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 Abstract 
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ABSTRACT             

An incremental unsupervised neural network algorithm namely time-series self-

organizing incremental neural network (TS-SOINN) is developed to predict the 

photovoltaic output power for power fluctuation events detection in photovoltaic 

micro-grid system. The TS-SOINN is an unsupervised clustering algorithm that 

identifies the most similar patterns from a data map to predict photovoltaic 

output power. A novel memory layer and weighted tapped delay line is 

introduced to establish the time-series learning. By using real-life environment 

data as input data, the proposed TS-SOINN based real-time prediction engine 

predicts 97% of power fluctuation events with 10% false acceptance rate. These 

results outperform three different types of self-organizing incremental neural 

network, self-organizing map, and nonlinear autoregressive with exogenous 

input network. The proposed TS-SOINN is then integrated into an intelligent 

power management system (PMS) to form the novel active learning intelligent 

PMS. The developed system is tested in simulation and experiment 

environments. Results show that the developed PMS reduces 89% of power 

fluctuation events and battery state-of-charge maintains within 30% to 100%. It 

outperforms hourly rule-based controller and the ramp rate controller by 53.53% 

and 37.08%, respectively in terms of the number of mitigated power fluctuation 

events. To conclude, power fluctuation events are mitigated by a novel 

intelligent PMS with reduced battery energy storage system capacity.
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Chapter 1 Introduction 

1.1 Overview 

In power networks, poor power quality could cause damage to electrical 

appliances and cause power distribution component to operate in undesired 

regions. In Malaysia, photovoltaic (PV) system has become popular and it is 

being integrated to the grid. The downside of PV grid-tied system is that PV 

output highly relies on the solar irradiance and ambient temperature which are 

stochastic and intermittent. Hence, power fluctuation events could happen and 

cause an imbalance between power generation and load. 

  Power fluctuation event prediction and mitigation is the aim of this 

research work. To identify the most effective method to mitigate the power 

fluctuation events, a thorough review is conducted [1]. Most of the existing 

works in power fluctuation mitigation set the desired output power by assuming 

a prediction engine is available [2]–[5]. In addition, ancillary power from 

batteries usually dispatch constantly for an hour or power fluctuation level is 

calculated at an hourly basis [2]–[4]. It is not applicable to solar PV as cloud 

moves rapidly. Furthermore, the existing mitigation engines [6] are passive as 

they are only able to solve power quality problems after the occurrence. 

According to Rodway et al. [7], the current power network’s protection system 

is insufficient to ensure the reliability of the power distribution system in terms 
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of response time due to the integration of renewable energy sources (RES). In 

addition, they showed that there is no research work done on predicting power 

quality events from environmental variables. They also suggested that prediction 

of power quality events could enhance the reliability of micro-grid by varying 

power contribution of RES.  

 Therefore, to actively predict and mitigate power fluctuation events in a 

PV grid-tied system, an active learning power fluctuation events prediction and 

mitigation engine based on a novel incremental unsupervised neural network is 

presented. The Time-Series Self-Organizing Incremental Neural Network (TS-

SOINN) is the first time-series unsupervised incremental neural network 

algorithm. It actively learns new data and predicts occurrence of power 

fluctuation events. The TS-SOINN uses a clustering technique to form a data 

map, identifies the most similar pattern for the solar power prediction and then 

predicts power fluctuation events. A novel weighted tapped delay line is 

incorporated to establish time-series learning. It predicts the output power of the 

PV system in 30 seconds resolution. The developed algorithm outperforms the 

conventional Enhanced Self-Organizing Incremental Neural Network (E-

SOINN) [8] in three aspects:1) It is applicable in time-series learning, 2) It 

reduces the number of unknown parameters from five (as in the E-SOINN with 

associate memory) to three, and 3) It improves the prediction accuracy by 

solving the data overlapping issues caused by the adaptive similarity threshold 

in the E-SOINN. 
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 The TS-SOINN based prediction algorithm is then implemented in a 

power management system (PMS). The developed PMS uses a novel control 

strategy to control the battery energy storage system (BESS) to mitigate power 

fluctuation events. When the difference of the predicted output power within a 

minute exceeds 10% of the rated PV system, the prediction engine maintains 

call of power fluctuation events for a short period (𝑇𝑎𝑐𝑡𝑖𝑣𝑒). When there is a call 

of power fluctuation event, the mitigation engine switches on to alleviate the 

power fluctuation events and then it will be switched off when there is no event 

predicted. By doing so, the power fluctuation events can be mitigated prior to its 

occurrence. It subsequently updates the required ancillary power to the grid by 

every 2.5 minutes to reduce the difference between actual output power and 

ancillary power. The mitigation engine maintains the state of charge (SOC) of 

the BESS within 30% to 100% to prolong the battery lifespan [9]. The TS-

SOINN based mitigation engine is novel as it is the first incremental 

unsupervised learning used in real-time PV output fluctuation prediction [10], 

[11].  

 The performance of the developed system is tested in both simulation 

and experimental environments. Real-life irradiance and temperature data are 

fed into the modelled 270 kWp PV grid-tied system to simulate power 

fluctuation events due to a real-life scenario. Next, a 1.2 kWp laboratory scale 

PV grid-tied system is designed and constructed in the solar cabin of the 

University of Nottingham Malaysia (UNM). Irradiance, ambient temperature, 
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and output power of the PV system are collected in real-time to predict power 

fluctuation events.  

 

1.2 Problem Statement 

Some of the research issues which may be regarded as problem statements are 

as follows: 

 The highly fluctuating and random behaviour of the PV output in 

Malaysia imposes a great challenge in accurately predicting the 

occurrence of the power fluctuation events. Most of the existing 

works [2]–[5] in power fluctuation mitigation is passive and to have 

an active mitigation engine, the power fluctuation events need to be 

accurately predicted.  

 Difficulty in time-series incremental unsupervised learning. 

Conventional prediction algorithm [12] requires collectively 

exhaustive set of data to achieve high prediction rate. Incremental 

learning helps to increase the prediction accuracy of the highly 

fluctuating PV output power by learning new weather data in real-

time. Other than being incremental, the algorithm should also be an 

unsupervised learning algorithm as it is impractical to label real-time 

data manually. There is no such prediction algorithm done in the field.  
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 Reduced capacity of the BESS. Most of the existing power fluctuation 

mitigation engines [2]–[5]  require the BESS to operate all the time 

including during non-power fluctuation period. In consequence, it 

reduces the effective capacity of the BESS to mitigate power 

fluctuation events. 

 

1.3 Research Objectives 

The aim of this research is to develop an active learning prediction and 

mitigation engine to accurately predict power fluctuation events and then 

mitigate them prior to its occurrence. 

To accomplish the above-stated aim, the following are the research objectives: 

1. To develop an active learning neural network to accurately predict the power 

output of the solar PV system based on external weather conditions and 

generated power from the PV system. The predicted output power will be 

subsequently used in power fluctuation events detection.  

2. To develop a power fluctuation mitigation system which will be able to 

determine the best control strategies to mitigate power fluctuation events. 

3. To test the developed prediction and mitigation system on a PV grid-tied 

system in a real-time manner 
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1.4 Significance of Research 

Three significant contributions have been made: 

1) A thorough review is done to investigate the negative impacts of PV 

grid-tied system to the power networks, and to study on the performance 

of artificial intelligence (AI) and conventional methods in mitigating 

power quality event. From the review, AI methods are found to usually 

outperform conventional methods in terms of response time and 

controllability. The review shows that the incremental unsupervised 

learning AI is the future trend in the PV grid-tied systems as it can adapt 

to the environment without the need for collecting a large amount of data 

before the AI is implemented.  

2) An incremental unsupervised neural network algorithm namely TS-

SOINN is developed to predict the occurrence of power fluctuation 

events in a PV grid-tied system. The TS-SOINN is the first time-series 

unsupervised incremental neural network algorithm. It outperforms the 

E-SOINN [8], Hidden Markov Based Self-Organizing Incremental 

Neural Network (HBSOINN) [13], Self-Organizing Incremental Neural 

Network Dynamic Time Warping (SOINN-DTW) [13], Non-linear 

Autoregressive Exogenous (NARX) [14] and Self-Organizing Map 

(SOM) [15] algorithms in predicting output power of the PV system and 

power fluctuation events. 
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3) The TS-SOINN and a mitigation engine are integrated to form an 

intelligent PMS to smooth power fluctuation events. It is the first 

incremental unsupervised learning used in real-time PV output 

fluctuation prediction [10], [11]. This system outperforms two state-of-

the-art system [2], [16] in terms of the number of mitigated power 

fluctuation events. 

 

 

1.5 Scope of Research 

This research covers and focuses on predicting output power and power 

fluctuation of a PV system using a neural network, and mitigating power 

fluctuation events. Other power quality events that may happen in a PV grid-

tied system are not within the scope of this research work.  

  

1.6 Thesis Structure 

In Chapter 2, the background on the PV grid-tied system, and adverse impacts 

to local distribution system is presented. A comprehensive literature review on 

performances of AI and conventional methods in mitigating power fluctuation 

events due to PV grid-tied system is presented. It then describes different types 

of prediction engine in predicting the output power of the PV system. Use of AI 
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in the power networks and unsupervised active learning AI are discussed. This 

chapter justifies the developed system. 

 Chapter 3 discusses the proposed TS-SOINN algorithm. The method for 

unsupervised learning AI to conduct prediction is shown. Next, it describes the 

associate memory and weighted tapped delay line function to the TS-SOINN. 

Then, the TS-SOINN algorithm is shown in detail.  

 In Chapter 4, the developed intelligent real-time PMS is presented in 

detail.  

 Chapter 5 shows the real-time implementation of the proposed algorithm. 

Firstly, it describes the modelled PV grid-tied system used in this research 

together with the data acquisition system. Then, it presents the constructed 

laboratory-scale PV grid-tied system. Lastly, it presents the real-time 

implementation of the PMS. 

 Chapter 6 presents the results and discussions. It is separated into two 

main sections. The first section discusses results obtained in the TS-SOINN 

evaluation. Optimal values for unknown parameters used in the proposed TS-

SOINN and its prediction performance are presented. In the second section, the 

performance of the developed PMS is shown. Optimal parameter values for the 

developed PMS is shown. Then, the performance in mitigating power 

fluctuation events is presented. 
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 Lastly, Chapter 7 concludes the research work. Possible future works are 

also presented. 
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Chapter 2  Literature Review 

This chapter begins by providing a background review on the negative impacts 

of power fluctuation event and their causes and effects to the PV grid-tied system. 

The power fluctuation event is found to be able to cause different power quality 

events such as voltage flicker, frequency fluctuation and voltage sag.  

 It proceeds to describe the current state-of-the-art mitigation methods on 

alleviating the power fluctuation event that is caused by the PV grid-tied system. 

Mitigation methods range from power monitoring, use of an inverter, 

geographical dispersion and BESS. Advantages and disadvantages of each 

method are described. It justifies the mitigation method used in this work. 

 Next, a thorough literature review is presented on methods to predict the 

intermittent power output of the PV system. Different types of prediction 

engines are reviewed.  

 Lastly, a review on the use of AI in the power networks is presented. 

This includes a thorough review on the E-SOINN, HBSOINN, and SOINN-

DTW.  
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2.1 Power Quality  

Generation, transmission, distribution and protection have been integrated into 

power networks for a safe and reliable system. By integrating renewable energy 

resources into power networks, it is believed to be able to meet the energy 

challenges that are unable to be solved by traditional centralised power plants. 

These resources increase the variety of energy supply market, decrease global 

emissions and increase long-term sustainable energy supply. However, the 

integration of renewable energy resources into the power networks has changed 

the flow of power from unidirectional to bidirectional. Since the power system 

is not designed to handle bidirectional power flow, false tripping and non-

operations of protective devices may occur [17], [18]. This behaviour affects 

current power networks adversely.  

 Among the renewable energy resources available today, solar PV is the 

one in favour by most utility companies. Its inherent characteristics encourage 

the development of micro-grid PV system. Despite the benefits of PV system, 

the downside of the PV system is that the output power highly relies on the 

intermittent solar irradiance and ambient temperature that may cause PV power 

to fluctuate. Power fluctuation is a phenomenon where the generated power is 

unstable. It is one of the main issues in a PV system. The effect of power 

fluctuation becomes more serious when the penetration of the PV system is high 
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(up to gigawatt). It is because the output power of PV farm for example could 

have a power drop of 63% during a power fluctuation event [19].  

 Simulations and experiments are carried out to validate the occurrence 

of power fluctuation event in [20], [21]. From experiments, these events are 

triggered during noon time (from 1000 to 1300) because of fast-moving cloud 

in Malaysia [21]. Since the cloud behaves as an obstacle to block the irradiance 

from the sun, active power generated from the PV system is reduced greatly. 

Sizing and topology of the PV system are other culprits to power fluctuation 

event [21]. A low power rating PV system has a relatively smaller area. In 

consequence, the PV system has a higher chance of being shaded by the cloud. 

From research finding [22], power fluctuation of a PV system’s standard is only 

available in the technical requirement of Puerto Rico Electric Power Authority 

(PREPA) for interconnecting wind and solar generation. From PREPA, it only 

allows 10% fluctuation rate of rated capacity within a minute. This rate is chosen 

because higher fluctuation rate breaks the supply and demand of electrical power 

and creates more power quality events such as voltage flicker, frequency 

fluctuation, and voltage sag. 

 Voltage flicker is one of the adverse impacts caused by power fluctuation 

event in a PV grid-tied system. Variation in output power is the cause of the 

voltage fluctuation. Research papers [23], [24] show that PV systems are mostly 

invulnerable to voltage flicker events. However, this is not applicable to 
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countries that have high frequency and intensity of moving cloud [25]. In 

addition to voltage flicker, frequency fluctuation causes by power fluctuation 

event of the PV system. Funabashi et al. report that the intermittent output power 

worsens the frequency deviation scenario [26].  

 Voltage sag is another consequence of the power fluctuation. Voltage 

sag is a well-known power quality issue among consumers. From research 

findings [27], [28], voltage sag contributes 80% and 72% of the reported 

complaints in Malaysia and China, respectively. A PV grid-tied system is 

believed to be able to improve the voltage profile of distribution systems. 

However, it is applicable to low penetration of PV system only as observed from 

[29]. Yamashita et al. [30] show that by increasing penetration of PV system in 

a high voltage network, PV system exacerbates the voltage sag issue and post-

disturbance steady state voltage. It is because a utility operator expects a higher 

volume of electrical power from the PV system, but the PV system generates a 

lower volume of electrical power due to power fluctuation event. This shows 

that the power fluctuation event could cause voltage sag to electrical distribution 

system. 
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2.2 Mitigation Engine 

This section describes the current state-of-the-art mitigation methods such as 

power monitoring, inverter, geographical dispersion and BESS to deal with 

power fluctuation event in the PV grid-tied system.  

2.2.1 Power Monitoring 

Power monitoring mitigates power fluctuation by identifying the source of 

power fluctuation events and supply ancillary power to it. Thus, it mainly 

focuses on data classification. In general, utility companies monitor high voltage 

distribution network to identify a fault in a short time [31]. An example is a 

Malaysia energy utility company installs a power quality monitor system in five 

regions [31]. They are used to detect and record power quality events in order to 

take corrective action in the shortest possible time. Kilter et al. [32] initiate a 

guideline for power quality monitoring. However, extensive works are required 

to complete it. Music et al. [33] integrate Supervisory Control and Data 

Acquisition (SCADA), Automated Meter Reading (AMR), Power Quality 

Monitoring System (PQMS), and Electric Vehicle Management System (EVMS) 

as the Integrated Power Quality Monitoring System (IPQMS) to monitor a smart 

distribution system. They show that power networks are easier to be controlled 

and monitored through IPQMS.  
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 AI techniques have also been implemented in power system monitoring. 

Zang and Zhao [34] develop an algorithm to identify types of power quality 

disturbance by using a support vector machine. This algorithm is developed 

from wavelet transform and multi-layer support vector machines. Results show 

that the algorithm locates six types of disturbances [34]. Power quality 

classification has been carried out by Ding et al. [35] as well. They utilise the 

least square support vector machine theory to classify power quality events [35]. 

In addition, Chan et al. [36] prove the validity of AI in micro-grid fault detection 

classification. Radial basis function, decision tree, K-nearest neighbour, and 

Naïve Bayes are used to classify seven groups of power quality events. Results 

show that the Naïve Bayes has the best performance in terms of average 

classification error, which has an average of 20% of error [36]. Next, Bentley et 

al. show the validity of an unsupervised neural network, SOM to identify power 

quality disturbance source in an IEEE 6-bus system [37].  

 Mallesham et al. [38] introduce an automatic generation control of 

micro-grid, which is equipped with a diesel generator, fuel cell generator, aqua 

electrolyser, battery, wind and solar energy. The gains of each source which are 

confined by Generation Rate Constraint (GRC), are calculated by AI techniques. 

The GRC is a ramp rate limit of increasing or decreasing a power source to 

ensure power balance between load and sources. From the results, they show 

that the frequency of micro-grid without GRC fluctuates within 2 Hz, whereas 

micro-grid with GRC maintains the frequency. In addition, they show that 
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conventional proportional integral derivative (PID) controller, Genetic 

Algorithm (GA), Bacterial Foraging Optimisation (BFO), and Particle Swarm 

Optimisation (PSO) are capable of maintaining frequency due to an increase in 

wind power generated, increasing and decreasing of the load. Among the 

methods, BFO has the lowest integral time squared error overall [38]. Llanos et 

al. [39] implement an online neural network for load prediction in an off-grid 

system. From the results, the load prediction from the SOM network can track 

the actual trend. This shows that AI can be used for load prediction. Other than 

Llanos et al., Loewenstern et al. [40] compare five methods for very short-term 

load forecasting (five minutes in advanced). The very short-term forecast 

horizon (five minutes) is used for balancing the supply and demand of electrical 

power in the grid. From the results, difference averaging with moving average 

method achieves the lowest mean absolute percentage error in overall [40].  

 Research findings [31]–[40] show that AI techniques outperform 

conventional methods in classification of power quality event and identification 

of the source of the disturbance. However, only one research work  [38] shows 

the use of power monitoring in power fluctuation mitigation. 
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2.2.2 Inverter 

Next, power curtailment wastes excess energy which causes it to be an 

inefficient mitigation method. It can be seen from the inverter. Since the inverter 

has no energy storage system (ESS) to store and dispatch the power deficit, it 

converts the active power of a PV system into other types of power to prevent 

power fluctuation events. Power system configuration and additional 

compensator equipment are methods to mitigate power quality events in the 

power networks [41]. In a PV grid-tied system, the inverter is the core 

component to vary the output of a PV system. Therefore, the configuration of 

the inverter is used to mitigate major power quality issues.  

 Huang et al. [42] find that an inverter which is controlled by 

Instantaneous Active Reactive Control (IARC) and average active reactive 

control (AARC) has issues as it is unable to output sinusoidal current and the 

output power consists 120-Hz ripples, respectively. Therefore, they propose a 

flexible active and reactive power control to command operation of the inverter 

[42]. The new algorithm verifies the validity in reducing power fluctuation and 

current harmonics. However, it is found that the algorithm is unable to be 

implemented in the PV system. It is because it can only reduce the power 

fluctuation or current harmonic at a time. Another control scheme based on 

instantaneous power theory and hysteresis current is found in [43]. Results show 

that it is effective in regulating the voltage at the point of common coupling 
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(PCC). Moreover, it can recover the voltage profile due to a fault with a shorter 

time. Hao and Xu [44] propose a new control algorithm based on the current 

reference for a PV system to work under unbalanced voltage condition. Outputs 

of simulation prove that the validity in eliminating power fluctuation with 

increasing control parameter, k. However, it must sacrifice the balance of the 

current waveform. Shou et al. [45] suggest current adjustment coefficients 

control strategy to alleviate output power fluctuation and total harmonic 

distortion of current under unbalanced voltage environment. Results show that 

power fluctuation and harmonic distortion can be alleviated by regulating 

current adjustment coefficient with second control mode.  

 AI also shows its good performance in commanding equipment like the 

inverter. Dasgupta et al. [46] apply spatial iterative learning in an inverter 

controller. They find that conventional methods such as the resonant controller, 

repetitive controller and proportional controller are ineffective in maintaining 

the voltage waveform. Experiments and simulations have been conducted to 

compare spatial iterative learning method with the conventional methods. 

Results show that the controller can converge load voltage error to zero within 

0.65 seconds, perform auto synchronisation while maintaining voltage profile 

automatically when frequency varies, and generate harmonic to inverter’s 

voltage to counter grid harmonic voltage to ensure unity of load voltage 

waveform. Al-Saedi et al. propose a PSO algorithm to control the inverter of a 

distributed generator for switching distributed generator from grid-connected to 
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islanding mode. Simulation results show that the control algorithm enables a 

micro-grid system to switch from grid-connected mode to islanding mode 

autonomously [47]. Next, it can maintain its voltage profile within 10% of 

fluctuation, maintain the supply of active power and frequency profile within 

1.2% of fluctuation during the switching stage.  

 From research findings [41]–[47], advanced conventional methods are 

built on complex algorithms. For AI controlled based inverter, its structure 

enables it to be used in different fields which diversify its usage and it could 

achieve similar performance as in advanced conventional methods. Therefore, 

the AI techniques outperform advanced conventional methods in terms of 

controllability and response time [46] [47]. Due to lack of ESS from the inverter, 

the inverter usually mitigates the power fluctuation events by power curtailment 

method. In another word, it converts the excess electrical energy into another 

form of energy such as reactive power. Thus, it is an inefficient method to 

mitigate the power fluctuation events as it mitigates the event by reducing the 

output power. 
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2.2.3 Geographical Dispersion 

Smoothing output power can be done by either geographical dispersion or ESS. 

Geographical dispersion is usually used for a large-scale PV system that 

installed in a wide area. It smooths the output power of a PV system in a passive 

method and requires several large areas to disperse a PV system. It separates a 

large PV farm into several PV farms to reduce the adverse impact of the fast-

moving cloud. This is because the chances of having a big cloud to cover up 10 

KM2 is rare. Thus, this method reduces the chances of a whole PV farm is shaded 

by the cloud.  

 Jewell et al. observe that a PV system with a penetration level of 15% 

can cause a significant effect on the electric utility system [48]. This increases 

the operating cost of utility companies as it causes different protection problems 

in the transmission line such as power swing, transmission line overload and 

reverses power flow. Therefore, Jewell et al. suggest to disperse a large scale PV 

system over 100,000 KM2 to reduce the adverse impact of the transmission line 

[48]. Marcos et al. agree with geographical dispersion of large PV plant can 

reduce short-term power fluctuation events [49]. However, it is unable to deal 

with large amplitude of output power fluctuation. From the results, the combined 

output power of six PV plants maintains in between 0.5 to 0.7 per unit (P.U). In 

contrast, the output power of a single PV system ranges from 0.15 to 0.95 P.U 

within 30 minutes. 
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 Other than U.S.A [48] and Spain [49], similar research has been carried 

out in Japan as well. Murata and Otani [50] find that the unstable output power 

can be reduced by integrating the output of PV systems that installed over a wide 

area. In addition, they find that the capacity of conductor cable in between PV 

systems and grid affects the smoothing capability. In [51], Lave et al. show that 

power fluctuation can be reduced by separating a PV system into six different 

locations. From [52], Hoff and Perez develop a model to calculate the output 

variability of PV systems. They find that the frequency and amplitude of short-

term power fluctuation for a single PV site are larger than the 16 PV sites. 

Although integrating a group of PV systems reduces the power fluctuation level, 

this method fails during fast-moving cloud scenario as shown in [52].  

 In [53], Hoff and Perez show that geographical dispersion reduces the 

power fluctuation events and the adverse impacts of geographical dispersion 

method are voltage issues, and tripping of power distribution line. Rowlands et 

al. [54] investigate 16 PV systems in Ontario, Canada for 3 years on an hourly 

basis. From their finding, geographical dispersion leads to lower power 

variability and higher energy production. In [55], Junior et al. propose to 

combine regional forecast technique and principal component analysis to 

forecast and smooth output power of the PV system. However, this method is 

unable to forecast production of individual PV system.  



 Chapter 2 – Literature Review 

22 

 

 Although smoothing output power of the PV system is achievable by 

geographical dispersion method, Wiemken et al. find that this method has 

weaknesses [56]. They analyse 100 distributed PV systems in Germany and find 

that the power fluctuation events of the combined PV systems are suppressed 

significantly. However, the maximum power production of the 100 PV systems 

is unable to reach the rated power of the PV systems. In addition, they find 

geographical dispersion is unable to smooth short-term power fluctuation 

effectively. Moreover, power fluctuation events increase with decreasing 

number of PV system in the local distribution system [56].  

 From the above findings [48]–[56], it can be concluded that smoothing 

of PV system is achievable by dispersing a large scale PV system into several 

small PV farms with sufficient distance and capacity of cables in between them. 

However, it is found that this method has its weaknesses. Firstly, it requires 

several vast areas to divide a large-scale PV system into several smaller-scale 

PV systems. Secondly, it is unable to smooth power fluctuation events due to 

the fast-moving cloud which is the principal cause of power fluctuation in the 

PV grid-tied system. Thirdly, the smoothing effect reduces with decreasing 

number of integrated PV systems. In addition, the maximum power generation 

from the PV systems is less than the rated power of the total PV systems.   
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2.2.4 BESS 

Inherent characteristics of BESS as a medium to store and release electrical 

power provide an opportunity for micro-grid PV system to compensate 

intermittent behaviour due to environmental factors. Among the ESS, battery is 

cost-effective in storing large amount of energy. Since production of renewable 

energy resources is well-known for intermittency problem, these inherent 

characteristics of battery enable an active method to smooth output power of the 

renewable energy resources as it is able to dispatch energy while there is a short 

of production from renewable energy resources and vice versa. For PV systems, 

generation could drop up to 63% within a minute. This creates significant 

adverse impacts on the grid, and this scenario can be mitigated by the BESS.  

 

Figure 1: Topology of PV Grid-Tied System with BESS [1] 



 Chapter 2 – Literature Review 

24 

 

 Figure 1 shows a BESS is integrated into a PV grid-tied system at the 

PCC which can mitigate the power fluctuation events due to intermittent weather 

condition. According to Shivashankar et al. [1], smoothing output power of solar 

PV by ESS is the most efficient method. Although it increases the overall 

operating and maintenance (O&M) cost, it is applicable to all types of output 

power range. In [57], it shows that the length of an operational period has a 

strong relationship with BESS, which shorter time-window requires lower rated 

BESS. However, a longer operational period has a better performance in 

smoothing output power [51]. In addition to that, frequency of power fluctuation 

events decreases with increasing step size of the moving average method. 

However, the drawback of the moving average method is that it requires a large 

battery capacity to reserve vast amount of electrical energy in order to supply 

the power deficit to the grid.  

 Abdelkarim et al. [58] find that reactive power can enhance voltage 

profile with BESS. However, it fails in fast cloud transient phenomenon. They 

suggest the use of plug-in hybrid electric vehicles as a solution for power 

fluctuation events. Results indicate that this method increases the reliability of 

the voltage profile [58]. Noro et al. [20] find that the BESS can reduce 

fluctuation and maintain high efficiency of the PV system. Hossain and Ali [59] 

discover spatially diverge PV plant equipped with small energy storage is able 

to have the same performance as in a centralised PV plant. Besides, it is more 

cost efficient. To further enhance the reliability of BESS to micro-grid, control 
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theory has been implemented to configure BESS. Liu et al. [60] introduce a 

coordinated control to mitigate voltage swell event due to the high penetration 

of PV system. Both experimental and simulation results show that it can increase 

the life cycle of the BESS, and decrease switching operation times, stress and 

losses to the BESS. Most importantly, peak load shaving function is achievable 

through this technique [60]. Parra et al. [16] implement a BESS with ramp rate 

limiter to mitigate the power fluctuation event. This approach requires the BESS 

to standby all the time for any power fluctuation event. 

 AI is also found to be able to generate power reference for the BESS as 

well.  From research findings [2]–[5] smoothing output power by ESS is usually 

done by a prediction engine to predict solar irradiance or output power of the PV 

system. ESS such as the battery is used to supply or absorb power deficit (which 

is the difference of predicted output power and desired output power) to smooth 

the power fluctuation.  

 Teleke et al. [2] introduce a rule-based controller for smoothing power 

fluctuations. It is a PMS where they assume a prediction engine is available to 

predict output power hourly and set desired output power to smooth power 

fluctuation. They develop rules to constraint state-of-charge (SOC) and output 

power deviation. The battery is dispatched hourly to smooth output power and 

the results are verified in a one bus PV system. Similar to the research finding 

in [2], Daud, Mohamed, and Hannan [3] assume a prediction engine is available 
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to forecast the output power of the PV system. It is found that, when the 

prediction engine has a higher mean absolute error (MAE), this methodology 

suffers from higher frequency of power fluctuation events and decreases in 

battery lifespan as the SOC of the battery varies within 19.8% to 100% [3].   

 Other than hourly dispatched PMS, Li et al. use a day ahead dispatching 

smooth model to maximise the profit and smooth power fluctuation for a PV, 

wind, and battery connected grid system [4]. Instead of supplying 100% of 

generated power to the local distribution system, Li et al. [4] store part of the 

energy in the BESS to produce for smoothing purpose. Although this approach 

has a smooth power generation graph, the renewable energy experiences power 

curtailment while the BESS is fully charged to smooth power fluctuation event. 

It also requires a larger size of BESS which is 35.71% of the total rated of wind 

and solar PV generation as compared with the research finding in [2] and [3], 

which are 25% and 24.5%, respectively. Moreover, this research paper [4] 

assumes an accurate and reliable prediction engine available to predict a day 

ahead output power of renewable energy. Instead of solely relying on the 

predicted output power, Sam, Rahim and Mokhlis [5] apply the moving average 

method to the predicted output power. The processed output power is used as 

the desired output power for the PMS. Although this approach smooths power 

fluctuation events, the capability of this method to deal with real-life data is not 

shown as the prediction engine is assumed to be available. 
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From research findings [2]–[5], [20], [58]–[60], AI outperforms 

conventional method in terms of predicting upcoming usage pattern. It is found 

that a control system that is equipped with a prediction engine can increase the 

financial benefit of the system. Despite the popularity of AI method in BESS 

control, the performance of this kind of control system highly relies on the 

accuracy of the AI prediction engine. Most of the recent research works [2]–[5] 

assume the availability of an accurate and reliable power output prediction 

engine and this assumption is not practical for the actual implementation of the 

system. In [3], Daud, Mohammed and Hannan show that the unmitigated power 

fluctuation events are increased by 4.7% with an increment of 10% in MAE. 

This shows the existing methods [2]–[5] are unreliable as their systems do not 

have a prediction engine. 

Figure 2 shows the impact of data resolution to the power fluctuation 

events. From the figure, it shows high-resolution data reveals the actual 

performance of the output power and low-resolution data smoothens the output 

power. As a result, power fluctuation events could be hidden within low-

resolution data. This is proved in Figure 2 where resolution tens of minutes to 

hours and day have a relatively smooth graph, whereas resolution in seconds to 

minutes fluctuates largely. This explains the reason for high reduction rate of the 

power fluctuation events in [2]–[5]. This scenario is not realistic as real-life 

environmental variables are changing from time to time. To achieve a PMS that 

is able to deal with this real-life problem, the PMS is required to operate at a 
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very high resolution such as a minute to deal with the unpredicted changes to 

the environment. 

 

Figure 2: Impact of Data Resolution to the Power Fluctuation Event. The System Power in 

Seconds to Minutes Resolution Fluctuates Largely [61] 

Other than the absence of a prediction engine and low-resolution in 

identifying power fluctuation events, batteries are usually dispatched every hour 

or power fluctuation level is scheduled at an hourly basis. This might be 

sufficient for wind energy however, it is not practical for solar PV where clouds 

move rapidly. This is supported by Mills et al. [61], where their research shows 

that a moving cloud takes several minutes to shade a 100 MW PV system. To 

respond to these downfalls, a real-time prediction engine capable in high-

frequency prediction (within a minute) has to be integrated into the mitigation 

engine to deal with the highly intermittent behaviour of weather condition that 

causes power fluctuation events.  
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2.3 Prediction Engine 

This section first explains the needs of the prediction engine in a PV grid-tied 

system. It then describes the suitable temporal aspect for the prediction engine. 

Lastly, the current state-of-the-art of PV system’s prediction engine is reviewed.  

 According to Shivashankar et al. [1], coupling an ESS into the micro-

grid PV system is the most optimum method to mitigate power fluctuation 

events. However, the period and amount of energy to be dispatched into the 

micro-grid is unknown to the BESS. Inadequate or excessive power supply 

could further deteriorate the power system. Besides, inappropriate PMS shortens 

the battery lifespan which increases the implementation cost of the PV grid-tied 

system. These issues can be solved by integrating a prediction engine to an ESS. 

The prediction engine predicts the abnormal condition of the PV system, and 

switches on the ESS when there is an abnormal condition. However, Barbieri et 

al. [62] claim that there is only a few literature [63]–[65] on very short-term 

(within 30 minutes) output power prediction. 

 It is important to determine the temporal aspect of a prediction engine as 

this aspect introduces a vital parameter which is the forecast horizon. It defines 

a time range of prediction. Each forecast horizon has its own function. Firstly, 

the very short-term horizon or nowcasting ranges from several seconds to 30 

minutes. It is used for immediate action or real-time control of PV system [66]–
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[68]. In the research findings [66], [67], they find that research in this time frame 

is rare. Secondly, the short-term horizon which is from 30 minutes to 6 hours 

ahead is used for economic dispatch. Most of the research works are done in this 

forecast horizon [66]–[68]. The medium-term horizon which is ranged from 6 

hours to 1 day is for the operational security purpose, and the long-term horizon 

which is more than a day is used for maintenance scheduling to optimise the 

operating cost.  

 Since power fluctuation events could occur within a minute due to the 

fast-moving cloud, the sampling time for the prediction engine should be within 

a minute. This is because sampling time that is greater than a minute could miss 

some power fluctuation events. From [66]–[69], they show that the shortest time 

horizon is important for automatic real-time control to protect power grids as the 

prediction in this horizon allows immediate action to be carried out. It is also 

important for the prediction engine to detect power fluctuation events under all 

types of different environmental scenarios. To achieve this, a very short-term 

(30 seconds) active learning prediction engine is developed in this research work 

to learn the most updated data and give accurate prediction within a second.  

2.3.1 Types of Prediction Engine 

The main cause of power fluctuation in the very short-term horizon is the 

presence of clouds [10], [62]. Therefore, prediction engine mainly focuses on 

forecasting of cloud movement using Global Horizontal Irradiance (GHI), 
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Direct Normal Irradiance (DNI), weather condition, and output power of the PV 

system. From the research findings [76-102], output power of a PV system or 

solar irradiance prediction engine can be done by satellite imaging, Numerical 

Weather Prediction (NWP), Total Sky Image (TSI) and AI methods.  

 Meteorological satellite is a type of national scale weather monitoring 

satellite. It offers a wide spatial range which can go up to several thousands of 

kilometres. From Dambreville et al. [70], this approach is accurate to forecast 

the GHI for the horizons shorter than 6 hours. In particular, Dambreville et al. 

find satellite imaging outperforms the NWP method to forecast GHI in the 

horizon of 5 hours ahead [70].  

 Although the satellite images method has a good performance in the 

horizon of 30 minutes to 6 hours, Lonij et al. [63] find that it is not suitable to 

observe in high frequency or fast cloud motion. In consequence, it is unable to 

determine the velocity of clouds. In addition, cloud-radiation studies are not 

allowed from the satellites images because the images are in low-resolution [62]. 

Moreover, since the spatial resolution is high, persistence models usually 

outperform the satellite-based forecast in short forecast horizon [71].  

 NWP is another type of global scale ground weather monitoring network. 

NWP was found by Vilhelm Bjerknes in 1904 [72]. It discretises a domain into 

small resolution and applies physical laws of motion and thermodynamics law 
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on the discrete spatial grid. An analysis of different spatial and horizons is done 

by Lorenz et al. [73]. The NWP model is found to perform well in forecasting 

weather condition with a large spatial and temporal resolution [73]. These results 

are agreed by Bacher et al. [74] where the NWP performs better in longer 

forecast horizon and larger spatial area.  

 From the research findings, [75]–[78] use NWP to predict for 1-36 hours 

forecast horizon. These characteristics enable the NWP to predict well in the 

day-ahead horizon, which makes it suitable for determining energy pricing 

purposes. However, this method is found to be accurate to the scenario with 

large-scale cirrus clouds and fail in scenario with small clouds in a cloudy day 

[62]. Thus, this drawback causes it unsuitable to forecast for low forecast 

horizon. In addition, substantial computation power is required by the NWP 

method. The NWP method requires two hours of computation time to forecast 

for two minutes in [63]. 

 TSI is an alternative to provide higher frequency prediction compared to 

the NWP and satellite imaging technique. From research findings [79]–[82],  

TSI forecasts for time horizon from 5 minutes to 30 minutes. The TSI works by 

mounting a fisheye lens on a whole sky camera to observe the entire sky cloud 

condition. The types of cloud and movement of clouds data are collected to make 

the prediction of GHI or output power accordingly. Chow et al. use TSI 

technique to predict the GHI for intra-hour forecast [83]. Ferreira et al. [84] 
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make use of TSI data as input to the Artificial Neural Network (ANN) model to 

forecast cloudiness, GHI, and temperature for forecast horizon ranges from 5 

minutes to 4 hours. Coimbra and Marquez use TSI data for intra-hour DNI 

forecast [85]. It is found that TSI images achieve the highest forecast accuracies 

on time horizons of 5 minutes. 

 Compared to the NWP and satellite imaging technique, the TSI uses the 

local meteorological information to forecast for intra-hour irradiance. The local 

meteorological information restricts the TSI image to have the maximum time 

horizon of 30 minutes [86]. It is because the fisheye lens has a limited field of 

view. Other than this, this technique has a lower boundary of time horizon. A 

complex mask is required to remove shadow bands that are caused by the 

circumsolar glare. This difficulty causes the TSI to be unable to forecast for the 

time horizon shorter than 3 minutes [83], [85]. Therefore, the TSI technique only 

has an effective forecast horizon from 3 minutes to 30 minutes. 

 AI is another alternative that can forecast in the short time horizon. Input 

data to the AI can be images, temperature, irradiance, and output power of a PV 

system. There are various types of AI model for prediction engine. AI technique 

also has the flexibility in forecast horizon.  

 In [87], Azedah et al. use supervised learning AI which is Multi-Layer 

Perceptron (MLP) to predict solar radiation with no solar measurement devices 
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for the time horizon of a month. MLP model is also used by Mellit and Pavin in 

[88] to predict irradiance for the time horizon of 24 hours. It uses daily mean 

irradiance and temperature to predict the next 24 hours irradiance. Previous 

output power, humidity and temperature are used by Chen et al. to forecast the 

next 24 hours GHI in [89] for the purpose of operational planning in power 

networks. Lonij et al. use data from sensor networks in [64], [65] to forecast the 

time horizon of 30 seconds to 6 hours. The most optimum results are obtained 

from the forecast horizon of 15 minutes. Compared to sky image, NWP and 

satellite imaging, Lonij et al. find that this method directly measures the 

irradiance and it does not need to convert irradiance level from optical properties 

of clouds or used of radiative models [63]. In [90], Chow et al. use the MLP 

model to forecast output power of the PV system with irradiance, temperature, 

solar elevation and solar azimuth angles. However, performance metrics show 

in the paper is limited.  

 Apart from supervised feedforward network, the autoregressive (AR) 

network model is used in forecasting the irradiance and output power of the PV 

system. The NARX, Autoregressive Moving Average (ARMA), Autoregressive 

Moving Integrated Average (ARIMA), and Autoregressive Moving Average 

Exogenous (ARMAX) are examples of AR networks. In [91], the ARIMA 

model is used by Craggs et al. to forecast irradiance in time horizons of 10 

minutes to 1 hour. In [92], Combra and Kleissl show that the NARX model 

outperforms the persistence model for time horizons of 10 hours to 200 hours. 
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It is proven that the AR model that takes in exogenous data can improve 

prediction accuracy [10]. 

 Other than the supervised ANN and AR network, unsupervised learning 

ANN is another type of ANN. Unsupervised learning ANN is a type of ANN 

which learns without target data. It is shown in [86] that the unsupervised 

learning ANN is accurate in pattern classification. However, there is no research 

paper done on using it to predict the irradiance or output power of the PV system.  

 From the above findings [76-102], it is found that the performance of 

existing prediction engines can be maintained if the environmental conditions 

remain which is not realistic in real-life. These exiting prediction engines are 

confined by their limited training data and unable to update themselves 

accordingly. In addition, these types of learning methods are sensitive to the 

training data. When the input in an unseen data type, these prediction engines 

are unable to predict accurately.  

 Among the four techniques discussed (satellite imaging, NWP, TSI, and 

AI), each of them has its unique advantages and disadvantages. Satellite imaging 

has a national scale (1km – 10km) distribution of cloud image. This enables it 

to forecast effectively for the horizon up to 6 hours. NWP discretise a large 

domain into small resolution and the physical laws of motion and 

thermodynamics law on the discrete spatial grid to model the local weather 
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scenario. This allows the NWP to forecast for a wider region (5km – 20km) and 

longer time horizon (4 hours – 36 hours) as it models a larger map. However, 

this is not suitable for short time horizon as the instantaneous cloud movement 

is unable to be predicted by it. Compared to the previous two techniques, TSI 

has a smaller scale (1m – 2km) image. In consequence, it is able to predict for 

short time horizon (3 minutes – 30 minutes). The AI equipped with sensor 

network is found to be the most flexible method where it predicts from the very 

short-time horizon (real-time) to very long-time horizon (a month). Coverage of 

sensor network is the limitation of the AI technique. Although it can be solved 

by installing a sensor network to a wider area, the cost of a sensor and the 

installation cost are high. Table 1 shows the summary of the prediction engine. 

From Table 1, AI technique is the only method that is able to forecast within a 

minute. Therefore, AI method is chosen as the prediction engine in this project. 
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Table 1: Summary of Prediction Engine 

Techniques Forecast Horizon Spatial Resolution 

Satellite Image 30 minutes – 6 hours 1 KM – 10 KM 

NWP 4 hours – 36 hours 5 KM – 20 KM 

TSI 3 minutes – 30 minutes 1 m – 2 KM 

AI 1 second – 1 month 1 m – 2 KM 

 

 

2.4 Use of AI in Power Networks 

AI algorithms are used in prediction and mitigation of power quality events in 

Xu et al. [6], and Kanirajan and Kumar [93]. Xu et al. [6] use a supervised neural 

network to predict short-term voltage stability and achieve high prediction rate. 

Kanirajan and Kumar [93] use AI to conduct classification of power quality 

events. Their proposed supervised AI method achieves high accuracy in the 

classification of power quality events. However, these methods [6], [93] are 

passive. It can only solve the power quality problems after the occurrence. This 

type of passive method could still cause damage to the power networks.  
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 Quan et al. [94] use PSO to optimise supervised neural network’s 

parameters to predict short-term load and wind power. Bai et al. [95] use 

supervised AI to predict next-day power quality events for a wind farm. It uses 

trend analysis approach and decision support method to perform power quality 

prediction. Although supervised learning usually achieves high performance in 

short-term or application with stationary data, its data labelling cost is expensive 

and time-consuming [96]. Furthermore, the accuracy of supervised AI in a non-

stationary data application could drop drastically due to the incomplete dataset 

used during the training stage. This weakness can be solved by providing 

complete data to train the AI. Nevertheless, labelled data are usually inadequate 

[96]. 

 Unsupervised learning AI is introduced to solve data labelling issue 

where it is able to cluster data without prior knowledge [97]. It is trained by 

observing the input data [98]. Due to the absence of the desired output, the 

weight of the nodes is altered according to the cluster of the node. Despite the 

advantages of unsupervised learning, Tscherepanow et al. [99] find that off-line 

learning approach is insufficient to achieve high performance because the 

behaviour of non-stationary data such as the weather data in PV system is 

inconsistent and they are not collectively exhaustive [99]. To overcome these 

issues, incremental online learning or active learning is used. Active learning is 

a type of learning method where it learns in a real-time manner. Although the 

active learning method seems to be a perfect learning methodology, it could 
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neglect to learn useful data [100]. This is due to the stability-plasticity dilemma 

where AI is unable to differentiate which type of data should be learned or 

forgotten [101].  

2.4.1 Incremental Unsupervised Learning Algorithm 

 In machine learning, data clustering is usually used for unsupervised 

learning. Kohenon [15] develop the SOM, which maps input data into a 

topological structure. It is also well-known for decreasing high dimensional data 

to low dimensional data. From several findings [97], [102], constraints of the 

SOM are its predefined structure and size. These limitations yield a poor result 

for the SOM in the incremental learning task. To overcome the constraints, 

Growing Neural Gas (GNG) [103] which is based on Competitive Hebbian 

Learning (CHL) [104] and neural gas [105], is proposed by Fritzk. However, 

this algorithm suffers from noise and stability-plasticity dilemma. Incremental 

Growing Neural Gas (IGNG) was introduced by Prudent and Ennaji [102] to 

solve the stability-plasticity dilemma. It is a situation to learn significant data 

and yet remain stable to previously learnt input. From the results, IGNG 

outperforms GNG in terms of the number of iteration cycle and accuracy. 

However, Hebboul, Hacini, and Hachouf [97] claim that IGNG is unsuitable to 

be applied in a noisy environment as IGNG is unable to separate small 

overlapped clusters and perform noise elimination. 
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 Shen and Hasegawa [106] introduce the Self-Organizing Incremental 

Neural Network (SOINN) to solve the noise issue. It adopts GNG to build the 

network. In addition, SOINN is a two-layered structure which makes it different 

to other clustering networks. The neuron’s learning rate decays as the number 

of neuron activation increases. As a result, a stable network is achieved. The 

weaknesses of the SOINN are the algorithm requires eight parameters to be 

determined a priori and its two-layer structure is unable to perform online 

learning efficiently [8],[97]. In addition, Hebboul, Hacini, and Hachouf [97] 

claim that the SOINN has a tendency to delete useful information. Shen and 

Hasegawa [8] improve SOINN to the E-SOINN. Unlike SOINN, the E-SOINN 

has a one-layer structure only which smoothens the online learning task. In 

addition, it reduces a priori parameters from eight to four and a denoising 

function is added to the E-SOINN. Table 2 summarises the advantages and 

disadvantages of existing clustering techniques. From the table, it is found that 

the E-SOINN is the most outstanding algorithm among the listed unsupervised 

learning algorithms because it can carry out incremental learning with the least 

parameters that are required to be determined a priori.
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Table 2: Advantages and Disadvantages of Existing Clustering Techniques 

Ref. Algorithm Advantage Disadvantage 

[15] Self-Organizing Map 1. Decreasing multidimensional into two dimensional 

2. Map input data into topological structure 

1. Pre-defined structure and size 

[103] Growing Neural Gas 1. It does not require a pre-defined structure and size 1. Suffer from noise 

2. Permanently increasing from number of node 

[102] Incremental Growing Neural 

Gas 

1. It is able to perform incremental task 1. Adaptive threshold 

2. Unable to separate cluster in low density overlapping 

3. Suffer from noise 

[106] Self-Organizing Incremental 

Neural Network 

1. It is able to perform incremental task 

2. Noise elimination is included 

 

1. Eight parameters have to be determined a priori 

2. Unable to perform online learning efficiently 

3. Have the tendency to delete useful information 

[8] Enhanced Self-Organizing 

Incremental Neural Network 

1. Smoothen online learning task 

 

1. Five parameters (as in the E-SOINN with associate 

memory function) are required to be determined a priori 

2. Sequence of data affects the results 

3. Not usable for time-series data 
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2.4.2 E-SOINN 

The E-SOINN is found to be useful in processing online non-stationary task 

while clustering sufficient number of classes. Similar to the SOM, it preserves 

the topological structure of input data. One of the major differences between the 

SOM and the E-SOINN is the E-SOINN is introduced for online/active learning.  

 The E-SOINN technique is built on GNG and CHL method. It initialises 

node set A to contain two nodes with weight vectors as the first two input. It then 

initialises connection set C to establish linkage edge for the first two input. The 

new input data ℰ is inputted to the E-SOINN, where the input data ℰ is a subset 

of real coordinate space of n dimensions Rn. 

 It searches for the nearest node a1 and the second nearest node a2 by 

Equation (1) and Equation (2), respectively, where WA is the weight vectors of 

node set A. If the Euclidean distance between new input data ℰ and the nearest 

node a1 or second nearest node a2 is greater than similarity threshold Ta1 (when 

the winner node has neighbour node) or Ta2 (when the winner node has no 

neighbour node), a new node is created for the input signal. This new node is 

added to the node set A and a new input is fed into the E-SOINN. Threshold T 

is calculated by using Equation (3) when the node has neighbour node or 

Equation (4) when the node has no neighbour node. 
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𝑎1 = arg 𝑚𝑖𝑛𝑎∈𝐴‖ℰ − 𝑊𝐴‖  (1) 

𝑎2 = arg 𝑚𝑖𝑛𝑎∈𝐴\|𝑎1|‖ℰ − 𝑊𝐴‖  (2) 

𝑇𝑎1 =
𝑚𝑎𝑥
𝑗 ∈ 𝐴‖𝑊𝑖 − 𝑊𝑗‖   

(3) 

𝑇𝑎2 =
𝑚𝑖𝑛

𝑗 ∈ 𝐴
‖𝑊𝑖 − 𝑊𝑗‖  

(4) 

 If the minimum Euclidean distance between input data ℰ and the nearest 

node a1 or second nearest node a2 is smaller than any similarity threshold, the 

new input data merges into the winner node and age of edges that linked with 

the winner node increments by 1. Next, it uses three rules to determine the 

connection between nodes which are as follow: 1) connect the two nodes with 

an edge if the winner or second winner is a new node. 2) Connect the two nodes 

with an edge if the winner and second winner belong to the same subclass. 3) If 

the winner and second winner belong to difference subclass and Equation (5) or 

Equation (6) is satisfied, connect the two nodes, and combine subclasses Z and 

Y, where h is density of node, 𝛼 is a parameter that belongs to [0,1] which can 

be calculated by using the threshold function as in Equation (9) and Zmax and 

Ymax are the nodes that have a local maximum density within subclass Z and 

subclass Y, respectively. Otherwise, do not connect the two nodes, and remove 

the connection if a connection exists. If there is an edge between nearest node 

a1 and second nearest node a2, refreshes the age of edge to 0. The density of the 
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node h is updated by Equation (7), where N is total number of input signal, 𝜆 is 

number of input signal during one learning period and 𝑑̅𝑖 is mean distance of 

node i from its neighbour nodes j which can be obtained by Equation (8). The 

activation number of winner node Ma1 is incremented by 1 as in Equation (10). 

The weight vectors of the winner node Wa1 and its direct topological neighbours 

Wi are updated according to Equation (11) and Equation (12), respectively. For 

the edges with age which is greater than agemax, that particular edge is removed.  

min(ℎ𝑤𝑖𝑛𝑛𝑒𝑟, ℎ𝑠𝑒𝑐𝑜𝑛𝑑 𝑤𝑖𝑛𝑛𝑒𝑟) > 𝛼𝑍𝑍𝑚𝑎𝑥  (5) 

min(ℎ𝑤𝑖𝑛𝑛𝑒𝑟, ℎ𝑠𝑒𝑐𝑜𝑛𝑑 𝑤𝑖𝑛𝑛𝑒𝑟) > 𝛼𝑍𝑍𝑚𝑎𝑥 (6) 

ℎ𝑖 =
1

𝑁
∑ (∑

1

(1+𝑑̅𝑖)2
𝜆
𝑘=1  ) ,𝑁

𝑗=1    (7) 

𝑑̅𝑖 =
1

𝑚
∑‖𝑊𝑖 − 𝑊𝑗‖

𝑚

𝑗=1

 
(8) 

 

𝛼𝑍 {
0.0   
0.5   
1.0    

𝑖𝑓 2.0 𝑚𝑒𝑎𝑛𝑍  ≥  𝑍𝑚𝑎𝑥

𝑖𝑓 3.0 𝑚𝑒𝑎𝑛𝑍  ≥  𝑍𝑚𝑎𝑥  > 2.0 𝑚𝑒𝑎𝑛𝑍

𝑖𝑓 𝑍𝑚𝑎𝑥  > 3.0 𝑚𝑒𝑎𝑛𝑍

 

(9) 

𝑀𝑎1(𝑡 + 1) = 𝑀𝑎1(𝑡) + 1  
(10) 

𝑊𝑎1 =
1

𝑡
(𝑀𝑎1)(ℰ − 𝑊𝑎1) 

(11) 

𝑊𝑖 =
1

100𝑡
(𝑀𝑖)(ℰ − 𝑊𝑖) 

(12) 
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 When the number of input data is an integer multiple of parameter calls 

lamda, the E-SOINN begins to denoise. It updates the subclass label of every 

node. Next, it deletes nodes resulting from noise as follows: 1) For all nodes in 

node set A, if node a has two neighbours and Equation (13) is met, where 𝑐1is 

the first denoising factor and 𝑁𝐴 is the total number of nodes in the node set A, 

then remove the node a. 2) For all nodes in node set A, if node a has a neighbour 

and Equation (14) is met, where 𝑐2is the second denoising factor, then remove 

node a. 3) For all nodes in node set A, if node a has no neighbour, then remove 

node a. New input data is inputted to the E-SOINN after the denoising step. 

ha < c1 ∑
hj

NA

𝑁𝐴
j=1   (13) 

ℎ𝑎 < 𝑐2 ∑
ℎ𝑗

𝑁𝐴

𝑁𝐴
𝑗=1   (14) 

 Although the E-SOINN has denoising factor, it is found that the E-

SOINN has data overlapping issue which is caused by the adaptive similarity 

threshold. Data overlapping issue is a scenario where different characteristics 

data fall into the same node. The similarity threshold is a parameter to decide 

the insertion of a new node. If the first two nodes to the E-SOINN have a large 

difference with each other, the adaptive similarity threshold assigns a large 

similarity threshold value to both nodes. Thus, upcoming nodes that have 

different characteristic might be categorised wrongly as they fall into a large 

radius of the first and second node. This can be visualised as in Figure 3.  
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Node A Node B

Irrelevant Node C

Irrelevant Node D

Irrelevant Node E

Irrelevant Node F

Large Similarity Threshold

 

Figure 3: Illustration of Large Similarity Threshold Problem in E-SOINN 

 Node A and Node B are the first two nodes in the E-SOINN network. 

Even though the upcoming nodes C, D, E and F have different characteristics 

with node A and node B (because they are far away from node A and B), these 

nodes are unable to form their own clusters as they have smaller similarity 

threshold values compared with node A and node B. Although the E-SOINN is 

able to reform a new node due to this type of error, it takes time for this type of 

error to be identified which is unsuitable to be used in an online time-series 

prediction engine. Moreover, the adaptive similarity threshold is found to be 

unsuitable to be used as an online time-series prediction engine due to data 

overlapping. In addition, this algorithm is capable to deal with independent and 

identically distributed (IID) data only. Therefore, it is not suitable for the field 
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of application in this research work because the prediction engine has to deal 

with time-series data. In consequence, a novel unsupervised time-series active 

learning AI prediction engine is developed in this research work.  

2.4.3 SOINN-DTW 

Since the SOINN and E-SOINN are unable to perform time-series task, Okada, 

Hasegawa and Nishida [13] propose two time-series SOINN which are Self 

Organising Incremental Neural Network Dynamic Time Warping (SOINN-

DTW) and Hidden Markov Based Self Organising Incremental Neural Network 

(HBSOINN) to achieve time-series learning. In [13], SOINN-DTW is used for 

phoneme classification and HBSOINN is used for gestures classification.  

 In SOINN-DTW, number of classes in the training data needs to be 

determined and data needs to be labelled prior to the training. A standard data 

P* of the template model is selected among training data that belong to each 

class. The P* is calculated by Equation (15). 

𝑃∗  = arg 𝑚𝑖𝑛𝑃𝑚 {∑ 𝐷(𝑃𝑚, 𝑃𝑛)𝑁
𝑛=1 } ({𝑃𝑛, 𝑃𝑚} ∈ 𝐶) 

  

(15) 

where  𝑃𝑚, 𝑃𝑛 denote training data that belong to class C, 𝐷(𝑃𝑚, 𝑃𝑛) is the global 

distance that is calculated by DTW. Data that has the shortest distance with other 

training data from the same class is selected as P*. Then, each P* and respective 

training data undergo DTW to determine the optimal warping path. The training 
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data that have the optimal warping path with the P* is input into the SOINN. 

The topological structure of the training data is then learned by the SOINN.  

SOINN-DTW performs time-series learning by pre-processing the training data 

prior to SOINN. The drawback of this algorithm is that DTW requires data to be 

labelled and hence SOINN-DTW is not a fully unsupervised incremental 

learning algorithm. 

2.4.4 HBSOINN 

In HBSOINN, Hidden Markov Model (HMM) is used to reduce the number of 

dimensions of the time-series data to map the variable length sequences to 

vectors of a fixed dimension [13]. The HBSOINN uses the output probability 

element B within the HMM to feed into the SOINN algorithm to achieve 

dimension reduction. Firstly, the training data is labelled. Then, each class of 

training data is trained by the HMM to obtain the HMM parameters which 

consist of initial probability 𝜋 , transition probability A, and the Gaussian 

component B. The B has a mean 𝜇 and a covariance 𝜎2. To prevent the curse of 

dimensionality, only the mean vector 𝜇 is used as input to the SOINN.  

 Other than dimension reduction, HBSOINN includes a random sampling 

function to the SOINN. When the Euclidean distance between input data and 

winner node is greater than the similarity threshold, a random sample is 

generated from the HMM. This is because existing nodes are different from 
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input data. Input data has a high possibility to be an unknown pattern. Thus, 

HMM generates a vector that is similar to the input data for learning purpose. 

 Similar to SOINN-DTW, HBSOINN achieves time-series learning with 

SOINN by pre-processing training data using HMM algorithm. HBSOINN also 

requires data labelling prior to the learning stage and this makes it not a fully 

unsupervised incremental learning algorithm.  

  



 Chapter 2 – Literature Review 

50 

 

2.5 Summary 

To conclude, the highly intermittent output power of PV system creates power 

fluctuation events. This event could introduce several types of power quality 

events to the power networks such as voltage flicker, frequency fluctuation, and 

voltage sag. This phenomenon limits the penetration of the PV system to the 

power networks as the reliability of the PV system is low.  

 Next, this chapter reviews the current state-of-the-art mitigation methods 

on alleviating the power fluctuation event that is caused by PV grid-tied system. 

The BESS is found to be the most appropriate method to mitigate power 

fluctuation event as it can mitigate power fluctuation event actively. However, 

existing mitigation methods [2]–[5] assume the availability of an accurate and 

reliable prediction engine is coupled with the BESS, which is unrealistic.  

 Thirdly, the current state-of-the-art of PV system prediction engine is 

reviewed. Among the four different types of prediction engine, AI technology is 

the most suitable technique to be used in this research work due to its ultra-short 

forecast horizon, as power fluctuation event is calculated in one-minute basis.  

 Lastly, this chapter discusses on the use of AI in power networks. Since 

weather data is inconsistent and not collectively exhaustive, active unsupervised 

learning AI is selected for this research work. This is because active 

unsupervised learning AI learns without target data and in a real-time manner. 
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Among the unsupervised learning AI, the E-SOINN can smoothen online 

learning task. In addition, DTW and HMM techniques are integrated into the E-

SOINN to enable the E-SOINN to achieve time-series learning. However, both 

DTW and HMM techniques are supervised learning AI algorithms. 
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Chapter 3  Time-Series Self-Organizing Incremental 

Neural Network (TS-SOINN) 

This chapter describes in detail about the developed TS-SOINN algorithm. This 

algorithm is the first time-series fully unsupervised SOINN algorithm. This is 

achieved by modifying the conventional E-SOINN algorithm with a novel 

memory layer and a weighted tapped delay line. It does not need any supervised 

pre-processing prior to the incremental learning as in SOINN-DTW [13] and 

HBSOINN [13]. The TS-SOINN is also designed to solve the adaptive threshold 

problem in the conventional E-SOINN by using a fixed threshold. Unlike other 

incremental SOM models such as E-SOINN [8], IGNG [102], GNG [103], and 

SOINN [106], the TS-SOINN algorithm uses competitive learning as in the 

SOM network to identify the best matching unite to update the network in a 

continuous manner. Therefore, it omits the step of creating an edge in between 

nodes.  

 An associate memory function is developed in the TS-SOINN to enable 

time-series prediction. It is done by combining multiple dimensions data 𝑎𝑡 and 

previous data points, n into an input array 𝑋𝑖 as in Equation (16).  

𝑋𝑖 = [𝑎𝑡|𝑎𝑡−1| … |𝑎𝑡−𝑛], 𝑓𝑜𝑟 𝑖 = 1,2, …  (16) 
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 Since the input array contains current and previous values, it creates a 

memory layer to the unsupervised TS-SOINN. This allows the TS-SOINN to 

establish the relationship of current value to previous values.  

Figure 4 and Equation (17) show the mechanism of associate memory to 

perform prediction without a target data. In this example, n = 4. The recent 

observation Xcurrent is compared with the neuron Xi in the TS-SOINN network. 

Note that, the recent 4 observations from Xcurrent are compared with the 4 

previous points in neuron Xi. The neuron Xi which has the shortest Euclidean 

distance with Xcurrent is the winner node and the data point a(t) (as highlighted in  

Figure 4) from the winner node is the predicted output.   

n = 4      

Xcurrent a(t) a(t-1) a(t-2) a(t-n-1) a(t-4) 
 ↖ ↖ ↖ ↖  

Xi a(t) a(t-1) a(t-2) a(t-n-1) a(t-4) 
 

Figure 4: Associate Memory Prediction Mechanism 

              

𝑋𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = [𝑎𝑡|𝑎𝑡−1| … |𝑎𝑡−𝑛−1] 

𝑋𝑖 = [𝑎𝑡−1|𝑎𝑡−2| … |𝑎𝑡−𝑛], 𝑓𝑜𝑟 𝑖 = 1,2, … 

𝑠 = arg min‖𝑋𝑖 − 𝑋𝑐𝑢𝑟𝑟𝑒𝑛𝑡‖ , 𝑓𝑜𝑟 𝑖 = 1,2, …   

(17) 

where s is the index of the winner node.  

 Although the associate memory function creates a memory layer for the 

TS-SOINN, it is found that the associate memory function is insufficient to 
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predict time-series data accurately. It is because the difference of current values, 

X current and output nodes in each data point carry the same weightage. According 

to Bishop [107], past observation has a relatively smaller impact to the next state 

prediction compared to the recent observation. A novel weighted tapped delay 

line is proposed to address this problem. It is a function to assign different 

weightage to input data in each data point. Since recent observation has a bigger 

impact on the predicted value, a higher weightage is assigned to the recent 

observation and vice versa. The weighted tapped delay line function is as shown 

in Equation (18). 

𝑋𝑖 = [𝑎𝑡 × (𝑛 + 1)|𝑎𝑡−1 × (𝑛)|𝑎𝑡−2 × (𝑛 − 1)| … |𝑎𝑡−𝑛 × 1] 
  

(18) 

For example, if ten previous data points are included in the input array, the 

current input data, at is multiplied with 11. 

 For the TS-SOINN algorithm, every node contains four variables which 

are similarity threshold value 𝑡ℎ, age, number of activation M, and weight vector 

W. Age of each node is incremented by 1 during merging of a node and the node 

that exceeds maximum age is removed to reduce the burden of the network. 

Three-dimensional data which include irradiance, temperature and output power 

are the input to the network. These data are selected because variances in 

irradiance and temperature cause an impact on the output power. They are 

collected and cascaded with other data point to form an input delay array 𝑋 and 
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together with the weighted tapped delay line function, the input array 𝑋𝑖  is 

shown in Equation (18). 

 After the first input data is formed, the node set A is initialised where the 

first node’s weight vector WA1 is generated from the first input data 𝑋1. New 

input data Xi is fed into the network for learning in a real-time manner. The 

network searches node set A to determine the index of winner node S1 which is 

obtained from the minimum Euclidean distance of the input data with the node 

in set A as shown in Equation (19). Equation (20) shows the minimum Euclidean 

distance of the winner node to the testing data. The minimum Euclidean distance 

𝐷𝑗  is used as a criterion whether a new insertion is required to the network. If 𝐷𝑗  

is greater than the similarity threshold 𝑡ℎ as in Equation (21), a new node is 

formed. Otherwise, the input data is merged into the winner node. The age, 

weight vector and number of activation are updated according to Equation (22).  

𝑆1 = arg min‖𝑋𝑖 − 𝑊𝑗‖ , (∀𝑗) (19) 

𝐷𝑗 = min‖𝑋𝑖 − 𝑊𝑗‖ , (∀𝑗)  (20) 

𝐷𝑗 > 𝑡ℎ → 𝐴 = 𝐴 ∪ 𝑋𝑖,  𝑎𝑔𝑒𝑥𝑖
= 1, 𝑀𝑥𝑖

= 1,

 𝑊𝑋𝑖
=  𝑋𝑖,     𝑓𝑜𝑟 𝑖 = 1,2, …  

(21) 
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𝐷𝑗 < 𝑡ℎ →  𝑎𝑔𝑒𝑠1
= 1 , 𝑀𝑠1

= 𝑀𝑠1
+ 1,

𝑎𝑔𝑒𝑗 = 𝑎𝑔𝑒𝑗 + 1 (𝐴\{𝑆1}, 𝑗 ∈ 𝐴),

𝑊𝑆1
= 𝑊𝑆1

+ [
1

𝑀𝑆1

× (𝑋𝑖 − 𝑊𝑆1
)] 

(22) 

 

 Next, the network removes nodes with an age greater than the predefined 

maximum age as in Equation (23). It is used to remove nodes that are idle for a 

long period as these nodes burden the network. The network is repeated from 

Equation (19) to Equation (23) for the next epoch. 

 𝑎𝑔𝑒𝑗 > 𝑎𝑔𝑒𝑑𝑒𝑎𝑑  → 𝐴 = 𝐴/𝑗    (𝑗 ∈ 𝐴) (23) 

 After two learning epochs, the initial network is formed, and the 

prediction of output power begins. In this research work, it predicts output power 

and subsequently the power fluctuation events. To predict the output power, 

Equation (17) is used. The winner node which has the highest similarity with the 

recent observation, Xcurrent contains the predicted output information (predicted 

irradiance, predicted ambient temperature and predicted PV output power), only 

the predicted PV output power will be used for power fluctuation events 

prediction.  

 Since the weighted tapped delay line is implemented into the TS-SOINN, 

the predicted data, 𝑎𝑡 need to be divided by n+1 as in Equation (24) because it 

is multiplied by n+1 as in Equation (18). TS-SOINN updates the network when 
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there is a new input and predicts the next state value subsequently. The learning 

flowchart, prediction mechanism and diagram of TS-SOINN are show in Figure 

5, Figure 6 and Figure 7, respectively.             

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐷𝑎𝑡𝑎, 𝑎𝑡 =
𝑊𝑆1

(𝑡=1)

𝑛+1
  

(24) 
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Figure 5: Learning Flowchart of the TS-SOINN 
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Figure 6: Prediction Mechanism of the TS-SOINN 
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Figure 7: Time-Series Self Organizing Incremental Neural Network
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 If the difference of the predicted output power within a minute is more 

than 10% of the rated PV system, the TS-SOINN algorithm predicts a power 

fluctuation event. The mitigation engine is then switched on for a short period 

of time (𝑇𝑎𝑐𝑡𝑖𝑣𝑒) to alleviate the power fluctuation events. It will be switched off 

when there is no event predicted. By doing so, the usage time of the BESS is 

reduced as compared to [2]–[4], [16] which switch on for an hour. The impact 

and selection of 𝑇𝑎𝑐𝑡𝑖𝑣𝑒 to the prediction performance are further discussed in 

Chapter 6.1.1. 

 Lastly, the unknown parameters are discussed. There are three unknown 

parameters in the TS-SOINN to be determined which are the similarity threshold 

th, the maximum age agedead, and total previous data points n. These parameters 

are determined through experiment to obtain the optimum values. Selection of 

these parameters will be discussed in detail in Chapter 6.1.1. 
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3.1 Summary 

To conclude, an associate memory function is introduced to the TS-SOINN to 

enable active unsupervised learning algorithm for time-series prediction. A 

novel weighted tapped delay line is then proposed to assign higher weightage to 

the recent observation and vice versa. This could help the learning by 

emphasizing on the recent observation. Then, the detail mathematic model of 

TS-SOINN in learning and predicting is elaborated. Lastly, Tactive concept is 

introduced to reduce switch on time of BESS. 
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Chapter 4  Intelligent Real-Time Power Management 

System (PMS) 

This section describes an intelligent real-time PMS that focuses on smoothing 

intermittent behaviour of the PV grid-tied system. With the aid of the intelligent 

real-time PMS, the PV system supplies its maximum available power to the grid 

and the BESS behaves as an ancillary device to dispatch the power deficit in 

order to smooth power fluctuation events. The intelligent real-time PMS is made 

up of two engines, which are a prediction engine using the developed TS-SOINN 

algorithm and a mitigation engine which made up of a rule-based controller and 

a BESS. The schematic diagram of the developed system is shown in Figure 8.
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Figure 8: Block Diagram of the Developed Intelligent Real-Time Power Management System 
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 When a power fluctuation event is predicted by the TS-SOINN algorithm, 

the mitigation engine is activated. The amount of energy to be dispatched by the 

BESS 𝑃𝐵𝐸𝑆𝑆,𝑟𝑒𝑓 is then determined. Insufficient or excessive electrical energy 

dispatched to the grid system could worsen the power fluctuation scenario. 

Therefore, a reliable controller that is used to assign charge and discharge rate 

of the BESS and to maintain SOC, is needed to smooth the power fluctuation 

events. The power management module in this research work uses a rule-based 

controller and it is to satisfy two objectives which are to smooth output power 

and maintain SOC of the BESS in between 30% and 100%. Here, the desired 

power to the PCC 𝑃𝑃𝐶𝐶,𝑟𝑒𝑓 is used as an ancillary power reference. 𝑃𝑃𝐶𝐶,𝑟𝑒𝑓 is 

used instead of 𝑃𝐵𝐸𝑆𝑆,𝑟𝑒𝑓 because it is easier to explain in terms of smoothing 

intermittent power as power fluctuation events occur at the PCC. 𝑃𝐵𝐸𝑆𝑆,𝑟𝑒𝑓 can 

be obtained from Equation (25). 

𝑃𝐵𝐸𝑆𝑆,𝑟𝑒𝑓(𝑡) = 𝑃𝑃𝐶𝐶,𝑟𝑒𝑓(𝑡) − 𝑃𝑃𝑉(𝑡)  (25) 

where PPV is actual PV output power  

 Smoothing of power fluctuation is achieved by regulating the current 

state of power at the PCC to be equivalent to the previous state of PV power. 

This can be found in Equation (26). 

𝑃𝑃𝐶𝐶,𝑟𝑒𝑓(𝑡) = 𝑃𝑃𝑉(𝑡 − 1)   (26) 
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 Equation (26) is used as the primary equation to smooth the power 

fluctuation. This equation ensures that 𝑃𝑃𝐶𝐶,𝑟𝑒𝑓(𝑡) closely behaves as 𝑃𝑃𝑉(𝑡) to 

reduce stress on the BESS. In addition, a short update time Tupdate is required to 

ensure the 𝑃𝑃𝐶𝐶,𝑟𝑒𝑓(𝑡) closely behaves as the 𝑃𝑃𝑉(𝑡). Next, the power deficit of 

𝑃𝑃𝐶𝐶,𝑟𝑒𝑓(𝑡) and 𝑃𝑃𝑉(𝑡) will be supplied or absorbed by the BESS to smooth the 

output power. The following conditions are used to form the first rule in the 

developed controller: 

𝑊ℎ𝑖𝑙𝑒 𝑀𝑖𝑡𝑖𝑔𝑎𝑡𝑖𝑜𝑛 𝐸𝑛𝑔𝑖𝑛𝑒 𝑖𝑠 𝑂𝑁: 

𝑃𝑃𝐶𝐶,𝑟𝑒𝑓(𝑡) −  𝑃𝑃𝑉(𝑡) > 𝑇ℎ𝑚  →   𝑃𝑃𝐶𝐶,𝑟𝑒𝑓(𝑡 + 1)

= 𝑃𝑃𝐶𝐶,𝑟𝑒𝑓(𝑡) − 𝑇ℎ𝑚 

 
 

 

(27) 

𝑃𝑃𝐶𝐶,𝑟𝑒𝑓(𝑡) −  𝑃𝑃𝑉(𝑡) < 𝑇ℎ𝑚  →  𝑃𝑃𝐶𝐶,𝑟𝑒𝑓(𝑡 + 1)

= 𝑃𝑃𝐶𝐶,𝑟𝑒𝑓(𝑡) + 𝑇ℎ𝑚 

 
 

(28) 

−𝑇ℎ𝑚 < 𝑃𝑃𝐶𝐶,𝑟𝑒𝑓(𝑡) −  𝑃𝑃𝑉(𝑡) < 𝑇ℎ𝑚  

→   𝑃𝑃𝐶𝐶,𝑟𝑒𝑓(𝑡 + 1) = 𝑃𝑃𝐶𝐶,𝑟𝑒𝑓(𝑡) 

(29) 

𝑊ℎ𝑖𝑙𝑒 𝑀𝑖𝑡𝑖𝑔𝑎𝑡𝑖𝑜𝑛 𝐸𝑛𝑔𝑖𝑛𝑒 𝑖𝑠 𝑂𝐹𝐹:  

𝑃𝑃𝐶𝐶,𝑟𝑒𝑓(𝑡) = 𝑃𝑃𝑉(𝑡)   (30) 



 Chapter 4 –Intelligent Real-Time PMS 

66 

 

where 𝑇ℎ𝑚 is a limiting threshold. The limiting threshold can be in a range from 

1% to 10% of the rated capacity of the PV system. This is to ensure output power 

at the PCC fluctuates within 10% of rated capacity per minute. From Equation 

(27) and Equation (28), while 𝑃𝑃𝐶𝐶,𝑟𝑒𝑓(𝑡) is greater than 𝑃𝑃𝑉(𝑡) by the limiting 

threshold, it reduces the next state level, 𝑃𝑃𝐶𝐶,𝑟𝑒𝑓(𝑡 + 1)  by the limiting 

threshold and vice versa. Next, the 𝑃𝑃𝐶𝐶,𝑟𝑒𝑓  remains same if the predicted power 

difference is within the limiting threshold as in Equation (29). When the 

mitigation engine is not turned on, the 𝑃𝑃𝐶𝐶  varies according to 𝑃𝑃𝑉  as in 

Equation (30).  

 In general, battery does not tolerate deep discharge and full discharge as 

these operations cause permanent damage to the battery [9]. Hence, battery is 

recommended to operate within a healthy SOC of 30% to 100%. The second 

rule of the proposed controller is to maintain the SOC within this range and it is 

achieved following the rules below: 

30% ≤ 𝑆𝑂𝐶 ≤ 100% →  𝑃𝑃𝐶𝐶,𝑟𝑒𝑓(𝑡) = 𝑃𝑃𝐶𝐶,𝑟𝑒𝑓(𝑡) (31) 

𝑆𝑂𝐶 < 30% ∩ 𝑃𝑃𝐶𝐶,𝑟𝑒𝑓(𝑡) > 𝑃𝑃𝑉(𝑡) →  𝑃𝑃𝐶𝐶,𝑟𝑒𝑓(𝑡)

= 𝑃𝑃𝐶𝐶,𝑟𝑒𝑓(𝑡) 

 

(32) 

𝑆𝑂𝐶 > 100% ∩  𝑃𝑃𝐶𝐶,𝑟𝑒𝑓(𝑡) > 𝑃𝑃𝑉(𝑡) →  𝑃𝑃𝐶𝐶,𝑟𝑒𝑓(𝑡)

= 𝑃𝑃𝐶𝐶,𝑟𝑒𝑓(𝑡) 

 

(33) 
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𝑆𝑂𝐶 < 30% ∩ 𝑃𝑃𝐶𝐶,𝑟𝑒𝑓(𝑡) > 𝑃𝑃𝑉(𝑡) →  𝑃𝑃𝐶𝐶,𝑟𝑒𝑓(𝑡)

= 𝑃𝑃𝑉(𝑡) 

 

 

(34) 

𝑆𝑂𝐶 > 100% ∩  𝑃𝑃𝐶𝐶,𝑟𝑒𝑓(𝑡) < 𝑃𝑃𝑉(𝑡) →  𝑃𝑃𝐶𝐶,𝑟𝑒𝑓(𝑡)

= 𝑃𝑃𝑉(𝑡) 

(35) 

 From Equation (31), the BESS operates as usual under the control of the 

first rule while the SOC of the battery is within the healthy range. When the SOC 

falls below 30% and the 𝑃𝑃𝐶𝐶,𝑟𝑒𝑓 is less than the 𝑃𝑃𝑉 as in Equation (32), this 

scenario indicates the BESS operates as a charging system. Hence, the BESS 

operates according to the 𝑃𝑃𝐶𝐶,𝑟𝑒𝑓. When the SOC is more than 100% and the 

𝑃𝑃𝐶𝐶,𝑟𝑒𝑓 is more than the 𝑃𝑃𝑉 as in Equation (33), the PMS allows the operation 

as the BESS discharges power to the grid. However, when the SOC is less than 

30% and the 𝑃𝑃𝐶𝐶,𝑟𝑒𝑓 is more than the 𝑃𝑃𝑉 as in Equation (34), or when the SOC 

is more than 100% and the 𝑃𝑃𝐶𝐶,𝑟𝑒𝑓 is less than the 𝑃𝑃𝑉 as in Equation (35), the 

𝑃𝑃𝐶𝐶,𝑟𝑒𝑓 is set to be the same as the 𝑃𝑃𝑉. In consequence, the BESS does not 

discharge or charge when the SOC is less than 30% and more than 100%, 

respectively.  

 From Equation (27) to Equation (35), it concludes that while the BESS 

does not reach the SOC limitation, 𝑃𝑃𝐶𝐶,𝑟𝑒𝑓 is able to smooth the intermittent 

behaviour of the PV system. Since the BESS system does not need to operate 

for 24 hours, it can be recharged to 65% to 70% of SOC at night to prepare for 
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next day operation. These range of SOC are chosen as it is the mean value of the 

healthy SOC range (30% and 100%).               

 Lastly, the two unknown parameters of the PMS are discussed which are 

the update time Tupdate and the limiting threshold 𝑇ℎ𝑚. These two parameters are 

determined experimentally to find out the optimised values. Seven days of 

irradiance and temperature data are used to generate actual power fluctuation 

events due to the PV grid-tied system. To identify the optimum update time 

Tupdate for the rule-based controller, it is tested from 1 minute to 10 minutes with 

increment steps of 30 seconds. The update time that is longer than 10 minutes is 

not shown in the research work because they are tested and found to have a lower 

performance than 10 minutes. Next, the optimal value for the limiting threshold, 

𝑇ℎ𝑚 is discussed. It has to be set within 1% to 10% of the rated capacity of the 

PV system. A large limiting threshold increases the stress in the BESS and 

fluctuation rate of the PV system. In contrast, a small limiting threshold 

increases the stress in the controller. The results of the optimum update time 

Tupdate and the optimum limiting threshold 𝑇ℎ𝑚 are shown in Chapter 6.2.1. 

  



 Chapter 4 –Intelligent Real-Time PMS 

69 

 

4.1 Summary 

To conclude, with the aid of the intelligent real-time PMS, the PV system can 

supply maximum available power to the power networks, and the BESS behaves 

as an ancillary device to dispatch the power deficit to the power distribution 

system to smooth power fluctuation events. The intelligent real-time PMS is 

composed of a prediction engine (TS-SOINN) and a mitigation engine which 

made up of a rule-based controller and a BESS. The mitigation engine will be 

switched on for Tactive when the prediction engine predicts a power fluctuation 

event. The detailed mathematical equations of the intelligent real-time PMS are 

shown in this chapter.  
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Chapter 5 Real-time Implementation of Power 

Management System  

This section describes the methodology to connect the developed intelligent 

prediction and mitigation system to real-life data. Firstly, a PV grid-tied system 

is modelled in the PSCAD environment. Secondly, a data acquisition system is 

built to collect irradiance and temperature data as input data to the modelled PV 

system. Thirdly, a laboratory scale PV grid-tied system in the UNM solar cabin 

is constructed. It is used to validate the proposed TS-SOINN’s simulation result. 

Lastly, real-time implementation of the intelligent real-time PMS is presented.  

5.1 PV Grid-Tied System 

The modelled PV grid-tied system consists of a PV source, a maximum power 

point tracker, an inverter, a high pass filter, transformer and a grid. A 270 kWp 

PV system is modelled in the PSCAD environment.  

 To demonstrate that the PMS with the aid of the TS-SOINN can 

compensate the most critical environmental factors, a 54 kWh BESS is modelled 

[108] in Power System Computer Aided Design (PSCAD). The BESS model 

[108] is composed of a controlled voltage source in series with a resistance, a 

capacitor and a bidirectional inverter. A bidirectional inverter is chosen for the 

BESS to carry out charge and discharge operations. 
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 The basic power flow equation as shown in Equation (36) is used to 

control the inverter’s output power, where 𝑉1 is the voltage from the BESS’s 

inverter, 𝑉2 is the voltage from the grid, 𝑋12 is the impedance between two ports 

and 𝛿 is the power angle between two ports. To obtain adequate power deficit to 

prevent power fluctuation events, the desired PCC power 𝑃𝑃𝐶𝐶,𝑟𝑒𝑓 is compared 

with the actual PCC output power 𝑃𝑃𝐶𝐶 to yield an error. The error is passed to 

a proportional integral (PI) controller to generate a power angle for the inverter 

to supply sufficient power deficit to the grid. 

𝑃12 =
𝑉1𝑉2

𝑋12
sin 𝛿 

(36) 
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5.2 Data Acquisition System 

Irradiance and temperature are collected and fed into the modelled PV system to 

simulate the real-life event. Three devices are required to construct this data 

acquisition system which are SP Lite 2 pyranometer, a WXT520 weather station, 

and a data logger. The data logger transmits and saves the data to a computer via 

LabVIEW.  Figure 9 shows the flowchart of the data acquisition system.  

Vaisala WXT 
520 Weather 

Station

SP-lite Pyranometer

Nokeval 7470   
Serial to Analog 

Converter

National 
Instrument 
Datalogger

Labview 
Data Acquisition

 

Figure 9: Flowchart of the Data Acquisition System 

The features of the data acquisition system include: 

 CompactDAQ 9178: Compact DAQ 9178 is a rugged DAQ platform 

that integrates connectivity and signal conditioning into modular I/O 

for direct interaction with any sensor or signal [109]. It allows eight 

modules to be installed into the chassis. The NI 9209 which is a 16 

channels voltage module and the NI 9203 which is an 8 channels 

current module are integrated into the CompactDAQ 9178 data logger 

[110], [111]. Therefore, this CompactDAQ is able to collect data in 
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terms of voltage and current as well. Figure 10 shows the National 

Instruments CompactDAQ 9178 data logger system. 

 

Figure 10: Data Logger 

 SP Lite2 Pyranometer: Figure 11 shows the SP Lite 2 Pyranometer. 

SP Lite2 pyranometer is designed for PV module monitoring [112]. 

It can be used in all weather conditions and measures irradiance 

received from the entire hemisphere. It uses a photodiode detector to 

create an output voltage that is proportional to the incoming radiance. 

Its sensitivity is up to 60 µV/W/m². However, a special wiring is 

required due to its floating voltage source. Two bias resistors, R 

which are within range of 10kΩ to 100kΩ are used to provide a direct 

current (DC) path from the instrumentation amplifier inputs to the 

instrumentation amplifier ground. These ranges are selected because 

it allows the source to float with respect to the measurement 

reference (data logger’s ground) and not load the signal source. The 
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bias resistor is connected between each input and the data logger’s 

ground as in Figure 12. 

 

Figure 11: SP Lite 2 Pyranometer 

 

 

Figure 12: Wiring Schematic of Floating Source 

 Vaisala WXT 520 & Nokeval 7470: WXT 520 weather transmitter 

is a flexible, integrated building block for weather applications. It 

senses the weather parameters and returns in a serial form. Thus, a 

serial to analogue converter is required to convert the collected data 

into the analogue format and send to the data logger. A Nokeval 7470 

is able to convert four parameters from serial format to analogue 

format. The output of the Nokeval 7470 is determined through 

Mekuwin software. Figure 13 shows the WXT 520 weather 
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transmitter and Nokeval 7470 analog converter at the left and right, 

respectively.  

 

Figure 13: WXT 520 Weather Transmitter (left) & Nokeval 7470 Analog 

Converter (Right) 

 After the data logger acquires the weather data, it transmits and saves the 

data to a computer via LABVIEW. The collected data is used to simulate real-

life events for a PV grid-tied system in PSCAD to verify the reliability and 

accuracy of the TS-SOINN in prediction.  
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5.3 Laboratory-Scale PV grid-tied system 

 A laboratory-scale PV grid-tied system is constructed in this research to 

validate the reliability and accuracy of the TS-SOINN experimentally. The PV 

grid-tied system is installed in the solar cabin of the UNM. It is constructed with 

a 1.2 kWp PV panel, 3.6 kW ABB single-phase inverter as in Figure 14 and 

main switchboard (MSB) of the solar cabin. The output power of the PV system 

is collected by using a voltage and current transducers. These transducers collect 

the current and voltage data and send to the data acquisition system.  

 
Figure 14: ABB 3.6 kW inverter 
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Figure 15: Simplified Electrical Schematic of the PV Grid-Tied System 

 Figure 15 shows the simplified electrical schematic of the PV grid-tied 

system. Two 20 A circuit breaker (CB) are used between the inverter and the 

MSB. These two circuit breakers are used to prevent large current flow into the 

circuit and destroy other electrical appliances. High current rating circuit 

breakers are used because the maximum output power of the inverter is 3.6 kW, 

which is equivalent to 16 A. Thus, 20 A circuit breaker is used in this project. 

Since the inverter outputs high current to the circuit, an industry level 16 A plug 

and socket are used to connect the inverter to the grid.  

 The voltage and current transducers are installed at the PCC. The voltage 

and current data are multiplied to obtain the output power of the 1.2 kWp PV 

system. Next, the output power is grouped with the instantaneous irradiance and 

temperature data to form input data to MATLAB. It is because these input data 

are used to validate the accuracy of the TS-SOINN experimentally, where the 

TS-SOINN is modelled in MATLAB environment. 
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5.4 Real-time Implementation of the PMS 

 A real-time data acquisition system is constructed to achieve real-time 

implementation. The MATLAB is used as an agent to command the data logger, 

the TS-SOINN, and the mitigation engine. A custom block is designed for the 

purpose of communication between MATLAB and PSCAD. It is written in 

FORTRAN environment. After retrieval of real-time environmental data, these 

data are fed into the modelled PV micro-grid system to generate real-time 

outputs. Next, these outputs are returned to MATLAB for training and prediction 

of the TS-SOINN. If a power fluctuation event is predicted, the MATLAB 

switches on the mitigation engine and returns the power reference to the BESS’s 

inverter. Otherwise, the BESS is not turned on. Therefore, an intelligent real-

time PMS is constructed to mitigate power fluctuation events. Figure 16 shows 

the flowchart of the real-time implementation. 
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Figure 16: Flowchart of Real-Time Implementation of PMS 
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5.5 Summary 

To conclude, this chapter presents the methodology to connect the developed 

intelligent real-time PMS to real-life data. A PV grid-tied system with BESS is 

modelled in the PSCAD environment to demonstrate the developed PMS is 

capable to mitigate power fluctuation events effectively. Next, it shows the data 

acquisition system that is used in this research work. The data acquisition system 

collects real-life environmental data and these data are used as input to the 

modelled PV grid-tied system in PSCAD. Therefore, the developed system can 

be tested with actual real-life data. A laboratory-scale PV grid-tied system is 

then shown in this chapter. It is used to test the performance of TS-SOINN 

experimentally. Lastly, this chapter describes the real-time implementation of 

the developed PMS. The data acquisition system sends collected data into 

MATLAB, and the MATLAB serves as an agent to communicate with PSCAD 

to train the TS-SOINN and sends a signal to the BESS to mitigate power 

fluctuation events.  
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Chapter 6 Results and Discussions 

The first section of this chapter presents the performance of the proposed TS-

SOINN. It discusses the optimal parameter values, for the total previous data 

points, maximum age, and similarity threshold for the TS-SOINN and value for 

𝑇𝑎𝑐𝑡𝑖𝑣𝑒 for all tested AI algorithms. It then shows the performance of the TS-

SOINN in predicting power fluctuation events in real-time simulation. The 

performance of the TS-SOINN is compared with E-SOINN [8], HBSOINN [13], 

SOINN-DTW [13], NARX [14], and SOM [15]. The simulation results of the 

TS-SOINN are then validated experimentally.  

 The second section discusses the performance of the developed 

intelligent real-time PMS. Performance of the PMS is measured by reduction of 

power fluctuation events and variation in output energy to the grid. The 

performance of the developed PMS is then compared with the hourly rule-based 

controller [2], and the dynamic ramp rate controller [16].  
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6.1 TS-SOINN 

This section evaluates the prediction accuracy of the TS-SOINN. Firstly, the 

optimal parameter values for the TS-SOINN are obtained. Then its accuracy in 

predicting the output power and power fluctuation events are evaluated. Its 

performance is compared with E-SOINN [8], HBSOINN [13], SOINN-DTW 

[13], NARX [14], and SOM [15]. 

 Power fluctuation occurs when the output power fluctuates more than 10% 

of the rated capacity of the PV system within a minute. Thus, the power 

fluctuation threshold value is 27 kW. In other words, when the difference in 

output power within a minute is more than 27 kW, a power fluctuation event 

occurs.  

6.1.1 Optimisation of Parameters 

The weighted tapped delay line (the total previous data points in the memory 

layer n), maximum age agedead,, similarity threshold th, and the value for 𝑇𝑎𝑐𝑡𝑖𝑣𝑒 

are the parameters to be determined. Seven days of irradiance and temperature 

data are used as input to the modelled PV grid-tied system to obtain the output 

power. To identify the most optimum total previous data points n, values from 

2 to 20 are tested against the prediction. Values that are greater than 20 are not 

discussed in this research work because they are tested and found to have similar 

or lower performance than 20. Prediction rate refers to the total percentage of 
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power fluctuation events correctly predicted by the TS-SOINN as in Equation 

(37).  

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐸𝑣𝑒𝑛𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝐸𝑣𝑒𝑛𝑡𝑠
× 100% 

(37) 

          Figure 17 shows the prediction rate against n of value 2, 3, 5, 8, 10 and 

11. These data points are shown because they have significant differences in the 

results. It can be seen that, total previous data point of 2 and 3 show a relatively 

lower prediction rate compared to others. Although total previous data point of 

5 achieves the highest prediction rate in the first three days, it drops to less than 

95% in the later days. The total previous data point of 8 achieves 98% prediction 

rate on the first day and it maintains above 96% of prediction rate for the next 6 

days. Total previous data point of 8 is selected as it achieves a relatively higher 

and more stable prediction rate as compared to the other values in the 7 days. 
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Figure 17: Percentage of Predicted Power Fluctuation Events for Different Total Previous Data Point 
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 Next, the optimal parameter value for the maximum age agedead, is 

evaluated. A high maximum age increases the network’s size and carries a 

higher volume of data. This will increase the computational complexity of the 

network. Thus, the maximum age, is tested on a log scale of 5, 50, 500, 5000, 

and 50000. Figure 18 shows the prediction accuracy against different maximum 

ages. It is found that, maximum age, of 50 achieves the highest prediction rate. 

Also, when the maximum age increases to more than 500, the prediction rate 

decreases. Thus, the optimal maximum age should be chosen within the range 

of 50 to 500. From this range, 50 is chosen because it achieves the same 

prediction rate with other higher maximum ages. 

 

Figure 18: Percentage of Predicted Power Fluctuation Events for Different Maximum Age 
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unable to create sufficient node to represent different output power patterns. In 

contrast, a small value of similarity threshold causes TS-SOINN to generate 

many nodes which could burden the network. The smallest similarity threshold 

of the E-SOINN [8] is used as a reference value. Then, variation is made on the 

reference value to obtain the most optimum similarity threshold value for the 

TS-SOINN. For the E-SOINN, the smallest similarity threshold is 27. To 

identify the most optimum similarity threshold, values from 22 to 33 are tested. 

Other values are not shown because they have lower performance than the tested 

values. Figure 19 shows the percentage of predicted power fluctuation events 

using different similarity threshold values. It shows that the similar threshold 

value of 25 achieves the highest prediction rate. It is found that when the 

similarity threshold further increases, the prediction accuracy decreases. 

 

Figure 19: Percentage of Predicted Power Fluctuation Events versus Different Similarity 
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 Lastly, the value for 𝑇𝑎𝑐𝑡𝑖𝑣𝑒is discussed. Figure 20 shows the impact of 

implementing the 𝑇𝑎𝑐𝑡𝑖𝑣𝑒 into the TS-SOINN for seven days. It can be observed 

that, when the 𝑇𝑎𝑐𝑡𝑖𝑣𝑒 is not implemented into the TS-SOINN (0 mins), the TS-

SOINN predicts 55.10% of power fluctuation events. The predicted power 

fluctuation events increase to 91.69% while the 𝑇𝑎𝑐𝑡𝑖𝑣𝑒  is 5 minutes. The 

predicted power fluctuation events reach its peak at 65 minutes, which predicts 

97.96% of power fluctuation events. Although this period predicts the most 

power fluctuation events, it has to maintain the switched-on time for the longest 

which increases the usage of the BESS. 𝑇𝑎𝑐𝑡𝑖𝑣𝑒 of 30 minutes switched on period 

is selected for this research work.  

 

Figure 20: Percentage of Predicted Power Fluctuation Events for Different Periods 
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6.1.2 Simulation Analysis 

The prediction performances of the TS-SOINN is thoroughly evaluated in this 

section. The prediction performance of the TS-SOINN is compared with five 

algorithms which are E-SOINN [8], HBSOINN [13], SOINN-DTW [13], 

NARX [14], and SOM [15]. A 20 by 20 network size are assigned to the SOM. 

For the NARX, it has 30 hidden neurons, 8 input delays and 8 feedback delays. 

For the E-SOINN, it has a maximum age of 50, lamda value of 50, 𝑐1 and 𝑐2 

denoising factor values of 10 and 100, respectively. For the SOINN-DTW and 

HBSOINN, they have 40 initial classes. All the parameter values discussed 

above for SOM, NARX, SOINN-DTW, and HBSOINN networks are optimal 

values as they achieve the highest performance in terms of MAE and root mean 

square error (RMSE). 1-week data is used for training and a different 1-week 

data is used for testing in this process. To enable time-series prediction in E-

SOINN and SOM, the associate memory layer is implemented into them. Total 

of 11 previous data points (n = 11) are assigned to both networks. In addition, 

all tested algorithms have the same value of 𝑇𝑎𝑐𝑡𝑖𝑣𝑒. 

 Similar to the TS-SOINN, irradiance, ambient temperature, and the 

output power are used as the input to the E-SOINN, SOINN-DTW, HBSOINN, 

SOM and NARX networks. Since the SOM and NARX networks learn in a non-

incremental manner, both networks are trained with one month (16.7%), two 

months (33.3%), three months (50%) and four months (66.7%) data and tested 
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separately with five months, four months, three months and two months data, 

respectively. This analyses the impacts of training data on the prediction 

accuracy of SOM and NARX. Since the SOINN-DTW and HBSOINN are semi-

supervised algorithms, they are trained with a month data. Then, they are tested 

with five months data. Compared to the non-incremental learning algorithms, 

the TS-SOINN and E-SOINN are tested with half a year data because these 

algorithms can learn and predict in real-time.   

 Firstly, the prediction accuracy is evaluated in terms of MAE, RMSE, R-

square (R2) and forecast skill (s). These four performance metrics are used 

commonly in assessing the performance of PV power forecasting techniques 

[11].  The MAE measures the difference between the forecast and actual value 

whereas the RMSE finds the standard deviation of the prediction error. 

Compared to the MAE, it amplifies large errors. The R2 measures how well the 

data fits on to the regression line. The formulae for the MAE, RMSE and R2 are 

listed in Equation (38), Equation (39), and Equation (40), respectively. Other 

than these three conventional performance metrics, s which is introduced by 

Coimbra and Kleissl [92] is used. It is a method to normalise forecast accuracy. 

It is done by comparing RMSE of different algorithms to the RMSE of the 

persistence model as in Equation (41). Persistence model is the simplest 

prediction engine and used as a benchmark for output power prediction. The s 

favours large positive value as it indicates the performance of the selected 

methodology achieves better performance than the persistence model. 
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𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖 − 𝑥𝑖|

𝑛

𝑖=1
× 100% 

(38) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖 − 𝑥𝑖)2

𝑛

𝑖=1
× 100% 

(39) 

𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑥𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖 − 𝑦̅)2𝑛
𝑖=1

 
(40) 

𝑠 = 1 −
𝑅𝑀𝑆𝐸𝑚𝑒𝑡ℎ𝑜𝑑 𝑋

𝑅𝑀𝑆𝐸𝑃𝑒𝑟𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑒 𝑚𝑜𝑑𝑒𝑙
 

(41) 

where 𝑦𝑖 is the actual output power, 𝑥𝑖 is the predicted output power and 𝑛 in 

the total number of predicted output power. Other than evaluating the prediction 

accuracy, the prediction rate and false acceptance rate for power fluctuation 

events prediction are tested. False acceptance rate is the total percentage of 

wrongly predicted events as shown in Equation (42).  

𝐹𝑎𝑙𝑠𝑒 𝐴𝑐𝑐𝑒𝑝𝑡𝑎𝑛𝑐𝑒 𝑅𝑎𝑡𝑒

=
𝐹𝑎𝑙𝑠𝑒 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐸𝑣𝑒𝑛𝑡𝑠

𝑇𝑜𝑡𝑎𝑙  𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐸𝑣𝑒𝑛𝑡𝑠
× 100% 

(42) 

 Table 3 summarises the performance of six algorithms in predicting 

output power of the PV system. From MAE column, both non-incremental 

learning algorithms, NARX and SOM show decreasing trends in MAE with 

increasing size of training data, which decreases from 3.08% to 2.89% for the 

NARX, and from 3.92% to 3.58% for the SOM. The MAE of HBSOINN and 

SOINN-DTW are 2.97% and 3.48%, respectively. These values are slightly 



 Chapter 6 – Results & Discussions 

91 

 

lower than the best NARX performance. Although both NARX and SOM 

networks mark their lowest MAE with 4 months of training data, the active 

learning algorithms, TS-SOINN and E-SOINN perform better than the best 

performance from SOM and NARX, which are 1.56% and 1.70%, respectively. 

Among the tested algorithms, the TS-SOINN has the lowest MAE value.  

 Similar results are shown in terms of RMSE. Both NARX and SOM 

show a decreasing trend in RMSE with increasing size of training data, which 

decreases from 5.83% to 5.59% for the NARX, and from 8.12% to 7.84% for 

the SOM. The RMSE of HB-SOINN and SOINN-DTW are 5.75% and 6.42%, 

respectively. These results are slightly higher than the best NARX network. The 

RMSE of TS-SOINN and E-SOINN are 3.75% and 4.23%, respectively. The 

TS-SOINN outperforms E-SOINN, HBSOINN, SOINN-DTW, NARX, and 

SOM by 0.48%, 2.00%, 2.67%, 1.84% and 4.09%, respectively. 

 For the R2, it improves with increasing training data’s size for the NARX 

and SOM, which increases from 0.85 to 0.90 for the NARX, and from 0.70 to 

0.78 for the SOM. The TS-SOINN achieves the highest R2 value which is 0.95 

follows by the E-SOINN, HBSOINN, and SOINN-DTW which are 0.93, 0.87, 

and 0.82, respectively. The TS-SOINN outperforms E-SOINN, HBSOINN, 

SOINN-DTW, NARX and SOM by 0.02, 0.08, 0.13, 0.05 and 0.17, respectively. 

The RMSE of the persistence model is 5.80% and it is used to determine the s. 

Among the tested algorithms, the TS-SOINN has the best forecast skill, which 
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is 0.35, followed by the E-SOINN, the NARX, the HBSOINN, the SOINN-

DTW, and the SOM which are 0.27, 0.04, 0.01, -0.11, and -0.35, respectively. 

The negative value of the SOM shows that its performance worse than the 

persistence model.  

Table 3: Summary of Tested Algorithms Performances in Predicting Output Power 

Algorithm Training Data MAE (%) RMSE (%) R2 s 

TS-SOINN Active Learning 1.56 3.75 0.95 0.35 

E-SOINN Active Learning 1.70 4.23 0.93 0.27 

HBSOINN Semi-Supervised 2.97 5.75 0.87 0.01 

SOINN-DTW Semi-Supervised 3.48 6.42 0.82 -0.11 

NARX 

4 Months 

2.89 5.59 0.90 0.04 

SOM 3.58 7.84 0.78 -0.35 

NARX 

3 Months 

2.94 5.72 0.88 0.01 

SOM 3.84 7.96 0.76 -0.37 

NARX 

2 Months 

3.02 5.78 0.87 0.00 

SOM 3.89 8.05 0.73 -0.39 

NARX 

1 Month 

3.08 5.83 0.85 -0.01 

SOM 3.92 8.12 0.70 -0.40 
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 Figure 21, Figure 22 and Figure 23 show the graphs of actual output 

power versus forecast power and actual occurrence of power fluctuation events 

for three different days. The data is plotted in 30 seconds resolution and power 

fluctuation events are assigned to 0.5 value of the right axis. From the graphs, 

the output power of the PV system fluctuates largely from 0900 (as in Figure 21) 

to 1700 (as in Figure 22), instead of increasing steadily in the afternoon and 

reducing slowly in the evening. This phenomenon occurs due to the rapid 

moving speed of cloud in Malaysia. In addition, the graphs show that the actual 

power fluctuation events could occur anytime between 0900 and 1700. This 

indicates that the occurrence of power fluctuation events are highly random and 

occurrence of the next events could be 2 hours later. This phenomenon shows 

that switching on the BESS for daytime is a waste of energy as there might be a 

long period without power fluctuation events. Besides, the maximum error 

between the actual and predicted PV power is 0.07MW which is about 30% of 

rated capacity. Although the maximum prediction error is large, it does not affect 

the PMS performance as the predicted values are not being used as a power 

reference to the PMS.  The predicted value is used to determine whether a power 

fluctuation event would occur for the Tupdate period and then the BESS controller 

would instructs the PMS to switch on if there is a predicted power fluctuation 

event.
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Figure 21: Graph of Actual Power versus Predicted Power (Blue) with Actual Power Fluctuation Events (Brown Dot) in Day 5 
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Figure 22: Graph of Actual Power versus Predicted Power (Blue) with Actual Power Fluctuation Events (Brown Dot) in Day 18 
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Figure 23: Graph of Actual Power versus Predicted Power (Blue) with Actual Power Fluctuation Events (Brown Dot) in Day 53
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 Table 4 shows the performance metrics of all tested algorithms in 

predicting output power of the PV system during the power fluctuation events’ 

instance. From the table, the predicted power fluctuation events (next instance) 

for the TS-SOINN, E-SOINN, HBSOINN, SOINN-DTW, NARX and SOM are 

55.10%, 39.07%, 34.28%, 30.61%, 28.65% and 6.71%, respectively. The low 

prediction rate does not reflect the high prediction accuracy as per achieved in 

Table 3. This is because the prediction algorithms can predict accurately most 

of the time of the day when the irradiance is relatively constant. This can be seen 

from Figure 21, Figure 22, and Figure 23 where the predicted output power 

follows the trend of the actual output power. However, it is not exactly the same 

with the actual output power especially when it is highly fluctuating. This is one 

of the most challenging tasks when the forecast horizon is in very short-term. 

This is further illustrated in Table 4 where the performance metrics during power 

fluctuation events’ instances have relatively higher MAE, RMSE, and lower R2 

values than the ones obtained in half a year data. To solve this problem, the 

BESS is switched on for  𝑇𝑎𝑐𝑡𝑖𝑣𝑒 when an event is predicted by the prediction 

engine. Its prediction rate with respect to  𝑇𝑎𝑐𝑡𝑖𝑣𝑒 with 7 days of data is presented 

in Figure 18. The prediction rate of the developed TS-SOINN is improved to 

91.69% when 𝑇𝑎𝑐𝑡𝑖𝑣𝑒 is 5 minutes and 97.81% when 𝑇𝑎𝑐𝑡𝑖𝑣𝑒 is 30 minutes. 
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Table 4: Summary of Performances Metrics during Power Fluctuation Events' Instance 

  MAE (%) RMSE (%) R2 Predicted Power Fluctuation Events (%) 

TS-SOINN 5.82 9.42 0.90  55.10 

E-SOINN 7.74 12.12 0.85  39.07 

HBSOINN 8.76 13.57 0.80 34.28 

SOINN-DTW 10.31 14.18 0.73 30.61 

NARX 11.08 15.51 0.69  28.65 

SOM 12.79 17.87 0.62  6.71 

 Next, the prediction rate of power fluctuation events is discussed. Figure 

24 shows the methodology of power fluctuation prediction with 30 minutes of 

𝑇𝑎𝑐𝑡𝑖𝑣𝑒. In the figure, the actual events are assigned to level 0.5 with red dots and 

prediction range are assigned to level 1 with blue line. The number within the 

blue rectangle are numbers of predicted power fluctuation events, whereas 

numbers above the blue rectangle are numbers of unpredicted power fluctuation 

events. There are 157 predicted power fluctuation events predicted and 1 

unpredicted power fluctuation events as shown in Figure 24. This shows that the 

developed TS-SOINN can predict 99.4% of power fluctuation events in a day.  
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Figure 24: Methodology of Power Fluctuation Prediction where the Red Dots are the Actual 

Power Fluctuation Events and the Blue Line is the Predicted Range. Red Dots that Fall into 

the Blue Rectangle is the Early Predicted Event, whereas the Red Dots that Fall Outside the 

Blue Line is the Unpredicted Event. 

 Table 5 shows the prediction rate of power fluctuation events for all 

tested algorithms. From the table, the prediction rate of the developed TS-

SOINN and E-SOINN range from 96.23% to 98.48% and 91.25% to 93.75%, 

respectively throughout the six months duration. The TS-SOINN and E-SOINN 

have a mean value of 97.46% and 92.69%, respectively. The HBSOINN and 

SOINN-DTW predict 81.66% and 74.72% of power fluctuation events, 

respectively. The NARX and SOM networks which are trained with 4 months 

data predict 84.25% and 68.00% power fluctuation events, respectively. Both 

NARX and SOM predict 79.87% and 62.71% of power fluctuation events with 

a month of training data. These scenarios show that increasing sizes of training 

data increases the performance of the non-incremental algorithms in predicting 

power fluctuation events. From the table, the developed TS-SOINN outperforms 
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other tested algorithms, E-SOINN, HBSOINN, SOINN-DTW, NARX and SOM 

by 4.77%, 15.80%, 22.74% 13.21% and 29.46%, respectively in terms of 

predicted power fluctuation events.  

 Table 6 shows the false acceptance rate of the power fluctuation events 

for all tested algorithms. The developed TS-SOINN and E-SOINN performance 

range from 9.58% to 12.23%, and from 11.9% to 12.8%, respectively. The TS-

SOINN and E-SOINN have a mean value of 10.51% and 12.39%, respectively. 

The HBSOINN and SOINN-DTW have a mean false acceptance rate of 13.52% 

and 11.35%, respectively. For the best NARX and SOM networks have a mean 

false acceptance rate of 13.16% and 12.44%, respectively. The TS-SOINN 

outperforms the E-SOINN, HBSOINN, SOINN-DTW, NARX, and SOM by 

1.88%, 3.01%, 0.84%, 2.65%, and 1.93%, respectively. The results in these two 

tables show that the developed TS-SOINN has the highest prediction rate of 

power fluctuation events, and lower false acceptance rate than the E-SOINN, 

HBSOINN, SOINN-DTW, NARX and SOM networks.  

 Table 7 shows the summary of prediction performances from all tested 

algorithms. Performance metrics such as MAE, RMSE, R2 and s are collected 

from the best performing network. The prediction rate and false acceptance rate 

are collected from the mean value. From the results, the TS-SOINN outperforms 

E-SOINN, HBSOINN, SOINN-DTW, NARX, and SOM in terms of MAE, 

RMSE, R2, s, predicted power fluctuation events and false acceptance rate. 
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Table 5: Prediction Rate of Power Fluctuation Events for Tested Algorithms 

  Training Data Jul  Aug Sept Oct Nov  Dec Mean 

TS-SOINN Active Learning 96.23% 96.96% 98.11% 97.67% 98.48% 97.30% 97.46% 

E-SOINN Active Learning 91.25% 92.67% 91.56% 93.23% 93.68% 93.75% 92.69% 

HBSOINN Semi-Supervised - 81.27% 81.33% 81.62% 82.59% 81.47% 81.66% 

SOINN-DTW Semi-Supervised - 74.58% 75.21% 74.64% 74.39% 74.76% 74.72% 

NARX 
4 Months 

- - - - 85.30% 83.20% 84.25% 

SOM - - - - 67.35% 68.65% 68.00% 

NARX 
3 Months 

- - - 84.26% 82.35% 81.25% 82.62% 

SOM - - - 65.82% 65.81% 66.69% 66.11% 

NARX 
2 Months 

- - 80.19% 81.68% 80.57% 80.96% 80.85% 

SOM - - 63.89% 62.34% 63.12% 64.25% 63.40% 

NARX 
1 Month 

- 79.52% 79.85% 79.82% 80.02% 80.16% 79.87% 

SOM - 62.30% 61.65% 63.25% 62.78% 63.59% 62.71% 
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Table 6: False Acceptance Rate for Tested Algorithms 

  Training Data Jul Aug Sept Oct Nov  Dec Mean 

TS-SOINN Active Learning 12.23% 11.87% 10.19% 9.60% 9.59% 9.58% 10.51% 

E-SOINN Active Learning 12.46% 12.84% 12.65% 12.40% 11.90% 12.10% 12.39% 

HBSOINN Semi-Supervised - 13.27% 13.52% 13.89% 13.43% 13.48% 13.52% 

SOINN-DTW Semi-Supervised - 11.43% 11.27% 11.52% 11.17% 11.38% 11.35% 

NARX 
4 Months 

- - - - 13.46% 12.85% 13.16% 

SOM - - - - 12.20% 12.68% 12.44% 

NARX 
3 Months 

- - - 13.39% 13.54% 13.28% 13.40% 

SOM - - - 10.87% 12.25% 11.98% 11.70% 

NARX 
2 Months 

- - 13.28% 13.69% 14.02% 13.69% 13.67% 

SOM - - 10.36% 11.85% 12.04% 11.46% 11.43% 

NARX 
1 Month 

- 13.38% 13.57% 14.38% 14.82% 14.38% 14.11% 

SOM - 10.85% 11.57% 11.38% 10.93% 10.82% 11.11% 
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Table 7: Summary of Prediction Performances for Tested Algorithms 

Algorithm TS-SOINN E-SOINN HBSOINN SOINN-DTW SOM NARX 

MAE (%) 1.56 1.70 2.97 3.48 3.58 2.89 

RMSE (%) 3.75 4.23 5.75 6.42 7.84 5.59 

R2 0.95 0.93 0.87 0.82 0.78 0.90 

s 0.35 0.27 0.01 -0.11 -0.35 0.04 

Prediction Rate of Power Fluctuation Events (%) 97.46 92.69 81.66 74.72 68.00 84.25 

False Acceptance Rate (%) 10.51 12.39 13.52 11.35 12.44 13.16 
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6.1.3 Experimental Analysis 

This section shows the experimental analysis of the proposed TS-SOINN. The 

setup of this experiment is described and shown as in Figure 16. This experiment 

ran on 7th of January 2018 (5.00 P.M) to 7th of February 2018. 

 Compared to the simulation results, the MAE of the experimental result 

is higher by 0.17%. The experimental result of RMSE is higher than the 

simulation result by 0.20%. Figure 25 shows the scatter plot of actual versus 

predicted output power in the experiment. The experimental R2 value is close to 

the simulation result which is 0.92. The s of the experimental result is 0.32 which 

is 0.03 lower than the simulation result. Slight reductions in measurements are 

due to factors that are unable to be considered during simulation such as shading 

from the environment obstacles (building and tree). Thus, these results validate 

the proposed TS-SOINN is applicable in real life.  



 Chapter 6 – Results & Discussions 

105 

 

 

Figure 25: Scatter of Actual Output Power versus Predicted Output Power (Experiment) 

 

 

Table 8: Performance Metrics of TS-SOINN in Simulation and Experiment 

Measurement Simulation Experiment 

MAE (%) 1.56 1.73 

RMSE (%) 3.75 3.95 

R2 0.95 0.92 

s 0.35 0.32 
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 The predicted and actual output power of the PV system are shown in 

Figure 26. From the graph, the output power of the PV system fluctuates largely 

from 1030 to 1500 on the 10th of January 2018. Although the actual output power 

fluctuates largely, the predicted output power follows the actual output power’s 

trend closely. This plot shows that the proposed TS-SOINN predicts the output 

power in real-life accurately.  

 Figure 27 shows the plot of predicted and occurrence of power 

fluctuation events on the 10th of January 2018. From the plot, the TS-SOINN 

predicted the events before its occurrence and all 108 power fluctuation events 

happened on 10th of January 2018 are predicted. Figure 27 also shows a scenario 

where the TS-SOINN predicted a non-existence event.  This can be seen in the 

smaller blue rectangle in Figure 27, as there is no event in the second rectangle. 

This type of early warning is switched off in short time as the TS-SOINN does 

not identify any possible power fluctuation events later. Since the TS-SOINN is 

able to predict and give early prediction warning before the power fluctuation 

events happen, it is able to prevent the power fluctuation events while the ESS 

is available. 
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Figure 26: Graph of Actual Power versus Predicted Power on 10th of January 2018 

Time (HH:MM:SS) 
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Figure 27: Graph of Predicted and Occurrence of Power Fluctuation Events (Experiment) 

 Table 9 shows the performances in predicting power fluctuation events 

during simulation and experiment. From the table, the TS-SOINN predicts 

99.72% of the power fluctuation events in a month during the experiment, which 

is higher than the simulation stage by 2.26%. In addition, the experimental stage 

has a higher false acceptance rate than the simulation stage by 1.48%, which is 

11.99%. Both experimental and simulation stages’ results are very close. 

Therefore, the experimental results validate the simulation results. 

Table 9: Performances in Predicting Power Fluctuation Events  

 Simulation Experiment 

Predicted Power Fluctuation Events (%) 97.46 99.72 

False Acceptance Rate (%) 10.51 11.99 

. 

Time (HH:MM:SS) 
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6.2 Intelligent Real-Time PMS 

This section analyses the performance of the developed intelligent real-time 

PMS. Firstly, the optimised parameter values for the PMS are obtained. Then its 

performance in mitigating the power fluctuation events is evaluated. The 

developed PMS performance is compared with the conventional hourly rule-

based controller [2] and dynamic ramp rate controller [16].  

 The developed PMS, conventional hourly rule-based controller [2] and 

dynamic ramp rate controller [16] are used to control the BESS to dispatch 

ancillary power to the power network to smoothen power fluctuation events. The 

capacity of the battery is set to be 20% rated power of the PV system (54 kWh) 

for all tested PMS. 

6.2.1 Optimisation of Parameters 

The update time Tupdate and limiting threshold 𝑇ℎ𝑚 are the parameters for the 

intelligent PMS to be determined. Seven days of data are used to identify the 

optimum parameters for the developed PMS. Figure 28 shows the percentage of 

mitigated power fluctuation events versus different update times. From the 

figure, it is found that the update time of 2.5 minutes has the highest percentage 

of mitigated power fluctuation events. Thus, 2.5 minutes is selected as the update 

time. 
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Figure 28: Percentage of Mitigated Power Fluctuation Events versus Different Update Times 

 Next, the optimal value for the limiting threshold 𝑇ℎ𝑚  is determined. 

Figure 29 shows the percentage of mitigated power fluctuation events against 

different limiting thresholds. From the figure, 5% of the rated capacity achieves 

the highest mitigation rate. Therefore, limiting threshold 𝑇ℎ𝑚 is set as 5% of the 

rated capacity of the PV system.  

 

Figure 29: Percentage of Mitigated Power Fluctuation Events against Different Limiting 

Thresholds 
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6.2.2 Performance Evaluation 

 Thirty days of real-life irradiance and temperature from 0900 to 1800 are 

fed into the modelled PV system to identify the performance of the mitigation 

engine. The performance of the developed PMS is verified in three stages: 1) the 

performance of the modelled BESS controller, 2) the PV power and the output 

power at the PCC, 3) the developed system is compared with the conventional 

hourly rule-based controller [2] and dynamic ramp rate controller [16] in terms 

of SOC, number of mitigated events, and generate energy at the PV and PCC. 

 The BESS controller is a vital element in this work where it converts 

required energy from DC to alternating current (AC). If the BESS controller is 

unable to operate according to 𝑃𝐵𝐸𝑆𝑆,𝑟𝑒𝑓 , the PMS will be unable to smooth 

power fluctuation events. Figure 30 shows a graph where 𝑃𝑃𝑉  (red dotted) 

overlaps with 𝑃𝑃𝐶𝐶 (blue line) and 𝑃𝑃𝐶𝐶,𝑟𝑒𝑓 (black line). Figure 30 shows that 

although the red dotted fluctuates largely, the blue line increases and decreases 

according to the black dashed line. Thus, it proves that the PI controller is able 

to control the 𝑃𝐵𝐸𝑆𝑆 to output according to the developed PMS.  
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Figure 30: Performance of the BESS Controller 

 Figure 31 shows the output power of the PV system and the PCC power 

for a day. From 0900 to 1030, the output power of the PV system and the PCC 

overlap with each other because the TS-SOINN does not predict any power 

fluctuation events and the PMS does not switch on. After 1030, although the 

output power of the PV system increases or decreases greatly within a short time, 

power at the PCC follows the trend at a slower speed to prevent power 

fluctuation events. This is because the TS-SOINN predicts a power fluctuation 

event, and it switches on the PMS. To further verify the above statement, Figure 

32 shows the zoomed in version of Figure 31, where the red dots are output 

power of the PV system and the blue line is power at the PCC. From Figure 32, 

the red dots fluctuate from 0.14 MW to 0.06 MW from 1323 to 1325. However, 

power at the PCC maintains the fluctuation level within 10% of rated capacity 

which is 0.027 MW. This scenario shows that the developed PMS supplies 

adequate ancillary power to the PCC to reduce fluctuation rate at the PCC.  
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Figure 31: PV Power (Red Dotted) versus PCC Power (Blue Line) 

 
Figure 32: Graph of PCC Power versus PV Power  (Zoomed In) 

  Since the developed intelligent PMS is implemented into the PV grid-

tied system, stability of the system needs to be tested. Figure 33 shows the root 

mean square (RMS) voltage and frequency at the PCC after the developed PMS 

integrates into the PV grid-tied system. From the RMS voltage and frequency 

plots, it can be seen that the voltage is within 0.9 P.U and 1.1 P.U, and frequency 

are within ± 2Hz. Thus, the PV grid-tied system remains stable after 

implementation of the developed intelligent PMS. 
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Figure 33: RMS Voltage (Top) and Frequency (Bottom) at the PCC 

 Table 10 shows the mitigated power fluctuation events by the developed 

PMS. From Table 10, it has a total of 2365 power fluctuation events. When the 

developed PMS is integrated into the PV grid-tied system, the total number of 

events is reduced to 257, which is a reduction of 89.13 %. Unpredicted events 

by the TS-SOINN algorithm and limitation of the BESS to deal with sudden 

large increase and decrease of power in an extremely short time are the reasons 

for the 257 unmitigated events. 

Table 10: Number of Mitigated and Unmitigated Event 

Power Fluctuation Events PV System (Unmitigated) PCC (Mitigated) 

Number of events 2365 257 

Percentage of events (%) 100 10.87 
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 The SOC of the battery is then discussed. Figure 34 shows a day output 

power of the proposed system (top plot) and SOC of the battery (bottom plot). 

From Figure 34, the SOC of the battery maintains in between 30% to 100%. A 

sharp increase or decrease in SOC is caused by a sudden increase or decrease of 

PV power. The short update time (2.5 minutes) reduces the difference between 

the reference power and the actual PV power. Thus, the SOC of the BESS can 

maintain within the permissible range.  

 

Figure 34: Simulation of PV Grid-Tied System with Developed PMS for a Complete Day. Top 

Plot: PCC (blue), PV (red), and Battery (brown) Active Power. Bottom plot: Battery SOC 
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6.2.3 Performance Comparison 

 Performance of the developed PMS is then compared with the 

conventional hourly rule-based controller in [2], and dynamic ramp rate control 

in [16]. Figure 35, Figure 36 and Figure 37 show SOC of BESS in three different 

days which is controlled by the developed PMS, hourly ruled-based controller, 

and ramp rate controller. From the figures, the hourly ruled-based controller 

works within 30% to 100% of SOC. Since the hourly ruled-based controller 

works at the boundary of 30% and 100%, it indicates the power fluctuation 

events that happen within that period are unable to be smoothened. From the 

plots, the developed PMS operates within 50% to 80% of SOC. This shows that 

the developed PMS is able to operate at all time to mitigate power fluctuation 

events as the SOC does not work at the boundary region (30% and 100%).  For 

the ramp-rate controller, it works within 60% and 70% of SOC. The smallest 

SOC operation region is due to the ramp-rate controller is switched on when the 

ramp rate of output power is more than 450Ws-1. 
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Figure 35: SOC of BESS by the Developed PMS, Hourly Rule-Based and Ramp Rate Controller for day 3 
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Figure 36: SOC of BESS by the Developed PMS, Hourly Rule-Based and Ramp Rate Controller for day 8 
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Figure 37: SOC of BESS by the Developed PMS, Hourly Rule-Based and Ramp Rate Controller for day 15
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 Figure 38 shows the fluctuation rate at the PCC by different methods. 

From the figure, 7.3% of the data (a month data with 30 seconds resolution) or 

2365 events exceed 10% of fluctuation level at the PCC. By implementing the 

developed PMS, dynamic ramp rate control and hourly rule-based control, the 

power fluctuation events drop to 0.8%, 3.5% and 4.7%, respectively. The 

detailed performances are summarised in Table 11.  

 

Figure 38: Cumulative Distribution Function Analysis of Ramp Rate at PCC of Original Data 

(blue), Developed PMS (Red), Ramp Rate Method (Orange), and Hourly Control (Purple) 

 From Table 11, the developed PMS mitigates 89.13% of power 

fluctuation events whereas the hourly rule-based controller and the dynamic 

ramp rate control mitigate 35.60% and 52.05% of power fluctuation events, 

respectively. This shows that the developed PMS mitigates the most number of 
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power fluctuation events with a similar rating of BESS. In another word, the 

developed PMS mitigates power fluctuation events with a smaller rating of 

BESS (as hourly rule-based and dynamic ramp rate could mitigate 89.13% 

power fluctuation events with a higher rating of BESS).  This indicates the 

developed PMS reduces the cost to enhance the reliability of PV grid-tied system. 

 The hourly rule-based controller has the lowest performance because it 

dispatches ancillary power in hourly basis. This causes a large difference 

between reference power and actual PV power, and the BESS has to dispatch a 

large amount of ancillary power to smoothen the power fluctuation events. As a 

consequence, the capacity of the BESS reaches its limit and unable to operate. 

The ramp rate controller has a lower performance than the developed PMS 

because the characteristic of PI controller is high in overshoot and settling time, 

but low in steady-state error. Since the ramp rate controller updates the 𝑃𝑃𝐶𝐶,𝑟𝑒𝑓 

at every instance, the varying reference signal has a high possibility to 

experience overshoot from the PI controller. In contrast, the developed PMS 

updates the 𝑃𝑃𝐶𝐶,𝑟𝑒𝑓 (as it updates for every 2.5 minutes) in a lower frequency, 

this reduces the chance of overshooting as it has sufficient time to reach steady-

state. This can be seen from Figure 39 where the PI error of developed system 

within ±0.03 whereas PI error of the ramp rate controller is ±0.12. As a result, 

the ancillary power is unable to behave as the reference signal and causes a lower 

mitigation rate.  
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Figure 39: PI Error for Developed System and Ramp Rate Controller 

 The total energy injected into the grid by different methods is then 

evaluated. Total energy injected to the grid for a day is 476.35 kWh on average. 

This number reduces to 467.42 kWh, 449.36 kWh and 469.01 kWh for the 

developed system, hourly rule-based controller and ramp-rate controller, 

respectively. The reduction of energy is due to the output power of the PV 

system increases in high speed and the BESS has to absorb energy to prevent 

power fluctuation events. From the results, the ramp rate controller outperforms 

the developed system by 0.33%. It is because the ramp rate controller updates 

the reference signal rapidly, whereas the developed system updates the reference 

signal in a lower frequency. However, the developed system reduces the 

possibility of overshooting by the PI controller and outperforms the ramp rate 

controller in terms of mitigated events by 37.08%. The developed system 
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outperforms the hourly control method in terms of mitigated events and loss of 

energy by 53.53% and 3.80%, respectively. 

 To conclude, the developed system mitigates the most power fluctuation 

events (89.13%), with energy losses of 1.87%. It requires 30% of SOC to 

achieve these performances. The hourly rule-based controller mitigates the least 

event which is 35.60%, with energy losses of 5.67%. It also needs to work with 

a larger operation region compared to the developed system which is 70% to 

accomplish these results. These results show that the developed system 

outperforms hourly rule-based controller. Lastly, the ramp rate controller 

reduces 52.05% power fluctuation events with energy losses of 1.54%. It 

requires 10% of SOC operation region to obtain these results. These results show 

that the developed system outperforms the ramp rate controller in terms of 

mitigated events by 37.08%, whereas the ramp rate controller outperforms the 

developed system in terms of energy losses and SOC operation region by 0.33% 

and 20%, respectively. 
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Table 11: Summary of PMS Performances 

Mitigation Method Developed 

System 

Hourly Control 

[2] 

Ramp Rate Control 

[16] 

Number of mitigated events 2108 842 1231 

Total number of events 2365 2365 2365 

Percentage of mitigated 

events (%) 

89.13 35.60 52.05 

Energy from the PV (kWh) 476.35 476.35 476.35 

Energy from the PCC (kWh) 467.42 449.36 469.01 

Energy Loss (%) 1.87 5.67 1.54 

SOC Operation Region  50% - 80% 30%-100% 60%-70% 
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6.3 Summary 

In conclusion, the performance of the TS-SOINN is compared with E-SOINN, 

SOINN-DTW, HBSOINN, SOM, and NARX algorithms in predicting the 

output power of a PV system and subsequently power fluctuation events. Based 

on the results in predicting output power, TS-SOINN outperforms tested 

algorithms in terms of MAE, RMSE, R2 and s. TS-SOINN also has the highest 

prediction rate and lowest false acceptance rate in predicting power fluctuation 

event, which is 97.46% and 10.51%, respectively. These results are validated 

experimentally.  

 Next, the performance of the intelligent real-time PMS is evaluated. The 

performance of the developed PMS is compared with the conventional hourly 

rule-based controller and the dynamic ramp rate controller. Results show that 

the developed PMS mitigates 89.13% of the power fluctuation event which 

outperforms the conventional hourly rule-based controller and the dynamic ramp 

rate controller. 
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Chapter 7 Conclusions 

The research work reported in the thesis dealt with developing an active learning 

classification and prediction engine for a PMS to mitigate power fluctuation 

events in a PV grid-tied system.  

  The research work sought to investigate and solve the research issues 

arising from highly fluctuate and random behaviour of PV output power. When 

the intermittent PV output power has a fluctuation rate of 10% of rated capacity 

within a minute, it is known as a power fluctuation event. A power fluctuation 

event could break the supply and demand of electrical power and create other 

power quality events to the power network such as voltage flicker, frequency 

fluctuation, and voltage sag. Therefore, when the penetration of the PV system 

is high, the adverse impact of power fluctuation is more severe. This 

phenomenon limits the penetration of the PV system to the power networks as 

the reliability of the PV system is low. The main achievement in this research 

work is to enhance the reliability of the PV grid-tied system by integrating an 

intelligent real-time PMS into a PV grid-tied system to mitigate power 

fluctuation event due to PV system. The intelligent real-time PMS is composed 

of an active learning classification and prediction engine, and a mitigation 

engine based on BESS. 
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 The developed TS-SOINN is an active learning classification and 

prediction engine. It takes in irradiance, temperature and PV output power to 

forecast output power and subsequently predicts power fluctuation events in a 

PV grid-tied system. A novel associate memory and a weighted tapped delay 

line are equipped in the TS-SOINN to advance the current incremental 

unsupervised learning algorithm to incremental time-series prediction. Both 

simulation and experimental results showed that the TS-SOINN achieves better 

performance than SOM, NARX, SOINN-DTW, HBSOINN and E-SOINN in 

terms of MAE, RMSE, R2, s, the prediction rate of power fluctuation events and 

false acceptance rate. 

 A mitigation engine based on a BESS with a rule-based controller is then 

developed to supply ancillary power to the grid to smooth power fluctuation 

events. The mitigation engine is switched on when the TS-SOINN predicts 

power fluctuation events. It updates the reference power to the BESS in 2.5 

minutes and then supplies the power deficit to the grid accordingly. 

 A PV grid-tied system is modelled in the PSCAD environment. 

Performance of the developed intelligent real-time PMS is tested and validated 

in this modelled PV micro-grid system. Besides, a laboratory scale PV grid-tied 

system is designed and constructed in the UNM’s Solar Cabin to validate the 

performance of the TS-SOINN algorithm experimentally.  



 Chapter 7 – Conclusion 

128 

 

 By using real-life environment data, the developed TS-SOINN based 

real-time prediction engine predicts power fluctuation events with a high 

prediction rate of 97.46%. The high prediction rate of the TS-SOINN is 

validated experimentally. In addition, results show that the developed PMS 

reduces 89.13% of power fluctuation event with an energy loss of 1.87% and the 

battery’s SOC maintains within 30% to 100%. The developed PMS outperforms 

hourly rule-based controller and the ramp-rate controller by 53.53% and 37.08%, 

respectively in terms of the mitigated power fluctuation events.  
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7.1 Future Works 

During the development of this research work, it is observed that the response 

time is slow in a battery. This can be solved by integrating an ESS which has a 

faster response time such as the supercapacitor. Supercapacitor can mitigate 

power fluctuation events that occur within few seconds with a large amplitude. 

It can also serve as a secondary ESS to smooth the power fluctuation when the 

battery’s SOC is less than 30%. Besides, prediction on other power quality 

events is suggested. Since there are several types of power quality events, it 

would enhance the reliability of the PV system if these power quality events are 

predictable.
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