffusion is a stationary Itô diffusion with an invariant diffusion coefficient.

For a Langevin diffusion with Gaussian distribution π ∼ N (m0, C0), formula (2.5.20)

becomes to

dXt = −KC−1
0 (Xt −m0)dt+

√
2KdWt (2.5.21)

The critical issue is how to pick the preconditioner K. For example, the simplest way

is to let K = I be the identity operator (without preconditioning). However, the iden-

tity operator in an infinite-dimensional space is not compact, and C−1
0 and Wt are also

unbounded, which causes the ill-posedness of the unconditioned setting. On the other

hand, K = C0 results in a well-posed diffusion with finite and infinite dimensions,

dXt = −(Xt −m0)dt+
√

2C0dWt (2.5.22)

As the result, the proposal q : V ×Σ→ [0, 1] in the Metropolis-Hastings algorithm (2.5.4)

(2.5.5) can be generated by discretizing the preconditioned Langevin diffusion (2.5.22).

More details are discussed in the following subsection.

2.5.5 PCN-MCMC

Now, consider the Metropolis-Hastings algorithm (2.5.4) associated with the acceptance

rate (2.5.5). In that formula, µ is the target measure. In Bayesian inference, it is the

posterior probability measure. According to the Bayes’ formula, the posterior probability

measure can be written as

µ(du) ∝ exp(−Φ(u))µ0(du) (2.5.23)

where Φ is the cost functional (a real-valued non-negative functional), and µ0 is the prior

measure. If the prior is a Gaussian measure µ0 = N (m0, C0), then a proposal q(v, dw) of

the Markov transition can be constructed by discretizing formula (2.5.22). Consider the

θ ∈ [0, 1] scale for the discretization of (2.5.22),

w = v − ((1− θ)v + θw −m0) δ +
√

2δζ (2.5.24)

where δ > 0 is the step size and ζ ∼ N (0, C0) is a Gaussian random variable. Above

formula determines the transition kernel q(v, dw) with respect to different values of θ.
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However, as discussed in [94], only the Crank-Nicolson scale (θ = 1/2) makes the Radon-

Nikodym derivative in formula (2.5.5) well-defined. Therefore, with θ = 1/2, formula

(2.5.24) becomes to

w = m0 +
√

1− β2(v −m0) + βζ (2.5.25)

where β =
√

2δ
1+δ/2

. Above formula determines a well-posed proposal q(v, dw), associated

with the acceptance rate,

α(v, w) = min {1, exp(Φ(v)− Φ(w))} (2.5.26)

This algorithm (2.5.25) (2.5.26) is a Metropolis-adjusted Langevin algorithm conditioned

to Gaussian prior using Crank-Nicolson scale. The developers [94] of this algorithm call it

the PCN-MCMC (preconditioned Crank-Nicolson) method. Furthermore, it is easy to

check that the proposal q(v, dw) generated by (2.5.25) is a prior-reversible transformation,

i.e.

q(v, dw)µ0(dv) = q(w, dv)µ0(dw) (2.5.27)

In comparison, the vanilla random walk MCMC method is given by,

w = v + βζ (2.5.28)

associated with the acceptance rate,

α(v, w) = min

{
1, exp

(
Φ(v)− Φ(w) +

1

2
‖v −m0‖2

C0 −
1

2
‖w −m0‖2

C0

)}
(2.5.29)

The vanilla random walk MCMC method is well-defined and workable only for finite

dimensions. In function spaces, it eventually collapses in mesh refinement, because the

random walk proposal leads to singularity of probability measures and the acceptance

rate (2.5.29) equals to zero. In contrast, the PCN-MCMC is mesh-invariant and suitable

to infinite-dimensional sampling. See figure 2.4b, where we try both Gaussian random

walk MCMC (GRW-MCMC) and PCN-MCMC. It is clear that, as discrete points go to

large, GRW-MCMC eventually collapses, whereas PCN-MCMC consistently works well.

2.6 A toy example for infinite-dimensional inversion

This section is to demonstrate numerical performance of optimization algorithms (for

variational inversion) and sampling algorithms (for Bayesian inversion). A toy examples
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(a) Convergence of Markov chains

(monitoring the cost functional) from

the prior distribution to the poste-

rior distribution (using PCN-MCMC

method with step size β = 0.25) within

T0 = 1000 iterations.

(b) The relationship between step

sizes and acceptance rates of the two

MCMC methods with different number

M of finite elements. T0 = 1000 burn-

in period using PCN-MCMC with β =

0.25 has been excluded.

Figure 2.4: Compare GRW-MCMC and PCN-MCMC. The forward map is the 1D Darcy flow

model (2.6.5). The number of observations equals to n = 10. The noise level is ε = 0.02.

The prior is a Whittle-Matérn field on [0, 1] with parameters: steady mean µ = −3.75, steady

standard deviation σ = 0.1, smoothness parameter ν = 2 and the length-scale parameter L =

0.15.
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is in consideration: the 1D Darcy flow model. This example is very easy to understand,

which can help readers who are not familiar with infinite-dimensional inverse problems.

More complicated numerical applications can be found in chapter 5.

2.6.1 The 1D Darcy flow model

The (source-free) source-free 1D Darcy flow model for porous media comes from geo-

physics and fluid mechanics, which is the simplest case of the Navier-Stokes equations.

It is an ODE problem formulated by(
κ(s)

ν
p′(s)

)′
= 0 ∀s ∈ (0, 1) (2.6.1)

p(0) = 0 (2.6.2)

κ(1)

ν
p′(1) = 1 (2.6.3)

where κ : [0, 1] → (0,+∞) is the permeability of the porous media, and ν > 0 is the

viscosity of the fluid (e.g. ν = 1 for water around 20◦C), and p : [0, 1] → R is the

fluid pressure. More clearly, the ODE problem (2.6.1)-(2.6.3) with ν = 1 has the explicit

solution,

p(s) =

∫ s

0

e−u(r) dr (2.6.4)

where u(r) = log(κ(r)) is the log permeability.

The forward problem is: given the log permeability, to calculate fluid pressures at

some specified points 0 < s1 ≤ · · · ≤ sn ≤ 1. The forward map G : L2([0, 1];R) → Rn

can be expressed as

G(u) = [p(s1), ..., p(sn)]T =

[∫ s1

0

e−u(r) dr, ...,

∫ sn

0

e−u(r) dr

]T

(2.6.5)

Conversely, the inverse problem is to recover the log permeability, given (possibly noisy)

measurements of fluid pressures at the positions 0 < s1 ≤ · · · ≤ sn ≤ 1. Both the

variational approach (with Gauss-Newton algorithm) and the Bayesian approach (with

PCN-MCMC method) will be applied to solve this inverse problem.
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2.6.2 The ‘truth’ and the prior information

Let N (m0, C0) be a Gaussian measure on the separable Hilbert space L2([0, 1];R). More

specifically, we consider the Whittle-Matérn class, i.e. the mean m0 ∈ L2([0, 1];R) and

the covariance C0 : L2([0, 1];R)→ L2([0, 1];R) are specified: for all s ∈ [0, 1],

m0(s) = µ (2.6.6)

and for all h ∈ L2([0, 1];R), for almost every s ∈ [0, 1],

[C0h](s) = σ
21−ν

Γ(ν)

∫ 1

0

(√
2νL−1|s− t|

)ν
Kν

(√
2νL−1|s− t|

)
h(t) dt (2.6.7)

where Γ is the gamma function, and Kν is the modified Bessel function of the second kind

of order ν. We fix the values of parameters: steady mean µ = −3.75, steady standard

deviation σ = 0.5, smoothness parameter ν = 2 and the length-scale parameter L = 0.15.

We draw a sample from the Whittle-Matérn field, x ∼ N (m0, C0), and then we fix the

parameter x as the true value of the log permeability. Moreover, we adopt N (m0, C0) as

the prior distribution for the inverse problem. This prior distribution is the natural choice

as we know the truth x is ‘correctly’ characterized by the Gaussian measure N (m0, C0),

though any other prior distributions can be applied also as long as the prior distributions

properly characterize the truth.

2.6.3 Experimental ‘data’

Consider the forward map G (2.6.5). We specify the measurement positions 0 < s1 ≤

· · · ≤ sn ≤ 1 as si = i
n

for all i = 1, ..., n, and we fix the number of measurements equal

to n = 10. Once the truth x ∈ C([0, 1];R) is obtained (drawn from the Whittle-Matérn

field and fixed), a clean data ycleanRn can be simulated by formula

yclean = G(x) (2.6.8)

Additionally, a noisy data y ∈ Rn can be simulated by formula

y = yclean + e (2.6.9)

where e ∈ Rn is a sample drawn from a centered non-degenerate Gaussian measure

N (0, γ), where the covariance γ is an n× n diagonal matrix with entries proportional to
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the clean data yclean, i.e.
√
γ = diag(ε · abs(yclean)) (2.6.10)

where ε will be specified as small noise level ε = 0.01 or large noise level ε = 0.05 in

numerical experiments.

2.6.4 Variational inversion with the Gauss-Newton algorithm

The variational inversion aims to minimize the Tikhonov regularization (2.2.4). The 1D

Darcy flow model has the forward map G specified in formula (2.6.5), which is continuously

twice differentiable with positive-definite Hessian. Since this is a convex optimization, we

consider to apply Gauss-Newton algorithm (GNA). The LMA minimizing the Tikhonov

regularization (2.2.4) has been shown in formula (2.4.11). The GNA is nothing more

than taking αk = 1 in formula (2.4.11). The algorithm stops when the derivative is close

to zero, as shown in formula (2.4.13), where we use ε0 = 0.01.

We apply the GNA on both of the two cases: one has relatively large noise level

ε = 0.05, and the other has relatively small noise level ε = 0.01. The GNA converges

within 3 or 4 iterations for large or small noise level, respectively, as shown in figure 2.5a

and figure 2.5b. This is quite efficient. The final estimates (MAP) are shown in figure

2.5c, from which, we can observe that: when the noise level is high ε = 0.05, the MAP

estimate has relatively large difference from the truth; but when the noise level becomes

lower ε = 0.01, the MAP estimate is more close to the truth.

2.6.5 Bayesian inversion with the PCN-MCMC method

The Bayesian inversion aims to draw samples from the posterior probability measure

determined by the Bayes’ formula (2.2.5). The PCN-MCMC method (2.5.25) (2.5.26) is

adopted for the infinite-dimensional sampling.

We apply the PCM-MCMC method on both of the two cases: one has relatively

large noise level ε = 0.05, and the other has relatively small noise level ε = 0.01. The

Markov chains starting from the prior distribution converge to the steady state (posterior

distribution) within 103 or 104 iterations for large or small noise level, respectively, as

shown in figure 2.6a and figure 2.6b. Usually, MCMC methods has low efficiency in
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(a) The estimation error and

data misfit in Gauss-Newton

iterations (for the problem

with large noise level ε =

0.05).

(b) The estimation error and

data misfit in Gauss-Newton

iterations (for the problem

with small noise level ε =

0.01).

(c) The MAP estimates pro-

duced by GNA (estimate 1

has large noise; estimate 2

has small noise), compared

with the truth.

Figure 2.5: Using the GNA to solve the Tikhonov regularization of the 1D Darcy flow problem.

practice, but these kinds of sampling algorithms are accurate and universal. The posterior

mean (average the final states of J = 104 independent chains) are shown in figure 2.6c,

from which, we can observe that: when the noise level is high ε = 0.05, the conditional

mean has relatively large difference from the truth; but when the noise level becomes

lower ε = 0.01, the conditional mean is more close to the truth. The conditional-mean

estimates shown in figure 2.6c are similar like the MAP estimates shown in figure 2.5c.

In fact, the benefit of Bayesian approach is uncertainty quantification, since the

Bayesian estimation not only produces a point estimate but also implies a distribution

of all possible estimates. Numerically, we can use the sample percentiles to quantify the

uncertainty range of estimates. The 95% confidence interval (2.5%− 97.5%) of the prior

distribution, the posterior distribution with large noise, and the posterior distribution

with small noise are shown in figure 2.7a, figure 2.7b, and figure 2.7c, respectively. The

prior information has relatively large uncertainty (the confidence interval is wide in figure

2.7a). After observing data, the posterior information is updated and the uncertainty is

reduced (the confidence interval in figure 2.7b is narrower than that in figure 2.7a). For

lower noise level, the quality of information is further improved, and result is very close

to the truth (the confidence interval in figure 2.7c is narrower than that in figure 2.7b).
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(a) Convergence of several

indepedent Markov chains

produced by PCN-MCMC

(for the problem with large

noise level ε = 0.05).

(b) Convergence of several

indepedent Markov chains

produced by PCN-MCMC

(for the problem with small

noise level ε = 0.01).

(c) The mean estimates pro-

duced by PCN-MCMC (esti-

mate 1 has large noise; es-

timate 2 has small noise),

compared with the truth.

Figure 2.6: Using the PCN-MCMC method to sample from the posterior distribution of the

1D Darcy flow problem. The step size β of the PCN-MCMC method is specified as: β = 0.15

for large noise level ε = 0.05, and β = 0.03 for small noise level ε = 0.01; the corresponding

acceptance rate is around 0.24.

(a) Prior estimate (the

Whittle-Matérn field).

(b) Posterior estimate with

large noise level ε0 = 0.05.

(c) Posterior estimate with

small noise level ε0 = 0.01.

Figure 2.7: The Bayesian estimation with uncertainty quantification. J = 104 samples inde-

pendently start from the prior distribution, and then iterate along independent Markov chains

(using the PCN-MCMC method).
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Let u be the posterior random estimate u ∼ P(·|y), and let x be the truth. Moreover,

we consider the KL factor and the data misfit corresponding to the estimate:

• Let ξ denote the random factor, and the let ξ̂ denote the true factor, where the

‘factors’ indicate the eigen-basis in the KL expansion of the prior field, i.e.,

ξ = C−1/2
0 (u−m0) ξ̂ = C−1/2

0 (x−m0) (2.6.11)

• Let X be the random misfit, and let X̂ be the exact amount of noise, i.e.,

X = ‖y − G(u)‖γ X̂ = ‖y − G(x)‖γ (2.6.12)

Then, we plot the (empirical) probability density functions of the KL factor ξ and the

data misfit X. The KL factors with large and small noise levels are plotted in figures

2.8a and 2.8b, respectively. We can observe that, if the noise level is lower, then the

distribution of the KL factor is more concentrated around the ‘truth’. Moreover, the

data misfits with large and small noise levels are plotted in figure 2.8c. We can observe

that, if the noise level is lower, then the distribution of the squared misfit is more close

to the chi-square distribution with n degrees of freedom, where n = 10 is the number of

observations.
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(a) The PDFs of KL compo-

nents (for the problem with

large noise level ε0 = 0.05).

ξ1, ξ2 and ξ3 are the first

three components of the pos-

terior factor ξ, and ξ̂1, ξ̂2

and ξ̂3 are the first three

components of the true fac-

tor ξ̂. The prior distribution

of all the KL components is

identity to the standard nor-

mal distribution N (0, 1).

(b) The PDFs of KL compo-

nents (for the problem with

small noise level ε0 = 0.01).

ξ1, ξ2 and ξ3 are the first

three components of the pos-

terior factor ξ, and ξ̂1, ξ̂2

and ξ̂3 are the first three

components of the true fac-

tor ξ̂. The prior distribution

of all the KL components is

identity to the standard nor-

mal distribution N (0, 1).

(c) The PDFs of squared

misfits. X2 estimate 1 has

large noise level ε = 0.05;

X2 estimate 2 has small

noise level ε = 0.01; X̂2 es-

timate 1 is the true value of

the large noise; X̂ estimate 2

is the true value of the small

noise. It is expected that the

squared misfits of the X2 es-

timates should close to the

χ2
n distribution.

Figure 2.8: Empirical probability density functions (PDFs) of KL factor and data misfit.
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Chapter 3

Tempering Setting and Adaptive

Methods for Inverse Problems

Last chapter has introduced well-posed inverse problems via variational approach and

Bayesian approach. This chapter conducts further investigation, that rewrites the original

variational/Bayesian setting as a tempering setting. Inverse problems with the tempering

setting can be equivalently regarded as filtering problems. Thus, approximate filtering

algorithms e.g. extended Kalman filter, ensemble Kalman filter can be applied to solve

inverse problems.

In this chapter, we firstly introduce the tempering setting in section 3.1, and then in

section 3.2, we propose an adaptive scheme discretizing the tempering setting. Section

3.3 discusses the Kalman-like methods as approximate methods solving inverse problems

with the tempering setting, and section 3.4 adopts the adaptive scheme to select discrete

steps when the Kalman-like methods are numerically implemented. The last section is

short summary which presents what have been done in this chapter.

3.1 Tempering setting for inverse problems

Recall the additive noise model (2.2.1). The inverse problem is to infer the unknown

parameter x ∈ H, given the forward map G : H → Rn and the observation y ∈ Rn.

As discussed in the last chapter, there are two standard approaches setting a well-posed

inverse problem via variational approach and Bayesian approach. This section discusses
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a variant of the original setting. This variant is called the tempering setting.

The tempering setting is inspired from some numerical algorithms like simulated an-

nealing and annealed importance sampling. Also, the tempering setting is closely related

to Bayesian filtering. In fact, a tempered inverse problem can be regarded as a special

case of filtering problems. The benefit of the tempering setting is that, it builds a con-

tinuous path from prior to posterior, such that, data misfits are reduced along the path,

and complicated inverse problems can be gradually solved.

This section is divided by several subsections. Bayesian filtering, as the background,

is introduced in subsection 3.1.1. The trivial motivation of the tempering setting is

discussed in subsection 3.1.2. More formal definition of the tempering setting is presented

in subsection 3.1.3. Some essential properties of the tempering setting are discussed in

subsection 3.1.4.

3.1.1 Hidden Markov chains and Bayesian filtering

First of all, we introduce Bayesian filtering, which uses Bayesian method to extract infor-

mation from a hidden Markov chain by observing sequence of data. This kind of problems

commonly appear in data assimilation, signal processing, and machine learning. Bayesian

filtering is closely related to the tempering setting for inverse problems. To well under-

stand filtering problems can help readers understand the tempering setting more clearly

and deeply.

We consider a model with evolution of states and observation of data. The evolution-

observation model can be represented by a hidden Markov chain. The hidden states

are estimated by a stochastic process with uncertainty, and the observed data are char-

acterized by another stochastic process. We assume that the hidden states are in a

separable Hilbert space H, and that the observations are in the Euclidean space Rn,

where n is the number of dimensions of observation vector. Then, two discrete stochastic

processes {Xi}Ki=0 and {Yi}Ki=1 are used to represent the hidden states and observations

respectively, where {Xi}Ki=0 represent the hidden states (for each i = 0, 1, ..., K, Xi is an

H-valued random variable) and {Yi}Ki=1 represent the observations (for each i = 1, ..., K,

Yi is an Rn-valued random variable). More precisely, the evolution-observation model has
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Y1 Y2 · · · YK

X0 X1 X2 · · · XK
F1

W1

F2

W2

G1 V1

F3

W3

G2 V2

FK

WK

G1 VK

Figure 3.1: Diagram of hidden Markov chain.

the following three components (for clearance, the hidden Markov chain is also presented

as a diagram in figure 3.1):

1. The probability measure of the initial state X0.

2. The evolution equation, for any i = 1, ..., K,

Xi = Fi(Xi−1) +Wi (3.1.1)

where Fi : H → H is the ith evolution model, and Wi is an independent H-valued

random variable representing the ith state noise.

3. The observation equation, for any i = 1, ..., K,

Yi = Gi(Xi) + Vi (3.1.2)

where Gi : H → Rn is the ith observation model, and Vi is an independent Rn-

valued random variable representing the ith observation noise.

After real observations y1, y2, ..., yK ∈ Rn are obtained, Bayesian filtering aims to in-

terpret conditional probabilities of hidden states given the observations. For convenience,

we use the short notation Si (i = 0, 1, ..., K) to denote the sequence of observations, i.e.,

Si :=

∅ if i = 0

{y1, ..., yi} if 0 < i ≤ K

(3.1.3)

Furthermore, we use the short notation PXj
(·|Si) (i, j = 0, 1, ..., K) to denote the condi-

tional probability measure of state Xj given the sequence of observations Si, i.e.,

PXj
(·|Si) :=

PXj
(·) if i = 0

PXj
(·|Y1 = y1, ..., Yi = yi) if 0 < i ≤ K

(3.1.4)
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The Bayesian filtering problem means to update the conditional probability measures one

by one,

PX0(·|S0)→ PX1(·|S1)→ · · · → PXK
(·|SK) (3.1.5)

For any iteration i = 1, ..., K from PXi−1
(·|Si−1) to PXi

(·|Si), the update can be split

by two steps [49],

1. Evolution update: given PXi−1
(·|Si−1), find PXi

(·|Si−1) based on the Markov tran-

sition kernel Ki(w, ·) = PXi
(·|Xi−1 = w), where for any w ∈ H, PXi

(·|Xi−1 = w) is

the conditional probability measure of Xi given Xi−1 = w.

2. Observation update: given PXi
(·|Si−1), find PXi

(·|Si) based on the likelihood func-

tion Li(u|yi) = π(Yi = yi|Xi = u), where for any u ∈ H, π(Yi = yi|Xi = u) is the

conditional probability density of Yi at yi given Xi = u.

The following theorem is used to determine the update equations.

Theorem 3.1.1. (Theorem 4.2 in [49])

1. For evolution update, we have the Markov transition,

PXi
(du|Si−1) =

∫
H
PXi

(du|Xi−1 = w)PXi−1
(dw|Si−1) (3.1.6)

2. For observation update, we have the Bayes’ formula,

PXi
(du|Si) ∝ π(Yi = yi|Xi = u)PXi

(du|Si−1) (3.1.7)

3.1.2 Motivation of the tempering setting

Our purpose is to infer the unknown parameter x ∈ H in the additive noise model (2.2.1),

given the forward map G : H → Rn and the observation y ∈ Rn. Sometimes, directly

solving this problem may be difficult due to highly nonlinear properties of the forward

map. Instead, a more feasible approach is to gradually solve a sequence of simpler sub-

problems that finally recovers the original problem. More specifically, we can construct a

sequence of sub-problems, and each sub-problem has the same mathematical structure as

the original problem. Each sub-problem has lower fidelity than the original problem, but
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sequentially solving all the sub-optimums recovers the high fidelity problem (the original

problem).

For simplicity, we make the Gaussian assumptions. Assume that the error e = y−G(x)

between the observation y and the prediction G(x) can be characterized by a centered non-

degenerate Gaussian distribution N (0, γ), where γ : Rn → Rn is a symmetric positive-

definite bounded matrix. Moreover, assume that the prior estimation of the unknown

parameter x is also given as a Gaussian distribution N (m0, C0), where m0 ∈ H is a

bounded element, and C0 : H → H is a self-adjoint positive-semi-definite trace-class

operator.

The original Bayesian method

The original Bayesian method estimating the unknown parameter x considers the one-

step transition from the prior to the posterior,

Y = G(X) + V (3.1.8)

where X ∼ N (m0, C0) and V ∼ N (0, γ) are two independent Gaussian random variables.

The independent random variable X represents prior estimates of the unknown parameter

x with possibilities, and another independent random variable V represents all possible

errors between real observation and mathematical prediction. Thus, the dependent ran-

dom variable Y represents all possible observations under the given prior assumption and

error assumption. After the observation y is obtained, the Bayesian inverse problem is to

interpret the conditional probability of X given the observation Y = y from the Bayes’

rule,

P(du|y) ∝ exp

(
−1

2

∥∥γ−1/2(y − G(u))
∥∥2

Rn

)
P(du) (3.1.9)

where P = N (m0, C0) is the prior probability measure, and P(·|y) is the posterior proba-

bility measure.

The tempered Bayesian method

Sometimes, directly interpreting the conditional probability determined in formula (3.1.9)

is numerically inefficient, because the forward model G can be very complicated which
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forms a extremely sharp distribution of the weights w = exp
(
−1

2

∥∥γ−1/2(y − G(X))
∥∥2

Rn

)
with X ∼ N (m0, C0). In order to solve this issue, we can gradually solving the original

problem by constructing a sequence of sub-problems.

The tempering setting is a sequence of sub-problems applying tempering parameters

0 = t0 < t1 < · · · < tK = 1. For convenience, let hi = ti − ti−1 for all i = 1, ..., K be the

step sizes. The tempering setting can be constructed as a Bayesian filtering problem by

specifying the evolution-observation model as follows.

1. The probability measure of the initial state X0 is the Gaussian measure N (m0, C0).

2. The evolution equation is identity, for any i = 1, ..., K,

Xi = Xi−1 (3.1.10)

3. The observation equation is determined by the forward map G, for any i = 1, ..., K,

Yi = G(Xi) + Vi (3.1.11)

where the observation noise Vi ∼ N (0, h−1
i γ) is an independent Gaussian random

variable.

Moreover, all the observations y1, ..., yK are specified as the invariant quantity y,

y1 = · · · = yK = y (3.1.12)

For this special case, the update equation is very simple, derived as follows. Since

evolution of the states remains identity (3.1.10), we straightforwardly have the evolution

update

PXi
(du|Y1 = y, ..., Yi−1 = y) = PXi−1

(du|Y1 = y, ..., Yi−1 = y) (3.1.13)

Furthermore, by using the Bayes’ formula for the observation model (3.1.11), we have the

observation update

PXi
(du|Y1 = y, ..., Yi = y) ∝ π(Yi = y|Xi = u)PXi

(du|Y1 = y, ..., Yi−1 = y) (3.1.14)

where, since the observation noise Vi ∼ N (0, γ) is Gaussian, the probability density

π(Yi = y|Xi = u) is the Gaussian density

π(Yi = y|Xi = u) ∝ exp

(
−hi

2

∥∥γ−1/2(y − G(u))
∥∥2

Rn

)
(3.1.15)
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As the result, combining formulas (3.1.13) and (3.1.14) leads to, for any i = 1, ..., K,

νi(du) ∝ exp

(
−hi

2

∥∥γ−1/2(y − G(u))
∥∥2

Rn

)
νi−1(du) (3.1.16)

where the short notation {νi}Ki=0 denote the probability measures,

νi(·) ≡

PXi
(·) if i = 0

PXi
(·|Y1 = y, ..., Yi = y) if 0 < i ≤ K

(3.1.17)

In brief, solving the ith sub-problem is equivalent to solving the original problem with γ

replaced by h−1
i γ.

It is clear that, the sequence of probability measures {νi}Ki=0 start from the prior

probability P, and, since
∑K

i=1 hi = 1, end in the posterior probability P(·|y), i.e.

P(·) = ν0(·)→ ν1(·)→ · · · → νK(·) = P(·|y) (3.1.18)

where P(·) and P(·|y) are the same as those in formula (3.1.9). In many applications,

the forward map G is nonlinear. Directly solving the original problem with one-step

transition from the prior P to the posterior P(·|y) may be numerically inefficient. However,

sequentially solving the sub-problems in the tempering setting is more robust.

3.1.3 Formulation of the tempering setting

The tempering setting is inspired from simulated annealing [104], annealed importance

sampling [88], and sequential Monte Carlo methods [3, 1]. The formal definition of the

tempering setting, discussed in this subsection, applies an auxiliary parameter t ∈ [0, 1] to

rewrite the original formula (2.2.4) or (2.2.5), such that, the rewritten version indicates a

class of problems with respect to the tempering parameter t. Particularly, t = 0 indicates

the prior, and t = 1 indicates the posterior.

More precisely, we use mathematical formulas to define the tempering setting as fol-

lows. For convenience, we first of all define the data-misfit function Z : H → Rn and the

cost functional Φ : H → [0,+∞),

Z(·) = γ−1/2(y − G(·)) Φ(·) =
1

2
‖Z(·)‖2

Rn (3.1.19)
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where y ∈ Rn is the observation, γ : Rn → Rn is the covariance matrix of observation

noise, and G : H → Rn is the forward map. Then, we add the tempering parameter

t ∈ [0, 1] to the original formulas (2.2.4) and (2.2.5). As the result, the original variational

setting (2.2.4) can be rewritten as the tempered variational setting,

x̂t = arg min
u∈H

{tΦ(u) +R(u)} with R(·) =
1

2
‖(·)−m0‖2

C0 (3.1.20)

and the original Bayesian setting (2.2.5) can be rewritten as the tempered Bayesian

setting,

µt(du) ∝ exp (−tΦ(u))P(du) with P = N (m0, C0) (3.1.21)

where Φ is the cost functional defined in formula (3.1.19), m0 ∈ H is the prior mean and

C0 : H → H is the prior covariance operator. The objective of the tempered method is to

search for the minimum point x̂t or to interpret the probability measure µt for t ∈ (0, 1].

Remark 3.1.2. The following facts should be noticed:

1. For any t ∈ [0, 1], the optimum x̂t determined in formula (3.1.20) is the MAP point

of the probability measure µt determined in formula (3.1.21).

2. For any 0 = t0 < t1 < · · · < tK = 1, the probability measure µti determined in

formula (3.1.21) exactly equals to the probability measure νi determined in formula

(3.1.16).

3. The tempering setting defined in (3.1.20) or (3.1.21) has continuous parameter t ∈

[0, 1]. The benefit of the continuous setting is that, it is the theoretical limit of

any discrete specifications, so that, we can keep the continuous formulation for

mathematical analysis and leave the discretization at the last moment.

The well-posedness of formula (3.1.20) and formula (3.1.21) regardless of t has been

discussed in the last chapter (see theorem 2.2.4 and theorem 2.2.6 respectively). More-

over, in theorem 3.1.3 and theorem 3.1.5, we will additionally show the continuity and

monotonicity with respect to the tempering parameter t ∈ [0, 1]. These properties are

essential, since the continuity implies that the tempering setting is a stable process in

t ∈ [0, 1], and the monotonicity ensures that the tempering setting gradually reduces the

cost functional in t ∈ [0, 1]. These two properties reveal why and how the tempering

setting works well.
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3.1.4 Continuity and monotonicity of the tempering setting

The theorems in this subsection reveal the essential properties of the tempering setting.

We emphasizes that these properties are proved for nonlinear operators and infinite-

dimensional parameters. Both the variational approach and the Bayesian approach have

the similar properties.

The following theorem shows that: the tempered Bayesian setting (3.1.21) determines

a trajectory along t ∈ [0, 1], such that, the average cost functional is always decreasing

along this trajectory.

Theorem 3.1.3. Let Φ, P, µt denote the same symbols in formula (3.1.21). For any

t ∈ [0, 1], let It and 〈Φ〉t denote

It ≡ − log

(∫
H

exp(−tΦ(u))P(du)

)
〈Φ〉t ≡

∫
H

Φ(u)µt(du) (3.1.22)

Assume that the forward map G satisfies condition 1 in assumption 2.2.3. Then It and

〈Φ〉t are well-defined. Moreover, It is increasing in t ∈ [0, 1], and 〈Φ〉t is decreasing in

t ∈ [0, 1]. Furthermore, It regarded as a function of t is an analytic function in t ∈ [0, 1],

whose first order derivative is represented by

I ′t = 〈Φ〉t (3.1.23)

Proof. Just a special case of theorem 4.2.9 with Φ specified as Φ(·) = 1
2

∥∥γ−1/2(y − G(·))
∥∥2

Rn .

Since γ−1/2G(·) is assumed to have an exponential tail, then Φ(·) also have an exponential

tail. Consequently, we can directly use the result in theorem 4.2.9.

Corollary 3.1.4. For any t ∈ [0, 1], let Pt ≡ It + (1− t) 〈Φ〉t. Then Pt is decreasing in

t ∈ [0, 1].

Proof. Apply chain rule,

P ′t = I ′t − 〈Φ〉t + (1− t) 〈Φ〉′t

where I ′t = 〈Φ〉t shown in theorem 3.1.3. Thus, we have

P ′t = (1− t) 〈Φ〉′t

where (1− t) ≥ 0 and 〈Φ〉′t ≤ 0. Thus, we have

P ′t ≤ 0
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Therefore, Pt is decreasing in t ∈ [0, 1].

The following theorem shows that: the tempered variational setting (3.1.20) deter-

mines a trajectory along t ∈ [0, 1], such that, the cost functional at the minimum point

is always decreasing along this trajectory.

Theorem 3.1.5. Let Φ, R, x̂t denote the same symbols in formula (3.1.20). For any

t ∈ [0, 1], let Jt and φt denote

Jt ≡ tΦ(x̂t) +R(x̂t) φt ≡ Φ(x̂t) (3.1.24)

Assume that the forward map G satisfies condition 2 in assumption 2.2.3. Then Jt and φt

are well-defined. Moreover, Jt is increasing in t ∈ [0, 1], and φt is decreasing in t ∈ [0, 1].

Furthermore, Jt regarded as a function of t is Lipschitz continuous in t ∈ [0, 1] with

derivative almost everywhere, represented by

Jt =

∫ t

0

φs ds (3.1.25)

Proof. Just a special case of theorem 4.1.5 with Φ specified as Φ(·) = 1
2

∥∥γ−1/2(y − G(·))
∥∥2

Rn .

Since γ−1/2G(·) is assumed to be Lipschitz continuous on any bounded subsets, then Φ(·)

is also Lipschitz. Consequently, we can directly use the result in theorem 4.1.5.

Corollary 3.1.6. For any t ∈ [0, 1], let Qt ≡ Jt + (1 − t)φt. Then Qt is decreasing in

t ∈ [0, 1].

Proof. According to theorem 3.1.5, it is clear that, Qt can be represented by

Qt =

∫ t

0

φs ds+ (1− t)φt

Since φt is decreasing, then for any 0 ≤ t1 ≤ t2 ≤ 1, we have

Qt2 −Qt1 =

∫ t2

t1

φs ds+ (1− t2)φt2 − (1− t1)φt1

≤ (t2 − t1)φt1 + (1− t2)φt2 − (1− t1)φt1

= (1− t2)(φt2 − φt1) ≤ 0

Therefore, Qt is decreasing in t ∈ [0, 1].
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The above theorems 3.1.3, 3.1.5 and corollaries 3.1.4, 3.1.6 play their roles in two

aspects:

1. An inverse problem with the tempering setting can be gradually solved starting

from the prior and ending in the posterior. Namely, given a sequence 0 = t0 < t1 <

· · · < tK = 1 in [0, 1], conduct the iterative optimization,

m0 = x̂0 → x̂t1 → · · · → x̂tK = x̂(y) (3.1.26)

and/or conduct the sequential inference,

N (m0, C0) = µ0 → µt1 → · · · → µtK = P(·|y) (3.1.27)

Then, according to theorem 3.1.5, the cost functional at the minimum point must

decrease,

Φ(x̂t0) ≥ Φ(x̂t1) ≥ · · · ≥ Φ(x̂tK ) (3.1.28)

and according to theorem 3.1.3, the average cost functional must decrease also,∫
H

Φ(u)µt0(du) ≥
∫
H

Φ(u)µt1(du) ≥ · · · ≥
∫
H

Φ(u)µtK (du) (3.1.29)

That means, in the iterations, the next estimate is always better than the last

estimate, quantified by data misfit.

2. Sometimes in practice, it is not feasible to apply accurate numerical methods (e.g.

MCMC) because accurate methods are computationally expensive. If some approx-

imate methods (e.g. EKF and EnKF) are applied, we have to check whether the

approximation is good enough or not. A possible way is to check the monotone

properties in theorems 3.1.3, 3.1.5 and corollaries 3.1.4, 3.1.6, i.e. the quantities

〈Φ〉t, Pt, φt, Qt should be decreasing. If the approximate method preserves the

monotone properties, then we keep iterations in the algorithm, otherwise we stop

the iterations in force because the approximation method cannot provide better

estimates anymore.

3.2 Adaptive tempering setting

Last section has introduced the tempering setting for inverse problems. The tempering

setting can be applied for both variational inversion and Bayesian inversion, shown in
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formulas (3.1.20) and (3.1.21) respectively. For numerical implementation, the tempering

setting should be discretization. The vital question is how to select the discrete step size

reasonably and effectively. In this section, we propose an adaptive scheme, called the

data-misfit controller, which monitors the data misfit in each iteration and predicts the

next step size based on the data misfit.

3.2.1 Introduction of the main idea

We aim to propose an adaptive scheme discretizing the tempering setting on t ∈ [0, 1].

Informally, we use the word ‘adaptive’ to indicate that, discrete steps on [0, 1] are selected

such that, the amounts of information learned from each steps are (approximately) same.

More precisely, we consider to monitor the information gain in the stepwise learning. The

essential question is: what is the ‘amount of information’ and ‘information gain’?

The amount of information is defined as information entropy by Shannon [17]. The

information gain from new observations is defined as the relative entropy [93]. It is ‘rela-

tive’, because it accounts for the ‘gain’ of information from one state (random variable) to

another state (random variable). In mathematical perspective, the synonym of informa-

tion gain (relative entropy) is the Kullback-Leibler divergence DKL, which quantifies the

difference between two probability measures. The Kullback-Leibler divergence is defined

as follows.

Definition 3.2.1 (Kullback-Leibler divergence). Let ν and µ be two probability measures

on a measurable space (X,Σ). If ν is absolutely continuous with respect to µ, then the

Kullback-Leibler divergence of ν with respect to µ is defined as,

DKL(ν||µ) :=

∫
X

log

(
dν

dµ

)
dν (3.2.1)

The Kullback-Leibler divergence is asymmetric. Nevertheless, if the two probability mea-

sures ν and µ are equivalent, then a symmetric quantity can be defined as,

DKL,2(µ, ν) := DKL(ν||µ) + DKL(µ||ν) (3.2.2)

Let 0 = t0 < t1 < · · · < tK = 1 be any K + 1 points in interval [0, 1]. For any

i = 1, ..., K, the forward information gain from µti−1
to µti is DKL(µti ||µti−1

) and the
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backward information gain from µti to µti−1
is DKL(µti−1

||µti),

DKL(µti ||µti−1
) =

∫
H

log

(
dµti

dµti−1

)
dµti (3.2.3)

DKL(µti−1
||µti) =

∫
H

log

(
dµti−1

dµti

)
dµti−1

(3.2.4)

where µt for any t ∈ [0, 1] is the probability measure defined in the tempering setting

(3.1.21). Moreover, the sum of forward and backward information gain is the DKL,2

quantity,

DKL,2(µti−1
, µti) = DKL(µti ||µti−1

) + DKL(µti−1
||µti) (3.2.5)

The symmetricity of the DKL,2 quantity indicates that, the information can be learned

forwardly at the same time can be also recovered backwardly. Essentially speaking, this

forward-backward property indicates the equivalence of probability measures µti−1
and

µti , that means, there is no loss of information. In fact, it will be proved later in this

thesis that the probability measures determined in the tempering setting with different

parameters t ∈ [0, 1] are equivalent. Thus, it is feasible to apply the symmetric quantity

DKL,2 to measure the difference of the probability measures.

Moreover, controlling the DKL,2 quantity is closely related to controlling other statis-

tics/quantities like mean, variance, and finite difference error. We will analyze the mean-

variance pair, the symmetric quantity DKL,2, and the finite difference error of thermody-

namic integration determined by the tempering setting. All of the analysis will finally

lead to the same result: the data-misfit controller (DMisC). Thus, DMisC is adopted as

the adaptive scheme for stepwise learning in the tempering setting.

3.2.2 The mean-variance pair

This subsection introduces the simplest approach to deriving the data-misfit controller.

This approach assumes Gaussian error and adopts the chi-square distribution to quantify

the noise level. As the result, the mean and variance of the data misfit are monitored

and compared with the noise level. This approach is inspired from the Morozov’s dis-

crepancy principle [98, 80, 96] that determines the regularizing parameter in Tikohonov

regularization. Similarly, the mean-variance approach can be regarded as the statistical

discrepancy principle in the Bayesian framework.
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Morozov’s discrepancy principle

We begin from the Morozov’s discrepancy principle, which has been mentioned in the

last chapter and shown in formula (2.4.15). Now, we specify Z : H → Rn in formula

(2.4.15) as the data-misfit function (3.1.19), i.e., Z(·) = γ−1/2(y −G(·)), where y ∈ Rn is

the observation and G : H → Rn is the forward model. We aim to estimate the unknown

parameter whose true value is x ∈ H. The Morozov’s discrepancy principle suggests

finding a point estimate x̂ ∈ H satisfying

∥∥γ−1/2 (y − G(x̂))
∥∥
Rn ≤ τδ (3.2.6)

where τ > 1 is an accuracy control parameter, and δ > 0 is a given noise level satisfying

δ ≥
∥∥γ−1/2 (y − G(x))

∥∥
Rn (3.2.7)

In order words, once we obtain an estimate x̂ satisfying the discrepancy principle (3.2.6),

we do not have to conduct any further investigation.

The Morozov’s discrepancy principle is suitable for point estimation via deterministic

approaches. However, there are two facts that should be noticed: 1) the noise level δ

sometimes is unknown in practice; 2) Morozov’s discrepancy principle cannot quantify

random variable estimates. Thus, some more practical principles are needed for Bayesian

method.

Statistical discrepancy principle

For Gaussian noise, the cost functional has a quadratic form as the square norm of the

data-misfit function, shown in formula (3.1.19). A benefit of considering Gaussian error

is that, the noise level can be characterized with a chi-square distribution.

Given a fixed observation y ∈ Rn, the observation-prediction error is e = y − G(x),

where x ∈ H is the true value of the unknown parameter. Assume that the error e

can be characterized by the Gaussian distribution N (0, γ), i.e., the observation y can be

regarded as a draw from N (G(x), γ). The deterministic noise level is defined as

η̂ :=
∥∥γ−1/2 (y − G(x))

∥∥
Rn (3.2.8)
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In fact, η̂ is not perfectly known because x is unknown in practice. Nevertheless, if n is

sufficiently large, the value of η̂ can be approximately estimated using the law of large

numbers, so that,

η̂ ≈
√
n (3.2.9)

Furthermore, we can conduct repeated experiments and obtain several observations. Sta-

tistically, consider the random observations ξ = G(x) + V , where V ∼ N (0, γ) is the

Gaussian noise. Then the random noise level η̃ is defined as

η̃ :=
∥∥γ−1/2 (ξ − G(x))

∥∥
Rn = χn (3.2.10)

where χ2
n is a chi-square random variable with degree of freedom n.

Similar like using the Morozov’s discrepancy principle to compare a point estimate

with the deterministic noise level, we can also compare a random estimate with the

random noise level. Given a random estimate x̃ of the unknown parameter x, the es-

timated data-misfit
∥∥γ−1/2 (y − G(x̃))

∥∥
Rn can be compared relative to the random noise

level η̃ = χn. We propose the following discrepancy principles that measure the quality

of a random estimate x̃ (only for Gaussian noise):

Principle 1 check the mean of square norm of data misfit (accuracy test)

E
{∥∥γ−1/2 (y − G(x̃))

∥∥2

Rn

}
≤ E

{
χ2
n

}
= n (3.2.11)

Principle 2 check the variance of square norm of data misfit (uncertainty test)

Var
{∥∥γ−1/2 (y − G(x̃))

∥∥2

Rn

}
≤ Var

{
χ2
n

}
= 2n (3.2.12)

If either of the above two conditions holds, we postulate that the current estimate x̃ has

relatively high accuracy or relatively low uncertainty. Once either of the discrepancy prin-

ciples occurs, we do not have to conduct further investigation anymore. Even if another

random estimate ṽ can be obtained from further work, e.g. E
{∥∥γ−1/2 (y − G(ṽ))

∥∥2

Rn

}
≤

0.1n or Var
{∥∥γ−1/2 (y − G(ṽ))

∥∥2

Rn

}
≤ 0.2n, this does not mean ṽ is a better estimate

than x̃, because the observation y itself is mixed with a measurement error, which is

assumed to be a Gaussian noise from N (0, γ). Since the existence of measurement error,

the highest accuracy (assuming the truth x is known) of the predicted data misfit is

characterized by the random noise level η̃ :=
∥∥γ−1/2 (ξ − G(x))

∥∥
Rn = χn.
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The adaptive strategy: controlling the mean-variance pair

Let 0 = t0 < t1 < · · · < tK = 1 be any K+ 1 points in interval [0, 1], and let hi = ti− ti−1

be the ith step size for any i ∈ {1, ..., K}. The adaptive strategy monitors random

estimates in iterations. For the ith iteration, we need to deal with the ith sub-problem

shown in formula (3.1.11). Using the Bayes’ rule, we can derive the update formula

(3.1.16) of the ith sub-problem. In the update formula (3.1.16), the sub-prior measure

νi−1 is known as the result from the last iteration, and the sub-posterior measure νi is

the target in the current iteration. Clearly, the sub-posterior νi relies on two facts. One

is the sub-prior νi−1, and another is the sub-noise Vi ∼ N (0, h−1
i γ). Our purpose is to

control the difference between νi−1 and νi. Since the amount of the sub-noise Vi depends

on the step size hi, we can manually pick a small value of hi, so that, the amount of

the sub-noise Vi is large, and that the sub-posterior νi only has little difference from the

sub-prior νi−1.

Our main idea is to use the statistical discrepancy principles (3.2.11) and (3.2.12)

to determine the step size hi, such that, the sub-prior νi−1 is sufficiently accurate or

concentrated relative to the mount of the sub-noise Vi. Namely, we use h−1
i γ to replace

γ in formula (3.2.11) and (3.2.12) to obtain

E
{∥∥∥h1/2

i γ−1/2 (y − G(x̃i−1))
∥∥∥2

Rn

}
≤ n (3.2.13)

Var

{∥∥∥h1/2
i γ−1/2 (y − G(x̃i−1))

∥∥∥2

Rn

}
≤ 2n (3.2.14)

where x̃i−1 ∼ νi−1 is a random estimate obeying the sub-prior distribution νi−1. As the

result, the step size hi can be chosen as the maximum value such that either of the

condition (3.2.13) or (3.2.14) holds, and also the next parameter ti = ti−1 +hi should not

be greater than 1. Namely, hi is determined by

hi = min

{
max

{
η
/
q

(1)
i−1 ,

√
η
/
q

(2)
i−1

}
, 1− ti−1

}
(3.2.15)

where η = n/2 and

q
(1)
i−1 = E

{
1

2

∥∥γ−1/2 (y − G(x̃i−1))
∥∥2

Rn

}
(3.2.16)

q
(2)
i−1 = Var

{
1

2

∥∥γ−1/2 (y − G(x̃i−1))
∥∥2

Rn

}
(3.2.17)
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We call the adaptive method (3.2.15) the data-misfit controller for discretization of

the tempering setting. ‘Data-misfit controller’ means it controls the mean and variance of

the data misfit. In brief words, the data-misfit controller is a stepwise regularization

method that regularizes an ill-posed inverse problem with a sequence of sub-problems

iteratively, and assesses the quality of estimates in iterations by monitoring the mean-

variance pair, such that, the estimates in iterations have relatively high accuracy or

relatively low uncertainty.

3.2.3 The DKL,2 quantity

This subsection addresses the main idea of stepwise learning from the tempering set-

ting. Namely, the (approximately) same amount of information is learned from the last

state to the next state in iterations. Readers are encouraged to read the short introduction

(subsection 3.2.1), in order to know the background and motivations.

There are two terminologies in this thesis: stepwise learning and stepwise regular-

ization. These two concepts are closely related but different. On one hand, stepwise

regularization has been discussed in the last subsection, that means using the statistical

discrepancy principle to regularize each of the sub-problems. On the other hand, stepwise

learning has been introduced in subsection 3.2.1, and will be discussed in details in this

subsection, that means the same amount of information is learned from each of the sub-

problems. Nevertheless, we will show that the stepwise regularization (using discrepancy

principle) is an approximation of the stepwise learning (using information gain).

The analytic formula (implicit form) of the DKL,2 quantity

Now, we derivative the analytic formula representing the DKL,2 quantity. The following

proposition tells that the DKL,2 quantity in formula (3.2.5) is well-defined and can be

represented by the expected values of the cost functional, i.e. the sum of forward and

backward information gain equals to the multiplication of step size and decrement of

average cost functional.

Proposition 3.2.2. Let 0 = t0 < t1 < · · · < tK = 1 be any K + 1 points in interval

[0, 1], and let hi = ti − ti−1 be the ith step size for any i ∈ {1, ..., K}. Assume that the
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forward map G satisfies condition 1 in assumption 2.2.3. Then, the probability measures

{µti : i = 0, 1, ..., N} determined via the tempering setting (3.1.21) are equivalent. More-

over, for any i = 1, ..., K, the DKL,2 quantity in formula (3.2.5) is well-defined, and can

be represented as follows

DKL,2(µti−1
, µti) = hi 〈Φ〉ti−1

− hi 〈Φ〉ti (3.2.18)

where Φ is the cost functional defined in formula (3.1.19), and 〈Φ〉t is the expected value

〈Φ〉t ≡
∫
HΦ(u)µt(du) for any t ∈ [0, 1].

Proof. Proposition 4.2.3 in section 4.2 proves the equivalence of any two probability

measures. Since the probability measures {µti : i = 0, 1, ..., K} are equivalent, the DKL,2

quantity is well-defined. Next, we show the DKL,2 quantity can be represented by equation

(3.2.18). For any i = 1, ..., K, the two probability measures µti−1
and µti satisfy

dµti
dµti−1

(u) = A−1
i exp (−hiΦ(u)) (3.2.19)

where Ai is the normalizing constant

Ai =

∫
H

exp (−hiΦ(u)) µi−1(du) (3.2.20)

Thus, the DKL,2 quantity can be calculated as follows,

DKL,2(µti−1
, µti) =DKL(µti−1

||µti) + DKL(µti ||µti−1
)

=

∫
H

log

(
dµti−1

dµti

)
dµti−1

+

∫
H

log

(
dµti

dµti−1

)
dµti

=

∫
H

log (Ai exp (hiΦ(u))) µti−1
(du) +

∫
H

log
(
A−1
i exp (−hiΦ(u))

)
µti(du)

= log(Ai) + hi

∫
H

Φ(u)µti−1
(du)− log(Ai)− hi

∫
H

Φ(u)µti(du)

=hi 〈Φ〉ti−1
− hi 〈Φ〉ti

Though formula (3.2.18) shows an analytic formula of the DKL,2 quantity, it seems

non-practical for numerical implementation because µti is an implicit quantity at time

ti−1. Thus, some approximate methods, which only relies on information at time ti−1,

should be considered to approximate the DKL,2 quantity. This approximation is discussed

as follows.
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The approximate formula (explicit form) of the DKL,2 quantity

In practice, need to estimate the implicit formula (3.2.18) by some explicit approxima-

tions only relying on information at time ti−1. Assume that the forward map G satisfies

condition 1 in assumption 2.2.3. We use the following two approximate approaches in

different circumstances:

1. If the step size hi = ti− ti−1 in formula (3.2.18) is relatively large such that 〈Φ〉ti �

〈Φ〉ti−1
, then 〈Φ〉ti ≥ 0 is ignored, and DKL,2(µti−1

, µti) = hi 〈Φ〉ti−1
− hi 〈Φ〉ti is

approximated by an upper bound hi 〈Φ〉ti−1
.

2. If the step size hi = ti − ti−1 in formula (3.2.18) is relatively small such that 〈Φ〉ti
can be approximated by the first order expansion of 〈Φ〉t (as a function of t) around

t = ti−1,

〈Φ〉ti ≈ 〈Φ〉ti−1
+ hi 〈Φ〉′ti−1

(3.2.21)

where 〈Φ〉′t is the derivative of 〈Φ〉t (as a function of t), then DKL,2(µti−1
, µti) =

hi 〈Φ〉ti−1
− hi 〈Φ〉ti is approximated by the first order expansion −h2

i 〈Φ〉
′
ti−1

. Fur-

thermore, according to corollary 4.2.6 in section 4.2, for any t ∈ [0, 1] the first order

derivative equals to

〈Φ〉′t = −〈Φ,Φ〉t (3.2.22)

where 〈Φ,Φ〉t is the variance 〈Φ,Φ〉t ≡
∫
H(Φ(u)− 〈Φ〉t)2 µt(du) for any t ∈ [0, 1].

As the result, the approximate formula is proposed as follows,

hi 〈Φ〉ti−1
− hi 〈Φ〉ti ≈


hi 〈Φ〉ti−1

if hi is large (hi ≥
〈Φ〉ti−1

〈Φ,Φ〉ti−1

)

h2
i 〈Φ,Φ〉ti−1

if hi is small (hi ≤
〈Φ〉ti−1

〈Φ,Φ〉ti−1

)

(3.2.23)

where hi 〈Φ〉ti−1
is an upper bound and h2

i 〈Φ,Φ〉ti−1
is the first order approximation. In

conclusion, we can combine the two cases in formula (3.2.23) together,

DKL,2(µti−1
, µti) ≈ min

{
hi 〈Φ〉ti−1

, h2
i 〈Φ,Φ〉ti−1

}
(3.2.24)

Therefore, formula (3.2.24) is an implementable formula that approximately estimates

the DKL,2 quantity. This approximation is closely related to the mean-variance pair 〈Φ〉tt–

〈Φ,Φ〉tt . With this approximate formula, we can develop the adaptive strategy as follow.
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The adaptive strategy: controlling the DKL,2 quantity

The adaptive strategy aims to control the amount of information in the stepwise learning,

i.e. the sum of forward and backward information gain is specified as a fixed number η > 0

in each step. With mathematical formulation, the DKL,2 quantity is controlled by

DKL,2(µti−1
, µti) ≤ η (3.2.25)

where η > 0 is a user-specified accuracy control parameter that is the required maximum

amount of information gain.

However, as we discussed before, the analytic formula (3.2.18) of the DKL,2 quantity

is implicit. In practice, we adopt the approximate formula (3.2.24) which has an ex-

plicit form. Namely, the amount of information is approximately rather than accurately

controlled as

DKL,2(µti−1
, µti) ≈ min

{
hi 〈Φ〉ti−1

, h2
i 〈Φ,Φ〉ti−1

}
≤ η (3.2.26)

Conversely, the step size hi can be selected as the maximum value such that condition

(3.2.26) holds, and also the next parameter ti = ti−1 + hi should not be greater than 1.

Namely, hi is determined by

hi = min

max

 η

〈Φ〉ti−1

,

√
η

〈Φ,Φ〉ti−1

 , 1− ti−1

 (3.2.27)

Notice that, the above formula (3.2.27) has the same form as the data-misfit controller

proposed in formula (3.2.15). In formula (3.2.15), the accuracy control parameter η is

specified as η = n/2 because the noise level (data misfit) is quantified by (compared with)

the χ2
n-distribution. Similarly, we also suggest this choice η = n/2 in formula (3.2.27),

that means, the sum of forward and backward information gain is no more than n/2.

The tricky point of method (3.2.27) is using the balance between the upper bound

hi 〈Φ〉ti−1
and the first order approximation h2

i 〈Φ,Φ〉ti−1
to determine the step size hi.

If only consider one condition of the balance, it causes some issues. If only consider

the upper bound, then when hi is small, the upper bound is a bad estimate, since 〈Φ〉ti
is close to 〈Φ〉ti−1

, and thus 〈Φ〉ti cannot be ignored. If only consider the first order

approximation, then when hi is large, the approximation is too rough, since the first

order expansion around ti−1 does not hold for a far point ti = ti−1 + hi. Nevertheless,
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combining the upper bound and the first order approximation together can conquer the

drawbacks of each other.

3.2.4 The thermodynamic integration

In Bayesian inference, a goal is to calculate the normalizing constant. A technique raised

from the tempering setting is known as the thermodynamic integration [6], which grad-

ually calculates the normalizing constant along path sampling. Thermodynamic inte-

gration is originally studied in statistical physics. Statisticians adopt the similar form

to deal with Bayesian inference problems. For more details and the generalization to

infinite-dimensional framework, please in section 4.2. This subsection aims to reveal that

the DKL,2 quantity is closely related to finite difference scheme of the thermodynamic

integration. That means, controlling the DKL,2 quantity is equivalent to controlling the

finite difference error of the thermodynamic integration.

The normalizing constant and thermodynamic integration

Let P = N (m0, C0) be the Gaussian prior probability on a real-valued separable Hilbert

space H. Via the original Bayesian approach (2.2.5), the posterior probability measure

is determined by

P(du|y) =
1

Z(y)
exp

(
−1

2

∥∥γ−1/2(y − G(u))
∥∥2

Rn

)
P(du) (3.2.28)

where Z(y) is the normalizing constant

Z(y) =

∫
H

exp

(
−1

2

∥∥γ−1/2(y − G(u))
∥∥2

Rn

)
P(du) (3.2.29)

On the other hand, via the tempered Bayesian approach (3.1.21), the tempered distribu-

tions are determined by

µt =
1

Zt
exp (−tΦ(u))P(du) (3.2.30)

where Φ is the cost functional determined in formula (3.1.19), and Zt is the normalizing

constant

Zt =

∫
H

exp (−tΦ(u)) P(du) (3.2.31)
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It is obvious that Zt is decreasing in t ∈ [0, 1] with Z0 = 1 and Z1 = Z(y). Moreover,

according to theorem 3.1.3, Z(y) can be represented by the thermodynamic integration

along the path from t = 0 to t = 1,

− log(Z(y)) = − log(Z1) = I1 =

∫ 1

0

〈Φ〉t dt (3.2.32)

where It and 〈Φ〉t are the same in formula (3.1.22) for any t ∈ [0, 1]. Clearly, the

calculation of Z(y) via formula (3.2.32) is different from the calculation via formula

(3.2.29). The motivation of why the integration approach (3.2.32) is more preferred than

the original approach (3.2.29) is simply addressed as follows.

Directly using formula (3.2.29) means conduct Monte Carlo integration under the

prior probability measure P with the weighting function, i.e.

Z(y) ≈ 1

J

J∑
j=1

wj with wj = exp

(
−1

2

∥∥∥γ−1/2
(
y − G

(
u

(j)
0

))∥∥∥2

Rn

)
(3.2.33)

where J is the sample size, {wj : j = 1, ..., J} is the set of weights, and
{
u

(j)
0 : j = 1, ..., J

}
is the set of samples independently drawn from the prior distribution P = N (m0, C0).

However, the weights usually form a very sharp distribution with most of the weights

equaling to (nearly) zeors, so that the effective sample size Jeff is very small relative to

J (Jeff � J), where the effective sample size is known as the Kish’s Effective Sample

Size [59] for weighted data,

Jeff =

(∑J
j=1wj

)2

∑J
j=1w

2
j

(3.2.34)

To obtain a required minimum effective sample size Ĵ with Jeff ≥ Ĵ , a extremely large

number J of samples is needed. Thus, the direct approach is inefficient.

On the other hand, sequential Monte Carlo simulation along the path of thermo-

dynamic integration is a more advanced technique that conducts path sampling. Let

0 = t0 < t1 < · · · < tK = 1 be any K + 1 points in interval [0, 1], and let hi = ti− ti−1 be

the ith step size for any i ∈ {1, ..., K}. Sequential Monte Carlo method draws a sequence

of samples as {
u

(j)
t0

}J
j=1
→
{
u

(j)
t1

}J
j=1
→ · · · →

{
u

(j)
tK

}J
j=1

(3.2.35)
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where
{
u

(j)
t : j = 1, ..., J

}
is the set of samples independently drawn from the distribution

µt for any t ∈ {t0, t1, ..., tK}. Then, the integral (3.2.32) is estimated by

SK,0 ≥ − log(Z(y)) ≥ SK,1 (3.2.36)

where SK,0 and SK,1 are the forward and backward finite difference schemes,

SK,0 :=
K∑
i=1

hi 〈Φ〉ti−1
(3.2.37)

SK,1 :=
K∑
i=1

hi 〈Φ〉ti (3.2.38)

and for any t ∈ {t0, t1, ..., tK}. The inequality (3.2.36) holds because the average cost

functional 〈Φ〉t as a function of t ∈ [0, 1] is always decreasing. Moreover, the expected

value 〈Φ〉t in formula (3.2.36) can be approximated by the Monte Carlo method

〈Φ〉t ≈
1

J

J∑
j=1

Φ
(
u

(j)
t

)
(3.2.39)

Numerically, the sequential sampling method is more efficient than the directly sampling

from the prior probability.

Finite difference error v.s. information gain

Here, we aim to show the main result that controlling the Kullback-Leibler divergence

of the tempering setting is equivalent to controlling the finite difference error of the

thermodynamic integration.

The local forward and backward finite difference error are defined as δi,0 and δi,1

respectively,

δi,0 := hi 〈Φ〉ti−1
−
∫ ti

ti−1

〈Φ〉t dt (3.2.40)

δi,1 :=

∫ ti

ti−1

〈Φ〉t dt− hi 〈Φ〉ti (3.2.41)

The following proposition tells that, the forward (backward) finite difference error of the

thermodynamic integration equals to the backward (forward) information gain of the

sequential probability measures.
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Proposition 3.2.3. Let 0 = t0 < t1 < · · · < tK = 1 be any K + 1 points in inter-

val [0, 1], and let hi = ti − ti−1 be the ith step size for any i ∈ {1, ..., K}. Assume

that the forward map G satisfies condition 1 in assumption 2.2.3. Then, the probability

measures {µti : i = 0, 1, ..., N} determined via the tempering setting (3.1.21) are equiva-

lent. Moreover, for any i = 1, ..., K, both the forward information gain DKL(µti ||µti−1
)

and the backward information gain DKL(µti−1
||µti) are well-defined, and they equal to the

backward finite difference error δi,1 and the forward finite difference error δi,0 respectively,

DKL(µti ||µti−1
) = δi,1 (3.2.42)

DKL(µti−1
||µti) = δi,0 (3.2.43)

where δi,0 and δi,1 are defined in formulas (3.2.40) and (3.2.41), respectively.

Proof. This proof a rewritten version of the proof in proposition 3.2.2. In fact, we have

DKL(µti−1
||µti) =

∫
H

log

(
dµti−1

dµti

)
dµti−1

=

∫
H

log

(
exp(−ti−1Φ(u))/Zti−1

exp(−tiΦ(u))/Zti

)
µti−1

(du)

= log(Zti)− log(Zti−1
) + hi

∫
H

Φ(u)µti−1
(du)

=−
∫ ti

ti−1

〈Φ〉t dt+ hi 〈Φ〉ti−1
= δi,0

DKL(µti ||µti−1
) =

∫
H

log

(
dµti

dµti−1

)
dµti

=

∫
H

log

(
exp(−tiΦ(u))/Zti

exp(−ti−1Φ(u))/Zti−1

)
µti(du)

= log(Zti−1
)− log(Zti)− hi

∫
H

Φ(u)µti(du)

=

∫ ti

ti−1

〈Φ〉t dt− hi 〈Φ〉ti = δi,1

Then, the DKL,2 quantity can be also represented as the sum of the forward and

backward finite difference errors,

DKL,2(µti−1
, µti) = δi,0 + δi,1 (3.2.44)
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In fact, since 〈Φ〉t is a monotone function (decreasing as t goes up), the sum of forward

and backward finite difference errors is the upper bound of all possible finite difference

errors. Namely, for any si ∈ [ti−1, ti], we have

hi 〈Φ〉si ≤ δi,0 + δi,1 = DKL,2(µti−1
, µti) (3.2.45)

Thus, if the DKL,2 quantity is controlled, then the finite difference error is also controlled.

Therefore, the data-misfit controller in formula (3.2.15) or (3.2.27) can be also treated

as an adaptive scheme discretizing the thermodynamic integration (3.2.32). With this

adaptive scheme, the local difference error of the thermodynamic integration is controlled.

3.3 Kalman-like methods for inverse problems

The standard perspectives of inverse problems are the variational approach and the

Bayesian approach. With a slight modification, this thesis introduces the tempering

setting. In fact, as discussed in section 3.1, an inverse problem with the tempering set-

ting can be regarded as a filtering problem. Thus, approximate filtering algorithms (e.g.

extended Kalman filter and ensemble Kalman filter) can be applied for solving the inverse

problem. This procedure finally leads to Kalman-like methods for inverse problems. The

details of Kalman-like methods are discussed in this section.

3.3.1 Gaussian-linear problems and Kalman filter

This subsection considers the simplest type of filtering problems with Gaussian-linear

assumptions, which have the analytic solution known as the Kalman filter. The Kalman

filter used for linear filtering problems is the pillar for further study in nonlinear problems.

Thus, it is important to introduce the Kalman filter clearly, and then explain how to apply

the Kalman filter on inverse problems with the tempering setting.

The standard form of Kalman filter for Bayesian filtering

We first of all introduce the standard form of Kalman filter used for Bayesian filtering

problems. The general structure of Bayesian filtering is introduced in subsection 3.1.1.

In particular, Gaussian-linear problems restrict the conditions of filtering as follows:
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Assumption 3.3.1. (Gaussian-linear assumption)

1. The probability measure of the initial state X0 is a Gaussian measure N (m0, C0).

2. The state noise Wi ∼ N (di,Qi) and observation noise Vi ∼ N (bi, γi) in equations

(3.1.1) (3.1.2) are independent Gaussian noises, where di ∈ H is a bounded element,

Qi : H → H is a self-adjoint positive-semi-definite trace-class operator, bi ∈ Rn is a

bounded element, and γi : Rn → Rn is a symmetric positive-definite bounded matrix.

3. The evolution model Fi in equation (3.1.1) and the observation model Gi in equation

(3.1.2) are bounded linear operators.

For Gaussian-linear filtering, there exists the analytic solution, which is determined

via the Kalman filter in the following theorem.

Theorem 3.3.2. (Kalman filter, Theorem 4.3 in [49]) If the Gaussian-linear assump-

tions 3.3.1 hold, then the conditional probability measure PXi
(·|Si) defined in (3.1.4) are

Gaussian measures for all i = 1, ..., K, with mean mi ∈ H and covariance Ci : H → H

determined via the following update formulas

mi = m
(p)
i + C(p)

i G∗i (GiC(p)
i G∗i + γi)

−1(yi − bi −Gim
(p)
i ) (3.3.1)

Ci = C(p)
i − C

(p)
i G∗i (GiC(p)

i G∗i + γi)
−1GiC(p)

i (3.3.2)

where m
(p)
i ∈ H and C(p)

i : H → H are the predicted mean and covariance,

m
(p)
i = Fimi−1 + di (3.3.3)

C(p)
i = FiCi−1F

∗
i +Qi (3.3.4)

Remark 3.3.3. Theorem 3.3.2 is an analogue of theorem 2.2.1. Both are the analytic

solutions for Gaussian-linear problems. The different is that theorem 2.2.1 discusses

the one-step transition from the prior to the posterior, whereas theorem 3.3.2 discusses

iterative updates with sequential observations and states.
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Variant forms of Kalman method for the tempering setting

Now, remind the tempering setting for inverse problems. We consider the linear case.

Namely, assume that the forward map G is an affine map, and then the data-misfit

function Z defined in formula (3.1.19) can be rewritten as

Z(·) = K(·) + c (3.3.5)

where c ∈ Rn is a bounded element, and K : H → Rn a bounded linear operator.

An inverse problem with the tempering setting can be regarded as a Bayesian filtering

problem whose observations and underlying states are invariant. For linear problems,

there exists the closed form of solutions (Kalman filter). The following propositions list

different but equivalent forms of Kalman method for solving linear inverse problems with

the tempering setting. It is called the Kalman method, in order to indicate that Kalmam

filter is applied on the tempering setting.

There are four different forms: discrete update of mean-covariance pairs, discrete

update of random variables, continuous update of mean-covariance pairs, and continuous

update of random variables. Proposition 3.3.4 straightforwardly applies theorem 3.3.2 or

theorem 2.2.1. Proposition 3.3.5 rewrites proposition 3.3.4 by replacing mean-covariance

pairs of Gaussian measures with Gaussian random variables. Propositions 3.3.6 and 3.3.7

revel the continuous limits of the finite difference equations in propositions 3.3.4 and 3.3.5,

respectively. Conversely, the analytic solutions of the ODE and SDE in propositions 3.3.6

and 3.3.7 exactly equal to the formulas in propositions 3.3.4 and 3.3.5, respectively.

Proposition 3.3.4 (discrete Kalman method of mean-covariance update). Let 0 = t0 <

t1 < · · · < tK = 1 be any K + 1 points. If the operator Z is represented by (3.3.5), then

for any i = 1, ..., K, the conditional distribution µti determined via the tempering setting

(3.1.21) is a Gaussian measure with mean mti ∈ H and covariance operator Cti : H → H

determined by the ordinary difference equations below (let hi = ti− ti−1 be the step size),

mti = mti−1
− hiCti−1

K∗
(
I + hiKCti−1

K∗
)−1Z

(
mti−1

)
(3.3.6)

Cti = Cti−1
− hiCti−1

K∗
(
I + hiKCti−1

K∗
)−1KCti−1

(3.3.7)
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Proposition 3.3.5 (discrete Kalman method of random variable update). Let 0 = t0 <

t1 < · · · < tK = 1 be any K + 1 points. If the operator Z is represented by (3.3.5),

then for any i = 1, ..., K, uti admits uti ∼ N (mti , Cti), where mti Cti are determined by

formulas (3.3.6) (3.3.7), and {uti} is an H-valued discrete stochastic process constructed

as: for i = 0, u0 ∼ N (m0, C0) is a Gaussian random variable, and for any i = 1, ..., K,

uti is determined by the stochastic difference equation below (let hi = ti− ti−1 be the step

size),

uti = uti−1
− Cti−1

K∗
(
I + hiKCti−1

K∗
)−1
(
hiZ

(
uti−1

)
−
√
hiζi

)
(3.3.8)

where {ζi}Ki=1 is a set of K independent n-dimensional standard Gaussian random vari-

ables.

Proposition 3.3.6 (continuous Kalman method of mean-covariance update). If the op-

erator Z is represented by (3.3.5), then for any t ∈ (0, 1], the conditional distribution µt

determined via the tempering setting (3.1.21) is a Gaussian measure with mean mt ∈ H

and covariance operator Ct : H → H determined by the ordinary differential equations

below,

dmt = −CtK∗Z(mt)dt (3.3.9)

dCt = −CtK∗KCtdt (3.3.10)

Proposition 3.3.7 (continuous Kalman method of random variable update). If the op-

erator Z is represented by (3.3.5), then for any t ∈ (0, 1], ut admits ut ∼ N (mt, Ct),

where mt Ct are determined by formulas (3.3.9) (3.3.10), and {ut} is an H-valued contin-

uous stochastic process constructed as: for t = 0, u0 ∼ N (m0, C0) is a Gaussian random

variable, and for any t ∈ (0, 1], ut is determined by the stochastic differential equation

below,

dut = −CtK∗ (Z (ut) dt− dWt) (3.3.11)

where Wt is an n-dimensional standard Wiener process on t ∈ (0, 1].

For non-Gaussian nonlinear problems, there is no a closed form. In practice, numerical

sampling algorithms like MCMC methods can be applied. However, the accurate sam-

pling algorithms are numerically expensive. Alternatively, other candidates are heuristic
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methods like extended Kalman filter (EKF) and ensemble Kalman filter (EnKF), which

are also feasible in practice with benefit in computational budget.

3.3.2 Formulation of the Kalman-like methods

Consider the tempering setting shown in formulas (3.1.20) and (3.1.21). Since the tem-

pering setting can be equivalently regarded as filtering algorithms, extended Kalman

filter (EKF) and ensemble Kalman filter (EnKF) can be applied as heuristic methods

to solve the tempering setting with nonlinear forward maps. There will be six different

Kalman-like methods formulated in this subsection. We classify the six methods into three

groups, and in each group, we have a continuous formula and a discrete formula. The

three groups are extended Kalman inversion (EKI) [91, 30], mean-field limiting ensem-

ble Kalman inversion (MFEnKI) [54], and standard ensemble Kalman inversion (EnKI)

[38, 33, 65, 20, 78, 77]. The relations of the three groups are

• EKI approximates forward model by its first order Taylor expansion, so that the

derivative of forward model is required. In comparison, MFEnKI and EnKI are

derivative-free methods only relying on point values of forward model.

• MFEnKI constructs update of random variables, whereas EnKI constructs update

of particles. More precisely, as discussed in [54], MFEnKI is the theoretical limit of

EnKI as the sample size goes to infinity, and MFEnKI is the empirical sampling of

EnKI with finite sample size.

For convenience, the six methods are named as the short notation:

• EKI

– Continuous Extended Kalman Inversion (CoEKI)

– Discrete Extended Kalman Inversion (DiEKI)

• MFEnKI

– Continuous Mean-Field limiting Ensemble Kalman Inversion (CoMFEnKI)

– Discrete Mean-Field limiting Ensemble Kalman Inversion (DiMFEnKI)
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Tempered Var Tempered Bayes

CoEKI CoMFEnKI CoEnKI

DiEKI DiMFEnKI DiEnKI

local linearization global linearization

MAP estimator

discretization discretization

finite ensemble

discretization

mean-field limit

continuous limit continuous limit

finite ensemble

continuous limit

mean-field limit

Figure 3.2: Diagram of the Kalman-like methods for inverse problems. There are totally six

methods: CoEKI (definition 3.3.8), DiEKI (definition 3.3.9), CoMFEnKI (definition 3.3.10),

DiMFEnKI (definition 3.3.11), CoEnKI (definition 3.3.12), DiEnKI (definition 3.3.13). The

red color for the two methods DiEKI and DiEnKI implies these two are the numerically imple-

mentable methods. The blue color for the two methods CoEKI and CoMFEnKI implies these

two are the theoretical limits with the higheast accuracy.

• EnKI

– Continuous standard Ensemble Kalman Inversion (CoEnKI)

– Discrete standard Ensemble Kalman Inversion (DiEnKI)

The relations among these six methods can be simply viewed as a diagram in figure 3.2.

Extended Kalman inversion

EKI is a heuristic method linearizing a forward map by its first order Taylor expansion.

As the result, solving the linearized problem can obtain a sub-optimum. The approximate

solution is determined as follows.

Definition 3.3.8 (CoEKI). CoEKI aims to interpret the mean-covariance pair
(
m̃t, C̃t

)
for t ∈ [0, 1], such that, for t = 0,

(
m̃0, C̃0

)
= (m0, C0), and for t ∈ (0, 1],

(
m̃t, C̃t

)
are

determined by the ordinary differential equations below,

dm̃t = −C̃tDZ (m̃t)
∗Z (m̃t) dt (3.3.12)

dC̃t = −C̃tDZ (m̃t)
∗DZ (m̃t) C̃tdt (3.3.13)
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where Z : H → Rn is the data-misfit function defined in formula (3.1.19), and DZ(u) :

H → Rn is the Fréchet derivative of Z at u ∈ H.

Definition 3.3.9 (DiEKI). DiEKI aims to interpret the mean-covariance pair
(
m̃h
t , C̃ht

)
for t ∈ {ti : 0 = t0 < t1 < · · · < tK = 1}, such that, for i = 0,

(
m̃h

0 , C̃h0
)

= (m0, C0), and

for i = 1, ..., K,
(
m̃h
ti
, C̃hti
)

are determined by the ordinary difference equations below (let

hi = ti − ti−1 be the step size),

m̃h
ti

= m̃h
ti−1
− hiC̃hti−1

DZ
(
m̃h
ti−1

)∗ (
I + hiDZ

(
m̃h
ti−1

)
C̃hti−1

DZ
(
m̃h
ti−1

)∗)−1

Z
(
m̃h
ti−1

)
(3.3.14)

C̃hti = C̃hti−1
−hiC̃hti−1

DZ
(
m̃h
ti−1

)∗ (
I + hiDZ

(
m̃h
ti−1

)
C̃hti−1

DZ
(
m̃h
ti−1

)∗)−1

DZ
(
m̃h
ti−1

)
C̃hti−1

(3.3.15)

where Z : H → Rn is the data-misfit function defined in formula (3.1.19), and DZ(u) :

H → Rn is the Fréchet derivative of Z at u ∈ H.

CoEKI is formulated by an ODE system, and DiEKI is a discrete scheme for CoEKI.

After the discretization, DiEKI is a numerically implementable algorithm searching for a

sub-optimum m̃h
1 . DiEKI is very similar to the Levenberg-Marquardt algorithm (LMA),

and the tempering parameter in DiEKI plays the similar role as the damping factor

in LMA. Just like LMA, the behavior of DiEKI is between Gauss-Newton and gradient

descent. The difference is that LMA aims to search for a local optimum that is a stationary

point, whereas DiEKI aims to search for a sub-optimum that is not necessarily to be

stationary. Another difference is that DiEKI has the covariance update, which does not

appear in LMA.

Ensemble Kalman inversion (infinite sample size)

Ensemble Kalman filter [33, 65, 61, 20, 78, 77] is a popular method in applied mathemat-

ics. Numerically, it is a particle filter with finite sample size. Moreover, [54] also considers

the mean-field limit of ensemble Kalman filter as the sample size goes to infinity. The

mean-field limit thus forms a Markov process of random variables, and conversely, the

ensemble Kalman method with finite sample size can be regarded as the finite ensemble of

the mean-field limit. We firstly define the mean-field limiting ensemble Kalman inversion

as continuous/discrete stochastic process in the follow definitions.
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Definition 3.3.10 (CoMFEnKI). CoMFEnKI aims to interpret the random variable ũt

for t ∈ [0, 1], such that, for t = 0, ũ0 ∼ N (m0, C0) is an H-valued Gaussian random

variable, and for t ∈ (0, 1], ũt is determined by the stochastic differential equation below,

dũt = −C̃uz,t (Z (ũt) dt− dWt) (3.3.16)

where Z : H → Rn is the data-misfit function defined in formula (3.1.19), Wt is an

n-dimensional standard Wiener process on t ∈ (0, 1], and for any t ∈ [0, 1],

C̃uz,t ≡ COV {ũt, z̃t} (3.3.17)

is the covariance of random variables, where z̃t is the random variable

z̃t ≡ Z (ũt) (3.3.18)

Definition 3.3.11 (DiMFEnKI). DiMFEnKI aims to interpret the random variable ũht

for t ∈ {ti : 0 = t0 < t1 < · · · < tK = 1}, such that, for i = 0, ũh0 ∼ N (m0, C0) is an H-

valued Gaussian random variable, and for i = 1, ..., K, ũhti is determined by the stochastic

difference equation below (let hi = ti − ti−1 be the step size),

ũhti = ũhti−1
− C̃huz,ti−1

(
I + hiC̃hzz,ti−1

)−1 (
hiZ

(
ũhti−1

)
−
√
hiζi

)
(3.3.19)

where Z : H → Rn is the data-misfit function defined in formula (3.1.19), {ζi}Ki=1 is a

set of K independent n-dimensional standard Gaussian random variables, and for any

t ∈ {t0, t1, ..., tK},

C̃huz,t ≡ COV
{
ũht , z̃

h
t

}
C̃hzz,t ≡ COV

{
z̃ht , z̃

h
t

}
(3.3.20)

are the covariances of random variables, where z̃ht is the random variable

z̃ht ≡ Z
(
ũht
)

(3.3.21)

Both CoMFEnKI and DiMFEnKI are not numerically implementable, because the

covariance C̃uz,t in formula (3.3.16) and covariances C̃huz,ti−1
C̃hzz,ti−1

in formula (3.3.19) are

not perfectly known, except for linear problems (Z is an affine transformation). However,

CoMFEnKI and DiMFEnKI have the theoretical importance, since they are the mean-

field limits of the standard ensemble Kalman inversion with finite sample size. The

standard ensemble Kalman inversion are discussed as follows.
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Ensemble Kalman inversion (finite sample size)

Ensemble Kalman inversion with finite sample size is the standard form that can be found

in literature [33, 65, 61, 20, 78, 77]. EnKI (particle) can be regarded as the finite ensemble

of MFEnKI (random variable). Thus, by replacing random variables and covariances in

DiMFEnKI (3.3.19) and CoMFEnKI (3.3.16) with samples and sample covariances, we

can straightforwardly make the following definitions.

Definition 3.3.12 (CoEnKI [20]). CoEnKI aims to interpret the particle Ut for t ∈ [0, 1],

such that, for t = 0, U0 is a set containing J samples independently drawn from the

Gaussian measure N (m0, C0), and for t ∈ (0, 1], Ut is determined by the differential

equations below, for all j = 1, ..., J ,

dUt(j) = −Cuz,t (Z (Ut(j)) dt− dBt(j)) (3.3.22)

where Z : H → Rn is the data-misfit function defined in formula (3.1.19), Bt(j) for

j = 1, ..., J are J Brownian motion paths/trajectories on t ∈ (0, 1] independently drawn

from the n-dimensional standard Wiener process, and for any t ∈ [0, 1],

Cuz,t ≡ cov (Ut, Zt) (3.3.23)

is the sample coavriance of particles, where Zt is the particle such that, for all j = 1, ..., J ,

Zt(j) ≡ Z(Ut(j)) (3.3.24)

Definition 3.3.13 (DiEnKI [61]). DiEnKI aims to interpret the particle Uh
t for t ∈

{ti : 0 = t0 < t1 < · · · < tK = 1}, such that, for i = 0, Uh
0 is a set containing J samples

independently drawn from the Gaussian measure N (m0, C0), and for i = 1, ..., K, Uh
ti

is

determined by the difference equations below (let hi = ti − ti−1 be the step size), for all

j = 1, ..., J ,

Uh
ti

(j) = Uh
ti−1

(j)− Ch
uz,ti−1

(
I + hiC

h
zz,ti−1

)−1 (
hiZ

(
Uh
ti−1

(j)
)
−
√
hiVij

)
(3.3.25)

where Z : H → Rn is the data-misfit function defined in formula (3.1.19), Vij for i =

1, ..., K and j = 1, ..., J are K × J samples independently drawn from the n-dimensional

standard normal distribution, and for any t ∈ {t0, t1, ..., tK},

Ch
uz,t ≡ cov

(
Uh
t , Z

h
t

)
Ch
zz,t ≡ cov

(
Zh
t , Z

h
t

)
(3.3.26)
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are the sample covariances of particles, where Zh
t is the particle such that, for all j =

1, ..., J ,

Zh
t (j) ≡ Z

(
Uh
t (j)

)
(3.3.27)

As the result, DiEnKI is the numerically implementable algorithm with discrete step

size and finite sample size. Higher accuracy can be obtained by using smaller step size

and larger sample size. Theoretically, the highest accuracy can be obtained by using

infinitesimal step size and finite sample size. This theoretical limit is CoMFEnKI. DiEnKI

produces finite samples forming an empirical distribution as the approximation of the

exact distribution determined by CoMFEnKI, and the exact distribution determined by

CoMFEnKI is further regarded as a heuristic solution of the original Bayesian inverse

problem.

3.3.3 Intuitive derivation of the Kalman-like methods

For linear problems, the Kalman filter is the analytic solution. For nonlinear problems,

propositions 3.3.4-3.3.7 do not hold. Nevertheless, in practice, EKF and EnKF are heuris-

tic algorithms using linearization of nonlinear forward maps. To explain how to conduct

the linearization, we first of all notice the following facts: if the data-misfit function Z is

an affine transformation (3.3.5), then we have

• the Fréchet derivative DZ(u) : H → Rn of Z at any u ∈ H equals to K,

DZ(u) = K (3.3.28)

• the covarinace Cuz,t : Rn → H of ut and Z(ut) equals to CtK∗ for any t ∈ [0, 1],

Cuz,t ≡ COV {ut,Z(ut)} = COV {ut,Kut + c} = COV {ut, ut}K∗ = CtK∗ (3.3.29)

• the covarinace Cuz,t : Rn → Rn of Z(ut) and Z(ut) equals to KCtK∗ for any t ∈ [0, 1],

Czz,t ≡ COV {Z(ut),Z(ut)} = COV {Kut + c,Kut + c} = KCOV {ut, ut}K∗ = KCtK∗

(3.3.30)

Now, the Kalman-like methods (DiEKI, CoEKI, DiMFEnKI, CoMFEnKI, DiEnKI,

and CoEnKI) can be derived as follows:
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1. EKI. Substituting formula (3.3.28) into formulas (3.3.6) (3.3.7) in proposition 3.3.4

leads to the DiEKI (definition 3.3.9). Substituting formula (3.3.28) into formulas

(3.3.9) (3.3.10) in proposition 3.3.6 leads to the CoEKI (definition 3.3.8).

2. MFEnKI. Substituting formulas (3.3.29) (3.3.30) into formula (3.3.8) in proposition

3.3.5 leads to the DiMFEnKI (definition 3.3.11). Substituting formula (3.3.29) into

formula (3.3.11) in proposition 3.3.7 leads to the CoMFEnKI (definition 3.3.10).

3. EnKI. DiEnKI (definition 3.3.13) and CoEnKI (definition 3.3.12) are the finite en-

semble of DiMFEnKI and CoMFEnKI, respectively. Namely, the random variables

and covariances in DiMFEnKI and CoMFEnKI are replaced by samples and sample

covariances.

These variants are treated as heuristic methods for nonlinear problems. Thus, we use the

tilde notation like m̃, C̃ and ũ in definitions 3.3.8-3.3.13, in order to indicate that these

quantities are only approximations.

3.3.4 Deeper understanding of the Kalman-like methods

The last subsection shows an intuitive way to deriving the Kalman-like methods by substi-

tution. It would be better if the ODE system (CoEKI) and the SDE system (CoMFEnKI)

can be directly derived from the tempering setting of inverse problems. This subsection

reveals that, CoEKI and CoMFEnKI use different linearization methods to simplify the

variational inversion and the Bayesian inversion, respectively.

Linearization of the forward map

The Kalman-like methods are approximations of the original variational/Bayesian meth-

ods. In fact, these approximation methods can be derived by linearization of the forward

map. In order to derive the extended Kalman inversion (EKI) and the ensemble Kalman

inversion (EnKI), two different linearization methods are needed. To avoid confusion, we

call the two linearization methods as the local linearization (LL) and the global lineariza-

tion (GL), respectively. They are called ‘local’ and ‘global’, because LL is the linearization

around a local point using Taylor expansion and GL is the linearization using average
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values over the entire space under a probability measure. On one hand, LL is used to

derive EKI as an approximation of the variational approach. On the other hand, GL is

used to derive EnKI as an approximation of the Bayesian approach.

Definition 3.3.14 (local linearization (LL)). Let Z : H → Rn be a function. The LL of

Z on a point u ∈ H is a map Z̃l(·;u) : U → Rn, such that for all u′ in a neighborhood

U ⊂ H around u, we have

Z̃l(u′;u) := [DZ(u)] (u′ − u) + Z(u) (3.3.31)

where DZ(x) : H → Rn is the Fréchet derivative of Z at x ∈ H.

Definition 3.3.15 (global linearization (GL)). Let Z : H → Rn be a function. The GL

of Z with respect to a probability measure µ : B(H)→ [0, 1] is a map Z̃g(·;µ) : H → Rn,

such that for almost every u′ ∈ H, we have

Z̃g(u′;µ) := [E {DZ(X)}] (u′ − E {X}) + E {Z(X)} with X ∼ µ (3.3.32)

where DZ(x) : H → Rn is the Fréchet derivative of Z at x ∈ H.

The motivations of LL and GL are discussed as follows.

• Firstly, LL plays its role in mathematical optimization. The exact Newton’s method

adopts a quadratic form to approximate the objective functional locally. The

quadratic form is composed with the gradient vector (first-order derivative) and the

Hessian matrix (second-order derivative). For least-squares problems, the Gauss-

Newton algorithm makes a modification that the Hessian matrix is approximately

estimated by the Jacobian matrix (first-order derivative). Computing the Jacobian

is much more efficient than computing the Hessian. In the Gauss-Newton algo-

rithm, LL directly implies the core idea that the Hessian is only approximated by

the Jacobian.

• Secondly, GL plays its role in Bayesian inference. In fact, GL is summerized from

this thesis in order to derive EnKI. We do not find much literature about the

GL. Nevertheless, we emphasize two points: 1) GL is used to simplify integrals

when the Bayes’ formula is used; 2) GL in Bayesian inference can be regarded as
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the analogue of LL in mathematical optimization, i.e. GL implies the core idea

that the expected value of Hessian is only approximated by the expected value of

Jacobian. The similarity of GL and LL can be clearly viewed in their definitions

(3.3.31) and (3.3.32).

The ODE method (CoEKI) and the SDE method (CoMFEnKI)

The ODE method (CoEKI) is a heuristic approach simplifying the variational tempering

setting (3.1.20) by using the local linearization (LL), and CoMFEnKI is a heuristic ap-

proach simplifying the Bayesian tempering setting (3.1.21) by using the global lineariza-

tion (GL). In fact, the simplification from the tempering settings to the Kalman-like

methods help us realize the following facts:

1. The Kalman-like methods solving inverse problems are approximate methods using

linearization of forward maps, so that, the original inverse problem with a nonlinear

forward map can be simplified.

2. Different linearization techniques lead to different methods, i.e. EKI can be derived

from the variational method by using LL of the forward map, and EnKI can be

derived from the Bayesian method by using GL of the forward map.

3. EKI is a point estimation method, which is more like a mathematical optimization

algorithm via variational approach. EnKI is a particle filtering method, which is

more like a statistical sampling algorithm via Bayesian approach.

After we realize the essential roles of LL and GL played in the Kalman-like methods, we

can predetermine applicable conditions to use the Kalman-like methods. Some practical

principles are proposed:

EKI CoEKI in definition 3.3.8 produces the point estimate m̃t as an approximation of

the optimum x̂t determined in formula (3.1.20). This approximation holds on the

condition that the data-misfit function Z can approximated by the LL of Z. In

practice, this usually requires continuous differentiability of Z. That means, EKI

works for inverse problems whose forward maps are continuously differentiable.
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In this case, EKI is similar like Levenberg-Marquardt algorithm solving inverse

problems with variational setting.

EnKI CoMFEnKI in definition 3.3.10 produces the random estimate ũt that approxi-

mately obeys the probability measure µt determined in formula (3.1.21). This

approximation holds on the condition that the data-misfit function Z can approx-

imated by the GL of Z. In practice, this usually requires strong linear dependence

between ũt and Z(ũt). That means, EnKI works for inverse problems with strong

correlations between parameters and observations. In this case, EnKI is like a linear

regression algorithm.

3.4 Adaptive Kalman-like methods

The last section discusses Kalman-like methods solving inverse problems with the tem-

pering setting. Two types of Kalman-like methods has been introduced. The first one is

the extended Kalman inversion (EKI), which is expressed as an ODE system (CoEKI in

definition 3.3.8), and the ODE system can be numerically solved by discretization (DiEKI

in definition 3.3.9). The second one is the ensemble Kalman inversion (EnKI), which is

expressed as a SDE system (CoMFEnKI in definition 3.3.10), and the SDE system can

be numerically solved by discretization associated with empirical sampling (DiEnKI in

definition 3.3.13). The question is: how to select the step size in DiEKI and DiEnKI?

We aim to apply the data-misfit controller (3.2.15) or (3.2.27) to determine the step size

adaptively.

However, the data-misfit controller is designed for the tempering setting. The Kalman-

like methods (both EKI and EnKI) are only the approximations of the tempering setting.

For this reason, the data-misfit controller cannot be directly applied on the Kalman-like

methods. Nevertheless, after some modification, a modified data-misfit controller can

be easily obtained that is suitable for the Kalman-like methods. The main idea of the

modification is to use Gaussian measures to approximate the exact probability measures

determined via the tempering setting. Moreover, since Kalman-like methods are approx-

imate algorithms, so these methods may not preserve the monotone properties of the

tempering setting (the monotone properties are discussed in subsection 3.1.4). Thus, the
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monotone properties should be monitored when Kalman-like methods are implemented.

As the result, the early stop criterion for the Kalman-like methods can be established by

checking the monotone properties.

3.4.1 Kalman-like methods with Gaussian approximation

Numerically, using sampling algorithms (like sequential Monte Carlo) to solve inverse

problems with the tempering setting may cost too much computational recourse. Alter-

natively, Kalman-like methods, as heuristic algorithms, only requires much fewer compu-

tational budget. EKI updates mean-covariance pairs, and EnKI updates random variables

(or particles). If EKI is implemented, we just take the mean and the covariance. If EnKI

is implemented, we proceed as in random variable (or particle), but after the update we

retain only the mean and the covariance of the random variable (or particle). Thus, for

either of the two Kalman-like methods, we can always obtain the mean and covariance.

Then, we use the mean and covariance to construct a Gaussian measure as an approxi-

mation. This subsection explains how the accurate probability measures determined via

the tempering setting are approximated by Gaussian measures.

Consider the conditional probability µt determined via the tempering setting (3.1.21).

This probability µt is ‘accurate’ in the sense that it rigorously obeys the Bayes’ rule. Let

ut denote the (random) estimate under the conditional probability measure, i.e. for any

t ∈ [0, 1],

ut ∼ µt (3.4.1)

In addition, let zt ≡ Z(ut) be the predicted (random) data misfit, where Z : H → Rn

is the data-misfit function determined in formula (3.1.19). Then, let Qt denote the joint

probability of the random pair (ut, zt), i.e. for any t ∈ [0, 1],ut
zt

 ∼ Qt (3.4.2)

The joint probability Qt gathers all information at time t ∈ [0, 1] including the estimate

and the predicted data-misfit.

With Gaussian-linear approximation, the original joint probability (3.4.2) is approxi-

mated by a Gaussian distribution (the approximate equal becomes to the exact equal for
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linear problems), for any t ∈ [0, 1],

Qt ≈ Q̃G
t := N

m̃u,t

m̃z,t

 ,
C̃uu,t C̃uz,t
C̃zu,t C̃zz,t

 (3.4.3)

where Qt is the original joint probability at t, Q̃G
t is called the Gaussian-regularized (GR)

joint probability at t, and the mean and covariance of the GR joint distribution can be

specified by the Kalman-like methods. For example,

CoEKI The mean and covariance of the GR joint distribution are specified by, for

any t ∈ [0, 1],m̃u,t

m̃z,t

 =

 m̃t

Z (m̃t)

 C̃uu,t C̃uz,t
C̃zu,t C̃zz,t

 =

 C̃t C̃tDZ (m̃t)
∗

DZ (m̃t) C̃t DZ (m̃t) C̃tDZ (m̃t)
∗


where

(
m̃t, C̃t

)
is the pair determined via the ODEs (3.3.12) and (3.3.13).

DiEKI The mean and covariance of the GR joint distribution are specified by, for

any t ∈ {ti : i = 0, 1, ..., K},m̃u,t

m̃z,t

 =

 m̃h
t

Z
(
m̃h
t

)
 C̃uu,t C̃uz,t

C̃zu,t C̃zz,t

 =

 C̃ht C̃ht DZ
(
m̃h
t

)∗
DZ

(
m̃h
t

)
C̃ht DZ

(
m̃h
t

)
C̃ht DZ

(
m̃h
t

)∗


where
(
m̃h
t , C̃ht

)
is the pair determined via the difference equations (3.3.14)

and (3.3.15).

CoMFEnKI The mean and covariance of the GR joint distribution are specified by, for

any t ∈ [0, 1],m̃u,t

m̃z,t

 =

E {ũt}
E {z̃t}

 C̃uu,t C̃uz,t
C̃zu,t C̃zz,t

 =

COV {ũt, ũt} COV {ũt, z̃t}

COV {z̃t, ũt} COV {z̃t, z̃t}


where ũt is the (random) estimate determined via the SDE (3.3.16), and z̃t

is the predicted (random) data misfit,

z̃t ≡ Z (ũt)
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DiEnKI The mean and covariance of the GR joint distribution are specified by, for

any t ∈ {ti : i = 0, 1, ..., K},m̃u,t

m̃z,t

 =

mean
(
Uh
t

)
mean

(
Zh
t

)
 C̃uu,t C̃uz,t

C̃zu,t C̃zz,t

 =

cov
(
Uh
t , U

h
t

)
cov

(
Uh
t , Z

h
t

)
cov

(
Zh
t , U

h
t

)
cov

(
Zh
t , Z

h
t

)


where Uh
t is the particle of estimates determined via the difference equation

(3.3.25), and Zh
t is the particle of predicted data misfits,

Zh
t (j) ≡ Z(Uh

t (j)) ∀j = 1, ..., J

3.4.2 Adaptive scheme of updating the GR joint distributions

In this subsection, we consider how to select the step size for updating the GR joint

distributions. Let 0 = t0 < t1 < · · · < tK = 1 be any K + 1 points in interval [0, 1], and

let hi = ti − ti−1 be the ith step size for any i ∈ {1, ..., K}.

Firstly, we consider the ith update of the original joint distribution Qt from t = ti−1

to t = ti: uti−1

zti−1

 ∼ Qti−1

 hi−→

uti
zti

 ∼ Qti

 (3.4.4)

The original data-misfit controller has been proposed in formula (3.2.15) or (3.2.27). It

is as an adaptive scheme for the stepwise regularization/learning, such that, the step size

hi in formula (3.4.4) can be determined by

hi = min

{
max

{
η
/
q

(1)
i−1 ,

√
η
/
q

(2)
i−1

}
, 1− ti−1

}
(3.4.5)

where η = n/2 and

q
(1)
i−1 = E

{
1

2

∥∥zti−1

∥∥2

Rn

}
(3.4.6)

q
(2)
i−1 = Var

{
1

2

∥∥zti−1

∥∥2

Rn

}
(3.4.7)

Similarly, we consider the ith update of the GR joint distribution Q̃G
t from t = ti−1

to t = ti: ũGti−1

z̃Gti−1

 ∼ Q̃G
ti−1

 hi−→

ũGti
z̃Gti

 ∼ Q̃G
ti

 (3.4.8)
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If the GR joint distribution Q̃G
t is sufficiently close to the original joint distribution

Qt. Then, the data-misfit controller designed for updating Qt can be also applied for

updating Q̃G
t . Namely, we just replace the accurate joint distribution Qti−1

by the GR

joint distribution Q̃G
ti−1

. This replacement holds as long as Q̃G
ti−1

is sufficiently close to

Qti−1
. Then, the Gaussian-regularized data-misfit controller determines the step size hi

in formula (3.4.8) as follows,

hi = min

{
max

{
η
/
q

(1)
i−1 ,

√
η
/
q

(2)
i−1

}
, 1− ti−1

}
(3.4.9)

where η = n/2 and

q
(1)
i−1 = E

{
1

2

∥∥∥z̃Gti−1

∥∥∥2

Rn

}
(3.4.10)

q
(2)
i−1 = Var

{
1

2

∥∥∥z̃Gti−1

∥∥∥2

Rn

}
(3.4.11)

Furthermore, since z̃Gti−1
in formula (3.4.10) and formula (3.4.11) is a Gaussian random

variable, these formulas (3.4.10) and (3.4.11) can be explicitly expressed as

q
(1)
i−1 =

1

2
Tr
(
C̃zz,ti−1

)
+

1

2
m̃∗z,ti−1

m̃z,ti−1
(3.4.12)

q
(2)
i−1 =

1

2
Tr
(
C̃2
zz,ti−1

)
+ m̃∗z,ti−1

C̃zz,ti−1
m̃z,ti−1

(3.4.13)

where m̃z,ti−1
and C̃zz,ti−1

are the mean and covariance of z̃Gti−1
, respectively. The derivation

of formulas (3.4.12) and (3.4.13) from formulas (3.4.10) and (3.4.11) is the direct result

in the following proposition.

Proposition 3.4.1 (generalized chi-square distribution). Let z ∼ N (mz, Czz) be an n-

dimensional Gaussian random variable, where mz ∈ Rn and Czz : Rn → Rn are the given

mean and covariance. Then the generalized chi-square random variable X2
n := ‖z‖2

Rn has

mean and variance expressed by,

E
{

1

2
X2
n

}
=

1

2
Tr(Czz) +

1

2
m∗zmz (3.4.14)

Var

{
1

2
X2
n

}
=

1

2
Tr(C2

zz) +m∗zCzzmz (3.4.15)

Proof. Transform mz ∈ Rn and Czz : Rn → Rn to the eigensystem kz ∈ Rn and Λzz :

Rn → Rn,

Czz ≡ UzΛzzU
T
z , mz ≡ Uzkz (3.4.16)
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where Uz is a unitary matrix and Λzz is diagonal matrix. Thus, we have

1

2
‖z‖2

Rn =
1

2

∥∥C1/2
zz ζ +mz

∥∥2

Rn

=
1

2

∥∥∥UzΛ1/2
zz,tU

T
z ζ + Uzkz

∥∥∥2

Rn

=
1

2

∥∥Λ1/2
zz ξ + kz

∥∥2

Rn

=
1

2

n∑
i=1

(
λ

1/2
i ξi + κi

)2

where ζ is an n-dimensional standard Gaussian random variable, ξ := UT
z ζ is also an

n-dimensional standard Gaussian random variable, λi is the ith diagonal element of Λzz,

ξi is the ith component of ξ, and κi is the ith component of kz. Therefore, the mean and

variance of 1
2
‖zt‖2

Rn can be expressed by

E
{

1

2
‖z‖2

Rn

}
= E

{
1

2

n∑
i=1

(
λ

1/2
i ξi + κi

)2
}

Var

{
1

2
‖z‖2

Rn

}
= Var

{
1

2

n∑
i=1

(
λ

1/2
i ξi + κi

)2
}

=
1

2

n∑
i=1

E
{(

λ
1/2
i ξi + κi

)2
}

=
1

4

n∑
i=1

Var

{(
λ

1/2
i ξi + κi

)2
}

=
1

2

n∑
i=1

(
λi + κ2

i

)
=

1

4

n∑
i=1

(
2λ2

i + 4λiκ
2
i

)
=

1

2
Tr(Czz) +

1

2
m∗zmz =

1

2
Tr(C2

zz) +m∗zCzzmz

(Note: in above calculation, {ξi : i = 1, ..., n} are i.i.d. from N (0, 1).)

3.4.3 Stop criteria of updating the GR joint distributions

When we use sampling algorithms (like sequential Monte Carlo) to update the original

joint distributions Qt, the natural stop criterion is t = 1, i.e., the algorithms should

stop once the tempering parameter t ∈ [0, 1] reaches the end t = 1. However, when we

apply approximate algorithms (like DiEKI and DiEnKI) to update the GR joint distri-

butions Q̃G
t , the stop criteria could be more complicated. This is because the GR joint

distributions are only approximations of the original joint distributions. Theoretically,

it seems too difficult to establish error bounds and/or propose some preconditions that

can ensure a well behavior of the Kalman-like methods. Since then, this thesis considers

more practical approaches to checking some properties of the Kalman-like inversion, in
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order to determine weather continue or stop the iterations. As we discussed in subsection

3.1.4, there exists monotone properties under probability Qt. Thus, it is hoped (but not

guaranteed) that Q̃G
t as an approximation of Qt should preserve the monotone properties

also. If the monotone properties does not hold under probability Q̃G
s at some s ∈ [0, 1],

then we should stop the algorithm in force, because Q̃G
s is not a good approximation of

Qs anymore.

Consider the update of the GR joint distributions,

Q̃G
t0
→ Q̃G

t1
→ · · · → Q̃G

tK
(3.4.17)

The stop criteria are proposed as follows:

1. The natural stop rule: for some positive integer K, if the tempering parameter

reaches

tK = 1 (3.4.18)

then, we stop the algorithm, and produce Q̃G
1 as the final result.

2. The enforced stop rule that validates the monotonicity of forward update: after the

ith (i = 1, ..., K) iteration from Q̃G
ti−1

to Q̃G
ti

, the cost functional and the objective

functional should be decreased,∥∥m̃z,ti−1

∥∥2

Rn ≥ ‖m̃z,ti‖
2
Rn (3.4.19)∥∥m̃z,ti−1

∥∥2

Rn +
∥∥m̃u,ti−1

−m0

∥∥2

C0
≥ ‖m̃z,ti‖

2
Rn + ‖m̃u,ti −m0‖2

C0 (3.4.20)

If both of the above two conditions hold, then we continue the algorithm; otherwise

we stop the algorithm, and produce Q̃G
ti−1

as the result.

The tricky point here is the enforced stop rule, see formula (3.4.19) and formula

(3.4.20). Remind the fact that the tempering setting must satisfy the monotone prop-

erties, see theorems 3.1.5 3.1.3 and corollaries 3.1.6 3.1.4. Thus, it is hoped, but not

guaranteed, that the Kalman-like methods should also preserve the monotone properties;

otherwise, we think the Kalman-like approach is not a good approximation. In practice,

the enforced stop rule improves the robustness of the Kalman-like algorithms (avoid di-

vergence). The enforced stop rule leads to early stop of the Kalman-like algorithms. It is

called ‘early stop’, because the resulting estimate neither touches the stopping time t = 1

nor closes to a stationary point.
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3.4.4 List of the DMisC-Kalman-like algorithms

Let a real-valued separable Hilbert space H be the space of parameters. Let an Euclidean

space Rn be the space of observations. Let Z : H → Rn be the data-misfit function. Let

a Gaussian measure N (m0, C0) on (H,B(H)) be the prior probability of the unknown

parameter.

Provided with the data-misfit function Z and the prior probability measureN (m0, C0),

we consider to use extended Kalman filter (EKF) and ensemble Kalman filter (EnKF) to

solve the inverse problem. The Kalman-like filters solving inverse problems are explained

in section 3.3. As the results, there are two kinds of implementable algorithms: DiEKI

in definition 3.3.9 and DiEnKI in definition 3.3.13.

Furthermore, we can apply the data-misfit controller to select the step size, which

performs well in practice. The extended Kalman inversion (EKI) and ensemble Kalman

inversion (EnKI) associated with the data-misfit controller (DMisC) are called DMisC-

EKI and DMisC-EnKI. DMisC-EKI is computationally efficient, but it requires the first

order derivative of the data-misfit function; DMisC-EnKI is derivative-free, though it

requires more computational costs for simulation of particles. DMisC-EKI and DMisC-

EnKI are listed using pseudocode, see algorithm 1 and algorithm 2 in the end of this

chapter. In addition, the early stop criterion can be applied to improve robustness of

the Kalman-like methods. DMisC-EKI and DMisC-EnKI associated with the early stop

criterion are listed in algorithm 3 and algorithm 4 in the end of this chapter.

3.5 Brief notes and summary

In this chapter, we introduce the tempering setting and adaptive methods. In brief, the

contents in this chapter is about: 1) how to transform the standard setting of inverse

problems to the tempering setting, 2) how the tempering setting can be simplified (using

linearization) into the Kalman-like methods, and 3) how to design adaptive strategy to

discretize the tempering setting and the Kalman-like methods. More details are listed as

follows.

1. Mathematically, inverse problems are set via two standard approaches, i.e., the
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variational setting (2.2.4) and the Bayesian setting (2.2.5). In section 3.1, we in-

troduce a variant setting which adds a tempering parameter t ∈ [0, 1] to rewrite

the variational setting as the variational tempering setting (3.1.20), and rewrite

the Bayesian setting as the Bayesian tempering setting (3.1.21). The difference be-

tween the standard setting and the tempering setting is that: the standard setting

is the one-step transition from prior to posterior, whereas the tempering setting

gradually evolves from prior to posterior along a continuous trajectory indexed by

the tempering parameter t ∈ [0, 1]. The tempering setting has good properties like

continuity and monotonecity, such that, the cost functional along the trajectory is

continuously decreasing.

2. Numerically, the tempering setting on t ∈ [0, 1] needs to be discretized. In section

3.2, we propose an adaptive strategy selecting discrete tempering parameter 0 =

t0 < t1 < · · · < tK = 1. This adaptive method is called the data-misfit controller,

see formula (3.2.15) or (3.2.27), which (precisely) controls the mean and variance

of data misfits and also (approximately) controls the information gain in each step.

3. Inverse problems with the tempering setting can be equivalently regarded as fil-

tering problems with invariant underlying states and observations. Then, we can

apply approximate filtering algorithms like extended Kalman filter and ensemble

Kalman filter to solve the tempered inverse problems. The Kalman-like methods

for tempered inverse problems are introduced in section 3.3. Different filters can be

defined depending on facts that they are continuous or discrete, derivative-required

or derivative-free, mean-field limit or finite ensemble. As the results, there are six

different filters in definitions 3.3.8-3.3.13, from which, CoEKI and CoMFEnKI are

the theoretical limits, and DiEKI and DiEnKI are the numerically implementable

versions. The relations among these methods is clearly presented as a diagram in

figure 3.2.

4. For nonlinear inverse problems, if parameters and observations still have strong lin-

ear correlations, then the Kalman-like methods can be applied as approximations

in practice. If so, the data-misfit controller designed for the tempering setting can

be also applied as the adaptive strategy selecting discrete steps for the Kalman-
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like methods. Under the Gaussian-linear approximation, section 3.4 propose the

data-misfit controller for the Kalman-like methods in formula (3.4.5). Further-

more, an early stop criterion is also proposed in order to check if the Kalman-like

methods are good approximations or not. If the the Kalman-like methods are bad

approximations that means they cannot preserve the monotone properties of the

tempering setting, then the Kalman-like filtering should be early stopped because

this approximate filtering is too rough which cannot improves estimates any more.

Algorithm 1 DMisC-EKI (without early stop) for data-misfit function Z : H → Rn

with Gaussian prior N (m0, C0)

Let η ≡ n/2.

Assign the initial state t← 0, m← m0, C ← C0, z ← Z(m), D ← DZ(m), Q← CD∗,

C ← DQ.

while t < 1 do

Predict the step size h with the data-misfit controller,

h← min

{
max

{
η
/
q(1) ,

√
η /q(2)

}
, 1− t

}
(3.5.1)

where

q(1) ≡ 1

2
Tr (C) +

1

2
z∗z q(2) ≡ 1

2
‖C‖2

F + z∗Cz (3.5.2)

where Tr(·) is the trace of a matrix, and ‖ · ‖F is the Frobenius norm of a matrix.

Predict the mean-covariance pair (mp, Cp) with the extended Kalman filter,

mp ← m− hQ (I + hC)−1 z Cp ← C − hQ (I + hC)−1Q∗ (3.5.3)

Calculate

zp ← Z(mp) Dp ← DZ(mp) Qp ← CpD∗p Cp ← DpQp (3.5.4)

Renew the state t← t+ h, m← mp, C ← Cp, z ← zp, D ← Dp, Q← Qp, C ← Cp.

end while

return (m, C) as the mean-covariance pair of the posterior distribution (approxi-

mately).
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Algorithm 2 DMisC-EnKI (without early stop) for data-misfit function Z : H → Rn

with Gaussian prior N (m0, C0)

Provide the sample size J . Let η ≡ n/2.

Assign t ← 0. Draw J samples independently from the prior distribution N (m0, C0),

and let these K samples into a particle U . Calculate the particle Z such that, Z(j)←

Z (U(j)) for all j = 1, ..., J . Calculate the sample means and sample covariances,

u← mean(U), z ← mean(Z), Cuz ← cov(U,Z), Czz ← cov(Z,Z).

while t < 1 do

Predict the step size h with the data-misfit controller,

h← min

{
max

{
η
/
q(1) ,

√
η /q(2)

}
, 1− t

}
(3.5.5)

where

q(1) ≡ 1

2
Tr (Czz) + z∗z q(2) ≡ 1

2
‖Czz‖2

F + z∗Czzz (3.5.6)

where Tr(·) is the trace of a matrix, and ‖ · ‖F is the Frobenius norm of a matrix.

Draw J samples independently from the n-dimensional standard normal distribution,

and let these J samples into a particle V . Predict the particle Up with the ensemble

Kalman filter, such that, for all j = 1, ..., J ,

Up(j)← U(j)− Cuz (I + hCzz)
−1
(
Z(j)h− V (j)

√
h
)

(3.5.7)

Calculate the particle Zp such that, Zp(j)← Z (Up(j)) for all j = 1, ..., J . Calculate

the sample means and sample covariances, up ← mean(Up), zp ← mean(Zp), Cuz,p ←

cov(Up, Zp), Czz,p ← cov(Zp, Zp).

Renew the state t ← t + h, U ← Up, Z ← Zp, u ← up, z ← zp, Cuz ← Cuz,p,

Czz ← Czz,p.

end while

return U as the particle under the posterior distribution (approximately).
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Algorithm 3 DMisC-EKI (with early stop) for data-misfit function Z : H → Rn with

Gaussian prior N (m0, C0)

Let η ≡ n/2.

Assign the initial state t← 0, m← m0, C ← C0, z ← Z(m), D ← DZ(m), Q← CD∗,

C ← DQ.

while t < 1 do

Predict the step size h with the data-misfit controller,

h← min

{
max

{
η
/
q(1) ,

√
η /q(2)

}
, 1− t

}
(3.5.8)

where

q(1) ≡ 1

2
Tr (C) +

1

2
z∗z q(2) ≡ 1

2
‖C‖2

F + z∗Cz (3.5.9)

where Tr(·) is the trace of a matrix, and ‖ · ‖F is the Frobenius norm of a matrix.

Predict the mean-covariance pair (mp, Cp) with the extended Kalman filter,

mp ← m− hQ (I + hC)−1 z Cp ← C − hQ (I + hC)−1Q∗ (3.5.10)

Calculate

zp ← Z(mp) Dp ← DZ(mp) Qp ← CpD∗p Cp ← DpQp (3.5.11)

if ‖zp‖2
Rn > ‖z‖2

Rn or ‖zp‖2
Rn + ‖mp −m0‖2

C0 > ‖z‖
2
Rn + ‖m−m0‖2

C0 then

break (early stop).

end if

Renew the state t← t+ h, m← mp, C ← Cp, z ← zp, D ← Dp, Q← Qp, C ← Cp.

end while

return (m, C) as the mean-covariance pair of the posterior distribution (approxi-

mately).
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Algorithm 4 DMisC-EnKI (with early stop) for data-misfit function Z : H → Rn with

Gaussian prior N (m0, C0)

Provide the sample size J . Let η ≡ n/2.

Assign t ← 0. Draw J samples independently from the prior distribution N (m0, C0),

and let these K samples into a particle U . Calculate the particle Z such that, Z(j)←

Z (U(j)) for all j = 1, ..., J . Calculate the sample means and sample covariances,

u← mean(U), z ← mean(Z), Cuz ← cov(U,Z), Czz ← cov(Z,Z).

while t < 1 do

Predict the step size h with the data-misfit controller,

h← min

{
max

{
η
/
q(1) ,

√
η /q(2)

}
, 1− t

}
(3.5.12)

where

q(1) ≡ 1

2
Tr (Czz) + z∗z q(2) ≡ 1

2
‖Czz‖2

F + z∗Czzz (3.5.13)

where Tr(·) is the trace of a matrix, and ‖ · ‖F is the Frobenius norm of a matrix.

Draw J samples independently from the n-dimensional standard normal distribution,

and let these J samples into a particle V . Predict the particle Up with the ensemble

Kalman filter, such that, for all j = 1, ..., J ,

Up(j)← U(j)− Cuz (I + hCzz)
−1
(
Z(j)h− V (j)

√
h
)

(3.5.14)

Calculate the particle Zp such that, Zp(j)← Z (Up(j)) for all j = 1, ..., J . Calculate

the sample means and sample covariances, up ← mean(Up), zp ← mean(Zp), Cuz,p ←

cov(Up, Zp), Czz,p ← cov(Zp, Zp).

if ‖zp‖2
Rn > ‖z‖2

Rn or ‖zp‖2
Rn + ‖up −m0‖2

C0 > ‖z‖
2
Rn + ‖u−m0‖2

C0 then

break (early stop).

end if

Renew the state t ← t + h, U ← Up, Z ← Zp, u ← up, z ← zp, Cuz ← Cuz,p,

Czz ← Czz,p.

end while

return U as the particle under the posterior distribution (approximately).
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Chapter 4

Theoretical Analysis and Proofs

This chapter gathers theoretical analysis, which is used to prove theorems and proposi-

tions in the previous two chapters. This chapter are divided into several topics:

1. Section 4.1 analyzes solutions of Tikhonov regularization depending on the regu-

larizing parameters. Results in this section are used for the tempered variational

inversion (3.1.20).

2. Section 4.2 generalizes statistical thermodynamics from finite dimensions (sample

distributions) to infinite dimensions (probability measures). Results in this section

are used for the tempered Bayesian inversion (3.1.21).

3. Section 4.3 discusses the technique of integration by parts with respect to Gaussian

probability measures on separable Hilbert spaces. This is a useful tool for Bayesian

inference with Gaussian priors.

4.1 Tikhonov regularization on RKHS

Tikhonov regularization is originally named after the Russian mathematician Andrey

Nikolayevich Tikhonov. Now, it is regarded as the fundamental method in inverse prob-

lems. Tikhonov’s collection book was published in 1977 [10]. The convergence rate of

Tikhonov methods for ill-posed nonlinear problems in general Hilbert or Banach spaces

was densely studies in 1989 [97, 42]. Further investigation about the regularizing param-

eter determined via the Morozov’s discrepancy principle was published in [80, 96].
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Tikhonov regularization is closely related to the tempered variational inversion (3.1.20).

In fact, the tempered variational inversion can be regarded as Tikhonov regularization

with continuous regularizing parameter. The reciprocal of the regularizing parameter in

the Tikhonov regularization is exactly the tempering parameter in the tempered varia-

tional inversion. This section aims to analyze some properties of the tempered variational

inversion.

4.1.1 Formulation of the problem

We start from the standard form of Tikhonov regularization. Consider the following

optimization problem in a separable Hilbert space H,

x̃α = arg min
x∈H

{
Φ (u(x)) +

α

2
‖x‖2

H

}
(4.1.1)

where u : H → H is a coordinate transformation, Φ : H → [0,+∞) is a cost func-

tional (typically, Φ can be specified as a quadratic form Φ(·) = 1
2
‖Z(·)‖2

Rn associated

with a function Z : H → Rn), and α > 0 is the regularizing parameter of Tikhonov

regularization.

We analyze a special but typical setting of the Tikhonov regularization that constrains

parameters from the separable Hilbert space H to a compact subspace. Namely, consider

the affine transformation,

u = u(x) = C1/2
0 x+m0 (4.1.2)

where C0 : H → H is a self-adjoint positive-semi-definite trace-class operator, and m0 ∈ H

is a bounded element for translation. C0 is trace class, so C1/2
0 is Hilbert-Schmidt, which

implies that C1/2
0 is a compact operator. Therefore, u is in a compact set for any bounded

x ∈ H.

Now, we can derive the tempered variational inversion (3.1.20) by applying the fol-

lowing variable substitution into formula (4.1.1).

x = C−1/2
0 (u−m0) α = 1/t (4.1.3)

As the result, for any α > 0, x̃α in formula (4.1.1) can be represented by

x̃α = C−1/2
0 (x̂1/α −m0) (4.1.4)
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where x̂t for any bounded t ≥ 0 is determined by

x̂t = arg min
u∈H

{
tΦ(u) +

1

2
‖u−m0‖2

E

}
(4.1.5)

where E = Ran
(
C1/2

0

)
⊂ H is the reproducing kernel Hilbert space (RKHS) equipped

with inner product, for all v, w ∈ E,

〈v, w〉E =
〈
C−1/2

0 v, C−1/2
0 w

〉
H

(4.1.6)

The tempered variational inversion (3.1.20) is exactly formula (4.1.5) with the cost func-

tional Φ specified as Φ(·) = 1
2
‖Z(·)‖2

Rn , where Z : H → Rn is the data-misfit function.

For convenience, let Ot : H → [0,+∞) be the objective functional in the optimization

(4.1.5),

Ot(·) = tΦ (·) +R(·) with R(·) =
1

2
‖(·)−m0‖2

E (4.1.7)

4.1.2 Existence and stability of solution

The existence of solution of Tikhonov regularization is well discussed in [10, 97, 42, 80, 96].

We consider a special case of Tikhonov regularization with parameters in a compact set

and observations in an Euclidean space. Thus, we just conduct trivial derivation to show

the existence of the solution in our case. Our purpose is to prove theorem 4.1.5 more

naturally, which is one of the main theorems proposed in this thesis. Theorem 4.1.5 shows

the monotone property of cost functional with respect to the regularizing parameter.

The following two definitions describe ‘balls’ in space H and space m0 + E.

Definition 4.1.1. For any r > 0, let B0(r) denote the open ball in H centered at 0, i.e.

B0(r) := {u ∈ H : ‖u‖H < r} (4.1.8)

Moreover, let B0(r) denote the closure of B0(r), i.e.

B0(r) := {u ∈ H : ‖u‖H ≤ r} (4.1.9)

Definition 4.1.2. For any M > 0, let E0(M) denote the open ball in m0 + E centered

at m0, i.e.

E0(r) := {u ∈ H : ‖u−m0‖E < M} (4.1.10)
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Moreover, let E0(M) denote the closure of E0(M), i.e.

E0(M) := {u ∈ H : ‖u−m0‖E ≤M} (4.1.11)

The following lemma shows that any bounded ball in m0+E is contained in a bounded

ball in H, i.e. the RKHS E is continuously embedded in the Hilbert space H.

Lemma 4.1.3. For any bounded M > 0, there exists an r = r(M) > 0 such that,

E0(M) ⊆ B0(r(M)) (4.1.12)

where

r(M) := ‖m0‖H + ‖C0‖1/2
op M (4.1.13)

Equivalently, E is continuously embedded in H, i.e. for any u ∈ E,

‖u‖E ≤ ‖C0‖1/2
op ‖u‖H (4.1.14)

Proof. For any u ∈ m0 + E, we have

‖u‖H = ‖u−m0 +m0‖H (4.1.15)

≤ ‖u−m0‖H + ‖m0‖H (4.1.16)

=
∥∥∥C1/2

0 C
−1/2
0 (u−m0)

∥∥∥
H

+ ‖m0‖H (4.1.17)

≤
∥∥∥C1/2

0

∥∥∥
op

∥∥∥C−1/2
0 (u−m0)

∥∥∥
H

+ ‖m0‖H (4.1.18)

= ‖C0‖1/2
op ‖u−m0‖E + ‖m0‖H (4.1.19)

Thus,

‖u−m0‖E ≤M =⇒ ‖u‖H ≤ ‖C0‖1/2
op M + ‖m0‖H (4.1.20)

The equivalent statement is nothing more than using m0 = 0.

The existence of the minimum point x̂t in formula (4.1.5) is ensured by the following

theorem.

Theorem 4.1.4. Assume that the cost functional Φ : H → [0,+∞) in formula (4.1.7) is

Lipschitz continuous on any bounded and closed subsets, i.e. for every r > 0 there is a

K = K(r) > 0 such that, for all u1, u2 ∈ H with max {‖u1‖H, ‖u2‖H} ≤ r,

|Φ(u1)− Φ(u2)| ≤ K‖u1 − u2‖H (4.1.21)
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Then for any bounded t ≥ 0, the minimum x̂t determined in formula (4.1.5) exists and

satisfies

R(x̂t) ≤ tΦ(m0) (4.1.22)

where R and Φ are the same as those in formula (4.1.7).

Proof. It is clear that the objective functional Ot(u) = tΦ(u) +R(u) in formula (4.1.7) is

bounded below Ot(u) ≥ 0 for any t ≥ 0 and u ∈ H, so there exists the unique infimum,

inf {Ot(u) : u ∈ H} (4.1.23)

For any bounded t ≥ 0 and any bounded M > 0, define a positive real number Ct(M) ≥

M ,

Ct(M) :=

√
M2 + 2tK(r(M))‖C0‖1/2

op M + 2tΦ(m0) (4.1.24)

This number Ct(M) will play the essential role in the following proof.

On one hand, for all u ∈ E0(M) ⊆ B0(r(M)), where r(M) is given in formula (4.1.13),

we have

Ot(u) = R(u) + tΦ(u) (4.1.25)

≤ R(u) + t|Φ(u)− Φ(m0)|+ tΦ(m0) (4.1.26)

≤ R(u) + tK(r(M))‖u−m0‖H + tΦ(m0) (4.1.27)

≤ R(u) + tK(r(M))‖C0‖1/2
op ‖u−m0‖E + tΦ(m0) (4.1.28)

≤ 1

2
M2 + tK(r(M))‖C0‖1/2

op M + tΦ(m0) =
1

2
Ct(M)2 (4.1.29)

On the other hand, for for all u ∈ H \ E0(Ct(M)), we have

Ot(u) = R(u) + tΦ(u) (4.1.30)

≥ R(u) (4.1.31)

>
1

2
Ct(M)2 (4.1.32)

In conclusion, ∀u1 ∈ E0(M) ⊆ E0(Ct(M)) and ∀u2 ∈ H \ E0(Ct(M)),

Ot(u1) < Ot(u2) (4.1.33)
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Thus, we have

inf
{
Ot(u) : u ∈ E0(Ct(M))

}
(4.1.34)

≤ inf
{
Ot(u) : u ∈ E0(M) ⊆ E0(Ct(M))

}
(4.1.35)

≤ inf
{
Ot(u) : u ∈ H \ E0(Ct(M))

}
(4.1.36)

Namely,

inf {Ot(u) : u ∈ H} (4.1.37)

= min
{

inf
{
Ot(u) : u ∈ E0(Ct(M))

}
, inf

{
Ot(u) : u ∈ H \ E0(Ct(M))

}}
(4.1.38)

= inf
{
Ot(u) : u ∈ E0(Ct(M))

}
(4.1.39)

Moreover, since Ot : H → [0,+∞) is a continuous function on the compact subset

E0(Ct(M)) ⊂ H, the minimum exists ( according to the extreme value theorem), i.e.

inf
{
Ot(u) : u ∈ E0(Ct(M))

}
= min

{
Ot(u) : u ∈ E0(Ct(M))

}
(4.1.40)

In addition, the minimum x̂t must be in the compact sets E0(Ct(M)) for all M > 0, that

means

‖x̂t −m0‖E ≤ inf
M>0
{Ct(M)} =

√
2tΦ(m0) (4.1.41)

or expressed by

R(x̂t) =
1

2
‖x̂t −m0‖2

E ≤ tΦ(m0) (4.1.42)

Moreover, the following theorem reveals the stability of minimum point x̂t relying

on parameter t, such that, the minimum value Ot(x̂t) regarded as a function of t is

Lipschitz continuous on any closed interval t ∈ [0, c] (c > 0), and the cost functional at

the minimum point Φ(x̂t) is decreasing as a function of t.

Theorem 4.1.5. For any t ≥ 0, define the following quantity

Jt := Ot(x̂t) φt := Φ(x̂t) (4.1.43)

where Ot : H → [0,+∞) and Φ : H → [0,+∞) are the same as those in formula (4.1.7),

and x̂t is the minimum point of Ot determined in formula (4.1.5). If Φ is Lipschitz
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continuous on any bounded and closed subsets, then for any bounded c > 0, Jt is increasing

in t ∈ [0, c], and φt is decreasing in t ∈ [0, c]. Furthermore, Jt is Lipschitz continuous in

t ∈ [0, c] with derivative almost everywhere, represented by

Jt =

∫ t

0

φs ds (4.1.44)

Proof. First of all, since Φ is Lipschitz continuous on any bounded and closed subsets,

the minimum point x̂t exists according to theorem 4.1.4. Thus, Jt and φt are well-defined.

Furthermore, consider that, given any 0 ≤ t < t+ ∆ ≤ 1, the relations below hold,

Jt = min
u∈H
{Ot(u)} ≤ Ot (x̂t+∆) (4.1.45)

Jt+∆ = min
u∈H
{Ot+∆(u)} ≤ Ot+∆ (x̂t) (4.1.46)

The right hand sides of formulas (4.1.45) and (4.1.46) can be represented by

Ot (x̂t+∆) = Ot+∆ (x̂t+∆)−∆Φ (x̂t+∆) = Jt+∆ −∆φt+∆ (4.1.47)

Ot+∆ (x̂t) = Ot (x̂t) + ∆Φ (x̂t) = Jt + ∆φt (4.1.48)

Substitute equations (4.1.47) and (4.1.48) into formulas (4.1.45) and (4.1.46), respectively,

to obtain

Jt+∆ − Jt ≥ ∆φt+∆ (4.1.49)

Jt+∆ − Jt ≤ ∆φt (4.1.50)

As the results, we have the following statements:

1. Jt is increasing, because formula (4.1.49) determines that for all ∆ > 0, we have

Jt+∆ − Jt ≥ ∆φt+∆ ≥ 0.

2. φt is decreasing, because formulas (4.1.49) and (4.1.50) determine that for all ∆ > 0,

we have ∆φt+∆ ≤ Jt+∆ − Jt ≤ ∆φt.

3. φt is decreasing, so φt ≤ φ0 is bounded for all t ∈ [0, c]. As the result, the Riemann

integral on interval [0, c] is bounded,∫ c

0

φt dt ≤ cφ0 <∞ (4.1.51)
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Since then, formulas (4.1.49) and (4.1.50) are the backward and forward finite

difference schemes, and the infinite Riemann sum on interval [0, c] is bounded.

Thus, Jt is absolutely continuous with derivative φt almost everywhere, equivalently

characterized by the fundamental theorem of integral calculus,

Jt = J0 +

∫ t

0

φs ds (4.1.52)

where J0 = 0. Furthermore, since φt is bounded for any t ∈ [0, c], Jt is also Lipschitz

continuous on [0, c].

Remark 4.1.6. Theorem 4.1.5 implies stronger arguments than theorem 4.1.4, though the

two theorems are based on the same assumption (Lipschitz continuity). In fact, formula

(4.1.22) in theorem 4.1.4 is implied by formula (4.1.44) in theorem 4.1.5, since

R(x̂t) ≤ Ot(x̂t) =

∫ t

0

Φ(x̂s) ds ≤ tΦ(m0) (4.1.53)

4.1.3 Uniqueness and searching line of solution

This subsection aims to derive the ordinary differential equation (4.1.58), which can be

regarded as a variant of Newton’s method. The difference is that, the original Newton’s

method is an iterative approach, but the ordinary differential equation (4.1.58) is con-

tinuous. Similar like Newton’s method that produces a stationary point in optimization,

equation (4.1.58) provides a trajectory of stationary points of the objective functional Ot

along t ∈ [0, c] for a bounded c > 0.

Twice differentialbility of the objective functional is usually required in mathematical

optimization using Newton’s methods. The first derivative is the gradient vector, and

the second derivative is the Hessian matrix. In infinite-dimensional spaces, we define the

gradient and Hessian by using the first and second order Fréchet derivatives as follows.

Definition 4.1.7 (gradient and Hessian on Hilbert spaces). Let f : X → R be a twice

differentiable functional on a Hilbert space X . Let Df(x) ∈ X ∗ and D2f(x) : X → X ∗

denote the first and second order Fréchet derivatives of f at x ∈ X . More conveniently,

equivalent notation of the Fréchet derivatives can be defined as gradient and Hessian.
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Let ∇f(x) ∈ X and Hf(x) : X → X denote the gradient and Hessian of f at x ∈ X ,

such that, for all bounded v, w ∈ X , the following equations hold,

〈∇f(x), v〉X = [Df(x)](v) (4.1.54)

〈[Hf(x)](w), v〉X = [D2f(x)](v)(w) (4.1.55)

where ∇f(x) and Hf(x) are uniquely determined via the Riesz representation theorem.

Moreover, we generalize the concept of derivative from Euclidean spaces to Hilbert

spaces. The following generalization is similar as the generalization of gradient and

Hessian in definition 4.1.7.

Definition 4.1.8 (differential on Hilbert spaces). Let {xt ∈ X : t ∈ R} be a sequence on

a Hilbert space X . xt is called differentiable at t ∈ R, if there exists an element x′t ∈ H

such that, for all bounded h ∈ H, the following equation holds,

〈x′t, h〉X = lim
∆→0

〈xt+∆ − xt, h〉X
∆

(4.1.56)

If the limit in the right hand side exists for all h, then x′t is uniquely determined via

the Riesz representation theorem. Then, x′t is the derivative of xt at t, denoted by the

differential equation below,

dxt = x′tdt (4.1.57)

If xt is differentiable for all t ∈ Ω, where Ω is an interval in R, then we say xt has a

differentiable path in Ω.

The following theorem shows that there exists a differentiable path of stationary points

of the objective functional Ot. Furthermore, for convex optimization, the stationary

points are also the global minimums. The following method can be regarded as a variant

of the Newton’s method with continuous trajectory (the original Newton’s method has

discrete iterations).

Theorem 4.1.9. Let Ot : H → [0,+∞) and Φ : H → [0,+∞) be the objective functional

and the cost functional in formula (4.1.7), respectively. Assume Φ is twice differentiable.

Consider the following initial value problem,

m̂0 = m0, dm̂t = −
(
tHΦ(m̂t) + C−1

0

)−1∇Φ(m̂t)dt t > 0 (4.1.58)
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where ∇Φ(x) ∈ H and HΦ(x) : H → H are the gradient and Hessian of Φ at x ∈ H,

respectively. Then m̂t is a stationary point of the objective functional Ot for any bounded

t ≥ 0. Moreover, if the Hessian HΦ(x) is a self-adjoint positive-semi-definite operator for

all x ∈ H, then m̂t is the unique global minimum of the objective functional Ot for any

bounded t ≥ 0.

Proof. Φ is twice differentiale, which implies Lipschitz continuity on any bounded and

closed subsets. Thus, theorem 4.1.4 ensures the existence of minimums. Moreover, in this

proof, we aim to show that m̂t determined by the ODE (4.1.58) is indeed the unique min-

imum of the objective functional Ot, on the condition that the Hessian of cost functional

is positive-semi-definite.

Firstly, we address a necessary condition. Since the objective functional Ot is twice

differentiable, any minimum points must be stationary points, i.e. the derivative of Ot at

m̂t must be zero. Therefore, m̂t should necessarily satisfy, for all bounded h ∈ H,

[DOt (m̂t)] (h) =

[
Du

(
tΦ(u) +

1

2
‖u−m0‖2

E

)∣∣∣∣
u=m̂t

]
(h) (4.1.59)

= t [DΦ(m̂t)] (h) + 〈m̂t −m0, h〉E (4.1.60)

= 〈t∇Φ(m̂t), h〉H +
〈
C−1

0 (m̂t −m0), h
〉
H = 0 (4.1.61)

For convenience, let rt : H → H denote

rt(·) ≡ t∇Φ(·) + C−1
0 ((·)−m0) (4.1.62)

Then equation (4.1.61) becomes to

〈rt(m̂t), h〉H = 0 (4.1.63)

Above formula holds for all bounded h ∈ H, which implies

rt(m̂t) = 0 (4.1.64)

Now, we check that m̂t determined by the ODE (4.1.58) satisfies rt(m̂t) = 0, so m̂t is a

stationary point. In fact, the ODE implies even stronger arguments such that, r0(m̂0) = 0

and drt(m̂t) = 0 for any t > 0, which make rt(m̂t) = 0 consistently hold for all t ≥ 0. In
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the following, we check the two conditions: 1) r0(m̂0) = 0, and 2) drt(m̂t) = 0 for any

t > 0. On one hand, let t = 0, r0(m̂t) equals

r0(m̂0) = C−1
0 (m̂0 −m0) (4.1.65)

However, the initial condition in the ODE (4.1.58) is m̂0 = m0, so we have

r0(m̂0) = 0 (4.1.66)

On the other hand, for any t > 0, drt(m̂t) can be explicitly calculated by chain rule,

drt(m̂t) = ∇Φ(m̂t)dt+ tHΦ(m̂t)dm̂t + C−1
0 dm̂t (4.1.67)

However, substitute the ODE (4.1.58) into above formula leads to

drt(m̂t) = 0 (4.1.68)

In conclusion, the two conditions r0(m̂0) = 0 and drt(m̂t) = 0 hold, so rt(m̂t) = 0

consistently hold for t ≥ 0. Thus, m̂t is a stationary point of Ot for any bounded t ≥ 0.

Moreover, we show that, for any bounded t ≥ 0, if the Hessian of cost functional is

positive-semi-definite, then the Hessian of objective functional is positive-definite. (The

Hessian of objective functional is positive-definite rather than positive-semi-definite, be-

cause there exists the penalty functional.) To show the positive-definiteness of the Hessian

of the objective functional Ot at x ∈ H, we have to show, for all bounded h ∈ H∧ h 6= 0,

the following inequality holds,

〈HOt(x)h, h〉H = [D2Ot(x)](h)(h) > 0 (4.1.69)

In fact, we have[
D2Ot (x)

]
(h)(h) =

[
D2
u

(
tΦ(u) +

1

2
‖u−m0‖2

E

)∣∣∣∣
u=x

]
(h)(h) (4.1.70)

= t
[
D2Φ(x)

]
(h)(h) + 〈h, h〉E (4.1.71)

= t 〈HΦ(x)h, h〉H + 〈h, h〉E > 0 (4.1.72)

Above formula is greater than 0 since HΦ(x) is self-adjoint positive-semi-definite. Since

the Hessian of objective functional is positive-definite at m̂t, the stationary point m̂t

must be a minimal extremum. Furthermore, since the Hessian of objective functional

is positive-definite at all x ∈ H, that means, the objective functional is strictly convex.

Thus, the local minimum m̂t is the unique global optimum.
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Sometimes, the convex assumption in theorem 4.1.9 is too strong, so we additionally

propose the following theorem with weaker statement. This statement is not for numer-

ical implementation, because the required condition in the statement is non-practical.

However, theoretically, the following statement implies another explanation of the min-

imum points: if there exists a differentiable path of minimums, then the differentiable

path is unique and determined by the ODE (4.1.58).

Theorem 4.1.10. Let Ot : H → [0,+∞) and Φ : H → [0,+∞) be the objective functional

and the cost functional in formula (4.1.7), respectively. For any t ∈ [0, c] (c > 0), let Xt

denote the set of all minimums of Ot. Assume that the following conditions hold:

1. Φ is twice differentiable.

2. The initial value problem (4.1.58) is well-defined on a closed interval t ∈ [0, c], such

that, there exists the unique solution m̂t ∈ H for any t ∈ [0, c].

3. There exists a sequence a minimums {x̂t ∈ Xt : t ∈ [0, c]} indexed by t, such that,

x̂t forms a differentiable path in [0, c].

Then, the differentiable path of minimums is uniquely determined by the ODE (4.1.58),

i.e. x̂t = m̂t for any t ∈ [0, c].

Proof. Φ is twice differentiale, which implies Lipschitz continuity on any bounded and

closed subsets. Thus, theorem 4.1.4 ensures the existence of minimums.

By assumption, there exists a differentiable path of minimums {xt : t ∈ [0, 1]}, so we

consider the minimums along this differentiable path. Since these minimums must be

stationary points, i.e. the following equation must hold for all bounded t ∈ [0, c],

rt(x̂t) = 0 (4.1.73)

where rt : H → H is determined in formula (4.1.62). However, x̂t is differentiable, thus

we have

r0(x̂0) = 0 drt(x̂t) = 0, t ∈ (0, c] (4.1.74)

On one hand, r0(x̂0) = 0 implies

0 = r0(x̂0) = C−1
0 (x̂0 −m0) (4.1.75)
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Therefore, we have

x̂0 = m0 (4.1.76)

On the other hand, drt(x̂t) = 0 implies

0 = drt(x̂t) = ∇Φ(x̂t)dt+ tHΦ(x̂t)dx̂t + C−1
0 dx̂t (4.1.77)

Therefore, we have,

dx̂t = −
(
tHΦ(x̂t) + C−1

0

)−1∇Φ(x̂t)dt (4.1.78)

Thus, x̂t is identical to m̂t in formula (4.1.58) for any t ∈ [0, c], as long as the ODE is

well-defined and has a unique solution for any t ∈ [0, c].

In brief, theorem 4.1.10 proves that: on the condition that the ODE (4.1.58) is well-

defined, then the following two statements are equivalent:

1. The stationary points determined via the ODE (4.1.58) are global minimums.

2. There exists a differentiable paths consisting of global minimums.

A more tricky question is how to ensure the ODE (4.1.58) only produces global minimums,

i.e. how to constructively build the differentiable path of global minimums. The simplest

example has been shown in theorem 4.1.9, i.e. if the Hessian of cost functional is positive-

semi-definite on the entire space, then the differentiable path of minimums is uniquely

determined via the ODE (4.1.58). The construction for non-convex problems is more

challenging, which is beyond this PhD thesis, but it is interesting and will be investigated

in future work.

Though the ODE (4.1.58) indeed provides a path of stationary points, there are still

two difficulties: theoretically, it is not easy to prove the positive-definiteness of operator

tHΦ(m̂t)+C−1
0 , where tHΦ(m̂t)+C−1

0 is the Hessian of the objective functional Ot; practi-

cally, computing the Hessian (second order derivative) requires too much computational

cost. This why we prefer to apply the first order approximation. After linearization,

the ODE (4.1.58) becomes to the continuous extended Kalman inversion (EKI) in defini-

tion 3.3.8. This linearization technique is just like the simplification of Newton’s method

to Gauss-Newton method. We state that, the ODE (4.1.58) is a continuous variant of

Newton’s method, and that, the EKI in definition 3.3.8 is a continuous variant of Gauss-

Newton method.
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4.2 Tempering setting on Hilbert spaces

Let H be a separable Hilbert space. For any t ∈ (0, 1], let µt : B(H)→ (0, 1] denote the

probability measure determined via

µt(du) ∝ exp(−tΦ(u))µ0(du) (4.2.1)

where Φ : H → [0,+∞) is the cost functional, and µ0 : B(H) → [0, 1] is the prior

probability measure.

Formula (4.2.1) is just like the canonical ensemble in statistical mechanics. Statis-

tisians develope algorithms with similar mathematical structure like the canonical en-

semble. These algorithms can be found in simulated annealing [104], annealed impor-

tance sampling [88], sequential Monte Carlo method [3, 1], etc. The words like ‘an-

nealing’/‘annealed’ indicate that these mathematical algorithms are related to statistical

thermodynamics.

Mathematically, formula (4.2.1) is designed for iterative optimization and/or sequen-

tial sampling. The benefit is that, the algorithm starts with initial guesses in a wide

range, and then produces more and more accurate estimates as the ‘temperature’ goes

down (the ‘temperature’ here is T = 1/t). In other words, t = 0 indicates the prior

distribution, and t = 1 indicates the posterior distribution.

This section aims to generalize the mathematical structure from finite dimensions (en-

semble probability or empirical probability) to infinite dimensions (probability measures

on Hilbert spaces), and analyze its properties in Hilbert spaces. This generalization, of

course, requires careful descriptions as well as proofs, that are presented in this section.

4.2.1 Notation

This subsection defines notation that will be used later.

Definition 4.2.1 (tempering setting). The mathematical structure of the tempering set-

ting are listed below:

1. Let H be a real-valued separable Hilbert space.

2. Let Φ : H → [0,+∞) be a cost functional.
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3. Let t ∈ [0, c] be the tempering parameter, where c > 0 is a bounded real number.

4. Let {µt : t ∈ [0, c]} be a sequence of probability measures such that, for t = 0, µ0 is

an arbitrary probability measure on the measurable space (H,B(H)), and for any

t ∈ (0, c], µt is the probability measure absolutely continuous with respect to µ0 and

the Radon-Nikodym derivative satisfies, for almost every u ∈ H,

dµt
dµ0

(u) =
1

Zt
exp(−tΦ(u)) (4.2.2)

5. Let {Zt : t ∈ [0, c]} be a sequence of normalizing constants such that, for any t ∈

[0, c],

Zt =

∫
H

exp(−tΦ(u))µ0(du) (4.2.3)

6. Let {(〈Φ〉t , 〈Φ,Φ〉t) : t ∈ [0, c]} be a sequence of pairs of characterizing quantities

such that, for any t ∈ [0, c],

〈Φ〉t :=

∫
H

Φ(u)µt(du) 〈Φ,Φ〉t :=

∫
H

(Φ(u)− 〈Φ〉t)
2 µt(du) (4.2.4)

where 〈Φ〉t is the average cost functional, and 〈Φ,Φ〉t is the variance of cost func-

tional.

4.2.2 Under the L1(H, µ0) condition

First of all, the tempering setting is analyzed with the L1 condition, i.e. it is assumed

that the cost functional Φ : H → [0,+∞) is absolutely integrable,∫
H
|Φ(u)|µ0(du) ≤M0 <∞ (4.2.5)

Proposition 4.2.2. Consider the same notation in definition 4.2.1. If the cost functional

Φ is absolutely integrable, then for any bounded t ≥ 0, the normalizing constant Zt is

strictly greater than 0.

Proof.

Zt =

∫
H

exp(−tΦ(u))µ0(du) (4.2.6)

≥ exp

(
−t
∫
H

Φ(u)µ0(du)

)
use Jensen’s inequality (4.2.7)

≥ exp (−tM0) > 0 use formula (4.2.5) (4.2.8)
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Proposition 4.2.3. Consider the same notation in definition 4.2.1. If the cost functional

Φ is absolutely integrable, then for any bounded t ≥ 0, the probability measure µt is

equivalent to the prior probability measure µ0.

Proof. By definition, µt is absolutely continuous to µ0. Thus we only have to prove

the converse: ∀X ∈ B(H), ut(X ) = 0 =⇒ u0(X ) = 0. We prove this statement by

contradiction. Assume that there exists X ∈ B(H) such that ut(X ) = 0 and u0(X ) > 0.

Since u0(X ) > 0, we can define a another probability measure νX on the measurable

space (X ,B(X )) such that for all S ∈ B(X ),

νX (S) :=
u0(S)

u0(X )
(4.2.9)

Thus,

ut(X ) :=

∫
X
µt(du) (4.2.10)

=

∫
X

dµt
dµ0

(u)µ0(du) (4.2.11)

=
1

Zt

∫
X

exp(−tΦ(u))µ0(du) (4.2.12)

=
µ0(X )

Zt

(∫
X

exp(−tΦ(u)) νX (du)

)
use formula (4.2.9) (4.2.13)

≥µ0(X )

Zt
exp

(
−t
∫
X

Φ(u) νX (du)

)
use Jensen’s inequality (4.2.14)

=
µ0(X )

Zt
exp

(
− t

µ0(X )

∫
X

Φ(u)µ0(du)

)
use formula (4.2.9) (4.2.15)

≥µ0(X )

Zt
exp

(
− t

µ0(X )

∫
H

Φ(u)µ0(du)

)
(4.2.16)

≥µ0(X )

Zt
exp

(
− tN0

µ0(X )

)
> 0 use formula (4.2.5) (4.2.17)

However, the assumption tells that ut(X ) = 0. Contradiction occurs.

Theorem 4.2.4 (thermodynamic integration 1). Consider the same notation in defini-

tion 4.2.1. If the cost functional Φ is absolutely integrable, then the normalizing constant

Zt as a function of t ≥ 0 is differentiable with derivative represented by

Z ′t
Zt

= −〈Φ〉t (4.2.18)
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Proof. For convenience, let

fu(t) = exp(−tΦ(u)) (4.2.19)

By definition, Zt is represented by

Zt =

∫
H
fu(t)µ0(du) (4.2.20)

Notice that the derivative of fu is bounded by Φ(u) for any t ≥ 0, since

|f ′u(t)| = | − Φ(u) exp(−tΦ(u))| ≤ Φ(u) (4.2.21)

Remind that Φ is absolutely integrable, so according to the dominated convergence the-

orem, the derivative of Z can be calculated by

Z ′t =

∫
H
f ′u(t)µ0(du) = −

∫
H

Φ(u) exp(−tΦ(u))µ0(du) (4.2.22)

According to proposition 4.2.2, Zt is strictly greater than 0 for any bounded t ≥ 0, so Z ′t

can be divided by Zt,

Z ′t
Zt

= − 1

Zt

∫
H

Φ(u) exp(−tΦ(u))µ0(du) (4.2.23)

According to proposition 4.2.3, µt and µ0 are equivalent for any bounded t ≥ 0, so the

measure for integral can be changed from µ0 to µt,

Z ′t
Zt

= −
∫
H

Φ(u)µt(du) (4.2.24)

4.2.3 Under the L2(H, µ0) condition

Moreover, the tempering setting is analyzed with the L2 condition, i.e. it is assumed that

the cost functional Φ : H → [0,+∞) is square integrable,∫
H
|Φ(u)|2 µ0(du) <∞ (4.2.25)

Notice that the L2 condition (4.2.25) is stronger than the L1 condition (4.2.5), so all the

previous results still hold.
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Theorem 4.2.5 (thermodynamic integration 2). Consider the same notation in defini-

tion 4.2.1. Let ut ∼ µt be a random variable for any bounded t ≥ 0. If the cost functional

Φ is square integrable, then for any square integrable functional g : H → R, the expected

value E {g(ut)} as a function of t ≥ 0 is differentiable and its derivative equals to

E {g(ut)}′ = −COV {g(ut),Φ(ut)} (4.2.26)

Proof. Since µt is absolutely continuous to µ0, E {g(ut)} can be rewritten by changing

the measure from µt to µ0,

E {g(ut)} =

∫
H
g(u)µt(du) =

∫
H
g(u)

dµt
dµ0

(u)µ0(du) =
1

Zt

∫
H
g(u) exp(−tΦ(u))µ0(du)

(4.2.27)

For convenience, let

fu(t) = g(u) exp(−tΦ(u)) (4.2.28)

Thus, the expected value can be expressed by

E {g(ut)} =
1

Zt

∫
H
fu(t)µ0(du) (4.2.29)

By applying the chain rule, the derivative is given by

E {g(ut)}′ =
(

1

Zt

∫
H
fu(t)µ0(du)

)′
= −

Z ′t
∫
H fu(t)µ0(du)

Z2
t

+

(∫
H fu(t)µ0(du)

)′
Zt

(4.2.30)

Notice that the derivative of fu is bounded by |g(u)Φ(u)| for any t ≥ 0, since

|f ′u(t)| = | − g(u)Φ(u) exp(−tΦ(u))| ≤ |g(u)Φ(u)| (4.2.31)

Remind that g · Φ is absolutely integrable as both of g and Φ are square integrable

(Cauchy-Schwarz inequality), so according to the dominated convergence theorem, we

have (∫
H
fu(t)µ0(du)

)′
=

∫
H
f ′u(t)µ0(du) = −

∫
H

Φ(u)fu(t)µ0(du) (4.2.32)

On the other hand, theorem 4.2.4 tells that

Z ′t
Zt

= −
∫
H

Φ(u)µt(du) (4.2.33)

Thus, substitute formulas (4.2.32) and (4.2.33) into formula (4.2.30), we have

E {g(ut)}′ =
∫
HΦ(u)µt(du)

∫
H fu(t)µ0(du)

Zt
−
∫
HΦ(u)fu(t)µ0(du)

Zt
(4.2.34)
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According to proposition 4.2.3, µt and µ0 are equivalent for any bounded t ≥ 0, so the

measure for integral can be changed from µ0 to µt,

E {g(ut)}′ =
∫
H

Φ(u)µt(du)

∫
H
g(u)µt(du)−

∫
H

Φ(u)g(u)µt(du) (4.2.35)

=− COV {g(ut),Φ(ut)} (4.2.36)

Corollary 4.2.6 (energy fluctuations). Consider the same notation in definition 4.2.1.

If the cost functional Φ is square integrable, then the expected value 〈Φ〉t as a function of

t ≥ 0 is differentiable and its derivative equals to the negative of variance 〈Φ,Φ〉t,

〈Φ〉′t = −〈Φ,Φ〉t (4.2.37)

Proof. Directly apply theorem 4.2.5, in which let g = Φ.

Corollary 4.2.7 (dynamic of mean). Consider the same notation in definition 4.2.1.

Particularly, assume that the probability measure µ0 has the second moment,∫
H
‖u‖2

H µ0(du) <∞ (4.2.38)

Let ut ∼ µt be a random variable for any bounded t ≥ 0. In this case, if the cost functional

Φ is square integrable, then the equation below holds for any bounded t ≥ 0 and for any

bounded h ∈ H,

E {〈ut, h〉H}
′ = −COV {〈ut, h〉H ,Φ(ut)} (4.2.39)

Proof. Directly apply theorem 4.2.5, in which let g(·) = 〈·, h〉H for any bounded h ∈

H.

Corollary 4.2.8 (dynamic of covariance). Consider the same notation in definition 4.2.1.

Particularly, assume that the probability measure µ0 has the fourth moment,∫
H
‖u‖4

H µ0(du) <∞ (4.2.40)

Let ut ∼ µt be a random variable for any bounded t ≥ 0. In this case, if the cost functional

Φ is square integrable, then the equation below holds for any bounded t ≥ 0 and for any

bounded v, w ∈ H,

E {〈v, ut −mt〉H 〈ut −mt, w〉H}
′ = −COV {〈v, ut −mt〉H 〈ut −mt, w〉H ,Φ(ut)}

(4.2.41)
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where mt ∈ H is the element such that for all bounded h ∈ H,

〈mt, h〉H = E {〈ut, h〉H} (4.2.42)

Proof. First of all, apply theorem 4.2.5, in which let g(·) = 〈v, ·〉H 〈·, w〉H for any bounded

v, w ∈ H. Thus, we have

E {〈v, ut〉H 〈ut, w〉H}
′ = −COV {〈v, ut〉H 〈ut, w〉H ,Φ(u)} (4.2.43)

Then, conduct the calculation below,

E {〈v, ut −mt〉H 〈ut −mt, w〉H}
′ (4.2.44)

= (E {〈v, ut〉H 〈ut, w〉H} − 〈v,mt〉H 〈mt, w〉H)′ (4.2.45)

=E {〈v, ut〉H 〈ut, w〉H}
′ − 〈v,m′t〉H 〈mt, w〉H − 〈v,mt〉H 〈m

′
t, w〉H (4.2.46)

=− COV {〈v, ut〉H 〈ut, w〉H ,Φ(u)} use formula (4.2.43) (4.2.47)

+ COV {〈v, ut〉H ,Φ(u)} 〈mt, w〉H use formula (4.2.39) (4.2.48)

+ 〈v,mt〉HCOV {〈ut, w〉H ,Φ(u)} use formula (4.2.39) (4.2.49)

=− COV {〈v, ut〉H 〈ut, w〉H − 〈v, ut〉H 〈mt, w〉H − 〈v,mt〉H 〈ut, w〉H ,Φ(u)} (4.2.50)

=− COV {〈v, ut −mt〉H 〈ut −mt, w〉H ,Φ(u)} (4.2.51)

4.2.4 Under the Gaussian condition

Finally, the tempering setting is analyzed with the Gaussian condition, i.e. it is assumed

that the prior probability measure µ0 is Gaussian, and the cost functional Φ : H →

[0,+∞) has exponential tails, namely for every ε > 0 there is an M = M(ε) ∈ R, such

that, for almost every u ∈ H,

|Φ(u)| ≤ exp(ε‖u‖2
H +M) (4.2.52)

According to the Fernique’s theorem, Φ is integrable with any orders of moments under

Gaussian measures, so all the previous results still hold.

Since µ0 is assumed to be a Gaussian measure, and Φ is Gaussian integrable with any

orders of moments, we can iteratively apply theorem 4.2.5 with g = Φ. As the result, we

have the following theorem.
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Theorem 4.2.9. Consider the same notation in definition 4.2.1. Let It denote It ≡

− log(Zt) for any bounded t ≥ 0. If the cost functional Φ has an exponential tail and the

prior measure µ0 is a Gaussian measure, then It as a function of t ≥ 0 is an analytic

function, whose first and second order derivatives are represented by

I ′t = 〈Φ〉t 〈Φ〉′t = −〈Φ,Φ〉t (4.2.53)

Proof. By assumption, Φ has an exponential tail and µ0 is Gaussian, so Φ is integrable

with any orders of moments under the Gaussian measure µ0, ensured by the Fernique’s

theorem.

Then, according to theorem 4.2.4, we have

Z ′t
Zt

= −〈Φ〉t (4.2.54)

Equivalently,

I ′t = − log(Zt)
′ = −Z

′
t

Zt
= 〈Φ〉t (4.2.55)

On the other hand, according to corollary 4.2.6, we have

〈Φ〉′t = −〈Φ,Φ〉t (4.2.56)

Moreover, theorem 4.2.5 can be iteratively applied, so that, the ith order derivative of

It exists as long as the ith order moment of Φ exists. Thus, It has any order of derivatives,

as long as Φ is integrable with any order of moments under measure µt. Since for any

bounded t > 0, proposition 4.2.3 ensures that µt is equivalent to the prior probability

measure µ0, then Φ is integrable with any order of moments under µt also. Thus, It is

analytic.

4.3 Gaussian integration by parts on Hilbert spaces

Integration by parts is simple in Euclidean spaces as there there exist the Lebesgue

measures. Under the Lebesgue measures, we can analyze the Remain integrals straight-

forwardly. However, integration by parts is not trivial in infinite-dimensional spaces. This

section aims to propose the integration by parts with respect to Gaussian measures on
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separable Hilbert spaces. This technique has significance for infinite-dimensional Bayesian

inference with Gaussian priors.

The main theorems in this section will be proved in this logic: firstly, we prove

integration by parts with the standard normal distribution over the real line; secondly,

we generalize the results from single variable to countable variables; thirdly, we transform

countable variables into separable Hilbert spaces using the Karhunen-Loéve theorem.

4.3.1 On the real line

In this subsection, we consider function f : R→ R defined on the real line.

Definition 4.3.1. f : R → R is called absolutely continuous on R, if and only if f is

differentiable almost everywhere, and for any −∞ < a < b < +∞,

f(b)− f(a) =

∫ b

a

f ′(x) dx (4.3.1)

Lemma 4.3.2. Let f : R→ R be an absolutely continuous function satisfying∫
R
f(x)2 µ(dx) <∞ (4.3.2)

where µ = N (0, 1) is the standard Gaussian measure on R. Then the following equation

holds ∫
R
f ′(x)µ(dx) =

∫
R
xf(x)µ(dx) (4.3.3)

Proof. Since f is absolutely continuous, f ′ exits almost everywhere, and apply integration

by parts on any interval [a, b] ⊂ R,∫ b

a

f ′(x)µ(dx) =
1√
2π
f(b) exp(−b2/2)− 1√

2π
f(a) exp(−a2/2)+

∫ b

a

xf(x)µ(dx) (4.3.4)

Let a→ −∞ and b→ +∞, the limits in the right hand side of the above equation exist.

On one hand, ∫
R
|xf(x)|µ(dx) ≤

√∫
R
x2 µ(dx)

∫
R
f(x)2 µ(dx) <∞ (4.3.5)

On the other hand, ∫
R
|f(x)|µ(dx) ≤

√∫
R
f(x)2 µ(dx) <∞ (4.3.6)
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and
∫
R |f(x)|µ(dx) <∞ implies

lim
x→±∞

(
1√
2π
f(x) exp(−x2/2)

)
= 0 (4.3.7)

Thus, ∫
R
f ′(x)µ(dx) =

∫
R
xf(x)µ(dx) (4.3.8)

Lemma 4.3.3. Let f : R→ R be an absolutely continuous function satisfying∫
R
f(x)2 µ(dx) <∞ (4.3.9)

where µ = N (0, 1) is the standard Gaussian measure on R. Then the following equation

holds ∫
R
xf ′(x)µ(dx) =

∫
R
(x2 − 1)f(x)µ(dx) (4.3.10)

Proof. Since f is absolutely continuous, f ′ exits almost everywhere, and apply integration

by parts on any interval [a, b] ⊂ R,∫ b

a

xf ′(x)µ(dx) =
1√
2π
bf(b) exp(−b2/2)− 1√

2π
af(a) exp(−a2/2)+

∫ b

a

(x2−1)f(x)µ(dx)

(4.3.11)

Let a→ −∞ and b→ +∞, the limits in the right hand side of the above equation exist.

On one hand,∫
R
|(x2 − 1)f(x)|µ(dx) ≤

√∫
R
(x2 − 1)2 µ(dx)

∫
R
f(x)2 µ(dx) <∞ (4.3.12)

On the other hand,∫
R
|xf(x)|µ(dx) ≤

√∫
R
x2 µ(dx)

∫
R
f(x)2 µ(dx) <∞ (4.3.13)

and
∫
R |xf(x)|µ(dx) <∞ implies

lim
x→±∞

(
1√
2π
xf(x) exp(−x2/2)

)
= 0 (4.3.14)

Thus, ∫
R
xf ′(x)µ(dx) =

∫
R
(x2 − 1)f(x)µ(dx) (4.3.15)
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4.3.2 On countable real numbers

In this subsection, we consider function r : R∞ → R with countable inputs.

Definition 4.3.4. Let x ∈ R∞, where x can be represented by x = {xi ∈ R : i ∈ N1}.

For any i ∈ N1, let x̂i = x \ {xi}. f : R∞ → R is called absolutely continuous on R∞, if

and only f is differentiable almost everywhere in R∞, and for any i ∈ N1, for any fixed

x̂i, for any −∞ < a < b < +∞,

f(b; x̂i)− f(a; x̂i) =

∫ b

a

∂f(xi; x̂i)

∂xi
dxi (4.3.16)

Lemma 4.3.5. Let r : R∞ → R be an absolutely continuous function satisfying

E
{
r(ξ)2

}
<∞ (4.3.17)

and for any i ∈ N1, the partial derivative is absolutely integrable,

E
{∣∣∣∣∂r(ξ)∂xi

∣∣∣∣} <∞ (4.3.18)

where ξ = {ξi : i ∈ N1} is a set of countable i.i.d. standard Gaussian random variables

on R. Then, for any i ∈ N1,

E
{
∂r(ξ)

∂xi

}
= E {ξir(ξ)} (4.3.19)

Proof. For any i ∈ N1, r(ξ) can be represented by r(ξ) = r(ξi; ξ̂i), where ξ̂i = ξ \ {ξi}. In

fact, ξi is independent on ξ̂i, so the conditional expectations below can be written as

E
{
∂r(ξ)

∂xi

∣∣∣∣ ξ̂i} = E

{
∂r(ξi; ξ̂i)

∂xi

∣∣∣∣∣ ξ̂i
}

=

∫
R

∂r(xi; ξ̂i)

∂xi
µ(dxi) (4.3.20)

E
{
ξir(ξ)

∣∣∣ξ̂i} = E
{
ξir(ξi; ξ̂i)

∣∣∣ξ̂i} =

∫
R
xir(xi; ξ̂i)µ (dxi) (4.3.21)

where µ = N (0, 1) is the standard Gaussian measure on R. Moreover, the function r is

absolutely continuous and square-integrable, so lemma 4.3.2 tells that∫
R

∂r(xi; ξ̂i)

∂xi
µ (dxi) =

∫
R
xir(xi; ξ̂i)µ (dxi) (4.3.22)

Therefore, we have

E
{
∂r(ξ)

∂xi

∣∣∣∣ ξ̂i} = E
{
ξir(ξ)

∣∣∣ξ̂i} (4.3.23)
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Furthermore, ∂r(ξ)
∂xi

and ξir(ξ) are absolutely integrable,

E
{∣∣∣∣∂r(ξ)∂xi

∣∣∣∣} <∞ (4.3.24)

E {|ξir(ξ)|} ≤
√

E {ξ2
i }E {r(ξ)2} =

√
E {r(ξ)2} <∞ (4.3.25)

so the law of total expectation tells

E
{
∂r(ξ)

∂xi

}
= E

{
E
{
∂r(ξ)

∂xi

∣∣∣∣ ξ̂i}} = E
{
E
{
ξir(ξ)

∣∣∣ξ̂i}} = E {ξir(ξ)} (4.3.26)

Lemma 4.3.6. Let r : R∞ → R be an absolutely continuous function satisfying

E
{
r(ξ)2

}
<∞ (4.3.27)

and for any i ∈ N1, the partial derivative is square-integrable,

E

{(
∂r(ξ)

∂xi

)2
}
<∞ (4.3.28)

where ξ = {ξi : i ∈ N1} is a set of countable i.i.d. standard Gaussian random variables

on R. Then, for any i, j ∈ N1,

E
{
ξi
∂r(ξ)

∂xj

}
= COV {ξiξj, r(ξ)} (4.3.29)

Proof. For any j ∈ N1, r(ξ) can be represented by r(ξ) = r(ξj; ξ̂j), where ξ̂j = ξ \ {ξj}.

In fact, ξj is independent on ξ̂j, so the conditional expectation below can be written as

E
{
ξi
∂r(ξ)

∂xj

∣∣∣∣ ξ̂j} = E

{
ξi
∂r(ξj; ξ̂j)

∂xj

∣∣∣∣∣ ξ̂j
}

=


∫
R xj

∂r(xj ;ξ̂j)

∂xj
µ (dxj) if i = j∫

R ξi
∂r(xj ;ξ̂j)

∂xj
µ (dxj) if i 6= j

(4.3.30)

where µ = N (0, 1) is the standard Gaussian measure on R. Furthermore, r is absolutely

continuous and square-integrable, so lemma 4.3.3 (i = j) and lemma 4.3.2 (i 6= j) tell

that ∫
R
xj
∂r(xj; ξ̂j)

∂xj
µ (dxj) =

∫
R

(
x2
j − 1

)
r(xj; ξ̂j)µ (dxj) , i = j (4.3.31)

∫
R
ξi
∂r(xj; ξ̂j)

∂xj
µ (dxj) =

∫
R
ξixjr(xj; ξ̂j)µ (dxj) , i 6= j (4.3.32)
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Again, apply the independence of ξj and ξ̂j,∫
R

(
x2
j − 1

)
r(xj; ξ̂j)µ (dxj) = E

{(
ξ2
j − 1

)
r(ξj; ξ̂j)

∣∣∣ξ̂j} = E
{(
ξ2
j − 1

)
r(ξ)

∣∣∣ξ̂j} , i = j

(4.3.33)∫
R
ξixjr(xj; ξ̂j)µ (dxj) = E

{
ξiξjr(ξj; ξ̂j)

∣∣∣ξ̂j} = E
{
ξiξjr(ξ)

∣∣∣ξ̂j} , i 6= j (4.3.34)

Therefore, we have

E
{
ξi
∂r(ξ)

∂xj

∣∣∣∣ ξ̂j} =

E
{(
ξ2
j − 1

)
r(ξ)

∣∣∣ξ̂j} if i = j

E
{
ξiξjr(ξ)

∣∣∣ξ̂j} if i 6= j

(4.3.35)

Furthermore, ξi
∂r(ξ)
∂xj

,
(
ξ2
j − 1

)
r(ξ) and ξiξjr(ξ) are absolutely integrable,

E
{∣∣∣∣ξi∂r(ξ)∂xj

∣∣∣∣} ≤
√√√√E {ξ2

i }E

{(
∂r(ξ)

∂xj

)2
}

=

√√√√E

{(
∂r(ξ)

∂xj

)2
}
<∞ (4.3.36)

E
{∣∣(ξ2

j − 1
)
r(ξ)

∣∣} ≤√E
{(
ξ2
j − 1

)2
}
E {r(ξ)2} =

√
2E {r(ξ)2} <∞, i = j (4.3.37)

E {|ξiξjr(ξ)|} ≤
√

E {(ξiξj)2}E {r(ξ)2} =
√
E {r(ξ)2} <∞, i 6= j (4.3.38)

so the law of total expectation tells

E
{
ξi
∂r(ξ)

∂xj

}
=E

{
E
{
ξi
∂r(ξ)

∂xj

∣∣∣∣ ξ̂j}} (4.3.39)

=

E
{
E
{(
ξ2
j − 1

)
r(ξ)

∣∣∣ξ̂j}} = E
{(
ξ2
j − 1

)
r(ξ)

}
if i = j

E
{
E
{
ξiξjr(ξ)

∣∣∣ξ̂j}} = E {ξiξjr(ξ)} if i 6= j

(4.3.40)

In addition, the right hand side of above formula are two cases, which can be combined

in the form of

COV {ξiξj, r(ξ)} = E {ξiξjr(ξ)} − E {ξiξj}E {r(ξ)} (4.3.41)

=

E
{
ξ2
j r(ξ)

}
− E

{
ξ2
j

}
E {r(ξ)} = E

{
(ξ2
j − 1)r(ξ)

}
if i = j

E {ξiξjr(ξ)} − E {ξi}E {ξj}E {r(ξ)} = E {ξiξjr(ξ)} if i 6= j

(4.3.42)
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4.3.3 On real-valued separable Hilbert spaces

In this subsection, we consider function f : H → R defined on a real-valued separable

Hilbert space H.

Definition 4.3.7. f is called absolutely continuous on H, if and only if f is differentiable

almost everywhere in H, and for any normalized vector ϕ ∈ H with ‖ϕ‖H = 1, for any

fixed c ∈ H, for any −∞ < a < b < +∞,

f(bϕ+ c)− f(aϕ+ c) =

∫ b

a

∂f(sϕ+ c)

∂s
ds (4.3.43)

Theorem 4.3.8. Let f : H → R be an absolutely continuous function satisfying∫
H

(
f(x)2 + ‖Df(x)‖op

)
µ(dx) <∞ (4.3.44)

where Df(x) : H → R is the Fréchet derivative of f at x ∈ H, µ = N (m, C) is the

Gaussian measure on H, m ∈ H is the mean and C : H → H is the (trace-class semi-

positive-definite self-adjoint) covariance operator. Then the equation below holds for all

bounded h ∈ H,

E {[Df(u)] (Ch)} = COV {〈u, h〉H , f(u)} (4.3.45)

where u ∼ µ = N (m, C) is a Gaussian random variable.

Proof. This theorem will be proved many some steps.

1. C is a self-adjoint compact operator onH, so let {λi : i = 1, 2, ...} and {φi : i = 1, 2, ...}

be the countable eigenvalues and (orthonormal) eigenfunctions of operator C. Then

Ch equals to

Ch =
∞∑
i=1

λi 〈φi, h〉H φi (4.3.46)

Thus we have 1):

E {[Df(u)] (Ch)} = E

{
[Df(u)]

(
∞∑
i=1

λi 〈φi, h〉H φi

)}
(4.3.47)
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2. The expectation and infinite sum in formula (4.3.47) is Fubini, since

∞∑
i=1

E {|λi 〈φi, h〉H [Df(u)] (φi)|} (4.3.48)

≤
∞∑
i=1

λi‖h‖H‖φi‖2
HE {‖Df(u)‖op} (4.3.49)

=

(
∞∑
i=1

λi

)
‖h‖HE {‖Df(u)‖op} <∞ (4.3.50)

Thus we have 2):

E {[Df(u)] (Ch)} =
∞∑
i=1

√
λi 〈φi, h〉H E

{
[Df(u)]

(√
λiφi

)}
(4.3.51)

3. However, the random variable u in formula (4.3.51) can be represented by the KL

expansion,

u = u(ξ) := m+
∞∑
i=1

√
λiξiφi (4.3.52)

Then the chain rule provides that for any i ∈ N1,

∂f(u(ξ))

∂xi
= [Df(u(ξ))]

(
∂u(ξ)

∂xi

)
= [Df(u(ξ))]

(√
λiφi

)
(4.3.53)

Thus we have 3):

E {[Df(u)] (Ch)} =
∞∑
i=1

√
λi 〈φi, h〉H E

{
∂f(u(ξ))

∂xi

}
(4.3.54)

4. Furthermore, lemma 4.3.5 can be applied on formula (4.3.54) for r(ξ) = f(u(ξ)),

because f is absolutely continuous and square-integrable, and for any i ∈ N1,

E
{∣∣∣∣∂f(u(ξ))

∂xi

∣∣∣∣} = E
{∣∣∣[Df(u(ξ))]

(√
λiφi

)∣∣∣} (4.3.55)

≤ E
{
‖Df(u(ξ))‖op

√
λi‖φi‖H

}
(4.3.56)

=
√
λiE {‖Df(u)‖op} <∞ (4.3.57)

Thus we have 4):

E {[Df(u)] (Ch)} =
∞∑
i=1

√
λi 〈φi, h〉H E {ξif(u(ξ))} (4.3.58)
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5. In order to deal with formula (4.3.58), define a sum

SN =
N∑
i=1

√
λiξi 〈φi, h〉H (4.3.59)

According to the KL theorem, as N →∞, the sum SN is mean-square convergent

to 〈u−m,h〉H. Therefore, SNf(u) is absolutely integrable

E {|SNf(u)|} ≤
√
E {S2

N}E {f(u)2} <∞ (4.3.60)

and it converges to 〈u−m,h〉H f(u) in mean as N →∞,

E {|〈u−m,h〉H f(u)− SNf(u)|} ≤
√
E
{

(〈u−m,h〉H − SN)2}E {f(u)2} → 0

(4.3.61)

The dominated convergence theorem determines

E {〈u−m,h〉H f(u)} = lim
N→∞

E {SNf(u)} (4.3.62)

= lim
N→∞

E

{
N∑
i=1

√
λiξi 〈φi, h〉H f(u)

}
(4.3.63)

= lim
N→∞

N∑
i=1

√
λi 〈φi, h〉H E {ξif(u(ξ))} (4.3.64)

=
∞∑
i=1

√
λi 〈φi, h〉H E {ξif(u(ξ))} (4.3.65)

Thus we have 5):

E {[Df(u)] (Ch)} = E {〈u−m,h〉H f(u)} (4.3.66)

= COV {〈u, h〉H , f(u)} (4.3.67)

Corollary 4.3.9. Let F : H → Rn be an absolutely continuous function satisfying∫
H

(
‖F (x)‖2

Rn + ‖DF (x)‖op
)
µ(dx) <∞ (4.3.68)

where DF (x) : H → R is the Fréchet derivative of F at x ∈ H, µ = N (m, C) is the

Gaussian measure on H, m ∈ H is the mean and C : H → H is the (trace-class semi-

positive-definite self-adjoint) covariance operator. Then the equation below holds for all

bounded h ∈ H,

E {[DF (u)] (Ch)} = Czuh (4.3.69)
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where u ∼ µ = N (m, C) is a Gaussian random variable, and Czu : H → Rn is the

covariance between z := F (u) and u such that, Czu := COV {z, u}.

Proof. Apply theorem (4.3.8) for each element of Fi(u), i = 1, ..., n,

E {[DFi(u)] (Ch)} = COV {〈u, h〉H , Fi(u)} = COV {Fi(u), u}h (4.3.70)

Therefore

E {[DF (u)] (Ch)} = COV {〈u, h〉H , F (u)} = COV {F (u), u}h (4.3.71)

Theorem 4.3.10. Let f : H → R be an absolutely continuous function satisfying∫
H

(
f(x)2 + ‖Df(x)‖2

op

)
µ(dx) <∞ (4.3.72)

where Df(x) : H → R is the Fréchet derivative of f at x ∈ H, µ = N (m, C) is the

Gaussian measure on H, m ∈ H is the mean and C : H → H is the (trace-class semi-

positive-definite self-adjoint) covariance operator. Then the equation below holds for all

bounded v, w ∈ H,

E {〈v, u−m〉H [Df(u)] (Cw)} = COV {〈v, u−m〉H 〈u−m,w〉H , f(u)} (4.3.73)

where u ∼ µ = N (m, C) is a Gaussian random variable.

Proof. This theorem will be proved by some steps.

1. C is a self-adjoint compact operator onH, so let {λi : i = 1, 2, ...} and {φi : i = 1, 2, ...}

be the countable eigenvalues and (orthonormal) eigenfunctions of operator C. Then

Cw equals to

Cw =
∞∑
j=1

λj 〈φj, w〉H φj (4.3.74)

Thus we have 1):

E {〈v, u−m〉H [Df(u)] (Cw)} = E

{
〈v, u−m〉H [Df(u)]

(
∞∑
j=1

λj 〈φj, w〉H φj

)}
(4.3.75)
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2. The expectation and infinite sum in formula (4.3.75) is Fubini, since

∞∑
j=1

E
{∣∣λj 〈v, u−m〉H 〈φj, w〉H [Df(u)] (φj)

∣∣} (4.3.76)

≤
∞∑
j=1

λj‖v‖H‖w‖H‖φj‖2
H

√
E {‖u−m‖2

H}E
{
‖Df(u)‖2

op

}
(4.3.77)

=

(
∞∑
j=1

λj

)
‖v‖H‖w‖H

√
E {‖u−m‖2

H}E
{
‖Df(u)‖2

op

}
<∞ (4.3.78)

Thus we have 2):

E {〈v, u−m〉H [Df(u)] (Cw)} =
∞∑
j=1

√
λj 〈φj, w〉H E

{
〈v, u−m〉H [Df(u)]

(√
λjφj

)}
(4.3.79)

3. However, the random variable u in formula (4.3.79) can be represented by the KL

expansion,

u = u(ξ) := m+
∞∑
i=1

√
λiξiφi (4.3.80)

Then the chain rule provides that for any j ∈ N1,

∂f(u(ξ))

∂xj
= [Df(u(ξ))]

(
∂u(ξ)

∂xj

)
= [Df(u(ξ))]

(√
λjφj

)
(4.3.81)

Thus we have 3):

E {〈v, u−m〉H [Df(u)] (Cw)} =
∞∑
j=1

√
λj 〈φj, w〉H E

{
∞∑
i=1

√
λiξi 〈v, φi〉H

∂f(u(ξ))

∂xj

}
(4.3.82)

4. In order to deal with formula (4.3.82), define a sum

SN =
N∑
i=1

√
λiξi 〈v, φi〉H (4.3.83)

According to the KL theorem, as N →∞, the sum SN is mean-square convergent

to 〈v, u−m〉H. Therefore, SN
∂f(u(ξ))
∂xj

is absolutely integrable

E
{∣∣∣∣SN ∂f(u(ξ))

∂xj

∣∣∣∣} ≤
√√√√E {S2

N}E

{(
∂f(u(ξ))

∂xj

)2
}
<∞ (4.3.84)

144



and it converges to 〈v, u−m〉H
∂f(u(ξ))
∂xj

in mean as N →∞,

E
{∣∣∣∣〈v, u−m〉H ∂f(u(ξ))

∂xj
− SN

∂f(u(ξ))

∂xj

∣∣∣∣} (4.3.85)

≤

√√√√E
{

(〈v, u−m〉H − SN)2}E{(∂f(u(ξ))

∂xj

)2
}
→ 0 (4.3.86)

The dominated convergence theorem determines

E
{
〈v, u−m〉H

∂f(u(ξ))

∂xj

}
= lim

N→∞
E
{
SN

∂f(u(ξ))

∂xj

}
(4.3.87)

= lim
N→∞

E

{
N∑
i=1

√
λiξi 〈v, φi〉H

∂f(u(ξ))

∂xj

}
(4.3.88)

= lim
N→∞

N∑
i=1

√
λi 〈v, φi〉H E

{
ξi
∂f(u(ξ))

∂xj

}
(4.3.89)

=
∞∑
i=1

√
λi 〈v, φi〉H E

{
ξi
∂f(u(ξ))

∂xj

}
(4.3.90)

Thus we have 4):

E {〈v, u−m〉H [Df(u)] (Cw)} =
∞∑
j=1

√
λj 〈φj, w〉H

∞∑
i=1

√
λi 〈v, φi〉H E

{
ξi
∂f(u(ξ))

∂xj

}
(4.3.91)

5. Furthermore, lemma 4.3.6 can be applied on formula (4.3.91) for r(ξ) = f(u(ξ)),

because f is absolutely continuous and square-integrable, and for any i ∈ N1,

E

{(
∂f(u(ξ))

∂xi

)2
}

= E
{(

[Df(u(ξ))]
(√

λiφi

))2
}

(4.3.92)

≤ E
{
‖Df(u(ξ))‖2

opλi‖φi‖2
H
}

(4.3.93)

= E
{
λi‖Df(u)‖2

op

}
<∞ (4.3.94)

Thus we have 5):

E {[Df(u)] (Ch)} =
∞∑
j=1

√
λj 〈φj, w〉H

∞∑
i=1

√
λi 〈v, φi〉HCOV {ξiξj, f(u(ξ))}

(4.3.95)

=
∞∑
j=1

√
λj 〈φj, w〉H

∞∑
i=1

√
λi 〈v, φi〉H E {ξiξj (f(u)− E(f(u)))}

(4.3.96)
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6. In order to deal with formula (4.3.96), define two sums

S
(1)
N1

=

N1∑
i=1

√
λiξi 〈v, φi〉H S

(2)
N2

=

N2∑
j=1

√
λjξj 〈φj, w〉H (4.3.97)

According to the KL theorem, as N1, N2 → ∞, the sums S
(1)
N1

and S
(2)
N2

are mean-

square convergent to 〈v, u−m〉H and 〈u−m,w〉H. Therefore, S
(1)
N1
S

(2)
N2

(f(u)− E {f(u)})

is absolutely integrable

E
{∣∣∣S(1)

N1
S

(2)
N2

(f(u)− E {f(u)})
∣∣∣} (4.3.98)

≤

√
E
{(

S
(1)
N1
S

(2)
N2

)2
}
E
{

(f(u)− E {f(u)})2} <∞ (4.3.99)

and it converges to 〈v, u−m〉H 〈u−m,w〉H (f(u)− E {f(u)}) in mean as N1, N2 →

∞,

E
{∣∣∣〈v, u−m〉H 〈u−m,w〉H (f(u)− E {f(u)})− S(1)

N1
S

(2)
N2

(f(u)− E {f(u)})
∣∣∣}

(4.3.100)

≤

√
E
{(
〈v, u−m〉H 〈u−m,w〉H − S

(1)
N1
S

(2)
N2

)2
}
E
{

(f(u)− E {f(u)})2}→ 0

(4.3.101)

The dominated convergence theorem determines

E {〈v, u−m〉H 〈u−m,w〉H (f(u)− E {f(u)})} (4.3.102)

= lim
N1,N2→∞

E
{
S

(1)
N1
S

(2)
N2

(f(u)− E {f(u)})
}

(4.3.103)

= lim
N1,N2→∞

E

{
N1∑
i=1

√
λjξi 〈φi, v〉H

N2∑
j=1

√
λjξj 〈φj, w〉H (f(u)− E {f(u)})

}
(4.3.104)

= lim
N1,N2→∞

N1∑
i=1

√
λi 〈v, φi〉H

N2∑
j=1

√
λj 〈φj, w〉H E {ξiξj (f(u)− E {f(u)})} (4.3.105)

=
∞∑
j=1

√
λj 〈φj, w〉H

∞∑
i=1

√
λi 〈v, φi〉H E {ξiξj (f(u)− E(f(u)))} (4.3.106)

Thus, we have 6):

E {[Df(u)] (Ch)} = E {〈u−m,w〉H 〈v, u−m〉H (f(u)− E {f(u)})} (4.3.107)

= COV {〈u−m,w〉H 〈v, u−m〉H , f(u)} (4.3.108)
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Corollary 4.3.11. Let f : H → R be a differentiable function whose derivative is abso-

lutely continuous, and f satisfies∫
H

(
f(x)2 + ‖Df(x)‖2

op + ‖D2f(x)‖op
)
µ(dx) <∞ (4.3.109)

where Df(x) : H → R is the Fréchet derivative of f at x ∈ H, D2f(x) : H → H∗ is the

second order Fréchet derivative of f at x ∈ H, µ = N (m, C) is the Gaussian measure

on H, m ∈ H is the mean and C : H → H is the (trace-class semi-positive-definite self-

adjoint) covariance operator. Then the equations below holds for all bounded v, w ∈ H,

E
{[

D2f(u)
]

(Cv)(Cw)
}

= COV {〈v, u−m〉H 〈u−m,w〉H , f(u)} (4.3.110)

where u ∼ N (m, C) is a Gaussian random variable.

Proof. Firstly apply theorem 4.3.10, and then apply theorem 4.3.8,

COV {〈v, u−m〉H 〈u−m,w〉H , f(u)} (4.3.111)

=E {〈v, u−m〉H [Df(u)] (Cw)} (4.3.112)

= COV {〈v, u〉H , [Df(u)] (Cw)} (4.3.113)

=E
{[

D2f(u)
]

(Cv)(Cw)
}

(4.3.114)

4.4 Brief notes and summary

In this chapter, we conduct theoretical analysis. Our main outcomes are listed as follows.

1. Traditionally, the regularizing parameter of Tikhonov regularization is fixed for a

inverse problem, and the regularized inverse problem is solved by optimization meth-

ods, e.g. Newton’s method or Gauss-Newton method. In this thesis, we consider

a continuous regularizing parameter. The reciprocal of the regularizing parameter

is the tempering parameter. We prove that the cost functional Φ at the minimum

point is always decreasing with respect to the continuous tempering parameter, see
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theorem 4.1.5. Furthermore, we shows that, the ODE (4.1.58) provides stationary

points indexed by t of the objective functional Ot for t ∈ [0, c] (c > 0). The ODE

(4.1.58) is regarded as a continuous variant of Newton’s method. If the cost func-

tional Φ in (4.1.58) has a quadratic form Φ(·) = 1
2
‖Z(·)‖Rn associated with a data-

misfit function Z : H → Rn, then the ODE (4.1.58) can be simplified into the EKI

in definition 3.3.8 by applying the local linearization (3.3.31). This simplification

is similar like the simplification from Newton’s method to Gauss-Newton method.

Thus, the EKI is regarded as a continuous variant of Gauss-Newton method.

2. The Bayesian tempering setting (3.1.21) has the same/similar mathematical struc-

ture as canonical ensemble in statistical mechanics. The difference is that, canonical

ensemble has finite discrete states, whereas, the Bayesian tempering setting repre-

sents infinite-dimensional probability measures on separable Hilbert spaces. For

this reason, section 4.2 generalizes the existing results in statistical mechanics from

finite-dimensional probability spaces to infinite-dimensional probability spaces. The

main results are in theorems 4.2.4 and 4.2.5 which validate the thermodynamic in-

tegration in infinite-dimensional space, followed by the corollary 4.2.6 which reveals

the behavior of energy fluctuation. Energy fluctuation shows that the average cost

functional is always decreasing, and the decreasing rate equals to the variance of

the cost functional. This is a pillar to develop the data-misfit controller and the

early stop criterion proposed in this thesis.

3. Section 4.3 generalizes integration by parts with respect to Gaussian measures from

finite-dimensional Euclidean spaces to infinite-dimensional Hilbert spaces. This

is used to deal with Gaussian priors existing in the Bayesian tempering setting

(3.1.21), so that, the integration with respect to Gaussian priors can be represented

via the technique of integration by parts. Gaussian integration by parts, together

with the dynamic mean (4.2.39), the dynamic covariance (4.2.41), and the global

linearization (3.3.32), can simplify the Bayesian tempering setting (3.1.21) into the

continuous mean-field limit ensemble Kalman filter in definition 3.3.10.
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Chapter 5

Numerical Strategies and

Applications

In previous chapters, we have discussed inverse problems theoretically. In this chap-

ter, we develop integrated strategies to numerically solving inverse problems. For linear

problems, there exists the closed solution (see theorem 2.2.1), so we do not discuss it any-

more. For nonlinear problems, if the parameters and observations still have significant

linear correlations, then it is feasible to apply Kalman-like methods to solve the prob-

lems in practice. There are two different algorithms: extended Kalman inversion (EKI)

and ensemble Kalman inversion (EnKI). Theoretically, the Kalman-like methods can be

regarded as continuous filtering algorithms in t ∈ [0, 1]. Numerically, the Kalman-like

methods should be discretized 0 = t0 < t1 < · · · < tK = 1, where K is the total number

of discrete steps. We develop the data-misfit controller (DMisC) as an adaptive strategy

choosing the step sizes hi = ti − ti−1 when the Kalman-like methods are implemented.

Additionally, we propose the early stop criterion for the Kalman-like methods. Early stop

means that the filtering algorithms may stop at some t = s with s < 1 rather than t = 1.

This early stop criterion is proposed to monitor the quality of estimates in iterations,

since sometimes (if forward model is highly nonlinear) the Kalman-like methods may be

bad approximations. The robustness of the Kalman-like methods should be improved.

In this chapter, we aim to test the Kalman-like methods via conducting numerical

experiments. There are three levels of objectives in tests:
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1. The first level is to show that the EKI and EnKI work. In this level, we adopt fixed

step sizes. The values of the step sizes are user-specified and very small, such that,

the discretization errors of the Kalman-like methods are very low and the discrete

Kalman-like methods are sufficiently close to their continuous limits. This level aims

to eliminate the effect of discretization, only to show that the Kalman-like methods

are feasible for approximately solving inverse problems with the tempering setting.

2. The second level is to apply the DMisC as an adaptive strategy choosing step sizes

when the Kalman-like methods are implemented. Then the results produced in this

level can be compared with the benchmark produced in the first level. Then, we

can observe that DMisC works quite well in both accuracy and efficiency. Thus, we

believe that the DMisC picks proper step sizes for the Kalman-like methods.

3. The third level is to show that the early stop criterion improves the robustness of

the Kalman-like methods for highly nonlinear inverse problems. Since this situation

is far from the Gaussian-linear assumptions, the Kalman-like methods could be bad

approximations. Then, we adopt the DMisC associated with the early stop criterion

which cuts off many ‘useless’ iterations. Further iterations cannot produce better

estimates for the highly nonlinear inverse problems.

To conduct numerical experiments, we adopt a classical application: electrical impedance

tomography (EIT). The first and the second levels are tested with a basic model whose

underling parameters are homogeneous (single phase/pattern). This model is nonlinear

but has strong linear correlations between parameters and observations. The third level is

tested with an advanced model whose underling parameters are heterogeneous (multiple

phases/patterns). This model is highly nonlinear, as there exists the indicator functions

for classifying different phases/patterns of the underling parameters.

5.1 Electrical impedance tomography

Our testing model is electrical impedance tomography (EIT). EIT is a noninvasive type of

medical imaging, which applies electrical current from surface electrodes into body, and
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the inside electrical conductivity/permittivity/impedance can be inferred. In applied

mathematics, EIT is also used as a benchmark to test inverse algorithms.

5.1.1 Statement of the forward/inverse problem

As we have discussed in chapter 1, EIT model is a simplification of the Maxwell’s equa-

tions under electrostatics, that leads to an elliptic PDE. Mathematically, the complete

electrode model of EIT [31] is represented by:

• Forward problem: given σ, {zm}ne
m=1 and I = {Im}ne

m=1, to compute v and V =

{Vm}ne
m=1

∇ · σ∇v = 0 in D (5.1.1)

v + zmσ∇v · ν = Vm on em, m = 1, ..., ne (5.1.2)

σ∇v = 0 on ∂D \ ∪ne
m=1em (5.1.3)∫

em

σ∇v · ν ds = Im m = 1, ..., ne (5.1.4)

• Inverse problem: given I(1), . . . , I(n) and the observations of voltages V (1), . . . , V (n),

to find σ (and possibly zm).

5.1.2 EIDORS codes for the forward simulation

EIDORS (Electrical Impedance Tomography and Diffuse Optical Tomography Recon-

struction Software, see website [108]) is a online MATLAB package for EIT problems.

We adopt this package to conduct the forward simulation in our numerical tests.

We use the notation G(·) : L∞(D; (0,+∞)) → Rn to denote the forward simulation:

given a conductivity σ ∈ L∞(D; (0,+∞)), the surface voltages V ∈ Rn at electrodes are

simulated,

V = G(σ) (5.1.5)

Furthermore, we use the notation DG(σ) : L∞(D; (0,+∞))→ Rn to denote the Fréchet

derivative of G at any σ ∈ L∞(D; (0,+∞)). In order to ensure the positiveness of

conductivity, it is more convenient to apply the log conductivity such that, for all s ∈ D,

σ(s) = exp(u(s)) (5.1.6)
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where u ∈ L∞(D;R) is the log conductivity. Thus, the forward map G : L∞(D;R)→ Rn

is composed by

V = G(σ) = G(exp(u)) := G(u) (5.1.7)

Numerically, the forward simulation uses finite element method solving the PDE sys-

tem. EIDORS provides the finite element solver of the forward model (function ‘fwd solve’

in EIDORS) as well as its numerical Jacobian (function ‘calc jacobian’ in EIDORS). Af-

ter discretization, the conductivity σ : D → (0,+∞) is specified as a piece-wise constant

function with invariant values in each of the finite elements, i.e., for all x ∈ D,

σ(x) =
M∑
i=1

1Di
(x)σi (5.1.8)

where M is the total number of finite elements, σi ∈ R is the value of conductivity in the

ith finite element, Di ⊂ D is the domain of the ith finite element, and 1A is the indicator

function of any subset A ⊂ D. Thus, we have

G(σ) = G

(
M∑
i=1

1Di
(x)σi

)
= F ([σi]) (5.1.9)

where F : RM → Rn is the finite element solver (method fwd solve in EIDORS), and [σi]

is an M -dimensional column vector with entries σi for i = 1, ...,M . Furthermore, for any

two piece-wise constant conductivitys σ(1) and σ(2), we have

[
DG

(
σ(1)
)] (

σ(2)
)

=

[
DG

(
M∑
i=1

1Di
(x)σ

(1)
i

)](
M∑
i=1

1Di
(x)σ

(2)
i

)
(5.1.10)

=
[
J
([
σ

(1)
i

])]
·
[
σ

(2)
i

]
(5.1.11)

where J is the Jacabian calculator (method calc jacobian in EIDORS), whose input[
σ

(1)
i

]
is an M -dimensional column vector and the output

[
J
([
σ

(1)
i

])]
is an n × M

matrix which is the numerical Jacobian of G at σ(1).

5.1.3 Simulation experiment

For the EIT problem, we arrange 16 electrodes around a 2D circle (the boundary of

domain D = {x ∈ R2 : ‖x‖ < 1}), apply adjacent current drive into the domain, and

measure voltages at each pair of adjacent electrodes (except the current carrying elec-

trodes) on the 2D circle. Therefore, there are totally 16 × 13 = 208 measured voltages
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in one experiment. Once we obtain the measured voltages, we can implement inverse

algorithms to estimate the inside conductivity.

In this thesis, we dot not use real data from clinical medicine, but we conduct sim-

ulation experiment. Firstly, we assign values of the inside conductivity, then simulate

boundary voltages by using the forward model, and then add noises into the simulated

voltages to obtain noisy data. Inversely, we pretend to know nothing about the inside

conductivity, and hope to estimate the inside conductivity from the simulated noisy data.

The noisy data y ∈ Rn is simulated as follow,

y = ŷ + e ŷ = G(x) (5.1.12)

where ŷ ∈ Rn is the clean data which is a column vector containing simulated voltages,

G : L∞(D;R) → Rn is the forward model for simulation, x ∈ L∞(D;R) is the inside

log conductivity whose values are user-specified, and e ∈ Rn is the measurement noise

which is drawn as a sample from a user-specified probability distribution. We adopt an

n-dimensional noise distribution with independent components whose expected values are

zeros and standard deviations are proportional to the clean data. Namely, if let π : Rn →

[0,+∞) denote the probability density function of the noise and let πi : R → [0,+∞)

denote the probability density function of the ith component of the noise, then, for any

vector e ∈ Rn with components ei (i = 1, ..., n), we have

π(e) =
n∏
i=1

πi(ei) (5.1.13)

with ∫
R
sπi(s) ds = 0

√∫
R
s2πi(s) ds = ε |ŷi| (5.1.14)

where ε > 0 is a user-specified proportional rate, that is the coefficient of variation of the

noisy data.

5.2 Basic tests with single-phase conductivity

This subsection considers single-phase conductivity of the EIT problem. Namely, the

inside conductivity on the whole domain can be characterized with a single phase/pattern.

For example, consider a conductivity as a sample drawn from a stationary random field.
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Then, the conductivity on the whole domain is characterized as the single stationary

random field.

In this section, we aim to test the methods: DMisC-EKI (without early stop) and

DMisC-EnKI (without early stop), which are listed in algorithm 1 and algorithm 2 in the

end of chapter 3. In this section, we do not apply the early stop criterion, because the

EIT model with single-phase parameters characterized by a stationary random filed is

differentiable and has strong linear correlations between the parameters and observations,

so there is no much difference from adopting early stop. The early stop criterion will be

applied in the next section with multi-phases conductivity.

5.2.1 Experimental configurations

In this subsection, we explain how to assign experimental configurations of our simulation

experiments. There are two components that need to be specified: one is the prior and

another is the noise. More details are listed as follows.

• The inside log conductivity is assigned as a sample drawn from a Whittle-Matérn

field on D, and this Whittle-Matérn field is also adopted as the prior field. Remind

that (please see subsection 2.3.3), a Whittle-Matérn field is a stationary Gaussian

field with four parameters: µ ∈ R which is the mean of the steady state, σ > 0

which is the standard deviation of the steady state, ν > 0 which is the smoothness

parameter of the autocorrelation function, and L : Rd → Rd which is the length-

scale parameter of the autocorrelation function. We will fix the steady mean as

µ = −7.5 (5.2.1)

and fix the smoothness parameter as

ν = 2; (5.2.2)

but we will test different uncertainty levels

σ ∈ {0.2, 0.4, 0.6, 0.8, 1} (5.2.3)

and we will test different length scales of the autocorrelation

L =

0.2 0

0 0.2

 , L =

0.2 0

0 0.4

 , L =

0.4 0

0 0.4

 (5.2.4)
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• We have assumed that the addictive noise e ∈ Rn is a sample drawn from an n-

dimensional distribution π with independent components π(e) =
∏n

i=1 πi(ei). We

will test different noise types: Gaussian noise, uniformly distributed noise, and

exponentially distributed noise. The first is the normal distribution, i.e. the prob-

ability density function πi of the ith component of the noise is given by

πi(s) =
1√

2πε |ŷi|
exp

(
− s2

2ε2ŷ2
i

)
(5.2.5)

the second is the uniform distribution, i.e. the probability density function πi of

the ith component of the noise is given by

πi(s) =


1

2
√

3ε|ŷi|
if s ∈

[
−
√

3ε |ŷi| ,
√

3ε |ŷi|
]

0 if s ∈ R \
[
−
√

3ε |ŷi| ,
√

3ε |ŷi|
] (5.2.6)

and the third is the exponential distribution, i.e. the probability density function

πi of the ith component of the noise is given by

πi(s) =


1

ε|ŷi| exp
(
− s
ε|ŷi| − 1

)
if s ≥ −ε |ŷi|

0 if s < −ε |ŷi|
(5.2.7)

Furthermore, we will test different noise levels: the first group of noise levels are

the small amounts of noise

ε ∈ {0.4%, 0.8%, 1.2%, 1.6%, 2%} (5.2.8)

the second group of noise levels are the moderate amounts of noise

ε ∈ {2%, 4%, 6%, 8%, 10%} (5.2.9)

and the third group of noise levels are the large amounts of noise

ε ∈ {10%, 20%, 30%, 40%, 50%} (5.2.10)

where ε is the coefficient of variation of the noisy data.

5.2.2 DMisC compared with other methods

In this subsection, we fix the prior length scale lx = 0.2, ly = 0.2, fix the prior uncertainty

level σ = 1, fix the noise type as Gaussian noise, and fix the noise level ε = 0.02. With

this fixed experimental configuration, we aim to test the DMisC-EKI (without early stop)

and DMisC-EnKI (without early stop), compared with other methods.
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DMisC vs fixed step sizes

In this thesis, we write the Kalman-like methods as continuous forms (PDE/SDE), and

propose the data-misfit controller (DMisC) as an adaptive strategy selecting step sizes

when the Kalman-like methods are numerically implemented to solve inverse problems.

We aim to show the good performance of this adaptive strategy. This can be tested

by using fixed step sizes as comparison. The fixed step sizes are specified as very small

values such that the discrete error is sufficiently low. Then, the discretized Kalman-like

methods with the very small step sizes can be referred as the benchmark, since they are

sufficiently close to the continuous limits. After that, we adopt the DMisC to discretize

the Kalman-like methods and to observe the difference from the benchmark.

From our practical experience, the step sizes usually increase and nearly form a geo-

metric sequence. Therefore, we choose the fixed step sizes as, for i = 1, ..., K,

hi =
qi − qi−1

qK − 1
(5.2.11)

where q > 1 is the increasing rate, and K is the total number of steps. q and K are

user-specified and fixed. In comparison, DMisC is an adaptive method that automatically

chooses step sizes relying on the current underlying states in the iterative algorithm. More

clearly, the DMisC choosing step sizes for the Kalman-like methods has been proposed

in formula (3.4.9).

Extended Kalman inversion (EKI) and ensemble Kalman inversion (EnKI) associated

with data-misfit controller (DMisC) and geometric step sizes (GSS) are noted by DMisC-

EKI, DMisC-EnKI, GSS-EKI, and GSS-EnKI, respectively. DMisC-EKI (without early

stop) and DMisC-EnKI (without early stop) have been listed with pseudocode in algo-

rithms 1 and 2 in the end of chapter 3. GSS-EKI and GSS-EnKI are listed in algorithms

5 and 6 with pseudocode in the end of this chapter.

Now, we numerically test these inverse algorithms. Firstly, we implement GSS-EKI

and GSS-EnKI as the benchmarks. We adopt increasing rate q = 1.2 and total number

of iterations K = 50 for GSS-EKI and GSS-EnKI to make sufficiently small step sizes,

such that, GSS-EKI and GSS-EnKI are very close to the continuous limits CoEKI and

CoEnKI. Therefore, the results produced by GSS-EKI and GSS-EnKI can be referred

as the benchmarks. After that, we implement DMisC-EKI and DMisC-EnKI, which
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are compared with GSS-EKI and GSS-EnKI, respectively. The numerical results are

presented in figure 5.1. We can observe that, the estimation errors and data misfits

determined via DMisC-EKI/EnKI are close to the results determined via GSS-EKI/EnKI.

This means that DMisC-EKI and DMisC-EnKI are sufficiently accurate. At the same

time, DMisC-EKI and DMisC-EnKI are very efficient only requiring 7 and 9 iterations,

respectively. Therefore, we believe that the data-misfit controller determines proper step

sizes for EKI and EnKI.

One more fact should be noticed. Numerical implementation of EnKI requires ensem-

ble of particles. If the particle size is too small, there could be large statistical errors. We

test different sample sizes J ∈ {64, 144, 256, 400}, and for each sample size, we conduct

several trials of EnKI to check the amount of statistical errors. Theses tests are conducted

by applying GSS-EnKI with very small step size, so the effect of step size is minor in

these tests. The results of these tests are shown in figure 5.2, where we plot the logarithm

of data misfits in the left yaxis and the logarithm of estimation errors in the right yaxis.

For smaller sample size like J = 64 or J = 144, EnKI only produce unstable or inaccurate

results, as the estimation error can even be increasing in the filtering. However, this issue

does not happen for larger sample size like J = 256 or J = 400. When J = 400, the

statistical errors are relatively small and the estimates are relatively accurate. Therefore,

we adopt sample size J = 400 for our numerical implementation of EnKI.

DMisC vs RLMS

The two methods DMisC-EKI and DMisC-EnKI proposed in this thesis are similar like an-

other group of existing methods: RLMS-LMA and RLMS-EnKI. In fact, DMisC-EKI can

be regarded as a variant of RLMS-LMA with additional covariance update. RLMS-LMA

keeps the prior covariance operator unchanged in iterations since it is an optimization

algorithm, while DMisC-EKI updates the covariance operator step by step since it is a

filtering algorithm. Numerically, RLMS-LMA and DMisC-EKI have different adaptive

strategies and stop criteria. On the other hand, both DMisC-EnKI and RLMS-EnKI

apply the ensemble Kalman filter, but the difference is that: DMisC-EnKI applies the

data-misfit controller developed from the Bayesian filtering framework, whereas RLMS-

EnKI borrows the adaptive strategy from RLMS-LMA.
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(a) The estimation error in filtering, where

x is the true value of parameter, and m̃h
t is

the estimate at t ∈ (0, 1] produced by EKI.

(b) The estimation error in filtering, where

uht is the average estimate at t ∈ (0, 1] pro-

duced by EnKI with sample size J = 400.

(c) The data misfit in filtering, where Z is

the data-mifit function, and m̃h
t (produced

by EKI) is the estimate of x at t ∈ (0, 1].

(d) The data misfit in filtering, where zht

(produced by EnKI with sample size J =

400) is the average data misift at t ∈ (0, 1].

Figure 5.1: The preformaces of EKI/EnKI solving the EIT problem. GSS-EKI/EnKI adopts

very small step size, sufficiently close to the continuous limit, so GSS-EKI/EnKI is reffered as

the benchmark. DMisC-EKI/EnKI uses adaptive step size, much larger than the fixed step size,

but DMisC-EKI/EnKI still leads to results quite close to those produced by GSS-EKI/EnKI.

Therefore, DMisC-EKI/EnKI keeps both accuracy and efficiency in this test.
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(a) The estimation errors (red lines) and

data misfits (blue lines) of three trials of

EnKI with particle size J = 64.

(b) The estimation errors (red lines) and

data misfits (blue lines) of three trials of

EnKI with particle size J = 144.

(c) The estimation errors (red lines) and

data misfits (blue lines) of three trials of

EnKI with particle size J = 256.

(d) The estimation errors (red lines) and

data misfits (blue lines) of three trials of

EnKI with particle size J = 400.

Figure 5.2: The sample size effect in implementation of EnKI. The estimation errors (red

lines) and data misfits (blue lines) in filtering are plotted with respect to the different sample

sizes J = 64, J = 144, J = 256, and J = 400. As a particle filter, numerically implementation

of EnKI with finite sample size causes statistical errors. If sample size is too small such as

J = 64, the statistical error can be very large, and EnKI only produces unstable and inaccurate

results. If sample size is larger such as J = 400, then EnKI performs well.
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The Levenberg-Marquardt algorithm (LMA) and the regularizing Levenberg-Marquardt

scheme (RLMS) has been introduced in section 2.4. Moreover, Iglesias [61] borrowed the

algorithmic idea similar to RLMS-LMA to implement EnKI, i.e., the step size hi ∈

(0,+∞) of EnKI in formula (3.3.25) is determined by solving equation∥∥∥∥(I + hiC
h
zz,ti−1

)−1

zhti−1

∥∥∥∥
Rn

= ρ
∥∥∥zhti−1

∥∥∥
Rn

(5.2.12)

where ρ ∈ (0, 1) is a control parameter, and zhti−1
and Ch

zz,ti−1
are the sample mean

and sample covariance of
{
Zh
t (j) ≡ Z

(
Uh
t (j)

)}J
j=1

. The above equation (5.2.12) is the

analogue of the RLMS (2.4.24). In addition, the RLMS-EnKI stops for some t ∈ [0,+∞)

once

‖zt‖Rn ≤ τ ‖Z(x)‖Rn (5.2.13)

where τ > ρ−1 is an accuracy control parameter and x ∈ H is the true value of the

unknown parameter. The above criterion (5.2.13) of RLMS-EnKI is the analogue of the

stop rule (2.4.15) of RLMS-LMA. If ‖Z(x)‖Rn is unknown, Iglesias suggests
√
n as an

approximation of ‖Z(x)‖Rn . This approximation comes from the law of large numbers,

which has been discussed in formulas (3.2.8) and (3.2.9). The RLMS-LMA and RLMS-

EnKI are listed with pseudocode in algorithm 7 and algorithm 8 in the end of this chapter.

Now, we test DMisC-EKI (without early stop) and DMisC-EnKI (without early stop),

which are compared with RLMS-LMA and RLMS-EnKI, respectively. The sample size of

EnKI are chosen as J = 400. In practice, DMisC-EKI and DMisC-EnKI have no tuning

parameters, so users can directly apply these algorithms. In comparison, RLMS-LMA

and RLMS-EnKI has a tuning parameter ρ ∈ (0, 1), which should be adjusted by trials.

We try different values ρ ∈ {0.3, 0.4, 0.5, 0.6, 0.7, 0.8} to catch the overall performance

of RLMS-LMA and RLMS-EnKI. Usually, for ρ < 0.3 is inaccurate, and for ρ > 0.8 is

inefficient, so values out of the interval [0.3, 0.8] rarely appear in practice.

We implement all the inverse algorithms and present the results in figure 5.3. Firstly,

DMisC-EKI/DMisC-EnKI has lower estimation errors and lower data misfits than RLMS-

LMA/RLMS-EnKI for all the tuning parameters 0.3 ≤ ρ ≤ 0.8. This is because the

stop criteria of DMisC-EKI/DMisC-EnKI and RLMS-LMA/RLMS-EnKI are different.

RLMS-LMA/RLMS-EnKI stops when the Morozov’s discrepancy principle occurs. Dif-

ferent from that, DMisC-EKI/DMisC-EnKI accounts for deeper filtering until the tem-
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pering parameter goes to t = 1, which leads to more accurate results. Secondly, when ρ

is around 6.0, RLMS-LMA/RLMS-EnKI has the similar computational cost as DMisC-

EKI/DMisC-EnKI, but RLMS-LMA/RLMS-EnKI has much higher estimation error and

data misfit. It is clearly that DMisC-EKI/DMisC-EnKI is more efficient. Thirdly, as a

statistical approach, DMisC-EnKI than RLMS-EnKI has much less standard deviation

of the data misfits. In fact, DMisC-EnKI consistently stops at t = 1, which leads to

the same sate (numerically with computational errors). However, RLMS-EnKI stops at

the first time when the Morozov’s discrepancy principle occurs. This stop rule leads to

inconsistent states relying on iterations in the algorithm. Thus, the variance caused by

RLMS-EnKI has two components, the difference of states and the statistical error. In

comparison, the variance caused by DMC-EnKI only has the statistical error without the

difference of states.

5.2.3 DMisC used in several circumstances

In this subsection, we conduct robustness testing of DMisC-EKI (without early stop) and

DMisC-EnKI (without early stop) by using different experimental configurations. We will

apply different length scales of the prior field, different distribution types of the noise,

different uncertainty levels of the prior field, and different amounts of the noise.

Effect of prior length scales

Now, we fix the prior uncertainty level σ = 1, fix the noise type as Gaussian noise, and

fix the noise level ε = 0.02. However, we apply different length scale parameters: case1

lx = 0.2, ly = 0.2, case2 lx = 0.2, ly = 0.4, case3 lx = 0.4, ly = 0.4. As the length-scale

increases, the autocorrelation of the prior filed is also increases. Consequently, within

fixed accuracy level, less eigenvalues are required to characterize the random fields. In

other words, higher autocorrelation implies less modes of uncertainty. Thus, we expect

that, more accurate estimates can be obtained with larger length scales. In the next, we

will check this hypothesis.

We use DMisC-EKI and DMisC-EnKI (sample size J = 400) to solve the EIT problems

with the different length scales. The estimates produced by the two methods compared
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(a) Comparison of DMisC-EKI with RLMS-LMA. RLMS-LMA has a tuning parameter ρ. We

try ρ = 0.3, ρ = 0.4, ρ = 0.5, ρ = 0.6, ρ = 0.7, and ρ = 0.8. For all the values of the tuning

parameter, the leading results are compared with that produced by DMisC-EnKI. We present the

estimation errors, data misfits, and computational costs of the two kinds of algorithms.

(b) Comparison of DMisC-EnKI with RLMS-EnKI (sample size J = 400). RLMS-EnKI has a

tuning parameter ρ. We try ρ = 0.3, ρ = 0.4, ρ = 0.5, ρ = 0.6, ρ = 0.7, and ρ = 0.8. For

all the values of the tuning parameter, the leading results are compared with that produced by

DMisC-EnKI. We present the estimation errors, data misfits, and computational costs of the

two kinds of algorithms. In above figures, the solid line and the error bar represent the mean

and standard devation, respectively, calcualted from independent 20 implemenations.

Figure 5.3: Comparison of data-misfit controller and regularizing Levenberg-Marquardt scheme.
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with the true values of the log conductivity are shown in figure 5.4, from which, we can

observe that both DMisC-EKI and DMisC-EnKI works well for different length scales.

Regardless the length scale is large or small, isotropic or anisotropic, the estimates pro-

duced by DMisC-EKI and DMisC-EnKI capture the main features of the truths. More

clearly, we present the cross-sectional data of the estimates in figure 5.5, which shows

that the estimates is more close to the truth when the length scale becomes larger. This

fact validates our hypothesis. Finally, we present the estimation errors corresponding to

different length scales in figure 5.6, which clearly shows that larger length scale implies

lower uncertainty and higher accuracy.

Effect of noise types

In theory, the Kalman-like methods and the data-misfit controller assume Gaussian noises.

However, in the real world, noisy data is not always Gaussian. Practically, we hope to

know whether the Kalman-like methods and the data-misfit controller works for non-

Gaussian data or not. Then, in this test, we fix the prior uncertainty level σ = 1, fix

the length-scale parameter lx = 0.2, ly = 0.2, and fix the noise level ε = 0.02, but we

apply different types of noise distributions: normal distribution, uniform distribution,

and exponential distribution.

We apply both DMisC-EKI and DMisC-EnKI (sample size J = 400) to solve the EIT

problems with the different noise types. The results are shown in figure 5.7. We can

observe that, there is only little difference in estimation errors with respect to different

types of noise distributions. Nevertheless, from figure 5.7a, we can still found the fact that,

when we apply DMisC-EKI, the normal distribution leads to lower estimation errors than

the exponential distribution, and lower than the uniform distribution. A possible reason is

that, the normal distribution is endless on the real line, the exponential distribution has an

end in one side, and the uniform distribution has two ends, so the exponential distribution

than the uniform distribution is more close to the normal distribution. However, from

figure 5.7b, this fact does not hold when DMisC-EnKI is applied. This is because EnKI

is a statistical approach, the effect of statistical errors has taken over the effect of noise

types. Therefore, the result is not distinguish when DMisC-EnKI is applied.

In summary, the effect of noise types is limited, that means the Kalman-like methods
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(a) The true values of the log conductivity for the different length scales.

(b) The estimates produced by DMisC-EKI for the different length scales.

(c) The estimates produced by DMisC-EnKI (sample size J = 400) for the different length

scales. EnKI is a statistical approach, so we repeat each of the estimation for 3 times, and each

estimate is the mean of the 3 particle means.

Figure 5.4: The estimates produced by the DMisC-Kalman-like methods solving the EIT problem.
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(a) The cross-sectional data at sy = 0 of the estimates produced by DMisC-EKI for the different

length scales.

(b) The cross-sectional data at sy = 0 of the estimates produced by DMisC-EnKI (sample size

J = 400) for the different length scales. EnKI is a statistical approach, so we repeat each of the

estimation for 3 times, and each estimate is the mean of the 3 particle means.

Figure 5.5: The cross-sectional data at sy = 0 of the estimates produced by the DMisC-Kalman-

like methods solving the EIT problem.
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(a) The estimation errors in the filtering of

DMisC-EKI for the different length scales.

(b) The estimation errors in the filtering of

DMisC-EnKI for the different length scales.

Figure 5.6: The estimation errors agsinst the prior length scales.

and the data-misfit controller are still feasible for non-Gaussian noisy data in practice.

Effect of prior uncertainty

In this test, we fix the prior length-scale parameter lx = 0.2, ly = 0.2, fix the noise level

ε = 0.02, and fix the type of noise distribution as Gaussian noise. Then, we try different

prior uncertainty levels σ = 0.2, 0.4, 0.6, 0.8, 1. It is expected that, the uncertainty of the

posterior estimate should increase as the prior uncertainty rises up.

Then, we apply DMisC-EKI and DMisC-EnKI (sample size J = 400) to solve the EIT

problems with the different prior uncertainty levels. The results are shown in figure. For

DMisC-EnKI, since it is a statistical approach, we conduct independent and repeated

tests for 20 times. For each time, we obtain a posterior particle mean, and this mean is

treated as an estimate of the truth. Then, we use the L2 norm to calculate the estimation

error of the particle mean from the truth. Since EnKI is statistical method, the particle

means and the estimation errors for the independent and repeated 20 tests are different.

Then, we calculate the mean and standard deviation of 20 estimation errors. We show

the results of posterior estimation errors against different values of σ in figure 5.8. We

can clearly observe that the posterior estimation error is nearly proportional to the prior
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(a) The estimation errors in the filtering of

DMisC-EKI for the different length scales.

(b) The estimation errors in the filtering of

DMisC-EnKI for the different length scales.

Figure 5.7: The estimation errors against the types of noise ditribution.

uncertainty level. Also, the required number of iterations increases in the similar rate as

the estimation error have.

Effect of noise level

Finally, we test the noise level ε. We fix the prior length-scale parameter lx = 0.2, ly = 0.2,

fix the prior uncertainty level σ = 1, and fix the type of noise distribution as Gaussian

noise, but we try different values of the noise level ε. It is expected that, the estimation

error increases as the noise level goes up. However, the behavior of noise level is more

complicated. We classify the noise levels into three groups: the small amounts of noise

ε ∈ {0.4%, 0.8%, 1.2%, 1.6%, 2%} (5.2.14)

the moderate amounts of noise

ε ∈ {2%, 4%, 6%, 8%, 10%} (5.2.15)

and the large amounts of noise

ε ∈ {10%, 20%, 30%, 40%, 50%} (5.2.16)

We conduct DMisC-EKI and DMisC-EnKI (sample size J = 400) to solve the EIT

problems with the different noise levels. The results are shown in figure 5.9, figure 5.10,
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(a) The estimation errors in the filtering

of DMisC-EKI for the different prior un-

certainty levels.

(b) The estimation errors in the filtering of

DMisC-EnKI for the different prior uncer-

tainty levels.

Figure 5.8: The estimation errors against the prior uncertainty levels.

and figure 5.11. Form figures 5.10 and 5.11, we can observe that, for moderate and large

amounts of noise, for both DMisC-EKI and DMisC-EnKI, the estimation error increases

(almost in a linear rate) as the noise level goes up. This conforms our expectation.

However, the behavior becomes different for small noise levels. In the range of small

noise levels, the estimation error of DMisC-EKI shows a pattern of accelerated reduction

as the noise level tends to zero, but the estimation error of DMisC-EnKI is not stable

in this range. We repeatedly conduct 20 times of DMisC-EKI, and plot the mean and

standard deviation of the 20 estimation errors in figure 5.9b. We can clearly observe

that the statistical error of DMisC-EnKI rather than the noise level play the dominate

role. This comes from two facts: 1) the standard deviation of the estimation errors is

larger than the change of the estimation errors with different noise levels; 2) the mean of

estimation errors at ε = 0.02 even smaller than the mean of estimation errors at ε = 0.16.

This violates our expectation.

An interesting fact is that: the critical value seems to be ε = 0.02. For any ε > 0.02,

for both DMisC-EKI and DMisC-EnKI, there is a stably increasing pattern (nearly in

linear rate) of the estimation errors as ε rises up. For any ε < 0.2, when DMisC-EKI

is applied, the estimation errors are acceleratedly reduced as ε tends to zero, and when
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(a) The estimation errors in the filtering of

DMisC-EKI for the different noise levels.

(b) The estimation errors in the filtering of

DMisC-EnKI for the different noise levels.

Figure 5.9: The estimation errors against the small noise levels.

DMisC-EnKI is applied, there is no stable tendency. This is why ε = 0.02 is fixed as

the critical value in our numerical tests. For implementation of EnKI, we do not suggest

using too small noise level since there exists the statistical error of EnKI. This statistical

error should be accounted as a part of the noise source. Namely, the value of ε should

contain the effect of the statistical error caused by the inverse algorithm.

5.3 Advanced tests with multi-phases conductivity

In previous experiments, we have applied single-phase priors. However, in the real world,

unknown parameters could be more likely to have multi-phases. For example, consider

EIT in medical imaging. There are contrasts between lung/brain and tissue fluid, causing

inhomogeneity of the underlying parameter. Thus, it would be more realistic to classify

the inhomogeneous media into two patterns: one is the target (lung/brain), and another is

the background (tissue fluid). Applying level-set priors can improve resolution of imaging,

as level-set priors use indicator functions for classification that provides more identifiable

features of underlying parameters.

In this section, our main purpose is to show that, EnKI also works for level-set priors

which are non-differentiable and highly nonlinear (because of the existing of indicator

169



(a) The estimation errors in the filtering of

DMisC-EKI for the different noise levels.

(b) The estimation errors in the filtering of

DMisC-EnKI for the different noise levels.

Figure 5.10: The estimation errors against the moderate noise levels.

(a) The estimation errors in the filtering of

DMisC-EKI for the different noise levels.

(b) The estimation errors in the filtering of

DMisC-EnKI for the different noise levels.

Figure 5.11: The estimation errors against the large noise levels.
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functions). Furthermore, the early stop criterion significantly improves the robustness of

the Kalman-like methods when they are applied for highly nonlinear problems. DMisC-

EKI (with early stop) and DMisC-EnKI (with early stop) are listed in algorithm 3 and

algorithm 4 in the end of chapter 3.

5.3.1 Introduction of level-set priors

In practice, forward models are not always differentiable, or the derivatives are sometimes

intractable, e.g. a black box model. Even though it is feasible to calculate the derivatives

of forward models, prior models can be non-differentiable. Consider the chain of models

involving hyper parameters,

y = G(u), u = g1(x1), x1 = g2(x2), x2 = g3(x3), · · · (5.3.1)

where G is the forward model, and g1 ◦ g2 ◦ g3 ◦ · · · is the prior model. The hierarchical

structure of the prior model allows any sophisticated construction, which provides suffi-

cient parameters fitting observations and making predictoins. [75] investigates how deep

is deep enough.

A simple example of non-differentiablity of prior model is the level set [74] of random

fields which involves p > 1 components, i.e. the prior random field u on D is represented

by, for all s ∈ D,

u(s) =

p∑
i=1

wi(s)1Ai
(v(s)) (5.3.2)

where w1,..., wp, v are real-valued random fields on D, and 1A1 ,..., 1Ap are the indicator

functions with indicator sets A1,..., Ap, where for any i = 1, ..., p, Ai = (ai−1, ai) with

−∞ = a0 < a1 < · · · < ap = +∞. Clearly, u = u(w, v) is non-differentiable with respect

to v.

With non-differentiable forward models or hierarchical prior models, EKI is not fea-

sible anymore, since EKI requires the first order derivative. However, EnKI also works

in practice, as EnKI treats the models as black boxes and updates parameters with a

simple algorithm. Compared with other derivative-free methods, e.g. MCMC methods,

the EnKI avoids many simulations of long Markov chains. EnKI is very popular in inverse

problems, because of the derivative-free property.
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5.3.2 The simulated truth and data

For our numerical experiments of the EIT problem. We draw a truth from a random

field with two phases, so that, each phase represents either the lung/brain or the tissue

fluid. The true value of log conductivity x is drawn as a sample from a random field û

on D = {s ∈ R2 : ‖s‖ ≤ 1}, such that, for all s ∈ D,

û(s) =

w1(s) if f(s) ≤ 1

w2(s) if f(s) > 1

(5.3.3)

where w1 and w2 are two Whittle-Matérn fields on D, and f(s) is the elliptic curve, let

s = (x, y),

f(s) = f(x, y) =
(|x| − 0.4)2

0.32
+

y2

0.72
(5.3.4)

Parameters of the Whittle-Matérn fields w1 and w2 are specified below,

µw1 = −8.5; σw1 = 0.5; νw1 = 2; Lw1 =

0.15 0

0 0.3

 (5.3.5)

µw2 = −6.5; σw2 = 0.5; νw2 = 2; Lw2 =

0.1 0

0 0.1

 (5.3.6)

where µ is the steady mean, σ is the steady standard deviation, ν is the smoothness

parameter, and L is the length-scale parameter of Whittle-Matérn fields.

We draw a sample ω ∈ Ω (Ω is the event set) from the random field û, and then assign

x(s) = û(s, ω) for all s ∈ D. Then we let x be the true value of the log conductivity on D.

The truth is shown in the top row in figure 5.12. Clearly, there are two phases, inside and

outside of the elliptic curves. Then, we simulate a noisy data y = G(x)+0.02·abs(G(x))�ζ,

where G is the forward model, ζ is a sample drawn from the n-dimensional standard

normal distribution, abs(·) takes the entry-wise absolute values, and � is the entry-wise

multiplication. Then, we pretend to know nothing about the truth x, and use the noisy

observation y to estimate the truth x as the inverse problem.

5.3.3 Objectives of numerical experiments

Our purpose is to show the following facts from numerical experiments.
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1. For multi-phases underlying parameters, level-set prior rather than single-phase

prior can improve the imaging resolution.

2. DMisC-EnKI, as a derivative-free method with adaptive step sizes, works well when

level-set prior is applied.

3. The early stop criterion further improves robustness of DMisC-EnKI. As the result,

DMisC-EnKI associated with the early stop criterion is quite efficient.

We will compare a single-phase prior field and a two-phases prior field for the EIT

problem. For the single-phase prior, we will apply both the DMisC-EKI and the DMisC-

EnKI; for the level-set prior, only DMisC-EnKI is applicable.

On one hand, the single-phase prior is chosen as a Whittle-Matérn field with steady

mean µ = −7.5, steady standard deviation σ = 1, smoothness parameter ν = 2, and

length-scale parameter L = diag([0.3, 0.3]). Whittle-Matérn field is discussed in subsec-

tion 2.3.3.

On the other hand, the two-phases prior is specified as the level-set field with two

components,

u(s) =

w1(s) if v(s) < 0

w2(s) if v(s) ≥ 0

(5.3.7)

where w1 and w2 are the two Whittle-Matérn fields same as the specifications in (5.3.5)

and (5.3.6), and v is the third Whittle-Matérn field which has steady mean µ = 0, steady

standard deviation σ = 1, smoothness parameter ν = 2, and length-scale parameter

L = diag([0.3, 0.3]). We adopt u as the level-set prior field.

EIT usually has lower spatial resolution than computed tomography scan and mag-

netic resonance imaging. However, its resolution can be improved by using 32 instead of

16 electrodes. We will also compare the effect of number of electrodes.

In summery, we will conduct 6 experiments:

1. 16 electrodes, single-phase stationary prior, DMisC-EKI;

2. 16 electrodes, single-phase stationary prior, DMisC-EnKI;

3. 16 electrodes, two-phases level-set prior, DMisC-EnKI;
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4. 32 electrodes, single-phase stationary prior, DMisC-EKI;

5. 32 electrodes, single-phase stationary prior, DMisC-EnKI;

6. 32 electrodes, two-phases level-set prior, DMisC-EnKI.

5.3.4 Results of the numerical tests

We conduct all the six numerical experiments. When DMisC-EnKI is applied, since it

is a statistical approach, we independently repeat implementations of DMisC-EnKI for

3 times to check if the results are close to each other or not. When level-set prior is

applied, since it is a highly nonlinear model involving the indicator function, we adopt

the early stop criterion monitoring the performance of DMisC-EnKI in the filtering. It is

not necessary to apply early stop for the stationary prior, because in this case the early

stop criterion makes no difference or only little difference.

The final estimates obtained in the 6 numerical tests are shown in figure 5.12, where

the truth is also presented as the benchmark. When the single-phase prior is applied,

all the images are blurred. However, using the level-set prior significantly improves the

imaging resolution. Furthermore, when the level-set prior is applied, using 32 electrodes

can be even better than using 16 electrodes, as the underlying parameter is more iden-

tifiable given more observations. In contrast, if only increase the electrodes from 16 to

32, without applying level-set prior, then there is no much improvement, because the

stationary prior does not provide proper characterization of the underlying parameter.

From the cross-sectional data in figure 5.13, it is notable that the estimates based

on the single-phase prior do not capture the pattern of the two-phases truth. When the

level-set prior is applied, the estimates are much better as they cover the main part of

the truth. Especially, when the level-set prior is associated with 32 electrodes, most area

of the truth is contained in the 95% confidence interval.

In the next, we plot the data misfits and estimation errors against the tempering

parameter t ∈ (0, 1] in figure 5.14. This figure shows the adequate performance of the

data-misfit controller associated with the early stop criterion. Here is about the key

discussion points. We expand in the following two paragraphs.
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Firstly, consider the left column and the middle column in figure 5.14. In these

columns, the single-phase stationary prior field is applied. Under this prior, DMisC-EKI

and DMisC-EnKI are efficient, only requiring 7–9 iterations in the filtering from t = 0

to t = 1, but the resulting estimates have low fidelity. The low resolution of imaging is

not the issue of the algorithm, but the issue of the prior information, since the stationary

prior does not characterize the truth properly.

Secondly, consider the right column in figure 5.14. In this column, the level-set prior

is applied. Since level-set model is highly nonlinear, we need to consider two possibilities:

adopting the early stop criterion or not. Even if we refuse the early stop criterion and

just conduct the filtering until the tempering parameter touches the final point t = 1,

there is no much difference, as shown in the right column in figure 5.14, the estimation

errors only fluctuates but not decreases from the early stop point to the final point t = 1.

The early stop criterion remains the similar accuracy of estimates, but has much more

efficiency. More clearly, if the early stop criterion is not used, then DMisC-EnKI requires

average 40.67 iterations for 16 electrodes, and average 22.33 iterations for 32 electrodes.

However, once the early stop criterion is adopted, DMisC-EnKI only needs average 12.67

and 10 iterations for 16 and 32 electrodes, respectively.

The early stop criterion significantly improves the robustness of the Kalman-like meth-

ods. The reason is that, the level-set prior is highly nonlinear with an indicator function,

so in this case, the accuracy of the Kalman-like approximation may be insufficient. It

is under consideration to validate whether the Kalman-like approximation is good or

not. The early stop criterion thus monitors the quality of the estimates by checking the

monotone properties. If the cost functional or the objective functional does not decrease

anymore, we should stop the algorithm, since the Kalman-like approximation has been

far from the accurate tempering setting which is provided with the monotone properties.

5.4 Brief notes and summary

From the numerical tests in this chapter, we conclude the following notations.

1. The Kalman-like methods are feasible for nonlinear inverse problems, whose for-

ward maps are continuously differntiable (choose EKI), or whose parameters and
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Figure 5.12: Comparison of the truth and the estimates produced by different algorithms

(DMisC-EKI or DMisC-EnKI) with different priors (stationary field or level-set field) and dif-

ferent numbers of electrodes (16 or 32).
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Figure 5.13: The cross-sectional data of the estimates at sy = 0 produced by different algo-

rithms (DMisC-EKI or DMisC-EnKI) with different priors (stationary field or level-set field)

and different numbers of electrodes (16 or 32).

Figure 5.14: The performace of different algorithms (DMisC-EKI or DMisC-EnKI) in filtering

under different priors (stationary field or level-set field) and different numbers of electrodes (16

or 32).
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observations still have strong linear correlations (choose EnKI).

2. The data-misfit controller proposed in this thesis, as an adaptive strategy, works

well for the Kalman-like methods, and keeps the balance between accuracy and

efficiency.

3. Practically, the Kalman-like methods and the data-misfit controller are also feasible

for non-Gaussian data, even though they use the Gaussian assumption in theory.

4. For highly nonlinear problems, the early stop criterion proposed in this thesis is

recommended to adopt, which can improve the robustness of approximate filtering

methods like the Kalman-like methods.

5. In conclusion, we recommend the following numerical strategy for nonlinear inverse

problems: the Kalman-like methods + the data-misfit controller + the early stop

criterion. If this strategy fails, then universal methods like MCMC methods have

to be in consideration, although they may cost much more computational recourse.
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Algorithm 5 GSS-EKI for data-misfit function Z : H → Rn with Gaussian prior

N (m0, C0)

Provide the increasing rate q > 1 and the total number of discrete steps K.

Assign the initial state i← 0, m← m0, C ← C0, z ← Z(m), D ← DZ(m), Q← CD∗,

C ← DQ.

while i < K do

Predict the step size h as the ith item in a geometric sequence,

hi =
qi − qi−1

qK − 1
(5.4.1)

Predict the mean-covariance pair (mp, Cp) with the extended Kalman filter,

mp ← m− hQ (I + hC)−1 z Cp ← C − hQ (I + hC)−1Q∗ (5.4.2)

Calculate

zp ← Z(mp) Dp ← DZ(mp) Qp ← CpD∗p Cp ← DpQp (5.4.3)

Renew the state i← i+ 1, m← mp, C ← Cp, z ← zp, D ← Dp, Q← Qp, C ← Cp.

end while

return (m, C) as the mean-covariance pair of the posterior distribution (approxi-

mately).
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Algorithm 6 GSS-EnKI for data-misfit function Z : H → Rn with Gaussian prior

N (m0, C0)

Provide the sample size J , the increasing rate q > 1, and the total number of discrete

steps K.

Assign i ← 0. Draw J samples independently from the prior distribution N (m0, C0),

and let these K samples into a particle U . Calculate the particle Z such that, Z(j)←

Z (U(j)) for all j = 1, ..., J . Calculate the sample means and sample covariances,

u← mean(U), z ← mean(Z), Cuz ← cov(U,Z), Czz ← cov(Z,Z).

while i < K do

Predict the step size h as the ith item in a geometric sequence,

hi =
qi − qi−1

qK − 1
(5.4.4)

Draw J samples independently from the n-dimensional standard normal distribution,

and let these J samples into a particle V . Predict the particle Up with the ensemble

Kalman filter, such that, for all j = 1, ..., J ,

Up(j)← U(j)− Cuz (I + hCzz)
−1
(
Z(j)h− V (j)

√
h
)

(5.4.5)

Calculate the particle Zp such that, Zp(j)← Z (Up(j)) for all j = 1, ..., J . Calculate

the sample means and sample covariances, up ← mean(Up), zp ← mean(Zp), Cuz,p ←

cov(Up, Zp), Czz,p ← cov(Zp, Zp).

Renew the state i ← i + 1, U ← Up, Z ← Zp, u ← up, z ← zp, Cuz ← Cuz,p,

Czz ← Czz,p.

end while

return U as the particle under the posterior distribution (approximately).
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Algorithm 7 RLMS-LMA for data-misfit function Z : H → Rn with Gaussian prior

N (m0, C0)

Provide two accuracy control parameters ρ ∈ (0, 1) and ε > ρ−1‖Z(x)‖, where x ∈ H is

the true value of the unknown parameter (practically, use ε = ρ−1
√
n if x is not given).

Assign the initial state m← m0, z ← Z(m), D ← DZ(m), C ← DC0D
∗.

while ‖z‖Rn > ε do

Predict the step size h with the RLMS, i.e, h is determined by solving the following

equation, ∥∥(I + hC)−1 z
∥∥
Rn = ρ ‖z‖Rn (5.4.6)

Predict the estimate mp with the LMA,

mp ← m− hQ (I + hC)−1 z (5.4.7)

Calculate

zp ← Z(mp) Dp ← DZ(mp) Cp ← DpC0D
∗
p (5.4.8)

Renew the state m← mp, z ← zp, D ← Dp, C ← Cp.

end while

return m as the estimate of the unknown parameter.
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Algorithm 8 RLMS-EnKI for data-misfit function Z : H → Rn with Gaussian prior

N (m0, C0)

Provide sample size J , and two accuracy control parameters ρ ∈ (0, 1) and ε >

ρ−1‖Z(x)‖, where x ∈ H is the true value of the unknown parameter (practically,

use ε = ρ−1
√
n if x is not given).

Draw J samples independently from the prior distribution N (m0, C0), and let these K

samples into a particle U . Calculate the particle Z such that, Z(j) ← Z (U(j)) for

all j = 1, ..., J . Calculate the sample means and sample covariances, u ← mean(U),

z ← mean(Z), Cuz ← cov(U,Z), Czz ← cov(Z,Z).

while ‖z‖Rn > ε do

Predict the step size h with the RLMS, i.e, h is determined by solving the following

equation, ∥∥(I + hCzz)
−1 z

∥∥
Rn = ρ ‖z‖Rn (5.4.9)

Draw J samples independently from the n-dimensional standard normal distribution,

and let these J samples into a particle V . Predict the particle Up with the ensemble

Kalman filter, such that, for all j = 1, ..., J ,

Up(j)← U(j)− Cuz (I + hCzz)
−1
(
Z(j)h− V (j)

√
h
)

(5.4.10)

Calculate the particle Zp such that, Zp(j)← Z (Up(j)) for all j = 1, ..., J . Calculate

the sample means and sample covariances, up ← mean(Up), zp ← mean(Zp), Cuz,p ←

cov(Up, Zp), Czz,p ← cov(Zp, Zp).

Renew the state U ← Up, Z ← Zp, u← up, z ← zp, Cuz ← Cuz,p, Czz ← Czz,p.

end while

return U as the particle under the posterior distribution (approximately).
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Chapter 6

Summary

We have conducted study on numerical algorithms solving inverse problems. Our main

idea is to apply the tempering setting, which rewrites the one-step transition from prior

to posterior as the continuous transition, such that, inverse problems can be equivalently

regarded as Bayesian filtering algorithm as the tempering parameter t ∈ [0, 1] goes up.

t = 0 indicates the prior and t = 1 indicates the posterior. Our main contribution

is to develop the adaptive strategy (called data-misfit controller in this thesis) used to

discretize the continuous tempering setting. This adaptive strategy has both theoretical

and numerical advantages. In theory, the data-misfit controller determines step sizes

for the tempering setting, from which, the accuracy (mean) and uncertainty (variance)

of estimates in the discrete filtering are controlled, and at the same time, the sum of

forward and backward information gain of any two successive probability measures is also

controlled. In practice, this method has no tuning parameters, so users can directly apply

it. This is much more convenient than other existing algorithms. In many complicated

applications, they suffer from that they need to tune algorithmic parameters. Then

data-misfit controller thus conquers this issue. Moreover, data-misfit controller keeps the

balance of accuracy and efficiency.

In practice, it is usually numerically too expensive to solve Bayesian inverse problems

with an accurate method such as MCMC. Then in realistic applications, we resort to apply

some approximate methods, such as Kalman-like methods, if the approximate methods

can provide satisfactory results. When we implement Kalman-like methods, we can still

apply the data-misfit controller to select step sizes. However, Kalman-like methods are
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heuristic algorithms, that means, sometimes they work, sometimes not. We need to

validate if the approximation is acceptable. For this purpose, we additionally propose the

early stop criterion for the Kalman-like methods. That means the filtering stops at t = s

for some s < 1 before it touches t = 1. The early stop criterion proposed in this thesis

is based on the monotone properties of the tempering setting. The suggested criterion is

simple to implement: since the tempering setting theoretically has monotone properties,

once any approximation of the tempering setting violates the monotone properties, it

cannot be a good approximation and then we should refuse it. Applying the early stop

criterion can cut off many unnecessary or inaccurate iterations, and improve robustness

of Kalman-like methods for highly nonlinear problems.

There exists the natural connection between Tikhonov regularization and Bayesian

inversion under Gaussian measures: the former is the MAP estimator of the latter. For

both the variational inversion and the Bayesian inversion, we prove that the tempering

setting determines a trajectory, such that, the cost functional at the MAP point and the

average cost functional are always decreasing along this trajectory from the prior to the

posterior. The proofs are done for nonlinear infinite-dimensional problems. Furthermore,

under the local linearization, the tempered Tikhonov regularization can be simplified

as the extended Kalman filter (EKF); and under the global linearization, the tempered

Bayesian inversion with Gaussian prior and Gaussian noise can be simplified as the en-

semble Kalman filter (EnKF). Although these simplifications are heuristic approach, they

lead to practical benefits: solving the EKF and EnKF is just solving the ODE and SDE

with finite difference schemes, where the step size can be automatically selected by the

data-misfit controller.

We have used the EIT model to test the proposed algorithms. Data-misfit controller

performs well in several circumstances: for different autocorrelation functions, different

prior uncertainty levels, different noise types, and different noise levels. It picks step

sizes effectively and produces results accurately, which is better than some other existing

algorithms (RLMS-LMA, RLMS-EnKI). Furthermore, we additionally apply the level-set

prior, which involves indicator functions for classification of multiple patterns of under-

lying parameters. The level-set prior is non-differentiable, with which, we can show the

good properties of EnKI as a derivative-free method. Also, we emphasize that, for this
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highly nonlinear (indicator functions) problem, the early stop criterion saves more than

half computational costs. Therefore, we recommend to apply the data-misfit controller

associated with early stop criterion, especially for highly nonlinear problems. For nearly

linear problems, there is no much difference if the early stop criterion is adopted or not.

In the future, the interesting research focus will lie on the combination of Kalman

approach and MCMC approach simultaneously solving the tempering setting. The main

purpose will be that, since Kalman-like methods are efficient and MCMC methods are

accurate, it is desired to develop integrated numerical strategies with benefits from the

both sides, and then have robust properties for more general and complicated applications.

Our logic is to firstly apply the switch update of Kalman approach and MCMC approach

to approximately search the posterior mean or MAP estimator, and secondly use the early

stop criterion for Kalman-like methods to approximately find the posterior covariance

operator. The combination of Kalman-like methods and MCMC methods is possible and

meaningful.
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