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Abstract 
 

 

Aberrant global and gene specific DNA methylation has been identified in late onset 

Alzheimer’s disease (LOAD) and has also been linked to its pathology. In addition, 

multiple loci associated with LOAD via genome wide association studies (GWAS) 

studies are being shown to harbour Alzheimer’s disease (AD) associated differential 

methylation in the LOAD brain. One aim of this thesis was to investigate if any 

differential methylation could be identified within the promoter regions of LOAD 

associated loci using leukocyte DNA, both for regions already identified as being 

aberrantly methylated in AD and those that have not been. This included the 

promoter regions of the genes INPP5D, SIRT1, HLA-DRB1/5, SORL1 and PTK2B. Of 

these genes only promoter methylation of INPP5D and SORL1 were identified in LOAD 

blood samples. 

 

Work was also conducted to investigate the promoter methylation status of the 

genes SIRT1, TREM2, ABCA7, MEF2C and PTK2β in sporadic early onset AD samples 

(sEOAD). The aim being to identify if any LOAD associated differential methylation 

also occurs in this other sub-group of AD. No differential methylation was identified 

at the promoter regions of any of these genes in either sEOAD blood (leukocyte) or 

brain (cortex) tissue. However, significant hypomethylation of a CpG site located 

upstream of the MEF2C promoter was identified in the blood of one sEOAD patient, 

potentially representing the presence of an AD associated epi-allele. Interestingly a 

region containing seven CpG sites, located within the RIN3 3’UTR, was also found to 

be hypomethylated in sEOAD leukocyte samples. Both results indicated the 

importance of non-promoter CpG site methylation in AD. 

 

A whole genome bisulphite sequencing (WGBS) study was also conducted to identify 

differential methylation occurring within LOAD at differing sages of disease 

progression. For this cerebellum DNA was used from a moderate (braak stage IV) and 

severe (braak stage VI) patient and data was compared to published control data. This 

experiment identified a significant amount of differentially methylated loci in the 

severe LOAD suffer when compared to the moderate patient sample and twenty two 

genes were identified as being associated with this aberrant methylation.  

I 



Interestingly the majority of differentially methylated cytosines were located within 

non-CpG dincleotides, suggesting a potential role for non-CpG site methylation in 

LOAD. In addition, most differential methylation identified was either downstream of 

the promoter or intragenically located, again suggesting an important role for non-

promoter methylation in AD. 
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1 
 

1. Introduction 
 

 

1.1 What is Alzheimer’s disease? 
 

 

Alzheimer’s disease (AD) is a progressive neurodegenerative disease which leads to 

loss of cognitive function and the development of dementia. It commonly manifests 

as loss of memory with changes in mood and personality and is the most common 

cause of dementia worldwide, causing 60-70% of cases (Qazi et al., 2017). An 

estimated 36 million people are living with dementia worldwide, and this figure is set 

to double every 20 years leading to 115 million new sufferers by 2050. This dramatic 

increase is the result of an ageing population; age being a highly significant risk factor 

for the development of the AD (Bekris et al., 2010). It is concerning that in high income 

countries as few as 20-50% of Alzheimer’s cases are diagnosed, with this figure being 

dramatically reduced in low and middle income countries. Therefore AD represents 

one of the most important health, social and economic crisis facing researchers in the 

21st century (Takahashi et al., 2017). 

 

There are two main types of AD. Both sub-groups share common pathological 

features, making age of onset the defining symptom for the two different types of 

disease (Cacace et al., 2016). Early onset Alzheimer’s disease (EOAD) is the least 

common type of AD, representing around 10% of AD cases. EOAD is defined as 

affecting people under the age of 65 years and 5%–10% of EOAD cases represent a 

type of AD which is inherited in an autosomal dominant manner, with disease 

causation lying in single gene mutations (Antonell et al., 2013, Kunkle et al., 2017, 

Harvey et al., 2003). Mutations in the genes APP, PSEN1 and PSEN2, which all encode 

proteins involved in the amyloid cascade, are the most common causally associated 

mutations (Minati et al., 2009, van der Flier et al., 2011, Cacace et al., 2016). These 

mutations account for 60-70% of inherited EOAD (Loy et al., 2014, Kunkle et al., 2017). 

However most EOAD cases are not explained by genetic mutation and therefore 

represent a type of sporadic disease known as sporadic early onset AD (sEOAD) 

(Jarmolowicz et al., 2015). 

 

In contrast, late onset Alzheimer’s disease (LOAD), also called sporadic Alzheimer’s 

disease (sAD), represents 95% of cases and is commonly defined as affecting people 
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over the age of 65 (Minati et al., 2009). The risk of developing LOAD doubles every 

five years after the age of 65, therefore age is possibly the most significant risk factor 

for LOAD (Ferri et al., 2005). LOAD is not fully explained by genetic variation, therefore 

other mechanisms which either alter gene activity or loss of function for genes which 

link to AD pathogenisis may explain disease susceptibility (Minati et al., 2009). 

 

1.2 Amyloid and tau involvement in AD 
 

 

Pathological features of AD include the deposition of senile plaques and 

neurofibrillary tangles (NFTs) within the brain (Hardy, 2006, Forstl and Kurz, 1999). 

Senile plaques consist of amyloid beta (Aβ) and are deposited outside of cells, while 

NFT contain hyperphosphoryated tau protein and are intracellular (Braak and Braak, 

1991). 

 

1.2.1 Amyloid cascade 
 

 

The amyloid precursor protein (APP) is a transmembrane protein that can be 

processed by two mutually exclusive pathways: the amyloidogenic and non-

amyloidogenic pathway. The first can result in the deposition of the senile plaques 

seen in AD. 

 

In the non-amyloidogenic pathway, APP is cleaved by α-secretase (ADAM10) within 

the Aβ domain, producing an APPα soluble peptide and a c-terminal membrane 

bound APP fragment (CTF). Cleavage by γ-secretase (presenilin) then produces a P3 

fragment, which is degraded, and a cytoplasmic APP intracellular domain (AICD) 

(Haass et al., 2012). 

 

In the amyloidogenic pathway APP is first cleaved by β-secretase (BACE1), also 

producing a membrane bound APP C-terminal fragment (CTF). This is then cleaved by 

γ-secretase to produce an Aβ peptide and also a AICD fragment (Haass et al., 2012) 

(Figure 1.1). Multiple isoforms of Aβ can be produced, depending on the cut site of γ-

secretase, the most common isoforms produced are Aβ(40) and Aβ(42). 

 

Aβ(42) is the most prone to oligomerization and the subsequent formation of plaques 

(El-Agnaf et al., 2000). However it has been shown that the ratio of Aβ(40) and Aβ(42) 

is also important in driving plaque formation (Kuperstein et al., 2010). 
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AICD, which is produced in both the amyloidogenic and non-amyloidogenic pathways 

has been shown to induce degradation of Aβ by acting as a transcription factor which 

drives activation of neprilysin expression. Neprilysin is an Aβ degrading enzyme 

(Pardossi-Piquard et al., 2005). Despite AICD being produced by both processing 

pathways AICD produced in by the amyloidogenic pathway is most likely responsible 

for the majority of nuclear signalling. In this pathway APP is cleaved by β-secretase 

following its endocytosis from the cell surface and localization to the endocytic 

pathway (Rajendran et al., 2006). Whereas α-secretase acts on APP located on the 

cell surface (Sisodia, 1992). Therefore subsequent cleavage by γ-secretase can 

produce AICD localised to the endosomal system or the edge of the cell. AICD located 

in the endosomal system is responsible for the majority of AICD nuclear signalling and 

thus AICD produced during Aβ production drives Aβ degradation (Goodger et al., 

2009). 
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Figure 1.1: Processes involved in plaque formation in AD. A) Non-amyloidogenic 

pathway, APP is cleaved by α-secretase followed by γ-secretase resulting in a P3 

fragment and AICD. B) Amyloidogenic pathway, APP cleavage by β-secretase and γ-

secretase results in the production of Aβ which can result in plaque formation. AICD is 

also produced which activates neprilysin expression, leading to Aβ degradation. Image 

adapted from (Wang et al. 2013) and (Haass and Selkoe, 2007) 
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Aβ plaques are thought to drive AD pathology by disrupting synaptic function, which 

then leads to memory deficits (Beyreuther and Masters, 1995), and eventually causes 

neuronal death (Yankner et al., 1990). Plaques are also thought to cause activation of 

immune cells such as microglia, which results in an immune response causing further 

neuronal damage (Combs, 2009). 

 

The involvement of amyloid in the progression and pathology of AD is supported by 

evidence that genetic mutations of the APP gene and presenilin genes PSEN1 and  

PSEN2, which encode catalytic subunits of γ-secretase resulting in generation of Aβ, 

cause inheritable forms of the disease (Bettens et al., 2013). All three mutations result 

in an increased production of pathogenic Aβ peptide. However sporadic forms of AD 

are not fully explained by genetic mutations alone and while amyloid plaques are a 

pathological feature of this disease many genes and pathways outside of the amyloid 

cascade have been implicated in disease progression. One hypothesis is that Aβ 

deposition is capable of initiating the disease but alone is not sufficient to result in 

AD, instead aberrant Aβ may be an early pathological feature of AD drives further 

perturbation to AD-associated pathways, which then go on to drive disease 

progression (Musiek and Holtzman, 2015). 

 

Intriguingly, Aβ has also been shown to be neuro-protective (Giuffrida et al., 2009). 

Further roles for Aβ have been suggested in the removal of harmful substances; Aβ is 

thought to bind to harmful substances, such as metal ions, and present them to 

macrophages for subsequent removal or destruction (Robinson and Bishop, 2002). Aβ 

is also thought to have an antimicrobial role (Soscia et al., 2010). This suggests that 

Aβ at high physiological concentration is pathogenic but at low concentrations could 

be involved in normal neuronal function and synaptic transmission (Puzzo and 

Arancio, 2013). 

 

1.2.2 Tau and neurofibrillary tangles 
 

 

Intracellular NFTs are made up hyperphosphorylated tau protein, also named 

microtubule associated protein tau (MAPT). Normally hyper-phosphorylated tau acts 

as a microtubule associated protein and is involved in their function and stability. 
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However, in AD tau phosphorylation is increased, leading to its disassociating from 

microtubules followed by aggregation into NFTs. NFTs cause disruption of the 

cytoskeleton followed by neuronal death (Lovestone and Reynolds, 1997). 

 

Evidence suggests that Aβ deposition results in tau phosphorylation, accumulation 

and its deposition at synapses (Bilousova et al., 2016). It can be argued that Aβ causes 

a disruption in oxidative stress and ionic homeostasis which results in increased 

kinase activity (Sorrentino and Bonavita, 2007). Aβ induced increase in oxidative 

stress causes activation of p38 mitogen activated protein kinase (MAPK), a kinase 

responsible for tau phosphorylation (Giraldo et al., 2014). Aβ has also been shown to 

activate other kinases that act on tau, such as glycogen synthase kinase-3 (GSK3), jun-

N-terminal kinase (JNK) and extracellular receptor kinase (ERK) (Lee et al., 2005). 

 

Aβ and tau mediated mechanisms that drive AD pathology have been shown to 

converge at the synapse and it seems likely that Aβ driven toxicity has a role in 

activating tau mediated toxicity in AD. The molecular mechanisms by which Aβ causes 

AD pathology at neuronal synapses are many and diverse, all of which result in 

disruptions in the function of receptors and ultimately the synapse itself (Nisbet et 

al., 2015). One such mechanism is through disruption of the N-methyl-D-aspartate 

receptors (NMDARs), increased Aβ results in a decreased number of these receptors 

at synapses, due to its binding to α7 nicotinic receptors, resulting in retraction of the 

synapse due to spine shrinkage (Nisbet et al., 2015). 

 

Increased Aβ levels at the synapse also results in increase Ca+2 influx by two different 

mechanisms. First, by its binding to lipid rafts which results in a hole within the 

membrane leading to Ca+2 influx (Kawarabayashi et al., 2004, Nisbet et al., 2015). 

Second, excess Aβ can result in extrasynaptic NMDARs being activated resulting in 

further Ca2+ influx. Ca2+ influx results in the activation of intracellular kinases, which 

in turn results in tau phosphorylation causing its aggregation into NFTs. Importantly 

phosphorylation of tau also results in its binding to Fyn and Fyn-tau aggregates, prior 

to migration to the dendritic spine. 
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At the dendritic spine Fyn acts to phosphorylate NMDARs. This results in the 

interaction of receptors with the postsynaptic density (95 kda) protein (PSD-95), 

which drives Aβ toxicity. Aβ can also interact with the cell surface receptor cellular 

prion protein (PrPC) directly: this interaction activates Src kinase Fyn resulting in 

NMDAR phosphorylation and PSD-95 recruitment. This ultimately leads to NMDAR 

internalisation, again driving Aβ associated toxicity (reviewed in (Nisbet et al., 2015)) 

(Figure 1.2). 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 1.2: Aβ and tau mediated toxicity at the synapse. Showing Aβ and tau mediated 
toxicity at the synapse and how Aβ and tau driven processes interact to result in AD 
toxicity. Adapted from (Nisbet et al., 2015). 
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Figure 1.2 describes how Aβ accumulation may drive the activation of tau through 

phosphorylation, resulting in AD pathology. In contrast with this hypothesis, it has 

been proposed that NFTs may be deposited prior to plaque formation and tau might 

be responsible for driving Aβ production and toxicity within the AD brain (Braak and 

Del Tredici, 2013, Li et al., 2015). It has also been suggested that dendritically located 

tau mediates early Aβ toxicity at the synapse (Ittner et al., 2010, Guerrero-Munoz et 

al., 2015). 

 

The importance of tau in driving AD pathogenesis is also apparent due to the fact that 

the amount of NFTs within a patient’s brain correlates well with disease severity 

(Giannakopoulos et al., 2003), whereas the presence of plaques does not, such that 

multiple plaques can be present in a symptomless individual (Perez-Nievas et al., 

2013). However, since aberrant tau activity alone results in frontotemporal dementia 

(FTD) rather than AD (Goedert and Jakes, 2005), it is likely that both amyloid and tau 

play roles in AD, possibly by collectively contributing to synaptic dysfunction and 

other AD pathologies (Spires-Jones and Hyman, 2014). 

 

1.3 Genetics and Alzheimer’s disease 
 

 

Genetic mutations are known to have a role in the occurrence of both EOAD and 

LOAD. However, only a small amount of EOAD cases are inherited in an autosomal 

dominant manner, most cases of EOAD are sporadic (sEOAD) and have unknown 

genetic causation (Jarmolowicz et al., 2015). In the case of inherited familial EOAD 

single gene mutations are accountable for disease development. These mutations 

lead to perturbations in amyloid processing resulting in increased Aβ production and 

increase the ratio of Aβ42 to Aβ40. Mutation in the genes APP, PSEN1 and PSEN2 

(components of γ-secretase) are responsible for familial AD. PSEN1 is the gene that is 

most commonly mutated in EOAD, it accounts for 18-50% of autosomal dominantly 

inherited cases (Bekris et al., 2010, Cacace et al., 2016, Cruchaga et al., 2018). 

 

In contrast to EOAD, only the apolipoprotein E (APOE) ε4 allele seems to carry a 

significant risk for the development of LOAD. The APOE locus contains three allele’s 

(ε2, ε3 and ε4) and variation is determined by two missense mutations. When 
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expressed, each allele results in one of three protein isoforms E2, E3 and E4 (Mahley, 

1988). The ε4 allele influences both predispositions to LOAD development as well as 

age of onset (Seshadri et al., 1995, Corder et al., 1993). Carriers of one ε4 allele 

confers approximately a three times increased risk of developing LOAD, whereas two 

copies result in a twelve fold risk. ε4 heterozygotes also develop the disease 10-12 

years earlier than those with no ε4 alleles (Corder et al., 1993). However, the 

presence of the ε2 allele confers protection from amyloid plaque and NFT formation 

(Nagy et al., 1995). Interestingly, the ε4 allele also increases likelihood of developing 

sporadic and familial EOAD as well as LOAD (Guerreiro et al., 2012, Karch et al., 2014). 

 
  

How APOE alleles affect LOAD development is not well understood. However a link 

has been found between APOE alleles and amyloid deposition within the brain (Bales 

et al., 1999, Ramanan et al., 2013), determination of whether Aβ oligomerizes and 

forms toxic plaques and Aβ clearance (Yu et al., 2014a, El Haj et al., 2016, Castellano 

et al., 2011). APOE is also involved in transportation of oligomeric Aβ to synapses, 

thus driving its toxicity (Koffie et al., 2012). 

 

APOE ε4 has also been suggested to drive LOAD pathology independently of its 

effects on amyloidogenesis by driving tau hyperphosphorylation and thus NFT 

deposition, cytoskeletal dysfunction and neurotoxicity (Harris et al., 2003, El Haj et 

al., 2016). APOE ε4 has also been suggested to be involved in: driving inflammation 

and immune response, being neurotoxic, deregulating lipid metabolism and causing 

mitochondrial dysfunction (Keene et al., 2011, Mahley and Huang, 2012, Hauser et 

al., 2011, Gibson et al., 2000). Many carriers of this allele do not go on to develop 

LOAD, less than 50% of people that carry two ε4 alleles will go on to develop the 

disease before they die (Liddell et al., 2001, Karch et al., 2014). This suggests that the 

development of LOAD is much more complex than simple mendelian single gene 

inheritance, rather representin a complex polygenic condition with environmental 

factors also strongly influencing disease risk (Bekris et al., 2010). 

 

The recent development and utilisation of large scale association studies (GWAS) has 

led to the implication of multiple new gene loci in AD, as well as confirming the 
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involvement of previously identified genes. A large meta-analysis of previous 

performed GWAS has recently led to the identification of eleven new Alzheimer’s 

susceptibility loci and confirmed association of eight loci. Along with APOE this means 

that that it was possible to identify twenty loci associated with LOAD (Lambert et al., 

2013b, Karch and Goate, 2015, Rigde et al., 2013, Ridge et al., 2016). However, since 

this study a further nine loci have been identified, making a total of twenty nine 

(Bertram and Tanzi, 2019).  

 

These studies result in the identification of common genetic variants which only 

altered the chances of developing LOAD in a small way, however, it is likely that 

multiple rare genetic variants could also explain disease risk (Karch and Goate, 2015, 

Cuyvers and Sleegers, 2016). An example of such would be the AD risk variant TREM2 

that has been identified, which is only in 1% of population; other rare variants have 

been identified in APP and Unc-5 Netrin Receptor C (UNC5C)   (Guerreiro et al., 2012, 

Rigde et al., 2016, Cruchaga et al., 2014, Jonsson et al., 2012, Cuyvers and Sleegers, 

2016). It is most likely that both common and rare genetic variants influence disease 

susceptibility and may even occur at the same loci and gene-gene interaction are also 

likely important in explaining AD risk (Rigde et al., 2016, singleton et al., 2011, Kilpinen 

and Barrett, 2013).  

 

However, considered together, the known AD associated variants account for 30.62% 

of the population attributed risk (PAR) of LOAD, thus there is a large missing 

proportion of disease causation yet to be explained (Ridge et al., 2016, Lambert et al., 

2013b). It is likely that environment has a substantial influence on the development 

of AD, however, further genetic analysis is needed to identify genetic variants causing 

AD, this would include the use of next generation sequencing (NGS) and investigation 

into both common and rare variants, with structural variants also needing to be 

investigated (Rigde et al., 2016, Cuyvers and Sleegers, 2016).  

 
 

Despite the limitations of conventional genetic analysis in explaining all cases of AD, 

GWAS have been extremely productive in identifying new biological pathways and 

also confirming previously reported pathways that may contribute to LOAD 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/unc-5
https://www.sciencedirect.com/topics/medicine-and-dentistry/netrin-receptor
https://www.sciencedirect.com/science/article/pii/S0197458016001834#bib6
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pathogenesis. Meta-analysis studies have identified genes involved in APP trafficking 

and metabolism, tau functionality and also inflammation and immunity, all of which 

have been previously implicated in LOAD. In addition genes encoding proteins 

involved in endocytosis, cholesterol metabolism, intercellular signalling, cell adhesion 

and pre-mRNA editing have also been implicated in AD (Lambert et al., 2013b, 

Cuyvers and Sleegers, 2016). While not accounting for disease risk in its entirety, 

these studies produce exciting new insights into the biology of LOAD and also may 

lead to the identification of new therapeutic targets (Lambert et al., 2013b, Medway 

and Morgan, 2014, Karch and Goate, 2015, Cuyvers and Sleegers, 2016). 

 
 

1.4 What is epigenetics and DNA methylation? 
 

 

The missing explanation of LOAD risk implies that environmental factors may 

contribute to disease development. Since the environment can drive epigenetic 

changes to DNA, it is likely that epigenetic changes may play a role in driving the 

development of LOAD. Epigenetic aberration can be defined as dynamic changes to 

the genetic material that result in alterations in gene expression, without an 

underlying alteration to the DNA sequence. The most well-known epigenetic mark is 

DNA methylation, but other epigenetic regulation includes changes to histone 

modifications, histone variants, RNA methylation and none coding RNAs (Fraga, 2009, 

Wang et al., 2013). Epigenetic variation can be influenced by an individual’s 

environment, by diet, chemical exposure, proteins, hormone levels and drug 

exposure. This allows for a system whereby an individual’s life events can affect gene 

expression and thus disease susceptibility (Abdolmaleky et al., 2004). 

 

DNA methylation involves the addition of methyl groups to the 5th carbon of 

cytosines within the DNA. DNA methyltransferases (DNMTs) are responsible for this 

action. DNMTs use S-adenosylmethionine (SAM) as a methyl donor to catalyse the 

transfer of a methyl group to a single stranded piece of DNA (Gonzalgo and Jones, 

1997, Abdolmaleky et al., 2004) (Figure 1.3). Four DNMTs exist, DNMT1, DNMT2, 
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DNMT3a and DNMT3b; DNMT1 are responsible for the maintenance of methylation 

in mammalian cells through cellular DNA replication (Espada et al., 2004). 

 

Cytosine methylation commonly occurs at 5’CpG’3, locations in the DNA sequence 

where a cytosine residue is followed by a guanine; the p indicates the phosphodiester 

bond that links two bases. CpG’s are particularly common in the promoter region of 

genes and make up CpG islands (CGIs), which are short sections of DNA that are CpG 

site rich (Deaton and Bird, 2011). Within promoters, methylation of cytosines located 

within CpG islands leads to transcriptional repression (Mehler, 2008, Graff and 

Mansuy, 2008, Schubeler, 2015). This transcriptional repression can be direct, due to 

methylation preventing the binding of transcription factors needed for transcription 

initiation. Repression can however also be indirect. This involves the recruitment of 

repressor proteins or Methyl-CpG binding domain (MBD) containing proteins of 

which there are four, MeCP2, MBD1, MBD2, and MBD3 (Abdolmaleky et al., 2004). 

DNMTs may also cause transcriptional repression through a transcription repression 

domain, which can interact with histone deacetylases (HDACs). Histone deacetylation 

results in chromatin structures which inhibit gene expression (Fuks et al., 2000). 

 

Proteins can also bind to MBD containing proteins and form repressive complexes. 

One such example is MeCP1 which binds MBD2, and acts to maintain methylation. 

MBD2 and MeCP1 also form part of a larger complex which contains HDACs and 

proteins that are capable of nucleosome remodelling, both of which lead to further 

transcriptional repression (Graff and Mansuy, 2008, Feng and Zhang, 2001). MECP2 

however is a MBD containing protein that binds directly to methylated DNA, where 

it can then recruit HDACs also resulting in transcriptional repression (Nan et al., 

1998). 

 

Previously DNA methylation has been associated with transcriptional repression 

alone, however Ziller et al. (2013) showed that the location of the methylation can 

be important for the affect it will have on the transcript structure, it has also been 

demonstrated that intragenic methylation is important for modulation of alternative 
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spicing and methylation located within the gene body has been associated with an 

increased gene expression (Manakea et al., 2013, Varley et al., 2013). 

 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

Folate, methionine and homocysteine metabolism are critical to the process of DNA 

methylation, (Figure 1.3). S-adenosylhomocysteine (SAH) is produced when DNMTs 

use SAM as a methyl donor for DNA methylation. The ratio between SAM and SAH is 

known as methylation potential and DNA methylation is highly dependent on this 

ratio. SAH levels are controlled by its hydrolysation to homocycteine (HCY) and 

Figure 1.3: Folate, Methionine and homocysteine metabolism in DNA methylation. 
(DNMTs) methlytransferases, (SAM) S-adenosylmethionine, (SAH) S-
adenosylhomocysteine, (HCY) homocysteine, (5-MTHF) 5-methylenetetrahydrofolate, 
(MS)methionine-synthases, (MET) methionine, (MAT) Methionine adenosyltransferase , 
(THF) tetrahydrofolate, (5.10 MTHF), methylenetetrahydrofolate, (SHMT) 
hydroxymethltransferase, (MTHFR) methylenetetrahydrofolate reductase. Image 
extracted from Wang et al. (2013). 
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adenosine. 5-methylenetetrahydrofolate (5-MTHF) acts as a methyl donor and 

cobalamin-dependant methionine-synthases (MS) as the catalyst in a methylation 

reaction that converts HCY to methionine (MET). Methionine adenosyltransferase 

(MAT) then catalyses the reaction producing SAM from methionine. As well as 

methionine metabolism being important for DNA methylation, folate and B-vitamins 

are also important in the cycle. Folate is used to produce tetrahydrofolate (THF) 

which is then converted to 5.10 methylenetetrahydrofolate (5.10 MTHF) by the B6 

dependant enzyme serine hydroxymethyltransferase (SHMT). 5,10 MTHF is then 

converted to 5.MTHF by the vitamin B2 dependant enzyme 

methylenetetrahydrofolate reductase (MTHFR). MTHFR is then available for the use 

as a methyl donor in conversion of HCY to MET (Chouliaras et al., 2010). 

 

DNA de-methylation is performed by ten-eleven translocases (TET). These enzymes 

convert 5-methylcytosine (5mC) into 5-hydroxymethlycytosine (5hmC) in an 

oxidation reaction (Tahiliani et al., 2009). The effect of 5hmC on transcription 

regulation is largely still elusive although both transcriptional repression and 

activation have been suggested (Coppieters et al., 2014, Valinluck et al., 2004). 

Further oxidation of 5hmC can produce two other cytosine derivatives 5-

formylcytosine (5-fC) and 5-carboxylcytosine (5-caC), these may also have a role in 

regulating gene expression (Ito et al., 2011). Following oxidation, a deamination 

reaction performed by activation induced deaminase (AID) or apolipoprotein B 

mRNA-editing enzyme 1 (APOBEC1) results in a T/G mismatch (Morgan et al., 2004). 

This mismatch is then repaired by glycosylases which sees the DNA converted back to 

its non-methylated form (Morgan et al., 2004). 

 

1.5 DNA methylation and AD 

Epigenetic involvement in AD seems likely and has also been demonstrated as a risk 

factor for other diseases such as cancer (Wajed et al., 2001). Multiple genes and 

many different pathways have been implicated in AD risk and since epigenetic 

regulation may control the expression of multiple genes simultaneously, it is a good 

hypothesis that the genes associated with LOAD may be co-ordinated through 
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epigenetic regulation. In addition genes previously not associated with LOAD are also 

being identified in epigenetic studies and thus are also likely to be important in 

disease pathology (Mastroeni et al., 2010).  

1.5.1 Global methylation and hydroxymethylation in AD 

Multiple lines of evidence also suggest that epigenetic alterations may drive LOAD. In 

the mid-nineties LOAD patients were shown to have decrease in S-adenosyl 

methionine (SAM) and S-adenosylhomocysteine (SAH), suggesting altered DNA 

methylation occurs in AD (Morrison et al., 1996). Global changes such as 

hypomethylation and hypo-hydroxymethylation have also been reported in specific 

region of the brain and also for specific LOAD associated genes (Condliffe et al., 2014, 

Chouliaras et al., 2013, Wang et al., 2008, Frasquet et al., 2018). 

 

Intriguingly changes in methylation/demethylation present during LOAD progression 

could be detectable and maybe initiated before an individual acquires AD symptoms 

(Bradley-Whitman and Lovell, 2013). Studies on monozygotic twin pairs discordant 

for AD also provide evidence that environmental factors may influence disease risk, 

possibly by causing epigenetic changes that drive disease progression (Chouliaras et 

al., 2013, Mastroeni et al., 2009, Konki et al., 2018). 

 

Although evidence suggests that epigenetic modifications may be involved in driving 

LOAD, studies of global methylation levels in LOAD samples have revealed 

contradictory results. Condliffe et al. (2014) failed to identify any difference between 

5mC in the entorhinal cortex and cerebellum of LOAD patients vs controls, and 

Lashley et al. (2015) failed to identify any changes in 5mC or 5hmC in the entorhinal 

cortex. This was despite previous studies showing differences in DNA methylation 

between these regions in the AD brain (Bakulski et al., 2012). 5mC was shown to be 

decreased in the entorhinal cortex of AD patients (Chouliaras et al., 2013, Mastroeni 

et al., 2010), but not the cerebellum (Mastroeni et al., 2010). 5mC has also been 

shown to be decreased in the frontal cortex and hippocampal regions of an AD 

patient from one of a monozygotic twin pair discordant for AD (Mastroeni et al., 2009, 

Chouliaras et al., 2013). 

https://en.wikipedia.org/wiki/S-adenosyl_methionine
https://en.wikipedia.org/wiki/S-adenosyl_methionine
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However, it should also be noted that discrepancies between these results may be 

explained by small experimental sample sizes and different sample cohorts (Condliffe 

et al., 2014), or a less likely explanation is that the differing results are due to different 

tissue processing and immune-staining methods used (Coppieters et al., 2014). 

Another plausible explanation could be that different brain regions are investigated 

and the presence of 5mC and 5hmC may differ between brain regions. In this model 

a disease affected tissue may show one profile while surrounding tissue shows a 

different ‘response’ profile which is due to the pathological conditions of the nearby 

cells. Therefore the same stressor can result in two different effect profiles 

(Coppieters et al., 2014).  

 

A more recent study also suggests that the degree of AD pathology present in the 

individual at the time of sampling may also be important for global changes in 

methylation and hydroxymethylation. Ellison et al. (2017) investigated both 

epigenetic marks in several brain regions in sample taken at varies stages of disease. 

The regions harbouring more extensive AD pathology where found to have global 

changes in both 5mC and 5hmC in early disease, which became comparable to control 

samples in late stage disease (Ellison et al., 2017). 

 

One study conducted using peripheral blood mononuclear cells resulted in the 

identification of global hypermethylation in LOAD samples, suggesting global blood 

methylation might represent an attractive biomarker of AD (Di Francesco et al., 

2015). The use of blood DNA does present its own challenges however. Blood samples 

are also heterogeneous for cell type and therefore cell specific changes in 

methylation might be mis- interpreted (Backland et al., 2015). In addition, blood cells 

turnover much faster then neuronal cells and are also not the primary site of AD 

related pathology (Wu et al., 2012). However, despite these challenges studies are 

successfully identifying AD-associated aberrant methylation patterns in blood that 

have also been linked to pathological features of AD such as cognitive decline (Xu et 

al, 2018; Madrid et al, 2018, Mercorio et al, 2018). 
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The cause of the changes in methylation observed in LOAD remains elusive, however, 

it has been suggested that it may be caused by a decrease in the levels of DNA 

methyltransferase 1 (DNMT1) or a loss of nuclear transport. This may be caused by 

down regulation of proteins responsible for DNMT1 transport into and out of the 

nucleus (Casillas et al., 2003, Mastroeni et al., 2013). Other gene specific studies have 

also found that those genes responsible for DNA methylation are hypermethylated in 

AD, which might also contribute to loss of methylation (Wang et al., 2008). In contrast 

Di Francesco et al. (2015) found increased expression of DNMT1 which resulted in 

global hypermethylation in LOAD samples. 

 

Evidence also exists that suggests that alterations in another epigenetic mark, 5hmC, 

might also drive disease progression. A GWAS revealed genetic variation in TET1, the 

enzyme responsible for oxidation of 5mC to 5hmC, can increase LOAD risk (Morgan 

et al., 2008). Using immuno-fluorescent staining, 5-hydoxymethylcytosine was shown 

to be globally decreased in the entorhinal cortex and cerebellum of AD patients 

compared with controls (Condliffe et al., 2014). This result is concurrent with recent 

findings that 5hmC is globally decreased in hippocampal glial cells of LOAD cases 

compared with controls and also in the hippocampus of a LOAD patient that forms 

part of a monozygotic twin pair discordant for the disease (Chouliaras et al., 2013). 

 

However, other studies using immunostaining of 5hmC and 5mC in tissue samples 

from the human middle frontal gyrus (MFG) and middle temporal gyrus (MTG) 

showed an increase in both 5mC and 5hmC epigenetic marks in LOAD patients when 

compared with age matched controls (Coppieters et al., 2014). This finding was in 

agreement with a previous study that investigated changes in the LOAD prefrontal 

cortex; a study that also showed global hypermethylation in this region (Rao et al., 

2012). In addition, while decreased hydroxymethylation was observed in the 

hippocampus, no difference was identified in either the cortex or cerebellum using a 

mouse model of AD (Coppieters et al., 2014). Coppieters et al. (2014) did, however, 

find cell type specific changes in methylation and hydroxymethylation. Astrocytes and 

microglia cells were found to have reduced 5mC and 5hmC in LOAD but, in contrast, 

neurones were found to have increased 5mC and 5hmC. 
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Condliffe et al. (2014) also identified the presence of the 5-fC and 5-caC cytosine 

modifications in the brain and found a difference in the amount of 5-fC between the 

two brain regions investigated, however, they failed to identify a significant 

difference between LOAD cases and controls. This may have been due to a low 

sample size, suggesting further investigation could reveal significant differences in 

these two newly identified cytosine modifications in LOAD and lead to newly 

associated epigenetic mechanisms or marks. 

 

1.5.2 Gene specific differential methylation and AD 

 

The studies described show global changes in methylation and hydroxymethylation 

are likely to be of importance in AD, however, in order to identify specific pathways 

and functional epigenetic changes occurring in AD it is also necessary to investigate 

gene specific alterations. Multiple genes that have been associated with LOAD by 

genetic studies, such as through GWAS, are being identified as harbouring AD specific 

differential methylation. This includes the genes SORL1, ABCA7, TREM2 SLC24A4, and 

BIN1 (Yu et al., 2014, Smith et al., 2016). This suggested that both genetics and 

epigenetic regulation of these genes have potential importance in driving disease 

pathology.  

 

Interestingly, epigenome wide association studies (EWAS) are also identifying 

differential methylation located within or near genes that have no previous genetic 

association with AD. Watson et al., (2016) identified 476 AD associated differentially 

methylated regions in a recent EWAS study, however of these only fifteen were 

located near known GWAS SNPs. Other EWAS studies have also identified 

Methylation in genes not previously associated with AD, including the genes ankyrin 

1 (ANK1), homeobox A (HOXA), wingless-type MMTV integration site family member 

B (WNT5B) and AT-Rich Interactive Domain-Containing Protein 5B (ARID5B) (Lunnon 

et al., 2014, De Jager et al., 2014, Smith et al., 2018, Smith et al., 2019, Watson et al., 

2016). This provides further evidence for the importance of DNA methylation in AD 
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and also allows the identification of novel pathways important in disease pathology 

(Watson et al., 2016). 

 

Another factor for consideration is whether methylation quantitative trait loci 

(mQTLs) may have a role in AD. mQTL’s are QTLs which have control over DNA 

methylation and therefore may represent a mechanism linking AD associated genetic 

and epigenetic alterations (McRae et al., 2018). However, a recent study has shown 

that mQTLs are mostly found in pseudogenes and therefore could be interesting in 

single sample testing but analysis of whole methylomes would reduce the importance 

of mQTLs (McRae et al., 2018). Further to this it should also be considered that AD 

associated genes, whether these be linked by genetic or epigenetic studies, still have 

clinical relevance to the individual being tested.  

 

1.5.2.1 LOAD Associated Aberrant Methylation of Genes in the 

Amyloid Pathway and Tau Processing  

Genes in the amyloid pathway have been extensively associated with AD pathology 

and have been genetically associated with disease. Hyper and hypo methylation of 

genes located within this pathway has also been identified. This includes the 

promoters of genes involved in APP processing and Aβ production. The APP promoter 

was found to be hypomethylated in LOAD patients (West et al., 1995). The APP 

promoter was also found to be hypomethylated in a subsequent study investigating 

people over seventy and LOAD patients. Non-demented people over the age of 

seventy and LOAD sufferers less than seventy years of age were found to have 

hypomethylation of the APP promoter. This hypomethylation may lead to increased 

APP expression resulting in greater Aβ production (Tohgi et al., 1999). In support of 

this, hypomethylation was also observed in the APP gene of AD patients using 

leukocyte DNA, this also correlated with increased gene expression (Hou et al., 2013). 

 

However, other studies have produced conflicting results. Two studies failed to find 

any difference in the APP promoter methylation in total homogenates of post-
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mortem LOAD brain tissue or lymphocytes (Barrachina and Ferrer, 2009, Wang et al., 

2008) and a further study failed to identify any LOAD associated methylation at the 

PSEN1 promoter (Carboni et al., 2015). Furthermore, a more recent study looked at 

the methylation present at the promoter regions of APP, PSEN1 and PSEN2 in LOAD 

and significant LOAD associated hypermethylation was identified in all three genes 

interestingly, this study identified this LOAD associated methylation in peripheral 

blood rather than in brain tissue (Piaceri et al., 2015). 

 

The reduction of tau expression in LOAD has also been associated with 

hypomethylation of the granulocyte chemotactic factor (GCF) within the TAU 

promoter, this leads to transcriptional repression. Within the same promoter a 

second site which binds specificity factor 1 (SP1) has been found to be 

hypermethylated. Since SP1 is a transcriptional activator, this epigenetic mark also 

contributes to TAU down regulation (Tohgi et al., 1999). However other studies failed 

to find any LOAD associated change in methylation of the MAPT promoter (Barrachina 

and Ferrer, 2009). 

 

Significant variation in PSEN1 promoter methylation was found between individuals, 

which may contribute towards LOAD predisposition (Wang et al., 2008). The PSEN1 

promoter is also reportedly hypomethylated in vitro, resulting in increased APP 

cleavage and Aβ production (Fuso et al., 2006). However other studies have failed to 

produce results suggesting PSEN1 promoter methylation variation association with 

LOAD (Siegmund et al., 2007). However, since homogenates of specific brain regions 

were used in many of the previously mentioned studies these results need to be 

interpreted with caution. Use of homogenates can result in small but significant 

changes in the methylation status of specific brain regions and cell types being missed 

(Barrachina and Ferrer, 2009). Most studies also only focus on a small region of 

genomic sequence and thus can miss important variation in regulatory sites within 

the genes being analysed outside of the region under investigation (Siegmund et al., 

2007). The work conducted as part of this thesis aims to resolve these issues by 

focusing on leukocyte and cortex DNA.  
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Leukocytes have been proven to cross the blood brain barrier in response to 

chemokine secretion by CNS cells (Eugenin and Berman, 2003). In AD chemokines 

are secreted by astrocytes and the level of chemokines in both CSF and brain tissues 

are changed (Liu et al., 2014). It is therefore plausible that the inflammation caused 

by AD, resulting in increased chemokine secretion would allow leukocyte trafficking 

thought the BBB and thus these cells will experience the AD brain environment and 

alter methylation depending on the AD pathology present. This seems likely as 

studies are beginning to link methylation status of AD associated genes to AD 

pathology and disease progression (Hou et al., 2013).  

 

The aforementioned genes all encode proteins which are involved in APP processing 

or relate to tau pathology, however, genes specifically involved in DNA methylation 

have also been found to show promoter methylation variation between LOAD and 

non-LOAD samples. Wang et al. (2008) found positions in the MTHFR gene promoter 

are hypermethylated in AD and the DNMT1 promoter shows significant inter-

individual variation, suggesting a role in AD predisposition. 

 

Further evidence of a role of DNA methylation in AD is suggested by induced 

hyperhomocysteinemia. This is a condition associated with LOAD, which causes 

imbalance in the SAM/SAH ratio. This imbalance resulted in hypomethylation of 

PSEN1 and BACE leading to an increase in Aβ deposition in mice over expressing APP. 

This result may suggest that a decrease in DNA methylation caused by SAH/SAM 

imbalance, resulted in hypomethylation of APP, BACE and PSEN1 thus causing their 

enhanced expression, and therefore increase in Aβ deposition (Fuso et al., 2008). 

 

1.5.2.2 Other genes containing aberrant methylation associated 

with LOAD 

Other studies have used brain DNA to identify differential methylation of specific 

genes in AD. Prefrontal cortex samples where used in an Illumina Human 

Methylation450 beadset assay to identify differentially methylated CpGs in 708 

subjects. While this technique covered a large number of CpGs, it was not genome 
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wide and therefore could not identify all differentially methylated regions in the AD 

subjects used within the study (De Jager et al., 2014). However they did identify 71 

CpGs that were differentially methylated in LOAD samples, 12 of which were 

validated using a smaller independent sample and using a different measure of AD 

pathology (Braak staging rather than the burden of neuritic amyloid plaques), two of 

these CpG’s were within the AD associated loci BIN1 and ABCA7 (De Jager et al., 

2014). Both of which have been previously associated with AD though genetic 

variants (Lambert et al., 2013b). They also investigated if changes were a cause or 

effect of AD by looking for association in non-demented patients who displayed 

amyloid burden. It was found that differential methylation was pre-symptomatic and 

thus changes could represent early drivers of the disease or be an early epi-mutation 

(De Jager et al., 2014). 

 

RNA expression of genes associated with these 12 CpGs was used to functionally 

validate the changes. It was found that changes in expression of seven genes were 

annotated to AD. These genes where: ANK1, CDH23, DIP2A, RHBDF2, RPL13, 

SERPINF1 and SERPINF2, these could all be linked to pathways involving other AD 

susceptibility genes (De Jager et al., 2014). 

 

ANK1 has also been found to be differentially methylated in cortical brain regions but 

not blood DNA in another study (Lunnon et al., 2014). This study also identified genes 

with differentially methylated regions (DMRs) that could be identified in AD whole 

blood DNA. The study found DMRs close to the genes DAPK1 (death-associated 

protein kinase 1), GAS1 (growth arrest-specific 1) and NDUFS5 (NADH: ubiquinone 

oxidoreductase subunit S5). GAS1 has a role in APP processing and both DAPK1 and 

NDUFS5 have been previously implicated in AD however importantly ANK1 has not 

been genetically associated with AD (Lunnon et al., 2014, Watson et al., 2016). 

 

Other genes have been identified using EWAS studies that harbour AD associated 

methylation in genes with no previous genetic association with LOAD. A study by 

Watson et al., (2016) identified a number of differentially methylated regions in the 

superior temporal gyrus of Alzheimer’s sufferers, of those identified (475 DMRs) only 
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fifteen associated with genes previously implicated in AD by genetic studies. In 

support of this, recent studies have revealed AD associated DMRs in the genes HOXA, 

WNT5B and ARID5B, which have not been previously associated with AD by current 

genetic studies (Smith et al., 2018, Smith et al., 2019, Watson et al., 2016). 

 

Other genes harbouring differential methylation have been identified by using 

peripheral blood. These studies were recently reviewed by Frasquet et al., (2018). 

LOAD associated methylation has been identified in APOE, APP, BACE1, BDNF, 

DNMT1, DNMT3A, DNMT3B, LINE-1, MTHFR, PIN1, PSEN1 and SIRT1 using peripheral 

blood DNA. These genes potentially have important roles in driving AD pathology 

when aberrantly methylated.  

 

The genes brain derived neurotrophic factor (BDNF) and peptidyl-prolyl cis-trans 

isomerase NIMA-interacting 1 (PIN1) were the two genes identified as most 

commonly reported as harbouring AD associated differential methylation by Frasquet 

et al., (2018). A DMR in the promoter of the BDNF gene was found to be 

hypermethylated in AD peripheral blood by two studies using Asian populations 

(Chang et al., 2014, Nagata et al., 2015). However, a third study failed to reproduce 

this result in a Caucasian population (Carboni et al., 2015). Again two studies also 

identified LOAD specific hypomethylation of the PIN1 promoter using peripheral 

blood mononuclear cells (Ferri et al., 2016, D’Addario et al., 2017).  

 

Other genes identified by Frasquet et al., (2018) included APOE, APP, BACE1, DNMT1, 

DNMT3A, DNMT3B, LINE-1, MTHFR, PSEN1. The methylation of these genes has been 

previously discussed. However Sirtuin 1 (SIRT1) has also been identified using 

leukocyte DNA from AD and non-demented individuals (Hou et al., 2013, Frasquet et 

al., 2018). Unfortunately this study lacked information about the methylation status 

of the promoter in the AD brain and a more recent study failed to identify methylation 

at the SIRT1 promoter in LOAD peripheral blood (Carboni et al., 2015). While studies 

using blood DNA seem to produce conflicting results some studies demonstrate that 

differential methylation of specific genes can be observed in AD blood. 
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One issue with using blood to investigate DMRs in AD is that information about brain 

pathology is not usually known. Some clinical markers can be used to assess disease 

severity, such as cognitive function and quantitative imaging techniques, however it 

is not possible to assess severity of AD using Braak scoring or neuritic plaque burden 

as it is when using post-mortem brain DNA, making it more difficult to be sure of 

disease progression (De Jager et al., 2014).  

 

However although there is mounting evidence that suggests epigenetic modifications 

are linked to LOAD, it is important to consider whether any epi-mutations identified 

initiate pathogenesis, drive pathogenesis once established or are merely a 

consequence of the disease. Although previous research has attempted to investigate 

if any altered methylation identified is driving AD or a result of the disease (De Jager 

et al., 2014), they could not conclude that any epi-mutations were causal. Other 

studies struggle to even identify when changes occur in disease progression due to 

smaller sample sizes.  

 

A lot of studies are limited to only looking at change in late stage LOAD compared 

with aged matched controls. This can be problematic due to epigenetic changes 

occurring due to aging seeming significant. A notable example are the genes SORBS3 

(sorbin and SH3 domain containing the 3 cell-adhesion protein) a gene encoding a cell 

adhesion molecule expressed on microglia and neurones and S100A2 (S100 calcium 

binding protein A2), encoding a calcium binding protein of the S100 family, both have 

been identified as harbouring LOAD specific methylation (Siegmund et al., 2007, 

Urdinguio et al., 2009). It has been suggested that the deregulation of these two 

genes may result in the synaptic impairments present in AD (Urdinguio et al., 2009). 

 

However the loss of methylation in these two genes is also seen to a lesser extent in 

aging. Therefore in this instance LOAD may represent an accelerated form of aging 

manifesting in the epigenome and those mechanisms in which AD may be underlying 

this change in methylation. Thus the altered methylation may be a result of AD 

pathology rather than a driver of it.  
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It should also be considered that epigenetic changes resulting in change in expression 

of one gene can affect the methylation of the promoter region of a different gene. 

One example of this is that hypomethylation of APP, which causes Aβ accumulation, 

results in oxidative stress which drives methylation of the neprilysin promoter, 

suppressing its expression. Since neprilysin is responsible for Aβ degradation, this 

causes a cycle leading to increased Aβ accumulation which results in further 

methylation of the neprilysin promoter and so on; thus driving Aβ pathology (Chen et 

al., 2009). While this represents an interesting hypothesis, a recent study failed to 

identify differential methylation in the neprilysin promoter in AD using neuronal 

nuclei cells, perhaps suggesting a need for further study into this (Nagata et al., 2018). 

 

Amyloid induced inflammation has also been proposed to enhance methylation of 

the neuroligin 1 (NLGN1) promoter. NLGN1 is a postsynaptic protein involved in 

synaptic function and plasticity within the brain. Therefore amyloid induced 

inflammation could drive down regulation of NLGN1 leading to amyloid induced 

memory deficit and aberrant synaptic functionality (Bie et al., 2014). 

 

Alternatively aberrant methylation of other genes might result in increased Aβ 

production. For example global hypomethylation, which is a result of increase Aβ, can 

result in increased expression of caspase-3 and tumour necrosis factor (TNF-α). This 

can then cause an increase in the production of Aβ, thus creating a cycle of Aβ 

production driving AD pathology (Qazi et al., 2017). 

 

It is also important to note that many studies only use brain tissue from selected brain 

regions and only assess specific loci. Therefore in order to achieve a more 

comprehensive picture, further studies should collect genome-wide data and an atlas 

of the whole methylome from each region is needed (Siegmund et al., 2007). 

 

Specific genes have also been found to harbour AD associated differential 

hydroxymethylation in the LOAD brain, specific genes were also shown to have 

altered expression in LOAD and a Drosophila model was used to show that the 

alteration resulted in AD pathology (Bernstein et al., 2016). A study conducted using 
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a mouse model of AD also resulted in the identification of AD associated gene specific 

and tissue specific hydroxymethylation in AD (Shu et al., 2016). 

 

 

 
1.6 Diagnosis of AD 

 

 

Currently a definitive diagnosis of LOAD can only be achieved post-mortem by the 

identification of amyloid plaques and NFTs in the brain (Yin et al., 2009). Before death 

AD is diagnosed by the detection of neuropathological hallmarks. Such hallmarks 

include memory loss and decreased cognitive ability, neuronal loss and shrinkage of 

specific brain regions and also extracellular Aβ deposition and intracellular NFTs 

within the brain (Hampel et al., 2008). 

 

Assessment of memory and cognitive ability is carried out using the mini-mental state 

exam (MMSE), as well as other neurophyscometric assessments. The MMSE is a quick 

method of assessment, an individual can be tested in 5-10 minutes (Burns, 1998). 

However, one large disadvantage to paper based cognitive testing is that ethnicity 

and levels of education can influence results. Also stress, diet and taking the test in 

an unfamiliar location can all influence the results. An important point to consider is 

that the stress of taking the test can make a person’s AD linked poor performance 

worse, therefore making them appear further along in the disease progression than 

the actual levels of dementia present (Ng et al., 2007, Castro-Costa et al., 2008). In 

addition, some patients experiencing MCI do not go on to develop dementia, only 

around 35% of patients develop AD within three years of mild cognitive impairment 

(MCI) diagnosis, and after ten years most patients will continue to be dementia free 

(Herukka et al., 2017, Mitchell and Shiri-Feshki, 2009). 

 

Medical imaging such as magnetic resonance imaging (MRI) and functional MRI can 

be used to assess structural changes within the brain and the activation of brain 

regions during cognitive tasks. Positron emission tomography (PET) is another 

imaging technique that allows assessment of cortical metabolism by measuring either 

fluorodeoxyglucose (18FDG) uptake or the use of Pittsburg Compound B (PiB-PET) 
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which is an agent use for amyloid imaging. AD patients show a characteristic decrease 

in uptake of 18FDG and using this technique a conversion of mild cognitive 

impairment MCI to AD can be predicted with an accuracy of 80%. PiB-PET can also be 

used to show increased Aβ in the brain, which can also be used to diagnose AD 

(Herukka et al., 2017). However PET along with many of the medical imaging 

techniques, are not ideal methods for diagnosis due to their high cost and also 

because they are not high throughput. Therefore it is not possible to efficiently and 

quickly screen large numbers of individuals (Hampel et al., 2008). 

 

AD has been defined as a disease with multiple stages of progression; it is believed 

that the underlying biological effectors that cause pathology occur several years prior 

to symptom presentation. Accurate testing and diagnosis of AD before symptoms 

present, is essential for intervention at the earliest stages of the disease. However 

imaging and neurophyscometric assessments may not be sensitive enough to detect 

subtle changes occurring prior to MCI. Protein or genetic biomarkers represent a 

promising avenue of investigation; ideally an early biomarker or panel of biomarkers 

found within bodily fluid such as blood or CSF (cerebral spinal fluid) would accurately 

diagnose different stages of AD progression. This could allow for earlier diagnosis, 

possibly allowing more effective treatment, as some drugs are thought to be more 

beneficial when used to treat earlier stages of the disease (Lista et al., 2014). 

 

Identification of biomarkers present earlier in the disease may also allow for 

identification of previously unknown pathways involved in AD, this may result in new 

therapeutic targets (Richens et al., 2014). Identification of an earlier stage biomarker 

will also allow for better testing of AD drugs. At the moment it is difficult to recruit 

early stage patients into drug trails so drugs are not being tested on earlier stages of 

the disease when modifications may be most beneficial (Henriksen et al., 2014). 

 

Currently protein biomarkers are used in the diagnosis of AD. Aβ42, total tau protein 

and levels of phosphorylated tau can be measured in CSF and their levels are all 

hallmarks of AD. When considered together these three proteins have high diagnostic 

accuracy (Kang et al., 2013). 
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While CSF biomarkers are useful for diagnosing AD the major limitation of using CSF 

as a diagnostic fluid is that extraction of CSF requires an invasive lumbar puncture 

and can only currently be used in late stage diagnosis. This is not favourable to 

patients. A more accepted and less invasive test would be a blood test which used 

blood biomarkers to predict AD (Demartini et al., 2014). 

 

Currently only T-tau plasma levels can act as a definitive blood based biomarker for 

AD and there are multiple problems with the identification of AD specific proteins 

within the blood (Olsson et al., 2016). AD is a homogeneous disease meaning that 

different patients will have different pathologies and thus may present with different 

biomarkers. For example many patients will present with no increase in Aβ whereas 

non disease elderly people will show signs of Aβ accumulation (Yang et al., 2012). A 

further problem is that people with AD are commonly elderly and therefore often 

have other disorders that affect the blood proteome. Therefore it is a requirement to 

identify which biomarkers are the result of AD and which are those that change due 

to other disorders. 

 

Ideally biomarkers should be brain specific proteins as this would prevent results 

from being skewed by proteins produced by other organs or tissues. However it is not 

feasible to use brain proteins/molecules because most are localised and impeded by 

the blood brain barrier (BBB). A further complication is that the blood proteome is 

extremely dynamic and influenced by many physiological factors such as food intake, 

also variation can exist over a time period as short as a day. Further problems with 

proteomic based biomarker identification are reviewed in (Henriksen et al., 2014, 

Ghidoni et al., 2013). 

 

Another potential problem is the use of healthy controls in the identification of 

biomarkers. Since the pathology of AD begins years before symptoms present 

themselves, it is extremely difficult to ascertain if a control is truly a non-diseased 

patient or if a patient has AD and is just yet to present with symptoms (Henriksen et 

al., 2014). Therefore studies need to be longitudinal and include samples from AD 

and non-AD patients which are tested over a long period of time, ideally up until 
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death. This will allow for some determination of whether controls are truly not 

diseased. 

 

As described previously, many genetic variants have been identified as being 

implicated in LOAD via GWAS. However, these loci only contribute very slightly to a 

person’s risk of developing AD. Thus there is a huge amount of heritability 

unaccounted for. However, as also previously motioned, many genes that have a  

historical association with AD such as APP, PSEN1, PSEN2 and others have been found 

to have differentially methylated regions in LOAD patients. Therefore investigations 

into epigenetic variation within the newly associated LOAD genes may provide some 

insight into their pathogenic role in LOAD and how epigenetic alterations may 

influence this. 

 

1.7 Introduction to the project 
 

 

GWAS studies have resulted in the identification of many genes that harbour genetic 

variants resulting in both increase risk of LOAD development and protection from 

the disease. However, these genetic variants do not explain the full risk of AD 

(Lambert et al., 2013b, Rigde et al., 2013, Cuyvers and Sleegers, 2016). Taken 

together, only 61% of disease is explained by known genetic variation. Therefore a 

large portion of missing phenotypic variance exists (Lambert et al., 2013b, Cuyvers 

and Sleegers, 2016). Since epigenetic changes to the DNA can be driven by 

environmental factors it is plausible that epigenetic changes may play a role in 

driving the development of LOAD (Cuyvers and Sleegers, 2016). 

 

The DNA used within this project was collected from both blood leukocytes and brain 

tissue (cortex). Currently many studies investigating methylation of AD associated 

genes have used brain tissue. However, the use of AD blood derived DNA has lead to 

the identification of some gene specific changes in promoter methylation associated 

with AD (Lunnon et al., 2014, Hou et al., 2013, reviewed by Frasquet et al., 2018). A 

notable exception however failed to reproduce results observed from brain tissue in 

blood (Wang et al., 2008, Lunnon et al., 2014). 
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Leukocyte DNA represents a good source of DNA for investigating biomarkers of AD 

because these cells can cross the blood brain barrier (BBB) and thus will alter their 

gene expression depending on the environment which they encounter in the brain 

(Hickey, 1991). Blood is also much easier to obtain as it can be taken from living 

patients. 

 

If differences in methylation can be identified in leukocyte DNA then these changes 

can then be investigated in brain tissue derived DNA. A change identified in both 

tissues or even just in blood could result in biomarker identification. However it 

would be beneficial to compare changes in leukocyte and brain tissue methylation to 

identify if methylation of gene promoters in leukocytes is reflective of those in brain 

tissue. This could be possible as it has been shown that leucocytes are capable of 

crossing the BBB, especially in inflammatory conditions, such as those present due to 

AD pathology (Eugenin and Berman, 2003, Liu et al., 2014). In addition studies have 

identified DNA methylation in leukocyte DNA that associated with the severity of AD 

brain pathology present and epigenetic mutation present in the brain DNA have been 

identified in leukocyte DNA (Stenvinkel et al., 2007, Hou et al., 2013). 

 

The work completed in this thesis had multiple aims the first being to investigate the 

methylation status of the promoters of the following newly associated loci ABCA7, 

CASS4, CELF1, FERMT2, HLA-DRB5/HLA-DRB1, INPP5D, MEF2C, NME8, PTK2B, 

SLC24A4/RIN3, SORL1, and ZCWPW1 in LOAD leukocyte DNA . However, only loci 

containing CpG islands upstream of the promoter were investigated. 

 

Interestingly the methylation statuses of 28 AD associated loci were investigated in 

another study. This investigation included HLA-DRB5, PTK2B, SORL1, SLC24A4, DSG2, 

INPP5D, MEF2C, NME8, ZCWPW1, CELF1, FERMT2, and CASS4 (Yu et al., 2014b). It 

was found that in the brain, methylation of SORL1, ABCA7, HLA-DRB5, SLC24A4, and 

BIN1 could be associated with LOAD pathology. Expression of SORL1 and ABCA7 was 

also found to be associated with paired helical filament tau tangle density and Aβ 

overload was associated with over expression of BIN1 (Yu et al., 2014b). An additional 

study also identified LOAD associated differential methylation within regions of 

ABCA7, PTK2β, MEF2C, SORL1, CELF1 and FERMT2 (Humphries et al., 2015). One aim 
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of the project was to determine if the differential methylation of these genes 

observed in the brain could be reproduced using leukocyte DNA. 

 

The second aim of the project was to investigate if any genes identified as being 

differentially methylated within LOAD are also altered in sEOAD samples. Since both 

cortex and leukocyte DNA was available for sEOAD patients and controls it was also 

possible to investigate the methylation status of specific genic regions in both tissue 

types. Therefore allowing assessment of whether blood methylation is reflective of 

that occurring in the sEOAD brain. Genes that have been shown to be differentially 

methylated in LOAD were investigated using these samples. 

 

A third aim of the work described in this thesis whole genome methylation profiling 

via whole genome bisulphite sequencing (WGBS), the objective of this approach was 

to identify patterns of aberrant methylation across the whole genome occurring 

during different disease stages. For this experiment LOAD cerebellum samples were 

used, which represented either moderate or severe LOAD cases. The whole genome 

sequencing for these two samples was then compared to a published control sample 

to identify disease specific differentially methylated sites. 

 

1.8 Methods used for investigating differential 

DNA methylation 

 

In order to achieve the aims of the project multiple methods were used to investigate 

methylation within both LOAD and sEOAD samples. During the work conducted in 

this thesis four methods were used to investigate single CpG site methylation. Of 

these, three methods used were targeted and only one was genome wide. The 

targeted methods used were: PCR amplification following digestion using 

methylation specific restriction enzyme McrBC and PCR of bisulphite treated DNA 

followed by either pyrosequencing or cloning, colony selection and Sanger 

sequencing. Each method for identifying differential methylation is described in more 

detail in the main methods section 2 and also in each results chapter.   

 

 



32 
 

1.9 Conclusions 
 

 

The following work described in this thesis used four of the methods described to 

investigated methylation in both LOAD and sEOAD samples. In the case of LOAD, the 

promoter regions of LOAD associated genes where targeted using the bisulphite 

cloning methods, the McrBC enzymatic method and pyrosequencing using blood 

samples. In the case of sEOAD both blood (leukocyte) and brain (cortex) samples were 

used to also investigate methylation in LOAD associated genes. In addition to these 

methods WGBS was used to identify global differential methylation in LOAD 

cerebellum DNA.  
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2. Materials and Methods 
 
 

2.1. Alzheimer’s disease DNA samples 
 

 

DNA samples were obtained from the Alzheimer's Research UK Consortium DNA 

Bank, a resource curated by the University of Nottingham and were either extracted 

from leukocytes (of LOAD and sEOAD patients and controls) or brain (sEOAD patients 

and controls) using phenol chloroform extraction followed by DNA quality and 

quantity assessment via gel electrophoresis and NanoDrop™ 3300 spectrometer 

respectively. LOAD samples were used in: the investigation of PTK2β using bisulphite 

sequencing and cloning, as template DNA in McrBC PCRs and also in the 

pyrosequencing of the SIRT1 target. All other pyrosequencing assays were performed 

using DNA samples taken from patients suffering from an early onset form of LOAD, 

sporadic early onset Alzheimer’s disease (sEOAD). This type of disease represents a 

more aggressive form of LOAD. All experiments also included the use of DNA samples 

taken from non-diseased elderly to act as a control. An overview of the details for the 

samples use is shown in table 2.1, more extensive details for each sample are 

provided in appendix 1. 

 

The sEOAD DNA samples used in this study were genetically tested by the Alzheimer's 

Research UK Consortium DNA Bank and none of the samples contained FAD 

mutations. In addition, samples used were received with informed consent and 

experimental procedures were approved by the local ethics committee, Nottingham 

Research Ethics Committee 2 (REC reference 187 04/Q2404/130). All experimental 

procedures were conducted in accordance with approved guidelines. 
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Table 2.1: Details of AD samples used.  

 

Group Sex M/F Age at Death Age at onset Age at sampling  

LOAD 
Blood  

2/5 N/A 71.67 (SD 2.52) 82.25 (SD 6.4) 

sEOAD 
blood 

17//8 57.95 (SD 3.28) 47.2 (SD 2.28) 48.6 (SD 2.98) 

sEOAD 
Brain 
(Cortex) 

4/10 59.35 (SD 6.95) 48.85 (SD 3.32) 59.35 (SD 6.95) 

Control 
Blood 

6/13 N/A N/A 82.8 (SD 6.95) 

Control 
Brain 

6/4 84.2 (SD 3.55) N/A 84.2 (SD 3.55) 

 
Table 2.1: Table shows information about age at onset, sampling and death for all of 

the LOAD and sEOAD samples used during the work described in this thesis.  

 

2.2 Global DNA methylation and 

hydroxymethylation enzyme-linked 

immunosorbent assay (ELISA) 

 

2.2.1 DNA preparation 

 

Prior to the use of DNA in the global methylation assay, samples were tested for 

quality and concentration of the DNA using a NanoDrop™ spectrophotometer. At 

least 1µL of DNA was loaded onto the NanoDrop™ to assess purity of the DNA, 

samples scoring over 1.8 at A260/280 were deemed suitable for further use. 100ng 

of each DNA sample was then used in the global methylation assay, whereas 200ng 

of DNA was used in the hydroxymethylation assay. 

 

2.2.2 Global methylation and hydroxymethylation ELISA 

conjugative plate preparation 
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Global methylation and hydroxymethylation was investigated in LOAD and control 

samples using the Methylamp ™ Global DNA Methylation and Hydroxymethlyation 

Quantification kits (Epigenetek Group Inc., New York, NY, USA). 

 

The kit uses antibodies to detect either global methylation or hydroxymethylation 

within each sample tested. DNA is initially bound to a material with a high affinity for 

DNA. Methylation or hydroxymethylation is then detected using antibodies. First a 

capture antibody is added to the DNA containing well, this binds to methylation or 

hydroxymethylation within the samples. Next a detection antibody is bound to the 

initial capture antibody. Enhancer solution is then added and finally methylation is 

detected by the addition of a developing solution which results in a varying amount 

of colour production, which is measure at OD 450nm. This reading is proportionate 

to the global levels of methylation or hydroxymethylation present in each DNA 

sample. 

 

The plates were prepared first by the addition of 80µl of binding solution to each well 

of the plate to be used. Next, in the instance of the global methylation plate, 100ng 

of each sample of DNA was added to the designated well, for the hydroxymethylation 

plate 200ng of DNA was then added to each well. The plates were then rotated gently 

from side to side in order to mix the DNA sample and binding solution. The plate was 

then covered and incubated for 90 minutes at 37 °C to allow DNA binding. Following 

this the binding solution was carefully removed from each well and the well was 

washed three times with 150µl of 1X wash buffer. 

 

Methylated and hydroxymethylated DNA were then assayed by the addition of the 

capture antibody. The capture antibody was first diluted with wash buffer (1:1000), 

50µl of diluted antibody was then added to each well followed by washing of each 

well three times with 150µl of 1X wash buffer. 50µl of a 1:2000 dilution (with wash 

buffer) of detection antibody was then added to each well followed by the washing 

of each well four times with 150µl of 1X wash buffer. 50µl of a 1:5000 dilution 

ofenhancer solution was then added to each well and the plate was incubated for 30 
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minutes at room temperature. The enhancer solution was then removed and each 

well was washed a total of five times with 150µl of 1X wash buffer. 

 

 
2.2.3 Detecting methylation and hydroxymethylation 
 
 
The proportion of methylated DNA was then measured by the use of a Wallac Victor 

II plate reader (PerkinElmer) prior to this 100µl of developer solution was added to 

each well and the plate was incubated, in the dark, at room temperature for ten 

minutes to allow colour to develop. 100µl of stop solution was then added to each 

well to stop the colour reaction. After one-two minutes the reaction had stopped and 

the colour of the samples turned from blue to yellow. The absorbance for each 

sample was then read using a micro-plate reader at 450nm. 

 

As described in chapter 3.2.2 a standard curve was not generated as part of this work, 

this meant that an exact qualification of methylation could not be obtained. However 

in a comparison of the absorbance between samples was used as an estimation of 

methylation present.  

 

2.3 Methylation analysis by bisulphite cloning 
 
 

2.3.1 Bisulphite conversion of DNA 
 
 

The process of bisulphite conversion is explained in depth in section 1.8.2. Briefly 

conversion of genomic DNA with bisulphite treatment allows the identification of 

methylation at cytosine residues because unmethylated cytosines are deaminated 

into uracil following treatment of the DNA, subsequent PCR and DNA sequencing 

result in the unmethylated cytosine being visible as a thymine residue. Methylated 

cytosines are protected from deamination and therefore remain as cytosines 

following PCR and are visible as cytosine residues after sequencing. 
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In order to bisulphite convert the DNA samples prior to cloning the EpiTect DNA 

Bisulphite Kit (Qiagen, Germany) was used. 500ng of genomic DNA was converted for 

each patient sample used, following the manufacturer’s instructions. Initially 85µl of 

bisulphite solution and 20µl of DNA and RNase free water solution (with 500ng of 

genomic DNA) were added to a 200µl PCR tube. 35µl of DNA protect buffer was then 

added and the sample was mixed briefly, under the correct conditions for successful 

bisulphite conversion (such as pH) the sample then turned from green toblue. The 

bisulphite conversion was carried out using a Techne® TC412/4000 thermal cycler 

(Techne Inc, Burlington, NJ), and the program detailed below in table 2.2. 

 

Table 2.2: Thermal cycler procedure used for bisulphite conversation 

 

Step Time (min)  Temperature (°C) 
    

Denaturation 5  95 
    

Incubation 25  60 
    

Denaturation 5  95 
    

Incubation 85  60 
    

Deneturation 5  95 
    

Incubation 175  60 
    

Hold Indefinite  (including over 20 

 night)   
    

 
 
 

2.3.2 Clean up and elution of bisulphite converted DNA 
 
 

Following bisulphite conversion, samples were briefly vortexed to mix and then 

centrifuged at maximum speed for ten seconds. The samples were then transferred 

into new 1.5ml microcentrifuge tubes where 560µl of buffer BL was added 

containing 10 µg/ml of carrier RNA, followed again by brief vortexing and 

centrifugation at maximum speed (note all centrifugation occurred at maximum 

speed unless stated otherwise). The content of each microcentrifuge tubes was then 

transferred into EpiTect spin columns (Qiagen, Germany) and centrifuged for one 

minute. The flow through was then discarded and the columns were washed with 

500µl of wash buffer, again columns were then centrifuged for one minute. The flow 
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through was discarded once more and 500µl of buffer BD was added to each column. 

The tubes were then incubated at room temperature for 15 minutes. Following 

incubation the columns were again centrifuged for one minute and flow through 

was discarded. The columns were then washed twice with 500µl of wash buffer, as 

previously described, and the spin columns were then placed into new 1.5ml 

centrifuge tubes and incubated at 56°C for five minutes to allow evaporation of any 

remaining liquid. The columns were then transferred to new sterile 1.5 ml 

microcentrifuge tubes. 20µl of elution buffer was then added to the centre of the 

membrane of each column and the columns were then centrifuged at 15,000 x g 

(12,000 rpm) for one minute to elute the bisulphite converted DNA. The bisulphite 

converted DNA was then the stored at -20°C until use. 

 

2.3.3 Bisulphite PCR for cloning and sequencing of 

protein tyrosine kinase 2 beta 

 

2.3.3.1 Primer design 
 
 

To identify a CGI within the PTK2β promoter, the gene was located on the UCSC 

genome browser (University of California, Santa Cruz, CA, USA 

(www.genome.ucsc.edu/index)) and the nearest CGI located upstream of the 

transcription start site (TSS) was selected for analysis. The DNA sequence of the CpG 

island was then obtained using the Ensemble Genome Browser 

(http://www.ensembl.org/index.html) and primers were designed for the McrBC 

experiment using the Kismeth: bisulphite primer design website 

(http://katahdin.mssm.edu/kismeth/primer_design.pl). The primers designed are 

shown in section 3.2.3.2 and table 3.2. Since PCR DNA template was bisulphite 

treated prior to amplification, primers were designed to contain degenerate bases. 

The template strand would either contain a T or a C depending on the methylation 

status of the original cytosine molecule, since all non CpG cytosines would become 

Ts due to the bisulphite treatment. Therefore, degenerate bases were included in the 

primers used. In forward primers Ys were used which represented both C and T 

residues and in reverse primers R was used to represent A or G residues. 

http://www.genome.ucsc.edu/index)
http://www.ensembl.org/index.html
http://katahdin.mssm.edu/kismeth/primer_design.pl
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2.3.3.2 Bisulphite Sequencing PCR 
 
 

PTK2β PCR was completed using a Techne® TC412/4000 thermal cycler (Techne Inc, 

Burlington, NJ). Primers were used to amplify the template DNA using the PCR 

reaction cycles: 95°C (5 minutes), 50 cycles (94°C (50 seconds), 54°C (30 seconds), 

72°C (60 seconds)), 72°C (ten minutes). Each PCR reaction solution consisted of 4µl 

bisulphite treated DNA, 20ng of each primer, 4 µl RNAse free water, and 10 µl of 

Platinum® Blue PCR SuperMix (Invitrogen), resulting in a total volume of 20 µl. 

 

5µl of PCR product was ran on a 2% agarose gel using a TAE buffer and to confirm 

PCR product. DNA was stained using ethidium bromide. 

 

2.3.3.3 PCR clean up prior to cloning 
 
 

Following identification of PCR product on an agarose gel the remaining PCR product 

was cleaned up prior to cloning using the GenElutePCR purification kit (Sigma-

Aldrich) following manufacturer’s instructions. Firstly spin columns were prepared 

by the addition of preparation solution to the GenElute minispin column (Sigma-

Aldrich), followed by brief centrifugation at 12,000 x g for 30 seconds. The flow 

through was then discarded and binding solution was added to each column at an 

amount of five times binding solution to one times PCR product volume. Again the 

column was centrifuged at maximum speed for one minute and the flow through 

was discarded. The product was then bound to the spin column membrane. The 

column was then washed by the application of 500µl of wash solution to each 

column followed by centrifugation at maximum speed for one minute. The flow 

through was again discarded and the columns were spun at maximum speed for a 

further two minutes to remove any residual wash solution from the column. The 

cleaned up PCR product was then eluted from the column membrane by the 

addition of 50µl of elution solution followed by one minute incubation at room 

temperature. Lastly the spin column was placed into a new sterile 1.5 ml 

microcentrifuge tube and spun at maximum speed for one minute. The PCR product 

was then either used immediately for cloning or stored at -20 °C until use. 
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This process resulted in the removal of excess primers and other PCR components 

such as polymerase and nucleotides which could interfere with the cloning 

procedure. 

 

2.3.3.4 Cloning 
 
 

The purified PCR product was cloned into One Shot® TOP10 Chemically Competent E. 

coli (Invitrogen) cells following ligation into the pCR™4-TOPO® Vector (Invitrogen) 

using the manufacturer’s instructions. 

 

Initially a mix of 4µl of PCR product, 1µl salt solution, 1µl of TOPO® Vector (Invitrogen) 

and water to make up volume to 6µl, was incubated at room temperature for five 

minutes, this allowed the PCR product to become inserted into the vector. The 

pCR™4- TOPO® (Invitrogen) construct was then cloned into the One Shot® TOP10 

Chemically Competent E. coli cells (Invitrogen). 

 

2µl of the pCR™4- TOPO® construct (Invitrogen) was added to one vial of One Shot® 

chemically competent E. coli (Invitrogen) and mixed gently, followed by incubation at 

-4°C for 30 minutes. The cells were then immediately transferred to a water bath at 

42°C for heat shock and then placed back on ice. Next 250µl of room temperature 

S.O.C medium (Invitrogen) was added to each vial of cells, and the vials were 

incubated for one hour at 37°C on a 200 rpm shaker. 10-50µl of the cells were then 

spread onto pre-made selective plates, LB plates containing 50 µg/mL kanamycin 

which had been warmed to 37°C and the plates were then incubated over night at 

37°C. Several plates were made for each vial of transformed cells, ranging from 10µl 

to 50µl of cell suspension. This was to ensure that the correct concentration of cells 

to produce well-spaced colonies was achieved. 

 

Multiple colonies were selected from each plate for plasmid purification and 

subsequent sequencing. Colonies were selected and cultured at 37°C overnight in LB 

media containing 50µg/mL kanamycin. Plasmid DNA was extracted using the PureLink 
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Quick Plasmid Miniprep kit (Invitrogen). Firstly, colonies were selected and grown 

overnight at 37°C in LB media. 1-5ml of the resultant culture was then centrifuged at 

13,000 rpm and the liquid media was then removed, to harvest the cells. Following 

this step, the pellet was re-suspended in re-suspension buffer (250µl), and lysis buffer 

(250µ) was then added. The tube was then mixed by inversion and left at room 

temperature for five minutes. 350µl of precipitation buffer was added and the tube 

was mixed until a homogeneous solution was achieved. The tubes were then 

centrifuged at >12,000 x g for ten minutes. The remaining supernatant was 

transferred to a column and washed twice with wash buffer. This involved the 

addition of either 500µl or 750µl of wash buffer to the column followed by 

centrifugation at >12,000 x g for one minute. The resultant flow-through was then 

discarded. To elute the DNA from the columns, the columns were transferred to a 

new sterile 1.5ml microcentrifuge tube which was incubated at room temperature 

following the addition of 75µl of TE buffer. The columns were then centrifuged at 

greater then 12,000 x g for two minutes to recover the plasmid DNA. The columns 

were then discarded and the DNA was stored at -20°C until use. 

 

To sequence T7 and T3 primers were used for sequencing of 5µl of purified plasmid 

DNA. Sequencing was carried out by Eurofins MWG Operon. Sequencing results were 

aligned using BioEdit Sequence Alignment Editor software. 

 

 

2.4 Using McrBC treatment to identify DNA 

methylation 

 

McrBC enzymatic treatment was used to assess the methylation status of CGI regions 

located upstream of the TSS for a number of AD associated genes. The exact process 

is described in more detail in chapter 3.1, but briefly McrBC is a methylation specific 

restriction enzyme which cuts at methylated CpG residues within DNA. Therefore PCR 

after digestion can be used to assess methylation of a specific region following McrBC 

treatment. PCR primers were designed to cover a region which contained CpG sites, 

PCRs were then performed using both McrBC treated and non-treated DNA. The PCR 
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products could then be compared; if methylation was present in the sample then the 

PCR using McrBC treated DNA template would produce fewer PCR products then that 

using a non-treated template. 

 

2.4.1 McrBC primer design 
 
 

Prior to McrBC experiments CpG rich regions were identified and PCR primers were 

designed to cover these regions. CpG rich islands within the promoter regions of each 

gene (PTK2β, SORL1 and INPP5D), and an intragenic CGI in the case of HLA-DRB1/5, 

were identified using the UCSC genome browser (University of California, Santa Cruz, 

CA, USA (www.genome.ucsc.edu/index)). The sequence of this region was then found 

using Ensembl (http://www.ensembl.org/index.html) and primers covering multiple 

CpG sites were then designed using Primer 3 (http://bioinfo.ut.ee/primer3-0.4.0/). 

 

PCR primers were designed for regions within the AD associated genes PTK2β, 

INPP5D, SORL1 and HLA-DRB1/5 (for details of primers see appendix 2). In 

addition primers were also designed to cover regions within genes shown to be 

differentially methylated in AD by other published methylation studies. Initially 

primers where taken from published papers for the genes APOE, TFAM, 

MTHFRP, BACE (Wang et al., 2008), MAPT, PSEN1 (Barrachina and Ferrer, 2009) 

and APP (Barrachina and Ferrer, 2009, Tohgi et al., 1999). However the primers 

reported in these studies did not prove to be effective when tested and 

extensive optimisation may have been required to produce an adequate PCR 

product, this could have been due to the use of different reagents and 

equipment.  

 

However rather than performing time consuming optimisation of these primers the 

UCSC genome browser was used to identify the region investigated in each paper and 

the previously mentioned method was used to design new primers, regions covered 

are shown in table 2.3 below. Primer sequences are detailed in appendix 2. 

 

 

http://www.genome.ucsc.edu/index
http://www.ensembl.org/index.html
http://bioinfo.ut.ee/primer3-0.4.0/
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Table 2.3: Regions investigated in AD differentially methylated genes. The table 

includes details of each gene region that have been found to contain aberrant 

methylation in LOAD.  

 

Gene Paper 

investigating the 

gene 

Region 

investigated by 

paper and 

methylation 

status in AD 

compared with 

control 

Genomic 

region 

investigated 

by paper 

Genomic region 

investigated using 

McrBC 

APOE Wang et al., 

(2008) 

Promoter 

(hypomethylated) 

3’UTR (inter-

individual 

variation of 

methylation) 

GRCh38-

chr19- 

44905658-

44906146 

(488bp) 

GRCh38-chr19- 

44905658-

44906146 (488bp) 

TFAM Wang et al., 

(2008) 

Promoter (inter-

individual 

variation of 

methylation) 

 

GRCh38-

chr10- 

58385094-

58385094 

(325bp) 

GRCh38-chr10- 

58384929-

58305033(104bp) 

MAPT Barrachina et al., 

(2008), Iwata et 

al., (2013) 

Promoter (hypo-

methylation) 

Promoter 

sequence 

GRCh38-chr17- 

891797-892118 

(321bp) 

 

 

As another control, primers were designed to amplify the GABRB3 promoter region. 

This region has previously been used as a methylation control (Maunakea et al., 

2010). Since the region targeted contains no CpG sites it would be expected that 

McrBC could not cut in this region and thus a PCR using a McrBC treated DNA 
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template should produce the same amount of product as that of an untreated sample 

of DNA. 

 

PCRs were performed containing both the primers amplifying the gene of interest 

and the control gene. Multiple sets of control primers were used so that products of 

multiplex PCR would be distinguishable from each other. The primers used are 

shown in table 2.4. 

 

Table 2.4: GABRB3 primers and PCR product length. Tables shows details of the 

primers used in each to amplify the control region of GABRB3. 

 

Gene Primer name Primers Product 
length (bp) 

    

GABRB3 GABRB3_P1_F1 CCTGCAACTTTACTGAATTTAGC 206 

 

 
GABRB3_P1_R1- GGAATCTCACTTTCACCACTGG  

    

GABRB3 GABRB3_P3_F1_406 
 

TTTTCCCTACCCCTACCCAGT 406 

 

GABRB3_P3_R1_406 AATGCAGGCACATTTCCTGTTG 
 
  

 
 
 

2.4.2 MrcBC treatment 
 
 

Prior to McrBC treatment of the DNA samples the samples were tested using a 

NanoDrop™ to assess quality and concentration of the DNA as described in section 

2.3.1. Following this each set of primers were tested and optimised in order to 

produce a visible PCR product with an input of 10ng of DNA. Once PCRs were 

successful 250ng of genomic DNA was treated with McrBC for each AD and control 

sample investigated. This was achieved using the following protocol. 250ng of 

genomic DNA was treated with 20 units of McrBC enzyme (New England Biolabs) in 

a 50µl reaction containing: 250ng genomic DNA, 20 units McrBC enzyme, 1X 

NEBuffer 2 (50 mM NaCl, 10 mM Tris-HCl, 10 mM MgCl2, 1 mM DTT, pH 7.9 @ 25°C), 

supplemented with 200 μg/ml BSA and 1 mM GTP and incubated at 37°C overnight. 
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This mixture was then heated to 67°C for twenty minutes to inactivate the McrBC 

enzyme. DNA was then stored at -4 °C until use. 

 
2.4.3 PCR and agarose gel electrophoresis 
 
 

PCR reactions were completed using both McrBC treated DNA and non-treated DNA 

as templates. Both types of PCR reaction consisted of the components shown in 

table 2.5, and had a final volume of 20µl. 

 

Table 2.5: Components of McrBC PCR reactions. Table shows the McrBC PCR 

components and the amount of each included in each PCR mix.  

 

PCR component  Amount (µl) Concentration/ Units 
       

DNA   0.4 (untreated  DNA)  2 10ng of DNA  

   (McrBC treated DNA)   
       

Platinum® Blue PCR 10  0.22   units (10µl   of 
SuperMix     22U/ml)  

      

Forward Primer  0.5  5ng (10ng/µl 
     concentration)  
      

Reverse Primer  0.5  5ng (10ng/µl 
     concentration)  
     

RNAse free water  variable   
       

 
 
 

The PCR program then used was as follows: cycles were: 95°C (5 minutes), 35 cycles 

(94°C (50 seconds), 59°C (30 seconds), 72°C (60 seconds)), 72°C (10 minutes), PCR 

was conducted using a Techne® TC412/4000 thermal cycler (Techne Inc, Burlington, 

NJ). PCR products were then ran on a 2% agarose gel stained with ethidium bromide 

to assess successful amplification. 

 

2.4.4 Computer methods 

 
Band density quantification was undertaken using Genesync imaging software. This 

software provided a relative number representative of the amount of PCR product 
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visualised on the gel following amplification. This information was then used to 

compare the efficiency of PCRs using McrBC treated and non-treated DNA templates. 

Microsoft Excel was used to compare the two values and to plot the results. Two 

tailed T-test were also performed using Microsoft Excel and all outliers were excluded 

from the analysis, this was common throughout all statistical analysis performed as 

part of this thesis. Outliers were defined as values that were greater than 15 times 

the interquartile range away from the mean. T-test was used as it is a robust method 

for comparing small sample sizes and is less dependent on the mean when compared 

to a Mann-Whitney U test. All normality testing was conducted using the Kolmogorov-

Smimov Test of Normality (shown in supplementary figures), however for data sets 

of less the five normality testing and covariant analysis was not performed due to the 

statistical limitations associated with sample size.  

 

2.5 Methylation analysis by pyrosequencing 
 
 

2.5.1 Bisulphite treatment of DNA 
 
 

Prior to pyrosequencing DNA was bisulphite converted, as previously described 

(section 2.4.1). 500ng of genomic DNA was bisulphite converted using the EpiTect 

DNA Bisulphite Kit (Qiagen, Germany) following the manufacture’s instructions. 

 

2.5.2 Pyrosequencing primer design 
 
 

Prior to pyrosequencing primer design CGIs located within the targeted genes were 

identified using the UCSC genome browser (University of California, Santa Cruz, CA, 

USA (www.genome.ucsc.edu/index), with the exception of the regions targeted for 

SIRT1 and TREM2, for these two genes primers were designed for the regions 

targeted by either Hou et al. (2013) or Smith et al. (2016). 

 

Pyrosequencing PCR Primers were designed using the program PyroMark Assay 

Design 2.0 (Qiagen, Germany) and obtained from Eurofins MWG. The primer sets 

contained either a forward or reverse primer that was biotinylated at the 5’ end. This 

allowed capture of the PCR product on Streptavidin coated Sepharose High 
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Performance beads (GE Healthcare, UK) during preparation for pyrosequencing. Each 

set of primers was given a score out of a hundred and were colour coded. The colour 

blue meant excellent primers for that target. Primers could also be yellow, orange or 

red (with red being the least effective primer sets). 

 

A detailed report is also available for each primer set. This report includes a diagram 

of primer binding sites on the target sequence, information about the size of the PCR 

product, the melting temperatures of the primers and details of the target sequence. 

The sequence to analyse is important because this sequence is used to determine the 

nucleotide dispensation order during the pyrosequencing reaction. This report also 

gives details about and potential problems with the primer sets such as chances of 

mis-priming, secondary structure formation, and self-complementarity. All of these 

factors were taken into consideration when choosing primer pairs. In all instances the 

primer with the highest cumulative score was chosen for use in the pyrosequencing 

reaction, if two or more sets of primers were used then the second best primers were 

also selected. 

 

A full list of pyrosequencing primers used during work completed in this thesis can be 

found in appendix 3. 

 

2.5.3 Pyrosequencing PCR 
 
 

Initially the PCR mix used for pyrosequencing PCR reactions was as described for the 

McrBC PCR reactions using the Platinum Blue Supermix (Invitrogen, UK) (table 2.5). 

Using this PCR kit multiple optimisation steps were taken to result in PCR product, 

these steps were, step down, gradient and nested PCRs were used as well as extensive 

optimisation of primer amount and DNA amount required for each PCR. The 

experiments conducted led to the discovery that the optimum amount of each primer 

to use in PCRs was 0.25pmol and 0.1µl of bisulphite converted DNA (500ng eluted in 

20µl of elution buffer).  
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However, the use of two round of PCR resulted in significant problems with negative 

contamination and inefficient PCR reactions. This resulted in the use of the PryoMark 

PCR kit (Qiagen, Germany) which is specifically designed for use in pyrosequencing 

PCRs. PCRs using SIRT primers and all other candidate genes were completed using 

the PyroMark PCR kit (Qiagen, Germany) exclusively. These PCR solutions were 

conducted following manufacturer’s instructions and contained 12.5µl PyroMark PCR 

Mastermix 2x, 2.5µl CoralLoad Concentrate 10x, 0.25ng of each PCR primer and 10-

20ng of bisulphite converted DNA, made up to 25µl with RNase-free water and did 

not require the use of two rounds of PCR to generate sufficient PCR product for 

sequencing. 

 

PCR programmes used also varied depending on the primer set, PCR program details 

are shown in appendix 4. All PCRs were completed using either the Techne® 

TC412/4000 thermal cycler (Techne Inc, Burlington, NJ) or the Master cycle gradient 

machine (Eppendorf, Germany). For most gene candidates a step down and gradient 

PCR was initially performed to assess optimum annealing temperature. In these cases 

a temperature of around 5°C less than the average of the melting temperature of the 

two primers was chosen as a mid value for the gradient. Following gradient PCR the 

temperature responsible for the strongest band was chosen for further optimisation, 

this included the addition of more cycles if the band appeared as faint, the number 

of cycles used ranged from 35-50. 

 

Prior to analysis by pyrosequencing all PCR products were assessed on a 2% agarose 

gel and stained with ethidium bromide solution. PCR products were run on the gel 

with 5µl of 1kb HyperLadder (Bioline). Gels were visualised using a transilluminator 

(GeneSys) and only PCR products showing strong specific bands, with no primer dimer 

bands present on the gel, were used for subsequent pyrosequencing assays. 

 

2.5.4 Pyrosequencing assay design 

 

Pyrosequencing assays were designed using the PyroMark Q24 software (Qiagen, 

Germany). The sequence to analyse was taken from the sequence given for each 

primer set by the primer design software. This was then used to create an assay. 
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2.5.5 Pyrosequencing process 
 
 

Initial pyrosequencing was carried out using the manufacture’s protocol. Specifically, 

the biotynylated PCR product was immobilized using Streptavidin coated Sepharose 

High Performance beads (GE Healthcare, UK). To achieve this 15µl of PCR product, 

2µl of beads, 40µl of binding buffer (Qiagen, Germany) and 23µl of high-purity water 

(either Milli-Q (18.2 MΩ⋅cm) or RNase free water) (total volume of 80µl) were added 

to a new 200µl tube. The tube was then agitated at 1400 rpm for ten minutes. 

 

The PyroMark Q24 vacuum workstation was then used to produce single stranded 

PCR product with the sequencing primer annealed, this was then used for sequencing. 

First the bound PCR product was washed with 70% ethanol, and denatured using 

denaturation solution, by lowering the vacuum tool, with captured PCR product held 

under suction, to each solution for five and ten seconds respectively. The then 

unbound strand was washed away, by application of vacuum tool to wash solution 

for ten seconds under suction, the single strand which was still bound to the beads 

and the vacuum remained bound while one strand was washed away. Binding buffer, 

denaturation solution and wash buffer were all also purchased from Qiagen. 

 

Sequencing primer was then annealed to the still attached strand of DNA. The 

vacuum was switched off to allow the strand to dissociate from the vacuum. This was 

then incubated in a 0.3µM solution of specific sequencing primer (diluted with 

annealing buffer (Qiagen, Germany)) on a Qiagen Q24 pyrosequencing plate, with 

gentle agitation. Following this the plate was transferred to a preheated heating block 

using PyroMark Q24 Plate Holders (Qiagen) and incubated at 80 °C for two minutes 

followed by cooling at room temperature for a further five minutes, to allow the 

sequencing primer to anneal to the single stranded PCR product template. 

 

Pyrosequencing was then carried out using the Pyromark Q24 Pyrosequencer 

(Qiagen, Germany). A PyroMark Q24 Cartridge was filled with Pyromark Gold Q24 

reagents, following the instructions given by the pyrosequencing software for that 

specific assay. The Pyromark Gold Q24 reagents included lyphillised enzyme and 
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substrate mix which were reconstituted prior to use by the addition of high-purity 

water followed by gentle mixing. They were then allowed to reach room temperature 

prior to use. Enzyme mix (DNA polymerase, ATP sulfurylase, luciferase and apyrase), 

substrate mix (adenosine 5’ phosphosulfate and luceferin) and dNTPs (dATPαS, dCTP, 

dTTP and dGTP) were then added to the specific wells of the PyroMark Q24 Cartridge 

in the amounts defined by the pre-designed assay. The cartridge was then placed into 

the pyrosequencer with the label facing forward. Pyrosequencing assays were then 

run and data was transferred to a USB device. 

 

Following multiple attempts at pyrosequencing some modifications were introduced 

to this procedure in order to improve the pyrosequencing outcome. Firstly more PCR 

product, Streptavidin coated Sepharose High Performance beads (GE Healthcare, UK) 

and binding buffer were used to improve the likelihood of PCR product being bound 

to beads for subsequent stages of pyrosequencing, therefore increasing the 

sequencing quality. The pyrosequencing mixture therefore instead contained 20-25µl 

of PCR product, 4µl of beads and 51-56µl of binding buffer. In addition to this the 

concentration of sequencing primer used was also increased to 0.5µM to increase 

annealing of the sequencing primer to PCR template. 

 

2.5.6 Serial pyrosequencing 

 
 

In the case of serial pyrosequencing, used to cover a larger area of the ABCA7 region 

investigated, multiple sequencing primers were used. An initial round of 

pyrosequencing was carried out as described above however following this the initial 

sequencing primer was removed from the PCR template and a second sequencing 

primer was annealed. This was achieved by the addition of a further 20µl of binding 

buffer to each well of the pyrosequencing plate, followed by pipetting the solution 

several times to resuspend the streptavidin coated sepharose beads. The PCR 

template was then denatured using the workflow described above to produce a single 

stranded template. The second sequencing primer was then annealed to the single 

stranded template as also described above (Tost et al., 2006). 
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A further advantage of serial pyrosequencing is that it allows the use of residual 

components remaining within the pyrosequencing cartridge following 

pyrosequencing. After the initial round of pyrosequencing about 60µl of each 

substance (enzyme mix, substrate mix and dNTPs) remain in each well of the 

cartridge, therefore rather than washing the cartridge and adding new reagents, the 

wells could be topped up to the volume required for the next round of sequencing. 

This is much more cost effective then completing two independent rounds of 

pyrosequencing and also reduced the time required for multiple rounds of 

sequencing. 

 

2.5.7 Pyrosequencing results analysis 
 
 

Following pyrosequencing, results were analysed using the PyroMark Q24 software. 

The software provides a score for each CpG site covered by each assay and also an 

idea about the assay as a whole. Runs are scores as blue (pass), yellow (check) or red 

(fail). All failed pyrosequencing runs were repeated. In addition at least two technical 

reps were performed for each sample, unless otherwise stated. 

 

An internal control for the efficiency of the bisulphite conversion of each sample was 

also included in every pyrosequencing assay. Prior to the pyrosequencing run at least 

one non-CpG cytosine was chosen to be analysed in the assay. Since these are not 

expected to be methylated all of these should be converted during the bisulphite 

treatment. The amount of conversion was measure during pyrosequencing and 

conversion of less the 95% would result in a failed assay, this would have resulted in 

repeat bisulphate conversion of the sample, it should be noted that no samples tested 

failed this threshold quality control test. 

 
2.5.8 Statistical analysis 
 
 

Statistical analysis was performed using Microsoft excel or Genstat 18 statistical 

packages (Genstat work was conducted by Dr Jim Craigon, University of Nottingham). 
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In the instance of McrBC data and some pyrosequencing results two tailed T-tests 

were performed to compare the averages of two sets of data (following removal of 

outliers). In most cases this would be the average methylation found at each CpG site 

investigated in control compared to AD samples. Although this was also used to 

investigate methylation across the whole CpG containing region investigated for each 

gene). A P value of <0.05 was deemed to represent a significant difference between 

the average of two data sets. Kolmogorov-Smirnov Test of Normality calculation were 

performed on all data sets where n is greater than five; this and other tests for 

normality are for data sets smaller than this. All data was shown to be normally 

distributed. 

 

For RIN3 data one-way analyses of variance were used to test the blood and brain 

tissue data for differences between the Alzheimer and control groups of subjects. This 

was undertaken for each individual CpG site tested in each tissue, each of the 

cytosines were analysed separately as were the blood and brain tissue data sets. 

When multiple values were recorded for the same cytosine from the same subject 

the values were averaged to produce one value per person for each cytosine. These 

averages were then analysed using the Analysis of Variance routines within the 

Genstat18 statistical package. 

 

In the case of the MEF2C epi-varaint the residuals from each analysis were plotted to 

check the assumptions of Normality and homogeneity of residuals, and also to 

highlight possible rare variants. For rare variants, the probability of obtaining residual 

values as, or more, extreme than the one observed was calculated from the standard 

Normal distribution curve. To achieve this, the residual deviation between the 

individual outlier and the mean of its group; and the overall standard deviation from 

the rerun analysis were used as input to the Genstat Normal probability distribution 

routine. 

 

Testing for co-variants: The pathology of EOAD i.e. a potential age spread from 30-65 

year of age (see www.nia.nih.gov/) presents a number of challenges for identifying 

appropriate control samples and for the identification and exclusion of co- variants. 

http://www.nia.nih.gov/
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Samples may be age matched, however this does not control for disease i.e. until 

those individuals reach age 65 it is not possible to exclude the possibility that 

individuals within the control group have pre-symptomatic EOAD. In order to exclude 

disease as a possibility samples over the age of 65 were chosen. The control group 

used for the study was therefore statistically different older age group (65+), this 

violates the rules of ANCOVA (or other co-variant tests) (Figure 2.1). However given 

there is a >20 year age spread in the AD age group, it was therefore possible to test 

and exclude age as a co-variant by testing within the EOAD group. This experimental 

design is also independent of condition and therefore allows for the identification of 

candidate epi-SNPs. 

 

In the instance of epi-SNPs co-variants become less relevant. The hypothesis in this 

thesis is that by testing genes with published associations with disease progression, 

any epigenetic change may drive the pathogenesis of the disease. Therefore although 

it may not be possible to ascertain the cause of different methylation profiles, there 

is a strong rational for assuming that this difference in methylation is relevant to 

disease state. 

 

Although co-variant analysis between groups was not included as part of the 

experimental design, the analysis was performed and the effect on P-values are shown 

in the supplementary figures.   

  

 



54 
 

 

 

 

 

   

2.6 Whole genome bisulphite sequencing (WGBS) 
 
 

2.6.1 Sample information 
 
 

Two samples of LOAD cerebellum DNA were used for WGBS experiments. The DNA 

was obtained from the BDR (Brains for Dementia Research) and came from two LOAD 

suffers with differing severity of disease. One sample was used from a patient 

presenting with moderate AD (Braak stage IV) and one patient suffering with severe 

disease (Braak stage VI). Details of each sample are shown in appendix 1. 

 

The WGBS results for these two samples were then compared to each other as well 

as data for a cerebellum control sample. Control data was obtained from the NCBI 

sequence read archive (SRA) (https://www.ncbi.nlm.nih.gov/sra). Specifically WGBS 

of this sample was carried out by Professor Kun Zhang of the Integrative Genomics 

Laboratory, Bioengineering, University of California, San Diego during project number 

PRJNA315194 and the sample used was SAMN04557041, SRS1341238 (N37-CRBL), 

GEO accession: GSM2088203. 

Figure 2.1: Ages of Control and AD samples used. Box plots showing difference 
in ages of AD and control samples used.  

https://www.ncbi.nlm.nih.gov/bioproject/315194
https://www.ncbi.nlm.nih.gov/biosample/SAMN04557041
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2.6.2 Bisulphite conversion 
 
 

Bisulphite conversion of 100ng of DNA from each sample was completed prior to 

WGBS library preparation using the EpiTect Bisulphite Conversion Kit (Qiagen, 

Germany) using the protocol described in section 2.4.1. Clean up of bisulphite 

converted DNA was also completed following the method described in section 2.4.2. 

 

2.6.3 Library preparation 
 
 

Library preparation following bisulphite conversion was carried out using the Truseq 

DNA methylation library preparation kit (Illumina) following the manufactured 

instructions. This kit was chosen as it allows the use of a much smaller initial DNA 

input then other available kits. The method used includes bisulphite conversion of 

DNA prior to library preparation; this means only 50-100ng of input DNA is needed 

for this initial conversion. With alternative kits bisulphite conversion commonly 

occurs after the DNA library has been constructed. This results in loss of library 

content due to DNA degradation caused by the bisulphite treatment. 

 

Following bisulphite conversion of the DNA the now ssDNA template is used for the 

addition of adapter sequences which are later needed for cluster generation during 

sequencing. This also means that, unlike with other methods, no fragmentation of the 

DNA is needed prior to the addition of adapter sequences and methylated adaptors 

are also not required. The WGBS library preparation method is described briefly in 

figure 2.2. 
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2.6.3.1 Anneal synthesis primer 
 
 

Following bisulphite conversion the final bisulphite converted DNA was eluted in 9µl 

of elution buffer. The quantity of the now bisulphite converted ssDNA was then 

assessed using a NanoDrop™ and the 50ng of the recovered DNA was used to 

complete the library preparation. 

 

The first step in library preparation was to anneal the DNA Synthesis Primer to the 

ssDNA template. Initially the DNA Synthesis Primer was thawed on ice followed by 

inversion to mix and brief centrifugation at maximum speed. 9µl of ssDNA template 

was then combined with 2µl of DNA Synthesis Primer, in a separate PCR tube. The 

PCR tube was then transferred to a thermal cycler (Techne Inc, Burlington, NJ) and 

heated to 95°C for five minutes followed by incubation on ice. 

 

 

Figure 2.2: Process of using the Truseq DNA methylation library preparation kit for 
WGBS library preparation. Image obtained from (www.illumina.com). 

 
 
 
 

http://www.illumina.com/
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2.6.3.2 Synthesis of DNA 
 
 

Once the DNA Synthesis Primer had been annealed to the ssDNA template the 

template was then used to synthesise DNA which was tagged with a specific sequence 

resulting from the random hexamers added during the annealing of the synthesis 

primers. 

 

For this stage of the library preparation a master mix was initially made containing: 

4µl of TruSeq DNA Methyl PreMix, 0.5µl of 100mM DTT and 0.5µl of TruSeq DNA 

Methyl Pol per sample (total of 5µl of master mix per samples of DNA). All regents 

were thawed on ice prior to use. 

 

5µl of the master mix was added to each DNA sample, on ice, to make a final volume 

of 16µl. The samples were then mixed by pipetting and placed in a thermal cycler. 

The following program was then run: 

 
preheat lid 

 
25°C for 5 minutes 

42°C for 30 minutes 

37°C for 2 minutes 

Hold at 4°C 

 
The PCR tubes were then removed from the thermal cycler and 1µl of exonuclease I 

was added to each tube and pipetted to mix. The tubes were then placed back into 

the thermal cycler and the following program was run: 

 
preheat lid 

 
37°C for 10 minutes 

95°C for 3 minutes 
 

25°C for 2 minutes and hold 
 
 

2.6.3.3 Tagging of the DNA 

 

Following DNA synthesis the DNA was then di-tagged. The 3’ end of the synthesised 
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DNA was extended and a complimentary sequence was added resulting in di-tagged 

DNA with known sequence at both ends (3’ and 5’). 

 

Initially a mastermix was made containing 7.5µl of TruSeq DNA Methyl Term Tag 

PreMix and 0.5µl of DNA Polymerase per sample. Prior to master mix preparation 

both regents were thawed on ice, inverted to mix and then centrifuged briefly. 8µl of 

master mix was then added to each DNA sample, and mixed using pipetting. The 

tubes were then placed back into the thermocycler and the following program was 

ran: 

 
Preheated lid 

 
25°C for 30 minutes 

95°C for 3 minutes 
 

Hold at 4°C 
 
 

2.6.3.4 Tagged DNA Clean up 
 
 

The now di-tagged DNA was then purified using 1.6x concentration of AMPure XP 

beads (Beckman Coulter, Bucks, UK). Prior to the clean up the beads were allowed to 

reach room temperature for at least 30 minutes. Following this 40µl of AMPure XP 

beads (Beckman Coulter, Bucks, UK), were added to each sample and mixed using 

pipetting. The mix was then transferred to a new 1.5ml microcentrifuge tube and left 

at room temperature for five minutes. The tube was then placed into a magnetic rack 

until the liquid became clear. This clear liquid was then removed and discarded. The 

remaining beads were then washed with 200µl of freshly prepared 80% ethanol 

followed by incubation at room temperature for one minute on the magnetic rack. 

Again the liquid was then discarded. This procedure was repeated twice. Following 

the second wash all ethanol was removed from the tube and the tube was 

centrifuged briefly and placed back onto the magnetic rack for one minute. All 

remaining ethanol was then removed from the sample using a P10 pipette. The tube 

was then air dried on the magnetic rack for three minutes. The tubes were then 

removed from the magnetic rack and 24.5µl of nuclease free water was added to 
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each sample. The samples were then pipetted to re-suspend the beads. The tubes 

were then incubated at room temperature for two minutes and placed back onto the 

magnetic rack until the liquid was again clear (approximately five minutes). 22.5µl of 

the supernatant, containing the di-tagged DNA, was transferred to a new PCR tube 

and placed on ice. 

 

2.6.3.5 PCR amplification of the library 
 
 

PCR was then used to amplify the library and also to create the second strand of DNA. 

This step also involved the addition of adapter sequences to each end of the DNA 

strand. In the case of the libraries made during this thesis index primers were not 

added or used. Instead the TruSeq DNA Methyl Reverse primer was used to create 

non-indexed libraries. 

 

Prior to use all regents were thawed on ice, mixed by inversion and centrifuged 

briefly. To each PCR tube containing the di-tagged DNA the following was added: 25µl 

of FailSafe PreMix E, 1µl of TruSeq DNA Methyl Forward, 1µl of TruSeq DNA Methyl 

Reverse and 0.5µl (1.25U) of FailSafe PCR Enzyme Mix (Epicentre). The total volume 

of each sample was then 50µl. 

 

The PCR tubes were then placed back into the thermal cycler and the following 

program was ran: 

 
preheated lid 

 
95°C for 1 minute 

 
10 cycles of: 

 
o 95°C for 30 seconds 

 
o 55°C for 30 seconds 

 
o 68°C for 3 minutes 

 
o 68°C for 7 minutes 

Hold at 4°C 

 

2.6.3.6 Library Clean Up 
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The library was then purified using a 1.0x concentration of Agencourt AMPure XP 

beads (Beckman Coulter, Bucks, UK). This resulted in the removal of primer dimmers 

that may have occurred during PCR amplification. 

 

50µl of AMPure beads were added to each PCR tube and mixed using pipetting. The 

entire volume of the PCR tube was then transferred to a new 1.5ml microcentifuge 

tube and incubated for five minutes at room temperature. The tubes were then 

placed on a magnetic rack until the liquid became clear (approx five minutes). The 

supernatant was then discarded and the beads were washed twice with 80% ethanol 

as described in section 2.7.3.4. The tubes were then centrifuged briefly and allowed 

to stand on the magnetic rack for a further minute. A P10 pipette was then used to 

remove any remaining liquid and the tubes were air dried for three minutes on the 

magnetic rack. 20µl of nuclease free water was then added to each tube and the 

beads were re-suspended. The tubes were then incubated at room temperature for 

a further two minutes and placed back onto the magnetic rack until the liquid became 

clear (approximately five minutes). The TruSeq DNA methylation library containing 

supernatant was then transferred to a new PCR tube which was stored at -25°C to -

15°C until use. 

 

2.6.3.7 Quality Control Check of Libraries 
 
 

The quality and quantity of the WGBS libraries was assessed by Polar Genomics (New 

York) prior to sequencing. DNA concentration was calculated using a Qubit dsDNA 

high sensitivity assay and average fragment size and was calculated using a Agilent 

2200 Tape Station. 
 

2.6.4 Whole genome bisulphite sequencing 
 
 

Sequencing of WGBS libraries was performed by Polar Genomics (New York). Each 

whole genome sequencing sample was sequenced using one lane of an Illumina HiSeq 

2500 (Illumina, UK) using pair end 2X 150 BP sequencing. A 20% PhiX spike in was 

added to the library prior to sequencing to increase library diversity and therefore 

increase cluster generation, improving sequencing. 
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2.6.5 Bioinformatic analysis 
 
 

The data analysis was performed by Joanna Moreton from The Advanced Data 

Analysis Centre (ADAC) at the University of Nottingham. 

 

The reads were trimmed based on quality and adapter contamination using Trim 

Galore (v0.4.3) (https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/) 

with a quality score cut-off of 20. FastQC (v0.11.5) 

(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) was then run to 

assess the quality of the trimmed reads. The human reference genome was 

downloaded from Ensembl (release 88) (Aken et al., 2017). The sequencing analysis 

was performed using Bismark (v0.17.0) (Krueger et al, 2011). In the first step, the 

genome was bisulphite converted and then Bowtie 2 (v2.3.0) (Langmead and 

Salzberg, 2012), was used to align the trimmed reads to the genome. Next, 

deduplication was performed by Bismark to filter out reads with the same orientation 

and position. In the final Bismark step, the methylation information was extracted, 

and used as input for ‘DSS-single’ (Bioconductor package ‘DSS’). 

 

For the differential methylation loci (DML) analysis, all methylation calls with 

methylation percentage greater than 50%, and coverage greater than 10, were used. 

These filters were applied to all samples before using as input to the tool “DSS-single” 

to find DMLs (P-value threshold of 0.01/0.001) (Wu et al., 2015). Finally, 'bedtools 

closest' (v2.26.0) was used to find the gene(s) nearest to the methylation calls 

(Quinlan and Hall, 2010). 

 

https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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Chapter 3- Investigation into differential 

methylation within the promoter regions of 

LOAD associated genes using LOAD leukocyte 

samples 

3.1 Introduction 

Thus far the causation of LOAD cannot be explained by genetics alone and there is 

mounting evidence that epigenetic modifications, such as DNA methylation, may 

have a role to play in LOAD susceptibility. It is therefore logical to investigate if any 

differential methylation could be observed at loci genetically associated with this 

disease i.e. the hypothesis is the contributing factor is not genetic but rather an 

epigenetic influence on LOAD associated gene expression. The work described in this 

chapter therefore aimed to use both bisulphite sequencing and enzymatic methods 

to investigate if differential methylation could be detected in the promoter regions of 

the GWAS identified genes CASS4, CELF1, FERMT2, HLA-DRB5/HLA-DRB1, INPP5D, 

MEF2C, NME8, PTK2β,SLC244A4/RIN3, SORL1 and ZCWPW1 (Lambert et al., 2013). 

In the experiments described in this chapter, DNA extracted from LOAD blood 

(leukocyte) samples were used throughout. Previously published experiments 

commonly focus on the use of brain tissue; however, leukocyte DNA was used in the 

following experiments as blood is easily accessible whereas brain tissue has to be 

collected post mortem. It is well established that LOAD specific differential 

methylation can be identified using blood samples (Hou et al., 2013, Chang et al., 

2014, Lunnon et al., 2014). The working hypothesis is that blood cells encounter the 

AD brain environment and then adapts the epigenetic regulation of genes in 

response. Epigenetic changes detectable in blood, such as DNA methylation, might 

therefore provide insight into the processes occurring within the AD brain  (Hickey, 

1991; Weiss et al., 1998; Callahan and Ransohoff, 2004; Takeshita and Ransohoff, 

2013).  
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The work described in this chapter aimed to identify differential methylation in LOAD 

blood samples that could be potentially used as a biomarker of disease. The 

exploitation of  peripheral blood cell methylation as a biomarker has been 

investigated with some success for a range of disparate diseases and conditions 

including cancer and cardiovascular disease (reviewed by Dong and Ren, 2018; 

Cardona-Monzonis et al, 2018). Also importantly researchers have also identified 

changes in peripheral blood specific methylation in response to neurological diseases 

such as Parkinson’s disease (see Wang et al, 2019), confirming a link between diseases 

afflicting the brain and blood borne methylation. Previous studies have also 

investigated the applicability of methylation as a biomarker for Alzheimer’s disease 

(Hou et al, 2013, Chang et al., 2014, Lunnon et al., 2014) and it is therefore 

unsurprising that blood borne marks for this disease are gaining some attention 

(e.g.Kobayashi et al, 2016).  

Significant changes in blood specific methylation linked to AD have been validated 

using a range of techniques including pyrosequencing (Xu et al, 2018; Madrid et al, 

2018) and may link to pathological features of disease such as cognitive decline 

(Mercorio et al, 2018), therefore outputs from this chapter may have applications as 

markers of AD.  

Any differential methylation identified in blood has potential value for use as a 

biomarker regardless of its ability to reflect brain methylation. Therefore while it was 

not possible to compare the results presented within this chapter to brain tissue data, 

due to not having access to this type of LOAD sample, there is value in identifying 

differential methylation in the blood of LOAD patients. 

However one issue with using blood samples is fast turnover of cells, co-morbidities 

in the elderly and medication. Backland et al. (2015) showed that some medicine can 

induce changes in methylation, however such effects likely require combinations of 

medicines and the resultant methylation profiles are complex and medication specific 

i.e genes linked to p-glycoprotein activity and therefore unlikely to either effect AD 

related genes or skew group wide averages (Ward-Caviness et al., 2017).  
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Leukocytes also rapidly turnover, however this may result in a quicker response to 

factors that influence DNA methylation than cells that turn over more slowly. As 

discussed by Wu et al. (2012) in this instance DNA methylation may or may not 

identify DNA methylation errors directly indicative of any disease but may instead 

have value as biomarkers for the biological processes that influence DNA methylation.  

Three experimental techniques were used to generate the data described in this 

chapter. Initially a quantitative ELISA assay was performed on LOAD blood samples to 

investigate aggregate levels of genome wide methylation. The kit utilised two 

antibodies. The first has high affinity to methylated DNA and is initially used to 

capture any methylated DNA. A second detection antibody is then introduced which 

binds to the capture antibody and will emit a colour when exposed to a developing 

solution. The amount of methylated DNA present in the sample is proportional to the 

optical density (OD) measured following colour development. This experiment was 

conducted to eliminate the possibility that any differential methylation identified is 

due to disease induced global AD non-specific changes in the gross aggregates of 

methylation rather than gene specific effects. 

AD may induce changes in leukeocyte cell types e.g. monocytes relative to neutrophil 

levels (see Shad et al, 2013). It should be noted that each cell type may possess type 

specific methylation and therefore levels determined via ELISA may reflect this shift 

in cell type content driven by AD. However a detectable shift in disease linked 

methylation via cell type would further support the rationale for global methylation 

profiling as a marker of disease. Recent research has suggested that changes in 

disease linked levels of leukocyte sub-cell methylation levels may be harness as a 

predictive marker for other conditions such as cancer (Koestler et al, 2017). 

In addition to undertaking the quantification of the global levels of methylation via an 

enzyme based immuno-assay, both bisulphite sequencing and an enzymatic digestion 

method were also employed. 

Bisulphite sequencing was used to investigate methylation within the promoter 

region of the gene PTK2B (encoding protein tyrosine kinase 2β) in LOAD leukocyte 

samples using bisulphite cloning. In this method sample DNA was first bisulphite 
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treated; to convert any unmethylated cytosines to uracil. The targeted region in the 

converted DNA was then amplified via polymerase chain reaction (PCR) which in this 

case was a selected sequence of the PTK2β promoter (see figure 3.3). The subsequent 

PCR product was then cloned into a vector, and transformed into competent cells. 

These cells were then cultured to form colonies. Each colony was from a cell 

containing a vector carrying only one PCR product. Therefore multiple colonies could 

be selected and sequenced to assess multiple amplifications, giving quantitative 

methylation data at CpG sites for each individual.  

The PTK2β promoter was assayed using this method. PTK2β has previously been 

associated with LOAD development via GWAS (Lambert et al., 2013). PTK2B encodes 

an intercellular kinase, a protein involved in mitogen activated protein kinase (MAPK) 

activity. The MAPK pathway has functions in regulating neuronal activity following 

neuropeptide activation and may have a role in long term potentiation and memory 

formation (Lev et al., 1995). PTK2β might also have a role in cell proliferation and 

survival (Otero et al., 2009). Therefore it is conceivable that altered PTK2B expression 

or activity could be a driving factor of LOAD. 

Following the use of the bisulphite cloning methods for analysis of PTK2β, work 

progressed to the use of a more high-through-put and less laborious enzymatic 

method.  The promoter CGI regions of other LOAD associated genes were investigated 

using the restriction endonuclease McrBC. McrBC is a DNA cleaving endocuclease 

which requires GTP and originates from Escherichia coli K-12. The enzymes cleavage 

site contains two variably spaces RmC recognition elements, these sites can be on 

either both stands or just one strand of the DNA. Cleavage occurs near one of these 

recognition sites and is enacted when the translocating McrBC complex encounters a 

barrier i.e methylation (Stewart et al., 2000). Cleavage therefore occurs at methylated 

cytosines within a CpG configuration. 

After McrBC treatment, DNA is then amplified via PCR. Methylation is detected when 

there is less than expected PCR product after treatment. This is due to the relative 

loss of template compared to control after cleavage when methylation is present.  
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McrBC was used to investigate the promoter regions of, INPP5D, PTK2B, SORL1 and 

an intragenic region of HLA-DRB5 and HLA-DRB1. An effort was made to design assays 

which targeted the genes CASS4, CELF1, FERMT2, HLA-DRB5/HLA-

DRB1,  INPP5D,  MEF2C,  NME8,  PTK2B,  SLC24A4/RIN3,  SORL1  and ZCWPW1, which 

have all been genetically associated with LOAD (Lambert et al., 2013). However due 

to lack of upstream CGIs and primer efficiency it was not possible to generate data 

for all of the targeted gene. 

In addition to HLA-DRB5/HLA-DRB1, INPP5D, PTK2B, SORL1, areas within the 

promoter regions of the genes apolipoprotein E (APOE), microtubule associated 

protein tau (MAPT) and mitochondrial transcription factor A (TFAM) were also 

investigated using the McrBC enzymatic assay. These genes, and specific target areas, 

were chosen due to previous studies showing differential methylation at these 

regions in LOAD (Wang et al., 2008, Barrachina and Ferrer, 2009, Iwata et al., 2014, 

Tohgi et al., 1999b). These published studies reported small but significant AD 

associated methylation changes across individual CpG sites within the promoter 

regions of these genes. 

Wang et al. (2008) identified LOAD associated hypomethylation of a region within the 

APOE promoter and a hypermethylated region within the genes 3’UTR using LOAD 

brain samples. In the same study hypomethylation was also identified in the LOAD 

brain for a region targeted within the promoter of TFAM. Both genes also showed 

extensive inter-individual variation in LOAD. The promoter regions identified by Wang 

et al. (2008) were both targeted using McrBC treatment during the experiments 

described in this thesis chapter. 

A region within the promoter of MAPT was also included in the McrBC experiment. 

The region chosen had also been previously shown to be hypomethylated in the LOAD 

brain using pyrosequencing (Iwata et al., 2014). This study identified a small but 

significant methylation difference at five CpG sites within the area targeted. 

Previous studies mainly used brain tissue; part of the study aim was to investigate if 

changes observed in brain tissue could also be observed in LOAD blood. The 

investigation into methylation within the mentioned control genes would allow 
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elucidation of whether aberrant methylation reported by published studies in AD 

brain tissue is also observable in LOAD blood DNA.  

3.2 Chapter aims: 

• Use of a quantitative ELISA assay to investigate aggregate levels of genome 

wide methylation using LOAD blood samples 

• Use of bisulphite cloning and sequencing to assess methylation of the PTK2β 

promoter in LOAD blood samples. 

• Use the methylation specific restriction enzyme McrBC to assess methylation 

within previously investigated gene regions using LOAD leukocyte samples. 

  



68 
 

3.3 Methods 

3.3.1 Alzheimer’s disease DNA samples 

All samples used for the work conducted in this chapter were collected from LOAD 

blood samples. DNA was extracted as described in section main methods. Table 3.1 

below shows details of the samples used in this chapter.  

Table 3.1: McrBC experiment sample details. Details of the samples used for the 

experiments described in this chapter are included.  

DNA ID Centre Gender Age at 
Death 

Age at Onset Age at Sampling Diagnosis 

N169 Nottingham M 56 
  

Control 

N158 Nottingham F 72 
  

Control 

N160 Nottingham M 73 
  

Control 

N166 Nottingham F 37 
  

Control 

M670 Manchester F 87 83 
 

Control 

AD249 Nottingham F 84 
  

Confirmed AD 

M543 Manchester F 73 69 
 

Confirmed AD 

M604 Manchester F 86 74 
 

Confirmed AD 

M646 Manchester F 
   

Confirmed AD 

M673 Manchester M 86 
  

Confirmed AD 

M767 Manchester M 
 

72 
 

Probable AD 

 

3.3.2 Global Methylation and Hydroxymethylation Assay 

Details of the global method used to investigate both methylation and 

hydroxymethylation is described in detail in section 2.2. Briefly, In order to test if 

global levels of methylation significantly differ between LOAD and control leukocyte 

DNA, a quantitative ELISA assay was used to measure overall levels of methylation for 

each patient sample. Global methylation (figure 3.2) was investigated in LOAD and 

control samples (n=5 and n=5 for both LOAD and controls respectively) using the 

Methylamp ™ Global DNA Methylation and Hydroxymethylation Quantification kits. 

Either methylation or hydroxymethylation is recognised by an antibody which is then 

used to detect methylation or hydroxymethylation. The amount of either is 

proportional to the intensity of the OD measured. 
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Usually methylation standards are used to produce a standard curve following the 

completion of this assay. The standard curve allows for absolute quantification of 

amounts. In this instance a direct comparison was made in order to determine 

comparative differences between the LOAD and control samples and data 

interpretation was limited to this comparison. However, in future experiments it may 

be desirable to generate a standard curve in order to quantify exact methylation and 

hydroxymethylation for each group. 

3.3.3 Bisulphite sequencing of PTK2β 

3.3.3.1 Primer design 

Bisulphite sequencing was used during this chapter in an attempt to investigate 

methylation with a region of PTK2β. Prior to this primers were designed to cover the 

region of PTK2β shown in figure 3.3.  

3.3.3.2 Primers, target region and CpG numbers  

Three sets of primers, amplifying the CpG rich region upstream of the transcription 

start site of the PTK2β gene were designed and tested for use in subsequence cloning. 

The primer design process is described in section 2.3.3.1. Three primer sets were 

designed; these are shown in table 3.2. 

Table 3.2: Details of PTK2β Primer sequences used for bisulphite PCR and cloning. 

Showing primer sets used and the location of the regions targeted in the PTK2β gene. 

F –forward primer, R-reverse primer. 

Primer set Primer name 

1 Ptk2b_f1- GGGGAGGAGAGYAGYAGGGGTGTGG 

 Ptk2b_r1- TCCAAAAATARAACCCCTCTTCCCC 

2 Ptk2b_f2- AGGGGTGTGGTTAAYAAYTYAGAGG 

 Ptk2b_r2- CCCCTARCCTCCCCCARCCTCCCC 

3 Ptk2b_f3- TAAYAAYTYAGAGGAGGAGGGAGAA 

 Ptk2b_f3- CCCCCARCCTCCCCTRTCTRAATAT 
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The three sets of primers were then tested using a PCR reaction (details of this can be 

found in section 2.3.3.2) containing DNA from a LOAD patient and from a non-disease 

control. Unfortunately, primer sets 1 and 2 failed to produce any observable product. 

Primer set three did however produce a PCR product, therefore these primers where 

used to complete the PCR reactions prior to cloning.  Initially three DNA samples were 

used: 166 (control), 646 (AD), AD249 (AD). The products from these PCRs were 

purified and cloned into One Shot® TOP10 Chemically Competent E. coli cells, more 

detail can be found in sections 2.3.3.3 and 2.3.3.4. Successfully transformed colonies 

were then selected and plasmid DNA was purified and sent for sequencing. The PCR 

products were also sent for sequencing to assess if the PCR was amplifying the correct 

genomic sequence. 

3.3.3.3 Sequencing Results 

Sequencing showed that the PCR product was either of a quality too poor to analyse 

or the product was highly degraded, which could have also caused the sequencing to 

fail. The PCR may have failed to amplify sufficient product due to inefficiency of the 

primers. The PCRs resulted in a faint bands when ran on a gel suggesting low yield of 

PCR product. Therefore, suggesting that in this instance, inefficiency of the primers 

was expected to be the reason for low product yield. Only a limited optimisation of 

the PCR protocol was attempted. This included a gradient and step-down PCR. 

However generating a strong PCR product proved difficult. Further efforts may have 

increase PCR yield and improve sequencing quality.  

A second plausible explanation for the amplification failure is that the bisulphite 

sequencing failed or too little product was used in the PCR reaction. It seems unlikely 

that the bisulphite treatment was the cause due to the fact that the kit has been 

validated by previous and later experiments. However, the amount of bisulphite 

treated template DNA required could also be further optimised. The PCR may also 

have failed due to the PCR target being too large. Since bisulphite treatment 
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fragments the DNA a smaller PCR product is more ideal. This may be corrected by 

designing PCR primers which cover a smaller region. 

The vector sequencing result showed that some of the vectors also contained no 

insert and had possibly just re-ligated.  This may have been because the PCR product 

amount was too low for the ligation to be successful. 

However further optimisation of this assay would have been time consuming and 

therefore, moving forward higher throughput methods were used.  

3.3.4 McrBC Experiment Optimisation  

3.3.4.1 McrBC Primer design and assay optimisation 

McrBC was used to investigate the promoter regions of, INPP5D, PTK2B, SORL1 and 

an intragenic region of HLA-DRB5 and HLA-DRB1. An effort was made to design assays 

which targeted the genes CASS4, CELF1, FERMT2, HLA-DRB5/HLA-

DRB1,  INPP5D,  MEF2C,  NME8,  PTK2B,  SLC24A4,  SORL1  and ZCWPW1, which have 

all been genetically associated with LOAD (Lambert et al., 2013). However due to lack 

of upstream CGIs and primer efficiency it was not possible to generate data for 

CASS4, CELF1, FERMT2, NME8 and ZCWPW1. 

Primers where designed to target CpG islands (CGIs) found upstream of the 

transcription start sites (TSS) of the genes INPP5D, PTK2B, SORL1, SLC24A4, DSG2P 

and an intragenic region of both HLA-DRB5 and HLA-DRB1 and regions reported to be 

differentially methylated in LOAD by previous studies (see section 2.4.1 table 2.4). For 

the genes INPP5D, PTK2B, SORL1, SLC24A4, DSG2P and an intragenic region of both 

HLA-DRB5 and HLA-DRB1 the CGIs were identified using the UCSC Genome browser 

and primers were then designed using Primer 3, further details can be found in 

section 2.4.1. Details of the regions covered for all genes are shown in table 3.1 as are 

the primers which were found to effectively produce a PCR product.  
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Table 3.3: Gene regions target by the McrBC enzymatic method. Showing the genomic regions targeted for each AD associated gene.  

Gene CGI location in 

GRCh37 

Target region size (bp) No of CpGs covered Primers worked 

HLA-DRB5/HLA-DRB1 
Exon 2/9 and exon 3 
respectively, CGI no 33) 

Chr6: 32489738-32490132 214 18 Yes 

INPP5D, Chr2: 2:233,925,076- 
233,925,325 
 

180 12 Yes 

PTK2β Chr8: 27168750-27169100 229 21 Yes 

SORL1 Chr11: 121322900-121323350 
 

268 31 Yes 

SLC24A4 Chr14: 92789506- 
92790719 
 

984 117 No 

DSG2P Chr18: 29,077,561-29,078,530 841 82 No 

APOE  Chr19- 44905658- 44906146  488 17 Yes 

TFAM  Chr10- 58384929- 58385033 
 

104 5 Yes 

MAPT  Chr17- 891797-892118 
 

321 9 Yes 
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PCRs were conducted using each set of primers (detailed in appendix 2) using either 

McrBC treated DNA or non-treated DNA as a template. DNA from one LOAD patient 

and one ND (non-diseased control) were used initially. Only the primers for SORL1, 

HLA-DRB1/5, INPP5D and PTK2β produced a visible PCR product. PCRs were also 

successful for primers designed for APOE, PSEN1 and MAPT (images not included). 

Following successful optimisation of the primers for these seven genes, four LOAD 

genetic targets and three control genes, each set of primers were used in assays using 

five LOAD and five control (ND) DNA samples. Each assay containing PCRs using McrBC 

treated DNA templates and untreated template DNA. The PCR products were then 

ran on a 2 % agarose gel. As shown (figure 3.1) PCR products were ran on the gel in 

order of PCR templates: five non-treated LOAD templates, five non-treated non 

diseased (ND) control templates, five McrBC treated AD templates and five ND McrBC 

treated templates. Figure 3.1A shows the LOAD and ND samples details, for example 

the AD sample used in track number two was sample number 604, the sample DNA 

was used as template in the PCR whose product is shown in lane 12, however the DNA 

used in this PCR was McrBC treated prior to use as a PCR template. Similarly the same 

DNA sample, though McrBC treated and non-treated, was used as template in the 

PCRs whose product is shown in tracks 3 and 13.  



74 
 

 

 

It was very difficult to observe any noticeable reduction in PCR product between PCRs 

using McrBC non-treated DNA template and those using McrBC treated template. 

Therefore to move forward GeneSync software was used to attain band intensity for 

each PCR product. This value was presented as a figure for the raw volume of product 

of each PCR. The raw volume could then be used to estimate the amount of DNA 

produced by the PCR by using the raw volume value given for the nearest ladder band. 

Since each band of the ladder represents a known amount of DNA the raw volume 

given on a particular gel would represent the raw volume value corresponding to the 

amount of DNA in the ladder band. The amount of DNA produced for each PCR was 

calculated using this method, this allowed for a quantitative comparison of McrBC 

treated and untreated PCR results. 

3.3.4.2 GABRB3 Control Primers 

Primers were also designed and optimised for a CpG less region of the GABRB3 

promoter (further details can be found in section 2.4.1 (main methods)). This region 

was amplified using both McrBC treated and non-treated template, as expected no 

300bp 
200bp 

300bp 
200bp 

200bp 

200bp 

400bp 

 

200bp 

500bp 

Figure 3.1: PCR results for PCRs using five AD and five ND McrBC treated and untreated 
DNA templates. A) SORL1. B) PTK2B. C) HLA-DRB. D) INPP5D. E) APOE. F) TFAM and G) 
MAPT. AD (LOAD patient), ND (non-diseased control).  
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difference in PCR product was found between the two assays, showing that digestion 

would only occur in the presence of CpG sites.  

In future assays it would be desirable to develop both a viable positive and negative 

control for McrBC enzymatic activity to be included as part of the overall assay design. 

For example the enzyme Msp1 could be used as this enzyme would digest 

unmethylated but not methylated DNA. A comparison can then be made between 

PCRs using template digested by the two enzymes. In this instance, the assay was 

designed to identify regions of interested as part of a high throughput initial screen 

e.g. for further investigation rather than stand alone data. A direct comparison 

between McrBC digested templates was performed and described in this chapter.  

3.3.5 Statistics 

Statistics performed in this chapter are described in more detail in section 2.4.4. 

Briefly, following the exclusion of outliers from the data, two tailed T-test were used 

to compare data sets.  
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3.3 Results 

3.3.1 Whole genome aggregate methylation in LOAD 

patient DNA 

Changes in global methylation were investigated first, prior to testing promoter 

specific methylation in LOAD associated genes. This was necessary in order to exclude 

the possibility that any gene specific methylation identified is merely the result of 

global hyper or hypomethylation associated with disease. Global methylation and 

hydroxymethylation was measured using the method described in section 3.3.2. 

No significant difference in global methylation or hydroxymethylation (figure 3.2) 

could be detected in LOAD when compared to controls. This data suggested that any 

regional difference in methylation or hydroxymethylation for the genes tested using 

targeted methods is unlikely to be the result of any LOAD specific process driving 

either global hyper or hypomethylation. 

 

 

 

 

 

 

 

Figure 3.2: No significant difference in global DNA methylation or hydroxymethylation 
was observed between the AD samples tested and the control samples (for both n=5). A) 
Shows average absorbance for the AD and control samples tested using methylation assay 
(n=5). B) Shows average absorbance for the AD and control samples tested using 
hydroxymethylation assay (n=4).No significant difference was observed for either. Error 
bars shows standard error of the mean. P value 0.69 for methylation and 0.33 respectively.  
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3.3.2 Bisulphite sequencing of protein tyrosine kinase 2 

beta (PTK2B) 

Methylation of a region found within the promoter region of the AD associated gene 

PTK2β was investigated using the bisulphite sequencing method described in section 

(3.3.3). 

This region was chosen due to it being located in an interesting position within the 

PTK2β gene, as shown in figure 3.3. The assay was designed to cover a sequence 

within a CGI which spans a potential splice site within the PTK2β gene. Since CGI DNA 

methylation has been shown to have an effect on the splicing of AD associated genes 

the region was identified as a potentially interesting target for investigation 

(Humphries et al., 2015).  

The CGI targeted was also located on a region of gene which contained the histone 

mark H3K27Ac (figure 3.3). This histone mark is associated with active transcription 

and might suggest the presence of an active enhancer; these also made the region an 

interesting site for investigate in the context of LOAD.  

 

 

 

Unfortunately, sequencing analysis did reveal the amplification of the correct region. 

Therefore cloning proved to be unsuccessful and it was not possible to analyses the 

targeted region.  

It was clear that in order to successfully complete bisulphite sequencing of the PTK2β 

gene extensive optimisation of both PCR and cloning would be required. However, 

Figure 3.3:  PTK2β region targeted by bisulphite cloning. Image taken from the UCSC genome 
browser shows the targeted CGI located within PTK2B. The CGI is also located within a region 
identified as containing the histone mark H3K27Ac.  
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since this method was time consuming and expensive it was decided that the project 

would continue using high-throughput enzymatic methods for detecting changes in 

DNA methylation in genes associated with LOAD. While methods using restriction 

enzymes are less quantitative than bisulphite sequencing, it is a much faster method, 

which allows for the investigation of many genes simultaneously. 

3.3.3 Using McrBC to identify differential methylation in 

LOAD associated genes 

Following the unsuccessful efforts of bisulphite cloning further work was conducted 

using the McrBC enzymatic method to elucidate any differential methylation within 

LOAD blood samples. Due to the high throughput potential of this method regions 

located within upstream CGI’s where also indentified within the AD associated genes 

INPP5D, SORL1, SLC24A4, DSG2P and an intragenic region of both HLA-DRB5 and HLA-

DRB1. Details of assay design and the regions covered can be found in section 3.2.4. 

Despite optimisation attempts, the assays for SLC24A4 and DSG2 failed (table 3.3). 

Therefore results are presented for the other four genes only. Regions within the 

genes APOE, PSEN1 and MAPT were also successfully investigated.  

3.3.3.2 GABRB3 (gamma-aminobutyrica acid type A receptor beta 

3 subunit) Control 

A region of the gene GABRB3 was also chosen as a control due to the absence of CpG 

sites where methylation may accrue. This region has previously been used in 

published research as a methylation control (Maunakea et al., 2010). Primer 

sequences used were as described by Maunakea et al., (2010) and were taken from 

the paper and optimised. Amplification generated a PCR product of size 206bp. An 

additional set of primers was designed, covering the same region, which produced a 

PCR product of 406bp in size. 

Five LOAD and five control DNA samples (McrBC treated and untreated) were used in 

PCRs containing GABRB3 primers and the results were visualised using gel 

electrophoresis (shown in figure 3.4A). The amount of DNA produced in each PCR was 
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calculated using the previously described method and an average was calculated for 

each group (LOAD non-treated, LOAD treated, ND treated and ND non-treated), figure 

3.4B shows that no significant reduction in PCR product was observed for the PCRs 

which were completed using McrBC treated DNA for either AD samples or controls, P 

values calculated using two tail student T-Tests, AD T vs AD NT P= 0.51, ND T vs ND 

NT P=0.27, all T vs all NT P=0.23 . Therefore it was concluded, as expected, that the 

McrBC exhibited no endonuclease activity in this unmethylated target region. 

 

3.3.3.4 No significant LOAD associated methylation within APOE 

(apolipoprotein E), TFAM (mitochondrial transcription factor A) 

and MAPT (microtubule associated protein tau) was identified  

No significant difference in PCR product was observed between either LOAD non-

treated and treated DNA or control DNA (figure 3.5). For APOE LOAD treated vs not 

treated two tail student T-test P= 0.106, ND treated vs non treated P=0.08. For TFAM 

LOAD treated vs not treated P= 0.16, ND treated vs non treated P=0.9. For MAPT 

LOAD treated vs not treated P=0.48, ND treated vs non treated P=0.2.  

Figure 3.4: GABRB3 CpG less control showed no reduction in PCR product when 
McrBC treated DNA was used as a PCR product. A) Results of gel using LOAD and 
ND McrBC treated (T) and non- treated (NT) DNA template. B) Graph showing 
average amount of PCR product for each group. Error bars show S.E.M. n=5 for 
LOAD and control samples. 
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There was also no significant difference observed between PCRs amplifying McrBC 

treated template and non-treated template for either genes TFAM or MAPT 

suggesting that sites targeted are not methylated in the instance of, TFAM P= 0.2 and 

MAPT P=0.45. However, there was a significant reduction in PCR product observed 

for the APOE region investigated P= 0.005 (figure 3.5). 

These results suggested that in the areas targeted in this study, and for those 

individuals tested, there was no significant difference in methylation in LOAD samples 

when compared to non-diseased controls (TFAM or MAPT). However a region of the 

APOE gene is identifiably methylated in both the AD and control samples.  

 

 

 

3.3.3.5 GWAS Target Gene Results- Primer efficiency 

Originally the study aimed to investigate methylation within the promoter regions of 

the GWAS identified genes CASS4, CELF1, FERMT2, HLA-DRB5/HLA-
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Figure 3.5: No significant difference between LOAD and control in the samples 
tested for APOE, TFAM or MAPT. The graph shows the difference in PCR product 
amount calculated between PCRs using non-treated and McrBC treated template 
for both the control and LOAD samples. No significant difference was found 
between the two groups. Bars represent S.E.M. For APOE ND n=3, AD n=4. For 
TFAM NT n=5, AD n=5. For MAPT  ND= 5, AD = 4. **p=<0.01. Two tailed student 
T-test.  
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DRB1,  INPP5D,  MEF2C,  NME8,  PTK2B,  SLC24A4,  SORL1  and ZCWPW1 . However, 

due to a lack of CGIs and primer inefficiency it was only possible to gather data for 

regions investigated in the promoter regions of HLA-DRB, SORL1, INPP5D and PTK2β. 

As in the instance of TFAM, APOE and MAPT it was possible to successfully amplify 

McrBC treated and non-treated DNA templates. For the SORL1 and INPP5D assays the 

PCRs products were also clear. Cumulatively it was therefore possible to collect data 

for five LOAD and five ND samples and compare differences between PCR products 

from PCRs using McrBC treated and non-treated template. The PCR reaction 

amplifying regions of PTK2β were also reasonably efficient and it was possible to 

collect data for three LOAD and five ND control samples. However, unfortunately 

PCRs amplifying regions of HLA-DRB were not efficient and it proved difficult to 

generate enough PCR product to analyse. Therefore for this region, data for only two 

LOAD and two ND control samples are quantified.  

3.3.3.6 PTK2β (protein tyrosine kinase 2 beta) and HLA-DRB1/5 

(HLA class II histocompatibility antigen) are not methylated at the 

regions investigated 

PTK2β and HLA-DRB1/5 showed no significant difference in amplified product when 

using McrBC treated and non-treated template DNA. The average amount of PCR 

product observed is for each is shown in figure 3.6. For HLA-DRB1/5 the average 

amount of product observed for treated and non-treated PCRs was 9.43 and 9.42ng 

of DNA, no significant difference between  treated and non-treated PCR product was 

found, P=0.39. In addition for HLA-DRB1/5 no significant difference was observed in 

PCR product when LOAD treated and non-treated products where compared, or when 

non-diseased treated and non-treated products where compared. LOAD treated vs 

non-treated P= 0.59, for ND treated vs non-treated P=0.16.  

Data indicated a similar pattern for PTK2β, figure 3.6. A reduction in product was 

observed for PCRs completed using McrBC treated template. However this difference 

was not proven to be significant using a two-tailed student T-test, P=0.059. This might 

suggested that repetition with a greater number of samples is needed. However for 

PTK2β  when the products of PCRs using LOAD treated and non-treated template and 
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non-diseased treated and non-treated template were compared no significant 

difference in PCR product was observed for LOAD and control samples, P= 0.26 and 

P=0.16 respectively.   

3.3.3.7 SORL1 (sortilin related receptor 1) and INPP5D (inositol 

polyphosphate-5-phosphatase D) results indicate methylation in 

the region investigated in LOAD samples 

In the instance of SORL1 a reduction in PCR product was observed upon comparison 

of McrBC treated and non-treated samples. This reduction was also shown to be 

significant using a two tailed student T-test P= 0.017 (Figure 3.6). This result suggested 

that the region investigated was possibly methylated within the samples tested. 

In order to ascertain if the methylation was LOAD specific the products of PCRs using 

LOAD non-treated and McrBC treated template where compared. A significant 

reduction of 41.9% was observed, P= 0.029. Interestingly no significant difference 

between products of PCRs using non-treated and McrBC treated template was 

observed for non-diseased control samples, P= 0.3. This could suggest that the 

methylation occurring at the region investigated was LOAD specific, suggesting 

possible hypermethylation of this region in the LOAD samples investigated. 

A region of INPP5D also showed a significant reduction of PCR product of 50% for the 

PCR using McrBC treated DNA template (P= 0.0009). Suggesting methylation was also 

occurring in the investigated region. 

INPP5D results also indicated that the methylation occurring might be LOAD specific. 

The amount of PCR product for PCRs using LOAD non-treated and McrBC treated 

template were compared. A reduction of 64% was observed for the PCRs using McrBC 

treated template, P= 0.0029. However when the PCR product of non-treated and 

McrBC treated PCRs for non-disease samples were compared no significant difference 

in PCR product was observed, P= 0.16. 
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3.4 Discussion 

3.4.1 Global aggregate levels of methylation 

Initially global methylation was investigated in LOAD and control samples using a 

quantitative ELISA method. No significant difference in global methylation was 

observed between LOAD and control samples. One thing to consider is that a low 

number of samples were tested and therefore there may be a power issue with these 

results. However this would more likely be a problem affecting and a difference 

observed between AD and controls. In future studies it may be desirable to test more 

samples. However, it is possible that only a few genes are differentially methylated 

due to AD and since the assay measures millions of CpG sites across introns, exons 

and promoter regions, and changes specific to the condition are likely to be masked 

by minor fluctuations in the epigenome. 
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Figure 3.6:  Graph showing candidate gene results: Graph shows the difference in 
PCR product amount calculated between PCRs using non-treated and McrBC 
treated template for both the control and LOAD samples. ND= non- diseased 
control, AD= LOAD sample, T= McrBC treated, NT = McrBC non-treated. P values 
calculated using a two tail student T-test. Error bars represent S.E.M. For SORL1 
and INPP5D n=5 for all groups. For HLA-DRB ND NT, ND T, AD T and AD NT n=2. For 
PTK2β ND NT, ND T n=5, AD T and AD NT n=3. SORL1 and INPP5D NT n=10 and NT 
n=10, for HLA-DRB NT n=4 and T =4 and for PTK2β NT n=8 and T n=8.  
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 Multiple studies using various methods have been used to investigate global 

methylation in LOAD. Studies have produced evidence of both global hyper and hypo 

methylation in LOAD brain samples (Bradley-Whitman and Lovell, 2013, Coppieters et 

al., 2014, Mastroeni et al., 2010, Chouliaras et al., 2013, Condliffe et al., 2014, Bakulski 

et al., 2012). In contrast another recent study found no difference in global DNA 

methylation using LOAD brain samples (Lashley et al., 2015). In addition, other 

published research using LOAD blood samples did identify global hyper-methylation 

in LOAD peripheral blood mono-nuclear cells (Di Francesco et al., 2015). 

These discrepancies in results make it extremely difficult to conclude the existence of 

consistent global methylation changes associated within LOAD. A likely reason for 

contradictory results is the different methods used and relatively small sample sizes 

assessed (Condliffe et al., 2014, Ellison et al., 2017). However another influencing 

factor is that often different brain regions are used and each presents with its own 

epigenetic profile. Cell type specific methylation has also been demonstrated in LOAD 

(Coppieters et al., 2014, Ellison et al., 2017). 

Many studies use a range of methods to assess genome wide methylation differences, 

however techniques such as bisulphite sequencing do not allow distinction between 

methylation and hydroxymethylation (Ellison et al., 2017). Therefore both 

methylation and hydroxymethylation were investigated in this study to get a clear 

picture of global epigenetic changes occurring in LOAD. 

No significant difference in the global presence of either epigenetic mark could be 

observed in the LOAD samples tested. Therefore these results suggested that no 

changes in global methylation or hydroxymethylation changes were occurring due to 

AD in the samples used in these assays. 

One possible explanation for unaltered global methylation in LOAD might be the stage 

of disease the patient was in when the sample was taken. A recent study has shown 

that global methylation and hydroxymethylation changes might occur early on in the 

disease progression, possibly driving its progression, these changes then seemed to 

reverse in later stages of the disease (Ellison et al., 2017). 
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3.4.2 MAPT (microtubule associated protein tau), TFAM 

(mitochondrial transcription factor A) and APOE 

(apolipoprotein E) 

Targets within the promoter regions of MAPT, TFAM and APOE targeted using the 

McrBC assay showed no significant difference in PCR product between LOAD samples 

and controls. This suggested that no differential methylation was occurring at the 

targets investigated, despite previous reports of hypomethylation within these 

regions (Iwata et al., 2014, Wang et al., 2008). In addition, no significant difference in 

methylation was observed between treated and untreated LOAD and control samples 

for either MAPT and TFAM. This data suggests no methylation at either region in 

either LOAD or control samples. However for APOE there was significant reduction in 

PCR product between McrBC treated and non-treated PCRs suggesting possible 

methylation at the target investigated in both control and LOAD samples, in leukocyte 

DNA. 

It is plausible that the results generated using McrBC described in this chapter failed 

to reproduce those observed by Wang et al. (2008) and Iwata et al. (2014) because of 

the lack of experimental resolution provided by the McrBC technique. The McrBC 

enzymatic method does not account for variable methylation differences that might 

occur at individual CpGs. Both Wang et al. (2008) and Iwata et al. (2014) used 

methods allowing identification of individual CpG methylation difference. For APOE 

and TFAM Wang et al. (2008) identified specific CpGs as being differentially 

methylated (TFAM: CpGs 1, #6 and #14; APOE CpG #1 and #2). In addition Iwata et al. 

(2014) used pyrosequencing of an area containing 43 CpG sites within the MAPT 

promoter but only found significant LOAD associated hypomethylation at five of these 

sites. Therefore it seems likely that McrBC methods might result in omission of 

important individual CpG differential methylation. 

Another possible reason for not reproducing the MAPT, APOE and TFAM results is 

that both of the previous  studies identified very small, but significant, differences in 

methylation, the difference observed for APOE and TFAM was around 10% and for 
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MAPT this was even smaller at 2-4% (Iwata et al., 2014, Wang et al., 2008). 

Methylation differences this small might not be detectable using the McrBC 

enzymatic method, suggesting the need for use of higher resolution methods such as 

pyrosequencing.  

Another explanation for the discrepancy in results would be a lack of DNA digestion 

by the McrBC restriction enzyme. However this seems unlikely as differential 

methylation was observable in SORL1 and INPP5D were identified using this method.  

Very small changes in methylation have been shown to be important in driving 

psychological diseases. One way to move forward would have been to use 

pyrosequencing to look at the regions targeted using the McrBC assay. This would 

have been capable of producing results with much higher resolution.  Unfortunately 

it was not possible to do this due to the limitations in the amounts of LOAD blood 

sample DNA available.   

3.4.3 Methylation in PTK2β (PTK2β (protein tyrosine 

kinase 2 beta) and HLA-DRB1/5 (HLA class II 

histocompatibility antigen) 

No significant difference in methylation was observed in the PTK2β promoter region 

investigated or the region investigated for HLA-DRB1/5. 

Another study was published investigating the methylation status of AD associated 

genes HLA-DRB5, PTK2B, SORL1, SLC24A4, DSG2,INPP5D, MEF2C, NME8, ZCWPW1, 

CELF1, FERMT2, and CASS in the LOAD brain (Yu et al., 2014). This study included the 

four genes investigated using McrBC described in this chapter. Yu et al. (2014) failed 

to find any LOAD specific differential methylation within the region investigated in 

PTK2β, perhaps consistent with the findings from the McrBC experiment described in 

this chapter. Yu et al., (2014) used an array based method for their study, providing 

coverage of regions across the whole PTK2β gene. This study sought to investigate 

promoter specific methylation of this gene i.e. methylation correlating with likely 

regulation of transcription. A similar result between the two assays would therefore 
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not necessarily be expected. Another study did successfully identify LOAD specific 

methylation within the PTK2β locus, although a different region was investigated 

(Humphries et al., 2015). 

Yu et al. (2014) identified LOAD specific differential methylation in brain samples 

within a region of HLA-DRB5. Forty eight CpGs were included in the study of which 

only eight showed differential methylation which correlated with AD pathogenesis. It 

is noteworthy that this significance also failed to survive multiple testing. No 

differential methylation was found in the leukocyte samples used in the region of 

HLA-DRB investigated using McrBC, perhaps due to the low resolution of the McrBC 

method or the use of a different target region. Further testing using higher resolution 

methods would be needed to confirm the methylation status of the HLA-DRB1/5 

region investigated using McrBC 

3.4.4 SORL1 (sortilin related receptor 1) and INPP5D 

(inositol polyphosphate-5-phosphatase D) methylation 

The study conducted by Yu et al. (2014) also identified methylation within SORL1 that 

correlated with AD pathology in the AD brain. In this study sixty nine CpG sites were 

investigated and again only eight showed LOAD associated methylation. In addition 

to this the most significantly associated CpG was located within the gene body not 

the promoter. In the McrBC study described in this thesis chapter, significant 

difference in methylation in SORL1 was identified in the LOAD samples tested, 

possibly suggesting hypomethylation within the region of the SORL1 promoter 

investigated.  While a different region was investigated by Yu et al. (2014), the two 

studies indicated possible LOAD associated methylation occurring within both blood 

and brain tissue. It would have been interesting to assess the methylation status of 

the SORL1 promoter in LOAD brain as well as blood. 

However, in contrast to the McrBC data and Yu et al. (2014) other studies have failed 

to find a significant difference in methylation within the SORL1 promoter when using 

LOAD leukocyte DNA, or any significant differential methylation within a region 

located in the SORL1 gene body (Humphries et al., 2015, Furuya et al., 2012). However 
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hypermethylation of the SORL1 3’UTR in the LOAD brain, and decrease SORL1 

expression in LOAD has been reported (Humphries et al., 2015, Scherzer et al., 2004). 

It seems likely that SORL1 is important in LOAD and that DNA methylation within the 

SORL1 gene could be important in driving disease pathology. However, studies have 

yielded conflicting results as to whether differential DNA methylation occurs at the 

SORL1 locus (Furuya et al., 2012, Yu et al., 2014, Humphries et al., 2015). The McrBC 

results described in this chapter suggest that differential methylation might exist in 

LOAD leukocyte DNA. One hypothesis is that significant hypermethylation of the 

SORL1 gene may result in decreased SORL1 expression which in turn could drive AD 

pathology due to the function of SORL1 in trafficking APP. A reduction in SORL1 could 

lead to increased APP processing resulting in β-secretase cleavage and accumulation 

of intracellular Aβ which ultimately drives AD pathogenesis (Rogaeva et al., 2007).  

Higher resolution experiments would be needed to identify CpG site specific 

methylation within the SORL1 promoter. 

Interestingly Yu et al. (2014) failed to find any significant differential methylation in a 

region investigated within INPP5D, whereas the McrBC study described in this chapter 

suggested possible hypermethylation within the region investigated in INPP5D in the 

samples tested. It seems likely that INPP5D has an important role in driving AD 

pathology through its involvement in the immune response i.e microglia activation; 

and also its role in APP metabolism which is mediated through interaction with the 

AD associated gene CD2AP (Hollingworth et al., 2011). However further investigation 

would be required to reveal disease linked DNA methylation occurring within the 

regions investigated. 

3.4.5 Experimental limitations 

Ideally the use of more samples would have improved the results presented in this 

chapter. Unfortunately at the time of completing the work no further LOAD blood 

samples were available for testing. It would also have been interesting to compare 

blood data to brain data for the regions investigated. However, again unfortunately 

brain samples were not available for use during this study.  
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As mentioned above studies have produced conflicting results regarding methylation 

at specific gene targets in LOAD using both brain and blood tissue. This was apparent 

for the control genes APOE, TFAM and MAPT as well as the GWAS target genes. The 

difference in results found is likely caused by multiple reasons. These could possibly 

include: 

3.4.5.1 Experimental resolution 

Previous studied were conducted using techniques with higher resolution then the 

McrBC enzymatic method and allowed the identification of differential methylation 

within individual CpGs. For example Wang et al. (2008) identified significant 

differential methylation at CpG sites one and two of the APOE target and one, six and 

four of the TFAM target. In addition to this, of the 69 CpGs targeted within SORL1 and 

48 in HLA-DRB5, only eight sites for each target were found to harbour differential 

methylation in LOAD by Yu et al. (2014). Therefore because McrBC does not have this 

level of resolution, differential methylation of individual CpG sites within the gene 

targets may have been missed in this experiment. However, it is important to note 

that the goal of the study described in this chapter was to investigate a number of 

gene targets, the enzymatic method was used as it allows quick assessment of 

methylation at targeted regions. Any differential methylation identified could then be 

further investigated using methods with a higher resolution, such as pyrosequencing.  

3.4.5.2 Regions investigated 

Another possibility for the difference in results is that different regions of the genes 

are investigated in each study. For the McrBC experiment targets were chosen within 

the promoter regions of the genes used. However Humphries et al. (2014) found 

differential methylation within the SORL1 3’UTR and Yu et al. (2014) within the gene 

body, indicating the methylation within the promoter region might not be the only 

important methylation occurring in LOAD. 
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3.4.5.3 Sample difference 

Another important factor to consider is that in each study is conducted using patient 

samples from different regions, ethnicities ect. Since epigenetic changes accumulate 

due to a person’s lifestyle and their environment, different DNA methylation profiles 

may exist within the different experimental sample groups.  

Another important factor to note is that blood samples are heterogeneous in nature. 

These experiments were conducted in order to ascertain a general overview for 

epigenetic profiles linked to disease observed in blood (leukocytes). It should be 

acknowledged that there are a number of subtypes of cell which comprise the 

immune system and can be detected in blood. It would be interesting in future 

research to profile each cell type distinct from other leukocytes. I would hypothesis 

that in relation to disease the ‘driver’ or stimulus that leads to aberrant methylation 

would impact on each cell leading to a similar or near identical change in methylation. 

However, it is known that each cell type possesses distinct profiles of expression (see 

Palmer et al, 2006) and therefore future experiments would need to be conducted to 

conclusively prove this.  

3.4.5.4 Method limitation 

One clear limitation of using the McrBC enzymatic method is the method is not 

quantitative. Quantification was attempted using the ladder band density and end-

point PCR product template. However, ideally the method used should give an 

accurate prediction of percentage methylation observed. Ideally also a positive 

control would have been used as part of this assay, this could have included using 

DNA of known methylation percentage to assess the effectiveness of the McrBC 

enzyme. Subsequent experiments were conducted using pyrosequencing, a platform 

which allows for the quantification of methylation. 

In addition to this ideally more samples would be needed to draw any confident 

conclusion from the data. It was clear that variation existed between individuals when 

PCR product was compared for treated and non-treated PCRs. It is likely that a much 

larger sample size would be needed to correct for this. 
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3.5 Conclusion 

The experiments described in this chapter provide data describing LOAD associated 

increase in methylation levels for the genes INPP5D and SORL1. However the method 

used provides insufficient resolution to fully establish differential overall methylation 

within each region investigated. Therefore future experiments used the 

pyrosequencing platform, which allowed for high resolution information about each 

individual CpG site tested.  
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Chapter 4: Pyrosequencing to investigate 

DNA methylation in key AD risk genes in 

LOAD and sEOAD  

4.1 Introduction 

4.1.1 Pyrosequencing Assay Targets 

This chapter describes investigation into the methylation status of the gene’s MEF2C, 

ABCA7, PTK2β, SIRT1, INPP5D, TREM2 and RIN3 using sEOAD blood (leukocyte) and 

brain (cortex) samples. The results presented in this chapter is also described in Boden 

et al., (2017), with the exception of TREM2 data. MEF2C, ABCA7, PTK2β, SIRT1, 

INPP5D and TREM2 were chosen due to their genetic association with LOAD (Lambert 

et al., 2013b). For these gene’s regions containing a high density of CpG sites (CpG 

islands) located upstream of the transcription start site (TSS) where investigated using 

pyrosequencing. An additional CpG site, upstream of the investigated CGI, was also 

investigated in the MEF2C gene. A region including seven CpG sites located within a 

3’ UTR CGI of the gene RIN3 was also targeted. RIN3 has been functionally implicated 

in LOAD pathology though its interaction with the AD associated gene BIN1 (Kajiho et 

al., 2003). This site was also chosen following personal communication with Professor 

Kevin Morgan and Dr Keeley Brookes.  

As mentioned previously, a growing number of genes and biological pathways have 

been implicated in the development of LOAD indicating the extensive complexity of 

this disease (Karch and Goate, 2015). Further, the genetic association alone cannot 

fully explain heritability and adds to the complexity of the disease (Lambert et al., 

2013b). It is therefore plausible that aberrant epigenetic regulation also has an 

important role to play in driving LOAD pathology. Specifically altered DNA 

methylation has been identified in multiple AD associated genes using both blood and 
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brain tissue (Wang et al., 2008, De Jager et al., 2014, Yu et al., 2014b, Chouliaras et 

al., 2013, Coppieters et al., 2014, Hou et al., 2013, West et al., 1995). 

The work described in this chapter aimed to identify if LOAD associated genes are 

differentially methylated in sEOAD. The work investigated methylation of selected 

candidate genes in both blood and brain tissue, allowing the identification of tissue 

specific differences. Initially assays were designed for each gene which included the 

regions investigated previously using the McrBC enzymatic treatment (described in 

chapter 3); specifically the experiment included the promoter regions of INPP5D, 

PTK2β, SORL1, SLC24A4, DSG2, and an intragenic region of HLADRB1/5. However the 

assays for SLC24A4, DSG2, and HLADRB1/5 proved unsuccessful and efforts were 

concentrated on the other targets. In addition to this, the promoter region of the 

GWAS identified gene’s ABCA7 and MEF2C were also included. A region of the gene 

TREM2, which was identified using exome sequencing prior to GWAS, was also 

included in the pyrosequencing assays (Guerriro et al,. 2013, Johnson et al.,2014). 

Regions of SIRT1 and RIN3 were also included in the investigations. SIRT1 and RIN3 

have been functionally implicated in LOAD pathology (Kajiho et al., 2003, Tan et al., 

2013, Furuya et al., 2012, Gao et al., 2010, Michan et al., 2010, Herskovits and 

Guarente, 2014, Wang et al., 2010, Min et al., 2010, Julien et al., 2009, Hou et al., 

2013). 

 In most instances primers were designed to target the CGI nearest to the 

transcription start site of the gene.  However for TREM2 the amplified region was 

engineered to cover a CpG site, located 289bp upstream of the transcription start site. 

This chosen CpG target site was shown to be hypermethylated in the LOAD brain by 

another study (Smith et al., 2016). An additional site upstream of the investigated CGI 

was also investigated in the case of the MEF2C gene and a pyrosequencing target was 

chosen which covered seven CpG sites located within a 3’ UTR CGI of the gene RIN3.  

Pyrosequencing assays were designed for the gene targets described above, using the 

method described in materials and method section 2.5. However some assays proved 

difficult to optimise at either the PCR or pyrosequencing stage, optimisation steps 
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included the use of several primer sets, shown table 4.2. Therefore only the results of 

the successful assays are described.  

4.1.2 Implication of Targeted genes in AD pathology 

 Both PTK2β and INPP5D were investigated using the MrcBC enzymatic method 

(chapter 3). However for this study LOAD blood samples were used. Therefore these 

targets were also investigated in sEOAD samples using pyrosequencing. LOAD and 

sEOAD share similar pathology with genes that function in similar biological pathways 

which have been implicated in both types of AD. These pathways include: 

inflammation, calcium signalling, long term potentiation and the mitogen-activated 

protein kinase (MAPK) signalling pathway (Antonell et al., 2013). Therefore 

methylation profiling of INPP5D and PTK2β region in sEOAD samples was conducted 

to provide insight into whether LOAD epigenetic aberration was also present in 

sEOAD. PTK2B and INPP5D are both capable of driving AD pathology through their 

roles in memory formation (Antonell et al., 2013).  

In addition to PTK2β and INPP5D a region within the ABCA7 promoter containing eight 

CpG sites was also targeted.  ABCA7 (encoding ATP-binding cassette member 7) has 

been implicated in LOAD pathology in both genetic and epigenetic studies (Lambert 

et al., 2013b, Hollingworth et al., 2011, Humphries et al., 2015). Several SNPs have 

been identified near ABCA7 using GWAS, leading to the identification of LOAD risk 

alleles, among these are rs3764650 and rs4147929 (Hollingworth et al., 2011). Of the 

twenty known loci associated with LOAD, including the new 11 identified by Lambert 

et al. (2013), ABCA7 was found to carry the second largest risk for development of 

AD, following the APOE gene (Lambert et al., 2013b).  

ABCA7  may drive AD pathology through its roles in phagocytosis and therefore 

represents part of the host-defence system (Humphries et al., 2015, Jehle et al., 

2006). ABCA7 is also involved in modulation of amyloid processing and Aβ deposition 

and clearance (Wang et al., 2003, Vasquez et al., 2013, Kim et al., 2013, Shulman et 

al., 2013).  
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In addition to INPP5D, PTK2β and ABCA7, methylation was also investigated in the 

gene MEF2C which was also identified in the Lambert et al., (2011) study. However, 

for this gene in addition to the CpG rich region within its promoter, a second CpG site 

upstream of this was also targeted.  

MEF2C  function also has the capability to drive AD pathology through its role in 

memory formation and learning (leifer et al., 1994, Flavell et al., 2006, Cole et al., 

2012, Tanila, 2017). MEF2 transcription factors have been shown to regulate the 

expression of genes involved in the innate immune response and microglia 

proliferation (Zhang et al., 2015, Clark et al., 2013, Johnson et al., 2014, Mhatre et al., 

2015). Therefore in the AD brain it may be important for mediating immune response 

to AD pathology, such as Aβ plaques and tau tangles resulting in the neuro-

degeneration observed in AD (Zhang et al., 2015, Mhatre et al., 2015). Evidence also 

suggests MEF2 signalling is important for APP processing and function (Burton et al., 

2002, Camargo et al., 2015) and also interestingly circadian rhythms which are often 

disrupted in AD (Sivachenko et al., 2013). Furthermore, aberrant expression of the 

gene is linked to several neurological disorders including fragile X syndrome, epilepsy, 

autism and Angelman syndrome (Rashid et al., 2014)  

In addition to the previously described targets, pyrosequencing was also used to 

investigate regions of TREM2, SIRT1 and RIN3. In the case of TREM2 one CpG site 

previously found to be hypermethylated in the LOAD brain by another study was 

targeted. This CpG site is located 289bp upstream of the TREM2 TSS (Smith et al., 

2016). TREM2 encodes triggering receptor expressed on myeloid cells 2 has also has 

also been genetically implicated in the development of LOAD.  Similarly to ABCA7 and 

INPP5D, TREM2 also functions in phagocytosis through its role in microglial cell 

activation which is important for apoptotic cell and Aβ deposit removal (Takahashi et 

al., 2005).  

Pyrosequencing targets also included the promoter region of SIRT1 and a region 

covering a 3’ CGI located within the RIN3 gene.  SIRT1 was chosen as a target due to 

it previously being shown to contain aberrant methylation in LOAD blood. The 

pyrosequencing assay described in this chapter was designed to cover a region of the 
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SIRT1 promoter that has previously been investigated using methylation specific PCR 

(MSP) and bisulphite sequencing PCR (BSP), experiments which identified 

hypermethylation in LOAD blood samples by (Hou et al., 2013).  SIRT1 may be involved 

in attenuation of AD pathology as sirtuins have roles in oxidation, inflammation and 

cell survival (Bonda et al., 2011, Wang et al., 2010). SIRT1 has been shown to be 

important for memory and learning and may have a role in the development of 

multiple neurodegenerative diseases including AD, Parkinson’s disease and 

Huntington’s disease (Gao et al., 2010, Michan et al., 2010, Herskovits and Guarente, 

2014). SIRT1 may be linked to AD could be due to its ability to attenuate Aβ toxicity 

and its involvement in Tau mediated toxicity (Wang et al., 2010, Min et al., 2010) 

 

Unlike the previously described targets, RIN3 has not been genetically associated with 

LOAD at present. However the gene is located on chromosome 14 and sits between 

the genes SLC24A4 and LGMN, both of which have been identified as having LOAD 

associated variants through GWAS studies (Lambert et al., 2013b). Both genes also 

encode proteins with actions that have been shown to have a role in either neuronal 

activity or have been directly linked to AD pathology (Basurto-Islas et al., 2013, Dall 

and Brandstetter, 2016, Larsson et al., 2011, Yu et al., 2014b). 

 RIN3 is likely to have a role in AD pathology through its interaction with BIN1, a gene 

which has been identified as having genetic variants which associate with AD 

(Lambert et al., 2013b, Hu et al., 2011, Tan et al., 2013). It is likely that BIN1 and RIN3 

interact in the process of endocytosis particularly the early endocytic pathway, 

possibly driving AD pathology though APP trafficking. RIN3 encodes rab 5 binding 

protein which acts as a stabilizer of small GTPase rab5, this is needed for endocytosis 

and transport from the plasma membrane to early endosomes. BIN1 and RIN3 were 

shown to interact during this process; in addition BIN1 was shown to be moved to 

RIN3-Rab5 containing vesicles (Kajiho et al., 2003).  

In the case of RIN3 a pyrosequencing target was chosen within the 3’UTR. For MEF2C 

two pyrosequencing targets were chosen: one within a promoter CGI and a second 

covered a CpG site located upstream of the promoter CGI. Targets, other than those 

within the promoter region of these genes, were chosen because recent methylome 
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studies have revealed the importance of non-promoter, and non CGI CpG methylation 

in LOAD. Whole genome and global methylation studies are identifying non-promoter 

methylation in AD associated genes. For example, of the twelve genes identified as 

harbouring differentially methylated sites in LOAD (work described by Humphries et 

al. (2015)), eight of these sites were located within the 3’UTR of genes identified and 

other differentially methylated sites were found within genes body and 5’UTR 

regions. Other methylome studies have also identified significant non-promoter AD 

associated methylation (Yu et al., 2014b, De Jager et al., 2014, Smith et al., 2016) 

Non-promoter CpG methylation such as that found within the 3’UTR is likely to affect 

disease susceptibility and progression by influencing gene expression, transcriptional 

elongation and splicing (Maussion et al., 2014, Choi et al., 2009, Malumbres et al., 

1999). Specifically 3’UTR hypermethylation has been shown to decrease gene 

expression, similarly to promoter methylation (Maussion et al., 2014). Therefore 

3’UTR CGIs represent an interesting site for investigation in methylome studies 

relating to diseases such as AD. 

4.1.3 Use of sEOAD samples for Pyrosequencing Assays  

sEOAD (sporadic Early onset Alzheimer’s Disease) samples were used for all 

pyrosequencing experiments. This type of disease represents a sub-group of EOAD 

(early onset Alzheimer’s disease) which affects individuals under the age of sixty-five 

years, in contrast to LOAD which occurs after 65 years of age. EOAD is the less 

common form of AD, representing only 10% of cases ( Cacace et al., 2016, Kunkle et 

al., 2017, Pinenburg., 2010). 5-10% of EOAD cases are caused by familial genetic 

mutations, which are also known as fAD (familial Alzheimer’s Disease) (Kunkle et al., 

2017, Harvey et al., 2003). The pathogenesis of fAD is better understood and most 

cases (60-70%) can be attributed to the inheritance of genetic mutations within either 

the amyliod precursor protein (APP) gene or presenlin (PSEN1 and PSEN2) genes 

(Kunkle et al., 2017). However the cause of sEOAD has proven to be much more 

elusive. Transcriptomic studied of sEOAD and fAD brain tissue have suggested that 

the two diseases likely have differing causes, which eventually result in similar end 

stages of the disease (Antonell et al., 2013). 
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Therefore one aim of the work described in this chapter was to investigate if CpG sites 

shown to be differentially methylated in LOAD blood were also differentially 

methylated in our sEOAD samples using the pyrosequencing platform. sEOAD samples 

were tested to determine if differential methylation previously reported was LOAD 

specific or a commonality in sEOAD. Unfortunately LOAD blood and cortex samples 

were not available to use for the pyrosequencing assays, however sEOAD brain 

samples were used in order to determine if methylation status of AD blood is similar 

to that of the AD brain.  

4.2 Chapter Aims 

• Investigate LOAD associate differential methylation identified in SIRT1 using 

pyrosequencing in LOAD blood samples, sEOAD blood and sEOAD cortex 

samples.  

• Use sEOAD blood and brain samples to investigate methylation of promoter 

CGI’s in the AD associated genes PTK2β, ABCA7, INPP5D and MEF2C and 

determine whether methylation observed at INPP5D in LOAD leukocyte DNA 

using the McrBC method could also be observed in sEOAD samples using 

pyrosequencing. 

• Identify if the methylation reported at one CpG site in TREM2 by Smith et al. 

(2015) was also present in sEOAD brain or blood tissue. 

• Identify any tissue specific methylation occurring in either sEOAD brain or 

blood tissue for the genes targeted using pyrosequencing.  

• Investigate methylation of non-promoter CpG containing regions in RIN3 and 

MEF2C.  
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4.3 Methods   

4.3.1 Samples Details  

Detail of samples used for pyrosequencing can be found in section 2.1. Specific details 

of the samples used during the work described in this chapter are detailed in table 

4.1.  

Table 4.1: Details of AD samples used for pyrosequencing. Table shows information 

about age at onset, sampling and death for all of the sEOAD and control samples used during 

the work described in this chapter.  

Group Sex M/F Age at Death Age at onset Age at sampling  

sEOAD 
blood 

17//8 57.95 (SD 3.28) 47.2 (SD 2.28) 48.6 (SD 2.98) 

sEOAD 
Brain 
(Cortex) 

4/10 59.35 (SD 6.95) 48.85 (SD 
3.32) 

59.35 (SD 6.95) 

Control 
Blood 

6/13 N/A N/A 82.8 (SD 6.95) 

Control 
Brain 

6/4 84.2 (SD 3.55) N/A 84.2 (SD 3.55) 

 

4.3.2 DNA extraction 

Extraction of DNA from the blood and brain samples used in this chapter is described 

in methods section 2.1. Briefly DNA was extracted using phenol chloroform extraction 

followed by assessment using either NanoDrop™3300 spectrometer or gel 

electrophorisis. DNA was then stored by the Alzheimer's Research UK Consortium 

DNA Bank at the University of Nottingham until use.  

4.3.3 Pyrosequencing assay targets and assay 

development 

Pyrosequencing was used to investigate regions located within multiple AD associated 

genes, initially an assay was designed to cover a region of SIRT1 that was identified as 
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harbouring LOAD associated hypermethylation using leukocyte DNA by Hou et al. 

(2013). The region covered by the assay covered the two CpG sites identified as being 

most significantly differentially methylated in LOAD samples, table 4.1. 

In the case of SIRT1 the pyrosequencing assay was designed to cover a specific target 

region previously identified. This was also the case for TREM2. This assay was 

designed to cover a CpG site within the TREM2 gene at a location which has previously 

been shown to be hypermethylated in LOAD (Smith et al., 2016).  

Assays were also designed for regions of the gene’s INPP5D, ABCA7, PTK2β, SORL1, 

SLC24A4, DSG2 and the intragenic region of HLA-DRB1/5 investigated using McrBC 

enzymatic treatment (chapter 3).  For these genes the assays were designed to target 

CGIs found upstream of the TSS assay. Following the optimisation of these assays a 

further assay was developed to target a region within the 3’UTR of RIN3, see table 

4.1. RIN3 interestingly sits between two other LOAD associated genes, SLC24A4 and 

LGMN. 

Two regions within the MEF2C gene were also targeted using pyrosequencing. Initially 

a region located upstream of the TSS was targeted, called MEF2C. This region 

contained four CpG sites and was located within the CGI numbered 38, shown in table 

4.1. This region was chosen and the pyrosequencing assay was designed as described 

previously for the candidate genes PTK2β and ABCA7 (described in material and 

methods section 2.5.2).  

In addition to these four promoter CpG sites, a second target was also chosen within 

the MEF2C gene. This target included a CpG site located upstream of the MEF2C TSS, 

also shown in table 4.1. This assay was named MEF2C(2). This target was chosen due 

to emerging evidence that suggests non-promoter CpG methylation could have an 

important role in driving disease pathology (Humphries et al., 2015). Non-promoter 

CpG sites may have important roles in regulation of transcription or transcript 

structure (Choi et al., 2009). Therefore it seemed prudent to investigate a CpG site 

located upstream of the promoter CGI target.  
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For TREM2 and SIRT1 regions were defined by previous studies. However in all other 

cases for promoter regions the closest CGI upstream of the TSS was selected using 

the UCSC genome browser and pyrosequencing, primers were designed using the 

PyroMark Assay design software 2.0. A full list of primers and regions targeted is 

shown in Table 4.2. 

Pyrosequencing PCRs were then optimised using gradient PCR and touch-down PCR. 

All PCR contamination and primer dimer formation was removed before progressing 

to pyrosequencing. In all cases the primers sets scoring the highest rating, which 

represented the best possible primer sets for the chosen target were used. USCS 

genome browser was used to identify the CGI’s and PyroMark Assay Design 2.0 

software was used to design pyrosequencing primers (process described in materials 

and methods 2.5.2). 

Pyrosequencing targets were kept short, as pyrosequencing assay targets should 

ideally be kept below 150bp, and PCR products below 350bp, this prevents the 

formation of secondary structures, especially within the single stranded 

pyrosequencing template, which can affect the sequencing result (Tost and Gut, 

2007).  

However, in the case of ABCA7 it was possible to include eight CpG sites within the 

pyrosequencing target; this is because serial pyrosequencing was used. This 

technique involved the use of one PCR product during pyrosequencing; however the 

product is then used as a template for two rounds of pyrosequencing, with a different 

sequencing primer being used for each round of sequencing, described in more detail 

in methods section 2.5.7. 
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Table 4.2: Pyrosequencing target regions. Showing location of regions targeted using pyrosequencing.  

Gene  Position 
in gene  

Location on 
GRCh37/hg
19 
Assembly  

CpG 
island 
number  

Target sequence  Genomic co-ordinates of 
individual sites  
 

Primer sequences   

TREM2 Upstrea
m of TTS 

chr6:41,131,2
13 

n/a n/a chr6: 41131213 Trem2_kbf1 GGGTTGGTAAGGTTTTGTATTGT 
Trem2_KBr1b 
AATCCTAACCTCTAAAAACACAACTATTC 
Trem2_kbs1 TTAGATTTTTTATTAGTTGTAATG 

INPP5D Promot
er 

chr2:233, 
925,148-
233,148,498 

18 GCCGGCCCGGCCG
AGGAGGCCCACGC
CCA 

Chr2: 233925160 
Chr2: 233925165 
Chr2: 223925169 
Chr2: 223925181 

Inpp5d_py1f1 TGGGTTTTGGGGGTGTTT 
Inpp5d_py1r1b 
AAAAAACTCCCCTCCTTACCTATCCT 
Inpp5ds2 TTTTGGGGGTGTTTG 

SIRT1  promoter   chr10: 
69647485-        
69647502  

101  CACTACGCCCGGCTA
AT  

Chr10: 69647491 
Chr10: 69647495                 

Sirtp2f1 
AGTTTTTTTAGTAGTTGGGATTATATGTA 
Sirtp2r1b CAAAACCAACCTAACCAACATAAA 
Sirtp2s1 AGTTGGGATTATATGTATATGTTA 

ABCA7  promoter chr19:10400
48-1040115  

43  CGCCCAATAGCAGC
GTGCAGAGGCAGGG
GCGTGCCCCGGCGC
TGCTACCTGCGCGG
GCAAGCTCACG 

Chr19: 1040048 
Chr19: 1040062 
Chr19:1040078 
Chr19: 1040085 
Ch19: 1040088 
Chr19: 1040100 
Chr19: 1040102 
Chr19: 1040114 
 

Abca7_4_f1 GGTTAGGAGAGGTTTTTTTGTGATT 
Abca7_4_r1b TCCTTCTCACCTTCCAAAAACTC 
Abca7_4_s1 AGTAGGTTAGTGAGTG 
abca74_s2 GTGTAGAGGTAGGGG 
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PTK2β  promoter chr8:271827
21-
27285249  

27  CGTCCCGGCTCACCT
GGCGGTGCCCGAGG
AGTAGTCG  

Chr8: 27183390 
Chr8: 27183395 
Chr8: 27183407 
Chr8: 27183425 
Chr8: 27183436 

Ptk2b_py1f1 GAGGAGGAGGGAGAATTTAATTT 
Ptk2b_py1r1b AACTCCCAACTCAAATACCC 
Ptk2b_py1s1 ATTTGTTAGGTAGATTTATTTGTA 

MEF2C(1)  promoter chr5:881798
67- 
88179895  

38  CGAAATGAAGACAA
CACGGCGAGCTGCG  

Chr5: 88179867 
Chr5: 88179883 
Chr5: 88179886 
Chr5: 88179893 

Mef2c_pcor_f1 
GTGTTTAAAAGGGGGAAAAGTTATAAGA  
Mef2c_pcor_r1 
ACACATACCATACCCAAACCTAATAACAAT 
Mef2c_pcor_s1 AGAGGAGTAGGGAGT  

MEF2C(2)  promoter chr5:88,200,
070-
88,200,105 

n/a  TGCTTCCCTCCCCTC
CCCCCTCCCGACCCC
CTATG  

Chr5: 88200094 
 

Mef2c_py1f1 
GATTGGATATTTTTTATTGGAATTAGTAGT 
Mef2c_py1r1b 
TATCACTAACAACCAAACCTTTATCAA 
Mef2c_py1s1 ATTGGAATTAGTAGTATAGGG 

RIN3  3’UTR  chr14:93153
018-
93209772  

124  CGGTCTCCGCCGAGC
CGGGATCCTCAGCCG
CTTCCCGCG  

Chr14: 93153344 
Chr14: 93153351 
Chr14: 93153354 
Chr14: 93153359 
Chr14: 93153372 
Chr14: 93153379 
Chr14: 93153381 

RIN3_pyf1  GGGTTTAGGGTTGTAGGTAGAGA 
RIN3_pyr1 AAACCCTAACCACCAATTACCATCAC 
RIN3_pys1 ATTGGGAATAGTAGGTTT 
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4.3.4 Bisulphite conversion of DNA 

Prior to use in pyrosequencing PCRs DNA samples where bisulphite converted using 

the EpiTect DNA Bisulphite Kit (Qiagen, Germany). Manufacturer instructions were 

used and more detail can be found in section 2.4.2. 

4.3.5 Pyrosequencing PCR Optimisation 

Following the design of pyrosequencing PCR primers each primer set was optimised 

using several methods, with details provided in table 4.2 and section 2.5.4. Following 

optimisation it was decided that 0.25pmol of primer and 0.1 µl of bisulphate 

converted DNA was the optimal amount to use in each assay using the PyroMark PCR  

Kit (Qiagen, Germany). The specific PCR conditions used for each primer set can be 

found in appendix 4. 

4.3.6 Pyrosequencing Assay design 

All of the assays descried where designed using the PyroMark Q24 software (Qiagen, 

Germany), further details in section 2.5.5.  

4.3.7 Pyrosequencing Process 

The process of pyrosequencing is described in detail in section 2.5.6. Briefly following 

successful PCR amplification the biotinylated PCR products where immobilised on 

streptavidin coated Sepharose beads. Following this the PCR product was washed and 

denatured, the pyrosequencing sequencing primer was then annealed to the single 

strand of DNA left bound to the beads. Pyrosequencing was then carried out using a 

Q24 Pyrosequencer (Qiagen, Germany) and results were interpreted using the 

PyroMark Q24 software. All failed runs were repeated and each sample was used for 

at least two technical repetitions. 
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4.3.8 Assay Optimisation  

Unfortunately it proved to be difficult to generate optimised pyrosequencing assays 

for some gene targets. It was not possible to generate pyrosequencing results for the 

targeted regions of HLA-DRB 1/5, SORL1, SLC24A4 or DSG2. These assays likely failed 

for several reasons.  In the case of HLA-DRB1/5 and SORL1 it was possible to generate 

a strong PCR product using the first set of primers designed, following the use of a 

gradient and step down PCR. However subsequent pyrosequencing failed despite this 

strong initial PCR product.  

Similarly in the case of SLC24A4 the first set of primers designed resulted in a good 

PCR product, however non-specific bands were observable on the gel.  Since any non-

specific PCR product can interfere with the pyrosequencing procedure, the PCR was 

re-optimised, resulting in a strong specific band (Tost and Gut, 2007). Unfortunately 

subsequent pyrosequencing also failed. In this instance a second set of primers was 

designed, unfortunately these also failed at the pyrosequencing stage despite the use 

of two different sequencing primers.   

For DSG2 the initial set of primers failed to produce adequate PCR product despite 

optimisation. Therefore a second set were designed, these successfully produced a 

suitable PCR product, which then failed at the pyrosequencing stage. Again two 

sequencing primers were tested for each set of PCR primers and neither resulted in 

usable pyrosequencing data. Since two sets of primers had been extensively 

optimised it seemed unlikely that pyrosequencing of this region would be successful, 

in addition to this if problems with PCRs persist it is unlikely that pyrosequencing will 

be successful (Tost and Gut, 2007). Optimisation steps taken for each pyrosequencing 

target are shown in table 4.3. 
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Table 4.3: Optimisation steps taken for pyrosequencing of LOAD associated genes. 

Gene Target Primer set PCR Worked Action Taken Pyrosequ
encing 

Action Taken  

SIRT1 1 yes Gradient PCR, touchdown PCR, 
PCR worked. 

Yes Used PCR product for pyrosequencing 

MEF2C(1) 1 yes Gradient PCR, touchdown PCR, 
PCR worked. 

Yes Used PCR product for pyrosequencing 

MEF2C(2) 1 yes Gradient PCR, touchdown PCR, 
PCR worked. 

Yes Used PCR product for pyrosequencing 

RIN3  1 yes Gradient PCR, touchdown PCR, 
PCR worked. 

Yes Used PCR product for pyrosequencing 

INPP5D 1 No Gradient PCR, touchdown PCR, 
PCR worked. 

No  Re-designed assay to cover the anti-sense stand, 
ordered primer set 2  

2 (stronger score) Yes (weak 
band) 

Gradient PCR, touchdown PCR, 
strong band no secondary bands 
on gel. 

No Ordered new sequencing primer (seq 2). Re-
optimised with sequencing primer 2, 
pyrosequencing worked.  

TREM2 1 (designed using primer 
design software) 

Yes (non- 
specific bands 
present) 

Gradient PCR, touchdown PCR, 
weak band. 

No  Used primers from Smith et al. (2016) 

 
2 (taken from Smith et al. 
(2016) 

Yes  Gradient PCR, touchdown PCR. Yes  Used for pyrosequencing. 

ABCA7 (serial 
pyrosequencing) 

1 set of PCR primers with two 
sequencing primers used for 
pyrosequencing 

Yes  Gradient PCR, touchdown PCR. Yes Both sequencing primer 1 and 2 worked successfully 
during serial pyrosequencing.  
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PTK2β 1 Yes Gradient PCR, touchdown PCR. Yes Used PCR product for pyrosequencing 

HLA-DRB1/5 1 Yes Gradient PCR, touchdown PCR, 
strong band produced. 

No All pyrosequencing attempts failed despite strong 
PCR product 

SORL1 1 Yes Gradient PCR, touchdown PCR, 
strong band produced. 

No All pyrosequencing attempts failed despite strong 
PCR product 

SLC24A4  1 Yes (non-
specific 
product 
observed)  

Re-optimisation of PCR, gradient 
PCR, touchdown PCR, strong 
band produced. 

No Attempted to use a different sequencing primer 
however, all pyrosequencing attempts failed 
despite strong PCR product. Redesigned PCR 
primers.  

2 Yes Gradient PCR, touchdown PCR, 
strong band produced. 

No All pyrosequencing failed despite the use of two 
different sequencing primers.  

DSG2 1 No Gradient PCR, touchdown PCR, 
very weak band  

No All pyrosequencing attempts failed, tried two 
sequencing primers. Redesigned PCR primers.  

2  Yes Gradient PCR, touchdown PCR, 
visible band 

No Tried pyrosequencing with two sequencing primers, 
both failed.  
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All pyrosequencing target PCRs, prior to pyrosequencing, were extensively optimised to 

produce good specific PCR product; however in some instances the subsequent 

pyrosequencing assays were still unsuccessful. One possible reason for this is the 

pyrosequencing reaction not being adequate due to the assay designed. However, other 

possible reasons can include technical issues or problems with the pyrosequencing primers. 

Attempts were made to minimise the probability of these issues occurring. For example, low 

pyrosequencing signal, resulting in a failed assay, can be caused by a number of errors. First, 

the sequencing primer may not be sufficiently specific to anneal correctly to the PCR 

template, to avoid this issue multiple sequencing primers were used.  

Faults with the pyrosequencing procedure and equipment could also result in failed assays, 

this could include the cartridge being blocked or problems with the heating device resulting 

in unsuccessful denaturation of the template prior to sequencing (Tost and Gut, 2007). To 

prevent this from happening the pyrosequencing cartridges where cleaned after and prior to 

use with high quality water and allowed to dry fully before use. The vacuum prep tool and 

heating device were also tested prior to every sequencing run.  A positive control assay was 

also run along with all new assays; if this control failed pyrosequencing was repeated.  

In addition to these technical steps, for all assays several controls were included. These 

included a template only control to ensure no secondary structures were forming which could 

prevent 3’ end extension. Assays were also conducted which used only the sequencing 

primer. This was used to confirm that the sequencing primer was not forming a primer dimer. 

This can cause a 3’ or 5’ overhang, resulting in a template for extension during sequencing. A 

negative PCR control was also included in all assays.  

Since pyrosequencing primers were designed using the PyroMark Assay Design 2.0 software 

and the primers selected for use were the ones which scored the highest quality score, it 

seemed unlikely that the use of new primer sets would rectify poor assays. Therefore rather 

than focusing on the optimisation of all assays, work focused on the assays that were 

successful, namely the assays for the INPP5D, PTK2β, ABCA7 and TREM2 targets. In the case 

of the SIRT1, RIN3 and MEF2C targets, optimisation included a gradient PCR, following this 

the most successful temperature was selected for the assay. Initially a small amount of control 

and sEOAD samples were used to investigate each target, however since RIN3 and MEFC(2) 
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showed either a significant difference in methylation in sEOAD samples or a possible epi-

variant these targets were explored further and sample size was extended.  

4.3.9 Statistical Assessment 

Described in detail in section 2.5.9 briefly statistical analysis was performed using Microsoft 

excel or Genstat 18 statistical packages (Genstat work was conducted by Dr Jim Craigon, 

University of Nottingham).  Two tailed T-tests were performed to compare the averages of 

methylation at each CpG site or between groups (AD and control) (value of <0.05 was used). 

Normality calculations were performed as described in section 2.5.9 on all data sets greater 

than five and all data was found to be normally distributed. Post-hoc power calculation values 

were undertaken by first generating either a cohen’s d or hedge’s g value (using Effect Size 

Calculator. Social Science Statistics; http://www.socsistatisics.com/effectsize/,accessed 

March, 2019) (see table 4.4) and then a power calculation was generated using the Real 

Statistics Resource Pack Software (Release 5.4). Copyright (2013-2018) Charles Zaiontz. 

www.real-statistics.com.  

Table 4.4: Table shows post hoc power calculation results. Power values are shown for each 

individual CpG site investigated by each pyrosequencing assay. Vales presented are cohen’s 

d values.  

AD vs Control Power 

Gene id. Tissue CpG1 CpG2 CpG3 CpG4 CpG5 CpG6 CpG7 CpG8 

RIN 
Blood 0.66 0.67 0.73 0.79 0.88 0.67 0.73 - 

Brain 0.34 0.38 0.26 0.36 0.37 0.39 0.43 - 

SIRT1 
Blood 0.05 0.08 - - - - - - 

Brain 0.06 0.25 - - - - - - 

PTK2B 
Blood 0.59 0.26 0.38 0.07 0.18 - - - 

Brain 0.05 0.06 0.18 0.24 0.26 - - - 

ABCA7 
Blood 0.15 0.34 0.05 0.11 0.06 0.11 0.05 0.06 

Brain 0.08 0.07 0.05 0.05 0.19 0.05 0.1 0.05 

TREM2 
Blood 0.16 - - - - - - - 

Brain 0.06 - - - - - - - 

INPP5D 
Blood 0.07 0.06 0.09 0.05 - - - - 

Brain 0.25 0.3 0.31 0.11 - - - - 

 

http://www.real-statistics.com/
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As described in section 2.5.9 age was considered for covariate testing however due to the 

large age difference between diseased and control samples this was not deemed appropriate 

due to the rules of ANCOVA and other co-variant tests (see fig 2.1). However, analysis was 

undertaken using Genstat to fit Gender then AD vs Control and the interaction term between 

them in that order. Age and its interactions with gender was then fitted and treatment groups 

next. (A stepwise regression). Extra variation accounted for by each step is then tested in an 

analysis of variance. Outputs show AD vs Control effects but no interactions with Gender or 

age within groups, data is shown in supplementary appendix 5.   

4.4 Results 

4.4.1 RIN3 (ras and rab interactor 3) hypomethylation in 

sEOAD blood but not cortex tissue 

 A total of seven CpG sites were included in the RIN3 3’UTR pyrosequencing assay. A group 

wide average methylation was calculated, for each sample, across the seven CpG sites 

investigated. For blood tissue, significant hypomethylation was identified in the sEOAD 

samples for the targeted area. The average methylation in control blood was 53.6% compared 

to 37.3% in sEOAD blood samples. A significant reduction of methylation of 16.3% (P=0.01) 

(figure 4.1).  

A group wide reduction in methylation was also observed in sEOAD brain tissue. Average 

methylation across the region in control samples was 25.9% compared to 16% in sEOAD brain 

samples. However this 10% reduction was not proven to be statistically significant P= 0.097 

(figure 4.1).  
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4.4.2 RIN3 (ras and rab interactor 3) at individual CpG site 

resolution  

In addition to the group wide significant reduction in methylation observed for the RIN3 target 

region in sEOAD blood samples, significant sEOAD associated reduction in methylation was 

also observed at each individual CpG site (figure 4.2). For sEOAD vs control Chr14: 93153344 

P= 0.019, Chr14: 93153351 P=0.018, Chr14: 93153354 P=0.012, Chr14: 93153359 P=0.009, 

Chr14: 93153372 P=0.002, Chr14: 93153379 P=0.018 and Chr14: 93153381 P=0.013. CpG site 

five also remained significant following stringent P value correction for multiple testing using 

the Bonferroni correction method, which calculated that a P value of less than 0.007 would 

be required for a confidence of 95%. This and the original P values might indicate that 

methylation occurs initially within the middle of the region investigated and then spreads out 

towards either end of the RIN3 3’UTR target site.   

In contrast none of the CpG sites investigated were found to be significantly hypomethylated 

in the sEOAD brain samples, despite a reduction in methylation being seen at every CpG site 

in the sEOAD samples. For each CpG site P values for sEOAD vs control methylation was: 

Chr14: 93153344 P= 0.12, Chr14: 93153351 P=0.096, Chr14: 93153354, P=0.18, Chr14: 

93153359, P=0.105, Chr14: 93153372, P=0.062, Chr14: 93153379, P=0.091 and Chr14: 

Figure 4.1: Collective group wide methylation control vs AD for RIN3. Graph shows 
average methylation across the whole region investigated in the RIN3 3’UTR. Control 
blood n= 26, AD blood n= 22, Control brain n=10, AD brain n=14. * p value <0.05.  
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93153381 P=0.076. Average methylation at each cytosine for blood and brain is shown in 

figure 4.2. 

 

 

 

4.4.2.1 External Validation of Data 

The RIN3 region identified and tested as part of this study has since been confirmed as 

differentially methylated in an independent LOAD (rather than EOAD) population when 

compared to control samples (personal communication, Dr J Tulloch, Washington State). 

Briefly, a small cohort of age matched AD (n=24) and control (n=24) blood samples were 

testing using the pyrosequencing assay described in Boden et al, 2017 (see appendix 6). 

They report that the assay was reproducible and each of the 7 CpG sites in this region was 

found to be consistently differentially methylated between samples. 

A) B) 

  

    

* 

  
  

  

* 

* 
** 

** * 

* 

Figure 4.2: Methylation of blood and brain at each CpG investigated in RIN3. A) All 
seven CpG sites were found to be significantly hypomethylated in AD blood using a two 
tailed T-test, CpG5 also survived correction for multiple testing. B) No significant 
difference in methylation was observed in AD brain however all CpG sites had a 
reduction of methylation in AD.  Showing average methylation found at each CpG site in 
the RIN3 3’UTR. Control shown as a white bar (blood n=26, brain n=10) and AD (blood 
n=22, brain n=14) shown as a black bar. Error bars represent S.E.M. *=P<0.05, 
**=P<0.01. 
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4.4.3 The MEF2C (myocyte enhancer factor 2C) promoter was 

not differentially methylated in sEOAD blood or brain 

The target region containing four CpG sites upstream of the MEF2C TSS (MEF2C(1)) was  found 

not to be differentially methylated in either sEOAD blood or brain tissue, figure 4.3.  

When an average methylation was calculated across the MEF2C(1) target region average 

methylation in sEOAD blood and brain was calculated as 4.8% and 5.1% respectively. Similar 

levels of methylation were found within control samples at this region with blood methylation 

being 4.1% and brain methylation being 4.4%. These methylation values were compared using 

a T-test to reveal no significant AD associated methylation in either tissue (blood P= 0.44, 

brain P= 0.42). It is important to note that the methylation averages observed where very 

close to the limit of detection of the pyrosequencing platform, however all samples were ran 

in at least duplicate and a number of controls were included in the assay, including a technical 

control (section 2.5.8).  

In addition to this no significant difference in methylation was observed at any individual CpG 

site investigated in either blood or brain tissue between sEOAD and controls. For blood sEOAD 

vs control methylation at Chr5: 88179867 P=0.45, Chr5: 88179883 P=0.47, Chr5: 88179886 P= 

0.4 and Chr5:88179893 P=0.28. For brain sEOAD vs control Chr5: 88179867 P=0.1, Chr5: 

88179883 P=0.93, Chr5: 88179886 P=0.27, Chr5: 88179893 P= 0.051. Average methylation at 

each CpG site is shown in figure 4.3B and C.  
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4.4.4 MEF2C (myocyte enhancer factor 2C) Upstream CpG site 

might represent a sEOAD associated epi-varient 

When taken as a group wide average no significant difference in methylation was associated 

with sEOAD in either blood or brain tissue at the MEF2C upstream CpG site (Chr5: 88200094) 

investigated (target MEF2C(2)). Average methylation at this site in AD blood was 91.8% and 

control blood was 92.3%. Similarly average methylation in sEOAD brain was 84.8% compared 

to 86.25% in control brain. Neither tissue showed any sEOAD associated methylation, blood 

A) B) 

C) 

Figure 4.3: Box plots showing data representing average methylation across the 
promoter region investigated for MEF2C. No significant difference in methylation was 
observed between sEOAD and controls in either blood or brain tissue for region 
MEF2C(1). A, B and C) No significant difference in methylation was observed at any of 
the four CpG sites investigated in the MEF2C promoter. Bar charts show average 
methylation at each CpG site and error bars show S.E.M, white show control and black 
sEOAD. For MEF2C(1) control blood n=3, AD blood n=5, control brain n=3, AD brain n=4  
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sEOAD vs control P= 0.70, brain AD vs control P=0.59. Group wide average methylation is 

shown in figure 4.4A.  

 

However, a significant reduction in methylation was observed for one sEOAD patient blood 

sample. Patient sample M341 (taken from blood) had an average methylation of 70% at the 

CpG site investigated, and since the group wide average methylation at this CpG site in blood 

was a percentage of 92% this represented a decrease in methylation of 22%. This difference 

in methylation was found to be significant using a one-way analyses of variance, the likelihood 

of observing this results by chance was calculated as 2.0E-10.  

Interestingly the brain (cortex) sample from patient M715 also showed a large 

hypomethylation at this CpG site when compared to the brain group wide average 

methylation of 85.4%. Methylation of the CpG site was found to be 70.5% in the sample, a 

reduction in methylation of 15%. However, while intriguing, this reduction failed to reach 

statistical significance. 

All data was calculated using a minimum of two technical replicates for each biological sample 

used, making technical error unlikely. Therefore the identification of hypomethylation in one 

blood sample might represent a rare epi-allele, associated with AD, at this CpG site. Since rare 

genetic differences in MEF2C have been associated with AD progression it is plausible that 

rare epigenetic variance occurring within the population might also drive sEOAD progression.  

sEOAD samples M341 and M715 were also genetically tested to eradicate the possibility of 

any rare genetic mutations causing the appearance of the differential methylation observed 

in these samples. No association with the known MEF2C GWAS SNP (rs190982) was found in 

either sample tested. Suggesting that the AD associated SNP was not having an effect on the 

methylation observed in these samples. This work was conducted by Dr Keeley Brookes 

(University of Nottingham).  
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4.4.5 No sEOAD specific methylation was observed in any of 

the other pyrosequencing targets  

In order to assess methylation at the targets initially investigated again an average of 

methylation was calculated across all of CpG sites tested for each target. For all five targets 

investigated no significant difference in methylation was observed between sEOAD and 

control in brain or blood tissue (figure 4.5).  

MrcBC results had indicated that the INPP5D promoter might harbour LOAD specific 

methylation in blood however, surprisingly no methylation difference was observed at the 

INPP5D promoter region targeted in either tissue using sEOAD samples together with the 

B) A) 

* 

C) 

Figure 4.4:  Analysis of individual methylation at the MEF2C upstream CpG site 
identified rare hypomethylation in an AD blood sample. A) Patient M341 had 
significant hypomethylation at the CpG site when compared to other AD and control 
samples tested (P=2.0E-10). B) No samples were found to be significantly 
hypomethylated in AD brain.  Graphs show average methylation at the CpG investigated 
in each sample investigated (average of at least two pyrosequencing runs). Controls are 
shown in white and AD samples in black. Error bars represent the S.E.M. Control 
blood=26, AD blood n=25, control brain n=10, AD brain n=14; male brain n= 10, female 
brain n=14, male blood n=29, female blood n= 22.  
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pyrosequencing platform. In addition, no significant difference in methylation was observed 

at the TREM2 CpG site in either sEOAD blood or brain. This was also surprising considering 

Smith et al., (2016) identified LOAD specific hypomethylation at this site in LOAD brain tissue, 

however Smith et al., (2016) tested a much higher number of samples and also controlled for 

co-varients, which likely explains this discrepancy in results. Similarly the pyrosequencing also 

failed to identify the any differential methylation in SIRT1, despite Hou et al., (2013) reporting 

this in LOAD samples.  

It should be noted that the average methylation observed for PTK2β was close to the 5% limit 

of the pyrosequencing platform. However, all results were taken from an average of at least 

two pyrosequencing runs and an internal control was included for bisulphite conversion.  
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4.4.6 Methylation at the resolution of individual CpG’s 

Methylation of each individual CpG site investigated for each target region was also compared 

for sEOAD and control blood and brain in the ABCA7, INPP5D, PTK2β and SIRT1. Since only 

one CpG site was covered by the TREM2 assay, analysis was not required for this target. No 

significant difference was identified at any of the CpG sites investigated in ABCA7, INPP5D, 

PTK2β and SIRT1 in sEOAD blood or brain (figure 4.6).  

Figure 4.5: Box plots showing data representing average methylation across the 

regions investigated for PTK2β (A), ABCA7 (B), TREM2 (C), INPP5D (D) and SIRT1 (E). 

No significant difference in methylation was observed between AD and control in either 

blood or brain tissue.. For PTK2β control blood n=6, AD blood n=5, control brain n=3 

and AD brain n=4. For ABCA7 control blood n=7, AD blood n=4, control brain n=3, AD 

brain=6. For TREM2 control blood n=5, AD blood n=5, control brain n=5 and AD brain 

n=5. For INPP5D control blood n=5, AD blood n=4, control brain n=3, AD brain n=4. For 

SIRT1 AD samples n=5, control blood n=4, sEOAD AD brain n=3 and control brain n=3.  
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4.4.7 SIRT target showed differential methylation in LOAD 

Blood   

CpG sites labelled 5 and 6 by Hou et al. (2013) (and subsequently Chr10: 69647491 and Chr10: 

69647495 in the following report) were investigated to identify if the hypermethylation 

observed by Hou et al. (2013) could be reproduced in a separate sample of LOAD leukocyte 

DNA samples. 

 

No significant difference in methylation at Chr10: 69647491 was identified using 

pyrosequencing, as shown in figure 4.7A. The average methylation observed at this CpG site 

in LOAD samples was 38.5% and in controls 41.9%. This represents a reduction in methylation 

in LOAD, however statically this reduction proved insignificant P= 0.16. Chr10: 69647495 also 

showed a reduction in methylation at this site in the LOAD samples compared to controls, a 

difference of 6.5%, LOAD samples had an average of 40% and control had an average of 

43.5%. In addition, this reduction was found to be significant (P= 0.039) using a two tailed T-

Test. It is interesting that Hou et al., (2013) reported hypermethylation at these sites in LOAD 

however the pyrosequencing results described found a slight reduction in methylation at the 

two sites in the LOAD samples used.  

Since both sites were found to have reduced methylation in LOAD samples the average 

methylation across both CpG sites was calculated and compared to see if a regional 

methylation difference might be occurring in the samples, shown in figure 4.7B. No significant 

difference in methylation was observed when the region was taken as a whole, (P=0.08).  

 

Figure 4.6: DNA methylation AD brain and blood at individual CpG sites. No significant 
difference in methylation was observed at individual CpG resolution in any of the targets. 
A, C, E and G show average methylation found at each CpG investigated in ABCA7, 
INPP5D , PTK2β and SIRT1 blood respectively and B, D,F and H show average methylation 
at each CpG in brain. White bars represent control average and black bars represent AD 
average. Error bars show S.E.M. ABCA7 control blood n=7, AD blood n=4, control brain 
n=3, AD brain=6. INPP5D control blood n=5, AD blood n=4, control brain n=3, AD brain 
n=4. For PTK2β control blood n=6, AD blood n=5, control brain n=3 and AD brain n=4. For 
SIRT1 AD samples n=5, control blood n=4, sEOAD AD brain  n=3 and control brain n=3. 
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These results are intriguing however it is important to note that the methylation difference 

observed at Chr10: 69647495 was extremely small.  In addition, the sample size used was 

modest and ideally many more samples would be tested and a great number of samples 

would result in greater power, however additional samples were not available for testing. 

Unfortunately, due to a lack of LOAD leukocyte DNA samples, it was not possible to complete 

any further work investigating this region in LOAD, therefore the described assay was used to 

investigate methylation at the two CpG sites in sEOAD samples.  

4.5 Discussion  

The work described in this chapter used pyrosequencing to assess levels of methylation at 

regions within multiple genes that have been associated genetically and/or functionally with 

LOAD. Previous research has focused on gaining a comprehensive understanding of the 

epigenetic causation and consequence of LOAD, however very little work has been conducted 

focusing on sEOAD. The work of this chapter therefore aimed to identify if any sEOAD 

differential methylation could be identified in LOAD associated genes not only within 

A) B) 

* 

Figure 4.7: Average percentage methylation is at the two CpG sites investigated in SIRT1 
using LOAD leukocyte samples. A) Average methylation at each CpG investigated. No 
significant difference in methylation was observed at Chr10: 69647491 (described as site 5 
by Hou et al., (2013)).   Significant hypomethylation of Chr10: 69647495(site 6) was  found 
in LOAD samples (p= 0.039). B) Boxplot showing average methylation in LOAD and control 
blood samples across both CpG sites. No significant difference in methylation was observed 
when the area was taken as a whole (p= 0.08). LOAD blood samples n=3, Control samples 
n=4.   
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promoter regions but also in other genic regions, namely a CpG site upstream of the MEF2C 

promoter CGI and a region within the 3’UTR of RIN3.  

4.5.1 RIN3 and MEF2C showed differential methylation in 

sEOAD 

Significant hypomethylation was observed at all seven CpG sites investigated in the RIN3 

3’UTR within sEOAD blood samples. In addition, while not statistically significant, a decrease 

in methylation was also observed at every CpG site investigated in sEOAD brain (cortex) 

samples. These results suggest that the hypomethylation occurring in sEOAD is group-wide, 

rather than specific to an individual, suggesting that perhaps this aberrant methylation is a 

consequence of the sEOAD condition rather than a driver of the disease.   

The reduction observed in both tissue types might suggest that methylation levels observed 

in leukocytes are in fact reflective of the AD pathology which they encounter as they move 

through the brain. Methylation at specific sites within the gene are likely driven due to the 

experience of diseased tissue, rather than the epigenetic change being a spontaneous cause 

of disease progression.  

The biological consequence of RIN3 3’UTR methylation would likely be instigated through its 

interaction with BIN1. It is plausible that 3’UTR hypomethylation in AD could drive increased 

expression of the RIN3 protein, since 3’UTR hypermethylation has been associated with 

decreased gene expression (Maussion et al., 2014). One explanation would be that within the 

brain hypomethylation of the RIN3 3’UTR results in increased RIN3 expression. This is 

supported by the significant increase in hypomethylation observed with brain tissue when 

compared to blood tissue within the RIN3 region targeted. This suggested that length and 

level of exposure to RIN3 is important in driving methylation levels of the RIN3 3’UTR.  

In the case of MEF2C two regions were investigated, a region within a CGI located upstream 

of the TSS and a further CpG site located upstream of the initial target. Interestingly no 

significant sEOAD associated methylation was observed within the promoter CGI target of 

MEF2C. This is potentially surprising as aberrant methylation within the promoter regions of 

many genes have been associated with LOAD pathology. However, recent studies are 

highlighting the importance of methylation located outside of promoter regions in driving AD 
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risk. In addition aberrant methylation within the MEF2C gene body was found to be associated 

with LOAD pathology (Humphries et al., 2015).  

For the second MEF2C region investigated, one sEOAD blood sample was found to be 

significantly hypomethylated when compared to the other blood samples tested, the 

methylation at the CpG site investigated within this sample was 22% less than the group wide 

methylation average. In addition, one sEOAD brain sample was also hypomethylated when 

compared to the other brain samples tested, this sample presented with 15% lower 

methylation when compared to the group wide average. However, this reduction did not 

prove to be statistically significant. It should also be noted that, for brain tissue, no significant 

difference in methylation was observed between sEOAD and control samples when the two 

groups were compared. This suggested that the significant hypomethylation observed might 

represent the presence of a rare epi-allele within the sEOAD individual tested which might act 

to increase their risk of developing sEOAD in a similar manner to a rare genetic polymorphism 

which affect genes expression. Epi-alleles represent rare epigenetic events that can occur 

within large populations driving substantial changes to individual phenotype (Agorio et al., 

2017). 

It could be suggested that the present of an epi-alle could be responsible for driving disease 

state by altering expression of pathological genes and proteins, the presence of this 

epigenetic modification could therefore have a large influence on an individual’s chance of 

developing a given disease regardless of how common the variant is within a population. 

MEF2C may have important functions which drive AD pathology. MEF2C deregulation due to 

aberrant methylation may influence the normal activity of MEF2C in memory formation, 

neuronal activity, synaptic function, inflammatory response and circadian rhythm. However, 

interestingly while disruption in circadian rhythms (CR) has been reported in AD, studies 

suggest that the severity of this symptom differs between AD patients (Weissova et al., 2016, 

Coogan et al., 2013). MEF2 transcription factors have been shown to play an important role 

in regulation of CR, the drosphila ortholog Mef2 was shown to regulated circadian behaviour 

and neuronal modelling (Sivachenko et al., 2013).  

A consistent alteration of CR in AD would be expected if this symptom of the disease was a 

common consequence of the disease pathology. However the differing severity of CR 
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disruption observed in AD patients might suggest that the causation may lie in patient specific 

aberrant methylation of MEF2C, therefore meaning disruption of CR in AD would vary 

between individuals depending on the methylation status of the MEF2C gene.  

While interesting to hypothesise the actual impact of MEF2C methylation on AD pathology 

and specifically CR would need to be elucidated in further experiments investigating both 

sEOAD and LOAD samples. Further experiments would also be needed to determine if 

aberrant methylation is the cause of disrupted CR or whether it is further driving this LOAD 

symptom.  

4.5.2 No significant difference in methylation was observed in 

sEOAD sample for the other targets 

The pyrosequencing assays performed for PTK2β, INPP5D and ABCA7 did not reveal any AD 

associated differential methylation in the regions investigated. Perhaps the most surprising 

was the lack of differential methylation identified in the SIRT1 and  TREM2 targets as both 

were chosen due to previous studies identifying LOAD associated methylation within these 

regions (Hou et al, 2013, Smith et al, 2016).  

The McrBC experiments described in chapter 3 investigating the same region of INPP5D 

indicated LOAD specific hypermethylation occurring in LOAD blood samples (P= 0.003). The 

difference in results could indicate that this hypermethylation is LOAD specific and does not 

occur in sEOAD samples. However it is important to note that the use of different methods 

might also explain the difference in results. Pyrosequencing is quantitative whereas McrBC 

assesses methylation across a large target region without allowing for generation of 

methylation data for individual CpG sites, also it is likely that a considerably higher samples 

size would be needed to confirm the McrBC results. Ideally LOAD samples would also have 

been used in the pyrosequencing assay to investigate if McrBC results could be reproduced 

using this other method but unfortunately LOAD samples were unavailable at this point in the 

study.  

Interestingly other studies have also failed to find any significant difference in methylation of 

the INPP5D promoter in LOAD tissue (Yu et al., 2014b) and INPP5D was not identified as a 

gene which is differential expressed in the sEOAD brain using a transcriptomic study (Antonell 
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et al., 2013). Perhaps suggesting that despite its genetic association with LOAD and functional 

relevance in driving AD pathology, potentially in both LOAD and sEOAD, aberrant epigenetic 

regulation, at least at the regions investigated, is not driving this. Further study would be 

needed to confirm this.   

Similarly no significant difference in methylation was observed in the targeted region of the 

PTK2β promoter between sEOAD samples and controls in either blood or brain tissue using 

pyrosequencing. This was also the instance following investigation into the PTK2β promoter 

using McrBC in LOAD blood (P=0.26). Possibly suggesting altered epigenetic regulation at the 

target region occurs neither in LOAD (blood) nor sEOAD (blood or brain). This result was 

surprising as PTK2β was shown to be over expressed in the sEOAD brain in a transcritomics 

study (Antonell et al., 2013), perhaps indicating that a mechanism other than DNA 

methylation was diving this altered expression. To confirm a larger region of the PTK2β 

promoter, and perhaps other genic regions, would need to be investigated as methylation 

outside of the pyrosequencing target could also be responsible for altered gene expression.  

The sample number used in both studies was modest and more samples would be needed to 

confirm this hypothesis. Further to this, studies have identified LOAD associated differential 

methylation within the PTK2β gene, however in these studies brain tissue was used 

(Humphries et al., 2015). Since the McrBC experiment showed no aberrant methylation in 

LOAD blood samples, it was interesting to look at PTK2β in both sEOAD blood and brain tissue. 

Humphries et al. (2015) identified LOAD associated differential methylation within the brain; 

however pyrosequencing did not result in the identification of a similar result in sEOAD brain 

tissue.  This might indicate that the PTK2B aberrant methylation is LOAD specific. However it 

is important to note that a different region was investigated by Humphries et al. (2015) within 

the PTK2β locus and thus it might be that the LOAD associated methylation is also region 

specific, in support of this another study failed to identify any difference in methylation of 

PTK2β in LOAD (Yu et al., 2014b).  

A region of the ABCA7 gene was also shown to be differentially methylated in the LOAD brain 

by Humphries et al. (2015), this study also identified two other genes within the ABCA7 locus 

which are differentially methylated in LOAD. In addition, the study identified LOAD associated 

increase in expression of the ABCA7 locus and differential splicing. Other studies have also 
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reported increased ABCA7 expression in LOAD patients, and have suggested that this over 

expression acts as a compensatory response to AD pathology, while AD associate genetic 

variants result in a reduction of expression (Shulman et al., 2013, Karch et al., 2012, Vasquez 

et al., 2013). Humphries et al. (2015) also suggest a hypothesis whereby the hypomethylation 

observed in ABCA7 may account for the over expression of ABCA7 protein observed in AD.  

However another study failed to identify any AD associated methylation in the ABCA7 

promoter (Kiyohiro et al., 2017).  

Pyrosequencing failed to identify any sEOAD associated methylation difference in the ABCA7 

region investigated in either blood or brain tissue. This again might suggest ABCA7 is not 

regulated by DNA methylation in sEOAD as opposed to regulation in the LOAD brain. In 

support of this is that ABCA7 was not identified as being differentially expressed in a 

transcriptomic study of the sEOAD brain (Antonell et al., 2013). However is should also be 

considered that Humphries et al., (2015) identified differential methylation in an intragenic 

CGI, therefore in order to make a successful comparison further pyrosequencing of this region 

would be required. Humphries et al. (2015) also used tissue from a different brain region, and 

since it is well established that tissue specific methylation occurs, it is possible that the 

methylation observed by Humphries et al. (2015) is specific to the brain region investigated.    

Similarly to the three previous gene targets no AD associated methylation was observed at 

the CpG site investigated within the TREM2 gene or the two CpG sites investigated in SIRT1. 

Both of these targets have been identified as harbouring LOAD specific methylation in other 

studies (Smith et al, 2016, Hou et al, 2013). However for TREM2 Smith et al. (2016) identified 

LOAD specific hypermethylation at this site in LOAD brain tissue, possibly again suggesting 

important epigenetic alteration in LOAD but not in sEOAD. However it should be noted that 

again Smith et al. (2016) also used tissue from a different brain region in their investigations, 

therefore tissue specific methylation cannot be ruled out without further investigation.  

Importantly Smith et al. (2016) also included a larger sample size in their study and therefore 

were also able to control for co-variates such as age and gender, which could also explain 

differences between the two studies.  

For the targets described it is also important to note that the sample size use was modest and 

ideally a larger study would have been conducted. However sEOAD samples are limited in 
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their availability and this is reflected by other studies investigating gene expression in this 

type of AD (Antonell et al., 2013).  

Importantly post hoc power calculations show that there is sufficient power in the RIN3 

experiment (e.g. CpG5 >0.8) (Table 4.3). However it is likely that for some genes tested the 

low sample size resulted in an underpowered experiment. It is therefore possible that for 

some genes, testing additional samples may result in the resolution of significant differences. 

It is also however possible that additional samples may also return p values of zero i.e. no 

variation between AD and control. It should be noted that as the hypothesis is that conditions 

within the brain of AD patients can impact on the epigenome of peripheral blood via hall mark 

characteristics of disease, power calculations may underestimate the likelihood of returning 

a statistically significant difference i.e. in instances where large changes in methylation result 

from dramatically different brain pH (see Ponto et al, 2014) or oxidative stress. 

4.5.3 One SIRT1 CpG site may be differentially methylated in 

LOAD blood 

Pyrosequencing also revealed no significant difference in methylation at either CpG site 

investigated for SIRT1. However for this gene target it was possible to investigate a small 

number of LOAD blood samples. This revealed a small but significant difference (3.5%) in 

methylation of the second site investigated in LOAD blood. However, Hou et al. (2013) 

reported a large increase in methylation of approximately 30% in LOAD samples. 

One reason for the difference in results may be due to the different techniques used. Hou et 

al. (2012) used bisulphite sequencing PCR. Initially PCR was used to amplify the region of the 

SIRT1 gene using bisulphite treated DNA. The PCR product was then sub-cloned into the 

pMD18-T vector. A minimum of five clones were then sequenced to assess cytosine 

methylation. While cloning is a good method for gaining an idea about cytosine methylation 

it is time consuming and at least five or more clones are required to be analysed. To further 

validate their results MSP was used. This involved designing primers that annealed to 

methylated or unmethylated DNA after bisulphite treatment. The primers are either 

complimentary to a C which will be present in the methylated version of the CpG or to a T 

which will be present in the unmethylated product following bisulphite conversion.  
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These results were not quantitative, unlike pyrosequencing. This could mean that they may 

have missed small changes in methylation, similar to those that were observed using 

pyrosequencing. The use of only a restricted number of clones also might result in an 

inaccurate measure of DNA methylation at the sites investigated.  

Another factor worth some consideration is that samples originating from different 

population demographics are used in each study and a very small sample was used for SIRT1 

pyrosequencing.  

 

It is plausible that regional genetic variation may account for at least some differences in 

reported levels of methylation for disease related genes e.g. comparative analysis has 

identified differences in patterns of methylation between African-Americans and Caucasians 

at birth (Adkins et al, 2011) and that these differences may link to cancer risk in later life. 

Analysis of over 450,000 CpG sites in samples taken from whole blood of 573 individuals of 

diverse Hispanic origin identified that differential methylation between ethnic groups can at 

least partially be explained by the shared genetic ancestry (Galanter et al, 2017). 

Hou et al. (2013) used DNA samples from 63 AD patients (AD: male, 31; female, 32; mean age, 

80 ± 11 years), and 72 non-demented controls (male, 33; female, 39; mean age, 77 ± 15 years). 

While in this pyrosequencing study only eight have been used. In order to make any comment 

about the methylation status of this region using pyrosequencing a larger sample size would 

be needed.  

 

Another possible reason for the difference in reported results may be that LOAD samples from 

different geographical regions were used. For example the samples used by Hou et al. (2013) 

were collect from individuals at Guangzhou Brain Hospital, Guangzhou Senior Hospital and 

Guangdong General Hospital all of which are located in Guangzhou in South China whereas 

the samples used in the current study where collected from patients in the UK. Therefore the 

two sample sets are likely to have encountered very different environments throughout their 

lives and also have very different diets; this may be a significant factor affecting results 

(Toyooka et al., 2003).  
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Other studies have failed to identify any differential DNA methylation within the SIRT1 

promoter using LOAD blood samples, supporting the SIRT1 pyrosequencing results described 

in this chapter. Furuya et al. (2012) failed to observe any difference in SIRT1 promoter 

methylation in LOAD. They investigated 22 CpGs within the SIRT1 promoter using real time 

PCR and MALDI-TOF in brain and peripheral blood leukocyte DNA. They failed to see any 

change in methylation or gene expression. In agreement with this a second group also failed 

to find any disease associated differential methylation within the SIRT1 promoter (Carboni et 

al., 2015). 

However it should be noted that both of these studies did not look at methylation at the 

individual CpG level.  Furuya et al. (2012) took an average methylation across the CpG sites 

investigated and Carboni et al. (2015) used methylation specific PCR. Therefore neither study 

would have been capable of highlighting a small but significant CpG site specific change in 

methylation. 

The results obtained are interesting but in order to draw any conclusion many more samples 

of AD DNA will need to be pyrosequenced for LOAD suffers. It would also be interesting to 

investigate methylation of SIRT1 within the LOAD brain, the samples used during this study 

were curated by the QMC and the AD consortium. Unfortunately, although they have given 

access to certain tissues and samples LOAD, cortex samples were requested, but unavailable. 

4.6 Conclusions 

Pyrosequencing failed to find any sEOAD associated methylation within PTK2β, INPP5D, SIRT1, 

TREM2 and despite other studies showing differential methylation within the genes 

(Humphries et al., 2015, Smith et al., 2016, Yu et al., 2014b, Hou et al., 2013) . In addition to 

this all of these genes have been functionally implicated in AD pathology through the 

identification of genetic variants and protein functionality. This makes it surprising that no 

differential methylation was identified.  

 One explanation for this result is that LOAD and sEOAD represent two distinct diseases which, 

although sharing pathological features, may have differing and distinct biological pathways 

driving disease pathology. Alternatively the biological and perhaps epigenetic alteration 
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driving differential expression of some genes, which results in AD pathology, might be 

different in the two types of Alzheimer’s disease.  

Alternatively, pyrosequencing may have failed to identify any sEOAD associated methylation 

due to the regions being investigated. In the case of ABCA7 and PTK2β LOAD associated 

methylation was found in regions not covered in the pyrosequencing assays used in this study. 

Pyrosequencing is highly targeted and can therefore only cover very small regions of DNA due 

to the technical limitations of the assay, whereas Humphries et al. (2015) used a more global 

method which allowed identification of methylation differences across the whole PTK2β and 

ABCA7 locus. Therefore it cannot be ruled out that the use of pyrosequencing may have 

resulted in important AD associated methylation either side of the targeted regions being 

missed.  

In addition, pyrosequencing was used only to methylation profile CGIs upstream of the TSS of 

the genes investigated and within the promoter region. However epigenetic studies are 

identifying important LOAD associated methylation outside of promoter regions. Humphries 

et al. (2015) identified twenty differentially methylated CpG containing regions within the AD 

brain, of these twelve were located within 3’UTRs and regions were also identified within the 

gene body and 5’UTR, suggesting a requirement for investigation into genic regions other 

than the promoter CGIs in AD.  

Pyrosequencing of SIRT1 also did not reproduce the results of Hou et al. (2013), possible LOAD 

specific hypomethylation was identified in one of the CpG sites investigated. However, it is 

difficult to know if this result is accurate due to the limitations of the pyrosequencing 

platform. No significant sEOAD associated methylation was observed in either blood or brain 

tissue for the two SIRT1 CpG sites investigated.  

Again SIRT1 pyrosequencing results might indicate that while LOAD and sEOAD share 

pathological features, each disease may have its own distinct epigenetic pattern.  However 

further analysis of samples would be needed to confirm this.  

In the case of RIN3 further experiments will also be needed to elucidate the effect of the 

3’UTR hypomethylation observed on both RIN3 gene expression and sEOAD pathology. 

However, the results for both RIN3 and MEF2C provide interesting insights into their potential 
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epigenetic deregulation in sEOAD. The aberrant methylation observed in RIN3 likely 

represents a consequence of AD pathology as for this to be the case differential methylation 

across a large region would be expected presenting in many individuals. However in contrast 

the MEF2C epi-variant identified likely represents a driver of AD pathology, since it is specific 

to individual disease cases, rather than across a large number of patients.  

The data presented in this chapter also highlights the importance of non-promoter 

methylation in causing, driving or response to AD pathology. It is also important that 

epigenetic variation was observed in sEOAD blood samples in this study. This allows for future 

testing of a much larger number of samples then may be possible if using brain tissue alone, 

allowing for future validation.  

However an important fact to consider is that pyrosequencing using bisulphite converted DNA 

does not allow differentiation between methylation and hydroxymethylation at the sites 

investigated. This makes it impossible to determine whether the identified differentially 

methylated sites are in fact differentially methylated or hydroxymethylated in AD. Future 

work would be needed to resolve this. This could be accomplished by used OXBS- 

pyrosequencing (Stewart et al., 2015). 
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Chapter 5: Whole Genome Bisulphite 

Sequencing of LOAD Cerebellum Samples 

 

5.1 Introduction 
 

 

As described previously in this thesis (section 1.8) many methods can and have been used 

to identify differential methylation in LOAD associated genes. Many of these studies use 

methods which cover small sections of DNA, such as pyrosequencing, to identify 

differential methylation within specific regions of single target genes or, in some cases 

multiple genes simultaneously. Mostly the promoter region is selected for investigation, 

since promoter methylation has been directly linked with gene expression (Mehler, 2008, 

Graff and Mansuy, 2008). It is becoming apparent that multiple biological pathways and 

numerous genes are subjected to epigenetic dysregulation in AD. Therefore, in order to 

fully understand the involvement of DNA methylation in the patheogenesis of AD a more 

global profile of differential DNA methylation is required (Qazi et al., 2017). 

 

An obvious advantage of methods that allow analysis of methylation at smaller genic 

regions is low cost per assay. Conversely global and whole methylome sequencing is 

highly expensive. Pyrosequencing allows many samples to be tested, whereas global 

methods and certainly whole genome methods can be limited in use due to the large 

cost associated with each assay (Plongthongkum et al., 2014). However, the ability to 

assay many more samples using methods such as pyrosequencing, following global and 

whole genome investigations, provides an excellent opportunity to validate any regions 

identified as being differentially methylated (Plongthongkum et al., 2014). 

 

Methylation assays covering large regions of the genome can be categorised into two 

groups, targeted and targeted assays. Targeted assays include methods such as the 

Illumina bead chip 450K array (Plongthongkum et al., 2014). Whereas targeted methods 

include whole genome bisulphite sequencing (WGBS); this method has the potential to 

simultaneously analyse methylation at all cytosine residues within the genome of the 

sample analysed. 
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The Illumina 450K bead chip assay has been used to assess methylation in multiple 

published methylation studies. This assay uses DNA oligomer probe which will bind to 

either methylated or unmethylated CpG sites. The probe either recognises a UC 

(unmethylated cytosine following bisulphite conversion) or a 5mC (methylated cytosine 

following bisulphite conversion) nucleotide. Following hybridization of the probes a 

fluorescent signal is used to represent methylation status at individual CpG sites (Pidsley 

et al., 2013). 

 

This bead based assay covers approximately 480,000 CpG sites in the human genome, 

representing coverage of 99% of all reference sequence genes (NCBI). Approximately 

96% of CGIs are covered. However, while this covers the majority of CGIs located within 

promoter regions, this assay also allows analysis of a small number of non-promoter CpG 

sites including some located within 3’ and 5’UTRs and intra and intergenic regions 

(Slieker et al., 2013, Dedeurwaerder et al., 2011, Fan and Chi, 2016). However, the areas 

covered are focused in CGIs therefore the information is not generated for non-CGI CpG 

sites and the assay does not cover the whole methylome (Dedeurwaerder et al., 2011).  

 

Illumina have however recently released the MethylationEPIC BeadChip 850K array which 

covers more the 850000 CpG sites in the human genome; while also cost effective, this 

assay also fails to provide whole methylome data, which consists of ~28 million CpGs 

(Lövkvist et al., 2016). The Illumina platform therefore represents ~3% of all possible sites 

that be differentially methylated.  

 

Another method commonly used to assess DNA methylation is reduced representation 

bisulphite sequencing (RRBS). This method utilises bisulphite treatment of DNA followed 

by the use of specific methylation insensitive restriction enzymes to identify CpG 

methylation. The restriction enzymes MspI and ApeKI are commonly used 

(Plongthongkum et al., 2014). First the restriction enzymes are used to digest the 

genome resulting in fragments of various sizes. Fragments of a specific size (40-220bp) 

are then selected and sequenced following bisulphite conversion, allowing the 

identification of methylated cytosine residues (Meissner et al., 2008) 

 

This method is restrictive as it only provides coverage of 10-20% of CpG sites within the 

human genome, depending on the restriction enzymes used. A problem associated with 
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the RRBS technique, and also others which use restriction enzyme digest, is that 

digestion may be incomplete, resulting in artefacts within the data set (Fan and Chi, 

2016). In addition, this only allows analysis of CpG site dense regions such as CGIs, 

therefore important aberrant methylation in other regions will be missed 

(Plongthongkum et al., 2014, Fan and Chi, 2016). However, a major benefit to 

researchers is the much lower cost associated with this method making it a realistic 

approach for use in the analysis of multiple samples (Fan and Chi, 2016). 

 

Unlike the previous two methods described, whole genome bisulphite sequencing has 

the capability of covering the entire methylome and therefore represents a truly whole 

genome approach. This is hugely advantageous as it allows for identification of aberrant 

methylation at non-CGI CpG sites as well as cytosine methylation at non CpG cytosine 

residues. 

 

WGBS involves the production of a bisulphite converted DNA library prior to whole 

genome sequencing. Therefore unmethylated cytosines are converted to uracil and 

subsequently thymine, following PCR amplification of the library, whereas methylated 

cytosines remain as cytosine. Following sequencing the presence of a cytosine residue at 

a given location indicates methylation at that site. A percentage methylation at a given 

site is calculated based on sequencing coverage of the specific sites being analysed, 

sequencing coverage is a representation of the number of reads which are independent 

of each other but are aligned to a reference genome covering the site being investigated 

(Ji et al., 2014). 

 

One technical issue with WGBS is that large amounts of input DNA are needed. This is 

because the DNA library is bisulphite converted following its preparation. This results in 

degradation of the library, possibly affecting sequencing results; hence a large initial DNA 

input is required. However, this problem has been addressed recently by the 

introduction of DNA bisulphite conversion prior to library preparation. Oligonucleotides 

specific to post conversion DNA are then used during library amplification 

(Plongthongkum et al., 2014). 

 

As mentioned previously the major advantage of using WGBS is the ability to determine 

methylation across the entire methylome. WGBS is estimated to cover up to 90% of all 
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cytosines in the genome (Ji et al., 2014). This is extremely important as methylation 

outside of promoter regions is now being identified as having functional relevance for 

gene expression. Cytosine methylation within gene bodies has been shown to affect gene 

expression and alternative splicing is influenced by splice boundary methylation (Lister 

et al., 2009, Laurent et al., 2010). In addition, non-promoter CpG sites have been found 

to be differentially methylated in LOAD, and hypomethylation of the RIN3 3’UTR was 

identified using pyrosequencing during work completed as part of this thesis (Chapter 4) 

(Yu et al., 2014b, De Jager et al., 2014, Humphries et al., 2015, Smith et al., 2016). 

 

WGBS also allows the identification of methylation at non-CpG cytosine residues, also 

known as CgH (H=A, C, T) sites. Methylation at these sites has been shown to be 

important in multiple cell types including: embryonic stem cells, brain tissue and oocytes 

(Lister et al., 2009, Shirane et al., 2013, Xie et al., 2012, Varley et al., 2013). However 

methylation of non-CpG cytosines is much rarer outside of the brain but is likely to still 

be functionally relevant (Patil et al., 2014). 

 

Therefore, WGBS represents an excellent method for whole methylome analysis. Limited 

studies have utilised this method for identification of differentially methylated regions in 

LOAD. Most focus on use of the 450K array due to the more accessible cost of the assay. 

The work described in this chapter used WGBS to compare the methylomes of two AD 

patients and one control. Brain (cerebellum) tissue was used for WGBS from one sufferer 

of severe LOAD pathology and one suffer of moderate LOAD pathology, braak stages VI 

and IV. The results for these two samples were then compared to publicly available 

WGBS data for a control cerebellum sample. The intention is therefore to identify any 

differential methylation across the methylome for each stage of disease. The DML 

identified where then compared to WGBS data from a published LOAD sample in an 

attempt to validate the DML. 

 

The cerebellum has to date not been considered relevant to the pathophysiology of 

Alzheimer’s disease, with few reports of histopath samples staining for high levels of 

amyloid plaques or tau tangles in this region (reviewed by Jacobs et al, 2017). However 

recent data suggests that the cerebellum shows substantial changes in protein 

expression linked to AD, when compared to control tissue (Xu et al, 2019). This tissue is 

therefore an excellent proxy for AD induced effects in a ‘toxic’ neuronal environment, 
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rather than as tissue directly affected by damaging protein or oxidative stress related 

insults. It can be hypothesised that this tissue is therefore more representative of the 

likely epigenetic changes induced in peripheral blood cells. 
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5.2 Chapter aims 
 

 

• To use whole genome bisulphite sequencing to map the methylome of 

two LOAD cerebellum samples representing two stages of disease 

severity. 
 

• Compare the sequenced LOAD methylomes to published WGBS 

cerebellum non-disease control data to identify differentially methylated 

regions between controls and LOAD suffers. 

 

• Compare the methylomes of the patient with severe LOAD to patient 

suffering with mild disease to potentially identify aberrant methylation 

occurring early in disease progression and later in the disease. 

 

• Use a published LOAD sample to validate the DML identified. 
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5.3 Methods 
 
5.3.1 Sample information 

Samples were chosen from a database curated by ARUK. These samples were 

chosen at the outset of the experimental design process due to the additional 

data that could be obtained e.g. GWAS data, had wider epigenetic profiles 

suggested this would be necessary. DNA from cerebellum samples from two 

LOAD suffers were used for the WGBS described in this thesis chapter. Both 

samples were received from BDR (Brains for Dementia Research). Further details 

of these two samples are provided in table 5.1 

 

As shown in the table the two samples were received from male donors so 

gender specific effects were excluded. However, the age at death, PM interval 

and additional pathology’s cannot be excluded as possibly effecting results, 

however these two samples were the only samples available for use and since all 

differential methylation identified should be further validated, potentially by 

pyrosequencing analysis, these samples were used.   

 

The WGBS control data used for comparison to these two samples was produced 

by Professor Kun Zhang of the Integrative Genomics Laboratory, Bioengineering, 

University of California, San Diego. This data was generated by pyrosequencing 

of cerebellum tissue obtained from a healthy 25 year old male. This data was 

chosen because it was the only WGBS data generated using a healthy male 

cerebellum sample available on the NCBI sequence read archive (SRA) 

(https://www.ncbi.nlm.nih.gov/sra). This sample was gender matched to the 

two LOAD samples used however again age could influence results, however 

since this was the only sample available and validation would be needed this 

data was used for analysis in this thesis. More details of this sample can be 

found in section 2.6.1.   

 

Ideally, due to batch effects, data generated from a control sample sequenced at 

the same time as the LOAD samples would have been used however due to the 

https://www.ncbi.nlm.nih.gov/sra
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financial burden imposed by the WGBS method this was not possible and instead 

the published cerebellum control data was used. 

 

Data generated by WGBS of a LOAD grey matter sample (female ages 81 years) was 

also used for comparison to the cerebellum WGBS data, with the intention of 

validating the DML identified. This data was generated as part of the study 

conducted by Sanchex-Mut et al. (2016), Epigenetics and Biology Program, 

Bellvitge Biomedical Research Institute, Barcelona, Spain. Data was obtained 

directly from the study authors. 

 
Table 5.1: Details of cerebellum DNA samples used for WGBS. Table shows 
information about the two cerebellum samples used for WGBS during work 
described in this thesis chapter.  

 
 

DNA_
Code 

Gende
r 

Age  at 
death 

PM_D
elay 

PM_In
terval 

Diagnos
is 

Braak 
staging 

Pathology 
1 

Pathology 2 

BK076 M 87 19 26 AD IV Alzheimer's 
disease, 
BNE stage 
IV 

Aryrophilic   
grain   
disease,mild   
amyloid   
angiopathy, 
hippocampal 
sclerosis, mild 
small vessel 
disease 

BK005 M 66 90 114 AD VI Alzheimer's 
Disease, 
Braak 6, 
BNE 6 

TDP-43 
pathology, 
limited to 
amygdala 

 

 
5.3.2 Bisulphite conversion of DNA 

 

Prior to the preparation of libraries for WGBS both LOAD DNA samples were 

subjected to bisulphite conversion. Details of this procedure are described in 

both sections 2.4.1 and 2.6.2. Briefly as previously described the EpiTect 

Bisulphite Conversion Kit (Qiagen Germany) was used for bisulphite conversion 
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of DNA and manufactures instructions were used. Clean up of the converted 

DNA is further described in section 2.4.2, this was also conducted following 

manufacture’s instructions.  

 
5.3.3 Library prep 
 
Following bisulphite conversion of the DNA WGBS libraries were produced. This 

process is described in more detail in section 2.6.3. The Truseq DNA methylation 

library preparation it (Illumina) was used, manufacture’s instructions were 

followed.  

 

Briefly, 50-100ng of input DNA was used, following bisulphite conversion the 

DNA was single stranded, sequencing primer was added to this and random 

primed DNA synthesis occurred (section 2.6.3.2). Following this tags were added 

to the 3’ and 5’ ends of the synthesised DNA (section 2.6.3.3) and this now 

tagged DNA was cleaned up (see section 2.6.3.4) prior to amplification of the 

library. To amplify the library PCR was used (details in section 2.6.3.5), during 

this step adapter sequences were also added. Lastly the library was again clean-

up, as described in section 2.6.3.6.  

 

5.3.4 Pre-sequencing analysis 
 

 

Prior to sequencing quality control (QC) assessment was performed on each 

preparation to ascertain the quantity and quality of the library. Firstly DNA 

concentration was calculated using a Qubit dsDNA high sensitivity assay and 

average fragment size was calculated using a Agilent 2200 Tape Station (QC was 

carried out by Polar Genomics, New York). 

 

For both libraries fragments of lengths ranging from around 100-500bp were 

generated, with average fragment size being 288bp and 306bp for samples one 

and two respectively (details shown in figure 5.1). An expected fragment size 

following WGBS library prep with the TruSeq DNA methylation kit was therefore 

an average of 260-380bp. Following the removal of adapter sequences, this 
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resulted in a DNA insert of approximately 160bp for use in paired end sequencing. 

Therefore it was possible to conclude that the libraries contained fragments of a 

suitable size for subsequent sequencing. 

 

However, the DNA concentration of both libraries were low, with a reading of 

0.8ng/µl for sample one and 0.2ng/µl for sample two. The ideal DNA library 

concentration for use in sequencing would be at least 1ng/µl. Therefore, both 

libraries fell below this limit. A 20% PhiX spike in was therefore added to each 

library prior to sequencing to increase the diversity of the library. This increased 

cluster generation, therefore improving sequencing quality. 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 

 

5.3.5 Sequencing of the WGBS libraries 
 

 

Following QC assessment both WGBS libraries were sequenced using paired end 

2X 150 BP sequencing. To allow adequate coverage for subsequent analysis each 

Figure 5.1: Summary of QC analysis for each library. A) Representative bioanalyzer 
trace for sample one upper marker (UM) and lower marker (LM) are shown as well 
as the main sample peak, indicated by an arrow. B) Table showing a summary of QC 
information for both samples including average fragment sizes within each library 
and the DNA concentration of each library. 
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library was loaded onto, and ran on, one lane of a Illumina HiSeq 2500 machine, 

sequencing was carried out by Polar Genomics, New York. 

 

For samples one and two 3.2 and 2.1 million reads were generated by sequencing 

respectively, table 5.2. This resulted in an estimated 16X coverage for sample one 

and 10X for sample two. However for sample two a large amount of duplicate 

reads were present in the sequencing results, therefore a significant number of 

reads were removed during processing of the data. This level of duplication is 

likely due to the low concentration of the library. Ideally for human analysis 

coverage of 10-30X, or greater, is required. However recent studies have shown 

that 5-15X can produce satisfactory results when used to identify differentially 

methylated regions (Ziller et al., 2015). In addition a pool of input DNA was used 

to generate the libraries therefore it is likely that biological randomness was 

maintained within the sample and duplication was caused by PCR artefacts. Ideally 

the library preparation would have been repeated and optimised, however the 

library assessment was sent out of house (conducted by Polar Genomics, New 

York), therefore the turn-around time was extensive and limited the possibility of 

optimisation. Given more time several steps of the library prep protocol could 

have been further optimised, this would include: DNA input amount and the 

library amplification PCR. Therefore the sequencing reads were used for 

bioinformatic analysis. 

 
 

For the control sample, data from three WGBS runs were available for use 

however two of the runs resulted in very few reads following trimming therefore 

the data for only the run producing the most reads was used in bioinformatic 

analysis. This run produced 4.6x107 sequencing reads resulting in approximately 

2.3X coverage. This coverage was low but since this data represented the most 

suitable control data available it was used for analysis. Unfortunately no other 

WGBS data for a cerebellum sample was available for use. 

 

For both LOAD and the control sample the sequencing data was mapped to the 

human reference genome. For sample one and the control, 72% of the sequencing 

reads mapped to the genome. However, for sample two it was only possible to 
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map 46% of the reads to the genome. This could have been due to the low DNA 

concentration of the library and the large number of duplicates present. 

 

 

Table 5.2: Sequencing reads generated for the control, sample one and sample 

two. Table shows the WGBS sequencing reads produces for all three samples 

used during work described in this chapter. 

 

 
 Raw  Trimmed  Aligned  % Deduplicated % 

        aligned   deduplicat 

           ed 
            

Sam Reads Pairs Reads  Pairs Reads Pairs  Reads Pairs  

ple            
            

1 3.25E+ 1.62E+ 8.06E+  1.61E+ 2.31E+ 1.16E+ 71.7% 1.53E+ 7.63E+ 65.9% 

 08 08 07  08 08 08  08 07  
            

2 2.05E+ 1.03E+ 5.14E  1.03E+ 9.47E+ 4.74E+ 46.0% 1.14E+ 5.68E+ 12.0% 

 08 08 +07  08 07 07  07 06  
            

Contr 4.65E+ 2.32E+ 1.16E+  2.31E+ 3.32E+ 1.66E+ 71.6% 3.30E+ 1.65E+ 99.4% 

ol 07 07 07  07 07 07  07 07  
            

 

 

5.3.6 Identification of differentially methylated loci  

 

In order to identify differentially methylated loci (DML) three WGBS samples were 

used. This included the two AD samples sequenced as described above and the 

third published control sample.  

 

In order to elucidate differentially methylated sites between these three samples 

initially all loci containing greater than 50% methylation were identified in each 

set of WGBS data. For all samples the data was filtered so that only loci containing 

greater than 10X coverage were identified. 

 

In order to identify DML (differentially methylated loci) the “DSS-single” tool was 

used initially with a P-value threshold of 0.01 (performed by Dr Joanna Moreton 

(ADAC the University of Nottingham, method described in section 2.6.5)), the DSS-

single from Bioconductor page DSS used estimated normalized dispersion of the 

data across the samples, it then converted the data points into a multivariate 

model. The DML’s were then called using a walds test, for this test likelyhood 
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ration was used to test the joint significance levels of coefficients simultaneously, 

this resulted p-value thresholds despite the fact that N=1.  Three comparisons 

were made between the data sets. Sample one was compared with the control 

data, sample two was compared with the control data and lastly sample one data 

was compared to the data generated for sample two. DML were scored when a 

loci was found to harbour >50% methylation in one sample but not the sample to 

which it was compared. 

 

The gene closest to the DML was identified and used for pathway analysis. This 

was completed using a literature search.  

 

An effort was made to track the DML identified to enhancer regions. In this 

instance enhancer regions were defined as being located 2kb-5kb of a gene. As no 

unifying feature of a enhancer regions exist to allow them to be identified 

conclusively this area was used (Pennacchio et al., 2013). No DML indentified were 

found to be located within enhancer regions. 

 

The identified DML were also investigated in a further LOAD sample. The WGBS 

data for this sample was generated by Sanchez et al., (2016) and was obtained 

from https://www.ncbi.nlm.nih.gov/sra/SRX534204[accn]. This sample was a 

grey matter sample taken from an 81 year old female; further details can be found 

in appendix 1. To compare this sample to the cerebellum WGBS data analysis 

identical to that described above was used.  

 

 

5.4 Results  

5.4.1 Identification of differentially methylated loci  

 

5.4.1.1 Identification of differentially methylated loci in LOAD 

samples compared to controls 

 

Both LOAD samples were compared to the control data to identify any differential 

methylation occurring in either stage of the disease. In the earlier stages of the 

https://www.ncbi.nlm.nih.gov/sra/SRX534204%5baccn
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disease (represented by sample one) it would be plausible that less DML might be 

observable when compared to the more severe LOAD stage. The hypothesis is that 

any differential methylation that occurs early in disease progression is responsible 

for driving the disease and therefore might occur in very specific gene loci, 

whereas differential methylation occurring later on in disease might also occur in 

response to disease pathology, therefore resulting in a wider spread of aberrant 

methylation. 

 

31 DML were indentified in sample one when compared to the control and 3 DML 

in sample two when compared to the control. The DMLs identified in sample two 

are shown in table 5.3. 

 

Two of the DML identified within sample two failed to associate with any known 

gene. Not all genes have been assigned function or may be an intergenic region, 

suggesting a regulator component - yet to be determined. In addition, the third 

DML associated was located on the Y chromosome and encodes the pseudogene, 

C-Terminal Binding Protein 2. Interestingly, a recent study identified this gene as 

being expressed during puberty with a reduction of expression during later 

adulthood (Shi et al., 2016). Since the control sample data came from a much 

younger subject it might be plausible that the differential methylation observed 

in the severe LOAD sample represents an methylation change associated with 

aging rather than AD. 

 

Table 5.3: Three DML identified in LOAD sample two when compared to the 

control. Table shows details of the three regions identified as being differentially 

methylated between sample two and the control sample 

 

Chromosom cytosine Cytosine CGI Percentage AD gene Location Gene 
e location dinucleotid locate difference in Hypo/hype    

  e site d methylation r    

GL000224.1 17677 CG N 32.027 hypo . Intergenic N/A 
         

GL000224.1 17699 CG N 32.027 hypo . Intergenic N/A 
         

Y 5669011 CG N 22.8583 hypo CTBP2 Downstream Encodes- C- 

 3     P1  Terminal 
        Binding 

        Protein   2 

        Pseudogen 

        e 1. 
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The 31 DML were identified when sample one was compared to the control data 

are shown in table 5.4. This included CH17-333M13.2 which is a pseudogene of 

unknown function. Interestingly differentially methylated regions were identified 

both upstream and downstream of this gene. Other regions identified associated 

with two other pseudogenes, one uncharacterised and one encoding the kinase 

suppressor of ras 1 pseudogene 1 which has been associated with lncRNA. The 

genes U6 and CTBP2P1 were also found to harbour DML. CTBP2P1 was also 

identified as associating with DML indentified when sample two was compared 

to the control, and as with sample two, therefore it seems plausible that the 

aberrant methylation observed in sample one is also age related. 
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Table 5.4: 35 DML identified in LOAD sample one when compared to the control. Table showing the differentially methylated 
regions identified by comparing the control sample to sample one, information about the nearest gene and its function are also 
shown.   
 
 

Gene name Gene location Number of DMLs Cytosine Location of Hypo/ Gene function 

  identified Chromosome DMLs 
Hyper (in 
sample one)  

   location    
       

CH17-333M13.2 Chr1: 143343180- 9 143203799- Upstream hypo Unprocessed pseudogene 

 143343275  143252186    
       

KSR1P1 Chr10: 42149310- 1 40634300 Downstream Hyper Kinase Suppressor Of Ras 1 Pseudogene 1: 

 42149549     affiliated with the lncRNA class. 
       

CH17-342O10.1 Chr16: 34353616- 13 34571940- Downstream Hyper Uncharacterised pseudogene. 

 34371659  34571969    
       

Unknown KI270304.1 1 930 Intergenic Hyper N/A 

       

Unknown KI270709.1 4 8482-8625 Intergenic Hyper N/A 

       

U6 KI270744.1- 51009- 2 112020-112024 Downstream Hypo Encodes U6 Small Nuclear 1, which is a RNA 

 51114     gene, affiliated with the snRNA class. 
       

CTBP2P1 ChrY: 56855244- 1 56690113 Upstream hypo Encodes- C-Terminal Binding Protein 2 

 56855488     Pseudogene 1. 
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5.4.1.2 Identification of differentially methylated loci 

between LOAD samples. 

 

319 DML were identified in sample two after bioinformatic comparison to 

sample one. The DML were found to be located on several chromosomes, 

these included chromosomes 1, 4, 6, 9, 19, 22, 8, 11, 17, 19 and KI270733.1 

and the mitochondrial chromosome (see figure 5.2A). 

 

The number of DMLs occurring at each type of cytosine dinucleotide was also 

calculated as a percentage, figure 5.2B. The highest number of DML were 

identified within CC and CA dinuceotides, representing 26.9% and 34.7% of 

DML respectively and 23.5% of differentially methylated cytosines were 

identified in CG residues. This result suggests importance of non-CpG site 

cytosine methylation in severe LOAD. The majority of the DMLs identified 

where also found to be hypo methylated in sample two when compared to 

sample 1 (see figure 5.2). 

 

The location of the DMLs identified in relation to its closest associated gene 

was also calculated. 50% of DML were located downstream of the nearest 

associated gene while 38% and 12% were located intragenically and upstream 

respectively (see figure 5.2D). 
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Figure 5.2: Results for sample one vs sample two. A) Chromosomal location of DMLs. B) Graph represents the percentage 
of DML that were identified at each cytosine dinucleotide. C) Percentage of DML found to be hyper and hypomethylated in 
sample two compared with sample one is shown. D) DML location within the gene associated. 
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In total twenty two genes were found to be associated with differentially 

methylated cytosines present in sample two when compared to sample one. 

This suggested that significant alteration in methylation occurs in specific 

genes in severe LOAD which are not occurring earlier in the disease. 

 

The genes identified as harbouring differential methylation are detailed in 

table 5.5. The table provides information about the gene name and the 

number of DML associated with the gene. The chromosomal location of both 

the gene and the differentially methylated region is also provided. When only 

one cytosine site was found to be associated with a gene only the 

chromosomal location of this site is provided. The number of DML found 

within each differentially methylated region is also shown, as is whether the 

DML were hypo or hypermethylated in sample two when compared to sample 

one. The genic location of differential methylation is also provided. When 

multiple differentially methylated regions or sites associated with one gene 

the regions are separated based on whether they were found to be hypo or 

hypermethylated and are labelled A-E in order of ascending chromosome 

location. 
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Table 5.5: DMRs identified in sample two when compared to sample one. 

Table shows the locations of DMR identifies when comparing sample two and 

sample one, details of the type of differential methylation and the number of 

DML is also included in the table. 

 

Gene Name DMR location on 
chromosome 

No of DML Hypo/hyper DML location 

AV1 201690539 1 Hyper Intragenic  
IPO9-AS1 201690539 1 Hyper Intragenic 
RP11-503C24.3/ 
MILLT4 

168237225- 
168237253 

2 Hyper Intragenic 

  SORCS2 7363760- 4 hyper Intragenic 

 7363953    

   IRF4 A) 397060, B) 396904 2 hypo Intragenic 

  XX-
FYM637E10_5.1 

A) 131851030-
131851042 

A) 7, A) hyper A) Downstream 

 B) 131851044- 
131851063 

B) 10, B) hypo B) Downstream 

 C) 131851064 C) 1, C) hyper C) Downstream 

 D) 131851066- 
131851190 

D) 65, D) hypo D) Downstream 

 E) 131851192- 
131851199 

E) 5. E) hyper E) Downstream 

  HCN2 A) 602114-602120 A) 2 A) hyper A) Intragenic 

 B) 602147 B) 1 B) hypo B) Intragenic 

 C) 602153-602175 C) 2 C) hyper C) Intragenic 

 D) 602181-602313 D) 5 D) hypo D) Intragenic 

  TBC1D22A 47170899 1 Hyper Intragenic 

  U6 
 

11893 
11917-12129 

1 
3 

A) Hyper 
B) hypo 

Upstream 
Upstream 

  MT-ND5 A) 13805-14008, B) 
26- 122 

A) 67, B) 23 A) hypo, B) 
hyper 

A) Intragenic B) 
Upstream 

     

  CR1L 143254463-
207732132 

4 Hypo Intargenic 

  CH17-333M13.2 143254463 1 Hypo Upstream 

  IRX1 A) 3785006-3785179 
B)  3785174 
C) 3785176-3785230 

A) 58 
B)1 
C) 8 

A) Hyper 
B) Hypo 
C) Hyper 

A) Downstream 
B) Downstream 
C) Downstream 

  UNC5A 176872515-
176872550 

2 Hyper Intragenic 

MIR1302-7 141874192 1 Hypo Downstream 

UBAC1 135981558 1 hyper Downstream 

ADGRA1   A) 133058015-
133058045 
  B) 133058077-
133058141 
  C) 133058173 

A) 2 
B) 2 
C) 1 

A) Hyper 
B) Hypo 
C) Hyper 

A) Upstream 
B) Upstream 
C) Upstream 

TRIM29 133058173-
120085757 

6 Hyper Upstream 

SEC14L1 77215944 1 Hyper Intragenic 

AC139099.6 A) 7715944-83215850 
B) 83215859-83215882 
C) 83215892-83215897 
D) 83215906-83116000 

A) 4 
B) 3 
C) 2 
D) 13 

A) Hyper 
B) Hypo 
C) Hyper 
D) Hypo 

A) Intragenic 
B) Intragenic 
C) Intragenic 
D) Intragenic 

pRNA 152162 1 hypo Upstream 
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5.4.2 Identification of differential methylation 

occurring throughout disease progression 

 

Two of the genes associated with DMLs were found to associate with 

differential methylation in sample one (moderate AD), when compared to the 

control and also sample two (severe AD) when compared to sample one 

(moderate AD), suggesting that epigenetic regulation is reprogrammed in 

these genes during disease progression. Epigenetic reprogramming could 

occur as a response to worsening AD pathology, for example an increase in Aβ 

will result in oxidative stress which will change the methylation status of the 

genes involved in oxidative stress response, also interestingly Aβ has been 

shown to drive its own production this way (Chen et al., 2009). The two genes 

identified were CH17-333M13.2 and U6. 

 

Comparison of LOAD sample one to the control resulted in the identification 

of hypomethylation (<50% methylation) of nine DML upstream of the gene 

CH17-333M13.2. A further DML was also identified as being hypermethylated 

in sample two (>50% methylation) when compared to sample one. The 

methylation at each of these identified DML in each sample are described in 

Figure 5.3A and shown in figure 5.3B. As shown the nine upstream DMLs are 

hypermethylated in control but become hypomethylated in AD. The other 

identified DML, located closer to the gene, was hypermethylated in both the 

control and sample one (moderate LOAD sample) but became 

hypomethylated in sample two (severe LOAD). This might indicated a pattern 

of epigenetic regulation of the gene that results in its gradual 

hypomethylation, and perhaps increased expression, throughout disease 

progression. 

 

In the case of the gene U6 analysis revealed hypomethylation (<50%) of two 

DMLs located downstream of the gene in sample one when compared to the 

control. Hypermethylation of one further DMLs, and hypomethylation of three 

DMLs, were identified in sample two when compared to sample one, however, 

these were located upstream of the gene rather than downstream. Figure 5.3A 

describes the methylation at each DML and figure 5.3C shows the methylation 

at each identified DML in each LOAD sample and the control. The two 
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downstream DMLs were hypomethylated in both LOAD samples when 

compared to the control. However, the four upstream DMLs harbour the same 

levels of methylation in the control and sample one, and hypermethylation of 

the most upstream DML and hypomethylation the three remaining DMLs was 

only associated with the sample two and therefore severe LOAD. 
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Figure 5.3: DML identified in CH17-333M13.2 and U6 in LOAD and control samples. A) Table showing DML identified in sample one compared 
to control in CH17-333M13.2 and U6. B) Table showing DML identified in sample two compared to sample one in the genes CH17-333M13.2 
and U6. C) Imaging showing hyper and hypomethylation present at each DML in the control and LOAD samples for the gene CH17-333M13.2. 
D) Showing hyper and hypomethylation present at each DML in the control and LOAD samples for the gene U6. Genes are represented as a 
black box. Hypomethylation (<50%) is shown as a blue circle and hypermethylation (>50%) is shown as a red circle. 
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5.4.3 Genes associated with differential methylation 

in severe LOAD 

 

In total twenty two genes were identified as being associated with 

differentially methylated regions or single loci in the sample representing 

severe LOAD. It is therefore plausible that aberrant methylation of these genes 

occurs in the later stages of LOAD. The functions of the genes identified are 

provided in table 5.6. 

 

Table 5.6: Twenty two genes were identified as being associated with DML 

in severe LOAD. Tables shows details of the genes associated with the DML 

found when sample two was compared to sample one; the function of these 

genes is described. 

 

Gene Name Gene function 

  
NAV1 Encodes Neuron Navigator 1- role in neuronal development and regeneration. 

  

IPO9-AS1 IPO9 Antisense RNA 1) is an RNA Gene, and is affiliated with the non-coding RNA 

 class. 
  

CR1L Complement C3b/C4b Receptor 1 Like- CR1 is a paralogue of this gene. Role in the 

 immune response specifically in response to microbes. 
  

CH17-333M13.2 Unprocessed pseudogene. 

  
SORCS2 Sortilin Related VPS10 Domain Containing Receptor 2- strongly expressed in the 

 central nervous system and important for its normal function. Role in protein 

 transport and intracellular and intercellular signalling. Potential role in intracellular 
 APP processing (Reitz et al., 2013). 
  

IRX1 Iroquois homeobox protein 1- role during pattern formation during development, 

 are particularity important in neural development. 

  
UNC5A Is part of the family of netrin receptors which mediated the movement of axons 

 away from netrin-1 resulting in cell migration, particularly during development. 

 Also have a role in cell death (Hashimoto et al., 2016). 
  

  

IRF4 Encoding Interferon Regulatory Factor 4- functions as a transcription factor that 
 regulates the interferon response to viral infection and activation of microglia and 
 macrophages. Therefore is essential in innate and adaptive immune system 

 function (Mamun and Liu, 2017). 
  

RP11-503C24.3/ Encodes lincRNA. 

MILLT4  
  

MIR1302-7 MicroRNA  gene  encoding  Has-Mir-1302-7.  MicroRNAs  are  involved  in  post 

 translational gene expression 
  

UBAC1 Ubiquitin-associated domain-containing protein 1. Function in the ubiquitination 

 and targeting of toxic proteins, including APP, for proteolysis (Chung et al., 2001). 
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XX- 
FYM637E10_5.1 

Encodes an uncategorized gene, and is affiliated with the lncRNA class. 

  

  

  

ADGRA1 Adhesion G protein-coupled receptor a1 (also known as G protein-coupled receptor 

 123)- Protein is part of the family of G-protein- coupled receptors which functions 

 in regulation of immune response, sensory systems and development; can also 

 influence APP processing through alteration of BACE expression. 

  

TRIM29 Tripartite Motif Containing 29- potential role as a transcriptional regulatory factor. 

 TRIM family protein also have role in regulating innate immune response. Other 
 TRIM family member proteins have been associated with AD. 
  

SEC14L1 SEC14-like protein 1- protein has a role in innate immune function in response to 

 viruses. Also may regulated cholinergic receptors. Another role has been suggested 

 in intracellular transport. 
  

  

AC139099.6 Gene encodes LincRNA. 

  

HCN2 Potassium/sodium hyperpolarization-activated cyclic nucleotide-gated ion channel 

 2. Functions in regulating pacemaker activity in the heart and brain. Associated with 
 γ-secreatse and regulated APP processing. 
  

TBC1D22A TBC1 domain family member 22A. Functions in GTPase-activation of Rab family 

 protein(s). 
  

pRNA Encodes a miscellaneous non-coding RNA which doesn’t not fit into any know RNA 

 category. 
  

U6 U6 Small Nuclear 1) which is a RNA Gene, affiliated with the snRNA class. Is a 

 component of the spliceosome. 
  

MT-ND5 Encodes the mitochondrial gene NADH dehydrogenase core subunit 5. Functions in 

 respiration. 
   

 
 
 

Functional analysis of the nearest genes to the DML identified was completed 

to identify any biological pathways that might have been epigenetically 

altered in AD. Table 5.7 shows pathways that were identified as having had 

more the three genes harbouring DML. Only pathways containing three or 

more DMLs containing genes are shown, however other pathways identified 

are discussed in section 5.6.3 

 

 

 

 

 

 

 



156 
 

 

Table 5.7: Functional analysis of DML associated genes. The biological 

functions of the genes associated with DML are shown. 

 

Biological function Gene associated   Number  of  genes  identified 

     with this function 
Immune response ADGRA1, TRIM29, SEC14L1 3 
CNS development or function NAV1,  SORCS2, 

HCN2 TBC1D22A 
1
, 

U 6 

Regulatory RNA IPO-AS1, RP11503C24.3/ 5 
 MILLT4, MIR1302-7, X  

 FYM637E10_5.1, AC139099.6,  

 U6     

Amyliod processing SORCS2, UBAC1, ADGRA1, HCN2 4 
 

 

 

5.4.4 Validation of DML using a published 
LOAD WGBS data set 
 
The DML identified were also investigated using an independent WGBS data 

set. A whole methylome published WGBS data set kindly provided by the 

authors of Sanchez-Mut et al., (2016) and was obtained from a gray matter of 

the dorsolateral prefrontal taken from an 81 year old female. This published 

data set was obtained from a different region of the brain compared to the 

samples used for the WGBS work described in this thesis. This provides 

validation for the sites identified in the cerebellum as differentially 

methylated in different regions of the brain.  

 

Importantly differentially methylated regions were identified in this new 

LOAD sample associated with the genes CH17-333M13.2, pRNA and U6. These 

three genes were identified as harbouring differential methylation in the 

LOAD cerebellum samples (table 5.8).  

 

In the case of CH17-333M13.2 9 DML were identified when sample one was 

compared to control and 1 DML was identified when sample one and sample 

two were compared. As described in section 5.5.2 the hypothesis is that this 

gene is hypomethylated in both moderate and severe LOAD and addition 

hypomethylation was observed at one CpG site in severe LOAD. Comparison 
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of the Sanchez- Mut et al., (2016) to the control sample resulted in 

identification of LOAD associated hypomethylation at this entire region and 

additional DML were found to be located upstream of the previously 

identified CH17-333M13.2 9 DML containing DMR.  

 

The cerebellum WGBS also suggested that the gene U6 may be differentially 

methylated throughout LOAD disease progression (section 5.5.2). Similarly to 

CH17-333M13.2 the grey matter sample also showed a similar differential 

methylation to the severe LOAD cerebellum sample. In this case upstream 

hypomethylation was identified in both LOAD samples.  The Sanchez et al., 

(2016) sample was also shown to harbour DML that associated with the pRNA 

gene. This gene was also found to be hypomethylated upstream in the 

cerebellum of the severe LOAD suffer but not the moderate sufferer.  

 

The similarity between the DMR in the grey matter sample and the severe 

LOAD suffers cerebellum sample could suggest that this hypomethylation 

occurs later in disease progression and is thus apparent in the grey matter, 

which is affected by LOAD pathology and in the cerebellum in later stage 

disease.  
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 Table 5.8: Validation of the WGBS results using a published sample found 

DMR associated with three genes identified by the WGBS experiment. Table 

shows details of the genes identified as associating with differential 

methylation in the LOAD cerebellum samples and were also identified when 

the WGBS data from Sanch-Mut et al., (2016) was compared to the control 

data.  

 

Sample 

comparison 

made 

Gene Associated 

with DMR 

Number of DMLs 

identified 

Location of 

DMLs 

Hypo/ hyper 

methylation 

1 vs control CH17-333M13.2 9 Upstream Hypo 

Sample 1 vs 

sample 2 

CH17-333M13.2 1 Upstream Hypo 

Sanchez Mut et 

al., (2016) vs 

control 

CH17-333M13.2 34 Upstream Hypo 

Sample 1 vs 

sample 2 

pRNA 1 Upstream Hypo 

Sanchez Mut et 

al., (2016) vs 

control 

pRNA 1 Upstream Hypo 

Sample 1 vs 

control 

U6 2 Downstream Hyper 

Sample 1 vs 

sample 2 

U6 4 Both upstream Hyper and hypo 

Sanchez Mut et 

al., (2016) vs 

control 

U6 2 Upstream Hypo 
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5.5 Discussion 
 

 

5.5.1 Comparison of LOAD and control samples 
 

 

The primary aim of the WGBS experiment was to identify any differential 

methylation that occurs throughout the progression of LOAD; the objective 

being to compare both the moderate and severe LOAD sample sequencing 

results to both a control data and to each other. The hypothesis was that this 

would result in the identification of DML and regions present at each stage of 

LOAD. However, unfortunately when the control and LOAD sample data was 

compared very few DML were identified in sample one and sample two. This 

was surprising as a large amount of DMLs were identified when the sample 

one data was compared to sample two.  

 

It is likely that the discrepancy was caused by the inadequate genomic 

coverage obtained for the control data. The data generated for sample one, 

two and the control mapped to 71.7%, 46% and 71.6% of the genome 

respectively meaning that a proportion of the genome was not covered for 

each sample. In addition only loci containing greater then 10X coverage was 

used in the analysis. Therefore if a locus was identified as being differentially 

methylated in sample two when compared to sample one was covered >10 

times in these two sample but <10 times in the control the loci would not have 

been included in the LOAD control comparison analysis, and given the low 

coverage provided by the control sample it is unlikely that many regions were 

covered adequately for analysis. 

 

5.5.2 Distribution and location of DMLs throughout 

the genome 

 

For the identification of DMLs a P-vale of 0.01 was used. This resulted in the 

identification of three DMLs in sample two when compared to the control and 

thirty-five DMLs in sample one when compared to the control. In addition, 319 

DMLs were identified when sample two was compared to sample one. 

 

Significant intragenic and downstream cytosine methylation was identified in 

sample two (severe AD) when compared to sample one (moderate AD). In 
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addition the majority of this methylation represented hypomethylation within 

the severe LOAD sample, compared to hypermethylation in the moderate 

LOAD sample. Also around three quarters of the DMLs were located within 

non-CpG cytosine residues. Only a quarter of the identified differential 

methylation was located within CpG dinucleotides and of this only two of the 

identified differentially methylated CpG were located in CGIs, (these were 

associated with the genes HNC2 CGI 37 (intragenic) and UBAC1 CGI58 

(upstream)). 

 

Non-CG methylation has been identified in both human and mouse brain 

samples, and has been shown to represent up to a quarter of neuronal 

cytosine methylation (Kinde et al., 2015, Guo et al., 2014, Sanchez-Mut et al., 

2013). In addition, non-CpG methylation has also been shown to occur 

throughout the genome, specifically within the gene body, but is also enriched 

at non-CpG containing regions including both 5’upstream and 3’downstream 

regions (Lister et al., 2009, Guo et al., 2014). Therefore it might be unsurprising 

that so much variation was identified at these residues between the LOAD 

samples and that most of the differentially methylated regions identified were 

located either intragenically or downstream of the associated genes. 

 

Non-CpG methylation has also been shown to result in transcriptional 

repression and corresponding reduction in gene expression in the brain (Guo 

et al., 2014). This repression is caused by the binding of the transcriptional 

repressor methyl binding domain family protein methyl-CpG binding protein 2 

(MeCP2), to methylated cytosine residues within these sites. MeCP2 was 

previously thought to preferentially bind to methylated CpG residues; 

however more recent studies have revealed affinity for methylated CpH 

residues and specifically those in the configuration CA (Guo et al., 2014, Gabel 

et al., 2015). This is interesting since the majority of differentially methylated 

cytosines identified between the two LOAD samples were located within CA 

dinucleotides. 

 

There is also evidence to suggest that CpH methylation is particularly 

important in the brain and for wider neuronal function. Non-CpG cytosine 

methylation is far more common in the brain than somatic tissue (Ziller et al., 

2011), and mutations of MeCP2 result in the neural developmental disorder 
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Rett syndrome (Kinde et al., 2015, Guo et al., 2014). This suggests that the 

transcription repression caused by MeCP2 interaction with methylated CpH 

dinucleotides adds a further layer of epigenetic regulation to the neuronal 

genome which is important in its development and functionality. Therefore it 

seems plausible that aberrant methylation at these sites might be responsible 

for the development of neurological diseases such as LOAD. 

 

The differences in methylation observed in severe LOAD reported in this thesis 

might therefore represent epigenetic modifications that alter the expression 

of their associated genes, driving severe LOAD pathology. Alternatively the 

aberrant methylation observed might also be a consequence of the 

pathological environment that develops as the disease progresses; the 

methylation of non-CpG residues may be altered in response to pathological 

events such as Aβ and NFT accumulation within the brain. Aβ accumulation, 

resulting in increased oxidative stress, have been shown to result in aberrant 

methylation of the promoter regions of other genes such as neprilysin (Chen 

et al., 2009). 

 

For the work described the DMLs identified were not investigated as to whether 

they corresponded to mQTLs. This was because mQTLs are likely to be 

important in single sample analysis, however the inclusion of additional whole 

methylome data sets should minimise the impact of mQTL effects. McRae et al 

(2018) identified 2,916 cis and 2,025 trans DNA mQTL using methylation from 

whole blood measured (Illumina) however mQTLS were overrepresented in 

subtelomeric regions enriched with pseudogenes. It should also be noted that 

any difference in genes linked to AD via genetic analysis or other methods 

would be clinically relevant to that patient, indifferent to the cause e.g. 

epigenetic, genetic or mQTL.  

 

5.5.3 Genes associated with DMLs 
 

 

22 genes were identified as associating with DMLs in sample two when 

compared with sample one. Since the samples represented moderate and 

severe AD it is plausible that the differential methylation identified in sample 

two may be reflective of pathology which is specific to later stages of the 
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disease. Many of the genes identified have biological functions or are involved 

in pathways which have been previously linked to AD pathology and disease 

progression, shown in table 5.7. 

 

The immune response represents one of the main pathways identified as being 

perturbed in AD by GWAS. In addition to genes which encode a protein 

involved in the immune response two genes encoding transcription factors 

which regulate expression of genes encoding immune response proteins were 

also identified by the WGBS study. Previously multiple genes involved in the 

immune response and inflammation have been identified as containing LOAD 

risk variants (Guerreiro and Hardy, 2014). These include TREM2, HLA-DRB1, 

HLA-DRB5 and CR1, in addition aberrant methylation of genes with immune 

functions have also been identified in LOAD (Karch and Goate, 2015, Yu et al., 

2014b, Combs, 2009, Zhang et al., 2015). Therefore it seems unsurprising that 

genes were identified by the WGBS studies described in this thesis, that have 

roles in the immune system and the inflammatory response. 

 

Four of the genes identified have potential function in the regulation of APP 

processing. This is again unsurprising as the majority of genes that confer AD 

risk have roles that affected Aβ production. This includes the genes APP, PSEN1 

and PSEN2, and ADAM10 (Karch and Goate, 2015). Differential methylation of 

APP and other genes that encode proteins involved in the amyliod cascade 

have also been identified in LOAD (Iwata et al., 2014) (see section 1.5). 

 

Three of the genes identified in this study (ADGRA1, HNC2 and UBAC1) have 

also previously been associated with AD. ADGRA1 encodes the protein 

adhesion G protein-coupled receptor a1. G protein coupled receptors (GPCRs) 

function to induce intracellular signalling and have been linked to regulation 

of BACE1 (β-site APP cleaving enzyme) which is the secretase responsible for 

the generation of Aβ peptide (Zhao et al., 2016). The exact affect of G protein-

coupled receptors on BACE1 is not well understood but signalling pathways 

stimulated by GPCR activation are thought to potentially alter BACE1 

expression, degradation or trafficking (Zhao et al., 2016). Further roles of GPCR 

have been suggested in α and γ-secratase activity and also Aβ degradation 

(Thathiah and De Strooper, 2011). 
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HCN2 encoding potassium/sodium hyperpolarization-activated cyclic 

nucleotide-gated ion channel 2 has been also been shown to have a role in the 

regulation of Aβ production in AD through its association with γ-secretase. Loss 

of HNC2 function results in a reduction of Aβ production possibly due to an 

effect on APP processing (Frykman et al., 2017). Hypermethylation of the HCN2 

promoter region has also been identified in the LOAD brain (Sanchez-Mut et 

al., 2016). 

 

UBAC1, encoding ubiquitin-associated domain-containing protein 1 also likely 

has a role in driving AD pathology through its involvement in the APP pathway. 

UBAC1 is involved in the removal of toxic proteins by ubiquitin-dependent 

proteolysis (UPP), APP is an example of such a protein. One hypothesis is that 

in neurodegenerative diseases such as AD the accumulation of toxic proteins 

is so great that the UPP process becomes overloaded resulting in accumulation 

of ubiquitin- positive aggregates leading to neuronal dysfunction and eventual 

cell death (Chung et al., 2001). 

 

Two genes were also identified which encode proteins with functions in 

intracellular transport. SORCS2 (Sortilin Related VPS10 Domain Containing 

Receptor 2) is a gene located within the vacuolar protein sorting (VPS) gene 

family and is of particular interest as it belongs to the same gene family as 

SORL. SORL1 has been both genetically linked to AD and shown to harbour AD 

linked aberrant methylation (Lambert et al., 2013b, Yu et al., 2014b, Rogaeva 

et al., 2007, et al., 2013). Yu et al., (2014b) identified aberrant methylation and 

expression of SORL1 in the LOAD brain. Both SORL1 and SORCS2 were found 

to harbour SNPs which associated with fAD (Rogaeva et al., 2007, Reitz et al., 

2013). SORC2 was also identified as containing LOAD associated CpG site 

hypomethylation within its promoter region in brain tissue by another WGBS 

study (Sanchez-Mut et al., 2016). SORL1, and other proteins that function in 

intercellular transport, may drive AD progression by influencing APP 

processing in the endocytic pathway (Karch and Goate, 2015). 

 
 

The mitochondrial gene MT-ND5 (encoding the protein NADH dehydrogenase 

core subunit 5) was also identified as being differentially methylated in the 
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severe LOAD patient. MT-ND5 has previously been identified as harbouring a 

reduction in hydroxymethylation associated with aging in mice (Dzitoyeva et 

al., 2012). Increased expression of the MT-ND5 gene was also recently shown 

to associate with MCI (Lunnon et al., 2017). Mitochondrial dysfunction is also 

a common occurrence in AD and the mitochondrial cascade hypothesis states 

that basal mitochondrial function, which is under genetic regulation, will 

decline throughout aging resulting in eventual onset of AD (Devall et al., 2014, 

Swerdlow et al., 2010, De Jager et al., 2014). In addition epigenetic regulation 

of the mitochondrial genome and its involvement in AD has been documented 

(Lunnon et al., 2017).  

 

A large number of genes were identified with roles in normal neuronal function 

and development. This was also unsurprising as many of the LOAD associated 

genes identified by GWAS function within the CNS system and have roles in 

neuronal survival (Bettens et al., 2013, Van Cauwenberghe et al., 2016). These 

genes was NAV1, which encodes neuronal navigator 1, which is involved in 

neuronal migration through its regulation of axon guidance. The protein 

associates with microtubules in neurones (Martinez-Lopez et al., 2005). The 

expression of NAV1 was found to be increased in post mortem LOAD CA4 

hippocampal cells (Ho Kim et al., 2015). In addition, the neuronal navigator 

family proteins NAV2 and NAV3 have also been associated with AD and both 

were shown to be down regulated in the LOAD hippocampus using a mouse 

model (Wang et al., 2017, Zong et al., 2015).  

 

UNC5C, encodING the uncoordinated-5c netrin receptor gene, was another 

gene identified with a role in neuronal function. UNC5C is needed for 

embryonic development of neurones through its regulation of axon guidance; 

however absence of the receptors ligand results in activation of cell death 

(Moore et al., 2007). A genetic mutation within the UNC5C gene has been 

linked to increased risk of LOAD (Wetzel-Smith et al., 2014). Neurones 

containing this mutation have increased vulnerability to neuronal death in 

response to insult. One such insult is the presence of APP which induces the 

death of these neurones through mediation of an intracellular death signalling 

cascade, netrin can bind to APP and prevent this death cascade from being 

activated (Hashimoto et al., 2016). 
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Perhaps more surprising was the identification of numerous genes encoding 

proteins involved in regulation of gene expression and also genes enocding 

regulatory RNA harbouring differential methylation in the severe LOAD 

patient. IRF4 and TRIM29 were identified as harbouring differential 

methylation in severe LOAD.  

 

IRF4, encoding interferon regulatory factor 4 has been associated with LOAD 

previous to the WGBS work conducted as part of this thesis. A study using a 

mouse model of AD found IRF4 to be down regulated in microglial cells when 

compared to controls (Orre et al., 2014). The study also identified differential 

expression of multiple other transcription regulatory genes which associated 

with the AD phenotype (Orre et al., 2014). IRF4 has also been shown induce an 

anti-inflammatory response within the brain and its expression has been 

associated with conduction of programmed cell death within the brain 

following stroke. The expression of IRF4 also results in a anti-inflammatory 

micro-environment in the AD brain (Mamun and Liu, 2017). Therefore the 

reduced expression observed by Orre et al. (2014) may drive AD pathology 

through an increase in inflammation. 

 

Intragenic hypomethylation of IRF4 was observed in the severe LOAD sufferer. 

This hypomethylation may result in an increase in expression of IRF4; 

representing a response to the pro-inflammatory environment created in the 

later stages of LOAD by increased Aβ deposition. This would need to be 

validated 

 

TRIM29 (tripartite motif-containing protein 29) also known as ataxia-

telangiectasia group d-associated protein was another gene with regulatory 

function that was identified. This gene has been associated with the 

development of several types of cancer and has been shown to drive lung 

cancer cell invasion through its activation of the ERK and JNK pathways (Tang 

et al., 2013). While TRIM29 has yet to be genetically associated with AD 

deregulation of the ERK and JNK signalling pathways have been implicated in 

AD pathology using post-mortem brain tissue (Zhu et al., 2001). 
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The U6 gene was also identified as being differentially methylated in severe 

LOAD in the WGBS study described in this thesis chapter. U6 encodes a snRNA 

molecule which forms part of the spliceosome and therefore is involved with 

gene splicing (Wahl and Luhrmann, 2015). It therefore has the potential to 

cause far reaching aberrant protein expression in AD by affecting the 

alternative splicing of multiple genes. In addition, AD associated 

hypomethylation of 26 CpG residues located within the U6 promoters were 

identified by another WGBS study in the LOAD brain (Sanchez-Mut et al., 

2016). Another study also identified AD associated methylation in brain tissue 

at one CpG site located within 50kb of U6 (De Jager et al., 2014). In addition, 

both microRNAs (miRNAs) and long non-coding (lncRNAs) have been shown to 

influence AD disease progression (Zhang, 2016). 

 

5.6 Validation using an external LOAD WGBS 

data set 

 

Three of the genes associated with differential methylation in the cerebellum 

samples were also identified as harbouring differential methylation in the 

Sanchez- Mut et al., (2016) grey matter sample. These three genes were U6, 

pRNA and CH17-333M13.2. The aim of this part of the study was to validate 

the genes identified in a independent and published LOAD WGBS sample.  

 

Historically cerebellum has commonly not been used to study epigenetic 

effects in AD because this brain region has been considered to not be relevant 

to AD pathophysiology.  However the WGBS data comparison between the 

cerebellum and grey matter tissue did identify identical differentially 

methylated genes. This suggests that the cerebellum could be capable of 

harbouring important LOAD associated differential methylation. This seems 

unsurprising as AD associated pathology such amyloid plaques and tau tangles 

have been identified in the cerebellum of LOAD suffers; and also protein 

expression changes linked to AD have also been identified in the cerebellum 

(reviewed by Jacobs et al, 2017, Xu et al, 2019). Importantly this comparison 
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analysis against published data further supports the whole methylome data 

described above (section 5.4). 

 

5.7 Experimental limitations and future work 
 

 

While the WGBS experiment did reveal important DMR and genes associated 

with these regions, it is important to consider the main limitations of this study. 

This includes sample size, genome coverage and the control sample used. 

Importantly an effort was made to validate the DMRs identified using published 

WGBS data from another LOAD sample and three genes were also found to 

harbour LOAD associated differential methylation in this sample.  

 

Due to the high cost of WGBS it was only possible to generate data for the two 

LOAD samples. Ideally at least three biological replicates would be needed to 

confidently identify any differential methylation occurs between groups. The 

use of only one sample does not allow for the elimination of inter-individual 

differential methylation that might be occurring between the two samples, 

variation not associated with LOAD pathology. 

 

Another potential limitation is that the genome coverage provided by each 

sample was relatively low. In particular sample two and the control had very 

low coverage. Sequencing of sample two also resulted in a lot of duplicate 

reads, possibly due to the low concentration of the library. Ideally the library 

preparation would have been repeated for sample two prior to sequencing 

and a library of higher quality would have been used. Due to the time 

constraints this was not possible. However only regions with greater then 10X 

coverage were used for analysis therefore these regions would have been 

identified anyway. 

 

The control sample had the lowest coverage of all three samples. This made it 

extremely difficult to obtain useful results when control data was compared 

with LOAD samples. In addition, the control sample data obtained from a non-

aged matched individual. Therefore any DMLs identified between the LOAD 

samples and control could not be ruled out as being age associated. Ideally an 

age matched control sample would have been used for WGBS and compared 
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to the LOAD samples. However due to the cost of undertaking WGBS this was 

not possible. 

 

Although every  attempt was made to obtain a sample set with as broad a 

coverage as possible, there is a realisation that the experimental plan is 

unfortunately limited by material available to test. I would therefore suggest, 

like many published studies, that additional experimentation would be 

required to further explore any interesting data. 

More targeted methods such as pyrosequencing should be used in future to 

investigate the differentially methylated regions identified in both moderate 

and severe LOAD patients and age matched controls, with a particular focus 

on the three genes that were also identified in the Sanchez Mut et al., (2016) 

sample. The use of this method would allow investigation into the identified 

regions in many patient samples, resulting in confident identification of 

differential methylation.  

 

The results generated in this chapter were compared to a WGBS data from a 

published LOAD sample (Sanchez-Mut et al., 2016). This allowed some 

validation of data. However pyrosequencing validation would also be useful, 

unfortunately this was not possible during this project due to time constraints, 

however the data generated during this study has lead to the identification of 

interesting sites for further investigation by future research. 
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5.8 Conclusion 
 

 

In conclusion, the WGBS work conducted as part of this thesis has led to the 

identification of some interesting differentially methylated regions in genes 

that should be further investigated in LOAD. However, they will need to be 

validated using more targeted methods and a substantially increased sample 

size to be confident of results. It might also be interesting to, once validated, 

assess if any of this differential methylation is also identifiable in late stage 

sEOAD, as the epigenetic deregulation might be pathology rather than disease 

sub-group specific. 
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Chapter 6: General Discussion 
 

 

6.1 Aims of the thesis 
 

 

Aberrant DNA methylation has been linked with the pathogenesis of multiple diseases 

including AD (Qazi et al., 2017) (section 1.5). Many studies have investigated both 

global methylation and gene specific methylation in LOAD and LOAD associated 

genes. However many gene specific studies have revealed conflicting results. This 

could possibly be due to the inconsistent use of brain tissue in many studies. It is 

known that different regions of the brain and even different cell types can harbour 

their own unique epigenetic profiles, making it difficult to obtain consistent results 

from studies which use tissue from differing brain regions. For this reason LOAD 

leukocyte DNA was used in this thesis to investigate methylation in loci identified as 

carrying LOAD risk alleles via GWAS testing (Lambert et al., 2013b, Humphries et al., 

2015 Yu et al., 2014b, Smith et al., 2016). 

 

Leukocyte DNA was also used because studies have shown AD associated methylation 

can be identified in peripheral blood samples using a variety of experimental methods 

(Di Francesco et al., 2015, Xu et al, 2018; Madrid et al, 2018, Mercorio et al, 2018, 

Hou et al., 2013, Chang et al., 2014, Lunnon et al., 2014). It is also likely that at least 

some of the changes identified in blood are linked to the pathogenesis or variation in 

methylation occurring within brain tissue (Wang et al., 2019).  Regardless of 

association between blood methylation and methylation status of the AD brain, blood 

methylation linked to disease status has an independent value. It is possible that any 

differential methylation identified in blood could represent a biomarker of AD.  

 

Investigation into aberrant methylation in both LOAD samples and sEOAD samples 

was undertaken for a number of genes. To date only a few studies have investigated 

aberrant methylation in sEOAD and given the similar pathologies present in both 

forms of AD it seems a plausible hypothesis that genes identified as epigenetically 

deregulated in LOAD may harbour similar disease causing alteration in DNA 

methylation in sEOAD.  
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Many previous methylation studies have focused on the identification of AD 

associated methylation located within the promoter region of AD related genes. 

However, recent global and genome wide epigenetic studies have revealed that 

important differential methylation also occurs at non-promoter CpG sites such as in 

the 5’ and 3’ UTRs and can be found within both intra and intergenic regions (Smith 

et al., 2016, De Jager et al., 2014, Yu et al., 2014b, Humphries et al., 2015). In addition, 

studies are beginning to reveal that aberrant methylation at non-promoter CpG sites 

might have significant importance in regulation of gene elongation, transcriptional 

repression and alternative spicing (Maussion et al., 2014, Choi et al., 2009, 

Malumbres et al., 1999). Therefore work conducted in this thesis also targeted non-

promoter CpG site rich regions of interest. 

 

6.2 Targeted methods 
 

 

Several targeted methods are described in this thesis and were utilised to identify 

differential methylation associated with both LOAD and sEOAD. In some instances 

identical genic regions were also investigated in both types of AD. This allowed 

comparison between the disease types and therefore the identification of disease 

type specific aberrant methylation. 

 

Initially bisulphite cloning and the McrBC enzyme based profiling methods were used 

to investigate the promoter regions of genes previously associated with LOAD via 

GWAS studies (Lambert et al., 2013b). Interestingly since the work conducted in this 

thesis began, other studies have found that aberrant methylation within genes 

associated with LOAD through GWAS can be identified (Humphries et al., 2015, Yu et 

al., 2014b, De Jager et al., 2014, Hou et al., 2013, Smith et al., 2016). 

 

McrBC enzymatic experiments identified possible hypermethylation within the 

promoter regions of the genes INPP5D and SORL1, both of which have been 

implicated in LOAD pathology or development. Although this result is interesting the 

McrBC method is limited by its inability to give quantitative data or detailed 

information about individual CpG sites. Therefore the methylation profiling work 
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switched to focus on the use of the pyrosequencing platform, allowing quantitative 

data generation for each individual CpG site assayed. 

 

Unfortunately the pyrosequencing assay designed to cover the SORL1 region 

investigated using the McrBC method failed at the pyrosequencing stage. However, 

it was possible to investigate the INPP5D promoter target in both sEOAD leukocyte 

and cortex DNA. The previous McrBC work had been conducted and indentified 

methylation using LOAD leukocyte DNA, making it somewhat surprising that no 

sEOAD associated DNA methylation was identified. In addition no aberrant 

methylation was identified in cortex tissue either, suggesting a unique epigenetic 

profile might exist for the two forms of AD. 

 

This hypothesis was supported by the pyrosequencing results obtained for TREM2 

and SIRT1. A CpG site upstream of the TREM2 promoter was found to be 

hypermethylated in the LOAD brain (Smith et al., 2016). SIRT1 was also shown to 

contain LOAD associated hypermethylation at multiple CpG sites (Hou et al., 2013). 

In the case of these genes pyrosequencing targets were chosen that included CpG 

sites shown to be aberrantly methylated in LOAD by the afore mentioned published 

studies, these sites were then investigated using sEOAD leukocyte and cortex DNA. 

 

For these genes no significant difference in methylation was observed between 

sEOAD and control samples for either tissue type tested. Interestingly however one 

CpG site investigated for SIRT1 did show a small but statistically significant reduction 

in methylation in LOAD leukocyte samples, whereas a second CpG site investigated in 

this gene did not, despite both being proven to harbour AD associated 

hypermethylation in the study conducted by Hou et al. (2013). One explanation for 

this is that Hou et al. (2013) used a Chinese population for their study whereas the 

samples used during work conducted in this thesis were obtained from a UK 

population. This might indicate not only that sEOAD and LOAD represent two distinct 

diseases, which are driven by differing epigenetic alteration, but also that ethnicity 

and environment might also be important in driving disease specific DNA methylation 

responsible for causing progression of the same pathology. 
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Pyrosequencing was also used to identify differential methylation in the promoter 

regions of ABCA7, MEF2C and PTK2β. These genes were initially selected for 

investigation due to their genetic association with LOAD (Lambert et al., 2013b). 

However, since beginning the work conducted in this thesis, published research has 

identified LOAD associated aberrant methylation within these genes (Yu et al., 2014b, 

Humphries et al., 2015). While it should be considered that many of these studies 

investigated different gene regions and tissue type to those used in experiments 

described in this thesis, it is still interesting to note that pyrosequencing failed to 

identify any significant differential methylation at the regions target in these genes 

using sEOAD blood and brain samples. This further supports the hypothesis that LOAD 

and sEOAD do not harbour common epigenetic deregulation resulting in their shared 

pathological features. However more work would be needed to confirm this 

hypothesis. 

 

As part of the work described in this thesis a limited number of genes were 

investigated and of these genes only small regions of sequence were targeted. This is 

due to the technical limitations of the McrBC enzymatic method and pyrosequencing 

platform. An interesting avenue for further study would be the use either global or 

whole genome methods to compare the entire LOAD and sEOAD methylome. This 

would allow the identification of differential methylation occurring in both types of 

AD, which both differ between the two disease types and is common to them both. A 

plausible hypothesis is that any disease type specific aberrant methylation identified 

might be a driver of disease progression whereas any common differential 

methylation could be a consequence of the similar pathology shared by each disease 

type. However, to obtain this type of information DNA samples would be required 

from controls and patients with varying disease severity of both LOAD and sEOAD. 

This makes the availability of such samples and cost major imitating factors when 

considering conducting an experiment of this kind. 

 

Unfortunately no brain DNA was available for testing from LOAD patients however it 

would also be interesting to investigate whether the hypermethylation identified in 
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SORL1 and INPP5D blood DNA was also identifiable in the LOAD brain from matched 

samples.    

 

In addition to the MEF2C promoter region investigated a further CpG site upstream 

of this region was also targeted via pyrosequencing. No significant difference in 

methylation at this site was found within either sEOAD blood or brain tissue when 

samples are considered group-wide. However, a significant reduction in methylation 

was observed at the site in one leukocyte sample and a non-statistically significant 

reduction at this site was also observed for one sEOAD brain sample. Suggesting the 

possible presence of an epi-allele at this site which might explain an increased risk of 

certain AD associated symptoms in some individual’s (Agorio et al., 2017). 

 

This result is interesting as similar aberrant methylation may have been previously 

missed by studies due to the common goal of identifying only regions or multiple CpG 

sites which present as ‘aberrant’ in the majority of AD cases. It highlights the possible 

importance of rare epigenetic modifications which can influence disease 

susceptibility in a similar way to rare genetic variations found in AD associated genes. 

 

Unfortunately blood and brain tissue were not available from the same patient. 

However it would have been interesting to investigate if the hypomethylation 

observed at this CpG site was blood specific or was also present within the AD brain. 

Presence of this reduction in methylation within the brain and blood of the same 

individual would support the hypothesis that leukocytes alter their gene expression 

through methylation based on the environment they encounter as they pass through 

the brain. 

 

The pyrosequencing work conducted using the 3’UTR of the RIN3 gene as a target 

suggested that this might be the case. The identification of hypomethylation in the 

MEF2C upstream CpG site and not within the promoter CGI investigated suggested 

that non-promoter CpG methylation is important in AD. This hypothesis is supported 

by other studies which have identified non-promoter CpG methylation associated 

with LOAD in both blood and brain tissue (Humphries et al., 2015, Smith et al., 2016). 

Therefore the 3’UTR of RIN3 was chosen for analysis by pyrosequencing. 
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Interestingly significant hypomethylation was observed in sEOAD blood samples 

across all seven CpG sites included in the assay and a non-statistically significant 

reduction in methylation was also observed across all seven CpG sites in brain tissue. 

This suggested the possibility that leukocyte hypomethylate the 3’UTR of RIN3 in 

response to the environment that they encounter in the brain. This hypothesis is 

supported by the fact that significant hypomethylation of both the MEF2C upstream 

CpG sites and the RIN3 3’UTR are both significantly hypomethylated in brain tissue 

compared to blood tissue. 

 

The results for MEF2C and RIN3 are intriguing, particularly due to the fact that 

hypomethylation is observable in blood DNA making RIN3 3’UTR methylation a 

plausible biomarker of sEOAD. In the instance of the MEF2C epi-mutation it is possible 

that hypomethylation at this site is a driver of sEOAD progression as the mark is rare 

and could indicate that specific individuals carry their own unique epigenetic profile 

which then drive or exacerbate AD pathology. However in the instance of RIN3 

hypomethylation spans a larger region of CpG sites, and may represent aberrant 

methylation occuring as a result of AD pathology. 

 

However, future work will be needed to elucidate the biological consequences of the 

aberrant methylation observed and described in this thesis. 3’UTR methylation has 

been associated with a reduction in gene expression by other studies (Maussion et 

al., 2014). Therefore one hypothesis would be that the reduction in methylation at 

the 3’UTR of RIN3 might result in increased expression of RIN3 in AD. Unfortunately 

gene expression studies were not undertaken as part of the work conducted in this 

thesis due to viable patient RNA obtained post mortem being difficult to obtain, 

therefore unavailable for testing as part of this study. 

 

It would also be of interest to investigate INPP5D and SORL1 expression in LOAD 

leukocytes as hypermethylation of promoter CpG containing region was suggested at 

by the McrBC experimentation. Unfortunately due to similar reasons described for 

sEOAD no RNA was available for expression analysis of LOAD samples either. 

 

6.3 Whole genome methods 
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The WGBS experiment resulted in the identification of a substantial amount of 

differential methylation occurring within the severe AD patient sample. This resulted 

in the identification of multiple genes with functional relevance to AD pathology. 

These results have to be interpreted with caution as it was only possible to sequence 

one biological repetition for each stage of LOAD and the published control data used 

for comparison was not ideal. However three of genes associating with DML were 

also identified as harbouring differential methylation using published WGBS data 

from a grey mater sample (Sanchez-Mut et al., 2016). Further validation would be 

required to confirm the differential methylation identified. 

 

The WGBS experiment results provide interesting insights into differential 

methylation occurring in the later stages of LOAD pathology. The WGBS experiment 

identified both singular DML and also large differentially methylated regions which 

contained multiple DML within them. This result seems consistent with the 

hypothesis that within AD (perhaps both sEOAD and LOAD) specific regulatory 

cytosine sites are differentially methylated and drive AD pathology, such as the 

MEF2C upstream CpG site identified using the sEOAD samples and pyrosequencing. 

Whereas other regions containing widespread differential methylation, such as that 

identified in the RIN3 3’UTR, are a consequence of the disease pathology. 

 

It was also interesting that the majority of differentially methylated regions identified 

by the WGBS experiment were located downstream of the nearest associated gene 

and intergenically. It would be interesting to investigate, in future work, how much of 

this differential methylation is occurring within 3’UTR regions. Since the only regions 

identified as being significantly differentially methylation in the sEOAD samples by 

pyrosequencing was a region located upstream of the TSS and a region within the 

3’UTR of RIN3, all of the work conducted in this thesis suggests that non-promoter 

differential methylation has an important role to play in AD and therefore 

methylation studies should consider other genic regions. 

 

One limitation of both the pyrosequencing and WGBS methods is that bisulphite 

conversion was used prior to sequence to allow identification of differential 
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methylation. However bisulphite conversion does not differentiate between 

methylation and hydroxymethylation. Therefore without further work it is not known 

if all of the differential methylated cytosines identified were not in fact 

hydroxymethylated prior to conversion. Importantly information is not available 

about any differences in methylation and hydroxymethylation and therefore this type 

is DML would not be identified.  

 

However, in the instance of the WGBS data most of the differential methylation 

identified is likely to be methylation rather then hydroxymethylation. This is because 

most variation was identified at CpH sites and studies have shown that very little CpH 

hydroxymethylation occurs within the human brain (Guo et al., 2014). However 

mouse studies have identified hydroxymethyltaion in CpA sites located near active 

enhancer regions in neuronal cells (Mellen et al., 2017). Further research would be 

needed to elucidate if this is also the case in humans.   

 

For the differentially methylated regions identified using pyrosequencing 

hydroxymethylation could be identified in future study using Tet-assisted bisulfite 

sequencing (TAB-seq), alternatively this could have been used rather than 

pyrosequencing as an alternative method. In this method HmC sites are protected by 

β-glucosyltransferase (β-GT)–mediated glucosylation during treatment with mTet1 

protein which results in oxidation of 5-mC to 5-caC which is then read as T during 

bisulphite sequencing, therefore only the 5-gmC residues will be read at Cs in 

bisulphite sequencing (Kinde et al., 2015, Yu et al., 2012). 

 

Alternatively hydroxymethylation could also be identified using oxBS sequencing or 

pyrosequencing. In this type of sequencing an additional oxidation step is added to 

convert the 5hmCs to 5fC which are then converted by bisulphite treatment to uracil. 

A sample which is only bisulphite treated is then sequenced in parallel allowing 

identification of both 5mC and 5hmC (Booth et al., 2012).  

 

This use of these methods would have allowed differentiation between 

hydroxymethylation and methylation and the identification of additional DML. These 

methods were not used as a decision was made to potentially use these methods as 
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tools for further investigation into regions found to be harbouring DML by 

pyrosequencing and WGBS. 

 

6.4 Conclusion and future work 
 

 

In conclusion the work presented in this thesis has provided interesting avenues for 

further work into differential methylation occurring in both sEOAD and LOAD. The 

pyrosequencing and WGBS results suggest that methylation in non-promoter regions, 

including intergenic and within downstream regulatory regions, is important in AD 

and highlights the importance of investigation into methylation occurring outside of 

promoter regions. The WGBS results, while needing future validation, might also 

suggest that non-CpG site cytosine methylation is also important in more advanced 

LOAD pathology. 

 

Although some studies have been undertaken to look at CpGs present within regions 

of the genome associated with genes tested in this study, as shown in this results 

presented in this thesis, there is not always a correlation between methylation of 

adjacent CpGs or between promoter and 3’ genic regions. Therefore it is likely that 

each individual CpG or genic or intergenic region should be assessed and considered 

separately. 

 

Future work should focus on validation and elucidation of the biologically 

consequence of the differential methylation identified. Unfortunately no gene 

expression analysis was performed as part of this thesis, but investigation should be 

carried out to identify if the differential methylation observed in the MEF2C upstream 

CpG site and the RIN3 3’UTR have any effect on gene expression. Once validated the 

differentially methylated regions identified in the severe LOAD patient cerebellum 

sample should also be investigated for affect on gene expression. It would also be 

interesting to see if any of the validated differentially methylated regions are present 

in LOAD blood samples or sEOAD samples. 

 

It would be desirable to undertake RNA profiling experiments in order to correlate 

any variation in methylation status with change in expression. Post mortem handling 
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of samples is one limit to performing accurate RNA qualification. Samples are typically 

obtained sometime after death leading to degradation or inappropriately handled, 

this leads to degradation within the sample and loss of transcripts. It may be possible 

in future to mine published gene expression data for these genes to identify 

variations in expression linked to disease. However as the hypothesis would suggest 

that X% methylation has an impact on Y% transcript levels normalised to patient 

specific levels of reference gene transcripts, such analysis would be supportive of 

further testing rather than replacing the need for these experiments. 

 

Further work would also be needed to exclude the possibility that additional 

pathologies existing within the samples used are not responsible for the aberrant 

methylation identified. For the pyrosequencing analysis an effort was made to  use 

samples that did not have another form of dementia, however in order to generate a 

large enough data set this was not always possible (see appendix 1 for sample 

details). In addition for the WGBS study the samples were chosen because WGBS data 

sets existed for these samples and both samples had secondary pathology (see 

appendix 2). Therefore further work would be needed to exclude secondary 

pathologies from analysis.  
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Appendices 
 

 

Appendix 1: AD sample information 
 

 

Table 1: LOAD blood sample information: detail of all LOAD samples used for both 
McrBC and pyrosequencing experiments are included. Information about the specific 
samples used for each study is provided in the chapter specific methods.  

 

DNA ID Centre Gender Age at Death Age at Onset Age at Sampling Diagnosis 
       

N169 Nottingham M   56 Control 
       

N158 Nottingham F   72 Control 
       

N160 Nottingham M   73 Control 
       

N166 Nottingham F   37 Control 
       

AD249 Nottingham F   84 LOAD 
       

M543 Manchester F  69 73 LOAD 
       

M604 Manchester F  74 86 LOAD 
       

M646 Manchester F  n/a n/a LOAD 
       

M673 Manchester M   86 LOAD 
       

M767 Manchester M  72  
Probable 
LOAD 
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Table 2: sEOAD DNA sample information. Table includes all information available for the sEOAD samples used for the pyrosequencing work 
described in chapter 4, the specific samples used for each experiment are included in the chapter methods section. Where the number -9 is 
included this corresponded to a predicted 9 year disease progression, no other information was available about these samples. Some samples 
presented with multiple pathologies, this is discussed in chapter 6.  

 

 SAMPLE TYPE SAMPLE CENTRE SEX AGE-AT- AGE-AT- AGE-AT AGE-AT ENTRY TO STATUS DIAGNOSIS NOTES 
  ID   DEATH ONSET SAMPLING STUDY    

            
1 sEOAD Blood mrc024 NOTTINGHAM M   47 47 AD   

            

2 sEOAD Blood m749 MANCHESTER F -9 -9 50  PROBABLE AD AD  
            

3 sEOAD Blood m340 MANCHESTER M 45 45 37 39 CONFIRMED AD AD (PS-1)  
            

4 sEOAD Blood m510 MANCHESTER F -9 -9 49 49 POSSIBLE AD   
            

5 sEOAD Blood m620 MANCHESTER M -9 -9 50 -9 PROBABLE AD AD+ALCOHOL  
            

6 sEOAD Blood M400 MANCHESTER F -9 -9 50 62 PROBABLE AD   
           

7 sEOAD Blood m753 MANCHESTER F -9 -9 48  PROBABLE AD MCI (MILD AD) 
            

8 sEOAD Blood m135 MANCHESTER F -9 -9 51 52 PROBABLE AD   
            

9 sEOAD Blood m328 MANCHESTER M -9 -9 46 51 PROBABLE AD   
            

10 sEOAD Blood m341 MANCHESTER M -9 -9 47 51 PROBABLE AD   
            

11 sEOAD Blood mrc078 NOTTINGHAM M   47 47 MCI?AD   
            

12 sEOAD Blood m684 MANCHESTER M -9 -9 50 -9 PROBABLE AD   
            

13 sEOAD Blood m053 MANCHESTER F -9 -9 50 55 PROBABLE AD   
            

14 sEOAD Blood mrc080 NOTTINGHAM F   45 45 MCI ?AD   
            

15 sEOAD Blood m279 MANCHESTER M -9 -9 51 51 PROBABLE AD   
            

16 sEOAD Blood m338 MANCHESTER M -9 -9 51 53 PROBABLE AD   
            

17 sEOAD Blood mrc059 NOTTINGHAM M   51 51 MCI?AD   
           

18 sEOAD Blood m086 MANCHESTER M -9 68 58 61 PROBABLE AD V EARLY / AD OR 
          FRONTAL LOBE 
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              SYNDROME 
               

19 sEOAD Blood  m302 MANCHESTER M -9 -9 49 53 PROBABLE AD  
               

20 sEOAD Blood  mrc047 NOTTINGHAM M   46 46 AD  
               

21 sEOAD Blood  m091 MANCHESTER M -9 -9 50 54 PROBABLE AD  
              

22 sEOAD Blood  M102  MANCHESTER M -9 -9 52 54 PROBABLE AD  
              

23 sEOAD Blood  M119  MANCHESTER F -9 -9 51  PROBABLE AD  
              

24 sEOAD Blood  M683 MANCHESTER M -9 -9 50 -9 PROBABLE AD  
               

   (used for MEF2C only)        
              

1 sEOAD Brain  m718  MANCHESTER F 66 52   CONFIRMED AD  
             

2 sEOAD Brain  m721  MANCHESTER F 60 50   CONFIRMED AD  
             

3 sEOAD Brain  bri435  BRISTOL F 54 48   AD  
             

4 sEOAD Brain  bri764  BRISTOL F 65 51   AD  
             

5 sEOAD Brain  bri789  BRISTOL F 67 52   AD/DLB  
             

6 sEOAD Brain  M715  MANCHESTER F 61 52   CONFIRMED AD  
             

7 sEOAD Brain  m732  MANCHESTER M 70 46   CONFIRMED AD  
             

8 sEOAD Brain  ad208  NOTTINGHAM F 57 49   CONFIRMED AD  
             

9 sEOAD Brain  m747  MANCHESTER F 53 47   CONFIRMED AD  
             

10 sEOAD Brain  m735  MANCHESTER F 58 51   CONFIRMED AD  
             

11 sEOAD Brain  m748  MANCHESTER M 44 40   CONFIRMED AD  
             

12 sEOAD Brain  bri592  BRISTOL F 65 51   AD  
             

13 sEOAD Brain  ad224  NOTTINGHAM M 57 49   CONFIRMED AD  
             

14 sEOAD Brain  ad211  NOTTINGHAM M 54 46   CONFIRMED AD  
             

1 Control Blood  s080c  SOUTHAMPTON F   80  CONTROL  
             

2 Control Blood  BON1636  BONN F   85  CONTROL  
             

3 Control Blood  bon1603  BONN F   80  CONTROL  
             

4 Control Blood  s071c  SOUTHAMPTON F   83  CONTROL  
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5 Control Blood bon0508 BONN F   90  CONTROL  
           

6 Control Blood bon0575 BONN M   81  CONTROL  
           

7 Control Blood bon1682 BONN F   84  CONTROL  
           

8 Control Blood s077c SOUTHAMPTON M   83  CONTROL  
           

9 Control Blood bon0343 BONN F   87  CONTROL  
           

10 Control Blood s137c SOUTHAMPTON M   83  CONTROL  
           

11 Control Blood bon1614 BONN F   79  CONTROL  
           

12 Control Blood bon1164 BONN M   78  CONTROL  
           

13 Control Blood bon0786 BONN F   90  CONTROL  
           

14 Control Blood bon0289 BONN F   87  CONTROL  
           

15 Control Blood bon1665 BONN F   78  CONTROL  
           

16 Control Blood bon0314 BONN M   93  CONTROL  
           

17 Control Blood bon0225 BONN F   78  CONTROL  
           

18 Control Blood bon1580 BONN M   81  CONTROL  
           

19 Control Blood bon0424 BONN F   84  CONTROL  
           

20 Control Blood s094c SOUTHAMPTON M   85  CONTROL  
           

21 Control Blood bon0172 BONN M   77  CONTROL  
           

22 Control Blood bon1837 BONN M   78  CONTROL  
           

23 Control Blood s104c SOUTHAMPTON M   82  CONTROL  
           

24 Control Blood bon0551 BONN M   90  CONTROL  
           

25 Control Blood bon1648 BONN M   80  CONTROL  
           

26 Control Blood bon0499 BONN M   77  CONTROL  
           

1 Control Brain n053 NOTTINGHAM M 81    CONTROL  
           

2 Control Brain n120 NOTTINGHAM F 84    CONTROL  
           

3 Control Brain n123 NOTTINGHAM M 82    CONTROL  
           

4 Control Brain n124 NOTTINGHAM M 90    CONTROL  
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5 Control Brain n145 NOTTINGHAM F 83    CONTROL  
           

6 Control Brain N017 NOTTINGHAM M 85    CONTROL  
           

7 Control Brain n128 NOTTINGHAM F 85    CONTROL  
           

8 Control Brain n012 NOTTINGHAM M 79    CONTROL  
           

9 Control Brain n122 NOTTINGHAM F 83    CONTROL  
           

10 Control Brain n131 NOTTINGHAM M 82    CONTROL  
           

 
 

 

Table 3: LOAD cerebellum samples used for WGBS 

 

DNA_ Gen Age  at PM_D PM_Int Diagn Braak Pathology 1  Pathology 2 

Code der Death elay erval osis Staging    
          

BK076 M 87 19 26 AD IV Alzheimer's disease Aryrophilic   grain   disease,mild   amyloid   angiopathy, 

       BNE stage IV  hippocampal sclerosis, mild small vessel disease 
          

BK005 M 66 90 114 AD VI Alzheimer's disease TDP-43 pathology, limited to amygdala 

       (Braak 6, BNE 6)  
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Appendix 2: Primers used for McrBC experiment 
 
 

Gene Primers PCR  product  Size 

  (bp) 
   

APP App1f1_CTTGACCAGGGAATGTGTCAGTGTT 252 
   

 App1r1_ CTCCAGGGTTGCATGCCCATGAAGC  
   

Hla- Hladrbp1f1_ CGCAAGTCCTCCTCTTGGTT 214 

drb5/1   
   

 Hladrbp1r1_ AGTTAAGGTTCCAGTGCCCG  
   

Sorl1 Sorl1p4f1_ GCGACTCCCGTTCCTATTCA 268 
   

 Sorl1p4r1_ AAAACTGCTCACCTGTCCGT  
   

Ptk2b Ptk2bp2f1_ TTCCCCTGGAACGCTGAGAG 229 
   

 Ptk2bp2r1_ CACGGAAGCCCTACTACGC  
   

INPP5D Inpp5dp2f1_ CTCGGTGGTGTGTGGGTC 180 
   

 Inpp5dp2r1_ TATGCCCGGGAGATGGACTC  
   

SLC24A4 Slc24a4p1f1_ AGAAAGTTCCCGGGGAGAGC 984 
   

 Slc24a4p1r1_ AGGAGGGGAAAACATCTCGC  
   

DSG2 Dsg2p1f1_ GGCCCAAAGCACAATCACAA 841 
   

 Dsg2p1r1_ TCGCAACTTACTCTCCTGGC  
   

APOE APOEp1f1_ GGACACTGGGGACACCCAGTAGGTGC 320 

promoter   
   

 APOEp1r1_ CCTCTGCCCTGCTGTGCCTGGGGCAG  
   

TFAM Tfamp1f1_ TAATAGATAGTTTTGTATTTAGGAT 117 
   

 Tfamp1r1_ AAACCAAACTAAAAAACTACA  
   

MTHFR Mthfrp1f1_ GCAGCATGATAAGCACAAAGTCCTGT 402 
   

 Mthfrp1r1_ CTCTGTGCTGCTGCTGCAGGTG  
   

BACE Bacep1f1_ TCCATGCTGAAAGAAAGACTGACAGA 282 
   

 Bacep1r1_ TCAGGCCACCATAATCCAGCT  
   

MAPT Maptp1f1_TGTAACTGAGTTAGCTTGCTTTAAGC3 321 
   

 Maptp1r1_ CCTCCTGTAGTTGGAGTCTTTGTGTC  
   

PSEN1 Psen1p1f1_TGGGCCCAATTTATATAGGGGCTTT 193 
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Psen1p1r1_TAGCTCAGGTTCCTTCCAGACCA 
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Appendix 3: Primers used for pyrosequencing 
 
 

Gene Target Primers Region of gene CGI No   of   CpGs 

   number covered 

INPP5D Inpp5d_py1f1 TGGGTTTTGGGGGTGTTT Promoter 18 4 
 Inpp5d_py1r1b AAAAAACTCCCCTCCTTACCTATCCT    

 Inpp5ds2 TTTTGGGGGTGTTTG    

 Inantf1 GGGTGATGTTGTTATGGTTTTAGTA Promoter 18 4 
 Inantsr1b CTCCCCTCCATAATATATAAATCCTAAAAA    

 inants1 GGTTTTAGTAGGGGAT    

 INPP5Ds2 TTTTGGGGGTGTTTG    

TREM2 Trem2_kbf1 GGGTTGGTAAGGTTTTGTATTGT Upstream of TTS n/a 1 
 Trem2_KBr1b AATCCTAACCTCTAAAAACACAACTATTC    

 Trem2_kbs1 TTAGATTTTTTATTAGTTGTAATG    

 Trem2_Pf1 GAGGGTTTTGGTTTTTAAAGGTATAG  n/a 1 
 Trem2_pr1b TACAAAACCTAACCCAAAAATCAC    

 Trem2_ps1 ATTTTTGTAAGGTTGAAATTAGA    

ABCA7   (serial Abca7_4_f1:GGTTAGGAGAGGTTTTTTTGTGATT Promoter 43 8 
pyrosequencing) Abca7_4_r1b TCCTTCTCACCTTCCAAAAACTC    

 Abca7_4_s1 AGTAGGTTAGTGAGTG    

 abca74_s2 GTGTAGAGGTAGGGG    

PTK2β Ptk2b_py1f1 GAGGAGGAGGGAGAATTTAATTT Promoter 27 5 
 Ptk2b_py1r1b-AACTCCCAACTCAAATACCC    

 Ptk2b_py1s1 ATTTGTTAGGTAGATTTATTTGTA    

HLA-DRB1/5 Hladrb_py1f1 TTGTTGTAAGAAAAGTGTTGTGGGGATA Promoter  3 
 Hladrb_py1r1b-ATTAAAATCAATTAAAATTCCAATACCC    
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  Hladrb_py1s1 GGGGAAGATATTGATAGAGA    

SORL1  Sorl1_py1f1 TTGAGGGTTGTGTATTTAGGAAAGTGG Promoter  3 
  Sorl1_py1r1b-CCCTAACCAACACACCTCCTTAT    

  Sorl1_py1s1 GTGTATTTAGGAAAGTGGTTA    

SLC24A4  Slc2a4a_pf1 TGGGAAGAGGTAGGTTTAGGAATATG Promoter  3 
  Slc2a4a_pr1b-ACTTAAACCCCCTAAAACCAACTCCT    

  Slc2a4a_ps1-GGTAGGTTTAGGAATATGGA    

  Slc2a4a_ps2 GTAGGTTTAGGAATATGGAA    

  Slc2a4a_pf2 TTTTGGGAAGAGGTAGGTTTAGGAATA    

  Slc2a4a_pr1b-ACTTAAACCCCCTAAAACCAACTCCT    

  Slc2a4a_ps1-GGTAGGTTTAGGAATATGGA    

  Slc2a4a_ps2 GTAGGTTTAGGAATATGGAA    

DSG2  Dsg2_pf1-GGGGAGGTAGGGGTTAGG Promoter  8 
  Dsg2_pr1_b-ACCTACCCCACCCTTTTCCCC    

  Dsg2_ps1-GGGGTTAGGGAGGAG    

  Dsg2_ps2 GGGTTAGGGAGGAGT    

  Dsg2_pf2 AGGTAGGGGTTAGGGAGGA    

  Dsg2_pr1_b-ACCTACCCCACCCTTTTCCCC    

  Dsg2_ps1-GGGGTTAGGGAGGAG    

  Dsg2_ps2 GGGTTAGGGAGGAGT    

MEF2C (1) Mef2c_py1f1 GATTGGATATTTTTTATTGGAATTAGTAGT Promoter 38 4 
(promoter CGI) Mef2c_py1r1b TATCACTAACAACCAAACCTTTATCAA    

  Mef2c_py1s1 ATTGGAATTAGTAGTATAGGG    

MEF2C (2) Mef2c_py1f1 ATTGGATATTTTTTATTGGAATTAGTAGT Upstream CpG n/a 1 
(upstream CpG) Mef2c_py1r1b-TATCACTAACAACCAAACCTTTATCAA    

  Mef2c_py1s1 ATTGGAATTAGTAGTATAGGG    

RIN3  RIN3_pyf1 GGGTTTAGGGTTGTAGGTAGAGA 3’UTR 124 7 
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 RIN3_pyr1 AAACCCTAACCACCAATTACCATCAC    

 RIN3_pys1 ATTGGGAATAGTAGGTTT    

SIRT1 Sirtp2f1 AGTTTTTTTAGTAGTTGGGATTATATGTA Promoter 101 2 
 Sirtp2r1b CAAAACCAACCTAACCAACATAAA    

 Sirtp2s1 AGTTGGGATTATATGTATATGTTA    

SPARCL1 PCR1 SPARCL1_P1F1: TGGTTGGTTTTAAATTTTGTTAAT Promoter n/a 2 
 SPARCL1_P1R1_b: ACCCCAAATTCTAATTATTTATATATATCT    

 SPARCL1_P1S1: AAATGGGAATATAGTAAAATTTAT    

SPARCL1 PCR2 SPARCL1_P2F1: ATGAGTAGTGAGGATTAATTGATAAT Promoter n/a 2 
 SPARCL1_P2R1_b: AACACAACTCTCCACTATAACT    

 SPARCL1_P2S1: AGATTAGATATATATAAATAATTAG    

SPARCL1 PCR3 SPARCL1_P3F1: AGAAGGTTAAGGTATTTGAAGTATTT Promoter n/a 1 
 SPARCL1_P3S1: TGTTAGAATAATTTTTAATTGAGTA    

 SPARCL1_P3R1_b: AAAAACTCCATACTATTATTTCTTTCTAA    

SPARCL12 SPARCL1_P1F1: TGGTTGGTTTTAAATTTTGTTAAT Promoter n/a 3 
 SPARCL1_P2R1_b: AACACAACTCTCCACTATAACT    

 sparcl1_12_f3-ATGGTTATAATGGTTGGTATTTAAGAAG    

 sparcl1_12_R1b CCCTCAAATAAAAACACAATAAAACTTAC    

 sparcl1p12_ns1-GGAGGTGTGTATTTATTTTTG    

 sparcl1p12_ns2 ATGTGTTAGATATTGTGTTAATAG    
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Appendix 4: Thermocycler cycles used for each 

pyrosequencing PCR assay 

 

PCR Name PCR Program    PCR Assay program 

      was used for 

   

Bisnat50 95°C (5 mins), 50 cycles (94°C (50sec), SPARCL1 PCR1 

 50°C (30secs), 72°C (60secs)), 72°C (ten  

 mins)      

   

Bisnat54 95°C (5 mins), 50 cycles (94°C (50sec), SPARCL1 PCR1, 

 54°C (30secs), 72°C (60secs)), 72°C (ten SPARCL1 PCR2 

 mins)     SPARCL1 PCR3 

      SPARCL12 
   

KAP55 95°C (5 mins), 50 cycles (94°C (50sec), SPARCL1 PCR3 

 55°C (30secs (r=2, g=6), 72°C (60secs)),  

 72°C (ten mins)     

   

KAP30 95°C (5 mins), 50 cycles (94°C (50sec), SPARCL1 PCR1 

 58°C (30secs (r=2, g=6), 72°C (60secs)),  

 72°C (ten mins)     

   

TD-PCR 95°C  (15  mins),  15  cycles  of  (96°C SPARCL1 PCR1 

KBSPARC1 (30secs), 60 (-1°C per cycle), SPARCL1 PCR3 

 72°C(30secs),  50  cycles  (94°C  (30sec),  

 53.6°C (30secs), 72°C (60secs)), 72°C (ten  

 mins)      

   

SD-SIRT 95°C  (15  mins),  15  cycles  of  (96°C SIRT 

 (30secs), 64 (-1°C per cycle),  

 72°C(30secs),  50  cycles  (94°C  (30sec),  

 53.8°C (30secs), 72°C (60secs)), 72°C (ten  
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 mins)          

          

SD-ABCA7 95°C (15 mins), 15 cycles of (96°C ABCA7, PTK2β, 

 (30secs), 64 (-1°C per  cycle), INPP5D (primer set 

 72°C(30secs),  50 cycles  (94°C (30sec), 1), MEF2C(1), SORL1, 

 58.7°C (30secs), 72°C (60secs)), 72°C (ten HLA-DRB1/5.  

 mins)          

          

MEF2C(2) 95°C (15 mins), 15 cycles of (96°C MEF2C(2)  

 (30secs), 55 (-1°C per  cycle),    

 72°C(30secs),  50  cycles  (94°C  (30sec),    

 48°C (30secs), 72°C (60secs)), 72°C (ten    

 mins)          

           

RIN3 95°C (15 mins), 15 cycles of (96°C RIN3   

 (30secs), 60 (-1°C per  cycle),    

 72°C(30secs),  50  cycles  (94°C  (30sec),    

 55°C (30secs), 72°C (60secs)), 72°C (ten    

 mins)          

          

SPARCLP3B 95°C (15 mins), 15 cycles of (96°C SPARCL1 PCR3  

 (30secs), 65 (-1°C per  cycle),    

 72°C(30secs),  45  cycles  (94°C  (30sec),    

 58°C (30secs), 72°C (60secs)), 72°C (ten    

 mins)          

           

INPP5DANTI 95°C (15 mins), 15 cycles of (96°C INPP5D (primer set 

 (30secs), 55 (-1°C per  cycle), 2)   

 72°C(30secs),  45  cycles  (94°C  (30sec),    

 50.2°C (30secs), 72°C (60secs)), 72°C (ten    

 mins)          

           

TREM2 95°C (15 mins), 15 cycles of (96°C TREM2   

 (30secs), 60 (-1°C per  cycle),    
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72°C(30secs),  45  cycles  (94°C  (30sec), 
 

55°C (30secs), 72°C (60secs)), 72°C (ten 
 

mins) 
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Appendix 5: Co-variate Analysis  

Shows covariate analysis performed on all pyrosequencing data. 

Appendix 5.1: Blood co-variate analysis including gender and age. 

Genstat 64-bit Release 19.1 ( PC/Windows 7) 29 January 2019 08:16:02 
Copyright 2018, VSN International Ltd.   
Registered to: University of Nottingham 
  
  ________________________________________ 
  
  Genstat Nineteenth Edition 
  Genstat Procedure Library Release PL27.1 
  ________________________________________ 
  
   1  SET [WORKINGDIRECTORY='D:/People''s data/Graham Seymour/Andrew 

Bottley/Kirsty Boden data JanFEB2019'; DIAGNOSTIC=messages] 

   2  "Data taken from file: '\ 

  -3  D:/People''s data/Graham Seymour/Andrew Bottley/Kirsty Boden 

data JanFEB2019/Compiled Boden data Jan 2019.xlsx\ 

  -4  '" 

   5  DELETE [REDEFINE=yes] _stitle_: TEXT _stitle_ 

   6  READ [PRINT=*; SETNVALUES=yes] _stitle_ 

  10  PRINT [IPRINT=*] _stitle_; JUST=left 

  
Data imported from Excel file: D:\People's data\Graham Seymour\Andrew Bottley\Kirsty Boden 
data JanFEB2019\Compiled Boden data Jan 2019.xlsx 
 on: 29-Jan-2019 8:16:14 
 taken from sheet "Rin Brain (2)", cells A2:K25 
  
  11  DELETE [REDEFINE=yes] 

AD_Brain_averages,Gender,Age_at_Sampling,CpG1Brain,\ 

  12  

CpG2Brain,CpG3Brain,CpG4Brain,CpG5Brain,CpG6Brain,CpG7Brain,ADvsContro

l 

  13  UNITS [NVALUES=*] 

  14  TEXT [NVALUES=24] AD_Brain_averages 

  15  READ AD_Brain_averages 

  
  Identifier  Minimum  Mean  Maximum  Values  Missing   
AD_Brain_averages        24  0   
  
  19  FACTOR [MODIFY=no; NVALUES=24; LEVELS=2; LABELS=!t('F','M')\ 

  20  ; REFERENCE=1] Gender 

  21  READ Gender; FREPRESENTATION=ordinal 

  
  Identifier  Values  Missing  Levels 
 Gender  24  0  2 
  
  23  VARIATE [NVALUES=24] Age_at_Sampling; DECIMALS=0 

  24  READ Age_at_Sampling 
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  Identifier  Minimum  Mean  Maximum  Values  Missing   
Age_at_Sampling  44.00  69.38  90.00  24  0   
  
  26  VARIATE [NVALUES=24] CpG1Brain; DECIMALS=0 

  27  READ CpG1Brain 

  
  Identifier  Minimum  Mean  Maximum  Values  Missing   
CpG1Brain  6.333  19.60  63.00  24  0     Skew 
  
  30  VARIATE [NVALUES=24] CpG2Brain; DECIMALS=0 

  31  READ CpG2Brain 

  
  Identifier  Minimum  Mean  Maximum  Values  Missing   
CpG2Brain  6.000  18.41  62.00  24  0     Skew 
  
  34  VARIATE [NVALUES=24] CpG3Brain; DECIMALS=0 

  35  READ CpG3Brain 

  
  Identifier  Minimum  Mean  Maximum  Values  Missing   
CpG3Brain  7.500  21.50  66.00  24  0     Skew 
  
  38  VARIATE [NVALUES=24] CpG4Brain; DECIMALS=0 

  39  READ CpG4Brain 

  
  Identifier  Minimum  Mean  Maximum  Values  Missing   
CpG4Brain  5.000  21.23  64.00  24  0   
  
  42  VARIATE [NVALUES=24] CpG5Brain; DECIMALS=0 

  43  READ CpG5Brain 

  
  Identifier  Minimum  Mean  Maximum  Values  Missing   
CpG5Brain  5.000  17.98  61.00  24  0     Skew 
  
  46  VARIATE [NVALUES=24] CpG6Brain; DECIMALS=0 

  47  READ CpG6Brain 

  
  Identifier  Minimum  Mean  Maximum  Values  Missing   
CpG6Brain  5.000  20.80  61.00  24  0   
  
  50  VARIATE [NVALUES=24] CpG7Brain; DECIMALS=0 

  51  READ CpG7Brain 

  
  Identifier  Minimum  Mean  Maximum  Values  Missing   
CpG7Brain  5.500  21.55  71.00  24  0     Skew 
  
  54  FACTOR [MODIFY=no; NVALUES=24; LEVELS=2; 

LABELS=!t('AD','Control')\ 

  55  ; REFERENCE=1] ADvsControl 

  56  READ ADvsControl; FREPRESENTATION=ordinal 

  
  Identifier  Values  Missing  Levels 
ADvsControl  24  0  2 
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  58 

  59  %PostMessage 1129; 0; 10000001 "Sheet Update Completed" 

  60  "General Analysis of Variance" 

  61  BLOCK "No Blocking" 

  62  TREATMENTS Gender*ADvsControl 

  63  COVARIATE Age_at_Sampling 

  64  ANOVA [PRINT=aovtable,information,means,covariate; FACT=32; 

CONTRASTS=7; PCONTRASTS=7;\ 

  65   FPROB=yes; PSE=diff] CpG1Brain 

  

Message: non-orthogonality between treatment terms. The effects (printed or 
used to calculate means), the efficiency factor and the sum of squares for each 
treatment term are for that term eliminating previous terms in the TREATMENT 
formula (as well as covariates)and ignoring subsequent terms. 

Analysis of variance (adjusted for covariate) 

  
Variate: CpG1Brain 
Covariate: Age_at_Sampling 
  
Source of variation d.f. s.s. m.s. v.r. cov.ef. F pr. 
Gender 1  653.6  653.6  3.42  0.81  0.080 
ADvsControl 1  253.3  253.3  1.33  0.17  0.264 
Gender.ADvsControl 1  166.8  166.8  0.87  0.97  0.362 
Covariate 1  161.6  161.6  0.85    0.369 
Residual 19  3631.8  191.1    0.99   
Total 23  4913.4         
  
  

Information summary 

  
Model term e.f.   non-orthogonal terms 
  ADvsControl  0.901   Gender 
  
  

Message: the following units have large residuals. 
  
*units* 22    30. approx. s.e.   12. 
*units* 24    26. approx. s.e.   12. 
  
  

Covariate regressions 

  
Variate: CpG1Brain 
  
Covariate coefficient s.e. 
Age_at_Sampling -0.50  0.541 
  
  

Tables of means (adjusted for covariate) 

  
Variate: CpG1Brain 
Covariate: Age_at_Sampling 
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Grand mean  20.  
  
Gender  F  M 
   14.  28. 
 rep.    14  10 
  
ADvsControl  AD  Control 
   12.  31. 
  rep.    14  10 
  
  

Message: table of means for Gender.ADvsControl cannot be calculated 
(contains mutually non-orthogonal components). 
  
  

Standard errors of differences of means 

  
Table Gender ADvsControl   
rep. unequal unequal   
d.f.  19  19   
s.e.d.  6.4  14.7   
  
  
  66  "General Analysis of Variance" 

  67  BLOCK "No Blocking" 

  68  TREATMENTS Gender*ADvsControl 

  69  COVARIATE Age_at_Sampling 

  70  ANOVA [PRINT=aovtable,information,means,covariate; FACT=32; 

CONTRASTS=7; PCONTRASTS=7;\ 

  71   FPROB=yes; PSE=diff] CpG2Brain 

  

Message: non-orthogonality between treatment terms. The effects (printed or 
used to calculate means), the efficiency factor and the sum of squares for each 
treatment term are for that term eliminating previous terms in the TREATMENT 
formula (as well as covariates)and ignoring subsequent terms. 

Analysis of variance (adjusted for covariate) 

  
Variate: CpG2Brain 
Covariate: Age_at_Sampling 
  
Source of variation d.f. s.s. m.s. v.r. cov.ef. F pr. 
Gender 1  564.2  564.2  3.44  0.81  0.079 
ADvsControl 1  311.3  311.3  1.90  0.17  0.184 
Gender.ADvsControl 1  118.4  118.4  0.72  0.97  0.406 
Covariate 1  196.4  196.4  1.20    0.287 
Residual 19  3113.0  163.8    1.01   
Total 23  4298.1         
  
  

Information summary 
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Model term e.f.   non-orthogonal terms 
  ADvsControl  0.901   Gender 
  
  

Message: the following units have large residuals. 
  
*units* 22    31. approx. s.e.   11. 
*units* 24    25. approx. s.e.   11. 
  
  

Covariate regressions 

  
Variate: CpG2Brain 
  
Covariate coefficient s.e. 
Age_at_Sampling -0.55  0.501 
  
  

Tables of means (adjusted for covariate) 

  
Variate: CpG2Brain 
Covariate: Age_at_Sampling 
  
Grand mean  18.  
  
Gender  F  M 
   13.  26. 
 rep.    14  10 
  
ADvsControl  AD  Control 
   10.  30. 
  rep.    14  10 
  
  

Message: table of means for Gender.ADvsControl cannot be calculated 
(contains mutually non-orthogonal components). 
  
  

Standard errors of differences of means 

  
Table Gender ADvsControl   
rep. unequal unequal   
d.f.  19  19   
s.e.d.  5.9  13.7   
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  72  "General Analysis of Variance" 

  73  BLOCK "No Blocking" 

  74  TREATMENTS Gender*ADvsControl 

  75  COVARIATE Age_at_Sampling 

  76  ANOVA [PRINT=aovtable,information,means,covariate; FACT=32; 

CONTRASTS=7; PCONTRASTS=7;\ 

  77   FPROB=yes; PSE=diff] CpG3Brain 

  

Message: non-orthogonality between treatment terms. The effects (printed or 
used to calculate means), the efficiency factor and the sum of squares for each 
treatment term are for that term eliminating previous terms in the TREATMENT 
formula (as well as covariates)and ignoring subsequent terms. 

Analysis of variance (adjusted for covariate) 

  
Variate: CpG3Brain 
Covariate: Age_at_Sampling 
  
Source of variation d.f. s.s. m.s. v.r. cov.ef. F pr. 
Gender 1  787.1  787.1  3.74  0.81  0.068 
ADvsControl 1  260.0  260.0  1.23  0.17  0.280 
Gender.ADvsControl 1  29.4  29.4  0.14  0.97  0.713 
Covariate 1  172.8  172.8  0.82    0.376 
Residual 19  4000.1  210.5    0.99   
Total 23  5201.8         
  
  

Information summary 

  
Model term e.f.   non-orthogonal terms 
  ADvsControl  0.901   Gender 
  
  

Message: the following units have large residuals. 
  
*units* 22    33. approx. s.e.   13. 
  
  

Covariate regressions 

  
Variate: CpG3Brain 
  
Covariate coefficient s.e. 
Age_at_Sampling -0.51  0.568 
  
  

Tables of means (adjusted for covariate) 

  
Variate: CpG3Brain 
Covariate: Age_at_Sampling 
  
Grand mean  22.  
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Gender  F  M 
   15.  30. 
 rep.    14  10 
  
ADvsControl  AD  Control 
   14.  32. 
  rep.    14  10 
  
  

Message: table of means for Gender.ADvsControl cannot be calculated 
(contains mutually non-orthogonal components). 
  
  

Standard errors of differences of means 

  
Table Gender ADvsControl   
rep. unequal unequal   
d.f.  19  19   
s.e.d.  6.7  15.5   
  
  
  78  "General Analysis of Variance" 

  79  BLOCK "No Blocking" 

  80  TREATMENTS Gender*ADvsControl 

  81  COVARIATE Age_at_Sampling 

  82  ANOVA [PRINT=aovtable,information,means,covariate; FACT=32; 

CONTRASTS=7; PCONTRASTS=7;\ 

  83   FPROB=yes; PSE=diff] CpG4Brain 

  

Message: non-orthogonality between treatment terms. The effects (printed or 
used to calculate means), the efficiency factor and the sum of squares for each 
treatment term are for that term eliminating previous terms in the TREATMENT 
formula (as well as covariates)and ignoring subsequent terms. 

Analysis of variance (adjusted for covariate) 

  
Variate: CpG4Brain 
Covariate: Age_at_Sampling 
  
Source of variation d.f. s.s. m.s. v.r. cov.ef. F pr. 
Gender 1  973.3  973.3  4.97  0.81  0.038 
ADvsControl 1  286.2  286.2  1.46  0.17  0.242 
Gender.ADvsControl 1  61.7  61.7  0.31  0.97  0.581 
Covariate 1  169.1  169.1  0.86    0.365 
Residual 19  3721.2  195.9    0.99   
Total 23  5266.4         
  
  

Information summary 

  
Model term e.f.   non-orthogonal terms 
  ADvsControl  0.901   Gender 
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Message: the following units have large residuals. 
  
*units* 22    27. approx. s.e.   12. 
*units* 24    30. approx. s.e.   12. 
  
  

Covariate regressions 

  
Variate: CpG4Brain 
  
Covariate coefficient s.e. 
Age_at_Sampling -0.51  0.548 
  
  

Tables of means (adjusted for covariate) 

  
Variate: CpG4Brain 
Covariate: Age_at_Sampling 
  
Grand mean  21.  
  
Gender  F  M 
   14.  31. 
 rep.    14  10 
  
ADvsControl  AD  Control 
   13.  32. 
  rep.    14  10 
  
  

Message: table of means for Gender.ADvsControl cannot be calculated 
(contains mutually non-orthogonal components). 
  
  

Standard errors of differences of means 

  
Table Gender ADvsControl   
rep. unequal unequal   
d.f.  19  19   
s.e.d.  6.5  14.9   
  
  
  84  "General Analysis of Variance" 

  85  BLOCK "No Blocking" 

  86  TREATMENTS Gender*ADvsControl 

  87  COVARIATE Age_at_Sampling 

  88  ANOVA [PRINT=aovtable,information,means,covariate; FACT=32; 

CONTRASTS=7; PCONTRASTS=7;\ 

  89   FPROB=yes; PSE=diff] CpG5Brain 
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Message: non-orthogonality between treatment terms. The effects (printed or 
used to calculate means), the efficiency factor and the sum of squares for each 
treatment term are for that term eliminating previous terms in the TREATMENT 
formula (as well as covariates)and ignoring subsequent terms. 

Analysis of variance (adjusted for covariate) 

  
Variate: CpG5Brain 
Covariate: Age_at_Sampling 
  
Source of variation d.f. s.s. m.s. v.r. cov.ef. F pr. 
Gender 1  462.4  462.4  2.91  0.81  0.104 
ADvsControl 1  306.2  306.2  1.93  0.17  0.181 
Gender.ADvsControl 1  116.8  116.8  0.74  0.97  0.402 
Covariate 1  158.2  158.2  1.00    0.331 
Residual 19  3018.3  158.9    1.00   
Total 23  4179.8         
  
  

Information summary 

  
Model term e.f.   non-orthogonal terms 
  ADvsControl  0.901   Gender 
  
  

Message: the following units have large residuals. 
  
*units* 22    30. approx. s.e.   11. 
*units* 24    24. approx. s.e.   11. 
  
  

Covariate regressions 

  
Variate: CpG5Brain 
  
Covariate coefficient s.e. 
Age_at_Sampling -0.49  0.493 
  
  

Tables of means (adjusted for covariate) 

  
Variate: CpG5Brain 
Covariate: Age_at_Sampling 
  
Grand mean  18.  
  
Gender  F  M 
   13.  25. 
 rep.    14  10 
  
ADvsControl  AD  Control 
   10.  30. 
  rep.    14  10 
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Message: table of means for Gender.ADvsControl cannot be calculated 
(contains mutually non-orthogonal components). 
  
  

Standard errors of differences of means 

  
Table Gender ADvsControl   
rep. unequal unequal   
d.f.  19  19   
s.e.d.  5.8  13.4   
  
  
  90  "General Analysis of Variance" 

  91  BLOCK "No Blocking" 

  92  TREATMENTS Gender*ADvsControl 

  93  COVARIATE Age_at_Sampling 

  94  ANOVA [PRINT=aovtable,information,means,covariate; FACT=32; 

CONTRASTS=7; PCONTRASTS=7;\ 

  95   FPROB=yes; PSE=diff] CpG6Brain 

  

Message: non-orthogonality between treatment terms. The effects (printed or 
used to calculate means), the efficiency factor and the sum of squares for each 
treatment term are for that term eliminating previous terms in the TREATMENT 
formula (as well as covariates)and ignoring subsequent terms. 

Analysis of variance (adjusted for covariate) 

  
Variate: CpG6Brain 
Covariate: Age_at_Sampling 
  
Source of variation d.f. s.s. m.s. v.r. cov.ef. F pr. 
Gender 1  557.2  557.2  3.16  0.81  0.092 
ADvsControl 1  344.0  344.0  1.95  0.17  0.179 
Gender.ADvsControl 1  48.7  48.7  0.28  0.97  0.605 
Covariate 1  193.5  193.5  1.10    0.308 
Residual 19  3351.9  176.4    1.00   
Total 23  4511.1         
  
  

Information summary 

  
Model term e.f.   non-orthogonal terms 
  ADvsControl  0.901   Gender 
  
  

Message: the following units have large residuals. 
  
*units* 22    28. approx. s.e.   12. 
*units* 24    26. approx. s.e.   12. 
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Covariate regressions 

  
Variate: CpG6Brain 
  
Covariate coefficient s.e. 
Age_at_Sampling -0.54  0.520 
  
  

Tables of means (adjusted for covariate) 

  
Variate: CpG6Brain 
Covariate: Age_at_Sampling 
  
Grand mean  21.  
  
Gender  F  M 
   15.  29. 
 rep.    14  10 
  
ADvsControl  AD  Control 
   12.  33. 
  rep.    14  10 
  
  

Message: table of means for Gender.ADvsControl cannot be calculated 
(contains mutually non-orthogonal components). 
  
  

Standard errors of differences of means 

  
Table Gender ADvsControl   
rep. unequal unequal   
d.f.  19  19   
s.e.d.  6.1  14.2   
  
  
  96  "General Analysis of Variance" 

  97  BLOCK "No Blocking" 

  98  TREATMENTS Gender*ADvsControl 

  99  COVARIATE Age_at_Sampling 

 100  ANOVA [PRINT=aovtable,information,means,covariate; FACT=32; 

CONTRASTS=7; PCONTRASTS=7;\ 

 101   FPROB=yes; PSE=diff] CpG7Brain 

  

Message: non-orthogonality between treatment terms. The effects (printed or 
used to calculate means), the efficiency factor and the sum of squares for each 
treatment term are for that term eliminating previous terms in the TREATMENT 
formula (as well as covariates)and ignoring subsequent terms. 

Analysis of variance (adjusted for covariate) 

  
Variate: CpG7Brain 
Covariate: Age_at_Sampling 
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Source of variation d.f. s.s. m.s. v.r. cov.ef. F pr. 
Gender 1  905.0  905.0  4.33  0.81  0.051 
ADvsControl 1  343.5  343.5  1.65  0.17  0.215 
Gender.ADvsControl 1  61.6  61.6  0.30  0.97  0.593 
Covariate 1  175.3  175.3  0.84    0.371 
Residual 19  3966.7  208.8    0.99   
Total 23  5593.0         
  
  

Information summary 

  
Model term e.f.   non-orthogonal terms 
  ADvsControl  0.901   Gender 
  
  

Message: the following units have large residuals. 
  
*units* 22    35. approx. s.e.   13. 
  
  

Covariate regressions 

  
Variate: CpG7Brain 
  
Covariate coefficient s.e. 
Age_at_Sampling -0.52  0.566 
  
  

Tables of means (adjusted for covariate) 

  
Variate: CpG7Brain 
Covariate: Age_at_Sampling 
  
Grand mean  22.  
  
Gender  F  M 
   15.  31. 
 rep.    14  10 
  
ADvsControl  AD  Control 
   13.  34. 
  rep.    14  10 
  
  

Message: table of means for Gender.ADvsControl cannot be calculated 
(contains mutually non-orthogonal components). 
  
  

Standard errors of differences of means 

  
Table Gender ADvsControl   
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rep. unequal unequal   
d.f.  19  19   
s.e.d.  6.7  15.4   
  
  
 102  " Unbalanced Analysis of Variance " 

 103  BLOCK "No blocking" 

 104  TREATMENT Gender*ADvsControl 

 105  COVARIATE Age_at_Sampling 

 106  DELETE [REDEFINE=yes] _ausave 

 107  AUNBALANCED [PRINT=aovtable,means,screen; PSE=diff; 

COMBINATIONS=present; ADJUSTMENT=marginal;\ 

 108   FACT=3; FPROB=yes] CpG4Brain; SAVE=_ausave 

  
  

Screening of terms in an unbalanced design 

  
Variate: CpG4Brain 
  
  

Marginal and conditional test statistics and degrees of freedom 

  
 degrees of freedom for denominator (full model):    19 
  
 term  mtest  mdf  ctest  cdf 
 Gender  4.97  1  2.89  1 
 ADvsControl  3.54  1  1.46  1 
  
 term  mtest  mdf  ctest  cdf 
Gender.ADvsControl  0.31  1  0.31  1 
  
  

P-values of marginal and conditional tests 

  
  
 term  mprob  cprob 
 Gender  0.038  0.106 
 ADvsControl  0.075  0.242 
  
 term  mprob  cprob 
Gender.ADvsControl  0.581  0.581 
  
  
  

Analysis of an unbalanced design using Genstat regression 

  
Variate: CpG4Brain 
  
  

Accumulated analysis of variance 

  
Change d.f. s.s. m.s. v.r. F pr. 
+ Age_at_Sampling  1  224.0  224.0  1.14  0.298 
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+ Gender  1  973.3  973.3  4.97  0.038 
+ ADvsControl  1  286.2  286.2  1.46  0.242 
+ Gender.ADvsControl  1  61.7  61.7  0.31  0.581 
Residual  19  3721.2  195.9     
  
Total  23  5266.4  229.0     
  
  

Predictions from regression model 
  
Response variate: CpG4Brain 
  
  Prediction 
 Gender   
 F 16.44 
 M 26.67 
  
  
Standard error of differences between predicted means        6.310 
  
  

Predictions from regression model 
  
Response variate: CpG4Brain 
  
  Prediction 
ADvsControl   
 AD 12.86 
 Control 31.68 
  
  
Standard error of differences between predicted means        14.86 
  
  

Predictions from regression model 
  
Response variate: CpG4Brain 
  
  Prediction  
ADvsControl AD Control 
 Gender   
 F 9.80 25.72 
 M 17.13 40.03 
  
  
Minimum standard error of difference  8.62 
Average standard error of difference  13.74 
Maximum standard error of difference  18.02 
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 109  "General Analysis of Variance" 

 110  BLOCK "No Blocking" 

 111  TREATMENTS ADvsControl 

 112  COVARIATE "No Covariate" 

 113  ANOVA [PRINT=aovtable,information,means; FACT=32; CONTRASTS=7; 

PCONTRASTS=7; FPROB=yes;\ 

 114   PSE=diff] CpG4Brain 

Analysis of variance 

  
Variate: CpG4Brain 
  
Source of variation d.f. s.s. m.s. v.r. F pr. 
ADvsControl 1  604.0  604.0  2.85  0.105 
Residual 22  4662.4  211.9     
Total 23  5266.4       
  
  

Message: the following units have large residuals. 
  
*units* 22    35. approx. s.e.   14. 
*units* 24    37. approx. s.e.   14. 
  
  

Tables of means 

  
Variate: CpG4Brain 
  
Grand mean  21.  
  
ADvsControl  AD  Control 
   17.  27. 
  rep.    14  10 
  
  

Standard errors of differences of means 

  
Table ADvsControl   
rep. unequal   
d.f.  22   
s.e.d.  6.0   
  
  
 

Appendix 5.2: Co-variant analysis within groups and gender 

Genstat 64-bit Release 19.1 ( PC/Windows 7) 30 January 2019 08:09:57 
Copyright 2018, VSN International Ltd.   
Registered to: University of Nottingham 
  
  ________________________________________ 
  
  Genstat Nineteenth Edition 
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  Genstat Procedure Library Release PL27.1 
  ________________________________________ 
  
   1  SET [WORKINGDIRECTORY='D:/People''s data/Graham Seymour/Andrew 

Bottley/Kirsty Boden data JanFEB2019'; DIAGNOSTIC=messages] 

   2  "Data taken from file: '\ 

  -3  D:/People''s data/Graham Seymour/Andrew Bottley/Kirsty Boden 

data JanFEB2019/Compiled Boden data Jan 2019.xlsx\ 

  -4  '" 

   5  DELETE [REDEFINE=yes] _stitle_: TEXT _stitle_ 

   6  READ [PRINT=*; SETNVALUES=yes] _stitle_ 

  10  PRINT [IPRINT=*] _stitle_; JUST=left 

  
Data imported from Excel file: D:\People's data\Graham Seymour\Andrew Bottley\Kirsty Boden 
data JanFEB2019\Compiled Boden data Jan 2019.xlsx 
 on: 30-Jan-2019 8:10:44 
 taken from sheet "Rin blood (2)", cells A2:K49 
  
  11  DELETE [REDEFINE=yes] 

subject,Gender,Age_at_Sampling,CpG1Blood,CpG2Blood,\ 

  12  CpG3Blood,CpG4Blood,CpG5Blood,CpG6Blood,CpG7Blood,ADvsControl 

  13  UNITS [NVALUES=*] 

  14  TEXT [NVALUES=48] subject 

  15  READ subject 

  
  Identifier  Minimum  Mean  Maximum  Values  Missing   
 subject        48  0   
  
  22  FACTOR [MODIFY=no; NVALUES=48; LEVELS=2; LABELS=!t('F','M')\ 

  23  ; REFERENCE=1] Gender 

  24  READ Gender; FREPRESENTATION=ordinal 

  
  Identifier  Values  Missing  Levels 
 Gender  48  0  2 
  
  27  VARIATE [NVALUES=48] Age_at_Sampling; DECIMALS=0 

  28  READ Age_at_Sampling 

  
  Identifier  Minimum  Mean  Maximum  Values  Missing   
Age_at_Sampling  37.00  67.19  93.00  48  0   
  
  31  VARIATE [NVALUES=48] CpG1Blood; DECIMALS=0 

  32  READ CpG1Blood 

  
  Identifier  Minimum  Mean  Maximum  Values  Missing   
CpG1Blood  12.00  40.53  72.00  48  0   
  
  36  VARIATE [NVALUES=48] CpG2Blood; DECIMALS=0 

  37  READ CpG2Blood 

  
  Identifier  Minimum  Mean  Maximum  Values  Missing   
CpG2Blood  11.00  38.55  69.00  48  0   
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  42  VARIATE [NVALUES=48] CpG3Blood; DECIMALS=0 

  43  READ CpG3Blood 

  
  Identifier  Minimum  Mean  Maximum  Values  Missing   
CpG3Blood  16.00  46.16  76.00  48  0   
  
  47  VARIATE [NVALUES=48] CpG4Blood; DECIMALS=0 

  48  READ CpG4Blood 

  
  Identifier  Minimum  Mean  Maximum  Values  Missing   
CpG4Blood  16.00  46.20  79.67  48  0   
  
  52  VARIATE [NVALUES=48] CpG5Blood; DECIMALS=0 

  53  READ CpG5Blood 

  
  Identifier  Minimum  Mean  Maximum  Values  Missing   
CpG5Blood  9.000  39.13  66.33  48  0   
  
  58  VARIATE [NVALUES=48] CpG6Blood; DECIMALS=0 

  59  READ CpG6Blood 

  
  Identifier  Minimum  Mean  Maximum  Values  Missing   
CpG6Blood  20.33  42.48  67.67  48  0   
  
  64  VARIATE [NVALUES=48] CpG7Blood; DECIMALS=0 

  65  READ CpG7Blood 

  
  Identifier  Minimum  Mean  Maximum  Values  Missing   
CpG7Blood  18.67  47.93  80.67  48  0   
  
  70  FACTOR [MODIFY=no; NVALUES=48; LEVELS=2; 

LABELS=!t('AD','Control')\ 

  71  ; REFERENCE=1] ADvsControl 

  72  READ ADvsControl; FREPRESENTATION=ordinal 

  
  Identifier  Values  Missing  Levels 
ADvsControl  48  0  2 
  
  75 

  76  %PostMessage 1129; 0; 10000001 "Sheet Update Completed" 

  77  "General Linear Regression" 

  78  MODEL CpG1Blood 

  79  FIT [PRINT=model,summary,estimates,accumulated; 

CONSTANT=estimate; FPROB=yes; TPROB=yes;\ 

  80   FACT=9] Gender*ADvsControl*Age_at_Sampling 

Regression analysis 

  
 Response variate:  CpG1Blood 
 Fitted terms:  Constant + Age_at_Sampling + Gender + ADvsControl + 
Age_at_Sampling.Gender + Age_at_Sampling.ADvsControl + Gender.ADvsControl + 
Age_at_Sampling.Gender.ADvsControl 
  
  

Summary of analysis 
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Source d.f. s.s. m.s. v.r. F pr. 
Regression  7  2334.  333.4  1.90  0.096 
Residual  40  7030.  175.8     
Total  47  9364.  199.2     
  
Percentage variance accounted for 11.8 
Standard error of observations is estimated to be 13.3. 
  

Message: the following units have large standardized residuals. 
 Unit Response Residual 
 37  72.  3.22 
  

Message: the following units have high leverage. 
 Unit Response Leverage 
 3  26.  0.57 
 15  34.  0.81 
 19  38.  0.40 
 38  44.  0.49 
  
  

Estimates of parameters 

  
Parameter estimate s.e. t(40) t pr. 
Constant  -31.  133.  -0.23  0.819 
Age_at_Sampling  1.37  2.71  0.51  0.616 
Gender M  14.  138.  0.10  0.921 
ADvsControl Control  -34.  153.  -0.22  0.826 
Age_at_Sampling.Gender M  -0.30  2.82  -0.11  0.915 
Age_at_Sampling.ADvsControl Control 
  -0.10  2.85  -0.04  0.971 
Gender M .ADvsControl Control 
  167.  170.  0.98  0.334 
Age_at_Sampling.Gender M .ADvsControl Control 
  -1.78  3.07  -0.58  0.565 
  
Parameters for factors are differences compared with the reference level: 
 Factor   Reference level 
 Gender   F 
 ADvsControl   AD 
  
  

Accumulated analysis of variance 

  
Change d.f. s.s. m.s. v.r. F pr. 
+ Age_at_Sampling  1  1168.0  1168.0  6.65  0.014 
+ Gender  1  182.3  182.3  1.04  0.315 
+ ADvsControl  1  11.8  11.8  0.07  0.797 
+ Age_at_Sampling.Gender  1  144.1  144.1  0.82  0.371 
+ Age_at_Sampling.ADvsControl  
  1  173.3  173.3  0.99  0.327 
+ Gender.ADvsControl  1  595.2  595.2  3.39  0.073 
+ Age_at_Sampling.Gender.ADvsControl  
  1  59.1  59.1  0.34  0.565 
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Residual  40  7030.3  175.8     
  
Total  47  9364.3  199.2     
  
  81  RWALD 

  

Wald tests for dropping terms 

  
 Term Wald statistic d.f. F statistic F pr. 
Age_at_Sampling.Gender.ADvsControl  0.3364  1  0.34  0.565 
 
Residual d.f. 40 
 
  82  "General Linear Regression" 

  83  MODEL CpG1Blood 

  84  TERMS [FACT=9] Gender*ADvsControl*Age_at_Sampling 

  85  FIT [PRINT=model,summary,estimates,accumulated; 

CONSTANT=estimate; FPROB=yes; TPROB=yes;\ 

  86   FACT=9] Gender*ADvsControl 

Regression analysis 

  
 Response variate:  CpG1Blood 
 Fitted terms:  Constant + Gender + ADvsControl + Gender.ADvsControl 
  
  

Summary of analysis 

  
Source d.f. s.s. m.s. v.r. F pr. 
Regression  3  1449.  482.9  2.68  0.058 
Residual  44  7916.  179.9     
Total  47  9364.  199.2     
  
Percentage variance accounted for 9.7 
Standard error of observations is estimated to be 13.4. 
  

Message: the following units have large standardized residuals. 
 Unit Response Residual 
 37  72.  2.40 
  
  

Estimates of parameters 

  
Parameter estimate s.e. t(44) t pr. 
Constant  36.48  5.07  7.20 <.001 
Gender M  -1.55  6.14  -0.25  0.801 
ADvsControl Control  4.60  6.29  0.73  0.468 
Gender M .ADvsControl Control 
  9.13  8.09  1.13  0.265 
  
Parameters for factors are differences compared with the reference level: 
 Factor   Reference level 
 Gender   F 
 ADvsControl   AD 
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Accumulated analysis of variance 

  
Change d.f. s.s. m.s. v.r. F pr. 
+ Gender  1  39.1  39.1  0.22  0.643 
+ ADvsControl  1  1180.0  1180.0  6.56  0.014 
+ Gender.ADvsControl  1  229.4  229.4  1.28  0.265 
Residual  44  7915.7  179.9     
  
Total  47  9364.3  199.2     
  
  87  RWALD 

  

Wald tests for dropping terms 

  
 Term Wald statistic d.f. F statistic F pr. 
Gender.ADvsControl  1.275  1  1.28  0.265 
 
Residual d.f. 44 
 
  88  ADD [PRINT=model,summary,estimates,accumulated; 

CONSTANT=estimate; FPROB=yes; TPROB=yes]\ 

  89   Age_at_Sampling 

Regression analysis 

  
 Response variate:  CpG1Blood 
 Fitted terms:  Constant + Gender + ADvsControl + Gender.ADvsControl + 
Age_at_Sampling 
  
  

Summary of analysis 

  
Source d.f. s.s. m.s. v.r. F pr. 
Regression  4  1612.  403.0  2.24  0.081 
Residual  43  7752.  180.3     
Total  47  9364.  199.2     
  
Change  -1  -163.  163.5  0.91  0.346 
  
Percentage variance accounted for 9.5 
Standard error of observations is estimated to be 13.4. 
  

Message: the following units have large standardized residuals. 
 Unit Response Residual 
 37  72.  2.64 
  

Message: the residuals do not appear to be random; for example, fitted values 
in the range 39.1 to 42.7 are consistently larger than observed values and fitted 
values in the range 42.7 to 47.7 are consistently smaller than observed values. 
  

Message: the following units have high leverage. 
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 Unit Response Leverage 
 3  26.  0.24 
  
  

Estimates of parameters 

  
Parameter estimate s.e. t(43) t pr. 
Constant  14.2  23.9  0.59  0.555 
Gender M  -1.37  6.15  -0.22  0.824 
ADvsControl Control  -11.1  17.6  -0.63  0.533 
Gender M .ADvsControl Control 
  9.54  8.11  1.18  0.246 
Age_at_Sampling  0.454  0.477  0.95  0.346 
  
Parameters for factors are differences compared with the reference level: 
 Factor   Reference level 
 Gender   F 
 ADvsControl   AD 
  
  

Accumulated analysis of variance 

  
Change d.f. s.s. m.s. v.r. F pr. 
+ Gender  1  39.1  39.1  0.22  0.644 
+ ADvsControl  1  1180.0  1180.0  6.55  0.014 
+ Gender.ADvsControl  1  229.4  229.4  1.27  0.266 
+ Age_at_Sampling  1  163.5  163.5  0.91  0.346 
Residual  43  7752.2  180.3     
  
Total  47  9364.3  199.2     
  
  90  ADD [PRINT=model,summary,estimates,accumulated; 

CONSTANT=estimate; FPROB=yes; TPROB=yes]\ 

  91   ADvsControl.Age_at_Sampling 

Regression analysis 

  
 Response variate:  CpG1Blood 
 Fitted terms:  Constant + Gender + ADvsControl + Gender.ADvsControl + 
Age_at_Sampling + Age_at_Sampling.ADvsControl 
  
  

Summary of analysis 

  
Source d.f. s.s. m.s. v.r. F pr. 
Regression  5  1798.  359.7  2.00  0.099 
Residual  42  7566.  180.1     
Total  47  9364.  199.2     
  
Change  -1  -186.  186.2  1.03  0.315 
  
Percentage variance accounted for 9.6 
Standard error of observations is estimated to be 13.4. 
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Message: the following units have large standardized residuals. 
 Unit Response Residual 
 37  72.  2.52 
  

Message: the following units have high leverage. 
 Unit Response Leverage 
 3  26.  0.53 
 19  38.  0.37 
 38  44.  0.31 
  
  

Estimates of parameters 

  
Parameter estimate s.e. t(42) t pr. 
Constant  -16.9  38.8  -0.44  0.666 
Gender M  -1.12  6.15  -0.18  0.857 
ADvsControl Control  51.0  63.5  0.80  0.427 
Gender M .ADvsControl Control 
  8.81  8.13  1.08  0.285 
Age_at_Sampling  1.090  0.786  1.39  0.173 
Age_at_Sampling.ADvsControl Control 
  -1.005  0.989  -1.02  0.315 
  
Parameters for factors are differences compared with the reference level: 
 Factor   Reference level 
 Gender   F 
 ADvsControl   AD 
  
  

Accumulated analysis of variance 

  
Change d.f. s.s. m.s. v.r. F pr. 
+ Gender  1  39.1  39.1  0.22  0.644 
+ ADvsControl  1  1180.0  1180.0  6.55  0.014 
+ Gender.ADvsControl  1  229.4  229.4  1.27  0.265 
+ Age_at_Sampling  1  163.5  163.5  0.91  0.346 
+ Age_at_Sampling.ADvsControl  
  1  186.2  186.2  1.03  0.315 
Residual  42  7566.0  180.1     
  
Total  47  9364.3  199.2     
  
  92  ADD [PRINT=model,summary,estimates,accumulated; 

CONSTANT=estimate; FPROB=yes; TPROB=yes]\ 

  93   Gender.Age_at_Sampling 

Regression analysis 

  
 Response variate:  CpG1Blood 
 Fitted terms:  Constant + Gender + ADvsControl + Gender.ADvsControl + 
Age_at_Sampling + Age_at_Sampling.ADvsControl + Age_at_Sampling.Gender 
  
  

Summary of analysis 
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Source d.f. s.s. m.s. v.r. F pr. 
Regression  6  2275.  379.1  2.19  0.063 
Residual  41  7089.  172.9     
Total  47  9364.  199.2     
  
Change  -1  -477.  476.5  2.76  0.105 
  
Percentage variance accounted for 13.2 
Standard error of observations is estimated to be 13.1. 
  

Message: the following units have large standardized residuals. 
 Unit Response Residual 
 37  72.  3.15 
  

Message: the following units have high leverage. 
 Unit Response Leverage 
 3  26.  0.53 
 19  38.  0.37 
 38  44.  0.46 
  
  

Estimates of parameters 

  
Parameter estimate s.e. t(41) t pr. 
Constant  -98.4  62.1  -1.58  0.121 
Gender M  87.6  53.8  1.63  0.111 
ADvsControl Control  46.8  62.2  0.75  0.457 
Gender M .ADvsControl Control 
  70.3  37.9  1.86  0.071 
Age_at_Sampling  2.75  1.26  2.18  0.035 
Age_at_Sampling.ADvsControl Control 
  -1.64  1.04  -1.58  0.123 
Age_at_Sampling.Gender M  -1.81  1.09  -1.66  0.105 
  
Parameters for factors are differences compared with the reference level: 
 Factor   Reference level 
 Gender   F 
 ADvsControl   AD 
  
  

Accumulated analysis of variance 

  
Change d.f. s.s. m.s. v.r. F pr. 
+ Gender  1  39.1  39.1  0.23  0.637 
+ ADvsControl  1  1180.0  1180.0  6.82  0.013 
+ Gender.ADvsControl  1  229.4  229.4  1.33  0.256 
+ Age_at_Sampling  1  163.5  163.5  0.95  0.337 
+ Age_at_Sampling.ADvsControl  
  1  186.2  186.2  1.08  0.305 
+ Age_at_Sampling.Gender  1  476.5  476.5  2.76  0.105 
Residual  41  7089.5  172.9     
  
Total  47  9364.3  199.2     
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  94  ADD [PRINT=model,summary,estimates,accumulated; 

CONSTANT=estimate; FPROB=yes; TPROB=yes]\ 

  95   Gender.ADvsControl.Age_at_Sampling 

Regression analysis 

  
 Response variate:  CpG1Blood 
 Fitted terms:  Constant + Gender + ADvsControl + Gender.ADvsControl + 
Age_at_Sampling + Age_at_Sampling.ADvsControl + Age_at_Sampling.Gender + 
Age_at_Sampling.Gender.ADvsControl 
  
  

Summary of analysis 

  
Source d.f. s.s. m.s. v.r. F pr. 
Regression  7  2334.  333.4  1.90  0.096 
Residual  40  7030.  175.8     
Total  47  9364.  199.2     
  
Change  -1  -59.  59.1  0.34  0.565 
  
Percentage variance accounted for 11.8 
Standard error of observations is estimated to be 13.3. 
  

Message: the following units have large standardized residuals. 
 Unit Response Residual 
 37  72.  3.22 
  

Message: the following units have high leverage. 
 Unit Response Leverage 
 3  26.  0.57 
 15  34.  0.81 
 19  38.  0.40 
 38  44.  0.49 
  
  

Estimates of parameters 

  
Parameter estimate s.e. t(40) t pr. 
Constant  -31.  133.  -0.23  0.819 
Gender M  14.  138.  0.10  0.921 
ADvsControl Control  -34.  153.  -0.22  0.826 
Gender M .ADvsControl Control 
  167.  170.  0.98  0.334 
Age_at_Sampling  1.37  2.71  0.51  0.616 
Age_at_Sampling.ADvsControl Control 
  -0.10  2.85  -0.04  0.971 
Age_at_Sampling.Gender M  -0.30  2.82  -0.11  0.915 
Age_at_Sampling.Gender M .ADvsControl Control 
  -1.78  3.07  -0.58  0.565 
  
Parameters for factors are differences compared with the reference level: 
 Factor   Reference level 
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 Gender   F 
 ADvsControl   AD 
  
  

Accumulated analysis of variance 

  
Change d.f. s.s. m.s. v.r. F pr. 
+ Gender  1  39.1  39.1  0.22  0.640 
+ ADvsControl  1  1180.0  1180.0  6.71  0.013 
+ Gender.ADvsControl  1  229.4  229.4  1.31  0.260 
+ Age_at_Sampling  1  163.5  163.5  0.93  0.341 
+ Age_at_Sampling.ADvsControl  
  1  186.2  186.2  1.06  0.309 
+ Age_at_Sampling.Gender  1  476.5  476.5  2.71  0.107 
+ Age_at_Sampling.Gender.ADvsControl  
  1  59.1  59.1  0.34  0.565 
Residual  40  7030.3  175.8     
  
Total  47  9364.3  199.2     
  
  96  "General Linear Regression" 

  97  MODEL CpG2Blood 

  98  TERMS [FACT=9] Gender*ADvsControl*Age_at_Sampling 

  99  FIT [PRINT=model,summary,estimates,accumulated; 

CONSTANT=estimate; FPROB=yes; TPROB=yes;\ 

 100   FACT=9] Gender*ADvsControl 

Regression analysis 

  
 Response variate:  CpG2Blood 
 Fitted terms:  Constant + Gender + ADvsControl + Gender.ADvsControl 
  
  

Summary of analysis 

  
Source d.f. s.s. m.s. v.r. F pr. 
Regression  3  1460.  486.6  2.62  0.062 
Residual  44  8160.  185.5     
Total  47  9620.  204.7     
  
Percentage variance accounted for 9.4 
Standard error of observations is estimated to be 13.6. 
  
  

Estimates of parameters 

  
Parameter estimate s.e. t(44) t pr. 
Constant  33.93  5.15  6.59 <.001 
Gender M  -0.90  6.23  -0.14  0.886 
ADvsControl Control  5.42  6.38  0.85  0.401 
Gender M .ADvsControl Control 
  8.16  8.21  0.99  0.325 
  
Parameters for factors are differences compared with the reference level: 
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 Factor   Reference level 
 Gender   F 
 ADvsControl   AD 
  
  

Accumulated analysis of variance 

  
Change d.f. s.s. m.s. v.r. F pr. 
+ Gender  1  41.6  41.6  0.22  0.638 
+ ADvsControl  1  1234.8  1234.8  6.66  0.013 
+ Gender.ADvsControl  1  183.4  183.4  0.99  0.325 
Residual  44  8160.0  185.5     
  
Total  47  9619.9  204.7     
  
 101  RWALD 

  

Wald tests for dropping terms 

  
 Term Wald statistic d.f. F statistic F pr. 
Gender.ADvsControl  0.9892  1  0.99  0.325 
 
Residual d.f. 44 
 
 102  ADD [PRINT=model,summary,estimates,accumulated; 

CONSTANT=estimate; FPROB=yes; TPROB=yes]\ 

 103   

Age_at_Sampling+Gender.Age_at_Sampling+Gender.ADvsControl.Age_at_Sampl

ing 

Message: term Age_at_Sampling.Gender.ADvsControl cannot be added 
because term Age_at_Sampling.ADvsControl is marginal to it and is not in the 
model. 
  

Regression analysis 

  
 Response variate:  CpG2Blood 
 Fitted terms:  Constant + Gender + ADvsControl + Gender.ADvsControl + 
Age_at_Sampling + Age_at_Sampling.Gender 
  
  

Summary of analysis 

  
Source d.f. s.s. m.s. v.r. F pr. 
Regression  5  1769.  353.9  1.89  0.116 
Residual  42  7851.  186.9     
Total  47  9620.  204.7     
  
Change  -2  -309.  154.7  0.83  0.444 
  
Percentage variance accounted for 8.7 
Standard error of observations is estimated to be 13.7. 
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Message: the following units have large standardized residuals. 
 Unit Response Residual 
 37  69.  2.92 
  

Message: the residuals do not appear to be random; for example, fitted values 
in the range 35.5 to 43.3 are consistently larger than observed values and fitted 
values in the range 43.3 to 46.3 are consistently smaller than observed values. 
  

Message: the following units have high leverage. 
 Unit Response Leverage 
 3  22.  0.31 
 38  40.  0.29 
  
  

Estimates of parameters 

  
Parameter estimate s.e. t(42) t pr. 
Constant  -20.6  43.4  -0.47  0.637 
Gender M  47.0  52.0  0.90  0.371 
ADvsControl Control  -33.0  31.0  -1.06  0.294 
Gender M .ADvsControl Control 
  41.9  37.0  1.13  0.264 
Age_at_Sampling  1.113  0.880  1.26  0.213 
Age_at_Sampling.Gender M  -0.98  1.06  -0.93  0.360 
  
Parameters for factors are differences compared with the reference level: 
 Factor   Reference level 
 Gender   F 
 ADvsControl   AD 
  
  

Accumulated analysis of variance 

  
Change d.f. s.s. m.s. v.r. F pr. 
+ Gender  1  41.6  41.6  0.22  0.639 
+ ADvsControl  1  1234.8  1234.8  6.61  0.014 
+ Gender.ADvsControl  1  183.4  183.4  0.98  0.328 
+ Age_at_Sampling  1  149.4  149.4  0.80  0.376 
+ Age_at_Sampling.Gender  1  160.0  160.0  0.86  0.360 
Residual  42  7850.6  186.9     
  
Total  47  9619.9  204.7     
  
 104  ADD [PRINT=model,summary,estimates,accumulated; 

CONSTANT=estimate; FPROB=yes; TPROB=yes]\ 

 105   Gender.ADvsControl.Age_at_Sampling 

Message: term Age_at_Sampling.Gender.ADvsControl cannot be added 
because term Age_at_Sampling.ADvsControl is marginal to it and is not in the 
model. 
  

Regression analysis 
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 Response variate:  CpG2Blood 
 Fitted terms:  Constant + Gender + ADvsControl + Gender.ADvsControl + 
Age_at_Sampling + Age_at_Sampling.Gender 
  
  

Summary of analysis 

  
Source d.f. s.s. m.s. v.r. F pr. 
Regression  5  1769.  353.9  1.89  0.116 
Residual  42  7851.  186.9     
Total  47  9620.  204.7     
  
Change  0  0.  *     
  
Percentage variance accounted for 8.7 
Standard error of observations is estimated to be 13.7. 
  

Message: the following units have large standardized residuals. 
 Unit Response Residual 
 37  69.  2.92 
  

Message: the residuals do not appear to be random; for example, fitted values 
in the range 35.5 to 43.3 are consistently larger than observed values and fitted 
values in the range 43.3 to 46.3 are consistently smaller than observed values. 
  

Message: the following units have high leverage. 
 Unit Response Leverage 
 3  22.  0.31 
 38  40.  0.29 
  
  

Estimates of parameters 

  
Parameter estimate s.e. t(42) t pr. 
Constant  -20.6  43.4  -0.47  0.637 
Gender M  47.0  52.0  0.90  0.371 
ADvsControl Control  -33.0  31.0  -1.06  0.294 
Gender M .ADvsControl Control 
  41.9  37.0  1.13  0.264 
Age_at_Sampling  1.113  0.880  1.26  0.213 
Age_at_Sampling.Gender M  -0.98  1.06  -0.93  0.360 
  
Parameters for factors are differences compared with the reference level: 
 Factor   Reference level 
 Gender   F 
 ADvsControl   AD 
  
  

Accumulated analysis of variance 

  
Change d.f. s.s. m.s. v.r. F pr. 
+ Gender  1  41.6  41.6  0.22  0.639 
+ ADvsControl  1  1234.8  1234.8  6.61  0.014 
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+ Gender.ADvsControl  1  183.4  183.4  0.98  0.328 
+ Age_at_Sampling  1  149.4  149.4  0.80  0.376 
+ Age_at_Sampling.Gender  1  160.0  160.0  0.86  0.360 
Residual  42  7850.6  186.9     
  
Total  47  9619.9  204.7     
  
 106  ADD [PRINT=model,summary,estimates,accumulated; 

CONSTANT=estimate; FPROB=yes; TPROB=yes]\ 

 107   ADvsControl.Age_at_Sampling+Gender.ADvsControl.Age_at_Sampling 

Regression analysis 

  
 Response variate:  CpG2Blood 
 Fitted terms:  Constant + Gender + ADvsControl + Gender.ADvsControl + 
Age_at_Sampling + Age_at_Sampling.Gender + Age_at_Sampling.ADvsControl + 
Age_at_Sampling.Gender.ADvsControl 
  
  

Summary of analysis 

  
Source d.f. s.s. m.s. v.r. F pr. 
Regression  7  2178.  311.1  1.67  0.144 
Residual  40  7442.  186.0     
Total  47  9620.  204.7     
  
Change  -2  -409.  204.4  1.10  0.343 
  
Percentage variance accounted for 9.1 
Standard error of observations is estimated to be 13.6. 
  

Message: the following units have large standardized residuals. 
 Unit Response Residual 
 37  69.  2.95 
  

Message: the following units have high leverage. 
 Unit Response Leverage 
 3  22.  0.57 
 15  33.  0.81 
 19  33.  0.40 
 38  40.  0.49 
  
  

Estimates of parameters 

  
Parameter estimate s.e. t(40) t pr. 
Constant  -22.  137.  -0.16  0.873 
Gender M  5.  142.  0.04  0.971 
ADvsControl Control  -31.  157.  -0.20  0.842 
Gender M .ADvsControl Control 
  152.  175.  0.87  0.390 
Age_at_Sampling  1.14  2.78  0.41  0.685 
Age_at_Sampling.Gender M  -0.12  2.91  -0.04  0.969 
Age_at_Sampling.ADvsControl Control 
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  -0.03  2.93  -0.01  0.992 
Age_at_Sampling.Gender M .ADvsControl Control 
  -1.69  3.16  -0.54  0.594 
  
Parameters for factors are differences compared with the reference level: 
 Factor   Reference level 
 Gender   F 
 ADvsControl   AD 
  
  

Accumulated analysis of variance 

  
Change d.f. s.s. m.s. v.r. F pr. 
+ Gender  1  41.6  41.6  0.22  0.639 
+ ADvsControl  1  1234.8  1234.8  6.64  0.014 
+ Gender.ADvsControl  1  183.4  183.4  0.99  0.327 
+ Age_at_Sampling  1  149.4  149.4  0.80  0.376 
+ Age_at_Sampling.Gender  1  160.0  160.0  0.86  0.359 
+ Age_at_Sampling.ADvsControl  
  1  355.1  355.1  1.91  0.175 
+ Age_at_Sampling.Gender.ADvsControl  
  1  53.6  53.6  0.29  0.594 
Residual  40  7441.9  186.0     
  
Total  47  9619.9  204.7     
  
 108  "General Linear Regression" 

 109  MODEL CpG3Blood 

 110  TERMS [FACT=9] Gender*ADvsControl*Age_at_Sampling 

 111  FIT [PRINT=model,summary,estimates,accumulated; 

CONSTANT=estimate; FPROB=yes; TPROB=yes;\ 

 112   FACT=9] Gender*ADvsControl 

Regression analysis 

  
 Response variate:  CpG3Blood 
 Fitted terms:  Constant + Gender + ADvsControl + Gender.ADvsControl 
  
  

Summary of analysis 

  
Source d.f. s.s. m.s. v.r. F pr. 
Regression  3  1683.  561.0  3.02  0.040 
Residual  44  8177.  185.8     
Total  47  9860.  209.8     
  
Percentage variance accounted for 11.4 
Standard error of observations is estimated to be 13.6. 
  

Message: the following units have large standardized residuals. 
 Unit Response Residual 
 23  16.  -2.36 
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Estimates of parameters 

  
Parameter estimate s.e. t(44) t pr. 
Constant  40.21  5.15  7.80 <.001 
Gender M  0.52  6.24  0.08  0.934 
ADvsControl Control  6.70  6.39  1.05  0.300 
Gender M .ADvsControl Control 
  7.44  8.22  0.91  0.370 
  
Parameters for factors are differences compared with the reference level: 
 Factor   Reference level 
 Gender   F 
 ADvsControl   AD 
  
  

Accumulated analysis of variance 

  
Change d.f. s.s. m.s. v.r. F pr. 
+ Gender  1  87.0  87.0  0.47  0.497 
+ ADvsControl  1  1443.7  1443.7  7.77  0.008 
+ Gender.ADvsControl  1  152.4  152.4  0.82  0.370 
Residual  44  8177.2  185.8     
  
Total  47  9860.4  209.8     
  
 113  RWALD 

  

Wald tests for dropping terms 

  
 Term Wald statistic d.f. F statistic F pr. 
Gender.ADvsControl  0.8202  1  0.82  0.370 
 
Residual d.f. 44 
 
 114  ADD [PRINT=model,summary,estimates,accumulated; 

CONSTANT=estimate; FPROB=yes; TPROB=yes]\ 

 115   

Age_at_Sampling+Gender.Age_at_Sampling+ADvsControl.Age_at_Sampling+Gen

der.ADvsControl.Age_at_Sampling 

Regression analysis 

  
 Response variate:  CpG3Blood 
 Fitted terms:  Constant + Gender + ADvsControl + Gender.ADvsControl + 
Age_at_Sampling + Age_at_Sampling.Gender + Age_at_Sampling.ADvsControl + 
Age_at_Sampling.Gender.ADvsControl 
  
  

Summary of analysis 

  
Source d.f. s.s. m.s. v.r. F pr. 
Regression  7  2712.  387.4  2.17  0.058 
Residual  40  7149.  178.7     
Total  47  9860.  209.8     
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Change  -4  -1029.  257.2  1.44  0.239 
  
Percentage variance accounted for 14.8 
Standard error of observations is estimated to be 13.4. 
  

Message: the following units have large standardized residuals. 
 Unit Response Residual 
 37  76.  3.01 
  

Message: the following units have high leverage. 
 Unit Response Leverage 
 3  27.  0.57 
 15  48.  0.81 
 19  44.  0.40 
 38  50.  0.49 
  
  

Estimates of parameters 

  
Parameter estimate s.e. t(40) t pr. 
Constant  55.  134.  0.41  0.684 
Gender M  -79.  140.  -0.56  0.576 
ADvsControl Control  -109.  154.  -0.71  0.484 
Gender M .ADvsControl Control 
  263.  172.  1.53  0.134 
Age_at_Sampling  -0.30  2.73  -0.11  0.913 
Age_at_Sampling.Gender M  1.63  2.85  0.57  0.571 
Age_at_Sampling.ADvsControl Control 
  1.51  2.88  0.52  0.603 
Age_at_Sampling.Gender M .ADvsControl Control 
  -3.75  3.09  -1.21  0.232 
  
Parameters for factors are differences compared with the reference level: 
 Factor   Reference level 
 Gender   F 
 ADvsControl   AD 
  
  

Accumulated analysis of variance 

  
Change d.f. s.s. m.s. v.r. F pr. 
+ Gender  1  87.0  87.0  0.49  0.489 
+ ADvsControl  1  1443.7  1443.7  8.08  0.007 
+ Gender.ADvsControl  1  152.4  152.4  0.85  0.361 
+ Age_at_Sampling  1  155.0  155.0  0.87  0.357 
+ Age_at_Sampling.Gender  1  131.4  131.4  0.74  0.396 
+ Age_at_Sampling.ADvsControl  
  1  479.5  479.5  2.68  0.109 
+ Age_at_Sampling.Gender.ADvsControl  
  1  262.7  262.7  1.47  0.232 
Residual  40  7148.5  178.7     
  
Total  47  9860.4  209.8     
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 116  "General Linear Regression" 

 117  MODEL CpG4Blood 

 118  TERMS [FACT=9] Gender*ADvsControl*Age_at_Sampling 

 119  FIT [PRINT=model,summary,estimates,accumulated; 

CONSTANT=estimate; FPROB=yes; TPROB=yes;\ 

 120   FACT=9] Gender*ADvsControl 

Regression analysis 

  
 Response variate:  CpG4Blood 
 Fitted terms:  Constant + Gender + ADvsControl + Gender.ADvsControl 
  
  

Summary of analysis 

  
Source d.f. s.s. m.s. v.r. F pr. 
Regression  3  2553.  850.9  3.28  0.030 
Residual  44  11406.  259.2     
Total  47  13959.  297.0     
  
Percentage variance accounted for 12.7 
Standard error of observations is estimated to be 16.1. 
  
  

Estimates of parameters 

  
Parameter estimate s.e. t(44) t pr. 
Constant  39.55  6.09  6.50 <.001 
Gender M  -0.38  7.37  -0.05  0.959 
ADvsControl Control  7.66  7.55  1.01  0.316 
Gender M .ADvsControl Control 
  10.07  9.71  1.04  0.305 
  
Parameters for factors are differences compared with the reference level: 
 Factor   Reference level 
 Gender   F 
 ADvsControl   AD 
  
  

Accumulated analysis of variance 

  
Change d.f. s.s. m.s. v.r. F pr. 
+ Gender  1  96.4  96.4  0.37  0.545 
+ ADvsControl  1  2177.0  2177.0  8.40  0.006 
+ Gender.ADvsControl  1  279.2  279.2  1.08  0.305 
Residual  44  11406.2  259.2     
  
Total  47  13958.8  297.0     
  
 121  RWALD 

  

Wald tests for dropping terms 
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 Term Wald statistic d.f. F statistic F pr. 
Gender.ADvsControl  1.077  1  1.08  0.305 
 
Residual d.f. 44 
 
 122  ADD [PRINT=model,summary,estimates,accumulated; 

CONSTANT=estimate; FPROB=yes; TPROB=yes]\ 

 123   

Age_at_Sampling+Gender.Age_at_Sampling+ADvsControl.Age_at_Sampling+Gen

der.ADvsControl.Age_at_Sampling 

Regression analysis 

  
 Response variate:  CpG4Blood 
 Fitted terms:  Constant + Gender + ADvsControl + Gender.ADvsControl + 
Age_at_Sampling + Age_at_Sampling.Gender + Age_at_Sampling.ADvsControl + 
Age_at_Sampling.Gender.ADvsControl 
  
  

Summary of analysis 

  
Source d.f. s.s. m.s. v.r. F pr. 
Regression  7  3591.  513.0  1.98  0.082 
Residual  40  10368.  259.2     
Total  47  13959.  297.0     
  
Change  -4  -1039.  259.7  1.00  0.418 
  
Percentage variance accounted for 12.7 
Standard error of observations is estimated to be 16.1. 
  

Message: the following units have large standardized residuals. 
 Unit Response Residual 
 37  80.  2.83 
  

Message: the following units have high leverage. 
 Unit Response Leverage 
 3  23.  0.57 
 15  42.  0.81 
 19  40.  0.40 
 38  56.  0.49 
  
  

Estimates of parameters 

  
Parameter estimate s.e. t(40) t pr. 
Constant  4.  161.  0.03  0.980 
Gender M  -31.  168.  -0.18  0.857 
ADvsControl Control  -78.  185.  -0.42  0.676 
Gender M .ADvsControl Control 
  206.  207.  0.99  0.326 
Age_at_Sampling  0.72  3.29  0.22  0.827 
Age_at_Sampling.Gender M  0.63  3.43  0.18  0.856 
Age_at_Sampling.ADvsControl Control 
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  0.73  3.46  0.21  0.834 
Age_at_Sampling.Gender M .ADvsControl Control 
  -2.62  3.72  -0.70  0.487 
  
Parameters for factors are differences compared with the reference level: 
 Factor   Reference level 
 Gender   F 
 ADvsControl   AD 
  
  

Accumulated analysis of variance 

  
Change d.f. s.s. m.s. v.r. F pr. 
+ Gender  1  96.4  96.4  0.37  0.546 
+ ADvsControl  1  2177.0  2177.0  8.40  0.006 
+ Gender.ADvsControl  1  279.2  279.2  1.08  0.306 
+ Age_at_Sampling  1  369.0  369.0  1.42  0.240 
+ Age_at_Sampling.Gender  1  167.8  167.8  0.65  0.426 
+ Age_at_Sampling.ADvsControl  
  1  374.0  374.0  1.44  0.237 
+ Age_at_Sampling.Gender.ADvsControl  
  1  127.8  127.8  0.49  0.487 
Residual  40  10367.5  259.2     
  
Total  47  13958.8  297.0     
  
 124  "General Linear Regression" 

 125  MODEL CpG5Blood 

 126  TERMS [FACT=9] Gender*ADvsControl*Age_at_Sampling 

 127  FIT [PRINT=model,summary,estimates,accumulated; 

CONSTANT=estimate; FPROB=yes; TPROB=yes;\ 

 128   FACT=9] Gender*ADvsControl 

Regression analysis 

  
 Response variate:  CpG5Blood 
 Fitted terms:  Constant + Gender + ADvsControl + Gender.ADvsControl 
  
  

Summary of analysis 

  
Source d.f. s.s. m.s. v.r. F pr. 
Regression  3  2011.  670.3  4.08  0.012 
Residual  44  7237.  164.5     
Total  47  9248.  196.8     
  
Percentage variance accounted for 16.4 
Standard error of observations is estimated to be 12.8. 
  
  

Estimates of parameters 

  
Parameter estimate s.e. t(44) t pr. 
Constant  33.24  4.85  6.86 <.001 
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Gender M  -0.86  5.87  -0.15  0.884 
ADvsControl Control  7.95  6.01  1.32  0.193 
Gender M .ADvsControl Control 
  7.69  7.73  1.00  0.325 
  
Parameters for factors are differences compared with the reference level: 
 Factor   Reference level 
 Gender   F 
 ADvsControl   AD 
  
  

Accumulated analysis of variance 

  
Change d.f. s.s. m.s. v.r. F pr. 
+ Gender  1  17.8  17.8  0.11  0.744 
+ ADvsControl  1  1830.2  1830.2  11.13  0.002 
+ Gender.ADvsControl  1  162.9  162.9  0.99  0.325 
Residual  44  7236.9  164.5     
  
Total  47  9247.8  196.8     
  
 129  RWALD 

  

Wald tests for dropping terms 

  
 Term Wald statistic d.f. F statistic F pr. 
Gender.ADvsControl  0.9904  1  0.99  0.325 
 
Residual d.f. 44 
 
 130  ADD [PRINT=model,summary,estimates,accumulated; 

CONSTANT=estimate; FPROB=yes; TPROB=yes]\ 

 131   

Age_at_Sampling+Gender.Age_at_Sampling+ADvsControl.Age_at_Sampling+Gen

der.ADvsControl.Age_at_Sampling 

Regression analysis 

  
 Response variate:  CpG5Blood 
 Fitted terms:  Constant + Gender + ADvsControl + Gender.ADvsControl + 
Age_at_Sampling + Age_at_Sampling.Gender + Age_at_Sampling.ADvsControl + 
Age_at_Sampling.Gender.ADvsControl 
  
  

Summary of analysis 

  
Source d.f. s.s. m.s. v.r. F pr. 
Regression  7  2826.  403.8  2.52  0.031 
Residual  40  6422.  160.5     
Total  47  9248.  196.8     
  
Change  -4  -815.  203.9  1.27  0.298 
  
Percentage variance accounted for 18.4 
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Standard error of observations is estimated to be 12.7. 
  

Message: the following units have large standardized residuals. 
 Unit Response Residual 
 37  66.  2.78 
  

Message: the following units have high leverage. 
 Unit Response Leverage 
 3  19.  0.57 
 15  39.  0.81 
 19  34.  0.40 
 38  40.  0.49 
  
  

Estimates of parameters 

  
Parameter estimate s.e. t(40) t pr. 
Constant  38.  127.  0.30  0.766 
Gender M  -63.  132.  -0.48  0.635 
ADvsControl Control  -89.  146.  -0.61  0.544 
Gender M .ADvsControl Control 
  227.  163.  1.39  0.172 
Age_at_Sampling  -0.10  2.59  -0.04  0.970 
Age_at_Sampling.Gender M  1.28  2.70  0.48  0.637 
Age_at_Sampling.ADvsControl Control 
  1.21  2.73  0.44  0.661 
Age_at_Sampling.Gender M .ADvsControl Control 
  -3.17  2.93  -1.08  0.286 
  
Parameters for factors are differences compared with the reference level: 
 Factor   Reference level 
 Gender   F 
 ADvsControl   AD 
  
  

Accumulated analysis of variance 

  
Change d.f. s.s. m.s. v.r. F pr. 
+ Gender  1  17.8  17.8  0.11  0.741 
+ ADvsControl  1  1830.2  1830.2  11.40  0.002 
+ Gender.ADvsControl  1  162.9  162.9  1.01  0.320 
+ Age_at_Sampling  1  141.5  141.5  0.88  0.353 
+ Age_at_Sampling.Gender  1  110.9  110.9  0.69  0.411 
+ Age_at_Sampling.ADvsControl  
  1  375.3  375.3  2.34  0.134 
+ Age_at_Sampling.Gender.ADvsControl  
  1  187.7  187.7  1.17  0.286 
Residual  40  6421.5  160.5     
  
Total  47  9247.8  196.8     
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 132  "General Linear Regression" 

 133  MODEL CpG6Blood 

 134  TERMS [FACT=9] Gender*ADvsControl*Age_at_Sampling 

 135  FIT [PRINT=model,summary,estimates,accumulated; 

CONSTANT=estimate; FPROB=yes; TPROB=yes;\ 

 136   FACT=9] Gender*ADvsControl 

Regression analysis 

  
 Response variate:  CpG6Blood 
 Fitted terms:  Constant + Gender + ADvsControl + Gender.ADvsControl 
  
  

Summary of analysis 

  
Source d.f. s.s. m.s. v.r. F pr. 
Regression  3  1060.  353.4  3.05  0.039 
Residual  44  5106.  116.1     
Total  47  6167.  131.2     
  
Percentage variance accounted for 11.5 
Standard error of observations is estimated to be 10.8. 
  

Message: the following units have large standardized residuals. 
 Unit Response Residual 
 27  68.  2.44 
  
  

Estimates of parameters 

  
Parameter estimate s.e. t(44) t pr. 
Constant  37.48  4.07  9.20 <.001 
Gender M  1.17  4.93  0.24  0.814 
ADvsControl Control  4.96  5.05  0.98  0.331 
Gender M .ADvsControl Control 
  6.02  6.49  0.93  0.359 
  
Parameters for factors are differences compared with the reference level: 
 Factor   Reference level 
 Gender   F 
 ADvsControl   AD 
  
  

Accumulated analysis of variance 

  
Change d.f. s.s. m.s. v.r. F pr. 
+ Gender  1  108.1  108.1  0.93  0.340 
+ ADvsControl  1  852.2  852.2  7.34  0.010 
+ Gender.ADvsControl  1  99.9  99.9  0.86  0.359 
Residual  44  5106.4  116.1     
  
Total  47  6166.7  131.2     
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 137  RWALD 

  

Wald tests for dropping terms 

  
 Term Wald statistic d.f. F statistic F pr. 
Gender.ADvsControl  0.8605  1  0.86  0.359 
 
Residual d.f. 44 
 
 138  ADD [PRINT=model,summary,estimates,accumulated; 

CONSTANT=estimate; FPROB=yes; TPROB=yes]\ 

 139   

Age_at_Sampling+Gender.Age_at_Sampling+ADvsControl.Age_at_Sampling+Gen

der.ADvsControl.Age_at_Sampling 

Regression analysis 

  
 Response variate:  CpG6Blood 
 Fitted terms:  Constant + Gender + ADvsControl + Gender.ADvsControl + 
Age_at_Sampling + Age_at_Sampling.Gender + Age_at_Sampling.ADvsControl + 
Age_at_Sampling.Gender.ADvsControl 
  
  

Summary of analysis 

  
Source d.f. s.s. m.s. v.r. F pr. 
Regression  7  1646.  235.1  2.08  0.068 
Residual  40  4521.  113.0     
Total  47  6167.  131.2     
  
Change  -4  -585.  146.3  1.29  0.288 
  
Percentage variance accounted for 13.9 
Standard error of observations is estimated to be 10.6. 
  

Message: the following units have large standardized residuals. 
 Unit Response Residual 
 37  65.  2.90 
  

Message: the following units have high leverage. 
 Unit Response Leverage 
 3  27.  0.57 
 15  42.  0.81 
 19  41.  0.40 
 38  46.  0.49 
  
  

Estimates of parameters 

  
Parameter estimate s.e. t(40) t pr. 
Constant  52.  106.  0.49  0.627 
Gender M  -66.  111.  -0.60  0.555 
ADvsControl Control  -82.  122.  -0.67  0.504 
Gender M .ADvsControl Control 
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  196.  137.  1.43  0.159 
Age_at_Sampling  -0.30  2.17  -0.14  0.891 
Age_at_Sampling.Gender M  1.38  2.27  0.61  0.546 
Age_at_Sampling.ADvsControl Control 
  1.17  2.29  0.51  0.612 
Age_at_Sampling.Gender M .ADvsControl Control 
  -2.86  2.46  -1.16  0.252 
  
Parameters for factors are differences compared with the reference level: 
 Factor   Reference level 
 Gender   F 
 ADvsControl   AD 
  
  

Accumulated analysis of variance 

  
Change d.f. s.s. m.s. v.r. F pr. 
+ Gender  1  108.1  108.1  0.96  0.334 
+ ADvsControl  1  852.2  852.2  7.54  0.009 
+ Gender.ADvsControl  1  99.9  99.9  0.88  0.353 
+ Age_at_Sampling  1  113.1  113.1  1.00  0.323 
+ Age_at_Sampling.Gender  1  49.3  49.3  0.44  0.513 
+ Age_at_Sampling.ADvsControl  
  1  270.2  270.2  2.39  0.130 
+ Age_at_Sampling.Gender.ADvsControl  
  1  152.8  152.8  1.35  0.252 
Residual  40  4521.1  113.0     
  
Total  47  6166.7  131.2     
  
 140  "General Linear Regression" 

 141  MODEL CpG7Blood 

 142  TERMS [FACT=9] Gender*ADvsControl*Age_at_Sampling 

 143  FIT [PRINT=model,summary,estimates,accumulated; 

CONSTANT=estimate; FPROB=yes; TPROB=yes;\ 

 144   FACT=9] Gender*ADvsControl 

Regression analysis 

  
 Response variate:  CpG7Blood 
 Fitted terms:  Constant + Gender + ADvsControl + Gender.ADvsControl 
  
  

Summary of analysis 

  
Source d.f. s.s. m.s. v.r. F pr. 
Regression  3  2144.  714.7  2.86  0.047 
Residual  44  10988.  249.7     
Total  47  13132.  279.4     
  
Percentage variance accounted for 10.6 
Standard error of observations is estimated to be 15.8. 
  

Message: the residuals do not appear to be random; for example, fitted values 
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in the range 41.7 to 49.1 are consistently larger than observed values and fitted 
values in the range 57.6 to 57.6 are consistently smaller than observed values. 
  
  

Estimates of parameters 

  
Parameter estimate s.e. t(44) t pr. 
Constant  41.19  5.97  6.90 <.001 
Gender M  0.49  7.23  0.07  0.947 
ADvsControl Control  7.89  7.41  1.06  0.293 
Gender M .ADvsControl Control 
  8.06  9.53  0.85  0.402 
  
Parameters for factors are differences compared with the reference level: 
 Factor   Reference level 
 Gender   F 
 ADvsControl   AD 
  
  

Accumulated analysis of variance 

  
Change d.f. s.s. m.s. v.r. F pr. 
+ Gender  1  89.3  89.3  0.36  0.553 
+ ADvsControl  1  1875.9  1875.9  7.51  0.009 
+ Gender.ADvsControl  1  179.0  179.0  0.72  0.402 
Residual  44  10987.9  249.7     
  
Total  47  13132.0  279.4     
  
 145  RWALD 

  

Wald tests for dropping terms 

  
 Term Wald statistic d.f. F statistic F pr. 
Gender.ADvsControl  0.7166  1  0.72  0.402 
 
Residual d.f. 44 
 
 146  ADD [PRINT=model,summary,estimates,accumulated; 

CONSTANT=estimate; FPROB=yes; TPROB=yes]\ 

 147   

Age_at_Sampling+Gender.Age_at_Sampling+ADvsControl.Age_at_Sampling+Gen

der.ADvsControl.Age_at_Sampling 

Regression analysis 

  
 Response variate:  CpG7Blood 
 Fitted terms:  Constant + Gender + ADvsControl + Gender.ADvsControl + 
Age_at_Sampling + Age_at_Sampling.Gender + Age_at_Sampling.ADvsControl + 
Age_at_Sampling.Gender.ADvsControl 
  
  

Summary of analysis 
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Source d.f. s.s. m.s. v.r. F pr. 
Regression  7  3453.  493.3  2.04  0.074 
Residual  40  9679.  242.0     
Total  47  13132.  279.4     
  
Change  -4  -1309.  327.2  1.35  0.268 
  
Percentage variance accounted for 13.4 
Standard error of observations is estimated to be 15.6. 
  

Message: the following units have large standardized residuals. 
 Unit Response Residual 
 37  81.  2.94 
  

Message: the following units have high leverage. 
 Unit Response Leverage 
 3  26.  0.57 
 15  49.  0.81 
 19  46.  0.40 
 38  58.  0.49 
  
  

Estimates of parameters 

  
Parameter estimate s.e. t(40) t pr. 
Constant  78.  156.  0.50  0.618 
Gender M  -112.  162.  -0.69  0.493 
ADvsControl Control  -166.  179.  -0.93  0.359 
Gender M .ADvsControl Control 
  296.  200.  1.48  0.146 
Age_at_Sampling  -0.76  3.18  -0.24  0.813 
Age_at_Sampling.Gender M  2.31  3.31  0.70  0.489 
Age_at_Sampling.ADvsControl Control 
  2.40  3.35  0.72  0.478 
Age_at_Sampling.Gender M .ADvsControl Control 
  -4.42  3.60  -1.23  0.226 
  
Parameters for factors are differences compared with the reference level: 
 Factor   Reference level 
 Gender   F 
 ADvsControl   AD 
  
  

Accumulated analysis of variance 

  
Change d.f. s.s. m.s. v.r. F pr. 
+ Gender  1  89.3  89.3  0.37  0.547 
+ ADvsControl  1  1875.9  1875.9  7.75  0.008 
+ Gender.ADvsControl  1  179.0  179.0  0.74  0.395 
+ Age_at_Sampling  1  486.1  486.1  2.01  0.164 
+ Age_at_Sampling.Gender  1  131.9  131.9  0.55  0.465 
+ Age_at_Sampling.ADvsControl  
  1  325.2  325.2  1.34  0.253 
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+ Age_at_Sampling.Gender.ADvsControl  
  1  365.6  365.6  1.51  0.226 
Residual  40  9679.1  242.0     
  
Total  47  13132.0  279.4     
  
 

Appendix 5.3: Co-variant analysis in brain. 

Genstat 64-bit Release 19.1 ( PC/Windows 7) 29 January 2019 08:16:02 
Copyright 2018, VSN International Ltd.   
Registered to: University of Nottingham 
  
  ________________________________________ 
  
  Genstat Nineteenth Edition 
  Genstat Procedure Library Release PL27.1 
  ________________________________________ 
  
   1  SET [WORKINGDIRECTORY='D:/People''s data/Graham Seymour/Andrew 

Bottley/Kirsty Boden data JanFEB2019'; DIAGNOSTIC=messages] 

   2  "Data taken from file: '\ 

  -3  D:/People''s data/Graham Seymour/Andrew Bottley/Kirsty Boden 

data JanFEB2019/Compiled Boden data Jan 2019.xlsx\ 

  -4  '" 

   5  DELETE [REDEFINE=yes] _stitle_: TEXT _stitle_ 

   6  READ [PRINT=*; SETNVALUES=yes] _stitle_ 

  10  PRINT [IPRINT=*] _stitle_; JUST=left 

  
Data imported from Excel file: D:\People's data\Graham Seymour\Andrew Bottley\Kirsty Boden 
data JanFEB2019\Compiled Boden data Jan 2019.xlsx 
 on: 29-Jan-2019 8:16:14 
 taken from sheet "Rin Brain (2)", cells A2:K25 
  
  11  DELETE [REDEFINE=yes] 

AD_Brain_averages,Gender,Age_at_Sampling,CpG1Brain,\ 

  12  

CpG2Brain,CpG3Brain,CpG4Brain,CpG5Brain,CpG6Brain,CpG7Brain,ADvsContro

l 

  13  UNITS [NVALUES=*] 

  14  TEXT [NVALUES=24] AD_Brain_averages 

  15  READ AD_Brain_averages 

  
  Identifier  Minimum  Mean  Maximum  Values  Missing   
AD_Brain_averages        24  0   
  
  19  FACTOR [MODIFY=no; NVALUES=24; LEVELS=2; LABELS=!t('F','M')\ 

  20  ; REFERENCE=1] Gender 

  21  READ Gender; FREPRESENTATION=ordinal 

  
  Identifier  Values  Missing  Levels 
 Gender  24  0  2 
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  23  VARIATE [NVALUES=24] Age_at_Sampling; DECIMALS=0 

  24  READ Age_at_Sampling 

  
  Identifier  Minimum  Mean  Maximum  Values  Missing   
Age_at_Sampling  44.00  69.38  90.00  24  0   
  
  26  VARIATE [NVALUES=24] CpG1Brain; DECIMALS=0 

  27  READ CpG1Brain 

  
  Identifier  Minimum  Mean  Maximum  Values  Missing   
CpG1Brain  6.333  19.60  63.00  24  0     Skew 
  
  30  VARIATE [NVALUES=24] CpG2Brain; DECIMALS=0 

  31  READ CpG2Brain 

  
  Identifier  Minimum  Mean  Maximum  Values  Missing   
CpG2Brain  6.000  18.41  62.00  24  0     Skew 
  
  34  VARIATE [NVALUES=24] CpG3Brain; DECIMALS=0 

  35  READ CpG3Brain 

  
  Identifier  Minimum  Mean  Maximum  Values  Missing   
CpG3Brain  7.500  21.50  66.00  24  0     Skew 
  
  38  VARIATE [NVALUES=24] CpG4Brain; DECIMALS=0 

  39  READ CpG4Brain 

  
  Identifier  Minimum  Mean  Maximum  Values  Missing   
CpG4Brain  5.000  21.23  64.00  24  0   
  
  42  VARIATE [NVALUES=24] CpG5Brain; DECIMALS=0 

  43  READ CpG5Brain 

  
  Identifier  Minimum  Mean  Maximum  Values  Missing   
CpG5Brain  5.000  17.98  61.00  24  0     Skew 
  
  46  VARIATE [NVALUES=24] CpG6Brain; DECIMALS=0 

  47  READ CpG6Brain 

  
  Identifier  Minimum  Mean  Maximum  Values  Missing   
CpG6Brain  5.000  20.80  61.00  24  0   
  
  50  VARIATE [NVALUES=24] CpG7Brain; DECIMALS=0 

  51  READ CpG7Brain 

  
  Identifier  Minimum  Mean  Maximum  Values  Missing   
CpG7Brain  5.500  21.55  71.00  24  0     Skew 
  
  54  FACTOR [MODIFY=no; NVALUES=24; LEVELS=2; 

LABELS=!t('AD','Control')\ 

  55  ; REFERENCE=1] ADvsControl 

  56  READ ADvsControl; FREPRESENTATION=ordinal 

  
  Identifier  Values  Missing  Levels 
ADvsControl  24  0  2 
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  58 

  59  %PostMessage 1129; 0; 10000001 "Sheet Update Completed" 

  60  "General Analysis of Variance" 

  61  BLOCK "No Blocking" 

  62  TREATMENTS Gender*ADvsControl 

  63  COVARIATE Age_at_Sampling 

  64  ANOVA [PRINT=aovtable,information,means,covariate; FACT=32; 

CONTRASTS=7; PCONTRASTS=7;\ 

  65   FPROB=yes; PSE=diff] CpG1Brain 

  

Message: non-orthogonality between treatment terms. The effects (printed or 
used to calculate means), the efficiency factor and the sum of squares for each 
treatment term are for that term eliminating previous terms in the TREATMENT 
formula (as well as covariates)and ignoring subsequent terms. 

Analysis of variance (adjusted for covariate) 

  
Variate: CpG1Brain 
Covariate: Age_at_Sampling 
  
Source of variation d.f. s.s. m.s. v.r. cov.ef. F pr. 
Gender 1  653.6  653.6  3.42  0.81  0.080 
ADvsControl 1  253.3  253.3  1.33  0.17  0.264 
Gender.ADvsControl 1  166.8  166.8  0.87  0.97  0.362 
Covariate 1  161.6  161.6  0.85    0.369 
Residual 19  3631.8  191.1    0.99   
Total 23  4913.4         
  
  

Information summary 

  
Model term e.f.   non-orthogonal terms 
  ADvsControl  0.901   Gender 
  
  

Message: the following units have large residuals. 
  
*units* 22    30. approx. s.e.   12. 
*units* 24    26. approx. s.e.   12. 
  
  

Covariate regressions 

  
Variate: CpG1Brain 
  
Covariate coefficient s.e. 
Age_at_Sampling -0.50  0.541 
  
  

Tables of means (adjusted for covariate) 

  
Variate: CpG1Brain 
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Covariate: Age_at_Sampling 
  
Grand mean  20.  
  
Gender  F  M 
   14.  28. 
 rep.    14  10 
  
ADvsControl  AD  Control 
   12.  31. 
  rep.    14  10 
  
  

Message: table of means for Gender.ADvsControl cannot be calculated 
(contains mutually non-orthogonal components). 
  
  

Standard errors of differences of means 

  
Table Gender ADvsControl   
rep. unequal unequal   
d.f.  19  19   
s.e.d.  6.4  14.7   
  
  
  66  "General Analysis of Variance" 

  67  BLOCK "No Blocking" 

  68  TREATMENTS Gender*ADvsControl 

  69  COVARIATE Age_at_Sampling 

  70  ANOVA [PRINT=aovtable,information,means,covariate; FACT=32; 

CONTRASTS=7; PCONTRASTS=7;\ 

  71   FPROB=yes; PSE=diff] CpG2Brain 

  

Message: non-orthogonality between treatment terms. The effects (printed or 
used to calculate means), the efficiency factor and the sum of squares for each 
treatment term are for that term eliminating previous terms in the TREATMENT 
formula (as well as covariates)and ignoring subsequent terms. 

Analysis of variance (adjusted for covariate) 

  
Variate: CpG2Brain 
Covariate: Age_at_Sampling 
  
Source of variation d.f. s.s. m.s. v.r. cov.ef. F pr. 
Gender 1  564.2  564.2  3.44  0.81  0.079 
ADvsControl 1  311.3  311.3  1.90  0.17  0.184 
Gender.ADvsControl 1  118.4  118.4  0.72  0.97  0.406 
Covariate 1  196.4  196.4  1.20    0.287 
Residual 19  3113.0  163.8    1.01   
Total 23  4298.1         
  
  

Information summary 



241 
 

  
Model term e.f.   non-orthogonal terms 
  ADvsControl  0.901   Gender 
  
  

Message: the following units have large residuals. 
  
*units* 22    31. approx. s.e.   11. 
*units* 24    25. approx. s.e.   11. 
  
  

Covariate regressions 

  
Variate: CpG2Brain 
  
Covariate coefficient s.e. 
Age_at_Sampling -0.55  0.501 
  
  

Tables of means (adjusted for covariate) 

  
Variate: CpG2Brain 
Covariate: Age_at_Sampling 
  
Grand mean  18.  
  
Gender  F  M 
   13.  26. 
 rep.    14  10 
  
ADvsControl  AD  Control 
   10.  30. 
  rep.    14  10 
  
  

Message: table of means for Gender.ADvsControl cannot be calculated 
(contains mutually non-orthogonal components). 
  
  

Standard errors of differences of means 

  
Table Gender ADvsControl   
rep. unequal unequal   
d.f.  19  19   
s.e.d.  5.9  13.7   
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  72  "General Analysis of Variance" 

  73  BLOCK "No Blocking" 

  74  TREATMENTS Gender*ADvsControl 

  75  COVARIATE Age_at_Sampling 

  76  ANOVA [PRINT=aovtable,information,means,covariate; FACT=32; 

CONTRASTS=7; PCONTRASTS=7;\ 

  77   FPROB=yes; PSE=diff] CpG3Brain 

  

Message: non-orthogonality between treatment terms. The effects (printed or 
used to calculate means), the efficiency factor and the sum of squares for each 
treatment term are for that term eliminating previous terms in the TREATMENT 
formula (as well as covariates)and ignoring subsequent terms. 

Analysis of variance (adjusted for covariate) 

  
Variate: CpG3Brain 
Covariate: Age_at_Sampling 
  
Source of variation d.f. s.s. m.s. v.r. cov.ef. F pr. 
Gender 1  787.1  787.1  3.74  0.81  0.068 
ADvsControl 1  260.0  260.0  1.23  0.17  0.280 
Gender.ADvsControl 1  29.4  29.4  0.14  0.97  0.713 
Covariate 1  172.8  172.8  0.82    0.376 
Residual 19  4000.1  210.5    0.99   
Total 23  5201.8         
  
  

Information summary 

  
Model term e.f.   non-orthogonal terms 
  ADvsControl  0.901   Gender 
  
  

Message: the following units have large residuals. 
  
*units* 22    33. approx. s.e.   13. 
  
  

Covariate regressions 

  
Variate: CpG3Brain 
  
Covariate coefficient s.e. 
Age_at_Sampling -0.51  0.568 
  
  

Tables of means (adjusted for covariate) 

  
Variate: CpG3Brain 
Covariate: Age_at_Sampling 
  
Grand mean  22.  
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Gender  F  M 
   15.  30. 
 rep.    14  10 
  
ADvsControl  AD  Control 
   14.  32. 
  rep.    14  10 
  
  

Message: table of means for Gender.ADvsControl cannot be calculated 
(contains mutually non-orthogonal components). 
  
  

Standard errors of differences of means 

  
Table Gender ADvsControl   
rep. unequal unequal   
d.f.  19  19   
s.e.d.  6.7  15.5   
  
  
  78  "General Analysis of Variance" 

  79  BLOCK "No Blocking" 

  80  TREATMENTS Gender*ADvsControl 

  81  COVARIATE Age_at_Sampling 

  82  ANOVA [PRINT=aovtable,information,means,covariate; FACT=32; 

CONTRASTS=7; PCONTRASTS=7;\ 

  83   FPROB=yes; PSE=diff] CpG4Brain 

  

Message: non-orthogonality between treatment terms. The effects (printed or 
used to calculate means), the efficiency factor and the sum of squares for each 
treatment term are for that term eliminating previous terms in the TREATMENT 
formula (as well as covariates)and ignoring subsequent terms. 

Analysis of variance (adjusted for covariate) 

  
Variate: CpG4Brain 
Covariate: Age_at_Sampling 
  
Source of variation d.f. s.s. m.s. v.r. cov.ef. F pr. 
Gender 1  973.3  973.3  4.97  0.81  0.038 
ADvsControl 1  286.2  286.2  1.46  0.17  0.242 
Gender.ADvsControl 1  61.7  61.7  0.31  0.97  0.581 
Covariate 1  169.1  169.1  0.86    0.365 
Residual 19  3721.2  195.9    0.99   
Total 23  5266.4         
  
  

Information summary 

  
Model term e.f.   non-orthogonal terms 
  ADvsControl  0.901   Gender 
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Message: the following units have large residuals. 
  
*units* 22    27. approx. s.e.   12. 
*units* 24    30. approx. s.e.   12. 
  
  

Covariate regressions 

  
Variate: CpG4Brain 
  
Covariate coefficient s.e. 
Age_at_Sampling -0.51  0.548 
  
  

Tables of means (adjusted for covariate) 

  
Variate: CpG4Brain 
Covariate: Age_at_Sampling 
  
Grand mean  21.  
  
Gender  F  M 
   14.  31. 
 rep.    14  10 
  
ADvsControl  AD  Control 
   13.  32. 
  rep.    14  10 
  
  

Message: table of means for Gender.ADvsControl cannot be calculated 
(contains mutually non-orthogonal components). 
  
  

Standard errors of differences of means 

  
Table Gender ADvsControl   
rep. unequal unequal   
d.f.  19  19   
s.e.d.  6.5  14.9   
  
  
  84  "General Analysis of Variance" 

  85  BLOCK "No Blocking" 

  86  TREATMENTS Gender*ADvsControl 

  87  COVARIATE Age_at_Sampling 

  88  ANOVA [PRINT=aovtable,information,means,covariate; FACT=32; 

CONTRASTS=7; PCONTRASTS=7;\ 

  89   FPROB=yes; PSE=diff] CpG5Brain 
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Message: non-orthogonality between treatment terms. The effects (printed or 
used to calculate means), the efficiency factor and the sum of squares for each 
treatment term are for that term eliminating previous terms in the TREATMENT 
formula (as well as covariates)and ignoring subsequent terms. 

Analysis of variance (adjusted for covariate) 

  
Variate: CpG5Brain 
Covariate: Age_at_Sampling 
  
Source of variation d.f. s.s. m.s. v.r. cov.ef. F pr. 
Gender 1  462.4  462.4  2.91  0.81  0.104 
ADvsControl 1  306.2  306.2  1.93  0.17  0.181 
Gender.ADvsControl 1  116.8  116.8  0.74  0.97  0.402 
Covariate 1  158.2  158.2  1.00    0.331 
Residual 19  3018.3  158.9    1.00   
Total 23  4179.8         
  
  

Information summary 

  
Model term e.f.   non-orthogonal terms 
  ADvsControl  0.901   Gender 
  
  

Message: the following units have large residuals. 
  
*units* 22    30. approx. s.e.   11. 
*units* 24    24. approx. s.e.   11. 
  
  

Covariate regressions 

  
Variate: CpG5Brain 
  
Covariate coefficient s.e. 
Age_at_Sampling -0.49  0.493 
  
  

Tables of means (adjusted for covariate) 

  
Variate: CpG5Brain 
Covariate: Age_at_Sampling 
  
Grand mean  18.  
  
Gender  F  M 
   13.  25. 
 rep.    14  10 
  
ADvsControl  AD  Control 
   10.  30. 
  rep.    14  10 
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Message: table of means for Gender.ADvsControl cannot be calculated 
(contains mutually non-orthogonal components). 
  
  

Standard errors of differences of means 

  
Table Gender ADvsControl   
rep. unequal unequal   
d.f.  19  19   
s.e.d.  5.8  13.4   
  
  
  90  "General Analysis of Variance" 

  91  BLOCK "No Blocking" 

  92  TREATMENTS Gender*ADvsControl 

  93  COVARIATE Age_at_Sampling 

  94  ANOVA [PRINT=aovtable,information,means,covariate; FACT=32; 

CONTRASTS=7; PCONTRASTS=7;\ 

  95   FPROB=yes; PSE=diff] CpG6Brain 

  

Message: non-orthogonality between treatment terms. The effects (printed or 
used to calculate means), the efficiency factor and the sum of squares for each 
treatment term are for that term eliminating previous terms in the TREATMENT 
formula (as well as covariates)and ignoring subsequent terms. 

Analysis of variance (adjusted for covariate) 

  
Variate: CpG6Brain 
Covariate: Age_at_Sampling 
  
Source of variation d.f. s.s. m.s. v.r. cov.ef. F pr. 
Gender 1  557.2  557.2  3.16  0.81  0.092 
ADvsControl 1  344.0  344.0  1.95  0.17  0.179 
Gender.ADvsControl 1  48.7  48.7  0.28  0.97  0.605 
Covariate 1  193.5  193.5  1.10    0.308 
Residual 19  3351.9  176.4    1.00   
Total 23  4511.1         
  
  

Information summary 

  
Model term e.f.   non-orthogonal terms 
  ADvsControl  0.901   Gender 
  
  

Message: the following units have large residuals. 
  
*units* 22    28. approx. s.e.   12. 
*units* 24    26. approx. s.e.   12. 
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Covariate regressions 

  
Variate: CpG6Brain 
  
Covariate coefficient s.e. 
Age_at_Sampling -0.54  0.520 
  
  

Tables of means (adjusted for covariate) 

  
Variate: CpG6Brain 
Covariate: Age_at_Sampling 
  
Grand mean  21.  
  
Gender  F  M 
   15.  29. 
 rep.    14  10 
  
ADvsControl  AD  Control 
   12.  33. 
  rep.    14  10 
  
  

Message: table of means for Gender.ADvsControl cannot be calculated 
(contains mutually non-orthogonal components). 
  
  

Standard errors of differences of means 

  
Table Gender ADvsControl   
rep. unequal unequal   
d.f.  19  19   
s.e.d.  6.1  14.2   
  
  
  96  "General Analysis of Variance" 

  97  BLOCK "No Blocking" 

  98  TREATMENTS Gender*ADvsControl 

  99  COVARIATE Age_at_Sampling 

 100  ANOVA [PRINT=aovtable,information,means,covariate; FACT=32; 

CONTRASTS=7; PCONTRASTS=7;\ 

 101   FPROB=yes; PSE=diff] CpG7Brain 

  

Message: non-orthogonality between treatment terms. The effects (printed or 
used to calculate means), the efficiency factor and the sum of squares for each 
treatment term are for that term eliminating previous terms in the TREATMENT 
formula (as well as covariates)and ignoring subsequent terms. 

Analysis of variance (adjusted for covariate) 

  
Variate: CpG7Brain 
Covariate: Age_at_Sampling 
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Source of variation d.f. s.s. m.s. v.r. cov.ef. F pr. 
Gender 1  905.0  905.0  4.33  0.81  0.051 
ADvsControl 1  343.5  343.5  1.65  0.17  0.215 
Gender.ADvsControl 1  61.6  61.6  0.30  0.97  0.593 
Covariate 1  175.3  175.3  0.84    0.371 
Residual 19  3966.7  208.8    0.99   
Total 23  5593.0         
  
  

Information summary 

  
Model term e.f.   non-orthogonal terms 
  ADvsControl  0.901   Gender 
  
  

Message: the following units have large residuals. 
  
*units* 22    35. approx. s.e.   13. 
  
  

Covariate regressions 

  
Variate: CpG7Brain 
  
Covariate coefficient s.e. 
Age_at_Sampling -0.52  0.566 
  
  

Tables of means (adjusted for covariate) 

  
Variate: CpG7Brain 
Covariate: Age_at_Sampling 
  
Grand mean  22.  
  
Gender  F  M 
   15.  31. 
 rep.    14  10 
  
ADvsControl  AD  Control 
   13.  34. 
  rep.    14  10 
  
  

Message: table of means for Gender.ADvsControl cannot be calculated 
(contains mutually non-orthogonal components). 
  
  

Standard errors of differences of means 

  
Table Gender ADvsControl   
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rep. unequal unequal   
d.f.  19  19   
s.e.d.  6.7  15.4   
  
  
 102  " Unbalanced Analysis of Variance " 

 103  BLOCK "No blocking" 

 104  TREATMENT Gender*ADvsControl 

 105  COVARIATE Age_at_Sampling 

 106  DELETE [REDEFINE=yes] _ausave 

 107  AUNBALANCED [PRINT=aovtable,means,screen; PSE=diff; 

COMBINATIONS=present; ADJUSTMENT=marginal;\ 

 108   FACT=3; FPROB=yes] CpG4Brain; SAVE=_ausave 

  
  

Screening of terms in an unbalanced design 

  
Variate: CpG4Brain 
  
  

Marginal and conditional test statistics and degrees of freedom 

  
 degrees of freedom for denominator (full model):    19 
  
 term  mtest  mdf  ctest  cdf 
 Gender  4.97  1  2.89  1 
 ADvsControl  3.54  1  1.46  1 
  
 term  mtest  mdf  ctest  cdf 
Gender.ADvsControl  0.31  1  0.31  1 
  
  

P-values of marginal and conditional tests 

  
  
 term  mprob  cprob 
 Gender  0.038  0.106 
 ADvsControl  0.075  0.242 
  
 term  mprob  cprob 
Gender.ADvsControl  0.581  0.581 
  
  
  

Analysis of an unbalanced design using Genstat regression 

  
Variate: CpG4Brain 
  
  

Accumulated analysis of variance 

  
Change d.f. s.s. m.s. v.r. F pr. 
+ Age_at_Sampling  1  224.0  224.0  1.14  0.298 
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+ Gender  1  973.3  973.3  4.97  0.038 
+ ADvsControl  1  286.2  286.2  1.46  0.242 
+ Gender.ADvsControl  1  61.7  61.7  0.31  0.581 
Residual  19  3721.2  195.9     
  
Total  23  5266.4  229.0     
  
  

Predictions from regression model 
  
Response variate: CpG4Brain 
  
  Prediction 
 Gender   
 F 16.44 
 M 26.67 
  
  
Standard error of differences between predicted means        6.310 
  
  

Predictions from regression model 
  
Response variate: CpG4Brain 
  
  Prediction 
ADvsControl   
 AD 12.86 
 Control 31.68 
  
  
Standard error of differences between predicted means        14.86 
  
  

Predictions from regression model 
  
Response variate: CpG4Brain 
  
  Prediction  
ADvsControl AD Control 
 Gender   
 F 9.80 25.72 
 M 17.13 40.03 
  
  
Minimum standard error of difference  8.62 
Average standard error of difference  13.74 
Maximum standard error of difference  18.02 
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 109  "General Analysis of Variance" 

 110  BLOCK "No Blocking" 

 111  TREATMENTS ADvsControl 

 112  COVARIATE "No Covariate" 

 113  ANOVA [PRINT=aovtable,information,means; FACT=32; CONTRASTS=7; 

PCONTRASTS=7; FPROB=yes;\ 

 114   PSE=diff] CpG4Brain 

Analysis of variance 

  
Variate: CpG4Brain 
  
Source of variation d.f. s.s. m.s. v.r. F pr. 
ADvsControl 1  604.0  604.0  2.85  0.105 
Residual 22  4662.4  211.9     
Total 23  5266.4       
  
  

Message: the following units have large residuals. 
  
*units* 22    35. approx. s.e.   14. 
*units* 24    37. approx. s.e.   14. 
  
  

Tables of means 

  
Variate: CpG4Brain 
  
Grand mean  21.  
  
ADvsControl  AD  Control 
   17.  27. 
  rep.    14  10 
  
  

Standard errors of differences of means 

  
Table ADvsControl   
rep. unequal   
d.f.  22   
s.e.d.  6.0   
  
  
 

  



252 
 

Appendix 6: Professional internships for PhD 

students reflection form 

 

Name of Organization  

 

The University of Nottingham Intellectual Property Commercialisation Office 
 
 
 
 
 

Details of Placement 

 

Please describe your main activities during the placement  
 
 

During the three month internship I worked alongside members of the IP 
commercialisation office to develop commercialization strategies and market 
research reports for intellectual property emerging from the research priority area 
‘regenerative medicine and stem cells’ . 

 

The work involved completing extensive research into new technologies and products 
being developed by researchers at the University of Nottingham using both meetings 
with inventors and internet searches. I was then tasked with identifying reasonable 
methods for protecting any intellectual property, such as through patents. This 
involved discussion with licensing executives, patent attorneys and lawyers. 
Following the identification of a promising technology I then went onto identify 
companies that might be potentially interested in licensing the technology and 
developing it further. In some cases I also identified funding options for ideas that 
required further development. I then collated all of the information I had collected 
into large comemrcialisation strategy reports.  

 
 
 

 

Placement Achievements 
 
 

Please detail all outcomes from the placement, including any publications, 

presentations given and reports written etc. 
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As mentioned above, part of my role during the work placement was to write 
commercialization strategy reports for promising emerging technologies. As part of 
this report I conducted extensive research into potentially commercially relevant 
research occurring at the University. I also identified possible sources of funding to 
extend work if needed, performed IP due diligence and identified the type of 
products that would be interesting for big pharma, mid pharma and small companies. 
The report also included extensive market research into the regenerative medicine 
and stem cell market in the UK, USA, Australia and Asia and the regulatory 
requirements needed for products emerging from the research area in order for 
them to be commercially viable.  

 
 
 
 

 

Skill development 

 

Has this Placement helped you developed any new skills or enhanced your previous 

skill set? 
 

 

During the placement I developed multiple skills. During my time there I have working 
as part of a large team which included licensing executives, patent attorneys, 
business developers, funding specialists and lawyers. Therefore I developed both my 
team work skills and also my communication skills. This also allowed me to further my 
interpersonal skills. In addition, I was managing multiple projects simultaneously. This 
therefore improved both my time management and organizational skills.  

 
 
 
 
 
 

 

Future Work 

 

Has this Placement influenced your future career aspirations? If so, in what way? 
 

(150-200 words)  
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The placement made me aware of many other career options open to me involving 
innovation and scientific discovery outside of the lab. It also gave me a unique 
opportunity to appreciate how important commercialization of research is. I am very 
glad that I now have this awareness regardless of whether this informs my future 
career directly.  
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Methylation Profiling RIN3 and MEF2C 

Identifies Epigenetic Marks Associated with 

Sporadic Early Onset Alzheimer’s Disease 
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Kevin Morganb, Graham B. Seymoura and Andrew Bottleya,∗

 
aSchool of Biosciences, University of Nottingham, Nottingham, UK 
bSchools of Life Sciences, University of Nottingham, Nottingham, UK 
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Abstract. A number of genetic loci associate with early onset Alzheimer’s disease (EOAD); however, the drivers of this 

disease remains enigmatic. Genome wide association and in vivo modeling have shown that loss-of-function, e.g., ABCA7, 

reduced levels of SIRT1 and MEFF2C, or increased levels of PTK2þ confer risk or link to the pathogenies. It is known that 

DNA methylation can profoundly affect gene expression and can impact on the composition of the proteome; therefore, 

the aim of this study is to assess if genes associated with sporadic EOAD (sEOAD) are differentially methylated. Epi- 

profiles of DNA extracted from blood and cortex were compared using a pyrosequencing platform. We identified 

significant group-wide hypomethylation in AD blood when compared to controls for 7 CpGs located within the 3’UTR of 

RIN3 (CpG1 p = 0.019, CpG2 p = 0.018, CpG3 p = 0.012, CpG4 p = 0.009, CpG5 p = 0.002, CpG6 p = 0.018, and CpG7 p = 0.013, 

respectively; AD/Control n = 22/26; Male/Female n = 27/21). Observed effects were not gender specific. No group wide 

significant differences were found in the promoter methylation of PTK2þ, ABCA7, SIRT1, or MEF2C, genes known to 

associate with late onset AD. A rare and significant difference in methylation was observed for one CpG located 

upstream of the MEF2C promoter in one AD individual only (22% reduction in methylation, p = 2.0E-10; Control n = 26, AD 

n = 25, Male/Female n = 29/22). It is plausible aberrant methylation may mark sEOAD in blood and may manifest in some 

individuals as rare epi-variants for genes linked to sEOAD. 
 

Keywords: Alzheimer’s disease, epigenetics, methylation, sporadic early onset 
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INTRODUCTION 

 
Alzheimer’s disease (AD) is a progressive neu- 

rodegenerative condition and the leading cause of 

dementia among the elderly [1]. AD can segment 

into two classifications depending on age at diagno- 

sis, raising the possibility of different initiators of 

disease for each group. Late onset AD (LOAD) is the 

most prevalent form, a condition which affects those 

over the age of 65 and accounts for approximately 

 
∗Correspondence to: Andrew Bottley, School of Biosciences, 

University of Nottingham, Nottingham NG7 2UH, UK. E-mail: 

Andrew.bottley@nottingham.ac.uk. 

 
90 to 95% of all those diagnosed with AD. Early 

onset AD (EOAD) typically affects those under the 

age of 65 and is much rarer, accounting for just 5% 

to 10% of all AD cases [2]. 

The genetic explanation for LOAD is complex 

with a growing number of different genes impli- 

cated, reviewed by [3], yet none in isolation fully 

accounts for disease susceptibility. EOAD however 

can be sub-divided into two groups, familial and spo- 

radic. Familial AD (fAD) is thought to be easier to 

explain, driven by mutations within a growing list 

of different genes, including but not limited to amy- 

loid protein precursor (APP) or presenilin (PSEN1 
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and PSEN2) genes [2, 4]. Sporadic EOAD (sEOAD), 

although like fAD occurs in individuals under the 

age of 65, has proven much harder to pin to any one 

gene or pathway. Comparative transcriptomic anal- 

ysis of sEOAD and fAD brain tissue identified over 

3000 differentially expressed genes [5], suggesting 

sEOAD and fAD may be distinct neurodegenerative 

processes. 

An increasing number of genes link with LOAD, an 

association identified through comparative genome 

wide association data analysis (GWAS) [6]. These 

new studies link numerous pathways to pathogenesis, 

correlating genes and cellular processes not previ- 

ously considered relevant [6]. Current models suggest 

LOAD may be a complex multifactorial condition 

driven by a number of different genes located within 

independent pathways [3]. Although each genetic 

variant links to disease, frequency within the wider 

population can vary; even the most common LOAD 

risk APOE s4 allele only presents in 40% of LOAD 

patients. Diversity in the frequency of genetic drivers 

of AD may be considered surprising given the sim- 

ilarities in the pathology of the disease collectively 

among AD sufferers. One plausible hypothesis is that 

these genes could be differentially regulated within 

groups of AD suffers, existing within the popula- 

tion as variants at an epigenetic or regulatory level. 

Some data exists to support this notion. Differences 

in DNA methylation of AD associated genes have 

been identified in DNA samples taken from both 

the blood and the brain of patients diagnosed with 

LOAD [7–12]. Notably APP has been found to be 

differentially methylated within the promoter region 

in LOAD, while sirtuin1 (SIRT1) has been shown to 

be differential methylated in a Chinese AD popu- 

lation [13–15]. Little, however, is currently known 

about the epigenetic status of genes that associate 

with sEOAD. 
Stable changes in DNA methylation can be induced 

by a person’s lifestyle or environment and may 

progressively accumulate over many years. Levels 

of methylation may direct gene expression  lead- 

ing to changes in the levels of  proteins,  which  

may cause, drive, or exacerbate AD disease symp- 

toms [16, 17]. Initial epi-profiling already undertaken 

using LOAD samples suggests this hypothesis may 

be correct for later onset AD [7]; however, little 

work to date has been undertaken to  investigate 

any putative epigenetic link with sEOAD. We there- 

fore sought to investigate if those LOAD genes 

genetically associated with AD occur as epi-variants 

in sEOAD. 

Genes previously associated with LOAD  

through GWAS profiling are likely candidates for 

epi-profiling with variation encoded by methylation. 

Genes already profiled using genetic association 

with LOAD include but are not limited to PTK2þ, 

ABCA7, and MEF2C [18]. These three genes are  

all implicated in a range of pathways associated 

with AD pathology. PTK2þ functions in memory 

formation and cell proliferation and survival [19, 20], 

ABCA7 has a role in regulating AþPP processing 

and inhibiting amyloid-þ [21–23], while MEF2C is a 

transcription factor involved in preventing excessive 

synapse formation [24]. 

Another gene, a candidate target of interest for both 

genetic and epigenetic analysis, is SIRT1. This gene 

is functionally implicated in AD disease pathology in 

a number of studies [25–28]. Disease linked differen- 

tial methylation of a non-coding region of SIRT1 has 

already been demonstrated in peripheral blood leuko- 

cytes of a Chinese LOAD population [13], therefore 

a comparative approach investigating sEOAD could 

be informative. Previous research by Hou et al. [13] 

identified two CpGs outside of the promoter CpG 

Island (CGI) to be significantly hypermethylation  

in LOAD samples; this suggests that epi-profiling 

should not just be restricted to CpG repeats, explor- 

ing the wider gene region may reveal interesting 

information around regulation linked to disease. 

There is some evidence to suggest that investigat- 

ing regulatory features other than the promoter region 

could be productive. A 3’UTR CGI found within 

the RIN3 gene is located on chromosome 14 and 

sits between two AD associated genes SLC24A4 and 

LGMN [18]. RIN3 is interesting in isolation as this 

gene associates with AD pathology through its inter- 

action with BIN1, a gene that shows the second most 

significant LOAD score after APOE [29]. Further it 

has also been found to be differentially methylated in 

LOAD [8]. It is likely that BIN1 and RIN3 interact in 

the process of endocytosis negatively effecting amy- 

loid trafficking [30, 31]. Since 3’ UTR methylation 

has recently emerged as an important epigenetic mark 

influencing gene expression, transcriptional elonga- 

tion and splicing it is a valid hypothesis that this CGI 

may represent an informative target for epi-profiling 

[32–34]. 

To date most transcriptomic or proteomic analy- 

sis is conducted using brain tissue. While profiles 

obtained from brain material may be informative 

about the direct epigenetic consequences of AD 

pathology, this tissue it is not a viable source for  

the identification of new biomarkers. Also it is well 
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established that brain methylation can differ signifi- 

cantly between the different regions of the brain [12]. 

Additional technical limitations include a restriction 

on test subject numbers through limited availabil- 

ity of tissue. Interestingly leukocytes are thought to 

acquire epigenetic markers linked to disease as they 

transit through the afflicted tissue. In limited studies 

to date, peripheral blood DNA methylation has been 

shown to be representative of brain methylation [35]. 

Blood based epigenetic biomarkers may be a use- 

ful addition to the AD diagnostic tool kit available, 

while also informing on the fundamental biology of 

sEOAD. 

This study profiles comparative levels of methyla- 

tion present in individuals presenting with sEOAD. 

Through profiling DNA extracted from both blood 

and brain, we have identified variation in the methy- 

lation of key genes that may link to AD and the 

progression of sEOAD. Differences in methylation 

may be consistent across many CpGs or could be 

restricted to a single bp. 

 

MATERIALS AND 

METHODS 

 

DNA samples 
 

sEOAD DNA samples were obtained from the 

Alzheimer’s Research UK Consortium DNA Bank, 

a resource curated by the University of Nottingham 

and were either extracted from leukocytes (n = 51) or 

brain (cortex) (n = 24). In total 40 sEOAD and 21 

control samples were used. 25 blood and 14 cor- 

tex brain AD samples and 26 blood and 10 brain 

control samples were used (See Table 1 for further 

information). DNA samples used in this study have 

been genetically tested by Alzheimer’s Research UK 

Consortium DNA Bank and none contained fAD 

mutations. 

All samples used in this study were received with 

informed consent and experimental procedures were 

approved by the local ethics committee, Notting- 

ham Research Ethics Committee 2 (REC reference 

04/Q2404/130). All experimental procedures were 

conducted in accordance with approved guidelines. 

DNA extraction 
 

Approximately 200 mg of cortex tissue was 

chopped finely on dry ice then transferred to a 1.5 ml 

Eppendorf tube. This was then incubated overnight 

( 18 h, shaking at 380 rpm, 50◦C) with 500 µl AL 

lysis buffer and 50 µl proteinase K (both Qiagen) and 

10 µl RNase A. Next, 500 µl of refrigerated phenol 

chloroform was added to the sample (Sigma), which 

was mixed by inverting before being subjected to cen- 

trifugation for 5 min at 13,000 rpm. The top phase of 

the resultant sample was then removed to a clean lock 

phase-gel 2 ml Eppendorf, and the addition of phe- 

nol chloroform, mixing and centrifugation repeated. 

The top phase of this was removed, and has 3 M 

sodium acetate (pH 5.2) added to it in a 1 : 9 ratio of 

sodium acetate to the sample. Chilled 100% ethanol 

was then added, at an equal volume to the sample, 

to precipitate out the DNA. Following centrifuga- 

tion at 13,000 rpm for 15 min, a wash was performed 

using 500 µl 70% ethanol, before another centrifu- 

gation step, for 15 min (13,000 rpm). The remaining 

ethanol was then discarded and the pellet air-dried, 

before resuspension in 100 µl 1xTE buffer, by heating 

to 50◦C for 1 h. 

Bisulphite treatment 
 

First DNA was bisulphite-treated using the Epi- 

Tect Bisulphite Conversion Kit (Qiagen, Germany), 

following the manufacturer’s instructions. Bisulphite 

treatment converted any non-methylated cytosines 

to uracil; therefore, in the following PCR product, 

non-methylated cytosines became thymine, allowing 

pyrosequencing of the PCR product to result in iden- 

tification of cytosine methylation. 500 ng of genomic 

DNA was bisulphite-treated for each patient sample 

and 10 ng of converted DNA was used in subsequent 

PCRs. 
 

In silico methods 
 

Target regions were identified using the UCSC 

Genome Browser (University of California, Santa 

Cruz, CA, USA)(http://www.genome.ucsc.edu/index). 

 

Table 1 
Shows clinical features of AD and control samples 

 

Group  Sex M/F Age at death Age at onset of disease Age at sampling 



 K.A. Boden et al. / Methylation Profiling RIN3 and MEF2C 

 

100 
 

Blood AD 17/8 57.95 (SD 3.28) 48.6 (SD 2.98) 47.2 (SD 2.28) 
 Control 13/13 N/A N/A 82.8 (SD 4.5) 

Brain AD 4/10 59.35 (SD 6.95) 48.85 (SD 3.32) 59.35 (SD 6.95) 

 Control 6/4 84.2 (SD 3.55) N/A 84.2 (SD 3.55) 
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Pyrosequencing primers were then designed for 

these regions using the PyroMark Assay Design soft- 

ware version 2.0 (Qiagen) and obtained from Eurofins 

MWG. Pyrosequencing assays were designed using 

the PyroMark Q24 software. 

 
Polymerase chain reaction (PCR) 

 

PCRs were conducted using the PyroMark PCR 

Kit (Qiagen, Germany) following manufactures 

instructions. PCRs contained 12.5 µl PyroMark PCR 

Mastermix 2x (Qiagen), 2.5 µl CoralLoad Concen- 

trate 10x (Qiagen), 0.25 ng of each PCR primer, 

and 10 ng DNA, made up to 25 µl  with RNase- 

free water. Details of PCR primers can be found in 

Supplementary Table 1; all PCR primer pairs con- 

tained a biotinylated primer to result in a biotinylated 

PCR product which could be captured by sepharose 

coated beads during pyrosequencing. PCR programs 

varied depending on primers used; details can be 

found in Supplementary Table 2. PCR product qual- 

ity was assessed by running 5 µl of PCR product on 

a 1% agarose gel prior to pyrosequencing. 

 
Pyrosequencing 

 

A pyrosequencing platform Q24 pyrosequencer 

(Qiagen, Germany) with PyroMark Gold Q24 

Reagents (Qiagen, Germany) was used to determine 

percentage methylation. Pyrosequencing was carried 

out following manufacturer’s instructions/protocol. 

Pyrosequencing results were interpreted using the 

PyroMark Q24 software. 

 
Statistical analysis 

 

For all the methylation percentage data, one-way 

analyses of variance were used to test the blood and 

brain tissue data for differences between the AD and 

control groups of subjects. Each of the cytosines were 

analyzed separately as were the blood and brain tissue 

data sets. When multiple values were recorded for 

the same cytosine from the same subject, the values 

were averaged to produce one value per person for 

each cytosine. These averages were then analyzed 

using the Analysis of Variance routines within the 

Genstat18 statistical package. 

The residuals from each analysis were plotted to 

check the assumptions of normality and homogene- 

ity of residuals, and also to highlight possible rare 

variants. For rare variants, the probability of obtain- 

ing residual values as, or more, extreme than the one 

observed was calculated from the standard normal 

distribution curve. To achieve this, the residual devi- 

ation between the individual outlier and the mean  

of its group; and the overall standard deviation from 

the rerun analysis were used as input to the Genstat 

Normal probability distribution routine. 

 

RESULTS 

 

PTK2β, ABCA7, SIRT1, and the MEF2C 

promoter CGI showed no significant methylation 

in AD 
 

PTK2þ, ABCA7, and MEF2C: Promoter regions 

of AD candidate genes PTK2þ, ABCA7, MEF2C, 

and SIRT1 were chosen as targets for analysis (see 

Supplementary Table 1 and Supplementary Figure 1); 

initial gene targets were selected based on previously 

published GWAS risk analysis data [18] or in the 

case of SIRT1, published promoter methylation data 

[13]. Previous research identified PTK2þ, ABCA7, 

and MEF2C to be associated with LOAD through 

GWAS [18, 36]; however, to date few experiments 

have investigated the contribution of these genes to 

sEOAD. These genes may be considered prime can- 

didates for regulation via an epigenetic mechanism; 

therefore, we first chose to profile methylation at 

these loci in blood and brain tissue taken from sEOAD 

patients. 

For PTK2þ, ABCA7, and MEF2C, the CpG island 

closest to the start site of transcription was chosen 

for analysis (details in Supplementary Figures 1 and 

2). In total, we profiled 5, 8, and 4 CpGs for PTK2þ, 

ABCA7, and MEF2C, respectively; however, unex- 

pectedly, we failed to detect any significant difference 

in the average regional level of methylation across 

genes investigated in sEOAD blood or brain derived 

samples (Fig. 1) (p > 0.05). It is interesting to note that 

for PTK2þ, ABCA7, and MEF2C, the regions targeted 

showed relatively low average levels of methylation 

in cortex and blood tissue of both AD and control 

samples. 

Given the absence of variation we observed for 

PTK2þ, ABCA7, and MEF2C, we opted to profile 

levels of methylation at an AD linked loci previ- 

ously reported to be differentially methylated [13]. 

SIRT1 associates with AD pathology through its role 

in attenuating Aþ toxicity and preventing tau cytotox- 

icity [25–28]; therefore, it is reasonable to suggest 
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aberrant methylation may impede this protective 

effect. As this previous study was undertaken 

using samples obtained from LOAD patients, 

we chose 
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Fig. 1. Box plots showing data representing average methylation across the regions investigated for PTK2þ (A), ABCA7 (B), SIRT1 (C), and 
the MEF2C promoter CGI (D). No significant difference in methylation was observed between AD and control in either blood or brain tissue. 
Box plots represent median with 25th and 75th percentile as edges, the whiskers either show the lowest and highest values or extend to 
the first quartile minus the interquatile range multiplied by 1.5 and up to the third quartile add the interquartile range times 1.5, 

depending on which values are largest or smallest (for the top and bottom whiskers respectively). For PTK2þ control blood n = 6, AD 

blood n = 5, control brain n = 3, and AD brain n = 4. For ABCA7 control blood n = 7, AD blood n = 4, control brain n = 3, AD brain = 6. For 
SIRT1 control blood n = 4, AD blood n = 5, control brain n = 3, and AD brain n = 3. For the MEF2C CGI region Control blood n = 3, AD blood n = 
5, Control brain n = 3, AD brain n = 4. 

 

to investigate if the epigenetic variation previously 

reported could also be observed in sEOAD patients. 

In order to directly compare levels of methylation 

for our sEOAD sample library with a previously 

published candidate AD associated epi-loci, we pro- 

filed two CpGs reported to be hypermethylated in 

LOAD peripheral blood [13]. Where tested, we found 

no significant difference in methylation compared to 

controls at either CpG site in blood. 

 
Methylation at the resolution of individual CpGs 

 

We detected no difference in the average regional 

level of methylation for each of the four candidate 

genes tested and no significant difference in methy- 

lation was identified for any  individual  CpG 

duplet within CpG islands upstream of ABCA7, 

SIRT1 or MEF2C in either tissue (p > 0.05; Sup- 

plementary Figure 3). However, interestingly, one 

specific CpG site investigated within the PTK2þ 
promoter CGI showed significant hypermethyla- 

tion in AD blood  (p = 0.04)  but  not  AD  cortex  

(p = 0.47) (Fig. 2). The average methylation found 

at CpG1 in AD blood was 8.4% compared to 5%   

in control blood. Although statistically significant, 

and all samples were completed in duplicate, it 

should be noted that this difference is relatively 

small [37]. 
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Fig. 2. PTK2þ shown at resolution of individual CpG: For the target region investigated in the PTK2þ promoter CpG1 was found to be 
significantly hypermethylated in AD Blood but not AD brain. Average methylation at each CpG investigated in controls (white bar) and AD 

(black bar) in blood (A) and brain (B) is shown, error bars represent S.E.M. ∗p < 0.05 (one tailed T-test). For blood control n =6 AD= 5, for 
brain control n = 3, AD n = 4. 

 

 

MEF2C Epi-variant CpG upstream of promoter CGI 

investigated 
 

CpGs located within the CpG island upstream of 

the transcription start site of MEF2C(1), (see Fig. 3), 

show equivalent levels of methylation between AD 

and control samples. However, it is plausible that 

methylation located at other upstream CpGs outside 

of this location may be crucial in determining either 

levels of transcription or the structure of the transcript 

expressed, therefore a further CpG site was targeted 

(shown as MEF2C(2) in Fig. 3). As a group wide aver- 

age, there was no evidence of a difference between the 

AD and control groups in either the blood (p = 0.708) 

or cortex (p = 0.593) data set (Fig. 3). Average lev- 

els of methylation were substantially higher than 

those of the other genes tested; average methyla- 

tion of 91% in blood and 86% in brain average. No 

significant difference in methylation was observed 

between the tissue types (p > 0.05) (Supplementary 

Figure 4). 

Intriguingly however, we identified a difference in 

methylation at this CpG in one AD patient blood sam- 

ple only (Fig. 4). The probability of observing, by 

chance, a value as low or lower than 70 for the AD 

group in the blood data was calculated using one-way 

analyses of variance 2.0E-10. Average methylation at 

the CpG of 70% was recorded for the individual M341 

(blood sample). This represented a 22% reduction in 

methylation when compared to average methylation 

in blood at this site in the other samples tested (total 

n = 51). Average methylation was calculated using 

 

data obtained from at least two technical repetitions 

in order to exclude the possibility of a technical error. 

It is established that rare genetic differences within 

this gene can be associated with sEOAD, it could be 

suggested that rare epigenetic variation at this site 

may also associate as a risk factor. 

In order to eliminate the possibility of a genetic 

cause of the methylation observed in this exper- 

iment, samples were genotyped for the published 

GWAS SNP; no association with this genotype was 

found. 

 
RIN3 3’UTR showed significant hypomethylation 

in AD blood but not AD brain 
 

RIN3 has been proven to interact with the AD 

associated protein BIN1, which in turn has also 

been significantly associated with AD via GWAS. 

This gene has also been shown to be differentially 

methylated in LOAD with an established link to AD 

pathology [8, 9, 38]. We chose to investigate a CpG 

island identified within the 3’UTR of RIN3 (see Sup- 

plementary Table 1 and Supplementary Figure 2). 

Pyrosequencing covered seven CpGs in total within 

this region (shown in Supplementary Figure 2) and 

average levels of methylation was calculated for AD 

blood, control blood, AD brain, and control brain 

(Fig. 5) across all seven CpGs tested. AD blood 

samples showed hypomethylation when compared to 

control blood (see Fig. 5). 

For each of the cytosines CPG1-7 data (Fig. 6) from 

the blood samples, there was a significant difference 
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Fig. 3. (A) Diagram showing the location of MEF2C(1) and MEF2C(2) targets within the MEF2C gene. (B) In terms of the second region of 
MEF2C investigated no obvious collective group wide differences between Control and AD at this CpG site were observed. Box plots 
shows median with 25th and 75th percentile as edges, the whiskers extend to the first quartile minus the interquatile range multiplied by 
1.5 and up to the third quartile add the interquartile range time 1.5. Control blood n = 26, AD blood n = 25, Control brain n = 10, AD brain n = 

14. 

 
 

between the AD and control group in %methylation 

(p < 0.05) (CpG1 p = 0.019, CpG2 p = 0.018, CpG3 

p = 0.012, CpG4 p = 0.009, CpG5 p = 0.002, CpG6 

p = 0.018 and CpG7 p = 0.013, respectively); the AD 

group being lower than the control for all CPG 1–7 

and there were no extreme outliers. The p values 

from the analyses were also compared to Bonfer- 

roni adjusted critical p values of 0.05/7 = 0.007 to 

adjust for the fact that 7 CGP data-sets were analyzed 

separately from each individual. CpG5 retained sig- 

nificance (p = 0.002) after strict Bonferroni correction 

for multiple comparisons, suggesting that aberrant 

methylation is centered within this region and spreads 

outwards across neighboring CpGs. 

There was no evidence (p > 0.05) of a difference 

between groups in % methylation for any of the 

cytosines CPG1-7 from the brain samples. Average 

methylation across this region in control blood was 

47.8% while average methylation in AD blood was 

37.29% a reduction of 10%. No significant differ- 
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Fig. 4. (A) Methylation profiling identifies rare individual AD hypomethylation of the upstream MEF2C CpG site. Patient sample M341 

showed statistically significant difference in methylation (p = 2.0E-10) when compared to other blood samples (A), statistical 
significance was not observed for patient M715 in brain (B). A) Shows average methylation at the CpG investigated in each sample 
investigated (average of at least two runs). Controls are shown in white and AD samples in black. Error bars represent the S.E.M. Control 
blood = 26, AD blood n = 25, control brain n = 10, AD brain n = 14; Male brain n = 10, Female brain n = 14, Male blood n = 29 0, Female 
blood n = 22. 

 

ence in average methylation was detected between 

AD brain and control brain. No link with gender 

was identified for overall levels of methylation at the 

RIN3 site; no aggregate difference could be detected 

between male and female samples for either blood or 

brain (see Supplementary Figure 6). 

 

Tissue specific hypomethylation was observed in 
AD brain 

 

Having established that in some instances com- 

parative regional differences in methylation may be 

specific to AD patients, we chose to compare rela- 

tive levels of methylation between tissues tested in 

this study. No significant difference in methylation 

was observed between tissues in either control or 

AD samples (Supplementary Figure 5) for AD and 

Control PTK2þ (p = 0.42; p = 0.1), ABCA7 (p = 0.43; 

p = 0.46), SIRT1 (p = 0.06; p = 0.24), and MEF2C(1) 

(p = 0.33; p = 0.37) (these are the p values using 

one- tailed T-tests, two tailed are, for AD and 

control PTK2þ (p = 0.85: p = 0.2), ABCA7 (p = 0.87; p = 
0.9), SIRT1 (p = 0.13; p = 0.49), and MEF2C(1) (p = 
0.66; 
p = 0.73). However, within the RIN3 3’UTR region 

of blood DNA was significantly hypermethylated  

in both AD and control blood when compared to 

AD and control brain (Supplementary Figure 7). 

Hypomethylation was also observed in brain tis- 

sue for the MEF2C(2) site tested (Supplementary 

Figure 4). 

 

DISCUSSION 

 
Much resource has been committed to inves- 

tigating the pathogenesis of LOAD, however a 

* 
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comprehensive understanding of sEOAD has thus 

far remained elusive; it is likely that new ways of 

under- standing drivers of sEOAD are required. 

Although 
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a number of genes have been identified as drivers or 

causal to LOAD and fAD, those genes and associated 

pathways do not necessarily explain the underlying 

causes of sEOAD. We propose that aberrant epige- 

netic regulation contributes at least in part to this 

process for some individuals. Uncontrolled or dys- 

regulation of a number of varied gene pathways or 

processes has been implicated in neurodegeneration; 

therefore, it is plausible that aberrant regulation of 

one of many genes may exacerbate pathogenesis [5]. 

Methylation of the SIRT1 promoter in LOAD 

patient samples has been previously reported by Hou 

et al. [13]; we therefore chose to test if equivalent 

 

 

 
Fig. 5. Collective group wide methylation Control versus AD for 

RIN3. Graph shows average methylation across the whole 
region investigated in the RIN3 3’UTR. Control blood n = 26, AD 
blood n = 22, Control brain n = 10, AD brain n = 14. Control blood 
Male to Female n = 12/14, AD blood Male to Female n = 15/7. 

methylation could also be detected in sEOAD sam- 

ples. It could be suggested that due to the core 

similarities of disease progression between AD sub- 

types, any epigenetic markers which are a feature of 

LOAD would be matched in sEOAD. Surprisingly 

we found no evidence of variation in levels of methy- 

lation between sEOAD samples and controls. This 

suggests that the methylation directed regulation of 

SIRT1 is not impaired in the process of sEOAD, and 

the sEOAD epigenome is distinct from LOAD in   

at least some instances. It is not obvious how this 

difference impacts on the development of sEOAD, 

although given the role of SIRT1 in attenuating tox- 

icities of both tau and amyloid it is likely to have 

some influence on the progression of disease. Further 

research is required to investigate the consequence of 

SIRT1 regulation in both conditions. 

Within our test group, we identified that the  

gene MEF2C was significantly hypomethylated in 

comparison to controls for only two individuals 

presenting with sEOAD. As an aggregate no group- 

wide differences could be detected, however we 

observed two individuals with pronounced differ- 

ences in methylation within a key regulatory region 

of this gene (22% and 15% lower in blood and 

brain, respectively). The aberrant epigenetic marks 

recorded for this gene in this study may represent 

an example of a rare epi-variant risk factors exist- 

ing within the population that accentuates the risk of 

developing sEOAD. Changes in epialleles can occur 

as very rare events within large populations and can 

have profound effects on morphology or phenotype 

[39]. It is therefore a valid hypothesis to suggest that if 

the expression of the affected gene links with disease 

 

 
 

Fig. 6. RIN3 Blood and Brain; resolution of each CpG. All of the seven CpG sites investigate in RIN3 were shown to be significantly 
hypomethylated in AD blood (A) but not brain (B). Showing average methylation found at each CpG site in the RIN3 3’UTR. Control shown as 
a white bar (blood n = 26, brain n = 10) and AD (blood n = 22, brain n = 14) shown as a black bar. Error bars represent S.E.M. 
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pathogenesis and levels of methylation controlling 

expression are altered, then this change methylation 

can alter the risk at the level of the individual however 

infrequently this may occur within a population. We 

evaluated the possibility that methylation at this site 

correlates with a known genetic risk factors however 

upon analysis hypomethylation did not correlate to 

this particular genotype. 

Where tested, we observed group wide differences 

in the levels of promoter methylation at the RIN3 

locus between sEOAD and control samples. Intrigu- 

ingly statistically significant differences in the levels 

of methylation were not limited to one CpG, but span 

a number of CpGs located within this region. The 

group-wide nature of these epi-polymorphisms sug- 

gests that the condition of sEOAD leads to changes 

in methylation at the RIN3 locus rather than being  

a rarer spontaneous causative driver of disease. The 

equivalence in both tissue samples also supports this 

hypothesis, e.g., it is likely that the levels of methyla- 

tion identified in leukocyte DNA are reflective of AD 

pathology experienced as these cells transit through 

the brain. Methylation of these sites is therefore 

likely driven by the environment of the diseased tis- 

sue, rather than methylation being causative of the 

disease. 

The consequence of changes in the levels of methy- 

lation located with the 3’UTR of RIN3 is unclear. 

RIN3 is known to associate with BIN1 and links 

with the process of endocytosis and Aþ process- 

ing; therefore, it is plausible that any change that 

impacts on regulation could exacerbate the progres- 

sion of AD. One hypothesis is that the AD brain ramps 

up the production of RIN3 in response to the amy- 

loid environment via demethylation of the 3’UTR 

region; increased methylation within 3’UTRs asso- 

ciates with reduced expression in reporter assay tests 

[33]. This is supported by the relative hypomethyla- 

tion we observed in AD brain relative to blood. This 

may suggest a direct correlation between the length 

of exposure to the amyloid environment and levels 

of methylation for RIN3. Further experiments will 

be required to determine the consequence of 3’UTR 

methylation on levels of gene expression and ulti- 

mately to sEOAD pathogenesis. 
Our data suggests that differences in methylation 

may mark the development of sEOAD. Epigenetic 

regulation of regions other than promoters can be 

aberrantly methylated in sEOAD patients promoting, 

initiating or driving AD pathology, suggesting that 

changes in epigenetic marks are a feature of the devel- 

opment of sEOAD. The ability to detect variations in 

blood allows for the testing of a large numbers of 

blood samples to further explore this hypothesis; an 

option not available if the effects manifest only in the 

brain epi-genome. 
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