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Abstract

Wind energy is an interesting prospect due to its availability and sustainability along the coast

and offshore locations. Development of offshore wind farms is projected to increase very

rapidly within the next decades, which is expected to efficiently improve the electricity chal-

lenges in areas located along the sea. While the offshore wind energy is collected by turbine

structures, which are supported by towers and foundations, the challenge remain on the pro-

vision of cost-effective foundations to resist the lateral loads from wind, waves and dynamic

actions of the wind turbine nacelle-rotor. The popular foundations used are monopiles, having

a competitive advantage of stability, ease of installation and low cost of materials compared to

other types. The loads acting on monopiles are cyclic in nature, and can be resisted by hori-

zontal earth pressure mobilised in the soil surrounding the pile. The cyclic loads can affect the

strength and stiffness of both the soil and pile, leading to accumulated rotation and change of

overall stiffness. Studies have been carried out regarding these effects, however there has not

been a clear understanding of the response of a stiff pile when subjected to a large number of

cycles.

The literature has revealed that the current method (p-y curves method) for analysing and de-

signing the offshore monopiles is insufficient, tend to overestimate the stiffness of the rigid

piles, and leading to interference between resonance and natural frequency of the wind tur-

bines. The method usually regards the soil as a series of non-linear wrinkle spring and derives

its base on the empirical relationships developed from full-scale tests on slender piles. The

deficiency of the prevailing design approach, therefore, justifies a need for further research to

develop a model which will monitor how the monopiles foundations respond to both monotonic

and cyclic loading.

This thesis therefore, presents an experimental and theoretical research approach that will im-

prove the understanding of the response of monopile foundations in sands when subjected to

both monotonic and cyclic loading. The experimental work involves a comprehensive design

and development of a new mechanical loading system in a geotechnical centrifuge, with model

tests scaled to represent full-scale wind-turbine monopiles. The test programme is designed

to identify the key mechanisms driving pile response, including investigating the monotonic

loading behaviour as well as the response of a pile to long term cyclic loads. The methodology
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developed and data collected from this thesis will provide a potential contribution to the estab-

lishment of a better understanding of monopile responses within the field.

The experiment was carried out by initially, scaling down the prototype monopile using a 1:100

geometric scale. Three monotonic tests were carried out at 100g to identify the responses under

monotonic loading, estimate the ultimate capacity and determine the initial (tangent) stiffness

of the pile-soil system. One monotonic test was conducted at 30g as a reference to the cyclic

test results. The parameters extracted from the monotonic tests are used as the basis for the

design of cyclic loading system and analysis of the cyclic test results. Available models from

the literature were modified to capture the ground global response of the pile under monotonic

loading. The models were employed in a kinematic approach, with soil being modelled as a

series of spring elements and the pile as an elastic beam element. The model pile in the cen-

trifuge was not instrumented, hence assumptions were made to match the global response of

the monotonic centrifuge tests at the ground surface. With the absence of data along the em-

bedded depth of the pile, the fitting constants were used to estimate the ultimate capacity and

the concept of the modulus of subgrade reaction. The model was also used to the published

centrifuge test results of the past monopile research.

The methodology developed for cyclic load tests incorporated the effects of cyclic loading on

the response of a monopile. The validity of the model is supported by centrifuge tests in which

a stiff model pile, installed in cohesionless soil, was subjected to a series of load cycles with

load amplitude and frequency. The tests were carried out to investigate the responses of the

newly developed model. Due to technical challenges during the model testing, all cyclic tests

were achieved at centrifuge acceleration of 30g instead of the 100g for the monotonic tests.

Selected tests were used to examine the total cyclic pile-head response to gain an insight into

the accumulation of pile-head displacement and change in cyclic secant stiffness. Power and

logarithmic functions were used to predict the accumulated displacement and cyclic stiffness

variation using the data from the centrifuge, respectively. The key experimental findings of the

cyclic tests were then used to develop a theoretical model that captures the unload-reload hys-

teresis behaviour. The model function, called the modified Romberg Osgood (MR-O), is rigor-

ous yet simple, and is framed where the pile-head cyclic response is modelled as the hysteresis

loops for the backbone, unloading and reloading curves. The model was calibrated against the

cyclic centrifuge tests and successfully reproduce the main elements of the pile response with

high accuracy. However, it does not predict precisely the cyclic accumulation and change in



vi

cyclic stiffness as shown in the experiment, thus further justification will still be required.

Nevertheless, the newly developed model and suggested methodologies in this thesis can be

used as a primary stage for research developers to understand the behaviour of foundations

supporting offshore wind turbines, with scientific justification based on the centrifuge model

scale tests.
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Pu ultimate soil resistance kN/m

Pus DNV ultimate soil resistance at shallow depth kN/m
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W Energy stored J
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ω angular frequency kN/m
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φmax maximum friction angle degree
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σ3 mean stress kPa

σv vertical stress kPa
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θN pile rotation after N cycles degree
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θs pile rotation from static load degree
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ζc cyclic load characteristics ratio –

ζ load control factor –

ξN accumulated displacement control function –

κ1 stiffness accumulation/degradation constant –

κ2 displacement accumulation constant –

χ hysteresis loops load amplitude ratio –



Chapter 1

INTRODUCTION

1.1 Background on offshore wind energy industry

The use of fossil fuels and its impact on the global climate has brought the need of researchers to

seek an alternative clean source of energy. Reducing dependence on fuels is of primary impor-

tance for governments and industries worldwide. For instance, the European Union has set the

binding agreement to ensure that the power from renewable sources will increases up to 20% of

the total energy by 2020 (Commission, 2010). Currently, of all renewable energy sources, wind

power has received more attention and has been debated as a potential source for achieving the

2030 European carbon reduction target. Apart from the fact that wind power offers competi-

tive prices on production of renewable energy has also been used as alternative technology in

achieving the energy and environmental goals (LeBlanc, 2009). In Europe, the onshore wind

contributed more wind energy than offshore wind when comparing the total production (for in-

stance, 4.85 TWh was generated onshore above 3.57 TWh offshore in the UK by end of 2015),

however, offshore wind has big potential and a larger number of projects are under construction

(Abadie, 2015). The offshore environment is generally characterised by stronger wind condi-

tions than onshore, which permits the installation of larger wind turbines with greater power

output (Cuéllar, 2011, Klinkvort et al., 2012).In addition, the abundant open space with less

obstruction and turbulence intensity are the drivers for offshore wind farms. Despite the extra

cost, the larger and substantial energy production have driven most of the European countries

to invest more on offshore locations than onshore sites (Klinkvort et al., 2012, LeBlanc, 2009).

Figure 1.1 provides an overview of the annual and cumulative capacity of offshore wind power

connected to the grid, illustrating the growth of the sector in recent years (Europe, 2018), with

the total capacity of 15,780 MW generated by the end of 2017. This achievement motivated

several countries of the European Union to develop ambitious policies to set the targets and

development visions for harvesting the renewable energies in the future. Germany and the UK

have set the global targets of 20% of electricity production from the renewable sources by 2030

1
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(Byrne and Houlsby, 2003), where in 2017, 3,148 MW of new offshore wind power capac-

ity was connected to the grid which is 13% higher than 2016. As shown in Fig. 1.2(a), the

UK remains the EU country with the largest amount of installed offshore wind capacity, rep-

resenting 43% of all installations, followed by Germany 34% and Denmark with 8%, despite

no additional capacity in 2017. The Netherlands (7%) and Belgium (6%) follow the pace (Eu-

rope, 2018). Other countries around the globe are planning to follow the Europe footsteps by

investing in offshore wind energy development. For instance, Asia (China) and North America

(United States) have already taken new initiatives (Westgate and DeJong, 2005).

Figure 1.1: European cumulative and annual offshore installed capacity(MW) at the
end of year 2017 (Europe, 2018).

Although research indicate a significant improvement on the offshore wind infrastructure and

turbine technology, the installation and operation costs can still be a challenge. For example,

from 2010 the UK has attracted 47% of the offshore wind turbine investment, worth 35 bn,

followed by Germany with 28 bn (37% in investment) (Europe, 2018). A major challenge of

the offshore wind industry is to reduce the cost while targeting the installation of larger tur-

bines in deeper water (Europe, 2018). However, this challenge can be tackled by developing an

optimised design of the superstructure and foundation (Abadie, 2015), because the foundations

accounts for about 25-30% of the total installation cost of the wind turbine project (Byrne and

Houlsby, 2003). Apart from the cost involved in the project, the additional challenges may be
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the geotechnical site conditions, water depth and environmental loads. Therefore, to ensure the

sustainability of the wind turbines the foundations must be well designed.

Several types of the foundations have been researched and used, including gravity bases, monopiles,

monopod, tripod, jacket and floating structures (Cuéllar, 2011, LeBlanc, 2009, Malhotra, 2010).

However, the economic choice of these foundations depend on the water depth, seabed, load-

ing characteristics and cost of materials (Malhotra, 2010). According to statistics provided by

EWEA (2013), the most common foundation adopted for a wide range of site conditions are

monopiles, which have been used in water depths up to 35 m. For instance, about 74% of all the

installed substructures in European offshore wind farms have used monopiles , which is a sub-

stantial comparative of other types of foundations (see Fig. 1.2(b)), followed by gravity-based

foundations in 16%, jacket foundations in 5%, tri or tetra piles in 3% and tripods only 2%.

Therefore, the use of monopile seems likely to dominate compared to other foundation due to

the competitive advantages of ease of transportation, cost-effectiveness and ease of installation.

(a) Capacity installed in European coun-

tries in 2017

(b) Foundation types end of year 2017

Figure 1.2: Percentage of installed capacity in European countries and common
foundation type (Europe, 2018).

Monopiles are designed according to semi-empirical p-y curves, which were derived from

Reese et al. (1974) tests on flexible piles, and specified in the current design codes (API, 2007,

DNV, 2014). Although the method has been used over decades, the accuracy of the existing
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empirical design is till questionable to whether it may suffice the design of monopiles. Previ-

ous studies (Abadie, 2015, Kirkwood, 2016, Klinkvort et al., 2012, Lau, 2015, Leblanc et al.,

2010) have reported the same argument and suggested that the DNV (2014) code of practice

is not sufficient to meet serviceability requirement of monopile foundations. The use of the

method has multiple limitations: inappropriate estimation of initial pile-soil stiffness and does

not account the effect of cyclic secant stiffness and accumulation displacement. Therefore, the

lack of knowledge in these area requires further investigation.

The aim of this thesis is to develop an engineering tools, which can be used in the design of the

offshore monopile foundation in cohesionless. The findings will contribute to the science and

increase economic feasibility of future offshore wind farms.

1.2 Foundation options for offshore wind turbines

The role of foundations in the offshore environment is to transfer the vertical and horizontal

loads from the superstructure to the surrounding soil. While the bearing capacity of the soil and

the magnitude of the loads are the primary determinants of the size and depth of the foundation,

the choice of the foundation type depends mainly on the depth of water, soil characteristics and

economic reasons (Bontempi et al., 2009). Various foundation types have been researched

and used in years and can be categorised as either fixed or floating structures in relation to

water depth (Bontempi et al., 2009, Byrne and Houlsby, 2006). For instance, in shallow water

depth (h ≤ 30m), the foundations used are normaly gravity base, monopiles and single suction

caissons, while tripod, jacket and lattice are located at intermediate depths (30 ≤ h ≤ 60

m). Figure 1.3 shows the range of foundation and support structure concepts for offshore wind

turbines. A general discussion of each type of these foundations is presented in the subsequent

text.

(a) Gravity base structure

In Fig. 1.3, the gravity base foundation is designed to be self-weighted to prevent failure

through tilting, uplift and sliding. It is limited to the site where installation in underlying

seabed is difficult due to hard rocks (Haigh, 2014, Kaiser and Snyder, 2012, LeBlanc,
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Gravity Base Mono-Pile Mono-Caisson Multi-Pile Multi-Caisson

Figure 1.3: Typical offshore foundation types, from Byrne and Houlsby (2006)
.

2009, Malhotra et al., 2009). The structure is more efficiency and cost effective when the

environmental loads are relatively low (Malhotra et al., 2009).

(b) Monopile

A monopile is a rigid, long steel open ended pile of larger diameter, which is driven

into the seabed by using a hydraulic piling hammer or by drilling. The thickness and

depth of the pile depends on the design load, soil conditions, water depth, design code

and environmental conditions. The typical diameter of the pile ranges from 4-8 m and

its wall thickness is between 50 to 150 mm (Kaiser and Snyder, 2012, LeBlanc, 2009,

Malhotra et al., 2009). In addition to that, during the installation the pile is always driven

5-6 times its diameter into the seabed and the embedded depth is in the range between

20 to 40 m (Byrne and Houlsby, 2003, Kaiser and Snyder, 2012, Klinkvort et al., 2012).

This type of foundation is the focus of this study and more details are provided in Section

1.3.
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(c) Mono-Caissons

The mono-caisson foundation is a sizeable upturned bucket, made of steel hollow circular

tube closed by the lid at the upper end. The suction-caisson may be installed via stage

process: the caisson is lowered on a pre-prepared (levelled) seabed where it embeds

under its weight. During installation, it penetrates the soil then water is pumped out

the caisson interior (create net pressure difference which drives the foundation into the

seabed) (Houlsby and Byrne, 2000). They are best in low permeability soils such as

normally consolidated clay or fine sand (LeBlanc, 2009). They are not recommended for

use in sand with high permeability because the excess pore pressures dissipate rapidly.

(d) Multipod (Multi-pile and multi-caisson)

Multipod foundations have a single vertical column above the water level with sub-sea

diagonal braces which transfer the turbine weight to three or four legs fixed pile (diame-

ter less or equal to 2 m) or caissons in a triangular arrangement. These foundations defer

from monopods as the material cost of each pile is smaller, but construction takes longer,

and the design is more complex. They are rarely used for the foundations of offshore

wind turbines due to the increased cost of installation and possibly designed for the oil

and gas industrial (LeBlanc, 2009).

1.3 OWT components and monopile details

As previously described, monopiles have been proven to be the most popular foundation es-

pecially in the offshore wind farming due to their economic advantage and ability to sustain

the severe loading conditions (Abdel-Rahman and Achmus, 2005, Achmus et al., 2008, 2009,

Arshad and OKelly, 2013, Bontempi et al., 2009, Lau, 2015, LeBlanc, 2009). The wind turbine

structure is divided into three parts: the main structure (carrying the main loads), secondary

structure (produce and transfer energy) and auxiliary structure (serviceability, maintainability

and emergency during design life). However, this study dealt with the main structure including

the rotor-nacelle assembly (rotor, nacelle, and blades), support structure (the tower), substruc-

ture (include transition piece) and foundation. The schematic drawing and photographs of an

offshore wind turbine structure are shown in Fig. 1.4 and 1.5, respectively. All components
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including a monopile foundation, the substructure, transition piece, tower, rotor blades and na-

celle (hub) are detailed in Fig. 1.4(a) and 1.4(b). In Fig. 1.4, support structure and foundation

are used to indicate the entire structure below the yaw system. They are made of steel, used

to keep the turbine in proper positions and being exposed to environmental forces (waves and

sea current). At the seabed level, the substructure connects the transition piece and tower to the

foundation. A plate rolled conical section tower is used to carry the nacelle and rotor blades.

Transition piece is used to connect the support structure and tower, aiming to correct any verti-

cal misalignment expected during the installation process. A nacelle (a key electromechanical

component) including gearbox and generator are used to generate and transmit the electric en-

ergy. The rotor blades, made of fibreglass mats impregnated with polyester, are connected to

nacelle to receive the wind forces. The power cable is connected to the turbine (nacelle) and

inserted in a plastic J tube to carry the cable to the cable trench (Arshad and OKelly, 2013,

Malhotra et al., 2009).

(a) OWT component details (b) OWT substructure and foundation detail

Figure 1.4: Major components of an OWT system, from Arshad and OKelly (2013).
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Rotor

Tower

Transition

Nacelle

Blade

(a) OWT photograph detail (b) Transition (c) Monopile

Figure 1.5: The OWT photos, from Kallehave et al. (2015).

A 5 MW class wind turbine chosen in this study is supported by a monopile foundation with

details presented in Table 1.1 (Lesny and Wiemann, 2006).

Table 1.1: Monopile for 5 MW class wind turbine (Lesny and Wiemann, 2006)

Physical Quantities Symbol Value Units

Load eccentricity Le 20 m

Embedded depth L 30 m

Diameter and thickness of the pile D, t 6, 0.1 m

Young’s modulus Ep 210 GPa

Area moment of inertia Ip 8.0675 m4

Flexural stiffness Ep Ip 1694 GNm2
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1.4 Offshore wind turbine design loads

1.4.1 Design loads on monopiles

The offshore wind turbines are normally anchored on wide monopiles normally impacted by

a number of both lateral, longitudinal and torsional loads and moments. The current design

method for piles has been derived from the offshore oil and gas industry. However, there seems

to be a potential difference between the loads applied on offshore oil and gas platform to those

which may act on the offshore wind turbines. As depicted in Fig. 1.6(b), the vertical loading

of oil and gas platform is larger than lateral loading, whereas the offshore wind turbine foun-

dations (see Fig. 1.6(a)) are characterised by relatively small vertical loads, large moments at

the seabed and strong cyclic loading (Byrne and Houlsby, 2003, Cuéllar, 2011, LeBlanc, 2009,

Malhotra, 2007). Furthermore, the load from oil and gas was designed to achieve an ultimate

limit state (ULS) requirement while for the offshore wind turbine the horizontal loads and over-

turning moments are therefore of more importance (Kirkwood, 2016). The offshore design of

monopiles is controlled by serviceability limits in which the pile rotation and pile-head de-

flection are limited to 0.5 o and 10%-20% of pile diameter, respectively (Achmus et al., 2009,

DNV, 2014, Malhotra, 2007). This study therefore aims at establishing a better understanding

on response of the monopiles when subjected to long term cyclic loading including both oper-

ational and environmental loads. While the environmental loads are from action of wind and

waves the operational loads refer to the dynamic loads due to nacelle-rotor (LeBlanc, 2009,

Villalobos, 2006). Most of the operational offshore wind-farms consist of turbines with rated

capacity between 2 and 5 MW and would vary according to the water depth and environmen-

tal conditions (Byrne and Houlsby, 2015). A typical dimensions and loads on a 5 MW wind

turbine is presented in Fig. 1.6(a) (Cuéllar, 2011). This turbine is supported by a monopile

of 7.5 m in diameter, driven 30 m into the seabed with a lever arm of 30 m above the seabed

(Cuéllar, 2011). From the figure, the maximum horizontal load from wind and wave actions

was roughly estimated as 5 to 15 MN. Byrne and Houlsby (2003), LeBlanc (2009), Abadie

(2015) and Kirkwood (2016) have employed a typical monopile of 3.5 MW with 3 to 4 m in

diameter, 50 mm wall thickness and embedded depth of 20 m. The wind loads applied on the

turbine and tower are termed as steady and stochastic aerodynamic forces generated by mean



10

(a) Loads and dimensions for 5 MW class wind
turbine, from Cuéllar (2011)

(b) Loads on oil and gas Jack-up Rig, from
Byrne and Houlsby (2003)

Figure 1.6: Loads on offshore wind turbine and oil and gas jack-up rig.

wind speed and turbulent wind structures, respectively (Abadie, 2015). The hydrodynamic

loads from the waves comprise of drag, inertia and cross-flow forces and depend on the water

depth, wave height and period. They both result in a combined shear force and overturning

moment at foundation level. The aerodynamic loads are applied at a high level on the turbine

hub and typically account for 25% of the horizontal load and 75% of the overturning moment

(Byrne and Houlsby, 2003, Kirkwood, 2016). The relevant typical environmental parameters

for estimation of resultant offshore lateral load in the North Sea is given in Table 1.2 (Byrne

and Houlsby, 2003). The description of load calculation is beyond the scope of this thesis and

detailed guidance is available in DNV (2014) code. Table 1.3 provides a breakdown of cyclic

lateral load magnitudes for a 2 MW, 3.5 MW and 5 MW offshore wind turbine.
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Table 1.2: Environmental conditions in the southern of the North Sea, from Lesny
and Wiemann (2005)

Physical Quantities Symbol Units

Wind

Hub-height 50-year extreme 10min mean wind 50 m/s

Hub-height 50-year extreme 5s gust 60 m/s

Water depth

Mean water depth 35 m

50-year extreme water depth 41 m

Wave and currents

50-year maximum wave height 22.3 m

Related wave period 14.5 secs

50-year tidal current surface velocity 1.71 m/s

50-year storm surge current surface velocity 0.43 m/s

Table 1.3: Typical loading on a 2 MW, 3.5 MW and 5 MW, from Byrne and Houlsby
(2003), LeBlanc (2009), Lesny and Wiemann (2005)

Load type 2 MW 3.5 MW 5 MW

Vertical load VT [MN] 5 6 35

Horizontal load Hi [MN] 4.6 4 16

Bending moment Mi [MNm] 95 120 562

The monopiles must fulfil the design criteria to withstand the forces applied on it (Abadie,

2015). In this case, the design must address four load conditions (API, 2007, DNV, 2014): (1)

Ultimate Limit State (ULS), which relates to extreme load cases such as the worst-case storm

event or a turbine emergency stop (the total collapse or excessive deformation of the founda-

tion); (2) Accidental Limit State (ALS), which accounts for accidental loads such as ship impact

on the turbine; (3) Serviceability Limit State (SLS), being a repeated routine loading over the

lifetime of the design that could result in excessive deformation or permanent rotation of the
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tower; (4) Fatigue Limit State (FLS), which relates to repeated loading of small amplitude over

a large period that could possibly lead to failure. Although the effect of Accidental Limit State

(ALS) is important, it is beyond the scope of this thesis. For the head deflection and rotation

of a monopile, the design of monopiles is governed by SLS and FLS. The fatigue limit state

(FLS) is sufficient for structure component to resist collapse due to a large number of cycles

(commutative damage due to repeated load). This state is good for prediction of foundation

and eigenfrequency of entire wind turbine structure. The SLS and FLS design consideration

are important to ensure a limited displacement of the infrastructure over time. As noted by

Abadie (2015), the maximum pile rotation of the monopile is generally specified by the turbine

manufacturer to guarantee good operation of the turbine. Typically, the maximum tolerance

for the foundation tilt over its lifetime (including installation tolerance) is 0.5o (Achmus et al.,

2009, DNV, 2014, Malhotra, 2010).

1.4.2 Design requirements of monopiles

As noted from Arshad and OKelly (2016), the design of the offshore wind turbines should

consider the effects of both aerodynamic and hydrodynamic forces acting from various direc-

tions amplitude and frequency. The structural integrity and fatigue lifetime of turbine structure

strongly depends on its fundamental natural frequency fn, and how it is excited by environmen-

tal and operational loads (Abadie, 2015). Consequently, under long-term cyclic loading (wind

and waves load), the observed increase in cyclic stiffness of the pile-soil system with increasing

number of cycles may under certain condition adversely affect the performance of the structure

(Arshad and OKelly, 2017). The behaviour of the entire structure will increase the natural fre-

quency, leading to the resonance (the coincide of forcing and natural frequencies) and greater

rotation of the monopile. Thus, it is important to consider the natural frequency of the offshore

wind turbines to evaluate the dynamic responses. The major sources of forcing frequencies are

wind, wave and any out of imbalance of rotating parts of rotor-nacelle system at the hub and

blades passing on the tower structure (Bhattacharya and Adhikari, 2011, Haigh, 2013, Malho-

tra, 2010). The operational excitation of a 3-bladed wind turbine (fe) consists of the rotational

frequency of the rotor (1P) and the blade passing frequency as the blades pass the tower (3P).

Offshore wind turbines are commonly designed so that the natural frequency (fn) is within the
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soft-stiff region, that is to say between the 1P and 3P excitation domains. This is because the

soft-soft region is close to wave and wind loading frequencies (0.01 and 0.1 Hz, respectively)

(see Fig. 1.7) while design in the stiff-stiff domain are cost prohibitive (structure considered too

rigid and heavy) (Abadie, 2015, Arshad and O’Kelly, 2014). As shown in Fig. 1.7, a typical 5

MW wind turbine has a nacelle-rotor rotational speed between 6-13.2 rpm which experience a

rotor frequency (1P) in the range of 0.12-0.22 Hz. For a three-bladed turbine, the blade passing

frequency (3P) has excitation frequency of 0.35-0.62 Hz. Both soft-soft and stiff-stiff zones are

not suitable for design purpose and more effort is required to ensure that the fundamental nat-

ural frequency (fn) falls within the soft-stiff zone by a margin of 10% from either side (Arshad

and OKelly, 2013, Bhattacharya et al., 2013a, Petrini et al., 2010).

Figure 1.7: Typical loading frequency regions of a 5 MW turbine structure, from
Bhattacharya et al. (2013b)

.

As shown in Fig. 1.7, three possible frequency regions in which the natural frequency of the

turbine may safely reside without resulting in resonance are discussed below;

1. Soft-Soft design system (fn < 1P < 3P)

The frequency in soft-soft zone is essential for the design of small turbine with natural
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frequency limited to 0.1 Hz. The approach of this type is possible for a smaller turbine

with output production of less or equal to 2 MW (Augustesen et al., 2009, Haigh, 2014).

For the turbines with additional capacity, the mass of blades and nacelle will increase and

leading to low fundamental natural frequency. The low natural frequency is not sufficient

for soft-soft design and the slender structure would lead to unacceptable rotations and

displacement of the pile-head (Byrne and Houlsby, 2003, Haigh, 2014, Kirkwood, 2016).

2. Stiff-Stiff design system (fn > 3P > 1P)

For this type of structure, the design could be performed by increasing the diameter of the

tower while keeping the thickness constant. For instance, a typical 5 MW rated output

power of larger tower (D=6 m, t=0.1 m, L=65 m, Ma = 350 tonnes, Mt = 650 tonnes)

has the natural frequency (fn) of 0.97 Hz, which is found in a stiff-stiff frequency range

(see Fig. 1.7). The larger the weight of the turbine component leads in high cost of

material and construction (Kirkwood, 2016). Therefore, the stiff-stiff structure is not a

good choice for offshore wind turbine (Bontempi et al., 2009, Haigh, 2014, Malhotra

et al., 2009).

3. Soft-Stiff design system (1P < fn < 3P)

In the soft-stiff design system, the wind action frequencies could be more dangerous than

the waves, but the fatigue effect could still be relevant. The system is susceptible to the

changes of foundation stiffness (Bhattacharya et al., 2013b). If the foundation becomes

softer under the action of cyclic loading, the natural frequency will drop and leading to

more significant oscillation of the tower and foundation. The foundation designed must

be able to carry substantial vertical, lateral and moment loads with minimum displace-

ment and maintain the higher stiffness for entire design life of 20 to 25 years (Byrne and

Houlsby, 2003, Haigh, 2014). This is the only sensible approach targeting a natural fre-

quency from 0.2 to 0.3 Hz (see Fig. 1.7). DNV (2014) suggested the tolerance of 10% of

the natural frequency between 1P and 3P for proper design of wind turbines. To ensure

this range of frequency is achieved for designers, it is essential to understand the change

in foundation stiffness arising from cyclic lateral loading.
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1.5 Research aims and objectives

The work presented in this thesis relates to offshore wind turbine monopiles with the focus

on the development of experimental loading device for testing models within a geotechnical

centrifuge. The outcomes obtained from this research will improve the available geotechni-

cal centrifuge model testing practices and help resolve challenges arising from 1g laboratory

physical model testing. Therefore, the main objective of the project is to model, both experi-

mentally and analytically, the response of wind turbine monopiles, subjected to both monotonic

and cyclic loading. This is achieved through the following specific objectives:

1. To design and develop a testing device of a model pile in sand, subjected to both mono-

tonic and cyclic loading, as well as carrying out and interpreting the model pile tests

performance when it is embedded in a non-cohesive soil.

2. To identify the monotonic responses and determine the capacity of the pile and its initial

stiffness. This is achieved by conducting monotonic pushover tests of the model pile in

sand using the centrifuge.

3. To understand clearly the performance of the developed centrifuge model and the model

pile-head response in sand, under lateral cyclic loading, particularly in the following

aspects;

(a) Accumulated displacement after several cycles.

(b) Change in cyclic stiffness as the number of cycles increases.

4. To develop a simplified analytical solution for back analysis of experiment model tests.

By knowing the important parameters from the experiment, the analytical solution for

a single laterally loaded pile under monotonic and cyclic loading is achieved using the

currently available mathematical models.
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1.6 Outline of the thesis

This section provides a general outline of the chapters included in this thesis as described below;

1. Chapter 1: Introduction

Outlines the offshore wind energy background, a general outlook of the foundation op-

tions, the details of the monopile foundations, a brief overview of the loads, research

objectives and outlines of the thesis.

2. Chapter 2: Literature review

Presenting a critical review of the published literature relevant to this study, covering

behaviour of soil and pile under lateral monotonic and cyclic loading including the review

of the current developed model devices.

3. Chapter 3: Experimental methodology

Provides details of the fundamentals of geotechnical centrifuge testing, the experimental

equipment developed for monotonic and cyclic loading, instrumentation and data acqui-

sition systems, testing procedures and programme.

4. Chapter 4: The monotonic response

This chapter presents the monotonic lateral load responses for both experimental and

analytical modelling. The response of existing models to predict the lateral response of

the monopile are also included and discussed.

5. Chapter 5: Cyclic experimental results

This chapter presents and discusses the results of a series of model tests carried out on a

single pile embedded in dry Congleton sand. It includes discussions on the changes in pile

head stiffness and displacement that result from cyclic lateral loading of a monopile. The

framework is provided that accounts for analysis of collected data from the experiment.

The proposed functions are used to predict the response of pile-head displacement and

change in stiffness after being subjected to several number lateral load cycles.

6. Chapter 6: Cyclic theoretical analysis

This chapter describes a simple theoretical method for analysis of a single rigid monopile
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foundation under cyclic loading. Based on the model developed, a procedure of estimat-

ing the cyclic load on the pile is suggested. Finally, with available experimental data, the

analytical model is validated.

7. Chapter 7: Conclusions and future work

The chapter concludes the findings of the current research, suggests areas of improvement

and additional work that will be beneficial for future work.





Chapter 2

LITERATURE REVIEW

2.1 Introduction

This chapter provides a critical review of the previous and recent literature relevant for this

study. It aims to review methods being used within the offshore industry, the available research

and current development trends. The difference between the existing methods, their limitations

as well as other insights are revealed to construct the basis of the model development.

Generally, when lateral monotonic loads are applied to the pile head, the load is transferred

directly to the soil. The load transferred creates strains in the soil, which contribute towards the

deflection or rotation of the pile. When the soil reaches or exceeds the ultimate soil capacity

or maximum shear stress at the soil-pile interface, the pile is expected to fail. Similarly, under

cyclic loading the surrounding soil will also experience the effect of cyclic stress and strain,

which results in cyclic load-displacement response of the pile head. Therefore, the behaviour

of a monopile foundation subjected to both monotonic and cyclic loading will depend on the

response of soil and soil-pile interface. Furthermore, when the load is applied on the pile head,

rearrangement of soil grains surrounding the pile tend to change the stiffness response of the

pile and induce more accumulation of rotation of the tower. The change of pile stiffness will

automatically affect the natural frequency of the system. Accordingly, the literature available

on the following areas are reviewed.

(a) Monotonic response and design approach of monopiles

(b) Behaviour of soil under cyclic loading

(c) Behaviour of piles under cyclic loading

(d) Existing cyclic loading devices

19
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2.2 Monotonic response and design approach of monopile

2.2.1 Introduction

In this section the basic concept, analysis, and behaviour of laterally loaded piles in soil under

monotonic loading are briefly reviewed and discussed. Generally, when the lateral load is

applied to the pile head, the load is transferred directly to the soil. The transferred loads can

cause a relative deformation of both soil and pile, which creates stresses and strain within the

soil (Dodds and Martin, 2006, LeBlanc, 2009). The interaction that occurs between the pile

and the soil is the primary topic to be reviewed. The analysis of pile-soil interaction can be

classified into two different aspects, namely the deformation response for prediction of the pile

head displacement or rotation and estimation of the ultimate resistance for the overall stability

of the foundation (Cuéllar, 2011, Klinkvort et al., 2012). Therefore, the behaviour of piles

under monotonic loading depends on the following three criteria: soil must not be stressed

beyond its ultimate capacity, the pile-head deflection should be in the range of 10-20% of pile

diameter and the structural integrity of the system must be assured (Dodds and Martin, 2006).

The discussion of these criteria is presented in the following sections.

2.2.2 Failure mechanism, rigidity and ultimate resistance

2.2.2.1 Failure mechanism

The ultimate soil resistance, provided by the soil against the surface of the pile, is an essential

parameter in the analysis of the laterally loaded piles (Zhang et al., 2005). It always depends

on a complete yielding of the soil along the pile depth or structural failure in the pile material.

The two possible failure mechanism, which were assumed to derive the ultimate soil resistance

of rigid and flexible piles, are shown in Fig. 2.1. The failure mechanism depends on the

pile slenderness (pile length to diameter ratio,
(
L
D

)
, strength of the soil as well as the yield

resistance of the pile section (Broms, 1964, Cuéllar, 2011). As shown in Fig. 2.1(a), a rigid

pile mobilises soil resistance along the embedded length excluding the rotation point (Broms,

1964). In contrast, a flexible pile (see Fig. 2.1(b)) will mobilise soil resistance close to the
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ground surface. As shown in Fig. 2.1, if the similar loads are employed to both rigid and

flexible piles the deflection of the pile-head, bending moment and soil resistance, along the pile

length, will look different.

 Hi
 Mi

 L

Deflection Soil
resistance Shear Moment

 θ

(a) Rigid Pile

 Hi

 Mi

 L

Shear MomentDeflection

(b) Flexible pile

Figure 2.1: Principle behaviour of a rigid and flexible pile, from Cuéllar (2011)

2.2.2.2 Embedded depth and rigidity of the pile

The laterally loaded pile can be classified as rigid or flexible depending on the relative stiffness

ratio of the pile-soil system and embedded depth of pile (Briaud et al., 1983, Budhu and Davies,

1987, Carter and Kulhawy, 1992, Dobry et al., 1982, Guo, 2001, Kuo et al., 2011, Poulos and

Davis, 1980, Randolph, 1981). According to Arany et al. (2017) and Kuo et al. (2011) the

rigidity of pile is depends on the critical embedded pile length, which is based on the following

criteria:

1. The pile length is chosen such that the displacement of the pile toe is zero or negative.

2. The pile length is chosen such that the deflection curve has a vertical tangent at the pile

toe.

3. The pile length is chosen such that a further increase in pile length has no (or very limited)

effect on the displacements (deflection and rotation) at the pile head.
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For monopiles, the third rule was seen to be practical and suitable for determining the embedded

length of the pile (Arany et al., 2017). Randolph (1981) proposed a critical length based on the

ratio of pile length to diameter related to modified shear modulus of soil, G∗ (see Eq. 2.3),

and equivalent Young’s modulus of pile, Eeq (see Eq. 2.4). The modified shear modulus, G∗,

incorporated the effect of poison’s ratio on the deformation of the laterally loaded pile, where

Gs is modulus of the soil averaged between the ground surface and the embedded depth of

the pile. An equivalent Young’s modulus for the solid pile, Eeq, is assumed to be of the same

flexural stiffness and cross-sectional area as the actual pile. With a known shear modulus, G∗,

the pile length embedded into the soil (Lp) is estimated by using Eq. 2.1. However, Eq. 2.1

is frequently used for flexible piles (Arany et al., 2017). Carter and Kulhawy (1992) reported

that for the pile to behave more rigidly, Eq. 2.2 should be satisfied with Eeq being an effective

Young’s modulus of the pile, where Lp is embedded length and Dp is the outer diameter of the

pile.

Lp 6 Dp

(
Eeq

G∗

)2

7 (2.1)

Lp > Dp

(
Eeq

G∗

)2

7 (2.2)

G∗ = Gs

(
1 +

3

4
νs

)
(2.3)

Eeq =
EpIp(
πD4

p
64

) (2.4)

Furthermore, Poulos and Hull (1989) suggested that a pile exhibits rigid or flexible behaviour

if the embedded length of the pile (L) satisfies Eq. 2.5 and Eq. 2.6, respectively, where Ep is

pile stiffness, Es is the soil stiffness and Ip is the moment area of inertia.

L < 1.48

(
EpIp
Es

)0.25

(2.5)

L > 4.44

(
EpIp
Es

)0.25

(2.6)

An example of a typical steel monopile, 5 m in diameter, 60 mm wall thickness and embedded

depth (L) of 25 m, is considered to be installed in sand. By using Eq. 2.5, a rigid behaviour

is observed when Es < 7.3 MPa, while flexible behaviour (Eq. 2.6) require Es > 590 MPa.
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Therefore, the length of monopile, L = 25 m, lie closer to the condition required for rigid

behaviour (Eq. 2.5), but some bending of the pile will be expected.

2.2.2.3 Ultimate soil resistance for cohesionless soil

The estimation of ultimate lateral load capacity (Hu) of the pile requires two important com-

ponents: the magnitude of lateral soil resistance (Pu) and distribution of soil resistance (Pi)

mobilised along the embedded length of pile (L). Studies have proposed different methods for

determining the ultimate lateral resistance of rigid piles in cohesionless soils (Barton, 1982,

Broms, 1964, Fleming et al., 1992, Hansen, 1961, Petrasovits and Awad, 1972, Poulos and

Davis, 1980, Prasad and Chari, 1999, Reese et al., 1974, Zhang et al., 2005) and they were

analysed by approximation and assumptions (Zhang, 2009). Most of these methods have been

developed based on the theory of earth pressure and considered a three-dimensional pile-soil

interaction. Zhang et al. (2005) reported that an estimate of Pu in the soil can provided different

values, leading to a complex choice of the appropriate method to determine the capacity of the

pile (Hu). Some other expressions have been proposed from previous studies, most of which

use the concept of active and passive lateral earth pressure coefficients to define the ratio of

horizontal to vertical stress within the soil (Zhang, 2009).

For the first time, Terzaghi (1955) proposed a method to determine the ultimate soil resistance

(Pu) and suggested the maximum capacity less than half the vertical bearing capacity of soil.

The yield stress is considered as the maximum average horizontal soil resistance at the pile-soil

interface. On the other hand, the ultimate soil resistance (Pu) suggested by Hansen (1961) in-

volves three different sections of failure mechanism such as on the ground surface, at average

and deep depth. They are all taken from a test conducted on a rigid square cross section. At

deeper depth, the resistance was derived from failure in a horizontal plane; at moderate depth an

equilibrium of Rankine passive wedge was used; while on the ground surface, the yield stress

is taken as the resultant between the active and passive stress coefficients. A summary review

of existing method for prediction of ultimate lateral soil resistance for sandy soil is presented

in Table 2.1.
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Table 2.1: Ultimate soil resistance, Pu, for cohesionless soil

SN Expression [FL–1] Reference

1 Pu = (qKq + cKc)D Hansen (1961)

2 Pu = 3Kpγ
′ZD Broms (1964)

3 Pu = (3.7Kp – Ka)γ′ZD Petrasovits and Awad (1972)

4 Pu = γ′ZKoNq Meyerhof et al. (1981)

5 Pu = Min

(C1Z + C2D) γZ

C3DγZ

Murchison and O’Neill (1984)

6 Pu = (10(1.3tanφ+0.3))γ′ZD Prasad and Chari (1999)

7 Pu = β1KpγdDZn Tak Kim et al. (2004)

8 Pu =
(
0.8Pmax + τmax

)
D Zhang et al. (2005)

where;

Kp = tan2
(
45 +

φ′

2

)
⇒ Passive earth pressure coefficient

Kq = e

(π
2
+φ′
)
cos(φ′)tan

(π
2
+

φ′

2

)
– e

(–π
2

+φ′
)
tanφ′

cosφ′tan
(π
4
–
φ′

2

)
Kc =

[
e

(π
2
+φ′
)
tan(φ′)

cos(φ′)tan
(π
4
+

φ′

2

)
– 1
]
cot(φ′)⇒ Earth pressure due to cohesion

Nq = e

(
πtan(φ′)

)
tan2(45 +

φ′

2
)⇒ Bearing capacity factor, Ko = 1 – sin(φ′)⇒ Earth pressure at rest

K = (0.7 – 2)Ko⇒ Lateral earth pressure coefficient, δ⇒ interface friction angle, in degree.

Z⇒ Depth from the ground surface, in meter, D⇒ Diameter of the pile, in meter

γ ⇒ Unit weight of soil, kN/m3, φ′ ⇒ Effective friction angle

C1 = 0.115 ∗ 100.0405φ′
, C2 = 0.571 ∗ 100.022φ′

, C3 = 0.646 ∗ 100.0555φ′
(API, 1993)

β1⇒ scaling factor for ultimate soil resistance, n⇒ constant, linear or non-linear constant

A function suggested by Hansen (1961) is shown in Table 2.1, (SN 1). Another method was

proposed by Broms (1964) who did not divide the soil into layers to determine the ultimate re-

sistance of soil but argued that at the ground level the soil surface exhibits an upward movement

while at increasing depth the soil tends to move horizontally around the pile. This behaviour

is only for cohesionless soil, however, for the pile in the cohesive soil the separation on the

back of pile is observed. It is observed that in cohesionless soil, the sand tends to flow and fill
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gap which is termed as a useful behaviour to distinguish between the resistance of soil at the

ground surface and that at a depth below the ground. Where Broms (1964) method is empirical

and was derived from full-scale tests with function shown in Table 2.1 ((SN 2)). Petrasovits

and Awad (1972) and Prasad and Chari (1999) also recommended the empirical method to

predict ultimate soil resistance on rigid piles in sand (Shown in Table 2.1 as SN 3 and SN 6,

respectively). Petrasovits and Awad (1972) considered both passive (Kp) and active (Ka) earth

pressure coefficient and shape factor of 3.7. However, Prasad and Chari (1999) derived the

ultimate soil resistance in a different approach. The total ultimate force (Hu)(kN) was obtained

by considering Pu(kN/m) distribution along the embedded length (L) of the rigid pile with a

depth of rotation point (Zr) where γ (kN/m3) is the effective unit weight of soil, φ is internal

friction angle, D is the diameter of the pile. In this analysis, both sides of shear and passive

earth pressure, equilibrium of both forces (see Eq. 2.8), and moment (see Eq. 2.9) are em-

ployed and the depth of rotation point is derived as shown in Eq. 2.10. The parameter Le is a

load eccentricity from the ground surface.

Hu = 0.24 ∗ 10(1.3tanφ+0.3)γZrD(2.7Zr – 1.7L) (2.7)

Hu =

∫ L

0
0.8PDdZ (2.8)

Hu ∗ Le =

∫ L

0
0.8PDZidZ (2.9)

Zr =
(5.307L2 + 7.29L2

e + 10.541L ∗ Le)
0.5 – (0.567L + 2.7Le)

2.1996
(2.10)

Moreover, Meyerhof et al. (1981) conducted a study and proposed an expression (see Eq. 2.11)

to determine the ultimate horizontal force (Hu). The Pu was estimated based on a mobilised

passive and active state in front and behind of the pile, respectively. Although the active state

was neglected due to its small values. As shown in Eq. 2.11, the modes of failure at shallow

and deeper depth is estimated based on the net earth pressure coefficient, Kbr, which is shown

in Fig. 2.2. Kbr is plotted against the depth to diameter ratio (L/D) of pile and angle of friction

for sand, φ.

Hu = 0.12γDL2Kbr (2.11)

The plots in Fig. 2.2 are used for estimation of pile capacity (Hu) while the ultimate soil

resistance (Pu) of sand is estimated by using Equation (SN 4) in Table 2.1. In Eq.2.11, the
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Figure 2.2: Variation of Kbr, versus shape ratio (L/D), from Meyerhof et al. (1981).

point of rotation (Zr) is assumed to be at the pile tip.

Zhang et al. (2005) proposed an empirical expression for the ultimate soil resistance (Pu) on a

rigid pile (Equation (SN 8) in Table 2.1). As shown in Fig. 2.3, an increase of soil pressure

(Pmax) in front of the pile and side shear stresses (τmax) acting on the side of the pile are

considered. A similar approach by Prasad and Chari (1999) was employed and the ultimate load

capacity, Hu, was obtained by using Eq. 2.12, where, Ko is lateral earth pressure coefficient at

rest, δ is the interface friction angle between the pile and soil.

Hu = 0.3(0.8K2
p + 1.4Kotanδ)γZrD(2.7Zr – 1.7L) (2.12)

Reese et al. (1974) on the other hand, provided a more complex variation of ultimate lateral

resistance for cohesionless soil, which include a wedge and plane-strain failure near the ground

surface and deep depth, respectively (see Fig. 2.4). From these figures, the values of Pu with

depth can be determined from the lesser of the values obtained in Eqs. 2.13 and 2.14 for shallow

and deep depth, respectively, where Ka = tan2
(
45 –

φ

2

)
is the active pressure coefficient, Ko

is at rest earth pressure coefficient, β = 45 + φ/2, α is the shape wedge angle, φ is internal

friction angle.
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Figure 2.3: Distribution of Pmax and τmax around the pile, from Zhang et al. (2005)

(a) Failure mode for shallow depth (b) Failure mode for deep depth

Figure 2.4: Ultimate resistance at shallow and deep depth, from Reese et al. (1974)

It should be noted that the curves of both equations will intersect at the assumed point A at a

depth ZA. Therefore, above ZA, Eq. 2.13 can be used to calculate Pu while below ZA, Eq. 2.14
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is used.

Pu = γZ

[
D(Kp – Ka) + Z(Kp – Ko)

√
Kptanα+ ZKo

√
Kp

( 1

Cosα
+ 1
)

tanφsinβ

]
(2.13)

Pu = γZD
(

K3
p + KoK2

ptanφ – Ka

)
(2.14)

Bogard and Matlock (1980) and Murchison and O’Neill (1984) simplified the equations devel-

oped by Reese et al. (1974) and grouping the terms to form the factors that varies with φ (Zhang

et al., 2005). The ultimate soil resistance (Pu) shown in Table 2.1 (SN 5), can be taken as the

minimum of Eqs. 2.15 and 2.16. These formulations are the one currently used in the main

design standards for offshore wind turbines (API, 2007, DNV, 2014, GL, 2007, ISO, 2007).

Pu,(shallow) = γZ
(

C1Z + C2D
)

(2.15)

Pu,(deep) = γZDC3 (2.16)

According to Cuéllar (2011), the design of monopiles is governed by deformation behaviour

rather than ultimate soil resistance, because the main focus is serviceability conditions for the

pile rotation. More discussion of deformation behaviour is presented in the following sections.

2.2.3 Methods of pile analysis under monotonic loading

2.2.3.1 Introduction

The analysis of the monotonic response of a pile has advanced from the early idealisation of

the beam interacting with a linear elastic embedment to advanced techniques allowing for non-

linear behaviour (Cuéllar et al., 2012). Several approaches have been developed that attempted

to model the lateral response of piles in sand. As noted by Wesselink et al. (1988) and Tak Kim

et al. (2004), the available methods are Winkler or subgrade (Broms, 1964, Carter and Kul-

hawy, 1992, Choo et al., 2013, Fleming et al., 1992, Hansen, 1961, Matlock, 1970, McClelland

and Focht, 1958, Meyer and Reese, 1979, Murchison and O’Neill, 1984, Prasad and Chari,

1999, Reese et al., 1974, Zhang, 2009, Zhang et al., 2005, Zhu et al., 2015), elastic continuum

(Banerjee and Davies, 1978, Budhu and Davies, 1988, Han et al., 2015, Kuhlemeyer, 1979,
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Poulos, 1971, Poulos and Davis, 1980, Randolph, 1981) and finite element (Abdel-Rahman

and Achmus, 2005, Ahmed and Hawlader, 2016, Brown and Shie, 1991, Desai and Zaman,

2013, Guo and Ghee, 2006, Kampitsis et al., 2015, Lesny and Wiemann, 2006). These methods

are summarised in Table 2.2, including a brief discussion on advantages and disadvantages of

each method.

Table 2.2: Current design methods for laterally loaded piles (Tak Kim et al., 2004).

Method Description

Winkler model (BEF/BWF) • Independent elastic soil springs and Kh is constant

• Limited to uniform structural size and impossible to

apply practically

• By means of FDM, difficult to introduce general

boundary conditions at pile top and tip.

• Cannot provide a non-linear response

p-y curve method • Based on Winkler foundation model

• Soil springs represented by nonlinear soil response

• Widely used in the design due to simplicity

• Uncoupled springs (no continuity of soil)

Elastic continuum method • Models soil as a continuum, use Mindlins equation

• Homogeneous, and linearly increasing soil modulus

• complex to use in layered soil

Finite element method • Anisotropic and considered non-linear soil

• Considered soil-pile interaction in 3-D

• Complex constitutive equations modelling



30

2.2.3.2 Winkler model (Beam on Elastic Foundation)

The early approach proposed by Winkler (1867), popularly known as Beam on Elastic Foun-

dation (BEF) or Beam on Winkler Foundation (BWF), treated the embedding soil as a series

of independent discrete springs distributed along the length of the pile (L) (see Fig. 2.5). The

method assumed that the pile deflection (yn) at any point of the soil spring in contact with pile

is linearly related to the contact pressure (pn = Pz(i)) at any given point of the pile and inde-

pendent of contact stress of other points. The soil pressure ( pn) (in terms of FL–2) is usually

defined in terms of constant subgrade reaction (kh) and pile deflection (yn = yz(i)) (Pn = khyn),

where the unit of kh is F/L3. The distributed springs represent a horizontal modulus of sub-

grade reaction, Kh, which depend on soil type, depth and size of foundation (Cuéllar, 2011,

Qin, 2010) and always is constant along the depth. The behaviour of such pile can be estimated

by using a fourth-order differential equation shown in Eq. 2.17, where, yn is the pile deflection

at specific point from 1 to n along the embedded depth, Ep is Young’s modulus of pile, and Ip

is the moment area of inertia of the pile. As shown in Eq. 2.18, the soil resistance, Pz(i) (in

terms of FL–1) is the function of contact pressure and pile diameter, D.
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Figure 2.5: Spring distribution for Beam on Winkler Foundation (BWF)
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EpIp
d4y

dz4
+ Khyn = 0 (2.17)

Pn = Pz(i) = pnD = khynD (2.18)

A closed form solution suggested by Hetényi (1946) has been used in this method to solve Eq.

2.17, considering a constant Kh along the depth. Reese and Matlock (1956) developed a similar

solution using Eq. 2.17 with an assumption that parameter Kh increases linearly with depth,

while Matlock and Reese (1960) proposed a different approach with power distribution of Kh

with depth. Furthermore, Vesic (1961) conducted a rigorous analysis of beam sitting on elastic,

isotropic half-space medium and obtained an analytical solution to determine deflection, slope,

moment, shear force and soil pressure.

Numerical solutions using FDM and FEM have also been proposed to solve Eq. 2.17 (Desai

and Zaman, 2013, Gleser, 1953, Matlock and Reese, 1960, Reese and Matlock, 1956). These

solutions require a repeated application of elastic theory with the values of the modulus of

subgrade reaction (Kh) adjusted until the values of soil pressure (Pn) and deflection (yn) are

obtained in the solution (Welch and Reese, 1972). The parameter Kh is important in obtaining

the solution of the laterally loaded pile, therefore, the details are discussed in Section 2.2.3.3.

2.2.3.3 Modulus of subgrade reaction

The modulus of horizontal subgrade reaction in the analysis of a single pile, under lateral load-

ing, can play a significant role for the p-y curves. A nonlinear p-y curves (discussed in the next

section) requires an initial (or maximum) modulus of horizontal subgrade reaction at the start of

the load application. Therefore, in this section, the historical background of Kh parameter is re-

viewed. As noted from Qin (2010), several methods are available for determining the modulus

of subgrade reaction and some of them are listed in Table 2.3. The modulus of subgrade reac-

tion can be measured directly from a full-scale instrumented pile, where the soil resistance and

pile deflection are recorded. Experimentally, Kh has been investigated by researchers (Bowles

et al., 1996, Poulos and Davis, 1980, Reese and Van Impe, 2010, Terzaghi, 1955). Nonetheless,

the Kh values, along the embedded depth, can be estimated by using the empirical or analytical

expression, which employing other properties of cohesionless soil such as Young’s modulus,

shear strength and relative density.
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Table 2.3: General expression for estimating modulus of subgrade reaction

Empirical Expression Reference

Kh =
1.23Es

C
(
1 – v2s

) [ EsD
4

C
(
1 – v2s

)
EpIp

]0.11
Biot (1937)

Kh =
22.24Es (1 – vs)

(1 – vs) (3 – 4vs)

[
2ln

(
2L

D

)
– 0.443

] Glick (1948)

Kh =
0.65Es(
1 – v2s

) [EsD
4

EpIp

] 1
12

Vesic (1961)

Kh =
16πGs (1 – vs)

(3 – 4vs) ln

[
2R

D

]2
–

[
2

(3 – 4vs)

] Baguelin et al. (1977)

Kh =
1.0EsD(

1 – v2s
)

Dref

[
EsD

4

EpIp

] 1
12

,⇒ Dref = 1 m Carter (1984)

Kh =
3πGs

2

[
2γb

K1(γb)

Ko(γb)
– γ2b

((
K1(γb)

Ko(γb)

)2

– 1

)]
Guo (2008)

⇒ γb = k1

(
Ep

G∗

)k2
(

L

ro

)k3

Kh =
qEsD(

1 – v2s
)

Dref

[
EsD

4

EpIp

]j
,⇒ Dref = 1 m Desai and Zaman (2013)

C= Coefficient vary from 1 for uniform pressure distribution to 1.13, uniform deflection
R= Radius of the outer rigid boundary of elastic soil zone
D= Diameter of the pile, L= Embedded depth of the pile
Ki(γb) =modified Besel function of second kind of ith order, q, j= Adjustment constant parameters
k1, k2, k3 =Coefficient for estimating non-dimension parameter, γb

The concept of beams on the elastic foundation was initially proposed by Biot (1937), who

studied the bending of an infinite beam under concentrated load resting on an elastic three-

dimensional foundation. His work was extended by Vesic (1961) and a newly developed ex-

pression was adopted in a number of studies. The empirical expression was capable to evaluate

the distribution of pile deflection, bending moment, shear forces and soil pressure along the

depth of the pile. Furthermore, Bowles et al. (1996) suggested that for the soil to be in contact

from both sides of the shaft, the Vesic (1961) expression must be doubled to determine the

response of the pile. However, the soil cannot have contact all around the pile when the pile

is subjected to lateral loading, but the friction developed on both sides of the pile can increase
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the overall soil resistance (Ashford and Juirnarongrit, 2003, Zhang et al., 2005). Moreover,

Carter (1984), Ling (1988) and Ashford and Juirnarongrit (2003) examined the available data

from lateral load testing and modified the Vesic (1961) expression to account for the effect of

pile diameter. For instance, Carter (1984) and Ling (1988) have found the closest agreement

in predicting the pile deflection by using a constant factor of 1.0. However, Desai and Zaman

(2013) introduced the parameter q and j in the expression of Carter (1984) instead of using

the constant value 1.0 and 1
12 , respectively. These parameters can then be adjusted until the

required response is achieved.

The modified expression proposed by Carter (1984) and Desai and Zaman (2013) are preferred

in this study for the analysis of monopile in a cohesionless soil as it includes the adjustment

parameters and diameter of the pile (D).

2.2.3.4 The p-y method

For deformation analysis, the p-y curve method adopted from the Winkler model, is the most

widely used in practice due to its mathematical simplicity and ease of implementation of soil

nonlinearity, soil layering and other parameters (Wesselink et al., 1988). In this method, the

soil surrounding a pile is replaced by a series of uncoupled nonlinear springs attached along

the embedded length of the pile (L) at discrete locations (see Fig. 2.6). The springs can be

represented by a relationship between the soil resistances (Pz(i)) arising from the non-uniform

stress field surrounding the pile and lateral pile deflection (yz(i)), widely known as p-y curves.

A major limitation of this method is its inability to capture the continuity of the soil medium.

However, the method can accommodate the experimental results and account for soil separation

from the pile and sliding at the pile-soil interface (Gerolymos et al., 2009). Most available p-y

curve soil models and their features are summarised in Table 2.4.
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Figure 2.6: Spring distribution for beam on winkler foundation (BWF)

In the past, investigations of the soil-pile interaction using full scale tests on instrumented pile

have been carried out to derive the p-y curves. Hetényi (1946) developed a concept of repre-

senting the ground with a series of elastic springs so that the compression (or extension) of the

spring is directly proportional to the applied load. Reese and Matlock (1956) as well McClel-

land and Focht (1958) and Matlock (1970) experimented and demonstrated that the soil resis-

tance at a given point on the pile is independent of pile deflections at points above and below,

supporting the underlying assumption that spring is uncoupled in the p-y approach (Brødbæk

et al., 2009, Doherty and Gavin, 2012, LeBlanc, 2009). Furthermore, with field experiments

carried out on Mustang Island in Texas, Reese et al. (1974) and Cox et al. (1974) developed

a semi-empirical non-linear p-y approach, in which degradation factors obtained empirically

were used to predict cyclic p-y relationship based upon degraded static p-y curves. The tests

were carried out on the two an open steel tube of diameter (D = 0.61m) and wall thickness

(t = 0.0095m), driven to a penetration depth (Le = 21m) in saturated sand. From the results,

the integration and differentiation of bending moment profile as shown in Eq. 2.19 and 2.20,
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Table 2.4: A summary of available soil model p-y curves (Tak Kim et al., 2004)

Reference Expression Remark

Ramberg and Osgood (1943) Pz(i) =
Khyz(i)(

1 +

(
Khyz(i)

Pu

)r)1

s

Derived from stress
- strain relationship
of soil in triaxial
compression tests

Kondner (1963) Pz(i) =
Khyz(i)

1 +
Kh

Pu
yz(i)

Derived from
stressstrain rela-
tionship of soil in
triaxial compression
tests

Klinkvort and Hededal (2014) Pz(i) =
yz(i)

1

khZ
+

yz(i)

APu

Derived from the re-
sults of centrifuge
tests for monopile

Scott (1980) Pz(i) =
σ′mD

1

π

(
1

sin2φ
+

1

(3 – 4D)

)0.5
Derived from the
results of cen-
trifuge tests. σ′m =
1

3

(
σ′1 + σ′2 + σ′3

)
Murchison and O’Neill (1984) Pz(i) = APutanh

[(
khZ

APu

)
yz(i)

]
Derived from back
analyses of full-
scale instrumented
pile load test on
sand

Wesselink et al. (1988) Pz(i) = RD

(
Z

Zo

)w(yz(i)

D

)m

Derived from the
results of full-scale
tests in calcareous
sand. Where, Zo =1
m, R=650 kPa,
w=0.7, m=0.6

respectively have been used to develop the experimental p-y curves, considering soil-pile fail-

ure modes at the shallow and deep soil. The typical plots of semi-empirical p-y curves for a

rigid pile in sand, from Zhu et al. (2015) and Klinkvort (2013), are shown in Fig. 2.7.

yz(i) =

∫ ∫
M(Z)

EI
dZ (2.19)
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Pz(i) =
d2

dZ2
(M(Z)) (2.20)
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Figure 2.7: Typical p-y curves from the published studies

Several studies (Bogard and Matlock, 1980, Matlock, 1970, McClelland and Focht, 1958, Reese

and Matlock, 1956, Reese and Van Impe, 2010, Scott, 1980, Welch and Reese, 1972) on p-y

curves have been conducted on both sand and clay, following similar assumptions proposed by

Reese et al. (1974). Murchison and O’Neill (1984) was conducted a study to compare different

p-y curves derived from full-scale test of pile in sand. A compiled data set obtained has led to

incorporate the model into API (2007) and DNV (2014) design code, which represent the cur-

rent state of the art for the design of oil and gas industries and offshore structures, respectively.

The p-y curves from Reese et al. (1974) and Murchison and O’Neill (1984) were combined to

formulate a tangent hyperbolic model (see Eq. 2.21). The model function is currently used

for offshore wind turbine monopiles and has been incorporated into current design code (DNV,

2014). A hyperbolic tangent formula is used to describe the relationship between soil resistance

and pile deflection instead of piecewise formulation proposed by Reese et al. (1974).

Pz(i) = APutanh

(
khZ

APu
yz(i)

)
(2.21)

The ultimate soil resistance (Pu), approximated by using Eq. 2.22, can be taken as the minimum

of Pus and Pud as shown in Eq. 2.23, 2.24, respectively, where γ is the unit weight of soil, D is
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diameter of pile, C1, C2, and C3 (shown in Fig. 2.8(a)) are the dimensionless parameters.

Pu = min (Pus, Pud) (2.22)

Pus = (C1Z + C2D) γZ (2.23)

Pud = C3γZ (2.24)

where;

A =
(

3 – 0.8 Z
D

)
> 0.9 For static Loading [–]

A = 0.9 For cyclic loading [–]

C1, C2, C3 Empirical factors depend on φ (Fig.2.8(a)) [–]

The pile-soil stiffness Kpy can be obtained by differentiating Eq. 2.21 and obtain Eq. 2.25

d

dZ

[
APutanh

(
khZ

APu
y

)]
= APu

khZ
APu

cosh2
khZyz(i)
APu

(2.25)

From Eq. 2.25, the initial stiffness at displacement of y = 0 is given as shown in Eq. 2.26,

where kh represents the constant initial modulus of subgrade reaction and can be obtained in

Fig. 2.8(b), which depends on relative density Dr or friction angles φ.

Kpy = khZ (2.26)

The experiment implementation of the p-y curves requires a numerical procedure to solve a

fourth order differential equation and integration for beam bending moment profile. According

to Euler-Bernoulli beam theory, the governing fourth order differential equation for determina-

tion of pile deflection is shown in Eq. 2.27. More details for this equation have been explained

by Brødbæk et al. (2009) and Sørensen (2012).

EpIp
d4yz(i)

dZ4
– H

d2yz(i)

dZ2
– Kpyyz(i) = 0 , Z ∈ [0 : L] (2.27)
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(a) Coefficients, C1, C2, C3 (b) Initial modulus of sub-grade reaction, kh

Figure 2.8: Coefficients for construction of p-y curves in sand, from Reese et al.
(1974) and DNV (2014)

2.2.3.5 Limitations of p-y curve method

The diameter of piles used in oil and gas sectors typically ranges from 1.8 – 2.7 m (Lombardi

et al., 2013) with 60 – 100 m length. However, when compared to an offshore wind turbine, it

observed to be different with maximum embedding length, Lmax, of approximately 30 – 40m

with pile diameter of 4-8 m (Sørensen, 2012). The use of the p-y curve method stipulated in the

DNV (2014) design standard seems to contain some limitations (Fan and Long, 2005, Klinkvort

et al., 2012, Lombardi et al., 2013) such as:

1. Failure mechanism.

• The p-y curve method was developed from the field experiment conducted on slen-

der piles. However, it is currently used in the design of the offshore monopiles.

• The method did not consider the failure mode on monopile, in which the formation

of a passive soil wedge is considered above and below the point of rotation.
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2. Diameter effect on initial stiffness.

Terzaghi (1955) was the first to estimate the effect of pile diameter based on the initial

modulus of subgrade reaction, Kh, on flexible piles, while Pender (1993) investigated the

influence of pile diameter into modulus of subgrade reaction. However, there seems to be

no clear correlation between the pile diameter and modulus of subgrade reaction. A FE

analysis conducted by Ashford and Juirnarongrit (2003), for flexible piles of 0.15-1.07 m

in diameter, showed that the pile diameter has insignificant effect on the pile response and

modulus of subgrade reaction, instead an increase of pile diameter appeared to decrease

the pile head displacement and the maximum moment. A numerical approach was also

followed by Fan and Long (2005) to investigate the influence of pile diameter (0.3, 0.61

and 1.2 m), by using a constitutive model proposed by Desai et al. (1991), however,

no significant correlation was observed between the pile diameter and initial stiffness.

Nevertheless, Lesny and Wiemann (2006) and Sørensen et al. (2009) have concluded

differently, showing that the variation of pile diameter has affected the initial stiffness of

the pile-soil interaction, which brings a contradiction regarding the effect of increasing

the size of foundation, especially on monopile. Further investigation is required.

3. Number of cycles and pile rigidity.

• Calibration of the widely used API model against the response of small size diam-

eter piles (length to diameter ratio of 30 to 50) were subjected to low numbers of

cycles (maximum 200 cycles) suited for offshore fixed platform applications, while,

the length to diameter ratio of monopiles is of the order of 5 to 6 and 107 to 108

cycles of lateral loading expected over a lifetime of 20 to 25 years.

4. Effect of Loading.

• The ratio of horizontal load, Hi, to a vertical weight, VT, is very high in offshore

wind turbines when compared with oil and gas structures. Therefore, the monopiles

experience disproportionately high moment loading in comparison to oil and gas

platform piles. This extreme loading condition was not considered during the cali-

bration of the API (2007) and DNV (2014) p-y curves.
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2.2.3.6 Elastic Continuum Approach

The method infrequently leads to analytical solutions which are usually materialised through

boundary element, finite element or finite difference type numerical formulations (Poulos and

Davis, 1980). Poulos and Davis (1980) carried the analysis of laterally loaded pile using this

method in an elastic homogeneous isotropic media, a method in which the soil mass surround-

ing the pile was treated as an elastic continuum and the pile as a strip, which applied pressure

on the continuum soil. An integral boundary technique and Mindlin (1936) equation was em-

ployed to the horizontal pile deflection.

In the method developed by Poulos and Davis (1980), the soil was assumed elastic and homo-

geneous with constant modulus, Es, and poison’s ratio, vs, and the pile were split into elements

with flexural stiffness, EpIp. From this method, the expressions for pile flexibility factor, kR,

pile-head displacement, Yp and pile rotation, θp are shown in Eq. 2.28, 2.29, and 2.30, respec-

tively, where, IYH, IθH are displacement and rotation influence factors for loads only and IYM,

IθM are displacement and rotation influence factors for moment only.

kR =
EpIp

EsL
4

(2.28)

Yp = IYH
H

EsL
+ IYM

M

EsL
2

(2.29)

θp = IθH
H

EsL
2

+ IθM
M

EsL
3

(2.30)

Several studies (Baguelin et al., 1977, Banerjee and Davies, 1978, Guo, 2001, Poulos, 1988,

Randolph, 1981, Sun, 1994) have been reported to extend the method whereby the soil modulus

was assumed to increase linearly with depth. Poulos (1988) modified the method by including

a certain consideration of non-linear behaviour and introducing yielding factors and variation

of elastic modulus (Cuéllar, 2011). A similar approach was also used by Banerjee and Davies

(1978). Furthermore, the solution to include a linear variation of soil modulus was taken into

account by Budhu and Davies (1988) after modifying the work from Banerjee and Davies

(1978), aiming to develop a nonlinear analysis of loaded pile in cohesionless soil, where the

soil was assumed to be elastic-plastic material (Qin, 2010). However, with all modifications,

the method is sufficiently applied if the modulus of soil is accurately determined. The method
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is not preferable and rarely used in the design of piles (Sørensen, 2012). It is only valid for

small strains and useful to estimate the initial modulus of soil.

2.2.3.7 Numerical Approach

A numerical approach has been an area of active research over the past decades due to an

increase of interest to predict the material behaviour in practical engineering situations, change

of computer capabilities, and a growing interaction between computational mechanics, applied

mathematics and different engineering fields (Pérez Foguet, 2000). The method is divided into

finite element (FE) and finite difference (FD), widely used to solve 3-Dimensional problems

related to geotechnical engineering (Carter and Kulhawy, 1992). Some developments have been

made towards understanding the behaviour of laterally loaded piles in three dimensions with

assumptions of linear elastic and non-linear elastic-perfectly plastic soil continuum (Budhu

and Davies, 1987, 1988, Poulos, 1971, 1988, Poulos and Davis, 1980). Recently, studies have

begun to use a computer package software for most continuum-based methods for analysis of

numerical modelling. These methods have taken into account a three-dimensional interaction,

elastic and non-linear soils through the elastic constants (Young’s modulus and Poissons ratio)

and appropriate constitutive relationship (Gerolymos et al., 2009). With the rapid development

of both computer and geotechnical software, 3D nonlinear analyses have been carried with

the soil behaviour being described by advanced constitutive models on the theory of plasticity

and hypo-plasticity, such as von Mises, Drucker-Prager, Mohr-Coulomb, and boundary surface

plasticity models (Abdel-Rahman and Achmus, 2005, Achmus et al., 2008, 2009, Bourgeois

et al., 2010, Fan and Long, 2005, Gerolymos et al., 2009, Heidari et al., 2014, Lesny and

Wiemann, 2006, Mardfekri et al., 2013). Augustesen et al. (2009) carried a 3-D FD analysis

to investigate the behaviour of sand soil-monopile interaction under monotonic loading and the

results were compared with Winkler model approach. Furthermore, a FE study from Abdel-

Rahman and Achmus (2005), Achmus et al. (2009), Fan and Long (2005), Lesny and Wiemann

(2006) were employed to investigate the behaviour of monopile foundation under monotonic

and cyclic loading taking into account the interaction between pile and soil. However, the

response of soil around the pile seems to be less understood and unclear about the constitutive

models used for the analysis. From these studies a comparison was made through a parametric

study with a varying diameter size, embedding depth and magnitude of loading. This research
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however, does not focus on the numerical modelling, thus further details can be found in the

literature summarised in Table 2.5, which summarises the of work carried out in the past to

improve the understanding behaviour of monopiles when subjected to lateral loading. It gives

a quick review on some of the previous research carried out on numerical modelling. From the

table, D represents the diameter of pile (m), t thickness of pile (m), L the embedded depth (m),

Le is load eccentricity (m), Hi is horizontal force (MN), V is vertical loading (MN), φ internal

angle of friction (o), γ is the unit weight of soil (kN/m3).

Table 2.5: A summary review of numerical modelling for monopile foundation

Author Model Pile Loads Soil property
D L Le Hi VT φ γ

Kellezi and Hansen (2003) 4 22 10.9 2.5 10.6 21-44 20
Fan and Long (2005) 0.61 21 0.3 0.28 – 39 19
Lesny and Wiemann (2005) 1-6 11-39 – 6,16 35 20-40 23
Achmus et al. (2008) 7.5 20-40 15 0.5-15 – 38 21
Achmus et al. (2009) 7.5 20,40 20 4-16 10 35 21
Augustesen et al. (2009) 4 22 21 4.6 5.0 38 20
Bourgeois et al. (2010) 0.72 12 1.6 0.72 – – –
Peng et al. (2010) 4 40 – – 35 16.5
Saue et al. (2011) 4.7 20 0 4.2 – 39,45 –
Ghee and Guo (2011) 5 70 50 2.84 – 38 16.3
Achmus et al. (2011) 0.61-7.5 5-37 – 0.05-23 – 28-43 20
Hamre et al. (2011) 5.7 35 1 9.5 – 20-35 17-20
Achmus et al. (2012) 4,7.5 15, 20 – – – 38 21
Haiderali et al. (2014) 3.8 20 30 – 6.5 23 18

2.2.4 Deformation response under monotonic loading

A number of studies (API, 1993, Budhu and Davies, 1987, Dyson and Randolph, 2001, Guo,

2008, Murchison and O’Neill, 1984, Novello, 1999, Randolph, 1981, Reese et al., 1974, Reese

and Van Impe, 2010, Wesselink et al., 1988, Xue et al., 2016, Yan and Byrne, 1992) investi-

gated the response of piles subjected to monotonic loading. Most of these studies employed the

ultimate soil resistance (Pu) and modulus of subgrade reaction (Kh) to construct the p-y curves,

while others such as (Dyson and Randolph, 2001, Wesselink et al., 1988, Yan and Byrne, 1992),

only rely on cone resistance, qc. Yan and Byrne (1992) experimented the piles installed in sand

and subjected to monotonic loads, where a parabolic p-y curve was proposed and observed to
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provide an excellent prediction of the experimental results and the field test data. A similar cen-

trifuge approach by Georgiadis et al. (1992) was used to developed new hyperbolic p-y curve

relationship, results of which were compared with several numerical analyses. The developed

p-y curves provided a satisfactory result. Furthermore, Dyson and Randolph (2001) carried out

a similar approach on a centrifuge for the piles embedded in the calcareous sand and subjected

to monotonic lateral loading. The features, such as rate of loading and pile head restraint, were

explored. The parabolic p-y curves employed in the analysis and the developed responses have

shown to provide an excellent match with experiment. This approach has been highly supported

by by other studies (Guo, 2008, 2014, Klinkvort and Hededal, 2014, Zhang, 2009, Zhu et al.,

2015) who analyses the global load-deflection response of rigid piles.

For rigid pile conditions, the pile tends to rotate as a rigid body and its displacement is as-

sumed to vary linearly with depth. Hence, the studies related to rigid piles, employed the p-y

curves soil model in a nonlinear kinematic technique to determine the load-displacement re-

sponses. For instance, Guo (2008) performed an analysis on laterally loaded rigid piles in sand

with soil resistance along the pile mobilised at different load levels. In a closed form solu-

tion, the coefficient of subgrade modulus, kh, was assumed constant or linearly varying with

depth. The solution was obtained from back-calculation of measured responses of rigid piles

in cohesionless soils. Zhang (2009) also developed a method for nonlinear analysis of rigid

piles in cohesionless soil with the assumption that both the ultimate soil resistance and con-

stant modulus of subgrade reaction vary linearly with depth. The centrifuge test in sand and

three-dimensional finite element results were compared with a proposed model. Although the

application of this method has proved to agree with experimental results, it was limited to the

effect of load eccentricity and pile diameter. Furthermore, Zhu et al. (2015) conducted a 1 g

physical modelling to establish a new p-y curves using a coefficient of subgrade reaction, kh,

that is correlated to the local pile displacement. The new p-y curves and analytical solutions

captured well the measured p-y curves and the load-displacement relationship of the monopiles

in cohesionless soils. Barton et al. (1983) carried out a centrifuge testing on the model pile,

driven in a sandy soil and subjected to monotonic lateral loading and compared the results with

curves recommended by Reese et al. (1974), where the initial stiffness of the p-y curves varied

as the square root of depth rather than linear variation, and the ultimate resistance was seen

to be underestimated near the ground and overestimated at depth by the Reese et al. (1974)

p-y curves. Further modification of the p-y curves recommended by Reese et al. (1974) has
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shown to agree with experimental behaviour. According to DNV (2014), the initial stiffness

of the p-y curves in a uniform sandy soil is assumed to vary linearly with depth irrespective of

other properties (see Eq. 2.31). A similar argument was also recommended on flexible piles by

other studies (Ashford and Juirnarongrit, 2003, Reese et al., 1974, Terzaghi, 1955, Vesic, 1961).

Kh =
dP

dy

∣∣∣∣
y=0

= APu

( khZ

APu

)
cosh2

( khZ

APu
yz(i)

)∣∣∣∣
y=0

= kiZ (2.31)

A monotonic analysis and response of monopile in sandy soil were reported by Lesny and Wie-

mann (2006) and compared with p-y curves from API (1993). The results indicated that at great

depth, the initial stiffness of the p-y curves is overestimated, which lead to development of a

new power law (see Eq. 2.32) to predict the response of the data. In Fig. 2.9, the reference

stiffness, Ki,ref , and depth, Zi,ref , were taken at the intersection between stiffness from Eq. 2.31

and 2.32 and the parameter a = 0.6 was set to give a good agreement between the two methods.

A similar response is also proposed by Hardin and Drnevich (1972), Pestana and Salvati (2006)

and Oztoprak and Bolton (2013), to determine the initial subgrade modulus (Kh) through the

shear modulus at small strain in sandy soil (Gmax), which is directly proportional to the root of

the confining stress. As discussed in Section 2.2.3.5, the initial stiffness was also investigated

by other studies (Achmus et al., 2007, Ashford and Juirnarongrit, 2003, Fan and Long, 2005,

Sørensen et al., 2009, Terzaghi, 1955) on the effect of pile diameter and conclusion of their

findings were contradictory.

Kh = Ki,ref

( Z

Zi,ref

)a
(2.32)

A nonlinear distribution of initial stiffness (modulus of subgrade reaction) was also suggested

by Brødbæk et al. (2009) to construct the p-y curves and determine the monotonic responses

on a rigid pile in sandy soil. Sørensen (2012) carried out an experiment to verify this variation

and suggested a reformulated expression shown in Eq. 2.33, with the reference parameters,

Zi,ref , Dref and Es,ref are 1 m, 1 m, 1 MPa, respectively. The constant u, b, c and d were set

with values of 1000 kPa, 0.3, 0.5 and 0.8, respectively to fit the results. The soil modulus, Es

was defined by using Eq. 2.34, where Dr is relative density and σ′3 is mean effective stress.

Furthermore, Klinkvort and Hededal (2013) carried out centrifuge tests on instrumented model

piles in sandy soil and linear variation of initial stiffness was observed to accurately fit p-y
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Figure 2.9: Variation of initial stiffness with depth, from Lesny and Wiemann (2006).

curves. This observation was seen to be different from early discussion on nonlinear variation.

In general, most of the current studies employed a linear variation of initial stiffness modulus

and have been reported to provide high values when compared to experimental results (Abdel-

Rahman and Achmus, 2005, Kirkwood, 2016, Klinkvort and Hededal, 2013, Rosquoet et al.,

2007, Sørensen, 2012, Sørensen et al., 2009).

Kh = u
( Z

Zi,ref

)b( D

Dref

)c( Es

Es,ref

)d
(2.33)

Es = (1.15Dr + 20000)
( σ′3

100

)0.58
(2.34)

Before carrying out the cyclic loading experiments, the monotonic response is essential for

determination of the displacement (Ys) or rotation (θs) and its ultimate capacity (Hu) on the

pile-head. Several studies (Abadie and Byrne, 2014, Dyson and Randolph, 2001, Garnier,

2013, Hansen et al., 2013, Klinkvort, 2013, Klinkvort and Hededal, 2014, LeBlanc, 2009) have

been carried out on monopile response under static loading where ultimate capacities were es-

timated. For instance, Garnier (2013) carried out experimental tests for piles installed in sandy

soil and the response (see Fig.2.10(a)) shows a hardening H-y behaviour without achieving the

ultimate capacity of the pile (Hu). The two straight line branches separated by a clear inflexion
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point from three load-displacement curves were used to estimate an ultimate capacity. A sim-

ilar approach was also applied by Zhu et al. (2012) to define the yield capacity of the overall

moment-rotation response (see Fig 2.10(b)). The monotonic response on pile head observed

from Klinkvort and Hededal (2013) was not possible to achieve the ultimate capacity (Hu)

thus a recommended rotation of the pile was used to define the yield point (see Fig 2.10(c)). In

general, the maximum accumulated rotation at seabed is specified by the wind turbine suppliers

(a) Hu by tangent method, after Garnier (2013) (b) MR by tangent method, after Zhu et al.

(2012)

(c) Hu by rotation method, after Klinkvort et al.

(2012)

(d) Mu by rotation method, after after LeBlanc

(2009)

Figure 2.10: Behaviour of monopile under monotonic loading and estimation of ul-
timate capacity

which is normally 0.5o (Roesen et al., 2012a). Similarly other studies (Hansen et al., 2013,
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LeBlanc, 2009, Roesen et al., 2012a) used the same approach to determine the ultimate capacity

of the pile. However, in Figs. 2.10(c) and 2.10(d), the responses from Klinkvort (2013) and

LeBlanc (2009) did not follow the standard limits based on supplier and failure behaviour was

taken at rotation of θ = 4o = 0.0698 rad.

From several studies, achieving the failure limit of monopiles subjected to monotonic lateral

loading remains a great challenge (Abadie and Byrne, 2014). Thus, studies from (Broms,

1964, Hansen, 1961, Petrasovits and Awad, 1972, Zhang et al., 2005) suggest the estimation of

ultimate capacities through either established theories or by evaluation of lateral displacement

or rotation of the pile as previously discussed. However, the work from (Zhang et al., 2005),

(Fan and Long, 2005), (Klinkvort and Hededal, 2013) and (Kirkwood, 2016) challenges the

previous literature for a rigid pile in sandy soil, where they argue that theoretical calculation

observed significantly high and tend to overestimate the pile-head displacement. Therefore,

they recommended to fix the pile displacement failure limit in the range of 5-10% of the pile

diameter for estimation of ultimate lateral capacity (Abadie and Byrne, 2014). Knowing the

pile displacement and point where the pile rotates, the angle of pile rotation can be estimated

assuming that the pile is perfectly rigid.

2.3 Behaviour of soil under cyclic loading

2.3.1 Introduction

Modelling of stress-strain response of cohesionless soil under cyclic load is an essential factor

for designing and analysis of civil engineering structures. In prototype condition, the layers

of soil subjected to cyclic loads are affected by cyclic stresses caused by repetition of loads

(cyclic) such as vibration from machine structures, earthquakes, traffic loads, sea waves, and

the wind (Basheer, 2002, Reddy, 1996, Shahnazari et al., 2010). These loads may induce a

permanent soil deformation, which will significantly damage the support structure located on a

specified soil layer (Shahnazari et al., 2010). Cyclic loading is a series of loads that vary within

a certain regularity of both magnitude and frequency (O’Reilly and Brown, 1991). Under such

loading conditions, the soil undergoes alternating cycles of compression and extension stresses

and is known to exhibit a nonlinear behaviour (Basheer, 2002).



48

A nonlinear soil under cyclic loading undergoes recoverable and irrecoverable strains, fre-

quently accompanied by change in density (Reddy, 1996). The recoverable strains tend to

return to its position, while irrecoverable continue to increase with the number of cycles and

never returns to its origin. When the soil interacts with the pile, the irrecoverable strain is likely

to occur, which might lead to the failure of the foundation. In general, the rate of accumulation

of irrecoverable strains in soil is a function of cyclic stress and strain levels (Reddy, 1996).

To assess the nonlinear response of the soil under cyclic lateral loading, the mathematical mod-

els are very important. Two general broad classes of soil models have been proposed, such

as equivalent linear and cyclic nonlinear models. The equivalent linear soil model (Ishihara,

1996, Schnabel, 1972) is simple and widely used in one-dimensional (1D) analyses, to simu-

late a nonlinear soil behaviour. As noted from Stewart (2008), the advantages of this model

include small computational effort and few input parameters, but it has some limitations. The

main drawback is that it ignores the irrecoverable strains (γi ≤ 10–3) and increase in pore pres-

sure (Rascol, 2009). The cyclic nonlinear soil type models include relatively simple cyclic

stress-strain relationships (Kondner, 1963, Matasović and Vucetic, 1993, Pyke, 1980, Ramberg

and Osgood, 1943) to advanced constitutive models (Dafalias and Popov, 1975, Manzari and

Dafalias, 1997, Mrz et al., 1978, Prevost, 1985, Roscoe, 1963), which incorporate the yield

surfaces, hardening laws, and flow rules (Stewart, 2008). Advanced constitutive models are

based on the framework of plasticity, capable of simulating complex 3D soil behaviour under

a variety of loading conditions. The model relies on parameters determined through laboratory

and field tests. Due to complexity, this type of model is limited for many practical challenges

(Kramer, 1996). The nonlinear cyclic models can adequately represent the shear strength of the

soil during cyclic loading by including the effect of excessive pore pressure, which cannot be

accounted for in equivalent linear models (Stewart, 2008).

The important parameters used to assess the response of soil under cyclic loading are soil mod-

ulus, shear modulus or subgrade reaction modulus, damping ratio and ultimate soil resistance.

These parameters are the key characteristics to construct hysteretic loops under cyclic load-

ing (Ishihara, 1996, Oztoprak and Bolton, 2013, Shahnazari et al., 2010, Stewart, 2008). The

estimation of lateral soil resistance (Pu) and subgrade reaction modulus (Kh) have previously

been discussed in Section 2.2.2. Therefore, the main focus of this section is to assess other

parameters related to soil (shear modulus and damping ratio). The soil bed used in the current

thesis is from quartz sand and the previous studies related to this material might be useful. The
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maximum Young’s modulus of soil (Es,max) is related to the initial (maximum) shear modulus

(Gmax) and Poison’s ratio (υs) (see Eq. 2.35). The shear modulus and damping ratio are used to

represent the soil effective stiffness and dissipation of energy within the soil, respectively. The

two parameters are key characteristics to construct the shear stress-strain hysteretic loops under

cyclic loading (Ishihara, 1996, Oztoprak and Bolton, 2013, Shahnazari et al., 2010, Stewart,

2008), and will be discussed in the following section.

Es,max = 2Gmax (1 + υs) (2.35)

2.3.2 Shear modulus and damping ratio of soil

Several field and laboratory tests have been developed to characterise the cyclic behaviour of

soil (Dobry and Vucetic, 1988, Ishihara, 1996, Shahnazari et al., 2010, Stewart, 2008), which

are classified into two types: behaviour under low-strain and those at high-strain levels (see Fig.

2.11). As noted from Dobry and Vucetic (1988) and Shahnazari et al. (2010), the low-strain

category is one at strain levels that are low in a way that its response behaves more elastically

and is generally recoverable, approximately found at strains less than or equal to 0.001% . In

this range, the shear modulus is a key parameter to model the stress-strain behaviour of soil. In

Fig. 2.11, at a very small strain (Zone-1, 10–6 ≤ γi ≤ 10–5), the shear modulus has reached

its maximum point known as initial or maximum shear modulus, Gmax. For the second range

(Zone-2) of shear strain (approximately below 10–3), the soil behaviour is still non-degradable.

In this range the strain level is still small enough to not cause any progressive change within

the soil, hence, the shear modulus and damping ratio will not change with progression of cycles

and behaviour will be non-degraded hysteresis type (Ishihara, 1996). For the medium range of

shear strain (10–3 ≤ γi ≤ 10–2 in Zone-3), the soil behaviour becomes elastoplastic. The shear

modulus tends to decrease as the shear strain increases and energy dissipation occurs during the

cyclic loading application. The damping ratio (loss coefficient) is used to present the energy

absorbing capacity of soils (Shahnazari et al., 2010). For cyclic shear strain greater than 10–2

(Zone-4), the properties of soil changes with cycles and the behaviour is termed as degraded

hysteric type. The strain in this zone is larger enough to induce a nonlinear response with both

recoverable and irrecoverable elasticity. The shear modulus and damping ratio change with both
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the shear strain and the progression of cycles. Furthermore, the stress-strain nonlinear response

of soil in this range can be achieved by employing a numerical procedure involving step-by-step

integration techniques (Shahnazari et al., 2010). In this case, a cyclic nonlinear behaviour of

the soil can be characterised through high-strain tests, such as cyclic triaxial and direct simple

shear tests, which involve pseudo-static stress-controlled or strain-controlled cyclic loading of

a vertically loaded soil specimen (Ishihara, 1996, Stewart, 2008).

Figure 2.11: Dependence of shear modulus, damping ratio, and stress-strain relation-
ship to shear strain amplitude, from Ishihara (1996).

As shown in Fig. 2.11, the energy dissipation per cycle (∆W) is represented by the area en-

closed within hysteresis loop CEAF. The damping ratio or loss coefficient is defined as the ratio

between the energy loss per cycle (∆W) and the maximum stored energy (W). For the nonlin-

ear soil behaviour under cyclic loading, the energy stored is defined by assuming the area of

the triangle OAB bounded by a straight line defining the secant modulus, Gsec (see Eq. 2.36).

According to Masing (1926), the hysteresis loop is obtained from the backbone curve after

multiplying by a factor of two in γi and τi directions. Therefore, the half-moon shape ACE has

similar shape as the half-moon part AOD and hence the area ACE is four times the area AOD.
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The energy loss per cycle is determined as shown in Eq. 2.37 and the damping ratio (ζR) is

estimated by using Eq. 2.38.

W =
1

2
f(γa)γa (2.36)

∆W = 8

[ ∫ γa

0
f(γi)dγi – W

]
(2.37)

ζR =
∆W

4πW
=

2

π


γa∫
0

f(γi)dγi

γaf(γa)
– 1

 (2.38)

The shear modulus, G, is always presented as a secant modulus (Gsec) defined by extreme points

on the hysteresis loops (Idriss and Seed, 1970, Ishihara, 1996). This property mostly depends

on the magnitude of shear strain for which the hysteresis loop is defined (see Fig. 2.11). Sev-

eral empirical functions have been developed to predict the maximum shear modulus, Gmax.

For cohesionless soil, Gmax is primarily affected by two important parameters; the void ratio

(eo) and mean effective stress (Pm) (Hardin and Drnevich, 1972). Hardin and Drnevich (1972)

proposed a function which relate the maximum shear modulus, Gmax, and the two parameters

(see Eq. 2.39), where Pa = 100 kPa is the reference pressure, m is exponent material constant

(for sand it lies between 0.40 ≤ m ≤ 0.55) (Hardin, 1978, Oztoprak and Bolton, 2013), Gb is

the material constant which can be correlated with angularity of materials.

Gmax = GbPaf(e)

(
Pm

Pa

)m

(2.39)

Pestana and Salvati (2006) and Oztoprak and Bolton (2013) used Eq. 2.39 to compare different

types of sand and gravel materials. For instance, as shown in Fig. 2.12(a) three functions were

used to describe the effect of void ratio on Gmax; f1(e)=(1+eo)e–1o (Pestana and Whittle, 1995),

f2(e)=e–1.3o (Pestana and Salvati, 2006), and f3(e)=(2.17–eo)2(1+eo)–1 (Hardin and Richart Jr,

1963). From the figure, f1(e) and f3(e) are shown with typical values of Gb while f2(e) pro-

vides a uniform sand with Gb values ranging from 400-800. The trend of the data is best fitted

by the function f2(e). The values of Gb seem to be well-correlated with the angularity of the

material, for instance, in Fig. 2.12(a) the sands with more angular grains tend to have higher

values of Gb. The values of the void ratio functions in relation to void ratio (eo), for all mate-

rials, are plotted in Fig. 2.12(b). The data are observed to be within the 20% error bars, hence,



52

the Gmax for uncemented cohesionless materials was best fitted by using Eq. 2.39. The values

of Gb and m constants, angularity and Cu from the published work are summarised in Table 2.6.

(a) Effect of angularity on Gmax (b) Effect of void ratio

Figure 2.12: Effect of particle angularity and void ratio on Gmax, from Pestana and
Salvati (2006).

Table 2.6: Parameters for maximum shear modulus, Gmax

Sand tested Angularity Cu Gb m Reference
Ottawa R 1.2 475-500 0.5 Hardin and Drnevich (1972)
Toyoura SA 1.46 700-900 0.38 Kokusho (1980)
Dogs Bay A 2.4 1800 0.5 Jovičić and Coop (1997)
Monterey R 1.5 420-500 0.48 Chung et al. (1984)
Clean sand R, SR, A ≤ 1.8 570 0.4 Iwasaki and Tatsuoka (1977)
Toyoura SA 1.35 720 0.45 Presti et al. (1993)
Quartz SA 1.33 724 0.45 Bellotti et al. (1996)
R=Rounded, A=Angular, SA=Sub-Angular, SR=Sub-Rounded

Seed and Idriss (1970) proposed a different approach to determine the values of Gmax (kPa) (see

Eq. 2.40). As shown in Eq. 2.40, Gmax is based on modulus coefficient (K2)max = 3.5(Dr)
0.67

(Yan and Byrne, 1992). The parameter (K2)max ranges from 30 for loose sand to 75 for dense

sand. Wichtmann and Triantafyllidis (2009) recommended four different equations to estimate

Gmax (kPa) and concluded that Eq. 2.41 and 2.42, formulated in terms of void ratio, are more
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precise than Eq. 2.43 and 2.44, which employ the relative density to estimate Gmax (kPa),

where Cu is the coefficient of uniformity and Dr is the relative density of sand. Wichtmann

and Triantafyllidis (2009) suggested that for practical purpose the empirical relations in terms

of relative density are sufficient to use (Qin, 2010).

Gmax = 48(K2)max
(
p′
)0.5 (2.40)

Gmax = GbPa
(ai – eo)2

1 + eo

(
p′

Pref

)ni
(2.41)

where; ai = 1.94exp(–0.066Cu), Gb = 1563 + 3.13C2.98
u , ni = 0.4C0.18

u

Gmax = 218.8Gk
(ak – eo)2

1 + eo

(
p′
)0.5 (2.42)

where; ak = 1.94exp(–0.066Cu), Gk = 69.9 + 0.21C2.84
u

Gmax = 177000

(
1 +

Dr

100

)
(

17.3 –
Dr

100

)2
(Pref)

0.52 (p′)0.48 (2.43)

Gmax = 1509720

(
1 +

Dr

100

)
(

16.1 –
Dr

100

)2
(2.44)

2.3.3 Nonlinear material models

2.3.3.1 Introduction

The mathematical models to describe the hysteresis behaviour of materials are classified into

two groups: piecewise linear and curvilinear hysteresis models (Allotey and El Naggar, 2008,

Bouc, 1971, Gerolymos and Gazetas, 2005b, Kagawa and Kraft, 1980, Naggar and Bentley,

2000, Pugasap, 2006, Thavaraj, 2000, Thyagarajan, 1989, Wen, 1976). Piecewise linear mod-

els are constructed by line segments, which represent a relationship between restoring force

(Fy) and displacement (yz(i)). The models within this group are elasto-plastic, bi-linear, and
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multi-linear hysteresis. However, a drawback of this model is the sharp yield transitions; It is

widely used in structural mechanics (Mostaghel, 1999). Therefore, they are not discussed fur-

ther in this section. The curvilinear models provide a smooth transition curves and include the

nonlinear models such as Bouc-Wen, Ramberg-Osgood and hyperbolic models. These types of

models have been widely accepted to predict the response of soil and piles under both static

and cyclic loading due to their simplicity and practical accuracy (Naggar and Bentley, 2000).

The procedures in developing the nonlinear p-y curves under monotonic or cyclic loading are

similar to those applied in developing one-dimensional (1D) stress-strain response models (Al-

lotey and El Naggar, 2008). Hence, even though the focus is on the components of p-y curves,

reference is made to methods used in 1D shear stress-strain models. For instance, as noted

by Ishihara (1996), the cyclic response of soil is made by constitutive models which described

the soil behaviour as a relation between the shear stress, τ , and shear strain γ. The cyclic

stress-strain behaviour can be determined by employing a relatively simple constitutive model

(Ishihara, 1996, Kondner, 1963, Pyke, 1980, Ramberg and Osgood, 1943, Vucetic and Dobry,

1988). Therefore, by using simplified models (curvilinear type), the stress-strain (τ -γ) or p-y

curve for cyclic behaviour of soil can be investigated.

Following the curvilinear type models, two different aspects can be used to determine the stress-

strain relationship, namely, the path of the first loading, known as the backbone curve, and the

path of unloading and reloading, which are termed as the hysteresis loops. The first aspect is

when the soil is in a strain state of higher magnitude than the previous magnitude attained by

the soil, while the latter is when the soil is in a strain state of lower magnitude than the previous

maximum and can either decrease or increase with time (Ishihara, 1996, Stewart, 2008). The

detail of the curvilinear type models is described in the following subsections.

2.3.3.2 Bouc-Wen model

Mathematical models have been developed in the past to model the hysteresis load-deformation

behaviour of structural materials (Song and Der Kiureghian, 2006). One of the most popular is

the Bouc-Wen class of hysteresis models, which was originally proposed by Bouc (1971) and

later generalised by Wen (1976). The model was initially employed to describe inelastic cyclic
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force-displacement response in probabilistic structural dynamics, and later applied to soil liq-

uefaction analysis in a simple shear, and currently used for the study of laterally loaded piles as

monotonic or cyclic p-y curves (Baber and Wen, 1981, Badoni and Makris, 1996, Gerolymos

et al., 2009, Gerolymos and Gazetas, 2005a,b, Park et al., 1986, Trochanis, 1994, Trochanis

et al., 1991a,b). This model has the advantage in computation procedure, which relies on one

auxiliary differential equation to compute the hysteresis behaviour of soil. Furthermore, the

model is versatile in describing the characteristics of hysteretic behaviour such as stiffness and

strength degradation, the pinching effect and asymmetry of the peak restoring force (Baber and

Wen, 1981, Gerolymos and Gazetas, 2006, Park et al., 1986, Song and Der Kiureghian, 2006).

Trochanis (1994) conducted a study on the nonlinear response of piles using a Winkler founda-

tion model and utilised the Bouc-Wen model to describe the total load-deflection of distributed

springs along the pile (Gerolymos and Gazetas, 2005b). The study focused on developing both

monotonic and cyclic load-deflection, and the Bouc-Wen model shown to predict well the re-

sponses. Badoni and Makris (1996) utilised a Bouc-Wen model in conjunction with dashpots

placed in parallel along the flexible piles under dynamic loading. The efficiency of the model

demonstrated experimentally and analytically, was shown to predict well the response of the

soil-pile systems. Moreover, the extension and modification of the model were utilised by

Gerolymos and Gazetas (2005b) to model both the lateral soil reaction, pile inelasticity and

computation of nonlinear response of single piles under monotonic and cyclic lateral load. The

work by Gerolymos et al. (2009) simulated the piles in dry sand and subjected to cyclic lateral

loading, using a cyclic nonlinear Winkler Bouc-Wen spring model and the results were in good

agreement. A simple extended model utilised by Gerolymos and Gazetas (2005b) and Geroly-

mos et al. (2009) is of interest and is outlined in this section for demonstration.

According to Gerolymos et al. (2009), a cyclic nonlinear Winkler Bouc-Wen spring model,

which describes the full range of inelastic phenomena, including separation and reattachment

of the pile from and to the soil, was developed. The model was applied to tress the monotonic

and cyclic response of piles, expressing the p-y relationship of the vertical pile embedded in

dry sand. The model is made up of three mathematical functions capable of reproducing a wide

range of monotonic and cyclic experimental p-y curves. As shown in Eq. 2.45, the mathemat-

ical relationship for lateral soil reaction, Pz(i) against pile deflection, yz(i), is expressed as the

sum of the elastic and hysteretic component, where ζbw is a dimensionless inelastic parameter

expressed in Eq. 2.46, Pz(i) is the resultant soil resistance, yz(i) is the pile deflection at the
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location of the spring, Py is a characteristic value of the soil reaction related to the initiation

of significant inelasticity (yielding), and yo is a characteristic value of pile deflection related

to the initiation of yielding in soil, n control the sharpness of the transition from the linear to

the nonlinear range during the monotonic loading, α is the ratio of steady-state post yielding to

the initial elastic stiffness, b and g control the unloading-reloading rule (b+g=1). To match the

results of experiment p-y curves, the parameter n and α can be adjusted. More details of the

model are described by Gerolymos et al. (2009).

(a) One-way cyclic response (test P334) (b) One-way Bouc-Wen force-deflection

(c) Prediction of p-y curves (test P32) (d) Two-way cyclic H-y response (test P330)

Figure 2.13: Experimental and computed cyclic force-displacement and monotonic
p-y curves (Bouc-Wen model), from Gerolymos et al. (2009)

Pz(i) = αKhyz(i) + (1 – α)Pyζ (2.45)
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dζbw
dy

=
1

yo

{
1 – |ζbw|n

[
b + gsign(dyζbw)

]}
(2.46)

From Fig. 2.13, the validity of the model and its ability to capture several features of the pile-

soil interaction is presented. The cyclic load-deflection response was achieved by comparing

the results of centrifuge tests from Rosquoët et al. (2004) and prediction from the Bouc-Wen

theoretical model. The test results show a positive trend with the model. It should be noted

that this type of model has been used for flexible piles only, therefore, further investigation is

required for the rigid piles.

2.3.3.3 The Ramberg Osgood and hyperbolic model

The Ramberg Osgood and hyperbolic models are widely used in geotechnical practice to cap-

ture the fundamental aspect of actual soil behaviour and soil-structure interaction systems,

subjected to monotonic as well as cyclic loading. They usually include two parts, the initial

loading stress-strain nonlinear curve, which extend into the negative domain, known as the

initial or backbone curve (see Fig. 2.14(a)) and the constructed hysteresis loop described by

subsequent unloading and reloading stress-strain curves (see Fig. 2.14(b)) (Chen et al., 2013,

Matasović and Vucetic, 1993, Yi, 2010). The shear stress-strain or soil resistance-displacement

models have been proposed in the past (Chen et al., 2013, Dobry and Vucetic, 1988, Dun-

can and Chang, 1970, Hardin and Drnevich, 1972, Ishihara, 1996, Kondner, 1963, Matasović

and Vucetic, 1993, Nakagawa and Soga, 1995, Pestana and Salvati, 2006, Pyke, 1980), and

utilised Masing rules suggested by Masing (1926), to construct the τ -γ or p-y hysteresis loops

(Matasović and Vucetic, 1993). By employing the Masing Rule, the nonlinear stress-strain rela-

tionships of soils under cyclic loading can be constructed as illustrated in Fig. 2.14(b) (Ishihara,

1996, Stewart, 2008).
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(a) Shear stress-strain backbone curve (b) Shear stress-strain hysteresis loop based on

Masing Rule

Figure 2.14: Schematic diagrams of shear stress-strain curves, from Stewart (2008)
and Dobry and Vucetic (1988)

Both the Masing Rule (Masing, 1926) and the extended Masing Rule (Pyke, 1980, Vucetic

and Dobry, 1988) are used with nonlinear stress-strain or p-y backbone curves to describe the

hysteresis loops. In Fig. 2.15 the rules to construct the hysteresis loops are defined as follows:

1. The shear stress-strain curve follows the backbone curve for initial loading. The tangent

shear modulus at each reversal of unloading and reloading branches of the loop are the

same to the initial tangent shear modulus of the backbone curve.

2. The reloading curve of any cycle starts with a shape that is identical to the shape of

the initial loading backbone curve enlarged by a factor of two. The same applies to

the unloading curve in connection with the negative part of the initial loading backbone

curve.

3. If the unloading or loading curve exceeds the maximum past strain and intersects the

backbone curve, it follows the backbone curve until the next stress reversal.

4. If the unloading or loading curve crosses the unloading or loading curve from a previous

cycle, the stress-strain curve follows that of the previous cycle. As reported from Pyke
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(1980), the rule accounts for irregular cyclic and modified the second law, instead of en-

largement by a factor of two, it was suggested to use a factor C as shown in Eq. 2.47, in

which the first term is negative for unloading and positive for reloading.

C =

∣∣∣∣±1 –
τa
τult

∣∣∣∣ (2.47)

Figure 2.15: Extended Masing rule, from Vucetic and Dobry (1988).

Ramberg and Osgood (1943) developed a mathematical formulation known as Romberg Os-

good (R-O), to define monotonic as well as cyclic stress-strain and p-y curves (Abendroth and

Greimann, 1990, Desai and Wu, 1976, Desai and Zaman, 2013, Pugasap, 2006, Richart Jr,

1975). The model is more useful with advantage to validate observed data compared to oth-

ers since it includes the commonly used hyperbolic function with addition parameters. For

instance, Greimann et al. (1986) and Greimann (1987) utilised the model in the finite element

method to approximate the load-displacement curves for axially and laterally loaded piles. The

characteristics of soil parameters, describing the skin friction and vertical displacement (f-z

curve), end bearing (q-z curve) and lateral resistance (p-y curve), were used in finite element

models to idealise the nonlinear soil behaviour (Abendroth and Greimann, 1990). According

to Abendroth and Greimann (1990), a further modification of the model expression known as
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Ramberg-Osgood (R-O) was employed in the Winkler model analysis and the results were cor-

related with centrifuge experimental data. The results of the pile-soil system of a particular

pile tests were correlated well with the measured values. Pugasap (2006) used these types of

hysteresis model in FE method to determine the response of soil-pile interaction on bridge abut-

ments. More details of this model for pile-soil interaction can be found from Desai and Zaman

(2013) and Greimann et al. (1984). This expression was also employed by Richart Jr (1975)

to describe the shearing stress-strain behaviour as the strain level increases. Shear stress-strain

Ramberg-Osgood mathematical curves were incorporated into analytical procedures to approx-

imate the experimental data and the results were in good agreement. In Eq. 2.48, the modified

R-O model for backbone curve suggested by Greimann et al. (1984) is presented in the form of

a p-y curve, where Pz(i) is generalised soil resistance, Pu is the ultimate soil resistance, Kh is

the initial lateral stiffness, n is the shape parameter, and yz(i) is generalised displacement.

Pz(i) =
Khyz(i)[

1 +

∣∣∣∣Khyz(i)

Pu

∣∣∣∣n
]1

n

(2.48)

As noted from Greimann et al. (1984), the R-O model for cyclic loading was used to deter-

mine the pile-soil interaction in integral abutment bridge. In abutment bridge, the occurrence

of expansion and contraction might cause the pile to move back and forth, which will result in

unloading and reloading behaviour. This model was created to accommodate the loading and

unloading of the pile movement. The nonlinear behaviour of the pile-soil system was expressed

by the concept of stress versus strain and soil resistance versus deflection. For both symmetri-

cal and irregular cyclic loading, the R-O model in the form of p-y curves is shown in Eq. 2.49,

where Pc is soil resistance at the last load reversal and yc is soil displacement at the previous

load reversal.

Pz(i)i = Pc +
Kh(yz(i) – yc)[

1 +

(
1

C

∣∣∣∣∣Kh(yz(i) – yc)

Pu

∣∣∣∣∣
)n]1

n

(2.49)

where;

C =

∣∣∣∣±1 –
Pc

Pu

∣∣∣∣ (2.50)
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From Eq. 2.50, the first term is negative for unloading and positive for reloading (Pyke, 1980).

Therefore, by using Eq. 2.49, the construction of hysteresis loops is achieved by adopting rules

presented by Pyke (1980). However, application of this model is widely used on flexible piles

and further research is required for a rigid pile.

The hyperbolic model, originally proposed by Kondner (1963) and Duncan and Chang (1970),

has been extensively used in the past to represent the relation between the shear stress (τi)

and shear strain (γi) (Vucetic and Dobry, 1988). Matasović and Vucetic (1993) conducted

extensive testing on different types of liquefiable sands. The results obtained from the tested

sand were simulated by utilising the model suggested by Kondner (1963), named as the KZ

model. However, the KZ model was incapable of describing the soil stress-strain behaviour

with sufficient degree of accuracy. Accordingly, two curve fitting constants (βo and s) were

introduced into the KZ model to accurately fit the data. With the addition of these two constants,

the modified model, abbreviated as MKZ model, was developed. The curve fitting constants

were used to adjust the position of the curve along the ordinate and control the curvature. For

more details of the KZ and MKZ hyperbolic models, the reader is referred to Matasović and

Vucetic (1993). Yi (2010) proposed backbone (see Eq. 2.51) and hysteresis (see Eq. 2.52)

models to simulate the measured data obtained from Santa Monica Beach (SMB) sand. From

the two equations, Gf =
τf
γf

, Rf =
τf
γu

, Go = Gmax, the parameter α is similar to s, which was

introduced to control the shape of backbone curve and β is the parameter related to damping

ratio.

τz(i) =
Goγz(i)

1 +
Rf

1 – Rf

∣∣∣∣∣γz(i)γf

∣∣∣∣∣
α (2.51)

τz(i) =
Goγz(i)

1 + B

∣∣∣∣∣γz(i)γa

∣∣∣∣∣
β
⇒ B =

Rf

1 – Rf

∣∣∣∣∣γaγf
∣∣∣∣∣
α

(2.52)

In Fig. 2.16, Yi (2010) presented the plots of measured data and calculated Gsec/Gmax = G/Go,

ζR = D and τi = τ against γz(i) = γ, including the results of KZ and MKZ models. From these

plots, the MKZ model is in a good agreement with experimental data than KZ model. All

parameters used for the analysis are shown in these figures.
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(a) Simulation of G/Go against γ (b) Simulation of damping ratio against γ

(c) Simulation of τ against γ (d) Simulation of hysteresis loops

Figure 2.16: The response of SMB sand under monotonic and cyclic loading, from
Yi (2010).

Furthermore, Yang et al. (2003) proposed a shear stress-shear strain relationship of backbone

curves at given reference pressure by using Eq. 2.53 to 2.54, where τf =

(
2
√

2sinφ

3 – sinφ

)
Pat, φ is

friction angle at peak shear strength in degrees, Pat is the reference pressure equal to 100 kPa,

and γr is the reference strain attained at failure.

τz(i) =
Gmaxγz(i)(

1 +

∣∣∣∣∣γz(i)γr

∣∣∣∣∣
b) ,⇒ γr =

τfγmax

Gmaxγmax – τf
(2.53)
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τz(i) =
Gmaxγi(

1 +

∣∣∣∣∣
(

Gmax

τf
–

1

γmax

)
γz(i)

∣∣∣∣∣
b) (2.54)

As noted by Blaney and O’Neill (1986), Kagawa and Kraft (1980), Lin and Liao (1999) and

Kumar et al. (2006), for pile in a cohesionless soil and subjected to lateral loads, 70% of its dis-

placement concentrated in the soil mass within a two-radius distance of the pile. An increase of

shear strain due to soil-pile interaction was suggested to concentrate on this zone. According to

Kagawa and Kraft (1980), the average normal strain, ε, in the direction of pile movement and

average shear strain around the pile was approximated as ε =
yz(i)
2.5D and γz(i) =

(
1+νs
2.5D

)
yz(i),

respectively. Therefore, with the available deflection along the pile, the shear stress-shear strain

backbone curve can be created using Eq. 2.55, where γmax is the maximum shear strain which

depends on the pile deflection, b is fitting constant to control the curvature, νs is Poisson’s ratio,

D is the diameter of the pile and Gmax is the maximum shear modulus in kPa.

τz(i) =

(
Gmax

1 + νs
2.5D

)
yz(i)(

1 +

∣∣∣∣∣
(

Gmax

τf
–

1

γmax

)(
1 + νs
2.5D

)
yz(i)

∣∣∣∣∣
b) (2.55)

As discussed in the previous section, the unload and reload curves can be created based on

Masing rules and defined in the form similar to Romberg Osgood model (Desai and Wu, 1976,

Desai and Zaman, 2013). The function used for analysis is shown in Eq. 2.56, where τc and γc

are the shear stress and shear strain, respectively, at last load reversal.

τz(i) = τc +
Gmax(γz(i) – γc)(

1 +
1

C

∣∣∣∣∣
(

Gmax

τf
–

1

γmax

)
(γz(i) – γc)

∣∣∣∣∣
b) (2.56)

For monopiles, the analysis of the previous studies have been performed based on the recom-

mendation from DNV (2014). However, Klinkvort (2013) employed the concept of the hyper-

bolic KZ model from Kondner (1963) to construct the backbone p-y curves (see Eq. 2.57),

where Pu is the ultimate soil resistance, kh =
Kh

Z
is the constant modulus of subgrade reaction

of the p-y response in kN/m3, k is elastic unloading at appropriate stiffness, Pu,drag is the con-

stant friction drag on the pile sides, A is an empirical factor defined in Eq. 2.58 (this function

was modified as the parameter used from API (2007) and DNV (2014) was not suitable). The
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initial stiffness proposed from DNV (2014) was higher than initial stiffness proposed from the

experiment p-y curves and the kh =100 Kpγ was used instead.

P
virgin
u =

khZy

1 +
khZyz(i)

APu

(2.57)

A = 0.9 +
1.1

2

{
1 + tanh

(
9 – 3

Z

D

)}
(2.58)

For hysteresis loops, Eq. 2.59 and 2.60 were used to construct the p-y curves and displacement

of pile, respectively, where the hardening parameter, α, ybt and k are all shown in Fig. 2.18(a).

The parameter k=5khZ was set to provide a good agreement with measured data. To model the

cyclic pile-soil interaction, four input parameters, namely elastic stiffness k, initial stiffness of

the backbone curve Kh, ultimate capacity Pu and drag soil resistance P
drag
u = 0.1Pu (assumed

constant when the pile is moving in the gap), were required. The model parameters was set as

D = 3 m, L = 18 m, Le = 45 m. Dr = 0.9 (φmax = 42o). The stiffness of the virgin curve was

reduced to 60% of the initial stiffness found from monotonic test. The focus on this thesis is to

provide an overview of the hysteresis loops, more details can be found from Klinkvort (2013).

P
virgin
u (y∗) =

2y∗ –
P

k
+ ybt

1

kh
+

2y∗ –
P

k
+ ybt

Pu

– P
drag
u (2.59)

(y∗) = y – α =
(ymax + yp,min)

2
(2.60)

As shown in Fig. 2.17(b), the total response of the model in the first few cycles is observed to

follow the backbone curve with a high degree of accuracy, but when reversed it shows softer

behaviour than measured due to a mechanical potentiometer. The hysteresis loops from mea-

sured are large than predicted, which indicate that the model underestimates the dumping in the

soil.
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(a) Idealised spring element model (b) Global test and Winkler model responses

Figure 2.17: Model definitions and its use in total responses, from Klinkvort (2013)

Furthermore, the local pile-soil interaction curves from experiment were also modelled by the

proposed spring model as shown in Fig. 2.18. For the chosen depths, a satisfactory agreement

was observed but the spring element does not change with number of cycles as seen in the tests.

This was due to an increase of soil capacity during the experiment as the number of cycles

increases. The response was observed to be stiffer due to soil compaction with in number of

cycles. The method suggested by Klinkvort (2013) has not been verified by further testing,

therefore, it requires further research.

(a) p-y curves at Z=1D (b) p-y curves at Z=1.5D (c) p-y curves at Z=2D

Figure 2.18: p-y tests and spring model responses, from Klinkvort (2013)
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2.4 Behaviour of piles under cyclic lateral loading

2.4.1 Introduction

This section describes the behaviour of monopiles subjected to cyclic loading caused by wind

and waves. The cyclic behaviour of piles has been developed from the results of numerous

laboratory and full-scale physical model tests. Several 1 g laboratory tests (Arshad and O’Kelly,

2014, 2016, Arshad and OKelly, 2016, 2017, Chen et al., 2015, Cuéllar, 2011, Foglia et al.,

2012, LeBlanc, 2009, Nicolai et al., 2014, Nikitas et al., 2016, Peng et al., 2011, Roesen et al.,

2012b, Zhu et al., 2012), Ng centrifuge tests (Bienen et al., 2011, Cox et al., 2014, Kirkwood,

2016, Klinkvort and Hededal, 2013, 2014, Li et al., 2010, Rosquoet et al., 2007, Rudolph et al.,

2013, Zhang et al., 2010) and field experiments (Doherty et al., 2012, Hald et al., 2009, Lin

and Liao, 1999, Little and Briaud, 1988, Long and Vanneste, 1994) have been carried out to

investigate the behaviour of monopiles under cyclic loading. A brief detail of these studies

related to 1g and Ng test models is presented in Table 2.7. Most of these studies described the

behaviour of monopiles based on the following phenomena;

1. Accumulation of monopile rotation or displacement.

The accumulation of rotation of a monopile over its design life must be accurately esti-

mated and typically limited by serviceability constraints (Klinkvort et al., 2012, LeBlanc,

2009).

2. Change in cyclic stiffness with number of cycles.

The monopile in the soil must be accurately designed to account for the change of pile

stiffness and therefore the interaction of the pile and soil. To evaluate monopile stiffness

it is important to assess natural frequencies of the structure and essential consideration for

wind turbine design (Bhattacharya and Adhikari, 2011, LeBlanc, 2009). Any changes of

the monopile stiffness, during and after the application of millions of load cycles, might

be critical in the assessment of the fatigue life and dynamic response of the structure.
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The key effects mentioned above are discussed in detail in the following subsections, however,

before the discussion, the typical cyclic behaviour is described to get a general overview.

Under cyclic loading, the response of the pile can be divided into either one-way or two-way

as demonstrated in Fig. 2.19. In one-way loading, the load cycles from zero to the maximum

applied load in one direction only, whereas with two-way loading the load direction changes to

the opposite orientation.

Figure 2.19: Modes of load variation against time, from Arshad and O’Kelly (2016).

Based on the typical sketch of pile loading shown in Fig. 2.19, examples of outcomes of one-

way and two-way cyclic load characteristics are discussed below;

1. One-way cyclic load characteristics

Figs 2.20(a) and 2.20(b) present typical behaviour of one-way cyclic loading from Li

et al. (2010) and Rosquoet et al. (2007), respectively. It can be observed that over the

virgin sand the loading response for the first cycle exhibits nonlinearity of soil. The slope

of each cycle is observed to increase as the lateral displacement increases. The tangent

stiffness of the first cycle contrasts with the stiffness trend of the following cycles, which

becomes more linear and stiffer as the number of cycles increases. As noted from Li

et al. (2010), the repetition of load under one-way cyclic loading is likely to remould the

soil during the first few cycles, with larger displacements being generated than for the

following cycles. This indicates that the tangent stiffness of the first cycle is lower than

those observed in the following cycles due to soil compaction occurring around the pile,

leading to an increased stiffness.
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(a) The response, from Li et al. (2010) (b) The response, from Rosquoet et al. (2007)

Figure 2.20: The response of one-way cyclic lateral load in a centrifuge.

2. Two-way cyclic loading characteristics

Under two-way cyclic loading, the behaviour of the pile can be described in four stages

in one complete cycle (Long and Vanneste, 1994). In the first quarter of a cycle (see Fig.

2.19), the magnitude of the load varies from zero to a maximum load (Hmax) in the pos-

itive direction (assume push from left to right). The deflection of the pile is resisted by

soil in front of the pile while the soil to the left maintains contact by flowing with the pile.

In the second quarter, the load decreases from Hmax to zero, and the pile deflects towards

the original location (towards the left). As the pile continues to the left side (negative

direction), the soil resistance increases while resistance on the right side decreases with

sand flowing with pile to prevent the gap formation. During this process, the cohesion-

less soil changes in volume and particles rearranged. In the third quarter cycle the pile

continue to deflect to the left and the magnitude of load changes from zero to Hmin (in

the negative direction). The response of the fourth quarter-cycle is similar to the second

quarter-cycle but in the opposite direction. In Fig. 2.21, the results reported by Klinkvort

(2013) provide a typical example of the pile response under two-way cyclic loading.
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Figure 2.21: Two-way cyclic lateral load on centrifuge, from Klinkvort (2013).

2.4.2 Long term cyclic response review

Monopiles may be exposed to a small number of load cycles with large amplitudes (storms) to

large numbers of cycles (107 load cycles) with low amplitudes, over a period of 20-25 years.

The long-term cyclic loading (107 cycles) has a potential to induce a permanent accumulated

rotation and change of the monopile stiffness. The pile rotation is important as offshore wind

turbines have serviceability limit criteria of 0.25o (installation) and 0.25o (operational) (Byrne

and Houlsby, 2003, Villalobos, 2006). According to DNV (2014), the accumulated rotation

is required to be less than the value provided by wind turbine suppliers (usually 0.5o). To

ensure that the natural frequency of the combined structure does not coincide with excitation

frequency, the change in foundation stiffness must be designed accurately (Bhattacharya et al.,

2013a, Byrne and Houlsby, 2003, Kirkwood, 2016, LeBlanc, 2009, Villalobos, 2006, Zhu et al.,

2012).

According to API (2007) and DNV (2014), the current design methodology has been recognised

by several investigators to account for the failure of the pile. The method relies on the model

created by Murchison and O’Neill (1984), upon empirical data of flexible piles from Reese et al.

(1974). In contrast, the existing monopile foundations behave more rigidly with a slenderness

ratio of less than 10 (typically 5 - 6) (Achmus et al., 2009). No sufficient guidance has been

provided regarding the deflection of the pile under cyclic loads. Instead, it was recommended
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that for piles subjected to more than 50 cycles, the ultimate soil resistance should be reduced

to account for cyclic loading (Murchison and O’Neill, 1984, Reese et al., 1974). Therefore,

employing the current design method is still questionable.

Little and Briaud (1988) proposed a method to correlate the displacement of pile head in relation

to the number of cycles, N. The method was used to generate the p-y curves based on the

results of six cyclic pressure meter tests on flexible piles. The soil resistance was assumed to

remain unchanged, but the displacement could increase with an increase of load cycles. 20 tests

were carried on concrete and steel piles, and the results were used to develop a displacement

power function (see Eq. 2.61) for estimation of accumulated displacement, YN, where, q is an

empirical factor that depends on loading and soil characteristics. The soil resistance, PN = P1,

was assumed unchanged as the number of cycles increases. The parameter q = 0.04-0.09,

was derived experimentally for flexible piles and q=0.135 for rigid piles (Abdel-Rahman and

Achmus, 2005). A clear validation of Equation 2.61 was provided by Peralta and Achmus

(2010) for model piles in medium-dense quartz sand subjected to 20 load cycles.

YN = Y1Nq (2.61)

Long and Vanneste (1994) proposed a model to calculate the deflection of 34 full scale pile

tests under cyclic loading. From these tests, it was concluded that the pile head displacements

depended on soil density, cyclic load characteristics and installation method. Using a beam

on elastic foundation (BEF) analysis, the accumulated displacement at the ground surface was

estimated by using Eq. 2.62, with a degradable coefficient of horizontal subgrade reaction after

N cycles, kh,N, estimated by Eq. 2.63, where EI is the flexural rigidity of the pile; Hi, Mi are

lateral load and moment, respectively; A, B are the constants; kh,1 is the coefficient of horizon-

tal subgrade reaction for the first cycle, FL, FI, FD are factors accounting for the influence of

the cyclic load ratio (ζc), pile installation method, and soil density, respectively. The cyclic load

ratio (ζc) is defined as the ratio of minimum and maximum lateral loads. Equation 2.64 was

proposed for accumulated displacement, YN, similar to Little and Briaud (1988) with typical

degradation parameter, t, of the values from 0.1 to 0.4.

YN =
AHi

EI0.4k0.6s,N

+
BMi

EI0.6k0.4s,N

(2.62)
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kh,N = kh,1N–tr ,⇒ tr = 0.17FLFIFD (2.63)

YN = Y1Nt (2.64)

The finding is restricted to soil nonlinearity, stratification, unit weight and strength, which can-

not be considered in the simulation. Furthermore, a greater displacement was observed for pure

one-way cyclic loading (ζc = 0) than partial unloading (ζc > 0).

Lin and Liao (1999) applied a method developed by Stewart (1986) to model the cyclic lateral

loading of piles. Stewart (1986) used the triaxial testing results to developed a model that pre-

dict the strain incurred by a sample at variable loading magnitudes. The pile head displacement

was assumed to be similar to the soil strain recommended by Stewart (1986). As shown in Fig.

2.22, Na was assumed as the number of cycles at load level, Ya = εia and Yb = εib are the

pile-head displacement after a single load cycle of magnitude a and b, respectively. The corre-

sponding permanent displacement (YNa and YNb) on the pile-head after Na and Nb load cycles

are shown in Eq. 2.65 and 2.66, respectively, where ta, tb are degradation parameters. For load

cycles with varying amplitude, the accumulated displacement after Na cycles was obtained by

Eq. 2.67, where N∗b is the equivalent number of load cycles calculated as shown in Eq. 2.68.

Figure 2.22: Strain accumulation, from Lin and Liao (1999), Stewart (1986).

YNa = YN1

(
1 + taIn(Na)

)
(2.65)

YNb = YN1

(
1 + tbIn(Nb)

)
(2.66)
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YN(a+b) = Y1b

(
1 + tbIn(N∗b + Nb)

)
(2.67)

N∗b = exp

(
1

tb

(
Y1a

Y1b
(1 + tbIn(Na) – 1

))
(2.68)

From the results of 26 full-scale cyclic load tests, Lin and Liao (1999) employed a Stewart

(1986) method to develop a logarithmic trend. The method was used to capture the accumu-

lated strain, εN, at the ground surface (see Eq. 2.69), where tr is degradation factor suggested

by Long and Vanneste (1994) (see Eq. 2.71), L is embedded depth, TR is relative stiffness, ki is

a coefficient of a horizontal subgrade reaction for static loading condition, and ε1 is the lateral

strain for the first cycle. As noted from Kagawa and Kraft (1980), the lateral strain of the soil,

ε, was related to the pile deflection, Yz(i), distributed along the depth of the pile as shown in

Eq. 2.70, where D is the pile diameter. The value of tr calibrated from 20 field tests on piles in

sand (Little and Briaud, 1988) and the number of cycles was limited to 100 cycles.

εN = ε1 (1 + tr ln(N)) (2.69)

ε =
Yz(i)

2.5D
(2.70)

tr = 0.032
L

TR
FLFIFD,⇒ TR =

(
EI

kh

)0.2

(2.71)

In Fig. 2.23, a superposition method was used to predict the response of accumulated dis-

placement due to variable loading conditions. The measured data were fitted using Eq. 2.67

and the results were in good agreement. A similar approach was employed by Leblanc et al.

(2010) to determine the accumulation of pile rotation, whereby the loads of magnitudes A, B

and C were applied in the ratio that would be experienced by monopiles. The plots of the mea-

sured and predicted pile rotation in response to the loading sequence A-B-C are shown in Fig.

2.24(b). Truong et al. (2018) predicted the results of centrifuge tests, conducted at different

cyclic loads and magnitude ratios while varying cyclic load sequence, using a superposition

approach described by Lin and Liao (1999). As shown in Fig. 2.24(a), a reasonable agreement

was observed based on the fitting function shown in Eq. 2.72, where θ1 and θN are the accumu-

lated rotation after the first and N cycles, respectively. The parameter αr is the accumulation

coefficient shown in Eq. 2.73 and named as equation (9) in Fig. 2.24(a), where Dr is relative

density and ζc is the loading ratio. Few studies have been reported on this method and further
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work is required to investigate the findings.

θN = θ1Nαr (2.72)

αr = (0.3± 0.22Dr)[1.2(1 – ζ2c )(1 – 0.3ζc)]Dr > 0.5 (2.73)

Figure 2.23: Superposition of pile head displacement, from Lin and Liao (1999).

(a) Rotation from Truong et al. (2018) (b) Rotation from LeBlanc (2009)

Figure 2.24: Comparison of measured and predicted accumulated rotation of pile in
response to variable loading.
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Peng et al. (2006) developed a new loading system which applied one-way and two-way cyclic

loads on monopiles. A model pile with a diameter of D = 44.5mm, embedded length L =

400mm, and relative density of Dr = 71.7%, was tested in a 1g laboratory equipment. Eight

tests were conducted and approximately 10000 load cycles were achieved. The cyclic ampli-

tude loading was set as ζb = [0.2, 0.4, 0.6] and cyclic load characteristics ζc = [–0.1 – (–0.6)].

The loading frequency was varied from 0.45 to 0.95 Hz. From the findings, the increase of

loading frequency was observed to increase the pile-head displacement and its accumulation

was significantly greater in growing magnitude of the loading, ζb, which corresponded to the

behaviour obtained by Lin and Liao (1999) and Long and Vanneste (1994).

Achmus et al. (2009) presented a study of monopiles in cohesionless soil subjected to long-term

cyclic loading. A FE numerical model was developed based on the results of drained cyclic

triaxial tests, which employed a Mohr-Coulomb constitutive model. With the use of soil stiff-

ness degradation concept from Long and Vanneste (1994) and Long and Vanneste (1994), the

degradable hyperbolic soil model was employed to define the cyclic load-deflection response.

The secant stiffness degradation proposed by Huurman (1996) was also employed to achieve

the accumulation of plastic strain. The simulation was performed under one-way cyclic loading

(ζc = 0), and design charts were developed, which relate the ratio between static and cyclic pile

deflection. The findings indicated that the pile diameter, embedded depth and relative density

tend to affect the rate of strain accumulation.

Peralta and Achmus (2010) conducted 1g laboratory tests to investigate both flexible and rigid

piles installed in dry sand subjected to one-way cyclic loading (ζc =0). Approximately 13

tests were conducted in the prepared sand of relative density (Dr) between 40% to 60%, and

achieved approximately 10000 load cycles from each test. The data were fitted with power

and logarithmic functions as proposed by Long and Vanneste (1994) and Lin and Liao (1999),

respectively. The research concluded that the power function
(
yN
y1

= Nm
)

was best fitted the

accumulated displacement of the rigid pile while the logarithmic function,
(
yN
y1

= 1+trln(N)
)

,

best fitted to flexible pile displacement behaviour, where yN is the displacement after N cycles,

y1 is displacement after the first cycle, tr and m are empirical degradation factors.

Verdure et al. (2003), Rosquoet et al. (2007) and Li et al. (2010) conducted centrifuge tests on

model piles in sand. The experiment from Verdure et al. (2003) and Rosquoet et al. (2007) were

carried out on flexible piles subjected to not more than 50 load cycles, while Li et al. (2010) on

other hand considered a rigid monopile in sand subjected to one-way cyclic loading of about
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1000 cycles. The two responses were discussed from each author to tress the accumulation of

pile-head displacement and change of cyclic secant stiffness. Each author reported that the log-

arithmic function (see Eq. 2.74) was the best fit for the relative pile-head displacement (Yp/Y1).

For instance, the results shown in Fig. 2.25 indicate that a relative displacement (Yp/Y1) of the

pile head increases with an increasing number of load cycles (N) given that Y1 is the pile lateral

displacement of the first cycle. Clearly, in Fig. 2.25(a), Yp/Y1 increases as the function of N

and the smaller the value of DF is related to the lower relative pile displacement. A similar

observation is also identified in Fig. 2.25(b), in which the relative displacement is affected by

the increase of load cycles.

YN

Y1
= 1 + CNIn(N) (2.74)
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Figure 2.25: Relative displacement versus number of cycles for different tests

As noted from Li et al. (2010), the rate of lateral displacement CN (shown in Eq. 2.74), was

observed to increase with an increase of amplitude cyclic loading, ζb, which indicated that the

increment rate had a significant impact on the accumulated displacement of the pile head. The

rate of pile displacement was argued to be caused by local densification of sand around the pile

shaft due to repeated lateral loads which had an impact on the shear modulus of soil, leading to

a continuous increase of pile secant stiffness as the number of load cycles, N, increases.

Rosquoet et al. (2007) proposed a method to estimate the parameter, CN, using the ratio of load

amplitude (DF) and maximum cyclic load (Fmax=Hmax)
( DF

Fmax

)
(see Eq. 2.75). As shown
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in Fig. 2.26(a) and 2.26(b), the coefficient CN versus
( DF

Fmax

)
is estimated for Fmax = 720

kN and Fmax = 960 kN, respectively. It is evident that CN values are observed to rise with the

increasing number of load cycles. This is because the cyclic amplitude loads cause shearing in

the sand surrounding the pile, thus inducing larger permanent pile lateral displacements in each

cycle (Li et al., 2010).

CN = 0.08
( DF

Fmax

)0.35
(2.75)
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Figure 2.26: CN coefficient versus cyclic load ratio, from Rosquoet et al. (2007).

As shown in Fig. 2.27(a) and 2.27(b), Li et al. (2010) and Rosquoet et al. (2007), respectively,

have shown that using similar logarithm function (see Eq. 2.76), the stiffness of pile response

increases with load cycles, N, and the magnitude of the increase was high during the first cy-

cles. After the first cycle, KN is slightly increased with the increasing number of cycles but at a

reducing rate. A cyclic secant stiffness rate (Ck) slightly reduced due to the local densification

of sand around the pile, which increases the soil stiffness and the values of KN.

KN

K1
= 1 + CkIn(N) (2.76)



78

100 101 102 103

Number of cycles, N [-]

250

300

350

400

450

500

Se
ca

nt
 s

tif
fn

es
s,

 K
N

 [
N

/m
m

]

 D
r
=97%

 DF=H
max

- H
min

ZL06-1: DF=206 kN
ZL06-2: DF=411 kN
ZL06-3: DF=620 kN
ZL06-4:: DF=810 kN

(a) Pile stiffness, from Li et al. (2010)

100 101

Number of cycles, N [-]

2.5
5

7.5
10

12.5
15

17.5
20

22.5
25

T
an

ge
nt

 s
tif

fn
es

s,
 K

N
 [

M
N

/m
]

 D
r
=86%

 DF=H
max

- H
min

P345: DF=240 kN
P32: DF=480 kN
P347: DF=720 kN
P344: DF=960 kN

(b) Pile stiffness, from Rosquoet et al. (2007)

Figure 2.27: Cyclic secant stiffness versus load cycles for different load amplitude

These findings have proven that the existing models from Achmus et al. (2009), API (2007),

DNV (2014) and Reese and Matlock (1956) were incorrect as they have recommended that

the stiffness degradation of cohesionless soil has caused the accumulation of a pile-head dis-

placement during cyclic loading. However, the cohesionless soil under cyclic loading tends to

densify, leading to pile stiffness increase as the number of cycles increases.

LeBlanc et al. (2010) investigated the cyclic response of monopile foundation installed in a

cohesionless soil through a small-scale 1g laboratory device. The tested model pile of 80 mm

diameter and embedded depth of 360 mm was installed in loose and medium Leighton Buzzard

sand, at a relative density of 4% and 38%, respectively. The data collected were used to exam-

ine the accumulation of pile rotation and change in cyclic unloading stiffness. The experiment

was conducted using a series of load characteristics (ζb and ζc). The variation of parameter

ζb and ζc was found to induce a significant increase of accumulated pile rotation, leading to

pile-soil system stiffness increase as the number of cycles increases. It was reported that for

the first 100 load cycles, a logarithmic expression (see Eq. 2.77) was accurately fitted to the

pile head rotation, however, for larger numbers of cycles an exponential function (see Eq. 2.78)

provided a better fit with measured data. The evolution of the accumulated rotation was esti-

mated in terms of the dimensionless ratio defined in Eq. 2.78, where α = 0.31 is exponential

constant, Tb and Tc are dimensionless parameters, Dr is relative density of sand, ζb and ζc are

the measure of cyclic load amplitude (see Eq. 2.79) and characteristic of cyclic load (see Eq.

2.80), respectively, and pile rotation (θs) from static load having the same magnitude as the
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maximum cyclic load of the first cycle (see Fig. 2.28).

θN
θs

= 1 + CθIn(N) (2.77)

∆θ(N)

θs
= Tb(ζb, Dr)Tc(ζc)N

α (2.78)

ζb =
Mmax

MR
(2.79)

ζc =
Mmin

Mmax
(2.80)

Figure 2.28: Definitions of accumulated rotation: (a) Cyclic tests (b) Static tests,
from LeBlanc et al. (2010)

Abadie and Byrne (2014) has shown that the rotation of monopiles from 1g tests was well fitted

by using α = 0.31, which is similar to LeBlanc et al. (2010). Different values of α were rec-

ommended from other studies, for instance Zhu et al. (2012) provided α = 0.39 for 1g test on

sand while Foglia et al. (2014) and Cox et al. (2014), provided the value of α = 0.18 and 0.3,

respectively. As shown in Fig. 2.29, the test results of accumulated pile rotation were modelled

as increasing exponentially with N. They are plotted by varying ζc while keeping ζb constant,

and the response exhibit an erratic behaviour for ζc < 0.
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(a) Pile rotation against N, Dr =4%, ζb=0.4 (b) Pile rotation against N, Dr =38%, ζb=0.4

Figure 2.29: The response of pile rotation in relation to number of cycles, N, for
varied ζc, from LeBlanc et al. (2010).

It should be noted that the parameters ζb and ζc are related to constants Tb, Tc and relative

density Dr. Clearly, when ζc = 1, Tc must be zero because no accumulated rotation is expected

to occur under static load and when ζc = -1, Tc is also expected to be zero, since the load is

applied in both directions. The maximum one-way loading is obtained when ζc=0, which im-

plies that the loading will cause the large accumulated rotation. As shown in Fig. 2.30(a), a

nonlinear relationship between Tc and ζc is observed with a maximum value of Tc found at

ζc =-0.6, which indicates that the unbalanced two-way cyclic loading provided a significantly

large accumulated rotation of the pile compared to one-way loading (ζc >0).

Furthermore, LeBlanc et al. (2010) also investigated the variation of dimensionless pile stiff-

ness, kN, and the data were fitted by a logarithmic function shown in Eq. 2.81, where Ak is

the dimensionless constant, ko is the initial pile stiffness. As shown in Fig. 2.31, the cyclic

pile stiffness was observed to increase with number of load cycles, however, the increase rate

Ak was independent of the relative density, Dr, load magnitude, ζb, and the cyclic load ratio,

ζc. The expression in Eq. 2.81 was fitted to the data in Fig. 2.31 (see the dashed lines) using

the value of Ak = 8.02. The values of ko were determined from the point of intersection of kN

axis at N=1. The parameter ko = KbKc relates to the dimensionless functions Kb and Kc and

dependent on ζb, ζc and Dr. A typical example behaviour of Kc in relation to ζc, at constant ζb

(Dr=4%, 38%), is shown in Fig. 2.30(b). From this figure, it is unclear about the effect of the

two relative densities, which indicates that the values of the stiffness are independent of Dr. An

increase of stiffness without an influence of relative density, Dr, was reported as questionable
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(a) Function relate Tc vs ζc to Dr (b) Function relate Kc vs ζc to Dr

Figure 2.30: Fitted plots of Tc, Kc against ζc for Dr=Rd, from LeBlanc et al. (2010).

and further investigation is required.

k̃N = k̃o + AkIn(N) (2.81)

(a) Pile stiffness against N, Dr =4%, ζb=0.4 (b) Pile stiffness against N, Dr =38%, ζb=0.4

Figure 2.31: The response of pile stiffness in relation to number of load cycles, N,
for varied ζc, from LeBlanc et al. (2010).

Bienen et al. (2011) experimented on monopiles installed in dry medium-dense sand and tested

them at both 1g and 200g in a centrifuge. The prototype dimension of the tested pile was 2.4 m
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diameter (D) and embedded depth (L) of 9.6 m (rigid) and 30 m (flexible). The research inves-

tigated different magnitudes of one-way lateral loading and managed to achieve approximately

10000 load cycles at a constant frequency of 0.25 Hz. The pile-head accumulated deflection

against the number of load cycles was approximated using Eq. 2.82, where H is the horizon-

tal load applied to the pile head, Qc is the rate of change in CPT cone resistance, As and αs

are dimensionless parameters (Dyson and Randolph, 2001) and fN is the factor to modify the

monotonic into a cyclic deflection (Cuéllar, 2011, Rosquoet et al., 2007). The function fN was

estimated using Eq. 2.83, where BN1 and BN2 were determined from the plots of the deflection

against load cycles, N. The functions were found to provide a reasonable prediction of strain

accumulation under cyclic loading.

Yp = DfNAs
(
100

H

D2LQc

)αs (2.82)

fN = 1 +
N – 1

N
BN1

(
In(BN2 + 1)

)
(2.83)

Klinkvort et al. (2012) conducted a series of monotonic and cyclic load tests, in a centrifuge,

to investigate the effect of displacement accumulation and change of secant stiffness of the

monopiles. The two effects were investigated based on relationships proposed by LeBlanc

(2009). The model piles were installed in both saturated and dense dry sand and tested at dif-

ferent centrifuge acceleration, Nsg. Approximately 500 load cycles were achieved at a constant

frequency and relative density. From the data collected, the empirical relationships shown in

Eq. 2.84, 2.85, 2.86 and 2.87 were derived to explain the accumulation of a pile-head displace-

ments during the cyclic loading, where Ymax,N is the maximum displacement of the pile head,

Ymax,1 is the pile-head displacement of the first cycle, ζb, ζc are defined in Eq. 2.79 and Eq.

2.80, respectively, Hmin, Hmax are the minimum and maximum applied load in the cyclic load-

ing, Hmon is the maximum lateral load capacity found from corresponding monotonic tests, α

is an empirical coefficient controlling the shape of the curve and N is the number of load cycles.

Figure 2.32 shows the results of the load characteristics used to develop Eq. 2.86 and 2.87. In

Fig. 2.32(a), the maximum value of Eq. 2.87 is found at ζc = –0.01, suggested that the most

damaging effect is when the monopile is loaded at an interval of –0.4 < ζc < 0. This trend

contradicts the findings of LeBlanc (2009) in which the most damaging load situation was for

two-way cyclic loading (ζc = –0.61). Klinkvort et al. (2012) does not show the same trend;
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instead it was recommended that the one-way load situation (ζc = 0) is the most damaging

condition. Further description of this disagreement was due to different compaction of sand.

For instance, a 1g test was conducted in a loose sand to capture the maximum angle of friction,

which is different from centrifuge tests where the model stresses and relative density were con-

sidered (Klinkvort and Hededal, 2013).

Ymax,N = Ymax,1.Nα (2.84)

α(ζb, ζc) = Tb(ζb).Tc(ζc) (2.85)

Tb(ζb) = 0.61ζb – 0.03 (2.86)

Tc(ζc) = (ζc + 0.63)(ζc – 1)(ζc – 1.64) (2.87)

(a) Function relate Tc vs ζc (b) Function relate Tb vs ζb

Figure 2.32: Cyclic dimensionless functions for accumulation of displacement, after
Klinkvort et al. (2012).

Furthermore, Klinkvort (2013) described the changes in cyclic secant stiffness (KN) by using

a logarithmic function shown in Eq. 2.88, where K1 is stiffness of the first cycle, and κ is

accumulation rate of cyclic unloading stiffness. A developed linear dependency of magnitude

(see Eq. 2.89) implies that an increase of cyclic load magnitude has led to an increase of κ (see

Fig. 2.33(b)). After obtaining κb, a linear plot of κc (see Eq. 2.90) was derived after fitting the

data (see Fig. 2.33(a)). In Fig. 2.33(a), shifting from one-way (ζc = +ve) towards two-way

(ζc = –ve) loading lead to an increase of stiffness accumulation rate, κc. Based on this trend,
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it is noted that the secant stiffness is affected by the characteristics of cyclic loading.

KN = K1(1 + κ.In(N)) (2.88)

κb(ζb) = 0.05ζb + 0.02 (2.89)

κc(ζc) = –6.92ζc + 1 (2.90)

(a) Function relate κc vs ζc (b) Function relate κb vs ζb

Figure 2.33: Cyclic dimensionless functions for change in secant stiffness, after
Klinkvort et al. (2012).

Rudolph et al. (2015) conducted small scale 1g and centrifuge modelling of monopiles in dry

sand, where the load direction was varied to reflect the different wind and wave loading direc-

tions. Both experiments considered medium density and dense dry sand, representing a typical

5 MW class offshore wind turbine installed in the North Sea, having 5 m pile diameter, 25 m

embedded depth, and 72 m of 2 MN (12 N at model scale) load eccentricity. A small scale

1g model testing, scaled by Ns = 55, providing a model pile diameter of 90 mm and 450 mm

embedded length. In a centrifuge, the prototype was scaled at Ns = 200, providing a model pile

diameter of 25 mm and an embedded depth of 125 mm. In both tests, the loading directions

were varied over an angle between 0o and 120o. The load cycles achieved from 1g tests were

10000 and 30000 cycles (at a frequency of 0.1 Hz, which corresponded to 1 day and 3 days,

respectively) and centrifuge tests were approximately 3000 and 13000 cycles (at a frequency of

0.2 Hz, which corresponded to 4 and 18 hours, respectively). These frequencies were chosen
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to ensure a fully drained response. The results indicated that the 1g tests gave much higher

accumulated pile head displacements (and hence rotations) than the centrifuge tests (for the

same relative density), which further highlights the need to consider carefully scale effects in

1g experiments. The results show an increase of pile head displacement when the direction of

cyclic loading varies, and larger angles resulted in larger accumulated displacement.

Kirkwood (2016) investigated a typical 3.5 MW class offshore wind turbine, supported by a

monopile installed in sand, subjected to a series of lateral load tests conducted in a centrifuge.

A prototype monopile (D=3.81 m, L=20 m and Le=30 m) was scaled down by Ns = 100 to the

model dimensions (D=38.1 mm, L=200 mm and Le=300 mm). 16 centrifuge tests were con-

ducted on relatively loose, medium and dense sand and 4000 lateral load cycles were applied in

four sets of 1000 cycles. In each test, the loading magnitude of subsequent set was increased by

cyclic loading ratio programmed in an automated load control system. It should be noted that

during testing the centrifuge was not spun down. The effect of cyclic lateral loading on the pile

as a function of the loading magnitude, cyclic loading ratio, previous loading and the relative

density of the sand was investigated. From all tests, the stiffness of the pile was observed to

increase as the result of cyclic lateral loading applied at constant amplitude, which has been

previously reported by LeBlanc (2009) and Klinkvort (2013). Furthermore, the damaging ef-

fect of pile-head stiffness and accumulated displacement was observed for pure one-way cyclic

loading (ζc = 0), which agrees with the findings of Klinkvort (2013) but contradicts those from

LeBlanc (2009) with damaging effect observed for ζc <0 (-0.67). Moreover, the study reported

by Nanda et al. (2017) investigated the performance of monopiles under uni-directional and

multi-directional lateral cyclic loading, using the two load characteristics (ζc = -1 and 0 for

two-way and one-way, respectively). Tests were carried out on a model rigid pile (L=500 mm,

D=9 mm, Dr=77%), which includes the effect of open and closed ended pile. The observa-

tions indicated that multi-directional loading provided higher displacements and lower stiffness

compared to uni-directional loading. Furthermore, an open ended-pile developed a significant

lateral displacement compared to closed ended pile.

Truong et al. (2018) employed beam and drum centrifuge testing to study the response of

monopiles in medium dense and dense sand, subjected to lateral cyclic loading. The tests

were carried out at varying cyclic load sequence and magnitude ratios. Three packages of load

cycles (500 cycles for each) were applied in different sequences to determine the effect of ac-

cumulated rotation. The tests were conducted on pile in medium dense dry Fontainebleau sand.
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As shown in Fig. 2.34(a), the pile head rotations (θN), for one-way cycling (ζc=0) of three 500

cycle packages with different cyclic magnitude ratios (ζb=0.5, 0.75 and 1.0), are plotted against

the number of load cycles, and maximum rotation of 1.25o, 1.65o and 1.9o were achieved. A

similar set of measurements for another three packages (300 cycles each), at constant ζb=0.5

with different values of ζc, is shown in Fig. 2.34(b). It is evident that the loading sequence af-

fects the final value of accumulated pile rotation when the one-way cyclic packages was applied

(see Fig. 2.34(a)). When the value of ζc becomes more negative (two-way cyclic loading), the

final value of pile rotation reduced dramatically, indicating that a more damaging effect was ob-

served under one-way cyclic loading. This observation agrees well with findings of Klinkvort

(2013) and Kirkwood (2016).

(a) Function relate κc vs ζc (b) Function relate κb vs ζb

Figure 2.34: Pile rotation at peak load versus load cycles, in three package of cyclic
load sequences, from Truong et al. (2018).

2.5 Existing cyclic loading devices

Over the past decades, different loading devices have been developed for testing piles under

monotonic and cyclic loading (Arshad and O’Kelly, 2014, Basack, 2005, Hansen et al., 2013,

LeBlanc, 2009, Peng et al., 2006, Peralta and Achmus, 2010, Roesen et al., 2012a). In general,

the standard methods of operation of these devices can be broadly classified as mechanical,
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electromechanical and hydraulic (Abadie, 2015, Arshad and O’Kelly, 2014, LeBlanc, 2009,

Peng et al., 2006). As discussed from the studies of these devices, the loading systems have

different challenges in their operations. For instance, the system operated under monotonic

loading applied the gravity, gear and hydraulic drive loading systems (El Naggar and Wei, 1999,

Peng et al., 2004). The statnamic and vibration device systems have been used to provide the

lateral response with low to high loading frequency. This statnamic type was successfully used

in the field with low frequency (0-10 Hz) but has not been proven yet in the laboratory compared

with vibration type (frequency of 5-50 Hz). It was successfully used for cyclic loading tests but

was found insufficient for wind turbine (Peng et al., 2006). Furthermore, a pneumatic loading

device system (Chandrasekaran et al., 2010, El Naggar and Wei, 1999, Kumar and Rao, 2012,

Qin, 2010) has been successfully used for lateral monotonic and one-way cyclic loading, how-

ever, due to complexities in their operations, only limited number of load cycles were achieved

(less than 500 cycles). Moreover, at Oxford University, a three degree of freedom loading rig

on the laboratory floor has been developed to carry out a combined loading on the model piles

(Byrne and Houlsby, 2004). From this model, the load level, the number of load cycles and

frequency were varied, but the consistency of load amplitude was unstable and led to a limited

number of load cycles. Although the above-mentioned loading devices have been widely used

to carry out model tests, the assessment described by Peng et al. (2006) showed that further

improvements were required.

The most common method of operation, which has been used frequently in small-scale 1g lab-

oratory, is an electromechanical loading device. This type of loading system employ a gearbox,

power system, speed controller and other components to provide either one-way or two-way

cyclic loading on the pile head. The system is capable of adjusting the frequency and load level

under load or displacement control (Arshad and O’Kelly, 2014, Peng et al., 2006). The re-

search of this type provides the results in a sinusoidal waveform due to mechanical interaction

between the components (Peng et al., 2006). The only review of this type is discussed in this

section, focused on the development of the current research devices. The different setups of

electromechanical devices for cyclic loading on monopile foundations are shown in Fig. 2.35

and the findings are described in the following paragraphs.
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(a) Basack (2005) (b) Arshad and O’Kelly (2014)

(c) Peng et al. (2006) (d) Roesen et al. (2012a)

(e) LeBlanc (2009) (f) Peralta and Achmus (2010)

Figure 2.35: Existing electro-mechanical loading rig for monopile investigated at 1
g.

From the studies shown in Fig. 2.35, the mechanical operation of the loading systems and

its capabilities to simulate the field conditions are complex (Arshad and O’Kelly, 2014). For

instance, Basack (2005) developed a loading device (see Fig. 2.35(a)) for testing pile groups
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under both lateral monotonic and cyclic loading. Peng et al. (2006) developed a rigged system

shown in Fig. 2.35(c) to investigate a 44.5 mm diameter monopile, embedded in 400 mm dry,

dense sand (Dr = 71.7%) and subjected to both one-way and two-way cyclic loading. The model

piles were tested to approximately 10000 load cycles. The outcomes have shown that with the

increased number of load cycles, the displacement of unbalanced cyclic two-way observed to

increase than one-way balanced. Furthermore, Peralta and Achmus (2010) developed a loading

device shown in Fig. 2.35(f) to investigate a 60 mm diameter flexible and rigid piles in the sand

(L=200-500 mm), and subjected to one-way cyclic loading. The results were used to develop

the power and logarithmic fitting functions as proposed by Long and Vanneste (1994) and Lin

and Liao (1999), respectively. Moreover, the device developed by LeBlanc (2009) (see Fig.

2.35(e)), employed both one-way and two-way loading conditions. The study was carried out

on the model pile in dry, dense sand (Dr= 4% and 38%) with 80 mm diameter and embedded

depth of 360 mm. A total of 21 tests was carried out and approximately a maximum of 65000

load cycles was achieved. The results were in agreement with Peng et al. (2006) and Peralta and

Achmus (2010). They all concluded that for an unbalanced loading condition, the pile rotation

or displacement continues to deform with an increase in the number of load cycles. Roesen et al.

(2012a) conducted the cyclic loading tests on 100 mm diameter model pile with a slenderness

ratio of 6. The device proposed (see Fig. 2.35(d)) was managed to achieve 46000 load cycles

with the load applied in a one-way direction only. Furthermore, Arshad and O’Kelly (2014)

developed a novel mechanical loading system (see Fig. 2.35(b)) for the application of many

thousands of lateral loading cycles, with full control provided over the direction, amplitude,

frequency and waveform shape. The tests were carried out on 53 mm diameter model piles,

embedded (L=360 mm) in dense sand (Dr= 70% and 74%), and subjected to both one-way and

two-way cyclic loading. Approximately 6000 load cycles were achieved on the tested piles and

the results revealed that under two-way loading, a greater pile rotation was observed, which

supported the outcomes of LeBlanc (2009) and Peng et al. (2006). An in-depth discussion of

the existing loading system is beyond the scope of this study and the reader is referred to the

publication cited for more information.

Much of the research conducted for the response of piles under cyclic loading, using these types

of loading devices, has some limitation based on the number of load cycles, loading direction,

frequency, and prototype stresses similarity. For offshore wind turbine foundations, millions of

load cycles are required for design purpose, and further study is still in demand. The current
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research will use the knowledge from these studies to develop a new electromechanical device

for investigating monopiles in a geotechnical centrifuge.

2.6 Chapter summary

In this chapter a general review of previous research about the behaviour of a single pile in

a cohesionless soil subjected to both monotonic and cyclic loading has been discussed and

summarised below;

1. Monopile response under monotonic loading

• A literature review regarding the behaviour of piles under monotonic lateral loading

has been presented. The Winkler approach and the p-y curve formulation have

been used as reference points. The formulations proposed are based on physical

modelling carried out on flexible piles from offshore oil and gas industries. It is

unclear if they apply to the design of monopiles. The uncertainties and limitations

addressed are important for the design of monopile foundations for offshore wind

turbines and required further research.

• In offshore wind turbines, it is important to enable accurate predictions of the foun-

dation stiffness and ultimate capacities, so that the displacement (rotation) of the

pile and the natural frequencies can be accurately predicted. Therefore, the initial

stiffness of the p-y curves needs to be determined with high accuracy. Several stud-

ies have been reported regarding the initial stiffness of the p-y curves on different

aspects. However, Carter (1984) and Ling (1988) have found that the initial stiffness

is linearly proportional to the pile diameter and both linear and a non-linear distri-

bution of initial stiffness can be employed on the piles. Therefore, further study is in

demand to accurately predict the initial stiffness of monopiles in cohesionless soil.

• 3-D numerical solutions are a potential means of conducting soil-structure interac-

tion analysis in a fully coupled manner without resorting to independent calcula-

tions. However, there are uncertainties regarding the type of constitutive models

to be implemented and interface elements cannot be readily determined. For this
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reason, the method has not been used for routine analysis of offshore wind turbine

foundations. In this study, a brief review of the method was presented, but a de-

tailed discussion is beyond the scope of this thesis. Theoretical approaches have

been widely used in many studies on piles due to their simplicity. They provide an

insight into critical issues regarding pile-soil interaction problems. Therefore, the

current study employed these methods to develop solutions for the study of rigid

monopiles.

2. Behaviour of soil under cyclic loading

• Studies have been carried out to determine the response of monopile foundations

in sandy soil to cyclic lateral loading. Empirical functions have been developed to

describe the accumulation of displacement/rotation and change in unloading stiff-

ness of the pile as a function of relative density, cyclic loading ratio, and loading

magnitude. From these studies, it is unclear about the response of the soil itself,

which controls the behaviour of the monopile. For this purpose, the study reviewed

the cyclic response of sandy soil under cyclic loading. The outcomes are used in the

current study to develop a theoretical model of the pile under monotonic and cyclic

loading.

3. Monopile response under cyclic loading

• Studies conducted to investigate the effect of cyclic lateral loading on monopile

foundations in sand, including the change in cyclic stiffness, accumulated displace-

ment and rotation of the pile, were reviewed. The review also included empirical

functions developed to predict the response of monopiles under load cycles. It was

revealed that the current design standards used for offshore foundation design of-

fered limited guidance on the effect of cyclic loads. A significant amount of research

has been carried out to fill the gap. Most of the studies conducted experiments,

however, the effect of lateral cyclic loading on offshore wind turbine foundations

is still a challenging task and many aspects remain unclear until now. No general

approach has been accomplished to include the influence of cyclic loading on the

current standard guide.
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• Few experimental pile tests have been carried out regarding the effect of random

long-term cyclic loading on the accumulation of pile rotation/ displacement and

change of cyclic stiffness. For instance, Lin and Liao (1999) and Leblanc et al.

(2010) found that the accumulation of pile head displacement or rotation is inde-

pendent of the loading sequence, which disagrees with work by Peralta and Achmus

(2010). Therefore, the influence of loading sequence still requires further research.

• Under long-term cyclic loading, accumulation of rotation of the pile has been inves-

tigated experimentally for both flexible and rigid piles. For flexible piles, several

tests have been reported with the number of cycles not exceeding 100. Meanwhile,

on a rigid pile, most of the research was carried out on physical modelling with

a limited number of load cycles. The studies on rigid piles proposed empirical

functions to predict the accumulation of pile head displacement or rotation results.

However, these studies did not achieve the required number of cycles (N=107).

Therefore, further research is still required.

4. Existing loading device for the model piles

• A literature review of the existing loading systems on the behaviour of piles un-

der cyclic loading has been presented. Different systems have been developed to

simulate the field conditions and achieving many numbers of loading cycles. Many

numbers of cycles can be achieved by the system developed under the 1g laboratory

model, however, the model is limited to stress similarities and soil density. The

stress similarity is possible when the model is conducted in a centrifuge, but the

model space is very limited, and the system arrangement is complex to achieve a

larger number of load cycles. Therefore, in this study, available loading devices at

1g were reviewed to develop a new loading device, capable of achieving the very

high number of cycles in a centrifuge.



Chapter 3

EXPERIMENTAL METHODS

3.1 Introduction

Physical modelling techniques have been used to study how deep foundations respond during

cyclic loading. In the case of monopile design, it provides an insight on pile behaviour that

enables a better understanding of the three-dimensional physical problems of the pile-soil in-

teraction and the development of theoretical and numerical models. For the study of soil-pile

interaction, it is important that representative stress levels are recreated within the soil and

hence centrifuge modelling is the best option.

This chapter gives details of the development of a centrifuge package that was to study the

behaviour of monopile in sand. Firstly, a brief description explaining the motive of using a

centrifuge to study the response of a stiff pile in sand instead of 1g laboratory modelling is

presented in Section 3.2. Secondly, Section 3.3 describes the principles behind centrifuge mod-

elling and scaling laws. It also discusses the g-field and scaling effects. Thirdly, Section 3.4

describes the beam centrifuge available at the University of Nottingham. Information about

the sand and the model pile is presented in Sections 3.8 and 3.5, respectively, followed by the

experimental apparatus used to perform tests. The model equipment are described in Sections

3.6 and 3.7 for monotonic and cyclic load tests, respectively. Section 3.7 includes the general

model layout and loading operation principles under cyclic loading. The details of instrumen-

tation and data acquisition systems are presented in Section 3.9. Finally, the experimental

procedure and testing programme are described in Section 3.10. Processes and analysis of the

data collected and the experimental results are all presented and discussed in the subsequent

chapters, however, the preliminary results of test OWTP/C-T15 are discussed at the end of this

chapter to describe the effect of load control factor ζ . The chapter concludes with a summary

of the centrifuge tests.
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3.2 Centrifuge motivation

The review in chapter two showed that the current design guidelines are insufficient to provide

a necessary design methodology for large diameter offshore monopiles. Efforts to provide a

new design standard for cyclic lateral loading on monopiles have been carried out by several

investigators, yet the target has not been achieved. To achieve a better understanding, a full-

scale testing is a preferable option. It allow an estimation of specific behaviour and provide

realistic geotechnical parameters for the design purpose. However, it is not attractive from an

economic perspective and only conducted when their costs are justified. When this method

is not useful, other physical model techniques (unit gravity (1g) and geotechnical centrifuge

(Nsg)) are cost-effective way to understand the key aspects of a full-scale behaviour.

A laboratory 1g model enables a straightforward design of the loading equipment, and is capa-

ble of exploring the pile response to a large number of load cycles. A key advantage is that it

can be used with high resolution instrumentation and capable of measuring very small displace-

ments, which is more difficult on the centrifuge. In addition, the tests involve larger model piles

and the costs for running are much less than centrifuge technique. The key challenge of this

model is the stress difference between the model and full-scale. For instance, LeBlanc (2009)

conducted a 1-g cyclic tests of monopiles in dry sand. As shown in Fig. 3.1, the full-scale

responses were simulated at low confining stress with a low relative density of sand in a model

scale. Bolton (1986) demonstrates that the angles of friction and dilation are proportional to

the relative density and inversely proportional to the stress level. The use of this relationship

into 1-g model means that as the stress level in the laboratory is much smaller than that in the

field, the sample relative density must be accordingly smaller to reproduce the rate of dilatancy

at full scale (Abadie and Byrne, 2014). The sample prepared at a very low relative density

was affected by densification, which would negate the similarity between the unity gravity (1g)

model and full-scale densities (Kirkwood, 2016). Several studies (Arshad and O’Kelly, 2014,

Basack, 2005, Chen et al., 2015, Cuéllar et al., 2012, Foglia et al., 2012, LeBlanc, 2009, Nico-

lai and Ibsen, 2016, Peng et al., 2006, Roesen et al., 2012a) have been reported on this type

of model. In general, the soil models tested at 1-g have a stress level significantly lower than

that present in the prototype scale. Hence, with non-linear stress-strain behaviour of soil, tests
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carried out at 1g cannot provide quantifiable results which are directly applicable to a full-scale.

Figure 3.1: Scaling of the dilatant response of sand, from LeBlanc et al. (2010).

The key advantage of the model testing, on centrifuge, is that the soil stresses are accurately

scaled so that the model stress level corresponds directly to the full-scale condition (Taylor,

1995). However, the testing equipment must be designed to work at high gravitational accel-

eration and in a limited space. On top of that, the centrifuge container is limited and therefore

affecting the size of the model pile. The instruments attached to the model are complex and

sensitive, which required to work at high resolution. Furthermore, for long-term cyclic loading,

for instance on monopiles, centrifuge tests are often limited to a certain number of load cycles,

requires an advanced control system and overnight operation of the centrifuge to obtain a larger

number of load cycles. Technically, it is still a challenge to develop equipment that will fit onto

centrifuge to provide millions of loading cycles related to offshore wind turbine foundations.

Further studies are still in demand to create a model that would be able to apply millions of

load cycles in a reasonable amount of time. Recently, model studies have been carried out on

the centrifuge with different loading devices (Dührkop et al., 2010, Haigh et al., 2010, Kirk-

wood, 2016, Klinkvort and Hededal, 2013, Li et al., 2010), to investigate the cyclic loading of

monopolies foundations.

In this study, loading devices were developed to conduct a series of monotonic and cyclic load-

ing tests on model piles, which representing offshore wind turbine monopile foundations. The
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mechanical systems were designed at the Nottingham Centre for Geomechanics (NCG), as a

load and displacement control of cyclic and monotonic responses, respectively. The load con-

trol system can apply many thousands of load cycles on the centrifuge at different frequencies.

The targeted loading frequency, at centrifuge acceleration of 100g was 15 Hz, however, due to

technical challenges of the model set-up, only 2.5 Hz was achieved at 30g.

3.3 Fundamental theory and scaling laws

3.3.1 Scaling laws of model testing

A geotechnical centrifuge consists of a large beam supported in its centre, with one side carry a

model package and on the opposite side a counterweight was designed to ensure that the beam

remains balanced. During testing, the centrifuge is spun about its axis, and the centrifugal ac-

celeration is acting on the model package, causing it to swing-up about the pivot connected to

the beam. As noted from Kim and Kim (2011) and Madabhushi (2014), the basic idea of cen-

trifuge modelling is to accelerate a model package to an appropriate high g-level to simulate a

prototype scale stress field. When the model is made in a geotechnical centrifuge, it is acceler-

ating at Ns times earth gravity (g=9.81 m/s2). As the centrifugal acceleration is proportional to

distance from the centre of rotation, the g-level increases with depth through centrifuge model

packages. In this case the stress level at any point of the model correspond to the point on

the prototype. A diagrammatic representation of this variation, in a g-level across the depth of

the centrifuge and the prototype, is shown in Fig. 3.2. In Fig. 3.2, a centrifuge model with

radius R, rotating at an angular velocity ω, will experience a radial acceleration a equal to Ns

multiples of gravitational acceleration g (see Eq. 3.1). Thus, the inertia acceleration field of Ns

is provided by using Eq. 3.2.

a = ω2R = Nsg (3.1)

Ns =
ω2R

g
(3.2)
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(a) Centrifuge model (b) Full-scale mode

Figure 3.2: Schematic of the centrifuge and full-scale models, from Taylor (1995).

The monopiles in the offshore are typically installed in the saturated soil. In a centrifuge, an

effective vertical stress can be achieved by using either dry or saturated sand. For saturated

sand, the scaling issue is straightforward as the increase in gravitational acceleration is similar

to geometric scaling factor, Ns (Klinkvort, 2013). For a model in a centrifuge, the effective

vertical stress of soil (σ′m) at depth hm is given by relationship shown in Eq. 3.3, while the

vertical effective stress (σ′p) at depth hp (see Eq. 3.4 ) represent a full-scale model. Due to

stress similarity between the model and prototype (σ′m = σ′p), hm is obtained by Eq. 3.5, where

hm is the depth dimension in the model, hp is the depth dimension in full-scale, ρ′sat is the

buoyant density of saturated soil, Nsat is the acceleration to be imposed in a centrifuge test

under saturated condition, and g is normal gravity. As noted from Klinkvort (2013), the flow of

water in a centrifuge is occurring Ns times faster compared to a full-scale and is unlikely that

pore pressures will build up at the current rate of loading. The scaling approach was designed

so that tests under dry conditions can be related to a full-scale scenario with saturated ground.

The basic assumption for using this procedure was that for quasi-static test, no excess pressure

will develop. With no excess pore pressure in dry sand, the identical effective stress distribution

between the model and prototype can be achieved. However, the increase in acceleration gravity
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and geometric scaling factor will not be identical due to difference in effective density.

σ′m = γ′satNsathm = ρ′sat(Nsatg)hm (3.3)

σ′p = ρ′sat(g)hp (3.4)

hm = hp
1

Nsat
(3.5)

If the model is prepared with soil of similar density as prototype, the stress similarity in the

model will be achieved at scale of 1:Ns. Diagrammatically, the stress similarity between the

model and prototype is shown in Fig. 3.3, where L is embedded depth, Le is load eccentricity,

Yp is pile head displacement, Yg is ground displacement, D is the diameter of the pile, Z is

depth below the ground surface, Zr is depth of rotation below the ground surface, and Zo is

depth of rotation above the pile tip.

Figure 3.3: Centrifuge scaling laws.

A series of scaling factors to relate model behaviour in a centrifuge to a full-scale was first

developed by Schofield (1980) and have been used frequently by many authors (Beemer, 2016,
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Kirkwood, 2016, Klinkvort and Hededal, 2013, Lau, 2015, Li et al., 2010, Truong et al., 2018,

Wood, 2003). Scale factors relevant to common geotechnical applications of centrifuge mod-

elling are presented in Table 3.1 (Garnier et al., 2007, Taylor, 1995).

Table 3.1: Scaling relations for basic quantities in centrifuge modelling

Parameter Symbol Units Scaling laws
(Prototype:Model)

Length/Displacement L/Y m 1:Ns

Area A m2 1:N2
s

Volume V m3 1:N3
s

Mass M Kg 1:N3
s

Force Hi kg 1:N2
s

Acceleration a ms–2 1:Ns

Density ρ kg/m3 1:1

Stress σ Nm–2 1:1

Strain ξ - 1:1

Unit weight γ Nm–3 Ns:1

Rotation θ o 1:1

Bending moment Mi Nm 1:N4
s

Time(Dynamic) T s 1:Ns

Frequency(Dynamic) f Hz Ns:1

In order to achieve the equivalent soil conditions, vertical stress of dry sand in Eq. 3.6 should be

equal to the vertical stress of saturated sand in Eq. 3.3 (γ′satNsathm = γdNshm), where γd is the

dry unit weight of sand, ρd is the dry density of sand. Therefore, the value of Nsat in saturated

sand can be obtained by Eq. 3.7. For instance, if the dry sand used in a centrifuge test has unit

weight of γd = 16.8 kN/m3, specific gravity of Gs = 2.63, and void ratio of eo =
(Gsγw

γd
– 1
)

= 0.53, then the effective saturated unit weight is estimated as γ′sat =
((Gs + eo – γw)

1 + eo
– γw

)
= 10.43 kN/m3. Assuming the test is conducted in dry sand at centrifuge acceleration of Ns

= 30, the acceleration to be imposed in a centrifuge test, assuming that the soil is saturated, is
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approximately Nsat = 48. More detail of this procedure can be found from Li et al. (2010) and

Klinkvort et al. (2012).

σd = γdNshm = ρd(Nsg)hm (3.6)

Nsat =
γd
γ′sat

Ns (3.7)

For the purpose of this study, the excess pore water pressures were to be avoided to allow

the fully drained cyclic response. It was realised that dry sand could conveniently be used to

achieve the stress similarity between the model and full scale conditions.

3.3.2 Gravity field (g-field) and scaling error

There are two common challenges of geotechnical centrifuge that have to be taken into account

during the centrifuge model design to ensure similarities between the model and prototype.

3.3.2.1 Variation of the acceleration field

When the model is tested in a centrifuge, the effect of the gravitational field (g-field) is chosen

that the model is to be subjected to. This effect will influence not only the radial depth, but also

the width of the model geometry (Park, 2013, Taylor, 1995). The gravitational acceleration

field is uniform and acts vertically, however, in a centrifuge, the uniformity deviates slightly

compared to the prototype (Taylor, 1995). The reason is that when the centrifuge is spinning,

the inertial acceleration field ac becomes proportional to ω2R (ac = ω2R, where ω is angular

velocity, R is centrifuge radius) and there is a variation in acceleration within the model. To

minimise this error, a reference level of
2

3
of the model height (L) and appropriate selection of

effective radius are to be considered (see Fig. 3.4).
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Figure 3.4: Minimisation of stress distribution error in centrifuge model.

In Figure 3.4, the ratio of the model height (Z = L) to an effective centrifuge radius (Re) of the

model determines the maximum under-stress and over-stress (Taylor, 1995). A vertical stress

in a prototype, at depth Zp = NsZ, is given by σp = ρgNsZ while the stress at depth Z in the

model can be determined as σi = ρw2Z(Rt+
Z

2
), where Rs is the radius of the top of the soil (Li

et al., 2012, Taylor, 1995). If the gravity is correct at Z =
1

3
L then the maximum under-stress

occurs. At this depth, the error on stress distributions is minimised and the effective radius

Re = Rs +
L

3
is used to calculate the ratio ru =

L

6Re
of the maximum under-stress (error

in stress) to the nominal stress. At the base of the model (Z = L), the maximum over-stress

occurs, with the ratio of stress error to the nominal stress being ro =
L

6Re
. At depth of Z =

2

3
L,

the radius where the vertical stress in the model and prototype are identical is given as Rs+
2

3
L.

The distance from the centre of the centrifuge to different depths are shown in Fig. 3.4 and sum-

marised in Table 3.2. In Fig. 3.4, a nonlinear stress distribution in the centrifuge soil sample is

due to non-constant increase in gravity, which depends on the radius of the container (Klinkvort
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et al., 2013). The height of the centrifuge soil model introduces a parabolic non-linear increase

in vertical soil stresses compared with linear increase that occurs in the prototype (Schofield,

1980). As shown in Table 3.2, suppose the prototype is scaled down at 100g (Ns=100) using a

centrifuge radius, Rt = 1.7 m (an effective radius of the model and prototype stress are similar),

then the angular rotation at the centrifuge can be given as shown in Eq. 3.8, where RPM is

revolution per minute.

ω =

√
Nsg

R2
3

=

√
100 ∗ 9.81

1.7
= 24.022rad/s (3.8)

For 1rev/min=0.10472rad/s, =⇒ ω =229.4 RPM

Table 3.2: Effective centrifuge dimensions from centrifuge axis

Parameter Symbol Value Unit

Radius top of pile-head Ra 1.95 m

Centre of pile-head radius Rh 1.35 m

Top soil radius Rs 1.53 m

Stress similarity radius at
2

3
L R2

3
1.7 m

Pile base radius Rp 1.83 m

Bottom of container radius Rc 1.98 m

Platform radius R 1.6 m

3.3.2.2 Scaling effect on soil particle

In a centrifuge, the grain size effect is important for the interaction between the soil and struc-

ture interface. If the soil particles reduced by a factor Ns, the constitutive behaviour would

likely to change and the models are usually constructed using the same soil as the full-scale

(Garnier et al., 2007). Garnier et al. (2007) and Nunez et al. (1987) noted that no grain-size

effect can be detected if the ratio between diameter, D, and average grain size, d50 is larger

than 45 for laterally loaded piles
( D

d50
≥ 45

)
. However, they both suggested that a monopile

foundation should be considered with caution since the proposed ratio is only valid for tests
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carried out on slender piles. Furthermore, for a model pile in a centrifuge, loaded laterally, Re-

maud (1999) has recommended a
D

d50
≥ 60 to ensure continuum behaviour. The contribution

from Balachowski et al. (1998) and Liu (2010) suggested that the thickness of the shear bands

is mainly related to the average size of grains and are likely to be an issue in a centrifuge. How-

ever, other studies (Garnier et al., 2007, Kirkwood, 2016, Klinkvort et al., 2012, Lau, 2015, Leth

et al., 2008, Loukidis and Salgado, 2008) have reported that the models are usually constructed

by using the same soil as the prototype. To ensure the continuing behaviour with
D

d50
≥ 60,

minimum size for monopile of the current study is established.

3.4 The University of Nottingham beam centrifuge

All tests presented in this study were conducted using the large beam centrifuge at the Uni-

versity of Nottingham (Nottingham Centre for Geomechanics (NCG)). The centrifuge is a 50

g-ton geotechnical beam centrifuge, designed and manufactured by Thomas Broadbent, UK. It

consists three main parts; centrifuge beam, centrifuge chamber and Data Acquisition System

(DAS). It is a medium-sized beam centrifuge with one swinging platform that can accelerate a

500 kg payload to 100g (at a nominal radius of 1.70 m) and can accommodate a model up to 0.6

m (circumferential) x 0.8 m (vertical in flight) x 0.9 m (radial in flight). The centrifuge beam,

with a platform radius of 2.0 m, asymmetric twin tubular arms and counterweight is presented

in Fig. 3.5 and its details are summarised in Table 3.3.

As shown in Fig. 3.5, a fixed counterweight, manually adjusted using a detachable screw jack

prior to centrifuge flight, is used to balance the weight on swinging platform. The platform can

support a model payload between 200 and 500 kg for primary balancing. Further, an automatic

in-flight balancing system allows to correct the imbalance by the movement of oil in the cen-

trifuge arms. For safety reasons, during spinning the centrifuge automatically shuts down when

the tolerable out-of-balance load of ±30 kN is exceeded.
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Figure 3.5: The sketch of the NCG geotechnical centrifuge, from Ellis et al. (2006).

Table 3.3: NCG geotechnical centrifuge specifications (Ellis et al., 2006, Mo, 2014)

Item Value Units

Rotation speed 5-281 [rpm]

Radius

Platform 2 [m]

Nominal 1.7 [m]

Acceleration, g

Maximum acceleration at 1.7 m 150g [m/s2]

Maximum size and weight of payload

Maximum payload (500 kg at 1.7 m) 850 (up to 100g) [kgm]

Width, vertical in flight 0.8 [m]

Length, circumferential in flight 0.6 [m]

Depth, radial in flight 0.9 [m]

In-flight balancing +/-50 [kgm]

Motor 75kW 3 phase indication motor [–]
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The centrifuge is supplied with a complete control system based on an industrial programmable

logic controller (PLC) (see Fig. 3.6(a)). The system comprises a Control/Drive Panel, a Local

Control Panel, and Machine Instrumentation to control all safety related machine functions such

as speed, automatic balancing, drive overload protection, access interlocks, and start and stop

sequences. The centrifuge control system cannot control or extract data from the experimental

payloads on the centrifuge. A photograph of the centrifuge and the current model is shown in

Fig. 3.6(b).

(a) Control system. (b) Centrifuge and model.

Figure 3.6: NCG geotechnical centrifuge control system and model photograph.

3.5 Model container, pile and pile head

3.5.1 Model container

The container was specifically designed for the centrifuge tests at the University of Nottingham.

It is cylindrical (see Fig. 3.7(b)), made of steel and having an outer diameter (Wo) of 500

mm, inner diameter (Wi) of 490 mm and height (Hc) of 500 mm. The detail is shown in
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Fig. 3.7(a). For the laterally loaded pile, Madhusudan Reddy and Ayothiraman (2015) noted

that the boundary effect, suggested by Matlock (1970), is predominant within 8-10 times the

pile diameter (D) from the pile boundary. In this study, the model pile diameter is 60 mm;

therefore the diameter size of the tank, W, should be between 480 - 600 mm. In Fig. 3.7(a), the

space available between the horizontal (B1) and vertical (B2) boundaries are in order of 3.25D

and 2.5D, respectively. The clearance boundaries of the pile and container wall are always

considered to avoid the effect from the wall to the pile-soil interaction.

(a) Dimensions of the container (b) A photo of steel container

Figure 3.7: The container used in soil bed preparation.

3.5.2 Model pile

The main purpose of the current study is to investigate the behaviour of laterally loaded rigid

piles which represent the monopile foundation. According to Achmus et al. (2008), the typical

monopiles are found at a water depth of 30 m and above and have been reported to have a

diameter in the range between 6-8 metres. The model pile proposed represent a typical steel

monopile that supporting a 5 MW class wind turbine. The outer diameter (D), wall thickness

(tp), embedded length (L), load eccentricity (Le) and flexural stiffness (EpIp) are 6 m, 0.1 m,

30 m, 20 m and 1694 GNm2, respectively. By using a geometric scaling factor of Ns =100, a
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hollow cylindrical aluminium pipe, having 60 mm external diameter, 3 mm wall thickness, 500

mm length and an embedded length of 300 mm, was designed and manufactured. The flexural

rigidity of the aluminium model pile was ensured by increasing its thickness to a factor of three

due to the difference of Young’s modulus between aluminium and steel. The application of

lateral monotonic and cyclic load was proposed at 200 mm above the soil surface, to represent

a typical proportions load eccentricity (Le) of an offshore pile foundation.

With respect to soil characterisation, the pile may be considered as rigid or flexible (LeBlanc,

2009). The pile flexibility is given to the pile aspect ratio (embedded length (L) over diameter

(D)) and relative stiffness. These two parameters are likely to be the key design and scaling

variables for the model testing. As noted from Poulos and Hull (1989) and Meyerhof (1995),

the flexibility of the pile is defined by the pile-soil relative stiffness, KR (see Eq. 3.11) and

its critical length (Lc) (see Eq. 3.9). According to Meyerhof (1995), for the pile to behave in

a rigid manner, KR should be greater than 0.01, otherwise will behave in a flexible fashion.

Poulos and Hull (1989) recommended that, for the pile to behave more flexibly, the embedded

depth (L) should be greater or equal than the critical length (Lc) (see Eq. 3.9) and rigid when L

< Lc (Eq. 3.10), where EpIp and Es are the flexural stiffness of the pile and Youngs modulus of

elasticity of soil, respectively. For a steel monopile of 6 m diameter (D), 30 m embedded length

(L) and 100 mm wall thickness (tp), rigid behaviour is observed for Es 9.6 MPa using Eq. 3.10.

Flexible behaviour requires Es > 810 MPa for L to be less than Lc. As noted from Kirkwood

(2016), the typical range of Es for dense sand is 48-81 MPa. Therefore, the monopiles lie to

the condition of rigid behaviour (by using Eq. 3.10). Furthermore, this is also supported by

slenderness ratio
( L
D = 5 < 10

)
(Byrne and Houlsby, 2003, Klinkvort and Hededal, 2014).

Lc = 4.44

[
EpIp
Es

]0.25
(3.9)

Lc = 1.48

[
EpIp
Es

]0.25
(3.10)

KR =
EpIp

EsL
4

(3.11)

As noted from Abadie (2015), Fig. 3.8 shows a plot of aspect ratio against pile relative stiffness,

KR, for a range of designs relevant to UK offshore wind farms. From the figure, three sets of

data are presented: wind farm monopiles in sand, wind farm monopiles in clay and piles that

were used to develop the p-y methods recommended by Cox et al. (1974) (Reese and Van Impe,
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2010). The area where the model piles should be located to capture the full-scale conditions is

positioned at the top left corner. In this region, the pile of the current study is positioned based

on previous published model piles frequently cited in this thesis.

Figure 3.8: Published pile flexibility factor against L/D ratio for OWT, from Abadie
(2015).

A photograph and detailed sectional view of the model pile are shown in Fig. 3.9(a) and 3.9(b),

respectively, and the characteristics are summarised in Table.3.4. As shown in Fig. 3.9(a), the

sand was glued to the shaft surface to understand the interface interaction between the pile and

the soil (i.e purely glued). If the aluminium surface had just left without glued, then the interface

interaction would not be known. It would be somewhere between smooth and rough, but you

would not know where in between these extremes lies. So this decision was not motivated by

a correlation to a realistic full-scale monopile, it was done to reduce uncertainty regarding the

interface behaviour.

The mobilisation of shaft friction is controlled by the behaviour of a thin zone close to the

pile surface, whose thickness depends on the pile surface roughness (Fioravante, 2002). The

interface zone, as a result of the load applied on the pile, is subject to larger plastic straining in

the way to resemble the simple shear mode. The soil in this phenomenon can exhibit a dilative

or contractive behaviour depending on the pile installation and relative interface roughness

(Ra). As noted from Shepley (2014), if the value of Ra exceeds 0.1 the surface is termed

as rough and dilatant behaviour at the interface is expected. In contrast, if Ra is less than

0.02, then the interface surface is smooth and a low stress at the interface is expected with

no dilatancy. The pile surface roughness varies between (2 to 5)D50 for a smooth pile up to
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(10 to 15)D50 in the case of rough pile (Fioravante, 2002, Kishida and Uesugi, 1987), where

D50 being the mean particle size of the sand. A smooth surface allows a slippage to occur at

the interfaces with no development of shear zone while in the rough surface the failure takes

place at a distance from the shaft and the interface friction angle is close or equal to the soil

friction angle (Axelsson, 2000, Garnier, 1998). In centrifuge, to model the interface roughness,

the normalised roughness should be similar in the model and the prototype (Garnier, 1998).

For instance, Klinkvort (2013) investigated the influence of shaft friction by sandblasting the

surface of one pile compared to smooth piles, in which capacity of sand glued pile (rough pile)

was observed stiffer than smooth pile, however, there was no clear conclusion to whether a

smooth or rough pile surface was the best to mimic the surface of a prototype monopile. It is

therefore expected that the use of sand coated model pile in this thesis will provide a reasonable

stiffness compared to a full-scale.

As shown in Table 3.4, the last column indicates the prototype characteristics for geometric

scaling factor of Ns = 30. It can be seen that for this scale factor, the prototype dimensions are

reduced compared to the model at scale of Ns = 100.

Pile cap

Pile

Embedded

depth (Sand

coated)

(a) Model pile with head (pile cap) (b) Model pile section details

Figure 3.9: A photograph of full pile and section detail.
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Table 3.4: Characteristic of pile in a model and prototype scale

Parameter Symbol Unit Model Prototype Prototype
Ns=100 Ns=30

Diameter of pile D m 0.06 6 1.8

Embedded Depth L m 0.3 30 9

Wall thickness t m 0.003 0.1 0.03

Load eccentricity Le m 0.2 20 6

Young’s Modulus Ep GPa 70 210 210

Moment of Inertia Ip m4 2.188x10–7 8.0675 0.06535

Flexural stiffness EpIp MNm2 0.0153 1.6942x106 1.3723x104

Vertical load Vp kN 0.02088 10000 289

Load frequency f Hz 2.5 0.025 0.083

3.5.3 Model pile head

An aluminium pile-head, rectangular of size 101x101x60 mm, is built-in with a circular solid

cylinder (54 mm diameter by 50 mm height), which is attached on top of pile to simulate the

static vertical load (see Fig. 3.10(a)). A typical 5 MW class wind turbine, having a vertical

load (VT=10 MN), represents the weight of the turbine, tower and transition piece. By using

centrifuge acceleration and effective radius (see Fig. 3.11), the prototype vertical load was

reduced to a model weight of 2 kg (see Table 3.5). As shown in Fig. 3.11, effective radius

(Rh) from the centrifuge axis to the centre of the pile head was used to estimate the centrifuge

acceleration, Ns (see Eq. 3.12), where ω is the angular rotation in rad/s and g is the gravitation

acceleration in m/s2. By using the value of ω = 24 rad/s, g= 9. 81 m/s2 and Rh 1.345 m, the

weight of the pile-head (Wm) at 100g was estimated to be 166.5 kg (1633 N) (see Table 3.5). At

1g unit gravity, the design weight is approximately 2 kg. This weight was taken as the vertical

load on the model pile with all dimensions presented in Fig. 3.10(b). The material used for

the model pile-head was aluminium with density of ρ =2700 kg/m3. It should be noted that

the angular velocity of ω = 24 rad/s was considered in the pile-head design to achieve a stress

similarity at
2

3
L (Re=1.72 m), which corresponds with a centrifuge gravity of 100g. Therefore,



111

for tests conducted at 30g, the angular velocity is ω=13.08 rad/s. All parameters at 100g and

30g are presented in Table 3.5.

Ns =
ω2Rh

EsL
4

(3.12)

Frame to prevent the

sliding of LVDT

Load cell

(LC) clevis

Pile-head
Built in pile-

head circular

(a) Pile-head (b) Pile-head section view

Figure 3.10: A photograph of pile-head and section detail.
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Figure 3.11: Effective radius (R) and artificial gravity from the centrifuge axis.
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Table 3.5: Characteristics and design weight of the pile-head

Item Symbol Unit Value Value
Ns=100 Ns=30

Effective radius Rh m 1.345 1.345

Embedded depth L m 0.3 0.3

Angular velocity ω rad/s 24 13.08

g-level at Rh

(
Ns =

ω2Rh

g

)
Ns - 78.24 24

Prototype vertical load VT kN 10000 289

Ns g weight
(

Wm =
Vp

N2
s

)
Wm kN 1.634 0.501

1 g weight
(

W(1g) =
Wm

Ns

)
W(1g) N 20.88 20.88

1 g mass
(

M(1g) =
M1

g

)
M(1g) kg 2.12 2.12

3.6 Monotonic experimental apparatus

3.6.1 Introduction

The section describes the apparatus used to investigate the monotonic responses of the pile in

dry sand and subjected to monotonic loading. The details of each component are described

in the following sections. The loading device was developed to determine the capacity of the

monopiles and contributes to the findings made in the cyclic tests. The loading system was

designed to deliver a uniform rate of displacement at a relatively low speed. All monotonic ex-

periments were carried out with deformation-controlled loading of the pile at a constant rate of

approximately 2 mm/s for tests OWTP/S-T1/T2, OWTP/S-T3 and 0.05 mm/s for test OWTP/S-

T4.
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3.6.2 Experimental setup and equipment description

Figure 3.13 shows a sectional layout of the lateral loading device that is used to apply monotonic

lateral loads on the head of the model pile. The pile, identified as (5) in the figure, is installed

in dry sand that is contained in a circular container, having an internal diameter of 0.49 m and

overall depth of 0.5 m. The driving torque to the loading system is provided by a stepper motor

(1), which applies torque to a gear-head (10). The operation of the gear-head is used to drive

a ball-screw (9) at a rate of 2 mm/sec. The rotating ball-screw (9) allows the gantry (11) to

move towards the pile-head (6). The gantry (11) is directly connected to the rail with carriage

to enable the movement of connected components, such as the vertical aluminium frame (12)

and miniature load cell (2). The load cell (2), connected to spherical connector (7), was used

to record the magnitude of the monotonic loads applied to the pile-head (6). The spherical

connector (7), at the front of the pile-head (6), kept the applied load in a horizontal direction

even when the pile is rotating. The two horizontally mounted LVDTs (3, 4) with holders on

the vertical beam (13) were attached to the pile-head and along the pile to record the horizontal

displacement. The aluminium base plate (8), which is fixed on the top of the container, was used

to support the linear rail, stepper motor and other associated components. Figure 3.12 shows

photos of the arrangement of the developed apparatus for monotonic loading experiment.

Ball-screw

Gear head Stepper Motor

Gantry

Pile head
Linear rail Al. Top Plate

(a) Top view

LVDT beam

LVDT

LVDT (3)

LVDT

Camera

Pile head(6)

LC cap (7)

Load cell (2)

LC frame (13)

Gantry (11)

Carriage
Linear rail

Pile (5)

Al. top plate
(8)

(b) Side view

Figure 3.12: Photos of the monotonic loading system.
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B2=150 mm
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W1= 500 mm
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LVDT frame (12)

LC Frame (13)

1

1

Figure 3.13: A section layout of monotonic loading device

3.7 Cyclic experimental apparatus

3.7.1 Introduction

As part of research programme, a new mechanical loading device was developed to enable the

application of the lateral cyclic loads on the pile head. The device can apply either one-way

or two-way cyclic loading. This section describes the cyclic loading components and how the

loading device operates.
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3.7.2 General layout

In this research, a mechanical loading device (see section layout in Fig. 3.14) was designed

to apply cyclic lateral loads to the head of the model pile. It consists of the following major

parts; aluminium base plate (1), steel container (2), reaction frame (3), applied weight device

(4), dead and balance weight block (5), powerful operating system (AKM (6) and stepper (7)

motor), crank disc (8,9), connecting rod (10) and Plummer block (14). The model pile shown in

Fig. 3.14 was installed in a dry sand that contained in a circular container having the dimensions

detailed in Fig. 3.7, Section 3.5.1. The location of the model pile and its dimensions were the

same to those shown in Fig. 3.13. Figure 3.15 shows a 3-D sketch of the front and back side

Figure 3.14: A section layout of model test setup for cyclic lateral loading.

views of the rig system. The components of the model setup are described in the following

sections. Photos of the cyclic model test set up in a centrifuge can be seen in Fig. 3.16.
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(a) Front side of the model device. (b) Back side of the model device.

Figure 3.15: A 3-D sketch of the model setup device for cyclic loading.
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(a) LHS view

DAQ

Model Plate

Stepper Motor

Gear Box

AKM

Payload

Container

DAS

Frame

Frame Base
Pile Cap

(b) RHS view

Figure 3.16: Photos of the cyclic loading model setup in a centrifuge.
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3.7.3 Component descriptions

1. Aluminium base plate (1).

• A base plate with a thickness of 20 mm is a separate part, designed to connect the

platform of centrifuge, container and act as cantilever support for the loading com-

ponents and power system (this is addition length exceeding the centrifuge plat-

form). Furthermore, four holes were created to allow an easy transport of the model

using a fork lift. A typical sketch of the base plate and corresponding dimensions

are shown in Fig. 3.17 and 3.18, respectively.

• With a limited space on the centrifuge platform, an overhang base plate was design,

capable to receive the total weight from load device, AKM and stepper motor in-

cluding the associate components. A simple cantilever beam calculation for 20 mm

thickness gave 0.46 mm deflection. Although the deflection was too small, which

theoretically could not affect the plate, two pieces of aluminium bars were welded

at the bottom to reinforce the added length (cantilever beam plate).

Holes to lift the tub by
fork-lift into centrifuge

Holes to fix the base
plate on platform

Holes to fix the
load device plate

Welded plate to support
gear box and stepper motor

Figure 3.17: 3-D sketch aluminium base plate (not to scale)
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Figure 3.18: Dimensions of aluminium base plate

2. Steel container (2)

• The tests are carried out in a circular steel container, which is welded with steel

plate at the bottom and consisted of four 16 mm bolt holes, used to fix the container

and a base plate. Its top is used to support the reaction frame (3). The more detail

of this component was described in Section 3.5.1.

3. Loading frame (3)

• A loading frame (3), made up of aluminium with four pulleys (17) holes, is fixed

on top of the container. The wires (18), passing through the pulleys were designed

to support the weight M1, M2 and M3. As shown in Fig. 3.19, the loading frame

consists of base plates (fixed on top of the container), four aluminium rectangular

columns (main support frame) connected with overhang and top frame to support

the pulleys.
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plate

LHS Overhang

Frame

Top frame

Vertical LVDT

Holder

Main Support

Frame

RHS Overhang

Frame

Top of the

container

Horizontal LVDT

Holders
Frame

Figure 3.19: A 3-D sketch of loading frame.

A cross section layout, which shows the dimensions of the loading frame and a

photo taken from the centrifuge model setup, can be seen in Fig. 3.20 and 3.21,

respectively.

Figure 3.20: Cross section layout of the loading frame.
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Top frame

Vertical LVDT holder

Main support frame

RHS overhang
frameFrame base

LHS overhang
frame

Hor. LVDT holder

Figure 3.21: A photograph of the loading frame.

4. Pulleys and Wires (17 and 18)

• Four pulleys (17), which are made up with brass materials and supplied by Barton

Marine, have a diameter of 35 mm and breaking load capacity (WL) of 400 kg,

sufficient to hold the weights M1, M2 and M3. The steel pins with bearing are fixed

on the frame (3) to support and allow the pulleys to rotate freely.

• The tension wires (18), passes through the pulleys, are supplied by Techni-cable

wire rope solution. They have 4 mm diameter and tensile capacity of 9.09 kN. As

shown in Fig. 3.14, the wires are connected in-line with LC (load cell), passing on

the pulleys directly to the pile head with its ends connected to the load device base

plate (4) (on the RHS) and weights M2, M3 on the LHS. These wires are used to

provide the tension forces generated by the action of the loading mechanism, and

can be recorded through the LC sensors.

5. Loading device components

• From Fig. 3.14, a loading device includes the following components; the power

system (AKM (6) and Stepper motor (7)), the loading weight (M1), motor disc,
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connecting rod and thrust bearing. A section layout and photograph taken from the

centrifuge model setup can be seen in Fig. 3.22 and 3.23, respectively.

Figure 3.22: Section layout of the loading device.

• Fig. 3.22 shows the section detail of two power system; AKM servo motor (6)

and stepper motor (7) (connected with gearbox). An AKM motor (6), having a

frequency range between 0.3-1.5 kHz, is used to rotate the motor-crank disc (9).

When the centrifuge is spinning, the thrust needle roller bearing (8) was fixed to

support the weight of crank disc and connecting rod (10). An AKD speed controller

(not shown in the figure) is used to manage the speed of the motor shaft with a

maximum output of 8000 rpm. The motor can operate under a maximum torque of

6.72 Nm. An AKM motor detail is shown in Fig. 3.24.
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Stepper motor

Gear box

Motor disc

AKMMotor & Box

V-Bolts
Connecting road

Bot. LVDT-1

M1 plate

Load device Plate

Weight M1

AKM base plate Rails

M1 Cover box

Figure 3.23: A plan view photo of the loading device.

(a) A photo of AKM motor

AKMMotor

Power cable

connection

Motor shaft

Motor cover

(b) AKM motor connected to crank-disc

Figure 3.24: The AKM motor detail.
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• A single shaft stepper motor (7), manufactured by RS Pro Hybrid Stepper Motor, is

used to control the movement of the loading system including the AKM motor. It is

connected to the gearbox to change the location of the weight, M1, and outbalance

the loading system before an AKM motor start to spin. A photo of the stepper motor

and square gear box is shown in Fig. 3.25.

90 degree 1:1

gear box
Stepper motor

gear box Stepper motor

Figure 3.25: Stepper motor photo detail.

• As shown in Fig. 3.22 and 3.23, 100 mm diameter circular motor discs (9) are

connected to an AKM motor shaft. From the disc plates, a threaded pin (10 mm

diameter) is connected to an angular contact bearing, located 15 mm from the centre.

A female rod end bearing is fixed to the pin, and then threaded to the end of steel

connecting rod (10). The pin bearing is used to allow the free movement of the

connected rod during the spinning. The steel rod (10 mm diameter) is linked to the

weight, M1, using a 10 mm male heavy-duty rod end. The male-rod end is used to

provide both horizontal and vertical movement of the steel rod. During the spinning

of the AKM motor, the weights of the crank-disc and steel rod are prevented by a

cylindrical thrust roller bearing (8), which are supported by a circular aluminium

frame. The roller bearings allow the motor shaft to rotate freely without being

affected by weights applied on it. Photographs and sectional detail of the motor-

disc, thrust bearing, and connecting rod are presented in Fig. 3.26.
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Motor discs

Threaded pin

(a) Motor discs with thread pin

Roller bearing Circular frame

Top plate

(b) Thrust bearing and circular frame

Female rod end Steel Clevis

Male rod endConnect Rod

(c) Connecting rod (d) Section layout of the components

Figure 3.26: Photos of the motor disc, connecting rod, thrust bearing and section
detail.

6. Loading cage and calibrated weights

• The loading system is consisted of RHS and LHS devices for the loading weight,

M1 (12), and both dead and balance weights (M2 (15), M3 (16)), respectively. On

the LHS of the model, an aluminium cage (5), fitted with PTFE tube, was designed

to protect the weights (M2 and M3) and allow them to move freely. The section

layout and photos of the LHS components are shown in Fig. 3.27.
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PTFE tubes

Al. Block
Base plate

(a) M2 and M3 aluminium block and PTFE fitted

M
3

= 4 kg

M
2

=1.5 kg

Base plate

(b) M2 and M3 on cage (c) Section of the cage

Figure 3.27: Photos and section layout of aluminium block.

• Likewise, the device on the RHS consists a loading box (16), which includes three

rails and carriage (for free movement of weight, M1 (12)) and Plummer block (see-

saw) (14). The see-saw is connected to aluminium plate (4) to provide rotation of

the system during the spinning. Photographs of loading components on the RHS of

the container are portrayed in Fig. 3.28.
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Figure 3.28: Photos of the loading device on the RHS of container.
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3.7.4 Working mechanism of the loading system

The working mechanism of the new loading system depends on the required load scheme (M1,

M2, and M3) and the frequency of AKM motor. Referring from Fig. 3.14, the cyclic lateral

loading behaviour of the pile head is obtained by the transfer of loads (supplied by loading

weight, M1 and dead weight, M2 ) through the wires (T1 and T3); that is, tension forces are

generated in the load cells. As shown in Fig. 3.29, the system arrangement includes; applied

weight (M1) sliding on the frictionless rail, dead weight (M2), balance weight (M3), sea-saw

beam, pile head, tension wires (T1, T2 = T4 and T3), the load cells named LC (RHS) (connected

on the right-hand side of the pile head), LC (LHS) (connected on the left-hand side of the pile

head) and beam plate. The tension wires (T1 and T2) are connected directly to the loading

plate, and separated by an equal distance (l1 = l2), from the centre O=B1. It should be noted

that the weight applied on the tension wire T2 is outbalance with weight applied on the tension

wire T4.

Figure 3.29: Schematic diagram of working operation on the system.
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From the system arrangement, a sinusoidal waveform is generated to describe the cyclic load-

ing behaviour of the pile head. Control over the frequency of the load and the movement of

loading weight (M1), is primarily achieved by adjusting the speed of the driving motor. For

instance, when a sliding node O, of the weight M1, is in its middle range, the tension on wires

are assumed to be in a balance with zero wave amplitude. Meanwhile, the weight M3 is chosen

sufficiently to balance loads of the components connected with M1, creating an outer system in

a balance. The weights M1 and M2 are each attached to the pile through load cells LC(RHS)

and LC(LHS), with tension wires T1 and T3, respectively. These weights can provide differ-

ent loading scenarios as they control the cyclic load characteristics. The weight M1 designed

to control the amplitude of the loading, Hmax, while the load M2 is used to control the mean

loading level, Havg.

As shown in Fig.3.30, a schematic of weight sliding-crank mechanism is also used to describe

the system operation. The weight, M1 is assumed to slide horizontally on the rail from point B

to B1 at distance X, while the crank-disc rotates in a clockwise direction at an angle, θi. Li and

Ri are the length of the rod and distance from the pin to the centre (on the crank-disc), respec-

tively. βi is defined as the angle between the line of weight movement (BO) and connecting rod

B2A, θi is the rotation of the circular disc, hi is the vertical height between the horizontal line

and pin on the crank-disc, and ωc = 2πf is the angular velocity provided by the AKM motor,

f is the frequency. The frequency of the cyclic loading is controlled by the rotational speed of

the AKM motor. Initially, the proposed frequency to run the motor was set to be 15 Hz in order

to represent a prototype frequency of 0.15 Hz. However, due to technical challenges related

to centrifuge acceleration (g-level), the cyclic tests were conducted to a constant rotational fre-

quency of 2.5 Hz.
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Figure 3.30: Sketch showing general arrangement of crank-motor disc.

Theoretically, the displacement, X, linear velocity, V, and acceleration, ai of the weight (Mi),

moving horizontally from point B to B1 can be calculated as follows;

1. Displacement X when the motor disc has turned through an angle θi from the inner dead

centre, is obtained by Eq. 3.14.

X = B1B = BO – B1O = (Li + Ri) – (X1 + X2) = (Li + Ri) – (B2A1 + A1O) (3.13)

⇒ X = (nRi + Ri) – (nRicosβi + Ricosθi) ,→ n = Li
Ri

⇒, cosβi =
√

1 – sin2βi =

√
1 –

h2i
L2
i

=

√
1 –

(Risinθi)
2

L2
i

∴ X = Ri

[
(n + 1) –

(√
n2 – sin2θi + cosθi

)]
(3.14)

2. Velocity of the weight (Mi) from inner dead centre, V

• The linear velocity of the weight sliding can be obtained by finding derivative of

weight displacement, ∂X with respect to time, ∂t. This can be determined as shown

in the following equations;

V =
∂X

∂t
=
∂X

∂θ

∂θ

∂t
, =⇒ ∂θ

∂t
= ω (3.15)
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⇒ V =
∂

∂θi

[
R
{

(n + 1) –
(√

n2 – sin2θi + cosθi

)}]
ωc

∴ V = Riωc

[
sinθi +

sin2θi

2
√

n2 – sin2θi

]
(3.16)

3. Acceleration of the weight (Mi) from inner dead centre, ai

• The linear acceleration of the weight (Mi) sliding can be obtained by finding deriva-

tive of weight velocity, ∂V with respect to time, ∂t. This can be determined as

shown in the following equations;

ai =
∂V

∂t
=
∂V

∂θ

∂θ

∂t
, =⇒ ∂θ

∂t
= ω (3.17)

⇒ a =
∂

∂θi

[
Rωc

{
sinθi +

sin2θi

2
√

n2 – sin2θi

}]
ωc

∴ ai = Riω
2
c

[
cosθi +

cos2θi
n

]
(3.18)

From Fig. 3.29, the movement of the sliding weight (M1) on the slot rail will initiate loads on

the pile head. When the system is in a balance (see Fig. 3.31(a)), any movement of the weight

M1 will determine the tension force on the wires. The free body diagrams (FBD) (see Fig.

3.31), consists of oscillating components supported by the see-saw on pin joint B1. When the

loading weight, M1 slides on the rail using the crank-motor disc mechanism (see Fig. 3.30),

keeping the joint B1 at the mean, the weight M1 is assumed to move at distance X from B1

(see Fig.3.31(b)). As the crank rotates, the weight M1 creates a tensile force in wire T1, which

is transferred onto the pile-head through the load cell (LC (RHS)); however, there is another

tension force, T3, acting on the left (LC (LHS)). Theoretically, the net lateral load on the pile

head may be written as ∆Ti = T1 – T3 (see Eq. 3.19). The distance X can be rewritten in

sinusoidal form as X = Xosin2πf and the net load, Hi can be calculated as shown in Eq. 3.20,

where the quantity
(M1gXo

l1

)
is the amplitude of the applied cyclic load, Xo is the maximum

value of X on the tension wire T1, g is the gravitational force, f is the loading frequency. By

altering the weight M1, different values of cyclic load levels can be achieved.
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Hi = ∆Ti =
M1gX

l1
(3.19)

Hi =
M1gXo

l1
sin2πf (3.20)

In the initial stage of model testing, the design of weight M1 was based on the ultimate ca-

(a) Free body diagram (M1 at B1) (b) Free body diagram (M1 at distance X)

Figure 3.31: Load mechanism free body diagram of applied mass, M1.

pacity obtained from monotonic tests conducted at 100g. From these tests, the recommended

maximum force for the cyclic load was preferable as 50% of the ULS load (Hu ≈ 4.0 kN).

The combination of design weight was chosen to achieve a maximum load of Hcyc = 0.5 Hu

= 2 kN. This load was obtained at acceleration gravity of 100g, which corresponds to a mass

of M1 = 2 kg at 1 g
(200kg

100

)
. In the preliminary stages of the model development, the initial

set up (M1 = 2kg, M2=2kg and M3 = 2kg) did not balance the loading system, therefore the

adjustment was made by increasing the weight M1 to 3 kg, reducing M2 to 1.5 kg and M3 was

increased to 4 kg. This arrangement was seen to balance the loading system and used to run all

the tests. However, with technical challenges relating to the AKM motor (torque incapable to

drive the weight M1 when the centrifuge spun at more than 30g), only the maximum centrifuge

acceleration of 30g was used for all cyclic tests.

Theoretically, at centrifuge acceleration of 30g, the tension force on T1 and T3 are 900 N and

450 N, respectively, and the expected net force will be Hcyc = Hi = T1-T3 = 450 N. This cyclic

load amplitude is approximately 26% of the ultimate capacity of the pile Hu, based on a 30g

centrifuge monotonic test (Dr = 85%). A model setup of the loading system to provide a net

force of Hi = 450 N was a challenging task. During the tests, the resultant load was achieved
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incrementally by carrying out experimental trials, while changing T2 tension wire location (l1)

and the weight M2 keeping M1 and M3 constant. A thorough investigation, which might affect

the result, was carried out through the following procedure;

1. For each test trial, the location of wire (l2) and dead weight (M2) were changed while

keeping M1 = 3 kg and M3 = 4 kg constant. For instance, (a) test trial 1: l2 =25 mm, M2

= 2 kg, (b) test trial 2: l2 = 45 mm, M2 = 2 kg, (c) test trial 3: l2 =35 mm, M2 = 1.75 kg,

test trial 4: l2 =35 mm, M2 = 1.5 kg. More details of the test trial results are presented

in Section 3.11.

2. After spinning the centrifuge to 30g, the stepper motor (7) was switched on to adjust

the weight M1. This was achieved by moving the weight M1 on sliding rail (forward or

backward) to balance the tension forces (T1 ≈ T3). The initial values were recorded to

observe the effect of load balance between the weight M1 and M2.

3. Before the AKM motor was switched on, the load control factors (ζ) of 0, 0.5, 1.0, 1.5,

-0.5, -1, for each test trial, were considered to observe its effect on the net loads applied to

the pile head. The load orientation factor was obtained by Eq. 3.21, with typical locations

of load variation versus time shown in Fig. 3.32. From Eq. 3.21, Hmin and Hmax are the

minimum and maximum cyclic amplitude loads, respectively, and Havg is taken as the

tension force from dead load, M2, received on SLC (LHS).

ζ =

[(
Hmax – Hmin

2

)
– Havg

]
[
| Hmax + Hmin |

2

] (3.21)
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(a) Constant ratio ζ =0 (b) Constant ratio ζ =1

(c) Constant ratio ζ =-1 (d) Constant ratio ζ =0.5

Figure 3.32: Typical sketch indicating ζ position curves.

4. The Stepper motor (7) was turned off, and then an AKM motor was switched on to allow

a sinusoidal amplitude force in the form of Eq. 3.22. The sinusoidal forces on the pile-

head were achieved by appropriately choosing the weight M1 and M2. From Eq. 3.22,

Ha is the cyclic load amplitude, ω=2f is the angular frequency, φ is a phase shift, Ho is

the vertical shift of the curve related to the average of the curve, Hmean. Referring to Fig.

3.33, a typical sketch is used to demonstrate the sinusoidal amplitude force.

H(t) = Hasin(ωt + Φ) + Ho,⇒ Ha =
M1gXo

l1
(3.22)



134

Figure 3.33: Sketch indicating sinusoidal cyclic load curves.

3.8 Laboratory soil and sample preparation

3.8.1 Material properties

Material characteristics are essential part of the research to understand on how the sand state

will affect the model behaviour. A Congleton silica sand (HST95) from Bent Farm in Con-

gleton, Cheshire, was chosen as the model sample material of this study and used throughout

the centrifuge tests. HST95 sample is fine silica sand, typically consisting of 94.5% quartz

(Al-Defae and Knappett, 2014). The sample was tested in the NCG laboratory to determine

grain size distribution, strength parameters, maximum and minimum densities and void ratios.

A scanning electron microscope (SEM) was used to examine the size and shape of grains.

Samples were prepared and coated with platinum before the scanning so that the grains were

electrically conductive. As shown in Fig.3.34(a), most of the particles are observed to be sub-

angular and sub-rounded. Fig. 3.34(b) shows a dry sieving test result of the samples tested at
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NCG, to determine the particle size distribution and the coefficient of uniformity.

(a) SEM photo
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Figure 3.34: (a) SEM photo and (b) particle size distribution for HST95 sand.

Direct shear and triaxial tests were carried out on dry sand to obtain the angle of internal fric-

tion. From direct shear, the tests were conducted under normal stresses of 20 kPa, 50 kPa,

100 kPa, 200 kPa and 400 kPa and samples were prepared into three different methods: spade

pouring (the sand was poured directly into the shear box without tamping, giving a loose rel-

ative density of 33%), and sand pouring using a nozzle aperture size of either 3.3 mm or 8.3

mm,giving a relative density of 85% and 33%, respectively. As shown in Fig. 3.35, a Mohr-

Coulomb failure envelopes are plotted from the test results at the two different relative densities

(33% and 85%). The equation for the best fit line obtained from experiment results is expressed

as τf = c′+σntan(φ′), and the peak friction angle can be determined as φp = arctan
(τf – c′

σn

)
,

where c′ is cohesion of sand. While the critical friction angle is given as φcr = arctan
( τf
σn

)
,

where the line of best fit is forced through the y = 0 intercept. The peak and critical state in-

cluding cohesion values were estimated as indicated in Fig. 3.35(a) and 3.35(b), respectively.

However, only critical state value of φcr ≈ 31o is used in the analysis, hence φmax and c′ are

not presented in Fig. 3.35(b).
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Figure 3.35: Mohr-Coulomb failure envelopes drawn from the direct shear tests car-
ried out in HST95 Congleton sand.

The triaxial tests were conducted in dry sands at confining pressures of 50 kPa, 100 kPa and

200 kPa. As shown in Fig. 3.36, the Mohr-Coulomb failure envelopes and cycles of the peak

stress results are plotted. The value of peak friction angle (φp = 35o) is shown in the figure. As

shown in Fig. 3.35(a), the maximum value of φp is 34o. Therefore, the values φp (from triaxial

test), φcr (from direct shear test) are listed in Table 3.6 and φcr = 31o can be used throughout

the thesis. The minimum and maximum density tests were carried out according to BS 1377:
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Figure 3.36: Mohrs Circle plotted with the peak stresses of each test.
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part 4: 1990, Section 4. All sample tests, conducted in the laboratory, indicated a minimum

and maximum densities of ρmin =1450 kg/m3, ρmax = 1703 Kg/m3, with corresponding void

ratios of emax = 0.776, emin =0.519, respectively. The coefficient of uniformity, Cu =
D60

D10
=

2.235, indicating that the sand is poorly graded. A summary of material properties is presented

in Table 3.6.

Table 3.6: Material properties of of HST95 Congleton sand

Property Symbol Unit NCG test

Particle size d10, d30, d60 mm 0.082, 0.15,0.17

Specific gravity Gs - 2.63

Coefficient of uniformity Cu - 2.235

Minimum dry unit weight γdry,min kN/m3 14.22

Maximum dry unit weight γdry,max kN/m3 16.8

Minimum void ratio emin - 0.519

Maximum void ratio emax - 0.776

Critical friction angle φcr
o 30

Peak friction angle φp
o 35

The HST95 sand contains about 95% of uniformly graded quartz grains, which after Bolton

(1986) and Houlsby (1991), the grains tend to have a critical state angle of friction (φcr) of

around 33o ± 2o. To understand the sandy soil behaviour, Bolton (1986) had clarified the

relationship between the peak angle of friction (φp), the angle of dilatancy (ψ), the relative

density (Dr) and the mean effective stress at failure (Pm). The angle of dilation (ψ) is mostly

depend on the relative density of sand while the critical state friction angle (φcr) is indepen-

dent. φmax – φcr has been shown as a useful measure of strength due to dilatancy occurred in

dense sand and plane strain condition shown by Eq. 3.23 was considered true, where φmax is

the maximum triaxial angle of friction, φcr is the critical state friction angle, Pm is the mean

effective stress (see Eq. 3.24), Ko = 1-sinφcr is the earth pressure coefficient at rest, σv = γdZ is

vertical stress, γd is the dry unit weight and Z is the depth below the ground surface. The term
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IR = Dr(10 – ln P′) – 1) is known as a relative dilatancy index, which is defined by relative

density and effective stress level. IR offers a unique set of correlations for the dilatancy related

behaviour of sands (Bolton, 1986). For most sands, a dilatancy index is available in the range

of 0≤ IR ≤ 4.

Klinkvort and Hededal (2014) has used Eq. 3.23 to determine the maximum triaxial friction

angle, φmax, and reported that φcv = 30o observed to capture well the distribution of φmax for

the tested sand in relation to mean effective stress (see Fig. 3.37(b)).

φmax ≈ φcr + 3 [Dr (10 – ln(Pm)) – 1] (3.23)

Pm =
1

3
(1 + 2Ko)σ′v (3.24)
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Figure 3.37: Estimation of maximum friction angle along the depth of the model.

A dry pluviation single spot hopper was used to prepare the sample and the average relative

densities were estimated. The distribution of the maximum friction angle (φmax) was calculated

using Eq. 3.23 and presented in Fig. 3.37(a), for medium dense and dense sand. The mean

effective stress (Pm) was found at a soil depth of Z = 2
3L, with L defined as the embedded

depth of the pile. At this depth, a full similarity of stress between the prototype and model is

achieved. In Fig. 3.37(a), the corresponding maximum friction angles at this depth were found

to be 40o and 35o for dense (Dr = 85%) and medium dense (Dr = 42%) sand, respectively. The

critical state friction angle was considered as φ.cr = 31o.
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3.8.2 Soil preparation and pile installation

In the previous studies, related to monopiles in sand, the air pluviation (sand raining) method of

sample preparation has been widely used (Arshad and OKelly, 2017, Klinkvort, 2013, LeBlanc

et al., 2010). To achieve granular soil models with certain uniform densities, this method was

adopted to prepare soil samples for the centrifuge tests. In this study, the multiple-sieving air

pluviation method (employed by Mo (2014)) was employed to achieve the relative densities of

42% and 85% for the medium dense and dense sand, respectively. A single-holed sand pour

was used to prepare the sample, which include a sand hopper, plate nozzle, and multiple sieves

(mesh). The hopper was moved vertically to adjust the falling height and horizontally to fit the

circular perimeter of the container. The nozzle and multiple sieves are used to control the flow

rate of sand pouring. For instance, the soil model with higher density is obtained with lower

flow rate and larger drop height. More details are described below;

1. Before preparing the sample, the sand was glued around the embedded depth (L) and

bottom of the cover attached to the pile base to ensure good coupling between the pile

and soil (see Fig. 3.38). The roughness of the pile will influence the degree of interaction,

which has direct effect on the dilation of the soil. A smooth surface allows the slippage

to occur at the interfaces while in the rough surface the failure is expected to take place at

a distance from the shaft and the interface friction angle is close to the soil friction angle

(Axelsson, 2000, Garnier, 1998). A closed end pile cover was used to replace a volume

of soil equal to that of the pile during the installation in order to avoid the soil plugging

effect. However, in this study the pile was fixed in the container while allowing the sand

to deposit around the pile.

2. The model container was lined with duxseal to a thickness of approximately 15 mm along

the sides of the container and 20 mm at the base. The duxseal was used to minimise the

effect of vibrations induced by the AKM motor, which could affect the response of pile

during testing. A rubber mat was also placed between the base of the container and the

aluminium base plate to help reduce the transmission of vibrations. A photo of duxseal

and rubber mat on the model container is shown in Fig. 3.39.
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(a) Model pile with sand stuck on it (b) Sand stuck on bottom cover

Figure 3.38: Photograph of sand stuck on pile and bottom cover.

DUXSEAL

RUBBER MAT

Figure 3.39: Model container lined with duxseal and rubber mat at the base.

3. A range of relative densities (Dr), from medium dense to dense sand, were calibrated

by the use of small box (0.2x0.2x0.1 m3 in size). The mass of empty box (mb) was

initially recorded and then the hopper, containing sand, was moved vertically to adjust

the drop height, hf , and horizontally to fill the box. From each height, the sample was

recorded three times, and its average value was used to determine the relative densities.

A photograph indicating this process is shown in Fig. 3.40(a). It is observed that the

method of sand pouring provided a high-quality soil preparation. For instance, a medium

dense sand (Dr = 42%) was prepared using a large nozzle with pouring height of hf =
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0.5 m, while dense sand (Dr = 85%) was achieved with small nozzle of hf = 1.2 m. The

corresponding void ratio (eo) for medium dense and dense sand was estimated as 0.769

and 0.467, respectively. According to BS EN ISO 14688-2:2004, the range of relative

density sand are in the range of Dr = 35-65% (medium dense sand) and Dr = 65-85%

(dense sand).

4. The sand pouring progress was used in the model container, following the circular shape

of the container with an adjustment of falling height, hf . A schematic figure to illustrate

the process is shown in Fig. 3.40(b).

Sand

Hopper

Calibration Box

(a) Sample calibration process (b) Typical model preparation sketch

Figure 3.40: Sample calibration and model preparation process.

5. When the height of the first layer was reached about 150 mm from the bottom of the

container, the pouring process was paused. The model pile was placed in the tub and

aligned vertically at the centre (see Fig. 3.41(b)), with temporary supports holding the

pile (see Fig. 3.41(a)). The installation of the pile was considered as a wished in place

closed-ended pile. The capacity of the pile depends on the soil properties and stress

state (Engin et al., 2015). The effect of pile installation can be transferred in sand grains
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and the pile, leading to an altered soil state and properties. The change of stress and

density as well as change of the physical properties depends on the applied installation

technique. There are two types of installation techniques: displacement (driven) and

non-displacement (wished in place) pile installation. The most notable difference is the

stress state around the pile. In the case of displacement piles, the soil is not removed,

but displaced and compacted, leading to large stress increases around the pile and the

associated increases in strength and stiffness of the soil. In contrast, in a wished-in-place

pile, the effect on the stress state of the soil is limited and the soil density around the pile

is reasonably constant, or at least lower than would be the case for a driven pile. In this

study, wished-in-place method was chosen to avoid the disturbance of the soil structure

and the change of the stresses in the soil mass. With glued sand, the method produces

an irregular interface between the pile and surrounding soil, which affords good skin

frictional resistance under subsequent loading.

(a) Pile support bars (b) Pile set up process

Figure 3.41: Photographs of pile set up during sand pouring.

6. The sand pouring continued while maintaining a consistent flow rate and falling height

until the top of the soil surface was about 50 mm below the top rim of the container.

7. The surface of the sample was levelled to ensure a constant height across the model.

8. At the end of sand pouring, the weight of the container including the base plate, load de-

vices and sand sample was recorded to determine the density. After that, the sample was

taken to the preparation room, where the model frame and load devices were connected.
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9. Finally, the prepared model was transported and loaded onto the centrifuge cradle using

a forklift.

3.9 Instrumentation and data acquisition

The arrangement of the load cells (LC) and linear variable differential transducers (LVDT),

for both monotonic and cyclic experiments, is presented in Figure 3.42 and 3.44, respectively.

These instruments were connected to record/measure the static/cyclic loads and displacements,

respectively. The connected sensors aimed to determine the load-displacement response, rota-

tion of model pile and its settlement.

Under monotonic loading (see Fig. 3.42), the miniature load cell (with the capacity of 10 kN,

provided by Richmond Industries Ltd) was used to record the magnitude of monotonic loads

applied to the pile head. The lateral loads were employed by use of the loading system actuator.

Along the section of the pile, above the soil surface, two horizontally mounted LVDTs (top and

bottom), one located 110 mm below the other, were used to record the lateral displacement of

the pile. This arrangement allows to determine the rotation (tilt) of the rigid pile from its initial

vertical alignment, the depth to the point of rotation below the ground surface, and lateral dis-

placement at the ground surface. Figure 3.43 shows a photograph of the load cells and LVDTs

used for the monotonic lateral loading tests.
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Figure 3.42: A general layout of the load cell and LVDTs arrangement used for
monotonic loading tests

Bottom LVDT

Load cell (LC)

Top LVDT

Actuator

Figure 3.43: A photo of the load cells and LVDTs used for monotonic loading tests.

Under cyclic loading, a new system arrangement was made (see Fig. 3.44) with two horizon-

tally mounted LVDT (2 and 3) located 80 mm and 155 mm above the soil surface, respectively.

A fourth LVDT (4), mounted vertically on the top of pile head, was used to measure the vertical
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pile displacement. Another LVDT (1) was connected to the loading device and not shown in

Fig. 3.44 (presented in the previous section). Two miniature in-line load cells were mounted on

either side of the pile head for recording the tensile forces applied to the pile cap. Figure 3.45

shows a photograph of the load cells and LVDTs used for the cyclic lateral loading tests.

Pile

Pile head

LVDT-3

LVDT-2

LC (LHS)

Soil surface

LVDT-4

LC (RHS)

Container

Figure 3.44: Arrangement of load cells and LVDTs on pile under cyclic test.

LC (LHS)

LC (RHS)

LVDT-2

LVDT-3LVDT-4

Plastic LVDT pin holder

Figure 3.45: A photograph of the load cells and LVDTs used for cyclic loading tests.
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The instruments utilised on both monotonic and cyclic tests are briefly described in the subse-

quent sections.

3.9.1 Linear Variable Differential Transducer (LVDT)

To measure the lateral and vertical displacement and settlement of the surface, Linear Variable

Differential Transformers (LVDTs) were utilised. An LVDT, as shown in Figs. 3.43 and 3.45,

provides an accurate indication of cumulative displacement. It converts a linear displacement

from mechanical reference into electrical signal containing phase (for direction) and amplitude

(for distance) information. In this study, a Solartron Metrology LVDTs were used with a maxi-

mum stroke length of 25 mm (horizontal LVDT, see Fig. 3.46(a)) and±2.5 mm (vertical LVDT,

see Fig. 3.46(b)). The output voltage range is specified as 5V and sensitivity of 750 mV/mm

@ 10 V dc for horizontal and vertical LVDT, respectively. These LVDTs offers an excellent

accuracy of better than 0.1% and 0.5% on the lateral and vertical LVDT, respectively.

(a) LVDT1, LVDT2 and LVDT3 (b) Vertical LVDT-4

Figure 3.46: Linear variable differential transducers (LVDT).

3.9.2 Micro-Electro-Mechanical System (MEMS)

Micro-Electro-Mechanical System (MEMS) accelerometers are the small electrical device which

measures acceleration by measuring the force that a mass applies to a spring. They have been

used widely in geotechnical engineering for full-scale monitoring and have also been used lab-

oratory testing. At the initial stage of the model development, the soil sample and the system

were affected by the AKM motor vibration. The MEMS accelerometers, which are shown in

Fig. 3.47(a), 3.47(b) and 3.47(d), were primarily utilised to monitor the the vibration of the
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model system. Plastic material was used to cover the MEMS which was then glued to a thin

square aluminium plate with Araldite. Type ADXL78 MEMS accelerometers, manufactured

from Analog Devices, measure the acceleration with a full-scale range of±35g and±70g. The

ADXL78 MEMS type of±35g were used to monitor the vibration induced to fixed components.

The ADXL78 MEMS type ±70g were installed to monitor the acceleration due to vibration of

the moving parts: loading weight, M1, connecting rod and see-saw. These ADXL78 MEMS

accelerometors have an accuracy of 0.2% of the full-scale.

(a) MEMS on M1 loading and container bases (b) MEMS on weight, M1, and connecting rod

CAMERA

RHS Frame

Top frame

Support frame

(c) Camera fixed on RHS frame

Camera
MEM-Pile

MEM_Fra
me base

MEM_Soil

(d) MEMS on pile head, soil and base frame

Figure 3.47: MEMS placed on the model and camera fixed on LHS overhang frame.
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3.9.3 Web camera

As shown in Fig. 3.47(c), a web camera was installed and utilised. In the cyclic loading system,

the camera was fixed on the RHS frame facing down to observe and monitor the operation of

the mechanical load system, ensuring safety and avoid any damage to the centrifuge. The web

camera installed in monotonic device was placed on top of the aluminium base plate facing

the load cell and two LVDTs (bottom and top). This was aimed to monitor the performance of

these instruments. Photos were not taken and video were not recorded during the testing.

3.9.4 Load cells

The 200 Series miniature in-line load cells (provided by Richmond Industries Ltd, UK) were

mounted on pile head to measure the total load acting at the pile (see the arrangement in Figs.

3.42 and 3.44). These load cells have an accuracy of±0.05% and a safe overload of 150%. The

excitation Voltage and sensitivity of this type of load cell is 10V and 2.0 mV/V, respectively.

The capacities of the load cell were 5, 10 kN and 2 kN for monotonic and cyclic load exper-

iments, respectively. The photograph of 2 kN load cell including its dimensions are shown in

Figs. 3.48.

(a) Inline load cell, 2 kN (b) A=32, B=50, C=M12, D=15 mm

Figure 3.48: Typical load cell (LC) and its dimensions.
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3.10 Testing programme and procedures

3.10.1 Introduction

A centrifuge model testing program was carried out to study the monotonic and cyclic lateral

response of monopiles. The testing plan, as well as the general procedure used for testing model

pile in dry sand, is discussed in this section. The detail of the testing plan is outlined in Section

3.10.2 and the process involved to carry out each the experiment is presented in Section 3.10.3.

3.10.2 Testing programme

The proposed cyclic load testing plan is categorised into four phases described below and sum-

marised in Table 3.7;

1. Phase one; During the course of this study, 4 centrifuge monotonic tests were con-

ducted and named as OWTP/S-T01, OWTP/S-T02, OWTP/S-T03 and OWTP/S-T04.

The tests were identified as follows; OWTP-Offshore Wind Turbine Pile, S-Static and

T-Test. The first three tests, OWTP/S-T01 to T03, were used to determine the pile-head

load-displacement response and ultimate capacity of the pile. Test T04 was used as a

reference to cyclic loading tests.

2. Phase two; The tests, OWTP/C-T10 to OWTP/C-T11, were used to develop the equip-

ment and testing methodology. To ensure that the loading devices and other components

of the system are operating in a centrifuge, the tests were conducted at centrifuge accel-

eration of 1g to 90g. The test bed was poured into the container and compacted without

considering the relative density. The pile was installed following the procedure described

in Section 3.8.2.

At the initial stage, unrecorded tests were carried out at 1g to check the system part con-

nections and performance of all sensors. During the testing trials, the load cells (dynamic

and static) were connected inline with tension wires on the pile-head and ends of the

loading weights (M1, M2), to check the friction losses. The dynamic load cells did not

provide proper results, and only static load cells (SLC) were used. The centrifuge was
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then spun again, however, in the midst of 40 - 50g, the AKM motor stopped to rotate

the shaft due to the effect of weight, M1. To address the challenge, the side and bottom

rails were added to the weight, M1, to prevent the effect of bending during the spinning.

This option was unsuccessful, so thrust bearings were alternatively added on top of box

used to protect the AKM motor. It was aimed to free the shaft from the weights of the

crank-discs and connecting rod. In addition, the initial set-up of loading weight M1 = 2

kg was reduced to 0.5 kg. The testing was then repeated and centrifuge was successfully

spun up to 90g. The centrifuge was spun down to 1g. The loading weight of M1 = 0.5

kg was replaced by the weight of 2 kg, the centrifuge package was then spun in stages,

however, at more than 30g the AKM motor was unable to spin the shaft, and all tests

were set at the centrifuge acceleration of 30g.

3. Phase three; The preliminary cyclic loading tests: OWTP/C-T12, OWTP/C-T13, OWTP/C-

T14 and OWTP/C-T15. The tests were identified as; for instance, OWTP/C-T15-FO3,

where OWTP is Offshore Wind Turbine Pile, C is Cyclic, T is a Test and F is Flight. The

test-bed was prepared by pouring dry sand in the container and compacted. The pile was

installed as described in Section 3.8.2 and all connections followed the normal procedure.

The tests were carried out at 30g. From the four tests, only results of test OWTP/C-15

were recorded during the testing trials to understand the effect of cyclic load control fac-

tor, ζ , change of applied weight, M2, and tension wires location of T1 and T2 on the

see-saw plate. The results of test OWTP/C-T15 is presented in Section 3.11.

Before carrying out test OWTP/C-T15, tests OWTP/C-T12 to OWTP/C-T14 were per-

formed to balance the dead weight, M2 and applied load, M1, on the see-saw. For in-

stance, in test OWTP-T12-F03, the tension wire locations (l1 and l2) on the see-saw plate

were adjusted to increase the effect of applied weight, M1 = 2 kg, in order to balance

the weight M2 = 2 kg. This option did not work, which resulted in the reduction of

the dead weight M2, from 2 kg to 1 kg. This set-up was successfully carried out in test

OWTP/C-T12-F04 with a balance on both sides when spun at 30g (125 rpm). However,

the results for test OWTP/C-T13, which take into account the influence of increasing

motor frequency (fm) was not ignored despite the fact that the system did not balance.

Before carrying out test OWTP/C-T14, the mass on the dead weight side, M2, was in-

creased to 1.5 kg, with additional mass on M1 from 2 to 3 kg and balanced weight, M3
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Table 3.7: Testing programme

Test ID Test type Dr γd ζ g-level M1 M2 M3 f N
Phase-1

OWTP/S-T1 Static 85 16.8 - 100 - - - - -
OWTP/S-T2 Static 85 16.8 - 100 - - - - -
OWTP/S-T3 Static 42 14.2 - 100 - - - - -
OWTP/S-T4 Static 85 16.8 - 30 - - - - -

Phase-2
OWTP/C-T10 Cyclic - U - N∗

g(10)
2 2 2 f∗10 NR

OWTP/C-T11 Cyclic - U - N∗
g(11)

2 2 2 f∗11 NR

Phase-3
OWTP/C-T12 Cyclic - U 0 30 2 M∗

2(12)
2 2.5 NR

OWTP/C-T13 Cyclic - U 0 30 2 1 4 2.5 NR
OWTP/C-T14 Cyclic - U 0 30 2 1.5 4 2.5 NR
OWTP/C-T15 Cyclic - U ζ∗15 30 3 M∗

2(15)
4 f∗15 R

Phase-4
OWTP/C-T16 Cyclic 85 16.8 ζ∗16 30 3 1.5 4 2.5 N∗16
OWTP/C-T17 Cyclic 85 16.8 ζ∗17 30 3 1.5 4 2.5 N∗17

Dr, γd, U ; Relative density [%], Dry unit weight [kN/m3], Unprepared sample
NR, R ; Not Recorded, Recorded
M1, M3 ;Applied weight [kg], Balance weight [kg]
N∗
g(10), N∗

g(11)
; Centrifuge acceleration gravity from 1g to 90 g

f∗10, f∗11, f∗15 ; Loading frequency, [Hz], f∗10=f∗11= 0.5-2.5Hz, and f∗15=1, 2.5 Hz
M∗

2(12)
, M∗

2(15)
; Dead weight, [kg], M∗

2(12)
=1, 2 Kg and M∗

2(15)
=1, 1.75, 2 Kg

ζ∗15, ζ∗16, ζ∗17 ; load control ratio, ζ15 =-1.5, 0, 0.5, 0.75, 1, 1.5 ζ∗16 =-1, 0, 1 and ζ∗17 =-1, 0
N∗
16; Number of load cycles T16, [F02, N=8600; F03A, N=11186; F03B, N=21025; F04,

N=32880; F05, N=58200]
N∗
17 ; Number of load cycles T17, [F03, N=58800; F04, N=4000; F05, N=16395]

was set to 4 kg. Although the system under this setting was successfully balanced, there

were minor setbacks caused by the stepper motor and bottom LVDT. These were checked

before running the following tests.

4. Phase four; The main cyclic load tests: OWTP/C-T16 and OWTP/C-T17. The model

sample on these tests was carefully prepared at a relative density of 85% and the model

package was spun to centrifuge acceleration of 30g (equates to speed of 125 rpm). It

should be noted that the similar model pile designed at a geometrical scale of Ns=100 was

used for all tests. Due to technical challenges, all tests were conducted at a centrifuge

acceleration of 30g and the results was aimed to demonstrate model performance and



152

Table 3.8: Description of the test OWTP/C-T15, OWTP/C-T16, and OWTP/C-T17

Test ID Flight Description

OWTP/C-T15 F01 Tested from 1-30g to stabilise the soil, long run test at 30g, prob-
lem with LVDT, data was recorded.

F02 Malfunction of stepper and AKM motors, the data recorded to
checking the capability of the two motors.

F03 Technical challenge from weight M1, no data was recorded.
F04 Load control ratio, ζ , was tested to observe maximum AKM ve-

locity and voltage, no data was recorded.
F05 The problem with bottom LVDT, data was recorded.

F06-10 Tests were carried at 30g to observe the effect of ζ (Varied from
-1.5 to 1.0), T2 location from l2=25 mm to 45 mm and M2=1.5,
1.75, 2 kg. The results are presented in Section 3.11.

OWTP/C-T16 F01 Prepared sample and tested from 1-30g to stabilise the soil, prob-
lem with weight imbalance, the data was not recorded.

F02 Tested from 1-30g to observe the weight balance and some data
were recorded for ζ=0.

F03 The long run test carried out at 30g (ζ = 0) in the late hours of the
first day and then continue the following day, data was recorded.

F04 The long run test at 30g (ζ = 1) continued in the second day, data
was recorded.

F05 Long run test conducted at 30g (ζ = -1), data was recorded
OWTP/C-T17 F01 Prepared sample and tested from 1-30g to stabilise the soil, prob-

lem with weight imbalance, data was not recorded.
F02 Tested from 1-30g but LVDT sensors did not respond in the Lab-

VIEW user interface, data was not recorded
F03 Long run test carried at 30g (ζ = 0), data was recorded
F04 Test continued at 30g (ζ = 0) and thereafter it was changed to ζ =

-1; data was recorded.

Note: Each F represents a single flight, where the centrifuge was spun to the specified g-level
and a test was performed.

ability to represent the behaviour of offshore monopile foundations. Description of tests

OWTP/C-T15, OWTP/C-T16 and OWTP/C-T17 is summarised in Table 3.8.

3.10.3 Testing procedure

The general centrifuge test procedure was as follows;
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1. As discussed in Section 3.8.2, once the model was loaded onto the swinging platform,

the data acquisition computers, the power for all instruments, amplifiers and the servo

control were switched on and checked.

2. Calibration of the instruments such as load cells and LVDTs was carried out before con-

necting to the centrifuge model.

3. All instruments (load cells, LVDTs, MEMS and cameras), power components (AKM

and stepper motor) including tension wires were connected to the specific locations. The

tension wires were connected in-line with the load cells and its ends were attached to the

weights and pile-head.

4. All instruments and motor cables were connected to the data acquisition panel of the

centrifuge arm. Thereafter, the counterweight of the package about the mass of the model

was set-up to balance the system.

5. All cameras and video monitors in the centrifuge and control rooms, respectively, were

turned on to observe the model in-flight.

6. A user interface in LabVIEW was checked to ensure that the controls and indicators for

all sensors connected in the DAS were responding correctly.

7. Under the cyclic loading experiment, the centrifuge package was spun incrementally until

the desired 30g centrifugal acceleration was achieved. The initial readings of the vertical

LVDT (LVDT-4) were recorded prior to stabilisation. Thereafter, the centrifuge package

was spun down to 20g, 10g and back to 30g while recording the values of LVDT-4.

The process was repeated three number of times until the settlement stabilised. After

stabilisation, the speed of the centrifuge was kept constant at 30g. This process was

performed only for the first series of pile loading. It should be noted that this process

was only performed on the first pile loading of each test. However, for the monotonic

centrifuge experiment, a similar procedure of stabilisation was used at 100g and 30g.

8. During the cyclic experiments, the load cycles were applied to the pile in different sets

of cycles based on the cyclic load control ratio, ζ . Throughout the cycles in a particular

test, the control ratio, ζ , was programmed using an automated load control system. For

each set of the centrifuge tests conducted in a similar sandy soil, the load characteristics
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programmed into the automated load control system were maintained with only cyclic

load control ratio varied. Therefore, after stabilisation, the next stage was to switch on

the stepper motor to allow the adjustment of the desired value of ζ . This was aimed to set

the loading magnitude at zero, positive or negative direction. Furthermore, after choosing

the factor ζ the location of weight M1 was adjusted by moving the stepper motor (which

controlling the position of the AKM motor and discs (refer in Fig. 3.14)) forward and

backward while observing the peaks of the load cell graphics in the LabVIEW interface.

During this process the AKM motor was switched on and rotated at low frequency of f =

0.5 Hz.

9. After setting the location of weight M1, the stepper motor was switched off while the

frequency of the AKM motor was increased stepwise from 0.5 to 2.5 Hz. At constant

frequency of 2.5 Hz, the test was allowed to run for a specified period. It should be

noted that the time and the number of load cycles achieved from each test were differ-

ent. For instance, in test OWTP/C-T16, a total period of 10 hours was used to achieve

approximately 60,000 load cycles.

10. At the end of each experiment, the centrifuge was spun down to 1g and the above steps

were repeated for the next test.

3.11 Overview of testing programme and preliminary results

3.11.1 General overview

Tests OWTP/C-T16 and OWTP/C-T17 were carried out at 30g with model piles installed in the

dry Congleton sand. The primary purpose of these tests was to demonstrate the capability of

the newly developed rig compared to previous studies. During each of these tests, a series of

tests (named flights) were conducted based on the cyclic load ratio as shown in Table 3.7. To

determine the effect of the loading magnitude affected by ζ , three flight sets of N cycles were

conducted during each test with the load control varied after each flight.

Test OWTP/C-T15 was carried out as a preliminary experiment to observe the effect of load

control factor, ζ , dead weight (M2) and location (l2) of applied weight (M1). The observations
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were made regarding the adequacy of the testing arrangement and its results are presented and

discussed in the following section.

Monotonic tests were carried out at 100g (OWTP/S-T1, OWTP/S-T2, and OWTP/S-T3) for the

comparison to the current formulations suggested by DNV (2014) and Ramberg and Osgood

(1943). Test OWTP/S-T4 was performed at 30g as a reference for the cyclic tests and to iden-

tify a suitable backbone curve for the analysis of cyclic lateral loading.

To accurately simulate the full-scale cyclic loading condition, the monopile has to be loaded

cyclically with frequency and number of load cycles representing 20-25 years of turbine life-

time. In general, the loading frequency for the design of monopile foundations falls in soft-stiff

design criteria with a natural frequency between 0.3 to 0.5 Hz, for 5 MW class wind turbines.

The loading frequency for the centrifuge model is Ns times that of the prototype frequency. The

model size was is reduced 100 times compared to the prototype. As shown in Fig. 1.7, Chapter

2, the design natural frequency between 1P and 3P (0.3 to 0.5 Hz) would be 30 to 50 Hz in a

centrifuge. The monopiles for offshore wind turbines are expected to experience 107 number

of cycles over their design life, hence the model pile in the centrifuge should be loaded at least

106 cycles. This ensure the change of the model pile natural frequency is measured over most

the expected cyclic loading. In this study, efforts were made to achieve the frequency of 30

Hz using the AKM motor, however due to technical limitations of the AKM motor, the cyclic

loading of the monopile was not a complete representation of prototype loading conditions.

The frequency range between 0.1 to 2.5 Hz was used as the loading frequency in the centrifuge.

This converted to prototype frequencies that are many times below the full-scale frequencies be-

tween 1P and 3P. With a low loading frequency, including time and physical constraints, it was

not possible to achieve millions of load cycles. The pile was cyclically loaded with the number

of cycles shown in Table 3.7. For the last two tests OWTP/C-T16 and OWTP/C-T17, the pile

was loaded with a constant frequency of 2.5 Hz and results are limited only for demonstration

of the model capability.

3.11.2 Displacement and stiffness of the test OWTP/C-T15-F01

For the preliminary experiments, Congleton sand and aluminium model pile were used. The test

bed was prepared by pouring sand in layers in the container and compacting it using a steel rod.



156

The pile was installed in similar method discussed in Section 3.8.2. A number of cyclic load

tests were conducted on the model pile and observations were made regarding the amplitude of

load, displacement and unload-reload stiffness. During this test, the load cycles were applied to

the pile in different flights of N cycles. An automated load control system was used throughout

all the flights to programme the cyclic loading factor, ζ . As discussed in Table 3.8, the long run

test OWTP/C-T15-F01 was set at ζ=0 and the number of cycles achieved as shown in Fig. 3.49

was approximately 43000 cycles. Fig. 3.49 plots the maximum and minimum displacement of

the pile-head during a load cycle, which occur under corresponding maximum and minimum

loads at the pile head. The observed behaviour indicates that the displacement increased most

during the first 500 cycles and then the increase rate reduced as number of cycles increased.

The accumulated displacement of the pile is affected by the system stiffness. As shown in Fig.

3.49, the stiffness of the first 30 cycles is noisy and was not taken into account due to difficulties

related to the ability of the loading system to apply consistent loads. These results provide a

good indication of the model performance.
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Figure 3.49: Pile-head displacement and cyclic secant stiffness versus number of
load cycles, N, for test OWTP/C-T15-F01
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3.11.3 Effect of load control factor, ζ

In the test OWTP/C-T15, the observations of load and displacement were made based on the

effect of parameter ζ . The following are the major observations and modifications made to the

loading device for further tests.

1. The observations of test OWTP/C-T15-F01 were described in Section 3.11.2. The tests

T15-F02 to T15-F05 were briefly described in Table 3.8. Only tests from T15-F06 to

T15-F10 are used in this section to demonstrate the effect of changing the load control,

weights and their locations on the loading device system. However, test T15-F06 is

similar to test T15-F07 and is not shown in the discussion.

2. The graphs in Fig. 3.50 and 3.51 shows the results of cyclic loads versus number of load

cycles. From each figure, the dead weight M2=2 kg was kept constant while varying the

load control ratio, ζ . It can be seen that by changing the T2 position from l2=25 to l2=45

mm, the value of cyclic loads, Hi, is increased. For instance, by using the value of ζ=0

and ζ=1, the cyclic load increased from 188 N to 398 N and 255 N to 560 N, respectively.
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Figure 3.50: Effect of ζ , l1=15 mm, l2=25 mm, and M2=2 kg.
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Figure 3.51: Effect of ζ , l1=15 mm, l2=45 mm, and M2=2 kg.

3. The graph in Figs. 3.52 and 3.53 show the variation of load application caused by ζ

against the number of load cycles. In these tests, the location of T2 (l2=35 mm) was kept

constant while changing the weight M2 from 1.5 kg to 1.75 kg. By taking the value of ζ

equal to 0, 1. 1.5 ans -1.5, the cyclic load (Hi) observed to be lower for 1.5 kg compared

to 1.75 kg. This is inline with the concept that any increase of load amplitude will induce

more load on the model pile.
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Figure 3.52: Effect of ζ , l1=15 mm, l2=35 mm, and M2=1.75 kg.
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Figure 3.53: Effect of ζ , l1=15 mm, l2=35 mm, and M2=1.5 kg.

4. Overall, it can be seen that the tension wire position (T2) and change of weight M1 have

an impact on load transferred to the model pile. For instance, in Fig. 3.51, the model

pile experience a large magnitude of load compared to Fig. 3.53. Therefore, to avoid

any damage to the loading system and ensure that the load will be in balance during the
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tests with a large number of cycles, the arrangement in Fig. 3.53 was chosen for tests

OWTP/C-T16 and OWTP/C-T17.

3.12 Chapter summary

This chapter described the developed testing equipment and methodologies employed in the re-

search programme. In Section 3.2, the chapter begins with general description of the centrifuge

motivation compared to other physical model tests. It describes the advantages and disadvan-

tages of using the physical modelling and provides the reasons why the development of the

new loading device was necessary. Aspects of scaling for the design of centrifuge model tests,

including the fundamental theory, were discussed in Section 3.3, followed by details about the

University of Nottingham beam centrifuge. The tested model pile and sand bed properties and

its preparation were described in Sections 3.5 and 3.8, respectively. All details of the testing

equipment and its working operation were presented in Section 3.7, followed by comprehen-

sive and detailed test programme provided in Section 3.10 and summarised in Table 3.7 and 3.8.

This table will be frequently referred to in the following chapters of this thesis. The test run are

divided into two phases: monotonic and uni-directional cyclic, and the test programme table is

organised accordingly. Finally, at the end of this chapter, the general overview and preliminary

results of test OWTP/C-T15 were presented in Section 3.11 to demonstrate the achievement of

the model testing programme.



Chapter 4

MONOTONIC RESPONSE OF MONOPILE

4.1 Introduction

In geotechnical engineering, the cyclic loading is often considered relative to monotonic load-

deflection response. A well-defined monotonic response provides a solid benchmark from

which to consider the effects of long term cyclic loading. The initial slope (known as tan-

gent stiffness), displacement and capacity of the first lateral load cycle defines the skeleton or

backbone curve. Therefore, it is important to first investigate the response of monopile foun-

dations to cyclic lateral loading by identifying the monotonic behaviour. This chapter presents

centrifuge monotonic test results of OWTP-S1, OWTP-S2, OWTP-S3 and OWTP-S4 and anal-

yses that are related to the lateral monotonic behaviour of monopile in sand. The centrifuge

package used for testing purpose was described in Section 3.10, Chapter 3. The main objec-

tives of these tests was to ensure that the response obtained using the developed experimental

apparatus adequately reflected the characteristics of monopile behavior subjected to monotonic

loading. The p-y curve formulation that is proposed in this chapter (MR-O) is used throughout

the remainder of the thesis for estimating the results of the monotonic centrifuge data. The mod-

ified traditional p-y curves from DNV (2014) and published experimental data from Klinkvort

(2013) and Kirkwood (2016), at the ground surface, are also compared with the MR-O model.

4.2 Analysis framework

Typical sketches, which are shown in Fig. 4.1, describe the response of a rigid pile in cohesion-

less soil. The overall trend of these figures shows a hardening behaviour, which is expected for

a rigid pile embedded in cohesionless soil. For this pile behaviour, it is difficult to achieve an

ultimate stage. The figures defined the initial (tangent) stiffness, Kt, and ultimate capacity, Hu,

of the pile. Three methods have been suggested in the past for estimation of Hu; asymptotic

161
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tangent method (Fig. 4.1(a)) (Rosquoet et al., 2007), rotation criteria method (Klinkvort and

Hededal, 2013, LeBlanc, 2009), and the use of 10% of pile diameter, D (Fig. 4.1(b)) (Chen

et al., 2015). The value of Kt can be estimated by using Eq. 4.1, where ∆HA, ∆MA are the

change in lateral load or moment at point A and ∆yA, ∆θA are the change in lateral displace-

ment and rotation of pile at point A, respectively. It should be noted that the rotation criteria

are based on the limit of pile rotation suggested by DNV (2014) for the maximum rotation of

0.5o at ground surface.

Kt =
∆HA

∆yA
=

∆MA

∆yA
(4.1)
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Figure 4.1: Typical behaviour of rigid pile and estimation of Hu and Kt.

An ultimate lateral capacity of the pile, Hu, and tangent stiffness, Ki = Kt, from the experi-

mental monotonic response, can also be estimated from the method proposed by Kulhawy and

Chen (1995). In Fig. 4.2, a typical sketch of the hyperbolic curve is used to determine these

parameters. The actual hyperbolic curve in Fig. 4.2(a) can be replotted as shown in Fig. 4.2(b)

and the slope of the data can be estimated. From the Fig. 4.2(b), the reciprocal of a and b is the

initial (tangent) stiffness, Kt and hyperbolic capacity, Hu, of the pile, respectively.
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Figure 4.2: Estimation of Kt and Hu, from Kulhawy and Chen (1995).

It is also important to scale the results of centrifuge tests to prototype. This is achieved by the

use of non-dimensional groups suggested by Klinkvort (2013) (see Table 4.1), which permits

comparisons between the results of this study with those conducted at different scales.

Table 4.1: Non-dimensional parameters

Item definition Dimensional function

Lateral displacement Ŷ =
Yp

D

Pile rotation θ̂ = θ

√
Pa

Lγ′

Horizontal loading Ĥ =
Hi

γ′D3

Moment loading M̂ =
Mz(i)

γ′D4

Soil resistance P̂ =
Pz(i)

Kpγ′ZD
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4.3 Monotonic experimental results

4.3.1 Introduction

The monotonic centrifuge experiments, three at 100g and one at 30g, were conducted. The anal-

ysis and results of tests OWTP/S-T1, OWTP/S-T2, OWTP/S-T3 and OWTP/S-T4 are presented

and discussed in this section. The tests are used to determine the load-displacement response

of the pile, ultimate capacity, depth about which the pile rotated, and lateral and rotational stiff-

ness of the pile at the ground surface. The tests were carried out under displacement-controlled

conditions. One test (OWTP/S-T3) was conducted at medium relative density of Dr = 42% and

the other three (OWTP/S-T1, OWTP/S-T2 and OWTP/S-T4) at relative density of Dr = 85%.

All results are interpreted at model scale, unless stated otherwise. A comparison between cen-

trifuge model scale and full-scale is also presented regarding the non-dimensional parameters

shown in Table 4.1.

4.3.2 Load-displacement response and ultimate capacity of pile

Monotonic tests were conducted on the aluminium model pile and displaced laterally by im-

posing a horizontal force at an eccentric height of 200 mm. At this location, the load-deflection

responses of the pile head were determined. In Fig. 4.3, the results from monotonic load tests

can be seen. From both figures, the curves are observed to follow a nonlinear hyperbolic shape,

however, a defined ultimate load was not achieved.

As expected, the pile loaded with small centrifuge acceleration of 30g has lower values of soil

resistance compared with the one at high gravity (100g), with the same relative density (Dr

= 85%). The data also provide evidence that the increase of relative density has a significant

effect on the load capacity of the system.

The non-dimensional expressions described in Table 4.1 were used such that the model results

can be interpreted at any scale. For this purpose, the normalised parameters should be identical

between the model and prototype to avoid scaling effects. The experimental data shown in Fig.

4.3 were normalised, and the result is shown in Fig. 4.4. These plots show that, using the
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Figure 4.3: Global pile-head load-displacement response.

properties of sand (γd), geometry of the pile (D), the load with N2
s and displacement with Ns,

identical normalised results can be achieved.
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Figure 4.4: Normalised monotonic test results.

A laterally loaded model pile, installed in sandy soil, appeared to exhibit a hardening behaviour,

which makes it difficult to determine the yield points (Hu or Ĥu) as shown in Figs. 4.5(a) and

4.5(b), for normal and normalised tests, respectively. The ultimate capacities were taken as the

load at the pile-head displacement of 10% pile diameter (D). This method was also employed

by other studies (Chen et al., 2015, Cuéllar, 2011), to determine the ultimate capacities of
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monopiles. Therefore, the ultimate capacities shown in Fig. 4.5(a) were estimated as 3800 N

(Dr = 85%, at 100g), 1560 N (Dr = 42%, at 100g) and 1690 N (Dr = 85%, 30g), from tests

OWTP/S-T1/T2, OWTP/S-T3 and OWTP/S-T4, respectively. The corresponding normalised

ultimate capacities are shown in Fig. 4.5(b).
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Figure 4.5: Ultimate capacities of the pile-head load versus displacement.

According to DNV (2014) design guideline, four important design loads for the wind turbine

are highlighted: (1) ultimate load-carrying capacity, which relates to ultimate limit state (ULS),

Hu, (2) the worse expected transient load (ULS/1.35), (3) serviceability limit state (SLS),

which occurs approximately 102 times during the lifetime of the wind turbine and (4) fatigue

limit state (FLS), which occurs approximately 107 times during the lifetime of the wind tur-

bine. For the current thesis, inline with recommendation from LeBlanc (2009), the SLS and

FLS were estimated as 53% and 30% of ULS, respectively. By using these estimates, the design

loads from the experimental work, with corresponding values in a prototype scale, are listed in

Table 4.2. In Table 4.2, Mi (kNm), Hi (kN) and VT (kN) are the moment, lateral and vertical

loads applied to the pile-head, respectively, in the experiment. In prototype, the units are Mi

(MNm), Hi (MN) and VT (MN).
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Table 4.2: Loads applied in experimental work, scaled to prototype at centrifuge
acceleration of 100g and 30g

Experiment Prototype
Load Type Mi Hi VT Mi Hi VT

OWTP/S-T1/T2 (100g) [Dr=85%]
ULS [N = 1] 0.76 3.8 2 760 38 10
ULS/1.35 0.56 2.82 2 563 28 10
SLS [N = 102] 0.4 2 2 400 20 10
FLS [N = 107] 0.23 1.14 2 230 11.4 10

OWTP/S-T3 (100g) [Dr=42%]
ULS [N = 1] 0.312 1.56 2 312 15.6 10
ULS/1.35 0.231 1.16 2 231 11.6 10
SLS [N = 102] 0.165 0.827 2 165 8.27 10
FLS [N = 107] 0.094 0.468 2 94 4.68 10

OWTP/S-T4 (30g) [Dr=85%]
ULS [N = 1] 0.338 1.69 2 9.126 1.52 0.289
ULS/1.35 0.25 1.252 2 6.76 1.126 0.289
SLS [N = 102] 0.179 0.896 2 4.84 0.806 0.289
FLS [N = 107] 0.101 0.507 2 2.74 0.456 0.289

4.3.3 Pile rotation depth

To further investigate the failure mechanism, the point of rotation is compared for the three tests

and approximate values can be deduced. With assumption that the pile does not translate and is

sufficiently stiff, the relative ground displacement of the pile (Yg
D ) is related to the depth below

the ground surface (see Fig. 4.6) to identify the point of the rotation Zr. Its value can be deduced

from LVDT measurements and the typical geometry sketch shown in Figure 4.6(a). The lateral

displacements were measured from the lower (LVDT1) and upper (LVDT2) transducers, at a

relative distance of 110 mm, to determine the pile rotation angle (θ). From the figure, once the

pile rotation is obtained, the depth to the point O (Zr) is identified geometrically by comparing

the original and inclined location of the pile-head displacement.

The result is shown in Fig. 4.6(b). Initially, the depth of rotation (Zr) was found at a depth

of Z = 0.1L, it then drop quickly to a depth of 0.55L and finally stabilised at approximately

depth of Z = 0.68L (Test T3). This value is less than Zr = 0.718L, which was estimated by

an empirical equation 4.2 (Prasad and Chari, 1999) (Le = 0.2 m and L=0.3 m). Other studies

(Motta, 2012, Petrasovits and Awad, 1972, Zhu et al., 2015) have reported that the depth of pile
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rotation should fall in a range of (0.7-0.79) L. The findings of Klinkvort and Hededal (2014)

and Kirkwood (2016) on monopiles have reported that Zr should be 0.8L and 0.7L, respectively.

The parameter L represents an embedded depth of the pile. The observed rotation centres, from

this study, are found between 0.6 - 0.72L. Allowing for experimental scatter, the depth of pile

rotation is stipulated as 0.68L to develop a simple solution.

Zr = L


√

7.29

(
Le

L

)2

+ 10.541

(
Le

L

)
+ 5.307 –

(
2.7

(
Le

L

)
+ 0.567

)
2.1996

 (4.2)
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 Equations
 ∆Yp=YLVDT2-YLVDT1

θ=atan(∆Yp/110)

Zr=Yg/tan(θ)

Zr+Le=Yp/tan(θ)

(a) Typical pile geometry definitions
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Figure 4.6: Point of rotation versus normalised displacement, assuming that the pile
does not translates.
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4.3.4 Monotonic responses at ground level

The load and displacement measured during the monotonic tests allowed the calculation of mo-

ment (Mi) and pile rotation (θi) to be made at the ground surface (see Fig. 4.7). Utilising the

relationships described in Table 4.1 it was possible to normalise the results in Fig. 4.7(a), thus

presenting the behaviour in terms of the load level (M̂) and rotational strain (θ̂). Overall, it is

found that the moment-rotation behaviour is nonlinear, however; it is not possible to identify a

point of failure. It is evident that the capacity at larger rotation increases with the sand relative

density (Dr) for the tests conducted at 100g (T1, T2 and T3). In addition, the increase of cen-

trifuge acceleration from 30 to 100, for tests T1 and T4, is an evidence that the g-level in the

centrifuge can also affect the capacity of the pile.

The model pile in this study exhibits work hardening behaviour, which makes it difficult to

determine the moment capacity (Mu). The Mu was determined by 10% of the pile diameter

method, and the corresponding value of pile rotation θ, is 0.016 radians. Using this value, the

moment capacities, Mu, were recorded as 0.32 kNm (at 100g; Dr=42%) and 0.35 kNm (30g;

Dr=85%), 0.78 kNm (100g; Dr=85%) (see Fig. 4.7(a)). The corresponding normalised capaci-

ties are shown in Fig. 4.7(b).
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Figure 4.7: Moment-rotation response and ultimate capacities at the ground surface.
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The pile-soil response at the ground surface can be used to asses the foundation stiffness. The

foundation stiffness of an offshore wind turbine can be modelled by the two coupled springs, KL

(lateral stiffness) and KR (rotational stiffness) (see Fig. 4.8). The lateral and rotational springs

were estimated experimentally by monotonic tests with the results shown in Figure 4.9(a) and

4.9(b), respectively. The initial tangents of the load-displacement and moment-rotation curves

at the ground surface are plotted in Fig. 4.9 to represent the values of KL and KR, respectively

(see the values in the figures). These parameters provided a useful information on the dynamic

sensitivity of the wind turbine structures (Arany et al., 2014).

MtopBlades
Rotor &
Nacelle

Tower

Transition piece

Monopile

Ground level
KR

KL

L, Ep, m

VT

Water level

Figure 4.8: Transverse and rotational springs, from Arany et al. (2014).
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Figure 4.9: Lateral (KL) and rotational (KR) stiffness of the pile at ground surface.

4.3.5 Comparison of current study and published centrifuge tests

In this section, the results of tests OWTP/S-T1 and OWTP/S-T4 (Dr = 85%, γd = 16.9 kN/m3,

D = 60 mm, L = 300 mm, 100g and 30g,respectively) are compared to the published centrifuge

tests from Klinkvort (2013) (Dr = 90%, γd = 16.8 kN/m3, D = 40 mm, L = 240 mm, 125g)

and Kirkwood (2016) (Dr = 49%, γd = 14.41 kN/m3, D = 38.1 mm, L = 200 mm, 100g). The

variation of the applied lateral load (Hi) with displacement at the ground surface, for all tests,

is plotted in Fig. 4.10. Overall, it can be seen that the load-displacement responses of all tests

are nonlinear, however, the point of failure was not achieved.

The key findings revealed that the capacity and initial stiffness of the centrifuge acceleration of

30g are lower as expected, however, the initial stage of test OWTP/S-T1 (100g) shows a close

response compared to other published tests, but the response starts to deviate from the ground

displacement above 0.5 mm (with Kirkwood (2016) test) and 1.5 mm (with Klinkvort (2013)

test). As noted from Dyson and Randolph (2001) and Klinkvort (2013), a model pile installed

at 1g can lead to a softer response, however, this contradicts with the comparisons shown in

Fig. 4.10 wheres the model pile from Klinkvort (2013) was installed at an elevated stress

field. Further study is required to investigate the response of monopiles due to different size

of pile diameter, load eccentricity, embedded depths, soil type, method of pile installation and

change of centrifuge acceleration. As described from Section 4.2, a semi-empirical hyperbolic
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expression (see Eq. 4.3) is used here to interpret the tangent stiffness (Kt) and ultimate capacity

(Hu) of the global monotonic responses at the ground surface. The data was transformed by

using Eq. 4.4, in relation to hyperbolic function (see Eq. 4.3), to obtain a linear fitting in the

form of y=a+bx, where Kt=1
a and Hu=1

b .

Hi =
KtYg

1 +
Kt

Hu
Yg

(4.3)

Yg

Hi
= a + bx,⇒ a =

1

Kt
, b =

1

Hu
(4.4)

This method is employed for all four tests as shown in Fig. 4.11. The parameter extracted are

summarised in Table 4.3. The ultimate capacities from Prasad and Chari (1999) and Zhang

et al. (2005), discussed in Chapter 2, are calculated and plotted in Fig. 4.10. In Fig. 4.10,

the ultimate capacities calculated based on Kulhawy and Chen (1995) method (see Table 4.3),

from tested data, are shown to be closely related to the two available ultimate state methods

(Hu=6.4 kN and 7.1 kN). In Table 4.3, the values of Kt for test S-T3 and S-T4 are very close,

which indicates that the test conducted in dense sand at low gravity could be similar to tests in

medium dense sand with high gravity. However, the ultimate capacities have a big difference,
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indicating that further study is required. The parameters obtained from test OWTP/S-T4 are the

basis for developing the backbone curves of hysteresis loops in Chapter 6.
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Figure 4.11: Kulhawy and Chen (1995) method to extract parameters Hu and Kt.
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Table 4.3: Extracted model parameters based on Kulhawy and Chen (1995) analysis

SN Test name b [ 1/kN] a [mm/kN] Kt [kN/mm] Hu [kN]

1 OWTP/S-T1 0.1457 0.2253 4.44 6.9

2 OWTP/S-T3 0.204 1.269 0.79 4.9

3 OWTP/S-T4 0.1123 1.315 0.76 8.9

4 Test No. 30 (Klinkvort, 2013) 0.216 0.501 1.996 4.64

5 Test PK08 (Kirkwood, 2016) 0.114 0.297 3.37 8.77

4.4 Comparisons of prediction methods

4.4.1 Introduction

Based on the observations from centrifuge tests presented in Section 4.3, this section presents

the models to calculate nonlinear p-y curves. Three p-y curve models from DNV (2014), Kond-

ner (1963) and Ramberg and Osgood (1943), discussed in chapter 2, are used in this section to

model the monotonic test results. Although these methods are simple to implement in the anal-

ysis, some of them suffer from limitations. For instance, a hyperbolic function from Kondner

(1963) is limited by only two parameters (Ishihara, 1996, Vucetic and Dobry, 1988). However,

a four parameter model, known as Ramberg Osgood model (R-O model) (Desai and Zaman,

2013, Ramberg and Osgood, 1943), can be adjusted to achieve a good fit to experimental data.

Three main features of this model are different from the DNV (2014) model: the magnitude of

ultimate resistance, the shape and slopes (tangent stiffness) of the p-y curves.

The Ramberg Osgood model function (see Eq. 4.5), initially proposed by Ramberg and Os-

good (1943) and later identified by Desai and Zaman (2013) as a suitable formulation, is used

to define the shape of the p-y curves. From Eq. 4.5, Pz(i) is the soil resistance at point Z in

kN/m, Pu is the ultimate soil resistance in kN/m, yz(i) is the pile deflection in m, Kh is the

initial (tangent) stiffness in kN/m2 at each depth Z and r is the constant to control the curvature.

By setting r=1, Eq. 4.5 is referred as the hyperbolic model and known as the KZ (Kondner and
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Zelasko) model (Vucetic and Dobry, 1991). Based on this similarity, the R-O model is used

throughout the subsequent chapters.

Pz(i) =
Khyz(i)(

1 +

∣∣∣∣∣Khyz(i)

AiPu

∣∣∣∣∣
r)1

r

(4.5)

The results of the tests are compared with both original (old) and modified (new) methodologies

of DNV (2014) and Ramberg and Osgood (1943) models. As shown in Eq. 4.6, the modified

Ramberg Osgood (MR-O) model is created with additional parameters βp, Kf = aKh (final

tangent stiffness), a (the constant to control the final tangent), s to replace the denominator r

and Aj instead of Ai. Only parameters βp and Aj can be used to modify the original DNV

(2014) model function.

Pz(i) =
βp
(
Kh – Kf

)
yz(i)(

1 +

∣∣∣∣∣βp
(
Kh – Kf

)
yz(i)

AjPu

∣∣∣∣∣
r)1

s

+ Kfyz(i) (4.6)

All three methods have been used to analyse the response of flexible piles with no guidelines

regarding the shearing force at the pile tip (Abadie, 2015). In the analysis, when the pile is

said to be in equilibrium, the shear forces at the pile tip are ignored, which may result in

overestimating the experimental data. This is not acceptable for a rigid pile and therefore a

method of analysis to include the shearing force at the pile tip is required to equate the sum of

forces to zero.

This section is therefore suggesting a simple equilibrium analysis, aiming at reworking the

available p-y curve model functions in order to match the results of the monotonic centrifuge

tests, while accounting for the shear forces at the pile tip. The objective here is to find a suitable

p-y curve approach that provides a good agreement of the backbone curve as this will be used

as the basis of the work on cyclic loading. Therefore, the parameters derived from the results

of this section will be used as a modelling base to predict the results of the centrifuge cyclic

loading tests in Chapter 6. In Table 4.4, the function and parameters of the original (old) and

modified (new) models are presented with more details in the following sections.
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Table 4.4: Original (old) and modified (new) soil model functions and parameters.

Model type Equation Model inputs Fittings

DNV (2014), old Pz = AiPutanh

(
khZ

AiPu
yz

)
Ai (Eq. 4.8), Pu (Eq. 4.7) -

kh (Eq. 4.11) -

R-O, old Pz(i), Eq. 4.5 Ai, Eq. 4.8, Pu (Eq. 4.7) r

Kh=khZ, kh (Eq. 4.11) -

DNV (2014), new Pz = AjPutanh

(
βbkhZ

AjPu
yz

)
Aj (Eq. 4.10), Pu (Eq. 4.7) βb

kh (Eq. 4.11) -

MR-O, new Pz(i) (Eq. 4.6) Aj (Eq. 4.10), Pu (Eq. 4.7) βb, r, s, a

Kh=kh Z, kh (Eq. 4.11) -

Gmax, Es, P′m, Pa Gb, m

r, s and a: curve control constants for MR-O model, βp, Gb and m: initial stiffness constants

Ai, Aj: are origin and modified depth factors, φmax: is the maximum friction angle

D, Z: are the pile diameter and depth below the ground surface, respectively

The parameters Aj and βp, shown in Table 4.4, were introduced to reformulate the published

p-y curves, which can be used to fit the results of the centrifuge tests. The original ultimate soil

resistance is calculated by using an empirical factor Ai and thereafter it is modified to a new

depth factor Aj. The factor Ai from DNV (2014) was not suitable for use with a rigid pile due to

overestimation of the experimental results (Kirkwood, 2016, Klinkvort, 2013). A constant βp is

introduced to both p-y curve model functions to better fit the tangent stiffness Kh (or modulus

of subgrade reaction) of the experimental results. The discussion of Pu and Kh is presented in

the following sections prior to discussion of the equilibrium analysis.
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4.4.2 Ultimate resistance

As discussed from Section 2.2.2.3 in Chapter 2, several methods are available for determining

the ultimate lateral resistance of soil surrounding the pile. However, there is no rigorous closed-

form solution as the soil resistance around the pile is a complex three-dimensional problem of

the ultimate state of the nonlinear elastoplastic medium (Tak Kim et al., 2004). For simplicity,

the simple expression (see Eq. 4.7) from DNV (2014) can be used throughout to calculate the

values of Pu. The value of depth factor, Ai, currently available in the DNV (2014) design stan-

dard (see Eq. 4.8), is reduced from 3 at shallow depth to 0.9 at greater depth. In this study, the

depth factor, Ai, was modified to Aj (shown in Eq. 4.10). As can be seen in Eq. 4.9, Klinkvort

(2013) has modified the DNV depth factor to fit the centrifuge test results. As discussed in

Section 4.5.5, the modified depth factors were used in the MR-O soil model to best fit the p-y

curves of test no. 30 from Klinkvort (2013). The three functions were plotted in Fig. 4.12(a),

and the value of Aj was found to decrease from 3 to 2.5 at shallow depth. At the shallow depth,

the values of Ak and Aj are lower than Ai. Ai was derived from the field-scale tests conducted

on flexible piles and always overestimates the results of the monopiles tests.

Pu = min

(C1Z + C2D)γ′Z

C3Zγ′Z
(4.7)

Ai = 3 – 0.8
Z

D
≥ 0.9 (4.8)

Ak = 0.9 +
1.1

2

(
1 + tanh

(
9 – 3

Z

D

))
(4.9)

Aj = 2.5 – 1.6tanh

(
Z

D

)
≥ 0.9 (4.10)

As shown in Fig. 4.12(b), a normalised Pu was first obtained by fitting the experimental p-y

curves conducted by Klinkvort (2013) (see Section 4.5.5). This was chosen due to the following

reasons: (i) the pile in the current study was not instrumented below the ground, which makes

it difficult to estimate the Pu values (ii) the material parameters from this test are closely related

to the study of Klinkvort (2013) (see Table 4.6) (iii) The test was conducted on a stiff pile (D =

5 m) in dry sand with centrifuge acceleration of 125g. The p-y curves were only recorded up to

a depth of 3.5 D, therefore, the Pu from DNV (2014) and Broms (1964) were extended up to the
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base of the pile and used throughout as the basis for the analysis of the global load-deflection

response at the ground surface.
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Figure 4.12: Comparisons of depth factor and distribution of ultimate soil resistance.

4.4.3 Initial modulus of horizontal subgrade reaction

The modulus of horizontal subgrade reaction, Kh (kN/m2), is conventionally used to correlate

the response of soil resistance per unit length (Pz(i)) in relation to the local pile deflection,

yz(i). There has been discussion in the previous studies regarding the rate at which the initial

stiffness of the p-y curves increases with depth. For instance, in sandy soils Kh is assumed to

vary linearly with depth (Reese et al., 1974). As noted from Reese et al. (1974), API (2007)

and DNV (2014), the variation of Kh can be expressed as Kh=khZ, where kh is the coefficient

of subgrade reaction in kN/m3. With a known value of φmax, kh,max can be estimated by using

Eq. 4.11 (Reese and Van Impe, 2010) or Fig. 2.8(b) in Chapter 2. The parameter kh,max is
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considered when Z = L (at the base of the pile), where L is embedded depth of the pile.

kh,max = (0.008085φ2.55max – 26.09)103 (4.11)

An empirical relationship suggested by Carter (1984) and Desai and Zaman (2013) (see Eq.

4.12) can be used to estimate the nonlinear variation of Kh along the pile. This function is

related to initial modulus of soil, Es,max (see Eq. 4.13), where Gmax is the maximum shear

modulus in kPa; vs is Poisson’s ratio; D is the pile diameter; Dref is the reference pile diameter

(taken as Dref = 1 m) and Ep Ip is the flexural rigidity of pile (kNm2). The coefficient αp in

Eq. 4.12 can be adjusted to best fit the initial tangent of the tested p-y curves.

Kh = αp
Es,max

1 – v2s

D

Dref

(
Es,maxD4

EpIp

)1/12

(4.12)

Es,max = 2Gmax(1 + vs) (4.13)

An empirical function (see Eq. 4.14) was suggested by Pestana and Salvati (2006) and Oztoprak

and Bolton (2013) to determine the maximum shear modulus (Gmax). The Gmax is the function

of function of void ratio (F(e)), material constants (Gb and m) and the confining stress (Pm) (see

Eq. 4.15), where Pa=101 kPa is atmospheric pressure. Pestana and Salvati (2006) investigated

the small-strain behaviour of granular soil and suggested that if the cohesionless material is

isotropic, the void ratio function F(e) = e–1.3o can be used as it provide the best match for the

experimental data on various sand. As discussed in Chapter 2, the values of m = 0.5 and 0.75

were suggested for sand and gravel, respectively and the constant Gb was correlated well with

the angularity of the material for homogeneous sand in the range between 400-800. It was

recommended that sands with more angular grains can provide a high value of Gb, while the

well-graded sand will give the low values of Gb. The material used in this study are within this

recommendation and therefore this range of Gb can be used throughout for analytical purposes.

Gmax = GbPaF(e)

(
Pm

Pa

)m

(4.14)

Pm =
1

3
γ′Z(1 + 2Ko),⇒ Ko = 1 – sinφ′ (4.15)
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The extracted values of kh and Kh of test no. 30 from Klinkvort (2013) and the two modified

models (DNV and MR-O), up to a depth of 3.5D, are presented in Fig. 4.13. A nonlinear

distribution of kh and Kh was calculated by using Eq. 4.12, where the parameters αp=0.15,

Gb=400, 600, vs=0.3, D=6 m, φmax=35o, 40o, eo=0.54, 0.82, γd=14.2, 16.8 kN/m3 were used
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Figure 4.13: The profile of coefficient, kh, and modulus, Kh, of subgrade reaction.

for the analysis. The objective here was to set the basis for analysing the global load-displacement

response of the current study due to the absence of the tested p-y curves below the ground sur-

face. In Fig. 4.13(a), the kh,max for medium dense (Dr = 42%, Gb=400) and dense (Dr =

85%, Gb = 600) sands were 38 and 77 MN/m3, respectively. From Eq. 4.11 and Fig. 2.8(b) in

Chapter 2, the kh,max is found to be 43 and 72 MN/m3, respectively. These values are found to

be close and will be used throughout in the analysis.
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4.5 Deflection prediction and comparisons

4.5.1 Introduction

An equilibrium of forces outlined in Section 4.5.2 is used in combination with MR-O p-y ex-

pression (see Eq. 4.5) for replication of experimental data. Since the current study included

non-instrumented piles, firstly, the procedure has been benchmarked against the experimen-

tal p-y curves from Klinkvort (2013). In carrying out the analysis, reasonable assumptions

were made in selecting the properties of initial stiffness in-terms of the modulus of subgrade

reaction, Kh, and ultimate soil resistance, Pu. From the equilibrium analysis, the global load-

displacement response at the ground surface is compared with the experimental data. All the

model parameters were carefully employed in the analysis and the best estimates were made.

In making discussion of the comparisons between calculated and experimental results, the term

’underestimate’ is used to indicate that the computed values are less than the corresponding

measured values, and the term ’overestimate’ will indicate that the computed values are more

than experimental values.

4.5.2 Implementing the modified Ramberg-Osgood method

In this section where the pile is assummed perfectly rigid, it is possible to deduce an expression

of the soil reaction curves based on the measured data and equilibrium of forces and moment.

The definition sketch, shown in Fig. 4.14, is used to describe the statement of the problem.

From the figure, a free head rigid pile driven in sand having a total length, LT = L+Le, em-

bedded depth, L, external diameter, D, is pushed by lateral force, Hi. The load Hi is located

at a distance Le above the ground level, which creates a moment, Mi = Hi x Le, at the ground

surface, GL. A monopile foundation is a rigid pile, unrestrained and assumed to rotate at an

angle, θ, about point O at a depth Zr and Zo from the ground and base of the pile, respectively.

A one-dimensional idealised sketch for the pile and equivalent horizontal spring for soil are

both shown in Fig. 4.14, which indicate the important parameters applied in the analyses.

A set of springs with the modulus of subgrade reaction, Kh and ultimate lateral soil resistance,

Pu, along the embedded depth, are used to represent a pile-soil interaction response. The pile
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is rigid and its deflection, yz(i), varies linearly with depth, Z. The soil resistance Pz(i) is related

to pile deflection, yz(i), by MR-O model function shown in Eq. 4.6, Section 4.4.1.
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Figure 4.14: Schematic diagram for typical definition of analytical model on a rigid
pile.

4.5.2.1 Basic assumptions

By using the sketch shown in Figs. 4.14 and 4.15, the basic assumptions are listed below ;

• The monopile is assumed to be rigid and its motion is pure rotation so that the deflection

of the pile at the ground surface, yg, is a result of its rotation at depth, Zr.

• With a known depth of rotation at O (see Fig. 4.14), the soil is assumed homogeneous

and can be divided into upper, central and lower zones.

• The soil resistance (Pz(i)) and the pile deflection (yz(i)) relation is nonlinear as shown

in Fig. 4.15(a). In Fig. 4.15(b), the modulus of horizontal subgrade reaction (Kh) will
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decrease with increasing pile deflection (yz(i)). As the pile displacement continues to

increase to a certain level, the ultimate soil resistance will be achieved.
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Figure 4.15: Sketches of typical parameters in the analysis of monotonic response.

• There has been discussion from the published work regarding the rate at which the initial

stiffness of the p-y curves increases with depth. For instance, DNV (2014) assummed a

linear profile while Carter (1984) and Desai and Zaman (2013) have suggested a nonlin-

ear profile of the horizontal subgrade modulus of soil with depth, Zn (see Fig. 4.15(c)).

• The ultimate soil resistance is assumed to vary linearly with depth (see Fig. 4.15(d)).
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• The action of the vertical loads on the pile is discarded and the moment at the base is

assumed to be zero.

4.5.2.2 General equilibrium solution

In this section, a developed equilibrium solution, with estimation of initial modulus, Kh, and

ultimate soil reaction, Pu, is discussed. The pile is described by the depth of rotation centre

from the ground surface, Z = Zr, the depth, Z, the loading height, Le, the embedded depth,

L, horizontal displacement at the loading point, yp, and ground surface, yg = Zrtan(θ). The

displacement along the depth of the pile, yz(i), can then be correlated with yg using Equation

4.16 and 4.17 at the top and bottom of rotation point O, respectively. Eq. 4.18 can be used

to determine the deflection of pile head (yp) once the point of pile rotation (θ) is known. The

rotation, θ, is constant with depth and can be valid only for small displacements of the pile (θ ≤

0.9o). This is the case for test results of this study, and is considered to be the case of monopiles

in a full-scale conditions.

In Section 4.3.3, the location of Zr was estimated as 0.68L≈ 20.4 m in full-scale. It is therefore

assumed that Zr=20.4 m and θ is varied from 0 to 0.9o to determine the ground deflection.

yz(i) =
(Zr – Z) yg

Zr
,⇒ 0 ≤ Z ≤ Zr (4.16)

yz(i) =
(Z – Zr) yg

Zr
,⇒ Zr ≤ Z ≤ L (4.17)

yp = (Le + Zr) tan(θ) (4.18)

The loads acting on the pile are the horizontal force and the distributed soil resistance along the

pile. Knowing the soil resistance mobilised along the embedded depth, the total horizontal load

at the pile head (similar to shear force at ground level) can be estimated. As can be seen in Fig.

4.14 and listed assumptions in section 4.5.2.1, the moment and force equilibrium are therefore

estimated as follows:

1. Force equilibrium equation
L∑

Z=0

Force = 0
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=⇒ Hi +

∫ L

Zr
Pz(i)dZ –

∫ Zr

0
Pz(i)dZ = 0

∴ Hi =

∫ Zr

0
Pz(i)dZ –

∫ L

Zr
Pz(i)dZ

By using Eq. 4.6 and assumed that ∆ K=Kh-Kf , Γ = Kfyi, the global resultant force at

the ground surface can be estimated as shown in Eq. 4.19.

Hi =

∫ Zr

0

 ∆Kyi[
1 +

∣∣∣∆Kyi
Pu

∣∣∣r]1s + Γ

 dZ –

∫ L

Zr

 ∆Kyi[
1 +

∣∣∣∆Kyi
Pu

∣∣∣r]1s + Γ

 dZ (4.19)

2. Moment equilibrium equation

In Fig. 4.14, the equilibrium of bending moment about the rotation centre, O, can be

derived as follows;
L∑

Z=0

Moment = 0, =⇒ Mi = HiLe

⇒ Mi –

∫ L

Zr
Pz(i)(Z – Zr)dZ –

∫ Zr

0
Pz(i)(Z – Zr)dZ = 0

∴ Mi = Hi(Le + Z) =

∫ Zr

0
Pz(i)(Z – Zr)dZ +

∫ L

Zr
Pz(i)(Z – Zr)dZ (4.20)

3. Normalised forces and moment

The model was investigated by a series of centrifuge tests and the results can be trans-

formed to prototype scale by means of normalised analysis to allow the comparisons. In

this analysis, the normalised framework suggested by Klinkvort (2013) are employed to

compare the results (see Table 4.1).

Methodology was coded in Matlab using the above expressions and the total load-displacement

responses corresponding to the experimental tests were achieved.
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4.5.3 Material properties

Under the given relative densities, the parameters to estimate ultimate soil resistance, modulus

of subgrade reaction and MR-O soil model were first considered in the analysis as listed in

Table 4.5. It includes the soil and pile properties and other constants used for adjustment and

fitting.

Table 4.5: Parameters used in the analysis of monopile foundations.

SN Parameter Symbol Unit Medium dense Dense

Soil properties

1 Relative density Dr % 42 85

2 Dry unit weight γd kN/m3 14.2 16.9

3 Friction angle φmax
o 35 40

4 Specific gravity Gs - 2.63 2.63

5 Void ratio=
γwGs – γd

γd
eo – 0.82 0.54

6 Poison ratio νs – 0.3 0.3

7 Material constant Gb – 400 600

8 Atmospheric pressure Pa kPa 100 100

Pile properties

1 Diameter D m 6 6

2 Embedded length L m 30 30

3 Load eccentricity Le m 20 20

4 Flexural stiffness EpIp kNm2 1694x106 1694x106

5 Max. rotation θmax
o 0.9 0.9

Fit parameters

1 Kh fitting αp - 0.15 0.15

2 Pi fittings βp, r, s, a - varied varied

4.5.4 Comparison of experimental and calculated global response

The monotonic test results, obtained from this study are limited to the pile head load-deflection

response. The pile was not instrumented, and therefore the p-y curves are compared to typically



187

published p-y experimental data. Table 4.6 provides the properties of each of these stiff piles

and soil they are tested in a centrifuge. The listed values from this table were used in the

analysis.

Table 4.6: Parameters of the stiff model pile in sand, extracted from the the published
centrifuge tests.

Reference Model type D L Ep γ eo νs φmax Ns

Unit m m GPa kN/m3 - - o -

Klinkvort (2013) Model 0.04 0.24 70 16.8 0.7 0.4 42 125

Prototype 5 30 210 16.8 0.7 0.4 42 -

Kirkwood (2016) Model 0.0381 0.2 70 15.89 0.8 0.42 35 100

Prototype 3.81 20 213 15.89 0.8 0.42 35 -

D = Pile diameter, L = Embedded dept, tp = Wall thickness, Ep = Pile stiffness.

γ = Unit weight, eo = void ratio, νs = Poisson ratio, Ns = centrifuge scale factor.

The ability of the method to predict the response of laterally loaded monopiles in dry sand is

demonstrated by comparing the original and modified (new) p-y curve model functions, named

as R-O and DNV original and MR-O and DNV modified (new). The original DNV and R-O

models were first suggested by DNV (2014) and Ramberg and Osgood (1943), respectively,

however, in order to match with experimental data, further modifications were introduced. As

shown in Table 4.5, the constant parameter βp was introduced into both models to increase or

reduce the initial modulus of subgrade, Kh, however, the parameter αp used to define the Kh

suggested by Carter (1984) and Desai and Zaman (2013), was kept constant as discussed in

Section 4.4.3. Each family of the p-y curves was estimated with the same ultimate soil resis-

tance, which is based on a modification factor Aj. The p-y curves from MR-O employed the

parameter r, s and a to give the best fit of experimental load deflection responses.

The two parameters (Pu and Kh) are first estimated as discussed in Section 4.4.2 and 4.4.3,

respectively. The experimental ground load-displacement responses were verified by back cal-

culating the rotation of the pile and corresponding displacement. The method in Section 4.5.2

utilised the calculated displacements and estimated Pu, Kh to define the soil resistance as a

series of uncoupled springs. Each spring is characterised by nonlinear curves describing the
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relationship between the soil reaction and displacement. By using equilibrium of force and mo-

ment, the obtained p-y curves were combined, and back-calculated load-deflection behaviours

were obtained.

The comparison between the experimental and calculated total lateral load-displacement be-

haviour at the ground surface, for the two model functions, are shown in Figs. 4.16 and 4.17,

for the medium dense sand (100g) and dense sand (30g), respectively. In Fig. 4.16, the experi-

mental response of the test OWTP/S-T3 is compared with calculated responses, in normalised

form, using the original and modified (new) p-y models. The responses from original models

significantly overestimates the lateral loads of the experimental data. The fitting parameters

were introduced into these models and the responses are to some extent comparable with ex-

perimental data; however, a discrepancy still exists for the modified DNV model. It can be seen

that the results of MR-O model agree well with those from the centrifuge model test OWTP/S-

T3.
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Figure 4.16: Comparisons of global load-deflection responses between experimental
results (test OWTP/S-T3) and predictions from DNV (2014) and MR-O models.

A similar behaviour is also observed in Fig. 4.17 with significant difference of lateral load-

displacement between the experimental and original p-y curve methods. From both figures, the
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agreement between the experimental and MR-O is excellent, while the DNV model is in poor

agreement.
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Figure 4.17: Comparisons of global load-deflection responses between experimental
results (test OWTP/S-T4) and predictions from DNV (2014) and MR-O models.

The modified DNV and MR-O models were employed in the analysis to fit the global results

of test OWTP/S-T1 (100g), test no. 30 (125g) (Klinkvort, 2013) and test P08 (100g). The plots

of the computed and three tests are shown in Fig. 4.18. Test OWTP/S-T1 was compared with

experimental results conducted by Klinkvort (2013) and Kirkwood (2016). It should be noted

that the published works have been performed under different test setup compared to the current

study, therefore, it is not possible to have direct comparison.

In Fig. 4.18, a comparison of the results indicate similar nonlinear responses, however, the

tangent stiffness and ultimate capacities are seen to be different. A high capacity observed

from Kirkwood (2016) highlights the difference of the model setup and other properties such

as pile diameter, load eccentricity, embedded depth and soil state condition. From the figure,

the initial stiffness of the present study is shown to be lower than the other two tests. This

difference is due to increase of pile diameter from D=3.81 m (Kirkwood, 2016) to D = 6 m of

the present study. The ultimate capacities observed from Kirkwood (2016) and present study

were somewhat larger than the results from Klinkvort (2013). This is due to smaller point of
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load eccentricity (Le) despite of identical slenderness ratio (L/D = 5) with the current study.

This is also noted from Klinkvort and Hededal (2014) who concluded that the piles loaded with

small Le have higher capacities compared with one of the lower values.
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Figure 4.18: Comparisons of global load-deflection responses between experimen-
tal result (test OWTP/S-T1) and predictions from (DNV, 2014) and MR-O models,

including the results from Klinkvort (2013) and Kirkwood (2016).

Furthermore, in Fig. 4.18 the plots shows that the MR-O model compared well with experi-

mental results and the responses are in excellent agreement. For instance, in test OWTP/S-T1

the initial stiffness (Kt) of the DNV model agrees well with experiment, however, the ultimate

capacity (Hu) is in poor agreement. The Hu was obtained by considering the ultimate soil re-

sistance (Pu) from DNV (2014) with the use of modified depth factor Aj, however, it does not

clearly provides the accuracy of the results. With no clear conclusion drawn from the use of

this factor, further study is recommended.

Several studies have shown that the p-y relationship described from DNV (2014) is not suitable

for estimating the response of the global monotonic load-displacement response. The slopes of

load-deflection curves are greater than those determined from the experimental tests because

the DNV method was derived from field tests on flexible piles, which has a significant effect
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on the behaviour of monopiles. The stiffness of the pile-soil interaction is a function of rela-

tive density, stiffness of sand, friction angle and pile installation, which can not be predicted

accurately with the model function derived from small pile diameter. All these factors require

a full-scale in-depth research to evaluate the effect of the monopile diameter on the p-y curves.

In conclusion, the response obtained by DNV (2014) p-y curve model overestimates both initial

stiffness and ultimate capacity of the pile used in this study (see Fig. 4.16, 4.17 and 4.18). The

centrifuge tests by Klinkvort (2013) and Kirkwood (2016) were also compared with modified

DNV models. The use of nonlinear variation in the soil stiffness resulted in an over-estimate

of the tangent stiffness (Kt), however, the ultimate capacity of the pile (Hu) was observed to

be lower than the experimental data. The MR-O soil model provides the best fit to experi-

mental data of the current and published studies. The model allows for a change in the initial

modulus of subgrade reaction, final tangent modulus and ultimate soil resistance with depth,

which involves additional fitting parameters. It is also revealed that the modification proposed

to increase or decrease the initial stiffness of the p-y curves leads to improved p-y formulation

compared to those that employed from previous studies.

4.5.5 Comparison of p-y curves

As noted from the previous section, the current study is only limited to a non-instrumented pile

with data only related to the global response of the load-deflection at the pile head. Therefore, a

comparison is made to typically published p-y curve data from Klinkvort (2013) to demonstrate

the capability of the model suggested in this study.

The details of the mathematical expressions, used to analysed the p-y responses, are given in

Table 4.4, Section 4.4.1. A matlab code was written to enable comparison between the p-y

experimental behaviour of test no. 30 (Klinkvort, 2013) and the response computed by DNV

(2014) and Ramberg and Osgood (1943) models. The relationship between the soil resistance(
Pz(i)

)
and deflection of the pile

(
yz(i)

)
, from the two soil models, are presented and com-

pared against the experimental data. From these models, the parameter Kh and Pu, described

in Sections 4.4.3 and 4.4.2, respectively, were determined. Each family of the p-y curves as

presented in Fig. 4.19 were constructed based on the Pu function defined by DNV (2014).

However, the empirical depth factor Ai was modified to Aj in order to match the results of
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Klinkvort (2013) centrifuge test (see Fig. 4.12(a), Sec. 4.4.2). As shown in Table 4.6, some

properties of the material used for test no.30 are closely related to the current study, for instance,

γd = 16.8 (16.9) kN/m3, φmax = 42o (40o) and L = 30 m in prototype condition. Therefore, the

values of Pu and Kh extrapolated from the experimental p-y curves shown in Fig. 4.19, were

used to set the boundaries of the calculated initial stiffness and ultimate soil resistance variation

along the embedded pile.

In Fig. 4.19, the initial slopes of the pile-soil interaction curves were defined as described in

Fig. 4.13(b), Sec. 4.4.3. This method assumed that Kh is increased nonlinearly with depth as

suggested by Carter (1984) and Desai and Zaman (2013). The non-dimensional constants Gb

(400 and 600 for the medium dense and dense sand, respectively) and m = 0.5 were adopted

for the analysis throughout the chapter. By using the fitting constants shown in Table 4.5, the

experimental p-y curves were set as the benchmarks and compared with modified DNV and

MR-O p-y curve models. The coefficient βp was introduced into these models to either in-

crease or reduce the initial stiffness of the computed p-y curves. The experimental p-y curves

at depth of 1D, 1.5D, 2D, 2.5D, 3D and 3.5D (where D is diameter of pile) are compared with

original and modified models in a normalised form.

The local pile-soil interaction behaviour is thus estimated initially by the original DNV and

R-O methodology and then modified by using the constants listed in Table 4.5. In Fig. 4.19, all

model responses are plotted together. A comparison of the original p-y curves shows a signif-

icant difference in shapes, stiffness and magnitude as compared to the published experimental

data and MR-O p-y curves. Clearly, it can be seen that the original DNV (2014) method in-

dicates high values of initial stiffness and magnitude of soil resistance compared to modified

models. The MR-O model function agree well with experimental data over a larger range. The

ultimate soil resistance is overestimated in the upper soil layers of Z=1D, reasonably estimated

at depth of Z = 1.5D, 3D and 3.5D, and is underestimated in the soil layers from Z = 2-2.5D.

As described in the previous studies (Choo and Kim, 2015, Kirkwood, 2016, Klinkvort and

Hededal, 2014) into response of monopiles, the p-y curves from DNV (2014) method observed

to overestimate the stiffness at shallow depth and underestimate at greater depths and recom-

mended that the method is not suitable for use with rigid piles. For instance, Klinkvort and

Hededal (2014) used hyperbolic p-y model to fit the results and confirmed that the stiffness was

underestimated below the rotation point. Similar behaviour is observed in this study, however,

the additional factors considered in the MR-O was successfully used to close the gap.
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Figure 4.19: The comparisons of the Klinkvort and Hededal (2014) experimental and
calculated DNV and MR-O p-y curves models.



194

In conclusion, the MR-O model function by Desai and Zaman (2013) observed to agree well

with chosen published local p-y curves. The assumption of using depth factor in the calculation

of ultimate soil capacity into monopile foundation is clearly lacks some accuracy as it was

derived from flexible piles. The factor Ai is a site dependent to where it was originally and one

should be carefully when it is applied at different locations. Therefore, no clear conclusion can

be drawn from this study and further investigation is required. The empirical related factors,

used in calculating the modulus of subgrade reaction and ultimate capacity for MR-O model

function, are dependent on the specific test and should be used with care outside the calibration

limits. However, the calibration limits of the current study were based on published local p-y

curves, therefore, it has to be investigated further.

4.6 Soil resistance and bending moment profile

4.6.1 Soil resistance profiles

The soil reaction profiles, for the maximum pile rotation of θ = 0.9o (Equivalent to 10% of

pile diameter at the ground surface), were obtained as shown in Fig. 4.20. Figs. 4.20(a)

and 4.20(b) show the profiles for the medium dense and dense sand, respectively. The results

are presented to enable a comparison between the original and modified published p-y curves

models in relation to global responses of the test OWTP/S-T1, OWTP/S-T3 and OWTP/S-T4.

From both figures, the general shape of the two modified soil resistance (DNV and MR-O)

are well estimated with very little difference from the usage of adjustment fitting constants

created p-y curves. The MR-O model was used as a benchmark to represent the global response.

Overall, the agreement between MR-O and other computed p-y curves is satisfactory at shallow

depths in the upper zones and overestimated at depth below Z = D.

From the figures, some differences occurred between the fitted MR-O and DNV soil resistance

distribution. For instance, at shallow depth (Z ≤ 1D), all models show a close agreement with

MR-O. However, in Fig. 4.20(a), at depth 0≤ Z ≤ 2.6D m, the modified DNV model agrees

well with MR-O but slightly overestimated at depth of 2.5D≤ Z≤ 5D m. A similar observation

is also found in the test OWTP/S-T4, in which the modified DNV model (see red line in Fig.

4.20(b)) overestimated the fitted MR-O model at depth of 1D≤ Z ≤ 5D m. In Fig. 4.20(b), the
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MR-O model fitted to test OWTP/S-T1 is underestimated by DNV at a depth between zero to

0.5D m, and over-predicted from 0.6D≤ Z≤ 5D m. The discrepancy alongside the depth of pile

may be attributed to several factors, including (a) the approximate nature of the maximum shear

modulus, Gmax profile obtained from the literature and not experimentally, which was applied

to derive the initial stiffness profile (b) the empirical constants used to develop an ultimate soil

resistance, which relied on flexible piles.
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Figure 4.20: Comparisons of soil resistance distribution of the DNV and MR-O mod-
els based on test OWTP/S-T1, OWTP/S-T3 and OWTP/S-T4.

In Fig. 4.21, the calculated Pz(i) distributions of the original (DNV and R-O) and modified

DNV, in the normalised form, are presented alongside the benchmark fitted MR-O model to

the results of Klinkvort (2013) (test no. 30) and Kirkwood (2016) (test P08). The kinematic

equilibrium solution from this study yields a good fit to the experimental global response and

used to develop a soil resistance profile. However, careful consideration of the soil resistance
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profile shows that the modified DNV and original models accurately predict the Pz(i) profile to

depth of approximate 2D m in Fig. 4.21(a) and underestimates up to a depth of 2.5-3.7D in Fig.

4.21(b). From both figures, at a depth between 3D up to the pile base, both original and modified

DNV model overestimates the soil resistance profile while the original R-O underestimates this

depth. Overall, the DNV model appears to give the good agreement of lateral soil resistance at

shallow depth but none of it allows an accurate prediction at the middle and lower zones.
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Figure 4.21: Comparisons of the fitted p-y distribution of the original and modified
DNV and MR-O models to the published total load-deflection response at the ground

surface.

4.6.2 Bending moment profiles

The basis behind the selection of Pu and Kh profiles was utilised in the analysis to describe

the bending moment distribution along the pile length. Figure 4.22(a) and 4.22(b) shows the
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moment profiles for the medium dense and dense sand, respectively. For clarity, the curves

are shown only to a maximum of 10% of the pile diameter displacement at the ground surface,

which correspond to 0.9o pile rotation. In Fig. 4.22(a), the original and modified bending mo-

ment distributions of Ramberg and Osgood (1943) and DNV (2014) models are presented and

compared. The general shape of the bending moment, of the two modified models, are well

estimated with very little difference from the usage of adjustment fitting constants created from

the p-y curves. The bending moment variations from the original p-y curves overestimated the

fitted models. It should be noted that in Section 4.5.4, Fig. 4.16, the computed MR-O model

agrees well with the test OWTP/S-T3, hence, it is used here as the benchmark. In Fig. 4.22(b),

the similar observations of tests OWTP/S-T1 and OWTP/S-T4, conducted at centrifuge acceler-

ation of 100g and 30g, respectively, are presented. There is a significant difference between the

bending moment curves of the modified DNV and MR-O models of the test OWTP/S-T1. In

the test OWTP/S-T4, the modified DNV model has little difference compared to MR-O model.

In Fig. 4.22(a), the difference in the maximum bending moment, between the benchmark MR-

O and modified DNV, was about 10%, which shows a closer agreement but still overestimated

the results. For dense sand (See Fig. 4.22(b)), the difference is approximately 40% of the test

OWTP/S-T4 and 73% of the test OWTP/S-T1. The calculated DNV model overestimated the

bending moment variation in this study, in spite of the fact that the original model was modified.
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Figure 4.22: Comparisons of original and modified bending moment distribution of
the DNV and MR-O models of the tests OWTP/S-T3 (medium dense sand, 100g)

and OWTP/S-T1/4 (dense sand, 100g and 30g).

Figs. 4.23(a) and 4.23(b) depicts the bending moment profile of the fitted published Klinkvort

(2013) and Kirkwood (2016) global response centrifuge tests, respectively. The MR-O model

agreed well with experimental results and is chosen here as the benchmark of the other models.

Overall, it can be seen that in Fig. 4.23(a) the moment profile of the MR-O model is under-

estimated by R-O and overestimated by DNV models. This is also observed in Fig. 4.23(b),

however, from the depth of 2D m to the pile base, the DNV model underestimates the MR-O

profile. The DNV model shows a big difference of bending moment profile, despite that the

original model was modified. It is possible that this difference is due to the effect of shear force

at the pile base that has not been accounted for in the flexible piles. An in-depth experimental

field study is required regarding this effect on monopiles.
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Figure 4.23: Comparisons of origin and modified bending moment distribution of
the DNV and MR-O models.

In the analysis of rigid piles, the presence of shear force at the base increases the lateral resis-

tance, however, it does not contribute significantly to the ultimate capacity of the pile and its

effect on bending moment is minimum. The monopile design to resist the bending moment is

controlled by the maximum moment at shallow depth, close to the surface. A slightly increase

in bending moment towards the base is of little concern and has also been discovered by Abadie

(2015), Lau (2015) and Kirkwood (2016). Therefore, the results obtained in this study suggest

that the effect of shear force at the base is minimum and is not considered in the design.
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4.7 Chapter summary

In this chapter four monotonic tests have been conducted on a non-instrumented rigid model

pile in dry sand subjected to lateral loading. Comparisons have been made between the lateral

response of the model pile in the centrifuge and the response predicted based on the kinematic

approach solution using p-y curves from MR-O (Desai and Zaman, 2013) and DNV (DNV,

2014) models. The primary conclusions from the work presented in this chapter are described

as follows:

1. In the centrifuge tests, the lateral response of the pile is mostly affected by relative density

and level of centrifuge acceleration. A non-linear behaviour is observed in the model

tests, however, the ultimate loads were not achieved. The 10% of pile diameter and DNV

(2014) rotation limit methods were used to determine the capacity of the pile, Hu.

2. The model pile was observed to rotate rigidly to a depth of 0.65L ≤ Zr ≤ 0.68L, which

is approximate to 200 mm from the ground surface. However, this is slightly different

compared to analytical solutions, with approximately Z r from 0.7L to 0.76L.

3. The model pile in a centrifuge was non-instrumented; hence, it was difficult to predict

the total force-deflection behaviour using p-y curve method. The similar experimental

p-y curves, derived from Klinkvort (2013), were used as a benchmark to estimate the

ultimate soil resistance, Pu and modulus of subgrade reaction Kh. The model experiment

(Test No. 30) from Klinkvort (2013) was chosen due to close properties of sand and

geometry of the pile. The modified depth factor, Aj, recommended by DNV (2014), was

used throughout to estimate the ultimate capacity, Pu.

4. By using the p-y curves of test no. 30 (Klinkvort, 2013), a nonlinear variation of Kh

suggested by Vesic (1961), Carter (1984) and Desai and Zaman (2013) was set and used

throughout. The fitting coefficient βp was employed into the models to adjust the initial

slopes of the p-y curves for the purpose of matching the global responses.

5. An optimisation technique was proposed, which considered the force and moment equi-

librium of the pile, rotation and deflection. By using the equilibrium of the forces and

moment and minimising the difference between the calculated and experimental total
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load-deflection response, the soil reaction and bending moment profile due to rotation

and deflection of the pile were obtained. This method was applied to match the results

of the centrifuge from the current study and the published work of Klinkvort (2013) and

Kirkwood (2016).

6. The ultimate soil resistance (Pu) values were assummed as those recommended by DNV

(2014) and p-y curves from Klinkvort (2013). This assumption was important because

the values of Pu in this study was not identified experimentally.

7. The p-y curves from the experimental tests and MR-O models were found to exhibit a

softer responses than those from DNV (2014), which were originally developed for piles

with smaller diameter (≤ 2 m). The significant difference in the p-y curves between

the experiment and DNV (2014) may originate from the increase of pile diameter of the

monopile, and therefore, further research is important to observe this effect.

8. Studies recommended that p-y curves proposed by DNV (2014) are unconservative for

estimating the behaviour of rigid piles. The results provided in this study prove that

the use of DNV model overestimates initial stiffness and response of soil resistance.

The MR-O model, which includes more parameters, allows the change in stiffness and

ultimate capacity with depth and provides best fit to experimental data. At shallow depth,

the modified DNV model provide a good estimate, however, below the rotation point it

underestimates the stiffness of the MR-O p-y curves. This trend has already been noted

by other studies and more experimental research is required to substantiate this result.

9. A depth factor Ai (API, 2007, DNV, 2014) was modified to Aj and used to match the

results of this study. The total load-displacement response showed a satisfactory agree-

ment with MR-O model. However, the use of this factor needs a further study to be used

accurately into other models.

10. Because the centrifuge tests were conducted with a non-instrumented piles, a complete

proposal regarding the appropriate design methods for monopiles cannot be concluded

based on the results of this study. However, the author suggests that the findings achieved

in this chapter may provide a strong motivation for further research on the diameter effect,

relative densities, soil types, multi-layers, load eccentricity and embedded depths.





Chapter 5

CYCLIC PILE LOADING EXPERIMENTAL RESULTS

5.1 Introduction

The description of nonlinear hysteresis behaviour of monopiles using theoretical models re-

quires an understanding of the key parameters derived from the model pile experiment response.

As described in Chapter 3, this is achievable using centrifuge model testing with experiments

focused towards this objective.

This chapter presents centrifuge test results (tests OWTP/C-T16 and OWTP/C-T17) and anal-

yses that pertain to the cyclic behaviour of the monopiles in dry sand. The centrifuge package

used for testing purposes was described in Chapter 3. The main objective of these tests was

to ensure that the cyclic behaviour, obtained using the developed experimental apparatus, ad-

equately reflected the cyclic behaviour of monopile foundations. This objective was achieved

and, in analysing the data, some features of pile-head load-displacement, for pile in sandy,

were revealed. The results presented here serves as the basis for comparison with the theoreti-

cal model development in Chapter 6.

5.2 The analysis framework

5.2.1 General concept

The offshore wind turbine foundations are exposed continuously to the cyclic action of wind

and waves, demanding reliable design procedures that would take into account the possible

cyclic stiffness degradation and accumulation of plastic deformations. The term cyclic loading

is used to characterise variable loads having clear, repeated patterns and degree of regularity in

cyclic peak-to-peak magnitude (Hamp) and return period (T) (Andersen et al., 2013). There are

203



204

four main types of loads acting on monopiles; winds, waves, 1P, and 3P (see Fig. 5.1) (Nikitas

et al., 2016). These loads are random and vary in their magnitude and direction over its design

life. Winds and waves are termed as cyclic loads acting in different directions while 1P and

3P are acting dynamically, caused by the rotational frequency of the rotor and blade shadowing

effect, respectively. More details can be found in Chapter 2.

Figure 5.1: Loads on wind turbine with typical waveform, from Nikitas et al. (2016).

For experiment and design purposes, the cyclic loading effects are usually restricted to the time

frame and cyclic rate that allow suitable control, precision and data capture rate (Andersen

et al., 2013). Hence, the best option is to carry out a uniform cyclic pattern with a load or

displacement sequence, which employs a fixed frequency and regular amplitude. In this study

the loading frequency was fixed to 2.5 Hz.
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5.2.2 Filter frequency for data analysis

To analyse the data, the calibrated voltage readings from all sensors were filtered with low

pass filter from MATLAB (MATLAB, 2016). By employing the Butter-worth filter, using the

command line and the interactive filter design, the high frequency signal components from the

signal data can be removed. The MATLAB code to generate the filter coefficients is shown

by [b, a] = butter(n, Wn, ftype). From this function, b and a are the transfer function coef-

ficients, the first argument is an nth-order low-pass Butter-worth filter, the second argument is

the normalised cutoff frequency Wn = fc
0.5fs

, where 0 ≤Wn ≤ 1. The ftype speciffies the filter

type of either low or high, fc is the cut-off frequency and fs is the sampling rate. The output of

the filtered data were determined with expression, Y = filtfilt(b, a, X) where X and Y are input

and output data arrays, respectively. From this study, a 5th low-pass Butter-worth filter, with

a cut-off frequency (fc = 10 Hz) and data sampled at 100Hz, was used. The chosen frequency

was low enough to ensure that the readings across all sensors were not changed substantially.

5.2.3 Data analysis framework

The analysis of data is first described by considering the basic definitions of the pile geometry

shown in Fig. 5.2. From this figure, the rotation of the pile (θ), pile head (Yp) and ground

deflections (Yg) are derived from the two mounted LVDTs (LVDT-2 and LVDT-3). To investi-

gate the accumulation of pile head displacement and change in secant stiffness, the cyclic load

is load controlled. In each cycle of loading, the maximum and minimum value of load (Hmax,

Hmin) and their corresponding displacement (Ymax, Ymin) can be obtained. The displacement

of the monopiles is the results of the applied load and stiffness of the soil-structure system.

The definitions used in this study was adopted from LeBlanc (2009) and Klinkvort (2013) to

address the concerns of design engineers regarding the closeness between the natural frequency

and cyclic load frequency.

As shown in Fig. 5.3, the cyclic loading is characterised by the two non-dimensional param-

eters (ζb, ζc) described by LeBlanc (2009) and Klinkvort and Hededal (2013). The ratio ζb is

the measure of the size of the cyclic loading with respect to monotonic load capacity (Hmon),

follows that 0 < ζb < 1 (refer Eq. 2.79, Chapter 2). The ratio ζc ranges from –1 ≤ ζc ≤ 1,
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Figure 5.2: Typical model pile definitions for analysis of cyclic load responses.

quantifies the characteristic of cyclic load and takes the value of 1 for a monotonic test, 0 for

one-way loading, and -1 for two-way loading (refer Eq. 2.80, Chapter 2). The parameter Hmon

can be determined from the monotonic tests described in Chapter 4. This approach has been

previously used in other studies (Klinkvort and Hededal, 2013, LeBlanc, 2009, Li et al., 2010,

Lin and Liao, 1999, Long and Vanneste, 1994, Peralta and Achmus, 2010, Rosquoet et al.,

2007).
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Figure 5.3: Cyclic loading characteristics defined in terms of ζb and ζc, adapted from
LeBlanc (2009).
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5.2.3.1 Analysis of pile displacement

The lateral displacement of the pile is the result of the applied load and the stiffness of the

soil-pile system. The minimum and maximum displacement can be found as when the load on

pile (Hcyc) is at the minimum or maximum point of each cycle. There are two ways to quan-

tifies the accumulation of pile-head displacement, exponentially as proposed by LeBlanc et al.

(2010) and logarithmically as proposed by Lin and Liao (1999). More detail of these functions

can be found in Section 2.4.2, Chapter 2. Both logarithmic (see Eq. 5.1) and exponential (see

Eq. 5.2) functions are used to fit the average measured total and accumulated displacement of

the pile-head, respectively. The parameters Y1, YN are defined as displacement for the first and

N-cycles, respectively. The parameter Y1 is always the same as Ys, and can be determined from

the monotonic test. CN, TN and αn are the constants to adjust the fitting of the curve. Diagram-

matically, the definitions of these parameters were adopted from LeBlanc (2009), which can be

seen in Fig. 2.28, Chapter 2. Instead of utilising bending moments, as shown from this figure,

a horizontal load applied onto the top of the monopile was used to define these functions.

YN = Y1 + CNlog(N) (5.1)

∆Y(N) = Y1TNNαn (5.2)

5.2.3.2 Analysis of cyclic stiffness

The definition for the pile stiffness was selected as the part to address the concern of the inter-

action between the natural frequency of the system and cyclic loading frequency. By using the

pile-head load-displacement plots of the data, it is possible to calculate the unloading stiffness

of the model pile throughout the experiment. The analysis is described by defining the tangent

stiffness (Kt), monotonic cyclic stiffness, Kmon, the first cyclic secant stiffness, K1, and N-

cyclic unloading stiffness, KN. Once the maximum and minimum loads from each cycle and

the corresponding displacements are known, the unloading stiffness for each cycle is estimated

as shown in Eq. 5.3.

KN =
∆H

∆y
=

Hmax – Hmin

ymax – ymin
(5.3)
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5.2.4 Summary of the experiment programme

The section presents a brief description of the tests used to analyse the behaviour of monopile

foundations. Three centrifuge tests ( OWTP/C-T15, OWTP/C-T16 and OWTP/C-T17) were

conducted at 30g to investigate the response of a monopile to cyclic lateral loading. Tests were

conducted on relatively dense sand. The results from test OWTP/C-T15, discussed in Chapter

3, were used to describe the preliminary responses of the model pile. During testing, the cyclic

load ratio (ζ) (varied from negative to positive) were programmed using an automated load

control system. Each series of the test was achieved by stopping the AKM motor and setting

the automated load control system to a new load control ratio, ζ . After setting the value of ζ ,

the process was resumed and the AKM motor was switched on, and increased slowly from a

loading frequency of 0.5 to 2.5 Hz. At constant frequency of 2.5 Hz, the test was resumed to

a specific number of load cycles. The raw data, for lateral loads and pile-head displacements,

were obtained from load cells and LVDT sensors, respectively. From these data, the relationship

between the applied cyclic loads, displacement, cyclic load-displacement, total displacement

and change in cyclic stiffness against the number of load cycles were achieved. The loading set

of each test was characterised in a sequence starting with F01 followed by F02, F03, F04, F05.

As can be seen in Table 5.1, the first series (F01) of each test was used to stabilise the soil and

data was not taken for the analysis. The data from the subsequent test series was recorded except

series F02 of test OWTP/C-T17. It should be noted that during testing, the first few cycles of

the first recorded test series was assumed to be affected by rapidly displacement increase of

the pile before the rate of increase stabilises. Furthermore, another factor which affect the first

few cycles of the subsequent test series is the setting process of an automated load control

ratio. By changing ζ , the rearrangement of the loading system could affect the the behaviour

and magnitude of the first few cycles before it stabilises. Thereafter, the rate of displacement

and stiffness decreases with increasing number of cycles. With further increase in number of

cycles, the sands have more potential to compact and resulting into local densification of sandy

soil around the pile. The local densification might raise the shear modulus of sand and leading

to the increase of pile secant stiffness. In the subsequent test series, the load control ratio (ζ)

was seen to affect the displacement of the pile, however, the change in pile stiffness continue

to increase with increasing number of cycles. It can be seen that the progressive increase in

magnitude due to the change of load control factors had also an impact on the initial stiffness
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increase and change in the pile displacement. A summary of the test series, including number

of cycles (Ns), is presented in Table 5.1. The analysis of each test is presented in the subsequent

sections. All results are interpreted in a model scale, unless stated otherwise.

Table 5.1: A summary of tests OWTP/C-T16 and OWTP/C-T17

Test ID Test series ζ Ns Description

OWTP/C-T16 F01 Nil Nil Soil stabilisation, tested from 1-30g, data was

not recorded

F02 0 8600 Long run test set at ζ=0, data was recorded

F03 0 32200 Long run test at ζ=0 in the late hours of the first

day (F3A) and then continue the following day

(F3B), data was recorded

F04 +1 29000 New set up of ζ=1 after F3B, long run test, data

was recorded

F05 -1 58170 New set up of ζ=-1 after F04 in the following

day, long run test, data was recorded

OWTP/C-T17 F01 Nil Nil Soil stabilisation, tested from 1-30g then 30-20-

10g and back to 30g, data was not recorded

F02 Nil Nil Tested but LVDT sensors did not respond in the

LabVIEW user interface, data was not recorded

F03 0 58870 Long run test at ζ=0, data was recorded

F04 0 4060 Test continued at ζ=0 in the following day be-

fore changing ζ , data was recorded

F05 -1 16610 New set up of ζ=-1 after F04, long run test, data

was recorded
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5.3 Cyclic load and displacement response

Fig. 5.4 define the notation used to identify the sinusoidal cyclic loads and displacements

applied on the pile head. The uniform cyclic pattern of the resultant lateral load, Hi, can be

defined by period
(

T = 1
f

)
, number of cycles (N), minimum and maximum cyclic load (Hmin,

Hmax), average load
(

Havg =
Hmax + Hmin

2

)
, and cyclic load change (Hamp = Hmax-Hmin).

The pile-head lateral displacement (Yp), that correspond to the cyclic loads, can be defined by

the minimum (Ymin) and maximum (Ymax) displacements including the change of peak-to-

peak displacement, Yamp = Ymax-Ymin.
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Figure 5.4: Definitions of cyclic loads and lateral displacement on the pile-head.

To have an accurate reading of the cyclic loading, two miniature load cells (LCs) were mounted

horizontally on both sides of the pile cap and directly connected with tension wires, T1 and

T3 to the weights, M1 and M2, respectively. The weight applied on the system to create a

sinusoidal cyclic force was chosen as M1 =3 kg (applied load (RHS)), M2 = 1.5 kg (dead

weight (LHS)) and M3 = 4 kg (load chosen to balance the system). Before running the test,

the loading system was kept in balance and initial readings were recorded. Throughout the
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tests, the change of load control factor (ζ) was employed and direct measurements from the

two load cells (LC1 (RHS) and LC2 (LHS)) were recorded. For demonstration purpose, the

results of the sinusoidal forces, extracted from 50 cycles with the values of ζ = –1, ζ = 0

and ζ = +1, are presented in this section. Theoretically, the force recorded on the LHS (LC2)

should remain constant without any sinusoidal behaviour, since there were no changes expected

to the dead weight M2. By estimating the load, HLC2, it is clear that the friction between the

wires and pulleys influences the system since HLC2 should be constant. Similarly, the friction

of other components might also affect the tension force from both sides of the pile. However,

the variation observed on the LHS is considered small with minimal effect on the interpretation

of the resultant force, Hi. The resultant tension forces for all values of ζ were obtained as the

difference between LHS, LC2 (load cell two), and RHS, LC1 (load cell one); Hi = HLC2 -

HLC1. The direct measurements from the two load cells and the corresponding net forces, for

ζ=0, ζ = -1 and ζ = +1, are shown in Fig. 5.5, 5.6 and 5.7, respectively.
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Figure 5.5: Net force from LHS and RHS load cells for test OWTP/C-T16 (ζ=0).
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Figure 5.6: Net force from LHS and RHS load cells for test OWTP/C-T16 (ζ=+1).
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Figure 5.7: Net force from LHS and RHS load cells of test OWTP/C-T16 (ζ=-1).
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The resultant lateral cyclic load (Hi), observed from tests OWTP/C-T16 and OWTP/C-T17,

are shown in Fig. 5.8 and 5.9, respectively. From each test, a cyclic loading sequence is

presented to show the variation of load control factor, ζ . As discussed in in Table 5.1, Section

5.2.4, the sets of loading sequence was named as F02, F03, F04 and F05 for each variation

of parameter ζ . It should be noted that the series F01 was carried out to stabilise the soil and

no cyclic loading was conducted on the piles. Also the test series F02 from the test OWTP/C-

T17 was not recorded because the bottom LVDT sensor did not respond. A typical change of

test sequence of the test OWTP/C-T17 is shown in Fig. 5.9. Throughout the entire test with

approximately 79540 lateral load cycles, the load control ratio was programmed to vary using

an automated load control system. For instance, as shown in Table 5.1 the first set of loading

cycles (series F03) comprised 58870 cycles. This series was conducted at ζ = 0 in the
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Figure 5.8: Maximum and minimum net load versus number of cycles (N) for test
OWTP/C-T16.

first day and centrifuge was spun down. In the second day, the value of ζ = 0 was programmed

again into the system and 4060 cycles were achieved for test series F04. For the subsequent

set (series F05) the value of ζ was changed to -1 while running the test and 16610 cycles were

achieved. The centrifuge package was spin down in the first day and spinning up in the second

day, including the reset of ζ = 0, could be the factors which affected the results observed in the

figure. Furthermore, the change of the load control factor has also contributed to the change of



214

cyclic load magnitude. More detail is summarised in Table 5.1, Section 5.2.4. The displacement

0 1 2 3 4 5 6 7 8
Number of cycles, N, [-]  104

-300

-200

-100

0

100

200

300

400

500

600

L
at

er
al

 c
yc

lic
 lo

ad
, H

i [
N

]

 OWTP/C-T17

Maximum load
Minimum load

F04 [ =0]

F03 [ =0]
F05 [ =-1]

Figure 5.9: Maximum and minimum net load versus number of cycles (N) for test
OWTP/C-T17.

of the pile head during the cyclic lateral loading is classified into two parts: maximum and

minimum pile head deflections, which correspond to the maximum and minimum cyclic loads

presented in Fig. 5.8 and 5.9. Therefore, the maximum and minimum pile-head displacement

after each cycle of tests OWTP/C-T16 and OWTP/C-T17 are shown in Fig. 5.10 and 5.11,

respectively. As can be seen from the figures, the displacements of the pile are both increasing

with number of load cycles. This indicates that a permanent deformation of the soil develops

around the pile. However, it should be noted that during the process of changing ζ from one set

to another there was a disturbance of soil before the displacement of the specific set resume.
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cles (N) for test OWTP/C-T17.

By utilising the maximum and minimum points recorded from each test, the evolution of cyclic

pile-head displacement (Yamp) and lateral load (Hamp) magnitude of the tests OWTP/C-T16
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and OWTP/C-T17 against the number of cycles, is plotted in Fig. 5.12. From each test, the

cyclic loads were applied to the pile head through a set of loading cycles. Each set was governed

by the load control system, which was obtained by changing the value of ζ . For instance, the

total of 79540 cycles of the test OWTP/C-T17 was achieved through the following sets: F03

(ζ = 0, from 1 to 58870 cycles), F04 (ζ = 0, from 58871 to 62930 cycles) and F05 (ζ = -1,

from 62931 to 79540 cycles). It should be noted that the number of cycles from each set of

the loading cycles was achieved by setting a constant frequency of 2.5 Hz from AKM motor.

Moreover, after completion of one set before the subsequent sets, the frequency of AKM motor

was reduced to 0.5 Hz to allow the change of ζ . After setting the value of ζ , the frequency of

AKM motor was increased stepwise from 0.5 to 2.5 Hz and remain constant for the entire test.

As shown in Fig. 5.12, the results of all sets were merged to observe the trend of cyclic load

and displacement magnitudes. Throughout the tests, Hamp and Yamp lost the percentage of

their magnitude as the number of cycles increases. As shown in Table 5.2, Hamp(1), Yamp(1)

and Hamp(N), Hamp(N) are the magnitudes of the first and last lateral load and displacement

of each set of the test sequence. There are some reasons identified for this loss. Firstly, a

cyclic amplitude reduction occurs systematically due to displacement accumulation of the pile,

leading to small changes due to loss of wire tightness. Secondly, the mechanical friction of the

system could also have
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some effect. However, it is not clear whether these factors equally provide this effect or if one

had more influence. Further study is needed to clarify this issue.

The observation shown in Fig. 5.12 were used to determine the ratio between the change in

cyclic load and pile-head displacement. The plots of cyclic load-displacement ratio
(

Ra =
Hamp

Yamp

)
versus number of cycles, from sets of each test, are shown in Fig. 5.13, where Hamp

and Yamp are the cyclic load and pile head displacement magnitude, respectively. Fig. 5.13

shows the development of relative cyclic magnitude from the first to the last set of test sequence.

The data is presented as set of a particular number of lateral load cycles with the cycle count, N,

continue from previous set. The values of Ra observed to increase as the experiment proceeds

from one set of test series to the next. During the first few cycles of each set Ra increases

rapidly and then becomes constant. Thereafter the rate of cyclic amplitude, Ra, for each set, is

observed to decreases with increasing number of cycles. At early stages of each test the pile

experiences a low relative stiffness response compared to subsequent test series. It can be seen

that the progressive increase of cyclic magnitude, due to the change of load control factor (ζ),

had an impact on the relative cyclic amplitude. Furthermore, with this change of load control

ratio the sands have more potential to compact and leading to local densification of soil around

the pile. The local densification attributed to cyclic might raise the shear modulus of sand and

lead to the increase of the relative stiffness of the pile with increasing number of cycles.
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The result of the cyclic lateral load (Hi) versus pile-head displacement (Yp), for the tests

OWTP/C-T16 and OWTP/C-T17, is shown in Figure 5.14 and 5.15, respectively. To improve

the visibility the plots are divided into intervals of cycles 1-25, cycles 250-260, cycles 2500-

2510, cycles 5000-5010, cycles 10500-10510. However, the response of the cyclic load against

the number of cycles, from all cycles of test OWTP/C-T17, was plotted in Fig. 5.17(a) to show

the sequence of the test series. For each group of cycle intervals, only five cycles were taken for

demonstration, except the first 25 cycles. The figures indicate that the lateral pile displacement
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Figure 5.14: Cyclic load-displacement responses for test OWTP/C-T16.
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increases with increasing of loading cycles. From all tests, the curves of the first 25 cycles

exhibit a non-linearity of the soil, with the evolution of secant stiffness as the displacement

continues to increase. Furthermore, as the number of cycles continues to increase the load-

displacement responses becomes relatively linear and stiffer than the previous N-1 load cycle.

This implies that the cyclic secant stiffness rises with load cycles tending towards a maximum

value of each cycle.

(a) Total response for test OWTP/C-T17-F03
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Figure 5.15: Cyclic load-displacement responses for test OWTP/C-T17.

The cyclic load characteristics (ζc) between the maximum and minimum cyclic loads of the tests
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OWTP/C-T16 and OWTP/C-T17 are plotted in Fig. 5.16 against the number of cycles, and the

values are listed in Table 5.2. From the table, the tests OWTP/C-T16-F04 (ζ = 1), OWTP/C-

T16-F05 (ζ = –1) and OWTP/C-T17-F04 (ζ = –1) are under one-way loading direction while

tests OWTP/C-T16-F03 (ζ = 0), OWTP/C-T16-F04 (ζ = 0), OWTP/C-T17-F03 (ζ = 0) and

OWTP/C-T17-F04 (ζ = 0) are found to be under two-way cyclic loading condition. The pile-
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Figure 5.16: Cyclic load characteristics, ζc, versus number of cycles, N.

head load displacement responses from tests OWTP/C-T16/T17-F03 (under cyclic loading)

and test OWTP/S-T4 (under monotonic loading) are presented in Fig. 5.17. The response of

Test OWTP/S-T4 is included in the plot for comparison purpose and estimation of the initial

displacement, Ys, and tangent stiffness of the monotonic backbone curve, Kt. From these

figures, the parameter Ys was identified as 0.26 and 0.35 mm of the tests OWTP/C-T16 and

OWTP/C-T17, respectively, and Kt is approximately 840 N/mm. These parameters are basis

for the analysis in the subsequent chapters and hysteresis loops in Chapter 6. The values of

the parameters extracted from experimental data, such as maximum and minimum cyclic loads

(Hmax, Hmin), load magnitude (Hamp = Hmax-Hmin), cyclic load characteristic (ζc) and cyclic

load ratio (ζb), are provided in Table 5.2. In test OWTP/S-T4, the ultimate capacity (Hu) of the

pile was estimated by two methods, such as 10%D of pile head displacement and 0.5o of the

maximum tolerated pile tilt due to installation and operational condition (Abadie, 2015). From
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Figure 5.17: Load-displacement curves determined from monotonic and cyclic tests.

these methods, the ultimate capacities were 1690 N and 1130 N, respectively. Therefore, the

values of ζb =
Hmax

Hu
were estimated as shown in Table 5.2.

Table 5.2: Characteristics of cyclic load tests OWTP/C-T16 and OWTP/C-T17

Test ID ζ Hmin Hmax ζc Hamp1 HampN Yamp1 YampN ζb ζb
0.1D 0.5o

T16-F02 0 -155 160 -0.97 315 295 0.43 0.36 0.1 0.14

T16-F03A 0 -166 170 -0.95 336 278 0.49 0.33 0.12 0.15

T16-F03B 0 -140 158 -0.88 298 291 0.38 0.33 0.1 0.14

T16-F04 1 23 309 0.03 286 269 0.37 0.31 0.18 0.27

T16-F05 -1 25 350 0.1 323 317 0.39 0.34 0.21 0.31

T17-F03 0 -218 225 -0.97 443 285 0.56 0.29 0.13 0.2

T17-F04 0 -245 260 -0.94 505 452 0.55 0.3 0.15 0.23

T17-F05 0 5 520 0.01 515 474 0.53 0.45 0.3 0.45
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5.4 Effect of cyclic lateral displacement on the pile-head

5.4.1 Introduction

From the geometry of the model pile setup (see Fig. 5.2), the lateral displacement response can

be determined from the LVDT readings. The results of the tests OWTP/C-T16 and OWTP/C-

T17 are investigated in this section by plotting the lateral pile-head displacement against the

number of load cycles. The pile-head displacement is divided into two parts, namely the max-

imum (forward) and minimum (backwards) displacements, which correspond to the maximum

and minimum cyclic loads, respectively. The extremes found from the results plotted in Figs.

5.14 and 5.15 are used to determine the maximum and minimum deflection of each cycle.

Therefore, this section considers the average displacement at the instant when the cyclic load

is applied to the pile head.

The results of each set of the test sequence, starting from the first series when the value of ζ was

set-up at a constant frequency of f = 2.5 Hz, are plotted separately to demonstrate the response

of the average displacement. From test OWTP/C-T16, a total of 128970 loading cycles was

achieved with the first set of test series, F02, start from 1 - 8600 cycles followed by F03 (from

8601 - 40800 cycles), F04 (from 40801 - 69800 cycles) and F05 (from 69801 - 128970 cycles)

while in test OWTP/C-T17 a total of 79540 cycles was achieved with first set, F03, start from

1 - 58870 cycles followed by F04 (from 58871 - 62930 cycles) and F05 (from 62931 - 79540

cycles). It should be noted that the total displacements of the test sequence, is discontinuous

due to the change of load control ratio, ζ , which was programmed after each set. During testing,

the change ζ observed to affect the total displacement. For instance, the change of load control

ratio from F04 (ζ = 1) to F05 (ζ = -1) has shown a big different due to mechanism of automated

load control system from negative to positive value through zero. Meanwhile, the response of

the first few cycles of the subsequent test series were observed to be affected before the rate of

increase stabilises.

As noted from Leblanc et al. (2010) and Arshad and OKelly (2016), two techniques were used

to represent the evolution of the pile head displacement (rotation) against the number of cycles:

total displacement (YN) and accumulated displacement (∆Y) of the pile head. Each technique

provides useful information for understanding the response of the monopiles. However, in this
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section, the total displacement method will be used to interpret the results of tests OWTP/C-T16

and OWTP/C-T17 and the information derived from each test.

5.4.2 Total displacement

For each loading condition, the total pile-head displacement of the monopile (YN) was as-

sessed in this section. This was achieved by considering the average displacement between

the maximum and minimum displacement observed during a single loading cycle. As shown

in Figs. 5.18 and 5.19, the resulting displacement for tests OWTP/C-T16 and OWTP/C-T17,

respectively, are plotted against the number of cycles. From the two figures, it can be seen

that the response of the pile-head displacement increases with an increasing number of load

cycles. The variation of the total displacement is significantly influenced by the load control

factor, ζ . Comparing the data plots for the loading test series, the displacement is significantly

lower for the value of ζ = 0 (see T16-F02/F03A/F03B and T17-F03), in contrast to ζ = 1 and

ζ = -1, where the displacements were notably higher. In Fig. 5.18, the initial part of the pile

displacement response experiences anomalous behaviour up to 200 cycles. If we look at the

trends over several cycles, we can see that the pile head displacement increased dramatically

in this zone. The displacement increased to approximately 0.19 mm, 0.32 mm and 0.42 mm

for the test series T16-F02/3A/3B, T16-F4 and T16-F5, respectively. Beyond 200 cycles, the

displacement response continues to rise gradually but at reduced rates until the end of each test

series.

The plots from the figures show a similar trend, but the displacement differs, for instance, at

the load cycle of 2000 the displacement at ζ = 1 (T16-F04) rose by 0.33 mm, while at ζ = –1

(T16-F05) was found to be 0.45 mm compared to 0.21 mm at ζ = 0 (T16-F02/3A/3B). The

discontinuous nature of total displacement, from first to the subsequent set of test series, was

due to the load control ratio programmed in an automated load control system.
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Figure 5.18: Lateral displacement against the number of cycles, test OWTP/C-T16.

The response in Fig. 5.19 followed a similar trend. Between 1 and 200 cycles, the displace-

ment increased dramatically for the test series T17-F04/05 and then slowing growth of the test

T17-F03. After 200 cycles up to the end of each test series, the displacement continued to grow

slowly, but at reduced rates. By looking at the difference between the test series, it can be seen

that the biggest change was influenced by the load control factor (ζ) of 1 and -1. At 3000 load

cycles, the displacement of the pile shows a big difference of 0.165 mm and 0.67 mm, observed

from tests T17-F04 and T17-F05, respectively. In the test T17-F04, this is more than 0.75 times

the displacement of T17-F03 and around three times from T17-F05.

In conclusion, the behaviour of the first cycles of the first test series of each test was seen to

be affected by soil mobilisation during the tests. However, for the subsequent test series, the

behaviour was affected by the change of load control factor ζ . Furthermore, after 200 cycles

the reducing rate of the pile displacement led to the more severe cyclic shearing of sand around

the shaft and hence generate the permanent displacement of the pile. It is clear that asymmetric

loading (ζ 6= 0) had the most significant on the load-displacement response, for instance, the

highest displacement was observed for the value of ζ = -1.
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Figure 5.19: Lateral displacement against the number of cycles, test OWTP/C-T17.

As discussed in Section 5.2.3.1, the relationships to describe the total displacement of the pile,

against the number of load cycles, can either be in a logarithmic or power functions. From

the literature, the total displacement of monopiles in the sand was fitted by using a logarithmic

function. Therefore, a logarithmic function, shown in Eq. 5.4, was chosen and employed in

this study to fit the experimental data, where YN is the displacement after N cycles, Y1 is the

displacement of the first cycle, CN is the growth rate of displacement. As shown in Eq. 5.5, the

displacement growth rate, CN, can be estimated as recommended by Rosquoet et al. (2007). It

should be noted that Eq. 5.5 is derived from the tests conducted on the model pile in dense sand

(Dr = 85%). Therefore, the pile head displacement against the number of load cycles can be

fitted using Eq. 5.6, where b is kept constant while ζb and a are varied with test series.

YN = Y1

(
1 + CNln(N)

)
(5.4)

CN = b

(
Hmax

Hu

)a

(5.5)

YN = Y1

(
1 + b

(Hamp

Hu

)a
ln(N)

)
(5.6)

In Fig. 5.18 and 5.19, the fitted curves are displayed using the dashed lines, which demonstrate

that Eq. 5.6 accurately captures the increase in pile-head displacement, at least after 100-300

(T16-F02/3A/3A and T17-F03), 1000-2000 (T16-F04/5) and 70-200 (T17-F04/5) load cycles.
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However, less than these limits, the experiment data depart from the predictions. For instance,

in Fig. 5.18, Eq. 5.6 overestimates the pile displacement prior to 100 cycles (T16-F02/3A)

and 400 cycles (T16-F03B) while in series T16-F04/5 underestimation occurred between 30 to

1000 cycles (T16-F04) and 200 to 2000 cycles (T16-F05). Therefore, this equation is a conser-

vative approach for predicting pile displacement to less than the aforementioned limits. Similar

to Fig. 5.19, over-prediction occurred in less than 70 and 200 cycles for test series T17-F04 and

T17-F05, respectively.

Equation 5.5 was fitted to the data to empirically determine the values listed in Table 5.3. The

values of CN and Y1, in Table 5.3, are plotted as shown in Figs. 5.20(a) and 5.20(b) as a

function of ζb, respectively. The dependency of the load magnitude (ζb) can be seen on these

plots. The data points are observed to be scattered and not fitted well. Table 5.3 provides the

values of calculated uncertainty a assuming that the trend in Fig. 5.20(a) follows a power law

shown in Eq. 5.7, where a1 = 0.19 and b1 = 1.565. The accuracy of the power law fitted curve

is approximately R2 = 0.81 (shown in the figure) compared to linear fit with R2 = 0.745 (not

shown). The scatter points observed from this figure were derived by the use of the function

shown in Eq. 5.5, however, the proposed function (see Eq. 5.7) can also be used in Eq. 5.4.

CN = a1ζ
b
b1 (5.7)

Thus, for the tests conducted in dense sand (Dr=85%), the measured pile head displacements

(YN) after N cycles can be estimated by using Eq. 5.8. The trend observed here is not directly

related to the previous observations of other studies. This is because, the factor ζ was set-up to

control the loading magnitude of the test series. As can be seen in the figure, it is clear that the

rate of displacement CN is affected by loading magnitude ζb, which is directly influenced by

ζ . Therefore, increasing the magnitude of loading is likely to affect the total displacement of

the pile, however further research is needed to investigate this trend. Furthermore, this solution

exclusively deduced from a centrifuge test of the model pile in dense sand, and therefore more

research is required before it can be applied for estimation of the full scale pile head displace-

ments under cyclic loading. However, the derived function can be a useful tool to improve the

knowledge of monopile displacement behaviour.

YN = Y1

(
1 +

(
a1ζ

b1
b

)
ln(N)

)
(5.8)
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Figure 5.20: The effect of ζb on the constant rate (CN) and initial displacement (Y1).

In Fig. 5.20(b), the initial displacement (Y1) values are observed to grow exponentially with

load amplitude ζb. Both exponential and power functions (see Eq. 5.9 and 5.10, respectively)

were derived from the scatter point of the test series, where a2 = 0.0806, b2 = 4.8804, a3 =

1.6814, and b3 = 1.24 are the fitting constants. Although the power law is also sufficient to

fit the scattered points, the current study employed the exponential growth function to closely

match the data points, with its goodness of fitting (R2 = 0.922). The trend is observed to be

in line with the experimental setup due to large displacement values of the maximum load

(Hmax). It should be noted that this approach is always used to determine the effect of the

relative density in relation to the maximum load applied to the pile head. However, the current

study was only limited to dense sand, therefore, further research is required.

Y1 = a2e

(
b2ζb

)
(5.9)

Y1 = a3ζ
b
b3 (5.10)
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Table 5.3: Characteristics of the total displacement of the pile

Test ID ζ Hmin [N] Hmax [N] ζc ζb[0.5o] a CN Y1

T16-F02 0 -155 160 -0.97 0.14 1.99 0.015 0.16

T16-F03A 0 -166 170 -0.95 0.15 2.29 0.009 0.18

T16-F03B 0 -140 158 -0.88 0.14 2.19 0.006 0.26

T16-F04 1 23 309 0.03 20.27 2.24 0.043 0.36

T16-F05 -1 25 350 0.1 0.31 2.57 0.036 0.17

T17-F03 0 -218 225 -0.97 0.2 2.5 0.01 0.19

T17-F04 0 -245 260 -0.94 0.23 2.38 0.021 0.32

T17-F05 0 5 520 0.01 0.45 3.72 0.036 0.79

5.5 Effect of cyclic secant stiffness

Several studies have been carried out for the pile under cyclic loading regarding the strength

and stiffness reduction (Achmus et al., 2009, DNV, 2014, Little and Briaud, 1988, Long and

Vanneste, 1994), but recent studies (Arshad and OKelly, 2016, Chen et al., 2015, Klinkvort and

Hededal, 2013, LeBlanc, 2009, Li et al., 2010, y Puertos, 2011) have reported that the stiffness

of the foundation are always increasing with increasing number cycles. As noted from Bhat-

tacharya and Adhikari (2011), the cyclic stiffness is more important for the natural frequency

(fn) of the soil-monopile system of the offshore wind turbine. In this study, the first few cycles

of the first recorded test series was assumed to be affected by rapidly displacement increase

of the pile before the rate of increase stabilises. As the rate of displacement decreases with

increasing number of cycles, the sands have more potential to compact, resulting into local

densification of sandy soil around the pile, which might raise the shear modulus of sand and

leading to the increase of pile secant stiffness.

Cyclic unloading stiffness (N/mm) of the monopile foundations was assessed as previously
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described in Section 5.2.3.2. The unloading stiffness in every cycle is normally described by ei-

ther a power law (Little and Briaud, 1988, Long and Vanneste, 1994) or logarithmic (Klinkvort

and Hededal, 2013, LeBlanc, 2009, Lin and Liao, 1999) functions. However, recent studies

(Arshad and OKelly, 2017, Chen et al., 2015, Cox et al., 2014, Kirkwood and Haigh, 2014,

Klinkvort and Hededal, 2013, LeBlanc, 2009, Li et al., 2010, Zhu et al., 2012) have reported

that a logarithmic function (see Equation 5.11) was the best to predict the unloading stiffness

of the monopile, where the parameter Cc is the stiffness constant, which can be varied for each

test, KN is unloading stiffness after N cycles and K5 is the unloading stiffness after 5 cycles of

loading. As a result of anomalous behaviour in unloading stiffness during the first 5 cycles, the

value of K5 can be simplified and approximated as K1. The constant reducing rate An = K5Cc

is obtained by best fit of the unloading stiffness of the measured data. Furthermore, by utilising

this concept, a non-dimensional change in cyclic unloading stiffness can then be determined by

using Eq. 5.12.

KN = K5(1 + Cclog(N – 5)),⇒ An = K5Cc, N > 5 (5.11)

∆Ks(N)

K5
=

KN – K5

K5
= Cα + CcIn(N) (5.12)

Test OWTP/C-T16 and OWTP/C-T17 were used to analyse and demonstrate the unloading

stiffness of the model pile. The values of initial unloading stiffness and fitting constants, for

each loading control factor (ζ), are determined. The resulting data for tests OWTP/C-T16 and

OWTP/C-T17 are plotted in Fig. 5.21 and 5.22, respectively. To demonstrate the effect of

load control ratio on the secant unloading stiffness, the series of each test are not plotted in a

sequence. It should be noted that the behaviour of the first cycles of the first test series of each

test was seen to be affected by soil mobilisation during testing. However, for the subsequent

test series, the behaviour was affected by the change of load control factor ζ . The progres-

sive increase of cyclic magnitude, due to the change of load control factor, had an impact on

the relative cyclic amplitude. With this change, the sands have more potential to compact and

leading to local densification of soil around the pile. The local densification of soil might raise

the shear modulus of the sand around the pile and leading to an increase of the pile unloading

secant stiffness with the increasing number of load cycles.

In Fig. 5.21, the unloading stiffness for each load control factor (ζ) (test series F02 - F05) is

plotted against the number of loading cycles in a horizontal X-log scale. An inconsistent trend
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of stiffness behaviour was observed for the first 100 cycles of all test series, however, only the

first five cycles were omitted and not taken into account in all analyses. It should be noted that

during each of the test series, the change of loading frequency (from 0.5 to 2.5 Hz) and load

control factor (ζ) at the initial stage led to some of the plots skipping during the test run, which

provided some difficulties of ensuring the consistency of the applied loads. It is evident in Fig.

5.21 that the evolution of stiffness with increasing cycle numbers is quite erratic at the begin-

ning. Similar behaviour is reported to occur from other studies, for instance, the unloading

stiffness responses from LeBlanc et al. (2010) and Li et al. (2010).

Following the trend observed from other studies (Abadie, 2015, Arshad and OKelly, 2017,

Chen et al., 2015, Klinkvort and Hededal, 2013, LeBlanc, 2009, Li et al., 2010) on the stiffness

of the model pile-system, a logarithmic expression (see Eq. 5.11) was fitted to the data sets

despite the irregularity of stiffness evolution of the first few cycles. This was achieved by using

constants An and Cc shown in Eq. 5.11 and listed in Table 5.4 at the end of this section. From

Table 5.4, the initial stiffness (K1 = K5) observed to be fairly consistent between test series,

but it mainly depends on the loading control factor, ζ , which appeared to affect the resulting

behaviour. For instance, taking into consideration a maximum value of ζ = -1 (951 N/mm) in

test series T17-F05, K1 is observed to be higher than other test series by approximately 33%,

31%, 20% and 19% for F02 (ζ = 0), F03A (ζ = 0), F03A (ζ = 0) and F04 (ζ = 1), respec-

tively. This was expected as all tests were carried out with a similar relative density of sand

in which the first test series (F02 (ζ = 0)) shows a higher percentage change than the others.

It should be noted that during testing, the first few cycles of the first recorded test series was

assumed to be affected by rapidly displacement increase of the pile before the rate of increase

stabilises. Furthermore, during testing the setup of the automated load control programme ob-

served to affect secant stiffness of the first few cycles of the subsequent series before the rate

of increase stabilises. Thereafter, the rate of stiffness increase would have been affected due to

densification of soil around the pile. However, the effect of soil densification is higher for the

subsequent test series compared to the first series. Ideally each series of tests would have been

done independently. However, the current study was limited due to technical challenges and

time frame. Therefore, a further study is recommended.
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Figure 5.21: The unloading stiffness, KN plotted against the number of cycle, N for
the test OWTP/C-T16.

In Fig. 5.22, the graph shows the relationship between the unloading stiffness of test OWTP/C-

T17 (test phase F03 (ζ = 0), F04 (ζ = 0) and F05 (ζ = -1)) against the number of cycles in

X-log scale. For the first 200 load cycles, a similar behaviour described in the previous test

was observed. The cyclic unloading stiffness was seen to increase gradually with the number

of cycles. As an overall trend, it is clear that between 5-200 cycles, the unloading stiffness of

all series increased gradually. For instance, at 200 cycles the stiffness was 902 N/mm and 990

N/mm for tests T17-F03/4 and T17-F05, respectively. After 200 cycles the stiffness continue

to increase dramatically up to the end of the test run. In conclusion, the plots show that the un-

loading stiffness was increased insignificantly after 200 load cycles with decreased unloading

stiffness rate. The decreasing rate, of each test series, was due to local densification of the sand

surrounding the pile shaft. It should be noted that the first few cycles of each test series were

affected by the automated load control setup.

In Fig. 5.22, Eq. 5.11 was fitted to all data sets of these tests to adequately predict the long-

term cyclic unloading stiffness. The results show that Eq. 5.11 closely matches the test results

from the cycle number greater than 200 of the test series F03 and F04 and more than 600 cycles

in series F05. However, for the number of load cycles less than 100-200 cycles (test series

F03 and F04), then unloading stiffness departs from the predicted trend and exhibits a steeper
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Figure 5.22: The unloading stiffness, Ks plotted against the number of cycle, N, for
test OWTP/C-T17.

gradient. For the test series T17-F05, Eq. 5.11 underestimates the unloading stiffness between

30 and 800 cycles. The unloading stiffness rate, derived from both figures (An = 9.6 - 20.5, see

Table 5.4), is observed to be different from An = 8.02 suggested by LeBlanc (2009) and noted

to be higher by 19% of the minimum value of the listed values in Table 5.4.

In this research, the change (percentage increase) in the cyclic unloading stiffness of monopile

was defined in Eq. 5.12. From this equation, the percentage increase value of zero means no

reduction in the stiffness of monopile was achieved, whereas a value of 100% means no further

stiffness of monopile occurred. Figures 5.23 and 5.24 show the change (percentage increase) in

the cyclic stiffness of the soil-monopile system. From the two figures, the relationship between

the relative stiffness and the number of cycles, for different load control factor, ζ , are plotted.

It is clear that for the first 100 cycles the percentage change of unloading stiffness increased

slightly and then continues to grow dramatically while maintaining a stable growth at small

reducing rates. As discussed previously, the unstable growth observed in the first few cycles

was due to rearrangement of soil particles for the first test series (T16-F02 and T16-F03) and

change of load control factors (ζ) for the remaining series. Around 500 to 600 cycles, a perma-

nent change of soil particles took place and led to the local densification of soil surrounding the

pile shaft. The densification of the soil rose the shear modulus of sand and caused the cyclic
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stiffness to increase.
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Figure 5.23: Change in cyclic stiffness against the number cycle for test OWTP/C-
T16.
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Figure 5.24: Change in cyclic stiffness against the number cycle for test OWTP/C-
T17.

From figures, the following observations can be made;
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1. The load control factor (ζ) affects directly the change in stiffness. For instance, with ζ =

-1, the change in stiffness was 8-13% (N = 2000) lower compared with other test series

(notably higher for ζ = 0, 17-25%). This is expected due to the densification of the sandy

soil of the subsequent test series with increased number of load cycles.

2. The trend observed contradicts the existing pile design philosophy under the frame of the

p-y curve method from API (2007) and DNV (2014), which recommend a reduction of the

pile-soil stiffness to account for cyclic effects, irrespective of the loading characteristics.

Furthermore, the current design standard has no concept of cyclic stiffness compared to

realistic condition of the prototype soil-monopile system interaction.

3. The monopile cyclic unloading stiffness are observed to increase with number of load

cycles. This directly affects the performance of the offshore wind turbine through the nat-

ural frequency of vibration. To avoid greater rotation of the monopile, the phenomenon

of resonance (the natural frequency coincides with forcing frequency) occurrence should

also be avoided. Therefore, the foundation stiffness is an important parameter as this

may lead to rapid deterioration of on-board machinery and ultimately structural failure

(Arshad and OKelly, 2017, Bhattacharya et al., 2013a).

Two centrifuge tests were carried out in dry sand, which prepared at a relative density of 85%.

Each of these tests was similar in all respects due to application of the cyclic load control factor,

ζ . The effect of load control factor, in different cyclic load ratios, is described by plotting the

empirical determined values of Ak and ζc as a function of ζb. It should be noted that the value

of Ak is not constant and varied for each test series. As can be seen in Fig. 5.25, the measured

data are scattered and making it difficulty to employ a fitting curve. In Fig. 5.25(a), the values

of the unloading stiffness rate (Ak) are observed to decrease in relation to ζb. This occurred

as the load amplitude increases due to change of load control factor (ζ). The change of load

control factor influences larger magnitude of load (Hmax) as the number of cycles increases.

Therefore, the increase in the load magnitude resulted in a small reducing rate of unloading

stiffness. Furthermore, the unloading stiffness of the first test series of each test is lower than

subsequent test series. It should be noted that the subsequent test series (F03, F04 and F05)

were conducted in similar prepared sand. Hence, the increase of the unloading stiffness of the

subsequent series was due to the local densification of sandy soil around the pile shaft as the



235

number of cycles increased. Therefore, with progressive increase of load cycles from each test,

the sands have more potential to compact and hence increase the initial stiffness of each subse-

quent test series. It can be interpreted that the increased magnitude due to the change of load

control factors had also an impact on the initial stiffness increase. However, the densification

of soil around the pile shaft, due to many numbers of load cycles, was also a major factor of

this trend.

In Fig. 5.25(b), the trend of the data indicates that for all values of ζc < 0, the loading direction

is under two-way loading condition and bounded between 0.1 < ζb ≤ 0.25. For the values

of ζc > 0, the direction of loading is one-way and can be found between 0.28 ≤ ζb ≤ 0.5.

This implies that for the model setup and load control factor suggested in this study, the rate

of increase in stiffness is lower when the model pile was loaded under one-way loading direc-

tion (ζc > 0). This suggests that by changing the load control factor (ζ), in the negative or

positive direction in the system, the damaging load condition is expected under one-way load-

ing. This contradicts with findings from 1g experiments conducted from LeBlanc et al. (2010)

and Abadie (2015), wheres the most damaging load situation found under two-way loading.

However, the findings from Klinkvort et al. (2012), carried out under Nsg, indicated that the

damaging load is under one-way, which is similar to the current study. The number of tests

presented here is small and not sufficient to reach a definitive conclusion about these effects in

the lateral unloading stiffness. Future work is needed to consider the evolution of stiffness with

regards to the variation of load magnitude and amplitude characteristics.
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Figure 5.25: The effect of ζb and ζc in the lateral unloading stiffness rate.

Table 5.4: Characteristics of the fitted curves on cyclic unloading stiffness

Test ID ζ ζc K1 [N/mm] Ak Cc

OWTP/C-T16-T02 0 -0.87 637.5 20.28 0.032

OWTP/C-T16-T03A 0 -0.95 661 20.53 0.031

OWTP/C-T16-T03B 0 -0.89 760 12 0.016

OWTP/C-T16-T04 1 0.1 773 9.89 0.013

OWTP/C-T16-T05 -1 0.07 755 15.86 0.021

OWTP/C-T17-T03 0 -1.0 802 17.26 0.022

OWTP/C-T17-T04 0 -0.96 837 13.88 0.017

OWTP/C-T17-T05 -1 0.01 951 9.573 0.01
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5.6 Chapter summary

The results presented in this chapter confirmed some early observations reported in the litera-

ture, which provided insight into the aspects of cyclic pile behaviour. The fatigue limit state

is governed by 107 load cycles, which are expected to be applied on the wind turbine over

its design lifetime (normally 25 years). In this study, approximately 60,000 load cycles were

achieved due to technical challenges and time-frame. Despite the limitations, concluding re-

marks of the research achievement are presented below.

1. From the cyclic experimental programme, three sets of testing series were investigated

on small scale model pile subjected to a maximum of 60000 load cycles. A typical 5

MW monopile foundation was adopted and used to quantify the model pile dimensions

using scaling laws. For all test series conducted, similar geometry of the model pile was

considered. Neither the installation method nor the relative density of the sand bed was

changed.

2. Two important parameters were investigated, the total displacement of the pile head and

change of unloading secant stiffness. Despite the fact that tests were conducted in series,

which had an effect on the soil state within each subsequent test, it was observed that the

two parameters were affected by the load control factor of the system, and led to one-way

or two-way loading conditions.

3. The displacement curves of the piles under cyclic loading exhibit a distinct behaviour.

Initially, for the first few cycles, the displacement was seen to increase slowly followed

by a second stage, where there is a dramatic increase in displacement with an increase

in the number of load cycles. In this range of load cycles, the pile head displacement

continues to increase but at a reducing rate until the end of each test series. The total

displacement of the pile was largely affected by the load control factor, ζ . For instance,

the rate of displacement was higher for ζ = -1 compared to ζ = 0. The setting of the

automated load control system affected the cyclic loads, which observed to induce a

significant accumulation of pile head displacement with time. The use of empirical func-

tions recommended by LeBlanc et al. (2010) or empirical methods suggested in this study

provided a first approximation of the pile head displacement.
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4. Apart from anomalous stiffness behaviour of the first few cycles, the unloading stiffness

was seen to increase slightly as the number of cycles continues to increase but at a reduc-

ing rate. As reported from Li et al. (2010), the reducing rate was possibly due to local

densification of sand around the pile, which increases the soil stiffness and thereafter the

unloading stiffness of the monopiles.

5. The increase of stiffness was approximated by a logarithmic function, which was affected

by the load control factor, ζ . The data showed that changing ζ values from zero to -1

increased the initial stiffness while ζ = +1 did not affect the results significantly. The

increase rate of stiffness (An), during the long-term cyclic loading, was higher compared

to the previous value reported by LeBlanc (2009). The trend of unloading stiffness was

seen to be different compared to the current methodology, which degrading the static p-y

curves to account for cyclic loading.

6. The results presented in this chapter are aimed to offer an insight of further study to mod-

ify the developed model equipment and use it to optimise the real prototype design of

monopile foundations subjected to cyclic lateral loads. Furthermore, the key parameters

outlined from this chapter are referred to when identifying the mechanism for develop-

ment of the theoretical model framework discussed in the next chapter.



Chapter 6

CYCLIC ANALYTICAL MODEL

6.1 Introduction

In this chapter, the centrifuge experimental data presented in Chapter five are used to de-

velop an element model spring for cyclic local pile-soil interaction and global pile-head load-

displacement responses. The centrifuge tests were conducted to establish the cyclic response

on pile head. The observations from the centrifuge experiments may be used by researchers to

draw conclusions of different effects observed on monopiles, as well as for design engineers to

anticipated levels of displacement and corresponding change of monopile stiffness. However,

in order for load-deflection responses to be efficiently used by design engineers, they must be

able to replicate the anticipated shape of load-deflection cycles. A mathematical model, which

is capable of reproducing the most important features of the load-deflection response by using

available cyclic nonlinear Winkler spring p-y models, would be a useful tool for engineers.

As discussed in Section 4.4, the three parameter model, known as Ramberg Osgood model

(R-O model), was used in the previous studies to achieve a good fit to experimental data. The

R-O model was initially proposed by Ramberg and Osgood (1943) and later identified by Desai

and Zaman (2013) as the modified Ramberg Osgood (MR-O) p-y spring model. The MR-O

model is a mathematical expression which describes a full range of inelastic behaviour. The

original MR-O model consists of four parameters, which are capable to capture a variety of

non-linear backbone and cyclic p-y responses. It was used in algorithm based on descriptive

kinematic equilibrium framework. The soil was modelled as a system of uncoupled nonlinear

cyclic springs where the pile was considered as a elastic beam. This model was derived from

flexible piles and used in the analysis of small piles and soil. The monopiles are currently de-

signed according to semi-empirical p-y curves specified in the current design codes (API, 2007,

DNV, 2014). The method has been used over decades, however its accuracy is still questionable

especially on the prediction of experimental cyclic loading. The limitations of DNV model can

be found in Chapter 2.
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In this chapter, the MR-O model was further modified by introducing additional parameters

compared to the original model, which can be adjusted to achieve a good fit to experimen-

tal data. In the following sections, the definitions of the key model parameters are explained

graphically and related to experimental test responses. The nonlinear cyclic response includes

two parts; firstly the load-deflection curve, known as the backbone curve, and secondly the

constructed hysteresis loops described by the first unloading, first reloading, and subsequent

unloading/reloading p-y (H-Yp) curves. The backbone curves are constructed by two parame-

ters (tangent stiffness and ultimate capacity) determined from the first cycle of the experimental

cyclic responses, whereas the response of the hysteresis loops can then be investigated once the

backbone curves are known.

The major objectives of this chapter includes: (i) to introduce the key features and demonstrate

the capabilities of the MR-O model (ii) to use the model to understand the nonlinear behaviour

of the cyclic centrifuge experiments on the model pile (iii) to apply the method to other pub-

lished physical modelling tests.

6.2 An overview of cyclic model response

In the previous studies (Abendroth and Greimann, 1990, Allotey and El Naggar, 2008, Boulanger

et al., 1999, Gerolymos et al., 2009, Heidari et al., 2014, Klinkvort, 2013), different types of

cyclic pile-soil interaction relationships have been proposed. For instance, Boulanger et al.

(1999) suggested an elasto-plastic model handled by active and passive springs, representing

the backbone and unload-reload properties, respectively. The idea was further developed by

Taciroglu et al. (2006) with three elements; leading face, a rear face and drag element. Fur-

thermore, El Naggar and Novak (1995) developed a model to evaluate the response of piles

based on Winkler hypothesis, using hyperbolic stress-strain relationships and accounting for

slippage and gaps at the soil-pile interface. The model was later improved by Naggar and Bent-

ley (2000), which employed the dynamic p-y curves equivalent to two springs representing the

near field and far field. Allotey and El Naggar (2008), Gerolymos et al. (2009) and Heidari et al.

(2014) developed Beam on Nonlinear Winkler Foundation (BNWF) models with different rules

for loading, reloading and unloading, capable of accounting for cyclic degradation/hardening,

separation of pile from the soil, radiation damping and loss of strength. From these models, the
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first loading (backbone) curve was fitted based on the concept of API (2007) static p-y curve

and Strain Wedge Method (SWM) at each depth. The hyperbolic and Bouc-Wen p-y curves

models were used to construct the unload and reload curves with the use of stiffness and degra-

dation factors.

Most of the above-mentioned p-y curve methods have been used to analyse flexible pile-soil in-

teractions, however, Klinkvort (2013) employed the hyperbolic type model proposed by Kond-

ner (1963) to model the behaviour of monopiles in centrifuge experiments. For monopiles, a

limited number of cyclic pile-soil interaction curves were found in the literature. Therefore,

further research on this area is of importance.

In the establishment of a general model that can handle both monotonic and cyclic loading re-

sponses, it could be relevant to use the MR-O p-y model discussed in Chapter 4. This is the

Winkler type model representing a cyclic spring element, which is capable of handling cyclic

loading and accounting for degradation or hardening of stiffness and strength. As discussed in

Chapter 2, Section 2.3.3.3, the old MR-O model from Desai and Zaman (2013) has got impor-

tant three parameters (Kh, Pu and n) to predict the response of the experiment data, which is

difficulty to adjust to achieve a good fit. In this study, the MR-O model was further modified to

include more parameters: Kh, Pu and s, r, βp and ξN. The parameter s and r (instead of n) can

be used to adjust the non-linear hysteresis loops, while βp is introduced to adjust the tangent

stiffness of each loop. The constant function ξN was introduced to account for accumulated

displacement during simulation, which is not available in the old model. Moreover, the effect

of stiffness degradation or hardening was accounted into the tangent stiffness, KN, by addition

constant t. Furthermore, the old model did not consider the variation of load amplitude, in

which the new model introduce the parameter χ to account for this effect. More detail of the

comparison of these parameters is discussed in Section 6.5.3.4.

As noted from Klinkvort (2013), it is assumed that a gap will develop for fine-grain soils, while

for the course-grains, the soil will cave in and close the gap. From the centrifuge tests of this

study, the mechanism shows that the sand falls back and no gap was formed. Therefore, the

cyclic model will not involve the drag contribution, and only buildup of soil resistance on the

pile surface will be considered.

From the results of centrifuge tests, the observations of the cyclic pile head load-deflection

were observed. As described in Chapter 4, the model pile of this study was non-instrumented,

therefore, the cyclic experimental p-y curves from Klinkvort (2013) are used to demonstrate the
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local cyclic pile-soil interaction model. The global cyclic load-displacement response subjected

to two-way loading (ζc = -0.7) and cyclic local pile-soil interaction are shown in Fig. 6.1(a)

(test OWTP/C-T15-F07) and 6.1(b) (test no. 30), respectively. Three types of lines are drawn

on top of these figures to show the various elements of the model.
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Figure 6.1: Cyclic model curve element and definitions.

As shown in Fig. 6.1, the model is created by three parts: (1) backbone phase (path O-A), (2)

unloading phase (path A-B), (3) reloading phase (path B-A1). Firstly, the backbone phase is

observed when the resistance is built up after the application of load on the pile. The backbone

curve is used as a benchmark for creating the subsequent unloading-reloading curves. The

important parameters from the backbone curve are the initial modulus of subgrade (Kh) and

ultimate soil resistance (Pu) or global tangent stiffness (Kt) and pile capacity (Hu) for the

pile-soil interaction and global load-deflection response, respectively. Secondly, the unloading

phase is when the pile starts to move backward with unloading force decreasing from A to B.

The initial modulus or tangent of this curve is controlled by Kh or Kt of the backbone curve as

suggested by Masing (1926) and Pyke (1980). Finally, a reloading phase occurs when the pile

is moving towards the initial position in the gap created in stage (1). However, it is assumed

that the sand totally fills the gap.

To handle the observation seen in the centrifuge cyclic tests, the MR-O function discussed in

Chapter 4 is here modified. The modified model is basically identical to the model presented in
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Abdel-Rahman and Achmus (2005) and Desai and Zaman (2013), but there are some changes to

include the stiffness hardening and displacement accumulation. This was chosen to accurately

represent the results seen in the centrifuge tests. More detail of addition parameters can be

found in the subsequent sections.

6.3 Stiffness and strength parameters

In this section, the expression shown in Eq. 6.2 was used to determine the initial stiffness

for small strain amplitude (Desai and Zaman, 2013), where Kh represents the initial subgrade

modulus with a unit of stiffness (kN/m2), Es is the Young modulus of soil (kN/m2), vs is the

Poisson’s ratio, D is the diameter of the pile in m, EpIp is the flexural stiffness of the pile

(kN/m2), αp = 0.15 and j = 0.108 are dimensionless constants suggested by Vesic (1961). To

evaluate the initial Young’s modulus of the soil, Es = (1 + vs) Gmax, the Pestana and Salvati

(2006) soil maximum shear modulus (Gmax) function (see Eq. 6.1), in kN/m2, at low amplitude

strains, was applied, where the dimensionless shear modulus stiffness coefficient (Gb) was set

as 600 for clean sand, Pa is the atmospheric pressure in kN/m2, eo is the initial void ratio,

σv =
1

3
γ′Z(1 + 2Ko) is the effective stress in kN/m2, γ′ is an effective unit weight in kN/m3

and Z is the depth below the ground surface in m, Ko = 1-sin φ is the coefficient of earth

pressure at rest, and φ is the friction angle of soil.

For eo ≈ 0.54 and assuming φ = 40o and Gb = 600, the maximum shear modulus Gmax at

Pa=100 kPa, Z = 30 m below the ground surface, is approximately equal to 203 MPa. It

should be noted that Eqs. 6.2 and 6.1 are only used for initial stiffness of the backbone curve.

For cyclic loading, the power law degradation function (see Eq. 6.3) can be applied, where

Kh = K1 is the initial subgrade modulus at small strain amplitude from the backbone curve,

κ1 is the degradation constant, and KN is modulus of subgrade reaction after N cycles.

Gmax = GbPae–1.3o

(
σ′v
Pa

)m

(6.1)

Kh = αp

(
Es

1 – vs

)(
D

Dref

)[
EsD

4

EpIp

]j
(6.2)

Kh(N) = KhNκ1 (6.3)
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In this study, the pile was embedded in dry sand where the ultimate soil resistance (Pu), for

backbone curve, can be calculated through the analytical expression proposed by Broms (1964)

(see Eq. 6.4), where σv=γ′Z is the vertical stress and φ is the friction angle of the soil. Eq.

6.4 is preferred in practice due to its simplicity and sufficient engineering accuracy (Gerolymos

et al., 2009). It can be used as a reference for unloading and reloading ultimate soil resistance.

Pu = 3σvtan2
(

45 +
φ

2

)
D (6.4)

As noted by Carter (1984) and Mosikeeran and Larkin (1990), the unloading ultimate soil

resistance, Pu(U), or pile capacity, Hu(U), for the first and subsequent unloading cycles can be

estimated by using Eq. 6.5 or 6.6, which relates the ultimate unloading control parameter, t, and

maximum resistance, PA (HA), emerging from the backbone curve. In Fig. 6.2, the ultimate

capacity of reloading cycles can be estimated as Hu{R} = Hu-HB, where Hu is the ultimate

capacity of the backbone curve.
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Figure 6.2: Sketch to illustrate the unloading ultimate load capacity, Pu{U}.

Pu{U} = PA + tPA = (1 + t)PA (6.5)
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Hu{U} = HA + tHA = (1 + t)HA (6.6)

6.4 Theoretical model: Equations and parameters

The cyclic spring model used in this study was developed in the form of the modified Ramberg-

Osgood expressions to approximate the nonlinear soil resistance and displacement behaviour

of monopile response. A one-dimensional kinematic action-reaction approach is capable of re-

producing a variety of stress-strain or force-displacement relationships, for both monotonic and

cyclic loading. The approach is being applied to model the backbone and hysteresis loops, ex-

pressing the p-y relationships or the global load-deflection responses (H-yg). A simple version

of the MR-O model is outlined in the following sections.

6.4.1 Backbone curve

The backbone curve is represented as a nonlinear or multi-linear curve incorporated in different

models, which are fitted to a specified nonlinear monotonic load-displacement response such

as those specified in API (2007) and DNV (2014). In this study, the nonlinear backbone are

p-y curves derived based on the modified MR-O model created at each depth. In this way, the

developed kinematic hardening approach is capable of accounting for a global response (Hi-

Yg) and ultimate capacity (Hu) at the ground surface.

For a pile of diameter D installed in cohesionless soil, the soil resistance per unit length (Pz(i))

against deflection of the pile (yz(i)) at a point along the embedded length L, is expressed as

shown through Eq. 6.7 to 6.8, where Kh is the modulus of subgrade reaction (spring stiffness)

in kN/m2, yo, Po are displacement and soil reaction at the origin, and Pu is the ultimate soil

resistance in kN/m. To better fit the test data, the parameter r, s and βp are introduced in Eq.

6.8. r and s are used to control the shape of the backbone curves (referred as shape parameter

of nonlinearity).

Pz(i) = Po + f(yz(i)) (6.7)
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⇒ f(yz(i)) =
βpKh

(
yz(i) – yo

)
(

1 +

∣∣∣∣∣βpKh

(
yz(i) – yo

)
Pu

∣∣∣∣∣
s)1

r

+ Kf

(
yz(i) – yo

)

∴ Pz(i) = Po +
βpKh

(
yz(i) – yo

)
(

1 +

∣∣∣∣∣βpKh

(
yz(i) – yo

)
Pu

∣∣∣∣∣
s)1

r

+ Kf

(
yz(i) – yo

)
(6.8)

In Fig. 6.3, the typical definitions of the local and global backbone curves of test no. 30

from Klinkvort (2013) and test OWTP/S-T4, respectively are presented. Mathematically, to

construct the backbone curves, Eq. 6.8 is used, with initial parameter, Kh (Kt) and Pu (Hu),

directly related to the monotonic response. For the global response, the tangent stiffness (Kt)

and ultimate pile capacity (Hu) are accepted as appropriate parameters to be used to construct

the backbone curves of the overall load-deflection response (see Fig. 6.3(b)). However, the

approach is different when used to construct the p-y curves along the depth of the pile. Usually,

the solution is obtained by varying linearly or non-linearly the modulus of subgrade reaction,

Kh, and ultimate soil resistance, Pu, considering both deflection and depth below the ground

surface, Z. In Fig. 6.3(a), a typical local response at depth of Z = 1D m is fitted with the old

(original) and new (modified) Ramberg and Osgood (1943) models. All mentioned parameters
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are presented in Figs. 6.3(a) and 6.3(b). As can be seen in Fig. 6.3(a), it is interesting to note

that the p-y backbone curve from Klinkvort (2013) is underestimated with original R-O model,

while in Fig. 6.3(b) the total response of test OWTP/S-T4 is overestimated. The modified R-O

model agrees well with experimental test results. This concludes that the use of original model

is insufficient to model the test results from the experiment.

6.4.2 Unload-reload curves

The unload-reload interaction spring element can be defined based on the backbone curve dis-

cussed in Section 6.4.1. The extra input parameters compared to backbone calculation are

unloading stiffness (Kh(U)), maximum unloading load (PA), displacement (YA) and the un-

loading ultimate resistance (Pu(U)). A schematic drawing of spring element is shown in Fig.

6.4, with two critical points A (yA, PA) and B (yB, PB), whereby coordinate A is defined as

initial point of cyclic unloading curve captured along the path O-A of the backbone p-y curve or

global response while point B indicates the maximum unloading point, at which the unloading
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soil resistance, PB, is reached at deflection, yB. The reload and unload curves are similar to

the backbone curve, and can be derived based on the factor C (see Eq. 6.9) described in the

literature, in Chapter 2 (Pyke, 1980). From Eq. 6.9, PA is the current resistance at the onset

of unloading or reloading, and Pu is the ultimate resistance. The plus (+) and minus (-) signs

denote unloading and reloading, respectively.

C = 1± PA

PuU
(6.9)

From Fig. 6.4, the unloading curve (path A-B) is expressed by the function shown in Eq. 6.10,

where yA, PA are the maximum values of the coordinate A, which are assumed to be the initial

values of the unloading curve. If the loading reversal occurs at point A, then the unloading

resistance, PA (HA), is reduced from A, and the unloading curve is created by using Eq. 6.11

(MR-O model) until it reaches point B, where the minimum load at B, PB=χPA is related

to maximum load at A, PA, using an amplitude load ratio, χ. The parameter, χ is used to

control the unloading soil resistance on path A-B. The parameter βp was introduced to affect

the unloading-reloading initial stiffness. Pu(U) = (1+t) HA is the ultimate unloading resistance

discussed in Section 6.3.

f

(
Pi(U) – PA

C

)
= f

(
yz(i) – yA

C

)
(6.10)

∴ Pi(U) = PA +
βpKh(yz(i) – yA)(

1 +
βp
C

∣∣∣∣∣Kh(yz(i) – yA)

Pu(U)

∣∣∣∣∣
s)1

r

+ Kf(yi(u) – yA) (6.11)

The final unloading deflection, yB is obtained by considering the control parameters t and χ,

maximum cyclic load, PA and modulus of subgrade reaction, Kh. The derivation to obtain yB

(see Eq. 6.14) is shown through Eq. 6.12 to 6.14, where the model parameter t controls the

unloading hyperbolic curve (path A-B) and deflection yB, and χ controls the unloading force

(known as cyclic load ratio).

⇒ ∆yAB =
∆Pu(U)

KhU
(6.12)

yA – yB =
Pu(U) – (–χPu(U))

tKh + –χKh(U)
(6.13)

yB = yA +
(1 + χ)PA(1 + t)

(t – χ)Kh(U)
(6.14)
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For the reloading curve, the soil resistance (Pi(R)) is estimated by Eq. 6.15, increasing from PB

to the maximum load, Pi(R) = PA1. Coordinate A1(yA1, PA1) is created with displacement,

yA1 and resistance values of the next unloading cycle. The change in displacement, yAA1=yA1-

yA, is used to account for accumulation of subsequent cycles. From Eq. 6.15, Kh(R) is the

reloading stiffness modulus in kN/m2, Pu(R)=Pu – PB is the reloading ultimate soil resistance

in kN/m, yi(R) is the reloading displacement variation, yB is the constant displacement value at

B, and βp is the dimensionless constant.

∴ Pi(R) = PB +
βpKh(R)(yi(R) – yB)(

1 +
βp
C

∣∣∣∣∣KhR(yi(R) – yB)

Pu(R)

∣∣∣∣∣
s)1

r

+ Kf(R)(yi(R) – yB) (6.15)

6.4.3 Cyclic displacement accumulation function ξN

The cyclic displacement accumulation mechanism can affect the behaviour of soils and piles

subjected to cyclic loading. Soil degradation is mainly related to stiffness or strength parame-

ters. As noted from (Allotey and El Naggar, 2008, Little and Briaud, 1988, Long and Vanneste,

1994), the stiffness or strength modification approach was used to degrade or harden the back-

bone and hysteretic curves. With the knowledge described from these studies, the degrading

factor ξ is introduced in the MR-O model to affect the displacement of the hysteretic loops.

The following assumptions and procedures were used to develop the function ξ:

1. Accumulation factor for the first cycle

• Consider the reloading and unloading functions shown in Eq. 6.15 and 6.11, re-

spectively. By assuming that r = 1, βp = 1, C = 1 Eq. 6.16 and 6.17 were created

to calculate the amplitude values at A1 and B1, respectively.

PA1 = PB +
Kh (yA1 – yB)(

1 +

∣∣∣∣∣Kh (yA1 – yB)

(Pu – PB)

∣∣∣∣∣
) (6.16)
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PB1 = PA1 +
Kh (yA1 – yB1)(

1 +

∣∣∣∣∣Kh (yA1 – yB1)

(1 + t) PA
ξ

∣∣∣∣∣
) (6.17)

• The model experiment was carried out under load control; therefore, assumption

here made to consider the coordinate at A1 and B1, where the amplitude loads are

PA1 = PA and PB1 = PB, respectively. From this assumption, Eq. 6.17 is substituted

into Eq. 6.16 and parameter ξ of the first cycle is then derived through Eq. 6.18 to

Eq. 6.20.

⇒ Kh (yA1 – yB)(
1 +

∣∣∣∣∣Kh (yA1 – yB)

(Pu – PB)

∣∣∣∣∣
) =

Kh (yA1 – yB1)(
1 +

∣∣∣∣∣Kh (yA1 – yB1)

(1 + t) PA
ξ

∣∣∣∣∣
) (6.18)

⇓

∆yA1B1 +
Ki∆yA1B1 (yA1 – yB)

Pu – PB
= (yA1 – yB) +

Kh (yA1 – yB) ∆yA1B1

(1 + t) PA
ξ

(6.19)

But; ∆yA1B1 = yA1 – yB1

∴ ξ =
PA (1 + t)

Pu – PB
–

(yB1 – yB) PA (1 + t)

Kh (yA1 – yB1) (yA1 – yB)
(6.20)

2. Accumulation factor for the subsequent cycles, N

• The displacement function, yN = y1Nκ2 , was previously proposed by Long and

Vanneste (1994). It is employed here to determine the accumulation factor ξN for

the subsequent cycles.

• The change of unloading displacement between the two points (B and B1) can be

expressed as ∆yBB1 = yB1–yB. The change of displacements between the consec-

utive points of each cycle, ∆yBBN, can be estimated by considering the displace-

ment function shown in Eq. 6.21. Therefore, Eq. 6.21 can be used to determine the

accumulation factor, ξN, where κ2 is accumulation constant.

∆yBBN = ∆yBB1Nκ2 = (yB1 – yB) Nκ2 (6.21)
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• From Eq. 6.20, the change of unloading displacement for the first cycle is yB1 –

yB = ∆yBB1. Hence, for the subsequent cycles, ∆yBB1 is replaced by ∆yBBN,

which is shown in Eq. 6.21. Finally, the accumulation function for unloading curve

after N cycles (ξN) can be estimated by the function shown in Eq. 6.22.

∴ ξN =
PA (1 + t)

Pu – PB
–

[
(Nκ2 (yB1 – yB)) PA (1 + t)

(Kh (yA1 – yB1)) (yA1 – yB)

]
(6.22)

• For subsequent unloading or reloading curves, the creation of hysteresis loops is the

same as described in previous section. Therefore, the accumulation displacement

control factor, ξN, is accounted in the model as shown in Eq. 6.23.

Pi(N) = Pi(A) +
βpKh(N)

(
yi(N) – yA

)
(

1 +
βp
C

∣∣∣∣∣
(

Kh(N)

(
yi(N) – yA

)
(

Pu(U)

) )
ξN

∣∣∣∣∣
s)1

r

+ Kf(U)

(
yi(N) – yA

)

(6.23)

6.5 Key parameters and capability of the model

6.5.1 Introduction

For a better understanding of the constitutive relations used in modelling pile-soil interaction to

lateral loading, a brief outline is presented herein of the key parameters. The primary purpose

is to examine the response of the MR-O model by assessing the impact of varying the recom-

mended parameters.

The MR-O model parameters, which characterise the non-linear backbone and cyclic p-y curves

or force-deflection response, are classified in three categories. The first group involves the cur-

vature control constants (s and r) and initial stiffness adjustment constant (βp) that describe the

backbone curve. Any change of these parameters might affect the initial stiffness (Kh or Kt)

and ultimate capacity (Pu or Hu). The second group describes the constants used to influence

the characteristics of cyclic loading such as χ and t. They are useful in matching the results
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of the experiment model tests. The third group involves the accumulation and stiffness degra-

dation control factors (κ1 and κ2). The following sections describe how the model parameters

would affect the backbone and hysteresis loops.

6.5.2 Parameter for backbone curve

The ability of the model to reproduce the ground surface response of the backbone curve is

illustrated by considering typical local p-y curves, created based on fitting of the monotonic

test results. A p-y curve at depth Z = 1D was chosen to describe the influence of the backbone

shape parameters r and s which control the shape of the curves during the monotonic loading.

The values of r and s can range between 0 and 3. Both the original and modified Ramberg and

Osgood (1943) models were employed in this analysis to describe the parameter variation for

the typical local p-y backbone curves, in a normalised form. For instance, in Fig. 6.5(a) the

parameter r was equated to s to describe the response of the original MR-O p-y model, where a

larger number of r is seen to approximately model a bilinear backbone curve. Thus, decreasing

the values of r leads to smoother transitions where the nonlinear behaviour occurs even at low

loading levels. Fig. 6.5(b) and 6.5(c) illustrate the role of r and s of the modified MR-O back-

bone p-y curves. In Fig. 6.5(b), the parameter r (while keeping βp = 0.4 and s = 0.92 constant)

is varied from 0.5 to 2.5 to observe the shape of nonlinearity. It observed that when r < 1.25 a

work-hardening p-y curve is produced, while at values of r > 1.25, a work-softening p-y curve

is created. In Fig. 6.5(c), when the value of r = 0.83 and βp = 0.4 are kept constant the value

of s is allowed to vary. It is revealing that the larger the value of s, the larger the component of

lateral soil reaction resulting from constrained soil dilatancy.

Parameter βp controls the initial stiffness (initial elastic modulus) of each p-y curve. The back-

bone curves for different values of βp, while keeping constant values of r and s, are shown in

Fig. 6.5(d). The larger the value of βp, the larger the component of the soil resistance and tan-

gent stiffness. When these parameters r, s and βp are properly calibrated, the most p-y curves of

the model pile developed from full-scale and centrifuge experimental test can be approximately

matched.
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Figure 6.5: Normalised soil reaction-pile deflection for selected values of r, s and βp.

6.5.3 Parameters for unload-reload curves

The global cyclic nonlinear model has five important parameters, including the initial (tangent)

stiffness (Kt), maximum capacity (Hu), shape of nonlinearity parameters (βp, r, s). The initial

stiffness and maximum capacity of the backbone curve were both estimated from the method

suggested by Kulhawy and Chen (1995), using an equilibrium of analysis described in Chap-

ter 4. The load-displacement backbone curves, from the original and modified Ramberg and



254

Osgood (1943) model functions, are given in Fig. 6.6 along with centrifuge test OWTP/S-

T4. Fig. 6.6 illustrates the reduction of calculated backbone curve using modified function,

where the stiffness reduction factor βp reduced from 1 to 0.12 and s increased from 0.83 to

0.92. The modified backbone curve shows a positive agreement with the test results compared

to the original model. This indicates that the modified MR-O model can be used throughout

as the basis to construct the unload-reload hysteresis loops. The parametric study of global

unload-reload curves can then be established with parameters listed in Table 6.1. In addition,

the shape parameters of nonlinearity and estimation of Kt, Hu are shown in Fig. 6.6(a) and

6.6(b), respectively.
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Figure 6.6: (a) Comparison of the centrifuge test OWTP/S-T4 response with calcu-
lated backbone curve using the original and modified Ramberg and Osgood (1943)

curves, in a normalised form. (b) Estimation of Kt and Hu
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Table 6.1: Dimensionless parameters extracted from backbone curves.

SN Parameter Symbol Experiment R-O MR-O

1 Constant A A 0.0072 0.0013 0.007

2 Constant B B 0.048 0.0365 0.043

3 Tangent stiffness K̂t = Hi

YgγdD
2 139 769 143

4 Ultimate capacity Ĥu = Hu

γdD
3 21 27 23

5 Unload deflection ŶA = YA
D 0.05 0.05 0.05

6 Unload force ĤA = HA

γdD
3 5 15 5

6.5.3.1 Effect of parameter χ and t

The factor χ is introduced in the model to determine the cyclic loading amplitude ratio. The

ratio is similar to χ = ζb =
Hmin

Hmax
=

HB

HA
, which was previously suggested by Lin and Liao

(1999) and Long and Vanneste (1994). According Lin and Liao (1999), the cyclic load ratio,

ζb, is in the range between -1 and +1 (–1 6 ζb 6 1). ζb = 1 is used to define the pure backbone

curves, 0 6 ζb 6 1 define one-way cyclic loading, and –1 6 ζb < 0 define the two-way cyclic

load responses.

To capture the behaviour of cyclic tests under one-way or two-way cyclic loading, the control

factor χ in combination with unloading ultimate constant t are introduced in the MR-O model.

The constant t as related to χ is used to control the unloading curve from A to B and displace-

ment at coordinate B. The factor χ is used to quantify the characteristic of the cyclic load as

shown in Equation 6.24, where Hmin and Hmax are the minimum and maximum amplitudes of

hysteresis loops, respectively. However, it should be noted that the parameter t and χ are based

on the experimental test results.

χ =
Hmin

Hmax
(6.24)

To demonstrate the variability of χ, four basic shapes of hysteresis loops are generated based

on the relationship between t and χ. As shown in Figs.6.7(a), 6.7(b) and Figs.6.7(c), when

r and s are kept constant, the values of χ tend to vary from 0 to 0.5 and set to -1 for one-

way and two-way loading direction, respectively. For instance, when χ=1, the hysteresis loop
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degenerates to the monotonic (backbone) loading curve. Therefore, the parameter χ shows the

capability of the model to capture both one-way and two-way cyclic responses. Meanwhile,

the constant t is introduced to control the loops through the unloading ultimate capacity. For

instance, a small value of t while keeping χ constant, approximately enlarges the hysteretic

bounding loops, which will lead to an increase of unloading ultimate capacity (Hu(U)). On

the other hand, increasing the value of t tends to squeeze the bounding hysteresis loops while

increasing in secant stiffness. Thus, this parameter will affect both shape and secant stiffness

of the loops. Fig. 6.7(d) illustrates the variation of t with values of 1, 5 and 10.
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257

6.5.3.2 The influence κ2 and cyclic degradation factor ξN

This section presents a typical p-y hysteresis loop to highlight the model ability to simulate the

spring soil reaction at specific depths. The p-y curves are typically derived by employing the

modified MR-O model into the analysis, where a p-y curve at depth Z = 1D was selected to

describe the influence of parameter κ2. A summary of the properties and parameters used in

the model is listed in Table 6.1 and 6.2.

Table 6.2: Properties and parameters used for a typical p-y curve

Item D L Ns φmax γd χ t κ1 κ2 βp, r, s, a

Unit m m - o kN/m3 - - - - -

Values 0.6 0.3 30 40 16.8 -0.3 2.1 0.1 1.1-1.4 1.5, 0.83, 0.75, 0

Fig. 6.8(a) shows three typical hysteresis loops of spring elements positioned at depth Z = 1D.

Each loop represents the effect of constant κ2, which controls the variation of the subsequent

hysteresis loops from the backbone curve. During the analysis, a smaller value of κ2 approx-

imately enlarge the bounding loops, while increasing values of κ2 resulted in squeezing the

loops towards the largest backbone displacement. The use of κ2 on the resulting displacement

of hysteresis bounding loops is described in Fig. 6.8(c). The increase of κ2 was observed to

affect the displacement response, in which smaller the value of κ2, the higher is the displace-

ment and vice verse. Furthermore, in Fig. 6.8(b), the cyclic degradation function ξN is plotted

against the number of cycles N. It can be seen that the values of ξN increases with a number

of cycles until it becomes constant. Despite the fact that the curves are very close, the values

of ξN are observed to increase with increasing κ2. Moreover, the degradation constant κ1 was

set to 0.1 to see the effect of cyclic secant stiffness and κ2 in relation to a number of cycles,

N. As shown in Fig. 6.8(d), the pile secant stiffness increases with the increasing number of

load cycles. This trend of stiffness increase represents the effect of local densification of soil

occurring around the pile due to lateral cycling loading.
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Figure 6.8: The effect of κ2 on hysteresis loops, displacement, stiffness and degra-
dation factor ξN.

6.5.3.3 Effect of parameter κ1 on stiffness hardening

The model is also capable of reproducing stiffness degradation behaviour. The stiffness degradation-

hardening (hereafter degradation generally refers to both degradation and hardening) is directly

accounted in the MR-O model and controlled by the parameter κ1 to influence the changes of

the subsequent hysteresis bounding loop stiffness. The significance of parameter κ1 is described

on a typical p-y curve at depth Z = 1D, where D is 60 mm model pile diameter. The calcula-

tion of the backbone p-y curves, at depth Z, is based on the best fitting of the total response
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of test OWTP/S-T4. At each depth, the parameters Kh and Pu were derived from the created

backbone curves and used to construct the hysteresis p-y loops. According to Fig. 6.9(a), there

are three basic hysteretic shapes which represent the effect of parameter κ1 for approximately

100 bounding loops. While keeping t, χ, r and s constant, the increment of κ1 from 0.1 to 0.4

is observed to affect the secant stiffness of the subsequent hysteretic loops as number of cycles

increases. It is evident that κ1 affects both tangent and secant stiffness of each hysteretic loop.

Furthermore, in Fig. 6.9(b) the cyclic secant stiffness, for each κ1, is shown to increase with

increasing number of cycles. From this figure, it can be seen that a large values of κ1 affects

the loops by increasing the secant stiffness. This is expected because in the model test the local

densification of soil due to lateral cycling might raise the shear modulus of the sand around the

pile and lead the pile secant stiffness to increase with the increasing number of load cycles.

(a) Effect of κ1 on the hysteresis loops.
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Figure 6.9: The influence of κ1 on the cyclic secant stiffness of each hysteresis loop.

In conclusion, the parameter variation presented and discussed in Section 6.5.3.1 and 6.5.3.3

indicates that the model can reproduce the effect of cyclic loading direction, displacement in-

crease/decrease and change in bounding loop stiffness. The parameters t and χ are dependant

on the results from the experiment; however, it may require some adjustment to fit the model.

With an increase of the number of cycles, N, the parameter κ1 control the cyclic secant stiffness



260

while the change in displacement from each cycle is affected by κ2. It can therefore be articu-

lated that the combination of all parameters is highly considered to influence the behaviour of

any hysteretic loops.

6.5.3.4 A comparison in parameter between the old and new MR-O model

Table 6.3 summarises the parameters of the original and modified MR-O model shown in Eq.

6.25 and 6.26, respectively. In Table 6.3, the similarity and difference of parameters, from the

two models, is shown with mark X and ×, respectively. It can be seen that other parameters

were added in the model to include the effects of load characteristics, displacement accumula-

tion and stiffness degradation. For instance, the function ξN (see Eq. 6.22) employed parameter

κ1 to affect the change in displacement, the function KhN (see Eq. 6.3) employed κ2 to change

the secant stiffness, the unloading displacement yB (see Eq. 6.14) used χ and t to capture the

amplitude and characteristic of load (ζb, ζc) while r, s and βp were used to adjust the nonlinear

curves. Therefore, the additional parameters shown in Eq. 6.26 and summarised in Table 6.3

indicate a further modification of the original MR-O model suggested by Desai and Zaman

(2013).

Table 6.3: A summary of parameters between the original and modified R-O model

Parameters Kh Pu C r s a βp ξN χ t κ1 κ2

R-O model X X X X × × × × × × × ×

MR-O model X X X X X X X X X X X X

Pz(i) = PB +
Khyz(i)(

1 +
1

C

∣∣∣∣∣Khyz(i)

Pu

∣∣∣∣∣
s)1

s

(6.25)

Pz(i) = PB +
βpKh(yz(i) – yB)(

1 +
βp
C

∣∣∣∣∣Kh(yz(i) – yB)

Pu
ξN

∣∣∣∣∣
s)1

r

+ Kf(yi(u) – yB) (6.26)
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6.6 Verification and demonstration of the model

6.6.1 Introduction

The previous sections introduced the modified Ramberg Osgood model that is capable of cap-

turing the primary features of the experimental test results. In this section, the nonlinear model

described in Section 6.4 is applied to describe the results from current and published experimen-

tal studies. The aim is to calibrate the model in such a way that it reproduces the experimental

test pile responses as closely as possible.

In this study, centrifuge tests were carried with a non-instrumented pile with only global pile-

head loading against its displacement. Therefore, to demonstrate the local pile-soil resistance

of spring element against the pile movement, below the ground surface, the published results

of centrifuge tests from Klinkvort (2013) were used. The local soil reaction curves were deter-

mined from the calibration study of the prototype monopile, in which the experimental tests are

normalised in the form described in Chapter 4. The initial modulus and ultimate soil resistance

of the p-y curves were estimated using the function suggested by Desai and Zaman (2013),

Vesic (1961) and Broms (1964), DNV (2014), respectively. The adjustment was made during

the analysis to follow the backbone curves observed in the centrifuge tests. The model function

does not include the gap formation and sandy soil assumed to flow into the gap. During the

unloading and reloading process, the maximum resistance is also assumed to remain constant.

The local p-y curves of test No. 71 (Klinkvort, 2013) are first compared with the model. Af-

terwards, the model is employed to demonstrate its capability for the pile total response of the

current research.

To have appropriate hysteresis loops for specific tests, firstly, the initial stiffness (Kh) and ulti-

mate capacities (Pu) are properly estimated. Secondly, the modifications discussed in Section

6.4 were introduced in the original model and then used throughout. Thirdly, the method sug-

gested by Kulhawy and Chen (1995) is used to estimate the values of Kt and Hu from the total

load-displacement backbone curve. Finally, the simulation using the MR-O model will adopt

the parameters listed in Tables 6.4 and 6.5 for the current and published studies, respectively.
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Table 6.4: Model parameters for current study validation

SN Parameter Symbol T15-F07 T16-F03 T17-F04 T17-F05

1 Initial unload deflection ŷA 0.0035 0.0045 0.009 0.015

2 Initial unload force ĤA 1.8 1.9 2.44 4.45

3 Tangent K̂t 808 800 1050 1050

4 Ultimate capacity Ĥu 4.07 4.15 4.15 4.15

5 Cyclic load ratio χ -0.76 -0.78 -0.79 0.1

6 Asymptotic constant t 1.3 1.4 2.5 1.2

7 Stiffness deg. constant κ1 0.03 0.026 0.026 0.026

8 Displacement deg. constant κ2 1.12 1.3 1.35 1.1

9 Curve control constant r 0.83 0.83 0.63 0.83

s 0.53 0.55 0.73 0.43

6.6.2 Local response from Klinkvort (2013)

In this section, the measured data presented by Klinkvort (2013) is evaluated and reduced in

an attempt to demonstrate the use of the MR-O model to predict the cyclic experimental p-y

curves. The response of the hysteretic MR-O spring model is compared with the results of the

local p-y curves of test no. 71. The initial stiffness of the local backbone p-y curves is calculated

based on the method described in Chapter 4, which is estimated as Kmodel
h = bkKtest

h , where bk

is a reduction factor to match the model and cyclic tests backbone curves at each depth. The

values of Ktest
h at depth of 1D, 1.5D and 2D are 54.4, 67.4 and 186, respectively. Therefore,

the Kmodel
h is reduced by the values of bk equal to 0.9, 0.92 and 0.85, respectively. As shown in

Fig. 6.10, the backbone curves of the model closely match with the backbone of the cyclic test

p-y curves. The unloading initial stiffness of the first loop follows the principle suggested by

Masing (1926) and Pyke (1980), however, the p-y test stiffness was seen to be approximately

1.5 times stiffer and therefore it is was taken as Kunload
h = 1.5 Kmodel

h . The unloading loops
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also seem to predict the test results with degree of accuracy at each depth.

In general, the model represents the key observations resulted from the local pile-soil inter-

actions of the centrifuge test of three soil layers as shown in Fig. 6.10(a). However, some

discrepancies in stiffness change and shape of nonlinearity are due to compacted sand, which

can not be supported in the model simulation and hysteresis loops observed to maintain an area

that is approximately constant.
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Figure 6.10: Simulated local p-y curves, test no. 70 (Klinkvort, 2013), using the
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m (prototype).
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6.6.3 Global response from the current study

The ability of the model to predict the response of pile is expressed through a comparison

between the computed and experimental data from the centrifuge tests as presented in Chapter

5. Five centrifuge test series including test OWTP/C-T15-F07, OWTP/C-T16-F03, OWTP/C-

T17-F03, OWTP/C-T16-F04 and OWTP/C-T17-F05 were chosen for model simulation, where

the model is initially calibrated with cyclic loading responses of the test OWTP/C-T15, and

subsequently applied to predict the experimental data of the other two tests (OWTP/C-T16 and

OWTP/C-T17).

6.6.3.1 Centrifuge model test OWTP/C-T15-F07

By using the parameters listed in Table 6.4 and the equilibrium analysis described in Chapter

4, the total load-displacement backbone curve at the ground surface (in a normalised form)

is given in Fig. 6.11(a) along with test OWTP/C-T15-F07. The soil reactions (not shown)

are integrated along the depth using MR-O model, so that an accurate representation of the

total backbone curve can be obtained. As shown in Fig. 6.11(b), the parameters Kt and Hu

are extracted to simulate the hysteresis loops. By using the input parameters listed in Table

6.4, the hysteresis curves are created to compare with the experimental test. From the total

response of the first couple of cycles shown in Fig. 6.11(c) it is clear that the model follows the

experimental response with some degree of accuracy. The agreement between the experimental

and calculated responses can be concluded to be satisfactory, hence confirming the ability of

the proposed model to reasonably capture the observed cyclic stiffness hardening.
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6.6.3.2 Centrifuge model test OWTP/C-T16-F03

The ability of the model to predict the cyclic responses of a laterally loaded monopile is il-

lustrated by comparing its predictions with centrifuge test OWTP/C-T16-F03. The model has

two input parameters, Kt and Hu, which relate directly to the backbone curve. By using the

parameters listed in Table 6.4 and the equilibrium analysis described in Chapter 4, the total

load-displacement backbone curve at the ground surface is given as in Fig. 6.12(a) along with

the backbone, first unload and reload curves of test OWTP/C-T16-F03. As shown in Fig.

6.12(b), the parameters Kt and Hu are extracted to simulate the hysteresis loops and are listed

in Table 6.4. In Fig. 6.12(a), it can be seen that the model response does not exactly follows

the cyclic backbone curve, however, the initial stiffness at small displacement agrees well with

monotonic test OWTP/S-T4 while at larger displacement, the model shows a softer response

than what is seen in test OWTP/S-T4. Furthermore, from these results the MR-O capacity of

the backbone curve was reduced by 30% of the monotonic test and is adopted here as 4.15 in

a normalised form. According to the Kulhawy and Chen (1995) method (see Fig. 6.12(b)),

the modulus of subgrade (initial stiffness) (Kh) was approximately 1050 (in non dimensional

form) and adopted throughout. The hysteresis loops can then be established with input parame-

ters from monotonic calculation. The tangent unloading stiffness was seen to be approximately

1.5 times stiffer than backbone curve, therefore it is assigned as Kmodel
t = 1.5Ktest

t in this case.

The analysis was carried out to demonstrate the response of the model, and the findings are

compared with the centrifuge results of test OWTP/C-T16-F03. Approximately 40 load control

hysteresis loops, corresponding to 40 cycles of the cyclic centrifuge test, were calculated. The

normalised load-displacement response of the calculated and centrifuge test is shown in Fig.

6.12(c). It can be seen that the model follows the test results with a high degree of accuracy,

which confirms the ability of the model to capture the results of the test.
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As shown in Fig. 6.12(c), the analysis was performed to predict the response of 40 cycles from

test OWTP/C-T16-F03. Two parameters (Kt and Hu) of the computed hysteresis loops were

adjusted to match the results of the test. From measured and computed curves, the maximum

and minimum loads from each cycle (hysteresis loop) and their corresponding displacements,

were extracted. In Fig. 6.13(a), the accumulated displacement in the first 10 cycles is high,
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followed by a slight decrease between 10 to 20 cycles and then it starts to increase again. This

indicates that the rearrangement of soil particles took place in the first few cycles and thereafter

the soil started to hardens. Following the method described in Section 5.2.3.2, Eq. 5.3, Chapter

5, the trend of the unloading secant stiffness of the computed and measured curves is plotted as

shown in Fig. 6.13(b). From the figure, the anomalous behaviour of the unloading stiffness of

the first 10 cycles is observed, followed by a slight increase from 10 to 40 cycles. The change in

secant stiffness was not modelled accurately for the first few cycles, however, as the number of

cycles increases the correlation between the measured and computed values tend to be generally

satisfactory.
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Figure 6.13: Calculated accumulated displacement and change of secant stiffness
compared to the centrifuge test results (OWTP/C-T16-F03).
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In conclusion, Figure 6.13 shows that with adjustment of hysteresis loops, the displacement and

unloading stiffness are reasonably matched with experimental results of the first 40 cycles. It

should be noted that during the analysis the parameters Kt and Hu were computed and adjusted

to reasonably matches the measured data. The computed trend is presented in to demonstrate

the capability of the model, however, a further study with larger number of load cycles is

required.

6.6.3.3 Centrifuge model test OWTP/C-T17

The calculated ground level total load-displacement response (in normalised form), for test

OWTP/C-T17, is given in Fig. 6.15 and 6.14, using the MR-O function with a choice of

parameters listed in Table 6.4. Fig. 6.14(a) and 6.14(b) compared the calculated and mea-

sured load-displacement responses of the backbone, first unloading and first reloading of tests

OWTP/C-T17-F03 (ζ = 0) and OWTP/C-T17-F04 (ζ = 0), respectively. A positive match is

observed between the result of monotonic test (OWTP/S-T4) compared to MR-O backbone

curves.
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T17) and the computed MR-O model, for monotonic, backbone, first unloading and

reloading curves.



270

The analysis of MR-O model whose findings are compared with the centrifuge results of test

OWTP/C-T17, was carried out to demonstrate the response of the model. Approximately 15

load control hysteresis loops, corresponding to 15 cycles of the cyclic centrifuge test series

T17-F03 (zeta = 0), T17-F04 (ζ=0), T17-F03 (ζ = -1), were calculated. The normalised load-

displacement response of the calculated and centrifuge test is shown in Fig. 6.15. The calibra-

tion shows close agreement with experimental results, which confirms the ability of the model

to capture the results of the tests with different amplitude of loads.
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Figure 6.15: Comparison between the results from the centrifuge test (OWTP/C-
T17) and the computed MR-O model, for overall response..

This section has been able to introduce the key equations that allow the MR-O model to pre-

dict the specific aspects of experimental behaviour of the current study. It also revealed the

achievement of the model in capturing a change in hysteresis loop area shape due to increase

in displacement and change in stiffness of each loop with a decrease in loop area. The chapter

also demonstrates the ability of the model to capture the series of of load of variable amplitude

identified experimentally for the response of laterally loaded piles. Furthermore, although the

results are closely related, there are some discrepancies, which may have been the result of

several factors involved in the analysis. Therefore, the results of the calculated model capture

the experimental trends with good accuracy and demonstrate the appropriateness of the MR-O

methodology for applications to offshore wind foundations.
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6.6.4 Global response from the published studies

The case studies are presented herein to demonstrate the application of the MR-O model to the

analysis of a pile subjected to cyclic lateral loading. These studies highlight the ability of the

model to reasonably represent the main nonlinear hysteresis features of the monopile in sand.

6.6.4.1 Case study 1: Chen et al. (2015)

A series of 1-g laboratory cyclic loading tests were conducted on a vertical single stiff pile

subjected to cyclic lateral loading. The model pile, 1/30 in scale, is a steel hollow cylinder

placed in Qiantang river silt with relative densities (Dr) of 70% and 88%. A typical prototype

monopile diameter (D) of 5 m was used to manufacture a steel model pile, having 0.165 m in di-

ameter, 0.003 m in wall thickness, 2 m in length, and 0.915 m in embedded depth, respectively.

From monotonic response, ultimate capacities were estimated as 778 N (Dr = 88%) and 463

N (Dr = 70%)), respectively. The backbone curves are generated using the analytical method

described in Chapter 4. Fig. 6.16(a) shows the comparisons of the calculated and measured

load-displacement at the pile-head for monotonic loading test. The agreement between the two

responses is in general quite satisfactory, which confirms the ability of the model to reasonably

capture the nonlinear backbone curve. Furthermore, a Kulhawy and Chen (1995) method was

employed to interpret the tangent stiffness (Kt) and ultimate capacity (Hu) of the backbone

curve and the results are shown in Fig. 6.16(b) and listed in Table 6.5.

The parameters Kt and Hu are used as a basis to construct the hysteresis loops of the model.

Fig. 6.17(a) compares the calculated and measured load-displacement curve at the pile head for

one-way cyclic loading test. The agreement between the two responses is in general satisfac-

tory, however, some points did not agree exactly due to limitation of the model. Furthermore,

for demonstration purpose, the model simulation was further extended to account for more

number of cycles with the same applied parameters (see Figure 6.17(b)).
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Figure 6.17: Comparison of the model simulation and results from Chen et al. (2015).
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6.6.4.2 Case study 2: Rosquoet et al. (2007)

A number of centrifuge tests were carried out on model piles subjected to cyclic lateral loading.

The model tests were prepared at relative densities of 53% and 86% in dry Fontainebleau sand

(density of 1540 Kg/m3 and 1630 kg/m3, respectively). The model pile, 1/40 in scale, has

diameter of 18 mm, wall thickness 1.5 mm, embedded depth 38 mm. The mean values of peak

and critical of sand specimens are φp=41.8o and φcr=33o, respectively.

As shown in Fig. 6.18(a) and 6.18(b) a similar approach used in previous section was em-

ployed to determine the response of backbone curve and extracting the parameters Kt and Hu.

These parameters are listed in Table 6.5. The backbone parameters, shape of nonlinearity and

degradation constants were introduced into the model to generate the hysteresis loops. For the

first few cycles, Fig. 6.19 shows that the agreement between the calculated and measured re-

sponses is in general satisfactory, which confirms the ability of the developed model to capture

the observed cyclic response of the pile.
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Figure 6.18: Backbone curve and initial parameters, from Rosquoet et al. (2007).

In conclusion, Fig. 6.17 and 6.19 show the excellent agreement between the computed and

experimental data. The results indicate that the proposed model accurately describes the use of

the MR-O model, considering the effect of accumulation and degradation parameter involved
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in the simulation. The success of this model to validate other work from the literature is also

an indication of its capability.
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Table 6.5: Model parameters from published research

SN Parameter Symbol Chen et al. (2015) Rosquoet et al. (2007)

1 1st unload deflection (m) yA 0.067 0.14

2 1st unload force (MN) HA 0.32 0.9

3 Initial stiffness (MN/m) Kt 7 16.1

4 Ultimate capacity (MN) Hu 0.71 5.7

5 Cyclic load ratio χ 0 0

6 Asymptotic constant t 0.65 0.75

7 Stiffness degr. constant κ1 0.85 0.9

8 Deflection acc. constant κ2 2.8 2.65

9 Curve control constants r 0.83 0.85

s 0.92 0.95
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6.7 Limitations of the model

The MR-O model presented in this chapter captures the key aspects observed for the behaviour

of stiff monopile in centrifuge subjected to cyclic lateral loading. However, before the model is

applied to prototype conditions, some aspects need to be addressed.

Firstly, more work is needed to refine the trends observed from the experimental results, for

instance, the evolution of displacement accumulation and change in cyclic stiffness. A more

rigorous procedure for determining the accumulation or degradation constants would be useful

for future design. Secondly, the actual response of the monopile is likely to have additional

features that have not been investigated as described in this chapter. For instance, the MR-O

model does not describe the formation of a gap between the soil and the pile, which could also

be used for cohesive soil. This factor would need to be investigated in detail before developing

the theoretical framework and include it in the model. Therefore, further study is needed to

consider this effect

Finally, the experimental study was carried out on a non-instrumented pile, hence only the

global behaviour of the monopiles was measured. However, the global response of the monopile

does reflects the distribution of the soil-pile interaction below the ground surface. The local p-y

curves of test results from Klinkvort (2013) were used in this study to describe the hysteretic

p-y curves of the model. However, further study is recommended to investigate how the MR-O

model will fit within the current DNV model. A careful study will be required, from full-scale

and small-scale tests, to accurately describe the backbone curves.

6.8 Chapter summary

The entire chapter 6 presented the hysteretic MR-O model to study the experimental test re-

sponses of monopiles subjected to cyclic lateral loading. The outcomes of the model were

compared with the experimental test results of the current and previous studies. The following

conclusions can be drawn from calibration and the performance of the model as listed below:

1. The monotonic analysis was initially considered to model accurately the backbone re-

sponse. The model considers two essential parameters, the ultimate capacity (Hu) and
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initial stiffness (Ki). Both original and modified Ramberg and Osgood (1943) model

functions were employed. To obtain a good match between the model and measured

results, the MR-O model was used throughout as a basis to construct the hysteresis loops.

2. With the use of recommended principles from previous studies (Kondner, 1963, Masing,

1926, Matasović and Vucetic, 1993, Pyke, 1980), a procedure for estimating the hys-

teresis loops to validate the results of cyclic experimental tests for monopile has been

suggested. The modification factors were introduced and sensitivity of the model was

examined by carrying out a simple parametric study, based on the results of monotonic

experimental tests carried out at 30g. The variation of these parameters show that the

model successfully controls the backbone curves and hysteresis loops. For instance, (i)

the change parameter of –1 6 χ 6 1 controls the load characteristics observed from

the experiment (ii) the change of parameter t control the unloading ultimate capacity (iii)

the parameters κ1 and κ2 were varied to show the capability of the model to capture

the stiffness degradation and displacement accumulation observed from the experimental

tests.

3. The model is calibrated to the experimental results of the current and published stud-

ies. The results of the prediction capture the experimental trends with good accuracy

and demonstrate the ability of the MR-O methodology for applications to the offshore

monopiles.

4. The model is simple and limited to the cyclic response of pile-head and not the soil itself.

Although the model was employed for published local pile-soil interaction test results, a

further modification related to the current study is required. However, the pile should be

instrumented, using strain gauges, to justify the p-y curves theoretical results.



Chapter 7

CONCLUSION AND RECOMMENDATIONS

7.1 Introduction

Offshore wind farms development is projected to increase rapidly in the coming decades. These

turbines will be constructed on monopiles for which the serviceability limit are imposed on

pile-head rotation. In the offshore condition, monopiles are subject to long term cyclic loading

from action of wind, waves and movement of turbine blades. Minimising damage to the OWT

structures during this loading is a priority for civil engineers working in this area. Although the

engineers can design the structures to limit the impact of dynamic loading, through the natural

frequency, such method is complex to design due to cyclic loading frequencies. It is important

that natural frequency is not close to cyclic frequencies. Through better understanding the be-

haviour of monopiles, the amount of loading transmitted to the structure can be reduced.

The research presented in the current thesis has been conducted to understand the behaviour of

monopile foundations in sand under monotonic and cyclic lateral loading. Centrifuge testing

has been conducted on a newly developed tool to ensure that the behaviour of the monopiles,

with large number of cycles, is correctly captured. The key findings allowed the overall load-

displacement, moment-rotation, accumulated displacement and change of foundation stiffness

to be examined, subsequently leading to the development of the theoretical model that accu-

rately captures the pile behaviour. The conclusions made in this thesis and recommendations

for further study are summarised in the following sections.
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7.2 Monotonic loading

7.2.1 Experimental response under monotonic loading

Offshore monopiles are typically installed in saturated soil condition, however, most of the

experiments have been conducted in dry sand. In a centrifuge, a given effective stress can be

achieved using either dry or saturated sand, however, the scaling issues and gravitational ac-

celeration are the prerequisite (Klinkvort and Hededal, 2014, Li et al., 2010). For instance, the

scaling issues for saturated sand are straightforward as the increase in gravitational acceleration

is identical to geometrical scaling factor (Klinkvort and Hededal, 2014), which implies that the

effective vertical stress are similar. For dry sand, the increase in gravitational acceleration and

the geometrical scaling factor are not identical, and effective stress in the field, similar to sat-

urated sand, can be achieved with the procedure described by Li et al. (2010) and Klinkvort

et al. (2012); the method works by essentially matching effective stress between a dry sand

centrifuge test and a saturated full-scale scenario. Under saturated condition, the flow of water

in a centrifuge is occurring Ns times faster compared to the prototype and is unlikely that pore

pressures will build up at the current rate of loading within the centrifuge model. For this pur-

pose, fully drained cyclic response was required and dry sand was used to simplify the testing

procedure.

The method used to prepare the sample on a model container resulted in homogeneous sand de-

posits. The prepared sand had medium dense and dense relative density (Dr) of 42% and 85%,

respectively. Three tests (OWTP/S-T1, OWTP/S-T2, OWTP/S-T3) and one test (OWTP/S-

T4) were conducted in a centrifuge at acceleration of 100g (T1, T2, T3) and 30g (T4). The

sensors attached to the model pile functioned adequately and assisted a reasonably accurate

measurement of the lateral loads and displacements. The data were collected to determine the

load-deflection, moment-rotation, pile rotation, ultimate capacity and tangent (initial) stiffness.

Furthermore, the results of the experiment showed a significant effect of the relative density on

the model pile, thus concluding that, high relative density provided a high resistance on the pre-

pared soil sample. Although all responses were observed to follow a nonlinear behaviour with

varying magnitude, the ultimate capacity of the pile was not achieved, thus a 10% of pile di-

ameter method was used to determine the ultimate capacity of the pile. Furthermore, when the
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derived ultimate capacity, Hu, was used as a reference to estimate the load amplitude ratio, its

magnitude was seen to be affected by centrifuge acceleration when the pile in sand (Dr=85%)

was tested at 100g and 30g. The results indicated that increased g-level on the centrifuge can

affect the capacity of the pile. Furthermore, from the comparison made between the depth of

pile rotation measured experimentally and empirical expression derived from the literature, the

estimated values from the literature were slightly different but very close to the measured data.

The initial (tangent) stiffness of the global test results were derived experimentally and com-

pared with stiffness calculated based on the method suggested by Kulhawy and Chen (1995).

This will enable the calculation of Kh along the pile with a recommended subgrade modulus

function, which is more valid for dry sand.

7.2.2 Theoretical response under monotonic loading

This section presents the findings observed when two families of the p-y curves from the origi-

nal and modified DNV (2014) (DNV model) and Ramberg and Osgood (1943) (R-O and MR-

O model were used to predict the monotonic response of 5 MW class offshore wind turbine

monopiles. These models were compared to the experimental response of monotonic tests con-

ducted in a centrifuge. The p-y curves recommended by DNV (2014) provided a significantly

high global pile head load-deflection response compared to experimental results, leading to high

stiffness. The results were highly supported by Sørensen (2012), Klinkvort (2013), LeBlanc

(2009) and Kirkwood (2016). The original R-O p-y curve model, empirically developed by

Ramberg and Osgood (1943), was observed to overestimate the stiffness of the pile-head load-

displacement response, and modified model (known as MR-O p-y curve) was suggested with

parameters introduced after fitting the experimental results. Furthermore, the empirical method

from DNV (2014) was selected to estimate the ultimate soil resistance (Pu) along the depth

of pile. From this method, the ultimate capacity obtained at shallow depth was controlled by

a depth factor Ai, which plays a significant role in determining the failure mechanism (API,

2007, DNV, 2014). The factor Ai was derived from flexible piles and reported to overestimate

the ultimate capacity. Therefore, it was adjusted to Aj and used in this study to calculate ul-

timate capacity. The initial slopes of the p-y curves (modulus of subgrade reaction, Kh) were

considered to vary nonlinearly with depth, which depends on the maximum shear modulus of
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soil (Gmax). The linearly distribution of Kh recommended by DNV (2014) was employed with

the DNV hyperbolic p-y curve model, however, the parameter αp was introduced to fit the mea-

sured data. As a result, the revised DNV (2014) model showed a satisfactory agreement with

experimental data.

Since the current study was limited to a non-instrumented pile with no data related to p-y curves

along the embedded depth, the capability of both DNV and MR-O models to the pile-soil in-

teraction was assessed by comparing them with the published p-y curve results from Klinkvort

(2013). The findings indicated that the DNV (2014) method overestimated the initial stiffness

of the p-y curves at shallow depth and underestimated it at the greater depth. With additional

parameters into R-O model (MR-O model), a satisfactory agreement with experimental p-y

curves was achieved along the depth. Therefore, the use of DNV (2014) method is still seems

unreliable for rigid piles. It should be noted that this calibration was based on the published p-y

curves, thus further investigation is required.

When the computed behaviour of the MR-O model, used as a benchmark in developing the

soil resistance and bending moment distribution along the depth of the pile, was compared with

other models, the results showed a correspondence at shallow depth but at greater depths the

modified DNV model overestimated the MR-O model.

It should therefore be noted that with a limited number of tests carried out in this study us-

ing a non-instrumented pile, the results of which were compared to the previously published

experimental data obtained from instrumented piles. The MR-O model, which includes more

parameters, was chosen to estimate the p-y curves of the measured data, because the model was

found to give an accurate prediction of the monotonic response of stiff piles in sand. However,

the families of the p-y curves derived from the MR-O model apply only to rigid piles and should

not be used to predict the response of flexible piles as recommended by DNV (2014).

7.3 Experimental cyclic loading

In this thesis, a comprehensive study was conducted to investigate the effect of cyclic loading of

monopiles in sand on the pile-head displacement and change in secant stiffness of the pile using

two tests (OWTP/C-T16 and OWTP/C-T17). From the analysis it showed that a one-way load-

ing direction, for accumulation of displacement, gave the more damaging load condition than
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two-way loading. The unloading stiffness was found to increase with the increase of load cycles

but at a reducing rate. This is more critical for the calculation of the natural frequency vari-

ation of the turbine thus manufacturers should consider this factor when designing monopiles

for offshore wind turbines. Based on cyclic experimental results of this study, the following

conclusion can be drawn:

7.3.1 Cyclic lateral loading

The experimental results for the cyclic lateral loading fall within the observations cited in the

literature despite the technical challenges which were limited to a centrifuge acceleration of

30g. Depending on the load control factor (ζ), the change of cyclic loads (Hamp=Hmax-Hmin)

were found to vary from 270 to 525 N. From the two tests, the maximum cyclic loads were

successfully achieved at ζ=-1. For instance, the Hmax from tests OWTP/C-T16 and OWTP/C-

T17 was approximately 425 N and 500 N, respectively. LeBlanc et al. (2010) provided the

primary interest of maximum cyclic loads on monopiles, which is governed by the ULS with

maximum amplitude load ratio (ζb) between 30% and 50%. Theoretically, when ζb = 30%

of the ultimate capacities, the maximum cyclic loads were supposed to be 510 N and 1200 N,

assuming that the cyclic tests were carried out at 30g and 100g, respectively. Although this

thesis was not able to conduct the the cyclic loading tests at 100g, the results of the tests at 30g,

with system control set-up at ζ=-1, are consistent with this theory. Therefore, this is confirming

that the model framework in this study is in the similar agreement with work reported from the

previous studies.

7.3.2 Pile-head displacement

A framework to predict the total displacements of test OWTP/C-T16 and OWTP/C-T17 has

been proposed and discussed in Chapter 5. From these tests, the variation of pile-head dis-

placements was significantly influenced by load control ratio, ζ . It is clear that the asym-

metric loading (when ζ 6= 0) had the most significant effect on the lateral displacement, for

instant, when ζ was set-up to -1 the displacement was observed high. A logarithmic function

(YN = Y1(1 + CNIn(N)) employed to the measured data was able to accurately predict the
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total displacement, at least from 100 to 300 load cycles, however, below this range, the data

departs from the predictions. The total displacement rate (CN) was seen to be affected by ζb,

which was directly influenced by ζ . This confirmed that increasing of load magnitude is likely

to affect the displacement of the pile.

7.3.3 Cyclic secant stiffness

The cyclic secant stiffness of the monopile was found to increase when subjected to cyclic load-

ing under fully drained conditions. This increase was approximated by a logarithmic function,

which was seen to be affected by the load control ratio (ζ). The trend of increasing in stiffness

during long-term cyclic loading in line with previous studies (Abadie, 2015, Kirkwood, 2016,

Klinkvort, 2013, LeBlanc et al., 2010, Li et al., 2010, Peralta and Achmus, 2010).

The outcomes of this study indicate that the rate of increase in cyclic secant stiffness was af-

fected by the model set up and load control factor. It was found that the rate of increase in

stiffness is lower when the model pile was loaded under one-way loading direction (ζc > 0).

This indicates that critical damaging scenario occurs when the load control factor was changed

to ζ = +1 or ζ = –1. This contradicts with findings from Abadie (2015) and LeBlanc et al.

(2010) where the most damaging effect was found under two-way loading but agrees with re-

sults from Klinkvort (2013).

Furthermore, the cyclic stiffness was observed to increase with magnitude of load amplitude

(ζb). This was likely to happen for the first few cycles of the first series of each test (ζ = 0)

because the accumulated displacement was due to sand particle rearrangement. However, when

the value of ζ changed to ζ = +1 or ζ = –1 in the subsequent series the pile was already in

the situation where the densification of sand is occurring. In this condition the lateral stiffness

continue to increase but at reducing rate. Therefore, the change of ζ in the subsequent test

series was observed to increase the load amplitudes, which had also an impact on the stiffness

of the monopile foundations.
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7.4 Analytical cyclic loading

The literature revealed that various nonlinear p-y models developed based on experiments car-

ried out on flexible piles (D≤ 2 m) (DNV, 2014), however, in rigid piles few models have

been reported (Abdel-Rahman and Achmus, 2005, Achmus et al., 2009, Beuckelaers, 2017,

Klinkvort et al., 2012). Most of the p-y models are limited and does not accurately predict

the response of monopiles due to cyclic loading hence calling for further investigation. In this

case therefore, this study modified a R-O non-linear model, derived from flexible piles, to trace

the response of monopiles from cyclic experimental results. From the study, the following

conclusion about the modelling of the cyclic behaviour of the pile is drawn.

1. The MR-O model was employed in the analysis to generate the p-y curves along the

embedded depth. The the backbone response at the ground surface was first created

to derive the primary parameters Kt and Hu, which were used as inputs to create the

global hysteresis loops. The accumulated displacement and change of cyclic stiffness

were useful in the MR-O model, however, it needs further experimental study to justify

them.

2. The sensitivity of the model was examined based on the results of tests OWTP/S-T4 and

OWTP/C-T15. By varying each parameter (while keeping others constant) the response

of the model was examined to understand its range and limitation.

3. The model was calibrated to both local and global responses of the centrifuge tests from

the current study and literature. The agreement between the calculated predictions and

measured data shows how the the model can be used to replicate the response of the

laterally loaded piles under cyclic loading. However, use of the method requires further

justifications. For instance, the spring model requires some improvement to accurately

handle the soil damping, accumulation of pile deflection and change in secant stiffness,

as observed in the centrifuge.
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7.5 Implications for design

The previous sections have outlined the key aspects of pile response subjected to monotonic

and cyclic lateral loading that have a direct implication for the design of the offshore wind tur-

bine foundations. This section interprets some of the conclusions with regards to the current

code of practice in the offshore wind turbine industry. One of the observed limitations of the

current design code (API, 2007, DNV, 2014) is that it does not indicate the accumulation of

pile head displacement and change of cyclic stiffness during prolonged cyclic loading. The

outcomes from this study will allow an estimate of these factors to be made for monopiles of

typical 5 MW class wind turbines. Therefore, since the current design code the current design

codes seem insufficient to meet the serviceability requirements of the monopile foundations,

this study will enable the review for improvement of the design to provide for this inadequacy.

Secondly, the accumulation of pile head displacements in relation to number of load cycles are

based on the frameworks such as that suggested by LeBlanc et al. (2010) and Klinkvort (2013).

In this study, these frameworks were found reasonable to provide an approach for predicting

the pile response, which might be useful in early stages of monopile design process. However,

it does not provide any information on the evolution of soil damping, which is important in the

fatigue analysis and therefore applying the number of load cycles on monopiles will reduce the

resonance loads (when the waves and wind are misaligned and aerodynamic damping is small)

(Abadie, 2015, Beuckelaers, 2017, Klinkvort, 2013). This provides a stepping stone for the

future research keen to undertake a study on the analysis of fatigue on monopiles.

Furthermore, calibration of analytical models provide an insight into capability and limita-

tions. It has been shown that the DNV (2014) model tends to overestimate or underestimate

the stiffness of monopile foundations in cohesionless soil, which is likely to affect the design

of monopile foundations. The computed MR-O model was observed to agree well with ex-

perimental results because it predicts the response seen in experimental results, but does not

accurately model the accumulated displacement and change in secant stiffness. It is recom-

mended here that an improvement of this model (MR-O) can lead to its implementation in the

DNV (2014) code for fatigue analysis.
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7.6 Recommendation

This study provided a better understanding of the response of monopiles subjected to both

monotonic and cyclic loading in dry Congleton sand. The p-y theoretical models have been

proposed to predict the response of rigid piles from the experimental results. However, there

are still many areas of research which could be investigated further to improve understanding

of the response of offshore wind turbine foundations. The major areas suggested for further

research are summarised below.

1. The theoretical models and analysis method suggested in Chapter 4 to construct the p-y

curves can be applied to other geotechnical problems but with caution since additional

checks have not been made. To verify this method on a rigid pile under monotonic

loading, the effect of different parameters such as pile geometry, soil conditions, and

application of lateral loads will have to be clarified. The impact of these parameters can

only be achieved with more testing, analytical and numerical simulations.

2. The current study was carried out using a non-instrumented pile through an embedded

depth. Understanding the behaviour of soil below the ground surface is fundamental in

geotechnical structures. For instance, using strain gauges on piles can help to provide the

accurate information, which might be useful to measure the moment distribution along

the pile. The moment distribution can be used to derive the soil reaction in relation to

pile deflection, which is important for the development of analytical p-y curves.

3. The present study was carried out using Congleton silica dry sand. In the offshore en-

vironment, the soil is saturated and uniform or made of strata with different types of

soil. It is therefore recommended to use saturated and dry cohesive and non-cohesive

soil to investigate the influence of different parameters such as soil stratification, differ-

ent foundation size and its flexibility, structural stiffness, ultimate capacities, soil densi-

ties and loading frequency. Not only this will allow the understanding the behaviour of

monopiles, but also it will provide more data against which a proposed analytical and

numerical models can be calibrated and validated.
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4. The results presented in this study consider the vertical loads from the pile head, which

was used to connect the loading system components. Several studies, related to offshore

monopiles, have been conducted without considering the vertical load on stiff pile sub-

jected to lateral monotonic and cyclic loading. It is therefore recommended that the load-

ing system are improved to consider the model piles without or with pile head of varying

magnitudes, to quantify the influence of vertical loads on the monopile responses.

5. In the current study, both monotonic and cyclic lateral loads were carried on the same

load eccentricity. The lateral loads should have been applied at different location on the

pile above the ground surface to represent the levels of environment loads on the sea at

different depth of water. This would be a major improvement for assessment of load

eccentricity effect on the response of monopile foundations.

6. Due to technical challenges of the developed equipment, it was not physically possible

to load the model piles at the frequency related to prototype condition (model frequency

of 15 Hz at centrifuge acceleration of 100g). The loading system in a centrifuge was

limited to a frequency of 2.5 Hz at centrifuge gravity of 30g. Considering this limitation,

a loading system should be improved so that the experiment can be repeated with load-

ing frequency related to prototype condition. This would also enable to obtain a large

number of load cycles to be applied onto the monopiles in a short period of time. Since

the monopile was loaded to a maximum of 60,000 load cycles, it is of interest to have

experiments with millions of load cycles to verify the validity of the findings.

7. The newly developed device was capable of applying a unidirectional loading. It would

be of interest to improve the current device capable of multi-directional loading that

can load the monopiles under different angles, which represents the loading frequency

similar to the finding of Rudolph et al. (2013). From this finding, it is reported that a

multi-directional loading condition had high impact on both accumulated displacement

and change in cyclic secant stiffness compared to uni-directional loading. Therefore,

further modification of the current loading system would be able to quantify and verify

the monopile response under multi-directional loading.
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8. The MR-O model should be expanded to soil behaviour that includes the effect of gap-

ping. This extension has the potential of capturing the behaviour of monopiles in cohe-

sive soils subjected to cyclic loading. The extension could be calibrated to the results of

centrifuge tests on instrumented piles in both sand and clay.

9. The current study developed a simple theoretical model that captures the key findings

outlined experimentally as described in Chapter 4 and 5. Based on monotonic response,

it has recently been reported that the current p-y curves method suggested by API (2007)

and DNV (2014) does not represent some components of monopile-soil interaction re-

sponses. Previous studies (Abadie, 2015, Beuckelaers, 2017, Klinkvort, 2013) have men-

tioned the method does not consider the case of shear base, distribution of moment along

the pile length, vertical shear stress on the pile as well as base moment. It is therefore rec-

ommended a further study to account these reaction components into centrifuge tests and

numerical software package. Furthermore, the current design standard does not account

the effect of accumulated displacement and change in cyclic secant stiffness. Introducing

the accumulation or hardening model could be potentially consider these factor into DNV

(2014) standard p-y curves method with greater number of load cycles. This is the major

issue which will require a further improvement for the model to be integrated within the

current design standard of the monopiles.

10. Numerical modelling calibration against centrifuge test results would enable the develop-

ment of models that could accurately estimate the accumulated displacement and change

in cyclic secant stiffness. If this can be performed in finite element or finite difference

software packages, more information will be provided to better explain the response of

monopile foundations.
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Géotechnique, 63(1):54.

Park, D. (2013). The effect of radial g-field on the centrifuge modelling. Hospitality and

Tourism: Synergizing Creativity and Innovation in Research, page 385.

Park, Y., Wen, Y., and Ang, A. H.-S. (1986). Random vibration of hysteretic systems under bi-

directional ground motions. Earthquake engineering & structural dynamics, 14(4):543–557.

Pender, M. (1993). Aseismic pile foundation design analysis. Bulletin of the New Zealand

National Society for Earthquake Engrg, 26(1):49–160.

Peng, J., Clarke, B., and Rouainia, M. (2011). Increasing the resistance of piles subject to cyclic

lateral loading. Journal of Geotechnical and Geoenvironmental Engineering, 137(10):977–

982.

Peng, J., Rouainia, M., Clarke, B., Allan, P., and Irvine, J. (2004). Lateral resistance of

finned piles established from model tests. In Proceedings of the International Conference

on Geotechnical Engineering-Beirut, CFMS, Lebanon, pages 565–571.

Peng, J.-R., Clarke, B. G., and Rouainia, M. (2006). A device to cyclic lateral loaded model

piles. Geotechnical Testing Journal, 29(4):1–7.

Peng, J.-R., Rouainia, M., and Clarke, B. (2010). Finite element analysis of laterally loaded fin

piles. Computers & structures, 88(21):1239–1247.

Peralta, P. and Achmus, M. (2010). An experimental investigation of piles in sand subjected to

lateral cyclic loads. In W: Proceedings of 7th International Conference on Physical Modeling

in Geotechnics, Zurich, Switzerland.
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Reddy, E. S. B. (1996). An investigation into the response of piles in sand under vertical cyclic

tensile loads. PhD thesis, The University of Nottingham.

Reese, L. C., Cox, W. R., and Koop, F. D. (1974). Analysis of laterally loaded piles in sand.

Offshore Technology in Civil Engineering Hall of Fame Papers from the Early Years, pages

95–105.

Reese, L. C. and Matlock, H. (1956). Non-dimensional solutions for laterally-loaded piles with

soil modulus assumed proportional to depth. Association of Drilled Shaft Contractors.

Reese, L. C. and Van Impe, W. F. (2010). Single piles and pile groups under lateral loading.

CRC Press.
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