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Abstract

This thesis is split into three parts.

Part I: An Automatic Self-optimising Continuous-flow Reactor

for Electrosynthesis

Assembly-line and/or continuous, steady-state strategies are widely spreading

in the manufacturing industry. Electrosynthesis in an automatic continuous

flow manner is drawing more and more attention to both pharmaceutical in-

dustry and research. This part describes the develop and use of an automated

self-optimising continuous-flow electrochemistry reactor system. The main fo-

cus of this work is to develop an bi-language (MATLAB and LabVIEW), server-

client structure automation software framework to conduct automation, con-

trol and monitoring of flow electrochemistry processes, which enables quick

system setup, reconfiguration and high flexibility. Stable noisy optimisation by

branch and fit (SNOBFIT) and simplex algorithm (modified simplex and super-

modified simplex method) were developed and tested on simulators, which

were then applied to the synthesis action of methoxylation of N-formylpyrrolidine
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and electro-oxidation of 3-bromobenzyl alcohol. Searching of the optimum op-

eration condition of a reaction in an automatic manner is a major step forward

to establish convenient and straightforward use of organic electrosynthesis in

routine laboratory synthesis or industrial applications.

Part II: Applying FTIR Imaging to Address Challenges in Plastic

Recycling

Plastic pollution is ubiquitous throughout the earth, and reusing/recycling of

plastic has the potential to reduce the global abundance and weight of waste

plastics. The main focus of this work is investigating plastic sample using Four-

ier transform infrared spectroscopy (FTIR), single point and imaging, for recyc-

ling purpose. An quantitative calibration of talcum concentration in talcum

reinforced virgin polypropylene sample with IR peak ratio/integration was

conducted, and the application of the result to analyse the talcum disperse in

polypropylene matrix was reported. Micron scale FTIR imaging was conducted

on the film sample. Pseudo-colour image visualising the distribution of talcum

in the polypropylene matrix indicated a highly uneven distribution, a result of

the reprocessing method.

FTIR imaging was applied to investigate the composite structures of ’real-world’

composites sample for recycled industry plastics, including: virgin polypropyl-

ene with short milled recycled carbon fibre, virgin polypropylene, maleic an-

hydride grafted polypropylene with carbon fibre, acrylonitrile butadiene styrene

with calcium carbonate and virgin polypropylene with poly(ethylene tereph-

viii



thalate) on the micron scale. Imaging technique in FTIR spectroscopy not only

provide micron level spatial information of the composition but also direct solu-

tion of improving the inter-facial interactions between compositions, thus im-

proving the physical/chemical performance of the plastic products. Those pilot

studies provide insights into applying FTIR imaging for plastic sample analysis.

Part III: FTIR spectroscopy for Breast Cancer Prognosis

Breast cancer is a major cause of deaths for females worldwide. Cancer pro-

gnosis provides a patient’s likely outcome based on their current standing,

which can help to decide the treatment for the patient. The current golden

standard prognosis index, Nottingham Prognosis Index, is a time-consuming,

un-objective process to which limited confidence can be assigned because of in-

herent operator variability. Applying Fourier transform infrared spectroscopy

(FTIR) imaging to breast cancer tissue offers a non-destructive, label free tool

for cellular and extracellular breast cancer tissue studying. In this work, we

evaluate the prognostic ability of FTIR spectroscopy for identifying different

grades of breast cancer. Different combinations of data pre-processing, feature

extraction and unsupervised learning methodologies are explored. Spectrum

quality control methods are applied to correct or minimise spectral problems,

including high noise level, baseline offset and outlier. A multi-stage data ana-

lysis algorithm developed can provide statistical control over the breast cancer

classification process and produce a precise cancer prognosis.
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Below are listed the abbreviations commonly used throughout this Thesis. Any

abbreviations that are not listed are given in the text at their first occurrence.

IR Infrared

FTIR Fourier transform infrared spectroscopy

ATR attenuated total reflectance

SNR signal-to-noise ratio

FPA focal plane arrays

H&E haematoxylin and eosin

SVM support vector machine

PCA principal components analysis

NPI Nottingham Prognosis Index

FE feature extraction

FS feature selection

FC feature construction

DS diagnostic system

GA genetic algorithm

ANN artificial neural networks
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LDC linear discriminant classifier

FPPE Formalin fixed, paraffin embedded

QCL quantum cascade laser

VPP virgin polypropylene

MAPP maleic anhydride grafted polypropylene

PET polyethylene terephthalate

EN Epithelial

LN Lymphocyte

ELV end-of-life vehicles

WEEE waste electrical and electronic equipment

FOV Field Of View

SEM scanning electron microscope

CF carbon fibre

rSMCF Recycled short milled carbon fibre

FCM Fuzzy-C Mean clustering

SF surfactant

ABS acrylonitrile butadiene styrene

SNOBFIT stable noisy optimisation by branch and fit

MSM Modified Simplex Method

SMS Super-Modified Simplex Method

NMSIM Nelder-Mead simplex algorithm
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Part I

AN AUTOMATIC SELF-OPTIMISING

CONTINUOUS-FLOW REACTOR FOR

ELECTROSYNTHESIS

1



CHAPTER 1

Introduction

Green chemistry is a relatively new research field that aims to harness chemical

innovation to meet environmental and economic goals [1] simultaneously. It in-

volves ’reducing or eliminating the use or generation of hazardous substances

in the design, manufacture and application of chemical products’ [1]. Anastas

and Warner proposed The Twelve Principle of Green Chemistry to help chem-

ists achieve the intentional goal of sustainability:

1. Prevention. It is better to prevent waste than to treat or clean up waste

after it is formed.

2. Atom Economy. Synthetic methods should be designed to maximise the

incorporation of all materials used in the process into the final products.

3. Less Hazardous Chemical Synthesis. Whenever practicable, synthetic

methodologies should be designed to use the generate substances that

pose little or no toxicity to human health and the environment.

4. Designing Safer Chemicals. Chemical products should be designed to
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CHAPTER 1: INTRODUCTION

preserve efficacy of the function while reducing toxicity.

5. Safer Solvents and Auxiliaries. The use of auxiliary substances should be

made unnecessary whenever possible and, when used, innocuous.

6. Design for Energy Efficiency. Energy requirements of chemical processes

should be recognised for their environmental and economic impacts and

should be minimised. If possible, synthetic methods should be conducted

at ambient temperature and pressure.

7. Use of Renewable Feedstocks. A raw material or feedstock should be

renewable rather than depleting whenever technically and economically

practicable.

8. Reduce Derivatives. Unnecessary derivatisation should be minimised or

avoided if possible, because such steps require additional reagents and

can generate waste.

9. Catalysis. Catalytic reagents are superior to stoichiometric reagents.

10. Design for Degradation. Chemical products should be designed so that

at the end of their function they break down into innocuous degradation

products and do not persist in the environment.

11. Real-Time Analysis for Pollution Prevention. Analytical methodologies

need to be further developed to allow for real-time, in-process monitoring

and control prior to the formation of hazardous substances.

12. Inherently Safer Chemistry for Accident Prevention. Substances and the

form of a substance used in a chemical process should be chosen to min-

3



CHAPTER 1: INTRODUCTION

imise the potential for chemical accidents, including releases, explosions,

and fires.

In accordance with the Principles of Green Chemistry, the advantages of syn-

thesis in continuous flow is a ’green’ alternative to batch processes in terms of

Energy Efficiency and Prevention, which have attracted the attention of chem-

ists [2, 3]. The use of continuous flow offers several advantages ranging from

controlled process conditions to high flow rates and mass throughput [4]. It

enables reactions to be performed with an unprecedented level of control, af-

fording excellent transferability between laboratory-based investigations and

subsequent production scales [5]. Other benefits of reaction miniaturisation

include reduced exposure to hazardous chemicals, through the use of sealed

reactor units, increased atom efficiency as a result of precise reaction control

and the ability to incorporate online analytics to closely monitor processes [5].

Microreactors, a new class of continuous reactors that have emerged over the

past decade, provide continuous processing, controlled and efficient mixing of

reagents, and ease of operation for the synthesis of, for example, quantum dots

[6] and silica particles [7], as well as rapid screening of the reaction space with

minimal consumption of scarce reagents, e.g., oligosaccharides [8].

A key aspect of this chapter is the optimisation of continuous flow electro-

chemistry synthesis using an automatic continuous-flow processes. As a new

emerging technology in continuous-flow chemistry, a continuous flow system

for electrochemistry synthesis is described in detail. Combining this system

with self-optimising algorithms enables the researching of the optimal oper-

ating condition in an automatic manner. The generation of a software frame-
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CHAPTER 1: INTRODUCTION

work, as well as the application of optimisation algorithms, is fundamental to

producing an automated continuous-flow reactor system that can self-optimise

performance of industrially relevant reactions. This work develops a server-

client software structure, which enables quick system setup, reconfiguration

and high flexibility of the continuous flow chemistry reactor system. Applica-

tion of SNOBFIT, as well as Simplex Method optimisation algorithms on continuous-

flow reactor for the purpose of reaction optimisation were conducted. We have

investigated an electrosynthesis of methoxylation of N-formylpyrrolidine and

oxidation of 3-bromobenzyl alcohol. The automated continuous flow reactor

rig conducted the optimisation of both reactions successfully with less than 30

experiments, resulting in the best experimental conditions (based on the cri-

terion used) for each reaction.

1.1 Continuous flow chemistry

In continuous flow chemistry, the reagent mixture is continually pumped through

a reactor, and subjected to a series of tightly controlled conditions [9–11]. It is

normally used to scale up processes and to conduct extreme pressure/temperature

experiments safely [12–18]. One of the most important differences between

continuous reactors and batch vessel processes is the kinetic (rates of chem-

ical processes) profile of the reaction. In a batch vessel, the reaction conversion

changes as a function of time, but in a flow reactor, conversion becomes a func-

tion of reactor length and the residence time [19]. Fluid dynamics determine

the characteristics of continuous-flow equipment, the pressure loss, residence

5



CHAPTER 1: INTRODUCTION

time, heat transfer and mixing time [20]. One well-known example of continu-

ous flow chemistry is the synthesis of the natural product pristane. Flögel et

al. [21] employed the continuous flow dehydration of alkanols as a key reac-

tion step in the synthesis of 2,6,10,14- tetramethylpentadecane. Using a micro-

fluidic approach, the authors reported the synthesis of pristane in 80% yield

from farnesol. Compared to conventional batch techniques, this synthetic route

proved advantageous as it only requires a simple purification to be conducted

unlike the multiple distillations previously employed.

In a flow reactor, pressure and temperature can be safely manipulated far bey-

ond atmospheric conditions [22, 23]. Reactions done in flow are often faster

than in the corresponding batch reactions, which gives improved energy, time,

and space efficiency [24]. There is increasing interest in adapting continuous

flow processes to minimise the amount of waste generated in chemical pro-

cesses [4, 25, 26]. Detailed reviews on what kind of chemistries can be run

continuously and what equipment is available to do so are thoroughly covered

[27–30]. Reviews on when and why one should utilise flow for sustainable syn-

thesis and selected examples can be found [26].

Environmental Impact Factor, what is now widely accepted as the E-factor was

first introduced by Sheldon [31] to quantify the amount of waste generated per

kilogram of product. A higher E-factor means more waste and greater negative

environmental impact. The ideal E-factor is zero. Oil refining and bulk chemic-

als industries, by using continuous flow processes, have managed to achieved

E-factors of <0.1, and <5 respectively [32]. In bulk chemistry, nearly all chemical

processes benefit from continuous operation [4]. Tilstam and co-workers gave
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CHAPTER 1: INTRODUCTION

a recent example of such. Indoles and phenols are important transformations

often carried out on a large scale using hazardous reagents such as methyl iod-

ide or dimethyl sulfate [26]. Dimethylcarbonate (DMC) has been recognised as

a green, albeit less reactive alternative. Due to the relatively low boiling point

(90 oC) and reduced reactivity of this reagent, methylation reactions with DMC

are generally slow [33]. Tilstam [34] used a flow reactor to perform phenol and

N-heterocycle methylations with DMC. At 220 oC, yields up to 97% could be ob-

tained with reaction times as short as ten minutes. The solvent remains stable

under the reaction conditions thus preventing the formation of an unwanted

impurity.

Another most common metric used to evaluate the environmental impact of a

process is a life cycle assessment (LCA). Here, two or more processes are com-

pared from a holistic point of view, and the comparative impact on factors such

as global warming or resource depletion is evaluated [26]. Kralisch and co-

workers looked at the environmental impact of performing the epoxidation of

soybean oil (produced commercially at a rate of approximately 240 000 tonnes

per year) in batch and flow [35]. The energy demand per mole of the product

was found to be lowest when performed at high temperatures in a flow reactor

(T > 100 oC). In a best-case scenario, the authors note that switching the exist-

ing process to a high temperature flow reaction can give approximately 11–12%

reduction in global warming and human toxicity potential.

In comparison, the pharmaceutical and fine chemical industries have E-factors

that can range between 5 and 100 [32]. The majority of pharmaceutical products

are produced using a start and stop batch process [9–11], which is partly the

7
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result of a highly dynamic and rapidly changing market in modern chemical

synthesis [36, 37]. It has been estimated that the use of continuous flow manu-

facturing could result in saving of up to 40% in terms of cost savings in each

drug loading/key-intermediate price scenario [38]. Further development of

methods in continuous processing was identified as the most important area

of research in green chemistry and engineering for the pharmaceutical industry

[39].

It has been a growing development in the use of continuous flow reactors in

the manufacture of fine chemicals and pharmaceuticals. In 2005, the American

Chemical Society (ACS), Green Chemistry Institute (GCI) and several leading

global pharmaceutical corporations developed the ACS GCI Pharmaceutical

Roundtable to encourage innovation while catalysing the integration of green

chemistry and green engineering into the business of drug discovery, devel-

opment and production [40]. Some companies have already successfully de-

veloped continuous commercial-scale processes such as SK Chemicals, Ampac

Fine Chemicals, and Phoenix Chemicals. SK-Chemicals has chosen a global

approach through technology fusion including catalysis, microreaction techno-

logy, simulated moving bed, etc. [41]. An industrial example at Lonza was

given by Kockmann et al. [4] to illustrate the capabilities of pharmaceutical

production in microstructured continuous flow devices. Using organometallic

and coupling as an example of a reaction, a large-scale pilot plant with vessels

(600–1600 L in size) for a production of nearly 700 kg of isolated product was

achieved.

A continuous process can perform steps/procedures in an automated manner
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CHAPTER 1: INTRODUCTION

using advanced process control and appropriate modules (dedicated equip-

ment/ unit operations), thus reducing labour costs [42]. There is considerable

interest in the automation of continuous flow reactors to enable fast parameter

(temperature, pressure, and time) adjusting and achieve optimal condition for

the reaction [43].

1.2 Process optimisation and automation

Chemical reactions can be influenced by multiple factors, and therefore, finding

the optimal operation conditions for a complex reaction can be an arduous task.

Process optimisation is the practice of minimising, the cost, use, equipment size,

waste, and time associated with a synthetic route. With the aim of commercial-

isation, this is a common goal within chemistry [38]. Reactions for the purpose

of discovery, optimisation, and kinetic analysis seek only to gain information

about a given set of conditions, not to form large amounts of products. Using

batch synthesis, a traditional search procedure involves trying different com-

binations of parameters (e.g. temperature, pressure, time or concentrations),

which requires a high level of labour and/or expenses. When there are more

than three parameters to be adjusted, in most cases, it will become impossible to

conduct an exhaustive search (evaluating each possible combination) on batch

synthesis. To minimise waste generation, it is desirable to perform these trans-

formations on as small a scale as is practical. Continuous-flow operations,

and the potential online analysis inherent in microsystems for chemistry (mi-

croreactors) have enabled chemical researchers to investigate not only reaction

9
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kinetics and mechanisms studies [44, 45], but also myriad reactions under ex-

perimental conditions not easily achieved with conventional laboratory batch

equipment [46]. In flow chemistry, the conditions can be varied quickly, and

the installation of analytical equipment (UV [47], IR [48], Raman [49], fluor-

escence[50], NMR [51], HPLC [52], and MS [53] devices) can allow for online

analysis and feedback. Using µL volume microreactor, large amounts of data

can be gathered with small amounts of material. These characteristics make

flow chemistry an ideal platform for process optimisation.

Online chromatographic methods can be performed by fabricating microreact-

ors capable of separation and detection or by transferring samples from the mi-

croreactor system to commercial HPLC/GC equipment. Mills and Nicole [54]

used a multi-port gas-switching valve to sample heterogeneous gas-phase ox-

idation from six parallel packed-bed microreactors. Benson et al. [55] also used

online gas chromatography for real-time evaluation of catalytic transformations

of lipids to biodiesel via several different zeolites in a glass microreactor.

Exploiting the transparency of silicon to IR radiation in the range of 4,000 to

10,000 cm−1, Floyd et al. [45] achieved in-situ FTIR spectroscopy monitoring for

the hydrolysis of propionyl by loading a silicon microreactor directly into the

sample compartment of an IR spectrometer. Further integration of temperature

control was accomplished with this device through the fabrication of an on-chip

heat exchanger. Additionally, detection by multiple internal reflection–FTIR

spectroscopy in silicon microreactors has been accomplished through the use

of a potassium hydroxide wet etch to create the bevelled silicon edges needed

for the technique [56].
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Even rough optimisation requires much control and many repeat experiments

to acquire enough data [57]. One solution lies in automation, which allows stat-

istically significant data to be obtained whilst decreasing the amount of manual

control and monitoring required during an experiment, by incorporating logic

and feedback control with instrumented microreactors. Benefits from automa-

tion and microreactors, including reductions in material and time, have been

demonstrated for reaction screening and reaction optimisation [58–60]. Mul-

tiple pieces of equipment (e.g. pumps, reactor, temperature control unit and

gas-liquid separator) are normally involved in continuous flow chemical reac-

tions. The automation of the continuous flow chemistry process requires the

communication, controlling and collaboration of different pieces of equipment.

This is normally achieved through in-house developed automation software.

An automated microreactor system that can quickly profile the parameter space

of a Sonogashira reaction was designed by Sugimoto and coworkers [61]. This

system consisted of two HPLC pumps for fluid handling, a temperature con-

trol, a 500 µm × 1000 µm micromixer followed by a 1000 µm × 10 m residence

time unit, and a fraction collector. The system performed the specified reactions

and collected samples in an automated fashion, before the fractions were ana-

lysed offline by HPLC. This system was used to investigate reactions with 0.225

M bromothiophene derivative, 1.08 equivalents of p-tolyacetylene, 1 mol% Pd

and 2 mol% Cu catalysts, and 2.5 equivalents of base. By manually input the

desired experimental matrix, namely the set of reaction temperatures and res-

idence times of interest, the optimal yield of 96% was obtained.

The majority of work on automated continuous flow reactors [9–12, 15–18, 43,

11
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47, 58–60, 62] have focused on the hardware as well as the chemical reaction

itself. Each of these examples relies on a distinct protocol in terms of software

design. The automation software is normally well fitted to one specific rig set-

ting, which makes it task-specific and difficult to transform. Major changes of

the software are needed when the rig is changed to serve a new reaction. The

creation of automatic flow chemistry systems is challenging because the system

contains many components that needed to be re-configured and re-connected

to perform a different reaction. Control schemes for devices in an automatic

continuous flow rig that offer stable operation with fast dynamics are required

for the adoption of microreactor systems in total synthesis research [46].

1.3 Automated self-optimising continuous flow reactor software

Combining automated continuous flow chemistry with self-optimisation al-

gorithms can remove much of the tedium of optimisation [57]. Except for

the automation software discussed in the last section, the self-optimisation al-

gorithm built in the software is another essential component.

Walsh et al. [12] reported the development of a supercritical CO2 reactor for

heterogeneous acid catalysed etherification reactions. Using online gas-liquid

chromatography (GLC), the reactor was able to tune the key factors of the re-

action to maximise the yield of products. The same reactor was applied to

a range of different reactions, including hydrogenations [13], aldol condens-

ations[15] and methylations [16–18]. In the automatic optimisations steps of

these research, a single factor/variable was evaluated at a time. Only after the

12



CHAPTER 1: INTRODUCTION

first factor had been optimised could another factor be varied. This approach is

only reasonable if the variables are independent of each other, which, for most

chemical reactions, is not true. It is important to develop efficient algorithms for

continuous flow processes to optimise multiple factors in a series of consecutive

experiments. To allow numerous parameters to be optimised simultaneously, a

more robust system is needed.

Krishnadasan et al. [60] developed an automated platform capable of determ-

ining optimal operating conditions of CdSe QD synthesis of different sizes. An

online spectrometer was used to analysis the emergent particles. An automated

feedback loop using the Stable Noisy Optimisation by Branch and Fit (SNOB-

FIT) was adopted to generate the new conditions. First, two-dimensional op-

timisations in which the optimum was discovered by varying the flow rates of

the Cd and Se precursors were performed. Each optimisation trial involved 43

automated experiments and investigated the conditions that would result in the

best reaction performance for CdSe QDs with target emissions of 500, 510, 520,

530, 540, and 550 nm. A three-dimensional optimisation search in which reac-

tion temperature was included in the set of variables was then performed. In

the 3-D optimisation, 106 automated experiments to identify the optimal con-

ditions for CdSe QDs at the various target emission wavelengths. In parallel to

Krishnadasan et al., we have been developing a self-optimising reactor for reac-

tions in supercritical carbon dioxide (scCO2) [63]. We have previously reported

the 2-D and 3-D optimisation of fluorescent nanoparticle synthesis using a mi-

crofluidic reactor [64]. This has been applied to the methylation of 1-pentanol

in supercritical carbon dioxide using dimethyl carbonate and methanol with
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γ-alumina catalyst to give 98% and 68% yield of pentyl methyl ether respect-

ively. Those study nicely illustrates the ability to quickly acquire an abundance

of reaction data with these platforms.

Using the Nelder-Mead Simplex Method (NMSIM) for optimisation, McMul-

len et al. [46] developed a self-optimising microreactor which allows numerous

parameters to be optimised simultaneously for a Heck reaction. The reaction

was then successfully scaled up 50-fold using the optimal conditions. In separ-

ate studies by the same group, Simplex, SNOBFIT and Steepest Decent Meth-

ods were successfully tested to optimise a Knoevenagel condensation reaction,

demonstrating the broad operational capabilities of the system [65]. In addition,

a four-dimensional optimisation using the Simplex Method was performed on

an oxidation reaction.

Parrott et al. [63] demonstrated the first self-optimising supercritical CO2 re-

actor on a larger scale (ca. 0.1–0.7 kg/day) than those used in previous studies

with self-optimising reactors in conventional solvents [46, 65]. Using the super

modified simplex (SMSIM) algorithm, a two-factor optimisation was conducted

on both products from the dehydration of ethanol (1) over γ-aluminareaction,

which show that conditions can be optimised for more than one product from

the same reaction mixture.

Moore and Jensen [66] explored a number of different algorithms for the op-

timisation of a Paal Knorr reaction. A 232 µL chip reactor was used along with

a commercially available IR spectroscopy flow cell which was calibrated to de-

termine the concentration, and thus yield, of the desired product at the outlet of

the reactor. Temperatures ranging from 30 to 130 oC and reaction times from 2
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to 30 minutes were evaluated. With the most effective algorithm, only 38 exper-

iments were required to find the optimal conditions. The highest conversions

were identified at 130 oC and 12.35 minutes, giving a conversion of 81%.

A recent example was carried out by Poscharny et al. [67], who reported the

advantage of using a capillary-type13 microfluidic photochemical reactor for

Paternò-Büchi reactions and a computer-assisted self-optimisation of flow rates.

Based on Modified Simplex algorithm (MSIM), an online-analysis approach

was developed to obtain the optimal residence time by connecting an in-line

ReactIR spectrometer and a computer-based communication interface to the

aforementioned flow reactor. A comparable yield of 97% after 83 min reaction

time was obtained.

Mathematically, there are different optimisation techniques, such as Hill Climb-

ing, Stable Noisy Optimisation by Branch and Fit (SNOBFIT) and Simplex Meth-

ods. Among them, SNOBFIT and Simplex Methods (including Nelder-Mead

Simplex Method and Super Modified Simplex Method) are the two most used

methods in self-optimising flow chemistry literature. SNOBFIT is known as

a global optimum search method while Simplex Method can only return local

optima. Simplex Method, however, takes much fewer iterations to reach the

optima compared with SNOBFIT algorithm. For an optimisation problem that

has limited or only one optimum, Simplex Method can find that optimum in

a few experiments. For optimisation cases that are known for having multiple

optima, SNOBFIT has a higher possibility of finding the global optimum. Both

SNOBFIT and Simplex Method are discussed, compared and applied in this

work.
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A deep reinforcement learning approach was adopted for chemistry reaction

optimisation by Zhou et al. [68]. They developed a model they call the Deep

Reaction Optimizer (DRO) to guide the interactive decision-making procedure

in optimising reactions by combining state-of-the-art deep reinforcement learn-

ing with the domain knowledge of chemistry. Iteratively, the DRO interacts

with chemical reactions to obtain the current experimental condition and yield,

and determines the next experimental condition to attempt. With extensive

experiments on simulated reactions, the DRO method outperformed several

state-of-the-art blackbox optimisation algorithms by using 71% fewer steps.

Schweidtmann et al. [69] demonstrated for the first time the use of multi-

objective machine learning methods for the self-optimisation of two exemplary

chemical reactions, by combining the recently developed Thompson Sampling

Efficient Multi-Objective (TS-EMO) algorithm with an automated continuous

reaction system. The proposed setup was capable of simultaneously optim-

ising productivity (STY) and environmental impact (E-factor) or % impurity.

The four-parameter optimisations efficiently converged to dense Pareto fronts

within 68 and 78 experiments respectively.

As the development of self-optimising continuous flow reactor, reconfigurab-

ility of the system is getting more and attention. To mitigate this challenge,

Bédard et al. [70] described a plug-and-play, continuous chemical synthesis

system with an integrated combination of hardware, software, and analytics.

The system software controls the user-selected reagents and unit operations (re-

actors and separators), processes reaction analytics (high-performance liquid

chromatography, mass spectrometry, vibrational spectroscopy), and conducts
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automated optimisations. The versatility of the system was achieved by the de-

velopment of a universal bay, a standardised and flexible interface that can host

any type of reaction module necessary for the particular chemistry being per-

formed. Six different modules have been developed thus far: a heated reactor

(up to 120 oC), a cooled reactor (to –20 oC), a light-emitting diode (LED)–based

photochemistry reactor, a packed-bed reactor (for solid supported reagents and

catalysts, as well as passive mixing), a membrane-based liquid-liquid separator

(purification via extraction), and a bypass (for reagent addition in a minimal

volume, mixing, or unused bay). The examination of the substrate scope in

multiple reactions (C-C and C-N cross-coupling, olefination, reductive amina-

tion, nucleophilic aromatic substitution (SNAr), photoredox catalysis) and mul-

tistep sequences afforded greater than 50 compounds in high yield.

1.4 Electrochemistry in microreactor

Organic electrosynthesis has a long history dating back to the mid-1800s [71,

72]. Faraday observed that ethane was generated when a solution of sodium

acetate was electrolyzed, and thereby performed the first electroorganic syn-

thetic transformation [73]. Many interesting conversions have been reported

over the past decades [74–76], such as the synthesis of dimeric alkanes using

organic acid carboxylates as starting materials [77]. Although electrochemistry

transformations provide an attractive, atom efficient approach to the synthesis

of complex molecules, the ability to scale-up such reactions is hampered by

the inhomogeneities that arise within the electric field when reactors are in-
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creased in size; consequently, its use in the development of drug candidates

and fine chemicals is limited. [5]. Microreactors have unique properties stem-

ming from their submillimeter feature sizes and large surface areas relative to

their volumes [78]. The use of miniaturised flow cells in order to achieve the

desired reaction throughput without the need to increase the overall size of the

reactor has the potential to enable well characterised electrochemical systems

to be employed for the manufacture of novel chemical agents [29, 79].

In an electrochemical thin-layer flow cell, comprising of a Pt cathode and glassy

carbon anode in parallel (with an inter-electrode distance of 80 µm), Atobe and

co-workers [80, 81] subsequently reported the synthesis of 2,5-dimethoxy-2,5-

dihydrofuran via the reduction of the methanolic solvent stream. They intro-

duced the concept of using ’parallel laminar flow’ within narrow gap reactors

to separate the anolyte and catholyte streams without a physical separator [82–

84]. With a flow rate typically 0.1 cm3/min, the slow flow rate of solution limits

the cell productivity to a few milligrams/hour.

Yoshida and co-workers [85–87], reported a series of reactions based on ’cation

flow’ methodology. Employing a diaphragm flow cell, reactants were intro-

duced in rapid sequence into a carrier stream whereby highly reactive carboca-

tions, such as N-acyliminium ions, were generated and converted into the re-

spective product. In general, good reaction selectivity (67-100%) was achieved,

although at only moderate conversions (50-75%) and slow product formation

rates (5-50 mg/h).

More recently, Ammonite cells with extended channel length have been de-

veloped [88, 89]. The 1000 × 2 mm spiral channel and 0.5 mm inter-electrode
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gap is achieved by employing a spacer in-between two parallel circular plate

electrodes with radius 8.5 cm, as shown in Figure 1.1. It is designed for stud-

ies relating to optimising reaction conditions and for synthesising products on

a scale of 100 mg - 10 g [89]. For the methoxylation of N-formylpyrrolidine

reaction, 100% conversion can be achieved in a single pass, and it is possible

to achieve more than 95% reaction selectivity and ≥ 20 g/h product formation

rate [88].

Figure 1.1: Ammonite cell with spiral solution channel: (a) the key components and

(b) the complete cell. Reproduced from [89].

In this work, test reactions were carried out in an Ammonite electrochemical

reactor. The microflow electrolysis cell for laboratory synthesis on a multigram

scale has been previously developed and provided by Professor Richard C D

Brown at the University of Southampton.

In addition to the reactions discussed, numerous electrochemical transforma-

tions have been investigated under continuous flow conditions, including C–C

bond formations (achieved in the absence of electrolytes) [90], oxidative meth-

oxylations [91] and cathodic reductions of allylic halides [92]. Detailed reviews
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concerning organic electrode reactions [76, 93–96] and flow electrolysis cells

specifically designed for the synthetic organic laboratory [71] can be found.

1.5 Aims

The work in this part of the thesis sets out to explain the advances made during

my PhD to the automated self-optimising reactor, which can be split into two

categories:

1. Rig and its automation software

The primary aim of this research is to develop a bi-language (MATLAB

and LabVIEW), server-client structure automation software framework to

conduct automation, control and monitoring of the flow electrochemistry

process, which enables quick system setup, reconfiguration and high flex-

ibility of the continuous flow electrochemistry reactor system. Based on

the rig used in previous studies [36, 57, 63, 64, 97–105], improvements of

the hardware system of continuous flow chemistry (the electrochemical

reactor, the online feedback loop, the use of a gas-liquid separator) is de-

scribed in Chapter 2. This work was conducted in close collaboration with

Dr. Ke Jie.

2. Optimisation strategies

We want to explore the ways in which optimisation strategies are applied

to the automated continuous flow system, and test the performances of

the algorithms on varies component reactions, focusing on their chemical
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consequences.

Discrete value optimisation algorithm, Stable noisy optimisation by branch

and fit (SNOBFIT) was adopted and modified to fit in the self-optimisation

software frame. Its efficacy and stopping criterion were investigated in a

simulator. The electrosynthesis of methoxylation of N-formylpyrrolidine

was used as proof of the algorithm’s experimental suitableness. Con-

tinuous value optimisation algorithm, Nelder-Mead simplex algorithm

(NMSIM) and Super-Modified Simplex Method (SMS) were developed

and compared. NMSIM was tested on the reaction electro-oxidation of 3-

bromobenzyl alcohol, and its efficacy and experimental suitableness have

been investigated in comparison to the SNOBFIT algorithm.
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Rig and automation software

developing

Based on the study conducted by Ingham et al. [106], compared to perform a

study/synthesis manually (batch), flow chemistry often requires more time be-

cause of the labour-intensive automation setup. The hardware of a flow chem-

istry system can be connected and prepared in a matter of hours or days, a

smooth control and monitoring software system, however, often requires signi-

ficantly more time [107]. Within the growing literature of autonomous opera-

tion of flow chemistry, the majority of the automation systems are task-specific,

which is difficult for other researchers to re-invent [107]. Even a minor altera-

tion to an automation system requires a considerable amount of effort on the

software adjustments. A flexible, reliable control and automation software sys-

tem is needed to reveal the full benefit of automated flow chemistry system.

Adamo et al. [3] reported a reconfigurable system for continuous flow pro-

duction of pharmaceuticals. The system was divided into different modules to
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enable reconfiguration to produce four different drug products within the same

system. A modular software platform was used to achieve a flexible plug-and-

play approach for the system. The further development of the system was re-

ported by Bédard et al. [70]. The versatility of the system was achieved by the

development of a universal bay, a standardised and flexible interface that can

host any type of reaction module necessary for the particular chemistry being

performed.

LabVIEW is a visual programming language popularly used in flow chemistry

experiments [66, 108–111]. MATLAB has excellence in complex computational

tasks. To combine the advantages of both systems, researchers place the MAT-

LAB code inside the LabVIEW program [65, 66, 109, 111]. Cherkasov et al. [107]

proposed an open-access OpenFlowChem platform based on LabVIEW for flow

chemistry process automation, control and monitoring. Containing three ma-

jor layers: (i) device monitors, (ii) a system module, and (iii) optional external

safety devices, the platform is optimised for quick system setup, reconfigura-

tion and high flexibility.

A LabVIEW plus MATLAB approach is adopted, as this can provide the lowest

implementation costs as well as the best performance (responding time, reli-

ability and computational resource cost). In this chapter, we propose a server-

client software structure based on both MATLAB and LabVIEW programming

for controlling and monitoring flow electrochemistry. Firstly, an introduction

of the experiment setting for a 3-D optimisation reaction is given. Then, based

on this rig setting, the software setting is explained in detail. Finally, a discus-

sion section is provided to further explain the flexibility of the software frame.
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This work is in close collaboration with Dr. Ke Jie, who is responsible for the

hardware connection as well as the LabVIEW programming.

2.1 An example hardware connection

In this section, the electrosynthesis of methoxylation of N-formylpyrrolidine

(Scheme 3.1, on page 44) was used to provide an example of the rig connection

to the automated continuous-flow reactor system. The reaction is often used as

an example reaction to test the performance of a flow chemistry system [112].

The use of online gas-liquid chromatography (GLC) following the progress of

reactions in continuous flow has been reported [36, 64, 97, 100, 113]. In this

work several improvements are made to the continuous system to incorporate

an electrochemical microreactor (Figure 1.1, on page 19). Figure 2.1 shows a

diagrammatic representation of the stages involved in experimentation using

the automated self-optimising reactor. A typical process of automated optim-

isation is given as following. After the online analysis equipment returns an

object function value (yield, space-time yield, E-factor, etc.), using a built-in op-

timisation algorithm, the controller predicts the next parameter combination

that can potentially provide better results, and set the continuous flow reactor

accordingly. The process repeats itself until the best performance is reached. In

this thesis, the term ’rig’ will be used to refer collectively to the experimental

apparatus.

A schematic of the automated continuous-flow reactor system used in this in-

vestigation is shown in Figure 2.2a. The functional unit consists of two pumps,
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Figure 2.1: Schematic diagram of the continuous flow, self-optimising reactor. The

blue section is a continuous flow electrochemical reactor. With constance reactant flow

in, it can output the reaction result continuously into the online analysis equipment.

The orange part is the automatic self-optimisation software system. Based on the on-

line analysis result, the controller decides the next set of parameter setting (current,

flow rate etc.), and applies those parameters on the electrochemical reactor. A feed-

back control loop is achieved (indicated by the arrows) by the hardware and software

system together to conduct chemistry reaction self-optimisation.

one reactor and one gas-liquid separator. The solvent reactant streams were

pumped into the spiral micro-flow cell reactor, R, and then, to a gas-liquid sep-

arator, S. The liquid phase passes through a gas chromatography (GC) sampling

loop and into to the product reservoir. Automatic sampling of the liquid phases

product is achieved by GC when a new analysis is initialised. Electrolyses of

the reactor was controlled with a programmable DC power supply (type 2260B-

30-36, Tektronix). Communication between the central computer and the pump

were accomplished with RS232 serial port connections. Online monitoring of

the reaction was performed using a GC-2010 (Shimadzu) connected directly

after the separator. Automation was achieved using in-house built software,

which is explained in detail in Section 2.2.
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(a)

(b)

Figure 2.2: Continuous flow, self-optimising reactor. (a) Schematic diagram of the self-

optimising reactor, where the grey dash line represents reactant flow in the function

unit: reactor (R), separator (S) and product reservoir (PR); and the black solid line

shows the information flow between the optimising unit. (b) Experiment setting of

the self-optimising reactor. Controlled by a PC, the pump unit pumps reactants into

the reactor. A gas-liquid separator is used to remove the gas product, before the result

solution is sent to the GC for analysis.
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In this setting, the flow rate of both pump 1 and 2, as well as the current being

supplied to the reaction cell are the three independent variables. Different com-

binations of those three parameters can be tested in an automatic, continuous

flow chemistry way. Distinct GC spectrum analysis algorithms can be applied

to achieve different optimisation targets (yield, E-factor etc.). Figure 2.2b is the

experiment setting of the self-optimising continuous flow electrochemistry rig,

with the main functioning unit labelled. The system contains six major units:

(i) Control PC, fully self-sufficient LabVIEW and MATLAB programming unit,

to handle all interactions with individual instruments and the self-optimisation

process; (ii) Solution unit, to provide the reactant solution for electrosynthesis;

(iii) Pump unit, pumps used for flow rate control, to handle input of reactant

solution, output of result solution, as well as liquid level control of gas-liquid

separator; (iv) Gas-Liquid Separator, to separate the gas-phase product form the

result solution; (v) Electrochemistry microreactor; (vi) GC analysis equipment,

to analysis the result solution for optimisation targets (yield, E-factor etc.).

2.2 Software developing

2.2.1 Requirements for flow chemistry automation

The automation of chemical synthesis is currently expanding, and this is driven

by the availability of digital labware [2]. The automation software for self-

optimising continuous flow electrochemistry rig not only required to establish

high standard control and monitoring on multiple in-house built or commer-

cialised lab equipments, but also needed to be safe, affordable, flexible and
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accessible to synthetic chemists. Summarising the previous work on automa-

tion [12, 13, 15–18], we considered the following requirements to conduct flow

chemistry in an automation way.

– Operational safety. The software should have the ability to monitor cru-

cial experimental parameters, as well as terminate an ongoing experiment

based on the feedback of those parameters. This function should have the

highest priority to over-write all other instructions given. The decision-

making section of this function should be carefully considered. The exper-

iments keeps being interrupted if the entry level of the function is low (too

sensitive). Failure of detecting the unsafe situation occurs when the entry

level of the function is high (too insensitive).

– High reliability and stability. Robust feedback loops should be installed

to conduct instrument control and communication, as software-hardware

communication error can occur. For instance, a thermal meter reading

function should always be called right after a temperature setting function

is initialised to make sure the correct temperature is set.

– Automated pause, stop and restart function. The software should have the

ability to stop or pause the experiment when the user instructs. Also, it

should have the ability to restart the experiment from where it stopped.

This function requires the software to record all the details of the on-going

experiment and reset them to the system when re-start function is initialled

by the user. This is most important for optimisation purpose as it can be

expensive and time consuming to repeat the previous experiments.
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– Low entry level for system alteration. Previous attempts of building soft-

ware for continuous flow chemistry have shown that when one instru-

ment is removed, the whole programming has to be carefully modified

and checked. This ’enclosed’ system is expensive because of the additional

time and resources needed to rebuild the system. This can be avoided by

the server-client software structure proposed.

– User interface. A clear and well-designed user interface should be provided

to provide convenience to any user of the software.

Based on these requirements, in-house software was built for automation, con-

trol and monitoring. The software system can be divided into five main parts:

user interface, Rig controller server, device driver client, optimisation client,

and spectrum analysis unit. The former three are based in LabVIEW (v17.1,

National Instruments), while the latter two are based in MATLAB 2017b (The

MathWorks Inc., Natick, MA). The novelty of the software lies with the server-

client structure software frame to make the continuous-flow synthesis system a

compact, reconfigurable platform.

2.2.2 Software frame

As shown in Figure 2.3, we recommend a two PC system for the flow chem-

istry automation. Separating the commercial software of the analysis equip-

ment (e.g. GC or IR) with the in-house build rig control system can provide

extra robustness and reliability. The computer for analysis equipment is nor-

mally customised for controlling specific instrumentation. It can breakdown
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easily and not up to date and it is quite costly and time-consuming to replace

them. Introducing another computer into the self-optimisation reactor system,

we separate the analysis instrument into a closed environment. Less system fall

and high-performance stability can be expected. It also lowers the entry level

for analysis equipment alteration.

Figure 2.3: Software communication architecture. The system is based on a server-

client structure. Distributing the system on two PCs makes the replacement of the ana-

lysis equipment/method easier. The proposed framework has five function modules:

(i) drivers, (ii) rig controller, (iii) spectrum processing, (iv) optimisation algorithm, (v)

user interface.

The flexibility and the transferability of the system are achieved by the server-

client software structure. Rig controller server is in the middle of the automated

software system. The server is consisted of all the essential functions: safety

measurements, data logging, experiment stopping function, etc. Those are the

functions that need no change when alternating the system. In Figure 2.3, the

region highlighted by the dash line is the changeable unit, which is called a

client module in our system. A new device can be easily added to the system
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by adding a drive client to that device. The analysis equipment can be easily

changed by changing the ’Analysis equipment drive client’ and the ’Spectrum

analysis unit’. A client is normally corresponding to a different type of device

in the rig. It is in charge of all the automation, control and monitoring of that

device. Different devices of the same type (e.g. pump 1 and 2 in Figure 2.2) can

share the same client.

The optimisation function is treated as a client to the system. This enables other

running methods to be used in the flow chemistry system. In optimisation

methods, the next condition is only generated based upon the analysis result of

the last condition. We created the other two running methods:’List’ and ’Ramp’.

In ’List’ method, a list of the condition is provided by the user, which will be

tested by the system one-by-one in an automatic manner. In ’Ramp’ method,

for each independent variable, a low boundary, upper boundary, and step size

will be provided by the user. The method client will generate all the possible

condition combinations and sent them to the rig system to be tested one-by-

one. The ’List’ and ’Ramp’ methods proved to be useful way to determine the

search boundary for self-optimisation function.

For the rig setting in Section 2.1, to conduct self-optimisation experiment, a

pump client, power supply client, GC client, a gas-liquid separator client and

the optimisation client are connected to the server. In a typical run, the server

talks with the optimisation client to get the ’Condition’ and pass the equipment

parameters to the driver client to set up the experiment conditions (flow rate

of pump 1, 2 and output current of power supply). After the reaction reaches

steady state under the new setting conditions (10 minutes waiting), a sample
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of the reactor output-flow loop is collected by the analysis equipment (GC in

this case) to conducted automatic acquisition. After acquisition, the result is

analysed by the spectrum analysis unit to obtain the evaluation parameter (nor-

mally yield of the target product). Based on the evaluation parameter, a ’New

Condition’ is generated by the optimisation client. The procedure is repeated

using the new condition.

2.3 Conclusions on automation software developing

Using this bi-language based, server-client structured software, a continuous

flow chemistry platform with minimal efforts and maximum flexibility has been

achieved. The platform was demonstrated with a two parameters reaction.

Both ’Optimisation’ and ’Ramp’ running methods were tested. The results,

which is reported in Section 3.1.2 on page 44 indicate that the system can pro-

duce accurate, automatic continuous flow chemistry. Through small changes to

the client (modified within hours), a three parameters optimisation experiment

was conducted, which could be run (see Section 3.2.2 on page 67). This reveals

the great potential of the new software platform.
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Optimisation strategies

Parameters can be discrete or continuous values in an engineering optimisation

problem. The major difference between continuous and discrete value problem

is the size of the search domain. For a continuous value problem, the optimisa-

tion algorithm needs to find the best performance parameters from the infinite

number of combinations. While in a discrete value problem, the search do-

main has limited possible combinations in which an exhaustive search can be

applied. The step length is another major difference between these two types

of problems. For an integer parameter problem, the step length is the integral

multiple of the parameter resolution, which itself is also a discrete value. For a

continuous problem, the step size can be any value decided either by the user

or by the algorithm itself.

For chemistry optimisation problems, it is not always necessary to use the con-

tinuous value in optimisation. Temperature, for example, is a continuous value

parameter. In some chemistry experiments, the temperature 37.150 oC or 37.151

oC can make little difference. Furthermore, it is difficult to control the temper-
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ature at an accuracy level of 0.001 oC. It is reasonable to fix the temperature

resolution as 1 oC or 0.5 oC and transfer this continuous value parameter into a

discrete value parameter for optimisation analysis. SNOBFIT is a discrete value

optimisation algorithm, while Simplex is an optimisation algorithm works on

continuous value. The applying of those two algorithms on the automated flow

chemistry setting has fundamental differences in terms of the resolution. The

optimisation resolution for SMOBFIT is defined by the user. Meanwhile the

Simplex optimisation resolution is based on equipment accuracy grade as well

as stopping criterion. This is due to the nature of the optimisation algorithm,

and is further explained in the section of each algorithm.

In this chapter, both SNOBFIT and Simplex methods are compared and modi-

fied to fit in the automation software. To save time and resource, the perform-

ances of these algorithms were first tested on a simulator (return an object func-

tion value of a given condition based on mathematical equations) before real

reaction optimisation is performed on the flow chemistry rig.

3.1 Stable noisy optimisation by branch and fit (SNOBFIT)

Stable noisy optimisation by branch and fit is the combination of a branching

strategy and a sequential quadratic model. The algorithm proceeds by par-

titioning the search region into sub boxes, each containing exactly one point

where the function has been evaluated [114]. Local minimum search is con-

ducted by fitted quadratic models formed around data points in each box.

Branching strategy is used to enhance the chance of finding the global min-
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imum. The algorithm will be terminated when stopping criteria is met (e.g. not

improved for four attempts). Numerical experience with further tests suggests

that SNOBFIT should be used primarily with problems of dimension less than

10 [114].

The pseudo code of calling SNOBFIT optimisation algorithm is given as follow-

ing:

– Generate npoint random starting points, npoint = dimensionality + i, in

which i is a user define integer;

– Evaluate all the starting positions and store the best performance one as

best;

– Repeat

• Call SNOBFIT to generate new nreq points, nreq = dimensionality + j,

in which j is a user define integer;

• evaluate the new position;

• if a value among new position is better than the best, store that position

as the best;

– Stop if the user-defined termination criterion is met (e.g. not improved for

4 goes)

The SOBFIT function used in this section is an open-source MATLAB package

provided by W. Huyer and A. Neumaier. Detailed instructions of using the

function are given in the web page [115]. The paper describes the usage of the

package, and the method implemented [114]. The MINQ bound-constrained

quadratic programming package [116] used in the SNOBFIT package is MINQ5
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based on MATLAB on its fifth version. The MATLAB SNOBFIT package in

Reference [115] can only work with the right MINQ5 package available.

3.1.1 Performance on simulator

Almost every optimisation algorithm provides adjustable parameters to better

fit the algorithm to a specific problem. The performance of the algorithm is

highly related to the parameter settings given. Prior-knowledge of the optim-

isation problem/landscape is required, multiple testing of the parameter set-

ting is necessary, before the best performance of the algorithm can be achieved.

For a continuous flow chemistry rig, it is time-consuming and economically

expensive to conduct optimisation algorithm parameter adjusting on real ex-

periments. Simulators, which is a mathematical function that returns an object

function value on a given condition setting, are developed and used in this

section to test the performance of the optimisation method. Testing on a simu-

lator enables the tuning of the optimisation method without conducting a real

experiment.

Stopping criterion

Huyer and Neumaier recommended that a natural stopping test would be to

quit exploration if, for a number of consecutive calls to SNOBFIT, no new point

of better performance is generated [114]. The stopping criterion defined for

SNOBFIT in the self-optimising software frame is as following:

Stop the program if either one of the following is reached:
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1. The best point did not get updated after Numo f ConCall times of calling SNOB-

FIT;

2. The difference between the latest and the last best point is less than I percent

compared with the last one;

3. The limit of the number of calling object function, ncall, is reached;

With this stopping criterion setting, there are two input parameters that need to

be decided by the user: Numo f ConCall and ncall. For the SNOBFIT algorithm

itself, there are another four parameters that need to be decided. In the follow-

ing section, the step size of the input variables were decided before different

combinations of the setting parameters were tested on the simulator.

Step size

SNOBFIT is an optimisation algorithm for discrete values. Users are required

to define the step size for each parameter before the start of the algorithm. A

big step size will lead to a smaller search domain size but have the potential

problem of missing optima. A small step size can lead to a detailed search of

the landscape, but have a high requirement on the number of calling the object

function.

In the 2-D simulator testing below, variable 1 corresponds to the flow rate of

the feeding pump, while variable 2 is the stoichiometry of current supplied

to the reactor. The pump used to feed the reactants is JASCO PU-980 HPLC

PUMP, which has flow rate range 1 µl/min to 10.0 ml/min with 1 µl/min

step. The power supply is a programmable DC power supplies 2260B-30-36
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by KEITHLEY, which has 1 mA programming resolution (by PC Remote Con-

trol Mode). Considering the resolution of the equipment, both variables were

using a 0.05 step size. The step size defined by the user is only applied to points

generated by SNOBFIT. The random starting points can be any number within

the variables’ bond range.

Finding the best performance parameters using simulator

An example of parameters setting 2D SNOBFIT optimisation [60] is given in

Table 3.1. The search range of variable 1 and 2 were decided based on the pre-

vious study of the methoxylation of N-formylpyrrolidine reaction [112].

The mathematical equation of simulator in this section is given in Function

3.1.1. The function is based on the Goldstein-Price function, which is a com-

monly used 2D function for optimisation testing [117]. The function can gener-

ate a complex landscape for parameter tuning. To maintain a smooth transfer

between the simulator and real experimental results, a 0.01 adjust factor was

applied to the function to shift the output value into a 0-1 range. A contour plot

of the function’s landscape is given in Figure 3.1. Within the searching range,

there are two optima: one local optimum [1.2, 0.8] and one global optimum [2.4,

0.6]. The global maximum is on the edge of the boundary to test the algorithm’s

performance on a constrained problem.

f = 0.01 ·
√
(1 + (x1 + x2 + 1)2 · (19− 14x1 + 3x2

1 − 14x2 + 6x1x2 + 3x2
2))

·
√
(30 + (2x1 − 3x2)2(18− 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2)) (3.1.1)
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Table 3.1: 2D SNOBFIT parameters setting

Name Value Explaination

NumofConCall 4
Limit on the consecutive call of SNOBFIT

without better results

I 0.001
Termination criterion on the difference between

the latest and the last best point

ncall 40 Limit on the number of object function call

npoint dimension+4 Number of random starting points to be generated

nreq dimension+4
Number of points to be generated in

each SNOBFIT call

p 0.3 Probability of generating a point of class 4

Variable 1
1-3

(step size 0.05)
Search domain of variable 1

Variable 2
0.6-1.4

(step size 0.05)
Search domain of variable 2

* dimension is the dimension size of the problem, in the 2-D case, dimension = 2

* Class 1: best prediction; Class 2: putative local minimizer; Class 3: alternative good

point; Class 4: explore empty region; Class 5: fill up. [114]

39



CHAPTER 3: OPTIMISATION STRATEGIES

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

Variable 1

0.6

0.8

1

1.2

1.4

V
ar

ia
bl

e 
2

Figure 3.1: Contour plot of modified Goldstein-Price function. Within the selected

searching range, one local optimum [1.2, 0.8] and one global optimum [2.4, 0.6] can be

found. The global maximum is on the edge of the boundary, which helps to test the

algorithm’s performance on the boundary edge.

Using the simulator and the setting parameter described in Table 3.1, the op-

timisation process of finding the lowest object function value within the given

variable range is conducted. Figure 3.2 is the illustration of the optimisation

process. The point marked as ’start’ is the best performance point between the

six random starting points. Start from there, the best point was improved for

three times on the experiment number 9, 16 and 19 respectively. Another 4

calling of SNOBFIT was made, and the optimisation process was ended after

experiment 48, fitting the stopping criterion of ’The best point did not get updated

after four times of calling SNOBFIT.’

The performance of the algorithm is relevant to the starting point of the al-

gorithm. As SNOBFIT randomly generates the starting points, to get rid of the

influence of the starting point, the simulation was repeated for 100 times on

each setting, and the average performance was used to evaluate the setting. Of
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Figure 3.2: Simulation landscape and optimisation. With x- and y-axis representing

the independent variable 1 and 2, and z-axis representing the function value, the land-

scape of the simulation function in that range can be plotted. Each updating of the best

point is marked as red colour circle on the surface. The total number of experiments

at each updating is indicated in the black circle. To tracking the improvements, a line

is plotted between the current and the former best points.

the 100 times of simulation on setting parameter in Table 3.1, 52% of the simula-

tion found the global optimum successfully. 74% of simulations stopped based

on the stopping criterion ’The limit of the number of calling object function, ncall, is

reached.’ This result indicates, the majority of the optimisation processes were

forced to stop before the global optimum was found. This indicates that ncall

value is too small.

The simulation was repeated for 100 times after changing the ncall = 50. Of the

100 times of simulation, 69% of the simulation find the global minimum suc-
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cessfully. 26% of the simulation find the local minimum which is 11.14% larger

than the global minimum. 80% of the simulation stopped based on the stopping

criterion ’The best point did not get updated after four times of calling SNOBFIT.’ 20%

of the simulation hit the maximum number of calling object function. The av-

erage times of experiments needed before the ending of optimisation is 48.24.

The minimum and the maximum value are 36 and 54 respectively.

Changing the number of random starting points to be generated and the num-

ber of points to be generated in each call of SNOBFIT to npoint = dimension+ 1

and nreq = dimension+ 1, the 100 simulations results show that 67% of the sim-

ulation found the global minimum, 24% found the next to the best local min-

imum, with average times of calling object function 31.5. The minimum and

the maximum value are 6 and 54 respectively. With a lower demanding of call-

ing the object function, npoint = dimension + 1 and nreq = dimension + 1 is

adopted.

With the setting ncall = 50, npoint = dimension + 1 and nreq = dimension + 1,

96% of the simulation stopped based on the stopping criterion 1, 2% stopped

based on stopping criterion 2 and 2% stopped based on stopping criterion 3.

Attempts of increasing the percentage of finding the global optimum were tried

by changing the Numo f ConCall value into 6. The result shows a 71% of finding

global minimum with a sharp rising of average times of calling object function

to 39.5. With an only 4% increasing of the possibility of finding global optimum,

under this combination of stopping criterion parameters setting, the optimisa-

tion process is much more time consuming and economic expensive (on av-

erage more number of experiments was needed) compared with the previous
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one. This change was not adopted.

For the given simulator landscape (Equation 3.1.1), the test results show that the

parameter setting (Table 3.2) can provide the best balance between the number

of experiment call (average 31.5) and the possibility of finding global optimum

(67%). Due to the landscape differences between the simulator and the real ex-

periment, the performance of the SNOBFIT algorithm can be different. For most

chemistry reactions, the target landscape is much less complicated compared to

the simulator used in this section. The chance of finding the global optimum

is higher in a real reaction optimisation than it is for the simulator. Also, the

potential number of calling the experiments could be lower. Using the same

parameter setting in Table 3.2, 2D SNOBFIT was tested on real-experiment data

(reported in Figure 3.4 on page 48) based simulator, which has a much simpler

landscape. The results show that the algorithm has 98% possibility of finding

global optimum using average experiment call of 24.7. This proved the util-

ity of testing the optimisation performance on a complex landscape simulator.

The parameter settings obtained from the simulation (Table 3.2) were used to

supervise the parameter setting in the real experiment conducted in the next

section.

Table 3.2: Best performed stopping criterion setting

Name NumofConCall I ncall npoint nreq p

Value 4 0.001 50 dimension+1 dimension+1 0.3
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3.1.2 Performance on self-optimising system

The electrosynthesis of methoxylation of N-formylpyrrolidine (Scheme 3.1) was

used to test the performance of the system, for comparison with previous mi-

croflow cell reactions [88, 118, 119]. The reaction was selected since it was

known to give good selectivity and yield in parallel plate cells under conveni-

ent conditions [112, 120]. The cathode reaction is the reduction of MeOH to

hydrogen and methoxide, so the overall chemical change is formally a dehyd-

rogenative coupling [88].

Anode:

N

O

+ CH3OH -2e−

N

O

O
+ 2H+

Cathode:

2CH3OH +2e− 2CH3O− + H2

Overall:

N

O

+ CH3OH
N

O

O
+ H2

Scheme 3.1: The methoxylation of N-formylpyrrolidine.

The test reactions were carried out in the Ammonite electrochemical reactor.

The CH3OH solvent reactant stream (0.1 M 1-Formylpyrrolidine + 0.05 M Et4NBF4)

was pumped into the spiral micro-flow cell reactor, and then, to a gas-liquid

separator.

For the SNOBFIT algorithm, two factors (flow rate and current ratio) were

chosen as the independent variables. The GC peak area in percentage was used

44



CHAPTER 3: OPTIMISATION STRATEGIES

as the objective function, which the SNOBFIT algorithm tried to maximise. The

general form of the landscape function is given in Equation 3.1.2. Table 3.3 is

the name of the two variables (serve as input of the automated continuous flow

chemistry rig) and the response obtained from the GC measurements (output

obtained from the automated continuous flow chemistry rig), together with the

lower and upper bounds of each factor, which is defined based on previous

research on the reaction [112].

Aproduct

Aproduct + Areactant
= f (FlowRate, Iapplied/Itheoretical) (3.1.2)

Table 3.3: Factors and response of the landscape function obtained from the reaction

of the methoxylation of n-formyl pyrrolidine

Name Low bound Upper bound Starting point

Factor 1 Flow Rate (ml/min) 1.0 3.0 2

Factor 2 Iapplied/Itheoretical 0.6 1.4 1

Response Aproduct/(Aproduct+Areactant) - - -

Aproduct and Areactant are the peak areas of the product and the reactant, meas-

urement by GC. Iapplied is the electrical current applied to the Ammonite electro-

chemical reactor. Itheoretical represents the electrical current required to achieve

100% yield according to Faraday’s laws of electrolysis, assuming that no side

reactions occur. The equation for Itheoretical calculation is given as:

Itheoretical =
xnF

t
(3.1.3)

where x is the number of moles of reactant, n is the number of electrons in-
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volved, F is the Faraday constant and t the time for the reactant solution to pass

through the cell (determined by the solution flow rate of the cell) [89].

Figure 3.3: Experimental conditions chosen by the SNOBFIT algorithm. The two

factors are the flow rate and the current ratio. (•) is the first set of experimental con-

ditions chosen by the SNOBFIT algorithm. The other solid circles represent the 2nd

to the 7th set of experimental conditions. (+) is the 8th (last) set of experimental con-

ditions chosen by the SNOBFIT algorithm. The reaction conditions are as follows.

C(N-formylpyrrolidine) = 0.1 mol/L; C(Et4NBF4) = 0.05 mol/L.

With 25 hours of running, the automated continuous flow reactor rig conduc-

ted the optimisation of methoxylation of N-formylpyrrolidine successfully. The

SNOBFIT algorithm ran 26 reactions, resulting in the best experimental condi-

tions at 1.0 ml/min flow rate and 1.36 current ratio. The best GC peak area in

percentage (object function value) obtained is 89%. The experiment conditions
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for 26 reactions and the GC peak area in percentage measured by the on-line GC

under the corresponding reaction conditions are shown in Figures 3.3. The ex-

perimental optimum was identified at the edge of the initial optimisation space,

which approved the optimisation algorithm’s ability to deal with the cliff edge

scenario. The experiments conducted in this section is for the purpose of testing

the self-optimisation rig performance, not to find the real optima of the reaction.

One may consider executing a further optimisation in a larger chemical space

for the latter purpose.

This result is in good agreement with the previous study on the methoxylation

of N-formylpyrrolidine [88, 118, 119]. In terms of SNOBFIT algorithm, the total

test performed is 26, and the simulator predicted an average of 31.5 calling of

the object function. Taking the landscape difference between the reaction and

the Goldstein-Price function, this is within our expectation.

Further testing of the ’Ramp’ and ’List’ method was carried out on this 2D rig

setting, both of which turned out to be successful. For the ’Ramp’ method, the

first factor is the flow rate in the range of 1 to 3 ml/min, with the step size

of 1; and the second factor is the ratio of the applied current to the theoretical

current. The range for the second factor is 0.6 to 1.4, with the step size of 0.1.

Again, the response measured for each reaction (object function value) is the

GC peak area in percentage. All 27 combinations of the variables were tested,

and the result is given in Figure 3.4.

The ’Ramp’ test results provide a rough sketching of the object function value

landscape (used as a real experiment data based simulator in Section 3.1.1). The

product increases as the variable 1 (flow rate) getting lower and variable 2 (cur-
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Figure 3.4: The GC peak area in percentage for product measured as a function of

the flow rate and the current ratio. The reaction conditions are as follows. C(N-

formylpyrrolidine) = 0.1 mol/L; C(Et4NBF4) = 0.05 mol/L.

rent ratio) getting higher. This is in agreements with the previous electrochem-

ical knowledge based prediction [88, 118, 119]. The best object function value

obtained from the ’Ramp’ test result is 93%, using 1.0 ml/min for the flow rate,

1.4 for the current ratio, which is in good agreement with the best condition

obtained from the ’SNOBFIT’ test method.

Successfully running SNOBFIT on methoxylation of N-formylpyrrolidine reac-

tion optimisation indicated, not only the automation software developed can

achieve automation, control and monitoring of the flow chemistry rig, but also

the optimisation algorithm was well fitted to this 2D chemistry optimisation

problem. The running of ’List’ and ’Ramp’ method proved to be rather useful

pilot study to obtain a basic understanding of the object function value land-
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scape and the reaction itself. Those running methods can be rather helpful in

discovering unexpected and original synthetic reactions.

Electrosynthesis can allow the selective production of organic compounds un-

der relatively mild experimental conditions and without the use of toxic/hazardous

reagents [121, 122]. In order for microflow electrolysis cells to make their full

contribution to routine laboratory organic synthesis, they must be capable of

carrying out reactions with good selectivity and high conversion at a high rate

of conversion [119]. Successful electrosyntheses are only to be expected un-

der certain conditions. Caution is needed in generalising conclusions of one

reaction to other electrosyntheses. The objective of this work was to test the

self-optimising continuous flow rig developed to use in routine microflow syn-

thesis using a model reaction, the methoxylation of N-formylpyrrolidine. This

is the first self-optimisation study on organic electrosynthesis. With complete a

electrosynthesis loop in less than 30 minutes, the rig is ideal for exploring the

influence of reaction conditions on selectivity and yield. The searching of the

optimum operation condition of a certain reaction in an automatic manner is a

major step forward to establish convenient and straightforward use of organic

electrosynthesis in routine laboratory synthesis or industrial applications.

3.2 Simplex Method

This section focuses on the development of two continuous value optimisation

algorithms (Modified Simplex Method and Super Modified Simplex Method)

for the self-optimisation of an electrochemical reactor. As with the SNOBFIT
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algorithm above (see Section 3.1.1), a simulator is first used to test the perform-

ance of the two simplex algorithms. Following this, an optimisation experiment

on the electro-oxidation of 3-bromobenzyl alcohol was carried out using the

Modified Simplex Method and the parameters determined from the simulator

test.

The Basic Simplex Method (BSM) was proposed by Spendley et al. [123]. Us-

ing N (number of problem dimensions) +1 vertices, which is called simplex,

to cover the landscape, the method can find the local optima with a relatively

low number of iterations (calling the object function). Taking 2-D problem as

an example, a triangle simplex shown in Figure 3.5. Assuming a maximum

optima problem, the two peak points in Figure 3.5 (marked as ’x’) are the two

optima containing in the landscape. The full line red triangle represents an ori-

ginal simplex, and the dash line triangle is the subsequent new simplex. The

reflected position (the highest point in the dash line triangle, marked as ’o’) of

the worst response vertex (the lowest point in the full line triangle, marked as

’∗’) will be the new condition. A reflection that can improve the performance

will be accepted, which means the reflected simplex (dash line triangle) will be

accepted as the reflected position is higher than the worst vertex. This process

repeats itself until the stopping criterion is reached.

Modified Simplex Method (MSM), which is also popularly known as the Nelder-

Mead simplex algorithm, was developed by Nelder and Mead [124] from the

BSM method and is widely used in analytical chemistry. By allowing the sim-

plex to change size, the modified method can adapt quickly to the shape of the

responses surface, which leads to quicker searching for the local minimum.
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Figure 3.5: Demonstration of solving a 2-D problem using a triangle simplex. A re-

flection resulting in an uphill step (improvement) will be accepted. The full line red

triangle is the original simplex, and the dash line triangle is representing the new sim-

plex accepted as the next move. The two peak points (local optima) is marked as

’x’. The reflected position is marked as ’o’. The worst response vertex in the original

simplex is marked as ’∗’.

A series of rules are used to define the movements of the simplex on the land-

scape surface. Using a 2-D simplex as an example, the spacial relationship of

vW , vR, vE, vCR, and vCW are shown in Figure 3.6a. For each step, the worst

response vertex vW in the current simplex can be replaced by a reflection ver-

tex vR, expansion vertex vE, contraction towards the reflection vertex vCR, and

contraction towards the worst vertex vCW . The rules listed below are used in

the algorithm to decide which vertex to choose. By choosing a different vertex

in different situations, the algorithm modifies the simplex size accordingly.

If vB ≤ vR < vSW , accept vR and terminate this iteration. Reflect

If vR < vB, calculate the expansion point vS

• If vS < vR, accept vS and terminate the iteration. Expand
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(a) Modified simplex for two factors. The algorithm reflects the worst ver-

tex vW to reflection vertex vR, expansion vertex vE, contraction towards the

reflection vertex vCR, and contraction towards the worst vertex vCW . vB

and vSW is the current best and second-worst vertex respectively. p is the

centroid. vCR is the middle point between vR and p, while vCW is the middle

point between vW and p

(b) Rules for selecting the next vertex. Taking vR’s value as a spectrum, the

lower the value the better the performance of vertex vR. In the lower range

of the spectrum, reflection vertex vR or expansion vertex vE is more likely

to be accepted. In the higher range of the spectrum, the algorithm is likely

to accept contraction towards the worst vertex vCW or contraction towards

the reflection vertex vCR as the replacement of the vW .

Figure 3.6: Modified simplex method.
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• Otherwise, accept vR and terminate the iteration. Reflect

If vR ≥ vSW , perform a contraction between p and the better of vW and vR:

• If vR is better than vW , accept vCR and terminate the iteration. Contract

outside. Otherwise, Shrink.

• If vR ≥ vW , accept vCW and terminate the iteration. Contract inside.

Otherwise, Shrink.

Shrink: Order the points in the simplex from the lowest function value

vx1=vB to the highest vx(n+1)=vW . Let x(i) denote the list of points in the

current simplex, i = 1, ..., n + 1. xshrink(i) = x(1) + (x(i)− x(1))/2. Use The

xshrink as the simplex at the next iteration.

in which, vSW is the second-worst vertex in the current simplex.

The rule of selection is based on the performance of reflected point R. Taking

vR’s value as a spectrum, for different vR’s value ranges, different vertex is se-

lected. As the algorithm is designed to find the minimum in the landscape, the

lower the vR’s value, the better the performance of vertex vR. The selecting rule

of 2-D simplex is visualised, and is given in Figure 3.6b.

The MATLAB function ’fminsearch’ uses MSM to find the local minimum of a

multi-variable problem. It attempts to return a vector that is a local minimiser

of the mathematical function near the starting vector [125].

By definition, ’fminsearch’ is an unconstrained method. In the original MSM

paper, boundary violations were handled by assigning a poor response to the

vertex whose location violates the boundary constraint [124]. The new vertex is

subsequently located between the centroid (p in Figure 3.6a) and original point.
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This approach is improved by applying simple mathematical transformations

to convert a bound constrained problem into an unconstrained problem.

John D’Errico developed a function called ’fminsearchbnd’, which is based on

’fminsearch’, aiming to apply bounds to variables by transferring the problem

mathematically [126]. The bounds are inclusive inequalities, which admit the

boundary values, but any values outside. Variables that have both lower and

upper bounds are transferred using a sine function. Variables that have only

lower or upper bound are transferred use a quadratic transformation.

In the ’fminsearchbnd’ program, the constrained parameter is first normalised

by the following Equation 3.2.1 to adjust the value into −1 6 x 6 1 range.

xnormalised =
2 · (x− LB)

UB− LB
− 1 (3.2.1)

in which, xnormalised is the normalised value of x, LB is the lower bound and UB

is the upper bound.

Then arcsine is applied to transfer the constrained variable to the unconstrained

domain:

xunconstrained = 2π + sin−1(xnormalised) (3.2.2)

in which, the xnormalised space is −1 6 x 6 1, while the result xunconstrained can

be any value.

The original simplex method is input value depending. The value of the para-

meter influences the performance and the stopping of the algorithm. It is im-
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portant to keep a balanced search domain between different parameters, which

is difficult to achieve in a real engineering application. Normalising all para-

meters’ value into −1 6 x 6 1 range is a necessary step to keep a balance

between input dimensions.

One thing worth noting is that the arcsine transformation is a non-linear trans-

formation, which makes the transferring of the simplex from the unconstrained

domain into the constrained domain non-linear. Figure 3.7 shows how an ori-

ginal search space transforms into the new search space, which will be supplied

to the unconstrained optimisation algorithm using a problem with two factors

as an example. The first factor is temperature with the lower and upper bounds

of 313 K and 523 K, respectively. The second factor is the flow rate in the range

between 0.1 and 1.5 ml/min. In order to visualise how the original factor is

transformed into the new search space, the grid size of 10 K and 0.1 ml/min

have been selected and plotted.

One of the popularly used stopping criteria for simplex is to measure the size

of the simplex. When the size of the simplex is smaller than the user-defined

criterion (in the unconstrained domain), the optimisation process will stop. For

the same simplex, different locations in the unconstrained domain will cause

the size of the simplex varies in the constrained domain.

The ’fminsearchbnd’ function uses the stopping criterion of ’fminsearch’ dir-

ectly, which means the stopping criterion based on the size of the simplex is

based on the simplex size in the unconstrained domain. When transferring the

stopping simplex from the unconstrained domain into a constrained domain,

in a highly close to linear region, the stopping simplex will be linearly trans-
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(a) (b)

Figure 3.7: (a) Original search space and (b) New search space after transformation

using the D’Errico approach. The x-, and y- axis represent factor 1 (temperature) and

factor 2 (flow rate), respectively. The axis label is ignored as the factor lost its physical

meaning after transfer. Note that the scales for x-, and y- axis are very different in (a).

The non-linear transfer can be observed by the position changing of dots in the space.

The evenly distributed dots in the original space have non-even inter-distance in the

transferred space.
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formed, however, in a highly non-linear region, the equivalent constrained do-

main simplex is getting smaller as the location of the simplex getting closer to

bounds. For an optimum close to the bounds, the optimisation algorithm may

spend more iterations than necessary to reach it, as the arcsine transforms the

simplex into a bigger simplex in the unconstrained domain which is further

away from the stopping criterion. This problem can be solved by defining the

stopping criterion in the constrained domain different from the unconstrained

domain. This is achieved by converting simplex variables into their original

domains before calculating the size of the simplex in ’fminsearch’ function. The

modified version of MSM function call is named as ’fminseachmodified’ and

attached in the Appendix.

The optimisation problem for continuous flow reactor rig is a constrained prob-

lem. John D’Errico’s function, ’fminsearchbnd’, is used to apply MSM to our

system. Instead of calling ’fminsearch’, ’fminsearchmodified’ is called in ’fmin-

searchbnd’ to control the size of stopping simplex in the constrained domain.

Super-Modified Simplex Method (SMS) is one of the many improved version

of modified simplex algorithm. It can match the shape of the response surface

more closely and quickly by fitting second-order polynomial [127] or Gaussian

[128] to the points vW , vR and centroid p. Compared with the basic simplex

method, super-modified simplex takes fewer iterations to reach the optimum

[64]. The disadvantage of the SMS method is well-recognised [129, 130]. Exper-

iments at the centroid conditions have to be carried out before the next vertex

can be decided. Although fewer iterations are needed using SMS method, the

number of calling of the object functions is not necessary less compared with
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the MSM method.

A detailed tutorial of using SMS is given by Morgan et al. [129]. Based on this

tutorial, combining the built-in function ’fminsearch’, SMS MATLAB code was

developed. The function’s name is ’SMS’. The code of the function is attached

in Appendix.

Just like MSM, SMS is an unconstrained method defined by its nature. D’Errico’s

method is applied to transfer the constrained problem to an unconstrained one.

The function’s name is ’SMSbnd’. The code of the function is attached in Ap-

pendix.

Simplex method with simulated annealing is the combination of basic sim-

plex method or super-modified simplex method with simulated annealing. By

accepting downhill steps according to the simulated annealing algorithm, the

change of finding the global maximum is improved [131].

Both MSM and SMS tend to find the local optima rather than the global op-

timum. Simulated annealing could help to overcome the problem. However,

due to the nature of the simulated annealing algorithm, a large number of

experiments (normally more than 100) are needed before the method reaches

convergence. Each of methoxylation of N-formylpyrrolidine experiments takes

more than 40 minutes, and so it is beyond practice to do so many experiments

in one go.

A multi-start method could be adopted to replace simulated annealing for global

optimum searching. Multiple random starting points should be tried before a

global optimum is accepted. This is discussed in detail in the simulator testing
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section.

3.2.1 Performance on simulator

Similar to SNOBFIT, Simplex methods provide setting parameters to users to

fit the algorithm’s purpose. Those parameters are discussed and tested on sim-

ulators in this section. Unlike SNOBFIT, which is a global optimum searching

algorithm, the Simplex method can only return local optima. The number of

calling object function (funcCount) alone is used to evaluate the performance.

Stopping criterion setting, as well as the starting point is required from the user

in a Simplex based optimisations. Those two are discussed using the Goldstein-

Price function (Equation 3.1.1) simulator. Rosenbrock function simulator was

used to explore Simplex method’s ability on higher dimension problems.

Stopping criterion

Following the ’fminsearch’ function and literature, the stopping criterion used

for both MSM and SMS are:

Stop the program if either one of the following is reached:

1. the maximum coordinate-difference between the current best point, and the other

points in the simplex is less than or equal to StepTolerance (TolX). AND the cor-

responding difference in function values is less than or equal to FunctionTolerance

(TolFun).

2. The limit of the number of experiments (MaxFunEvals) is reached;
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3. The limit of the number of iterations (MaxIter) is reached;

In programming, iteration means the repetition of the optimisation process. For

simplex methods, each iteration generates a new simplex. Multiple calls of the

object function are needed during each iteration. MaxFunEvals is the stopping

maximum value of the number of calling the object function (funcCount), while

MaxIter is the maximum value of simplex used in the optimisation.

With the stopping criterion setting, there are four setting parameters that need

to be decided by the user: MaxFunEvals, MaxIter, TolX and TolFun. The defin-

ition of those parameters can be found in the stopping criterion above.

In the MATLAB optimisation toolbox, the default value for both TolX and Tol-

Fun is 10−4. The default value for MaxFunEvals and MaxIter is 200× dimension.

More information can be found in MATLAB page on ’Tolerances and Stopping

Criteria’ [132].

For self-optimising reactors, each experiment loop takes over 40 minutes, in-

cluding setting the parameters, waiting for steady state, collecting the sample,

analysing the sample and feeding back the result to the optimisation algorithm.

MaxFunEvals=100 and MaxIter=40 are used to make the optimisation process

practical, which is decided based on the maximum allowance of the continuous

running time of the rig.

As shown in Figure 3.7 on page 56, the transformation of the constrained prob-

lem into an unconstrained domain problem (in order to apply Simplex method,

which can only process unconstrained domain problem) is non-linear. This

non-linear transformation causes the algorithm to perform differently in the
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same setting. To avoid this, the original ’fminsearch’ is modified as ’fminseach-

modified’ to calculate the TolX and TolFun in the constrained domain. Using

TolX=0.01, TolFun=0.01, MaxFunEvals=100 and MaxIter=40 as the stopping cri-

terion, [2.6 1.2] as the starting point, Equation 3.1.1 as response surface simu-

lator, performance of ’fminsearch’ and ’fminseachmodified’ were tested. The

results of the tests are given in Table 3.4. The result indicating that for an op-

timum that lies on the edge of bound, fewer iterations (experiment call) are

needed when defining the ’TolX’ and ’TolFun’ in the constrained domain.

Table 3.4: Stopping criterion defined in unconstrained and constrained domain

Output

x fval iteration funcCount

fminsearch [2.3841, 0.6000] 0.1388 36 69

fminsearch

modified
[2.3832, 0.6001] 0.1389 25 49

Different TolX, TolFun, MaxFunEvals and MaxIter value setting were tested

on ’fminsearchmodified’ to find the best setting combination. The results are

summarized in Table 3.5 and Table 3.6. The range of variable 1 is 1-3, and 2

is 0.6-1.4. The starting point is fixed to [1.5 0.7] to eliminate the influence of

starting point.

From the setting parameter tuning experiment results, we can see that, when

the tolerance values (in stopping criterion 1) is too small, the simplex size tends

to get very small before the stopping criterion is satisfied. For a real reaction

optimisation, the flow rate (variable 1) and current (variable 2) cannot achieve
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Table 3.5: Stopping criterion for MSM, with the best performance combination setting

highlighted.

Stopping Criterion Output

TolX TolFun
MaxFun

Evals
MaxIter x fval

itera

tions

func

Count

1 default default default default [2.3841, 0.6000] 0.1388 44 99

2 0.01 0.01 100 40 [2.3841, 0.6000] 0.1388 36 69

3 0.05 0.05 100 40 [2.3842, 0.6000] 0.1388 29 56

4 0.10 0.10 100 40 [2.9180, 0.9374] 0.2623 8 16

this level of control accuracy. However, when the tolerance value is too big,

the final best performance point is not exactly on the optimum point due to the

final simplex size is too big to local the vertex accurately on the optimum. The

higher the tolerance value, the further away the final output from the optimum

point. Much fewer iteration and function calling are required before the stop-

ping criterion is reached. Balancing between the funcCount and the accuracy

level of the final optima, the best combination of stopping criterion parameter

setting is highlighted in Table 3.5 and 3.6.

Another interesting pattern indicated by the testing results is that compared

with MSM, SMS is more sensitive to changing of the TolX and TolFun value.

Under the same parameter settings, the final output from SMS is further away

from the optima compared with MSM algorithm. This is due to the difference

of simplex defining rules in the two algorithms.
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Table 3.6: Stopping criterion for SMS, with the best performance combination setting

highlighted.

Stopping Criterion Output

TolX TolFun
MaxFun

Evals
MaxIter x fval

itera

tions

func

Count

1 default default default default [2.3770, 0.6000] 0.1390 134 402

2 0.01 0.01 100 40 [2.3765, 0.6000] 0.1390 34 102

3 0.05 0.05 100 40 [2.3690, 0.6023] 0.1404 26 78

4 0.10 0.10 100 40 [2.7875, 0.8916] 0.2440 8 24

Starting point

A starting point is needed to initialise the simplex algorithms. Both MSM and

SMS will return the local optimum found near the starting point. The choosing

of the starting point can influence the algorithm’s final output. It is necessary

to try multiple starting points before claiming the best performance point in

the constrained range is found. Within the range of 1-3 (variable 1) and 0.6-1.4

(variable 2), the 2-D simulator Function 3.1.1 has two local optima: Fval=0.1388,

x=[2.3841 0.6000] and Fval=0.2898, x=[1.2000 0.8000].

Figure 3.8a shows the approaching of the two local optima from the starting

points [1.5 0.7] and [2.6 1.2], using MSM method. Figure 3.8b shows the SMS

method finding the two local optima from the same starting points. Compared

with MSM, SMS need fewer iterations (number of triangles in the figure) to

reach the optima, this is clearly presented in the result Figure 3.8. However,

as the SMS algorithm required the evaluation of the centroid point in each it-
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(a) MSM method.

(b) SMS method.

Figure 3.8: Demonstration of solving a 2-D problem using simplex methods. Two

processes were given in both figures. One start from [1.5 0.7], the other start from [2.6

1.2].
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eration, the total number of calling the object function is not necessarily lower.

When starting from [1.2 0.7], MSM takes 13 iterations, 25 callings of the object

function, while SMS only needed 7 iterations, and 21 callings to reach the op-

timum point. In this case, SMS takes fewer iteration and experiment calling to

find the optima. When starting from [2.6 1.2], MSM takes 29 iterations, and 56

callings of the object function, while SMS takes 26 iterations, and 78 callings

to reach the optima. In the [2.6 1.2] starting point case, even though SMS uses

fewer iteration, the total number of calling the object function was higher.

Investigating of the performance on higher dimension problems

Nelder-Mead suffers from the ’curse of dimensionality’. Simplex methods do

reasonably well in low numbers of dimensions (two or three dimensions). When

it comes to higher dimension problems, the algorithm’s performance is not as

satisfactory. The SMS and MSM are further compared in higher dimension op-

timisation problem in this section.

In order to test the performance of both MSM and SMS on different dimension

problems, the Rosenbrock function is used. It was first introduced by Rosen-

brock [133], and it has been widely used as a test function for optimisation

algorithms [124, 131, 134]. The function is chosen for the reason that it can be

easily changed to multidimensional generalisations. The function is defined by:

f (x) =
n−1

∑
i=1

[(1− xi)
2 + 100(xi+1 − x2

i )
2] (3.2.3)

The global minimum is at f (1, 1 · ··, 1) = 0.
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When n=2, Rosenbrock is a 2-D problem, the global minimum is inside a long,

narrow, parabolic shaped flat valley.

Using default stopping criterion, [-1.5 1.5] as the search interval for reach di-

mension, origin as the starting point, ’fminsearchbnd’ and ’SMSbnd’ were tested

on 2 to 10 dimensions Rosenbrock problem. The result is summarised in Table

3.7, with all the experiments stopped by ’MaxFunEvals’ highlighted in orange

colour. In the ’Optima found’ column, Y=Yes and N=No.

Table 3.7: MSM and SMS performance on multi-dimension Rosenbrock functions,

with all the experiments stopped by ’MaxFunEvals’ (failed to reach optima) high-

lighted in orange colour.

MSM SMS
Problem

dimension Iterations funcCount
Optima

found
Iterations funcCount

Optima

found

2 79 150 Y 131 393 Y

3 101 190 Y 56 169 N

4 207 348 Y 266 800 N

5 347 553 Y 271 816 N

6 507 783 Y 206 622 N

7 745 1127 Y 171 518 N

8 1097 1600 N 233 705 N

9 1261 1800 N 152 463 N

10 1427 2000 N 239 725 N

As expected, MSM method performance drops as the dimension increase. From

a 4-D to a 7-D problem, MSM is still able to find the optima, albeit with a huge
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requirement on the calling of the object function. When the problem becomes

8-D or higher, the algorithm falls in reaching the global optimum within the

funcCount maximum value 200× dimension.

Comparing with MSM, SMS method’s performance is not as satisfactory. It

successfully found the optima in a 2-D problem. However, in 4-D problem, it

did not reach an optimum within the maximum funcCount value 800. In all

other dimension problems, the algorithm returns another local optimum worse

than the optima given by MSM. This is because the SMS simplex follows the

landscape more closely, which means the method is more easily distracted by

other local optima.

In conclusion, the simulator based optimisation indicated that MSM should be

adopted for the self-optimising reactor. SMS method does have the advantage

of using fewer iterations, however, it is the number of calling the object function

matters to the self-optimising reactor as it is the most time-consuming step in

our optimisation process.

3.2.2 Performance on self-optimising system

The electrochemical oxidation of 3-bromobenzyl alcohol (Scheme 3.2) was used

to test the performance of the system with MSM optimisation approach. The re-

action was selected since this reaction can provide a complex enough situation

to test the optimisation algorithms.

Anode:

Cathode:
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Br

CH2OH
-2e−

Br

CHO

+ 2H+

2H+ +2e− H2

Overall:

Br

CH2OH

Br

CHO

+ H2

Scheme 3.2: The electro-oxidation of 3-bromobenzyl alcohol.

A 3-D optimisation process is adopted in this section. The three factors and the

response obtained from the GC measurements are given in Table 3.8, together

with the lower and upper bounds of each factor. The general form of the land-

scape function is given in Equation 3.2.4.

Yield = f (Iapplied, Iapplied/Itheoretical, TotalFlowRate) (3.2.4)

Iapplied is the electrical current applied to the Ammonite electrochemical reactor.

Itheoretical represents the electrical current required to achieve 100% yield accord-

ing to Faraday’s laws of electrolysis, assuming that no side reactions occur. The

equation for Itheoretical calculation is given in Equation 3.1.3 on page 45.

The test reactions were carried out in the Ammonite electrochemical reactor.

The CH3CN solvent reactant streams (0.45 M 3-bromobenzyl alcohol + 0.05 M

Et4NBF4 + 2 g/L 1-Hexanenitrile + 50 g/L H2O) and (0.05 M Et4NBF4 + 4 g/L

valeronitrile + 50 g/L H2O) were pumped into the spiral micro-flow cell reactor,

R, and then, to a gas-liquid separator, S. Two solutions were prepared with an

identical concentration of Et4NBF4 (0.050 M) as the supporting electrolyte. The
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Table 3.8: Factors and response of the landscape function for the reaction of the

electro-oxidation of 3-bromobenzyl alcohol

Name Low bound Upper bound Starting point

Factor 1 Iapplied 0.2 0.6 0.4

Factor 2 Iapplied/Itheoretical 0.9 1.2 1.05

Factor 3
Total Flow Rate

(ml/min)
0.5 1.5 1

Response Yield - - -

concentration of the starting material (3-bromobenzyl alcohol) is 0.45 M in the

first solution; and no starting material was added to the second solution. Based

on the given factors for each experiment, the concentration of the starting ma-

terial (3-bromobenzyl alcohol) was obtained using Equation 3.2.5. The variation

of the concentration of starting material was achieved by changing the ratio of

the two flow rates for the two solutions.

Cstartingmaterial =
Itheoretical · 60 · 1000
nF · FlowRatetotal

=
Factor1 · 60 · 1000

Factor2 · nF · Factor3
(3.2.5)

where n is the number of electrons involved, F is the Faraday constant, and the

unit for Cstartingmaterial is M.

An internal standard method to evaluate the accuracy of the pumps is intro-

duced in this experiment. 1-Hexanenitrile in solution 1, and valeronitrile in

solution 2 were not directly involved in the reaction, and detectable by the GC

methods used. The GC spectrum peaks of those two materials in the resultant

solution should be in a linear relationship with the pump flow rate of that solu-
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tion. This can provide an extra evaluation of the pump flow rate recorded by

the automation software.

Based on the rig and software setting for Section 3.1.2, reconfiguring the rig

the software was achieved in less than 4 hours. With boundary setting of the

search domain and the starting point of each variable (factor) in Table 3.8, and

the stopping criterion highlighted in Table 3.5, a 3-D optimisation of the oxid-

ation of 3-bromobenzyl alcohol reaction was set to run on the automated self-

optimisation flow chemistry rig. The process kept running for 24 hours and exit

on the stopping criterion 1 ’the maximum coordinate-difference between the current

best point, and the other points in the simplex is less than or equal to StepTolerance

(TolX). AND the corresponding difference in function values is less than or equal to

FunctionTolerance (TolFun).’
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Figure 3.9: SMSIM optimisation of the yield. The yield is plotted as the number of

iterations and the number of function calls as the optimisation process proceeds.

The algorithm decides to run 23 reactions, resulting that the best experimental
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Figure 3.10: NMSIM optimisation of the yield of electro-oxidation of 3-bromobenzyl

alcohol, with respect to the current, the electrical current ratio and the total flow rate

of the inlet mixture (see Table 3.8). Factors 1, 2 and 3 are represented by x-, y- and z-

axis. (a) The initial simplex is shown by a blue quadrangle. (b) Zoomed area of the

top-left corner of (a). The last simplex is shown by a red quadrangle.

condition is at 0.202 A for the current, 1.163 for the current ratio and 1.495

ml/min for the total flow rate. The best yield obtained from the algorithm is

97.11%.

Figures 3.9 and 3.10 show the optimisation procedure using NMSIM with the

D’Errico method for the treatment of boundary conditions. In Figures 3.10,

the yield of the product increases steadily as the iterations of the algorithm in-

crease. Starting from 60%, within four iterations (12 experiments), the yield of

the product is already reaching 95%. This proves the efficiency of the Simplex

algorithm. The simplex generated during this optimisation process is plotted

71



CHAPTER 3: OPTIMISATION STRATEGIES

in Figure 3.9, with x-, y-, z-axis representing one of the three factors being op-

timised. As this is a 3-D problem, a four vertices simplex is used.

Successfully running a 3-D MSM optimisation indicated, not only that the MSM

algorithm was well fitted to the automation software for flow chemistry rig, but

also the great flexibility and reconfigurability of the software system developed

for flow chemistry optimisation. Within hours of configuration, we were able

to conduct a higher dimension optimisation on a new reaction. This shows the

great discovery potential of the self-optimisation flow chemistry rig.
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Conclusion and future work

In this work, we have developed an automated self-optimising continuous-

flow reactor system to perform electrochemical reactions. Two model reactions,

methoxylation of N-formylpyrrolidine and oxidation of 3-bromobenzyl alcohol

were optimised based on different metrics for reaction success.

A MATLAB & LabVIEW based automation software was developed to conduct

automation, control and monitoring of the flow chemistry rig. A server-client

software structure was adopted to provide flexibility and reconfigurability to

the software. The smooth transfer from a SNOBFIT based 2-D optimisation on

methoxylation of N-formylpyrrolidine reaction to a Simplex method based 3-D

optimisation on oxidation of 3-bromobenzyl alcohol indicated the system is a

flexible, reliable control and automation software system.

SNOBFIT and Simplex optimisation methods were fitted to the automation soft-

ware, and the whole system was tested both on multiple simulators and the rig

itself. The pros and cons of each algorithm are clearly discussed supported by

the simulation/experiment data.
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The NMSIM algorithm comprises of a series of simple rules to modify the sim-

plex repeatedly, and as such are ideally suited to an experimental procedure [64,

124, 127]. However, the capabilities of the NMSIM algorithm to adapt the con-

trol equipments’ (pump, power supply, ect.) accuracy is restricted, and the lack

of global search functions can result in poor confidence in the located optimum.

By comparison, SNOBFIT combines both global and local search elements to

provide a powerful tool for the global optimum search. This discrete value op-

timisation algorithm can define the minimum search step-size on each dimen-

sion, which adapts well to experimental equipment accuracy. However, both

simulator and experiments indicated it requires more iterations, thus higher

number of experiments to reach the optimum.

This work has shown how the efficiency of reactions and chemical processes can

be improved by a highly automatic, self-optimising continuous-flow reactor. It

demonstrated use of continuous-flow as a tool for discovery in chemistry, for

the purpose of making chemistry greener.

4.1 Further work on rig

We now have a fully functioning software application to optimise electrochem-

ical reactions using the Ammonite as the reactor and GC as the on-line analysis

tool. We shall have opportunities to optimise a variety of electrochemical reac-

tions in the future. On the other hand, it is required further studies on how to

run these optimisation algorithms efficiently, namely to find the optimal con-

ditions with fewer numbers of experiments. Each optimisation algorithm re-
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quires some inputs to define how to run optimisation processes. The input

parameters can be the range of each factor, the grid size of each factor, the

choices of the starting point for the Simplex and Super-Modified Simplex Al-

gorithms. More importantly, the uncertainty of the measured response result-

ing from the analytical instrument has significant effects on the performance of

the optimisation algorithms. It would be useful to develop a practical guidance

on how to choose the parameters for optimisation algorithms and on how to

relate the experimental uncertainties to these parameters.

4.2 Alternative target functions

The use of automated continuous-flow self-optimising reactor system repres-

ents a significant step forward in the used of optimisation algorithms for chem-

ical reactions. However, it is not merely the maximum yield of a product, which

can be optimised. The target function could also be optimised for different cri-

teria, such as maximising the ration of two products, minimising the produc-

tion of an unwanted by-product, or even minimising the E-factor of the reac-

tion, which is particularly interesting in the context of Green Chemistry [31, 57].

We have demonstrated the using of different target functions in the two model

reactions. Further exploring of this aspect is needed.

As well as the ability to optimise a reaction, the self-optimisation approach to

a chemical reaction has the advantage of discovering unexpected and original

synthetic reactions. A self-optimising reactor was used by Amara et al. [103]

as a tool for targeting known and unknown materials in the continuous reac-
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tions of aniline, dimethyl carbonate (DMC) and tetrahydrofuran (THF) in su-

percritical CO2 on γ-Al2O3, which has already been identified that could form

multiple products in parallel. The results demonstrated that self-optimising re-

actors enable chemists to switch the selectivity to different products in a chem-

ically complex system.

4.3 Alternative analysis technique

Although (low level of manual control and monitoring needed), the time re-

quired for self-optimisation can be quite lengthy because of the time required

for GLC analysis. Skilton et al. reported the use of automated continuous flow

reactors with real-time online Fourier transform infrared spectroscopy analysis

to enable rapid optimisation of reaction yield using a self-optimising feedback

algorithm [104]. The results indicated that the high speed of the optimisation

itself provides major savings in material and permits a wider exploration of

parameter space than would be possible with GLC alone [104].

The methods of online analysis can be varied in the future work of this thesis.

Investigations of applying real-time monitoring analysis technique, FTIR ana-

lysis, for example, can result in a more rapid optimisation process, which will

lead to significant material savings. The real-time feedback analysis can also

permit a more detailed study of the response space/surface of an unknown

reaction, which will lead to a more in-depth understanding of the reaction.
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4.4 Alternative solvents

Solvent can be a very influential fact of a reaction [36]. Ever since the birth of

Green Chemistry, solvents have occupied a central place in the effort to make

chemical processes greener [57]. Pharmaceutical companies are increasingly

aiming to reduce their environmental impact due to solvent choice [135]. Su-

percritical solvents are highly compressed and/or heated gases that are beyond

the critical point. It is a greener alternative to conventional solvents [102]. Us-

ing supercritical solvents for the automated self-optimisation continuous-flow

reactor system can be beneficial.

Streng et al. used an automated self-optimising reactor to determine the op-

timal reaction conditions for the synthesis of N-alkylated heterocycles. Tar-

geted N-methylpiperidine, using the self-optimisation approach with SNOB-

FIT as the optimising algorithm and GC analysis as the analytical tool, the tem-

perature and the flow rate of the reaction were optimised in both the presence

and absence of Supercritical Carbon Dioxide (scCO2). The result shows higher

yields were obtained in the presence of CO2 than in its absence [102].
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Part II

APPLYING FTIR IMAGING TO

ADDRESS CHALLENGES IN PLASTIC

RECYCLING
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CHAPTER 5

Introduction

Plastics are inexpensive, durable and one of the most widely-used materials,

with diverse applications including packaging, automotive and general mer-

chandising [1]. A major problem in the use of such polymer materials is that

the majority of plastics have been developed specifically to persist degradation

or natural decay process and they can take up to millions of years to degradate

naturally [2]. The accumulation of plastics has begun to negatively impact the

natural environment and create problems for plants, wildlife and even human

populations. Plastic pollution is one of the major pollution problems in the en-

vironment and has increasing public and worldwide attention. Plastic recycling

is an important strategy in order to combat the problem of plastic pollution.

The re-use/recycling of plastic is not only environmentally friendly but also

economically beneficial. In the European Union, the end-of-life vehicles (ELV)

and waste electrical and electronic equipment (WEEE) directives have high re-

quirements for the amount of plastic requiring recycling [3]. The first plastic

recycling mill for Waste Techniques was built in Conshohocken, Pennsylvania,
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and began working in 1972 [4]. It took several years and a concerted effort

for the public to embrace the recycling habit. Plastic recycling is unlike glass

or metal recycling processes due to the greater number of steps involved and

the use of dyes, fillers and other additives used in ’virgin’ plastics. The plastic

recycling process begins with sorting the various items by their resin content.

Once sorted, the plastics are chopped into small pieces, cleaned, melted down

and compressed into pellets. Once pelletised, the recycled plastic pellets are

ready to reuse and fashion into new and completely different products. It is im-

portant to note that recycled plastic is rarely used to create the same or identical

plastic item of its former self, because the properties of recycled plastics are al-

most never as good as the virgin plastic.

Figure 5.1: Staff at Liansamlet Household Waste and Recycling Centre sorting through

plastic. Reproduced from [5].

One of the many challenges for plastic recycling, is the identification of the

wide range of plastic materials used. Currently, the state of art identification

and quality classification of polymers is based on human hand sorting oper-
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ation, as shown in Figure 5.1. This is time-consuming, and only practical to

most domestic wastes, which typically contain five types of polymers (poly-

ethylene terephthalate, polyethylene, polyvinyl chloride, polypropylene and

polystyrene) [6] in large quantities. Advanced technical products such as auto-

mobile part productions, electrical and electronic equipment use a much wider

range of plastic and filler/additives to gain different physical/chemical fea-

tures, which is difficult to identify using current sorting techniques. As a result,

the recycled plastic products have a high level of quality variation. The high

variation of performance has been a major barriers to the successful market

penetration of recycled plastics [3] for advanced technical products, and much

plastic recycling is targeted at low-level applications.

Fourier transform infrared (FTIR) chemical imaging is a strongly emerging tech-

nology that is being increasingly applied to material investigations. The use

of IR spectroscopy in polymer industries has been widely implemented [7–

12]. However, majority of research has focussed on manufacturing, as well

as the physical/chemical properties. This Chapter aims to explore the poten-

tial of FTIR spectroscopy to aid and improve plastic recycling. A quantitative

approach is made to evaluate the detailed composition of plastics during re-

processing. A feasibility study using FTIR imaging for the rapid and label-free

classification/evaluation of recycled plastic were conducted. The results indic-

ated several promising ways to apply FTIR spectroscopy on automotive plastic

recycling for high-end applications.
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5.1 Application of IR spectroscopy to study polymers

Infrared spectroscopy has a long tradition and remains one of the most widely

used spectroscopic techniques in the analysis and characterisation of polymers

[9].

Generic identification is one of the earliest applications of IR spectroscopy on

polymer studies. In the generic identification method, the polymer or copoly-

mer is considered as a collection of functional groups or sub-structural units,

for which the observed absorption bands are assigned using well-established

group frequency correlation tables [7, 8]. A good example of generic identifica-

tion is provide by Krimm et al. [12]. IR spectra of polyethylene (PE) were first

time collected over 70-3000 cm−1 wavenumber range. The assignments of the

fundamentals are made with the help of a group theory analysis. The assign-

ment of the CH2 wagging mode to a weak band at 1369 cm−1 was discussed in

detail and especially in terms of new evidence from the spectra of n-paraffins,

both as single crystals and as polycrystalline aggregates. The frequencies of

the observed band maxima, their approximate relative intensities, and their di-

chroism with respect to the direction of stretch are given in Figure 5.2. This

table was used to conduct a knowledge based spectra analysis in Section 10.1

on page 219.
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Figure 5.2: Infrared spectrum and assignments for polyethylene. Reproduced from

[12].

Pattern matching involves comparing the recorded spectrum against those in a

hard-copy commercial or in-house reference library. The result can distinguish

polypropylene (PP) from polybutene or poly(ethylene terephthalate) (PET) from

poly(butylene terephthalate) (PBT), or indicating the approximate composition

of a copolymer [9]. Computerised databases of reference spectra are available

with commercial IR spectroscopy equipment companies. The pattern marching

has become a more or less standard procedure to conduct directly after collect-
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ing an unknown material spectrum.

Chemical and physical characteristics can be achieved through an IR spec-

troscopy study. A higher level of qualitative IR spectroscopy analysis may be

considered as correlating to specific spectral features with particular molecu-

lar conformations [13], phases [9], orientation [14] or even hydrogen bonding

[15]. A most representative example of IR spectroscopy based polymer chem-

ical characteristic is the temperature dependence studies of the νNH region of

polyamides conducted by Schroeder and Cooper [15]. An infrared thermal ana-

lysis technique was used to measure the enthalpy of dissociation of hydrogen

bonds in various polyamides and to test the influence of the type of nylon,

annealing time, and moisture content on the strength of hydrogen bonding.

Nearly all of the NH groups were found to be hydrogen bonded at room tem-

perature for every nylon tested. The results show that while the enthalpy of

dissociation of the hydrogen bonds was not significantly changed by the type

of nylon or any of the tested variables, the modulus was strongly affected by

several of the treatments, which indicated that hydrogen bonding does not play

a primary role in determining the mechanical properties of polyamides.

5.1.1 Ratio method for quantitative IR spectroscopy analysis

The quantitative analysis of FTIR spectra has been highly reliant on the ratio

method [16]. It has been widely used and generalised on IR spectra data ana-

lysis [10, 11]. In the ratio method, model compounds spectra are needed for cal-

ibration [16]. This causes limited application of this method since, it is, in some

cases, difficult to get the spectrum of a pure component. Polymer samples have
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a relatively simpler molecule structure, and a big body of literature available

on their IR characterisation. The standard spectrum of a certain polymer type

can be obtained easily, either from the considerable amount of IR spectroscopy

polymer studies, or from the build-in spectra library of an FTIR spectroscopy

commercial software. The ratio method can be applied to conduct quantitative

analysis of plastic IR spectra. The method is introduced in detail as following:

The IR spectrum of a two-component mixture can be represented by:

M(v) = f1(v) + f2(v) (5.1.1)

where M(v) represent the spectrum of a mixture components, f1(v) is the spec-

trum of pure component 1, f2(v) is the spectrum of pure component 2.

The spectrum of a different proportions can be represented as:

M(v) = a1 f1(v) + a2 f2(v) (5.1.2)

where a1 and a2 represent the proportion parameters.

The ratio spectrum is given:

R(v) =
a1 f1(v) + a2 f2(v)

f1(v) + f2(v)
(5.1.3)

R(v) can be used to define the proportions. In a fingerprint spectral region for

component 1, where f1(v) >> f2(v), R(v) ≈ a1. Conversely, if a fingerprint

spectral region f2(v) >> f1(v), R(v) ≈ a2. This ratio method for proportion

determination is not accurate when the band overlap exists or frequency shifts
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occur with the different concentrations in the mixtures [16].

5.1.2 Polymer blending and copolymer composition

Polymer blends/composites represent a class of materials of great industrial

importance, in which two or more materials are combined in a product whose

performance/cost ratio is superior to that of the individual components [17].

The polymer-polymer systems are sometimes considered as ’blends’ and some-

times as ’composites’, and the distinction is not always obvious [17, 18]. Nu-

merous research into the application of IR spectroscopy on polymer blending

and copolymer composition study can be found, which, not only proved the

great potential of applying FTIR spectroscopy on recycled plastic sorting, but

also provide solid support for recycling application of FTIR spectroscopy. Re-

search into the general theory of the interpretation of the infrared spectra of

high polymers has a long history [12] and FTIR spectroscopy has been widely

applied to provide qualitative analysis of polymer from starting material to

finished products [19–23]. The use of vibrational spectroscopy to character-

ise polymer composites is so widespread that it is impossible to include an

exhaustive review herein. Detailed reviews concerning theory, experimental

techniques [24, 25] and application examples [17] can be found.

The infrared spectrum of a blend of two incompatible homopolymers will be

equivalent essentially to the summation in appropriate proportion of the in-

dividual infrared spectra of the two components. Intermolecular interactions,

such as hydrogen bonding or polar coupling, may be detected through band

position shifts and intensity changes. Pehlert et al. [22] recorded infrared ab-
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sorbance spectra at room temperature in the carbonyl stretching region of films

of pure ethylene-co-vinyl acetate (EVA) and poly(2,6-dialkyl-4-vinyl phenol)

(PDMVPh) blends containing 80, 60, 40 and 20 wt% EVA. The results indicated

that a lower wavenumber band is a consequence of hydrogen bonding between

the blended material.

Studies of reinforcement and interphases represent one of the most important

use of vibrational spectroscopy, and carbon fibre reinforcements is one of the

most studied [9, 17, 26, 27]. IR spectroscopy is generally used to detect the pres-

ence of different types of carbonyl groups, as well as phenol or alcohol groups

to study the surface treatment of CF and its influence on matrix-CF interface

[28–32]. Sellitti et al. [29] studied the oxidised rayon-based graphitised carbon

fibre using Fourier transform infrared attenuated total reflection spectroscopy

(FTIR-ATR). The spectra of the samples oxidised for different times (In Figure

5.3) were compared from the bands at 1720 cm−1 and 1580 cm−1, arising from

the oxidative treatment, followed as a function of oxidation time. Zhang et

al. [33] reported the examination of amino-functionalised graphene oxide (GO-

NH2) grafted carbon fibre (as shown in Figure 5.4) using FTIR spectroscopy.

Compared with untreated carbon fiber, the new feature at 2930 cm−1 was as-

signed as the stretching vibration of -CH2 and the new peaks at 3440 cm−1 and

1540 cm−1 were related to the N-H stretching modes of amino groups (-NH2).

The new features at 1640 cm−1 and 1540 cm−1 were attributed to amide I (-CO-

NH-) and II (-CO-NH2). All the results indicated that partial amino groups of

GO-NH2 were reacted with the acyl chloride groups on the carbon fiber surface.

Polymeric fibres are another important class of reinforcement, common types
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Figure 5.3: Spectra of graphitised carbon cloth oxidised for 25 hours (top spectrum),

15 hours (middle spectrum), and 5 hours (bottom spectrum). Reproduced from [29].

being aromatic polyamide or aramid, PET, PE, and PP (polypropylene) [17]. A

PE fibres IR spectroscopy study conducted by Van Mele and Verdonck [34] in-

dicate that moisture on the fibre surface interacted with the anhydride hardener

and reduced the degree of cure (vulcanisation of rubber) close to the fibre. The

interphase in polyethylene fibre/epoxy matrix composites was studied with

FTIR microspectroscopy using a set-up to investigate the matrix as close to the

fibre as a few µm or less. Moisture present on the fibre surface was able to influ-

ence the polymerisation reaction of the epoxy/anhydride matrix in an irrevers-

ible manner. This effect is enhanced for composites from the more hydrophilic

polyvinylalcohol fibre. IR spectroscopy was also used to follow the growth of

surface carbonyl groups on oxyfluorinated PP fibres [35] as well as the chemical

grafting of poly(aniline) and poly(o-toluidine) [36] or a diazide derivative [37]

to PET fibres.

Particulate fillers are usually added to reduce cost. The most common fillers are

103



CHAPTER 5: INTRODUCTION

Figure 5.4: Scanning electron microscope images of (a) untreated and (b) CF-GO car-

bon fiber. Reproduced from [33].

silica and silica minerals, calcium carbonate, and metal oxides [17]. Durcova et

al. [38] reported quantifying the effectiveness of calcium carbonate dispersion

in PP composite fibres using transmission IR spectroscopy. Spectra of compos-

ite fibres were recorded through KBr pellets and the absorbance ratio at 714

cm−1 and 2721 cm−1 was calculated. This ratio was found to be sensitive to

the particle size of the calcium carbonate (calcite) present in the polypropyl-

ene fibres. The results have shown that FTIR spectroscopy may be reliably ap-

plied for evaluation of the relative degree of dispersion of calcite in composite

polypropylene fibres in the calcite concentration range 0-15% by weight. The

authors believe the FTIR ratio method can be applied to other kinds of poly-

mer/filler composite fibres under the conditions where the following assump-

tions are valid: (1) the spectrum of the composite fibres is the sum of spectra

of individual components; (2) Lambert-Beer’s law may be applied; (3) corres-

ponding filler analytical bands are present in the spectra of composite fibres.

Copolymers may be thought of as polymers with chain structures in which
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chemically different monomer units are linked in different concentrations in

a ’non-uniform’ manner [39]. Chalmers [40] reported the infrared spectroscopy

analysis of solution (1,1,2,2-tetrachloroethane) cast thin films onto KBr polished

plates of poly(aryl ether sulfone) (PES), and two aryl ether sulfone/aryl ether

sulfone copolymers. Results have shown that copolymer composition can be

determined from a measurement of the absorbance ratio, 1190 cm−1/1010 cm−1.

Application of FTIR spectroscopy on polymer blending and copolymer com-

position study represents a particularly good example of the data processing

capability for elucidation of structure information [16]. In this section, we dis-

cussed the four major sub-topic in this research field, reinforcement and in-

terphases, polymeric fibres, fillers and copolymers studies, with one of the most

representative example given for each topic. FTIR spectroscopy is a powerful

tool for polymer analysis. Applying FTIR spectroscopy on plastic recycling has

great potential.

5.1.3 Application of FTIR imaging to plastic recycling

The use of FTIR imaging on plastic analysis has not been fully explored [3, 41].

ATR-FTIR mapping technique was applied to examine the coarse microscopic

two-phase structure of virgin and recycled Acrylonitrile Butadiene Styrene (ABS),

High Impact Polystyrene (HIPS) and polycarbonate. The method was com-

pared to optical microscopy both before and after etching with chromic acid.

It was found that while optical microscopy showed up phase separation on a

scale of tens of microns, the FTIR mapping allowed compositional details to

be investigated. The results indicate that, with a spatial resolution of a few
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Figure 5.5: Schematic illustration of how the spatial variation of molecular response in

a polymer can be used to evaluate mechanical properties spectroscopy and imaging.

(Left) The physical process of necking, demonstrating the focus of the study on the

necking region. (Middle) A representative stress-strain curve for HDPE overlaid on

the cartoon of a necked polymer. (Right) Drawn tensile samples exhibit optical aniso-

tropy beyond the yield point that arises from molecular reorganisation and are seen in

polarised infrared spectra. Anisotropy measurements by imaging allows visualisation

of the spatial distribution of molecular orientation in the entire sample, with localised

sensitivity. Reproduced from [41].

microns, FTIR mapping cannot only shows the structure but also gives inform-

ation on the composition differences between phases [3].

Mukherjee et al. performed the study of applying FTIR imaging to optically

and nondestructively measure molecular structure and its spatial dependence

in tensile specimens in high density polyethylene (HDPE) homopolymers [41].

Figure 5.5 is the schematic illustration of the methodology. Crystal structure

and orientation were obtained from spatially varying measurements of mo-

lecular properties in the necking region. Local molecular (re)arrangements to

characterise mechanical properties of drawn samples were deduced from spec-
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tral data. The study shows that together with multi-scale measurements and

analysis, infrared spectroscopic imaging permits a correlation of mechanical

properties with its molecular origins. A non-destructively way of examining

properties of semi-crystalline polymers was provided.

Compared with ATR-FTIR or single point transmission FTIR, Transmission ima-

ging FTIR has higher requirements in sample preparation, and it takes longer

time to collect the data. However, it can provide information that other analyt-

ical techniques cannot. The benefits of applying Transmission imaging mode

of FTIR spectroscopy to plastic component analyses can be summarised as fol-

lowing:

• To provide a robust form of data. FTIR imaging offers a particular com-

bination of spatial, spectral, and chemical detail [42]. Not only, it reveals

information that is available in classical methods, e.g. Thermogravimetric

Analysis, but also it provides superior knowledge, e.g. spatial variation of

composition by IR spectroscopy imaging or mapping technique.

• To maintain easy lab-industry transformation. Compared with ATR-FTIR,

transmission imaging mode relies less on human interaction (ATR requires

sufficient sample-crystal contact) in the data collection step. Thus, it has

more potential to be applied on a continuous, automatic FTIR plastic ex-

amining system, which can be used in an industry setting.

• To provide reliable data. ATR, transflection and reflection FTIR are effect-

ively surface techniques. If the surface of the examined point is not rep-

resentative of the whole plastic bulk, for example, due to plasticiser mi-
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gration to the surface [43], the spectrum obtained from those FTIR modes

can be misleading.

For plastic recycling, the physical or chemical properties of plastics can be ma-

nipulated by copolymers or blends and many of the waster plastics are co-

polymers or blends and this is problematic as the composition information is

often missing when it comes to the recycling stage. The quality of recycling

plastic products highly depends on the quality of the sorting process and thus

knowledge of the composition of the polymer and polymer blend is key in or-

der to facilitate effective and efficient reuse of the plastic material. Studies [44,

45] have indicated the composition was more significant influence other than

whether the materials were recycled or not. To produce better quality recycled

plastic for advanced technical products, it is essential to understand the precise

components of the input material, to adjust blends and processing conditions

accordingly.

5.2 Aims

The application of recycled polymers and composites is generally limited to

lower end applications, in part because the finely tuned properties required

in high-end products can-not be guaranteed from recycled materials. This is

because recycled plastics come from a wide variety of sources, with different

compositions and conditions. As a result, different reprocessing blends and

parameters are needed for each batch of recycled plastic to achieve a product

with consistent properties.
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This research discusses the application of FTIR spectroscopy to recycled com-

posite production, focussing on studies in the following areas:

1. Analysis the effects of pre-processing. The pre-processing step in FTIR

imaging data analysis is a very delicate procedure. With the abundant lit-

erature on polymer IR spectra, Section 6.1 is a knowledge-based approach

study of pre-processing methods for IR spectrum analysis. Different meth-

ods were compared and the best performing parameters were tuned to

provide the best S/N ratio of the spectra.

2. Examine the ways in which FTIR imaging can be used to the component

study of VPP + Talc plastic sample. The identification and characterisa-

tion of the individual components present in the composite using FTIR

imaging are provided in Section 6.2. In this case study, the building of a

spectra library, the calibration of talc concentration with IR spectrum peak

ratio/integration, and the application of the calibration result to analyses

the un-even distribution talc in a film sample were discussed in detail.

3. Investigate the prominent benefits of applying FTIR imaging technique to

investigate the composite structures of ’real-world’ composites sample for

recycled industry plastics, including: ABS + CaCO3, PP + talc, PP + rSMCF

+ SF, PP + MAPP + rSMCF + SF and PP + PET morphology on the micron

scale. Emphasising on the interaction between different materials, the in-

terface interaction and the distribution of each composite were studied in

detail.

The purpose of this study is to investigate the use of FTIR spectroscopy as an
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analytical tool for process control during the plastic recycling and to use high-

definition FTIR imaging to monitor the chemical composition and spatial dis-

tribution of plastic composites. We hope this study can lead to the possible

application of FTIR spectroscopy as online analysis methods for plastic recyc-

ling.

Plastic sample pellets with given composition were prepared by Mr Bing Wang.

Details of the plastic films preparation and FTIR imaging are detailed described

in the Experimental Section. The resulting FTIR imaging data and analysis are

reported in the following Chapter.
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Plastic samples analysis using FTIR

spectroscopy

6.1 Studying the influence of pre-processing steps

In order to improve data quality, pre-processing is normally the first step taken

in FTIR spectroscopy data analysis. Based on the purpose of the step, it can be

divided into: spectra correction, de-noising, normalisation and mathematical

derivatives. Two or three methods are often combined, and different options

are available for each of the pre-processing steps. In this section, with the clear

structured virgin polypropylene (VPP) plastic film sample, a data-processing

→ result→ data-processing loop can be developed to gain better understand

of the data pre-processing steps and algorithms used in each step. The PP ma-

terial used in this study is an injection grade PP block copolymer produced by

Dushanzi Sinopec, denoted EPS30R.

Typical pre-processing steps for plastic FTIR data is as following:
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1. Spectra are truncated to exclude regions with little or low information;

2. Baseline correction is applied to correct any baseline offset;

3. Smoothing is applied to reduce the noise level of the spectrum;

4. Normalisation is applied to correct sample thickness’s influence on the

spectra;

6.1.1 Spectra correction

Spectra correction includes the correction of the baseline caused by scattering

and spectral contributions that arise from atmospheric water vapour, carbon

dioxide, paraffin or other interfering compounds. For bio-material, scattering

is one of the main causing for spectra distortion, extended multiplicative scat-

tering correction (EMSC) [46] is normally applied. For plastic samples, the scat-

tering is less problematic. In this section, baseline correction is achieved using

the ’msbackadj’ function within MATLAB, in which a spline approximation re-

gression is used to adjust the baseline. The approximation is obtained using

multiple shifted windows across the x-axis. Two parameters, ’WINDOWSIZE’

and ’STEPSIZE’ need to be tuned to get the best performance. ’WINDOWSIZE’

sets the width for the shifting window. For instance, ’WINDOWSIZE’ = 200,

means a background point is estimated for windows of 200 separation unit.

’STEPSIZE’ sets the steps for the shifting window. ’STEPSIZE = 200’ means an

estimated for windows at every 200 separation unit. In the case of IR spectrum,

the separation unit wavenumber is 1 cm−1.

Figure 6.1 is the spectrum truncation and baseline correction on the mean spec-

trum of 36,864 (six-by-six imaging using 32 × 32 Focal Plane Array detector)
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Figure 6.1: PP spectrum truncation and baseline correction. (a) is the raw spectrum

and the selected wavenumber range for spectrum truncation step; (b) is the trun-

cated spectrum and the applying of ’msbackadj’ function on different parameter set-

ting. Wavenumber range 1600 - 3000 cm−1 is shown in (b) to better visualise spectral

changes.

VPP IR absorption spectra. Absorbance in the raw spectrum 450 - 850 cm−1

wavenumber range have no IR transmission. Excluding that wavenumber re-

gion to reduce the data size thus increase the computational efficiency is neces-

sary. Figure 6.1a shows the raw spectrum and the selected wavenumber range

850 to 4000 cm−1 which is highlighted inside the rectangular box. Figure 6.1b

is the truncated spectrum and the application of ’msbackadj’ function using

different parameter settings. Comparing the truncated spectrum (black line in

Figure 6.1b) with the resulting spectra (orange, yellow, green and blue line in

Figure 6.1b), the baseline region of the PP spectrum (1600-2000 cm−1) is moved

to zero absobance, indicating that ’msbackadj’ function is effective in correct-

ing the baseline problem of plastic IR spectra. In the 2800-3100 cm−1 region,

more spectrum distortion can be observed by the ’msbackadj’ with lower ’WIN-
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DOWSIZE’ and ’STEPSIZE’ value, indicating the different performance of the

algorithm with different parameter setting. ’WINDOWSIZE’ 100 and ’STEP-

SIZE’ 100 gives the closest result with PP spectra reported in the literature [47–

49].

6.1.2 De-noising

De-noising is also called smoothing, aiming to improve the signal-to-noise ratio

of the data. Savitzky-Golay (S-G) [50] smoothing is the most applied method for

FTIR spectroscopy data sets [51, 52]. By fitting successive adjacent data points

with a low-degree polynomial using the method of linear least square, the S-G

method has good performance in smoothing data with shape peaks. Two para-

meters, ’SPAN’ and ’DEGREE’ need to be chosen to get the best performance

of the algorithm. ’SPAN’ defines the number of adjacent data points used to

compute each element of the de-noised data. ’DEGREE’ specifies the degree of

the polynomial to be used in the S-G method. Noting S-G smoothing could in-

troduce distortions in the spectral measurements, and at the same time smooth

out important information in the spectra, S-G algorithm parameters need to be

carefully chosen.

Moving average is another commonly used smoothing technique in signal pro-

cessing. By creating a series of averages of different subsets of the full data set,

it aims to smooth out fluctuations is not the main trends of the signal. Given a

fixed subset size, the first element of the moving average is obtained by taking

the average of the initial subset. Then the subset is ’shifting forward’ to obtain

the next moving average value, until it reaches the end of the data set.
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Figure 6.2: Comparison of moving average and S-G smooth method. (a) n-steps

moving average smoothing under the SPAN value of 5, 9 and 13; (b) Savitzky-Golay

smoothing using two-degree polynomial fitting under the SPAN value of 5, 9 and 13;

(c) Savitzky-Golay smoothing using different degree (2, 4 and 6) polynomial fitting

under the SPAN value 9.
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Figure 6.2 is the application of n-steps averaging smoothing and S-G method

on PP spectrum (after truncation and baseline correction). Figure 6.2a is the

comparison of 5, 9 and 13 points of moving average smoothing with the original

spectrum. The corresponding wavenumber length for 5, 9 and 13 points are

9.64, 17.36 and 25.04 cm−1 respectively. Zoom-in images of wavenumber region

1340-1500 (shape peak), 1500-1700 (baseline) and 2800-3000 (peak) cm−1 are

provided. It can be observed that the spectra distortion increase as the ’n’ value

increase, meanwhile the algorithm’s ability to smooth out the noise decreases.

In 5-steps averaging smooth case, less peak loss can be observed in the shape

peak region, yet the baseline region remains noisy. When increasing the ’n’

value to 13, less noise can be observed from the baseline region. Nevertheless,

the peak lose in a shape peak region is large.

Applying the S-G method using different SPAN setting was tried. Fixing DE-

GREE to 2, S-G smooth result with 5, 9 and 13 SPAN value were compared.

The result is given in Figure 6.2b. Compared with Figure 6.2a, less peak lose is

caused under the same SPAN value. Correspondingly, less de-noise effect can

be observed from the baseline region. Compared with moving average results,

S-G algorithm can provide better-resolved peaks [53]. Figure 6.2c is the S-G de-

noising using different ’DEGREE’ of polynomial function. The result indicates

that higher degree of the fitting function can cause less peak distortion (provide

better-resolved peak). However, it weakens the smoothing algorithm’s ability

to reduce high-frequency noise.

In general, it is difficult to draw the conclusion which smooth algorithm on

what parameter setting works the best, as both de-noise algorithms tested here
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decrease its smooth ability when trying to keep the shape peak resolution. For

the PP IR spectrum, S-G de-noising algorithm with SPAN = 9, DEGREE = 2 was

selected.

6.1.3 Normalisation

Normalisation is used to correct the influence of thickness. The different thick-

ness or concentrations of the samples can sometimes cause the most prominent

source of spectral variation. It is important to normalise the IR spectroscopy

data to minimise the influence of the varying thickness of the sample. Peak

maxima normalisation and vector normalisation are the most popular used

methods [54, 55]. As with most pre-processing steps, normalisation algorithms

need to be carefully selected and applied with caution.

Each IR spectra is corresponding to the chemical information contained in that

pixel. In an ideal situation, excluding the influence of machine, environment

noise/error and sample preparation variation, spectra collected from the same

VPP film should be identical, as the material composition is uniformly distrib-

uted across the sample. For ’real-world’ data, the spectra from the same VPP

film cannot be identical, as noise is inevitable. The noise level, however, can be

represented by the distribution of the spectra in the sample.

In statistics, density distribution is normally used to compare between popula-

tions (a collection of individual samples). Taking spectra from the same sample

as a population, each spectrum as an individual, the probability density dis-

tribution of wavenumber can be obtained. In the ideal case described above
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(spectra from the population are identical); probability density distribution of

one wavenumber absorbance will be a pulse (a straight line in parallel with

the y-axis). For real experimental data, the probability density distribution is

usually a normal distribution (or close to normal distribution). The higher the

S/N ratio is, the sharper the normal distribution will be, as a higher S/N ratio

representing a closer to ideal experiment setting. The shape of the normal dis-

tribution can be used to evaluate the S/N ratio of the data set. By comparing

the S/N ratio level of the data set before and after one pre-processing step, the

pre-processing algorithm’s performance can be evaluated.

Figure 6.3 is the evaluation of pre-processing steps on PP FTIR imaging data.

Figure 6.3a is on single wavenumber absorbance value. Figure 6.3b is on peak

wavenumber absorbance integration value. Three pre-processing steps: baseline

correction (msbackadj), smooth (S-G), and normalisation (peak value normal-

isation) is evaluated. Four data set, resulting from the three steps pre-processing:

raw data set (blue), data set with baseline correction only (orange), data set with

smooth after baseline (yellow), and data set with all three pre-processing steps

(purple) are presented.

In the figure, as we expected, all the density distribution is normal or close to a

normal distribution. From ’Raw’ to ’Baseline’, then to ’Smooth’, all those steps

are improving the data quality as the density distribution is getting shaper and

shaper.

The peak maxima normalisation method is used and tested in this section. The

normalisation method relies on dividing the absorbance of a certain wavenum-

ber by the absorbance on 1377 cm−1. For PP film, the spectra noise resulting
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Figure 6.3: Evaluation of pre-processing steps based on VPP FTIR imaging data. Prob-

ability density distribution of the FTIR imaging data is produced based on data sets

resulting from each pre-processing step. The shaper the distribution the better the

S/N of the data set. (a) probability density distribution on wavenumber 1456 cm−1 ab-

sorbance value; (b) probability density distribution on wavenumber 1429-1485 cm−1

absorbance value integration. Blue: raw data set; orange: data set after baseline cor-

rection; yellow: data set after baseline → smooth; purple: data set after baseline →

smooth→ normalisation.

from thickness variation is relatively low. The correction of the thickness vari-

ation introduced higher noise, as single wavenumber 1377 cm−1 absorbance

contains a high level of noise. This is confirmed in Figure 6.3. After normal-

ising, the distributions are getting flatter in both (a) and (b). This means the

normalisation steps for the PP imaging data is introducing noise other than re-
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ducing noise.

The phenomenon observed in Figure 6.3 does not means that normalisation

should not be used at all. All normalisation algorithms introduce noise to the

data set. However, if the noise caused by the thickness variation is much higher

than the noise introduced by normalisation, it is still worth normalising the

spectra to correct the thickness influence.

In Figure 6.3, both (a) and (b) indicated that the distribution changes to a sharper

shape from raw data set to baseline correction data set (blue to orange). Com-

paring with the shape change in (a), the shape change in (b) from blue to orange

is larger. This is because the density distribution in (b) is based on peak integ-

rations (multiple absorbances) other than one single wavenumber absorbance.

Baseline correction improved little of the spectra quality (the distribution in

(a) changed little from blue to orange). It, however, improved the data qual-

ity a great deal, in terms of the peak integration value (the distribution in (b)

changed a lot from blue to orange). This agreed with that statement that, by

combining multiple wavenumber absorbances, the S/N ratio can be increased,

which has been drawn by many researchers [56].

6.1.4 Mathematical derivatives

Mathematical derivatives can reveal the subtle differences between spectra hid-

den by overlapping bands. The bands’ full width could be narrowed at half

height value (FWHH) by applying differentiation to the spectrum. However,

each differentiation amplifies noise [57]. Furthermore, it is difficult to link the
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data pattern with biochemical or physical knowledge, as the transferred data

after mathematical derivatives are not directly resulted from light absorption.

6.1.5 Section conclusion

In this section, a good collection of spectrum pre-processing methods were dis-

cussed. Based on the VPP sample FTIR imaging data, utilising statistical dens-

ity distribution as tool, the performances of each method were tested and com-

pared. This information is used in the subsequent sections when preprocessing

IR spectroscopic data on polymeric samples.

6.2 Case study: Virgin polypropylene with talcum powder

6.2.1 Studying PP/Talc composition using ATR-FTIR spectroscopy

PP samples containing 0 to 20 wt.% talc concentration with step size 2.5% were

prepared, and the ATR-FTIR spectra recorded. The variation of talc concentra-

tion was achieved by changing PP/talc feeding composition ratio in the regular

blending and extrusion process, as shown in Figure 6.4. For each talc composi-

tion, a minute of the extrusion pellets were collected during the steady period

(20 minutes after changing the composition setting) to maintain a low variation

between samples in the same group. Five pellets were randomly selected from

pellets collected between 20 and 21 minute results, ten ATR-FITR spectra were

collected for each pellet. This data was used to calibrate the PP/talc IR spec-

trum peak ratio against wt.% talc of the composite. This dataset is part of the

result of another project studying the plastic extrusion performance; and this
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Figure 6.4: Overview of making PP/Talc pellets with fixed talc concentration in regu-

lar blending and extrusion process. Reproduced from [58].

data collection was conducted by Mr Bin Wang.

The ATR-FTIR spectra were collected using a spectral resolution 4 cm−1 and co-

adding 16 scans. Each spectrum was normalised at the PP IR absorption peak

at 1166 cm−1. No other pre-processing methods were used to maintain min-

imum manipulation of the spectra. The data set was divided into nine groups

based on the talc concentration, and each group contained 50 spectra. Statistical

analysis, boxplot was used to visualise the inter and intra group relationship of

peak ratio between 1020 (talc IR absorption peak) and 2916 cm−1 (PP IR absorp-

tion peak). By combining multiple wavenumber absorbance, the S/N ratio of

the data can be improved. Therefore, the same boxplot was generated based on

the talc peak integral (1010-1030 cm−1) to compare with the single peak ratio

result.

Figure 6.5 is the analysis results of the ATR-FTIR spectra. Both the peak ratio

and peak integral value boxplot show that the intra-group spectra variation
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gets larger as the concentration of talc increases. This suggests that the mixer

has dropped performance on higher talc concentration plastic. Comparing with

the boxplot based on peak ratio (Figure 6.5a), peak integration boxplot shows a

more steady tendency (based on the mean, median, quartile one, quartile three

and the outlier identified) in terms of the intra-group variation increase.

Beer’s law states that the concentration of a chemical solution is directly pro-

portional to its absorption of light. The ratio between the talc peak and PP

peak should be in a linear relationship with ratio of talc concentration and PP

concentration. As the material is composited by PP and talc only, the PP con-

centration equals to one minus talc concentration. Using the mean value of each

group after outlier cut, the fitted 1st degree polynomial (with R-square=0.9948)

is given, and the result is plotted in Figure 6.5c:

Concentrationtalc
ConcentrationPP

= 0.3886 · peakratio− 0.0386 (6.2.1)

As all the spectra were normalised to PP peak (1166 cm−1) before the integ-

ration value were obtained. It is a linear relationship between the talc peak

integral and ratio of talc concentration and PP concentration, using the mean

value of each group after outlier cut, the fitted 1st degree polynomial (with R-

square=0.9866) is given, and the result is plotted in Figure 6.5d:

Concentrationtalc
ConcentrationPP

= 0.00597 · peakintegral − 0.04988 (6.2.2)

In both Figure 6.5c and Figure 6.5d, the experiment value fitted well with the

linear relationship prediction. The linear relationship obtained in this result
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Figure 6.5: PP/Talc composition ratio IR spectroscopy study. (a) boxplot of peak ratio

between wavenumber 1020 cm−1 and 2916 cm−1 of each concentration group; (b) box-

plot of talc peak integral (wavenumber 1010 cm−1 to 1030 cm−1) of each concentration

group; (c) scatter of mean peak ratio of each group and the linear fit result; (d) scatter

of mean peak integral of each group and the linear fit result.
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agrees well with other IR spectroscopy proportion analysis [16, 17, 22]. Even

though, in terms of the goodness of fitting (R2), peak ratio result is slightly

better. The peak integration calibration result was used to obtain a quantitative

analysis of a talc/PP film sample in the next section, due to the better S/N ratio

of the data set.

6.2.2 Studying talc reinforced PP samples using FTIR imaging

After confirmation a calibration plot for the wt.% talc in PP composites, the

samples were investigated further through examination of their microstructure

using FTIR imaging. FTIR imaging was performed on a 80% VPP, 20% talc (VPP

+ 20%talc) sample under the following conditions: pixel size 1.1 µm2, spectral

resolution 2 cm−1 and co-adding 16 scans. Using the film making procedure

developed in the Experimental Section (see page 300), the thickness of the res-

ult sample film varies from 20 to 25 µm across the sample (the lowest and the

highest value of those five measurements).

’msbackadj’ function (WINDOWSIZE 60, STEPSIZE 60) baseline correction and

nine point moving average smooth algorithm were applied before each spec-

trum is normalised at the PP IR absorption peak at 1166 cm−1.

The pseudo-colour image based the integral band area of the talc (1010-1030

cm−1) is shown Figure 6.6c, where outliers (pixels in the high and low range)

were cut off. Quartile one - (1.5 x inter quartile range) and quartile three + (1.5

x inter quartile range) were used as the boundary. Using the 20, 40, 60 and 80

percentiles of the values as boundaries, the selected pixels were grouped into
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Figure 6.6: Images of VPP + 20%talc sample. (a) Optical image of the selected area for

IR spectroscopy examination. (b) Medium spectrum of each cluster, the standard spec-

trum of PP, Talc powder and PP + 20% talc. (c) Pseudo-colour image based on FTIR

imaging results. Each block represents a spectrum acquired at this position. Pixels of

the same colour indicate the spectra at those position falls within the same cluster. (d)

Integral band area 1010-1030 cm−1 absorbance histogram. The dark region observed

in the optical image contains less talc compared with the bright region.
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five clusters. Five different colours were given to pixels in different clusters.

From the image, we can see the sample has higher talc percentage in the right

than the left. The talc is not evenly distributed throughout the sample. A dark

region can be observed in the right half sample in the optical image. The shape

of the low talc region in the pseudo-colour image matches well with the shape

of the dark region in the optical image.

The standard transmission spectrum of talc powder and PP with 20% talc are

given in Figure 6.6b. The top half of the figure is the comparison of the standard

talc spectrum with standard VPP + 20%talc sample spectrum. The bottom half

figure is the comparison of the mean spectrum of each cluster with standard

VPP spectrum. The integration range is indicated. In the figure, the integration

range 1010-1030 cm−1 is the wavenumber range that PP has no IR absorption,

while talc has its main fingerprint absorbance peak. In a low talc composition

cluster, its mean spectrum is closer to standard VPP + 20%talc sample spectrum.

In a high talc composition cluster, its mean spectrum is closer to standard talc

spectrum. The mean spectra change from being closer to VPP + 20%talc to be

closer to talc spectrum. This indicated the major difference between clusters is

talc composition.

As shown in Figure 6.6d, the talc peak integral value increase from cluster one

to cluster five. The mean value for each cluster is: 21.4816, 27.9932, 31.7078,

35.3946 and 42.0204. Using the peak integral to talc concentration fit result

(Equation 6.2.2 on page 123), the mean talc concentration for cluster one to

five are: 7.27%, 10.49%, 12.24%, 13.90% and 16.73% respectively. This result

is a bit lower than 20% weight ratio for talc/PP feeding rate. This may due
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to the imaged region has low representative of the whole sample, or the low

performance of the mixer in the extrusion process.

Further explore the reason for the dark region and the low talc percentage in the

region by applying two-cluster Fuzzy C-Mean Clustering on the whole spec-

trum of the raw data set. The pseudo-colour image and the medium spectrum

of the cluster are given in Figure 6.7a and b respectively. This approach eas-

ily distinguished the dark region from rest of the PP/talc matrix. The medium

spectrum of the cluster indicates that spectra from cluster two (dark region)

have higher baselines. A consistent baseline level, which is normally the result

of over thickness, can be observed all over the medium spectrum of cluster two.

Baseline problem in FTIR spectroscopy data can normally be the result of over

thickness or scatter. We think that the dark region is the result of poor mixing in

the extrusion step. A piece of VPP is not melted and mixed with talc properly

in the entrusted pellet, which is further causing an over-thickness problem in

the film making process. Possibly, the dark region in the optical image, and the

high baseline region in the FTIR image are due to the over-thickness.

6.2.3 Section conclusion

Talc reinforced PP is one of the most widely used plastics in automobile in-

dustry. The recycling of this plastic blend is problematic as different manufac-

turer use various talc composition. The high-end reuse of the blend requires

a precise evaluation of the talc composition. We presented a accurate quantit-

ative calibration that can link the IR absorption spectrum with the talc weight
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Figure 6.7: Images of VPP + 20%talc sample. (a) Pseudo-colour image based on raw

data on the whole spectrum. (b) Medium spectra of each cluster, which shows the

major difference between the clusters is the spectrum baseline.

percentage, based on ATR-FTIR data. Micron scale FTIR imaging was conduc-

ted on talc/PP film sample. pseudo-colour image visualising the distribution

of talc in the PP matrix indicated a highly uneven distribution. Utilising the talc

ratio & IR peak ratio calibration, the uneven distribution was quantified, which

provided an accurate composition evaluation of talc/PP plastic. The great po-

tential of FTIR on composition study of recycled plastic is revealed. The meth-

odology, building a spectra library→ calibrating composition & IR absorption

→ quantitative composition evaluation, can be applied to other types of re-

cycled plastic.

6.3 FTIR imaging for plastic film composition identification

Using reinforcing agents to improve the performance of thermoplastics has

been the focus of research in recent years [59–61]. As well as the reinforcing
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itself, the percentage composition influences the physical and chemical prop-

erties. Studying the agent concentration in recycled reinforced plastics, as well

as the the spacial distribution can help develop more precise recycling meth-

odologies, improving recycled plastic’s physical and chemical performance. In

this section, virgin polypropylene with short milled recycled carbon fibre (VPP

+ 2%rSMCF + 1%SF), virgin polypropylene, maleic anhydride grafted polypro-

pylene with carbon fibre (VPP + 20%MAPP + 5%rSMCF + 2.5%SF), acryloni-

trile butadiene styrene with calcium carbonate (ABS + 20%CaCO3) and virgin

polypropylene with poly(ethylene terephthalate) (VPP + 20%PET), were invest-

igated using FTIR imaging.

6.3.1 Virgin polypropylene with short milled recycled carbon fibre

The automobile industry has an increasing interest in polypropylene (PP), due

to its low lightweight index, short cycle time and great recycling potential [62].

Carbon fibre (CF) as an important reinforcing material for thermoplastic mater-

ials has been widely used, in particular CF reinforced PP composites have been

extensively studied [49, 63]. It has been widely accepted that the inter-facial

properties between CF and PP matrix is critical for the ultimate performance of

the resulting composites [47]. In this section, FTIR imaging was applied to CF

reinforced PP composites to study the component distribution in the PP matrix.

The CF material used in this study is recycled CF (rCF). Details of the recover-

ing process and the characterisation can be found in the paper by Wong et al.

[48]. The rCF material was shredded using a cutting mill (Retsch SM2000) with

a 0.5 × 0.5 mm square aperture sieve to obtain the short milled recycled car-
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bon fibre (rSMCF). Due to the removal of coatings on the fibre surface during

the recycling process, the rSMCF material comes in a fluffy form with severe

entanglements [64]. In the sample preparation, rSMCF was dispersed using

polyoxyethylene (20)oleyl ether as a surfactant (SF) which was compounded

with the polymer matrix via compression, extrusion and injection moulding

cycle [64]. Utilising FTIR imaging, inter-facial interaction between fibres and

PP matrix was analysed to detail investigate the existence of polyoxyethylene

(20)oleyl and its distribution in the final PP composite.

FTIR imaging in the region of interest was performed on 97% VPP, 2% recycled

short milled carbon fibre (rSMCF) and 1% surfactant sample (VPP + 2%rSMCF

+ 1%SF). 128 × 128 pixels were collected in each sample by co-adding 16 scans

at 2 cm−1 spectral resolution (wavenumber step size 1 cm−1). Transmission in

’High magnification’ mode was used, which gives pixel sizes of 1.1 µm2.

rSMCF identification

The diameter of the solid cylinder-shaped rSMCF (5-10 µm) can induce Mie

scattering in the transmitted mid-IR light [65, 66]. Mie scattering caused by

the micrometre-sized rSMCF can be used to identify their location within the

polymer matrix.

Wavenumber range 1800 cm−1 to 2000 cm−1 (highlighted in Figure 6.8a), a re-

gion in which there should be no peaks due to the surfactant or PP, was selec-

ted. Mean absorbance of each spectrum in this baseline range was obtained

and used as a feature value representing that spectrum. This mean absorbance
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Figure 6.8: Identification of rSMCF region based on the baseline shift level. (a) Mean

spectrum of clusters. Clear baseline shift can be observed between PP region (blue

line), rSMCF nearby region (green line) and rSMCF region (black line). (b) Pseudo-

colour image resulting from Fuzzy-C Mean clustering, with PP region (blue), rSMCF

nearby region (green) and rSMCF region (black) belongs to three clusters. (c) Selec-

ted pixel row, 1800-2000 cm−1 wavenumber region mean absorbance bar plot. Com-

pared with PP region (blue), rSMCF region (black) and its nearby region (green) have

a higher baseline level.
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value in the baseline wavenumber range is called the baseline level. Figure 6.8c

is the bar plot of the baseline level of the selected pixel row (highlighted by yel-

low line in Figure 6.8b). Compared with pixels in PP region, pixels in rSMCF

region have a higher baseline level. Pixels near the rSMCF region have mean

baseline absorbance in-between.

Apply three clusters Fuzzy-C Mean clustering (maximum number of iterations

= 1000, minimum amount of improvement = 10−7) on data set before any pre-

processing. Assigning each cluster with one colour, Figure 6.8b is the pseudo-

colour image based on the clustering results. Comparing with the optical im-

age (6.9a), pixels on rSMCF region, pixels on PP region and pixels on near

rSMCF region were grouped into different clusters. This result indicated that

the rSMCF and is easily distinguishable from the PP/SF matrix.

Surfactant distribution study

Based on results in Figure 6.8, we have used HD FTIR imaging to identify the

chemical composition of the composite mixtures to understand the distribution

of the surfactant. To minimise distortions caused by scattering, baseline cor-

rection was achieved using the ’msbackadj’ function (WINDOWSIZE 60, STEP-

SIZE 60) within MATLAB. Variations in sample thickness outside areas con-

taining rSMCF were corrected through normalisation of the PP stretch at 1166

cm−1, following a nine-step moving average smoothing. Quartile one - (1.5 x

inter quartile range) and quartile three + (1.5 x inter quartile range) were used as

the boundary to cut off outliers.
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In Figure 6.9c, the black pixels represent the mean absorbance (abs > 0.3818) in

the range 1800 cm−1 to 2000 cm−1. The optical cut off value is defined based on

the FCM clustering results reported in Figure 6.8.

The pseudo-colour image of the PP matrix, based the integral band area of the

surfactant (1111-1136 cm−1) is shown Figure 6.9c, where rSMCF pixels have

been excluded (black) as the influence of scattering on the surfactant absorption

could not be excluded. Using the 20, 40, 60 and 80 percentiles of the values as

boundaries, the selected pixels were grouped into five clusters. Five different

colours were given to pixels in different clusters. From the image, we can see

that SF in the sample is not evenly distributed and has a higher concentration

in regions close to the rSMCF.

The standard transmission spectrum of SF and VPP are given in Figure 6.9b.

The top half of the figure is the comparison of standard SF spectrum with sub-

traction of cluster four and one mean spectrum. The mean spectra subtraction

matches that of the standard SF spectrum, with peak maxima at 1115 and 1147

cm−1. This indicates that the major difference between clusters are SF com-

position. The green and blue colour spectra in Figure 6.9b are the mean spec-

trum of each cluster. From cluster one to cluster five, the mean spectra between

wavenumber range 1050 and 1170 cm−1 increases. This IR spectral region is

exactly aligned with SF spectrum peak region (1050-1170 cm−1). This indicates

the difference between cluster is the SF composition percentage.

A control sample, containing only SF and PP (VPP + 2.5%SF) and imaged us-

ing the same method as the VPP + 2%rSMCF + 1%SF sample was obtained

to reveal the influence of the rSMCF on the distribution of the SF in the com-
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Figure 6.9: Images of VPP + 2%rSMCF + 1%SF. (a) Optical image of the selected area

for IR spectroscopy examination showing two major compositions: PP and rSMCF.

(b) Bottom: FTIR spectrum of PP (black) and the median spectra of the pixel clusters

1-5. Top: FTIR spectrum of SF and the subtraction result of cluster 4 minus cluster 1.

The mean spectrum subtraction between cluster 4 and 1 is highly similar to the pure

SF spectrum. (c) Pseudo-colour image based on FTIR imaging results. Each block

represents a spectrum acquired at this position. Pixels of the same colour indicate the

spectra at those positions fall within the same cluster. (d) Integral band area 1111-

1136 cm−1 absorbance histogram for VPP + 2%rSMCF + 1%SF (excluding regions of

rSMCF, black line) and VPP + 2.5%SF (yellow line). The closer the pixel cluster is to

rSMCF, the higher the SF composition is.
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posite materials. It can be clearly observed from the SF peak integration value

density distribution, which is shown in Figure 6.9d. The distribution of the

rSMCF sample (VPP + 2%rSMCF + 1%SF, Figure 6.9d, black line) has a mean (µ

= 4.2676) and standard deviation (σ = 1.5556). The distribution shows that SF is

not evenly distributed due to the influence of the rSMCF. However, the control

sample (SF2.5/PP, Figure 6.9d, yellow line) has a normal distribution around the

mean (µ = 1.9507) and a lower standard deviation (σ = 0.4781), indicating that

the SF is more evenly distributed throughout the PP matrix. The lower mean

VPP + 2.5%SF compared to VPP + 2%rSMCF + 1%SF is a result of poor mixing

between PP and the surfactant in the absence of rSMCF, and so the surfactant

is not incorporated into the PP matrix.

6.3.2 Virgin polypropylene, maleic anhydride grafted polypropylene with

carbon fibre

The polymer reinforcing potential of the recycled fibre can be increased by im-

proving the interfacial adhesion between the fibre and host matrix by the ad-

dition of coupling agents. Maleic anhydride grafted polypropylene (MAPP)

proved to be an effective compatibiliser in fibre reinforced PP plastics [48, 67].

The long molecular chain of MAPP is responsible for chain entanglements and

co-crystallisation with the non-polar PP matrix, which provide mechanical in-

tegrity to the host material [68]. Also, the maleic anhydride (MA) groups chem-

ically interact with the functional groups on the fibre surface, resulting in en-

hanced bonding with the PP matrix. A significant amount of hydroxyl groups

on the rCF surface can be observed under X-ray photoelectron spectroscopy
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analysis of VPP + MAPP + rCF indicates that the carbon fibre might be cova-

lently bonded with the MAPP through the esterification reaction [69]. As shown

in the last section, the distribution of surfactant in the plastic film is highly cor-

related with the location of rSMCF, in this Section, 20%MAPP is added into the

sample, and the distribution of surfactant, as well as the MAPP were studied

by FTIR imaging.

The maleic anhydride (MA) grafted rate of the MAPP material is 0.80 wt.%. mn

and mw of MAPP are 29,677 and 137,618 respectively.

FTIR imaging in the region of interest was performed on 72.5% VPP, 20% MAPP,

5% recycled short milled carbon fibre (rSMCF) and 2.5% surfactant (VPP +

20%MAPP + 5%rSMCF + 2.5%SF) sample. High spectral resolution, 1 cm−1

(wavenumber step size 0.5 cm−1) was used. The software returned 64 × 64

pixels representing the chemical information in the region of interest. Trans-

mission in ’High magnification’ mode was used.

Using the method described in Section 6.3.1, the rSMCF was identified by Mie

scattering due to the micrometre size rSMCF. Mean absorbance in the wavenum-

ber range 1800-2000 cm−1 was used to representing the scattering level of the

spectra. The same cut off value as used in the VPP + rSMCF sample analysis

0.3818 was selected. After cutting off the rSMCF, the distortions caused by

scattering was corrected by the baseline correction method ’msbackadj’ (WIN-

DOWSIZE 60, STEPSIZE 60). Variation in sample thickness outside rSMCF area

was corrected through normalisation of the PP stretch at 1166 cm−1, following

a nine step moving average smoothing.
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Figure 6.10: Images of VPP + 20%MAPP + 5%rSMCF + 2.5%SF. (a) Optical image of

the selected area for IR spectroscopy examination. (b) Spectra of VPP, MAPP and SF,

with integration bands highlighted. Bottom: FTIR spectrum of PP (black) and MAPP

(red). Top: FTIR spectrum of SF (blue). (c) Pseudo-colour image based on MAPP

peak integration value, 1770-1800 cm−1. Using the 20, 40, 60 and 80 percentiles of the

integration values as boundaries, pixels were grouped into five clusters. Five different

colours were given to pixels in different clusters. (d) Pseudo-colour image based on

SF peak integration, 1111-1136 cm−1. The same clustering and colourmap as (c) were

applied. The distribution of MAPP shows less correlation with the rSMCF location.
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MAPP has similar IR spectrum with VPP, except additional peaks around 3500

cm−1 and multi-peaks at 1500-1800 cm−1 range, due to the O-H and C=O vi-

bration of the MA group [47]. Figure 6.10a is the optical image of the IR spec-

troscopy examined area. Figure 6.10b is the IR spectra of VPP, MAPP and SF.

Considering the SF peaks in range 1600 - 1770 cm−1, range 1770-1800 cm−1 was

used as the integration range for MAPP identification. The same SF integration

range as VPP + rSMCF sample analysis in Section 6.3.1 was used to identify the

SF composition. Integration ranges used to produce the pseudo-colour images

are highlighted in Figure 6.10b.

Figure 6.10d is the pseudo-colour image based on the integral band area of the

SF (1111-1136 cm−1), where rSMCF pixels have been excluded (black). Using

the 20, 40, 60 and 80 percentiles of the integral values as boundaries, the se-

lected pixels were grouped into five clusters. Five different colours were given

to pixels in different clusters. The higher the cluster number, the higher the

surfactant peak integration value. A highly uneven distribution of SF can be

observed in the resulting image. Pixels nearby to the rSMCF have higher SF

composition. A clear cluster of high SF composite can be observed in the top

right conner of the image, where a cluster of rSMCF located. These results agree

well with the VPP + rSMCF + SF analysis result (Figure 6.9, on page 135). The

distribution of SF is highly relevant with the rSMCF location.

Figure 6.10c is the pseudo-colour image based on the integral band area of

the MAPP (1770-1800 cm−1). Unlike the distribution of SF, the distribution

of MAPP has less correlation with the location of rSMCF. The region near the

rSMCF, as well as some part of the PP matrix contains high-level of MAPP.
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The significant amount of MA groups in the region near the rSMCF might be

the result of chemical bonding between fiber and MAPP [69]. The MAPP loc-

ated in the middle of PP matrix is responsible for chain entanglements and

co-crystallisation with the non-polar PP matrix [68].

Compared with MAPP, SF is highly unevenly distributed in the resulting film.

This confirms the hypothesis that, for rSMCF reinforced PP plastic, SF attach-

ing on or locating nearby the rSMCF may be one of the major reasons for low

interfacial adhesion between rSMCF and PP matrix.

6.3.3 Acrylonitrile butadiene styrene with Calcium carbonate

Employing inorganic particulate fillers, such as calcium carbonate (CaCO3) [70],

kaolin and glass beads [71], and talcum powder [72], to improve properties

and/or lower costs of polymer products has been a common practise [73, 74].

Acrylonitrile butadiene styrene (ABS) is an engineering resin used extensively

in industry owing to its good mechanical, optical and processing properties.

CaCO3 is commonly used to lower the cost of ABS [73]. Mechanical property

study of ABS/CaCO3 composites [75] revealed that by adding CaCO3, the com-

posite shows an increase in tensile modulus compared with neat ABS. Agglom-

eration is a common problem in thermoplastics filled with CaCO3 particles [75],

due to the inadequate adhesion between CaCO3 particles and resins. It is well

known that shape and size of the agglomeration strongly affect the properties

of the final product [75, 76]. In this investigation, FTIR imaging was proposed

as an imaging tool to visualise the agglomeration problem. The FTIR imaging

data of an ABS + CaCO3 film was collected. The distribution of CaCO3 particles
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in the ABS matrix was visualised in both real-value and pseudo-colour based

imaging techniques.

FTIR imaging was performed on 80% ABS, 20% CaCO3 (ABS + 20%CaCO3)

sample using the following setting: pixel size 1.1 µm2, spectral resolution 4

cm−1 and co-adding 16 scans. Using the film making procedure developed, the

thickness of the sample varies from 15 to 20 µm across the sample (the lowest

and the highest value of those five measurements).

’msbackadj’ function (WINDOWSIZE 60, STEPSIZE 60) baseline correction and

nine-point moving average smooth algorithm, which is same with pre-processing

methods used in VPP + talc sample in Section 6.2, were applied.

Figure 6.11 are the resulting image of ABS + 20%CaCO3 sample. The standard

spectra of ABS and CaCO3 are given in Figure 6.11b with overlapping peak re-

gion excluded. Peak at 871 cm−1 was selected as the CaCO3 peak, while peak at

3026 cm−1 was selected to represent the ABS composition. With the absorbance

value of the peak directly proportional to the composition concentration, the

peak ratio A(871 cm−1)/A(3026 cm−1) was used to represent the CaCO3/ABS

ratio in the composite. Each block representing a spectrum acquired at this

position, a real-value image (Figure 6.11c) based on peak ratio was produced,

where outliers (pixels in the high and low range) were cut off, using the stand-

ard outlier identification method introduced in Section 6.3.1. A highly uneven

distribution of CaCO3 can be observed in Figure 6.11c. The bottom right corner

of the image has the most yellow/red (high peak ratio level) pixels. The top-

half of the image is dominated by blue (low peak ratio level) colour pixels.
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Figure 6.11: Images of ABS + 20%CaCO3 sample. (a) Optical image of the selected

area for IR spectroscopy examination. (b) Spectra of ABS (black line) and CaCO3 (blue

line), with representative peak highlighted. (c) Real-value image based on peak ratio

A(871 cm−1)/A(3026 cm−1). Each block represents a spectrum acquired at this pos-

ition. Different colour were given to each block based on the peak ratio value. The

colour map used is given on the left of the image. (d) Pseudo-colour image based on

peak ratio clustering results. Pixels of the same colour indicate the spectra at those po-

sitions fall within the same cluster. 20, 40, 60 and 80 percentiles of the peak ratio value

were used as boundaries between clusters. Agglomeration of CaCO3 in the bottom

right corner of the sample can be clearly observed.

142



CHAPTER 6: PLASTIC SAMPLES ANALYSIS USING FTIR SPECTROSCOPY

To visualise the agglomeration, clustering method was applied to group spectra

into clusters. Using the 20, 40, 60 and 80 percentiles of the values as boundar-

ies, pixels were grouped into five clusters. Five different colours were given to

pixels in different clusters. From Figure 6.11d, we can see that the bottom right

corner of the sample contains pixels from the green cluster (high CaCO3/PP ra-

tio cluster), while the top left corner has mostly pixles belonging to blue cluster

(low CaCO3/PP ratio cluster). The agglomeration of CaCO3 in the bottom right

corner of the sample can be clearly observed..

Comparing with the optical image (Figure 6.11a), the high CaCO3 region (bot-

tom right corner in Figure 6.11d) corresponds well with the ’bright region’ of

the optical image. The increasing of CaCO3 filler composition in bottom right

corner caused the transmission optical properties change, which is causing the

’bright region’ under optical microscope.

Applying two-cluster Fuzzy C-Mean Clustering on the whole spectrum of the

raw data set, the ’bright region’ in Figure 6.11a was successfully identified and

separated into a different cluster with the rest of the sample region. Comparison

of spectra between clusters shows that the ”bright region’ cluster spectra have

higher baseline. The region contains more CaCO3 has high baseline compared

with low CaCO3 composition region. The reason for this baseline problem can

be either over-thickness (caused by physical properties change due to higher

CaCO3 composition) or higher scattering caused by the CaCO3 particles in that

region. The Fuzzy C-Mean Clustering method used and the phenomenon ob-

served is exactly the same with VPP + 20%talc sample reported in Figure 6.7 on

page 129.
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6.3.4 Virgin polypropylene with poly(ethylene terephthalate)

Combining the excellent properties of more than one polymer, polymer blend-

ing is a convenient route for the development of new materials [77]. During the

blending process a large variety of morphologies of the dispersed phase can

be formed, e.g. spheres or ellipsoids, fibrils or plates [78–80], depending on the

weight ratio of the blend components, their chemical structure, their properties,

and the processing conditions. Blend properties are strongly dependent on the

state of mixing. Optical microscopy [81] or scanning electron microscopy (SEM)

[81, 82] of blends are typically used in dispersed phase studies. Poly(ethylene

terephthalate) (PET), as one of the commercially important polymers, has been

most extensively studied [14, 83]. The combination of PP with PET offers some

advantages over the pure components [81, 84–86]. PET may enhance the stiff-

ness of PP at higher temperatures while the polyolefin could facilitate crystal-

lisation of PET by heterogeneous nucleation further raising blend stiffness. The

lower permeability of PET towards water vapour and oxygen could be usefully

utilised in packaging materials. In this study, FTIR imaging was used to exam

the PP/PET blend to visualise the disperse phase of PET. The PET material used

in this study is produced by Dupont, PT 2251.

FTIR imaging was performed on 80% PP, 20% PET (PP + 20%PET) sample us-

ing the following settings: pixel size 1.1 µm2, spectral resolution 4 cm−1 and

co-adding 16 scans. The thickness of the sample varies from 18 to 20 µm across

the sample (the lowest and the highest value of those five measurements). A

wider field of view was also investigated using the same setting except the pixel
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size was changed to 5.5 µm2. ’msbackadj’ function (WINDOWSIZE 60, STEP-

SIZE 60) baseline correction and nine-point moving average smooth algorithm,

which are same with pre-processing methods used in Section 6.2, were applied.

Figure 6.12 are the resulting images of PP + 20%PET sample on the high spa-

tial resolution. The standard spectra of PP and PET are given in Figure 6.12b

with overlapping peak region excluded. Peak at 1713 cm−1 was selected as

the PET peak [87], while peak at 2835 cm−1 was selected to represent the PP

composition. With the absorbance value of the peak directly proportional to

the composition concentration, the peak ratio A(1713 cm−1)/A(2835 cm−1) was

used to represent the PET/PP ratio in the composite. Each block representing

a spectrum acquired at this position, a real-value image (Figure 6.12c) based

on peak ratio was produced, where outliers (pixels in the high and low range)

were identified and given the boundary values. The real-value image (Figure

6.12c) corresponds well with the optical image in Figure 6.12a. PET disperse

phase can be clearly observed. PET was highly uneven distributed among the

PP matrix.

Clustering method was applied to group spectra into five clusters. The pseudo-

colour image of the PET matrix is shown in Figure 6.12d. PET agglomeration

can be clearly observed. Large areas of the sample are either compose extremely

high (cluster 5) or extremely low PET (cluster 1) concentration. The melting

point for PET is 250-260 oC, while PP has a melting point of 130-171 oC. The

PET disperse phase indicates that the uneven distribution may due to the PET

was not fully melted before the two materials were mixed.

The same pattern can be observed on a larger scale image using 5.5 µm2 pixel
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Figure 6.12: Images of PP + 20%PET sample under 5.5 µm2 spatial resolution. (a)

Optical image of the selected area for IR spectroscopy examination. (b) Spectra of

PET (black line) and PP (blue line), with representative peak highlighted. (c) Real-

value image based on peak ratio A(1713 cm−1)/A(2835 cm−1). Each block represents

a spectrum acquired at this position. Different colour were given to each block based

on the peak ratio value. The colour map used is given on the left of the image. (d)

Pseudo-colour image based on peak ratio clustering results. Pixels of the same colour

indicate the spectra at those positions fall within the same cluster. 20, 40, 60 and 80

percentiles of the peak ratio value were used as boundaries between clusters.
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Figure 6.13: Images of VPP + 20%PET under 5.5 µm2 spatial resolution. (a) Optical im-

age of the selected area for IR spectroscopy examination. (b) Real-value image based

on peak ratio A(1713 cm−1)/A(2835 cm−1). The colour map used is given on the top

of the image. (c) Pseudo-colour image based on peak ratio clustering results. 20, 40, 60

and 80 percentiles of the peak ratio value were used as boundaries between clusters.

size (Figure 6.13). Compared with the spheres or plates disperse shape ob-

served in Figure 6.12, ellipsoids and fibrils as well as spheres and plates shapes

can be seen in the larger scale imaging. Either spatial resolution choice has

advantages and disadvantages. With large region of the sample imaged, low

spatial FTIR imaging has higher representativeness. However, it is limited in

providing enough details of the distribution. High spatial resolution FTIR ima-

ging can provide real micron scale imaging of the blend based on individual

components, but the selecting of the interesting region to study is subject to the

choice of individual researcher. The analysis results have less representative-

ness of the whole sample.

The highly uneven distribution of PET observed indicated the low performance

of blending, which could lead to the dropping performance of the resulting

plastic products The phenomenon implies the PET was not fully melted before

147



CHAPTER 6: PLASTIC SAMPLES ANALYSIS USING FTIR SPECTROSCOPY

the mixing. Longer melting time or higher melting temperature is suggested.

This study reveals the great potential of FTIR imaging on providing insight into

the blending studies.

6.3.5 Section conclusion

Utilising FTIR imaging, we have examined four of the most widely used poly-

mer composites. The analysis of the rSMCF reinforced PP indicated the surfact-

ant used in the rSMCF preparation remains in the resulting composite, which

is causing a weak inter-facial interaction between fibres and PP matrix. Com-

paring the surfactant distribution with the coupling agent MAPP distribution,

we found the latter is less correlated with the position of fibres and relatively

more even distributed in the PP matrix. This agrees with the fact that the sur-

factant bonds with the fibre during the dispersal which can be hard to break.

Uneven distribution were observed in both the analysis result of CaCO3 rein-

forced ABS and PP/PET copolymer which indicate the poor performance of

the mixer. In the CaCO3 case, a better blending method is required; while in the

copolymer case, a better melting method is needed. With the uneven distribu-

tion of composition observed, the causing of the uneven distribution obtained,

imaging technique in FTIR spectroscopy not only provide micron level spatial

information of the composition but also solutions of improving the inter-facial

interactions between compositions. Those pilot studies provide insights into

applying FTIR imaging for plastic sample analysis. FTIR imaging has prom-

ising potential in plastic sample analysis, thus improve the physical/chemical

performance of the plastic products.
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Conclusion and future work

This study provides a valuable insight into the application of FTIR spectroscopy

for identification and characterisation of the individual components present

in materals. The calibration of talc concentration with IR spectrum peak ra-

tio/integration and the application of the calibration result on a film sample

analysis demonstrated FTIR spectroscopy as a powerful tool for recycled plastic

analysis. Using FTIR imaging, we have examined the chemical composition of:

ABS + CaCO3, PP + talc, PP + rSMCF + SF, PP + MAPP + rSMCF + SF and

PP + PET on the micron scale. The results indicate that, with data analysis, the

chemical composition distribution in the polymer films can be revealed. Robust

spectral and spatial information can be obtained using FTIR imaging.

In general, this study confirms the great potential of using FTIR spectroscopy

as an analytical tool for process control during the plastic recycling and to use

high-definition FTIR imaging to monitor the chemical composition and spatial

distribution of plastic composites. To achieve the ultimate goal of online ana-

lysis and sorting of plastic using FTIR spectroscopy, with this pilot study, we
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believe further works in this project should be focusing on the following direc-

tions.

7.0.1 Spectra library

Even though, abundant literature can be found in terms of IR spectroscopy

study of plastic samples. A systematic spectra library is still needed to be able

to analysis recycled plastics. For domestic wastes, mainly five types of poly-

mers are used [6]. The types of filler/additives are quite limited. It is a practical

method to obtain a spectra library of most commonly available domestic plastic,

and sorting the plastic based on the IR spectrum obtained from the waste.

Technical products, on the other hand, use a much wider range of plastic and

filler/additives to gain different physical/chemical features of plastic. Many of

the waste plastics are copolymers or blends. It is difficult to obtain a spectra lib-

rary covering majority of the different combination or ratio of compositions. It

is, however, possible to use FTIR spectroscopy on the evaluation of one type of

industrial products. Automobile part production, for example, normally use PP

using talc as filler. Different manufacturers use different amounts of talc, which

is causing the low quality of the recycled products of that plastic. Evaluation

of the talc percentage using FTIR spectroscopy can be beneficial. A preliminary

study of building a spectra library with standard spectrum of PP + talc in the

different ratio and further analysis of un-known composition material is given

in Section 6.2. Further application this method to other industrial plastics are

needed.
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7.0.2 Degradation and oxidation

When overheated, the energy input from the heat can cause the lose of a hydro-

gen atom from the polymer chain. This creates a ’free radical’ (R·) polymer and

a hydrogen atom with an unpaired electron (H·). The free radical (R·) can react

with oxygen in the atmosphere to form a peroxy radical (ROO·), which can then

remove a hydrogen atom from another polymer chain to form a hydroperoxide

(ROOH) and so regenerate a free radical (R·) again. The newly generated free

radical (R·) can repeat the whole process again. This process can be accelerated

causing molecular deterioration of the polymer, which is termed as polymer

thermal ageing and degradation [88].

Thermal ageing and degradation can cause the polymer properties to deterior-

ate significantly [89]. Online thermal ageing/photo-oxidisation detection using

FTIR spectroscopy can improve the reliability of recycled plastic for high-end

applications.

7.0.3 Industrial transformation

The developing of a continuous plastic sorting system using FTIR spectroscopy

as the online analysis tool is the ultimate goal. With the supporting of those

fundamental works stated above, online detection and sorting of plastic sample

for accurate recycling can be adopted in the manufacturing sector. Technology

transfer from the lab to the plastic recycling industry is needed before the goal

can be achieved.
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CHAPTER 8

Introduction

Breast cancer is one of the leading causes of death of females worldwide [1,

2]. Figure 8.1 shows some key statistics about breast cancer in the UK. One in

eight women in the UK will be diagnosed with breast cancer at some point in

their lifetime, and one in five cases of breast cancer are in woman under 50 [3].

The outlook at the diagnosis of breast cancer differs widely; from death within

one year, to the patients being alive and well 30 years after treatment [4]. It is

well established that appropriate methods for early and improved prognosis

can lead to longer patient survival.

For a typical traditional prognosis procedure of breast cancer, tissue samples

are collected from the organ during biopsies (taking a small sample of cells

or tissue from breast) or surgical excisions. Extracted tissue samples are sec-

tioned, stained, embedded and fixed onto a glass slide for review. One or more

trained histopathologists will observe the processed tissue under an optical mi-

croscope and produce a prognosis report based on parameters such as tumour

size, stage of the disease, and tumour grade [4]. This cancer histopathology is
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Figure 8.1: Breast cancer in the UK. Breast cancer is the most common cancer in wo-

men in the UK, 31% of cancers diagnosed in women are breast cancer. Breast cancer

rates in England have increased by 95% since records began in 1971. One in eight wo-

men in the UK will be diagnosed with breast cancer at some point in their lifetime,

and one in five cases of breast cancer are in woman under 50. Reproduced from [3].

time-consuming, highly human dependent and can be inaccurate.

The use of the FTIR spectroscopy for bio-material analysis, which is termed

FTIR biospectroscopy, is a rapidly developing research area. FTIR biospectro-

scopy is a well-established method, that has been investigated through a variety

of different research studies [5–11]. These previous results have shown the po-

tential application of FTIR spectroscopy cancer pathology such as breast [12],

colon [13], lung [14] and prostate [15], but mainly focusing on diagnosis rather

than prognosis.

In this work, we evaluate the prognosis ability of FTIR spectroscopy for identi-
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fying different histological grades of breast cancer. Different pre-processing and

quality control methods are necessary and we have applied such approaches to

each spectrum to correct or minimise spectral problems. Pixels in the back-

ground and detector edge area have been distinguished and cut off to further

increase the representativeness of the data. Peak symmetric analysis, PCA and

standard score (zscore) analysis were used to reduce the dimensions of the data.

To combine spectral and spatial information, density estimation (probability

density function) was adopted as an analysis tool.

8.1 The use of FTIR spectroscopy for cancer histology

The understanding of biochemical changes of cancer is hindered largely be-

cause of lacking tools to analyse cell composition. Haematoxylin and eosin

(H&E) stained, is the most-used method for breast cancer tissue histopatholo-

gical examination, and can be used to distinguish nuclei and protein. How-

ever, limited molecular information, which is highly relevant to cancer devel-

opments, can be extracted. Molecular vibrations are infrared (IR) active and

quantitatively measurable by IR spectroscopy [16], providing a non-destructive,

label-free tool for molecular composition studying. Figure 8.2 is a typical hu-

man breast cancer IR spectrum. Different spectral regions are associated with

different molecular vibrations [17]. As highlighted in green colour (Figure 8.2),

the Amide I and II wavenumber region in the FTIR spectrum is directly linked

with protein secondary structure information. A large and growing body of

literature has investigated the application of IR spectroscopy to investigate bio-
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samples. There have been many studies in cytological, histological, microbial

studies, etc. [18–23]. Different type of samples (e.g., fixed cytology and tissue

sections [24], live cells [25] or biofluids [26]) can be analysed.

Figure 8.2: Typical breast cancer tissue FTIR spectrum showing biomolecular peak

assignments from 1000-3800 cm−1, where 1085-1241 cm−1 = nucleic acid vibrations,

1300-1400 cm−1 = amino acid side chains and fatty acids vibrations, Amide I, II =

protein vibrations and 2800-3100 cm−1 = lipids vibrations. The spectrum is a mean-

spectrum of 512 × 512 transmission imaging from a Grade one human breast cancer

tissue. Reproduced from [27].

This section discusses the essential setting parameter (sampling mode, spectral

and spatial resolution) of FTIR spectroscopy for cancer histology. Detailed re-

views concerning theory, experimental techniques and application examples of

FTIR spectroscopy can be found [28–39].

There have been many studies using FTIR for cancer diagnosis with a few ex-

amining cancer prognosis. These are highlighted during the text as we describe

our approaches to the breast cancer samples we have examined.
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8.1.1 FTIR spectroscopy sampling mode

There are four major IR spectroscopy sampling modes: transmission, transflec-

tion, reflection and attenuated total reflectance (ATR) [40]. Each of them has

its own benefits and drawbacks for different samples. Pure reflection measure-

ments are limited to polished samples with a reflective surface. Transmission

and transflection have been applied to a variety of research. They are the most

popular modes in spectroscopy. Scattering is a problem more related to trans-

mission and transflection modes. It can cause large distortion to the spectra.

ATR is usually used in special cases of either thick or highly reflective samples.

Kochan et al. [41] found that both transmission and transflection measurement

modes are equally capable of discriminating normal from cancerous tissue in

canine liver cancer. Cao et al. [42] indicated that proper pre-processing methods

could minimise the classification results difference on transmission and trans-

flection IR spectroscopy modes.

In transmission mode, the sample is placed on an IR transparent surface, such

as barium fluoride (BaF2) or calcium fluoride (CaF2). By passing a beam (gen-

erated by thermal, synchrotron or quantum-cascade) through the sample and

measuring the spectral intensities received by the detector or detectors placed

on the other side of the sample, the absorbency of the sample could be obtained.

Barium or calcium fluoride is popularly used as the substrate for tissue to col-

lect FTIR spectroscopy data in transmission mode. These infrared transmissive

materials are expensive and fragile. Focusing on the high wavenumber range

(2500-3800 cm−1), Bassan et al. [43] demonstrated the possibility of using glass
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substrates. Support vector machine (SVM) based spectral biomarkers construc-

tion followed by a random forest supervised classification, four cell-types pre-

diction was achieved using tissue on glass substrates.

Focusing on the wavenumber region 3125-3700 cm−1, Pilling et al. [44] on ap-

plying FTIR histopathology using H&E stained glass slides is a major step for-

ward in making FTIR histopathology an economic practical clinic application.

Principal components analysis (PCA) was the main noise reduction method

before applying random forest classification to construct a classifier to differen-

tiate between epithelium, stroma, blood and concretion. Decomposing spectra

into principal components, retaining the lower order PC’s and recombining the

data set can effectively improve the signal-to-noise. Good improvements in

spectral signal-to-noise were observed when utilising PCA based noise reduc-

tion with 15 PC’s [45].

8.1.2 FTIR spectroscopy spectral resolution

Spectral resolution needs to be carefully selected for analysis of cancer samples.

A lower spectral resolution could reduce the data acquisition time which heav-

ily influences the clinical or industrial application of FTIR spectroscopy. Low

spectral resolution, however, could potentially cause the loss of essential in-

formation and choosing the appropriate spectral resolution is a trade-off between

acquisition time and information level in the spectra. Previous simulation stud-

ies [46–48] have demonstrated that a coarser spectral resolution of 16 cm−1 is

usually sufficient. There is no doubt that the higher the spectral resolution may

provide potentially more information that we gain from each of the spectra at
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low resolution.

8.1.3 FTIR transmission imaging spatial resolution

The type of detectors being used means the acquisition of spectra could be de-

scribed as mapping or imaging [31]. The use of the single-element detector

(mapping) allows for individual point high signal-to-noise ratio (SNR) spectra

being collected across a given sample. Although time-consuming, point spec-

tra often result in high-quality spectra. In contrast to the mapping technique,

instruments such as focal plane arrays (FPA) and linear array detectors allow

imaging of the sample tissue using spatially arranged detectors. A larger area

of interest can be investigated using FTIR imaging technique. Combined with

suitable optics, the imaging approach produces good signal-to-noise ratio and

spatial resolution FTIR spectroscopy data.

The imaging IR spectroscopy technique is so called because the process of col-

lecting the spectra is similar to take pictures using a camera. In the process of

generating a "picture", the multi-sensor detector inside of the camera captures

the light information of all the pixels in one go. The spatial resolution of the im-

age depends on the density of sensors on the detector. The diffraction limited

resolution and the practical resolution of transmission and ATR mode of FTIR

spectroscopy are given in Table 8.1.

FTIR spectroscopy spatial resolution makes the accuracy level a limitation to

further apply the FTIR imaging for a medical purpose. Currently, the most

popular used pixel size in FTIR imaging is 5.5 µm2 [44, 49]. Replacing the
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Table 8.1: Abbe diffraction limit

Sampling Method Diffraction limited resolution Practical resolution limit

Transmission 2λ ∼10-30 µm

ATR 0.5λ ∼3-10 µm

low-brightness thermal sources with the synchrotron sources can achieve bet-

ter signal-to-noise at the high spatial resolution. This technique, however, is

challenging to use with wide-field imaging [50].

Cancer tissue is a mixture of cells with different histologic classes. Different cell

classes have different shapes, and the average size between classes varies. Even

cells within the same class can range from several to dozens of microns [51, 52].

The various sizes of tissue components require high-level spatial resolution to

achieve high representativeness of the spectra. Figure 8.3 is the imaging of

prostate tissue under different spatial resolution setting. Compared with the

H&E image, the 5.5 µm2 spatial resolution can provide limited tissue structure

information.
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Figure 8.3: Pseudo-colour images from various FTIR spectroscopy systems. (a-d) The

same cancerous prostate tissue section (area, 280 µm × 310 µm) measured with dif-

ferent instruments, using the integrated absorbance of the CH-stretching region (2800-

3000 cm−1), without dyes or stains. All images were processed identically (baseline

correction only) and used the same colour scale. Scale bars, 100 µm and in insets,

10 µm. (a) Images acquired with a conventional table-top system (PerkinElmer Spot-

light) equipped with a thermal source in raster-scanning mode (10 µm × 10 µm; (b)

and linear array mode (6.25 µm × 6.25 µm; (c) with an FTIR imaging system (Varian

Stingray) equipped with a 64 pixel× 64 pixel FPA (5.5× 5.5 µm per pixel at the sample

plane; (d) and with multibeam synchrotron-based imaging system (pixel size, 0.54 µm

× 0.54 µm. (e) Hematoxylin and eosin (H&E)-stained prostate tissue (diameter, 0.75

mm). Scale bar, 100 µm. Dashed box specifies the corresponding area of a serial, un-

stained section from which generated images in a-d. Reproduced from [50].
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8.2 FTIR spectroscopy on breast cancer histology

8.2.1 Nottingham Prognostic Index

In 1982, based on a study on 387 patients, researchers at Nottingham City Hos-

pital created a breast cancer prognosis index named the Nottingham Prognostic

Index (NPI) [53]. Since then it has become a widely accepted as the major pro-

gnosis index for breast cancer. The factors used to give a significant correlation

with prognosis were tumour size (measured pathologically), histological lymph

node stage and histological grade [53]. Not only can the disease be recognised,

but also unusual cases, such as deficiencies in diagnostic quality could be de-

tected through manual examination of the tissue [48].

To measure the Nottingham Prognostic Index, excised material is initially form-

alin fixed to prevent its degradation, and subsequently prepared onto glass sub-

strates for optical microscopic analysis. The identifications of cellular and extra-

cellular components within the tissues and cells are enhanced by the addition

of dyes, which stain different component different colours [27].

Hematoxylin and Eosin stain (H&E stained or HE stained) is one of the prin-

cipal stains used [54, 55]. Hematoxylin has a deep blue-purple colour and stains

nucleic acids by a complex, unknown reaction. Eosin is pink, and stains pro-

teins [56]. In a typical tissue, nuclei are stained blue, whereas the cytoplasm

and extracellular matrix have various degrees of pink staining. Well-fixed cells

show considerable inter-nuclear details. The stain discloses abundant struc-

tural information, with specific functional implications. A typical H&E stained

tissue is shown in Figure 8.4, with the individual tissue structure identified.
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Figure 8.4: H&E stained parallel section of grade one breast cancer tissue showing (1)

tumour (2) normal cells, (3) stroma and (4) fatty tissue. Reproduced from [57].

Using the coefficients of significance, a simple numerical prognostic index (PI)

can be devised as follows:

PI = 0.2× tumoursize(diameter in cm)

+ lymphnodestage(1− 3) + histologicalgrade(1− 3). (8.2.1)

The possible values of lymph node stage are:

1. no nodes affected (1 point)

2. up to 3 nodes are affected (2 points)

3. more than three nodes are affected (3 points)

The possible values of tumour grade are:

1. G-I: less aggressive appearance of tumour (1 point)
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2. G-II: intermediate appearance of tumour (2 points)

3. G-III: more aggressive appearance of tumour (3 points)

The prognosis on this index worsens as the prognostic index increases, and by

using cut-off points of 3.4 and 5.4; patients may be stratified into good (grade

one), moderate (grade two) and poor prognostic (grade three) groups having

an annual mortality rate (units of deaths per 100 individuals per year) of 3%,

7% and 30%, respectively [58].

Patients often wait significant periods to get the results [59] and the reprodu-

cibility of NPI can be problematic because of the level of human involvement

in the prognosis. Only 50 % to 85 % of cases that were investigated by different

pathologists have the same results [60]. It is still not regarded as an important

procedure in routine breast cancer diagnostics in some units because of appar-

ent inter and intra-observer variability [61, 62].

8.2.2 FTIR spectroscopy breast cancer diagnosis/prognosis

Yun Xiang Ci et al. reported the applying of FTIR spectroscopy on breast cancer

diagnosis [9]. Small amount of the frozen tissue was minced, dispersed and

centrifuged. The cell suspension was then dried on an IR transparent slide to

form a thin film for IR spectroscopy study. The spectra difference indicated an

increase in nucleic acid in carcinoma tissue, as well as an increase of collagen

in fibroadenoma tissue. Those results are consistent with the histopathological

examination results.

An attempt of understanding the structural changes in the breast cancer tissue
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during different steps in the development of tumour using FTIR spectroscopy

is made by Eckel et al. [8]. Breast tissue is used directly in this study. The

diagnosis result is based on another stained tissue from the same surgical breast

resection. The result IR spectra characteristic indicated that protein/collagen

ratio is significantly higher in the carcinomatous tissue.

In 2002, Fabian et al. reported the obtaining of IR spectra of breast tumour

tissue sections using a microscope equipped with a Focal Plane Array (FPA)

detector with a spatial resolution near the diffraction limit [63]. The research

reveals a high-sensitivity IR spectroscopy approach to study tissue biochem-

istry changes. The data demonstrated the need for high spatial resolution at the

level of individual cells.

In 2006, the same group reported the obtaining of IR spectra of benign and

malignant lesions in breast tissue sections [64]. Conventional point-by-point

mapping, 16-element linear array detector imaging and 64 × 64 FPA detector

imaging were used for FTIR spectroscopy data acquisition. The work provides

further insights into the spectral ’averaging’ problem prevented us from obtain-

ing ’pure’ spectra of histological class, when the spectra were acquired using

aperture diameters of 30 - 40 µm. An artificial neural networks (ANN) model

was trained to perform automated classifier to separate fibroadenoma, ductal

carcinoma in situ, connective tissue, and adipose tissue, based on IR spectra

data.

Using a 64 × 64 Focal Plane Array (FPA) detector, Kumar et al. applied FTIR

imaging technique on tissues obtained from formalin fixed, paraffin embed-

ded (FPPE) tumour blocks to the extracellular matrix. FTIR spectral differences
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were reported when examining the extracellular matrix close to and far from

carcinoma. Major changes were observed in the relative intensities of the colla-

gen bands at 1640 and 1630 cm−1 [65].

Pounder et al. [7] was an early study trying to examine the potential to combine

the spectral and spatial information for breast cancer diagnosis. Each pixel was

first labelled as stroma or epithelium using spectral recognition at the single

pixel level; subsequently, epithelium pixels are labelled as cancer or normal by

spatial polling based upon epithelium content and distribution. Results indic-

ated that the protocol is highly accurate under a variety of conditions.

In a more recent study by Berisha et al. [66], convolutional neural networks

(CNNs) are applied to data from breast cancer tissue microarrays to identify six

major cellular and acellular constituents of tissue, namely adipocytes, blood,

collagen, epithelium, necrosis, and myofibroblasts. Experimental results show

that the use of spatial information in addition to the spectral information brings

significant improvements in the classifier performance and allows classification

of cellular subtypes.

The studying of breast cancer using FTIR spectroscopy has been investigated

at Nottingham with Bird et al. [67] reporting the using of FTIR mapping tech-

nique to analyse frozen and deparaffinised tissue for diagnosis purpose. The

result spectra have the pixel of 25 µm × 25 µm in size. An ANN-based dia-

gnosis algorithm was developed to perform classification of benign and malig-

nant tissues composed within different lymph nodes.

Wang [68] focuses on the development of fuzzy clustering techniques to invest-
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igate the use of infrared spectroscopy as a diagnostic probe for the identifica-

tion of the early stages of cancer. Aiming to automatically identify the different

types of tissue present within any given spectral dataset, they developed a sim-

ulated annealing based clustering algorithm and a new technique to merge the

clusters with the same biochemical characteristics.

Stapleton [57] collected FTIR images (mapping) from eight breast cancer tis-

sue sections (2 Grade one, 3 Grade two and 3 Grade three). Each of the FTIR

datasets was subjected to Principal Component Analysis (PCA) to explore the

patterns in the data. Two methods were tried to construct false colour images,

PCA/Fuzzy c-means clustering and Multivariate Curve Resolution. The same

approach was adopted to a data set with imaging the tissue sections with a fo-

cal plane array detector with pixel size 5.5 µm. In the future work section of

Stapleton’s thesis, they reported another 30 tissues, 10 of each grade, have been

prepared and FTIR data has been recorded. This is the main data set have been

used for the analysis in this thesis. A more detailed description of the data set

is given in Section 8.4.2 on page 192.

Naqvi [69] reported a novel model based on Type-II fuzzy logic for breast can-

cer FTIR spectral data to help clinicians classify breast cancer grades. Results

indicate that the model was able to successfully construct prototype fuzzy sets

for the data set, and provide in-depth information regarding the complexities

of the data set as well as helping in the classification of the data.

The novelty of the research reported in this thesis lies with the introducing of a

data processing method which has fewer requirements at the accuracy level of

the spectra library. Only observable spectra differences were used to segment
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different histologic classes. Combining with the dimension reduction methods

in Chapter 10, we are able to produce highly accurate breast cancer prognosis.

The statistic methods introduced in the study give more rooms for errors, noise

and mixture pixels in the segmentation step, which fits state of the art FTIR

spectroscopy machine spatial resolution. The validation in Chapter 11 shown

that the algorithm developed has good generalisation ability and has the po-

tential to be widely used on other biological/medical FTIR data.

Table 8.2 is the list of methods and example applications given in a review con-

ducted by Trevisan et al. [70]. Those methods highlighted in orange are the one

reported in this thesis.
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Table 8.2: List of FTIR spectroscopy data analysis methods with methods used in this

thesis highlighted. Reproduced from [70].

Stage Name of method

Quality Control (QC)

Water vapour check

Signal-to-noise test

Thickness test

Maximum absorbance threshold

Clustering

Pre-processing (PP)

De-noising
Savitzky-Golay Smoothing

Wavelet de-noising

Removal of physical phenomena

1st Differentiation

2nd Differentiation

Rubberband baseline correction

Manual baseline correction

Fitting methods

Polynomial

Extended Multiplicative Signal Correction (EMSC)

Resonant Mie Scattering Correction (RMieSC)

Normalisation

To the Amide I peak

To the Amide II peak

Vector normalisation

Area normalisation
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Table 8.2: List of FTIR spectroscopy data analysis methods continued from previous

page. Reproduced from [70].

Stage Name of method

Feature Extraction (FE)

Feature

Construction (FC)

Linear

Principal Component Analysis (PCA)

Partial Least Squares (PLS)

Linear Discriminant Analysis (LDA)

PCA-LDA

Others

Band fitting

Wavelet transform

Peak picking

Relative distance plane

Feature Selection (FS)

Wrapper methods

Forward Feature Selection (FFS)

Genetic Algorithm (GA)-based

GA_ORS

Filter methods
Kruskal-Wallis test

Neurodeveloper’s COVAR

Embedded methods
Inside eClass

Random forest

Clustering

k-Means

Fuzzy c-means

HCA

Classification

Linear Discriminant Classifier (LDC)

PLS-Discriminant Analysis (PLS-DA)

Support Vector Machine (SVM)

Artificial Neural Network (ANN)

k-Nearest Neighbours (k-NN)

Hierarchical ANNs

Classifier ensembles

Incremental/evolving classifiers
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8.3 FTIR spectroscopy Data Analysis

FTIR spectroscopy data provides multivariate information based on chemical-

specific IR spectra. By passing the FTIR spectroscopy data through a variety

of data analysis algorithms, we can re-construct tissue images or cell architec-

tures. For a complex sample, such as human being tissue, FTIR spectra are a

superposition of all the spectra of the individual biochemical components [71].

Those complex spectral signatures are decoded through the data analysis steps.

The fingerprint spectra constructed data or image is a reliable way to under-

stand the health statues of the sample tissue. Despite the increasing popularity

of the FTIR bio-spectroscopy field, challenges relating to sample preparation,

instrumentation and data handing still remain.

There are two analysis aims in the bio-spectroscopy field: imaging and dia-

gnosis. Imaging derives an image of the tissue architecture expressing the un-

derlying biochemistry from data for further research analysis purpose. Dia-

gnosis is based on supervised or unsupervised learning approach to classify or

clustering the spectra in the aim of histopathology. Different work-flow is used

to achieve different goals of analysis.

Figure 8.5 is the framework for exploratory and diagnostic using of breast can-

cer FTIR spectroscopy data. It was first reported by Trevisan et al. [70]. Further

improvements were made based on recent literature [39, 44, 72]. The explor-

atory technique tends to be qualitative and provide graphical visualisation of

data, whereas, the diagnostic focuses on quantitative classification and decision

making. By using IR spectroscopy either as an image tool or by classifying

182



CHAPTER 8: INTRODUCTION

Figure 8.5: FTIR biospectroscopy data analysis work-flow for exploratory and dia-

gnostic. For chemical imaging, extracted features are used to decide the colour of one

pixel. For pseudo-colour imaging, clustering is commonly used to assign colour to

a group of pixels. For diagnostic, supervised learning is applied to extracted feature

to build a diagnostic system to make predictions on new data sets. NPI: Nottingham

Prognosis Index.

spectral categories, it has been possible to distinguish between benign and ma-

lignant tumours in tissue samples of the breast [12], colon [13], lung [14] and

prostate [73].

In a paper, published by Baker et al. [39], they brought together some of the

leaders in the FTIR biospectroscopy field and produced a manuscript to stand-

ardise the methods and procedures of applying FTIR spectroscopy to a variety

of biological or clinical questions. They compared the supervised classification

performance between different combinations of pre-processing, feature extrac-

tion and supervised classification methodologies on the blood plasma tissue

sample. The result indicated that no single pre-processing, feature extraction

or supervised classification method is the absolute best, but a combination of

these may be the best solution. Following sections are detailed introductions to

each step given in Figure 8.5.
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8.3.1 Exploratory

In exploratory, data processing is directed mainly towards visualising to reveal

tissue structures. After pre-processing, Feature extraction (FE) method (cluster-

ing or supervised classification) for image could be used to reduce the dimen-

sion of spectra. The scalar value of the newly extracted feature could be used

to determine the colour of that pixel to produce a chemical image of the tissue.

Further unsupervised learning techniques could be applied to the new features

to clustering pixels into different groups. One single value is assigned to the

pixels that belong to the same cluster. Based on the newly assigned values,

pseudo-colour image could be built. The resulting images could either be used

to penetrate important histopathological features, or they could be used as the

further study materials.

In the false-colour image approach, the continuous absorbance value is changed

to discrete numbers to represent the colour is given to that pixel. This data

processing step excludes a lot of information that is potentially useful for cancer

histopathology. In the chemical image, colour of the pixel is assigned based

on the real absorbance difference. There is no information lost in this process.

However, this approach transferred the biochemical component difference into

colour, which is not easy to conduct quantitative analysis on. The chemical

image approach is counterproductive [71] as only one intensity value (or the

intensity integration of one peak) of a spectrum is used, which is causing the

loss of information contained in the rest of the spectra.

An example of using FTIR spectroscopy for imaging comes from the study con-
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ducted by Nasse et al. [50]. By combining multiple synchrotron beams with

wide-field detection, they produced high-resolution prostate tissue images over

the entire mid-infrared spectrum with high chemical sensitivity and fast acquis-

ition speed while maintaining a high-quality signal-to-noise ratio. Figure 8.3 on

page 172 is the chemical image result from various FTIR spectroscopy systems.

The exploratory approach is currently a major direction of FTIR imaging stud-

ies. Although this study could provide high-contrast images with minimal

sample preparation for traditional histopathology use, further computing tech-

niques are needed to truly utilise the potential of IR spectroscopy on cancer

diagnosis and prognosis.

Clustering is widely used for pattern finding in exploratory approach. It be-

longs to the unsupervised pattern recognition category. Based on the similarity

between samples, clustering could cluster them into different groups. Cluster-

ing is also a useful tool for diagnostic approaches. It can help researchers gain a

better understanding of the data structure, which will help in classifier design.

The most popular clustering method in biospectroscopy data analysis area is:

k-mean, fuzzy c-mean, and hierarchical cluster analysis (HCA) [69, 74, 75].

8.3.2 Diagnostic

Using FTIR biospectroscopy data for diagnostic purposes is a more complex

procedure. This approach aims to create an efficient, robust and highly reliable

computer-based diagnostic (or prognostic) system (DS). Supervised classifica-

tion methods are employed. It requires a more complex framework from data
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pre-processing to classification. A typical diagnoses process includes: quality

control, data pre-processing, data mining, feature extraction and supervised

classification. Based on the nature of supervised learning, different data sets re-

quire different pre-processing, feature extraction and supervised learning meth-

odologies. Different combinations of methodologies should be attempted and

compared in any diagnostic study.

Quality control consists of identification and removal of outliers. Outliers are

measurements or samples considered to be wrong, thus unsuitable for use in

the data analysis [70]. They could be caused by all kinds of reasons during

the sample preparation and spectra acquisition steps. Different reasons have

different effects on the spectra. For example, outlier spectra caused by differ-

ent thickness of the samples have absorption peaks either too high or too low.

The mutation of the environment during the acquisition of spectra could cause

random absorption peaks that make the spectrum an outlier.

Most of the quality control methods are employed at the first stage of data pro-

cessing: data pre-processing. Alternative forms of quality control are available

during the classification or other stages. ’Refusing to decide’ function of a clas-

sifier is considered as a quality control method during the classification step.

Based on literature review, quality control seems to be underrated, with only a

few studies exploring this stage [39].

Pre-processing aims to make the FTIR spectra easier to interpret by correct-

ing issues related to spectra data acquisition. It is the most important stage in

FTIR biospectroscopy data analysis and can be divided into de-noising, spec-

tral correction, normalisation, derivatisation and other manipulations. Two or
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three methods are often combined, e.g., de-noising followed by spectral cor-

rection and normalisation [39]. Different options are available for each of the

pre-processing steps. The combinations of these steps may be more or less

preferred than others, depending on the sample type, noise level, instruments

setup, aim of analysis, classification performance and personal preference. The

most popular pre-processing sequence is: de-noising, spectral correction, differ-

entiation, normalisation and other manipulations. It is worth noting, none of

the steps mentioned above is mandatory. The optimal pre-processing method

or sequence to apply is still under discussion [76–78]. There is still no univer-

sal best approach existing for all samples. Several attempts have been made to

standardise pre-processing methods [70]. The use of a machine learning genetic

algorithm (GA) is a potential source of pre-processing standardisation, allows

maximum flexibility for end users [76].

Feature extraction (FE) processes the IR spectra to form new features from the

original features. In classification or pattern recognition, the ’curse of dimen-

sionality’ is often mentioned. This refers to the difficulties to train a classifier

in high-dimensional spaces, when models can easily over-fit or remain under-

trained [79, 80]. Feature extraction aims to produce a smaller number of vari-

ables that are more informative for further classification. Feature extraction has

an essential role in both imaging and diagnosis. For imaging, feature extrac-

tion could generate a single value for each spectrum, which defines the colour

of that pixel in a pseudo-colour image. For prognosis, the feature extraction

could reduce the input dimensions of the supervised learning system while

incorporating physical knowledge. That would help to avoid over-fitting or
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under-training.

One subgroup of feature extraction is feature selection (FS). Based on biochem-

ical understanding of the problem, the features that are highly relevant to the

results are selected from the original feature set. This approach is particularly

interesting as it can confer biochemical knowledge/information to the classi-

fication system. Another subgroup of feature extraction is feature construction

(FC). New relevant features are constructed from the original features. Popu-

lar feature construction methods for biospectroscopy data analysis include cal-

culating the ratios between wavenumber absorbance intensities [81], area un-

der a sub-region of the spectrum and performing principal component analysis

(PCA).

Supervised classification is the segmenting the sample domain into groups

based on sample input-output pairs. The promise of clustering is that no prior

information is fed to the methods for classification. Hence, finding clusters in

which intra-cluster variation is smaller than inter-cluster variation is always a

problem. For supervised learning, each sample is assigned a priori, which is

known as the true value. The data set can then be split into a training set and a

test set. The training set is used as teaching information to build models.

Different supervised classification algorithm could be applied when training

the model. Support vector machine (SVM) [82], random forest [83], artificial

neural networks (ANN) [84], linear discriminant classifier (LDC) [85] and Bayesian

inference-base methods [86] are those commonly used methods in the biospec-

troscopy area. Before the model could be applied to predict the classes of a data

set that do not have prior, the test set needs to be applied to test the perdition
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ability of the model. Only a model that has a low error rate (the number of

incorrect guesses divided by the total number of guesses) could be used to pre-

dict. Except for the accuracy, there are still other criteria for choosing classifier:

easy to train, computational time, software ability, etc. If two different classifi-

ers were performing equally well on an independent test set, the simpler one

should be chosen for a better generalisation ability [79].

The optimal size of a training data set has been under investigated to date, but it

has been suggested that it may be problem dependent [87]. A general guideline

for applying supervised techniques is to have the number of sample 5-10 times

bigger than variables [88]. Cross-validation could be used when training the

model using a small training data set.

8.3.3 Software package

The instrumentation software, coming together with the FTIR spectroscopy ma-

chine provides a number of pre-processing and sometimes more advanced data

analysis options. Various data analysis software program packages, ranging

from basic de-noising methods to targeting specific data analysis tasks exist.

MATLAB is the most popular programming language environment due to its

special ability to process metrics. Customised software could be written for spe-

cific tasks. Python is another programming language that is becoming increas-

ingly popular in the FTIR spectroscopy data analysis field. It has advantages

in using and creating open source packages. All the data analysis in this thesis

was performed using MATLAB R2018a (The MathWorks Inc., Natick, MA).

189



CHAPTER 8: INTRODUCTION

8.4 Knowledge discovery cycles and data description

"Data does not equal information; information does not equal knowledge; and, most

importantly of all, knowledge does not equal wisdom. We have oceans of data, rivers of

information, small puddles of knowledge, and the odd drop of wisdom."

– Henry Nix, 1990

8.4.1 Knowledge discovery cycles

The generation of hypotheses, the gathering of data and the evaluation of hy-

potheses to transfer them into knowledge is sometimes referred to as the ’cycle

of knowledge’ [89].

The knowledge-based cycle is popularly used before the available of modern

computing facilities. It is also referred as the traditional cycle. In that cycle, we

start with some basic knowledge about the problem domain. Hypotheses are

generated based on those prior-knowledge which will be tested by the specific-

ally designed experiments. By ’deductive reasoning’, based on the experiment

observation, new knowledge about the problem domain is generated. The cycle

then repeats itself.

The data-driven knowledge discovery cycle is applied in the early stage of re-

search in which our knowledge about the problem is minute. Large amount of

data can be easily gathered. Based on this great many observations, algorithms

or inductive reasoning is applied to generate hypotheses. Strong and robust
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algorithms are needed to abstract knowledge from data in this case. As with

any purely inductive method, there are no axioms and so the hypotheses that

evolve cannot be proved correct. However, they greatly narrowed the search

space of possibilities, meanwhile increase the understanding of the problems.

The knowledge-based cycle is given in Figure 8.6a. The data-driven cycle is

given in Figure 8.6b.

(a) Hypothetico-deductive re-

ductionist approach

(b) Inductive approach

Figure 8.6: The cycle of knowledge discovery. (a) Hypothetico-deductive reductionist

approach, in which background knowledge is needed to generate a hypothesis. (b)

Inductive approach, in which the hypothesis is generated from the data. It is a data-

driven approach, which is highly relying on data mining. Reproduced from [90].

Inductive/data-driven approach was used in the breast cancer work repor-

ted in Part III Applying FTIR spectroscopy on Breast Cancer Prognosis. Al-

gorithms were developed based on the interpretation of the breast cancer tissue

IR spectra. Hypotheses were generated based on patterns revealed by those al-

gorithms. Data was manipulated and presented in various ways. Based on the

observations of the data, attempts of explaining cancer developments based on

the data pattern were made. Due to the limited understanding of bio-molecular
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developments of cancer, it is difficult to have direct observations that are con-

sistent or inconsistent with the hypotheses.

Hypothetico-deduction approach was used in Part II Applying FTIR Imaging

to Address Challenges in Plastic Recycling. The algorithms and visualisation

method developed in Part III was further applied and tested using a much

simpler sample. Studying polymer using IR spectroscopy is a well-developed

research field. The data patterns observed can be well supported by the IR ab-

sorption knowledge of plastic. The confirmation of the hypotheses provided

further confidence in the analysis results in Part III.

8.4.2 Data description

For FTIR spectroscopy biomedical or bio-spectroscopy study, typical pathology

specimen, formalin-fixed, paraffin-embedded (FFPE), is widely used [39].

Using a microtome, two 6 µm thickness contiguous sections were cut from an

FFPE tissue block, as illustrated in Figure 8.7. One of the two tissues was moun-

ted onto calcium fluoride (CaF2) for transmission mode FTIR imaging. Another

adjacent section was H&E stained for histopathology evaluation. The results of

the evaluation were taken as the true value. Taking contiguous sections ensure

that the tissue for histopathology and FTIR spectroscopy data collection has the

most similarity. Removal of paraffin is essential, since it has strong IR absorb-

ance between 2800-3000 cm−1. A standard de-waxing method was employed

to remove paraffin from the tissue before any analysis can be conducted. The

procedure of data collection is detailed discussed by Stapleton [57].
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Figure 8.7: Collection of tissue. All tissues were collected during routine biopsies

(taking a small sample of cells or tissue from breast) of patients, and they all have a

full histological diagnosis and a complete clinical history. The tissue columns getting

from biopsies then were sliced along the axial direction. The tissue used for FTIR

imaging, and the tissue used for H&E stain are neighbouring sections.

30 tissues, 10 of each grade, have been prepared and FTIR imaging data have

been recorded. All the data were obtained on transmission mode with a 3.8569

cm−1 step size (7.7138 cm−1 spectral resolution), 5.5 µm spatial resolution. 128

× 128 focal plane arrays detectors are used. For each sample, 4 × 4 areas were

imaged. Therefore, 512 × 512 spectra were collected per sample. All data sets

are truncated to 1000-4000 cm−1 for easy data handing and storage. Infrared

spectra from each tissue sample were stitched together in MATLAB to form a

single (512 × 512 × 700) data cube, consisting of 262144 spectra with 700 data

points each.

We use a numerical research identifier for each of the 30 tissues. To denote the

sample tissue cancer status, 1-10 are assigned to the 10 samples of grade one,
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Table 8.3: 30 sample dataset summary

NO.
Research

Identifier

Tumour

Grade
NO.

Research

Identifier

Tumour

Grade
NO.

Research

Identifier

Tumour

Grade

1 ERS 091 1 11 ERS 027 2 21 ERS 009 3

2 MI 4197 1 12 MI 4258 2 22 ERS 013 3

3 MI 4502 1 13 MI 4373 2 23 ERS 016 3

4 MI 4531 1 14 MI 4569 2 24 ERS 018 3

5 MI 4572 1 15 MI 4758 2 25 ERS 024 3

6 MI 4690 1 16 ERS 069 2 26 ERS 076 3

7 MI 5061 1 17 ERS 075 2 27 ERS 102 3

8 MI 5103 1 18 ERS 109 2 28 MI 4108 3

9 MI 5267 1 19 ERS 111 2 29 MI 4117 3

10 ERS 014 1 20 MI 4107 2 30 MI 4121 3

11-20 are assigned to the 10 samples of grade two, while 21-30 are assigned to

the 10 samples of grade three. Details of the 30 tissue sample can be found in

Table 8.3, in which the research identifier for tissue bank, the numerical research

identifier (’NO’ in Table 8.3) used in this thesis and the grading information of

each tissue are given.
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Pre-processing & segmentation

Human breast tumours are histologically complex tissues, containing a vari-

ety of cell types in addition to the carcinoma cells [91]. Histologic segment-

ation is necessary in order to provide automatic prognosis. In the pages that

follow, different pre-processing algorithms were discussed and tested. The

best-performed algorithms were applied to breast cancer tissue spectra to im-

prove robustness and accuracy. A spectra library containing stroma, normal,

carcinoma cell spectra was built. Background empty pixels and pixels lie on the

edges of the FPA detector were identified and cut off.

9.1 Pre-processing

Pre-processing is normally the first step taken in FTIR spectroscopy data ana-

lysis to correct baseline slope, different sample thickness or concentrations,

scattering and noise problems in raw FTIR spectra. It is a very delicate proced-

ure, in which, special cares are needed in this step to avoid miss-interpretation

of the spectra.
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RMieS-EMSC [92, 93] pre-processing method was utilised to correct the baseline

problem caused by Mie Scattering. The key parameter setting for the algorithm

is given in Table 9.1. The result indicates the algorithm with the parameter

setting can effectively remove the baseline of the spectra [57].

Table 9.1: Parameters used for Mie scattering correction algorithm

Parameter Value

Lower wavenumber point 1000

Upper wavenumber point 4000

Number of Iterations 1

Number of principle components 8

Mie theory option 2 (RMieS)

The inter-pixel biochemistry variation makes each pixel (spectrum) contains

different levels of noise or thickness variation, which, requires a distinctive

level of pre-processing treatments. A high computational power algorithm can

overcorrect spectra causing the loss of valuable cancer development informa-

tion. A weak algorithm, however, under-corrects spectra and introduces a high

noise level that can swallow the cancer relevant variation.

As the biochemical component in each pixel is unclear, it is difficult to object-

ively reason the effects of each pre-processing step. A detailed, knowledge-

based, analysis of pre-processing algorithms is made in Section 6.1 based on

plastic film sample. The conclusions that we draw are used to supervise the pre-

processing steps for breast cancer tissue FTIR spectroscopy data. As discussed

in Section 6.1, Savitzky-Golay smoothing, with parameter setting SPAN=9, DE-
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GREE=2, is used to remove the background and system noise.

Using a microtome, the thickness of the tissue is well maintained to be 6 µm

across the sample. However, for breast cancer tissue, the chemical compound

containing in each pixel is different as the bio-chemical material is not evenly

distributed across the sample. Normalising the spectrum to a certain peak

makes the assumption the chemical structure represented by that peak can be

used as an internal standard, as the value in a normalised spectrum means

the absorbance ratio other than the actual absorbance. However, as discussed

in Section 6.1, the noise level of the whole spectrum could be heavily influ-

enced by the S/N ratio of the normalisation data point. For different analysis

algorithms, normalised or non-normalised data set should be used. For ex-

ample, PCA, can automatically abstract the major variation between spectra.

Using non-normalised spectra, the major variation containing in the data set

will be the variation caused by uneven distribution. Normalised spectra are

used in the following spectra library Section 9.2.1 for PCA analysis as the major

variation wanted is the bio-chemical difference caused by different histological

classes. The results indicate that using the normalised spectra can provide bet-

ter divination between histologic classes. In the zscore analysis Section 10.7,

inputting non-normalised spectra gives better results, as the algorithm is tak-

ing each wavenumber absorbance as individual population. Using normalised

data set, the algorithm is looking at the composition ratio of two structures

other than the composition of one structure across the sample.

In conclusion, the selected pre-processing methods and the sequence of apply-

ing them are as following.
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1. RMieS-EMSC method is used to correct the Mie scattering problem [57]

(data set identifier in coding: ZCorr);

2. All spectra were truncated to 1100-3000 cm−1 (500 data points for each

spectrum), for easy data handling and storage;

3. Savitzky-Golay smoothing algorithm with ’SPAN’ equals to 9, ’DEGREE’

equals to 2 is used to remove noise caused by random background or sys-

tem fail (data set identifier in coding: ZCorr_smooth);

4. Amide II peak normalisation was applied to each spectrum. The max-

imum absorbance between 1543-1551 cm−1 of each spectrum was identi-

fied. Adjusting the Amide II peak value to 1, by dividing all spectrum by

the peak absorbance. (data set identifier in coding: ZCorr_normal);

5. First principle differentiation was applied to each spectrum (data set iden-

tifier in coding: D).

Each step is based on the spectra result of the step before, which will make

the current result the result of sequentially applying all the previous steps.

For instance, first principle differentiation dataset (dataset identifier in cod-

ing: D), has the pre-processing steps of: RMieS-EMSC → spectra truncation

→ Savitzky-Golay smoothing→ Amide II peak normalisation→ first principle

differentiation.

In the process of collecting FTIR spectroscopy data, a background spectrum

is collected and used to minimise the environmental background absorbance.

The choice of the background spectrum is essential. A high absorbance level
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background spectrum could cause the real empty spectra to have all negative

absorbance. The normalisation for negative spectrum is different from what re-

ported above. The normalisation of those spectra was conducted by dividing

the spectrum by 0.1, other than the Amide II peak value itself. This is to guar-

antee those negative spectra can be identified and cut off by the empty pixel

segmentation method.

The optimal pre-processing method or sequence to apply is a subject of discus-

sion, and no universal best approach exists for all samples [39]. In this thesis,

for different further analysis algorithm, different data set is used. A clear data

description, as well as the reason for using this data set is given before each of

the further analysing methods.

9.2 Tissue segmentation

In research published by Fernandez et al. [73], they coupled FTIR imaging with

tissue microarrays with statistical pattern recognition and demonstrated his-

topathologic characterisation of prostatic tissues. They examined more than

9.5 million spectra from over 870 samples, and reported a subset of 3 million

spectra from 262 samples at a spatial resolution of 6.25 µm. Individual cell

type spectra (normal epithelium, fibrous stroma, mixed stroma, muscle, nerve,

lymphocytes, stone, ganglion, endothelium and blood) were compared. Spe-

cial pattern descriptors that established differences between specific cell types

were found and termed as ’metric’. Automated histologic segmentation was

achieved with well-defined tests of statistical significance. The detection of
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prostatic adenocarcinoma, which conventionally requires a manual analysis of

the histomorphology and growth of tumour cell ensembles, was automated by

examing epithelial spectra. They successfully differentiated benign from the

malignant prostatic epithelium by spectroscopic analyses.

Pilling et al. [44] reported the effects of using coverslipped H&E stained tissue

on glass to conduct spectral histopathology. Using a spectral database con-

structed by histopathologists, a random forest classification model on classify-

ing classes of histology was trained and tested. A degree of accuracy higher

than 90% was achieved. A second four-class model was trained to discriminate

normal epithelium, malignant epithelium, normal stroma and cancer associate

stroma. The classification accuracies are over 95% on the test data set.

Petersen et al. [51] presents the classification of several tissue components us-

ing a two-layer classification scheme based on Raman spectroscopic data. In the

first layer, a multi-step random forest was applied, and it classifies the classes,

connective tissue, muscle, erythrocytes, lymphocytes, crypts, carcinoma and

lymph-follicle. In the second layer, linear discriminant analysis was used to

reclassify carcinoma and lymph-follicle based on parameters from a spectral

curve deconvolution algorithm. A pseduo-colour image was produced based

upon the classification results. Further improvement of the image was achieved

by overlaying Raman intensities of the C-H stretching vibrations with the Ra-

man based random forest images.

Kuepper et al. [94] presented a two-layers random forest method which not

only identifies tumour tissue with a sensitivity of 94% and a specificity of 100%,

but also distinguishes cell differentiation and thereby tumour grading. The first
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layer of the algorithm aims in the classification of cell types. The spectra that

were classified as tumorous were further analysed in the second layer for cancer

cell grading.

Detection and segmentation of histologic classes have been the major research

focus in recent years. Most research on histologic class segmentation takes the

following approach:

1. Build a spectra library containing different cell classes by the comparison

of FTIR spectroscopy data and H&E stained image;

2. Divide the spectra library into a training set, and a testing set;

3. Train a supervised classification model for histological detection, using the

training set;

4. Evaluate the classification model in the testing set;

5. Repeat step 3 to 4 to train several models, based on different supervised

training methods;

6. Select the classification method has the best performance.

Cross-validation is used for a small spectra library to increase the data repres-

entativeness. The generalisability of much published research on this issue is

problematic. There are two main reasons for that:

The repeatability of building a spectra library is low. In Fernandez’s work, a

library contains 171,000 pixels spanning all ten histologic classes was reported.

Pilling used a spectra library consisting of 347,293 epithelium, 196,081 stroma,
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8,151 blood, and 15,429 concretion spectra. Petersen gathered a spectra library

contains following spectra: carcinoma (471), connective tissue (793), muscle

(1538), erythrocytes (140), crypts (963), lymphocytes (593), lymph follicle (202),

and background (1320). All the spectra in the library are selected by the trained

histopathologist and spectroscopist. A high level of human work is required to

build the spectra library, causing the low repeatability of the library itself and

the low agreement between libraries.

Another fact that influences the generalisability significantly is the low repres-

entative of spectra. The size of cells can vary from about 5 to 30 µm, with

the nucleus and organelles generally being 1 to 10 µm in size [52]. Typically

commercial available FTIR spectroscopy has spatial specificity around 5.5 µm.

Figure 9.1c is the H&E image of breast cancer tissue gridded by 5.5 µm2 pixel

size. In the figure, the measured spectra consist of an unpredictable mixture of

spectral contributions from neighbouring cells. It is quite common to have mix-

ture cell type in one pixel. Low spatial resolution combining with a manually

sorting process, the spectral purity of the spectral library extracted from data is

considerably low. The low accuracy spectral library can lead to low repeatabil-

ity of the data analysis approaches.

An example of two classes missing to yield an entirely different one was pub-

lished by Bhargava [48]. They found that pixels between epithelium and fibroblast-

rich stroma are classified as mixed stroma in their cell type classification al-

gorithm. The ’contamination’ of the spectra caused by low spatial resolution

was reported and discussed in detail by Fabian et al. [64]. To reduce the influ-

ence of low spatial resolution, different algorithms are developed to overcome
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Figure 9.1: H&E image of different histologic cell classes and the dividing of one breast

cancer tissue using a 5.5 µm2 pixel size. (a) Lymphocyte nuclei (LN). (b) Epithelial

nuclei (EN). (c) 20 by 20 dividing of one breast cancer tissue by pixel size 5.5 µm2.

Each square represents the spatial region that the spectrum corresponding to. (d) EN

(Mitosis). (e) EN (Cancer). Figure produced based on sample 3, research identifier

MI4502.

this problem. In Fernandez’s work [73], probabilistic determination was used

to reduce noise introduced by the low spectral representative in the training

spectra set. In the random forest algorithm introduced by Pilling et al. [44], a

probability of acceptance threshold of 0.6 was set to control the spectra purity

problem. Petersen applied the mean and standard-deviation plot to confirm

the consistency of each class and to observe the spectral difference between dif-

ferent classes [51]. Having an adjustable boundary classification method is the

major similarity between those algorithms. However, as the representativeness

of spectra various from library to library, the cut-off value of the classification
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boundary varies. The reproducibility of those methods is not high.

9.2.1 Spectra library

The main method used to construct the library is by visually comparing the

H&E image and the FTIR pseudo-colour image [44, 73]. To build the spectra

library, first, different histological cell type regions were identified in the H&E

stained tissue. Then, a pseudo-colour image of the tissue is generated using

the FTIR imaging data. Cross-examination of the H&E image and the pseudo-

colour image were performed to identify the corresponding spectra of a certain

tissue region contains the same histologic cell. Those spectra were input into

the library and marked as spectra of that histologic type. In this section, a pre-

liminary spectra library was built, in the attempts of understanding the spectra

selection processes.

The pseudo-colour image is generated based on the three-cluster Fuzzy C-mean

clustering result of the first 30 PCs after applying PCA on the Amide I peak

range (wavenumber range 1604 to 1697 cm−1) of each spectrum. Mie-scattering

correction, Savitzky-Golay smoothing and Amide II peak normalisation were

applied in sequence as the pre-processing to the FTIR dataset.

In order to show a typical approaches I have undertaken, I have examined one

of the tissue sample in the dataset and shown it below. The selecting processes

of epithelial nuclei (EN) regions in the sample MI4502 is shown in Figure 9.2.

As empty background is the region can be mostly correctly identified using

PCA-FCM, an empty background region is selected as the calibration region.
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By adjusting the magnification and the rotation angle of the two images, the

calibration region is overlapped. The overlapping of the calibration region will

automatically lead to the overlapping of other regions, as the H&E image and

the pseudo-colour image are from two highly identical tissues. Using the identi-

fied empty background region, we can overlay the H&E image and the pseudo-

colour image precisely (in Figure 9.2c) which helps to locate the corresponding

spectra in the FTIR data set. The selected EN region is given in Figure 9.2d.

Figure 9.2: Selection of representative EN region (sample 3, research identifier

MI4502). (a) H&E image; (b) pseudo-colour image on PCA-FCM; (c) overlapping of

the H&E image and the pseudo-colour image; (d) H&E image of selected representat-

ive EN region.
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The selecting process can be influenced by many things. First of all, the accur-

acy of the overlapping. Even though, PCA-FCM can detect empty background

well, the shape of the calibration region for those two images (white region

in Figure 9.2a and blue region in Figure 9.2b) still have a little difference, due

to the resolution difference and the noise of IR spectroscopy data. Consider-

ing the unknown magnification and rotation angle of each image, it is difficult

to precisely overlay those two regions. Second, the minor difference between

the two tissue. The tissue for histological assessment and the tissue for FTIR

spectroscopy data collection has high similarity. They are still two pieces of

tissue which a certain level of difference can be found between them. Those

differences make the correlation of histology classification with FTIR spectra

difficult.

With much uncertainty involved in the constructing process, the spectra library

is difficult to trust on a singular spectrum level. Compared with the size of cell,

the 5.5 µm2 pixel size is low, thus, the possibility to find single cancer pixel is

low. Researches tend to select a homogeneous region of pathology instead of

individual pixel [95]. We believe selecting a region containing the same histo-

logical type gives a higher confidence in the representative of the pixels in the

library. In Figure 9.2d, even though the selected region is mainly covered by EN

cells, it still contains stroma, background and blood cells. Those spectra collec-

ted from this region are corresponding to a mixture of histologic classes. It is

difficult to tell the components of each individual spectrum, as it is difficult to

locate an individual spectrum preciously. However, it is reasonable to suggest

that those spectra as a group contains more EN spectra features than others.
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Figure 9.3: First two PCs scatter images based on the PCA analysis of Amide I peak

in the spectra library. a) is the PCA result on grade one sample with each dot rep-

resenting one spectrum. Gray, yellow and blue dots were used to represent spectra

from stroma, normal and cancer EN respectively; b) is the same analysis result on

grade three sample with each star representing one spectrum. Gray, yellow and blue

stars were used to represent spectra from stroma, normal and cancer EN respectively;

c) is the overlapping image of (a) and (b). Mie-scattering correction, Savitzky-Golay

smoothing and Amide II peak normalisation were applied in sequence as the pre-

processing to the FTIR spectroscopy data set.

Amide I peak range (wavenumber range 1604 to 1697 cm−1) of the resultant

spectra were subjected to PCA. Over 74% of the variance in the data set was

described by the first two PCs. The scatter image is given in Figure 9.3. Figure

9.3a and Figure 9.3b is the first two PCs’ scatter image of selected spectra for
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sample MI4502 and MI4108 respectively. Clear clusters between stroma, normal

and cancer EN can be observed. Stroma spectra focus on the bottom left. Cancer

EN spectra located in the top middle while normal EN spectra all lie in the

bottom right.

Figure 9.3c is an overlay image of (a) and (b). The scatter cluster between dif-

ferent histological classes still exists but less obvious. This demonstrates the

spectra difference cause by histological reason can be masked by introducing

the inter-sample variation. Figure 9.3c can be also taken as an evaluation of

the spectra library. Based on the figure, in general, the spectra selected can

represent the spectra characteristic of that histological type. However, due to

the low accuracy of the selecting processes, the spectra library is unsuitable for

individual spectrum comparison. To find spectra features of one histological

cell type, it is better to use the whole spectra group other than an individual

spectrum.

9.2.2 Detector edge, background subtraction

On the one hand, the current histological segmentation methods highly rely-

ing on the spectra library, which can be inaccurate; on the other hand, a certain

level of segmentation is needed for bio-samples to increase the representative-

ness of the IR spectra. In this section, without relying on the spectra library, the

empty/background pixels in the imaged tissue area, and the pixels collected by

sensors lie on the edge of the focal plane arrays (FPA) detector were identified

and cut off from the data cube. Those methods introduced in the following sec-

tion are transparent, and can be easily related to chemical or physical reasons.
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Background cut

The H&E image of the imaged tissue area (Figure 9.4a) clearly shows only the

top-right corner is occupied by tissue. Pixels from the area containing no tissue

structure are referred as empty pixels (containing no grading or pattern recog-

nition information), which can provide optical distortion [96] and will conceal

the real pattern or structure of the spectra data. Dividing those background

pixels from the informative one and cutting them off is necessary.

Empty wavenumber range 1800-3000 cm−1 in each spectrum was obtained, and

the standard derivation of the first principle absorbance differentiation in this

wavenumber range was generated. Two pixel columns (column one mainly

contains empty pixels, and column two contains both empty and informative

pixels) are picked, and the result of standard deviation is plotted in Figure

9.4b. Figure 9.4a is H&E image of the tissue showing the location of the two

columns. For column two pixels, major differences between the background

and informative pixels can be found. Comparing with empty pixels, informat-

ive pixels have lower standard derivation. A threshold of 0.0045 was used to

divide empty from informative pixels.

The standard derivation difference observed in column 2 is due to the normal-

isation step in spectra pro-processing. Comparing with empty pixels, inform-

ative pixels have higher absorbance on Amide II peak. When normalising the

spectrum, the absorbance on each wavenumber is divided by Amide II peak

value. For informative pixels, the normalised absorbance value between 1800-

3000 cm−1 is lower as they are the result of the original value divided by a
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Figure 9.4: Standard deviation comparison of two pixel columns. (a) the H&E image

of the tissue area. The positions of FPA detector during the FTIR data collecting steps

are indicated by empty black squares (4× 4). The edge area and the central area of the

FPA detector are marked as dark orange colour and light blue colour respectively. The

positions of pixel column one and two are highlighted by black and red line respect-

ively. (b) the standard deviation plot of pixel column one and two. Two interesting

areas: the detector edge area in column one and the background area in column two,

are highlighted. For pixels in column two, comparing with informative pixels, empty

pixels have higher standard derivation value. For pixels in column one, a sharp drop-

ping of the standard deviation value of pixels could be found at those pixels, which

lie on the edge of the focal plane arrays detector (detector edge area). Tissue sample

used in this figure is from grade three sample MI 4108.

relatively high Amide II peak value, which will further lead to lower standard

derivation, compared with empty pixels.

Figure 9.5 is the comparison of H&E image and the pseudo-colour image of

grade one sample MI4502. Using the standard derivation 0.0045 as classification

criterion, pixels with lower standard derivation are classified as informative
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pixels and coloured as yellow, meanwhile, pixels with higher or equal to 0.0045

standard derivation are classified as empty pixels and coloured as blue. The

pseudo-colour shows that the method can provide accurate background pixel

identification. The H&E and pseudo-colour image comparison of other samples

agree with this conclusion.

Figure 9.5: Sample MI4502 (grade one) background cut H&E image and pseudo-

colour image comparison. On the left, is the H&E image of the imaged region. On the

right, is the pseudo-colour image generated based on the background cut result, with

yellow represents tissue pixels and blue represents empty pixels. The miss identified

region caused by the detector edge problem is highlighted by the light blue arrow.

An interesting patter that can be observed in the pseudo-colour image of sample

MI4502 (Figure 9.5) is that the background segmentation method has high mis-

classification rate on pixels collected by the edge of the detector. A location-

based edge spectra segmentation is introduced.
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Edge cut

Care must be taken to avoid pixels that lie on the edge of the detector as these

may artificially inflate the error [7]. There are many reasons that can cause

the changing of data quality across the FPA detector. A possible explanation

for variation data quality across the FPA detector can be the relatively short

life-cycle of the detector. FPA detector was initially developed to be used as

a missile guidance sensor, in which, it is designed to be used once only. The

lifetime of majority commercialised FPA is still short. It is possible that, the

FTIR spectroscopy machine used for collecting the image data has an FPA that

is reaching its time limits, which results in the low performance on the detector

edge.

The real reason for the low S/N ratio spectra collected by the edge sensors is

still unknown. One thing for sure is that the variation is not due to any bio-

chemical composition difference, as the misclassification exists for pixel column

one, which are mainly empty pixels. Pixels that lie on or close to the detector

edge were cut off before further analysis is applied.

Evidence of changing of data quality of edge spectra can be seen in both Figure

9.4 on page 210 and Figure 9.5 on page 211. In Figure 9.4b, sharp changing of

standard deviation value could be found at those pixels lie on the edge of the

focal plane arrays detector (highlighted region of the line plot). In Figure 9.5,

the empty pixels lie on the detector edge are misidentified as informative pixels

due to the low S/N ratio.

An edge cut algorithm was developed based on the spatial location of each
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spectrum. For each 128 × 128 sub data cube, twelve pixels rows/columns from

the four edges of the FPA detector square were cut off. The remaining spectra

form a 104 × 104 data cube. In Figure 9.4a on page 210, each black square

represents one sub data cube created by the FPA. The region in dark orange

colour is recognised as the edge pixel region. The selected pixels for further

analysis are highlighted in blue. The background segmentation pseudo-colour

image and standard derivation study of other samples confirmed the algorithm

could effectively identify those low S/N ratio spectra lie on the detector edge.

Based on the tissue structure of the imaged area, the number of spectra re-

mained after background, and edge cut varies from sample to sample. Table

9.2 is the summary of the number of spectra been selected for further analysis.

The ratio of the number of spectra selected to the total number of spectra col-

lected (512 × 512) is provided.

All over the 30 samples, on average, 86250 spectra were selected. Those selected

spectra were further analysed to provide histological grading information of

each tissue. Grade three sample ERS016 has the lowest select-ratio. The further

analysis indicated that the tissue sample tends to be an outlier in most analysis

methods.
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Table 9.2: 30 sample dataset spectra segmentation summary (RI=Research Identifier;

No=Pixel Number; R=Ratio). For most samples, large number of spectra were selected

for further statistic analysis.

RI No R RI No R RI No R

ERS 091 46191 0.18 ERS 027 130664 0.5 ERS 009 64954 0.25

MI 4197 119121 0.45 MI 4258 53447 0.2 ERS 013 31382 0.12

MI 4502 63507 0.24 MI 4373 123107 0.47 ERS 016 18760 0.07

MI 4531 155234 0.59 MI 4569 105523 0.4 ERS 018 107384 0.41

MI 4572 99405 0.38 MI 4758 104327 0.4 ERS 024 97177 0.37

MI 4690 116153 0.44 ERS 069 82766 0.32 ERS 076 52397 0.2

MI 5061 107985 0.41 ERS075 118850 0.45 ERS 102 69247 0.26

MI 5103 104734 0.4 ERS 109 102339 0.39 MI 4108 57730 0.22

MI 5267 78505 0.3 ERS 111 42105 0.16 MI 4117 101033 0.39

ERS 014 41290 0.16 MI 4107 91558 0.35 MI 4121 100632 0.38

Average pixel number: 86250; Average ratio:0.33
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Dimension reduction

One of the difficulties of FTIR spectroscopy data analysis is the processing of

the high dimension data. FTIR spectroscopy measures the IR absorbance on

a range of wavenumbers. For different step size, the number of variables in

each spectrum varies from dozens to hundreds. A typical mid-IR spectroscopy

spectrum contains IR absorbance on wavenumber range 600-4000 cm−1. Using

step size 2 cm−1, each spectrum contains 1700 variables. Each variable will

be considered as one dimension in the data analysis steps. Not all variables

have value for cancer diagnosis or prognosis. Inputting all the variables into

the analysis algorithm will increase not only the computational expense but

also the noise level. Identifying and selecting a set of principle variables for

IR spectroscopy data is essential and critical. This process is called dimension

reduction in data mining.

Knowledge-based FTIR spectroscopy data dimension reduction is possible. For

instance, in Chapter 5 virgin polypropylene with carbon fibre section, standard

polypropylene and surfactant IR spectra were used to identify ’polypropylene

215



CHAPTER 10: DIMENSION REDUCTION

peak’ and ’surfactant peak’ to reduce the dimension of the spectra. Breast can-

cer FTIR spectroscopy data knowledge-based dimension reduction, however, is

difficult as the prior knowledge required about the biochemical composition of

breast cancer cell is still under investigation. Pruning of biological FTIR spec-

troscopy data, in which the complex compositions are unknown and changing

from case/person to case/person, requires an in-depth understanding of the

data structure and high level of data analysis skills. Machine error and noise

of the data are making this process a more delicate job. Patterns can be easily

found, however, it is hard to find patterns that have logical meaning.

Teh et al. [83] introduced random forest to near-infrared Raman spectroscopy

data analysis on the larynx sample for the first time. The random forests method

was introduced to develop effective diagnostic algorithms for classification of

Raman spectra of different laryngeal tissues. The result, indicated that NIR

Raman spectroscopy in conjunction with powerful random forests algorithms

have a great potential for the non-invasive, in vivo diagnosis and detection of

malignant tumours in the larynx at the molecular level.

In a recent study, a two layers random forest workflow was created by Kuepper

et al. [97] for precise colorectal cancer tissue classification based on quantum

cascade laser-based infrared microscopy. They analysed 110 patients with UICC

stage II and III colorectal cancer, showing 95% sensitivity and 100% specificity

compared to the golden standard in routine clinical diagnosis. The tissue level

cancer diagnosis was achieved by setting a 2% threshold of denoting tumour

cells percentage.

A paper by Pounder et al. [7] was the first study trying to exam the potential to
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combine the spectral and spatial information for breast cancer diagnosis. Each

pixel was first labelled as stroma or epithelium using spectral recognition at the

single pixel level; subsequently, epithelium pixels are labelled as cancer or nor-

mal by spatial polling based upon epithelium content and distribution. Results

indicated that the protocol is highly accurate under a variety of conditions.

A widely accepted procedure of multi-wavenumber analysis for biological FTIR

spectroscopy data is as following:

1. Generate spectra metrics by selecting the wavenumbers that have the most

variation between histologic classes;

2. Apply classification on each spectrum to group them into histologic classes;

3. Evaluate the classification result using the true classification from patho-

logy;

4. Repeat step 1 to 3 for several times;

5. Select the best performance metric based on the classification result.

IR spectra shape can easily be influenced by various sample preparation and

data collecting, pre-processing methods. The spectra changes caused by cancer

relevant biochemistry change is small. It can be easily masked by those noises.

The noise deduction pre-processing steps have limited ability in increasing the

signal-to-noise level. Highly human involved analysing together with the large

dynamic range of IR spectra, made the selected best performed metric various

from study to study.

The developments in computational power allow the spectra pathology without

metric selection. Instead of selecting the metric manually, the whole spectra
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were input to algorithms such as random forest [44, 51] or deep learning [98] to

train a self-learning algorithm to perform tissue pathology, whom is specialised

for dealing with high dimension data. The best performing model was selected

to conduct tissue segmentation on the test sample set. Using a high dimension

data process algorithm, this approach successfully reduced the level of human

involvement, meanwhile increases the objectiveness. However, both random

forest and deep learning have limited mathematics support. This makes phys-

ically or biologically interpreting of the FTIR spectroscopy data histology result

impossible. The potential of understanding cancer biochemistry development

through FTIR spectroscopy is lost.

In this chapter, the difficulty of conducting dimension reduction on breast can-

cer IR spectroscopy data is clearly stated by a spectrum study on a knowledge-

based approach analysis of PP and PE IR spectra. Evidence that combining

multiple wavenumber can improve the S/N ratio is provided right afterwards

to further support the needs of using multiple wavenumber absorbance for IR

analysis. The benefit of applying probability density distribution analysis on

breast cancer tissue IR spectroscopy image data is detail discussed. Different

dimension reduction methods were explored. Traditional multivariate statist-

ical analysis PCA combining curve fitting and multivariate statistical analysis

on breast cancer FTIR spectroscopy data was tried in Section 10.5. Section 10.6 is

the application of the spectrum symmetric analyses algorithm to reduce the di-

mension of the data. In Section 10.7, based upon a cancer development model,

standard score analysis was introduced as a dimension reduction method.
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10.1 Spectrum changes caused by one single methyl group

This part aims to provide a simple example, that illustrates how IR spectrum

changes when the chemical information changes in the material.

Compared with breast cancer tissue sample, the plastic sample has a simple

structure and relatively uncomplicated spectrum. A large and growing body

of literature has investigated the infrared spectra of high polymers making the

knowledge-based interpretation of the infrared spectrum possible. The poly-

ethylene (PE) and polypropylene (PP) IR spectra analysis are simple examples

of IR spectra analysis. From PE to PP, only one change of the molecule (H to

CH3) is made. The resulting spectrum shows rather complex peak changes

(rising, falling, appearing, disappearing and shifting) on multiple wavenum-

ber.

Examination of PE and PP using FTIR spectroscopy has been extensively stud-

ied [99–102]. The assignments for most of the spectrum bands have already

been satisfactorily made [101]. The molecular structure of PE can be considered

to be an approximation of an infinite chain of CH2 groups. In comparison to

a PE polymer, a PP chain has a CH3 on every other carbon group. Figure 10.1

displays the structure of molecules of PE and PP.

(a) Polyethylene (b) Polypropylene

Figure 10.1: Molecular structure of polyethylene and polypropylene. In comparison

to a PE polymer, a PP chain has a CH3 on every other carbon group.
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Figure 10.2 is the infrared spectrum of virgin PP. The spectrum is the average

of 36864 (192 × 192) spectra collected from PP film using FTIR imaging tech-

nique. Based on the study result reported by Krimm et al. [101], infrared spec-

trum peaks of PE and their corresponding assignment of chemical bonds vibra-

tion were marked on the spectrum. Compared with PE, PP contains more CH3

bonds, which will lead to higher absorption in the corresponding CH3 IR spec-

trum peaks. In Figure 10.2, the rising of CH3 composition is causing peak dis-

appearing (1353, 1470, 2853 and 2925 cm−1), appearing (1359 cm−1) and peaks

maxima position frequency shifting (1456, 2874 and 2959 cm−1).

Figure 10.2: Infrared spectrum of PP. Infrared spectrum peak and their assignment

were marked based on a spectrum study on PE. Comparing with PE spectrum, peak

appearing, disappearing and shifting can be observed due to the rising of CH3 com-

position.

For breast cancer cell, as the development of cancer, the chemical bonds chan-

ging inside of the cell are much more complex and robust. Different changes

in chemical bonds give different spectrum changes. It is difficult to select mul-
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tiple wavenumber on a knowledge-based approach as the biochemical changes

caused by cancer are still under study. Knowing a certain type of protein is

highly relevant to cancer, the IR spectroscopy study of that protein is most likely

lacking. This is one of the reasons that dimension deduction of biomedical IR

spectroscopy data is difficult.

Furthermore, the number of one type of change in the focused IR beam region

is much less compared with the PP, PE example in which every other molecule

is having the same H to CH3 change. The dropping of the number of one type

change in breast cancer sample will lead to the spectra changes of that molecu-

lar change getting smaller. IR spectrum is the overlaying of all the IR absorb-

ance relating to all chemical bonds containing in the specimen. The spectra

changes between cancer and normal cell are the superposition of hundreds or

even thousands of small spectra changes. At most wavenumber the absorbance

is changed in a non-naked-eye-observable level. This makes the dimension re-

duction on a data-driven approach difficult.

The PCA, symmetric and zscore analysis introduced in this chapter are all try-

ing to increase the information representative meanwhile decrease the dimen-

sion of each spectrum without wavenumber selecting step.

10.2 S/N ratio and multi-wavenumber

In FTIR spectroscopy data, the signal desired is the IR absorbance correspond-

ing to chemical structures. The higher the composition, the bigger the IR ab-

sorbance. Meanwhile, the machine and the background noise level remain con-
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stant across all wavenumbers. The signal-to-noise (S/N) level varies between

wavenumber to wavenumber. Selecting those wavenumber has a higher S/N

ratio as input, can improve the S/N ratio level of that spectrum. A standard

procedure for IR spectrum analysis is truncating the spectrum to only remain-

ing the wavenumber has a high S/N ratio.

In applying FTIR spectroscopy for cancer prognosis or diagnosis, the signal

desired is further narrowed down to cancer reverent IR absorption. It has

been widely accepted, that by combining multiple wavenumber absorbances,

cancer-relevant variation percentage (S/N ratio) can be increased [98]. Increas-

ing number of studies reported the clinical application of IR spectroscopy based

on multiple wavenumbers. Machine learning or manually comparison is often

used, to find the best combination of wavenumber based on the performance.

Corresponding to a certain chemical structure, IR absorbance spectrum is nor-

mally a Lorentzian shape peak in a wavenumber range. Within this range, the

S/N ratio changes continuously. Suppose, there is a ’cancer IR peak’, because

the continuously changing of S/N ratio, the peak position and its sounding

wavenumber should be selected. The state of the art wavenumber selection

results are mainly individual, non-continuity values. It is difficult to interpret

those result with biological or medical reasons.

The molecular fingerprint region (600-1800 cm−1) is considered to have a high

S/N ratio for IR spectroscopy cancer development features. In the following

sections of this chapter, Amide I peak (wavenumber range 1604 to 1697 cm−1),

the single most widely used amide modes of protein secondary structure [103],

is selected as the input. Different algorithms were tried to abstract cancer de-
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velopment information based on this region.

10.3 Probability density distribution on FTIR spectroscopy data

analysis

To have an idea of the ’middle’ or centre of a data set, several statistical concepts

could be used, with mean, median and mode the most popular. Mean is the

average value, giving the same weight to all the data points. However, it can be

easily influenced by the extremely large or small outliers. Median is the middle

value of the data set. It lacks the ability to give a general picture of all the data

points. For instance: [1, 2, 3] and [-100, 2, 100] have the same median but huge

difference in mean and standard derivation. Mode is finding the most common

value. It is not applicable for samples have continuous numeric sample space.

For a sample that has complex components, for instance, human tissue, none

of the three are enough to give a clear description of the centre distribution of

the FTIR data. This section is a detailed explanation of why probability density

distribution was adopted as the main method to describe FTIR imaging data in

this thesis.

10.3.1 Variation in tissue FTIR spectroscopy data

Tissue contains up to 10,000 different proteins and all kinds of circulating mo-

lecular species such as sugar, lipids, peptides and metabolites [104]. The con-

centrations of different components have large dynamic ranges across the tissue

sample.
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For tissue FTIR spectroscopy data, the variation of one spectrum contains can

be generally grouped into the following groups: variation from the biochemical

components, variation from environment/machine noise and variation from

sample preparation. The latter two can be removed or reduced by the pre-

processing of the FTIR spectroscopy data. Variations of the biochemical com-

ponents are directly related to cancer diagnosis or prognosis.

Figure 10.3: Schematic of the cancer tissue spectra information. The information con-

taining in one spectrum normally comes from the following four: biochemical vari-

ation due to natural distribution, biochemical variation due to cancer development,

Environment/machine noise and thickness variation.

Due to the components variation between cells as well the mixture of more

than one cells in one pixel (Figure 9.1 on page 203), the biochemical compon-

ents are different from pixel to pixel. Cancer development can also cause the

biochemical changes of tissue. After the pre-processing step, the spectral differ-

ence observed between spectra is corresponding to the biochemical difference,

which can be further split into variation from natural uneven distribution and

variation caused by cancer development. Figure 10.3 is the schematic of the
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information containing in the cancer tissue spectra. Difference can be easily ob-

served between spectra. However, it is difficult to tell the difference observed

is due to natural uneven distribution or cancer development.

10.3.2 The power of statistics

Due to the complexity of the tissue components, singular IR spectrum quantit-

atively study on cancer development is difficult. In this thesis, statistical ana-

lysis was introduced to extract cancer information on a population level. Dens-

ity distribution is introduced as a stronger statistic tool to represent the trends

in IR absorptions.

The reason for using statistical analysis for tissue FTIR data is as following:

1. It is difficult to control the biochemistry components on a singular spec-

trum level. Human traits vary across a wide range; however, in most

cases, taking cancer cells in one tissue as a population, if we graph the

number of cells, which are in a certain level of cancer developments, we’ll

get a distinctive chart known as a normal curve.

2. The IR absorption changes caused by cancer are real but quite small. They

are so subtle that we can be easily masked by the other variations. This

is, one of the technical difficulties to conduct cancer analysis based on

individual spectrum comparison. Statistically significant, however, is a

numerically reliable way to claim a difference between two spectra pop-

ulation. The distribution between cancer and normal tissue can be highly

overlapping, as major components of the two tissue are still the same, but
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difference can be observed by a statistical tool, as they are, statistically

belonging to different populations.

3. Spatial variation is needed to achieve cancer diagnosis or prognosis. The

general distribution of different types of cells within the tissue is essential

information for evaluating the cancer stage of the patient.

Taking each pixel as one individual, pixels from one tissue as the group of in-

dividuals, the difference between groups representing the difference between

tissues. If the major difference between two pieces of tissue is the cancer level,

the variation observed on the population level can be directly associated with

cancer developments.

Details of statistical analysis of FTIR tissue image data are given in Figure 10.4.

Starting from the 3-D matrix resulting from FTIR spectroscopy, dimension re-

duction is applied to reduce the dimension of one pixel into one value, which

contains the biochemical information of that pixel. That single value is called

the feature value of that pixel. After obtaining the feature value, the outlier

cut was applied before generate the density distribution. Quartile1 - (1.5 ×

interquartilerange) and quartile3 + (1.5 × interquartilerange) were used as the

boundary to identify outliers. Bin the feature value over one sample which

breaks a high amount of continuous feature value into a series of density values

(estimated based on the normal kernel function). Each of the bin-result-value

represents the density value integrated over a small range. After binning, first-

term Gaussian fit was applied to the density value to obtain the probability

density distribution. The fitting of density distribution is detailed explained in
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Figure 10.4: Statistical analysis of FTIR tissue image data. A spectra matrix was cre-

ated by the data collecting step. Each spectrum in the matrix contains the absorbance

variation of the materials in that pixel. Dimension reduction was applied on the spec-

trum level to reduce the z axis to one single feature value. The density distribution

of that value across the tissue was then calculated and plotted. Density distribution

function was then obtained by regression.

next Section 10.4. A step-by-step instruction of obtaining the density distribu-

tion by binning is given in Section 10.5.1.

For non-cancer tissue, as lone as the population size is large enough, the feature

value across a tissue should be following a normal distribution. The existence

of cancer cells in the tissue can twist the normal distribution into a different

shape. By this statistical analysis approach, the biochemical variation across

one piece of tissue can be summarised by a distribution function. The biochem-

ical variation due to natural uneven distribution should be a normal distribu-
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tion. Between tissue samples, this normal distribution should be the same as

the physical reason behind them is natural uneven distribution. Any difference

we observed on the density distribution, is due to the biochemical variation on

a population level. Cancer developments can cause the changing of biochem-

ical components in a population of cells. In other words, the cancer level of

those tissues can be revealed by the density distribution of the feature value.

10.4 Regression on FTIR spectroscopy data analysis

Regression is a statistical method that is popularly used in data mining. Re-

lationship between variables is estimated by a mathematics equation which is

used to describe the changing of dependent variables based on the independent

variable. The benefit of applying regression is as following:

MAKE USE OF PRIOR KNOWLEDGE. There are huge amounts of functions can

be used to estimate the relationship between variables, such as: Fourier, Gaus-

sian and polynomial models. To apply a certain kind of function requires the

prior knowledge of the relationship. For example, for IR absorbance spectra,

after many studies and comparison, Lorentzian, Gaussian and Voigt functions

are normally used to fit spectral line shape [105]. The prior knowledge on the

shape of the relationship can be introduced to the data when applying a certain

regression function.

REDUCE NOISE. Regression is describing the major form of relationship based

on pairs of dependent and independent variables. Random noise or machine er-

ror could be excluded from the data set if predictions of the dependent variable
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are made. This is a standard and rather developed approach in data mining.

Petersen et al. [51] used a fifth order polynomial to fit each spectrum to remove

the residual spectral baseline of Raman spectroscopy data.

10.4.1 Regression on feature value density distribution

In this thesis, for all the FTIR imaging data set, regression is used to link the

binning result with density distribution function to enable the comparison of

feature value on a population level. As shown in Figure 10.4 on page 227, after

abstracting and binning feature value, regression is applied to the binning res-

ults to describe the distribution mathematically.

Considering the feature value as a random variable, we denote it by symbol

capitalised litter X. A real feature value data point is x. Study the probability for

the event X < x. This probability is a function of x and is called the distribution

function of X:

F(x) = P(X < x) (10.4.1)

When this distribution function F(x) is continuous and differentiable, the func-

tion’s first derivative can often provide special interesting information:

f (x) =
dF(x)

dx
= F

′
(x) (10.4.2)

is called the probability density (function) of X. It is a measure of the probability

of the event (x ≤ X < x + dx). From 10.4.1 and 10.4.2 it follows that
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P(X < a) = F(a) =
∫ a

−∞
f (x)dx (10.4.3)

P(a ≤ X < b) = F(b)− F(a) =
∫ b

a
f (x)dx (10.4.4)

and in particular

∫ ∞

−∞
f (x)dx = 1 (10.4.5)

Normal distribution (Gaussian distribution) is a common continuous distribu-

tion. It is often used in biology and social science to represent real value vari-

ables whose distributions are not known.

The density distribution caused by natural uneven distribution tends to be a

normal distribution. Supposing we have two large enough samples from the

same population, the density distribution should be identical normal distribu-

tions. As discussed before, after pre-processing, the IR absorbance contains

two kinds of variation only: variation from natural uneven distribution and

variation caused by cancer development. Any difference can be observed from

the density distribution is corresponding to biochemical changes in cancer de-

velopment.

First-term Gaussian fit (Normal distribution fit) is applied to the distribution to

obtain the distribution function. The function is given:

y = a · e−
(

x−µ√
2σ

)2

(10.4.6)

230



CHAPTER 10: DIMENSION REDUCTION

where, µ is the mean or expectation, σ is the standard derivation of the distri-

bution.

In the following chapter of this thesis, for FTIR imaging data, the parameters of

the first-term Gaussian regression function on probability density distribution

are used to represent the sample.

10.4.2 Regression on spectral line shape

The second usage of regression in this thesis is in Section 10.6, symmetry ana-

lysis of Amide I peak. Taking wavenumber as an independent variable while

the absorbance of that wavenumber as a dependent variable, a vibrational spec-

trum can be estimated using a mathematics equation. Regression is used to de-

scribe the shape-changing of Amide I peak. Symmetric level of the peak was

abstracted based on the regression results.

10.5 Principal components analysis

Principal component analysis (PCA) is one of the most widely used data mining

approaches for dimensional reduction. It reveals the most prominent variation

patterns in data by transferring the data into a different PCs space using an

optimal eigenvector matrix [106].

PCA can estimate the most common patterns across the features [107]. In Sec-

tion 9.2.1, applying PCA to selected spectra, differences between histologic

classes were revealed. If most absorbance variations of the spectra data are

changing with respect to cancer status, the first principal component will be
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highly correlated with cancer status.

In this section, taking each spectrum as one observation, PCA was applied to

Amide I peak (wavenumber range 1604 to 1697 cm−1) of selected spectra after

background and edge cut (section 9.2.2). The first PCs value was selected and

feed into the probability distribution function fitting. Parameter of the probab-

ility distribution function was used to compare the first PC value distribution

between samples.

The preprocessing methods for data sets in this section are: RMieS-EMSC →

spectra truncation→ Savitzky-Golay smoothing → Amide II peak normalisa-

tion. The effects of the normalisation step were evaluated by applying the same

PCA transfer to both normalised (data set identifier in coding: ZCorr_normal)

and non-normalised (data set identifier in coding: ZCorr_smooth) data set.

10.5.1 Single PCA

After cutting the empty and edge pixels off, all over the 30 samples, on average,

86250 spectra were selected per tissue sample. Taking each spectrum as one

observation, combining all the 30 samples’ selected spectra (observation) into

one matrix, PCA was applied.

The transferred observations were re-grouped into 30 clusters based upon the

sample they are from, before further statistic analyses were applied. The result

data set is 30 clusters of observation which are transferred into the new PCs

space from the original spectra space. Figure 10.5 is the schematic illustrating

the single PCA process.
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Figure 10.5: Single PCA schematic. On normalised (coding identifier: ZCorr_normal)

data set, the selected spectra from all 30 samples were joined into one 2-D matrix, with

each row of the matrix representing one spectrum (observation). PCA was applied to

the matrix to transfer it into the new PCs space. Observation in the new PCs space

was then re-grouped based on the tissue sample it is from.

After PCA, density distribution analysis was applied to each of the 30 samples.

The first PC, which takes most of the total variation, was selected to represent

each spectrum/observation. For each of the 30 tissue samples, following steps

were used to obtain the density distribution of the first PC value:

1. Apply a standard outlier cut. Quartile one - (1.5 x inter quartile range) and

quartile three + (1.5 x inter quartile range) were used as the boundary to cut

off outliers.

2. Generate a row vector XI, which contains 100 linearly equally spaced points

between the minimum and maximum value of the variable. (MATLAB

function: linspace)
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3. Based on a normal kernel function, using a window parameter (band-

width) that is optical (Equation 10.5.1), the probability density is estim-

ated from the sample in the variable. Vector XI is used to specify where

the density estimate is to be evaluated. The estimated result is given in the

form of cumulative probability values. (MATLAB function: ksdensity)

The optimal bandwidth, in step 3, is given [108]:

bandwidth =

(
4σ5

3n

) 1
5

≈ 1.06σn−
1
5 (10.5.1)

where, σ is the standard derivation of the sample, n is the number of points.

In Section 10.5, 10.6 and 10.7, after abstracting new feature values, the dens-

ity distribution of that feature value, within each tissue sample, was obtained

using those steps described above.

First-term Gaussian fit was applied to the distribution to obtain the distribution

function. Parameter of the function was scatter-plotted to compare the differ-

ence between samples. The result and the discussion of the result are given

in Section 10.5.3. To test normalisation’s influence on FTIR spectroscopy data,

the same single PCA analysis was applied to non-normalised data set (data set

identifier in coding: ZCorr_smooth). The density distributions of the first PCs

value of each spectrum were obtained. The Gaussian fit results were given in

Section 10.5.3.
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10.5.2 Multi-layer PCA

For cancer tissue FTIR spectroscopy data, the variation can be divided into two

types: inter-grade and intra-grade variation. The inter-grade variation is the

IR spectra difference caused by cancer developments. The intra-grade vari-

ation (difference of samples with the same cancer grade) is the IR spectra differ-

ence caused by sample variation, sample preparation or data collection process,

which is not cancer relevant.

For cancer prognosis, in the ideal situation, PCA transfers the original spectra

data into a PCs space where the inter-grades difference is maximised while the

intra-grades difference is minimised. In scatter results, we want the difference

between grades large; meanwhile, the difference between samples in the same

grade small.

Applying PCA directly will transfer the data into s PCs space that the major

difference is maximised. It is difficult to identify the source of this major dif-

ference, therefore, making the claim the major difference abstracted is cancer

relevant (inter-grade difference) is difficult. A double-layer PCA method is pro-

posed in this section, to provide more control over PCA transformation.

Based on the eigenvector matrix, PCA transfers the data into another PCs space.

Applying the same eigenvector matrix can transfer other observations into the

same PCs space. Normally, the eigenvector matrix is obtained from the sample

space directly. Abstracting the eigenvector matrix from a sample space that

the inter-grade difference is the major variation can give the eigenvector matrix

ability to pick out grading information and maximise it.
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Pixels in the same sample went through the same treatments. The IR spectro-

scopy data is collected in the same environment and machine setting. Both the

sample preparation and data collection variation is low in-between those ob-

servations. For the 30 tissue sample FTIR spectroscopy data, within each of the

tissue sample data cube, the cancer development information is included, while

the intra-grade variation is minimised.

In a double-layer PCA process, the first layer is abstracting the eigenvector mat-

rix using observations from one tissue sample only. In the second layer, apply

the same eigenvector matrix to perform PCA to other tissue sample data.

By this double-layer PCA approach, PCA was forced on finding the spectral

difference of cancer development than the difference between samples.

Double layer PCA was conducted using the following steps:

1. Layer one: Apply PCA on the observation from one sample. Tissue sample

1 (ERS091) is used in this step. (Using other tissue samples in these steps

has been tested. The influence of the choice of tissue samples in this step

to the result is little.)

2. Layer two: Using the same eigenvector matrix as layer one, transfer the

FTIR spectroscopy data of other samples into the same PCs space.

Abstracting eigenvector matrix from sample 1 (grade 1), double-layer PCA was

conducted. Density distribution analysis was applied to each of the 30 samples.

The first PC, which takes most of the total variation, was selected to represent

each spectrum/observation. Based on first-term Gaussian curve fit, the prob-

ability density functions of each sample were obtained. The a and µ parameter
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scattering image is given in Section 10.5.3. To test normalisation’s influence

on FTIR spectroscopy data, the same double layer PCA analysis was applied

to non-normalised data set (data set identifier in coding: ZCorr_smooth). The

density distributions of the first PCs value of each spectrum were obtained.

The Gaussian fit results and the detailed discussion of the results were given in

Section 10.5.3.

10.5.3 Result and discussion

After obtaining the feature value (the first PC of the spectrum), density distri-

bution analysis was applied to each of the 30 samples as described in Section

10.5.1 on page 232. First-term Gaussian fit (Normal distribution fit, as described

in Equation 10.4.6 on page 230) was applied to the distribution to obtain the dis-

tribution function. The parameters of the first-term Gaussian regression func-

tion on probability density distribution were used to represent the sample. The

a and µ parameters scattering image of single and double-layer PCA on normal

and smooth data set are given in Figure 10.6.

Except for the µ parameter range (y axis), scatter image 10.6a and 10.6c looks

almost identical. This indicates both single and double layer PCA identified

the same variation as the major variation in the non-normalised data set. As

double-layer PCA is designed to abstract eigenvector matrix in a low inter-

sample variation space, this major variation identified by both PCA method

may due to the natural uneven distribution of cellular contents. This result

highlighted the importance of applying normalisation to bio-sample FTIR spec-

troscopy data to reduce the influence of natural uneven distribution.
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(a) Single PCA on smoothed data set.
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(b) Single PCA on normalised data set.
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(c) Double PCA on smoothed data set.
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(d) Double PCA on normalised data set.

Figure 10.6: Density distribution function parameter scatter, with blue dots represent-

ing tissue samples from grade one, red dots representing tissue samples from grade

two and green dots representing tissue samples from grade three. The scatter plot

a and µ with marginal distribution curves. The marginal distribution curves take

samples from the same grade as a sub-population. The distribution curve reveals the

difference of distribution pattern on each of the dimensions.
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The conclusion is in good agreement with the pre-processing methods repor-

ted in the literature, and it can be double confirmed by comparing single PCA

performance on non-normalised (10.6a) and normalised data set (10.6b). Com-

pared with non-normalised data set, single PCA on normalised data can provide

relatively better dividing between cancer grades.

Figure 10.6b and 10.6d provided the performance comparison of single and

double-layer PCA on normalised data set. In both results, certain differenti-

ation between different cancer grades can be observed. Grade three samples

tend to be in the top-right corner while grade one samples are in the bottom-

left. Grade two samples are mixed in-between of grade one and three samples.

Compared with single PCA, double-layer PCA can transfer the data into the

PCs space that less inter-sample difference can be observed. However, it is

difficult to make the conclusion which one performs better, as both single and

double-layer PCA are not providing good enough separation of samples from

different grades. This may due to PCA methods are transferring the data into

the PCs space that intra-grade variations are big and inter-grade variations are

small, causing the later one is being masked. The low performance of PCA

methods may also be caused by the normalisation step. As discussed in Section

6.1, applying peak value normalisation can introduce a high level of noise to

the data.

As the PCA transferred data lost its original physical meaning, it is difficult to

study the actual cause of the low performance and improves it. New dimension

reduction methods are introduced in the later sections of this chapter, attempt-

ing to provide transparent, interpretable feature extraction methods for FTIR
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spectra data.

10.6 Symmetric analysis

De Meutter et al. [49] used arrays of infrared detectors to obtain high resolution

images of protein microarrays. 100 µm protein spots each containing about 100

pg protein were deposited to form high density regular arrays. Spectra of the

16 proteins are presented in Figure 10.7. It can be seen that the spectra differ-

ence between proteins can be large enough to be observed (carbonic anhydrase

and Hemoglobin), or too small to apply visual interpretation (Lysozyme and

Myoglobin).

Figure 10.7: Mean spectra of the 16 proteins obtained. Spectra have been offset for the

sake of readability. Reproduced from [49].

The development of cancer can lead to biochemical composition changing in

cells, which can cause the appearing, disappearing, falling or rising of peaks in
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IR absorbance. The composition changes are so small that the spectral changes

caused by cancer development are difficult to apply visual interpretation dir-

ectly. A symmetric-analysis method is proposed in this section to reveal the

composition changing based on the changing of the band shape.

In this section, different mathematics equations were tried to describe Amide I

peak’s rising and falling edge. The best-fit equation was found, and the para-

meter of the equation was used to describe the symmetric level of the peak.

Then, for the selected pixels in each sample, the distribution of the symmetric

level was obtained. Probability density distribution function was used to show

the general symmetric level of that sample.

The preprocessing methods for data sets in this section are: RMieS-EMSC →

spectra truncation→ Savitzky-Golay smoothing. Focusing on the shape-changing

of Amide I peak, normalisation step does not change the symmetric level of the

peak, which makes the peak symmetric analysis results same between normal-

ised and non-normalised data set. The symmetric analysis results are directly

comparable with PCA results, as the algorithm is based on the same prepro-

cessing methods and pixel selecting process.

10.6.1 Why Symmetric analysis

Protein can fold into complex three-dimension structures, which consist of a

variety of domains containing polypeptide segments folded into different types

of secondary structures, which have their individual IR absorption. The ob-

served amide I bands containing many overlapping component bands that rep-
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resent different structural elements such as α-helices, β-sheets, turns, and non-

ordered or irregular structures [103]. Model calculation on Amide I bands of

globular protein has demonstrated that other α-helices, β-sheets, protein sec-

ondary structure spectral contributions spread over wide wavenumber range

[109]. Increasing number of experimental observations indicated the difficulty

of identifying individual composition and de-composition amide I band [110].

The method currently used in extracting the information is based on the ’prin-

ciple of pattern recognition’. Using machine learning or other data analysis

approaches, taking each wavenumber absorbance as individual variables, pat-

terns of the variables were selected. This approach does not require that indi-

vidual bands be assigned to different type of secondary structure. It, however,

requires a high level of mathematical manipulation of the data which makes

it difficult to interpret the results. Thus, it does not address the fundamental

problem of the lack of clearance in the relationship between amide bands and

the type of secondary structure.

By applying peak symmetric analysis, focusing on the shape-changing on a

series of wavenumber instead of discrete wavenumber absorbance value, un-

observable changes of the spectra are revealed. Together with the statistic dis-

tribution method, the major trends of the spectra shape changing are obtained.

The benefits of applying symmetric analysis can be summarised as following:

• A continuous wavenumber range, other than discrete wavenumber is used

to in the multi-wavenumber algorithm, without the need for band decom-

position. The reason for using multi-wavenumber and the arguing of con-
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tinuous multi-wavenumber is better than discrete is presented in Section

10.2.

• The symmetric analysis algorithm is based on the smooth data set (data

set identifier in coding: ZCorr_smooth), in which the absorbance value is

used as the input variables. It makes the analysis result more interpretable.

This can be used to improve the understanding of cancer developments.

As far as we understand, this is the first report of applying peak symmetric ana-

lysis on FTIR spectroscopy data. This provides an optional asthmatic method

for spectra analysis. A thorough application of this method can form a useful

supplement to the existing methods in crystallising biological interest of cancer

development.

10.6.2 Amide I peak rising and falling edge fitting

Early researchers used multiple terms of functions to fit IR spectra to reveal the

components of examined material [17, 111]. With spectacular accuracy rate,

curve fitting is limited by its low objectiveness. Series subjective decisions

(terms of the function, peak position of each term) need to be made before a

result can be achieved.

The shape-changing of Amide I peak during the development of cancer has

been reported [112–114]. Even though those multivariate analyses could give

similar results as curve fittings, the further application of the results is hindered

by its low linkage with biochemistry knowledge. It is difficult to interpret mul-

tivariate analysis results with biological changes.
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In the symmetric analysis methods we propose, Amide I peak (wavenumber

range 1604 to 1697 cm−1) was selected as the input wavenumber range to ana-

lysis the symmetric level of the peak. Curve fitting methods were applied to

the rising and falling edge of Amide I peak respectively to get two individual

mathematics equations. The peak antisymmetric level was obtained from the

parameter of those two individual mathematics equations. One term math-

ematics equation curve fitting was chosen as the result is interpretable using

biochemical knowledge.

To find the best regression function for Amide I peak, one-degree polynomial,

two-degree polynomial, first-term Gaussian, first-term Fourier and Lorentzian

functions were used to fit the rising and falling peak edge. Taking the wavenum-

ber as an independent variable, the mean absorbance of all the selected cancer

EN (Section 9.2.1) on that wavenumber as a dependent variable, different curve

fitting methods were performed. The results from the fitting can be seen in Fig-

ure 10.8 and Table 10.1.

Both Lorentzian and Fourier function fits well on Amide I peak. For rising edge,

Fourier fit performs better than Lorentzian with R2 = 0.9999. For falling edge,

Lorentzian fit can provide R2 = 1 result while Fourier fit’s R2 is 0.9999. The

difference of the fitting performance between the rising and falling edges could

be the direct result of spectra components difference in the wavenumber range.

Compared with the falling edge which has a shape similar to a single compon-

ent spectra line, rising edge shape is closer to the shape of Fourier function,

which indicates the rising edge has more robust spectral components. This

finding is in line with those of previous studies [112–116].
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(a)

(b)

Figure 10.8: Amide I peak fit. (a). rising edge fit; (b). falling edge fit. In both, from left

to right, first-term Fourier, first-term Gaussian, one-degree polynomial, two-degree

polynomial and Lorentzian functions were used to fit the mean spectrum rising edge

(a), and falling edge (b). Blue line is the cancer EN mean spectrum of the spectra

library from Section 9.2.1. The red line with dots is the fitting results.
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Table 10.1: Cancer EN mean spectrum fit results with the best fitted highlighted in

red.

Fit Goodness of fit

Fit type Fit result SSE R-square

Polynomial

(degree1)
y = 0.0212x− 33.51 0.02937 0.9810

Polynomial

(degree 2)

y = −0.00005x2

+0.1689x− 153.8
0.02805 0.9818

Gaussian

(term 1)
y = 1.463e

−(
x− 1662

51.54
)2

0.01196 0.9923

Lorentzian y = 0.0335 + 1.366
63.542

4(x− 1651)2 + 63.542 0.00147 0.9988

Rising

edge

Fourier

(term 1)

y = 0.9441− 0.2042 cos(0.0620x)

+0.4082 sin(0.0620x)
0.00017 0.9999

Polynomial

(degree1)
y = −0.0267x + 45.75 0.00280 0.9976

Polynomial

(degree 2)

y = −0.00008x2

+0.2536x− 189.4
0.00147 0.9987

Gaussian

(term 1)
y = 1.417e

−(
x− 1650

40.73
)2

0.00029 0.9998

Lorentzian y = −0.922 + 2.358
52.712

4(x− 1649)2 + 52.712 0.00003 1.0000

Falling

edge

Fourier

(term 1)

y = 0.7971 + 0.6927 cos(0.0420x)

−0.0695 sin(0.0420x)
0.00012 0.9999
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Lorentzian fit relies highly on the initial starting point. The fit performance

heavily influenced by the subjective decision made by the user. Even though

the fitting performances of Lorentzian and Fourier function are similar, first-

term Fourier fit was selected as the best-fit function for further symmetric ana-

lysis.

10.6.3 Symmetry

The IR spectrum changes in the following two ways: the increasing or decreas-

ing of chemical bonds will cause the corresponding fingerprint peak rising or

dropping; the appearing or disappearing of chemical bonds can lead to the cor-

responding appearing or disappearing of fingerprint peaks. Section 10.1 Spec-

trum changes caused by one single methyl group, provides a detailed example

of the rather complex spectra changes corresponding to one methyl group on

the polymer chain. For breast cancer cell, as the development of cancer, the

composition changing inside of the cell are much more complex and robust.

This is the fundamental reason that band de-composition is unsuitable for bio-

logy FTIR spectroscopy data analysis.

A peak in one spectrum (e.g. Amide I peak) is normally the integral of multiple

chemical bonds fingerprint peaks within that region. As discussed above, if

we cannot assign the absorbance difference to each of the chemical species, we

should take the peak as a whole in-dividable piece. The increasing, decreasing,

appearing or disappearing of chemical bonds fingerprint peak can cause the

changing of symmetric level of the spectrum peak. An example of the symmet-

rical level changes with the peak composition, is given by Coleman and Zarian
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[117]. As shown in Figure 10.9, the peak symmetrical level changes when the

poly(ε-caprolactone) (PCL) and poly (vinylchloride) (PVC) blend has a differ-

ent percentage composition.

Figure 10.9: FTIR spectra of PVC-PCL blends recorded at room temperature in the

range 1675-1775 cm−1. (A) Pure PCL, (B) 1:1, (C) 2:1, (D) 3:1, (E) 5:1, (F) 10:1 molar

PVC:PCI, respectively. Reproduced from [117].

To better illustrate the relationship between spectrum peak symmetric and bio-

chemical components changes, a highly simplified and hypothetical model is

given in Figure 10.10 on page 250. The model is a de-composition of spectra

peak in the wavenumber rang 1600-1700 cm−1. It assumes a Lorentzian shape

for the original components [17], and to maintain the simplicity only two bands

with the same width were considered. For chemical bond 1, the position of

maximum is 1630 cm−1, and the full width at half maximum is 40 cm−1. For

chemical bond 2, the position of maximum is 1655 cm−1, and the full width at

half maximum is 40 cm−1.
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Assuming the developments of cancer makes chemical bond two reminds the

same while chemical bond one increases, the spectrum and the decomposition

of normal and cancer cells are given in Figure 10.10a and Figure 10.10b respect-

ively. One-term Fourier fit was used to fit the spectrum rising and falling edge.

The results show that in normal cell, the rising edge has a fitting parameter ω

equals to 0.046 while the falling edge’s value is 0.052. The gap between rising

and falling edge is 0.006. In cancer cell, the rising edge’s ω increases to 0.048

while the falling edge drops to 0.049. The gap between rising and falling edge is

0.001. The model shows that the wrising − w f alling parameter can be used to de-

scribe the symmetric level of a peak, thus show the components changes within

the tissue sample.

Using single oscillating function, namely Sines and Cosines, one-term Fourier

function was found to fit Amide I peak best. The detailed investigation can be

seen in Section 10.6.2 The mathematical function of one-term Fourier model is:

f (x) = a0 + a1cos(wx) + b1sin(wx) (10.6.1)

in which x represents wavenumber value, f (x) is the IR absorption level in the

wavenumber of x. Four parameters are used: a0, a1, b1 and w. Parameter w

defines the frequency of the oscillating function which is highly relevant with

the shape of the peak. By subtracting the w between the rising and falling edge

fit function, we can get the symmetric level of the peak.

Following is a step by step instruction of getting the Amide I peak symmetric

level of each spectrum:
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Figure 10.10: Relationship between chemical bond fingerprint peak, spectrum peak

and symmetric level. (a) Normal cell spectrum decomposition. Chemical bond one

and two are given in green and yellow line respectively. The integrations of these two

peaks are given in blue line. Using one-term Fourier fit, the rising edge and falling

edge’s fit parameter ω is given. (b) Cancer cell spectrum decomposition. Compared

with normal cell, chemical bond one increase while chemical bond two remains the

same. The changes in the spectrum components can be revealed by the ω parameter

of Fourier fit.

1. Select Amide I peak (wavenumber range 1604 to 1697 cm−1). Divide the

peak into rising and falling edge from peak position.

2. One-term Fourier fit on the rising and falling edge of Amide I peak.

3. Subtract the w parameter of the rising and falling fit function.

Fourier fit regression can summarise the shape of the Amide I peak rising or

falling edge into one single value. Symmetric analysis compares the value of

the rising and falling edge from the same spectrum in which it contains the

same variation from noise and thickness. By subtracting the two ω values, we

removed the thickness and noise variation, and subtracted biochemical inform-
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ation.

10.6.4 Symmetric value density distribution

Applying symmetry analysis to a spectrum, the whole spectrum can be repres-

ented by wrising − w f alling, which is called the feature value of that spectrum.

After the feature extraction process, the 3-D data cube is transferred into a 2-D

feature matrix, with each spectrum represented by its own feature value. Bin

the antisymmetric value (w subtraction) within each sample. A Gaussian shape,

density distribution function can be obtained based on the result of the bin. This

process is illustrated in detail in Section 10.3, Figure 10.4 on page 227.

The bin results, the density distribution (Gaussian fitted bin results) and the

density distribution function scattering are given in Figure 10.11. The bin plot

of grade one samples tends to be flatter and have higher peak position com-

pared with grade three bin plots. Comparing with pixels in these grade three

samples, spectra from grade one samples tend to have symmetric value closer

to zero, which means the rising and falling edge of Amide I peak has closer w.

Along with the cancer developments, the cellulite component changing causes

the reduction of the symmetric level of the Amide I peak.

The shape of the density distribution is related to the variation level. The

sharper the shape the lower the variation is. The density distribution of the

symmetric value tends to be shaper in grade three comparing with other grades,

which means a high uniform level of symmetric in higher-grade cancer.

Feeding the density distribution into Gaussian fit to further reduce the dimen-
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(a) Bin plot.
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(b) Gaussian fitted bin plot.
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(c) Density distribution function para-

meter scatter.
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(d) Density distribution function para-

meter scatter with grade 1 and 3 samples.

Figure 10.11: Symmetric analysis results with colour code: blue (grade one), red

(grade two) and green (grade three). (c) and (d) is the scatter plot a and µ with mar-

ginal distribution curves. The marginal distribution curves take samples from the

same grade as a sub-population. The distribution curve reveals the difference of dis-

tribution pattern on each of the dimensions. Samples from grade one and three are

divided with grade two tissue distributed in-between.
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sion of each sample, the density distribution function of each sample is ob-

tained. Parameter a and µ of each Gaussian fit are chosen as the two variables

representing each sample, the scatter plot of the function parameters is given

in Figure 10.11c. Figure 10.11d is the same scatter plot with only grade one and

three samples. Grade one and grade three samples are in two different clusters

while grade two samples are mixed in between.

Outliers were identified in both scatter plot. There are many possible reasons

for the outliers: the low data quality (S/N ratio) or the miss-classification by

NPI.

Symmetric analysis of Amide I peak provides a rather sensitive approach of

detecting spectral changes due to protein secondary structure. Any structure

changes of protein secondary structure, both those have or have not been fully

explored by protein study, can be taken into count when cancer prognosis is

made based on FTIR spectroscopy spectra. It can be useful as a data-driven

knowledge discovery tool to highlight cancer relevant IR spectra change, which

further improves cancer protein study. One thing that worth noting, other com-

ponents of the cell, e.g. amino acid side-chain [118], also provide spectral con-

tribution into Amide I peak region.

10.7 Standard score

In the previous section, by applying symmetric analysis on Amide I peak, can-

cer tissue samples from grade one and three can be divided. This is satisfactory,

as it is, as far as we know, the first breast cancer study based on FTIR spec-
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troscopy reporting the dividing of different pathology grades. However, com-

paring with the golden standard NPI, this grading result is less exciting as the

NPI has a high accuracy rate in terms of prognosis on grade one and grade

three. Identifying grade two breast cancer from other cancer grades is relat-

ively difficult. The misclassification of grade one is one of the aspects that NPI

performance can be improved.

In this section, a rather common normalisation/standardizing method, stand-

ard score/zscore, was applied to attempt to divide grade two breast cancer

samples. To gain a better understanding of the relationship between cancer de-

velopments and molecular changes, a simple cancer development model was

built, based on which, zscore was proposed as a dimension reduction method.

Standard score was used to reveal the IR spectra changes between cancer grades.

Clear cluster of grade two with other grades is observed from the results.

The preprocessing methods for data sets in this section are: RMieS-EMSC →

spectra truncation → Savitzky-Golay smoothing. The zscore analysis results

are directly comparable with PCA results (on smooth data set) and symmetric

analysis results, as the algorithm is based on the same preprocessing methods

and pixel selecting process.

10.7.1 Introduction to standard score (zscore)

In statistics, the standard score is the signed number of standard deviations by

which the value of an observation or data point is above the mean value of what

is being observed or measured. Observed values above the mean have positive
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Figure 10.12: Comparison of zscore with standard derivation and cumulative percent-

ages.

standard scores, while values below the mean have negative standard scores.

Standard score, which is commonly referred as zscore, is a statistic method to

observe the value’s distance from the mean. Standard deviation is used as the

unit to measure this distance. In general, it measures how many standard de-

viations away the value is from the mean. For instance, a value will be given a

standard score of 1 if it is one standard deviation larger than the mean. Negat-

ive standard score will be assigned to those values lower than the mean. Figure

10.12 is the comparison of zscore value with standard derivation and cumulat-

ive percentages in a normal distribution.

The equation for zscore calculation is given as following [119]:

z =
x− µ

σ
(10.7.1)

in which, µ is the mean of the population, σ is the standard derivation of the
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population.

10.7.2 Cancer development model (Why zscore analysis)

Human breast tumours are histologically complex tissues, containing a vari-

ety of cell types in addition to the carcinoma cells [91]. After the background

cut, normally, cancer tissues could still have: Lymphocyte cell, Epithelial cell

(normal/mitosis/cancer), stroma or blood cells, etc.

A highly simplified tissue model was developed to gain a better understanding

of cancer developments and how zscore can be used to reveal the development

difference between cancer grades. Previous studies [48, 50, 98] have reported

Epithelial (EN) cell to be highly related with cancer developments. To maintain

simplicity, only EN cells are considered to be the composition of breast cancer

tissue, and only two types: healthy and cancer EN cells are included in the

model.

For each tissue, taking the level of cancer development as a spectrum, healthy

tissue, in which all the EN cells in the tissue are normal, lies on one end of

the spectrum; high-grade cancer, in which almost all the EN cells in the tissue

sample are cancer cells, lies on the other end. Low cancer grade (grade one)

samples, in which tissue contains only a few cancer cells, are close to the no-

cancer end. High cancer (Grade three) samples lie near the cancer end. Hav-

ing a more robust mixing of cancer and healthy cell, grade two samples are

in-between of grade one and three. A detailed illustration of the cancer devel-

opment spectrum is given in Figure 10.13a.
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(a) Cancer development spectrum. With healthy tissue on one end, and cancer tissue on the

other end. The ratio of cancer EN cells increases as the histological grade of cancer goes up.

(b) Schematic diagram of three grades tissue and the histogram analysis. Light grey and black

block were used to represent normal and cancer EN cells in the tissue schematic diagram. As-

signing 1 to each non-cancer EN block, 2 to reach cancer EN block, histogram analysis of the

tissue component is provided on the top of the tissue. The mean of each tissue is marked by

dash-line.

Figure 10.13: Simplified cancer development model. The histogram analysis in (b)

shows that both grade one and three tissue samples have most sub-blocks close to

mean, while grade two tissues have a more balanced distribution around the mean. It

explains why zscore could be used to identified grade two tissue samples.
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Schematic diagrams of tissues from each grade are given in Figure 10.13b, in

which, three simplified tissues each from one histological cancer grade are shown.

Each tissue is divided into 16 sub-blocks, represented by smaller squares. Sub-

blocks with black colour representing cancer EN cells in the tissue, meanwhile,

sub-blocks in light grey colour representing normal EN cells. For tissue from

grade one, it has 15 light grey and 1 black sub-blocks, indicating 6.25% of its

cells are EN cancer cell. Tissues from grade two and three are designed under

the same concepts, but with a higher ratio of cancer EN cells.

Given cancer cell value 2 and healthy cell value 1, a numerical model of cancer

development can be abstracted from the diagram model. The histogram ana-

lyses of each grade sample were conducted, and the mean value of the sample

was obtained. The mean and value histogram of different grades are given in

Figure 10.13b. For both grade one and three samples, the majority of the sub-

blocks are having a value close to the mean. The value distribution among the

sample is rather focused on one side (1 for grade one, 2 for grade three), as can-

cer/normal EN cell distribution across the sample is unbalanced. Grade two,

however, has a robust mixing of 1 and 2 values.

Zscore is calculating how many standard derivations away the value is from

the mean value. In the case of the cancer development model, taking each sub-

block as one individual, most grade one and three samples’ individual will have

a low standard score as their value close to mean. Grade two sample individu-

als, however, will have relatively higher zscore values. In other words, the

zscore pattern for grade two should be different from zscore patterns for grade

one and three.
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In real cancer tissue, in terms of the biological components changing, the EN

cell cancer development is more than just a yes or no problem. Cells can be

in different cancer level. The cancer development model would be far more

complex than the one we have in Figure 10.13.

Applying FTIR spectroscopy to a cell is like the numerical process of assigning

1 or 2 to sub-blocks in the cancer development model. Unlike the model, con-

tinuous IR absorbance value was assigned to each pixel to describe the various

cancer levels. The IR absorption of the pixel is believed containing the can-

cer information of the cell, which should still be following the zscore changing

pattern we described in the cancer development model. From grade one to

grade three, cells go from similar (high health cell) to robust mixing of cancer

and healthy cells, and then come back to similar (high cancer cell). Grade two,

which is in the middle of the cancer development spectrum, has more robust

mixing of different level of cancer cells. Grade one and three, meanwhile, due to

the highly uniform cells cancel level, less difference between cells can be found.

Comparing the zscore value between pixels in the sample could be an effective

way to divide grade two samples out.

10.7.3 Spectrum zscore analysis

The variation in-between cancer grades can be revealed, by comparing the spec-

tra zscore between tissue sample.

In the cancer development model, one value is directly assigned to each sub-

block to represent the cancer level. In the real spectra data cube, taking each

259



CHAPTER 10: DIMENSION REDUCTION

pixel as one sub-block, there is one IR spectrum behind representing the cancer

level of that pixel. To make the results comparable to each other, all the dimen-

sion reduction method in this chapter is focusing on Amide I peak (wavenum-

ber range 1604 to 1697 cm−1). With the spectra resolution, there are still 25

absorbances in each spectrum.

Zscore of each spectrum is calculated using the following steps:

1. Within each sample, taking the absorbance on the same wavenumber as

one population sample, the IR absorbance can be divided into 25 popula-

tion sample sets.

2. Calculate the zscore of each absorbance based on the population data set

it is from, using the Equation 10.7.1 on page 255. After this, the spectra in

each pixel is transferred into 25 zscore value representing the grading of

those 25 absorbances.

3. Average the 25 zscore in each spectrum.

Within the same tissue sample, FTIR spectroscopy data has low sample pre-

paration and data collection variation. Calculating the zscore value within the

same sample, inter-sample variation can be excluded.

By comparing the zscore distribution between samples, we are forcing the com-

putational power on biological components difference caused by cancer de-

velopments other than the natural uneven distribution. Density distribution

method is applied to the zscore value in the next section, to abstract inter-

sample difference caused by cancer developments.
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10.7.4 Zscore value density distribution

Applying zscore to a spectrum, the whole spectrum can be represented by the

mean zscore value, which is taken as the feature value of that spectrum. After

the feature extraction process, the 3-D data cube is transferred into a 2-D fea-

ture matrix, with each spectrum represented by its own feature value. Bin the

feature value within each sample.

The bin results, the density distribution (Gaussian fitted bin results) and the

density distribution function scattering are given in Figure 10.14.

The shape of the density distribution is related to the variation level. The

sharper the shape the lower the variation is. The density distribution of the

zscore value tends to be a shaper in grade one and three comparing with grades

two samples, which means a low uniform level of zscore value, which further

indicated a low uniform of cells in middle-grade cancer. This result agreed

with the cancer development model we produced in Section 10.7.2. Compared

with grade one and three tissue samples, grade two samples, as they are in

the middle of cancer development, a more robust mixing of cancer/non-cancer

cells is causing the zscore distribution relatively less sharp.

Feeding the density distribution into Gaussian fit to further reduce the dimen-

sion of each sample, the density distribution function of each sample is ob-

tained. Parameter a and µ of each Gaussian fit are chosen as the two variables

representing each sample, the scatter plot of the function parameters is given in

Figure 10.14c. Figure 10.14d is the same scatter plot with only grade two and

three samples. Samples from grade two are divided with grade one and three
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(a) Bin plot.
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(b) Gaussian fitted bin plot.
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(c) Density distribution function para-

meter scatter.
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(d) Density distribution function para-

meter scatter with grade 2 and 3 samples.

Figure 10.14: Zscore analysis results with colour code: blue (grade one), red (grade

two) and green (grade three). (c) and (d) is the scatter plot a and µ with marginal

distribution curves. The marginal distribution curves take samples from the same

grade as a sub-population. The distribution curve reveals the difference of distribution

pattern on each of the dimensions. Samples from grade two are divided with grade

one and three tissue samples.
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tissue samples.

Outliers were identified in the scatter plot. There are many possible reasons for

the outliers: the low data quality (S/N ratio) or the miss-classification by NPI.

Zscore analysis of Amide I peak provides a good example of knowledge-based

approach of discovering new knowledge. The hypothesis, grade two tissue

sample should have more robust tissue components, are made based on the

prior-knowledge, which was evaluated and approved by a specificity designed

algorithm, zscore IR spectroscopy data analysis.

10.8 Other wavenumber range

Increasing body of evidence indicates that lipid accumulation, especially cho-

lesterol and cholestery1 esters are highly associated with aggressive cancer cells

[120, 121].

This chapter, so far, has been focusing on Amide I peak only. There are plenty

of other wavenumber range or peaks that can be further explored.

The table provided below has been used and updated by the author through-

out his PhD studies. It summarised, if not all, the majority of the IR absorbance

fingerprint wavenumber to its biological link, that has been reported in the lit-

erature covered by the author.

Wavenumber Biological link

700 CH lipids [122]

263



CHAPTER 10: DIMENSION REDUCTION

970 PO2−
3 symmetric, phosphate monoester of phosphorylated pro-

teins and cellular nucleic acids [122]

900-1185 carbohydrates

1080 C-O stretch

1084 PO2- symmetric

1085 & 1241 antisymmetric and symmetric phosphodiester vibration of nuc-

leic acids

1155 C-OH groups of serine, threonine, tyrosine in cell proteins [122]

1171 ester C-O antisymmetric stretch

1230 O-P-O antisymmetric stretching motions [120]

1236 antisymmetric vibrations

1238 PO2- antisymmetric phosphodiester group in nucleic acides

and phospholipides [122]

1252 protein

1300-1400 various amino acid side chains and fatty acids [123]

1395 COO- symmetric stretching of amino acids and the symmetric

bending mode of the methyl group (CH3) in proteins.

1350-1490 paraffin [124]

1456 Lipids, due to antisymmetric vibrations of CH3

1516 Tyrosine [114]

1540 & 1650 Amide I (C=O) and amide II (C-N stretch and H-N-C bend)

bands are contributed mainly by protein vibrations [112–116]

1630 β-sheet protein secondary structure [114]
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1650 C=O, Amide I band of tissue and cell proteins [122]

1655 α-helix protein secondary structure [114]

1715 DNA [125–128]

1740 >C=O stretching vibrations of the ester carbonyl functional

groups in lipids [129]

1741 phospholipids

1743 C=O, carbonyl groups of lipids [122]

2800-3010 lipids, due to their CH2 and CH3 symmetric and antisymmetric

vibrations [35, 129, 130]

2872 symmetric CH3 stretching

2920 antisymmetric CH2 stretching

2952 antisymmetric stretching of methyl groups from lipid chains

[120]

2957 antisymmetric CH3 stretching

3280 H-O-H stretching

Table 10.2: Wavenumber & biochemistry
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Validation using an independent

data set

In the previous chapter, we identified the symmetric analysis, and standard

score analysis on Amide I peak may be useful for breast cancer prognosis. Fur-

ther validation, in which the symmetric analysis, zscore analysis, as well as the

pre-processing procedure are evaluated on an independent breast cancer FTIR

spectroscopy data set, is provided in this Chapter to demonstrate prognostic

performance of the methods developed.

11.1 Data description

Tissue microarray [131] (TMA) consist of multiple tissue samples of uniform

dimensions placed on a single substrate. This arrangement facilitates consist-

ent and convenient processing for all samples after the array is constructed. It

is employed not only as high throughput molecular screening tools [132], us-

ing, for example, fluorescence techniques [133], but also to address some of the
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common challenges in the vibrational spectroscopic analyses of tissue [55].

Increasing demand for high throughput chemical imaging has led to a renewed

interest in discrete frequency infrared spectroscopy. Targeting key frequencies

instead of acquiring continuous spectra has the potential to dramatically in-

crease throughput [43, 134, 135]. Arguably the most promising contender to

date is discrete frequency imaging utilising a tunable, high brightness external

cavity infrared quantum cascade laser (QCL) [124]. Exploiting the high bright-

ness of a QCL source [136] enables the optical system to be coupled to an un-

cooled large area microbolometer, thereby allowing large areas of tissue to be

imaged with a single measurement.

Pilling, Henderson and Gardner [124] reported a large study on a breast cancer

tissue microarrays (TMA) comprised of 207 different patients. Utilising Spero

QCL imaging with continuous spectra acquired between 912 and 1800 cm−1,

207 breast cancer cores (15 nonmalignant, 20 grade one, 148 grade two and 7

grade three) FTIR spectroscopy data were collected. The data was made open

access online [137].

The TMA contains 16× 13 breast tissue cores (with 1 mm diameter, 5 µm thick-

ness) from different patients. The cores contained 190 cases of invasive ductal

carcinoma, 1 mixed lobular and duct carcinoma, 1 mucinous carcinoma, 13 ad-

jacent normal tissue, 3 normal tissue, single core per case. Figure 11.1 is the

schematic image explaining the formation of TMA, with each coloured circle

representing one tissue core. On the right hand of the image is the H&E stained

image of core D1 (research identifier: BR20832 D1), with histology/patient in-

formation provided. Information on the pathology classification of each tissue
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microarray core can be found in the reference [137].

Figure 11.1: Schematic image of the BR20832 TMA. Each coloured circle represent

one tissue core. Different colour were used to represent different types of the core,

including: Malignant tumour, Malignant tumour (stage 0), Malignant tumour (stage

I), Malignant tumour (stage IIIa), Malignant tumour (stage IIIb), Malignant tumour

(stage IIa), Malignant tumour (stage IIb), Normal tissue and NAT. On the right hand

of the image is the H&E stained image of core D1 (research identifier: BR20832 D1).

Detailed information about the patient and the histological result of the core is given.

Reproduced from [137].

Infrared chemical images were collected using a QCL infrared microscope (Day-

light Solutions Inc., San Diego, CA, United States). FTIR images were acquired

in transmission mode using the 4 × 0.15 NA low magnification objective with

a resultant field of view of approximately 2.02 × 2.02 mm and a correspond-

ing nominal pixel size of approximately 4.2 µm. Spectra were collected in the

spectral range 912-1800 cm−1, utilising a step size of 4 cm−1 to produce con-

tinuous frequency spectra. Each infrared tile consisted of 230400 spectra, was
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comprised of 223 data points. Infrared spectra for each biopsy core was ex-

tracted from the mosaic as a 313 × 313 × 223 data-cube, consisting of 97969

spectra, each with 223 data points. Details about the sample preparation and

data collection can be found in reference [124].

This FTIR imaging data set was used to evaluate the performance of the breast

cancer FTIR histology method developed. Core row A, B, E and L were se-

lected to include all the grade one and three samples, meanwhile maintain an

objective selected, balanced number of grade two samples.

11.2 Pre-processing

Pilling, Henderson and Gardner [124] tested the quality of the spectra to re-

move data obtained from areas with little or no tissue using the height of the

amide I band with spectra having absorbance between 0.1 and 2 being retained.

Principal component-based noise reduction was used to improve signal-to-noise

with the first 40 PCs being retained. Spectra were truncated between 1000 and

1800 cm−1, and the region describing the absorption bands of wax (1350-1490

cm−1) were removed. Each spectrum was then vector normalised to correct for

different thicknesses of tissue and finally converted to its first derivative while

performing Savitzky-Golay smoothing using a window size of nine data points.

Savitzky-Golay smoothing using a window size of nine data points was applied

on spectra data before further analysis. Spectra truncation is not necessary for

the QLC spectrum, as spectral range 912-1800 cm−1 is fit for data handling, and

the dimension reduction methods developed can identify Amide I peak and
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input that into algorithm automatically. The background cut reported in 9.2.2 is

based on the standard derivation difference of absorbance value between 1800-

3000 cm−1. This wavenumber range is not included when the QLC spectra

were collected. The background cut for QLC data set was conducted based on

the absorbance value of Amide I peak (height of the amide I band) which is the

same method reported in the paper. A background ground cut-off points of 0.1

is used to identify those empty pixels. Same as reported in the paper, spectra

with Amide I peak height exceeds 2 were cut off from the dataset before further

analysis was applied.

Figure 11.2: (a) Brightfield image of H&E stained serial section for core A12 and (b)

pseudo-colour image of the background identification using yellow (tissue structure)

and black (empty background).

Figure 11.2a shows a high-resolution bright-field image of a mixed core (core

A12) consisting primarily of epithelium and stroma. Comparison of the back-

ground identified pseudo-colour image (Figure 11.2b, yellow −→ tissue struc-

ture and black −→ empty background) to the bright-field image of the H&E

stained section illustrates that there is a good agreement on the background
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identification.

11.3 Results

Symmetric analysis and zscore analysis were applied on the QLC data set. The

scatter images of the fitted density distribution function parameters are given

in Figure 11.3. An outlier cut was applied to cut off those core samples with

low representativeness.
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(a) Symmetric analysis validation on QLC

data set.

0 . 3 5 0 . 4 0 0 . 4 5 0 . 5 0 0 . 5 5 0 . 6 0 0 . 6 5
- 0 . 2 5

- 0 . 2 0

- 0 . 1 5

- 0 . 1 0

- 0 . 0 5

0 . 0 0

0 . 0 5

0 . 1 0

0 . 1 5

 G r a d e  1
 G r a d e  2

mu

a
(b) Zscore analysis validation on QLC

data set.

Figure 11.3: Validation of breast cancer prognosis methods on an independent QLC

FTIR spectroscopy data set with colour code: blue (grade one), red (grade two) and

green (grade three). The distribution curve reveals the difference of distribution pat-

tern on each of the dimensions.

The symmetric analysis result shows a clear cluster between grade one and

three samples. Compared with grade one samples (blue dots in Figure 11.3a),

grade three samples (green dots in Figure 11.3a) have low µ value in the fitted
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density distribution function, which means, grade three samples tend to have

lower average symmetric value (definition is given in section 10.6.4) over all

the spectra selected. The result was found to be in good agreement with the

30 tissue sample symmetric analysis results in Figure 10.11 on page 252, which

grade three sample tends to have a lower µ parameter for the fitted density

distribution function. The scatter difference on the a parameter observed in the

30 tissue sample is not observed in the QCM dataset. That might due to the

imaged tissue region is much smaller in the QCM tissue cores.

The zscore analysis result shows a clear cluster between grade one and three

samples. Compared with grade two samples (red dots in Figure 11.3b), grade

one samples (blue dots in Figure 11.3b) have higher a value in the fitted density

distribution function, which means, grade one samples tend to have less robust

zscore value distribution over all the spectra selected. The result was found to

be in good agreement with the 30 tissue sample zscore analysis result in Figure

10.14 on page 262, which grade one sample tends to have a higher a parameter

for the fitted density distribution function.

Both the symmetric analysis and zscore analysis results show a clear cluster of

samples from different histopathology grade. The scatter patterns of both the

symmetric analyses and the zscore analyses fit well with the results observed

in Chapter 10. The multi-stage data analysis algorithm developed can provide

statistical control over the breast cancer classification process and produce a

precise cancer prognosis on tissue sample level. With a simple structure and

clear data handing procedure, those breast cancer algorithms have good gener-

alisations.
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Performance difference can still be observed. In the symmetric analysis result

of the 30 sample dataset, grade three samples tend to have higher a parameter

compared with grade one samples, which means grade three samples tend to

have less variation within the same sample, because the density distributions

of symmetric value have shaper Gaussian shape (higher a). This pattern is not

observed in the QLC dataset results. In Figure 11.3a a clear cluster can be ob-

served on the µ dimension. The a dimension provide limited dividing inform-

ation between grade one and three samples. The distribution curve, blue and

green line on the a dimension reveals that grade three samples, in general, have

lower a value. This might due to the QLC dataset collected significant smal-

ler tissue region for FTIR imaging. Each TMA core has the area of 0.79 mm2,

while each tissue sample in the 30 sample dataset has the area of 7.84 mm2. The

sample size is much larger in the 30 sample dataset.

The confidence of this evaluation is limited by the unbalanced number between

grade one, two and three samples. The TMA contains 20 grade one, 148 grade

two and 7 grade three samples. The representativeness of those 7 grade three

samples is not high, compared with the 148 available grade two samples. Fur-

ther evaluation of the method on a bigger and more balanced dataset is neces-

sary. We are currently working on the access of such dataset.

273



CHAPTER 12

Conclusion

This study seeks to develop object and transparent spectra data analysis tech-

nique to address this identified research gap. A multi-stage data analysis al-

gorithm developed in this work, can provide statistical control over the breast

cancer classification process and produce an accurate cancer prognosis.

In Chapter 9, standard pre-processing methods were discussed and selected

in an objective way. Pre-processing methods that would make the transferred

data lost its physical meanings were discarded. Background and detector edge

pixels were identified and cut off from the data cube. Minimum manipulation

of the original data was maintained throughout this chapter to provide object-

iveness and statistic confidence for future analysis.

In Chapter 10, density distribution function, a statistical approach of abstracting

cancer relevant inter-sample difference, was proposed. PCA, as the most-used

dimension reduction method was tried. Compared with PCA results, sym-

metric analysis and zscore analysis, as a dimension reduction technique, can

provide better performance in terms of separating tissue samples from differ-
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ent grades.

Throughout the breast cancer work in this thesis, NPI grading results were used

as the true value that we were trying to match with, using the FTIR spectro-

scopy results. As introduced in Chapter 8, the NPI grading result is based on a

numerical prognostic index. It categorised the numerical prognosis index into

three different grade (grade one two three), using the cut off value 3.4 and 5.4.

It might be better to match the symmetric analysis or zscore analysis result dir-

ectly with the numerical prognostic index, as a numerical system describing

cancer stage of a patient is preferable than three stages system.

12.1 Where we are heading to

12.1.1 Further improvements of the prognosis system

Nuclei are one of the most important histologic primitives in cancer prognosis.

Cell nuclei feature such as size, texture, shape, and other chemical compon-

ents change along with the development of cancer. Classification and grading

of cancer are highly dependent on the nuclei area. Among the different types

of nuclei, two types are usually the object of particular interest: lymphocyte

and epithelial nuclei. Lymphocyte nuclei (LN) has regular shape and normally

is smaller than epithelial nuclei (EN) (see Figure 9.1a on page 203). Normal

EN has nearly uniform chromatin distribution with smooth boundary (see Fig-

ure 9.1b). In high-grade cancer tissue, EN is larger in size. They may have

heterogeneous chromatin distribution, irregular boundaries and clearly visible

nucleoli compared to normal EN (see Figure 9.1e) [34].
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Identifying high-grade cancer EN is essential for cancer grading. To achieve

this, in the traditional histopathology approach, hematoxylin is used to visual-

ise the nuclei structure. Histopathologists pick out the high-grade cancer EN

with the help of microscopy. The chemical components change in the nuclei

as the development of cancer make it possible to detect high-grade cancer EN

based on FTIR spectroscopy data. Histological identification and segmentation

steps can be added to abstract pixels with high cancer representatives to im-

prove the performance of the prognosis system developed in Chapter 9 and

10.

12.1.2 Personalised medicine

Personalised medicine is one of the strategic research goals of breast cancer re-

search. The current NPI system is dividing breast cancer patients into three

groups: grade one, two and three to describe the medical condition of the pa-

tients. Considering the complexity of cancer and the patients’ individual dif-

ference, it is far away from enough. The robust information of IR spectrum

provides the possibility of tailor treatments of breast cancer according to the

biological characteristics of the cancer tissue and the specific needs of the indi-

vidual.

12.1.3 Academic pathology

Academic pathology can be achieved using FTIR imaging technique. Breast

cancer is not a single disease, but a combination of diseases [36]. Based on the

estrogen receptor, breast cancer can be divided into two types: ER-positive and
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ER-negative. Majority of breast cancer patients have ER-postive cancer. Based

on gene expression studies, breast cancer can be divided into five subtypes: lu-

minal A, luminal B, ERBB2+, normal breast-like and basal-live (triple-negative).

Luminal A and B are derived from ER-positive type while ERBB2+, normal

breast-like and basal-live are derived from ER-negative type [138, 139].

30% cases of breast cancer do not respond well to current treatment methods.

Patients within the treatable group (ER-positive), nearly a quarter of them de-

veloped into an aggressive type as the cancer developments. There is an urgent

need to develop better understanding and treatment to this aggressive type of

breast cancer. The concept that protein is highly related to the aggressive breast

cancer type is demonstrated by increasing number of researches [140, 141] The

unique fingerprint signature of the secondary structure of a protein in IR spec-

trum could provide a reliable way of understanding the cancer development.

12.1.4 Other application

Further application of the spectra analysis method is possible. Infrared and

Raman spectroscopy are complementary techniques, which can provide subtly

different information about a sample [142]. The methods for spectra evaluation

and analysis are similar [143]. The multivariate spectra analysis algorithm de-

veloped in this work can be widely applied to bio-spectroscopy researches.
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Experimental

The methods used to perform the plastic FTIR analysis are outlined. An intro-

duction to the equipment, as well as some key notes of using the equipment are

given.

Agilent 620 microscope & Agilent 660 FTIR spectrometer

FTIR images were collected using an Agilent 620 microscope connected to an

Agilent 660 FTIR spectrometer, seen in Figure 12.1.

Cary 620 is a Focal Plane Array (FPA) chemical imaging FTIR microscope. It

provides micron level spatially resolved, full FTIR spectra across a 2-D Field

Of View (FOV), thus allowing high-definition chemical images to be created,

for easy and detailed molecular chemical distribution visualisation. In high

magnification mode, can measure with a 1.1 micron pixel size [144].

The Cary 660 FTIR is only available in conjunction with the Cary 610 or Cary

620 FTIR Microscope systems. This bench-top FTIR system comes with innov-

ation optics design to improve the performance of spectrometers [145]. High

spectral resolution, fast kinetics speeds and high signal-to-noise (S/N) perform-

ance can be achieved [146].
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EXPERIMENTAL

A self-developed, step by step user instruction of the machine is attached in the

Appendix.

Figure 12.1: Agilent 620 microscope connected to an Agilent 660 FTIR spectrometer,

with all the key component labelled. Detailed instruction of using ’focus adjuster’ and

’rotary knob for FPA adjustment’ are given in Appendix 1.

FTIR imaging in the region of interest can be performed using a mounted li-

quid nitrogen cooled 32 x 32 focal plane array (FPA) detector. Transmission in

’High magnification’ mode can give pixel sizes of 1.1 µm2, which together with

the FPA detector providing a field of view of approximately 35 µm × 35 µm.

Different combination of FPA mapping can be applied.

Using the 32× 32 focal plane array detector, a long measurement time is needed.

For a four by four image (128 × 128 pixels), using the setting of 1.1 µm2 pixels
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size, 2 cm−1 spectral resolution, 16 sample scan, it takes up to 90 minutes to

measure the 128 × 128 spectra.

Presser

For thermoplastics, hot compression moulding is a very convenient and effect-

ive means of preparing a free-standing film appropriate to an infrared trans-

mission examination [147].

The IR absorption intensity is directly proportional to the sample thickness.

Over thickness can cause baseline problems in FTIR spectra. For FTIR ima-

ging analysis, the plastic composites need to be pressed into a thin film. Plastic

samples obtained for FTIR study are plastic pellets, which are the result of a

corotating twin-screw extruder. This section provides a detailed discussion of

the pressing procedure, as well as the equipment used.

The presser (Figure 12.3) used can provide up to 250 oC, 130 kg to the sample.

Using the Atlas Constant Thickness and High Temp. Film Maker (Figure 12.2),

P/N GS15640, the best PP sample thickness achieved is 24-25 µm.

A standard film making procedure is given:

1. Press the pellet into a flat plate using a hand presser;

2. Cut the flat circle into 2×2 mm2 square size to maintain a reasonable

amount of plastic sample is used for film making;

3. The sample is put into the middle of the bottom foils before the top foils

and upper assembly are added on top;
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Figure 12.2: Specac P/N GS15640 High Temp. Film Maker, with all the key component

labelled.

4. Place the whole assembly between the preheated platen surfaces for 10

minutes to melt the sample within the film maker accessory prior to com-

pression via the press;

5. Press using three-stage auto-pressing setting;

6. Cool the whole assemble in the cooling box before the sample can be care-

fully peeled from the foils;

The detailed step by step instruction of the film making procedure is given in

the Appendix.

Putting aluminium foil can improve the performance of the film making. Table

12.1 is the performance of the film making process with different parameter

setting of the presser. Five points were selected to measure the result film’s

thickness. The range given in the thickness column indicates the lowest and

the highest value of those measurements.

To maintain minimum influence, we aim to find the pressing setting that has
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Figure 12.3: ZHENGGONG Equipment, ZG-100T presser, with all the key component

labelled.

the lowest temperature, shortest pressing times that give the best thin, even

film. The selected parameter combination is given in Table 12.1, experiment 3.

In the Table, experiment 1 produce an uneven film sample. Shorting the press-

ing time in step one (T1) and increasing the pre-heat time (experiment 2), the

evenness of the sample is improved. Further extending the preheating and step

one pressing time can produce a thinner film (experiment 3). Experiment 4-6 is

the repeat of the best performance setting to check the repeatability. The results

indicate that using the film making procedure, even thin plastic films can be

produced.
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NO. Sample
Presser configureation Thickness

(µm)Temper

ature (oC)
Pre-heat P1 T1 P2 T2 P3 T3

1 PP 220 120 15 600 30 120 40 120 15-37

2 PP 220 300 15 120 30 120 40 120 27-32

3 PP 220 600 15 300 30 120 40 120 24-25

4 PP 220 600 15 300 30 120 40 120 23-26

5 PP 220 600 15 300 30 120 40 120 24-27

6 PP 220 600 15 300 30 120 40 120 22-25

Table 12.1: Presser configuration. The temperature parameter is the temperature of

the upper and lower pressing surface (ZG-100T presser). A period of re-heating is

allowed to heat the pressing film maker assembly. The automatic mode of the presser

is a three-stage pressing process. P1, T1, P2, T2, P3 and T3 are the pressure and time

setting for each of the three steps. P1, P2 and P3 are in the unit of ’kg’, while T1, T2

and T3 are using the unit of ’second’.

The fracture surfaces of the result PP film were scanned using a Zeiss Sigma

scanning electron microscope (SEM) at an acceleration voltage of 20.00 kV. Be-

fore SEM analysis, the surfaces were coated with a thin layer of gold. The SEM

image (Figure 12.4) shows the surface of the VPP film is smooth and flat.

One thing worth noting is the component percentage changing of the material

will lead to the changing of mechanical properties, which will further lead to

the different pressing requirements. For instance, pure VPP sample requires

using 220 oC, 40 kg pressing to get a 24-27 µm thickness film. Using the same

setting, 70% VPP and 30% talc plastic sample gave the thickness 38-40 µm. The
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Figure 12.4: SEM image of the VPP film surface.

pressing parameters in Table 12.1 is for pure VPP sample only. The process of

parameter configuration is needed for each new plastic sample.
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Appendix 1

Self-developed, step by step user instruction for Agilent 620 microscope con-

nected to an Agilent 660 FTIR spectrometer:

– Add liquid nitrogen to the machine to make the detector temperature 78-

79 K

– Create a new folder name as ’vpp-battery-scan16-Resolution4-1.1um’, the

name should not include any ’.’ in it

– Focus

• Choose the colour button to start the process, a new dialogue windows

will show up;

• Set the parameters: scan number, spatial resolution, spectral resolution,

WN range etc.

• Choose ’Visible image’ in the software;

• Change the mode to reflection;

• Change the focus adjuster to get a clear image of sample surface;
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– Live FPA

• Change the mode back to trans;

• Remove the sample;

• Choose ’Live FPA’ in the software;

• Click ’raw data’ button;

• Change the rotary knob on the machine (underneath of the objective

table) and the value setting bar to get a flat and intense line around

70%;

• Calibrate;

• Click ’OK’ button in the software;

– Background scan

• Click the colour button again;

• Click ’background scan’ in the software;

• Set the path for saving the file;

• Save the background file as ’background’;

•Wait until the scan finished, the background abs value should be around

0.1;

– Sample scan

• Click ’Visible Image’ in the dialogue windows;

• Enable→ Set Conner 1→ Set Conner 2→ Capture;

• Click ’Captured image’, select the image area n × n;
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• Click ’scan’,

•Wait until the scan finished;

– Save the data in spc file

• Export→ export spc file

– Save the spc file into csv file

• Open ’spc.spc’ file saved;

• Select all the spectrum and save as ’spc.csv’;

Appendix 2

Self-developed, step by step instruction for making thin plastic sample film:

– Press the pellet into flat circle using a hand presser;

• Flat circle could increase the contacting surface meanwhile reduce the

time that needed to pre-heat the plastic.

– Cut the flat circle into 2 × 2 mm2 square size;

• This is about the right among of plastic we need.

– Cut four circle aluminium foil in the diameter of 30 mm;

• The aluminium foil comes with the pressing ring is a bit too big. It dif-

ficult to avoid the aluminium film that size to stuck in between the ring

and the upper lid. We reduce the diameter to 30 mm. It is possible to

re-use the aluminium foils. However, drapes on the foil surface could

cause drape on the plastic film surface. We recommend using four new
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aluminium foils for each pressing, as new foil has better surface.

– Make the ’sandwich’;

• Two layers of aluminium foil under, two layers of aluminium upper

with the square plastic in between.

– Pre-heat;

• Set the temperature of the pressing machine to 220 oC. Wait until the

pressing surface reach that temperature. Put the pressing kit (with the

’sandwich in the kit’) on the heated surface for 10 minutes.

– Auto-press;

• Set the parameters as following image (Figure 12.5) and start auto-

pressing.

• Tips1: With the pressing kit in the machine, the door cannot be closed.

The machine cannot start auto-press when the door is opened. Putting

a metal bit (clamp) on the detector located on the bottom right conner

of the door frame can solve this problem.

• Tips 2: Due to the pressure detector’s sensitivity, before the pressing

surface contacting each other, sometimes, the ’Current pressure’ is hav-

ing a value more than 10. With the ’Current pressure’ value higher than

10, the auto-pressing couldn’t be initialized. Manually rising or lower-

ing the pressing surface can correct that value.

– Cooling;

• Normally a 5 minutes cooling in the cooling box is enough.
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  1 function [x,fval,exitflag,output] = fminsearch_cg(funfcn,x,options,varargin)
  2 %FMINSEARCH Multidimensional unconstrained nonlinear minimization (Nelder-Mead).
  3 %   X = FMINSEARCH(FUN,X0) starts at X0 and attempts to find a local minimizer 
  4 %   X of the function FUN.  FUN is a function handle.  FUN accepts input X and 
  5 %   returns a scalar function value F evaluated at X. X0 can be a scalar, vector 
  6 %   or matrix.
  7 %
  8 %   X = FMINSEARCH(FUN,X0,OPTIONS)  minimizes with the default optimization
  9 %   parameters replaced by values in the structure OPTIONS, created
 10 %   with the OPTIMSET function.  See OPTIMSET for details.  FMINSEARCH uses
 11 %   these options: Display, TolX, TolFun, MaxFunEvals, MaxIter, FunValCheck,
 12 %   PlotFcns, and OutputFcn.
 13 %
 14 %   X = FMINSEARCH(PROBLEM) finds the minimum for PROBLEM. PROBLEM is a
 15 %   structure with the function FUN in PROBLEM.objective, the start point
 16 %   in PROBLEM.x0, the options structure in PROBLEM.options, and solver
 17 %   name 'fminsearch' in PROBLEM.solver. 
 18 %
 19 %   [X,FVAL]= FMINSEARCH(...) returns the value of the objective function,
 20 %   described in FUN, at X.
 21 %
 22 %   [X,FVAL,EXITFLAG] = FMINSEARCH(...) returns an EXITFLAG that describes
 23 %   the exit condition. Possible values of EXITFLAG and the corresponding
 24 %   exit conditions are
 25 %
 26 %    1  Maximum coordinate difference between current best point and other
 27 %       points in simplex is less than or equal to TolX, and corresponding 
 28 %       difference in function values is less than or equal to TolFun.
 29 %    0  Maximum number of function evaluations or iterations reached.
 30 %   -1  Algorithm terminated by the output function.
 31 %
 32 %   [X,FVAL,EXITFLAG,OUTPUT] = FMINSEARCH(...) returns a structure
 33 %   OUTPUT with the number of iterations taken in OUTPUT.iterations, the
 34 %   number of function evaluations in OUTPUT.funcCount, the algorithm name 
 35 %   in OUTPUT.algorithm, and the exit message in OUTPUT.message.
 36 %
 37 %   Examples
 38 %     FUN can be specified using @:
 39 %        X = fminsearch(@sin,3)
 40 %     finds a minimum of the SIN function near 3.
 41 %     In this case, SIN is a function that returns a scalar function value
 42 %     SIN evaluated at X.
 43 %
 44 %     FUN can be an anonymous function:
 45 %        X = fminsearch(@(x) norm(x),[1;2;3])
 46 %     returns a point near the minimizer [0;0;0].
 47 %
 48 %     FUN can be a parameterized function. Use an anonymous function to
 49 %     capture the problem-dependent parameters:
 50 %        f = @(x,c) x(1).^2+c.*x(2).^2;  % The parameterized function.
 51 %        c = 1.5;                        % The parameter.
 52 %        X = fminsearch(@(x) f(x,c),[0.3;1])
 53 %        
 54 %   FMINSEARCH uses the Nelder-Mead simplex (direct search) method.
 55 %
 56 %   See also OPTIMSET, FMINBND, FUNCTION_HANDLE.
 57 
 58 %   Reference: Jeffrey C. Lagarias, James A. Reeds, Margaret H. Wright,
 59 %   Paul E. Wright, "Convergence Properties of the Nelder-Mead Simplex
 60 %   Method in Low Dimensions", SIAM Journal of Optimization, 9(1):

APPENDIX

309



 61 %   p.112-147, 1998.
 62 
 63 %   Copyright 1984-2017 The MathWorks, Inc.
 64 
 65 % The following lines were changed by JK on 10/10/2018
 66 % Get parameters of boundary conditions and more optimisation options
 67 FminParams = varargin{1};
 68 ExtraOptions = FminParams.ExtraOptions;
 69 TolXI = ExtraOptions.TolXI;
 70 cov = ExtraOptions.TolCOV;
 71 params = FminParams;
 72 % End of modifications
 73 
 74 defaultopt = struct('Display','notify','MaxIter','200*numberOfVariables',...
 75     'MaxFunEvals','200*numberOfVariables','TolX',1e-4,'TolFun',1e-4, ...
 76     'FunValCheck','off','OutputFcn',[],'PlotFcns',[]);
 77 
 78 % If just 'defaults' passed in, return the default options in X
 79 if nargin==1 && nargout <= 1 && strcmpi(funfcn,'defaults')
 80     x = defaultopt;
 81     return
 82 end
 83 
 84 if nargin<3, options = []; end
 85 
 86 % Detect problem structure input
 87 if nargin == 1
 88     if isa(funfcn,'struct') 
 89         [funfcn,x,options] = separateOptimStruct(funfcn);
 90     else % Single input and non-structure
 91         error('MATLAB:fminsearch:InputArg',...
 92             getString(message('MATLAB:optimfun:fminsearch:InputArg')));
 93     end
 94 end
 95 
 96 if nargin == 0
 97     error('MATLAB:fminsearch:NotEnoughInputs',...
 98         getString(message('MATLAB:optimfun:fminsearch:NotEnoughInputs')));
 99 end
100 
101 
102 % Check for non-double inputs
103 if ~isa(x,'double')
104   error('MATLAB:fminsearch:NonDoubleInput',...
105     getString(message('MATLAB:optimfun:fminsearch:NonDoubleInput')));
106 end
107 
108 n = numel(x);
109 numberOfVariables = n;
110 
111 % Check that options is a struct
112 if ~isempty(options) && ~isa(options,'struct')
113     error('MATLAB:fminsearch:ArgNotStruct',...
114         getString(message('MATLAB:optimfun:commonMessages:ArgNotStruct', 3)));
115 end
116 
117 printtype = optimget(options,'Display',defaultopt,'fast');
118 tolx = optimget(options,'TolX',defaultopt,'fast');
119 tolf = optimget(options,'TolFun',defaultopt,'fast');
120 maxfun = optimget(options,'MaxFunEvals',defaultopt,'fast');
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121 maxiter = optimget(options,'MaxIter',defaultopt,'fast');
122 funValCheck = strcmp(optimget(options,'FunValCheck',defaultopt,'fast'),'on');
123 
124 % In case the defaults were gathered from calling: optimset('fminsearch'):
125 if ischar(maxfun) || isstring(maxfun)
126     if strcmpi(maxfun,'200*numberofvariables')
127         maxfun = 200*numberOfVariables;
128     else
129         error('MATLAB:fminsearch:OptMaxFunEvalsNotInteger',...
130             getString(message('MATLAB:optimfun:fminsearch:
OptMaxFunEvalsNotInteger')));
131     end
132 end
133 if ischar(maxiter) || isstring(maxiter)
134     if strcmpi(maxiter,'200*numberofvariables')
135         maxiter = 200*numberOfVariables;
136     else
137         error('MATLAB:fminsearch:OptMaxIterNotInteger',...
138             getString(message('MATLAB:optimfun:fminsearch:
OptMaxIterNotInteger')));
139     end
140 end
141 
142 switch printtype
143     case {'notify','notify-detailed'}
144         prnt = 1;
145     case {'none','off'}
146         prnt = 0;
147     case {'iter','iter-detailed'}
148         prnt = 3;
149     case {'final','final-detailed'}
150         prnt = 2;
151     case 'simplex'
152         prnt = 4;
153     otherwise
154         prnt = 1;
155 end
156 % Handle the output
157 outputfcn = optimget(options,'OutputFcn',defaultopt,'fast');
158 if isempty(outputfcn)
159     haveoutputfcn = false;
160 else
161     haveoutputfcn = true;
162     xOutputfcn = x; % Last x passed to outputfcn; has the input x's shape
163     % Parse OutputFcn which is needed to support cell array syntax for OutputFcn.
164     outputfcn = createCellArrayOfFunctions(outputfcn,'OutputFcn');
165 end
166 
167 % Handle the plot
168 plotfcns = optimget(options,'PlotFcns',defaultopt,'fast');
169 if isempty(plotfcns)
170     haveplotfcn = false;
171 else
172     haveplotfcn = true;
173     xOutputfcn = x; % Last x passed to plotfcns; has the input x's shape
174     % Parse PlotFcns which is needed to support cell array syntax for PlotFcns.
175     plotfcns = createCellArrayOfFunctions(plotfcns,'PlotFcns');
176 end
177 
178 header = ' Iteration   Func-count     min f(x)         Procedure';
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179 
180 % Convert to function handle as needed.
181 funfcn = fcnchk(funfcn,length(varargin));
182 % Add a wrapper function to check for Inf/NaN/complex values
183 if funValCheck
184     % Add a wrapper function, CHECKFUN, to check for NaN/complex values without
185     % having to change the calls that look like this:
186     % f = funfcn(x,varargin{:});
187     % x is the first argument to CHECKFUN, then the user's function,
188     % then the elements of varargin. To accomplish this we need to add the 
189     % user's function to the beginning of varargin, and change funfcn to be
190     % CHECKFUN.
191     varargin = [{funfcn}, varargin];
192     funfcn = @checkfun;
193 end
194 
195 n = numel(x);
196 
197 % Initialize parameters
198 rho = 1; chi = 2; psi = 0.5; sigma = 0.5;
199 onesn = ones(1,n);
200 two2np1 = 2:n+1;
201 one2n = 1:n;
202 
203 % Set up a simplex near the initial guess.
204 xin = x(:); % Force xin to be a column vector
205 v = zeros(n,n+1); fv = zeros(1,n+1);
206 v(:,1) = xin;    % Place input guess in the simplex! (credit L.Pfeffer at 
Stanford)
207 x(:) = xin;    % Change x to the form expected by funfcn
208 fv(:,1) = funfcn(x,varargin{:});
209 func_evals = 1;
210 itercount = 0;
211 how = '';
212 % Initial simplex setup continues later
213 
214 % Initialize the output and plot functions.
215 if haveoutputfcn || haveplotfcn
216     [xOutputfcn, optimValues, stop] = callOutputAndPlotFcns(outputfcn,plotfcns,v
(:,1),xOutputfcn,'init',itercount, ...
217         func_evals, how, fv(:,1),varargin{:});
218     if stop
219         [x,fval,exitflag,output] = cleanUpInterrupt(xOutputfcn,optimValues);
220         if  prnt > 0
221             disp(output.message)
222         end
223         return;
224     end
225 end
226 v0 = zeros(n,n+1);
227 v0(:,1)=xtransform(v(:,1),params);
228 % Print out initial f(x) as 0th iteration
229 if prnt == 3
230     disp(' ')
231     disp(header)
232     fprintf(' %5.0f        %5.0f     %12.6g         %s\n', itercount, func_evals, 
fv(1), how);
233 elseif prnt == 4
234     formatsave.format = get(0,'format');
235     formatsave.formatspacing = get(0,'formatspacing');
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236     % reset format when done
237     oc1 = onCleanup(@()set(0,'format',formatsave.format));
238     oc2 = onCleanup(@()set(0,'formatspacing',formatsave.formatspacing));
239     format compact
240     format short e
241     disp(' ')
242     disp(how)
243     disp('v = ')
244     disp(v0)
245     disp('fv = ')
246     disp(fv)
247     disp('func_evals = ')
248     disp(func_evals)
249     disp('***************************************************')
250     
251     fileID=fopen('simplex.txt','w');
252     fprintf(fileID,'%6s\r\n','v = ');
253     for ii=1:size(v0,1)
254         fprintf(fileID,'%6g\t',v0(ii,:));
255         fprintf(fileID,'\r\n');
256     end
257       fprintf(fileID,'\r\n');
258     fprintf(fileID,'%6s\r\n','fv = ');
259     for ii=1:size(fv,1)
260         fprintf(fileID,'%6g\t',fv(ii,:));
261         fprintf(fileID,'\r\n');
262     end
263       fprintf(fileID,'\r\n');
264     fprintf(fileID,'%6s\r\n','func_evals = ');
265     fprintf(fileID,'%6g\t',func_evals);
266     fprintf(fileID,'\r\n');
267     fprintf(fileID,'%
6s\r\n','***************************************************');
268 end
269 % OutputFcn and PlotFcns call
270 if haveoutputfcn || haveplotfcn
271     [xOutputfcn, optimValues, stop] = callOutputAndPlotFcns(outputfcn,plotfcns,v
(:,1),xOutputfcn,'iter',itercount, ...
272         func_evals, how, fv(:,1),varargin{:});
273     if stop  % Stop per user request.
274         [x,fval,exitflag,output] = cleanUpInterrupt(xOutputfcn,optimValues);
275         if  prnt > 0
276             disp(output.message)
277         end
278         return;
279     end
280 end
281 
282 % Continue setting up the initial simplex.
283 % Following improvement suggested by L.Pfeffer at Stanford
284 usual_delta = 0.05;             % 5 percent deltas for non-zero terms
285 zero_term_delta = 0.00025;      % Even smaller delta for zero elements of x
286 for j = 1:n
287     y = xin;
288     if y(j) ~= 0
289         y(j) = (1 + usual_delta)*y(j);
290     else
291         y(j) = zero_term_delta;
292     end
293     v(:,j+1) = y;
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294     x(:) = y; f = funfcn(x,varargin{:});
295     fv(1,j+1) = f;
296 end
297 
298 % sort so v(1,:) has the lowest function value
299 [fv,j] = sort(fv);
300 v = v(:,j);
301 % transfer the v back to v0 for stopping criterion
302 v0 = zeros(n,n+1);
303 for j=1:n+1
304     v0(:,j)=xtransform(v(:,j),params);
305 end
306 how = 'initial simplex';
307 itercount = itercount + 1;
308 func_evals = n+1;
309 if prnt == 3
310     fprintf(' %5.0f        %5.0f     %12.6g         %s\n', itercount, func_evals, 
fv(1), how)
311 elseif prnt == 4
312     disp(' ')
313     disp(how)
314     disp('v = ')
315     disp(v0)
316     disp('fv = ')
317     disp(fv)
318     disp('func_evals = ')
319     disp(func_evals)
320     disp('TolXI = ')
321     disp(max(abs(v0(:,two2np1)-v0(:,onesn)),[],2))
322     disp('COV = ')
323     disp(std(fv)/mean(fv))
324     disp('***************************************************')
325     
326     fprintf(fileID,'%6s\r\n','v = ');
327     for ii=1:size(v0,1)
328         fprintf(fileID,'%6.5g\t',v0(ii,:));
329         fprintf(fileID,'\r\n');
330     end
331       fprintf(fileID,'\r\n');
332     fprintf(fileID,'%6s\r\n','fv = ');
333     for ii=1:size(fv,1)
334         fprintf(fileID,'%6.5g\t',fv(ii,:));
335         fprintf(fileID,'\r\n');
336     end
337       fprintf(fileID,'\r\n');
338     fprintf(fileID,'%6s\r\n','func_evals = ');
339     fprintf(fileID,'%6g\t',func_evals);
340     fprintf(fileID,'\r\n');
341       fprintf(fileID,'\r\n');
342     fprintf(fileID,'%6s\r\n','TolXI = ');
343     tolxi_for_print=max(abs(v0(:,two2np1)-v0(:,onesn)),[],2);
344      for ii=1:size(tolxi_for_print,1)
345         fprintf(fileID,'%6.5g\t',tolxi_for_print(ii,:));
346         fprintf(fileID,'\r\n');
347      end
348     fprintf(fileID,'\r\n');
349     fprintf(fileID,'%6s\r\n','COV = ');
350     fprintf(fileID,'%6.5g\t',std(fv)/mean(fv));
351     fprintf(fileID,'\r\n');
352     fprintf(fileID,'%
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6s\r\n','***************************************************');
353     
354 end
355 % OutputFcn and PlotFcns call
356 if haveoutputfcn || haveplotfcn
357     [xOutputfcn, optimValues, stop] = callOutputAndPlotFcns(outputfcn,plotfcns,v
(:,1),xOutputfcn,'iter',itercount, ...
358         func_evals, how, fv(:,1),varargin{:});
359     if stop  % Stop per user request.
360         [x,fval,exitflag,output] = cleanUpInterrupt(xOutputfcn,optimValues);
361         if  prnt > 0
362             disp(output.message)
363         end
364         return;
365     end
366 end
367 exitflag = 1;
368 
369 % Main algorithm: iterate until 
370 % (a) the maximum coordinate difference between the current best point and the 
371 % other points in the simplex is less than or equal to TolX. Specifically,
372 % until max(||v2-v1||,||v3-v1||,...,||v(n+1)-v1||) <= TolX,
373 % where ||.|| is the infinity-norm, and v1 holds the 
374 % vertex with the current lowest value; AND
375 % (b) the corresponding difference in function values is less than or equal
376 % to TolFun. (Cannot use OR instead of AND.)
377 % The iteration stops if the maximum number of iterations or function evaluations 
378 % are exceeded
379 while func_evals < maxfun && itercount < maxiter
380     
381     COV=std(fv)/mean(fv);  %calculate the COV
382     
383     simplex_size=max(abs(v0(:,two2np1)-v0(:,onesn)),[],2)-TolXI';  %distance 
between the worst/next-to-worse point distance and best point, compare that with TolXI
384     
385     if COV<cov
386         exitflag_reason=0;
387         break
388     
389     elseif isempty(find(simplex_size>0))  %exit if the simplex size in all 
dimension are samller than tolxi
390             exitflag_reason=1;
391         break
392     end
393     
394     % Compute the reflection point
395     
396     % xbar = average of the n (NOT n+1) best points
397     xbar = sum(v(:,one2n), 2)/n;
398     xr = (1 + rho)*xbar - rho*v(:,end);
399     x(:) = xr; fxr = funfcn(x,varargin{:});
400     func_evals = func_evals+1;
401     
402     if fxr < fv(:,1)
403         % Calculate the expansion point
404         xe = (1 + rho*chi)*xbar - rho*chi*v(:,end);
405         x(:) = xe; fxe = funfcn(x,varargin{:});
406         func_evals = func_evals+1;
407         if fxe < fxr
408             v(:,end) = xe;
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409             fv(:,end) = fxe;
410             how = 'expand';
411         else
412             v(:,end) = xr;
413             fv(:,end) = fxr;
414             how = 'reflect';
415         end
416     else % fv(:,1) <= fxr
417         if fxr < fv(:,n)
418             v(:,end) = xr;
419             fv(:,end) = fxr;
420             how = 'reflect';
421         else % fxr >= fv(:,n)
422             % Perform contraction
423             if fxr < fv(:,end)
424                 % Perform an outside contraction
425                 xc = (1 + psi*rho)*xbar - psi*rho*v(:,end);
426                 x(:) = xc; fxc = funfcn(x,varargin{:});
427                 func_evals = func_evals+1;
428                 
429                 if fxc <= fxr
430                     v(:,end) = xc;
431                     fv(:,end) = fxc;
432                     how = 'contract outside';
433                 else
434                     % perform a shrink
435                     how = 'shrink';
436                 end
437             else
438                 % Perform an inside contraction
439                 xcc = (1-psi)*xbar + psi*v(:,end);
440                 x(:) = xcc; fxcc = funfcn(x,varargin{:});
441                 func_evals = func_evals+1;
442                 
443                 if fxcc < fv(:,end)
444                     v(:,end) = xcc;
445                     fv(:,end) = fxcc;
446                     how = 'contract inside';
447                 else
448                     % perform a shrink
449                     how = 'shrink';
450                 end
451             end
452             if strcmp(how,'shrink')
453                 for j=two2np1
454                     v(:,j)=v(:,1)+sigma*(v(:,j) - v(:,1));
455                     x(:) = v(:,j); fv(:,j) = funfcn(x,varargin{:});
456                 end
457                 func_evals = func_evals + n;
458             end
459         end
460     end
461     % transfer the v back to v0 for stopping criterion
462     v0 = zeros(n,n+1);
463     for j=1:n+1
464         v0(:,j)=xtransform(v(:,j),params);   
465     end
466 %     v0=
467 %     plot3([v0(1,1),v0(1,2)],[v0(2,1),v0(2,2)],[fv(1),fv(2)],'k','linewidth',1.5)
468 %     hold on

APPENDIX

316



469 %     pause (1)
470 %     plot3([v0(1,2),v0(1,3)],[v0(2,2),v0(2,3)],[fv(2),fv(3)],'k','linewidth',1.5)
471 %     hold on
472 %     pause (1)
473 %     plot3([v0(1,1),v0(1,3)],[v0(2,1),v0(2,3)],[fv(1),fv(3)],'k','linewidth',1.5)
474 %     pause (1) 
475     [fv,j] = sort(fv);
476     v = v(:,j);
477     v0 = v0(:,j);
478     itercount = itercount + 1;
479     if prnt == 3
480         fprintf(' %5.0f        %5.0f     %12.6g         %s\n', itercount, 
func_evals, fv(1), how)
481     elseif prnt == 4
482         disp(' ')
483         disp(how)
484         disp('v = ')
485         disp(v0)
486         disp('fv = ')
487         disp(fv)
488         disp('func_evals = ')
489         disp(func_evals)
490         disp('TolXI = ')
491         disp(max(abs(v0(:,two2np1)-v0(:,onesn)),[],2))
492         disp('COV = ')
493         disp(std(fv)/mean(fv))
494         disp('***************************************************')
495            
496     fprintf(fileID,'%6s\r\n','v = ');
497     for ii=1:size(v0,1)
498         fprintf(fileID,'%6.5g\t',v0(ii,:));
499         fprintf(fileID,'\r\n');
500     end
501     fprintf(fileID,'\r\n');
502     fprintf(fileID,'%6s\r\n','fv = ');
503     for ii=1:size(fv,1)
504         fprintf(fileID,'%6.5g\t',fv(ii,:));
505         fprintf(fileID,'\r\n');
506     end
507     fprintf(fileID,'\r\n');
508     fprintf(fileID,'%6s\r\n','func_evals = ');
509     fprintf(fileID,'%6g\t',func_evals);
510     fprintf(fileID,'\r\n');
511       fprintf(fileID,'\r\n');
512     fprintf(fileID,'%6s\r\n','TolXI = ');
513     tolxi_for_print=max(abs(v0(:,two2np1)-v0(:,onesn)),[],2);
514      for ii=1:size(tolxi_for_print,1)
515         fprintf(fileID,'%6.5g\t',tolxi_for_print(ii,:));
516         fprintf(fileID,'\r\n');
517      end
518     fprintf(fileID,'\r\n');
519     fprintf(fileID,'%6s\r\n','COV = ');
520     fprintf(fileID,'%6.5g\t',std(fv)/mean(fv));
521     fprintf(fileID,'\r\n');
522     fprintf(fileID,'%
6s\r\n','***************************************************');
523  
524     end
525     % OutputFcn and PlotFcns call
526     if haveoutputfcn || haveplotfcn
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527         [xOutputfcn, optimValues, stop] = callOutputAndPlotFcns(outputfcn,
plotfcns,v(:,1),xOutputfcn,'iter',itercount, ...
528             func_evals, how, fv(:,1),varargin{:});
529         if stop  % Stop per user request.
530             [x,fval,exitflag,output] = cleanUpInterrupt(xOutputfcn,optimValues);
531             if  prnt > 0
532                 disp(output.message)
533             end
534             return;
535         end
536     end
537 end   % while
538 
539 x(:) = v(:,1);
540 fval = fv(:,1);
541 
542 output.iterations = itercount;
543 output.funcCount = func_evals;
544 output.algorithm = sprintf(['Nelder-Mead simplex direct search [MSimplex3\n',...
545     'InitFirstSimplexMethod = %d\nProcBoundaryMethod = %d\n',...
546     'ProcOutOfRangeMethod = %d\nExitCriteriaMethod = %d\n'],...
547     ExtraOptions.InitFirstSimplexMethod,ExtraOptions.ProcBoundaryMethod,...
548     ExtraOptions.ProcOutOfRangeMethod,ExtraOptions.ExitCriteriaMethod);
549 
550 % OutputFcn and PlotFcns call
551 if haveoutputfcn || haveplotfcn
552     callOutputAndPlotFcns(outputfcn,plotfcns,x,xOutputfcn,'done',itercount, 
func_evals, how, fval, varargin{:});
553 end
554 
555 if func_evals >= maxfun
556     msg = getString(message('MATLAB:optimfun:fminsearch:ExitingMaxFunctionEvals', 
sprintf('%f',fval)));
557     if prnt > 0
558         disp(' ')
559         disp(msg)
560     end
561     exitflag = 0;
562 elseif itercount >= maxiter
563     msg = getString(message('MATLAB:optimfun:fminsearch:ExitingMaxIterations', 
sprintf('%f',fval)));
564     if prnt > 0
565         disp(' ')
566         disp(msg)
567     end
568     exitflag = 0;
569 else
570     if exitflag_reason==1
571         msg = ...
572             ['Optimization terminated: the current x satisfies the termination 
criteria using OPTIONS.TolXI'];
573         if prnt > 1
574             disp(' ')
575             disp(msg)
576         end
577         exitflag = 1;
578     else
579         msg = ...
580             ['Optimization terminated: the current x satisfies the termination 
criteria using OPTIONS.COV of ', sprintf('%e',cov)];
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581         if prnt > 1
582             disp(' ')
583             disp(msg)
584         end
585         exitflag = 1;
586     end
587 end
588 
589 output.message = msg;
590 
591 %--------------------------------------------------------------------------
592 function [xOutputfcn, optimValues, stop] = callOutputAndPlotFcns(outputfcn,
plotfcns,x,xOutputfcn,state,iter,...
593     numf,how,f,varargin)
594 % CALLOUTPUTANDPLOTFCNS assigns values to the struct OptimValues and then calls 
the
595 % outputfcn/plotfcns.
596 %
597 % state - can have the values 'init','iter', or 'done'.
598 
599 % For the 'done' state we do not check the value of 'stop' because the
600 % optimization is already done.
601 optimValues.iteration = iter;
602 optimValues.funccount = numf;
603 optimValues.fval = f;
604 optimValues.procedure = how;
605 
606 xOutputfcn(:) = x;  % Set x to have user expected size
607 stop = false;
608 state = char(state);
609 % Call output functions
610 if ~isempty(outputfcn)
611     switch state
612         case {'iter','init'}
613             stop = callAllOptimOutputFcns(outputfcn,xOutputfcn,optimValues,state,
varargin{:}) || stop;
614         case 'done'
615             callAllOptimOutputFcns(outputfcn,xOutputfcn,optimValues,state,varargin
{:});
616         otherwise
617             error('MATLAB:fminsearch:InvalidState',...
618                 getString(message('MATLAB:optimfun:fminsearch:InvalidState')));
619     end
620 end
621 % Call plot functions
622 if ~isempty(plotfcns)
623     switch state
624         case {'iter','init'}
625             stop = callAllOptimPlotFcns(plotfcns,xOutputfcn,optimValues,state,
varargin{:}) || stop;
626         case 'done'
627             callAllOptimPlotFcns(plotfcns,xOutputfcn,optimValues,state,varargin
{:});
628         otherwise
629             error('MATLAB:fminsearch:InvalidState',...
630                 getString(message('MATLAB:optimfun:fminsearch:InvalidState')));
631     end
632 end
633 
634 %--------------------------------------------------------------------------
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635 function [x,FVAL,EXITFLAG,OUTPUT] = cleanUpInterrupt(xOutputfcn,optimValues)
636 % CLEANUPINTERRUPT updates or sets all the output arguments of FMINBND when the 
optimization
637 % is interrupted.
638 
639 % Call plot function driver to finalize the plot function figure window. If
640 % no plot functions have been specified or the plot function figure no
641 % longer exists, this call just returns.
642 callAllOptimPlotFcns('cleanuponstopsignal');
643 
644 x = xOutputfcn;
645 FVAL = optimValues.fval;
646 EXITFLAG = -1;
647 OUTPUT.iterations = optimValues.iteration;
648 OUTPUT.funcCount = optimValues.funccount;
649 OUTPUT.algorithm = 'Nelder-Mead simplex direct search [MSimplex3]';
650 OUTPUT.message = getString(message('MATLAB:optimfun:fminsearch:
OptimizationTerminatedPrematurelyByUser'));
651 
652 %--------------------------------------------------------------------------
653 function f = checkfun(x,userfcn,varargin)
654 % CHECKFUN checks for complex or NaN results from userfcn.
655 
656 f = userfcn(x,varargin{:});
657 % Note: we do not check for Inf as FMINSEARCH handles it naturally.
658 if isnan(f)
659     error('MATLAB:fminsearch:checkfun:NaNFval',...
660         getString(message('MATLAB:optimfun:fminsearch:checkfun:NaNFval', localChar
( userfcn ))));  
661 elseif ~isreal(f)
662     error('MATLAB:fminsearch:checkfun:ComplexFval',...
663         getString(message('MATLAB:optimfun:fminsearch:checkfun:ComplexFval', 
localChar( userfcn ))));  
664 end
665 
666 %--------------------------------------------------------------------------
667 function strfcn = localChar(fcn)
668 % Convert the fcn to a character array for printing
669 
670 if ischar(fcn)
671     strfcn = fcn;
672 elseif isstring(fcn) || isa(fcn,'inline')
673     strfcn = char(fcn);
674 elseif isa(fcn,'function_handle')
675     strfcn = func2str(fcn);
676 else
677     try
678         strfcn = char(fcn);
679     catch
680         strfcn = getString(message('MATLAB:optimfun:fminsearch:
NameNotPrintable'));
681     end
682 end
683 % ======================================
684 function xtrans = xtransform(x,params)
685 % converts unconstrained variables into their original domains
686 
687 xtrans = zeros(params.xsize);
688 % k allows some variables to be fixed, thus dropped from the
689 % optimization.
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690 k=1;
691 for i = 1:params.n
692   switch params.BoundClass(i)
693     case 1
694       % lower bound only
695       xtrans(i) = params.LB(i) + x(k).^2;
696       
697       k=k+1;
698     case 2
699       % upper bound only
700       xtrans(i) = params.UB(i) - x(k).^2;
701       
702       k=k+1;
703     case 3
704       % lower and upper bounds
705       xtrans(i) = (sin(x(k))+1)/2;
706       xtrans(i) = xtrans(i)*(params.UB(i) - params.LB(i)) + params.LB(i);
707       % just in case of any floating point problems
708       xtrans(i) = max(params.LB(i),min(params.UB(i),xtrans(i)));
709       
710       k=k+1;
711     case 4
712       % fixed variable, bounds are equal, set it at either bound
713       xtrans(i) = params.LB(i);
714     case 0
715       % unconstrained variable.
716       xtrans(i) = x(k);
717       
718       k=k+1;
719   end
720 end
721 
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  1 function [x,fval,exitflag,output] = SMS3(funfcn,x,options,varargin)
  2 % SMS3 Multidimensional unconstrained nonlinear minimisation using the Super 
Modified Simplex Method
  3 
  4 
  5 % The following lines were changed by JK on 10/10/2018
  6 % Get parameters of boundary conditions and more optimisation options
  7 FminParams = varargin{1};
  8 ExtraOptions = FminParams.ExtraOptions;
  9 TolXI = ExtraOptions.TolXI;
 10 cov = ExtraOptions.TolCOV;
 11 params = FminParams;
 12 % End of modifications
 13 
 14 defaultopt = struct('Display','notify','MaxIter','200*numberOfVariables',...
 15     'MaxFunEvals','200*numberOfVariables','TolX',1e-4,'TolFun',1e-4, ...
 16     'FunValCheck','off','OutputFcn',[],'PlotFcns',[]);
 17 
 18 % If just 'defaults' passed in, return the default options in X
 19 if nargin==1 && nargout <= 1 && strcmpi(funfcn,'defaults')
 20     x = defaultopt;
 21     return
 22 end
 23 
 24 if nargin<3, options = []; end
 25 
 26 % Detect problem structure input
 27 if nargin == 1
 28     if isa(funfcn,'struct') 
 29         [funfcn,x,options] = separateOptimStruct(funfcn);
 30     else % Single input and non-structure
 31         error('MATLAB:fminsearch:InputArg',...
 32             getString(message('MATLAB:optimfun:fminsearch:InputArg')));
 33     end
 34 end
 35 
 36 if nargin == 0
 37     error('MATLAB:fminsearch:NotEnoughInputs',...
 38         getString(message('MATLAB:optimfun:fminsearch:NotEnoughInputs')));
 39 end
 40 
 41 
 42 % Check for non-double inputs
 43 if ~isa(x,'double')
 44   error('MATLAB:fminsearch:NonDoubleInput',...
 45     getString(message('MATLAB:optimfun:fminsearch:NonDoubleInput')));
 46 end
 47 
 48 n = numel(x);
 49 numberOfVariables = n;
 50 
 51 % Check that options is a struct
 52 if ~isempty(options) && ~isa(options,'struct')
 53     error('MATLAB:fminsearch:ArgNotStruct',...
 54         getString(message('MATLAB:optimfun:commonMessages:ArgNotStruct', 3)));
 55 end
 56 
 57 printtype = optimget(options,'Display',defaultopt,'fast');
 58 tolx = optimget(options,'TolX',defaultopt,'fast');
 59 tolf = optimget(options,'TolFun',defaultopt,'fast');
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 60 maxfun = optimget(options,'MaxFunEvals',defaultopt,'fast');
 61 maxiter = optimget(options,'MaxIter',defaultopt,'fast');
 62 funValCheck = strcmp(optimget(options,'FunValCheck',defaultopt,'fast'),'on');
 63 
 64 % In case the defaults were gathered from calling: optimset('fminsearch'):
 65 if ischar(maxfun) || isstring(maxfun)
 66     if strcmpi(maxfun,'200*numberofvariables')
 67         maxfun = 200*numberOfVariables;
 68     else
 69         error('MATLAB:fminsearch:OptMaxFunEvalsNotInteger',...
 70             getString(message('MATLAB:optimfun:fminsearch:
OptMaxFunEvalsNotInteger')));
 71     end
 72 end
 73 if ischar(maxiter) || isstring(maxiter)
 74     if strcmpi(maxiter,'200*numberofvariables')
 75         maxiter = 200*numberOfVariables;
 76     else
 77         error('MATLAB:fminsearch:OptMaxIterNotInteger',...
 78             getString(message('MATLAB:optimfun:fminsearch:
OptMaxIterNotInteger')));
 79     end
 80 end
 81 
 82 switch printtype
 83     case {'notify','notify-detailed'}
 84         prnt = 1;
 85     case {'none','off'}
 86         prnt = 0;
 87     case {'iter','iter-detailed'}
 88         prnt = 3;
 89     case {'final','final-detailed'}
 90         prnt = 2;
 91     case 'simplex'
 92         prnt = 4;
 93     otherwise
 94         prnt = 1;
 95 end
 96 % Handle the output
 97 outputfcn = optimget(options,'OutputFcn',defaultopt,'fast');
 98 if isempty(outputfcn)
 99     haveoutputfcn = false;
100 else
101     haveoutputfcn = true;
102     xOutputfcn = x; % Last x passed to outputfcn; has the input x's shape
103     % Parse OutputFcn which is needed to support cell array syntax for OutputFcn.
104     outputfcn = createCellArrayOfFunctions(outputfcn,'OutputFcn');
105 end
106 
107 % Handle the plot
108 plotfcns = optimget(options,'PlotFcns',defaultopt,'fast');
109 if isempty(plotfcns)
110     haveplotfcn = false;
111 else
112     haveplotfcn = true;
113     xOutputfcn = x; % Last x passed to plotfcns; has the input x's shape
114     % Parse PlotFcns which is needed to support cell array syntax for PlotFcns.
115     plotfcns = createCellArrayOfFunctions(plotfcns,'PlotFcns');
116 end
117 
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118 header = ' Iteration   Func-count     min f(x)         Procedure';
119 
120 % Convert to function handle as needed.
121 funfcn = fcnchk(funfcn,length(varargin));
122 % Add a wrapper function to check for Inf/NaN/complex values
123 if funValCheck
124     % Add a wrapper function, CHECKFUN, to check for NaN/complex values without
125     % having to change the calls that look like this:
126     % f = funfcn(x,varargin{:});
127     % x is the first argument to CHECKFUN, then the user's function,
128     % then the elements of varargin. To accomplish this we need to add the 
129     % user's function to the beginning of varargin, and change funfcn to be
130     % CHECKFUN.
131     varargin = [{funfcn}, varargin];
132     funfcn = @checkfun;
133 end
134 
135 n = numel(x);
136 
137 % Initialize parameters
138 rho = 1; chi = 2; psi = 0.5; sigma = 0.5;
139 onesn = ones(1,n);
140 two2np1 = 2:n+1;
141 one2n = 1:n;
142 safety_margin=0.3;
143 % Set up a simplex near the initial guess.
144 xin = x(:); % Force xin to be a column vector
145 v = zeros(n,n+1); fv = zeros(1,n+1);
146 v(:,1) = xin;    % Place input guess in the simplex! (credit L.Pfeffer at 
Stanford)
147 x(:) = xin;    % Change x to the form expected by funfcn
148 fv(:,1) = funfcn(x,varargin{:});
149 func_evals = 1;
150 itercount = 0;
151 how = '';
152 % Initial simplex setup continues later
153 
154 % Initialize the output and plot functions.
155 if haveoutputfcn || haveplotfcn
156     [xOutputfcn, optimValues, stop] = callOutputAndPlotFcns(outputfcn,plotfcns,v
(:,1),xOutputfcn,'init',itercount, ...
157         func_evals, how, fv(:,1),varargin{:});
158     if stop
159         [x,fval,exitflag,output] = cleanUpInterrupt(xOutputfcn,optimValues);
160         if  prnt > 0
161             disp(output.message)
162         end
163         return;
164     end
165 end
166 v0 = zeros(n,n+1);
167 v0(:,1)=xtransform(v(:,1),params);
168 % Print out initial f(x) as 0th iteration
169 if prnt == 3
170     disp(' ')
171     disp(header)
172     fprintf(' %5.0f        %5.0f     %12.6g         %s\n', itercount, func_evals, 
fv(1), how);
173 elseif prnt == 4
174     formatsave.format = get(0,'format');
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175     formatsave.formatspacing = get(0,'formatspacing');
176     % reset format when done
177     oc1 = onCleanup(@()set(0,'format',formatsave.format));
178     oc2 = onCleanup(@()set(0,'formatspacing',formatsave.formatspacing));
179     format compact
180     format short e
181     disp(' ')
182     disp(how)
183     disp('v = ')
184     disp(v0)
185     disp('fv = ')
186     disp(fv)
187     disp('func_evals = ')
188     disp(func_evals)
189     disp('***************************************************')
190 end
191 % OutputFcn and PlotFcns call
192 if haveoutputfcn || haveplotfcn
193     [xOutputfcn, optimValues, stop] = callOutputAndPlotFcns(outputfcn,plotfcns,v
(:,1),xOutputfcn,'iter',itercount, ...
194         func_evals, how, fv(:,1),varargin{:});
195     if stop  % Stop per user request.
196         [x,fval,exitflag,output] = cleanUpInterrupt(xOutputfcn,optimValues);
197         if  prnt > 0
198             disp(output.message)
199         end
200         return;
201     end
202 end
203 
204 % Continue setting up the initial simplex.
205 % Following improvement suggested by L.Pfeffer at Stanford
206 usual_delta = 0.05;             % 5 percent deltas for non-zero terms
207 zero_term_delta = 0.00025;      % Even smaller delta for zero elements of x
208 for j = 1:n
209     y = xin;
210     if y(j) ~= 0
211         y(j) = (1 + usual_delta)*y(j);
212     else
213         y(j) = zero_term_delta;
214     end
215     v(:,j+1) = y;
216     x(:) = y; f = funfcn(x,varargin{:});
217     fv(1,j+1) = f;
218 end
219 
220 % sort so v(1,:) has the lowest function value
221 [fv,j] = sort(fv);
222 v = v(:,j);
223 % transfer the v back to v0 for stopping criterion
224 v0 = zeros(n,n+1);
225 for j=1:n+1
226     v0(:,j)=xtransform(v(:,j),params);
227 end
228 how = 'initial simplex';
229 itercount = itercount + 1;
230 func_evals = n+1;
231 if prnt == 3
232     fprintf(' %5.0f        %5.0f     %12.6g         %s\n', itercount, func_evals, 
fv(1), how)
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233 elseif prnt == 4
234     disp(' ')
235     disp(how)
236     disp('v = ')
237     disp(v0)
238     disp('fv = ')
239     disp(fv)
240     disp('func_evals = ')
241     disp(func_evals)
242     disp('TolXI = ')
243     disp(max(abs(v0(:,two2np1)-v0(:,onesn)),[],2))
244     disp('COV = ')
245     disp(std(fv)/mean(fv))
246     disp('***************************************************')
247 end
248 % OutputFcn and PlotFcns call
249 if haveoutputfcn || haveplotfcn
250     [xOutputfcn, optimValues, stop] = callOutputAndPlotFcns(outputfcn,plotfcns,v
(:,1),xOutputfcn,'iter',itercount, ...
251         func_evals, how, fv(:,1),varargin{:});
252     if stop  % Stop per user request.
253         [x,fval,exitflag,output] = cleanUpInterrupt(xOutputfcn,optimValues);
254         if  prnt > 0
255             disp(output.message)
256         end
257         return;
258     end
259 end
260 exitflag = 1;
261 
262 % Main algorithm: iterate until 
263 % (a) the coefficient of variation (COV), standard deviation of 
264 % the responses in the simplex espressed as a percentage of the mean
265 while func_evals < maxfun && itercount < maxiter
266     
267     COV=std(fv)/mean(fv);  %calculate the COV
268         
269     simplex_size=max(abs(v0(:,two2np1)-v0(:,onesn)),[],2)-TolXI';  %distance 
between the worst/next-to-worse point distance and best point, compare that with TolXI
270     
271     if COV<cov
272         exitflag_reason=0;
273         break
274         
275     elseif isempty(find(simplex_size>0))  %exit if the simplex size in all 
dimension are samller than tolxi
276         exitflag_reason=1;
277         break
278     end
279     
280     % Compute the reflection point
281     
282     % xbar = average of the n (NOT n+1) best points
283     %make P bar
284     xbar = sum(v(:,one2n), 2)/n;
285     x(:) = xbar; fxbar = funfcn(x,varargin{:});
286     func_evals = func_evals+1;   
287     
288     p = xtransform(x,params);
289     fval_p=fxbar;
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290     
291     %make R
292     xr = (1 + rho)*xbar - rho*v(:,end);
293     x(:) = xr; fxr = funfcn(x,varargin{:});
294     func_evals = func_evals+1;
295     
296     R = xtransform(x,params);
297     fval_r=fxr;
298     
299     % evaluate Yopt and adjust for constraints
300     Yopt=(fv(:,end)-fxbar)/(fv(:,end)-2*fxbar+fxr)+0.5;
301     if Yopt>(1-safety_margin) && Yopt<=1
302         Yopt=1-safety_margin;
303     elseif Yopt<(1+safety_margin) && Yopt>1
304         Yopt=1+safety_margin;
305     elseif Yopt<safety_margin && Yopt>0
306         Yopt=safety_margin;
307     elseif Yopt>-safety_margin && Yopt<=0
308         Yopt=-safety_margin;
309     elseif Yopt>3
310         Yopt=3;
311     elseif Yopt<-1
312         Yopt=-1;
313     end
314     
315     if (fv(:,end)-2*fxbar+fxr)<0
316         if fxr<=fv(:,end)
317         Yopt=3;
318         elseif fxr>fv(:,end)
319             Yopt=-1;
320         end
321     end
322     Yopt;
323     %make O
324     xO=Yopt*xbar+(1-Yopt)*v(:,end);
325     x(:) = xO; fxO = funfcn(x,varargin{:});
326     func_evals = func_evals+1;   
327     x_opt=x;
328     fval_opt=fxO;
329     
330     if fxO < fxr
331         % BNO
332         v(:,end) = xO;
333         fv(:,end) = fxO;
334         how = 'BNO'
335     else
336         v(:,end) = xr;
337         fv(:,end) = fxr;
338         how = 'BNR'
339     end
340     % transfer the v back to v0 for stopping criterion
341     v0 = zeros(n,n+1);
342     for j=1:n+1
343         v0(:,j)=xtransform(v(:,j),params);   
344     end
345 
346 %     plot3([v0(1,1),v0(1,2)],[v0(2,1),v0(2,2)],[fv(1),fv(2)],'k','linewidth',1.5)
347 %     hold on
348 %     pause (1)
349 %     plot3([v0(1,2),v0(1,3)],[v0(2,2),v0(2,3)],[fv(2),fv(3)],'k','linewidth',1.5)
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350 %     hold on
351 %     pause (1)
352 %     plot3([v0(1,1),v0(1,3)],[v0(2,1),v0(2,3)],[fv(1),fv(3)],'k','linewidth',1.5)
353 %     pause (1)
354     [fv,j] = sort(fv);
355     v = v(:,j);
356     v0 = v0(:,j);
357     itercount = itercount + 1;
358     if prnt == 3
359         fprintf(' %5.0f        %5.0f     %12.6g         %s\n', itercount, 
func_evals, fv(1), how)
360     elseif prnt == 4
361         disp(' ')
362         disp(how)
363         disp('v = ')
364         disp(v0)
365         disp('fv = ')
366         disp(fv)
367         disp('func_evals = ')
368         disp(func_evals)
369         disp('TolXI = ')
370         disp(max(abs(v0(:,two2np1)-v0(:,onesn)),[],2))
371         disp('COV = ')
372         disp(std(fv)/mean(fv))
373         disp('***************************************************')
374     end
375     % OutputFcn and PlotFcns call
376     if haveoutputfcn || haveplotfcn
377         [xOutputfcn, optimValues, stop] = callOutputAndPlotFcns(outputfcn,
plotfcns,v(:,1),xOutputfcn,'iter',itercount, ...
378             func_evals, how, fv(:,1),varargin{:});
379         if stop  % Stop per user request.
380             [x,fval,exitflag,output] = cleanUpInterrupt(xOutputfcn,optimValues);
381             if  prnt > 0
382                 disp(output.message)
383             end
384             return;
385         end
386     end
387 end   % while
388 
389 x(:) = v(:,1);
390 fval = fv(:,1);
391 
392 output.iterations = itercount;
393 output.funcCount = func_evals;
394 output.algorithm = sprintf(['Super modified simplex direct search 
[SuperModSimplex3]\n',...
395     'InitFirstSimplexMethod = %d\nProcBoundaryMethod = %d\n',...
396     'ProcOutOfRangeMethod = %d\nExitCriteriaMethod = %d\n'],...
397     ExtraOptions.InitFirstSimplexMethod,ExtraOptions.ProcBoundaryMethod,...
398     ExtraOptions.ProcOutOfRangeMethod,ExtraOptions.ExitCriteriaMethod);
399 
400 % OutputFcn and PlotFcns call
401 if haveoutputfcn || haveplotfcn
402     callOutputAndPlotFcns(outputfcn,plotfcns,x,xOutputfcn,'done',itercount, 
func_evals, how, fval, varargin{:});
403 end
404 
405 if func_evals >= maxfun
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406     msg = getString(message('MATLAB:optimfun:fminsearch:ExitingMaxFunctionEvals', 
sprintf('%f',fval)));
407     if prnt > 0
408         disp(' ')
409         disp(msg)
410     end
411     exitflag = 0;
412 elseif itercount >= maxiter
413     msg = getString(message('MATLAB:optimfun:fminsearch:ExitingMaxIterations', 
sprintf('%f',fval)));
414     if prnt > 0
415         disp(' ')
416         disp(msg)
417     end
418     exitflag = 0;
419 else
420     if exitflag_reason==1
421         msg = ...
422             ['Optimization terminated: the current x satisfies the termination 
criteria using OPTIONS.TolXI'];
423         if prnt > 1
424             disp(' ')
425             disp(msg)
426         end
427         exitflag = 1;
428     else
429         msg = ...
430             ['Optimization terminated: the current x satisfies the termination 
criteria using OPTIONS.COV of ', sprintf('%e',cov)];
431         if prnt > 1
432             disp(' ')
433             disp(msg)
434         end
435         exitflag = 1;
436     end
437 end
438 
439 output.message = msg;
440 
441 %--------------------------------------------------------------------------
442 function [xOutputfcn, optimValues, stop] = callOutputAndPlotFcns(outputfcn,
plotfcns,x,xOutputfcn,state,iter,...
443     numf,how,f,varargin)
444 % CALLOUTPUTANDPLOTFCNS assigns values to the struct OptimValues and then calls 
the
445 % outputfcn/plotfcns.
446 %
447 % state - can have the values 'init','iter', or 'done'.
448 
449 % For the 'done' state we do not check the value of 'stop' because the
450 % optimization is already done.
451 optimValues.iteration = iter;
452 optimValues.funccount = numf;
453 optimValues.fval = f;
454 optimValues.procedure = how;
455 
456 xOutputfcn(:) = x;  % Set x to have user expected size
457 stop = false;
458 state = char(state);
459 % Call output functions
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460 if ~isempty(outputfcn)
461     switch state
462         case {'iter','init'}
463             stop = callAllOptimOutputFcns(outputfcn,xOutputfcn,optimValues,state,
varargin{:}) || stop;
464         case 'done'
465             callAllOptimOutputFcns(outputfcn,xOutputfcn,optimValues,state,varargin
{:});
466         otherwise
467             error('MATLAB:fminsearch:InvalidState',...
468                 getString(message('MATLAB:optimfun:fminsearch:InvalidState')));
469     end
470 end
471 % Call plot functions
472 if ~isempty(plotfcns)
473     switch state
474         case {'iter','init'}
475             stop = callAllOptimPlotFcns(plotfcns,xOutputfcn,optimValues,state,
varargin{:}) || stop;
476         case 'done'
477             callAllOptimPlotFcns(plotfcns,xOutputfcn,optimValues,state,varargin
{:});
478         otherwise
479             error('MATLAB:fminsearch:InvalidState',...
480                 getString(message('MATLAB:optimfun:fminsearch:InvalidState')));
481     end
482 end
483 
484 %--------------------------------------------------------------------------
485 function [x,FVAL,EXITFLAG,OUTPUT] = cleanUpInterrupt(xOutputfcn,optimValues)
486 % CLEANUPINTERRUPT updates or sets all the output arguments of FMINBND when the 
optimization
487 % is interrupted.
488 
489 % Call plot function driver to finalize the plot function figure window. If
490 % no plot functions have been specified or the plot function figure no
491 % longer exists, this call just returns.
492 callAllOptimPlotFcns('cleanuponstopsignal');
493 
494 x = xOutputfcn;
495 FVAL = optimValues.fval;
496 EXITFLAG = -1;
497 OUTPUT.iterations = optimValues.iteration;
498 OUTPUT.funcCount = optimValues.funccount;
499 OUTPUT.algorithm = 'Super modified simplex direct search [SuperModSimplex3]';
500 OUTPUT.message = getString(message('MATLAB:optimfun:fminsearch:
OptimizationTerminatedPrematurelyByUser'));
501 
502 %--------------------------------------------------------------------------
503 function f = checkfun(x,userfcn,varargin)
504 % CHECKFUN checks for complex or NaN results from userfcn.
505 
506 f = userfcn(x,varargin{:});
507 % Note: we do not check for Inf as FMINSEARCH handles it naturally.
508 if isnan(f)
509     error('MATLAB:fminsearch:checkfun:NaNFval',...
510         getString(message('MATLAB:optimfun:fminsearch:checkfun:NaNFval', localChar
( userfcn ))));  
511 elseif ~isreal(f)
512     error('MATLAB:fminsearch:checkfun:ComplexFval',...
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513         getString(message('MATLAB:optimfun:fminsearch:checkfun:ComplexFval', 
localChar( userfcn ))));  
514 end
515 
516 %--------------------------------------------------------------------------
517 function strfcn = localChar(fcn)
518 % Convert the fcn to a character array for printing
519 
520 if ischar(fcn)
521     strfcn = fcn;
522 elseif isstring(fcn) || isa(fcn,'inline')
523     strfcn = char(fcn);
524 elseif isa(fcn,'function_handle')
525     strfcn = func2str(fcn);
526 else
527     try
528         strfcn = char(fcn);
529     catch
530         strfcn = getString(message('MATLAB:optimfun:fminsearch:
NameNotPrintable'));
531     end
532 end
533 
534 % ======================================
535 function xtrans = xtransform(x,params)
536 % converts unconstrained variables into their original domains
537 
538 xtrans = zeros(params.xsize);
539 % k allows some variables to be fixed, thus dropped from the
540 % optimization.
541 k=1;
542 for i = 1:params.n
543   switch params.BoundClass(i)
544     case 1
545       % lower bound only
546       xtrans(i) = params.LB(i) + x(k).^2;
547       
548       k=k+1;
549     case 2
550       % upper bound only
551       xtrans(i) = params.UB(i) - x(k).^2;
552       
553       k=k+1;
554     case 3
555       % lower and upper bounds
556       xtrans(i) = (sin(x(k))+1)/2;
557       xtrans(i) = xtrans(i)*(params.UB(i) - params.LB(i)) + params.LB(i);
558       % just in case of any floating point problems
559       xtrans(i) = max(params.LB(i),min(params.UB(i),xtrans(i)));
560       
561       k=k+1;
562     case 4
563       % fixed variable, bounds are equal, set it at either bound
564       xtrans(i) = params.LB(i);
565     case 0
566       % unconstrained variable.
567       xtrans(i) = x(k);
568       
569       k=k+1;
570   end
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571 end
572 
573 
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Figure 12.5: Presser parameter setting
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