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Abstract

Recently, collection of sequence data has become increasingly rapid and cost-efficient,

prompting much research into using this kind of data in the analysis of infectious

diseases. There is currently substantial interest in developing epidemic model frame-

works which can incorporate this new abundance of data. Whole-genome sequence

(WGS) data reveal to us the unique construction— the ‘fingerprint’— of the DNA of

a sample pathogen. These high resolution data introduce the possibility that we may

be able to discover who infected whom in an epidemic outbreak, allowing us to bet-

ter understand transmission dynamics and therefore design improved preventative

and intervention measures. WGS data may prove useful in understanding how levels

of infectiousness and susceptibility vary between individuals in a population, or pa-

tients on a hospital ward. Genetic data are becoming increasingly widely available,

and it is now possible to sequence isolates of some pathogens in real-time in the field

with mobile sequencing technologies. Therefore, developing the models and meth-

ods to best exploit this is of considerable importance.

The first focus of the research presented here is on antibiotic-resistant nosocomial

infections, or ‘hospital superbugs’, as these still pose a significant problem in hospi-

tals, especially in developing countries. Antibiotic resistance is estimated to kill 700

thousand people globally every year. Current public focus on the threat of an ‘an-

tibiotic apocalypse’ focuses on the need to reduce the overuse of antibiotics, but an-

other important strategy is to better understand the transmission of such pathogens

in order that better prevention and intervention strategies can be designed. Hospital

wards present a unique environment, data from which require their own models and

methods to analyse outbreaks of infectious disease. Initial research in this thesis has

concentrated on outbreaks of methicillin-resistant Staphylococcus aureus (MRSA), as it

is the most widespread and most common antibiotic-resistant nosocomial infection.

In this thesis, discrete-time stochastic epidemic models are developed which can be
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used to analyse both epidemiological and genetic data from an outbreak of MRSA on

a hospital ward. These new models can be used to estimate routes of transmission

through the hospital ward on the level of individual transmission events by harness-

ing the information available in the genetic distances between isolate sequences taken

from colonised patients. The unobserved transmission dynamics in the models can be

inferred using Bayesian inference in a data-augmented MCMC algorithm. Although

techniques have been developed to assess the goodness-of-fit of epidemic models in

Bayesian settings, they do not assess how well a model fits the genetic data. Methods

for doing so are developed in this thesis. An outbreak of MRSA is analysed using the

presented models, and the new goodness-of-fit techniques are used to suggest ways

to improve the fit of models.

The ideas behind the models for genetic data from MRSA outbreaks are also appli-

cable to other epidemic outbreaks for which genetic data are available. In this thesis

we present continuous-time stochastic epidemic models for the spread of avian in-

fluenza. These models have a spatial aspect and can be used to estimate the transmis-

sion events between farms by analysing genetic and epidemiological data from each

farm. Avian influenza is carried endemically by wild birds, so it is very difficult to

prevent outbreaks entirely. Therefore, it is very useful to better understand the trans-

mission dynamics of outbreaks and to be able to make predictions about the course

of a future epidemic.

The combined analysis of both epidemiological and genetic data through novel mod-

els and methods allows transmission of pathogens in epidemic outbreaks to be in-

vestigated on the level of individuals in the population. This can have a great public

health impact, as results about the routes of infection can inform prevention and con-

trol measures.
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Chapter 1

Introduction to epidemic modelling

and whole-genome sequence data

1.1 Introduction

This thesis aims to introduce and explore new methods for analysing whole-genome

sequence data with stochastic models for the spread of pathogens during outbreaks.

The idea is that by harnessing this relatively new type of data we can better estimate

the route of transmission that disease takes within a population during an epidemic.

In this chapter we discuss the background to this work, in both epidemic modelling

and in whole-genome sequencing. We introduce two specific pathogens which we

will model in detail later in the thesis.

1.2 Epidemic models

Epidemiology is a well established field which is concerned with health conditions

and diseases in populations of living things [1]. In terms of infectious diseases, epi-

demiology studies and analyses their occurrence, transmission and possible control

measures. This can include mathematical modelling of diseases which can describe

aspects of epidemics, including the spread of the disease, control mechanisms and

the effect on the population. Epidemic models can be used to estimate the rate and

route of transmission of the pathogen, the proportion of the population that is in-

fected, and the effectiveness of intervention measures. The use of such models for

communicable diseases can reveal the spatial spread of the disease, and can expose

1
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SEQUENCE DATA

mechanisms behind the spread which may be to do with the biology of the disease

or population, or to do with how the population interacts. Models enable predictions

to be made about future epidemics, and can allow for the assessment of how preven-

tion and control measures would impact outbreaks. This can provide valuable public

health information; for instance a model could be used to evaluate the benefits of a

future vaccination program [2, 3]. Here we describe some common epidemic mod-

elling techniques.

We use the word pathogen to refer to the bacterium, virus, or other microorganism

which can cause disease, which is illness, in a host which carries it, although some

pathogens may also be carried without causing disease. We use the words epidemic or

outbreak to mean numerous episodes of disease within a population over a defined,

usually short, period of time as opposed to a single incidence of the disease in one

member of the population. A population is a defined group of individuals, which may

be people, animals or plants which are at risk of acquiring the pathogen in question.

1.2.1 SIR or SEIR models

We now introduce two standard compartmental epidemic models which will under-

pin the models presented in this thesis. In either an SIR (susceptible, infectious, removed)

model or an SEIR (susceptible, exposed, infectious, removed) model, the members of a

population are each classified by a state, and we model the movement of individuals

between states over time [4]. In the SIR model these states are S, susceptible, I, in-

fectious, and R, removed. A susceptible individual is not carrying the pathogen but

may acquire it later in time. An infectious individual is carrying the pathogen and

may infect other individuals. A removed individual is no longer susceptible to infec-

tion, and is also no longer capable of transmitting the disease. This may be because

they have left the population through death, or have been isolated so that they no

longer have contact with other individuals, or they may have recovered and become

immune. A transmission event occurs when there is contact between an infectious

individual and a susceptible one which results in the susceptible individual becom-

ing infectious. The basic SIR model is illustrated in figure 1.1. The SEIR model is

similar, with the extra state E being exposed individuals that carry the pathogen but

are not yet able to infect other individuals. In this model a transmission event occurs

when contact between an infectious individual and a susceptible individual results in

the susceptible individual becoming exposed. After a latent period in this state they

become infectious and can pass on the infection.

2
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S I R
β γ

Figure 1.1: An illustration of an SIR model. An individual moves from state S, where they are

susceptible, to state I, where they are infectious, at rate β. An individual moves from state I

to state R, where they are removed through immunity or death, at rate γ.

Other variations of these compartmental models include an SI model where indi-

viduals remain infectious for the entire study length, an SIS model where recovered

individuals become susceptible to infection again, or an SIRS model where individu-

als are removed by temporary immunity or isolation from the rest of the population

and then become susceptible to infection again after this period.

The rate of transmission, β, in figure 1.1 measures how quickly susceptible individ-

uals become infectious through contact with other infectious individuals. This rate

depends on how the population mixes, so how likely it is that a susceptible individ-

ual will have an interaction with an infectious individual. In more complex models, it

may also depend on how susceptible the specific individual is, and on how infective

the specific infectious individual that they come into contact with is. Contact does not

have to refer to the two individuals physically touching, it can mean that the pathogen

transfers between them through the air or through some third party carrier that is not

explicitly included in the model. The most common SIR model assumes that the mix-

ing, susceptibility and infectivity of the population is homogenous, and therefore the

rate of transmission is directly proportional to the size of the infected population. A

specific susceptible individual becomes infectious at a rate q(t) = βI(t). The coeffi-

cient β is the standard for transmission. Clearly homogenous mixing and population

characteristics will not be appropriate in every outbreak, but this can be incorporated

into this type of model easily by allowing the parameter β to depend upon a charac-

teristic of the susceptible or infectious individual, or upon their geographic spacing.

Homogeneous susceptibility and infectivity will suffice for the purposes of this thesis.

1.2.1.1 Stochastic SIR model

Here we describe a stochastic SIR model, in continuous time, which allows for ran-

domness in the outcome of the epidemic. From the same initial situation an outbreak

could die out quickly or could become much bigger, simply by chance. The initial

population is considered to be made up of m susceptible individuals and n infec-

tious individuals. The infectious individuals remain infectious for certain lengths of

time (their infectious periods) which are independently and identically distributed
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according to a random variable P which has a specified distribution. At the end of an

individual’s infectious period they are removed from the population. Whilst a given

individual, i, is infectious they come into contact with another given individual, j,

at the points of a Poisson point process which has rate β and is independent of the

infectious periods and the Poisson processes governing contacts between other pairs

of individuals. If the individual j is susceptible at the time that the contact takes place

then j is infected and becomes infectious. Once there are no infectious individuals left

in the population the epidemic immediately ends [5].

If the infectious periods of the infectious individuals are independently and identi-

cally distributed according to a random variable which is exponentially distributed,

X ∼ Exp(γ), with PDF given by:

fX(x) =

{
γ e−γx x > 0

0 otherwise,
(1.2.1)

with parameter γ > 0, then this model is a model known as the general stochastic

epidemic model [2]. In this case, if S(t) and I(t) are the number of susceptible and infec-

tious individuals in the population at time t, then the process (S, I) = {(S(t), I(t)); t ≥
0} is a Markov process. Assuming exponential infectious period distributions can

therefore make the analysis much simpler.

The basic stochastic SIR model can be extended in a number of different ways. The

rate β may be assumed to differ between different pairs of individuals, so that indi-

vidual i comes into contact with individual j at the points of a Poisson process with

rate βi,j. This means that the model can allow for different types of individuals (eg.

individuals in different age or sex categories) with different infectious period distri-

butions and/or different susceptibilities. The rate βi,j may also rely on the spatial

distance between the two individuals.

1.3 Bayesian inference

In order to be used in applications, epidemic models are fit to the specific data that

are of interest. Estimates for the values of the parameters given the data can be ob-

tained and will provide information about the epidemic. There are many techniques

which can be used to find these estimates, but in this thesis we will exclusively focus

on Bayesian inference. Unlike classical statistics, where parameters are assumed to

have fixed values, Bayesian statistics assume that each parameter has a probability
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distribution [6].

An advantage of Bayesian inference is that prior knowledge about the parameters

can be included through what is called the prior distribution [7]. Equally, an unin-

formative distribution can be used for the prior if there is no previous knowledge

about the parameter, or if we want to ignore this knowledge in order to investigate

the parameter based solely on the data. The prior distribution comes from the fact

that Bayesian inference is based on Bayes’ Theorem which, for data x and parameters

θ, states that

π(θ|x) = π(x|θ)π(θ)

π(x)
=

π(x|θ)π(θ)∫
π(x|θ)π(θ)d θ

. (1.3.1)

Here π(θ) is the prior density of θ, π(θ|x) is the posterior density of θ given the data

x, and π(x|θ) is the likelihood of the data x given the parameters θ. Thus features

of the posterior distributions of the parameters which we wish to investigate, such

as the mean, quantiles and moments, can be described using the prior and likelihood

[6]. For example, the posterior mean is

E[θ|x] =
∫

θπ(x|θ)π(θ)d θ∫
π(x|θ)π(θ)d θ

. (1.3.2)

However, the integrations required to calculate such expressions which would give

the features of the posterior distributions are most often intractable, especially when

the model has high dimensions [8]. Therefore Markov Chain Monte Carlo methods

are commonly used to sample from the posterior densities of the parameters. These

samples can be used to approximate expectations of the features of the posterior dis-

tribution.

1.3.1 Markov Chain Monte Carlo

We now briefly introduce Markov Chain Monte Carlo methods which are commonly

used in Bayesian inference. A Markov Chain is a sequence of random states,

X1, X2, . . . Xn, where the current state is only dependent upon the previous state so

the transition kernel is P(Xi+1|Xi). Monte Carlo integration repeatedly samples from

a distribution and then uses these samples to approximate expectations of the dis-

tribution. Markov Chain Monte Carlo works by generating samples from a Markov

Chain with limiting distribution which is the distribution that we are interested in,

π(θ|x), and using these repeat samples to approximate expectations of functions of

π(θ|x) [8].
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1.3.1.1 Metropolois-Hastings algorithm

One way of producing a Markov Chain which has limiting distribution π(·) is to

use the Metropolis-Hasting Algorithm [9]. This algorithm works by taking a target

density π(θ), which need only be known in relation of proportionality, and a proposal

distribution q(θ̃|θ) and at each iteration sampling an updated value, θ̃. The algorithm

starts with initial parameter values θ0 and then at each iteration, n, proposes a value θ̃

for θn from the proposal distribution. The proposed value is accepted with probability

min

(
1,

π(θ̃)q(θn−1|θ̃)
π(θn−1)q(θ̃|θn−1)

)

and θn = θ̃ or else θn = θn−1. The Markov Chain produced here has a stationary dis-

tribution which is the target distribution if it converges. It will converge after a large

number of iterations, as long as the proposal distribution can propose all points in the

space of the true distribution. The period of iterations before convergence is known

as the ‘burn-in period’. The data from these iterations do not need to be stored, and

the number of iterations in the burn-in period can depend on the efficiency of the

proposal distribution [10]. When the target density is the posterior distribution of pa-

rameters θ only the prior density, π(θ), and likelihood, π(x|θ), need to be calculated

at each step as the constant of proportionality cancels in the acceptance probability.

Random-walk proposal

The most common choice of proposal distribution for the Metropolis-Hastings algo-

rithm is a random-walk proposal distribution. The idea is to sample from a standard

symmetric distribution and add this sampled value, ε, to the current value of the pa-

rameters. So

θ̃ = θn−1 + ε.

The Metropolis-Hastings acceptance probability is then

min

(
1,

π(θ̃)

π(θn−1)

)
.

1.3.1.2 Gibbs sampler

A special case of the Metropolis-Hastings algorithm is called the Gibbs sampler [11,

12], and is based on the target distribution π(θ). If the model has m parameters, so

θ = (θ1, θ2, . . . θm), we consider one of the parameters singly, θi, from the parame-

ter vector θ and then write its conditional distribution as π(θi|θ−i, x), where θ−i is
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the vector of parameters without θi. If this conditional distribution is a distribution

which we can sample from then we may set this as the proposal distribution, q(θ̃|θ), in

the Metropolis-Hastings distribution. The acceptance probability under this proposal

distribution cancels to 1, so each sample of θ̃ will be accepted.

1.3.1.3 Data augmentation in MCMC

Here we introduce the technique of data augmentation. Data augmentation is very

useful in the analysis of epidemics because the unobserved transmission events can

be sampled over, making the likelihood tractable. Many analyses in the literature use

this method [13–19].

Often, the evaluation of the posterior densities of the parameters is hindered by like-

lihoods that are made intractable by missing or unobserved data. In these cases

data augmentation can sometimes be used to sample from the posterior distribu-

tion by including the missing data, T, as if it were another set of parameters [20],

so π(x|θ) =
∫

T π(x, T|θ)d T. The parameter space is augmented to (θ, T) with the

missing data so that the augmented likelihood π(x, T|θ) can be considered. From

Bayes’ Theorem we get

π(T, θ|x) = π(x, T|θ)π(θ)

π(x)
,

which is proportional to the likelihood of x and T given the parameters θ multiplied

by the prior distribution for the parameters.

A data-augmented MCMC algorithm follows these steps:

1. Initial values are set for the parameters, θ0, and for the missing data, T0.

2. The parameters, θ, are updated using Metropolis-Hastings or Gibbs steps.

3. Proposal values, T̃, for the augmented data are generated using a sampling dis-

tribution, q(T̃|T, θ).

4. The proposed values are accepted with probability

min

(
1,

π(T̃|θ)π(x|T̃, θ)π(θ)q(T)
π(T|θ)π(x|T, θ)π(θ)q(T̃)

)

and the current state of T, Tn, is set to T̃, or else Tn is set as Tn−1.

5. Steps 2-4 are repeated until the desired number of iterations have been com-

pleted.
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1.3.1.4 Posterior predictive distributions

Assessing the fit of a model to a particular set of data is often done in a Bayesian

setting using the posterior predictive distribution [21]. We have defined the posterior

density π(θ|x) for the parameters θ of a model given the data x. The posterior pre-

dictive distribution is used to make predictions about hypothetical future data xnew.

This posterior predictive distribution is given by

π(xnew|x) =
∫

π(xnew|θ)π(θ|x)d θ.

A set of auxiliary statistics, A(x), may be specified which are matched to the observed

data when sampling the future data so A(xnew) = A(x). These auxiliary statistics may

include the length of the study, the size of the sample population, dates of sample

collections and other such things that do not form part of the stochastic modelling

framework. Then,

π(xnew|x, A(x)) =
∫

π(xnew|θ, A(x))π(θ|x)d θ.

In order to assess the goodness-of-fit of a model to the data this posterior predictive

distribution may be used to repeatedly simulate hypothetical future datasets from

which an approximation to the distribution of a summary statistic, S(x), may be pro-

duced. This summary statistic must be chosen to represent the data and capture the

variation between the hypothetical datasets.

The observed value of the summary statistic from the original data, S(x), can be com-

pared to the approximated distribution, and this gives a posterior predictive p-value

[22],

ps = P(S(x) ≥ S(xnew)|x, θ).

Extreme p-values which fall outside of the 2.5%− 97.5% interval give evidence against

the fit of the model to that specific dataset.

1.4 Whole-genome sequence data

We now discuss genetic data, specifically pathogen genome data, because of the in-

formation which it can provide about transmission during epidemics. We will go on

to introduce models for analysing such data in section 1.7. In the past decade the col-

lection of genome sequence data has become increasingly rapid, accurate, and cost-

efficient [23–25]. Genome sequence data are of interest to those studying population

dynamics and evolution, as well as to those studying the evolution and transmission
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of pathogens. For pathogens, genome sequence data can provide information about

the mechanisms of evolution which allow the disease to become more infectious or

drug-resistant. It can also give more information about the route that transmission of

the pathogen takes through a population, prompting much research into using this

kind of data in analysing epidemics. Whole-genome sequences (WGS) data display

the unique construction- the ‘fingerprint’- of the DNA of a sample of a pathogen.

High resolution data allow for better identification and tracking of pathogens from

an outbreak, meaning that we can better understand transmission dynamics and

therefore design improved prevention and intervention measures. Here we introduce

some of the basics of genome sequencing.

1.4.1 The structure of genomes

A genome is a DNA structure which is made up of two strands which are linked in

the classic double-helix structure. Each strand of DNA is made up of a string of nu-

cleotides, each of which is paired with a nucleotide in the opposite strand in what is

called a base pair. Nucleotides can take four different bases, adenine (A), cytosine (C),

guanine (G) or thymine (T). Base A will only pair with base T (and vice versa) and

base C will only pair with base G (and vice versa), so only one strand of the DNA

is necessary to reveal all of the information about the genome. A whole-genome se-

quence will vary in length, L, depending on the organism that it comes from, but can

always be represented as a vector B = (B1, B2, . . . , BL), where each Bi ∈ {A, C, G, T}.

Mutations occur in the DNA of an organism when there is a mistake made during

the replication process. A mutation of a single base pair is called a single nucleotide

polymorphism (SNP). Transitions happen when a nucleotide base is replaced by its

pair, so A by G and G by A, or C by T and T by C. Transversions happen when a

nucleotide base is replaced by one of the other two bases which are not its pair. It is

generally accepted that transitions are more likely than transversions, although many

models for mutation allow transitions and transversions with equal probability.

Diversity in genomes from an organism can also arise through recombination events,

where portions of the genome break off and are reinserted at a different site, or

through horizontal gene transfer, where portions of the genome are imported from

another source either in the environment or from a plasmid or virus. This type of di-

versity accumulation produces more pronounced change in the organism than single

mutations because more of the DNA is changed at once. It is likely that these events
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are the origin of new traits in organisms such as resistance to antibiotics in bacteria

[26].

In the following sections we will introduce two methods for collecting the informa-

tion present within genome sequences. We will start with the more basic method,

genotyping, and then will introduce whole-genome sequencing techniques.

1.4.2 Genotyping

Genotyping does not require sequencing the whole-genome for each sample, but in-

stead focuses on discovering what separates one genome from another and assigning

them to types or clusters. There are many methods for doing this, the earliest of which

involved examining fragments of DNA or RNA. More recent techniques focus on re-

gions of the genome that are known to produce variation, such as known repetitive

regions, or specific nucleotides which are known to be variable. These genotyping

methods can determine whether a pair of sequences belong to the same type, and

therefore whether they are likely to be part of the same outbreak. However, these

methods are limited as they depend on previous knowledge about the genomes of

the specific pathogen being investigated. In order to look in detail at possible trans-

mission events greater resolution is required.

1.4.3 Whole-genome sequencing

Most whole-genome sequencing techniques work by separating the genomes into

overlapping fragments which are then sequenced and finally reassembled to give the

full-length sequence. One of the first, and most well-known, of these was the Sanger

method, which uses bacterial cloning and DNA polymerase to create a series of DNA

fragments which are nested, and end in a known nucleotide. This is achieved by syn-

thesising nucleotides to a single strand of the DNA to be sequenced using a solution

which contains adapted versions of one of the four nucleotide bases. These adapted

bases will terminate the pairing process. Since the length of the fragment can be deter-

mined, and the nucleotide base at the end of the fragment is known, from the whole

series of fragments the whole-genome can be reassembled [27].

Next-generation sequencing (NGS) allows for higher-throughput pipelines of DNA

sequencing. There are a range of methods currently available in commercial pack-

ages, the most widely used being Illumina with at least 90% of sequencing data
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worldwide created through this platform [28]. Most platforms share the same basic

preparation steps during which the DNA is fragmented and denatured resulting in

sections of single stranded DNA. Adaptors are added to the ends and the fragments

are amplified to create many copies which can be sequenced in parallel. Each method

sequences these fragments by synthesis using either DNA polymerase or DNA ligase.

The next nucleotide to be paired is signalled in some way, either through fluorescent

or died nucleotides, or through a byproduct of the synthesis [24, 29].

The latest development in whole-genome sequencing has been the development of

third-generation sequencing (TGS) methods [25]. These long-read methods do not

need to fragment and amplify the genome into sections and the longer reads reduce

the risk of mistakes being made in the reassembly of the genome due to repetitive

sections. As this technology sequences single molecules it is faster than NGS meth-

ods and the DNA can be sequenced in real time instead of having to pause after each

nucleotide read. This is achieved by sensors in the machine which record in real time

the products, for example fluorescence or change in ionic current, of the reactions

when each nucleotide is synthesised. The MinION platform for TGS has allowed real

time sequencing of DNA in the field during ongoing outbreaks [30, 31] as it is small

enough to be portable, and the cost-efficiency of such platforms makes such sequenc-

ing feasible.

1.5 Healthcare associated methicillin-resistant Staphylococcus

aureus

We now discuss a specific pathogen from which WGS data may be collected for anal-

ysis. This thesis has a particular focus on outbreaks of methicillin-resistant Staphylo-

coccus aureus (MRSA), which falls into the category of antibiotic-resistant nosocomial

infections, or ‘hospital superbugs’. These still pose a significant problem in hospi-

tals [32], resulting in increased levels of illness and death and requiring patients to

stay in hospital for longer periods with the associated costs for treatment and bed

space. In the U.S. in 2018, it was estimated that more than 2 million people per year

are infected by an antibiotic-resistant microbe, and 23,000 of these ultimately die [33].

In the European Union it is estimated that antimicrobial infections cause 25,000 deaths

per year and result in 2.5 million days in hospital [34]. The situation is even worse in

developing countries, with 58,000 babies estimated to die in India per year through

infection with antibiotic-resistant bacteria [35], and 38,000 deaths per year estimated
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in Thailand, along with 3.2 million extra hospital days [36].

There is currently much public focus on the threat of an ‘antibiotic apocalypse’ dur-

ing which even routine infections will be untreatable due to completely antibiotic-

resistant superbugs [37]. Although such public campaigns aim to reduce the overuse

of antibiotics, another key strategy is to better understand the transmission of such

pathogens in order that better preventative strategies can be designed. Hospital

wards present a unique environment, data from which require their own models and

methods to analyse outbreaks of infectious disease. The population on a hospital

ward changes through admissions and discharges, and admissions can bring new

importations of the disease onto the ward. Patient-to-patient transmission is often

facilitated by the frequent contacts of healthcare workers, who may have temporarily

contaminated hands, with each of the patients [38].

There is a substantial amount of literature that investigates MRSA as it is the most

prominent and widespread of the ‘superbugs’; MRSA causes more nosocomial in-

fection than any other pathogen, and in 2004 it was estimated to cause disease in

2% of all patients in hospitals [39]. Staphylococcus aureus (SA) is a bacterium which

is persistently and asymptomatically carried by 20% of the healthy population, and

intermittently by 60% of the healthy population [40]. The bacterium is most often

found within the nose, but can also be carried on the skin of the neck, forearm, hand,

chest, abdomen, back, thigh and ankle, and in the perineum [41]. Methicillin-resistant

Staphylococcus aureus has also been found in the urinary tract, groin and pharynx [42].

When SA or MRSA enters the bloodstream through a wound, broken skin or surgical

site it can cause severe illness and even death. Mortality rates are higher for patients

infected by MRSA than for those infected with methicillin-susceptible SA [43, 44] and

on average they stay in hospital for longer [45].

1.6 Avian influenza

In this section we introduce another pathogen, avian influenza, from which WGS data

may be, and has been, collected to assist in analysis of epidemics. The population set-

ting for the study of this pathogen is very different from the nosocomial pathogen

discussed earlier as avian influenza epidemics can cover a large geographical area

so the population is often assumed to comprise individual farms or other groups of

birds rather than individual birds.
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Subtypes of the Type A virus which causes avian influenza, known as ‘bird flu’,

are endemically carried by flocks of wild birds and in particular by waterfowl [46].

The specific H5 and H7 subtypes can mutate into highly pathogenic avian influenza

(HPAI) which causes epidemics in commercial flocks [47] through infection of the tis-

sues of the respiratory, digestive and nervous systems of poultry. HPAI is associated

with high transmissibility and high rates of mortality, up to 100% [48]. Between 1996

and 2008, HPAI viruses are known to have caused 11 separate epidemics and four of

these outbreaks involved several millions of poultry [49].

Avian influenza can also be transmitted to humans. In China there have been five

epidemics of human infections of the strain H7N9 since 2013 with 1344 cases and 511

mortalities up to April 2017 [50, 51]. In order to prevent these outbreaks among hu-

mans and to limit the loss of commercial poultry it is vital that transmission during

epidemics is better understood in order to enhance prevention and control strategies.

Since it is very difficult to prevent outbreaks of avian influenza entirely, due to its

endemic carriage in wild birds and the fact that cases are not detected until they start

to exhibit clinical symptoms, which is some time after the infection event, it is im-

portant to study the transmission dynamics of outbreaks in order to be able to make

predictions about the course of a future epidemic whilst it is in progress. Knowl-

edge about likely transmission routes could help to end an outbreak by minimising

its spread through culling and other intervention measures [52].

1.7 Models to analyse genetic and epidemiological data

Now we discuss epidemic models which have been used to analyse genetic and epi-

demiological data from pathogens including, but not exclusive to, MRSA and avian

influenza. The recent abundance of genetic data from such epidemics has lead to the

proposal of many different methods and models which can be used to analyse this

sort of data. These methods differ in terms of the type of data that they require from

the epidemic and in what sort of outbreaks they are suitable for. Table 1.1 lists some

of the well-known Bayesian inference methods and summarises the key similarities

and differences between them. The first, third and fourth models in the table do not

include a forward model for the spread of the pathogen, instead working backward

to reconstruct the transmission tree, whereas the others do include a forward model

for the outbreak through time.
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In table 1.1:

• ‘Multiple imports’ means that the method allows for the disease to be imported

into the outbreak from outside the population through more than one event.

• ‘Multiple sequences per host’ means that the method allows analysis of more

than one sequence per host.

• ‘Unsampled case’ means that the method allows for there to have been cases of

the disease which were not detected or sampled (not simply known cases with

missing sequences).

• ’Infection times estimated’ means that the method estimates the infection times

as part of the method rather than assuming they are known beforehand.

• ‘Susceptible population considered’ means that the whole population is mod-

elled rather than just those who were infected.

• ‘Microevolution model’ means that the genetic distances between hosts are mod-

elled with some mechanism which produces mutations on the genome.

• ‘Gen. and epi. data indep.’ means that the genetic and epidemiological data are

assumed to be independent.

• ‘Phylogeny estimated’ means that the method estimates the phylogenetic tree

as well as the transmission tree.

• ‘Spatial element’ means that the physical distance between hosts is modelled.

We describe these models in more detail in the next sections.
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imports

Multiple
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Infection

times

estimated

Susceptible

population

considered

Micro-

evolution

model

Gen. and

epi. data

indep.

Phylogeny

estimated

Spatial

element

Cottam

et al. [53]
no no no yes no yes yes yes no

outbreaker

[18]
yes no yes no no yes yes no no

Numminun

et al. [54]
no yes no no yes no yes yes no

Hall

et al. [55]
no yes yes yes yes yes yes yes yes

Ypma

et al. [19]
no no no no no yes yes no yes

Morelli

et al. [17]
no no yes yes yes yes no no yes

Mollentze

et al. [56]
yes no yes yes yes yes no no yes

Worby

et al. [14]
yes yes yes yes yes no no no no

Table 1.1: A summary of key similarities and differences between methods for analysing genetic and epidemiological data from epidemic outbreaks.
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1.7.1 Phylogeny-based methods

Many models rely upon the construction of phylogenetic trees, where the sampled

sequences are the external nodes and the internal nodes are the ancestors of the se-

quences going back to the most recent common ancestors so that the tree is fully con-

nected. Although construction of these phylogenies provides information about how

related the samples in the data are, it is not straightforward to link them to transmis-

sion trees. Cottam et al. [53] present a method which does not integrate the genetic

and epidemiological data but uses them one after the other by first using statistical

parsimony genealogies constructed from the genetic data to find the set of possible

transmission trees. Then most likely transmission tree is found using the epidemio-

logical data. This method was applied to data from the 2001 outbreak of foot-and-

mouth disease in the UK and was successful in finding a tree which gave sources

for each infection which were 80% more likely than any other source. The construc-

tion of the genealogies in this method is achieved using the software package BEAST

[57] which performs Bayesian phylogenetic inference, and other analyses to do with

the evolution of sequences, using MCMC algorithms. BEAST is widely used as it

provides a number of different models for the evolution of sequences and for tree

structures.

Numminen et al. [54] also use phylogenetic trees in their importance sampling scheme

during which both the phylogeny and the transmission tree are sampled from im-

portance distributions. Hall et al. [55] propose a method which also samples from

the spaces of both trees at the same time using MCMC. The posterior probability of

the trees is calculated using a model for the structure of the epidemic which models

transmission at the individual host level and also models the DNA evolution process

taking place within each host. This model is available in the software package BEAST.

1.7.2 Non-phylogeny-based methods

Other approaches avoid the use of phylogenies by using functions of the genetic dis-

tance between samples to weight the edges of a transmission tree. In the R package

outbreaker Jombart et al. [18] presented the first method to be widely available as a

software package. This approach does not use genealogies but treats the transmis-

sion tree as a network with edges corresponding to infection events. The simplest as-

sumption of maximum parsimony is adopted: edges are weighted by the number of

mutations between samples from the hosts at each node and the minimum weighted
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tree is sought. This method allows multiple introductions of the pathogen and unob-

served cases, but does not allow hosts to be infected before their sample is taken, so

it requires a densely-sampled outbreak. This method was used to reanalyse the 2003

outbreak of Severe Acute Respiratory Syndrome (SARS) in Singapore and produce a

transmission tree with one source case rather than the two which were inferred by the

previous study. Investigations into the dynamics of the disease mutation supported

this transmission tree.

Ypma et al. [19] propose a method which uses genetic data alongside spatial and

temporal data to construct transmission trees for the 2003 outbreak of avian influenza

in the Netherlands. This approach assumes that these three types of data are inde-

pendent, so the likelihood that farm A infected farm B is simply the product of contri-

butions from each data type. In the genetic contribution transitions and transversions

in the DNA are assumed to occur at different rates, but the possibility of a nucleotide

mutating twice between sequences is neglected. The probabilities of all possible trans-

mission events are attained by averaging over the posterior density over the sample

space.

The methods above rely on the assumption that the epidemiological and genetic

data are independent when constructing the likelihood. Morelli et al. [17] present

a method which estimates the likelihood of transmission trees using all sources of

information (genetic, location and timing data) simultaneously. This method allows

for multiple mutations at one nucleotide position using the Jukes-Cantor correction

which allows for the fact that some nucleotides which appear unchanged may have

actually changed multiple times before reverting to their original state, so less dis-

tance is observed between sequences. The Jukes-Cantor correction [58] states that the

mean number of nucleotide differences that have actually occurred in a single posi-

tion on the genome, µ is related to the mutation rate m by µ = 3
4 ln

(
3

(3−4m)

)
. This

means that, in the Morelli et al. model, the conditional distribution of M, the number

of substitutions between two sequences, given ∆, the sum of time intervals along the

transmission chain, becomes:

M|∆ ∼ Bin
[

s,
3
4
{1− exp(−4

3
m∆)}

]
where s is the length of an observed sequence and m is the mutation rate per nu-

cleotide per day. The method gives the joint posterior distribution of the transmission

tree, infection times, duration of latent periods, lag between infection and detection,

and parameters (transmission and latency) given the observed genetic, spatial and
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temporal data. Mollentze et al. [56] extend this framework to allow for there to be

multiple, unconnected transmission trees which each begin with a separate importa-

tion of the disease. This method also estimates the total number of unobserved cases

during the sample period.

Worby et al. [14] introduce two models which can be used to infer the transmission

tree with an MCMC algorithm working forwards through time by deciding which of

the previously colonised patients was most likely to have infected the next infected

patient. In contrast to the other models discussed, these models simply use the SNPs

between sequences as a measure of genetic distance rather than having a model of

microevolution. The first model, the Importation Structure model, assumes that there

are different MRSA types that isolates can belong to (the number of types is inferred

during the MCMC algorithm) and the probability of the genetic distance, Ψi,j, be-

tween any pair of isolates is given by:

P(Ψi,j = x) =

{
µ(1− µ)x if i and j same type

µG(1− µG)
x otherwise

(1.7.1)

where µ, µG ∈ [0, 1], and x is an integer value taking a value between zero and L, the

length of the genome. The second model, the Transmission Chain Diversity model,

assumes that SNPs accumulate over time. The probability of the genetic distance

between a pair of sequences is then:

P(Ψi,j = x) =

{
µγt(r(i),r(j))(1− µγt(r(i),r(j)))x if i and j in same transmission tree

µG(1− µG)
x otherwise

(1.7.2)

where r(k) is the patient whom the kth sequence belongs to, t(r(i), r(j)) is the time be-

tween colonisation of the patients and γ ∈ (0, 1) accounts for increasing distance over

multiple transmission events. These models are the only ones that we have found

which allow for multiple importations, multiple sequences per host and unsampled

cases within the same framework. They also have the advantages of estimating the

infection times and explicitly modelling the susceptible population.

1.7.3 Strengths and weaknesses of models to analyse genetic and epidemi-

ological data

The methods and models for analysing genetic and epidemiological data which we

have discussed vary a lot in the approaches taken. The phylogeny-based methods

work backwards in time, and they rely upon inferring common ancestors among the
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sampled genomes which provide the tips of the phylogenetic tree. Therefore these

methods are not applicable when the set of sampled genomes contains both ancestors

and their descendants [59].

Of the non-phylogeny-based models, the Worby et al. model is the only one which

allows for multiple importations of the pathogen to the population, unsampled cases

within the population, and multiple sequences per host. The necessity of allowing

for multiple importations will depend on the pathogen being studied, but for a noso-

comial pathogen such as MRSA, for example, it is very important to have a model

which allows for more than one individual to introduce the disease into the ward.

Modelling unsampled cases will be advantageous in most situations, as it is rare for

an outbreak to be fully sampled. Allowing for multiple sequences per host is impor-

tant in order to account for within-host diversity. The impact of within-host diversity

will again depend upon the specific pathogen, but studies of MRSA have shown that

a single host can carry multiple sequence types [60, 61]. Another advantage of the

Worby et al. model is that it estimates the infection times instead of relying on them

being known, and it explicitly models the likelihood of the susceptible population

avoiding infection, which allows for estimation of the transmission rate as well as the

transmission tree.

The lack of a microevolution model in the Worby et al. model means that there are

no complicated equations governing the accumulation of genetic diversity in the se-

quences. Instead this model works simply by assuming that the genetic distances

between sequences are drawn from certain distributions depending on the relation-

ship between the hosts that they are sampled from. This reduces the dimensions of

the model, and by using the genetic distances it can allow for genetic diversity gained

from SNPs or recombination. However, this model does assume that the genetic dis-

tances between each pair of individuals are all independent, which is not accurate

for a transmission chain, eg. in the chain a → b → c the genetic distance between

the isolates from individuals a and c will not be independent of the genetic distance

between the isolates from a and b, and that between b and c.

The Worby model also does not include a spatial model since it was designed for

nosocomial infections where this would not be applicable. This thesis will present

models which will harness the advantages of the Worby et al. model, which have

been discussed here, but which will not incur the same disadvantages. Relaxing the

limiting assumption of independence between the genetic distances will be useful for
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all applications of such models. Defining a model which also has a spatial element

will be useful for applications to pathogens in populations which are geographically

spread.

1.8 Aims and structure of the thesis

In this thesis the aims will be:

1. To assess the validity of common assumptions in the modelling of genetic dis-

tances and to present new models which relax the most restrictive assumptions.

2. To present a stochastic model for the spread of disease which incorporates these

new genetic distance models and to show how it may be used to analyse genetic

and epidemiological data.

3. To present a new method for assessing the goodness-of-fit of genetic distance

models.

4. To investigate an outbreak of MRSA in Thailand, including fitting of transmis-

sion trees.

5. To investigate an outbreak of avian influenza in the Netherlands, including fit-

ting of transmission trees.

Chapter 2 investigates relaxing common assumptions in the modelling of genetic dis-

tances, and introduces three new models. These models are described in the context of

a full stochastic model for the spread of a disease in a population. Chapter 3 describes

methods for assessing the goodness-of-fit of epidemic models to epidemiological data

and presents a method for also assessing the goodness-of-fit of a genetic model to data

consisting of a genetic distance matrix. Chapter 4 fits the three new models presented

in chapter 2 to an outbreak of MRSA using a discrete-time data-augmented MCMC

algorithm. The performance of the algorithm is assessed using a simulation study,

and the goodness-of-fit of the model is investigated using the model assessment tech-

niques introduced in chapter 3. New versions of the models are suggested. Chapter 5

fits the three genetic models within a continuous-time epidemic model with a spa-

tial kernel to an outbreak of avian influenza using a data-augmented MCMC routine.

The performance of the algorithm is again assessed using a simulation study, and the

goodness-of-fit of the model is investigated using our model assessment techniques.
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Chapter 2

Models for epidemics to analyse

whole-genome sequence data

2.1 Motivation

In the past decade technology for the collection of sequence data has been continu-

ously improving in speed, cost and accuracy, prompting much research into using

this type of data in the field of epidemiology. There has been a focus on developing

models and methods for analysing epidemics which exploit this new abundance of

data. The increasing availability of whole-genome sequence (WGS) data introduce the

possibility that we may be able to infer who-infected-whom in an epidemic outbreak,

allowing for better understanding of transmission dynamics. This can inform the

design of improved preventative and intervention measures. WGS data may prove

useful in understanding how levels of infectiousness and susceptibility vary between

individuals in a population, or patients on a hospital ward. Genetic data are becom-

ing increasingly widely available, with it not unlikely that within the next decade all

cases of an emerging pathogen could be sequenced during an outbreak [62], so devel-

oping models and methods to best take advantage of this is of significant importance.

The starting focus of this research is concerned with nosocomial infections, or ‘hos-

pital superbugs’, as these are still a cause of increased illness and mortality in hos-

pitals [32]. Hospital wards present a unique environment which requires its own

models and methods because the population dynamics are very different to other set-

tings, with patients admitted and discharged from the population. Patients remain on

the ward constantly during their hospital stay, so there is much opportunity for con-

tact between patients, either directly or indirectly through healthcare workers. After
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developing our new models we proceed to apply them to an outbreak of methicillin-

resistant Staphylococcus aureus (MRSA) in a hospital in Thailand in chapter 4. There is

a substantial amount of literature concerned with MRSA transmission due to it being

the most prominent and widespread of the ‘superbugs’. MRSA causes more nosoco-

mial infection than any other pathogen, and in 2004 it was estimated to cause disease

in 2% of all patients in hospitals [39]. More recently, the highest rates of MRSA infec-

tion have been reported in Asia and North and South America, where it is estimated

to cause >50% of all healthcare-associated infection, although countries in Africa as

well as China, Australia and some European countries also report rates from 25-50%

[63].

In order to investigate how well our models, which focus on the joint modelling of

genetic and epidemiological data, can capture the dynamics of other types of out-

breaks, we adapt and apply our models to an epidemic of highly-pathogenic avian

influenza which affected the Netherlands in 2003 in chapter 5. Highly-pathogenic

zoonotic diseases such as this are important to study as they are often characterised

by fast transmission and large losses of commercial animals. In the last two decades,

a number of outbreaks of these types of pathogens, including avian influenza [64, 65],

swine influenza [66, 67], and foot-and-mouth disease [53, 68], have occurred in dif-

ferent countries, with widespread economic impact and concern for public health.

Therefore, control measures have an important role to play in lessening the effects

of such epidemics, and the better we can understand the dynamics of outbreaks, the

better we can design the control measures.

2.2 Introduction

Many studies have investigated the transmission of pathogens, especially in hospital

settings, using whole-genome sequence data alongside traditional epidemiological

data such as admission and discharge times, and pathogen swab test results. Many

different models have been presented to infer transmission trees for outbreaks of such

pathogens some of which have been presented in chapter 1. These models aim to con-

struct a transmission tree which shows the source of every infected individual. If an

individual was colonised by someone before they entered the study population we

call them an importation. If they were colonised by another individual in the sam-

ple during the course of the study we refer to this as a direct transmission event.

A sequence of direct transmission events such that individual a infects individual b

who infects individual c etc. is referred to as a transmission chain, and we say that c
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was indirectly infected by patient a. The transmission tree may be made up of more

than one transmission chain. In almost all models it is assumed that if a patient was

directly or indirectly infected by another patient this pair of individuals will have

sequences that are more genetically similar than patients who are in distinct chains

of transmission, so the probability that a transmission event occurred between two

patients who are colonised depends on the genetic diversity observed between their

sequences. There is much disparity between different models as to how the variation

in genetic distances between patients’ sequences is modelled.

In section 2.3 we describe the Worby et al. model for inferring transmission trees [14].

Section 2.4 looks at some of the assumptions made in the Worby et al., and many other,

models and explores the impact of these assumptions and how they might be relaxed.

This provides the context for the model for genetic distances that we develop in sec-

tion 2.6. Section 2.7 introduces a full discrete-time stochastic epidemic model which

uses the new models for the genetic distances. Section 2.8 discusses inference of the

model parameters.

2.3 Inferring transmission trees

In this section we will introduce the Worby et al. model [14] for inference of trans-

mission trees. The Worby et al. model is a discrete time stochastic model designed

to describe an outbreak of a pathogen on a hospital ward, which includes a genetic

model to describe the genetic distances between sequenced isolates from colonised

patients. This model can be used to construct a possible transmission tree, with esti-

mated transmission times, from an outbreak of a communicable pathogen in a hospi-

tal ward setting, as well as estimating parameters such as the transmission rate, test

sensitivity and probability of importation.

2.3.1 The Worby et al. model

Since data from a hospital setting are often collected daily, events such as admission

and discharge of patients, and transmission of the pathogen are modelled to occur

daily. The length of the study is L and the time t = 0, 1, . . . , L, where the initial day

of the study is considered to be t = 0. Over this period n patients are admitted to the

ward, with the ward assumed to be empty at t = 0, and all the patients to have left by

t = L. A specific patient, i, is admitted to the ward at time ta
i and discharged at time td

i .
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Each patient on the ward at time t is either susceptible or colonised. Each patient

who is admitted to the ward is either admitted colonised, with probability p, indepen-

dently of all other patients, or susceptible, with probability 1− p. Colonised patients

are those carrying the pathogen. Each patient, i, is subject to a number, νi, of tests at

times tt
i = tt

i,1, tt
i,2, . . . , tt

i,νi
, which give a set of results, Xi = Xi,1, Xi,2, . . . , Xi,νi , which

are either positive or negative. Each pathogen test is assumed, independently, to have

sensitivity z and specificity 1, meaning that a colonised patient is tested positive with

probability z and an uncolonised patient is always screened negative.

The probability of a specific susceptible becoming colonised on day t depends on

the number of colonised patients on the ward and it is assumed that all colonised

patients are equally infective, and all uncolonised patients are equally susceptible.

The probability that a specific susceptible patient avoids colonisation on day t is

P(avoid(t)) = exp(−βC(t)) where C(t) is the number of colonised patients on the

ward on day t. If the patient does not avoid colonisation on day t then a source for

their colonisation can be picked uniformly at random from the set of colonised pa-

tients, and therefore the probability of a given susceptible patient being colonised by

a given carrier of the pathogen is given by

1− exp(−βC(t))
C(t)

.

The number of colonised patients, C(t), is the total of all patients on the ward on day

t who were colonised on or before day t− 1 and those who are imported on day t or

before. Once a patient is colonised they stay colonised for the rest of their stay on the

ward and are included in the colonised population from the day after their colonisa-

tion, tc
i + 1, until the day of their discharge, td

i .

The model also includes a genetic model for any genetic sequences which are ob-

tained from the pathogen isolates taken from colonised patients. Each patient, i, who

has one or more positive test result may have ζi isolates sampled and sequenced on

days ts
i = ts

i,1, ts
i,2, . . . , ts

i,ζi
. The model describes the differences between these se-

quences rather than the sequences themselves, so for each sequence from each pa-

tient a genetic distance is drawn to each other sequence (from this patient and each

other patient) that was sampled at an earlier time. Each of these distances is mod-

elled as being drawn from a probability distribution which depends on where the

two patients from whom the sequences were sampled are in the transmission tree in

relation to each other. The probability distributions for the two versions of the Worby

et al. model are outlined in section 2.5.
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2.3.2 Assumptions in the Worby et al. model

This Worby et al. model makes a number of assumptions:

• It is assumed that a transmission event is a population bottleneck, so that only

a very small number of the bacterial population present in the source patient

are transmitted to the newly infected patient. A population bottleneck is an

event during which only one strain of the genetically diverse bacterial popu-

lation which exists in the source patient is transmitted to the newly colonised

patient.

• However, genetic diversity is modelled as a consequence of transmission, so it

is assumed that diversity is gained at, or shortly after, the transmission event.

Therefore if we observe the sequences of both the patient who first had the in-

fection, and the patient whom they colonised in a ward, we would expect them

to have very similar, but not necessarily identical, genetic sequences.

• It is assumed that each sequence that we observe is representative of the partic-

ular patient’s colonisation as a whole.

• It is further assumed that the genetic distances between sequences from patients

in a connected transmission chain are independent of each other.

2.3.3 Advantages of modelling the genetic distances rather than sequences

Genetic sequences are compared by aligning them and counting the number of posi-

tions on the nucleotide that differ between each sequence. We call the resulting num-

ber a genetic distance (also sometimes referred to as a ‘genetic difference’). The Worby

et al. model and our work use just these genetic distances rather than the observed

sequences themselves. Working simply with the genetic distances from the observed

sequences is beneficial because modelling how the mutations in the sequences actu-

ally occur with a microevolution model would require far more assumptions about

unobserved underlying processes.

The distance parameters that we use in modelling the genetic distances can repre-

sent diversity between sequences due to any of a number of factors: SNPs, recom-

bination events, or even colonisation by multiple strains in one host. More complex

microevolution models, however, often ignore the possibility of recombination and

multiple infections in order to make modelling the mutation dynamics possible. It is
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also impractical to work with the sequences themselves due to the large number of

nucleotide states that would need to be stored and modelled in order to model the

likelihood of observing each particular sequence. For example, a typical sequence

from an isolate of MRSA is 2.8- 2.9 million base pairs in length [39] and, although

most of these will not mutate, even in the fairly small dataset which we introduce in

chapter 4 there are 2591 locations where the base pairs do differ between sequences.

In order to use the sequences themselves we would need to work with vectors for

each sample which were at least this long.

2.4 Assessing the assumptions made in the modelling of ge-

netic distances

The Worby et al. model for the genetic distances between sequences in a transmission

chain assumes that the genetic distances between pairs of sequences are independent

of each other. In reality this can not be the case because in a chain of three sequences

(see figure 2.1), the distance between the first and third sequence, denoted by d1,3,

is bounded by the distance between the first and the second (d1,2), and the second

and third (d2,3). Clearly d1,3 can be at most the sum of d1,2 and d2,3 (this maximum

distance is achieved when different nucleotides mutate between each pair of consec-

utive sequences, ie. x nucleotides mutate between sequence 1 and 2, and y different

nucleotides mutate between sequences 2 and 3, so d1,3 = x + y), and d1,3 can not be

smaller than the difference between d1,2 and d2,3 (this minimum distance is achieved

when we have the largest possible number of reversions, such as nucleotide 1 in fig-

ure 2.1, happening during the second transmission). Hence,

|d1,2 − d2,3| ≤ d1,3 ≤ min(d1,2 + d2,3, N) (2.4.1)

where N is the number of nucleotides in each sequence.

Another common assumption in models [18, 19, 53] for genetic variation between

sequences is that it is appropriate to neglect the possibility that the same nucleotide

will mutate more than once during a chain of transmission. This assumption is made

because the probability of any mutation happening is so small, so the probability

that a mutation will happen twice in the same position during the period of study

is deemed unlikely enough to be ignored. Hence, the possibility of a nucleotide mu-

tating during an unobserved transmission and then reverting to its original state in

the next transmission is discounted. Although this is not an assumption made ex-
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Figure 2.1: A diagram to show a chain of transmission between patients 1, 2 and 3 where each

patient has a sequenced isolate which is 6 nucleotides long. In this case d1,2 = 3, d2,3 = 2

and d1,3 = 2. The nucleotide in position 1 changes once and then reverts to its original state,

the nucleotide in position 3 changes once and stays changed, and the nucleotide in position 6

changes twice, each time to a different base.

plicitly in the Worby et al. model we now explore the validity and impact of the two

assumptions stated here both together and separately.

2.4.1 The impact of common assumptions

We now investigate how much effect the assumptions that (i) nucleotides can only

change once and (ii) genetic distances are independent have in models of genetic

variation by defining a full joint probability distribution for the observed distances

and comparing it to the distributions obtained under these assumptions. We assume

that we have a chain of transmission in which consecutive patients infect each other,

so patient 1 infects patient 2 who infects patient 3 and so on. We assume that we ob-

serve each of these patients, but some of the transmissions may be indirect, meaning

that there could have been, say, an unobserved transmission event between patients 1

and 2 so that patient 1 directly infected patient 1b who in turn directly infects patient

2. We assume that each nucleotide in the sequence mutates between two observed

sequences i and i + 1 with a probability θi which depends on the number of unob-

served transmission events between these sequences. If we have N nucleotides in a

sequence that are assumed to mutate independently of each other, we thus have N
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independent Bernoulli trials, so we assume a Bin (N, θi) distribution for the number

of mutations between these two consecutively observed sequences. Clearly the first

step in the chain has probability P [Bin (N, θ1) = d1,2]. If a mutation to each different

base is assumed to be equally likely then at the following stage in the chain, each nu-

cleotide which has already changed can do one of three things: revert to its previous

state with probability θi+1
3 (see first nucleotide in figure 2.1), make a further change to

one of the two bases which it has not been with probability 2θi+1
3 (see sixth nucleotide

in figure 2.1), or remain in its changed state with probability 1− θi+1 (see third nu-

cleotide in figure 2.1).

The genetic distance between consecutive sequences i and i + 1 is modelled by the

random variable Di,i+1. The probability of observing the three genetic distances D1,2 =

d1,2, D2,3 = d2,3 and D1,3 = d1,3 becomes

P [(D1,2, D2,3, D1,3) = (d1,2, d2,3, d1,3)] = P [Bin (N, θ1) = d1,2]× f (d1,2, d2,3, d1,3, θ2) ,

(2.4.2)

where, for d1,3 ∈ Z+ and |d1,2 − d2,3| ≤ d1,3 < (d1,2 + d2,3 + |d1,2 − d2,3|)/2,

f (d1,2, d2,3, d1,3, θ2) =

(d1,3−|d1,2−d2,3|)/2

∑
j=0

[(
d1,2

max (d1,2, d2,3)− d1,3 + j

)(
θ2

3

)max(d1,2,d2,3)−d1,3+j

×
(

d1,2 −max (d1,2, d2,3) + d1,3 − j
d1,3 − |d1,2 − d2,3| − 2j

)(
2θ2

3

)d1,3−|d1,2−d2,3|−2j

× (1− θ2)
|d1,2−min(d1,2,d2,3)|+j P[Bin (N − d1,2, θ2) = |d1,2 −max (d1,2, d2,3) |+ j]

]
,

and for d1,3 ∈ Z+ and (d1,2 + d2,3 + |d1,2 − d2,3|)/2 ≤ d1,3 ≤ d1,2 + d2,3,

f (d1,2, d2,3, d1,3, θ2) =

(d1,2+d2,3−d1,3)/2

∑
j=0

[(
d1,2

d1,2 + d2,3 − d1,3 − 2j

)(
2θ2

3

)d1,2+d2,3−d1,3−2j

×
(

d1,3 + 2j− d2,3

j

)(
θ2

3

)j

× (1− θ2)
d1,3+j−d2,3 P [Bin (N − d1,2, θ2) = d1,3 − d1,2 + j]

]
.
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The sum over j in the formulae accounts for the fact that if d1,3 − |d1,2 − d2,3| > 1 then

there is more than one way to achieve the specific d1,2, d2,3 and d1,3. We sum over the

probabilities of each of these happening to give the total Pr[d1,2, d2,3, d1,3]. If the dif-

ference between the first and third sequences, d1,3, is small (< d1,2+d2,3+|d1,2−d2,3|
2 ) then

that will have been achieved mostly by the same nucleotides changing in the second

transmission as in the first transmission, whereas if d1,3 is larger (≥ d1,2+d2,3+|d1,2−d2,3|
2 )

there will have been more ‘new’ nucleotides changing on the second transmission,

and hence we have different formulas for the probability of each case. In each case

we construct each way in which the combination d1,2, d2,3, d1,3 could have occurred

by choosing, in the second transmission, the number of nucleotides which changed

again, the number that reverted to the original state, and the number which stayed

as they were. Clearly any further mutations happened in previously unchanged nu-

cleotides and are therefore modelled by the binomial distribution with adjusted N.

In order to compare this joint distribution Pr[D1,2, D2,3, D1,3] to the distribution im-

plied by the model where each genetic difference between a pair of sequences is as-

sumed independent, we compare the distributions of Pr[D1,3|D2,3, D1,2] and Pr[D1,3]

under the binomial assumption. The conditional probability is easily extracted from

the joint probability given above through Pr[D1,3|D1,2, D2,3] =
Pr[D1,2,D2,3,D1,3]

P[D1,2]P[D2,3]
:

P[D1,3 = d1,3|D1,2 = d1,2, D2,3 = d2,3]

=
P[(D1,2, D2,3, D1,3) = (d1,2, d2,3, d1,3)]

P[D1,2 = d1,2]P[D2,3 = d2,3]

=
P[Bin(N, θ1) = d1,2] f (d1,2, d2,3, d1,3, θ2)

P[Bin(N, θ1) = d1,2]P[Bin(N, θ2) = d2,3]

=
f (d1,2, d2,3, d1,3, θ2)

P[Bin(N, θ2) = d2,3]
.

Figure 2.2 shows the conditional distribution for d1,3 in an example where d1,2 = 9

and d2,3 = 9, θ = (0.0002615, 0.0002615) and N = 5354 (the values for θ and N here

are taken from Ypma et al. [19]) and figure 2.3 shows the independent distribution for

the same case. For all credible values of the parameters (ie. N large enough to be the

number of nucleotides in a genetic sequence, and θ small enough to be the probability

of a nucleotide mutating) over a wide range of distances the independent distribution

always displays far more variability than the conditional. In tables 2.1 and 2.2 we

compare the mean and variance for the conditional and independent distributions

over different values for D1,2 and D2,3 for two possible combinations of N and θ.
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N = 5354,

θ = 0.0002615

D1,2 = 1,

D2,3 = 9

D1,2 = 9,

D2,3 = 9

D1,2 = 20,

D2,3 = 9

D1,2 = 70,

D2,3 = 50

D1,2 = 1,

D2,3 = 0

Conditional

mean
9.997759 17.97983 28.95517 119.1284 1

Independent

mean
1.400071 1.400071 1.400071 1.400071 1.400071

Conditional

variance
0.003417146 0.03017241 0.06692719 1.28174 0

Independent

variance
1.399705 1.399705 1.399705 1.399705 1.399705

Table 2.1: The mean and variance of D1,3 when N = 5354 and θ = 0.0002615 conditional of

different values of D1,2 and D2,3 compared to the mean and variance of the probability mass

function for D1,3 when we assume that it is independent of the other two distances.

Table 2.1 takes values for N and θ from Ypma et al. [19] and table 2.2 takes values

from Worby [69].

N = 2591,

θ = 0.022

D1,2 = 1,

D2,3 = 9

D1,2 = 9,

D2,3 = 9

D1,2 = 20,

D2,3 = 9

D1,2 = 70,

D2,3 = 50

D1,2 = 1,

D2,3 = 0

Conditional

mean
9.995369 17.95832 28.90737 118.1989 1

Independent

mean
57.002 57.002 57.002 57.002 57.002

Conditional

variance
0.006925675 0.06216 0.06692719 2.592574 0

Independent

variance
53.747956 53.747956 53.747956 53.747956 53.747956

Table 2.2: The mean and variance of D1,3 when N = 2591 and θ = 0.022 conditional of

different values of D1,2 and D2,3 compared to the mean and variance of the probability mass

function for D1,3 when we assume that it is independent of the other two distances.

2.4.2 Assessing the validity of the assumptions

Figures 2.2 and 2.3 show that the conditional distribution placed the vast majority of

the probability on the value d1,3 = d1,2 + d2,3. This lends credence to the assump-

tion mentioned earlier: that the probability of the same nucleotide changing twice in

a transmission chain is so small that it can be discounted. This assumption would
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Figure 2.2: Pr(D1,3|D1,2 = 9, D2,3 = 9) The probability mass function for the genetic distance

between sequences from the first and third patient in a transmission chain given that the

distances between the sequences from the first and second, and second and third patient are

both 9. We assume that each of the 5354 nucleotides in the genetic sequence can mutate

between two consecutive sequences with probability θ = 0.0002615.

Figure 2.3: The probability mass function for D1,3 when we assume that the distance between

sequences from the first and third patient is independent of the distances between sequences

from the first and second patient, and second and third patient. We show D1,3 in the range

0, 1, . . . , 18 which are the theoretically possible values when D1,2 = 9 and D2,3 = 9

.
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greatly simplify our problem, and the joint probability in this case is simply

P[(D1,2, D2,3, D1,3) = (d1,2, d2,3, d1,3)] = P[Bin (N, θ1) = d1,2]×P[Bin (N − d1,2, θ2) = d2,3],

(2.4.3)

which can easily be generalised to a k-sequence transmission chain by

P[(D1,2,D2,3, D1,3, ..., D1,k, ..., Dk−1,k) = (d1,2, d2,3, d1,3, ..., d1,k, ..., dk−1,k)]

=P[Bin (N, θ1) = d1,2] · P[Bin (N − d1,2, θ2) = d2,3]...

×P[Bin (N − d1,2 − d2,3 − ...− dk−2,k−1, θk−1) = dk−1,k].

From this joint probability we see that the conditional probability of, say, D1,3 given

D1,2 and D2,3 is P[(D1,3|D1,2, D2,3) = (d1,3|d1,2, d2,3)] = 1{d1,3=d1,2+d2,3}. This is close to

the random variable whose probability mass function is shown in 2.2 so this assump-

tion appears much more plausible than the assumption of independent distances. It

is notable that even for values for which the means of the two distributions are close,

the variation of the independent distribution is always far higher than the conditional

variance.

Having seen that the assumption of independence between distances is not realistic,

we are motivated to create a new model for genetic distances to improve upon the

Worby et al. model.

2.5 The genetic distance models in the Worby et al. model

There are two versions of the Worby et al. model, which were briefly introduced in

chapter 1. We recap them here for ease. The two models differ in the modelling of

the genetic distances. The principle behind both is that the genetic distances between

sequences from two patients who are closely linked are more likely to be similar than

between sequences from two patients who are not closely linked. Exactly what con-

stitutes ‘closely linked’ is what separates the two models. In each model the genetic

distances are assumed to be drawn from a different set of probability distributions

which depend on the inferred relationship between the two patients from whom the

sequences were collected. Both models are briefly outlined here.

2.5.1 The Importation Structure Worby et al. model

The Importation Structure model assumes that there are different strains of the pathogen

that isolates can belong to. It is assumed that a patient who is colonised during their
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stay on the ward has a strain of the pathogen which belongs to the same group as the

pathogen of the patient who infected them. Patients who arrive on the ward already

colonised have a pathogen which belongs to a group which is already represented

with probability c (where c is called the ‘clustering’ parameter), or which belongs to a

new group which has not yet been observed on the ward. The total number of groups,

and the number of patients in each group, is unknown and needs to be inferred. The

probability of the genetic distance, Ψi,j, between any pair of isolates is given by

P(Ψi,j = x) =

{
µ(1− µ)x if i and j are same type

µG(1− µG)
x otherwise

where x = 0, 1, . . . and µ, µG ∈ [0, 1]. In reality x can not be larger than the length of

the genome L, but since L is very large this has no effect because
L
∑

x=o
P(Ψi,j = x) ≈ 1.

2.5.2 The Transmission Chain Diversity Worby et al. model

The second model, the Transmission Chain Diversity model, assumes that SNPs ac-

cumulate over time and that isolates in separate transmission chains are unrelated, so

any two importations will be unrelated to each other. The probability of the genetic

distance between a pair of sequences is then

P(Ψi,j = x) =

{
µγt(r(i),r(j))(1− µγt(r(i),r(j)))x if i and j are in the same tree

µG(1− µG)
x otherwise

where r(i) is the patient whom the ith sequence belongs to, t(r(i), r(j)) is the time

between colonisation of the patients, γ is the transmission diversity factor, and γ ∈
(0, 1) accounts for increasing distance over multiple transmission events.

2.6 Relaxing the assumption of independence

In both variations of the Worby et al. model it is assumed that the genetic distances

along a chain are all drawn independently from geometric distributions. We have pre-

viously discussed the limitations of this assumption of independence, and therefore

we introduce three new models for the genetic distances that take into account the

dependence between distances in the same chain. The rationale behind the models,

that the genetic distance between two related patients is likely to be smaller than the

genetic distance between two unrelated patients, remains the same, but the precise

distributions from which these distances are drawn differ from model to model.
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2.6.1 Three new models for a genetic distance matrix

These new models define the distributions from which the genetic distances between

sequences are assumed to be drawn. We will refer to the patient from which a spe-

cific sequence i was taken as Hi, so Hi was the host for sequence i. Alternatively, we

can refer to the sequences taken from a specific patient j as Qj = {Qj,1, . . . , Qj,ζ j},
so sequences Qj were sampled from patient j. In defining these new models we use

the terms ‘distinct’ or ‘separate’ transmission chains to refer to transmission chains

which have different roots, so each transmission chain originates with a different

patient who is colonised before admission to the ward. Patients in the same trans-

mission chain are those who directly or indirectly infect each other eg. Hi → Hj or

Hi → · · · → Hj.

The models use Poisson distributions because if the number of mutations is assumed

to be binomially distributed ∼ Bin(N, p) then due to the large value of N and small

value of p we can approximate this as a Poisson distribution with parameter λ = Np

since:(
N
x

)
px(1− p)N−x =

N(N − 1) . . . (N − x + 1)
x!

(
λ

N

)x (
1− λ

N

)N−x

=
N(N − 1) . . . (N − x + 1)

Nx
λx

x!

(
1− λ

N

)N (
1− λ

N

)−x

≈ λx

x!

(
1− λ

N

)N

if N is much larger than x,

≈ λx

x!
exp(−λ) if N is large.

2.6.1.1 The Chain Error model

The first new model, the Chain Error model, is based on the idea that patients who

are in distinct transmission chains, and are thus unrelated, have the genetic distances

between their sequences drawn from a Poisson distribution with parameter θgl and

patients who share a direct transmission event have the genetic distances between

their sequences drawn from a Poisson distribution with parameter θ. If there are pa-

tients who had more than one isolate sampled then the genetic distance between the

within-host sequences is drawn from a Poisson distribution with parameter θi.

Patients who are in the same transmission chain but are separated by more than one

transmission event have genetic distances between their sequences which are on aver-

age equal to the sum of the underlying distances in the chain which separates them,
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with variance that will increase with the length of the chain. For sequences i and

j which are taken from patients who are separated by k > 1 transmission events,

we define Di,j to be the sum of the genetic distances between sequences from con-

secutive patients who make up the underlying transmission chain. If Hi and Hj are

separated by k transmission events such that Hi colonises p1 who colonises p2 etc.

(Hi → p1 → p2 → · · · → pk−1 → Hj) then Di,j = ∑k−1
r=0 ΨQpr ,1,Qpr+1,1 where p0 = Hi,

pk = Hj and ΨQp1,1,Qp2,1 is the genetic distance between sequences Qp1,1 and Qp2,1

which are the first sequences taken from patients p1 and p2. The genetic distance

between i and j is defined as Di,j + ξW where P(ξ = 1) = P(ξ = −1) = 0.5. W

is a Poisson random variable with parameter kγ truncated at Di,j, in order to ensure

that the distance can not be negative. The random variables ξ and W are independent.

To derive the conditional probability distribution for Ψi,j when k > 1 we define

pj = P(W = j) =
P(Pois(kγ) = j)

∑
Di,j
l=0 P(Pois(kγ) = l)

=
(kγ)j

j! ∑
Di,j
l=0

(kγ)l

l!

.

Therefore

P(X = Di,j) = P(W = 0) = p0, (2.6.1)

P(X = Di,j + q) =
1
2

pq =
1
2

p(x−Di,j) (q = 1, 2, . . . , Di,j), (2.6.2)

P(X = Di,j − q) =
1
2

pq =
1
2

p(Di,j−x) (q = 1, 2, . . . , Di,j). (2.6.3)

Equations 2.6.2 and 2.6.3 can be combined to give P(X = x) = 1
2 p|Di,j−x| for x 6= Di,j.

Therefore, adding an indicator function gives us P(X = x) = p|Di,j−x|
( 1

2

)1{x 6=Di,j} for all

x ≤ 2Di,j. This restriction on x is due to the truncation which ensures that the genetic

distance can not be negative.

If Ψi,j is the genetic distance between sequences i and j, and k is the number of trans-

mission events that separates the patients from which the sequences i and j were

taken (k = ∞ if the patients are not in the same chain), then the genetic distances for

pairs of sequences which are from the same patient, or share a direct transmission

event, or are unrelated are drawn, independently, from the following distributions:

P(Ψi,j = x) =


(θx

gl/x!) exp(−θgl) if k = ∞

(θx
i /x!) exp(−θi) if k = 0

(θx/x!) exp(−θ) if k = 1

(2.6.4)
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where x = 0, 1, . . . . Again, x in practice can not be larger than the length of the

genome L, but the fact that L is so large means that
L
∑

x=o
P(Ψi,j = x) ≈ 1.

The conditional probability distribution for genetic distances for pairs of sequences

which are in the same chain but separated by more than one transmission event is:

P(Ψi,j = x|Ψa,b = ψa,b : trans(a, b) = 1) =

(kγ)|Di,j−x|

|Di,j − x|!
(

∑
Di,j
l=0(kγ)l/l!

) (1
2

)1{x 6=Di,j}

1{x≤2Di,j} if k > 1,

(2.6.5)

where trans(a, b) is the number of transmission events separating sequences a and b

and ψa,b is the genetic distance between sequences a and b. The number Di,j is the sum

of underlying genetic distances in the chain between i and j for which trans(a, b) = 1.

The joint distribution for all genetic distances in the transmission tree is simply the

product of, firstly, the marginal distributions for those genetic distances for which

trans(i, j) ∈ {0, 1, ∞}, which are given in equation 2.6.4, and, secondly, the marginal

distributions for those genetic distances for which trans(i, j) > 1, which are given in

equation 2.6.5 and are conditional on the first set of marginal distributions. Therefore,

the joint distribution is:

P

 ⋂
(i,j)∈G

{Ψi,j = ψi,j}

 =

 ∏
(i,j)∈G1

P
(
Ψi,j = ψi,j

) ∏
(i,j)∈G2

P
(
Ψi,j = ψi,j|Ψa,b = ψa,b : (a, b) ∈ {0, 1, ∞}

) ,

(2.6.6)

where G = {(i, j) : i < j, j ≤ nseqs} is the set of indices for all genetic distances,

including the unobserved distances, with nseqs being the total number of sequences in

the genetic distance matrix, including the unobserved sequences. The sets G1 and G2

are: G1 = G ∩ {(i, j) : trans(i, j) ∈ {0, 1, ∞}} and G2 = G ∩ {(i, j) : trans(i, j) > 1}.
The terms in the products are given by equations 2.6.4 and 2.6.5.

2.6.1.2 The Chain Poisson model

The second new model can be thought of as a variation of the Chain Error model

described above; under this model the genetic distance between two sequences from
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patients who are in the same chain but separated by more than one transmission event

will equal Di,j on average, with a variance that will increase with Di,j. These genetic

distances are drawn from a Poisson distribution with parameter equal to the sum of

the underlying distances in the transmission chain, Di,j. As before, the genetic dis-

tances between sequences from patients who are in separate transmission chains are

drawn from a Poisson distribution with parameter θgl , and the genetic distances be-

tween sequences from those patients who share a direct transmission event are drawn

from a Poisson distribution with parameter θ. If there are patients who had more than

one isolate sampled then the genetic distance between the within-host sequences is

drawn from a Poisson distribution with parameter θi.

Under this Chain Poisson model, the the genetic distances for pairs of sequences

which are from the same patient (k = 0), or share a direct transmission event (k = 1),

or are unrelated (k = ∞) are drawn, independently, from the following:

P(Ψi,j = x) =


(θx

gl/x!) exp(−θgl) if k = ∞

(θx
i /x!) exp(−θi) if k = 0

(θx/x!) exp(−θ) if k = 1.

(2.6.7)

The conditional probability distribution for genetic distances for pairs of sequences

which are in the same chain but separated by more than one transmission event is:

P(Ψi,j = x|Ψa,b = ψa,b : trans(a, b) = 1) = (Dx
i,j/x!) exp(−Di,j) if k > 1, (2.6.8)

where trans(a, b) is the number of transmission events separating sequences a and b

and ψa,b is the genetic distance between sequences a and b. The number Di,j is the sum

of underlying genetic distances in the chain between i and j for which trans(a, b) = 1.

Here we simply draw the genetic distances for sequences in the same chain from a

Poisson distribution with parameter Di,j = ∑k−1
r=0 ΨQpr ,1,Qpr+1,1 where p0 = Hi, pk = Hj

and ΨQpr ,1,Qpr+1,1 is the genetic distance between the first sequence taken from patient

pr and the first sequence taken from patient pr+1. So Di,j is the sum of the distances

between the sequences from patients involved in the consecutive transmission events

between the patients with sequences i and j. In the Chain Error model we assume

that the distance will be equal to Di,j with some error, the size of which depends on

the length of the underlying chain, whereas in this version the mean is equal to Di,j

and the variance around this grows as the distance grows (as the mean and variance

of a Poisson distribution are equal). Therefore the length of the chain is implicitly in-

cluded in this model, as we assume that the total distance will increase as the length
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of the chain increases. This version of the model has fewer parameters and leads to

simpler likelihood expressions when fitting the model to data.

The joint distribution for all genetic distances in the transmission tree is simply the

product of, firstly, the marginal distributions for those genetic distances for which

trans(i, j) ∈ {0, 1, ∞}, which are given in equation 2.6.7, and, secondly, the marginal

distributions for those genetic distances for which trans(i, j) > 1, which are given in

equation 2.6.8 and are conditional on the first set of marginal distributions. Therefore,

the joint distribution is again given by equation 2.6.6 with the terms in the products

given by equations 2.6.7 and 2.6.8.

2.6.1.3 The Time Dependent Distances model

In the two models above it is indirectly assumed that the size of the difference be-

tween two genetic sequences will depend on the time that elapses between the pa-

tients’ infections as well as their relative positions in the transmission tree. In the

Chain Error model the inclusion of the parameter k (which is the number of transmis-

sion events between patients with sequences i and j) in the distribution for the ge-

netic distance between two sequences from patients in the same transmission chain

who are separated by at least two transmission events means that the variance of

the size of the genetic distances will increase as the length of the chain between the

two patients increases. In the Chain Poisson model the variance of the size of the

genetic distances between sequences from patients who are separated by more than

one transmission in the same chain increases as the sum of the underlying distances

in the chain increases, which intuitively suggests that the distance will increase as the

time between the infections of the patients increases. Therefore, we introduce a model

which includes time dependence explicitly in the model for the genetic distance be-

tween sequences from an infector and its direct infectee.

The Time Dependent Distances model is based on the idea that the genetic distance

between sequences from a patient and the patient who infected them will have some

dependence on the time between the sampling of the isolates from the patients. This

is because the pathogen is multiplying and mutating within the first host, Hi, from

the time of sampling, si, until it is transmitted to the second host, Hj, during the

transmission event at time IHj , and there it continues to multiply and mutate until

it is sampled at time sj. As we have modelled the time dependence at the level of

the individual transmission events we keep the distribution from the Chain Poisson
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model for the genetic distances between sequences from patients who are separated

by more than one transmission event. As we observe the underlying distances that

make up the transmission chain we want to utilise this information rather than throw-

ing it away in order to model time dependence on this level explicitly. Patients who

are in different transmission chains again have the genetic distance between their se-

quences drawn from a Poisson distribution with parameter θgl and any within host

genetic distances are drawn from a Poisson distribution with parameter θi. Therefore

the Time Dependent Distances model assumes that the genetic distances for pairs of

sequences which are from the same patient (k = 0), or share a direct transmission

event (k = 1), or are unrelated (k = ∞), are drawn, independently, from the following

distributions:

P(Ψi,j = x) =


(θx

gl/x!) exp(−θgl) if k = ∞

(θx
i /x!) exp(−θi) if k = 0

((tijθ)
x/x!) exp(−(tijθ)) if k = 1.

(2.6.9)

The conditional probability distribution for genetic distances for pairs of sequences

which are in the same chain but separated by more than one transmission event is:

P(Ψi,j = x|Ψa,b = ψa,b : trans(a, b) = 1) = (Dx
i,j/x!) exp(−Di,j) if k > 1, (2.6.10)

where trans(a, b) is the number of transmission events separating sequences a and b

and ψa,b is the genetic distance between sequences a and b. The number Di,j is the sum

of underlying genetic distances in the chain between i and j for which trans(a, b) = 1.

So Di,j = ∑k−1
r=0 ΨQpr ,1,Qpr+1,1 where p0 = Hi, pk = Hj and ΨQpr ,1,Qpr+1,1 is the genetic

distance between the first sequence taken from patient pr and the first sequence taken

from patient pr+1. So Di,j is the sum of the distances between the sequences from the

patients involved in the consecutive transmission events between patient Hi and Hj.

Some measure of the time difference related to the two sequences is included in this

model through tij. This quantity can be defined differently depending on the setting

of the outbreak to be modelled. For nosocomial infections it could be tij = |ts
i − ts

j |
where ts

i and ts
j are the sampling times of sequences i and j. If sampling times were

not available the difference between the times of infections of the patients could be

used as the measure of the time between sequences i and j.

The joint distribution for all genetic distances in the transmission tree is simply the

product of, firstly, the marginal distributions for those genetic distances for which

trans(i, j) ∈ {0, 1, ∞}, which are given in equation 2.6.9, and, secondly, the marginal

distributions for those genetic distances for which trans(i, j) > 1, which are given in
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equation 2.6.10 and are conditional on the first set of marginal distributions. There-

fore, the joint distribution is again given by equation 2.6.6 on page 36, with the terms

in the products given by equations 2.6.9 and 2.6.10.

In the next sections we describe in detail how this model for the genetic distances

fits within the wider model for the spread of a pathogen.

2.7 The model for the spread of a pathogen

The three genetic models described in section 2.6 give the distributions from which

we can assume the genetic distances between patients’ sequences are drawn. This is

one part of the whole stochastic model which describes the spread of a pathogen. The

stochastic model which the genetic distance distribution fits into will vary depending

on the setting and type of pathogen which is being modelled. Here we will describe

such a model for the spread of a pathogen within a single hospital ward in discrete

time over a study of length L. The initial day of the study is set as t = 0 and therefore,

t = 0, 1, . . . , L. For ease we assume that at time t = 0 the number of patients present

on the ward is nt = 0, although this could be relaxed by allowing patients present

on the ward before the study began to have an ’admission‘ time equal to t = 0. Over

the course of the study the total number of patients to be admitted and discharged

is n. The model describes the dynamics of the spread of the pathogen on the level of

individuals and can be used to estimate the transmission of the disease from patient

to patient throughout the ward, as well as the times of transmission events and values

of the parameters.

Each patient, i, is admitted to the ward at time ta
i , colonised at time tc

i (tc
i = ∞ if

the patient remains susceptible for the duration of their stay) and discharged at time

td
i . A colonised patient is a patient who is carrying the pathogen at any body site,

either asymptomatically or symptomatically. The model assumes that each patient is

either positive (positive will mean that the patient is carrying the pathogen) on ad-

mission with probability p, or negative (not carrying the pathogen) with probability

of 1− p, independently of all other patients. It is assumed that there is no background

transmission, meaning that there is no ongoing contamination in the ward and there

are no persistent carriers elsewhere in the hospital, including the staff on the ward,

although this could easily be incorporated into the model if required.

All uncolonised patients are assumed to be equally susceptible, and all colonised pa-
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tients to be equally infective. The probability of a specific susceptible patient avoiding

colonisation on day t depends on the number of colonised patients on the ward, C(t),

so P(avoid(t)) = exp(−βC(t)). Therefore if the patient does not avoid colonisation

then a source can be picked uniformly at random from the set of colonised patients,

and the probability of a given susceptible patient being infected by a given carrier of

the pathogen is defined to be

1− exp(−βC(t))
C(t)

.

A colonised patient is regarded as infective from the day after infection, t = tc
i + 1,

until discharge from the ward at t = td
i . Each patient, i, has a number, νi, of test re-

sults which are either positive or negative, Xi = Xi,1, Xi,2, . . . , Xi,νi , which are taken at

times tt
i = tt

i,1, tt
i,2, . . . , tt

i,3. The sensitivity of the screening test is represented by the

parameter z, so a colonised patient has a probability z of being screened positive each

day that they receive a test independently of all other tests. The specificity of the test

is assumed to be 100%, so all negative patients are screened negative.

Those patients who receive one or more positive test results may also have one or

more isolates sequenced. A patient, i, with νi positive swabs has ζi sampled isolates

sequenced on days ts
i = ts

i,1, ts
i,2, . . . , ts

i,ζi
. The distributions from which the genetic

distances between these sequences are assumed to be drawn have been given in sec-

tion 2.6. The parameter vector, ρ, for our model is ρ = {p, z, β, Θ} where Θ is the

vector of genetic diversity parameters.

2.8 Inference of parameters of the model for the spread of a

pathogen

The model introduced in section 2.7 can be used to infer the transmission dynamics,

transmission times and values of the parameters for data collected from a hospital

ward. Such a data set should contain admission and discharge times for patients,

pathogen swab results which are either positive or negative (a positive result means

they are carrying the pathogen, since we do not allow for false-positives, although we

do allow for false-negatives), and the distances between the genetic sequences taken

from the patients’ pathogen isolates.

Inferring the transmission dynamics means inferring the admission states of the pa-

tients and which patient was likely to have been the ‘source’ of a particular positive
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patient’s colonisation. The admission state, φi, of a patient, i, is whether the patient is

already colonised when they are admitted to the ward (φi = 1), or is susceptible on

admission (φi = 0). If there has been a contact (which may be indirect contact, not

necessarily direct, physical contact) between two patients that has resulted in patient

j being colonised by the pathogen which patient i was carrying then we define patient

i to be the source for patient j. In order to completely specify the transmission tree

we include T = {tc, φ, s, Ψa}, the vector of unobserved data consisting of unobserved

colonisation times tc = (tc
1, tc

2, . . . , tc
npos

) for all positive patients npos, admission states

φ = (φ1, φ2, . . . , φn) for all n patients, sources s = (s1, s2, . . . , snacq) for all patients who

acquire the pathogen whilst on the ward nacq, and unobserved genetic distances Ψa

which are the distances which would be included in the genetic distance matrix if

sequences had been observed for every colonised patient.

2.8.1 Model likelihood

Using our model, we now derive the likelihood of observing the set of genetic dis-

tances, Ψ, between patients’ isolates, and the results of the screening tests carried out

for each patient, X. This will allow us to estimate the transmission tree for the spread

of the pathogen through the ward, which includes times and sources of each trans-

mission event. Using the matrix of genetic distances, Ψ, which is straightforward to

recover from a dataset that contains genome sequence data, seems a more intuitive

method than considering the very small probabilities of observing each particular ge-

netic sequence.

The model likelihood that we are interested in, π(X, Ψ|ρ), is intractable because it

requires integration over all possible colonisation times and sources. Therefore we

augment the parameter space with unobserved data, T. The vector T consists of the

times of every colonisation, tc, sources of every colonisation, s, and every patient’s

importation status, φ. As we are working with the genetic distances between isolates

instead of the sequences themselves, this augmented likelihood is the likelihood of

the observed matrix of distances, Ψ and MRSA screening results, X, given the model

parameters, ρ, conditional on Z, the vector of observed data such as admission and
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discharge times which are not explicitly modelled. From Bayes’ Theorem we get:

π(ρ, T|X, Ψ, Z) =
π(ρ, T, X, Ψ, Z)

π(X, Ψ, Z)

=
π(X, Ψ|T, ρ, Z)π(T|ρ, Z)π(Z|ρ)π(ρ)

π(X, Ψ|Z)π(Z)

=
π(X, Ψ|T, ρ, Z)π(T|ρ, Z)π(ρ)

π(X, Ψ|Z)

(2.8.1)

since π(Z|ρ) = π(Z) because Z, the observed data that is not explicitly included in

our model, is independent of the parameters, ρ. Equation 2.8.1 shows that the likeli-

hood π(ρ, T|X, Ψ, Z) is proportional to the likelihood of observing the distance matrix

and screening results given the unobserved dynamics and parameters, π(X, Ψ|T, ρ, Z),

multiplied by the likelihood of the unobserved data given the parameters, π(T|ρ, Z),

multiplied by the prior distribution of the parameters, π(ρ). In order to infer the

whole transmission process a data-augmented MCMC routine can be used to sample

the parameters ρ and the transmission dynamics, T, from π(X, Ψ|T, ρ, Z)π(T|ρ, Z).

2.8.1.1 Genetic part of the model likelihood

π(X, Ψ|T, ρ, Z) is the likelihood of observing the distance matrix and screening results

given the unobserved dynamics and parameters and therefore this genetic part of the

likelihood varies for each of the three models. The three variations are given below.

We define nseqs as the number of genetic sequences in the genetic distance matrix.

The number of transmission events between patient Hi and patient Hj, which are the

patients which give sequences i and j, is given by trans(i, j). This is calculated by

looking at the sources of Hi and Hj and any intermediate patients in the transmission

chain. If patients Hi and Hj are the same patient then trans(i, j) = 0, and if they

are in separate transmission chains then trans(i, j) = ∞. If trans(i, j) > 1 then Di,j =

∑k−1
r=0 ΨQpr ,1,Qpr+1,1 where p0 = Hi and pk = Hj so Di,j is the sum of the genetic distances

between sequences from consecutive patients in the transmission chain between Hi

and Hj.
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Chain Error model

π(X, Ψ|T, ρ, Z) = zTP(X)(1− z)FN(X,T)

×
nseqs

∏
j=2

j

∏
i=1

[
1trans(i,j)=1

θΨi,j exp(−θ)

Ψi,j!

+ 1trans(i,j)>1
(kγ)|Di,j−Ψi,j|

|Di,j −Ψi,j|!
(

∑
Di,j
l=0

(kγ)l

l!

) (1
2

)1{Ψi,j 6=Di,j}

1{Ψi,j≤2Di,j}

+ 1trans(i,j)=∞

θ
Ψi,j
gl exp(−θgl)

Ψi,j!
+ 1trans(i,j)=0

θ
Ψi,j
i exp(−θi)

Ψi,j!


where TP(X) is the number of true positive screening results given the swab results

X, and FN(X, T) is the number of false negative screening results, given the swab

results X and augmented data T.

Chain Poisson model

π(X, Ψ|T, ρ, Z) = zTP(X)(1− z)FN(X,T)

×
nseqs

∏
j=2

j

∏
i=1

[
1trans(i,j)=1

θΨi,j exp(−θ)

Ψi,j!
+ 1trans(i,j)=0

θ
Ψi,j
i exp(−θi)

Ψi,j!

+ 1trans(i,j)>1

D
Ψi,j
i,j exp(−Di,j)

Ψi,j!
+ 1trans(i,j)=∞

θ
Ψi,j
gl exp(−θgl)

Ψi,j!


where TP(X) is the number of true positive screening results given the swab results

X, and FN(X, T) is the number of false negative screening results, given the swab

results X and augmented data T.

Time Dependent Distances model

π(X, Ψ|T, ρ, Z) = zTP(X)(1− z)FN(X,T)

×
nseqs

∏
j=2

j

∏
i=1

[
1trans(i,j)=1

(tijθ)
Ψi,j exp(−(tijθ))

Ψi,j!
+ 1trans(i,j)=0

θ
Ψi,j
i exp(−θi)

Ψi,j!

+ 1trans(i,j)>1

D
Ψi,j
i,j exp(−Di,j)

Ψi,j!
+ 1trans(i,j)=∞

θ
Ψi,j
gl exp(−θgl)

Ψi,j!


where tij is a measure of the time difference between the two patients which in the

case where we have swab times is ti,j = |ts
i − ts

j |, TP(X) is the number of true posi-

tive screening results given the swab results X, and FN(X, T) is the number of false

negative screening results, given the swab results X and augmented data T.
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2.8.1.2 Epidemiological part of the model likelihood

The likelihood of the unobserved data given the parameters is π(T|ρ, Z), where Z, the

vector of observed dynamics, consists of admission, discharge and screening times.

The number of patients who are admitted to the ward during the course of the study

is given by n. The set of all patients in the study is given by P and the set of patients

who were colonised whilst on the ward is given by Pw = {i ∈ P : φi = 0, tc
i 6= ∞}.

The epidemiological likelihood is given by

π(T|ρ, Z) = p∑i φi(1− p)n−∑i φi

×
n

∏
i=1

1tc
i =ta

i
+ 1tc

i 6=ta
i

exp

− min(tc
i−1,td

i )

∑
t=ta

i

βC(t)


× ∏

j∈Pw

(
1− exp

(
−βC(tc

j )
))

C(tc
j )

1{sj∈C(t)}

where φi is the admission state of the ith patient, so φi = 1 if the patient was colonised

before admission and φi = 0 if they were susceptible on admission, sj is the source

of patient j’s colonisation, and C(t) is the number of colonised individuals present on

the ward on day t. The admission, colonisation and discharge times of patient i are

given by ta
i , tc

i , and td
i respectively.

2.9 Discussion

In this chapter we have investigated the validity of two assumptions that are often

made when modelling genetic distances between sequenced isolates. The first com-

mon assumption is that each nucleotide in a sequence can only mutate once between

isolate samples. Thus there is no probability of a nucleotide being observed as the

same base in both sequences but actually having mutated to another base and then

back to the original base. We found that this assumption was credible in a setting

where the number of nucleotides is large and the mutation rate is low.

The second common assumption that we looked at was the assumption that the pair-

wise genetic distances between patients in a transmission chain are independent of

each other. We found that this assumption was not realistic and therefore proposed

to develop a model which relaxed this assumption. We introduced three new models

for the genetic distances between sampled isolates. Each of these models includes

dependence upon the underlying genetic distances from the chain in the distribution
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for the genetic distance between sequences from two patients in a transmission chain

who are separated by more than one transmission event.

We introduced a discrete-time stochastic model for an epidemic which includes any

one of the three models for genetic distances. In chapter 3 we will discuss methods for

assessing the goodness-of-fit of these models to data, and in chapters 4 and 5 we will

fit these models to datasets from outbreaks of two very different pathogens, MRSA

and avian influenza.
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Chapter 3

Model assessment for models used

to analyse whole-genome sequence

data

3.1 Motivation

In chapter 1 we discussed some of the many different models which have been pro-

posed which can make use of the new abundance of genetic data available in order to

analyse epidemic outbreaks. Many of these models are tailored to fit the dynamics of

a specific disease (eg. [70–72]), although some have wider application (eg. [17–19]).

However, the goodness-of-fit of these models is difficult to test, and where there is

more than one model for a disease, it is often difficult to say which model is a better fit

for the data. Epidemic model assessment is of great importance because predictions

about future outbreaks and control strategies for them can be sensitive to the chosen

model. The field of model assessment for these types of models is underdeveloped,

and although there has recently been a focus in the literature on model criticism for

stochastic epidemic models [73], methods which consider the genetic data specifically

have not been developed.

In chapter 2 we proposed a model for the spread of disease which can take one of

three separate models for the genetic data from the epidemic. When we apply this

model to data we must be able to assess the fit of the whole model for the spread of

the pathogen, and also to distinguish which of the three genetic models is the best fit

for the specific data that we are using. In this chapter we propose novel methods for
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doing this. First, in section 3.2, we explore established methods for assessing the fit

of an epidemic model to the epidemiological data from an outbreak of disease. Then,

in section 3.3, we propose to extend these methods in order to assess the fit of an

epidemic model to whole-genome sequence data.

3.2 Model assessment for epidemic models

In this section we will discuss the established method of posterior predictive check-

ing for assessing the goodness-of-fit of models to epidemiological data. We use the

term epidemiological data to refer to data collected from an outbreak which gives us

information about the transmission of the disease. For example, these could be the

results of tests which are carried out on the population to assess who has the disease,

or data concerned with the dynamics of the population. In section 3.3 we will expand

the idea of posterior prediction to the model for the genetic data also.

3.2.1 Posterior predictive checks

In a Bayesian setting, posterior predictive checks are often carried out in order to

assess the goodness-of-fit of an epidemic model to a specific set of data [73, 74]. The

posterior predictive distribution uses the posterior density of the model parameters,

π(θ|x), which is obtained when a model has been fitted to data x in order to make

predictions about hypothetical data, xnew, which might be observed in the future. The

posterior predictive distribution is defined by

π(xnew|x) =
∫

π(xnew|θ)π(θ|x)dθ.

In addition, as proposed by Gelman et al. [21], we may define a set of auxiliary

statistics, A(x), which are to be matched when sampling the future data, so that

A(xnew) = A(x). In this case,

π(xnew|x, A(x)) =
∫

π(xnew|θ, A(x))π(θ|x)dθ.

In order to use this distribution to assess the goodness-of-fit of the model, often a

summary statistic S(X) is used to represent the dataset. In order to assess the fit

of the model to the observed data, many hypothetical datasets may be drawn from

the posterior predictive distribution to provide an approximation to the distribution

of the summary statistic. Meng [22] shows that the observed value of the summary

statistic, S(X), may be compared to this approximate distribution in order to find a
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posterior predictive p-value, defined by

pS = P(S(x) ≥ S(xnew)|x, θ).

3.2.2 Summary statistics

In order to use posterior predictive checking to assess the goodness-of-fit of the mod-

els in chapter 2 we need to introduce some summary statistics which give a good

representation of the epidemiological data which we are fitting our model to. Worby

et al. [14] use the number of patients who are importations (the first swab after their

arrival on the ward is positive) and the number of patients who are acquisitions (they

have at least one negative swab before having a positive swab) as their summary

statistics for assessing the goodness-of-fit of their model to data from an outbreak of

MRSA in a hospital setting. These summary statistics will also work for assessing our

model. We will also look at the number of patients ever to have a positive swab, and

the variation in the number of patients with a positive swab present on the ward over

the timescale of the outbreak.

3.2.3 An example of epidemic model assessment using simulated data

In order to illustrate how we can use posterior predictive checking to assess the

goodness-of-fit of the models introduced in chapter 2 we simulated a dataset from

our Chain Error model (see 2.6.1.1) for a population of 100 patients on a hospital ward

over a period of 150 days. The values of the parameters used to simulate this dataset

can be found in table 3.1 on page 50 under ‘Sim 1’. The simulated dataset consisted

of admission and discharge times for each of the patients, as well as results for swabs

taken from each patient on the ward every other day for the length of their stay. We

also simulated a set of genetic distances between sequences taken from patients with

positive swabs according to the Chain Error model. In the next section we describe

our simulation method.

3.2.3.1 Simulation method

In order to simulate an outbreak of a pathogen on a hospital ward we first specify the

number of patients in the study, n, the length of the study, L, and the average length

of stay for patients on the ward, A. The ward is assumed to be empty at t = 0 which

is the first day of the study. We assume tests are taken every κ days from all patients

who are presents on the ward on that day, so the set of test days tt can be generated
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Total number

of patients

Duration

of study

Average length

of patient stay

Test

frequency
p z β θ θgl γ

Sim 1 100 150 7 2 0.06 0.8 0.015 40 100 10

Sim 2 100 100 7 2 0.06 0.8 0.01 40 200 30

Sim 3 200 200 5 2 0.06 0.8 0.02 40 200 -

Sim 4 100 100 7 2 0.06 0.8 0.02 2 200 40

Table 3.1: Details for the simulations referred to in this chapter, including values of the model parameters.

independently of the patient stays from the test frequency parameter κ.

Each of the n patients is independently admitted colonised with probability p. For

each we draw a date of admission to the ward uniformly at random from time 0 to

time L and draw their length of stay from a Poisson distribution with parameter A.

Patients who are admitted to the ward in a susceptible state either remain suscep-

tible for their whole stay, or become colonised through contact with another infec-

tious patient. A susceptible patient, i, avoids colonisation on day t with probability

P(avoid(t)) = exp(−βC(t)), where C(t) is the number of colonised patients present

on the ward on day t. If patient i does not avoid colonisation on day t then they ac-

quire the pathogen and tc
i = t. A source of colonisation is drawn for this patient’s

colonisation uniformly at random from the C(tc
i ) patients available to colonise them.

C(t) consists of the number of importation patients who have arrived on or before

day t and are discharged after day t, plus the number of patients who acquire the

pathogen before day t and are discharged after day t.

For each patient i who is colonised we generate a test result for each of the test days,

tt, that patient i was present on the ward for. The test sensitivity is z and the test speci-

ficity is 1, so when positive patients are tested the result of their test is positive with

probability z, and negative with probability 1− z, independently of all other tests and

when negative patients are tested their tests are always negative. Therefore we only

need to simulate test results for those patients who are colonised during their stay

on the ward. We assume that each positive swab result a patient receives leads to a

genetic sequence being observed on that test day. We also assume that a patient i who

is colonised but never receives a positive test result has an unobserved sequence on

their day of colonisation tc
i which has a genetic distance to each sequence (observed

or unobserved) on day tc
i or earlier. We assume each sequence taken on day t has a

genetic distance to each sequence (observed or unobserved) on day t or earlier.
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Figure 3.1: Posterior predictive distributions for the number of patients ever to have a positive

swab under (a) the true Chain Error model and (b) the wrong Chain Poisson model. The

observed value from the original simulation is marked in red.

We draw these genetic distances from the distributions specified by the model, ac-

cording to the relative positions on the transmission tree of the patients who have se-

quences i and j. For sequences from patients who are in distinct transmission chains,

all models draw the genetic distance from a Poisson(θgl) distribution. For sequences

from patients who share a direct transmission event, the Chain Error model and Chain

Poisson model draw the genetic distance from a Poisson(θ) distribution and the Time

Dependent Distances model draws the genetic distance from a Poisson(ti,jθ) distri-

bution. For sequences from patients who are in the same transmission chain but are

separated by more than one transmission event the Chain Poisson model and the

Time Dependent Distances model draw the genetic distance from a Poisson(Di,j) dis-

tribution where Di,j is the sum of the underlying distances in the transmission chain,

so Di,j = ∑k−1
r=0 ΨQpr ,Qpr+1

where p0 = Hi, pk = Hj. The Chain Error model draws this

distance by adding or subtracting from Di,j, with probability 0.5, an error term drawn

from a Poisson distribution with parameter kγ which is truncated at the value Di,j.

The genetic distance between two sequences taken from the same patient is drawn

from a Poisson distribution with parameter θi under each of the three models.

3.2.3.2 Using the simulated dataset for posterior prediction

To this dataset we fitted both the Chain Error model and the Chain Poisson model

(see 2.6.1.2) with 100,000 iterations of our MCMC algorithm. A full description of the

MCMC algorithm can be found in section 4.5. The prior distribution used for both

parameter p and parameter z was U(0, 1), which is a Uniform distribution with pa-

rameters a = 0 and b = 1 which has probability density function f (x) = 1
b−a for
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Figure 3.2: Posterior predictive distributions for the number of patients whose first swab was

positive under (a) the true Chain Error model and (b) the wrong Chain Poisson model. The

observed value from the original simulation is marked in red.
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Figure 3.3: Posterior predictive distributions for the number of patients who had a positive

swab after having had one or more negative swabs under (a) the true Chain Error model

and (b) the wrong Chain Poisson model. The observed value from the original simulation is

marked in red.
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Figure 3.4: Figures which show, in green, the 95% highest density region for the posterior

predictive distribution of the number of patients with a positive swab present on the ward

over the time of the study under (a) the true Chain Error model and (b) the wrong Chain

Poisson model. The mean of the distribution is shown in red, and the observed data from the

original simulation is shown in blue.

a ≤ x ≤ b. For the genetics parameters, θ, θgl and θi, a Γ(1, 10−6) distribution was

used as the prior distribution, which is a Gamma distribution, with parameters ν = 1

and λ = 10−6, which has probability density function f (x) ∝ xν−1 exp(−λx) for

x > 0. We used improper uniform distributions on the set of positive real numbers as

prior distributions for parameters β and γ. We initialised the infection times by giving

each patient who had received a positive swab a colonisation time of the day before

their first positive swab. If a patient’s first positive swab was on their day of admis-

sion they were assigned as an importation. For patients who were not importations

and had a positive test we drew a source uniformly at random from the set of other

colonised patients on the ward on the day of colonisation. If no source was available

we reassigned that patient as an importation. We initialised the missing sequences

by drawing a genetic distance between each patient who had a positive swab but no

sequence and each other patient sequence from a Poisson distribution with mean 30.

We used initial values for the parameters that were based on the results of Worby [69].

We ran the MCMC algorithm a number of times with different initial values to check

that it converged to the same mode, and we examined the traceplots to check that it

had converged.

For our posterior predictive checking, 1000 datasets were simulated using values of

the parameters for the model drawn from the posterior densities given by the MCMC

algorithm output. For each of these 1000 datasets we recorded the values of the sum-

mary statistics to be used for model assessment: the number of patients ever to have
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a positive swab, the number of patients whose first swab was positive (importations),

the number of patients who had a positive swab after one or more negative swabs (ac-

quisitions), and the number of patients present on the ward each day with a positive

swab on that day or earlier. The first three of these summary statistics are single val-

ues, so from the 1000 simulations we can approximate the distribution of the statistic

and find where the ‘observed’ value from our original simulation fits in it. As the

data were simulated from the Chain Error model, we expect that when we assess the

goodness-of-fit of this model we should see that it fits well, whereas we do not expect

to necessarily find that the Chain Poisson model is a good fit for these data.

Figure 3.1 shows the posterior predictive distribution for the number of patients who

had a positive swab under each of the two models that we used. It is clear that the

observed value from the original simulation lies within the 95% highest density re-

gion (HDR) under the true Chain Error model, but it falls outside that HDR under the

Chain Poisson model. This shows that there is evidence that the Chain Poisson model

is not a good fit for these data, as we expected. Similarly, figure 3.3 shows that the

observed number of patients who are ‘acquisitions’ in the original dataset falls within

the 95% HDR of the posterior predictive distribution produced under the Chain Error

model, but it falls outside of that HDR under the Chain Poisson model, giving more

evidence against the use of this model for these data. The number of patients who

are ‘importations’ falls within the 95% HDR for both models, so this does not provide

us with evidence against either model. Figure 3.4, however, gives us more evidence

that the Chain Poisson model is not a good fit for these data. The blue line, which

represents the number of patients present on the ward with a positive swab each day

in the original simulation data, stays within the green area, which is the 95% HDR

of the posterior predictive distribution, for the true Chain Error model, but it departs

significantly from this area for the Chain Poisson model.

The use of a simulated dataset has illustrated how posterior predictive checking of

summary statistics to do with the transmission of the epidemic can help to assess

the goodness-of-fit of a particular model to a specific dataset. In this case posterior

prediction showed the expected result that there was no evidence of lack of fit for

the Chain Error model, but the posterior predictive distributions of a number of the

summary statistics indicated that the Chain Poisson model was not a good fit.
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3.3 Model assessment for epidemic models which model ge-

netic data

In section 3.2 we described methods for assessing the goodness-of-fit of our epidemic

model, but these methods did not assess the fit of the model to the genetic data. This

is an area of model assessment which has not yet been developed. Although there

has recently been a focus on model assessment for stochastic epidemic models [73],

the only method which explicitly assesses the fit of a model to genetic data was pro-

posed by Worby et al. [14]. Here we introduce this method and then develop our own

methods which build upon the posterior prediction methods used in section 3.2.

3.3.1 Posterior prediction using a summary statistic for the genetic data

Worby et al. [14] use posterior prediction to assess the goodness-of-fit of their model

to the genetic data simply by using a single summary statistic for the genetic distance

matrix. They are able to compare the observed value of this statistic to its distribu-

tion as approximated by simulating multiple datasets using parameter values from

the posterior densities. The summary statistic which they use is the average genetic

distance between any two sequences from patient isolates. This is a sensible starting

point for genetic model assessment, but it does have limitations, as the expected ge-

netic distance between two sequences is highly dependent upon the unknown trans-

mission tree, and this method ignores the tree inferred by the model. Simulating

multiple transmission trees from the same parameter values can give a set of very

different tree structures, so the set of expected pairwise distances will also have a

large range, as it is affected by how many chains of transmission there are, how long

each of these chains are, and how many importations of the disease occur. Similarly,

when we simulate epidemics from the posterior densities of the parameters, if we

only record the expected genetic distance between each pair of sequences then we

lose much information about the tree structure that has influenced that number.

Figure 3.5 illustrates one situation in which simply using the mean of genetic dis-

tances for a posterior predictive check can give misleading information about the fit

of the model. Here we simulated a dataset from the Chain Error model, and then fit

this true model to the data. The values of the parameters used to simulate this dataset

can be found in table 3.1 on page 50 under ‘Sim 2’. We fit the Chain Error model to

these data using 100,000 iterations of our MCMC algorithm with prior distributions

of U(0, 1) for parameters p and z and Γ(1, 10−6) for the genetics parameters θ, θgl and
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Figure 3.5: Posterior predictive distributions obtained by fitting the Poisson Error model to

data simulated from the same model. Figure (a) shows the distribution of the number of

patients to ever have a positive swab over the course of the epidemic, figure (b) shows the

distribution of the number of patients whose first swab is positive, and figure (c) shows the

distribution of the number of patients who had a negative swab before a positive swab. Figure

(d) shows the distribution of the mean of the genetic distance matrix. In each case the value

from the original simulation is marked in red.
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θi. We used improper uniform distributions on the set of positive real numbers as

prior distributions for parameters β and γ. The chain was initialised as described in

section 3.2.3.2, and convergence was checked using the traceplots of the output of the

parameter values.

All of the epidemic summary statistics in figure 3.5 (the number of positive swabs,

the number of importations and acquisitions) show that the ‘observed’ values from

the original simulation are well within the 95% highest density region of the posterior

predictive distribution, and even within the 90% HDR, but the mean genetic distance

is outside the 95% HDR of its posterior predictive distribution. Since the model that

we fit to the data was the same model that the dataset was simulated from we do

not expect it to be a poor fit. We see that the number of importations and number of

acquisitions in our original simulation are above the mean of their posterior predic-

tive distributions. This suggests that in the dataset which we simulated we have an

above average number of chains (meaning more between chain distances), and pos-

sibly above average chain lengths (also meaning more large genetic distances), which

would both increase the mean genetic distance. It is clear that the mean genetic dis-

tance is being influenced by the range of different tree structures that are simulated to

produce the posterior predictive distribution. In the next sections we explore differ-

ent ways of using posterior predictive checks to assess the goodness-of-fit of a model

to genetic data.

3.3.2 Summary statistics of the genetic matrix for posterior predictive checks

We have seen that using the mean of the genetic distance matrix as a summary statistic

in order to check the fit of a model using posterior prediction does not always accu-

rately assess the goodness-of-fit. Therefore we investigated other summary statistics

for the genetic distance matrix, which were:

• The median of the genetic distance matrix

• The sum of the genetic distance matrix

• The range of the genetic distance matrix

• The interquartile range of the genetic distance matrix

We again used simulated datasets, to which we fitted the true model, and a wrong

model. We fit each model to these datasets using 100,000 iterations of our MCMC al-

gorithm with prior distributions of U(0, 1) for parameters p and z and Γ(1, 10−6) for
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the genetics parameters θ, θgl and θi. We used improper uniform distributions on the

set of positive real numbers as prior distributions for parameters β and γ. Each chain

was initialised as described in section 3.2.3.2, and convergence was checked using the

traceplots of the output of the parameter values. We found that using the posterior

predictive checks listed above provided evidence against the fit of the wrong model,

but also, for some simulations, gave evidence against the fit of the true model. This is

the same problem that we had in using the mean of the genetic distance matrix: the

structures of the trees being simulated to approximate the posterior predictive distri-

bution are not always comparable to the structure of the true tree and the summary

statistics do not capture this. The genetic distances are conditional upon the transmis-

sion tree and even simulating the correct model with the true parameter values may

only rarely lead to a compatible tree to the data.

In an attempt to resolve this problem with the posterior predictive checks we pro-

posed somehow to constrain the simulations from the posterior densities to be more

similar to the original dataset. One way in which we tried to do this was to fix

the times of admission, discharge and testing of the patients to those in the origi-

nal dataset, since these do not form part of the model framework. Previously, the

admission time for a patient had been drawn uniformly at random from time 0 to

time L, and the length of stay drawn from a Poisson distribution with parameter A.

The times of the test were determined by the test frequency parameter. Another way

in which we tried to use simulations from the posterior densities that were more com-

parable to the original data was to keep only those simulations which had the same

number of patients with a positive swab during the outbreak. Fixing the times for

the simulations without fixing the number of patients with positive swabs did not

improve the goodness-of-fit assessments, suggesting that these times do not hugely

impact the tree structure. Fixing both the times and the number of patients with posi-

tive swabs meant that the process of posterior predictive checking took much longer,

and although we did see improvement there were still some cases in which the sum-

mary statistic checks suggested a lack of fit under the true model.

We concluded that using summary statistics of the genetic distance matrix for poste-

rior predictive checks was not always an accurate way of assessing the goodness-of-fit

of a model to genetic data because such summary statistics can not capture informa-

tion about the underlying transmission tree structure. In section 3.3.3 we discuss

methods for including information from the posterior densities about the tree struc-

ture when performing model assessment.
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3.3.3 Posterior prediction for the whole genetic matrix

As discussed in section 3.3.2, using a summary statistic for posterior predictive checks

of the genetic model fit does not use all the available information about the tree struc-

ture that the model has inferred for the data. We are interested in checking how well

the model can estimate a transmission tree for the data, as a key aim of using a model

such as ours is to produce a transmission tree which shows the likelihood of specific

routes of transmission and infers who infected whom. This essentially means that we

require a method of performing model assessment for matrices, as the genetic data

are in the form of a matrix, so we need a way to assess the posterior distribution of

matrices without resorting to summary statistics which result in a loss of information.

In order to achieve this we propose a method which uses the posterior density of

the transmission tree, T, for posterior prediction as well as the posterior densities of

the parameters, ρ. Therefore, instead of simulating the entire epidemic for each draw

from the posteriors, we are simply able to simulate a genetic distance matrix from

each draw since the posterior density of the transmission tree defines the relationship

between each pair of individuals. Thus we can draw each Ψ̃i,j from the distribution

specified by the model. As a result we can approximate the posterior predictive dis-

tribution for each genetic distance separately. The step-by-step process of this model

assessment method for a model which has been fitted using an MCMC algorithm is

outlined here for clarity:

1. For each of the required k simulations, draw one of the m iterations of the

MCMC algorithm output uniformly at random. Call this iteration i.

2. From this iteration i, record the posterior values of the genetic parameters, ρi,

and the set of infection times, tci, and sources of infection, si, for the infected

population.

3. Simulate a genetic distance matrix, Ψ̃i, from the genetic model using the sam-

pled structure of the transmission tree and values of the parameters. Record

this genetic distance matrix for each simulation.

4. Once this process has been repeated for the required number of simulations we

have a set of k genetic distance matrices, Ψ̃, from which we can estimate the

posterior predictive distribution for each of the genetic distances between pairs

of sequences.

The simulated genetic distance matrices may differ slightly in dimension, as the MCMC
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Figure 3.6: Two different ways of plotting the results of our posterior predictive checks of the

fit of a model to a genetic distance matrix. The layout of the matrices corresponds to the layout

of the original genetic distance matrices, so the x-axis, left to right, runs from sequence 1 to

sequence nseqs, whereas the y-axis, from bottom to top, runs backwards from sequence nseqs

to sequence 1. Figure (a) fills the cells with a colour gradient which represents which level of

highest density region of the posterior predictive distribution the observed value falls into. So

the darkest green cells show that the distance only falls within the 90% highest density region,

and the distances corresponding to the lightest green cells fall within the 25% highest density

region. The distances corresponding to white cells fall outside the 90% highest density region.

Figure (b) is a binary matrix which simply shows whether the observed value of each genetic

distance was within the 95% highest density region of the posterior predictive matrix (blue

cells) or not (pink cells). This plot is clearly easier to read.
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algorithm can add and delete patients who did not have a positive swab from the

tree. However, we will discard any added patients and concentrate on the ‘core’ se-

quences from patients who do have a positive swab in the data, and therefore appear

in every genetic distance matrix. We originally tried plotting the posterior predic-

tive distribution for each pairwise distance from the simulated values, and marking

on the observed value, as we did for the posterior predictive checks in section 3.2.

However, for genetic distance matrices of more than three or four sequences this be-

comes an unwieldy tool which is difficult to interpret. Instead, we propose to plot a

matrix with a cell for each genetic distance which is coloured according to where the

observed distance falls in the posterior predictive distribution. Two ways of doing

this are shown in figure 3.6. Figure 3.6a shows a matrix with the cell for each pair-

wise genetic distance coloured on a gradient which indicates whether the observed

distance falls outside of the 90% highest density region of the posterior predictive dis-

tribution (white), or falls within the 90%, 75%, 50% or 25% HDR. Figure 3.6b shows a

matrix with the cell for each pairwise genetic distance coloured according to whether

the observed distance falls within the 95% HDR of the posterior predictive distribu-

tion (blue) or not (pink). This version of the matrix plot is much clearer and visually

presents the proportion of observed distances that fall within the 95% posterior pre-

dictive HDR. It also has the advantage that we may consider it as a binary matrix and

assign each cell a 0 if it is pink and a 1 if it is blue, and therefore we can also give a

percentage of these ‘well-fitted’ distances, which will give us an idea of the strength

of the genetic model fit. We will call this percentage a posterior predictive matrix score.

3.3.3.1 Examples of genetic model assessment using simulated data

In order to demonstrate our novel method for assessing the goodness-of-fit of a ge-

netic model to data we used datasets which were simulated from the Chain Error

model (see 2.6.1.1) and the Chain Poisson model (see 2.6.1.2), including the dataset

used in section 3.3.1. The details of the simulated datasets which feature in the fol-

lowing figures can be found in table 3.1 on page 50 under ‘Sim 2’, ‘Sim 3’ and ‘Sim

4’. We then fitted three different models to these datasets in order to compare the

fit. First, we fitted the true model, either the Chain Poisson model or the Chain Error

model, to the data and then we fitted the other model to the same data. Finally, we

fitted the Chain Poisson model again but with Geometric distributions in place of the

Poisson distributions, in order to have an example of assessing the goodness-of-fit

when the fitted model is vastly different from the true model. This model uses the
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following distributions for the genetic distances between sequences:

P(Ψi,j = x) =

{
(1− µgl)

xµgl if k = ∞

(1− µ)xµ if k = 1
(3.3.1)

and

P(Ψi,j = x|Di,j) = (Dx
i,j/x!) exp(−Di,j) if k > 1. (3.3.2)

We fit each model to each dataset using 100,000 iterations of our MCMC algorithm

with prior distributions of U(0, 1) for parameters p and z and Γ(1, 10−6) for the ge-

netics parameters θ, θgl and θi. We used improper uniform distributions on the set

of positive real numbers as prior distributions for parameters β and γ. Each time the

chain was initialised as described in section 3.2.3.2, and convergence was checked us-

ing the traceplots of the output of the parameter values.

Using our method for assessing the goodness-of-fit of the genetic models we were

able to identify the true model as the best fit for each simulation that we tried. The

lack of fit identified for the wrong models varied depending on how different the

models were: for example, the Geometric version of the model was a much worse fit

for data simulated under the Chain Poisson model than the Chain Error model was.

The composition of the genetic distance matrix in the dataset, which is affected by the

values of the parameters, also had some impact upon the difference in the goodness-

of-fit of the three models. Figures 3.7, 3.8 and 3.9 present some typical examples from

our set of simulations.

Figure 3.7 shows the results of our method for assessing the fit of the genetic mod-

els for the simulated dataset (Sim 2) discussed in section 3.3.1 in a series of binary

matrices. Despite the posterior predictive check of the mean genetic distance for the

true model giving an extreme posterior predictive p-value, as shown in figure 3.5d,

these model assessment matrices clearly show that the true model is the best fit for

the data, with 88% of the ‘observed’ genetic distances falling within the 95% highest

density regions from the posterior predictive distributions. The Chain Poisson model

also appears to fit fairly well, with 78% falling within the 95% HDRs. This is not sur-

prising, given that these models share common distributions for modelling genetic

distances between sequences from patients who are separated by one transmission

event, and for modelling genetic distances between sequences from patients who are

in different transmission chains. The difference in these two models is in the way in

which genetic distances between sequences from patients who are in the same trans-
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Figure 3.7: Sim 2: Binary matrices showing which of the ‘observed’ genetic distances fall

within the 95% HDR of the posterior predictive distribution given by (a) the true Chain Error

model, (b) the Chain Poisson model, and (c) the Geometric Chain Poisson model. The layout

of the matrices corresponds to the layout of the original genetic distance matrices, so the x-

axis, left to right, runs from sequence 1 to sequence nseqs, whereas the y-axis, from bottom to

top, runs backwards from sequence nseqs to sequence 1.
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Figure 3.8: Sim 3: Binary matrices showing which of the ‘observed’ genetic distances fall

within the 95% HDR of the posterior predictive distribution given by (a) the true Chain Pois-

son model, (b) the Chain Error model, and (c) the Geometric Chain Poisson model. The layout

of the matrices corresponds to the layout of the original genetic distance matrices, so the x-

axis, left to right, runs from sequence 1 to sequence nseqs, whereas the y-axis, from bottom to

top, runs backwards from sequence nseqs to sequence 1.
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Figure 3.9: Sim 4: Binary matrices showing which of the ‘observed’ genetic distances fall

within the 95% HDR of the posterior predictive distribution given by (a) the true Chain Error

model, (b) the Chain Poisson model, and (c) the Geometric Chain Poisson model. The layout

of the matrices corresponds to the layout of the original genetic distance matrices, so the x-

axis, left to right, runs from sequence 1 to sequence nseqs, whereas the y-axis, from bottom to

top, runs backwards from sequence nseqs

to sequence 1.
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mission chain but are separated by more than one transmission event are modelled.

Figure 3.7c shows that when we use a model which uses different distributions for

all types of genetic distances, only 2.5% fall within the 95% HDRs from the posterior

predictive distributions. This is much lower than for the true model and the similar

model, which shows that the model is not a good fit for the data, as we expected.

Figure 3.8 (Sim 3) and 3.9 (Sim 4) give some other examples of using our method

for assessing the goodness-of-fit of different models to the genetic data from a simu-

lation. In figure 3.8 the true model is the Chain Poisson model and under this model

94% of the observed genetic distances fall within the 95% HDR of the posterior pre-

dictive distributions. Under the Chain Error model 93% of the observed distances fall

within the 95% HDR, which shows that the Chain Error model fits almost as well as

the true model in this case. As the Chain Poisson model is a simplified version of the

Chain Error model this is not surprising. Under the Geometric Chain Poisson model,

however, only 60% of the observed distances fall within the 95% HDR of the poste-

rior predictive distributions. In this case the very different model has actually done

reasonably well with the genetic distance matrix if we compare this 60% to the 2.5%

for this model in figure 3.7. Of all our simulations, this was the one for which the

Geometric model performed the best, but the true model and the Chain Error model

are still clearly found to fit the data better.

In figure 3.9 the true model is the Chain Error model and under this model 94% of

the observed pairwise genetic distances fall within the 95% HDR of the posterior pre-

dictive distribution. The similar Chain Poisson model was also found to fit reason-

ably well, with 89% of the observed pairwise genetic distances falling within the 95%

HDR of the posterior predictive distributions. The very different model, the Geomet-

ric Chain Poisson model, was found to fit significantly less well, with only 57% of

the observed pairwise genetic distances falling within the 95% HDR of the posterior

predictive distributions. For all the simulated datasets to which we fitted different

models we were able to correctly identify the true model using this method of poste-

rior predictive matrices.

3.4 Discussion

In this chapter we have discussed a method for assessing the goodness-of-fit of mod-

els which are fitted to both epidemiological and genetic data. We have described, in

section 3.2, how established methods for posterior predictive checking can be used
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to assess the fit of the three models which were introduced in chapter 2 to epidemi-

ological data from an epidemic. In section 3.3 we introduced our novel method for

assessing the goodness-of-fit of our models, or similar models, to the genetic data

from an epidemic. Our method results in a percentage, or posterior predictive matrix

score, which describes the proportion of the genetic distance matrix that is ‘well-fit’

under the model used. It also produces a binary matrix as a visual representation of

this percentage, which allows us to see whether there are specific areas of the genetic

distance matrix which are poorly captured by the model. It is clearly important that

the fit of the genetic part of a model for an epidemic is examined as well as the epi-

demiological part in order to assess the goodness-of-fit of the model as a whole. Our

new tool allows this to be done for any model from which genetic distance matrices

can be simulated, as long as the algorithm used to fit the model records the samples

from the posterior density of the transmission tree at each iteration. It would be of

interest to develop a tool like this one which could also assess the predictive ability of

a genetic models.
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Chapter 4

Analysis of an outbreak of

methicillin-resistant Staphylococcus

aureus in a hospital setting

4.1 Introduction

In this chapter we introduce a nosocomial dataset for an outbreak of methicillin-

resistant Staphylococcus aureus in a hospital in Thailand. We outline how our new

models for the genetic distances between patients, introduced in chapter 2, provide

a full model for the outbreak. We set out the MCMC routine which is used to fit

the model to the data, and analyse the results. A simulation study is carried out to

assess the performance of the MCMC algorithm, and the methods for model assess-

ment which were introduced in chapter 3 are used to assess the goodness-of-fit of the

model to the data. A table of the notation used in this chapter can be found on pages

124-125.

4.2 Thai data

Here we introduce the dataset collected from an outbreak of methicillin-resistant

Staphylococcus aureus (MRSA) in a hospital in Thailand in 2008. These data were col-

lected by Tong et al. [75] who performed the study over a three-month period on two

intensive care units in the same 1000-bed hospital in northeast Thailand. The dataset

includes 83 MRSA genome sequences from 51 unique patients, which were aligned

to a reference genome of the dominant lineage (ST 239 strain TW20) of MRSA in the
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hospital. ST 239 is a global lineage of MRSA that has been discussed by Harris et al.

[76]. In this Thai hospital dataset a total of 2591 nucleotides changed from the ref-

erence genome in at least one patient sequence. These data were collected by repeat

screening for MRSA of patients on two intensive care units (ICUs), one surgical ICU

and one paediatric ICU.

4.2.1 Overview of the dataset for each ward

The following table summarises the data that were observed for each ICU ward.

ICU 1 ICU 2

Ward type Surgery Paediatric

Number of patients admitted 170 114

Number of unique patients 169 98

Number of patients with at least one positive swab 20 29

Total number of positive swabs collected 51 89

Total number of swabs sequenced 43 40

Figure 4.1 shows the number of transitions and transversions observed in the dataset.

Interestingly, only 5 of the 2591 nucleotides underwent both a transition and a transver-

sion in different sequences in the data. By this we mean nucleotides which had a base,

A say, in the reference genome, and were observed to have the opposite base, G in this

case, in one or more sequences in the data and to have one of the other bases, C or T

here, in one or more other sequences. For a summary of the timelines of patients with

positive swabs in each ward see figures 4.3 and 4.4. Each bar represents a patient’s

stay on the hospital ward. The red portion shows the time that the patient was in the

ward without having had a positive swab result and the time at which the timeline

turns to green is the date of the first positive swab result. The text at the ends of the

bars lists the other patients who were on the ward and had had a positive swab on

the day when the first positive swab was taken from the patient under consideration,

and the genetic distance between these two patients.

Distances < 60 are marked in red on the timelines because Tong et al. [75] estimated

that the maximum genetic distance between two sequences in the same cluster is 60,

and we can see from figure 4.3 that the distances over 60 in ward 1 are all over 200,

and likewise figure 4.4 shows that in ward 2 the smallest distances over 60 are 103

and 199, with all other distances over 200. Figures 4.2a and 4.2b show heatmaps of

the genetic distance matrix for each ward, which again show the clear gap between
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Figure 4.1: Changes from reference genome observed in the Thai data. Transitions occur when

a nucleotide that was base A mutates to base G (or vice versa) or a nucleotide that was base

C mutates to base T (or vice versa). All other possible mutations (A to C, C to G, A to T, T to

G, or vice versa) are transversions. The 5 nucleotides that have a double SNP base are those

which changed to two distinct bases which were both different from the reference genome in

the sequences in the Thai data.

small distances of < 60 SNPs and larger distances. Patients within the same cluster

are more likely to be in the same transmission chain, so, using the admission and

discharge times and times of positive swabs we created two diagrams (figure 4.5a

and figure 4.5b) which show what the transmission tree would look like if we as-

sumed that two patients who were observed to be MRSA positive at the same time

and whose sequences had a genetic distance of under 60 SNPs shared a direct trans-

mission event. This crude way of creating transmission trees gives us a rough idea

what the genetic distance data can tell us about the relationships between patients’

sequences.
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Figure 4.2: Heatmaps, which are visual representations of the genetic distance matrices for

each ward, with the size of the genetic distances between pairs of sequences represented by

colours. It is clear that there is a large jump between the small distances of < 60 SNPs and

the larger ones. The layout of the matrices corresponds to the layout of the original genetic

distance matrices, so the x-axis, left to right, runs from sequence 1 to sequence nseqs, whereas

the y-axis, from bottom to top, runs backwards from sequence nseqs to sequence 1.
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Figure 4.3: Timeline for patients observed positive in ward 1. Red shows the time that the patient was in the ward without having had a positive swab

result and the time at which the timeline turns to green is the date of the first positive swab result. The labels are the other patients who are positive on

the ward on the day when the first positive swab was taken from the patient under consideration, and the genetic distance between these two patients.

Distances < 60 are in red.
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Figure 4.4: Timeline for patients observed positive in ward 2. Red shows the time that the patient was in the ward without having had a positive swab

result and the time at which the timeline turns to green is the date of the first positive swab result. The labels are the other patients who are positive on

the ward on the day when the first positive swab was taken from the patient under consideration, and the genetic distance between these two patients.

Distances < 60 are in red.
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Figure 4.5: Possible transmissions between patients positive at the same time with genetic

distances < 60 in each ward. In Tong et al. [75] it is estimated that the maximum genetic

distance between two sequences in the same cluster is 60. Patients within the same cluster are

more likely to be in the same transmission chain.

4.3 The model for the spread of MRSA on a hospital ward

Here we recap the stochastic model introduced in chapter 2 for the spread of a pathogen

within a single hospital ward in discrete-time. This model describes the dynamics of

the spread of the pathogen on the level of individuals. Such a model can be used in
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order to construct a transmission tree to show the spread of the pathogen from patient

to patient throughout the ward. Since, in this nosocomial setting, we may have more

than one importation of the pathogen to the ward we technically construct a trans-

mission forest if we have two or more importation patients who start different trees.

However, we will use the term transmission tree to refer to this potentially disjoint

union of trees.

The model assumes that there is a hospital ward with a fixed number of beds to which

patients can be admitted and discharged during the study over time t = 0, 1, . . . , L.

Any patients still on the ward at time t = L are assumed to have a discharge day

equal to L. Any patients already present on the ward at t = 0 have their ‘admission’

date set as t = 0. The day of admission of each patient, i, is given by ta
i , and the day

of discharge is given by td
i . These days are deterministic and do not form part of the

‘stochastic’ aspects of the model. Each patient may receive a number, νi, of screening

tests, tt
i = tt

i,1, tt
i,2, . . . , tt

i,νi
, which also occur at deterministic times. These tests produce

a set of results Xi = Xi,1, Xi,2, . . . , Xi,νi which are either negative or positive. The sen-

sitivity of the screening test is represented by the parameter z, so a colonised patient

has a probability of z of being screened positive, independently of all other screening

tests. The specificity of the test is assumed to be 100%, so all uncolonised patients are

screened negative.

The model assumes that each patient is colonised on admission with probability p,

independently of all other patients. All uncolonised patients are assumed to have ho-

mogeneous susceptibility, and all colonised patients to have homogeneous infectivity.

Since MRSA may be carried asymptomatically, we refer to patients being ‘colonised’

rather than ‘infected’. Each susceptible patient on the ward avoids colonisation at

time t with probability P(avoid(t)) = exp(−βC(t)), where C(t) is the number of

colonised patients on the ward on day t. If the given patient does not avoid coloni-

sation at time t then the source of their colonisation is picked uniformly at random

from the set of colonised patients on day t, so the probability that a given susceptible

patient is colonised by a given infectious patient at time t is defined as:

1− exp(−βC(t))
C(t)

.

The day on which a patient, i, becomes colonised is given by tc
i . For patients who

remain susceptible tc
i = ∞. A colonised patient is regarded as infectious from the day

after colonisation, tc
i + 1, until discharge from the ward at time td

i .
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A colonised patient, i, who receives one or more positive screening test results may

also have a number, ζi, of isolates of their pathogen sequenced. Genetic sequences,

Qi = {Qi,1, Qi,2, . . . , Qi,ζi}, for patient i are produced from isolates sampled at times

ts
Qi

= ts
Qi,1

, ts
Qi,2

, . . . , ts
Qi,ζi

. Each genetic sequence from each patient produces a set of

genetic distances to every other sequence collected on the same day or earlier. The

distributions from which the genetic distances between pairs of sequences are as-

sumed to be drawn are given by the three different genetic models. These are briefly

recalled here.

The Chain Error model

Under this model the genetic distance between a pair of sequences from patients who

are separated by k ≤ 1 or k = ∞ transmission events are drawn from the following

distributions:

P(Ψi,j = x) =


(θx

gl/x!) exp(−θgl) if k = ∞

(θx
i /x!) exp(−θi) if k = 0

(θx/x!) exp(−θ) if k = 1,

(4.3.1)

where x = 0, 1, . . . . The conditional probability distribution for genetic distances

for pairs of sequences which are in the same chain but separated by more than one

transmission event is:

P(Ψi,j = x|Di,j) =
(kγ)|Di,j−x|

|Di,j − x|!
(

∑
Di,j
l=0(kγ)l/l!

) (1
2

)1{x 6=Di,j}

1{x≤2Di,j} if k > 1. (4.3.2)

Here Di,j is the sum of the consecutive distances between the isolates from the patients

that compose the transmission chain between Hi and Hj. If Hi and Hj are separated

by k transmission events such that Hi colonises p1 who colonises p2 etc. (Hi → p1 →
p2 → · · · → pk−1 → Hj) then Di,j = ∑k−1

r=0 ΨQpr ,1,Qpr+1,1 where p0 = Hi and pk = Hj

. The genetic distance between sequences i and j is equal to Di,j with an error term

which has a Poisson distribution with parameter kγ. This error term is added to Di,j

with probability 0.5 or subtracted from Di,j with probability 0.5.

The Chain Poisson model

Genetic distances between a pair of sequences which belong to patients who are sep-

arated by k ≤ 1 or k = ∞ transmission events under this model are drawn from the

following distributions:

P(Ψi,j = x) =


(θx

gl/x!) exp(−θgl) if k = ∞

(θx
i /x!) exp(−θi) if k = 0

(θx/x!) exp(−θ) if k = 1.

(4.3.3)
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The conditional probability distribution for genetic distances for pairs of sequences

which are in the same chain but separated by more than one transmission event (k >

1) is:

P(Ψi,j = x|Di,j) = (Dx
i,j/x!) exp(−Di,j) if k > 1. (4.3.4)

Here we draw the pairwise genetic distances for sequences from patients in the same

chain from a Poisson distribution with parameter Di,j = ∑k−1
r=0 ΨQpr ,Qpr+1

where p0 =

Hi, pk = Hj and ΨQpr ,1,Qpr+1,1 is the genetic distance between the first sequence from

patient pr and the first sequence from patient pr+1. So Di,j is the sum of the genetic dis-

tances between the consecutive transmission events between the patients who have

sequences i and j.

The Time Dependent Distances model

The Time Dependent Distances model uses the following distributions for the genetic

distances between sequences from pairs of patients separated by k ≤ 1 or k = ∞

transmission events:

P(Ψi,j = x) =


(θx

gl/x!) exp(−θgl) if k = ∞

(θx
i /x!) exp(−θi) if k = 0

((ti,jθ)
x/x!) exp(−(ti,jθ)) if k = 1.

(4.3.5)

Here ti,j = |ts
i − ts

j | where ts
i and ts

j are the sampling times for sequences i and j. The

conditional probability distribution for genetic distances for pairs of sequences which

are in the same chain but separated by more than one transmission event is:

P(Ψi,j = x|Di,j) = (Dx
i,j/x!) exp(−Di,j) if k > 1. (4.3.6)

Again, Di,j = ∑k−1
r=0 ΨQpr ,Qpr+1

where p0 = Hi, pk = Hj and ΨQpr ,1,Qpr+1,1 is the genetic

distance between the first sequence from patient pr and the first sequence from patient

pr+1. Therefore, Di,j is the sum of the distances between the consecutive transmission

events between the patients from whom sequences i and j were taken.

The parameter vector, ρ, for our model is {p, z, β, Θ} where Θ is the vector of genetic

diversity parameters.
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4.4 Inference of parameters of the model for the spread of

MRSA on a hospital ward

We can infer the parameters of the model in section 4.3 for the dataset introduced

in section 4.2 which contains admission and discharge times for patients, pathogen

screening test results, and the distances between the genetic sequences taken from

the patients’ pathogen isolates.

As well as inferring the parameters we can use this model to infer the unobserved

transmission dynamics which are the admission states of the patients and the ‘sources’

and times for each patient’s colonisation. The admission states φ = (φ1, φ2, . . . , φn)

for each patient have the value 1 if the patient was already colonised when they

were admitted to the ward, and value 0 if they were susceptible on admission. The

sources for each of the nacq patients who become colonised whilst on the ward are

s = (s1, s2, . . . , snacq). For a patient i, who was admitted to the ward in a susceptible

state and subsequently came into contact (directly or indirectly) with an infectious

patient, j, which resulted in i becoming colonised, si = j. These unobserved coloni-

sation events occur at times tc = (tc
1, tc

2, . . . , tc
npos

). If a patient was colonised before

admission to the ward their colonisation time is tc
i = −1. Therefore, in order to com-

pletely specify the transmission tree we consider T = {tc, φ, s, Ψa}, the vector of these

unobserved data and the unobserved genetic distances, Ψa, which are pairwise ge-

netic distances between all patients’ sequences and unobserved sequences from those

patients for whom an isolate was not collected despite them carrying the pathogen.

4.4.1 Model likelihood

Using the model for the spread of MRSA in a hospital ward, we derive the likelihood

of observing the set of screening test results, X, and the set of genetic distances, Ψ,

between the genetic sequences from patients’ isolates. The model likelihood that we

are interested in, π(X, Ψ|ρ, Z), is intractable, so we augment the parameter space with

unobserved data, T = {tc, φ, s, Ψa}. This gives π(X, Ψ|ρ, Z) = ∑
T

π(X, Ψ, T|ρ, Z) =

∑
T

π(X, Ψ|T, ρ, Z)π(T|ρ, Z), where Z is the vector of deterministic admission, dis-

charge and screening times that are observed. We can not evaluate this sum since

T is complicated and high-dimensional, but we can sample the parameters, ρ, and

the transmission dynamics, T, from π(X, Ψ|T, ρ, Z)π(T|ρ, Z)π(ρ), where π(ρ) is the

joint prior distribution of the parameters, using an MCMC routine. The contribution

π(X, Ψ|T, ρ, Z) is the likelihood of observing the distance matrix and screening re-
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sults given the unobserved dynamics and parameters, and π(T|ρ, Z) is the likelihood

of the unobserved data given the parameters.

The likelihoods for the three different models are given below. Here, nseqs will be

the number of genetic sequences in the genetic distance matrix. The number of trans-

mission events between the patients Hi and Hj from whom a pair of sequences, i and

j, were taken, is given by trans(i, j). This number is calculated by working backwards

from the patient with the later colonisation time and adding the number of sources

along the transmission chain until either the other patient in the pair is reached, or

an importation patient is reached. If an importation is reached in this calculation

then the two sequences are from patients who are in unrelated transmission trees and

trans(i, j) = ∞. If sequences i and j are from the same patient then trans(i, j) = 0. If

trans(i, j) > 1 then Di,j = ∑k−1
r=0 ΨQpr ,Qpr+1

where p0 = Hi, pk = Hj and ΨQpr ,1,Qpr+1,1 is

the genetic distance between the first sequence from patient pr and the first sequence

from patient pr+1. So Di,j is the sum of the genetic distances between sequences from

consecutive sources working backwards along the transmission chain from Hi to Hj

(or Hj to Hi if Hj has a later colonisation time).

Chain Error model The augmented likelihood for the Chain Error model is

π(X, Ψ|T, ρ, Z)π(T|ρ, Z) = zTP(X)(1− z)FN(X,T)p∑i φi(1− p)n−∑i φi

×
nseqs

∏
j=2

j

∏
i=1

[
1trans(i,j)=1

θΨi,j exp(−θ)

Ψi,j!

+ 1trans(i,j)>1
(kγ)|Di,j−Ψi,j|

|Di,j −Ψi,j|!
(

∑
Di,j
l=0

(kγ)l

l!

) (1
2

)1{Ψi,j 6=Di,j}

1{Ψi,j≤2Di,j}

+ 1trans(i,j)=∞

θ
Ψi,j
gl exp(−θgl)

Ψi,j!
+ 1trans(i,j)=0

θ
Ψi,j
i exp(−θi)

Ψi,j!

]

×
n

∏
i=1

1tc
i =ta

i
+ 1tc

i 6=ta
i

exp(−
min(tc

i−1,td
i )

∑
t=ta

i

βC(t))



× ∏
j:tc

j 6=∞
φj=0

(1− exp(−βC(tc
j )))

C(tc
j )

1{sj∈C(t)}, (4.4.1)

where the parameter vector, ρ, is {p, z, β, Θ}, sj is the source of patient j’s colonisation,

and Θ = {θ, θi, θgl , γ} is the vector of genetic parameters. In this likelihood, F is

79



CHAPTER 4: ANALYSIS OF AN OUTBREAK OF METHICILLIN-RESISTANT

Staphylococcus aureus IN A HOSPITAL SETTING

the cumulative distribution function of a Poisson random variable with parameter γ,

TP(X) is the number of true positive screening results given the swab results X, and

FN(X, T) is the number of false negative screening results, given the swab results X

and augmented data T. The admission state of patient i, φi, is 0 if the patient was

admitted to the ward in a susceptible state and 1 if they were admitted in a colonised

state. The number of colonised patients present on the ward on day t is given by C(t).

The admission, colonisation and discharge times of patient i are given by ta
i , tc

i , and td
i

respectively.

Chain Poisson model The augmented likelihood for the Chain Poisson model is

π(X, Ψ|T, ρ, Z)π(T|ρ, Z) = zTP(X)(1− z)FN(X,T)p∑i φi(1− p)n−∑i φi

×
nseqs

∏
j=2

j

∏
i=1

[
1trans(i,j)=1

θΨi,j exp(−θ)

Ψi,j!

+ 1trans(i,j)>1

D
Ψi,j
i,j exp(−Di,j)

Ψi,j!

+ 1trans(i,j)=∞

θ
Ψi,j
gl exp(−θgl)

Ψi,j!
+ 1trans(i,j)=0

θ
Ψi,j
i exp(−θi)

Ψi,j!

]

×
n

∏
i=1

1tc
i =ta

i
+ 1tc

i 6=ta
i

exp(−
min(tc

i−1,td
i )

∑
t=ta

i

βC(t))



× ∏
j:tc

j 6=∞
φj=0

(1− exp(−βC(tc
j )))

C(tc
j )

1{sj∈C(t)}, (4.4.2)

where TP(X) is the number of true positive screening results given the swab results

X, sj is the source of patient j’s colonisation, and FN(X, T) is the number of false nega-

tive screening results, given the swab results X and augmented data T. The parameter

vector, ρ, is {p, z, β, Θ} and Θ = {θ, θi, θgl} is the vector of genetic parameters. The

admission state of patient i, φi, is 0 if the patient was admitted to the ward in a suscep-

tible state and 1 if they were admitted in a colonised state. The number of colonised

patients present on the ward on day t is given by C(t). The admission, colonisation

and discharge times of patient i are given by ta
i , tc

i , and td
i respectively.
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Time Dependent Distances model The augmented likelihood for the Time Depen-

dent Distances model is

π(X, Ψ|T, ρ, Z)π(T|ρ, Z) = zTP(X)(1− z)FN(X,T)p∑i φi(1− p)n−∑i φi

×
nseqs

∏
j=2

j

∏
i=1

[
1trans(i,j)=1

(ti,jθ)
Ψi,j exp(−(ti,jθ))

Ψi,j!

+ 1trans(i,j)>1

D
Ψi,j
i,j exp(−Di,j)

Ψi,j!

+ 1trans(i,j)=∞

θ
Ψi,j
gl exp(−θgl)

Ψi,j!
+ 1trans(i,j)=0

θ
Ψi,j
i exp(−θi)

Ψi,j!

]

×
n

∏
i=1

1tc
i =ta

i
+ 1tc

i 6=ta
i

exp(−
min(tc

i−1,td
i )

∑
t=ta

i

βC(t))



× ∏
j:tc

j 6=∞
φj=0

(1− exp(−βC(tc
j )))

C(tc
j )

1{sj∈C(t)}, (4.4.3)

where ti,j = |ts
i − ts

j | and ts
i and ts

j are the swab times for sequences i and j and sj

is the source of patient j’s colonisation. In this likelihood TP(X) is the number of

true positive screening results given the swab results X, and FN(X, T) is the number

of false negative screening results, given the swab results X and augmented data T.

The parameter vector, ρ, is {p, z, β, Θ} and Θ = {θ, θi, θgl} is the vector of genetic

parameters. The admission state of patient i, φi, is 0 if the patient was admitted to

the ward in a susceptible state and 1 if they were admitted in a colonised state. The

number of colonised patients present on the ward on day t is given by C(t). The

admission, colonisation and discharge times of patient i are given by ta
i , tc

i , and td
i

respectively.

4.5 An MCMC routine for fitting the model for the spread of

MRSA in a hospital ward

We can fit the models introduced in section 4.3 to the data introduced in section 4.2 by

using a data-augmented MCMC routine to sample the parameters, ρ, and the trans-

mission dynamics, T, from π(X, Ψ|T, ρ, Z)π(T|ρ, Z)π(ρ), where π(ρ) is the joint prior

distribution of the parameters. At each iteration our MCMC routine first updates the
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parameters of the model, ρ, before updating the structure of the unobserved trans-

mission tree, T. In the next sections we describe our MCMC algorithm.

4.5.1 Parameter updates

Here we describe how each of the parameters in the model is updated by our MCMC

algorithm. We show which parameters can be updated using Gibbs steps, and assign

each parameter appropriate prior distributions.

4.5.1.1 Genetic parameter updates for each model

We assume that the genetic parameter θ has a Γ(νθ , λθ) prior distribution, which

means that the probability density function f (x) ∝ xνθ−1 exp(−λθx) for x > 0. There-

fore we may derive, up to proportionality, the full conditional distribution of θ, which

is given as π (θ|ρ−θ , X, T) where ρ−θ is the parameter vector without the component

θ. Under the Time Dependent Distances model it follows from likelihood 4.4.3 that

π (θ|ρ−θ , X, T) ∝ θνθ−1 exp(−λθθ)
nseqs

∏
j=2

j

∏
i=1

1trans(i,j)=1
(ti,jθ)

Ψi,j!

Ψi,j

exp(−(ti,jθ))

∝ θνθ−1 exp(−λθθ)
nseqs

∏
j=2

j

∏
i=1

1trans(i,j)=1θΨi,j exp(−(ti,jθ))

∝ θνθ−1 exp(−λθθ)θ∑(i,j)∈Υ Ψi,j

nseqs

∏
j=2

j

∏
i=1

1trans(i,j)=1 exp(−(ti,jθ))

∝ θ∑(i,j)∈Υ Ψi,j+νθ−1 exp(−λθθ) exp(− ∑
(i,j)∈Υ

ti,jθ)

∝ θ∑(i,j)∈Υ Ψi,j+νθ−1 exp(−θ( ∑
(i,j)∈Υ

ti,j + λθ))

where Υ is the set of (i, j) such that trans(i, j)= 1. It follows that θ may be sampled

directly, using a Gibbs step, from the distribution:

Γ

 ∑
(i,j)∈Υ

Ψi,j + νθ , ∑
(i,j)∈Υ

ti,j + λθ

 .

Similarly, for both the Chain Poisson model and the Chain Error model the parameter

θ assigned θ ∼ Γ(νθ , λθ) a priori can be sampled from the distribution:

Γ

 ∑
(i,j)∈Υ

Ψi,j + νθ , ∑
(i,j)∈Υ

Ntrans(i,j)=1 + λθ
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where Υ is the set of (i, j) such that trans(i,j)= 1 and Ntrans(i,j)=1 is the total number of

pairs of sequences for which trans(i,j)= 1.

The parameter θgl is assumed to have a Γ(νθgl , λθgl ) prior distribution, so under the

each of the three genetic distance models θgl can be sampled from the distribution:

Γ

 ∑
(i,j)∈Υg

Ψi,j + νθgl , ∑
(i,j)∈Υg

Ntrans(i,j)=∞ + λθgl


where Υg is the set of (i, j) such that trans(i,j)= ∞ and Ntrans(i,j)=∞ is the total number

of pairs of sequences for which trans(i,j)= ∞, so the patients from which the pair of

sequences are taken are in different transmission chains.

The parameter θi is assumed to have a Γ(νθi , λθi) prior distribution and hence can

similarly be sampled from the distribution

Γ

 ∑
(i,j)∈Υi

Ψi,j + νθi , ∑
(i,j)∈Υi

Ntrans(i,j)=0 + λθi


where Υi is the set of within-host distances, so the set of (i, j) such that trans(i,j)= 0

and Ntrans(i,j)=0 is the total number of within-host distances. This distribution remains

the same for the Chain Poisson model and the Chain Error model, as the way in which

we model θi does not change.

The parameter γ in the Chain Error model is assumed to have an improper uniform

prior distribution on (0, ∞) and is updated using a Metropolis-Hastings random-

walk. The step size of the random walk varies according to a Normal distribution

with mean 0 and variance σ2; the acceptance rate is checked every 1000 iterations in

order to adjust the variance to maintain an acceptance rate between 0.2 and 0.6.

4.5.1.2 Epidemiological parameter updates

The importation parameter p may be updated using a Gibbs step for each of the three

models.We assume that p had a Beta(αp, βp) prior distribution which is a Beta dis-

tribution with probability density function f (x) ∝ xαp−1(1− x)βp−1 for 0 ≤ x ≤ 1.

Then the full conditional distribution of p, up to proportionality, may be derived as

π(p|ρ−p, X, T) ∝ pαp+∑i φi(1 − p)βp+n−∑i φi , so it follows that p may be sampled di-

rectly from the distribution:

Beta(αp + ∑
i

φi, βi + n−∑
i

φi)
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where n is the number of patients in the study. The admission states, φ = φ1, φ2, . . . , φn,

have the value 1 if the patient is colonised before their admission to the ward, and 0

otherwise, so ∑i φi is the number of patients who were colonised on admission, and

n−∑i φi is the number of patients who were susceptible on admission.

Similarly, we assume that the sensitivity parameter z has a Beta(αz, βz) prior distribu-

tion so the full conditional distribution under each of the three models may be derived

up to proportionality as π(z|ρ−z, X, T) ∝ zαz+TP(X)(1− z)βz+FN(X,T) and it follows that

z may be sampled directly, using a Gibbs step, from the distribution:

Beta(αz + TP(X), βz + FN(X, T))

where TP(X) is is the number of true positive screening results given the swab results

X, and FN(X, T) is the number of false negative screening results, given the swab re-

sults X and augmented data T.

The transmission parameter, β, is assumed to have an improper uniform prior dis-

tribution on (0, ∞) and is updated using a Metropolis-Hastings random-walk under

each of the three models. The step size of the random walk varies according to a Nor-

mal distribution with mean 0 and variance σ2; the acceptance rate is checked every

1000 iterations in order to adjust the variance to maintain an acceptance rate between

0.2 and 0.6.

4.5.2 Augmented data updates

In order to estimate the unobserved transmission processes in the epidemic we use a

data-augmented MCMC routine. Our MCMC algorithm has four data augmentation

steps. At each iteration the algorithm performs one of these steps with equal prob-

ability, and running the algorithm for a large number of iterations will give us the

posterior probability of possible transmissions between patients. During each step a

candidate data set T∗ = {s∗, tc∗, φ∗, Ψa∗} is proposed. Here we describe each step,

and define the proposal ratio, qT,T∗ = P(T∗ → T)/ P(T → T∗), (the ratio of the prob-

ability of making the reverse move to the probability of making this move) for the

model described in section 4.3. Detailed explanations of these proposal ratios can be

found in appendix A.

• Add colonisation. In this move we select uniformly at random a currently un-

colonised patient, i, and propose a colonisation for them. If there are no un-
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colonised patients to choose from then no move is made. The number of un-

colonised patients to choose from consists of all patients who are not observed

positive, nsus, minus those who currently have a colonisation added, nadd. With

probability w the chosen patient is proposed to be colonised before admission to

the ward, so they are an importation. With probability 1− w the patient is pro-

posed to be colonised by another infectious patient on the ward. In this case we

draw a day of colonisation, tc∗
i , from {ta

i , . . . , td
i }. We select a source of coloni-

sation at random from the set of colonised patients on this day. If there are no

available patients to be a source on this day, the move is not made. If the move

is possible, whether we are inferring an importation or a colonisation on the

ward (acquisition), we then draw a set of genetic distances, Ψa
i,1, ..., Ψa

i,nseqs+nadd
,

from the patient to every other sequence from every colonised patient (those ob-

served positive in the data, and those currently added by the algorithm). These

distances are drawn according to the relevant probability distributions depend-

ing on the genetic distance model and whether the two patients from whom the

sequences are collected are in the same transmission chain and adjacent to each

other, in the same chain but separated by more than one transmission event, or

in separate chains. The relevant probability distributions for the Chain Error

model are given in equations 4.3.1 and 4.3.2 on page 76, for the Chain Poisson

model are given in equations 4.3.3 and 4.3.4 on page 76, and for the Time De-

pendent Distances model are given in equations 4.3.5 and 4.3.6 on page 77.

If nadd0 is the number of patients who currently have no offspring (we define

the offspring of a patient to be those patients who are inferred to have this pa-

tient as the source of their colonisation) as well as a colonisation time added by

the algorithm, the proposal ratio is for adding an importation is

qT,T∗ =
nsus − nadd

w(1 + nadd0)Yadd
,

and the proposal ratio of adding an acquisition is

qT,T∗ =
C(tc∗

i )(nsus − nadd)(td
i − ta

i + 1)
(1− w)(nadd0 + 1)Yadd

,

where

Yadd =
nseqs+nnoseqs+nadd

∏
j=1

P
[

Ψi∗,j = Ψa∗
i∗,j|Θ

]
where Θ is the vector of genetics parameters. The number of patients who have

a positive swab result but no genetic sequence taken is given by nnoseq, the num-

ber of sequences in collected is given by nseqs and the number of sequences cur-

rently added by the algorithm is given by nadd.
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• Remove colonisation. In this move we select uniformly at random one of the

nadd0 currently added colonised patients who are not inferred to be the source of

any other colonisations. We can not make this move if no such individuals exist.

If we are removing a patient who is assumed to be an importation the proposal

ratio is

qT,T∗ =
nadd0 · w ·Yrm

nsus − nadd + 1
,

and if we are removing a patient assumed to have acquired MRSA during their

stay in the ward the proposal ratio is

qT,T∗ =
Yrm · nadd0 · (1− w)

(td
i − ta

i + 1)(nsus − nadd + 1)(C(tc
i )− 1)

,

where

Yrm = ∏
j : i 6=j

P
[

Ψi,j = Ψa
i,j|Θ

]
.

• Move a colonisation time. In this move we pick a patient uniformly at ran-

dom from the number of colonised patients, nseqs + nnoseq + nadd, and move their

colonisation time. As when we added a colonisation time, we propose that the

patient was positive on admission with probability w. With probability 1− w

the patient acquired the pathogen whilst on the ward so we sample a coloni-

sation time uniformly at random from the days in the interval {ta
i , ta

i+1, . . . , fi}
where fi is the latest day on which this patient could have been colonised. This

is either the day of the patient’s first positive swab result, or the day of the

‘birth’ of the patient’s first offspring, whichever is smaller, or the day of dis-

charge for those patients who have neither positive swabs nor offspring. We

then uniformly at random draw a source for the patient from the set of colonised

patients on the chosen day of colonisation. If there are no positive patients no

move is made.

If the patient we choose to move is an acquisition on day tc
i and we reassign

them as an acquisition on day tc∗
i the proposal ratio is

qT,T∗ =
C(tc∗

i )

C(tc
i )

.

If the patient that we choose to move is an acquisition on day tc
i and we reassign

them as an importation on day ta
i the proposal ratio is

qT,T∗ =
1− w

w( fi − ta
i + 1)C(tc

i )
.
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If the patient that we choose to move is an importation on day ta
i and we reassign

them as an acquisition on day tc∗
i the proposal ratio is

qT,T∗ =
w · ( fi − ta

i + 1) · C(tc∗
i )

1− w
.

If the patient that we choose to move is an importation on day ta
i and we reassign

them as an importation on day ta
i the proposal ratio is qT,T∗ = 1.

• Change genetic distances. In this move we pick uniformly at random one of the

nnoseq + nadd patients who either have a positive swab but no sequence, or have

an added colonisation time, and change the genetic distances between their se-

quence (or one of their sequences picked uniformly at random if they have more

than one) and each other sequence. If no such patients exist no move is made.

We draw a new set of distances between this sequence and each other sequence

from each colonised patient according to the relevant probability distributions.

The relevant probability distributions for the Chain Error model are given in

equations 4.3.1 and 4.3.2 on page 76, for the Chain Poisson model are given

in equations 4.3.3 and 4.3.4 on page 76, and for the Time Dependent Distances

model are given in equations 4.3.5 and 4.3.6 on page 77. The proposal ratio for

this move is

qT,T∗ =

∏
j : i 6=j

P
[

Ψi,j = Ψa
i,j|Θ

]
∏

j : i 6=j
P
[

Ψi,j = Ψa∗
i,j |Θ

] .

Acceptance probability

For each of the augmented data updates described above we accept the proposed

augmented data set with probability

min
(

1,
π(X, Ψ|T∗, ρ)π(T∗|ρ)
π(X, Ψ|T, ρ)π(T|ρ) qT,T∗

)
.

4.5.3 Improvements to augmented data steps in the Worby et al. model

The augmented data updates used by Worby et al. in the MCMC algorithm for fitting

their models are not greatly different from those stated here for our model. However,

there are two changes that we made to the augmented data steps to improve the

mixing of the algorithm that also improve the Worby et al. method. When we ran
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the Worby et al. algorithm without these steps we found that the model was prone

to get stuck in certain regions of the likelihood and so not explore the space well.

Introducing these changes helped with that problem. We now explain what these

changes are.

4.5.3.1 Proposal distributions for new genetic distances

The Transmission Chain Diversity model and the Importation Structure model MCMC

algorithms draw genetic distances for sequences from patients for whom a colonisa-

tion is added by the algorithm, or those who are positive but without a sequenced

isolate, from probability mass functions m(·) and mG(·), for strains in the same group

and different groups respectively. These distributions are completely defined pre-

analysis, meaning that any parameters are static throughout the algorithm. We adapted

this to allow for the distributions to take the same parameter values already being in-

ferred in our MCMC algorithm. This improved mixing of the algorithm as we were

more likely to draw distances that we would accept.

4.5.3.2 Changing genetic distances for added patients

In the Worby et al. algorithm the step in which the genetic distances are changed

only alters the distances of those patients for whom we had a positive swab result

but no genetic sequence. In our MCMC algorithm we propose instead to change the

distances of sequences from any patient for whom a colonisation time has been added

by the algorithm as well as those whom we know are positive with no sequence. In

theory the Worby et al. algorithm can explore different genetic distances for added

colonisations by deleting added colonisations and re-adding the same patient but

with different distances. However, we found that mixing was highly improved when

we were able to update the distances for sequences from these patients in a separate

step to the addition and deletion steps.

4.6 Additional MCMC update steps for the Thai data

The MCMC algorithm with the augmented data steps described in 4.5.2 was used

to fit each of the three models to the data from the hospital in Thailand. Parame-

ters p and z were assigned U(0, 1) prior distributions, parameters θ, θi and θgl were

assigned Γ(1, 10−6) prior distributions and parameters β and γ were assigned im-

proper uniform prior distributions on (0, ∞). The parameters were initially given
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values based on the results of Worby [69]. We initialised the infection times by giving

each patient who had received a positive swab a colonisation time of the day before

their first positive swab. If a patient’s first positive swab was on their day of admis-

sion they were assigned as an importation. For patients who were not importations

and had a positive test we drew a source uniformly at random from the set of other

colonised patients on the ward on the day of colonisation. If no source was available

we reassigned that patient as an importation. We initialised the missing sequences

by drawing a genetic distance between each patient who had a positive swab but no

sequence and each other patient sequence from a Poisson distribution with mean 30.

The Chain Poisson model and the Time Dependent Distances model showed good

mixing, however the Chain Error model, with its extra parameter and more complex

distribution, showed evidence of the chain getting stuck at certain configurations of

the transmission tree and not making any further moves. Therefore we created addi-

tional augmented data steps to enable the chain to move away from these positions.

An example of the resulting traceplots from the improved MCMC algorithm for each

model on Ward 1 can be found in appendix B.

4.6.1 Additional data augmentation

• Updating θ and θgl alongside the genetic distances

From the output we detected that it was the likelihood of the genetic distances

that was preventing the algorithm from moving. Therefore we proposed to up-

date both the distance parameters and the genetic distances for one patient at

the same time. In this move we propose a new value for θ and θgl using a

Gaussian random-walk: the step size of the random walk varies according to

a Normal distribution with mean 0 and variance σ2, and we check the accep-

tance rate every 1000 iterations in order to adjust the variance to maintain an

acceptance rate between 0.2 and 0.6. Then we pick a patient at random from

the patients either with a positive swab but no sequence, of which there are a

total of nnoseq, or with an added colonisation time, of which there are a total

of nadd, and change the genetic distances from their sequence to each other se-

quence from other colonised patients using the proposed values θ∗ and θ∗gl . If

no such patients exist no move is made and the parameters retain their previ-

ous values. We draw a new set of distances between this patient’s sequence and

each other colonised patient’s sequences according to the relevant probability

distributions. The relevant probability distributions for the Chain Error model
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are given in equations 4.3.1 and 4.3.2 on page 76, for the Chain Poisson model

are given in equations 4.3.3 and 4.3.4 on page 76, and for the Time Dependent

Distances model are given in equations 4.3.5 and 4.3.6 on page 77. The proposal

ratio for this move is

qT,T∗ =

∏
j : i 6=j

P
[

Ψi,j = Ψa
i,j|Θ

]
.

∏
j : i 6=j

P
[

Ψi,j = Ψa∗
i,j |Θ∗

]
.

• Updating one distance at a time using a random-walk

In the steps which update the genetic distances described in section 4.5.2, a

patient with distances added by the algorithm is selected and we propose to

update all of the distances from their sequence to each other sequence from ev-

ery colonised patient by drawing each distance from a probability distribution.

An alternative is to update the genetic distances one at a time via a random-

walk. Therefore we pick uniformly at random from the patients either with a

positive swab but no sequence, of which there are a total of nnoseq, or with an

added colonisation time, of which there are a total of nadd, and then uniformly

at randomly select one of the distances between their sequence and one other

sequence to update. We update this distance by either adding, with probability
1
2 , or subtracting, with probability 1

2 , from the current distance. The integer to

be added or subtracted is drawn from a Poisson distribution with parameter v

which is specified before we run the algorithm. We allow for this parameter

to be scaled up or down if the algorithm is either accepting too many (> 80%)

or not enough (< 20%) proposals. Here the probability of the move and the

reverse move are equal, so the proposal ratio is 1.

• Swap a source with one of their offspring

In this move we pick a pair of patients who are connected by a direct transmis-

sion event in the current configuration of the transmission tree and swap their

places in the chain. The idea behind this move is that the chain gets stuck in

configurations of the transmission tree because the jump to an entirely new tree

is too large, but it is easier to find smaller steps that will be accepted.

To execute this move a patient, j, is picked uniformly at random from the total

number of patients who are colonised during their stay on the ward (nacq =

nseqs + nnoseq + nadd − nimp, where nimp is the number of importations of the

pathogen to the ward). We then find this patient’s source of colonisation, i,

and this is the pair of patients which we swap. If the source patient colonises
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another patient before the one we have picked there is no move made. If the

colonisation time of the source patient is before the time at which the selected

offspring is admitted to the ward there is no move made. If there is a move

to be made, we record the time of colonisation of j, tswap before setting tj = ti

and the source of colonisation sj = si. Then we set ti = tswap and the source of

colonisation si = j. Here the probability of the move and the reverse move are

equal, so the proposal ratio is 1.

• Change a source without changing the time of colonisation

In this move we pick one colonised patient and change their source of coloni-

sation whilst keeping their colonisation time the same. Again, the idea is that a

smaller move should be more easily accepted, allowing the algorithm to move

away from the configurations of the transmission tree that it was getting stuck

in.

Once we have chosen a patient, i, uniformly at random from the total num-

ber of patients who are colonised during their stay on the ward (nacq = nseqs +

nnoseq + nadd − nimp, where nimp is the number of importations of the pathogen

to the ward), we then pick uniformly at random from the set of other colonised

patients present on that day to obtain a new source, j, for the patient. We set

si = j, and there is no need to change the source of any other patients who go

on to be colonised by this one as we have not changed the colonisation time, so

it is still available to colonise them. Here the probability of the move and the

reverse move are equal, so the proposal ratio is 1.

4.7 Simulation study

In order to assess the performance of our MCMC algorithm we performed a simu-

lation study where we simulated a number of outbreaks of MRSA according to our

model, and then fitted the model using the MCMC routine to check that the parame-

ters and transmission tree were recovered. The parameters were again assigned un-

informative prior distributions: U(0, 1) for p and z, Γ(1, 10−6) for θ, θi and θgl and im-

proper uniform distributions on (0, ∞) for β and γ. The initialisation was performed

using the same method described in section 4.6. Here we describe the method for sim-

ulating data from our models, and then assess the output from the MCMC algorithm

on simulations with different values for the parameters.
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4.7.1 Simulation method

In order to simulate an outbreak of MRSA on a hospital ward we specify the number

of patients in the study, n, the length of the study, L, and the average length of stay

for patients on the ward, A. We assume that the ward is initially empty. We set a test

frequency, κ, to allow for tests to be taken from colonised patients. This means tests

are taken every κ days from all patients who are presents on the ward on that day, so

the set of test days tt can be generated independently of the patient stays.

For each of the n patients we draw a date of admission to the ward uniformly at

random from time 0 to time L. We draw their length of stay from a Poisson distribu-

tion with parameter A. Each of these patients is independently admitted colonised

with probability p.

Patients who are not admitted colonised either remain susceptible for their whole stay

on the ward, or become colonised through contact with another colonised patient. A

susceptible patient, i, avoids colonisation on day t with probability P(avoid(t)) =

exp(−βC(t)), where C(t) is the number of colonised patients present on the ward on

day t, so the number of importation patients who have arrived on or before day t

and are discharged after day t, plus the number of patients who acquire the pathogen

before day t and are discharged after day t. If patient i does not avoid colonisation on

day t then they acquire the pathogen and tc
i = t. A source of colonisation is drawn

for this patient’s colonisation uniformly at random from the C(tc
i ) patients available

to colonise them.

For each patient, i, who is colonised, either before admission to the ward or during

their stay on the ward, we generate a test result for each of the test days, tt, that pa-

tient i was present on the ward for. When positive patients are tested the result of their

test is positive with probability z, and negative with probability 1− z, independently

of all other tests. When negative patients are tested their tests are always negative,

so in effect we only need to simulate test results for patients who are colonised on

the ward. We assume that for each positive swab result a patient receives a genetic

sequence is observed. We also assume that a patient i who is colonised but never re-

ceives a positive test result has an unobserved sequence on their day of colonisation

tc
i which has a genetic distance to each sequence (observed or unobserved) on day tc

i

or earlier. We assume each sequence taken on day t has a genetic distance to each

sequence (observed or unobserved) on day t or earlier.
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We draw these genetic distances from the distributions specified by the model, ac-

cording to the relative positions on the transmission tree of the patients who have se-

quences i and j. For sequences from patients who are in distinct transmission chains,

all models draw the genetic distance from a Poisson(θgl) distribution. For sequences

from patients who share a direct transmission event, the Chain Error model and Chain

Poisson model draw the genetic distance from a Poisson(θ) distribution and the Time

Dependent Distances model draws the genetic distance from a Poisson(ti,jθ) distri-

bution. For sequences from patients who are in the same transmission chain but are

separated by more than one transmission event the Chain Poisson model and the

Time Dependent Distances model draw the genetic distance from a Poisson(Di,j) dis-

tribution where Di,j is the sum of the underlying distances in the transmission chain,

so Di,j = ∑k−1
r=0 ΨQpr ,Qpr+1

where p0 = Hi, pk = Hj. The Chain Error model draws

this distance by adding or subtracting from Di,j, with probability 0.5, an error term

drawn from a Poisson distribution with parameter kγ which has been truncated at

the value Di,j. The genetic distance between two sequences taken from the same pa-

tient is drawn from a Poisson distribution with parameter θi under each of the three

models.

4.7.2 Results of the simulation study

In order to assess the performance of the MCMC algorithm we discuss the quality of

the parameter estimation and the network reconstruction from our simulation study.

For each of the three models, the Chain Error model, the Chain Poisson model and the

Time Dependent Distances model, we simulated a number of data sets with different

values of the parameters for 100 patient admissions over 100 days with an average

length of stay of 7 days. We set tests to be taken from the positive patients every 3

days.

To investigate the MCMC algorithm’s ability to recover the parameters we varied

these parameters one at a time. For each parameter, ρi, we fixed the other parame-

ters, ρ−i, to ‘sensible’ values which would allow us to see the impact of varying ρi.

Our choices of ‘sensible’ parameters were informed by the results of the Worby et

al. model [69].

Each parameter ρi was varied over a range of values which included extreme values

in order to assess the performance of the algorithm in these cases:
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• For the importation parameter p we fixed the other parameters (z = 0.7, β =

0.01, θ = 40 for the Chain Error model and the Chain Poisson model or 0.1 for

the Time Dependent Distance model, θgl = 300) and varied p between 0 and 1

in increments of 0.1.

• For the test sensitivity parameter z we fixed the other parameters (p = 0.2, z =

0.01, θ = 40 or 0.1, θgl = 300) and varied z between 0 and 1 in increments of 0.1.

• For the transmission parameter β we fixed the other parameters (p = 0.6, z =

0.7, θ = 40 or 0.1, θgl = 300) and varied β between 0.005 and 0.05 in increments

of 0.005.

• For the global genetic parameter θgl we fixed the other parameters (p = 0.2, z =

0.7, β = 0.01, θ = 40 or 0.1) and varied θgl between 40 and 400 in increments of

40.

• For the chain genetic parameter θ for the Chain Error model and Chain Poisson

model we fixed the other parameters (p = 0.2, z = 0.7, β = 0.1, θgl = 300) and

varied θ between 10 and 55 in increments of 5.

• For the chain genetic parameter θ for the Time Dependent Distances model we

fixed the other parameters (p = 0.2, z = 0.7, β = 0.1, θgl = 300) and varied θ

between 0 and 1 in increments of 0.1.

Therefore each of the 5 parameters was varied to create 10 sets of parameters each (50

sets in total). For each of these 10 sets of parameters we simulated 10 outbreaks of

MRSA.

4.7.2.1 Parameter estimation

The idea behind creating data sets with varying values of each parameter was to

assess the performance of the MCMC algorithm across a range of conceivable values

and to find areas where it might be limited. For the investigation into each parameter

we ran the MCMC routine for 50,000 iterations on each simulated dataset and plotted

each resulting posterior estimate for the parameter of interest as a boxplot on the same

graph as for the other 99 simulations. An example for varying θ for the Chain Poisson

model is shown in figure 4.6. From this graph it is easy to see whether we have

recovered the fact that θ is increasing but it is not visually obvious exactly how well

we have recovered the specific values for θ so for this we separate the boxplots into

individual graphs for each value of θ and plot them over a line which shows the true
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Figure 4.6: The posterior estimates of parameter θ from fitting the Chain Poisson model to 100

simulated datasets from the same model with input value for θ which varies from 10 to 55,

with 10 simulations for each increase.
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Figure 4.7: The posterior estimates of parameter θ from fitting the Chain Poisson model to 100

simulated datasets from the same model with input value for θ which varies from 10 to 55,

with 10 simulations for each increase.
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value, as in figure 4.7. In this example is is clear that the algorithm has recovered the

increase of θ and that it estimates the specific value for θ well, although as θ increases

so does the spread of the estimate around the true value. The graphs for the other

parameters can be found in appendix C, but we will discuss what they show us here.

Importation parameter p

From the graphs C.1, C.2, C.11, C.12, C.21 and C.22 we can see that the algorithm

estimates the importation parameter p well over the range 0.1 to 1 for each of the

three models. When p = 1 the algorithm slightly underestimates p, which is under-

standable because in this case every patient is an importation, but the algorithm has

to move around the tree space which means exploring a lot of space where there are

transmissions between patients.

Sensitivity parameter z

From the graphs in figures C.3, C.4, C.13, C.14, C.23 and C.24 we can see that the

algorithm estimates the sensitivity parameter z fairly well over the range 0.1 to 1,

although for the lower end (0.1- 0.3) the success is more variable, especially for the

Chain Error model. This is not surprising, as when the sensitivity parameter is low

there will be a lot more uncertainty about the tree structure and the course of the

epidemic so it will be harder to estimate the parameters. We can also see that the

algorithm begins to underestimate the value of z more often once it gets close to 1,

but the estimates are still generally within 0.1 of the true value.

Transmission parameter β

From the graphs in figures C.5 and C.6 we can see that for the Chain Error model, the

estimates of β do capture the increases in its value, but there are a few in the lower

values (0.005- 0.001) which have very wide ranges, suggesting a lot of uncertainty

around their estimation. Also, for the higher values (0.035- 0.05) the boxplots start to

fall below the line of the true value, and this is even more clear in the graphs for the

Chain Poisson model (C.15, C.16) and the Time Dependent Distances model (C.25,

C.26), although these do not have the same problem with the lower values. This may

be due to the fact that the difference in the final size of the epidemics created with

parameter β between 0.035 and 0.05 is not as significant as the difference in final size

when β varies between 0.005 and 0.03.
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Figure 4.8: A histogram comparing the number of patients observed positive in a simulated

dataset to the number observed positive in 100 simulations with the parameters estimated by

MCMC algorithm for the original dataset

Chain genetic parameter θ

The graphs in figures 4.6, 4.7, C.7 and C.8 show that θ is well estimated by the algo-

rithm for the Chain Error model and the Chain Poisson model across the range 10 to

55. For the Time Dependent Distance model (C.27, C.28) the parameter has a slightly

different definition due to the factor ti,j in the distribution. The graphs show that the

algorithm captures the general increase of θ as we vary it, but the precise estimation

is very variable, and becomes more variable as the parameter value increases. This

is understandable as the variation in the times between patients’ samples and their

colonisation which are tied up in the estimation of θ are themselves quite varied.

Global genetic parameter θgl

The graphs in figures C.9, C.10, C.19, C.20, C.29 and C.30 show that θgl is well esti-

mated by the algorithm for each of the three models across the range 40 to 400.

As a further test of our parameter estimations we simulated a dataset, ran the MCMC

algorithm to obtain parameter estimates and then simulated 100 datasets from those

parameter estimates and plotted some summary statistics of those 100 datasets com-

pared to the original ‘true’ simulation. Figures 4.8 and 4.9 show the difference in the

number of patients with one or more positive swabs on a ‘true’ simulated ward com-

pared to 1000 simulations with the parameter estimates made by our algorithm for

the ‘true’ ward. It is clear that there can be a lot of variation in simulations despite

them using the same parameter values. However, as the ‘truth’ is well within the

credible bounds it seems that the estimation of our parameters is reasonable.
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Figure 4.9: Comparing the number of patients with positive swab(s) on the simulated ward

over time with the number of patients with positive swab(s) over time on 1000 wards simu-

lated with the parameter estimates from the MCMC algorithm run on the original simulated

dataset

4.7.2.2 Transmission tree estimation

We used the same set of simulations that were used for investigating parameter esti-

mation in section 4.7.2.1 to investigate the strengths and weaknesses of the algorithm

in recovering the transmission tree for simulations created with a range of values for

each parameter.

In order to visualise how many of the transmission events were correctly estimated

by the algorithm, for each simulation we took the output of the MCMC algorithm and

found the most likely source for each patient’s colonisation by finding which source

was assigned to them for the largest number of iterations (the burn in time was ex-

cluded) and compared this to their true source. We produced separate plots for each

parameter in each version of the model. We plotted a boxplot for each value of the pa-

rameter being investigated which shows the proportion of sources correctly identified

for each of the 10 simulations with that value. An example is given here in figure 4.10

which shows the proportion of sources correctly identified for varying values of the

sensitivity parameter z for the Chain Error model. The plots for the other parameters

and models are found in appendix D but we discuss what they show here.

Effect of varying importation parameter p

From the graphs in figures D.1, D.6 and D.11 we can see that for each of the models

the source estimation gets steadily better as the value of the importation parameter p

increases. This is because it is easier for the algorithm to correctly identify an impor-
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tation than it is for it to correctly identify the source of an acquisition from the pop-

ulation of colonised patients on the ward. However, the algorithm only gets fewer

than 50% of the sources right for p = 0.1 and once p > 0.3 the source estimation is

always near to 75%.

Effect of varying sensitivity parameter z

From the graphs in figures 4.10, D.7 and D.12 we can see that the algorithm for each

variation of the model performs as we would expect with regards to transmission tree

estimation under variations of the test sensitivity in that the higher the sensitivity, the

better we recover the tree. Clearly this is because as the sensitivity increases we have

more correct information about when the patients were colonised.

Effect of varying transmission parameter β

From the graphs in figures D.3, D.8 and D.13 for each version of the model we can

see that the proportion of sources correctly identified decreases as β increases. This

is because as β increases the transmission tree becomes more complicated and harder

to recover fully. However, for the Chain Poisson model most of the simulations were

still recovered with over 75% accuracy, and for the other two models most were re-

covered with over 50% accuracy. Also, these plots only take into account the most

common source given to the patient by the algorithm, so it could be that the second

most common source is the correct one.

Effect of varying genetic parameters θ and θgl

From the graphs in figures D.4, D.9 we can see that variation in the value of θ does not

seem to affect the recovery of the transmission tree for the Chain Error model or the

Chain Poisson model, and the tree was consistently recovered quite well. For the Time

Dependent Distances model (D.14) there does not appear to be much variation in the

proportion of sources recovered correctly until θ > 0.8. This could be because once

θ gets this large the distribution gives similar draws for the chain genetic distances

to those which are drawn for the global genetic distances, making the transmission

tree harder to recover. From the graphs in figures D.5, D.10 and D.15 we see that for

all the models the proportion of sources recovered correctly increases as the value

of θgl gets larger. This is because as it gets larger the distinction between genetic

distances drawn for unrelated patients and those drawn for related patients becomes

more obvious, making it easier to discover which patients are in the same chains of

transmission.

99



CHAPTER 4: ANALYSIS OF AN OUTBREAK OF METHICILLIN-RESISTANT

Staphylococcus aureus IN A HOSPITAL SETTING

●

●

0

25

50

75

100

P
ro

po
rt

io
n 

of
 s

ou
rc

es
 c

or
re

ct
ly

 id
en

tif
ie

d 
fo

r 
va

rie
d 

z

z

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.10: Boxplots to show the proportion of colonisation sources for patients recovered

correctly for simulations with varied values for parameter z for the Chain Error model.

4.8 Analysing the Thai hospital data

Having tested the algorithm on simulated data, we analysed the available data from

an outbreak of MRSA on two hospital wards in Thailand from 2008. We analysed the

data under each of our three models in order to estimate the transmission tree, which

would suggest who colonised whom on each ward, and when these transmissions

of the pathogen took place. For each model on each ward we ran the MCMC algo-

rithm for 200,000 iterations, with 10 augmented data steps taking place during each

iteration. The prior distributions for the parameters were as follows:

p ∼ U(0, 1),

z ∼ U(0, 1),

θ ∼ Γ(1, 10−6),

θi ∼ Γ(1, 10−6),

θgl ∼ Γ(1, 10−6),

and the parameters β and γ (in the Chain Error model) were given improper uniform

prior distributions on (0, ∞).

We initialised the infection times by giving each patient who had received a posi-

tive swab a colonisation time of the day before their first positive swab. If a patient’s

first positive swab was on their day of admission they were assigned as an impor-
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tation. For patients who were not importations and had a positive test we drew a

source uniformly at random from the set of other colonised patients on the ward on

the day of colonisation. If no source was available we reassigned that patient as an

importation. We initialised the missing sequences by drawing a genetic distance be-

tween each patient who had a positive swab but no sequence and each other patient

sequence from a Poisson distribution with mean 30. The parameters were initially

given values based on the results of Worby [69].

We checked for convergence by inspecting the traceplots of the output of the param-

eter estimates. We checked that we had not converged to a local mode by altering the

initial state of the chain a number of times and running the MCMC algorithm again

to ensure that the posterior estimates were the same.

4.8.1 Results from the Chain Error model on each ward

We performed analysis under the Chain Error model on each ward separately. The

posterior mean estimates of the parameters with 95% equitailed credible intervals are

given in tables 4.1 and 4.2. The model assumes that sequences from patients who

share a direct transmission event have their genetic distance drawn from a Poisson

distribution with parameter θ, and that those from patients who are in distinct chains

of transmission have their genetic distance drawn from a Poisson distribution with

parameter θgl . The analysis for ward 1, the surgery ward, suggests that genetic se-

quences from immediately linked patients are expected to differ by 40 SNPs with 95%

credible interval of (38, 41) SNPs. Sequences from unlinked patients are expected to

differ by 381 (379, 383) SNPs. The analysis for ward 2, the paediatric ward, suggests

that genetic sequences from linked patients are expected to differ by 52 (50, 54) SNPs,

and that sequences from unlinked patients are expected to differ by 339 (337, 341)

SNPs.

For ward 1 the model estimated that 5% (2%, 9%) of patients who were admitted to

the ward were already colonised with MRSA and for ward 2 the model estimated that

7% (3%, 12%) of patients were colonised before admission to the ward. It was esti-

mated that the test sensitivity for the surgery ward was 72% (59%, 83%), and the test

sensitivity for the paediatric ward was 79% (68%, 84%). For ward 1 it was estimated

that the transmission rate was equivalent to 1.3 (0.7, 2.1) patients colonised by each

infectious patient per 100 days on the ward. For ward 2 it was estimated that the

transmission rate was equivalent to 1.0 (0.6, 1.4) patients colonised by each infectious
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Ward 1

Model p z β θ θgl θi

Chain

Error

model

0.048

(0.02,0.09)

0.717

(0.59,0.83)

0.013

(0.007,0.021)

39.596

(38.08,41.13)

380.886

(378.81,383.19)

37.202

(36.31,38.11)

Chain

Poisson

model

0.049

(0.019,0.092)

0.705

(0.58,0.81)

0.012

(0.007,0.019)

40.243

(39.12,41.40)

380.558

(378.92,382.20)

37.202

(36.31,38.11)

Time

Dependent

Distances

model

0.056

(0.025,0.10)

0.695

(0.58,0.80)

0.012

(0.007,0.019)

0.148

(0.144,0.152)

380.55

(378.92,382.18)

37.20

(36.31,38.10)

Table 4.1: Posterior mean estimates of the model parameters for each of the three models on ward 1, with

95% equitailed credible intervals.

Ward 2

Model p z β θ θgl θi

Chain

Error

model

0.067

(0.028,0.12)

0.786

(0.68,0.84)

0.010

(0.006,0.014)

52.319

(50.31,54.34)

338.979

(337.08,341.16)

7.996

(6.33,9.84)

Chain

Poisson

model

0.033

(0.007,0.076)

0.813

(0.71,0.90)

0.013

(0.008,0.019)

61.699

(59.25,68.44)

212.021

(209.511,214.525)

8.009

(6.32,9.87)

Time

Dependent

Distances

model

0.019

(0.002,0.052)

0.837

(0.75,0.91)

0.014

(0.009,0.019)

0.294

(0.27,0.33)

176.081

(174.71,177.34)

7.990

(6.37,9.81)

Table 4.2: Posterior mean estimates of the model parameters for each of the three models on ward 2, with

95% equitailed credible intervals.
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patient per 100 days on the ward.

Figure 4.11 shows the estimated transmission network for the surgical ward, and for

the paediatric ward. We can see that on the first ward 4 transmission events are at-

tributed to patient T126 with high probability. This patient stayed on the ward for

71 days, which is 51 days longer than the patient who stayed for the second longest

period, and T126 was observed to have a positive swab the day after their admission.

However, the number of colonisations from patient T126 is still higher than expected

given the estimate of the transmission parameter β. In the second ward we can see

that 4 transmission events are attributed to patient T12, over the course of their 3 sep-

arate stays in the ward, with high probability. Combining each of this patient’s stay

times on the ward shows that they were admitted for a total of 103 days, which is 10

days longer than any other patient. However, the transmissibility of patient T12 is

still far higher than expected given the estimate of the transmission parameter β.

4.8.2 Results from the Chain Poisson model for each ward

We used the Chain Poisson model to analyse the data from each ward from the hos-

pital. Tables 4.1 and 4.2 give the posterior mean estimates of the parameters with 95%

equitailed credible intervals for each ward. This model again assumes that sequences

from patients who share a direct transmission event have their genetic distance drawn

from a Poisson distribution with parameter θ, and that those from patients who are in

distinct chains of transmission have their genetic distance drawn from a Poisson dis-

tribution with parameter θgl . The analysis for ward 1 suggests that genetic sequences

from immediately linked patients are expected to differ by 40 (39, 41) SNPs, and that

sequences from unlinked patients are expected to differ by 381 (379, 382) SNPs. The

analysis for ward 2 suggests that genetic sequences from linked patients are expected

to differ by 62 (59, 68) SNPs, and that sequences from unlinked patients are expected

to differ by 212 (210, 215) SNPs.

Under the Chain Poisson model we estimate that the proportion of colonised ad-

missions is slightly higher for ward 1 than for ward 2, with the estimate for patients

admitted colonised to ward 1 being 5% (1%, 9%) and the estimate for patients admit-

ted colonised to ward 2 being 3% (1%, 8%). It was estimated that the test sensitivity

for the surgery ward was 71% (58%, 81%), and the test sensitivity for the paediatric

ward was 81% (71%, 90%). The estimates for the transmission parameter, β, under

this model are similar for each ward, with an estimated transmission rate equivalent
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ICU 1: Inferred transmission network
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Figure 4.11: The inferred transmission trees for each ward of the Thai data given by the

MCMC algorithm output for the Chain Error model. The colour of the nodes represents the

probability that the patient was an importation. The arrows represent inferred transmission

events between patients. The colour of these represents how likely they were to have taken

place.
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to 1.2 (0.7, 1.9) patients colonised by each infectious patient per 100 days on ward 1,

and 1.3 (0.8, 1.9) patients colonised by each infectious patient per 100 days on ward

2.

Figure 4.12 shows the estimated transmission network for each ward under the Chain

Poisson model. Again we estimate that the patients who were present longest on each

ward (T126 on ward 1 and T12 on ward 2) were the source of a disproportionally large

number of acquisitions, with T126 colonising 4 patients over 71 days with high prob-

ability, and T12 colonising 6 patients over 103 days with high probability.

4.8.3 Results from the Time Dependent Distances model for each ward

The Time Dependent Distances model was used to analyse the data from each ward.

Tables 4.1 on page 102 and 4.2 on page 102 give the posterior mean estimates of the

parameters with 95% equitailed credible intervals for each ward. This model uses the

parameter θ in a different way to the other two models, as genetic distances between

sequences from two patients who share a transmission event are drawn from a Pois-

son distribution with parameter ti,jθ where ti,j is a measure of the time between the

sampling of the two sequence, so it is harder to interpret. However, the parameter

θgl for the Poisson distribution from which genetic distances are drawn for sequences

from patients in independent chains of transmission has the same meaning. It is es-

timated that the genetic sequences between two patients in independent chains are

expected to differ by 381 (379, 382) SNPs in ward 1, and by 176 (175, 177) SNPs in

ward 2.

Under this model we estimate that 6% (3%, 10%) of patients admitted to ward 1 were

already colonised, and only 2% (0.2%, 5%) of patients admitted to ward 2 were al-

ready colonised. It was estimated that the test sensitivity for the surgery ward was

70% (58%, 80%), and the test sensitivity for the paediatric ward was 84% (75%, 91%).

Under this Time Dependent Distances model the estimate for the transmission param-

eter, β, on ward 1 is equivalent to 1.2 (0.7, 1.9) patients colonised by each infectious

patient per 100 days on the ward. On ward 2 the estimate for β is equivalent to 1.4

(0.9, 1.9) patients colonised by each infectious patient per 100 days on the ward.

Figure 4.13 shows the estimated transmission network under the Time Dependent

Distances model for each ward. As with the other two models we estimate that the

patients who stayed for the longest time on each ward were the source of a large
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ICU 1: Inferred transmission network
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Figure 4.12: The inferred transmission trees for each ward of the Thai data given by the

MCMC algorithm output for the Chain Poisson model. The colour of the nodes represents

the probability that the patient was an importation. The arrows represent inferred transmis-

sion events between patients. The colour of these represents how likely they were to have

taken place.
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number of acquisitions with high probability, with T126 on ward 1 estimated to be

the source of colonisation for 5 patients over 71 days, and T12 on ward 2 estimated to

be the source of colonisation for 6 patients over 103 days.

4.8.4 Comparison of results from each model

For ward 1, each of our three models give similar estimates for each of the compa-

rable parameters. The importation parameter p has posterior mean 0.05 or 0.06, the

sensitivity has posterior mean 0.70 to 0.72, and the transmission rate has posterior

mean 0.012 or 0.013 for the three models. We can compare these estimates to those

obtained under the Worby et al. models, as the basic epidemic model is comparable to

our models. Analysis of the ward 1 data under the Worby et al. models also estimates

the importation parameter p = 0.06 (0.03, 0.11), and the estimate of the sensitivity

z = 0.73 (0.62, 0.84) or 0.75 (0.64, 0.86) (for the two different variations of the Worby

et al. model) is well within our credible interval. The transmission parameter is es-

timated to be β = 0.01 (0.005, 0.02) which is again within our credible interval. The

estimates for epidemiological parameters of all the models are very similar.

However, we observe more variation in the estimates of the parameters for ward

2. The Chain Error model gives the posterior mean of the importation parameter as

0.07 (0.05, 0.12), which is similar to what was estimated by all three models for ward

1. The other two models estimate p to be much lower than this, with posterior mean

either 0.03 (0.01, 0.08) or 0.02 (0.002, 0.05). The figures show that the Chain Error

model infers 6 importations with high probability, whereas the Chain Poisson model

only infers 2, and the Time Dependent Distances model infers only 1. Importantly,

all three posterior means fall within the 95% equitailed credible intervals estimated

by the models. Interestingly, all of our posterior means are lower than those from the

Worby et al. models which are 0.08 (0.04, 0.14) and 0.16 (0.09, 0.25), and fall outside of

each other’s credible intervals. The patients which are being inferred as importations

by the Worby et al. models but not in our models tend to be those who are observed

to be positive for MRSA within a couple of days of their arrival on the ward. If such

patients have small genetic distances with other patients on the ward our model more

often classifies them as having acquired the disease shortly after arrival, whereas the

Worby et al. models tend to classify them as an importation.

The estimates for the transmission parameter under each of our three models are

more similar, with the Chain Error model posterior mean of β = 0.010 (0.006, 0.014),

107



CHAPTER 4: ANALYSIS OF AN OUTBREAK OF METHICILLIN-RESISTANT

Staphylococcus aureus IN A HOSPITAL SETTING

ICU 1: Inferred transmission network
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Figure 4.13: The inferred transmission trees for ward 2 of the Thai data given by the MCMC

algorithm output for the Time Dependent Distances model. The colour of the nodes rep-

resents the probability that the patient was an importation. The arrows represent inferred

transmission events between patients. The colour of these represents how likely they were to

have taken place.
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the Chain Poisson model posterior mean of β = 0.013 (0.008, 0.019) and the Time

Dependent Distances model posterior mean of β = 0.014 (0.009, 0.019). The poste-

rior means from the Worby et al. models are β = 0.0077 (0.004, 0.01) and β = 0.010

(0.006, 0.015). It follows that the Worby et al. models would estimate a lower trans-

mission rate than our models as they estimated a higher importation rate than we

did. Our models and the Worby et al. models produce posterior means for the test

sensitivity on ward 2 that are all in a similar region. From our models we get z = 0.79

(0.68, 0.84), z = 0.81 (0.71, 0.90) and z = 0.84 (0.75, 0.91), and from the Worby et

al. models we get z = 0.83 (0.75, 0.90) and z = 0.85 (0.77, 0.91).

We can compare the global genetic parameter and the within-host genetic parame-

ter for our three models, although the genetic parameters in the Worby et al. model

have different meaning so can not be compared. Analysis of ward 1 under each of

the three models gives the same posterior mean of θgl = 381 and θi = 37. The

three models also give the same posterior mean of θi = 8 for ward 2. There is

much more variation in the estimates for the global genetic parameter from analy-

sis of ward 2 under the three models. The Chain Error model gives a posterior mean

of θgl = 339 (337, 341) whereas the Chain Poisson model gives a posterior mean of

θgl = 212 (210, 215) and the Time Dependent Distances model gives a posterior mean

of θgl = 176 (175, 177). Similarly, comparing the posterior mean for θ for the Chain

Error model and the Chain Poisson model, which give it the same meaning, we see

that the posterior means are equal for ward 1 (θ = 40), whereas for ward 2 we get

posterior mean θ = 52 (50, 54) under the Chain Error model, and θ = 62 (59, 68) un-

der the Chain Poisson model.

Figures 4.11, 4.12 and 4.13 allow us to compare the estimated transmission tree for

each ward under the three different models. For the first ward we can clearly see that

the estimated transmission trees under the Chain Poisson model and the Time De-

pendent model are almost identical, and the transmission tree under the Chain Error

model is also similar. The Chain Error model estimates a chain of transmission that

goes directly from T071.1 to T092.2 and on to T099.1, whereas the other two models

have this transmission chain starting with T071.1 to T092.1, then to T099.1 and finally

to T092.2. There is also a slight difference between the models in the exact route of

transmission estimates for the group of patients colonised directly and indirectly by

patient T126.1, however all of the models infer this patient as the source of colonisa-

tion for a much larger number of other patients (posterior mean outdegree for patient

T126.1 was 6.1, 6.3 and 7.2 for each of the models) than the transmission parameter
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estimate would suggest. For this ward we estimated a posterior mean outdegree of

2.0 from each patient in the tree under each of the three models. We note that the

transmission trees estimated under the Worby et al. models for this ward have a very

similar shape, although ours appear to have greater resolution.

For the second ward there is slightly more variation between our models in the es-

timation of the transmission tree, although again we can immediately see from the

figures that the broad shape of the trees remains the same. Here again we have all

three models estimating one patient (T12) to be the source of colonisation for a larger

number of other patients than we would expect given the estimation of the transmis-

sion parameter. The posterior mean outdegree for patient T12 (including each of the

patient’s three admissions to the ward) is 5.7 under the Chain Error model, 6.9 un-

der the Chain Poisson model, and 7.9 under the Time Dependent Distances model.

The posterior mean outdegree per patient for each model was 1.8 for both the Chain

Poisson model and the Time Dependent Distances model, and 1.5 for the Chain Error

model, which reflects the slightly lower estimate of the transmission parameter for

this model compared to the other two. Compared to the Worby et al. models esti-

mated trees, ours show a greater resolution and more transmission events estimated

at higher probability levels. The Worby et al. models also estimate that patient T12

was the source of more colonisations than anyone else.

4.9 Model assessment

In section 5.8 the results of analysing MRSA data from two separate wards in a Thai

hospital under our three different models were presented. The results from the dif-

ferent models were compared in section 4.8.4 and it was found that in some cases the

results were distinctly different under different models. Therefore, model assessment

is required in order to determine the goodness-of-fit of each of the models and to

assess whether one model can be distinguished which fits better than the rest.

4.9.1 Epidemic model assessment

Posterior predictive checks were used in order to check the goodness-of-fit of the

three models to the data from each of the wards. The number of patients ever to

have a positive swab taken over the course of the epidemic was used as a summary

statistic for the epidemic data. The number of patients present on the ward each day

with a positive swab taken on that, or a previous, day was taken as a summary set of
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Chain Error model Chain Poisson model Time Dependent model

Ward 1 (7,53) (2,33) (3,33)

Ward 2 (5,28) (1,32) (1,27)

Table 4.3: 95% highest density regions for the number of patients to have a positive swab for

each ward under each of our models. The observed value for ward 1 was 22 and for ward 2

was 30. Red HDRs indicate that the observed value falls outside the region, and green HDRs

indicate that the observed value falls inside.

statistics. We refer to these as positive patients per day. For each model 1000 sets of

data were simulated, with fixed patient admission and discharge times from the data

(these do not form part of our model framework), using values of the parameters

which were taken from the posterior densities given by the output of the MCMC

algorithm. The values of the summary statistics were recorded for each simulation.

The observed number of patients with a positive swab on the real ward, nsw, was

compared to the distribution of the number of patients with a positive swab in the

simulated wards, ñsw. Table 4.3 gives the 95% highest density region for the posterior

predictive distributions for each ward under each model. The red HDRs indicate that

the posterior predictive p-value, P(nsw > ñsw), is extreme and falls outside the HDR.

In these cases there is evidence against the fit of the model. The posterior predictive

p-value for both the Chain Error model and the Time Dependent model indicated a

lack of fit to the data for ward 2, whereas there was no evidence against the fit of any

of the models for ward 1, or against the Chain Poisson model for ward 2.

Figure 4.14 displays the results of recording the positive patients per day for the 1000

simulations. The observed positive patients present on day i, ni
sw, was compared

to the distribution of the positive patients present on the same day in the simulated

wards, ñi
sw. The green area in figure 4.14 gives the 95% highest density region for

the posterior predictive distributions for each ward under each model and the blue

line gives the observed values from the dataset. The posterior predictive p-value,

P(ni
sw > ñi

sw), for each day of the study can be examined. If the blue line departs

from within the green area then the p-value is extreme. It can be noted that for ward

1 only the Chain Error model displays no extreme p-values, although the other two

models only have one out of 173 study days. For ward 2 each model displays some

extreme p-values, with 10 out of 173 study days under both the Chain Error model

and the Time Dependent model, and only 5 under the Chain Poisson model. These

results for ward 2 agree with the posterior predictive check of the total number of

patients with a positive swab which suggested that the Chain Poisson model was the
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(a) Chain Error model on ward 1
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(b) Chain Error model on ward 2
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(c) Chain Poisson model on ward 1
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(d) Chain Poisson model on ward 2
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(e) Time Dependent model on ward 1
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(f) Time Dependent model on ward 2
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Figure 4.14: Posterior predictive checking for the number of patients present on the ward

who have had a positive swab on that day or a previous day. The green area gives the 95%

highest density region of the posterior predictive distribution, the red line shows the mean of

the distribution and the blue line shows the observed values from the data.
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best fit. For ward 1 this assessment of the positive swabs per day has given more

information than the assessment of the total number of patients with a positive swab

and has indicated that the Chain Error model is the best fit.

So far only the epidemic parts of the models have been assessed for goodness-of-fit.

In section 4.10 the novel method of genetic model assessment which was introduced

in section 3.3 is applied.

4.10 Genetic model assessment

In order to assess the fit of each different model to the genetic data a total of 1000

genetic distance matrices, Ψ̃, were simulated using values for the genetic parameters,

the times of colonisation and the sources of colonisation drawn from the posterior

densities given by the output of the MCMC algorithm. The observed genetic distance

between two sequences from patients who were both sampled during the course of

the epidemic is given by Ψi,j, so the posterior predictive p-value can be defined as

P(Ψi,j < Ψ̃i,j). An extreme p-value that falls outside the 95% highest density region

indicates that that particular genetic distance, Ψi,j, was poorly fitted by the model

used. In order to assess the model for the genetic distance matrix as a whole, the

percentage of these genetic distances which give extreme p-values is recorded, and

also a binary matrix is plotted to visualise this percentage across the genetic distance

matrix. Figure 4.15 displays these binary matrices for each ward under each model.

It is immediately clear that none of the genetic models do well on the data for these

wards. The Chain Error model has a posterior predictive matrix score of 31.36% for

ward 1 and 29.15% for ward 2. The Chain Poisson model has a posterior predictive

matrix score of 24.85% for ward 1 and 10.80% for ward 2. The Time Dependent model

has a posterior predictive matrix score of 16.49% for ward 1 and 11.47% for ward 2.

The blocks in the centres of the matrices representing ward 1 for each model where

the majority of the distances are well fitted correspond to a set of within-host dis-

tances from patient T126 who had 19 genetic sequences sampled at regular intervals

throughout their long stay. These blocks of blue show that the within-host genetic

data are well captured by the model.

In order to investigate the poor fit of these models to the data the matrix of observed

genetic distances was compared to the mode matrix of genetic distances from the set

of simulations using histograms such as those in figure 4.16. The red bars represent

the observed genetic distances for each ward, and the green bars represent the mode
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Figure 4.15: Posterior predictive checking for the genetic distance matrices from each ward

under each model. Blue cells indicate that the observed genetic distance falls within the 95%

highest density region given by the posterior predictive distribution and pink cells indicate

that the observed genetic distance falls outside that HDR. The layout of the matrices corre-

sponds to the layout of the original genetic distance matrices, so the x-axis, left to right, runs

from sequence 1 to sequence nseqs, whereas the y-axis, from bottom to top, runs backwards

from sequence nseqs to sequence 1.
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set (there were two mode sets for ward 2) from the simulations produced using the

Chain Poisson model. By ‘mode matrix’ we mean the most commonly simulated ma-

trix among the 1000 simulations. There will not necessarily always be a mode matrix

because they may all be different, but because the transmission tree is fixed it is fairly

likely. For each of our posterior predictive sets of simulations we found that a mode

matrix existed. This figure shows that the sets of observed genetic distances for both

wards are trimodal, and that the simulated genetic distance matrices are failing to

imitate this because of the way in which genetic distances are assumed to be drawn

in the model. The other two models experience the same problem; the variances of

the distributions for drawing the genetic distances, which are Poisson distributions,

appear to be too small. Therefore, an alternative distribution to the Poisson distribu-

tion needs to be considered. In section 4.11 the Geometric distribution and Negative

Binomial distribution are explored as alternatives.

4.11 Alternative distributions for the basis of the genetic mod-

els

The model assessment carried out in section 4.10 indicated that the three models in-

troduced in chapter 2 performed poorly in terms of fit for the genetic MRSA data from

the two Thai hospital wards, despite fitting the epidemic data well in most cases. The

problem appeared to be the restriction of the variance of the Poisson distribution, so

in this section we will adapt the models by replacing the Poisson distribution with

a Geometric distribution, which has a larger variance, and with a Negative Binomial

distribution, which allows the mean and variance to be specified independently of

one another.

4.11.1 Geometric distributions for the genetic distance model

The Chain Error and Chain Poisson models introduced in chapter 2 use the Poisson

distribution with parameters θ, θgl and θi to model genetic distances between pairs

of sequences from patients who are directly next to each other in a chain, sequences

from patients who are in separate chains, and within-host genetic distances respec-

tively. The Time Dependent model uses the same Poisson distributions for sequences

from patients in separate chains and within-host distances, and a Poisson distribution

with parameter ti,jθ for sequences from patients directly next to each other in a chain,

where ti,j is a measure of the time separating the sampling of the two sequences.
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Figure 4.16: Histograms of the observed genetic distances from each ward, in red, and the

mode matrix of genetic distances from 1000 posterior predictive simulations, in green.
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These Poisson distributions can be replaced with Geometric distributions in order to

allow for a larger variance. Geometric distributions have been used to model genetic

distances from sequences which are sampled over small time intervals such as those

in this study as the genetic distances are not expected to be large. The Geometric

versions of the three models are described here.

4.11.1.1 Geometric Chain Error model

The Geometric Chain Error model assumes that genetic distances between pairs of

sequences, i, j, from patients who are separated by k ≤ 1 or k = ∞ transmission

events are drawn from the following distributions:

P(Ψi,j = x) =


(1− ϕi)

x ϕi if k = 0

(1− ϕ)x ϕ if k = 1

(1− ϕgl)
x ϕgl if k = ∞.

(4.11.1)

As in the original Chain Error model, the conditional probability distribution for ge-

netic distances for pairs of sequences which are in the same chain but separated by

more than one transmission event is:

P(Ψi,j = x|Di,j) =
(kγ)|Di,j−x|

|Di,j − x|!
(

∑
Di,j
l=0(kγ)l/l!

) (1
2

)1{x 6=Di,j}

1{x≤2Di,j} if k > 1,

(4.11.2)

where Di,j is the sum of the consecutive distances between the isolates from patients

that compose the transmission chain between Hi and Hj which are the host patients

of sequences i and j.

4.11.1.2 Geometric Chain Poisson model

The Geometric Chain Poisson model assumes that the genetic distances between pairs

of sequences, i, j, from patients who are separated by k ≤ 1 or k = ∞ transmission

events are drawn from the following distributions:

P(Ψi,j = x) =


(1− ϕi)

x ϕi if k = 0

(1− ϕ)x ϕ if k = 1

(1− ϕgl)
x ϕgl if k = ∞.

(4.11.3)

As in the original Chain Poisson model the conditional probability distribution for

genetic distances for pairs of sequences which are in the same chain but separated by

more than one transmission event is:

P(Ψi,j = x|Di,j) = (Dx
i,j/x!) exp(−Di,j) if k > 1, (4.11.4)
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where Di,j is the sum of the consecutive distances between the sequences taken from

patients that compose the transmission chain between Hi and Hj .

4.11.1.3 Geometric Time Dependent model

The Geometric Time Dependent model assumes that the genetic distances between

pairs of sequences, i, j, from patients who are separated by k ≤ 1 or k = ∞ transmis-

sion events are drawn from the following distributions:

P(Ψi,j = x) =


(1− ϕi)

x ϕi if k = 0

− exp(−ti,j ϕx)(1− exp(−ti,j ϕ)) if k = 1

(1− ϕgl)
x ϕgl if k = ∞,

(4.11.5)

where ti,j is a measure of the time between the sampling of the two sequences. We

will use ti,j = |ts
j − ts

i |, where ts
i is the sampling time of sequence i. As before, the

conditional probability distribution for genetic distances for pairs of sequences which

are in the same chain but separated by more than one transmission event is:

P(Ψi,j = x|Di,j) = (Dx
i,j/x!) exp(−Di,j) if k > 1, (4.11.6)

where Di,j is the sum of the consecutive distances between the sequences from pa-

tients that compose the transmission chain between Hi and Hj.

A Geometric distribution with parameter 1 − exp(−ti,j ϕ) is used for the distances

between sequences from patients who share a transmission event because the idea of

this version of the model is that these distances are influenced by the time between

the sampling of the sequences, but the parameter ti,j ϕ is unsuitable for the Geometric

distribution as it can be bigger than 1. It is known that the Exponential distribution is

a limiting form of the Geometric distribution when the parameter is small, as ti,j ϕ will

be. To derive our parameter, define Y ∼ Exp(λ), where λ = ti,j ϕ. Define Z = bYc,
and n as a non-negative integer. Therefore,

P(Z ≥ n) = P(bYc ≥ n) = P(Y ≥ n) = e−λn .

If P(Z = n) is considered as P(Z ≥ n)− P(Z ≥ n + 1) then clearly

P(Z = n) = e−λn− e−λ(n+1) = e−λn(1− e−λ),

which implies that Z has a Geometric distribution with parameter 1− e−λ.
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4.11.2 Negative Binomial distributions for the genetic distance model

Another option for replacing the Poisson distributions in the models for the genetic

distances is the Negative Binomial distribution. This distribution allows for the mean

and variance to be specified independently, and the variance must always be larger

than the mean which makes it suitable for use here where the data seem unsuitable

for the Poisson distribution which has variance equal to the mean. Therefore, for ease,

the mean, µ, and variance, σ2, parameterisation of the Negative Binomial distribution

is used. As the within-host distances do not affect the structure of the tree, and were

found to be modelled well with a single parameter, within-host distances are assumed

to be drawn from a Geometric distribution in order not to introduce unnecessary

parameters. We present the Negative Binomial versions of the Chain Error model and

Chain Poisson model here. We judged that adapting the Time Dependent Distances

model with the Negative Binomial distribution would be over-complex.

4.11.2.1 Negative Binomial Chain Error model

The Negative Binomial Chain Error model assumes that the genetic distances be-

tween a pair of sequences, i, j, from patients who are separated by k ≤ 1 or k = in f ty

transmission events is drawn from one of the following distributions:

P(Ψi,j = x) =



(1− ϕi)
x ϕi if k = 0(

x− 1 + µ2(σ2 − µ)−1

x

)(
σ2 − µ

σ2

)x ( µ

σ2

)µ2(σ2−µ)−1

if k = 1(
x− 1 + µ2

gl(σ
2
gl − µgl)

−1

x

)(σ2
gl − µgl

σ2
gl

)x (
µgl

σ2
gl

)µ2
gl(σ

2
gl−µgl)

−1

if k = ∞.

(4.11.7)

As before the conditional probability distribution for genetic distances for pairs of

sequences which are in the same chain but separated by more than one transmission

event is:

P(Ψi,j = x|Di,j) =
(kγ)|Di,j−x|

|Di,j − x|!
(

∑
Di,j
l=0(kγ)l/l!

) (1
2

)1{x 6=Di,j}

1{x≤2Di,j} if k > 1,

(4.11.8)

where Di,j is the sum of the consecutive distances between the sequences from pa-

tients that compose the transmission chain between Hi and Hj.
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4.11.2.2 Negative Binomial Chain Poisson model

The Negative Binomial Chain Poisson model assumes that the genetic distances be-

tween a pair of sequences, i, j, from patients who are separated by k ≤ 1 or k = ∞

transmission events is drawn from one of the following distributions:

P(Ψi,j = x) =



(1− ϕi)
x ϕi if k = 0(

x− 1 + µ2(σ2 − µ)−1

x

)(
σ2 − µ

σ2

)x ( µ

σ2

)µ2(σ2−µ)−1

if k = 1(
x− 1 + µ2

gl(σ
2
gl − µgl)

−1

x

)(σ2
gl − µgl

σ2
gl

)x (
µgl

σ2
gl

)µ2
gl(σ

2
gl−µgl)

−1

if k = ∞.

(4.11.9)

As before the conditional probability distribution for genetic distances for pairs of

sequences which are in the same chain but separated by more than one transmission

event is:

P(Ψi,j = x|Di,j) = (Dx
i,j/x!) exp(−Di,j) if k > 1, (4.11.10)

where Di,j is the sum of the consecutive distances between the sequences from pa-

tients that compose the transmission chain between Hi and Hj.

4.12 Analysing the Thai hospital data with the Geometric and

Negative Binomial models

In section 4.11 the models which were introduced in chapter 2 were adjusted to al-

low for the distribution for the genetic distances to have greater variance than in the

original models which used Poisson distributions. The results from analysing the

data from the two wards in the Thai hospital under these new models which use the

Geometric and Negative Binomial distributions are presented here. The same data-

augmented MCMC algorithm (see 4.5.2) was used. For each model on each ward

the algorithm was run for 100,000 iterations, with 10 augmented data steps during

each iteration. For the Geometric versions of the models the parameters p, z, ϕ, ϕi

and ϕgl were given Beta(1, 1) prior distributions and the parameters β and γ (in the

Chain Error model) were given improper uniform prior distributions on (0, ∞). For

the Negative Binomial versions of the models the parameters p, z and ϕi were given

Beta(1, 1) prior distributions and the parameters β, γ (in the Chain Error model), µ,

σ, µgl and σgl were given improper uniform prior distributions on (0, ∞). All of the

genetics parameters for both new versions of the models were updated using Gaus-

sian random-walk Metropolis-Hastings steps in the MCMC algorithm. The step size
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of the random walk varied according to a Normal distribution with mean 0 and vari-

ance σ2 and the acceptance rate was checked every 1000 iterations in order to adjust

the variance to maintain an acceptance rate between 0.2 and 0.6.

4.12.1 Results for the adjusted models on ward 1

Tables 4.4 and 4.5 give the posterior mean estimates for the values of the model pa-

rameters for ward 1 with 95% equitailed credible intervals. Under the Negative Bino-

mial versions of the Chain Error and Chain Poisson models we get similar estimates

for the importation probability p. The NB Chain Error model estimated that 4% of pa-

tients admitted to the ward 1 were already colonised and the NB Chain Poisson model

estimates that 3% were already colonised. The Geometric versions of the model show

slightly more variation, with the posterior mean for p ranging from 0.02 to 0.06. In-

terestingly, we can see from figure 4.17 that all of these models infer 4 importations

of the disease with high probability, except the Geometric Chain Error model which

infers 8 importations, corresponding to its higher posterior mean of p = 0.06. All of

the models give similar estimates for the test sensitivity, z, for which the mean esti-

mates range from 0.68 to 0.72. The posterior means for the transmission parameter, β,

range between 0.013 and 0.017 under the Geometric models, although both Negative

Binomial models estimate posterior mean β = 0.016. These different posterior means

for β all fall well within each other’s credible intervals.

The only directly comparable genetic parameter between all five of the models is the

within-host genetic parameter ϕi. This is estimated as having posterior mean 0.026 by

all of the models and the expected genetic distance between within-host sequences is

38. The estimated expected genetic distance between two patients who share a trans-

mission event varies significantly between the different models. Under the Geometric

Chain Error model the expected genetic distance is estimated as 48, under the Geo-

metric Chain Poisson model it is estimated as 94, and under the Negative Binomial

versions of these models it is estimated as 121 and 131 respectively. The Negative

Binomial models also estimate the variance of distribution for these genetic distances

to be much higher than the variances under the Geometric models. The estimated ex-

pected genetic distance between two patients who are in different transmission chains

does not vary so much under the different models. The Geometric models all give ex-

pected genetic distances of between 367 and 369, and the Negative Binomial models

give the expected genetic distances as 384 or 386.
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ICU 1: Inferred transmission network
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(a) Geometric Chain Error model
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(b) Negative Binomial Chain Error model

ICU 1: Inferred transmission network
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(c) Geometric Chain Poisson model
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(d) Negative Binomial Chain Poisson model

ICU 1: Inferred transmission network
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(e) Geometric Time Dependent model

Figure 4.17: Posterior transmission trees for ward 1 of the Thai data under each of the Ge-

ometric and Negative Binomial models. The colour of the nodes represents the probability

that the patient was an import. The arrows represent inferred transmission events between

patients. The colour of these represents how likely these were to have taken place.
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Ward 1

Model p z β ϕ ϕgl ϕi

Chain

Error

model

0.06

(0.024,0.112)

0.684

(0.555,0.802)

0.015

(0.008,0.025)

0.022

(0.014,0.031)

0.003

(0.002,0.003)

0.026

(0.023,0.03)

Chain

Poisson

model

0.034

(0.01,0.071)

0.688

(0.567,0.80)

0.017

(0.009,0.027)

0.011

(0.006,0.02)

0.003

(0.003,0.003)

0.026

(0.023,0.03)

Time

Dependent

Distances

model

0.02

(0.004,0.05)

0.703

(0.587,0.809)

0.013

(0.008,0.018)

2.81×10−5

(2.11×10−5,

4.12×10−5)

0.003

(0.003,0.003)

0.026

(0.023,0.03)

Table 4.4: Posterior mean estimates of the model parameters for each of the three models with Geometric

distributions in the genetic models on ward 1, with 95% equitailed credible intervals.

Figure 4.17 shows the inferred transmission trees from each of the models. Although

some transmission events occur in all of these trees, the shape of the whole tree varies

from model to model. Four of the models infer patient T126, who stayed on the ward

for 71 days, to be a ‘superspreader’ of the disease to varying degrees. The Geometric

Chain Error model and the Geometric Time Dependent model infer T126 as the source

of colonisation of 3 and 4 other patients, respectively. The NB Chain Error model and

the NB Chain Poisson model infer T126 as the source of colonisation of a greater num-

ber of patients- 6 and 8 respectively. The Geometric Chain Poisson model, however,

infers T126 as a source of colonisation only with a low probability. All models appear

to infer one or two chains of transmission between the top half of the patients, and

one chain between the bottom half, and only the Geometric Time Dependent model

joins these two chains together with high probability.

4.12.2 Results for the adjusted models on ward 2

Tables 4.6 and 4.7 give the posterior mean estimates for the values of the model pa-

rameters for ward 2 with 95% equitailed credible intervals. The posterior means for

the importation parameter p under the Geometric models are either 0.10 or 0.11, and

the posterior means vary slightly more under the Negative Binomial models with

p = 0.084 and p = 0.12. Figure 4.18 shows that the number of patients who were in-

ferred with high probability to have been colonised before arrival on the ward was 9

for all models except the Geometric Chain Error model for which is was 8, and the NB
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Ward 1

Model p z β ϕi

Chain

Error

model

0.038

(0.013,0.076)

0.718

(0.60,0.83)

0.016

(0.009,0.024)

0.026

(0.023,0.03)

Chain

Poisson

model

0.030

(0.008,0.066)

0.711

(0.59,0.82)

0.016

(0.009,0.024)

0.026

(0.023,0.03)

µ σ µgl σgl

Chain

Error

model

120.532

(96.70,155.52)

140.155

(107.04,189.13)

386.05

(365.56,406.75)

218.938

(199.79,241.91)

Chain

Poisson

model

131.497

(106.70,157.05)

154.305

(118.28,190.15)

383.617

(364.07,403.96)

213.344

(195.45,232.59)

Table 4.5: Posterior mean estimates of the model parameters for each of the three models

with Negative Binomial distributions in the genetic models on ward 1, with 95% equitailed

credible intervals.

Chain Poisson model, for which is was 11. The posterior mean of the test sensitivity,

z, did not vary significantly under the different models. The posterior means range

from 78% to 84% and all fall within the 95% credible intervals. Similarly, the posterior

means for the transmission parameter, β, were either 0.011 or 0.012 under all models.

The directly comparable within-host genetic parameter, ϕi, was estimated to have

posterior mean 0.12 under each of the models and the expected within-host genetic

distances was 9. The expected genetic distance between two patients who share a

transmission event was estimated to be 66 by the Geometric Chain Error model, and

42 by the Geometric Chain Poisson model. The NB Chain Error model estimated this

expected genetic distance to be 55, but the NB Chain Poisson model gave the esti-

mate as 183 although the variance of the distribution was also much larger, with a

standard deviation of 304. The expected genetic distance between two patients who

are in different transmission chains was estimated to be in a similar region by all of

the models, with the Geometric models estimating it between 222 and 224 and the

Negative Binomial models estimating it as 208 or 218.

Figure 4.18 shows the inferred transmission trees from each of the models. Similarly
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Ward 2

Model p z β ϕ ϕgl ϕi

Chain

Error

model

0.10

(0.04,0.19)

0.781

(0.681,0.881)

0.011

(0.006,0.016)

0.017

(0.009,0.024)

0.005

(0.004,0.005)

0.12

(0.062,0.192)

Chain

Poisson

model

0.113

(0.053,0.188)

0.836

(0.742,0.912)

0.011

(0.007,0.018)

0.028

(0.013,0.049)

0.005

(0.004,0.005)

0.12

(0.062,0.194)

Time

Dependent

Distances

model

0.105

(0.052,0.174)

0.839

(0.755,0.909)

0.012

(0.007,0.018)

0.00013

(9.08×10−5,

1.81×10−4)

0.004

(0.004,0.005)

0.119

(0.062,0.193)

Table 4.6: Posterior mean estimates of the model parameters for each of the three models with Geometric

distributions in the genetic models on ward 2, with 95% equitailed credible intervals.

to ward 1, although some transmission events occur with high probability in all of

the trees, the broad structure of the trees appears to differ somewhat between mod-

els. The Geometric Chain Error model and Geometric Chain Poisson model both infer

many different transmission events with lower probability, whereas the Geometric

Time Dependent model and the Negative Binomial models all infer more transmis-

sion events with higher probability, giving us higher resolution trees. Each model,

except the Geometric Chain Poisson model, infers one or more patients with a higher

mean outdegree than would be expected given the estimates of β, but these ‘super-

spreaders’ are not the same patients under all the models. The Geometric Chain Error

model infers T12 as the source of 4 colonisations with high probability over the course

of T12’s 3 stays on the ward. The Geometric Time Dependent model also infers T12

as the source of 4 colonisations with high probability, and this model infers T194 to

be the source of 3 colonisations. The NB Chain Error model infers T159 as the source

of 8 colonisations with high probability, and the NB Chain Poisson model also infers

T159 as the source of 3 colonisations, and T10 as the source of 3 colonisations.

4.12.3 Comparison of results with results from Tong et al.

Tong et al. [75], who performed the original study, use a ‘clustering’ approach in or-

der to infer clades for the sequences in the data. Although these clades do not cor-

respond to a transmission tree it is still of interest to compare our results. We can

assume that patients who did colonise each other would have sequences belonging
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ICU 2: Inferred transmission network
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(a) Geometric Chain Error model

ICU 2: Inferred transmission network
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(b) Negative Binomial Chain Error model

ICU 2: Inferred transmission network
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(c) Geometric Chain Poisson model

ICU 2: Inferred transmission network
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(d) Negative Binomial Chain Poisson model

ICU 2: Inferred transmission network
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(e) Geometric Time Dependent model

Figure 4.18: Posterior transmission trees for ward 2 of the Thai data under each of the Ge-

ometric and Negative Binomial models. The colour of the nodes represents the probability

that the patient was an import. The arrows represent inferred transmission events between

patients. The colour of these represents how likely these were to have taken place.
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Ward 2

Model p z β ϕi

Chain

Error

model

0.084

(0.036,0.15)

0.827

(0.74,0.90)

0.012

(0.007,0.018)

0.12

(0.062,0.019)

Chain

Poisson

model

0.12

(0.057,0.20)

0.789

(0.70,0.87)

0.011

(0.006,0.017)

0.12

(0.061,0.019)

µ σ µgl σgl

Chain

Error

model

55.171

(41.56,76.21)

50.10

(33.06,78.51)

217.702

(196.70,240.31)

258.86

(229.78,288.83)

Chain

Poisson

model

183.186

(95.38,365.18)

304.44

(134.70,607.11)

208.021

(189.98,228.94)

241.06

(217.30,268.77)

Table 4.7: Posterior mean estimates of the model parameters for each of the three models

with Negative Binomial distributions in the genetic models on ward 2, with 95% equitailed

credible intervals.

to the same clade. Tong et al. suggest that sequences from the same clade will have

a genetic distance < 60 SNPs. For ward 2 the majority of our models (all except the

Chain Poisson model and the NB Chain Error model) estimate the expected genetic

distance between patients who share a transmission event to be < 60. For ward 1,

all three of the original models, with Poisson distributions, and the Geometric Chain

Error model estimate that the expected genetic distance between patients who share a

transmission event is < 60 whereas the other models give much larger estimates (91,

121, 131). This may suggest that the Geometric Chain Error model is a better fit (as

we have seen that the original models are not), or that the simple approach for setting

the SNP threshold between clades given by Tong et al. does not work as well for this

ward.

Tong et al. found that the mean genetic distance between clades was 140− 373 SNPs.

We can compare this to our estimates for the expected pairwise genetic distance be-

tween the sequences of two patients who are in separate transmission chains. For

ward 2 all of the estimates for this expected distance from each of the different models

fell within the range given by Tong et al. For ward 1 only the three Geometric ver-

sions of the models gave estimates of this expected genetic distance that fell within
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the range 140− 373, with all of the other models giving larger estimates.

The majority of our models (all except the Geometric Chain Poisson model) infer

patient T126 on ward 1 to be a ‘superspreader’ of the pathogen, meaning that they

colonise more susceptible patients that would be expected. Tong et al.’s analysis also

suggests that this patient was the source of many transmissions of the pathogen. They

found that this patient was continuously colonised and that their pathogen sequences

over time were all from the same clade, which was a clade not present on the ward

prior to this patient’s admission and which became a widespread clade on the ward

whilst patient T126 was present. In the same way Tong et al.’s analysis found pa-

tient T12 to be a source for many colonisations of susceptible patients on ward 2. All

three of our original models and the Geometric Chain Error model and the Geomet-

ric Time Dependent model also similarly found patient T12 to colonise more patients

than would be expected.

4.13 Model assessment for the Geometric and Negative Bino-

mial versions of the models

In order to assess whether the new version of the models, which use the Geometric

and Negative Binomial distributions fit the data better than the original models which

used the Poisson distributions, posterior predictive checks were carried out. For each

model on each ward a total of 1000 simulations were generated, with fixed patient

admission and discharge times from the data (these do not form part of our model

framework), using values for the parameters which were drawn from the posterior

densities given by the output of the MCMC algorithm. The number of patients to ever

have a positive swab, and the number of patients present on the ward each day with

a positive swab, were recorded for each simulation to give an approximation to the

posterior predictive distributions of these summary statistics. Table 4.8 gives the 95%

highest density regions from the posterior predictive distributions of the number of

patients to ever have a positive swab under each model. No extreme p-values were

found, giving no evidence against the fit of any of the models. The NB Chain Poisson

Error model gave an extreme p-value for the number of positive patients on 8 out

of the 173 days of the study for ward 2. All the other models gave a maximum of 2

extreme p-values out of 173 days for each ward. For ward 1 the Geometric Chain Error

model and NB Chain Error models both gave no extreme p-values, and for ward 2 the

Geometric Chain Poisson, Geometric Time Dependent and NB Chain Poisson models
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Geometric Chain

Error model

Geometric Chain

Poisson model

Geometric Time

Dependent model

NB Chain

Error model

NB Chain

Poisson model

Ward 1 (2,53) (1,34) (1,22) (7,56) (1,31)

Ward 2 (4,39) (7,49) (7,43) (6,33) (7,44)

Table 4.8: 95% highest density regions for the number of patients to have a positive swab for each ward

under each of the adjusted models. The observed value for ward 1 was 22 and for ward 2 was 30. Green

HDRs indicate that the observed value falls within the HDR.

all gave no extreme p-values.

In order to assess the goodness-of-fit of each of these models to the genetic data from

the two wards 1000 genetic distance matrices, Ψ̃, were simulated using values drawn

from the posterior densities for the genetic parameters, and the times and sources of

transmission events. These simulated genetic distance matrices allow for the poste-

rior predictive distribution to be approximated for each individual genetic distance

between two patients who both had sequences collected during the course of the epi-

demic. The percentage of the observed distances that fall within their 95% highest

density region is recorded as a goodness-of-fit score, and a binary matrix is plotted

with 0 for distances outside their HDR, and 1 for distances inside their HDR. These

matrices are given in figure 4.19 for the Geometric versions of the models, and in

figure 4.20 for the Negative Binomial versions of the models. When these matrices

are compared to the matrices produced under the original models (figure 4.15) it is

immediately clear that these models are a much better fit to the genetic data. The Ge-

ometric Time Dependent model does not fit as well as the other models, although it

is still better than the original models, with a posterior predictive score of 53.19% for

ward 1 and 65.59% for ward 2. The rest of the models all perform to a similar stan-

dard across both wards. The Geometric Chain Error model has a posterior predictive

score of 73.29% for ward 1 and 74.76% for ward 2 whilst the Geometric Chain Poisson

model has a posterior predictive score of 71.43% for ward 1 and 72.47% for ward 2.

The NB Chain Error model has a posterior predictive score of 76.54% for ward 1 and

68.02% for ward 2 whilst the NB Chain Poisson model has a posterior predictive score

of 76.77% for ward 1 and 71.79% for ward 2. Therefore it appears that each of these

models fits the data well, although the models with Geometric distributions (except

the Time Dependent) appear to fit the ward 1 data slightly better, and the models with

Negative Binomial distributions appear to fit the ward 2 data slightly better.
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Figure 4.19: Posterior predictive checking to assess the fit of the Geometric versions of the

models to the genetic distance matrices from each ward. Blue cells indicate that the observed

genetic distance falls within the 95% highest density region given by the posterior predictive

distribution and pink cells indicate that the observed genetic distance falls outside the HDR.

The layout of the matrices corresponds to the layout of the original genetic distance matrices,

so the x-axis, left to right, runs from sequence 1 to sequence nseqs, whereas the y-axis, from

bottom to top, runs backwards from sequence nseqs to sequence 1.

130



CHAPTER 4: ANALYSIS OF AN OUTBREAK OF METHICILLIN-RESISTANT

Staphylococcus aureus IN A HOSPITAL SETTING

10

20

30

40

10 20 30 40

(a) NB Chain Error model

10

20

30

10 20 30

(b) NB Chain Error model

10

20

30

40

10 20 30 40

(c) NB Chain Poisson model

10

20

30

10 20 30

(d) NB Chain Poisson model

Figure 4.20: Posterior predictive checking to assess the fit of the Negative Binomial versions

of the models to the genetic distance matrices from each ward. Blue cells indicate that the

observed genetic distance falls within the 95% highest density region given by the posterior

predictive distribution and pink cells indicate that the observed genetic distance falls outside

the HDR. The layout of the matrices corresponds to the layout of the original genetic distance

matrices, so the x-axis, left to right, runs from sequence 1 to sequence nseqs, whereas the y-axis,

from bottom to top, runs backwards from sequence nseqs to sequence 1.
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4.14 Discussion

In this chapter we have taken three novel models for the genetic distances between

pathogen isolate samples and incorporated them within a model for the spread of the

pathogen on a hospital ward. These novel methods introduce dependency between

the genetic distances of patients who make up a transmission chain, rather than as-

suming that the genetic distances are independent, as most previous models have

done. The epidemic model is a discrete-time model with a varying population (as

patients enter and leave the ward) and the potential for multiple introductions of the

disease. We have designed an MCMC algorithm to fit this model to data available

from an outbreak of MRSA in a hospital in Thailand in 2008. The algorithm allows

for unobserved colonisation times, and missing genetic sequences. The model can

be used to harness the information available within whole-genome sequence data in

order to reconstruct the pathways of transmission within the wards of the hospital.

A strength of our models is that because we simply use the genetic distances be-

tween genetic sequences rather than the sequences themselves, we are able to easily

simulate data from our models. Simulating full sequences requires a model which

fully specifies which nucleotides in the sequences mutate and is thus more complex

and time-consuming. In order to assess the performance of our MCMC algorithm we

simulated data using a range of values for each of the parameters. We showed that

the algorithm performed well in most situations, and that it recovered both the pa-

rameters and the transmission tree well for a range of the parameters which covered

what we might reasonably expect from an epidemic such as the one we wished to

study.

Assessment of the goodness-of-fit of the models to the data using our novel method

for genetic model assessment led to adjustments being proposed to the underlying

distributions in the models for the genetic distances. The analysis of the data was

performed using these new versions of the models. The model assessment for these

models suggested a much better fit to the data from both hospital wards.

The analysis of the outbreak of MRSA in ward 1, under each of these models, re-

vealed fairly similar estimates for the values of the parameters, and fairly similar,

high resolution estimations of the transmission tree. However, for ward 2 the models

differed more in their estimation of the model parameters and of the transmission

tree, although the broad structure remained the same. For ward 1 all of the models
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picked out the patient who had the longest stay on the ward as the source of a dispro-

portionally large number of colonisations. For ward 2 all of the models also inferred

one or two patients to be the source of a greater number of colonisations than ex-

pected, although the identities of these ‘super-spreaders’ varied between the models.

It would be of interest to further investigate these ‘super-spreaders’ and why they

appear to be more infective than other patients on the wards.

4.14.1 Limitations and further work

We note that our model assumes that the state (colonised or susceptible) in which pa-

tients are admitted to the ward are independent. However, there are some patients

who are admitted more than once to each ward, and therefore it is likely (due to the

long carriage time of MRSA) that if these patients were colonised when they were

discharged from the ward, then they would still be colonised when they were read-

mitted, especially as some of them were readmitted only a day after being discharged.

It would be of interest to investigate this by setting any patient who leaves the ward

colonised to stay colonised if they are readmitted.

We assume homogeneity of susceptibility and infectivity. Relaxing these assump-

tions may allow us to better investigate those patients who seem to be the source

of more colonisation that we would expect. It may also be of interest to explicitly

model within-host diversity of the pathogen over time. We currently assume that the

sequence taken is representative of the whole population within the host, and that

diversity occurs as a result of transmission.
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Notation used in Chapter 4

Model description

L Length of study

n Number of patients admitted to the ward over the course of the study

nt Number of patients present on the ward at time t

npos Number of colonised patients over the course of the study

nseqs Number of genetic sequences in the dataset

ta
i Admission time of patient i

td
i Discharge time of patient i

tc
i Colonisation time of patient i

νi Number of screening tests received by patient i

tt
i Screening time of patient i

Patients may have multiple tests: tt
i = tt

i,1, . . . , tt
i,νi

X Vector of all test results

Xi Test results for patient i

Patients may have multiple tests: Xi = Xi,1, . . . , Xi,νi

ζi Number of sequences sampled from patient i

ts
i Sampling time of sequence i

Ψ The set of all observed genetic distances

Ψi,j Genetic distance between sequence i and sequence j

Hi Patient from which sequence i is taken

Qi Set of sequences taken from patient i so Qi = {Qi,1, . . . , Qi,ζi}
Di,j Sum of consecutive distances in transmission chain between patients Hi and Hj

Di,j = ∑k−1
r=0 ΨQpr ,1,Qpr+1,1 where p0 = Hi, pk = Hj

ti,j Difference between the sampling times of sequence i and sequence j

C(t) Number of colonised patients on the ward on day t

Model parameters

ρ Vector of parameters ρ = {p, z, β, Θ}
p Importation parameter

z Sensitivity parameter

β Transmission parameter

Θ Vector of genetic parameters

θ Genetic diversity parameter for sequences from linked patients

θi Genetic diversity parameter for within host sequences

θgl Genetic diversity parameter for sequences from unrelated patients

γ Genetic chain error parameter for Chain Error model
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Notation used in Chapter 4

Model inference and likelihood

Z Observed admission, discharge and screening times

T Unobserved transmission dynamics T = {tc, φ, s, Ψa}
Ψa Unobserved genetic distances

s Sources for each transmission event s = (s1, . . . , snacq)

φi Admission state of patient i

φi = 1 if i is colonised before admission, φi = 0 otherwise

nacq Number of patients who are inferred colonised after admission

TP(X) Number of true positive test results given X

FN(X, T) Number of false negative test results given swab results given X and T

trans(i, j) Number of transmission events between the hosts of sequences i and j

MCMC algorithm description

nsus Number of patients with no positive swabs

nnoseq Number of patients with a positive swab but no sequence

nadd Number of the nsus patients with a colonisation added at current iteration

nadd0 Number of patients with colonisation added but no offspring

nimp Number of patients who are inferred as importations

fi Latest possible colonisation day for patient i

Υ Set of (i, j) such that trans(i, j) = 1

Υi Set of (i, j) such that trans(i, j) = 0

Υg Set of (i, j) such that trans(i, j) = ∞

Ntrans(i,j)=1 Number of (i, j) such that trans(i, j) = 1

Ntrans(i,j)=0 Number of (i, j) such that trans(i, j) = 0

Ntrans(i,j)=∞ Number of (i, j) such that trans(i, j) = ∞

qT,T∗ Proposal ratio

qT,T∗ = P(T∗ → T)/P(T → T∗)

Simulation method

A Average length of stay for a patient on the ward

κ Test frequency

nsw Number of patients ever to have a positive swab

Alternative genetic model parameters

ϕ Geometric model genetic diversity parameter for transmitted sequences

ϕi Geometric model genetic diversity parameter for within-host sequences

ϕgl Geometric model genetic diversity parameter for unrelated sequences

µ, σ Negative binomial genetic parameters for transmitted sequences

µgl , σgl Negative binomial genetic parameters for unrelated sequences
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Chapter 5

Analysis of an epidemic of avian

influenza in the Netherlands

5.1 Motivation

In this chapter we analyse data from an outbreak of highly-pathogenic avian in-

fluenza in the Netherlands. Highly-pathogenic zoonotic diseases such as this are im-

portant to study as they are often characterised by fast transmission and large losses

of commercial animals. In the last two decades, a number of outbreaks of these types

of pathogens, including avian influenza [64, 65], swine influenza [66, 67], and foot-

and-mouth disease [53, 68], have occurred in different countries, with widespread

economic impact and concern for public health. Therefore, control measures have an

important role to play in lessening the effects of such epidemics, and the better we can

understand the dynamics of outbreaks, the better we can design the control measures.

In order to analyse an avian influenza outbreak we will investigate whether the mod-

els for genetic distances between isolates which were introduced in chapter 2 can be

used within a different model which would be appropriate for non-nosocomial data.

This model would need to differ significantly from the model used for the hospital

data as populations are likely to be much larger and the impact of individuals com-

ing and going from the population is less dramatic overall, so there is less scope for

multiple introductions of the disease. The benefit of using our models in this scenario

in comparison to other models, such as that proposed by Bataille et al. [72] (see sec-

tion 5.3.2), is that instead of including a complex microevolution model for how the

genetic mutations occurred in each position on the genome, we simply model the to-

tal number of differences between the genomes: the genetic distance. This means that
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our model is far simpler and includes less pathogen-specific information, meaning

that it can easily be applied in many different scenarios.

5.2 Introduction

The aim of this chapter is to analyse data from an outbreak of avian influenza in the

Netherlands in 2003. We will use, and adapt, methods presented in chapter 2 in order

to develop a model for reconstructing the path of transmission in this epidemic. This

will show that our new models can be fitted to non-hospital datasets, demonstrating

their adaptability and flexibility. First, in section 5.3, we will introduce the data which

were collected during an outbreak of avian influenza in the Netherlands in 2003 and

in section 5.3.2 we will discuss how other research has analysed it, and what types

of models have previously been fitted to it. In sections 5.4 we shall introduce models

applicable to these data. In section 5.6 we will describe how we implemented these

new models in an MCMC algorithm. We will describe, in section 5.7, how we simu-

lated data from this model, and the results we attained from an in depth simulation

study. Our results are presented in section 5.8 and we assess the goodness-of-fit of

the models in section 5.9. We discuss the value and challenges of this new model

in section 5.10. A table of the notation used in this chapter can be found on pages

170-171.

5.3 Avian influenza outbreak in the Netherlands

In this section we will introduce the data collected from farms in the Netherlands af-

fected by the 2003 epidemic of avian influenza. These data were available from Ypma

et al. [19], Bataille et al. [72] and Boender et al. [77], with the sequences available

on the GISAID database. This was an outbreak over a nine-week period of highly

pathogenic avian influenza (HPAI) of type H7N7 that infected at least the 241 com-

mercial farms that we have in our dataset. Control measures put in place led to the

culling of 30 million birds [64]. HPAI within poultry has a high transmission rate

along with a high death rate and is thought to stem from flocks of wild birds that

are infected with low pathogenic avian influenza. EU regulations state that outbreaks

of HPAI must be controlled through the culling of infected flocks. In the case of the

epidemic in the Netherlands, other control measures were also used, such as a ban on

movement of poultry, and the culling of uninfected flocks within a certain radius of

infected farms. A timeline of control measure events during the outbreak is shown in
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Figure 5.1: A timeline illustrating the timing of key events in the 2003 H7N7 epidemic in the

Netherlands.

figure 5.1.

5.3.1 Available data

The data available to us are the geographical coordinates of 241 infected farms, along

with details about the type and number of poultry on the farm. We also have the

coordinates of 3958 farms which remained susceptible throughout the epidemic, and

1161 farms which were preemptively culled before they were infected, along with the

dates of the culling of these farms. Figure 5.2 is a map of the area of the Netherlands

with the locations of the farms plotted and coloured according to whether they were

infected and culled, culled preemptivity, or remained susceptible throughout the epi-

demic. Table 5.1 summarises the infected farm data in terms of size and type of farms.

We have the date of culling for all 241 farms, and a date on which the pathogen was

sampled on 182 of the farms, along with a consensus genetic sequence for the farm

from a sample of 5 infected birds taken at this time. For our purposes we only need

the total number of positions on the genome where two sequences differ, so we con-

densed the genetic sequence data into a genetic distance matrix. Figure 5.3a shows

a histogram of this genetic distance matrix, and figure 5.3b shows the same informa-

tion as a heatmap in order to visualise more easily the spread of distances between

isolates. From these we can see that all of the genetic distances between infected farms

are fairly small, and fairly similar.
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Figure 5.2: A map of the area of the Netherlands in which the epidemic was observed. The

locations of the farms in the data are plotted and coloured according to whether they were

culled due to infection, culled preemptively, or remained susceptible.
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Figure 5.3: A histogram and a heatmap showing the genetic distances between sequences in

the Netherlands data.
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Farm Size

(no. of birds)
Layer chickens Broiler chickens Hobby chickens Turkeys Ducks

1→ 100 0 0 9 0 0

101→ 1, 000 3 0 0 0 0

1, 001→ 5, 000 34 9 0 6 1

5, 001→ 10, 000 35 16 0 2 1

10, 001→ 20, 000 42 13 0 6 0

20, 001→ 30, 000 18 1 0 0 0

30, 001→ 40, 000 7 0 0 0 0

40, 001→ 100, 000 12 0 0 1 1

100, 001+ 3 0 0 0 0

Unknown 12 0 5 4 0

Total 166 39 14 19 3

Table 5.1: The number of infected farms of each size and type in the Netherland data.

5.3.2 Models in the literature

There have been many attempts [19, 64, 65, 72, 78–82] to analyse the data from the

H7N7 outbreak in the Netherlands in 2003. Here we will summarise those which

model the inter-farm transmission dynamics, as this is what our model will focus on.

Risk maps for the spread of highly pathogenic avian influenza in poultry [82]

In 2007 Boender et al. [82] proposed a method for a spatial analysis of the 2003 avian

influenza outbreak in the Netherlands which uses the estimated infection times of

farms from Stegeman et al.’s 2004 analysis [64] to produce risk maps for the spread of

avian influenza in this setting. The main aim of this analysis was to illustrate how the

risk of a spreading epidemic of avian influenza differed throughout the Netherlands,

and to estimate the key parameters (transmission and infectious period parameters)

governing this spread in the 2003 epidemic. This method identified two high-risk

areas within the Netherlands and an estimate of the spatial range over which avian

influenza transmits.

The infection times were estimated by assuming that each farm was latently infected

for 2 days prior to the date on which it was first reported to be infected, and a dis-

crete time SEIR (susceptible, exposed, infectious, removed) model was used. The risk

maps were drawn by plotting each farm in the Netherlands and colouring them ac-
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cording to an estimate of a local reproduction number which is equal to the expected

number of secondary infections caused by a specific infected farm. The calculation of

this reproduction number was informed by the infection status and location of farms,

as they were assumed identical otherwise. The risk maps produced show that there

were two areas of the Netherlands where farms are dense enough that an outbreak

is possible, and that the probability that a farm will be infected by a specific infective

farm within a 2km radius is 1%− 2%, compared to less than 0.05% probability that it

will be infected by a farm over 10km away. The results fit the data reasonably well,

as 162 of the 241 infected in the outbreak were in the areas which were identified as

high-risk areas by this method, and of those in lower-risk areas, none started further

epidemics in these areas. However, this method does not allow for more in-depth

analyses of who-infected-whom in the outbreak in order to answer questions about

how the disease spread, and how effective the control measures were.

Evolutionary analysis of inter-farm transmission dynamics in a highly pathogenic

avian influenza epidemic [72]

Bataille et al. [72] were the first to use the available genetic data from the epidemic

in order to try to reconstruct the route of transmission of the outbreak of avian in-

fluenza. Clusters of infection were identified and likely long-distance transmission

events were found.

Bataille et al. introduced the genetic data from 72% of the infected farms in the

Netherlands avian influenza outbreak. The sequences taken comprised full-length

sequences of the H7-hemagglutinin (HA), N7-neuraminidase (NA) and basic poly-

merase 2 (PB2) gene segments. It was noted that the virus had a high level of genetic

diversity, making it suitable for use to determine pathways of transmission. Phylo-

genies were created using BEAST for each of the different gene segments separately,

using a relaxed uncorrelated exponential molecular clock model, which revealed dis-

tinct clusters. In order to use the NETWORK program the three gene segments were

concatenated, and the program was used to make a median joining phylogenetic net-

work. This also displayed four distinct clusters, with genetic distances within clusters

on average being 3-4, and between clusters being on average 11-20. The phylogenetic

network suggested 28 likely inter-farm transmission events, with 25 of these between

farms close to each other (within a 14km radius). The remaining transmission events

were across larger distances and included the transmission that spread the epidemic

to the second poultry-dense area of the Netherlands where the outbreak continued.
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The identification of that transmission event showed the advantages gleaned by us-

ing genetic data, but more insight into the dynamics of the disease spread and how it

was affected by control measures would be gained by including the epidemiological

data available alongside this useful genetic data.

Unravelling transmission trees of infectious diseases by combining genetic and

epidemiological data [19]

Ypma et al. [19] aimed to use both the genetic and epidemiological data to reconstruct

the transmission tree of the outbreak of avian influenza by estimating the probability

that each infected farm was infected by each other infected farm. By considering each

transmission event which was estimated to have a probability greater than 0.5, an es-

timated transmission tree was constructed.

This method used a Bayesian approach for integrating genetic and epidemiological

data to investigate the epidemic. Three types of data were used in this analysis: lo-

cation, culling date, and genetic sequences. These types of data were assumed to be

independent, and a likelihood function was constructed to give the likelihood of the

event that farm A infected farm B, and to give the likelihood of the parameters: the

rate of decline of infectiousness of a farm after culling, the parameters of the best-

fitting distance kernel (scale and shape), and p = (pts, ptv, pdel), the average number

of transmissions, transversions and deletions expected in the genetic data between

A and B. An MCMC algorithm was used to sample from all possible transmission

trees and parameters in a Bayesian framework. The likelihood of observing the ge-

netic distance between farm A and farm B when there are x unobserved transmissions

between A and B, given their RNA sequences, uses the probability:

p(dts, dtv, ddel |x, N, p) =
xdts (ptsN)dts

(1− (ptsN))dts−xN
xdtv (ptvN)dtv

(1− (ptvN))dtv−xN p1del
del (1− pdel)

1−1del

(5.3.1)

where N is the total number of nucleotides that can mutate, dts and dtv are the ob-

served numbers of transitions and transversions between A and B, and 1del is the in-

dicator function: 1 if a deletion occurred, otherwise 0. This formula assumes that the

probability of mutation is so small that the possibility of a nucleotide mutating twice

can be neglected. The probabilities of all possible transmission events are attained by

averaging over the posterior density over the sample space. By dividing the number

of infections caused by each farm by the length of its infectious period an estimate of

infectiousness was obtained for each farm in each of the sample trees. The analysis
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was rerun excluding geographical or genetic data to see how much information is

contained in each type of data respectively. This showed that geographical data are

not enough to predict transmission links, although it does give more certainty about

transmission pathways when added to the genetic data. Increased accuracy and res-

olution was shown when using all the data types in the analysis.

This model shows the increased clarity that can be gained in analyses by using both

epidemiological and genetic data. However, this model only incorporates the infected

farms, meaning that there is no mechanism for estimating the transmission rate and

other dynamics of the disease.

5.4 Developing a model for the spread of avian influenza

In chapter 2 we introduced three new models for a genetic distance matrix, which fit

into a discrete-time SIR (susceptible, infectious, removed) model. In this chapter we

will use a continuous-time SEIR (susceptible, exposed, infectious, removed) model

where the individuals are farms and each farm which was exposed and infectious,

i, has one genetic sequence, Qi, which contributes distances to the genetic distance

matrix. We will use the models introduced in chapter 2 for modelling the genetic dis-

tance matrix. The distances are assumed to be drawn from a probability distribution,

the parameters of which depend on the relative positions of the two farms from which

the sequences were taken in the transmission tree. Here we recap the three different

models. The genetic distance between sequences i and j is given by Ψi,j and the num-

ber of transmission events between Fi and Fj, the farms from which sequences i and j

were taken, is given by k. Therefore if Fi directly infects Fj, or vice versa, k = 1; if Fi

and Fj are in the same transmission chain but separated by more than one transmis-

sion event k > 1; and if Fi and Fj are not in the same transmission chain k = ∞. Since

we are only modelling one sequence per farm we do not include the k = 0 part of the

genetic models in chapter 2, although this could easily be reintroduced if more data

were available.

The Chain Error model

In the Chain Error model the genetic distances for sequences from two farms sepa-

rated by only one transmission event are drawn from a Poisson distribution with pa-

rameter θ and those which are from farms in distinct transmission chains have their

genetic distance drawn from a Poisson distribution with parameter θgl . Sequences
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from farms which are in the same transmission chain but are separated by more than

one transmission event have a genetic distance which is equal to the sum of the ge-

netic distances which make up the underlying transmission chain, with a truncated

Poisson distributed error term. Thus, if k is the number of transmission events sepa-

rating the farms from which sequences i and j were taken, where k = ∞ means that

they are in different chains, then

P(Ψi,j = x) =

 (θx
gl/x!) exp(−θgl) if k = ∞

(θx/x!) exp(−θ) if k = 1,
(5.4.1)

and the conditional probability distribution for genetic distances for pairs of sequences

which are in the same chain but separated by more than one transmission event is:

P(Ψi,j = x|Di,j) =
(kα)|Di,j−x|

|Di,j − x|!
(

∑
Di,j
l=0(kα)l/l!

) (1
2

)1{x 6=Di,j}

1{x≤2Di,j} if k > 1 (5.4.2)

where Di,j = ∑k−1
r=0 ΨQpr ,Qpr+1

where p0 = Fi, pk = Fj, so Di,j is the sum of the con-

secutive distances between the sequences from farms that compose the transmission

chain between Fi and Fj.

The Chain Poisson model

In the Chain Poisson model the genetic distances for sequences from pairs of farms

separated by one transmission event are drawn from a Poisson distribution with pa-

rameter θ, and those which are from farms separated by more than one transmission

event in the same transmission chain have their genetic distance drawn from a Pois-

son distribution with parameter Di,j = ∑k−1
r=0 ΨQpr ,Qpr+1

where p0 = Fi, pk = Fj, which

is equal to the sum of the genetic distances between sequences from the farms which

make up the underlying transmission chain. Sequences from farms which are in dis-

tinct transmission chains have their genetic distances drawn from a Poisson distribu-

tion with parameter θgl . Thus,

P(Ψi,j = x) =

 (θx
gl/x!) exp(−θgl) if k = ∞

(θx/x!) exp(−θ) if k = 1.
(5.4.3)

The conditional probability distribution for genetic distances for pairs of sequences

which are in the same chain but separated by more than one transmission event is:

P(Ψi,j = x|Di,j) = (Dx
i,j/x!) exp(−Di,j) if k > 1. (5.4.4)

The Time Dependent Distances model

In the Time Dependent Distances model the genetic distances for sequences from
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pairs of farms which are separated by one transmission event are drawn from a Pois-

son distribution with parameter ti,jθ where ti,j is a measure of the time that separates

the sampling of the i and j. In the case of the avian influenza data we have the sam-

pling times for the sequences, so ti,j = Si − Sj where Si and Sj are the sampling times

of sequences i and j respectively. The genetic distances for pairs of sequences from

farms which are separated by more than one transmission event in the same transmis-

sion chain are again drawn from a Poisson distribution with parameter Di,j, which is

equal to the sum of the genetic distances between sequences from the farms which

make up the underlying transmission chain. Sequences from farms which are in dis-

tinct transmission chains have their genetic distances drawn from a Poisson distribu-

tion with parameter θgl . Thus,

P(Ψi,j = x) =

 (θx
gl/x!) exp(−θgl) if k = ∞

(ti,jθ
x/x!) exp(−ti,jθ) if k = 1.

(5.4.5)

The conditional probability distribution for genetic distances for pairs of sequences

which are in the same chain but separated by more than one transmission event is:

P(Ψi,j = x|Di,j) = (Dx
i,j/x!) exp(−Di,j) if k > 1. (5.4.6)

The basic idea behind all of these models is the same: that the genetic distance be-

tween sequences from two farms which are closely linked in the transmission tree is

likely to be significantly smaller than that between sequences from two farms which

are not closely linked. In chapter 2 we presented these models for genetic distances in

the context of a discrete-time model for nosocomial infections in the situation where

we had a small ward of patients, who were admitted and discharged at different

times. In order to apply the models to wider situations here we present them within

a continuous-time framework to model a closed population (which may be signifi-

cantly larger than a nosocomial population) with spatial aspects.

5.4.1 Continuous-time model for the spread of avian influenza

The genetic distance model is one part of the whole stochastic model which describes,

in continuous time, the spread of a pathogen within a population of (initially) suscep-

tible individuals. These individuals could be patients, single animals, or farms. In this

case we will be talking specifically about poultry farms. The model describes the dy-

namics of the spread of the pathogen on the level of individual farms. The model

can be used to construct a transmission tree to show the spread from farm to farm
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throughout the area. Although the model described in chapter 2 was an SIR model,

here we use an SEIR (susceptible, exposed, infectious, removed) model. This means

that each farm carries the pathogen (after an exposure event) for a fixed latent period

before it becomes infectious and can pass the infection on to other farms. We use a

fixed-length latent period of 1 day, as this value was also used by Ypma et al. [19].

The model assumes that there are a total of N farms in the region. Unlike the model

for nosocomial pathogens, we assume that there was a single introduction of the

pathogen into the population, and that all infected farms were identified, recorded

and culled. All uncolonised farms are assumed equally susceptible, and all colonised

farms equally infective. However, the infection pressure from one specific farm to an-

other depends on the geographical distance between the two. The infection pressure

is considered to be the amount of the pathogen that is available in the environment

to infect a farm. The contribution from infected farm i to the infection pressure on

susceptible farm j is given by βi,j = β0 e(−δdi,j) where di,j is the geographic distance

between farm i and farm j, so the total infectious pressure on j when it becomes ex-

posed is given by

Pj = ∑
i∈yj

β0e(−δdi,j)

where yj = {i : Ii < Ej < Ri}, where Ii is the infection time of farm i and Ej is the

exposure time of farm j, and Ri is the removal time of farm i. Here, β0 is our basic

transmission rate parameter, while δ is the parameter governing the transmission ker-

nel which dictates how much the geographic distances between farms affect the rate

of transmission. We use this infection kernel as we assume that the transmission rate

will decay exponentially with the distance between farms. Exponential decay kernels

have previously been used for infections between farms [83]. We assume that farms

are removed by culling from the population at a rate γ. Therefore our parameter

vector is ρ = (β0, δ, γ, Θ) where Θ is the vector of genetic parameters.

5.5 Inference of parameters of the model for the spread of

avian influenza

We can infer the parameters of the model introduced in section 5.4.1 for the dataset

discussed in section 5.3.1 which contains swab collection times and culling times for

farms, the geographical location of farms, and the differences between the genetic se-

quences taken from the farms’ pathogen isolates.
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As we want to use our model to infer the transmission tree of the outbreak we include

T = {I, s, Ψa}. This is the vector of unobserved data consisting of unobserved infec-

tion times, sources and genetic distances. There are a total of nI unobserved infection

times, which is one for each infected farm, and they are I = (I1, I2, . . . , InI ). There are

also nI unobserved sources as each infected farm, i, has the pathogen transmitted to

them by a farm, j, which is infected earlier, so j is the source of i. The first farm to

acquire the pathogen has source −1 to show that their pathogen came from outside

the population of farms. The unobserved sources are given by s = (s1, s2, . . . , snI ).

The unobserved genetic distances Ψa are:

Ψa = (Ψa
(nseq+1),1, Ψa

(nseq+1),2, . . . , Ψa
(nseq+1),nseq

, Ψa
(nseq+2),1, . . . , Ψa

(nseq+nnoseq),(nseq+nnoseq−1)).

We define nnoseq to be the number of farms which were observed to be infected but

did not have pathogen isolates sequenced, so genetic distances from their sequence

are unobserved, and nseq to be the number of farms which have a genetic sequence in

the data.

5.5.0.1 Continuous-time model likelihood

We use the model for the spread of avian influenza to derive the likelihood of observ-

ing the culling times, X, and the genetic distances, Ψ, given the model parameters,

ρ. The model likelihood that we are interested in, π(X, Ψ|ρ), is intractable, so we

augment the parameter space with unobserved data, T, which gives the augmented

likelihood π(X, Ψ|ρ) = ∑
T

π(X, Ψ, T|ρ, Z) = ∑
T

π(X, Ψ|T, ρ, Z)π(T|ρ, Z), where Z

is the vector of observed dynamics that we condition on consisting of farm swab

times as well as the number of susceptible farms in the region before the epidemic

began. Although we can not evaluate this sum due to its complexity and high-

dimensionality, we can use a data-augmented MCMC algorithm to sample ρ and T

from π(X, Ψ|T, ρ, Z)π(T|ρ, Z).

We define L1 = π(X, Ψ|T, ρ, Z) as the likelihood of observing the distance matrix and

removal times given the unobserved dynamics and parameters, and L2 = π(T|ρ, Z)

as the likelihood of the unobserved data given the parameters. The likelihood for

each of the three models is given below. In all of these likelihoods N is the total num-

ber of farms in the region, S =
nI

∑
i=1

N
∑

j=1
βij
(

Ri ∧ Ij − Ii ∧ Ij
)
, where A ∧ B means the

minimum of A and B, and l is the initial infective. The source of infection for farm j

is given by s(j), so if farm k infected farm j then s(j) = k. The total number of culled

(removed) farms at the end of the epidemic is given by nR, and nI is the total number
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of farms who are ever infected during the course of the epidemic. These numbers

are known from the data. The number of transmission events separating the two

farms from which sequences i and j were taken in the transmission tree is denoted

by trans(i, j). Therefore if trans(i, j) = 1 the two sequences belong to farms Fi and

Fj where Fi which is directly infected by farm Fj (or vice versa). If trans(i, j) > 1 the

two sequences i and j belong to farms which are part of the same transmission chain

but are not directly linked through a single transmission, and if trans(i, j) = ∞ the

two sequences belong to farms which are not in the same transmission chain. The

sum of the consecutive distances between the isolates from farms that compose the

transmission chain between Fi and Fj is given by Di,j.

Chain Error model likelihood

For the Chain Error model the likelihood is as follows:

π(X, Ψ|T, ρ, Z)π(T|ρ, Z) =

γnR exp

{
−

nR

∑
i=1

γ (Ri − Ii)

}
×

nI

∏
j=2

j

∏
i=1

[
1trans(i,j)=1

θΨi,j exp(−θ)

Ψi,j!

+ 1trans(i,j)>1
(kα)|Di,j−Ψi,j|

|Di,j −Ψi,j|!
(

∑
Di,j
l=0

(kα)l

l!

) (1
2

)1{Ψi,j 6=Di,j}

1{Ψi,j≤2Di,j}

+ 1trans(i,j)=∞

θ
Ψi,j
gl exp(−θgl)

Ψi,j!

× nI

∏
j=1,j 6=l

(
βs(j),j

)
× exp {−S} ,

(5.5.1)

where l is the initial infective.

Chain Poisson model likelihood

For the Chain Poisson model the likelihood is as follows:

π(X, Ψ|T, ρ, Z)π(T|ρ, Z) =

γnR exp

{
−

nR

∑
i=1

γ (Ri − Ii)

}
×

nI

∏
j=2

j

∏
i=1

[
1trans(i,j)=1

θΨi,j exp(−θ)

Ψi,j!

+ 1trans(i,j)>1

D
Ψi,j
i,j exp(−Di,j)

Ψi,j!
+ 1trans(i,j)=∞

θ
Ψi,j
gl exp(−θgl)

Ψi,j!


×

nI

∏
j=1,j 6=l

(
βs(j),j

)
× exp {−S} ,

(5.5.2)

where l is the initial infective.
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Time Dependent Distances model likelihood For the Time Dependent Distances

model the likelihood is as follows:

π(X, Ψ|T, ρ, Z)π(T|ρ, Z) =

γnR exp

{
−

nR

∑
i=1

γ (Ri − Ii)

}
×

nI

∏
j=2

j

∏
i=1

[
1trans(i,j)=1

ti,jθ
Ψi,j exp(−ti,jθ)

Ψi,j!

+ 1trans(i,j)>1

D
Ψi,j
i,j exp(−Di,j)

Ψi,j!
+ 1trans(i,j)=∞

θ
Ψi,j
gl exp(−θgl)

Ψi,j!


×

nI

∏
j=1,j 6=l

(
βs(j),j

)
× exp {−S} ,

(5.5.3)

where l is the initial infective.

The first term in equations 5.5.1, 5.5.2 and 5.5.3, which is γnR exp
{
−

nR

∑
i=1

γ (Ri − Ii)

}
,

gives the likelihood of the removal times. The infectious period of farm i is given

by Ri − Ii (the culling time minus the infection time). The double product term in

equations 5.5.1, 5.5.2 and 5.5.3 gives the likelihood of observing the genetic distances

between farms given the transmission tree. The first product goes from j = 2 to j = nI

and the second goes from i = 1 to i = j in order to ensure that we include each pair

of sequences (i, j) once and only once, and that we do not include the distance from

any sequence to itself (this is why j begins at 2). As there is one sequence for each

farm (whether observed or unobserved) the first product goes to nI . If we did not

keep track of the sources of infection for each farm we would expect the last term in

equations 5.5.1, 5.5.2 and 5.5.3 to be a double product of βi,j over both i and j, but as

we do keep track of the sources this is simplified.

5.6 An MCMC algorithm for fitting the model for the spread

of avian influenza

In order to fit our models to the data our objective is to sample from the posterior dis-

tribution of the parameters, ρ, and the unobserved transmission dynamics, T, given

the removal times, X, and the genetic distances, Ψ. Hence we aim to sample from

π(X, Ψ|T, ρ, Z)π(T|ρ, Z)π(ρ), where π(ρ) is the prior distribution of the parameters.

To do this we use a data-augmented MCMC algorithm which, at each iteration, up-

dates the parameters, ρ, and then updates the state of the unobserved transmission

tree, T, including the infection times and sources of infection for farms observed to

be infected. The vector T also includes unobserved genetic distances, Ψa, between all
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other sequences and those unobserved sequences from farms which we know to be

positive, but lack genetic sequencing data from. These genetic distances are necessary

for calculating the probability of transmission from these farms to other farms, and

we draw them from the appropriate distributions specified by the model. The MCMC

algorithm is now described in detail.

5.6.1 Parameter updates

In this section we describe how the MCMC algorithm updates each of the model

parameters, and assign each parameter a prior distribution.

5.6.1.1 Epidemiological parameter updates

We assume that the transmission parameter β0 has a Γ(νβ0 , λβ0) distribution a pri-

ori. Therefore the full conditional distribution of β0, which is π
(

β0|ρ−β0 , X, T
)

where

ρ−β0 is the vector of parameters without the component β0, may be derived, up to

proportionality, as:

π
(

β0|ρ−β0 , X, T
)

∝ β
νβ0−1
0 exp(−λβ0 β0)

nI

∏
j=1,j 6=l

∑
i∈yj

βi,j

 exp(−S)

∝ β
νβ0−1
0 exp(−λβ0 β0)

nI

∏
j=1,j 6=l

∑
i∈yj

β0 exp(δdi,j)

 exp(−S)

∝ β
νβ0−1
0 exp(−λβ0 β0)βnI−1

0

nI

∏
j=1,j 6=l

∑
i∈yj

exp(δdi,j)

 exp (−β0A)

∝ β
nI+νβ0−1−1
0 exp

(
−β0(A + λβ0)

)
,

where T is the augmented data, X is the vector of removal times, ρ−θ is the vector of

parameters without the parameter θ and

S =
nI

∑
i=1

N

∑
j=1

βij
(

Ri ∧ Ij − Ii ∧ Ij
)

,

and

A =
nI

∑
i=1

N

∑
j=1

exp
(
δdij
) (

Ri ∧ Ij − Ii ∧ Ij
)

.

It follows that β0 may be sampled directly, using a Gibbs step, from the distribution

Γ
(
nI + νβ0 − 1, A + λβ0

)
.
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Similarly, if γ is assigned prior distribution γ ∼ Γ(νγ, λγ) then we may sample γ

directly, using a Gibbs step, from:

Γ

(
nR + νγ,

nR

∑
i=1

(Ri − Ii) + λγ

)
.

The spatial parameter, δ, is assigned an improper uniform prior distribution on (0, ∞)

and is updated using a Metropolis-Hastings random-walk. The step size of the ran-

dom walk varies according to a Normal distribution with mean 0 and variance σ2;

the acceptance rate is checked every 1000 iterations in order to adjust the variance to

maintain an acceptance rate between 0.2 and 0.6.

5.6.1.2 Genetic parameter updates

We assume that the genetic parameter θ has a Γ(νθ , λθ) prior distribution. Under the

Chain Error model and the Chain Poisson model therefore, the parameter θ, may be

sampled directly, using a Gibbs step from:

Γ

 ∑
(i,j):

trans(i,j)=1

Ψi,j + νθ − 1, Npar + λθ

 ,

where Npar is the number of pairs of sequences, (i, j), for which trans(i, j) = 1. Under

the Time Dependent Distances model the parameter θ may be sampled using a Gibbs

step from:

Γ

 ∑
(i,j):

trans(i,j)=1

Ψi,j + νθ − 1, ∑
(i,j):

trans(i,j)=1

ti,j + λθ

 ,

where ti,j is the difference in sampling times between farm i and j.

Under all three of the models, θgl , given a θgl ∼ Γ(νθgl , λθgl ) distribution a priori, can

be sampled using a Gibbs step from:

Γ

 ∑
(i,j):

trans(i,j)=∞

Ψi,j + νθgl − 1, Nglo + λθgl

 ,

where Nglo is the number of pairs of sequences, (i, j), for which trans(i, j) = ∞.
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The genetic error parameter, α, for the Chain Error model, is assigned an improper

prior distribution on (0, ∞) and is updated using a Metropolis-Hastings random-

walk. The step size of the random walk varies according to a Normal distribution

with mean 0 and variance σ2; the acceptance rate is checked every 1000 iterations in

order to adjust the variance to maintain an acceptance rate between 0.2 and 0.6.

5.6.2 Augmented data updates

At each iteration of the MCMC algorithm it performs one of the following augmented

data updates, so running it for a large number of iterations gives us the posterior

probability of possible transmission events between farms. During each step a candi-

date data set T∗ = {I∗, s∗, Ψa∗} is proposed. Here we describe each step, and define

the proposal ratio, qT,T∗ = P(T∗ → T)/P(T → T∗), which is the ratio of the proba-

bility of making the reverse move to the probability of making this move. Details of

these proposal ratios can be found in appendix E.

• Changing genetic distances

In order to change the genetic distances for a farm which does not have a se-

quence in the data we pick uniformly at random one of the nnoseq farms which

was infected, but did not have a pathogen genome sequenced, and change the

genetic distances from their sequence to other farms’ sequences. If no such

farms exist no move is made. We draw a new set of distances between their

sequence and each other sequence from each colonised farm according to the

relevant probability distributions for the model depending on whether the two

farms are in the same transmission chain and adjacent to each other, in the same

chain but separated by more than one transmission event, or in separate chains.

The probability distributions from which these genetic distances are drawn can

be found in equations 5.4.1 and 5.4.2 for the Chain Error model, equations 5.4.3

and 5.4.4 for the Chain Poisson model, and equations 5.4.5 and 5.4.6 for the Time

Dependent Distances model. The proposal ratio for this move is

qT,T∗ =

∏
j : i 6=j

P
[

Ψi,j = Ψa
i,j|Θ

]
∏

j : i 6=j
P
[

Ψi,j = Ψa∗
i,j |Θ

] .

• Updating an infection time and resampling the sources

In the original algorithm described in chapter 4, we allowed an update of the in-

fection times for one infective and resampled the source of that infective. How-

ever, in the non-hospital case where we assume that there is not more than one
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initial infective this move is not reversible in all possible scenarios. Therefore,

if we are to update the infection times of one farm we must resample all of the

sources of infection (the whole transmission tree for that set of infection times).

For this, we select one farm, i, uniformly at random from those which ever get

infected. We then sample a new infection time, I∗i , for that farm by sampling

from an exponential distribution with the current value of parameter γ and

subtracting this value from the removal time of the farm. The new exposure

time, E∗i , of this farm is the new infection time minus the fixed latent period. If

the new exposure time is after any recorded sampling time, no move is made.

We then find the farm with the earliest infection time and set this as the initial

infection time, and this farm’s source is −1. For each other farm, i, we sample

a new source of infection, s∗(i), from set L = {j : Ij < E∗i < Rj}, where j ∈ L

is picked as the source for i with probability weight βi,j

∑j:Ij<E∗i <Rj
βi,j

. If there is no

possible source of infection for any farm then the move is rejected. We define

the proposal ratio, qT,T∗ , to be

qT,T∗ =
e(γ(Ii−I∗i )) ∏nI

i=1
βi,s(i)

∑L βi,j

∏nI
i=1

βi,s∗(i)
∑L∗ βi,j

.

• Change the infection time and source of one farm

In this step we pick one of the infected farms uniformly at random from the set

of all infected farms, excluding the initial infective. Excluding the initial infec-

tive is another way to avoid the irreversibility of the original move from chapter

4 in this scenario with a closed population. We then find the last time that this

farm could have been susceptible, which is dependent on whether the farm has

any ‘offspring’ (whether it goes on the infect any other farms in our current con-

figuration of the transmission tree) and whether it has a sampling date. If the

farm i has no offspring and no sampling date it could have been susceptible

up to the time at which it was removed, Ri, whereas if it does have offspring

or a sampling date, it could have only been susceptible up to the time that its

first ‘child’ was exposed, Oi, or the time that it was sampled, Si, depending on

which occurred first. The new infection time, I∗i , for farm i is sampled by draw-

ing from an exponential distribution truncated at (Ri ∧ (Oi ∧ Si))− Il , where Il

is the infection time of the initial infective (the distribution is truncated so that

we can not propose that i has an infection time before the infection time of the

current initial infective) with the current value of parameter γ and subtracting

this draw from Ri ∧ (Oi ∧ Si). The new exposure time, E∗i , of this farm is the new

infection time minus the fixed latent period. A new source, s∗(i), is sampled for
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farm i from set L where j : Ij < E∗i < Rj, where j ∈ L is picked with probabil-

ity weight βi,j

∑j:Ij<E∗i <Rj
βi,j

. If there are no possible sources, no move is made. The

proposal ratio for this move is given by

qT,T∗ =
e(γ(Ii−I∗i )) βi,s(i)

∑L βi,j

βi,s∗(i)
∑L∗ βi,j

.

• Swap the initial infection

The previous move does not allow for updating the initial infective, as to update

it in the same way as the other infected farms would prevent the move from

being reversible. In order to update the initial infective we propose a move in

which we swap the initial infective, i say, with the farm, j say, which has the

earliest infection time after the initial infective. This means that Ii becomes Ij

and vice versa, swapping their infection and exposure times as well as their

sources. Naturally i and j retain their removal and sampling time, as these are

specified by the data, and if the sampling time of the initial infective before the

move is made is before the exposure time of the second infective, no move is

made. Any further farms infected by i or j maintain their sources and infection

times. The proposal ratio for this move is 1.

• Change the time of the initial infection

Here we sample a new time, I∗i , for the initial infective, i, by drawing from an

exponential distribution with the current value of parameter γ and subtracting

this number from (Oi ∧ Si), the minimum of the exposure time of the initial

infective’s first offspring j, Oi, and the sampling time of i, Si (since this is the

last time at which the initial infective could have been susceptible). The new

exposure time of the initially infected farm is the new infection time minus the

fixed latent period. The proposal ratio for the move is given by

qT,T∗ = e(γ(Il−I∗l ))

where I∗l is the proposed initial infection time of initial infective l, and Il is the

current initial infection time of the initial infective.

Acceptance probability

For each augmented data update we accept the proposed augmented data set with

probability

min
(

1,
π(X, Ψ|T∗, ρ)π(T∗|ρ)
π(X, Ψ|T, ρ)π(T|ρ) qT,T∗

)
.
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5.6.3 A block update of an infection time, the full set of sources and the

genetic parameters

In order to improve the mixing of the algorithm we also introduced a block update

which updates both the transmission tree and the genetics parameters. This update

is described here.

This block update was introduced in order to avoid mixing problems similar to those

described in chapter 4 where the likelihood becomes stuck in one region without ac-

cepting any updates to the configuration of the transmission tree. Here we select one

farm uniformly at random from those which ever get infected. We then sample a new

infection time, I∗1 , for that farm by sampling from an exponential distribution with

the current value of parameter γ and subtracting this number from the removal time

of the farm. The new exposure time, E∗i , of this farm is the new infection time minus

the fixed latent period. If the new exposure time is after any recorded sampling time,

no move is made. We then find the farm with the earliest infection time and set this

as the initial infection time, and this farm’s source is −1. For each other farm, i, we

sample a new source of infection, s∗(i), from set L where j : Ij < E∗i < Rj, where j ∈ L

is picked as the source for i with probability weight βi,j

∑j:Ij<E∗i <Rj
βi,j

. If there is no possible

source of infection for any farm then the move is rejected. Once we have proposed a

new transmission tree we propose new values for the genetic parameters, θ∗ and θ∗gl ,

using the distributions Γ (µθ , ζθ) and Γ
(

µθgl , ζθgl

)
where

µ∗θgl
= ∑

(i,j):
trans∗(i,j)=∞

Ψi,j + νθgl − 1

and ζ∗θgl
= N∗glo + λθgl , and µ∗θ and ζ∗θ for the different genetic distances models are

given in table 5.2.

Model Parameter µ∗θ Parameter ζ∗θ

Chain Error model ∑
(i,j):

trans∗(i,j)≤1

Ψi,j + νθ − 1 N∗par + λθ

Chain Poisson model ∑
(i,j):

trans∗(i,j)≤1

Ψi,j + νθ − 1 N∗par + λθ

Time Dependent

Distances model
∑
(i,j):

trans(i,j)≤1

Ψi,j + νθ − 1 ∑
(i,j):

trans(i,j)≤1

ti,j + λθ

Table 5.2: Parameters for the distribution Γ (µθ , ζθ), from which we draw our new value for θ.
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The proposal ratio, qT,T∗ , is:

qT,T∗ =
e(γ(Ii−I∗i )) ∏nI

i=1
βi,s(i)

∑L βi,j

∏nI
i=1

βi,s∗(i)
∑L∗ βi,j

×
ζ

µθ
θ

Γ(µθ)
θµθ−1 e−ζθθ

ζ
∗(µ∗

θ
)

θ

Γ(µ∗θ )
θ∗(µ

∗
θ−1) e−ζ∗θ θ∗

×

ζ
µθgl
θgl

Γ(µθgl
)
θ

µθgl
−1

gl e−ζθgl
θgl

ζ
∗(µ∗

θgl
)

θgl
Γ(µ∗θgl

)
θ
∗(µ∗θgl

−1)

gl e
−ζ∗θgl

θ∗gl

.

Again, we accept the proposed augmented data set with probability

min
(

1,
π(X, Ψ|T∗, ρ)π(T∗|ρ)
π(X, Ψ|T, ρ)π(T|ρ) qT,T∗

)
.

5.7 Simulation study

In order to assess the performance of our MCMC algorithm we performed a simu-

lation study. We simulated a number of epidemics of avian influenza according to

each of our three models, and then fitted the model using the MCMC algorithm to

investigate whether the parameters and transmission tree were well recovered. The

parameters β0, γ, θ and θgl were given Γ(1, 10−6) prior distributions and the parame-

ters δ and α (in the Chain Error model) were given improper uniform priors on (0, ∞).

The infection times were initialised by subtracting 1.0 farm’s sampling time. If there

was no sampling time then the infection time was set to the farm’s culling time minus

2.0. The exposure times were set to these infection times minus the length of the latent

period. The infection sources were initialised by choosing, uniformly at random, one

of the farms which were infectious at the time of the farm’s exposure. If no such farms

were available then we subtracted 0.5 from the exposure time until the farm had an

exposure time at which there was another infectious farm to be their source. The pa-

rameters were initialised using ‘sensible’ values and we ran the MCMC algorithm a

number times from different initialisations to check that these did not influence the

results. We checked for convergence using the traceplots of the posterior estimates of

the parameters and of the likelihood.

Here we describe the method for simulating the data from our models, and in sec-

tion 5.7.2 we assess the output from the MCMC algorithm on simulations with differ-

ent parameter values.
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5.7.1 Simulation method

In order to simulate an epidemic of avian influenza, we first define the size of the

population, N, which is the number of susceptible farms before the outbreak starts,

and the relative geographic locations of these farms. For simplicity we pick the farms

to be a random subset of the farms from the Netherlands data since we already have

a geographical distance matrix for these farms. We also assign values to each of the

parameters in the model, and set a fixed latent period, P. We set a length of time h be-

fore culling that a farm will be sampled in order for genetic sequences to be produced.

We begin the simulation by setting the first farm, l, to be exposed to the infection

by some outside source (-1) at time 0. They become infectious after the fixed latent

period, so they are able to infect other farms from time 0 + P = P. For each remain-

ing susceptible farm j we draw the time at which they would be exposed by this

farm from an exponential distribution with parameter β0 exp(−δdi,j) where dl,j is the

geographical distance between the two farms. We also draw a culling time for the

infected farm l from an exponential distribution with parameter γ. Then we find the

minimum of the set of exposure times and the culling time, and set that as the next

event that happens. We carry on in this fashion, working out the next event which

will happen, which will either be an exposure, an infection after a latent period, or a

culling. Every time a new farm is exposed we remove any other exposure times we

had for them from other farms, and generate their infection time after the latent pe-

riod, the time at which they would expose each remaining susceptible farm, and their

culling time. Then we find the event with the lowest time from the set of all possi-

ble exposure, infection and culling times including the new ones we have generated.

Thus we move through time until their are either no susceptible farms left to infect,

or no infective farms left to transmit the pathogen.

We set each farm to have been sampled h days before their date of culling. If this

time would have been before their exposure, we set their sample time to be halfway

between their exposure time and their culling time. Each sample from an infected

farm produces a genetic sequence. Instead of simulating the exact sequence we just

simulate the genetic distance between each sequence as they are sampled and each

previously sampled sequence according to the distributions specified by the model.

For sequences from farms in distinct chains of transmission we draw the genetic dis-

tance from a Poisson distribution with parameter θgl . For the Chain Error model and

the Chain Poisson model we draw the distances for sequences from two farms which
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share a direct transmission event from a Poisson distribution with parameter θ, and

for the Time Dependent Distances model we draw these distances from a Poisson

distribution with parameter ti,jθ where ti,j = Sj − Si, the difference between each se-

quence’s sampling time. For genetic distances between sequences from farms who

are in the same chain but are separated by more than one transmission event, for

the Chain Poisson model and the Time Dependent Distances model we draw from a

Poisson distribution with parameter Di,j, the sum of the distances between sequences

from farms in the underlying transmission chain. For the Chain Error model we draw

these genetic distances by adding or subtracting from Di,j, with probability 0.5, an er-

ror term drawn from a normalised Poisson distribution with parameter kα which has

been reflected in the y-axis to be a symmetric distribution, and then has been trun-

cated at the value Di,j.

5.7.2 Results of the simulation study

The quality of the parameter estimation and the network reconstruction from our sim-

ulation study allows us to investigate the performance of the MCMC algorithm. For

each of the three models, the Chain Error model, the Chain Poisson model and the

Time Dependent Distances model, we simulated 100 data sets with different values

of the parameters. A population of 100 farms was used for each simulation. For the

geographical distances between these farms each simulation used a different random

100-farm subset of the Netherland distances. We set samples to be taken from infected

farms h = 2 days before culling, and the latent period was fixed at P = 2.

As the aim of the simulation study is to assess the performance of the MCMC al-

gorithm in estimating varied values of the parameters, we varied them one at a time

in sets of simulations. Each parameter, ρi, was varied over a range which included

unlikely, extreme values as well as values which we would expect the parameter to

take in real outbreaks. Whilst we varied ρi we kept the other parameters, ρ−i, fixed at

values which we deemed to be realistic for an outbreak in a region of 100 farms.

Here we give the variations for each parameter:

• For the transmission parameter β0 we fixed the other parameters (δ = 1, γ =

0.3, θ = 5 (0.5 for Time Dependent Distances model), θgl = 25) and varied β0

between 0.1 and 1 in increments of 0.1.

• For the spatial parameter δ we fixed the other parameters (β0 = 0.2, γ = 0.4, θ =
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5 (0.5 for Time Dependent Distances model), θgl = 25) and varied δ between 0.5

and 1.4 in increments of 0.1.

• For removal parameter γ we fixed the other parameters (β0 = 0.2, δ = 1, θ =

5 (0.5 for Time Dependent Distances model), θgl = 25) and varied γ between 0.1

and 1 in increments of 0.1.

• For the global genetic parameter θgl we fixed the other parameters (β0 = 0.2, δ =

1, γ = 0.4, θ = 5 (0.5 for Time Dependent Distances model)) and varied θgl

between 5 and 50 in increments of 5.

• For the chain genetic parameter θ for the Chain Error model and Chain Poisson

model we fixed the other parameters (β0 = 0.2, δ = 1, γ = 0.4, θgl = 25) and

varied θ between 1 and 19 in increments of 2.

• For the chain genetic parameter θ for the Time Dependent Distances model we

fixed the other parameters (β0 = 0.2, δ = 1, γ = 0.4, θgl = 25) and varied θ

between 0.5 and 1.4 in increments of 0.1.

Therefore each of the 5 parameters was varied to create 10 sets of parameters (50 sets

in total). For each of these 10 sets of parameters we simulated 10 epidemics of avian

influenza.

5.7.2.1 Parameter estimation

In creating data sets with varying values of each parameter the aim was to assess

the performance of the MCMC algorithm across a range of conceivable values and to

find the strengths and weaknesses of the algorithm in estimating the parameters. In

order to investigate this the MCMC algorithm was run for 50,000 iterations on each

simulated dataset and the resulting posterior estimation for the parameter of interest

was plotted as a boxplot on the same axes as the other 99 simulations which varied

that particular parameter. An example of varying θ for the Chain Poisson model

is shown in figure 5.4. From this graph it is easy to see whether the algorithm has

recovered the fact that θ is increasing but it is not immediately clear exactly how well

it recovers the specific values for θ, so for this we separate the boxplots into individual

graphs for each value of θ and plot them over a line which shows the true value, as

in figure 5.5. In this example it is clear that the MCMC algorithm has recovered the

increase of θ and that it estimates the specific value of θ well. The graphs for the other

parameters and models can be found in appendix F, but we will discuss what they

show here.
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Figure 5.4: The posterior estimates of parameter θ from fitting the Chain Poisson model to

100 simulated datasets from the same model with input value for θ which varies from 5 to 50,

with 10 simulations for each increase.
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Figure 5.5: The posterior estimates of parameter θ from fitting the Chain Poisson model to

100 simulated datasets from the same model with input value for θ which varies from 5 to 50,

with 10 simulations for each increase.
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Transmission parameter β0

The plots (F.1, F.2) for the estimation of the varied transmission parameter β0 show

that for the Chain Error model it is well recovered when β0 ≤ 0.5, but it is consistently

underestimated for β > 0.5, although the algorithm is still generally recovering that

β0 is increasing between sets of simulations. For the Chain Poisson model (F.11, F.12)

and Time Dependent Distances model (F.21, F.22) this underestimation of the param-

eter is evident even at β0 = 0.4. Since we would expect parameteres β0 and δ to be

correlated we also looked at the estimation of δ as we varied β0. We found that δ was

generally well estimated when β0 was well estimated, although for very small values

of β0 the parameter δ tended to be overestimated.

Spatial parameter δ

The plots (F.3, F.4, F.13, F.14, F.23, F.24) for the estimation of the varied spatial parame-

ter δ show that for all three models the algorithm estimates the parameter well across

the range 0.5 to 1.4, although there is slightly more variability in the estimates at the

ends of the range.

Removal parameter γ

The plots (F.5, F.6, F.15, F.16, F.25, F.26) for the estimation of the varied removal param-

eter γ show that for all three models the estimation gets better and more consistent

as γ increases. For the Chain Poisson model the estimates generally look good across

the range, whereas for the Chain Error model there is quite a lot of variability in the

success of the estimation when γ ≤ 0.6. The Time Dependent Distances model con-

sistently underestimates γ.

Genetic parameters θ and θgl

The plots for the estimation of the varied chain genetic parameter θ for the Time De-

pendent Distances model (F.27, F.28) show that although the algorithm has captured

the fact that θ increases between sets of simulations, it is poor at estimating the value

of θ. This could be because of a wide range in the value of ti,j which is a factor in the

full conditional of θ in this model. The plots for the estimation of the varied chain ge-

netic parameter θ for the Chain Error model (F.17, F.18) and the Chain Poisson model

(5.4, 5.5) show that θ is generally well estimated across the range 1 to 19 despite a

couple of simulations where it is estimated poorly. We assume that is due to the par-

ticular transmission tree in those simulations as they had fewer than average infected

farms and so gave less information for the estimate of θ. The plots (F.9, F.10, F.19, F.20,
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F.29, F.30) for the estimation of the varied global genetic parameter θgl show that for

all three models θgl is estimated well across the range 5 to 50.

5.7.2.2 Transmission tree estimation

We used the same set of simulations that were used for investigating parameter es-

timation in section 5.7.2.1 to investigate the strengths and weaknesses of the MCMC

algorithm in recovering the network of transmission for simulations created with a

range of values for each parameter.

In order to visualise how many of the transmission events were correctly estimated

by the algorithm we took the output of the MCMC algorithm for each simulation and

found the most likely source of exposure for each farm by finding which source was

assigned to that particular farm for the largest number of iterations (after the burn in

period had been excluded). We compared this estimated most likely source to the true

source by producing separate plots for each parameter in each version of the model.

These plots have a boxplot for each value of the parameter being investigated which

plots the proportion of sources correctly identified for each of the 10 simulations with

that value. Figure 5.6 shows an example of this type of plot for varied values of θgl for

the Chain Error model. The plots for the other parameters and models can be found

in appendix G but we discuss what they show here.

Effect of varying transmission parameter β0

The plots (G.1, G.6, G.11) of the proportion of transmission sources recovered for

varied β0 show that for the Chain Poisson model and the Time Dependent Distances

model the transmission is reasonably well estimated across the range of β0 ∈ (0, 1).

However, for the Chain Error model we see that there is much more variability in the

estimation of the transmission tree, especially when β > 0.5. This suggests that this

model struggles when the transmission tree is larger and more complicated.

Effect of varying spatial parameter δ

The plots (G.2, G.7, G.12) of the proportion of transmission sources recovered for

varied δ show that for all three models the transmission tree is well estimated across

the range of δ ∈ (0.5, 1.5). All of the models cope well with varying values for the

spatial parameter.
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Effect of varying removal parameter γ

The plots (G.3, G.8, G.13) of the proportion of transmission sources recovered for

varied γ show that for the Chain Poisson model and the Time Dependent Distances

model the transmission is reasonably well estimated across the range of γ ∈ (0, 1).

However, for the Chain Error model we see that the transmission tree recovery is

generally poor when γ ≤ 0.2, although for larger values the estimation is good.

Effect of varying genetics parameters θ and θgl

The plots (G.4, G.9, G.14) of the proportion of transmission sources recovered for

varied θ show that for all three models the transmission tree is well estimated across

a range of values, although the Chain Poisson model shows more variability in the

success of transmission tree recovery as θ increases. This makes sense as it will be

harder to estimate the transmission tree as θ and θgl become closer in value. This

is seen also in the plots (G.5, 5.6, G.15) of the proportion of transmission sources

recovered for varied θgl as the algorithm does markedly worse, for all three models,

in estimating the tree when θgl ≤ 10 so it is close to the value of θ.

The MCMC algorithm appears to recover the transmission tree, and the parameters,

well for a range of values of the parameters. The algorithm recovers the transmission

tree best when β0 < 0.5 and γ > 0.3 and θgl is obviously larger than θ.

5.8 Results for the Netherlands data

Having tested the algorithm on simulated data, we analysed the data available from

the 2003 outbreak of avian influenza in the Netherlands under each of our three mod-

els in order to estimate the transmission tree, which describes which farms transmit-

ted the disease to other farms, and the times of these transmission events. For each

model we ran the MCMC algorithm for 400,000 iterations, with 10 augmented data

steps taking place during each iteration. The parameters β0, γ, θ and θgl were given

Γ(1, 10−6) prior distributions and the parameters δ and α (in the Chain Error model)

were given improper uniform priors on (0, ∞).

The infection times were initialised by setting them to be 24 hours prior to the farm’s

sampling time. If there was no sampling time then the infection time was set to be 48

hours before the farm’s culling time. The exposure times were equal to these infection

times minus the length of the latent period. The infection sources were initialised by
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Figure 5.6: Boxplots to show the proportion of infection sources for farms recovered correctly

for simulations with varied values for parameter θgl for the Chain Error model.
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randomly picking one of the farms which were infectious at the time of the farm’s

exposure to be its source. If no source was available then we subtracted 0.5 from the

exposure time until the farm had an exposure time at which there was an available

source. The parameters were initialised using ‘reasonable’ values and we checked

that these did not influence the results by running the MCMC algorithm multiple

times from different initialisations. We checked for convergence using the traceplots

of the posterior estimates of the parameters and of the likelihood.

5.8.1 Results from the Chain Error model

We performed analysis under the Chain Error model using a latent period of 1 day as

in the model presented by Ypma et al. [19]. Table 5.3 on page 171 gives the posterior

means with 95% equitailed credible intervals for the parameters of the model. This

model estimated that sequences from farms which shared a transmission event had

a mean genetic distance of 9 SNPs, and sequences from farms which were in distinct

chains of transmission had a mean genetic distance of 11 SNPs. This reflects the data

because, as we commented in section 5.3.1, the genetic distances are all fairly similar

and fairly small. However, the 95% credible intervals for parameter θ and θgl do not

overlap, so although the distributions for pairs of sequences from farms which share

a transmission and those in separate chains are similar, they are distinctly different.

Figure 5.7 gives the posterior transmission tree for transmission events inferred with

probability 0.4 or higher. Transmission events which have posterior probability smaller

than 0.4 were not included to prevent the figure from becoming too noisy and unclear.

This figure shows that the transmission events with the highest posterior probability

are those between farms which are close together, which was expected. There are no

transmission events between the two geographical clusters with high probability. In

order to visualise the transmission tree for all the farms rather than just those with

the highest posterior probabilities we created a median tree from the output of our

MCMC algorithm, using the treespace package [84]. This package takes the transmis-

sion tree from each iteration of the MCMC algorithm output and finds a representa-

tive tree using a metric on the transmission trees which quantifies their differences.

This median tree is shown in figure 5.8. This transmission tree proposed by our model

seems to be intuitively sensible, as it only has one transmission event which occurs

over the large geographic distance between the two clusters of farms.
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Figure 5.7: Transmission events with a posterior probability greater than 40% under the Chain

Error model
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Figure 5.8: The mean transmission tree under the Chain Error model
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5.8.2 Results from the Chain Poisson model

We performed analysis under the Chain Poisson model using a latent period of 1

day. Table 5.3 on page 171 gives the posterior means with 95% equitailed credible

intervals for the parameters of the model. This model also estimated that sequences

from farms which shared a transmission event had a mean genetic distance of 9 SNPs,

and sequences from farms which were in distinct chains of transmission had a mean

genetic distance of 11 SNPs. As for the Chain Error model this reflects the small, clus-

tered genetic distances in the data. Again, the 95% credible intervals for parameter θ

and θgl do not overlap, so although the distributions for sequences from pairs of farms

which share a transmission and those in distinct chains are similar, they are distinctly

different, suggesting that there is valuable information contained in the genetic data.

Figure 5.9 gives the posterior transmission tree for transmission events inferred with

probability 0.4 or higher. Transmission events which have posterior probability smaller

than 0.4 were not included as there were so many possible edges at smaller probabil-

ity levels that the figure gives no information about the tree configuration. The figure

shows that the transmission events with the highest posterior probability are those

between farms which are close together, but there was also one transmission event

estimated to have occurred between the two geographical clusters. This makes sense,

as the disease has to move between the clusters, but it is unlikely that it would have

been transmitted across such a big geographical distance multiple times. The average

time that the algorithm estimates for this transmission (from farm 32 to farm 205) is

day 37, and the first sample taken from the lower cluster in the data is from day 39.

We obtained a median tree from the output of our MCMC algorithm [84]. This median

tree is shown in figure 5.10. This median tree again suggests that there was just one

transmission of the disease between the two geographical clusters, and it also sug-

gests a minimal number of transmission events across the other large geographical

distances.
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Figure 5.9: Transmission events with a posterior probability greater than 40% under the Chain

Poisson model
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Figure 5.10: The median transmission tree under the Chain Poisson model

5.8.3 Results from the Time Dependent Distances model

We performed analysis under the Time Dependent Distances model using a latent

period of 1 day. Table 5.3 on page 171 gives the posterior means with 95% equitailed
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credible intervals for the parameters of the model. In this model the genetic diversity

parameters have slightly different meanings because of the time dependence in the

distributions for the genetic distances in the model, so the results can not be inter-

preted intuitively. It is notable that the posterior mean for θgl is considerably lower

than for either of the other two models, suggesting that the transmission tree esti-

mated under this model differs from the trees produced by the Chain Error and Chain

Poisson models.

Figure 5.11 gives the posterior transmission tree for transmission events inferred with

probability 0.4 or higher. Transmission events which have posterior probability smaller

than 0.4 were not included. The figure shows that the transmission events with the

highest posterior probability are those between farms which are close together, but

there was also one transmission event estimated to have occurred between the two

geographical clusters. The model estimates that on average this event happens on

day 24 of the outbreak, from farm 17 in the upper cluster, to farm 207 in the lower

cluster.

We obtained a median tree from the output of our MCMC algorithm [84]. This me-

dian tree is shown in figure 5.10. This median tree also suggests that there was only

one transmission event between the two geographical clusters.
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Figure 5.11: Transmission events with a posterior probability greater than 40% under the Time

Dependent Distances model
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Figure 5.12: The median transmission tree under the Time Dependent Distances model

5.8.4 Comparison of results from the different models

The parameter estimates for all three models can be found in table 5.3, which shows

that there is not a significant difference between the results from the three models,

although the transmission rate β0 and the removal rate γ are estimated to be slightly

higher by the Chain Poisson model than by the other two models. The Chain Error

model and the Chain Poisson model give very similar estimates for the genetic pa-

rameters, but we are unable to compare these with the θ parameter from the Time

Dependent Distances model as it has a different meaning. We have already noted

that although the θgl parameter should be comparable with the other two models, the

Time Dependent Distances model gives a much lower estimate of 8 SNPs between se-

quences, rather than the 11 SNPs estimated by the other two models. This shows that

when time is explicitly included in the model, some of the farms which have small

genetic distances between their sequences are placed in separate transmission chains.

Comparing figures 5.7, 5.9 and 5.11 allows us to see the differences in the estima-

tion of the transmission tree under each of the models. We can see that the Chain

Error model infers the least number of transmission events with high probability so

the tree is made up only of transmission events between farms that are near neigh-

bours of each other, whereas both of the other two models not only infer transmission

events over longer geographical distances, but also infer a greater number of these
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Latent Period:

1 day

Model β0 δ γ θ θgl α

Chain

Error

model

0.0000878

(0.000067,0.00012)

1.183

(0.95,1.46)

0.0286

(0.025,0.033)

9.256

(8.71,9.82)

11.163

(11.11,11.21)

1.485

(1.34,1.79)

Chain

Poisson

model

0.000152

(0.00012,0.00020)

1.393

(1.15,1.67)

0.0406

(0.035,0.047)

9.407

(8.86,9.90)

11.254

(11.21,11.31)
-

Time

Dependent

Distances

model

0.000104

(0.000077,0.00015)

1.344

(1.06,1.70)

0.029

(0.025,0.034)

0.207

(0.19,0.23)

8.136

(8.08,8.22)
-

Table 5.3: Posterior mean estimates of the model parameters for each of the three models with a latent

period of 1 day, with 95% equitailed credible intervals.

small distance transmission events within each cluster of farms. The transmission

event which is inferred between the two clusters of farms in the Chain Poisson model

and the Time Dependent Distances model is not exactly the same event (it occurs be-

tween different farms for each model), but we can see that the transmission originates

from a broadly similar area, and is received by a farm in a similar location under each

model. The Chain Poisson model estimates more transmission events with high prob-

ability over slightly longer distances in the bottom cluster of farms, and the Time De-

pendent Distances model is the only one to estimate some transmission events with

high probability for the farms which are separate from either geographical cluster.

5.8.5 Results with a different value for the latent period

So far we have used a latent period of 1 day in our models. This value was cho-

sen as it was used in the model presented by Ypma et al. [19] which we discussed in

section 5.3.2. However, a further study of the available literature shows that the com-

monly used latent period is between 1 and 2 days, with 2 days often being used [77,

78, 80, 81]. In the study by van der Goot et al. [85] it is suggested that a latent period

of 1-2 days fits the Netherland data better than a latent period of 1 day. Therefore

we analysed the data once again using each of our three models with a latent period

of 2 days to explore whether there would be a significant difference in the results.

Again we ran the MCMC algorithm for 400,000 iterations for each model, with 10
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Latent Period:

2 days

Model β0 δ γ θ θgl α

Chain

Error

model

0.0000835

(0.000064,0.00011)

1.021

(0.84,1.24)

0.032

(0.027,0.039)

9.341

(8.78,9.93)

11.085

(11.03,11.13)

1.190

(1.07,1.62)

Chain

Poisson

model

0.000198

(0.00014,0.00029)

0.926

(0.63,1.32)

0.044

(0.037,0.055)

9.432

(8.87,9.98)

11.220

(11.15,11.31)
-

Time

Dependent

Distances

model

0.000117

(0.000087,0.00016)

1.397

(1.11,1.75)

0.0306

(0.026,0.036)

0.208

(0.19,0.23)

8.128

(8.07,8.18)
-

Table 5.4: Posterior mean estimates of the model parameters for each of the three models with a latent

period of 2 days, with 95% equitailed credible intervals.

augmented data steps at each iteration. The prior distributions for the parameters

and the initialisation of the times, sources and parameters were the same as those de-

scribed in section 5.8.

Table 5.4 gives the values of the parameters for the different models with the latent

period fixed at 2 days. For all three of the models the parameters stay in the same

regions when we extend the latent period, although the values for the transmission

parameter β0 each rise slightly, as do the values for the removal parameter γ. The only

noticeable change in the distance parameter δ is for the Chain Poisson model, where

it falls by 0.46 from 1.39 to 0.93. The genetic parameter estimates hardly change.

Figures 5.13, 5.14 and 5.15 show the estimated transmission trees under each of the

three models with a latent period of 2 days. We have again plotted transmission

events that were estimated with a posterior probability of 0.4 or greater. For all three

models there appears to be greater resolution in the trees estimated under the longer

latent period, as there are more transmission events estimated with a higher probabil-

ity (lighter blue lines). The biggest difference between these trees and the trees with

a shorter latent period is seen in the Chain Error model tree, where we now have an

estimated transmission event linking the two geographical clusters rather than just

transmission events between farms which are close together. With the latent period

fixed at 2 days, the Chain Poisson model estimates that the source of the transmis-
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Figure 5.13: Transmission events with a posterior probability greater than 40% under the

Chain Error model with a latent period of 2 days
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Figure 5.14: Transmission events with a posterior probability greater than 40% under the

Chain Poisson model with a latent period of 2 days
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Figure 5.15: Transmission events with a posterior probability greater than 40% under the Time

Dependent Distances model with a latent period of 2 days

sion event which links the clusters was likely to have been farm 167, which is a small

backyard hobby farm. Although this is seems intuitively unlikely, Bataille et al. [72]

estimated the same hobby farm to be the source of the transmission of the disease to

the lower cluster. This is an important result to note, as it disagrees with the recog-

nised idea that these small farms may not need to be culled as urgently as the bigger

farms during epidemics.

5.9 Model assessment

In order to assess the goodness-of-fit of the models to the epidemiological data we

used the final size of the epidemic (the number of farms to get infected and removed)

as a summary statistic for a posterior predictive check. For each model we simulated

500 outbreaks, with locations the same as the farms in the Netherlands data, using

values of the parameters drawn from their posterior densities. For each simulation

we recorded the final size of the epidemic. These 500 values allowed us to estimate

the posterior predictive distribution of the final size and to find where the observed

final size fell in the distribution. Figure 5.16 shows the estimated posterior predictive

distribution under the Time Dependent Distances model with a fixed latent period of

1 day. The observed final size is marked in red. It is clear that a large number of the

simulations do not lead to large-scale outbreaks such as the one in the Netherlands as
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Figure 5.16: The estimated final size posterior predictive distribution for the Time Dependent

Distances model with a fixed latent period of 1 day. The observed final size of the Netherland

outbreak is marked in red.

half of the final sizes are under 20. However, the observed final size of 241 farms is

still within the 95% highest density region of the posterior predictive distribution so

there is no evidence against the model. We got similar results for each of the models

with a fixed latent period of both 1 and 2 days. In each case we found that a large

number of the outbreaks simulated had a small final size, but that the observed final

size did not fall outside of the 95% highest density region of the posterior predictive

distribution. Therefore there was no evidence against the fit of any of the models.

In order to assess the goodness-of-fit of the models to the genetic data a total of 1000

genetic distance matrices, Ψ̃, were simulated for each model using values of the ge-

netic parameters and values for the times and sources of infection events drawn from

the posterior densities given by the output of the MCMC algorithm. If a particular ob-

served distance is Ψi,j then the posterior predictive p-value is defined as P(Ψi,j > Ψ̃i,j).

Extreme p-values fall outside the 95% highest density region of the posterior predic-

tive distribution and show that the model does not fit that distance well. We record

the percentage of p-values that are not extreme over the whole genetic distance ma-

trix in order to give a posterior predictive score for the model on that matrix. We can

also provide a visual representation of how well the model fits the genetic distances

matrix by plotting extreme p-values in one colour, and non-extreme p-values in an-

other. Figures 5.17 and 5.18 give these matrix plots for each model, with fixed latent

period of 1 day (figure 5.17) or 2 days (figure 5.18). The posterior predictive matrix
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Figure 5.17: Posterior predictive checking to assess the fit of the three models with a fixed

latent period of 1 day to the genetic distance matrix data. Blue cells indicate that the observed

genetic distance fell within the 95% highest density region of the posterior predictive distri-

bution and pink cells indicate that the observed genetic distance fell outside the interval. The

layout of the matrices corresponds to the layout of the original genetic distance matrices, so

the x-axis, left to right, runs from sequence 1 to sequence N, whereas the y-axis, from bottom

to top, runs backwards from sequence N to sequence 1.
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Figure 5.18: Posterior predictive checking to assess the fit of the three models with a fixed la-

tent period of 2 days to the genetic distance matrix data. Blue cells indicate that the observed

genetic distance fell within the 95% highest density region of the posterior predictive distri-

bution and pink cells indicate that the observed genetic distance fell outside the interval. The

layout of the matrices corresponds to the layout of the original genetic distance matrices, so

the x-axis, left to right, runs from sequence 1 to sequence N, whereas the y-axis, from bottom

to top, runs backwards from sequence N to sequence 1.

177



CHAPTER 5: ANALYSIS OF AN EPIDEMIC OF AVIAN INFLUENZA IN THE

NETHERLANDS

Latent period
Chain Error

model

Chain Poisson

model

Time Dependent Distances

model

1 day 85.32% 80.05% 91.38%

2 days 86.50% 79.49% 91.35%

Table 5.5: The posterior predictive matrix scores of goodness-of-fit of the different models

with different latent periods to the genetic data from the outbreak.

scores for each of the models and each of the latent periods are given in table 5.5. It is

clear that all three of the models fit the data fairly well, but that the Time Dependent

Distances model is the best fit for the genetic distance matrix.

5.10 Discussion

In this chapter we have adapted the novel models created in chapter 2 in order to

analyse an epidemic of avian influenza that took place across farms in the Nether-

lands in 2003. We adapted the models to fit within a continuous time model for an

epidemic with a spatial kernel and a single origin for the disease. Our models focused

on utilising the information available in whole-genome sequence data in order to re-

construct the transmission tree and discover the dynamics of the disease spread.

These models were originally designed with regards to nosocomial pathogens, which

tend to be modelled with multiple introductions of the disease to a much smaller

sized population, but we felt that the simplicity of the model framework which sim-

ply uses the genetic distance between two pathogen samples instead of modelling

each changing nucleotide in a long genetic sequence meant that it could be applied

to a much broader range of diseases. This feature of the models also allowed us to

simulate data from the model easily without having to simulate complicated genetic

sequences, and therefore we were able to test the performance of the MCMC algo-

rithm which we use to fit the models for a range of values of the parameters. We

found that it performed well across the range of values which we could reasonably

expect the parameters to take for these kinds of epidemics. The parameters, and the

transmission trees, for the simulations were well recovered.

The analysis of the Netherlands avian influenza data under the three different mod-

els resulted in similar estimates for each of the parameters, even when we varied the

latent period of the pathogen between 1 and 2 days. However, each model produced

a different estimate for the transmission tree. The broad structure of the epidemic
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transmission tree was estimated to be the same by each model: there were many

transmission events inferred with high probability between farms which were close

neighbours, and each model only inferred one transmission event which happened

between the two distinct geographical clusters of farms. It has been shown previously

by Bataille et al. [72] that it is highly likely that one long distance transmission event

was the origin of the secondary outbreak of avian influenza in the lower cluster of

farms. Although our estimates for the exact farms which were likely to have been the

transmitter and receiver between the two clusters of farms tended to differ between

models and depend on the length of the latent period, we did find that when the

latent period was 2 days, the Chain Poisson model estimated the same farm as the

source for this event as was estimated by Bataille et al. [72]. As we have discussed,

the fact that we estimate a small hobby farm to be the source of a secondary outbreak

of transmission has big consequences for epidemic control strategies.

In order to assess which model was the best fit for the data, we used the novel model

assessment method introduced in chapter 3. This method showed that all three of the

models were a reasonably good fit for the genetic data, but that the Time Dependent

Distances model was the best fit.

5.10.1 Limitations and further work

There are, of course, some limitations to the models and methods that we have de-

scribed here for analysing these data from the Netherlands outbreak. Some of these

limitations stem from the nature of the data that were available to us. For exam-

ple, we only had one genetic sequence from each farm from which to produce the

genetic distances matrix which describes the genetic diversity between farms. How-

ever, each farm is likely to have hosted a variety of related variants of the pathogen,

and the one consensus isolate which was sequenced from a sample of five birds was

not guaranteed to be the dominant strain on that farm, and our model therefore has

no mechanism for modelling within-host, or within-farm, genetic variation.

Although we consider the simplicity of just using the genetic distance between farms

as our measure of genetic diversity as an advantage of our methods, there are ways

in which we could broaden this without reintroducing the full genetic sequences.

For example, we could use the numbers of transitions and transversions between se-

quences, as is done by Ypma et al. [19].
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Another extension that could be made to the model framework would be to intro-

duce a tailing-off of infectiousness after culling rather than a hard cut off point at the

removal time. Ypma et al. [19] suggest that there may still be mechanisms for farms

to infect other farms after the point at which they have been culled, through diseased

particles remaining on the farm. There has been speculation that the method of trans-

mission between farms may have been through the wind, or through contaminated

vehicles moving between farms, which suggests that there would be potential for dis-

ease to be spread for a short time after a farm has been culled.

A model in which the transmissibility and susceptibility of farms is allowed to be het-

erogeneous may also be of interest. There are data available about the size and flock

types of the farms which are currently not utilised by our model. This data could pro-

vide information about which types or size of farm are more likely to spread disease,

and therefore which ones should be the priority targets for infection control strategies.
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Notation used in Chapter 5

Model description

N Number of farms in the outbreak region

Ψ Matrix of genetic distances

Ψi,j Genetic distance between farms i and j

Ei Exposure time of farm i

Ii Infection time of farm i

Si Sampling time of farm i

Ri Removal (culling) time of farm i

Dij Sum of consecutive distances in transmission chain between patients i and j

Dij = ∑h−1
r=0 dpr ,pr+1 where p0 = i, ph = j

ti,j Difference between the sampling times of farm i and farm j

di,j Geographic distance between farm i and farm j

βi,j Infection pressure from farm i on farm j at Ej

Pi Total infectious pressure on farm i at Ei

Model parameters

ρ Vector of parameters ρ = {β0, δ, γ, Θ}
β0 Transmission parameter

δ Spatial parameter

γ Removal parameter

Θ Vector of genetic parameters

θ Genetic diversity parameter for farms sharing a transmission event

θgl Genetic diversity parameter for unrelated farms

α Genetic chain error parameter for Chain Error model

Model inference and likelihood

T Unobserved transmission dynamics T = {I, s, Ψa}
I Vector of unobserved infection times

s Vector of unobserved sources of infection

Ψa Matrix of unobserved genetic distances

nnoseq Number of farms infected but no sequence sampled

nseq Number of sequences sampled from all infected farms

nI Total number of infected farms

nR Total number of removed farms

X Vector of culling times

Z Observed deterministic data: sampling times and number of susceptible farms

trans(i, j) Number of transmission events between farms i and j
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Notation used in Chapter 5

MCMC algorithm description

l Initial infective

Npar Number of (i, j) such that trans(i, j) = 1

Nglo Number of (i, j) such that trans(i, j) = ∞

T∗ Candidate dataset proposed in augmented data update T∗ = {I∗, s∗, Ψa∗}
qT,T∗ Proposal ratio

qT,T∗ = P(T∗ → T)/(T → T∗)

Oi Time at which i infects its first offspring

Simulation method

P Length of fixed latent period

h Number of days before culling that each farm is sampled

Ψ̃ Set of simulated distance matrices
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Conclusions

This thesis aimed to develop new methods for incorporating whole-genome sequence

data alongside epidemiological data into the analysis of epidemics. Such genetic data

are becoming increasingly widely available as advances in technology drive down the

cost and processing time involved in their collection. Analysing these data requires

models for genetic diversity in sampled pathogen isolates. Many current methods ei-

ther rely on complex micro-evolution models which model the process of genetic mu-

tation and require high-dimensional data input, or on simplifying assumptions about

the independence of the genetic distances within a transmission tree. The methods

presented in chapter 2 use the number of single-nucleotide polymorphisms between

pairs of sequences to measure genetic diversity, thus reducing the amount of data

that needs to be stored and used to a single matrix of pairwise distances. We believe

that this is a logical method, as these genetic distances are actually observed in the

whole-genome sequence data and so we avoid having to make the many assumptions

about the underlying processes that govern mutation that are necessary to model the

micro-evolution process. Our models for the pairwise distances include dependence

between sequences from individuals in the same chain of transmission, which other

models overlook. This should lead to improved inference of transmission trees for

outbreaks, which can inform decisions about prevention and control measures.

The stochastic epidemic model introduced in chapter 2, of which the genetic model

is one part, has many advantages for modelling outbreaks. The model allows for

each individual to have had multiple sequences taken, and includes a parameter for

the within-host diversity observed between these sequences. Our model also allows

for the pathogen to have been introduced into the population at more than one time,

by more than one individual. The ability to infer a transmission forest rather than
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a single transmission tree with one root is a valuable and unusual advantage of our

method. The framework of our model is flexible and it could be of interest in the fu-

ture to adapt it to include heterogeneity in the susceptibility or infectivity of different

types of individuals, or to include a more complex model for the genetic distances

which explicitly includes other forms of mutation such as recombination rather than

just SNPs.

Recently there has been a focus on such methods which allow for the analysis of

both epidemiological and genetic data, but methods for assessing the goodness-of-fit

of the models used have not been developed. In chapter 3 we look at methods of

model criticism for Bayesian epidemic models and attempt to expand these methods

to allow for the assessment of how well a model fits the genetic data as well as the

epidemiological data. It is important that there are tools available to assess the fit of

the genetic part of a model as well as the epidemiological part in order to assess the

goodness-of-fit of the model as a whole, which is necessary especially if the results are

going to be used to inform public health procedures. Our method, which provides

a ‘posterior predictive matrix score’ which is a percentage of the genetic distances

which are ‘well-fit’, has been shown to allow for the most suitable model, out of a

selection, to be found. It would be of interest to further develop this method of model

fitting and potentially to establish a threshold which could determine ill-fitting mod-

els.

In chapters 4 and 5 we apply the models and methods developed in chapters 2 and 3

to data from two outbreaks of different pathogens in different populations. First,

in chapter 4 we fit the new models to data from a nosocomial outbreak of MRSA.

The discrete-time stochastic model with scope for multiple introductions and multi-

ple sequences from the same individual is ideal for this hospital setting. A Bayesian

inference scheme using a data-augmented MCMC algorithm allows us to infer unob-

served colonisation times and sources and missing genetic data. Therefore the model

can be used to take advantage of the information available in the WGS data to infer the

pathways of transmission through each hospital ward in the study as well as the pa-

rameters of the model which tell us about transmission and importation probabilities

and the sensitivity of the screening tests. Since there is currently considerable public

health interest in antibiotic-resistance it is important that the dynamics of transmis-

sion of antibiotic-resistant pathogens such as MRSA are well understood so measures

can be taken to prevent such transmission.
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Using our novel model assessment techniques we showed that the genetic models

introduced in chapter 2 would fit the data from this particular outbreak better if the

Poisson distributions were replaced by either Geometric or Negative Binomial distri-

butions due to their larger variances. This shows the importance of assessing the fit

of a model to both the epidemiological and the genetic data. However, it would be of

interest to develop a method for deciding, pre-analysis, which distribution would be

the best fit for the particular data to be modelled.

Analysis of the data from the MRSA outbreak under our models led to the identifica-

tion of a ‘super-spreader’ on each ward who was the source of a disproportionately

large number of colonisations. It would be of interest to adapt the model to allow

for heterogeneity of infectivity in order to investigate this further. One of these pa-

tients had three separate stays on the ward, and our model assumes that the patient’s

importation status for each admission was independent of their last stay. A natural

development of our model would be to relax this assumption so that patients who

left the ward colonised could return colonised with some probability.

In chapter 5 we used our genetic models to analyse WGS data from an outbreak of

avian influenza in the Netherlands. Knowledge about the transmission dynamics of

avian influenza is important for designing appropriate intervention strategies since it

is difficult to prevent outbreaks due to the endemic carriage of the pathogen in wild

flocks. The genetic models in this case formed part of a continuous-time stochastic

epidemic model which included a spatial aspect. Fitting the models to data from

this outbreak in a notably different sort of setting and population to the nosocomial

pathogens discussed earlier allowed us to showcase the flexibility and wide-ranging

applicability of our genetic models. Using our model assessment methods we showed

that our models were a good fit for the data, and that the model which specifically

includes time-dependence was the best fit. There is scope to develop our models fur-

ther by allowing for heterogeneity of susceptibility and infectivity based on the type

of birds kept on each farm, or on the size of the farm. These data are available for

this outbreak. For future outbreak studies it would be of interest to collect more than

one isolate per farm to allow for modelling of within-farm genetic diversity since our

analysis had to assume that the one isolate taken was representative of the pathogen

on the whole farm. As sequencing technology becomes faster, cheaper and more

portable, it becomes more likely that it will be achievable to take multiple isolates for

each infected farm in a future outbreak.
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Overall, this thesis has developed methods and models for the analysis of both ge-

netic and epidemiological data from an outbreak of a pathogen. These models are

flexible and can be adapted to fit a wide range of settings and populations. We have

also provided a novel method for assessing the goodness-of-fit of such models to the

genetic data from an outbreak. We have demonstrated the capabilities of the models

and the model assessment framework in two different contexts.
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Appendix A

Proposal ratios for augmented data

step in the MCMC algorithm for MRSA

models

A.1 Add colonisation

A.1.1 Add importation

In this move the proposal ratio is for adding an importation is

qT,T∗ =
nsus − nadd

w(1 + nadd0)Yadd
.

This is because the probability of proposing this move is equal to:

• the probability of choosing the particular susceptible patient from the total num-

ber available to be picked (all susceptible patients, nsus, minus those already

with an added colonisation time, nadd), which is 1/(nsus − nadd),

• multiplied by the probability of assigning the patient as an importation, w,

• multiplied by the probability of picking the set of genetic distances, Yadd, where

Yadd =
nseqs+nnoseqs+nadd

∏
j=1

P
[

Ψi∗,j = Ψa∗
i∗,j|Θ

]

and the probability of proposing the reverse move is simply the probability of picking

this patient from the set of patients with an added colonisation but no offspring which

is 1/(1 + nadd0) where the 1 is to account for the patient which we are proposing to

add in this move.
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A.1.2 Add acquisition

The proposal ratio for adding an acquisition is

qT,T∗ =
C(tc∗

i )(nsus − nadd)(td
i − ta

i + 1)
(1− w)(nadd0 + 1)Yadd

.

Here the probability of proposing this move is:

• the probability of choosing the particular susceptible patient from the total num-

ber available to be picked (all susceptible patients, nsus, minus those already

with an added colonisation time, nadd), which is 1/(nsus − nadd),

• multiplied by the probability of assigning the patient as an acquisition, 1− w,

• multiplied by the probability of choosing the particular day of colonisation, tc∗
i ,

from the set of days that the patient is on the ward, which is 1/(td
i − ta

i + 1),

• multiplied by the probability of choosing the source for this patient’s colonisa-

tion from the set of patients colonised on the chosen day, tc∗
i , which is 1/C(tc∗

i ),

• multiplied by the probability of picking the set of genetic distances, Yadd, where

Yadd =
nseqs+nnoseqs+nadd

∏
j=1

P
[

Ψi∗,j = Ψa∗
i∗,j|Θ

]
.

The probability of proposing the reverse move is simply the probability of choosing

this particular patient to have their colonisation removed from the set of patients

with an added colonisation but no offspring which is 1/(1 + nadd0) where the 1 is to

account for the patient which we are proposing to add in this move.

A.2 Remove colonisation

A.2.1 Removing an importation

In this move the proposal ration for removing a patient who was assumed to be an

importation of the pathogen is

qT,T∗ =
nadd0 · w ·Yrm

nsus − nadd + 1
.

Here the probability of proposing this move is the probability of picking this pa-

tient from the set of patients with an added colonisation but no offspring which is

1/(nadd0). The probability of proposing the reverse move, which is the probability

of proposing to add this patient as an importation, is
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• the probability of choosing the particular susceptible patient from the total num-

ber available to be picked (all susceptible patients, nsus, minus those already

with an added colonisation time, nadd), which is 1/(nsus − nadd + 1) where the 1

accounts for the patient which we are proposing to remove in this step,

• multiplied by the probability of assigning the patient as an importation, w,

• multiplied by the probability of picking the set of genetic distances, Yrm, where

Yrm =
nseqs+nnoseqs+nadd

∏
j=1

P
[

Ψi,j = Ψa∗
i,j |Θ

]
.

A.2.2 Removing an acquisition

The proposal ratio for removing the colonisation time of a patient who was assumed

to be an acquisition is

qT,T∗ =
Yrm · nadd0 · (1− w)

(td
i − ta

i + 1)(nsus − nadd + 1)(C(tc
i )− 1)

.

Here the probability of proposing this move is the probability of picking this pa-

tient from the set of patients with an added colonisation but no offspring which is

1/(nadd0). The probability of proposing the reverse move, which is the probability

of proposing to add this patient as an acquisition, is

• the probability of choosing the particular susceptible patient from the total num-

ber available to be picked (all susceptible patients, nsus, minus those already

with an added colonisation time, nadd), which is 1/(nsus − nadd + 1) where the 1

accounts for the patient which we are proposing to remove in this step,

• multiplied by the probability of assigning the patient as an acquisition, 1− w,

• multiplied by the probability of choosing the particular day of colonisation, tc
i ,

from the set of days that the patient is on the ward, which is 1/(td
i − ta

i + 1),

• multiplied by the probability of choosing the source for this patient’s colonisa-

tion from the set of patients colonised on the chosen day, tc
i , which is 1/C(tc

i − 1)

where the−1 accounts for the patient who’s colonisation time we are proposing

to remove,

• multiplied by the probability of picking the set of genetic distances, Yrm, where

Yrm =
nseqs+nnoseqs+nadd

∏
j=1

P
[

Ψi,j = Ψa∗
i,j |Θ

]
.
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A.3 Moving a colonisation time

A.3.1 Moving an acquisition that remains an acquisition

If we propose to change the colonisation time of a patient that was previously colonised

whilst on the ward to another time at which they may by colonised on the ward, then

the proposal ratio is

qT,T∗ =
C(tc∗

i )

C(tc
i )

.

The probability of proposing this move is

• the probability of choosing the particular colonised patient from the set of all

colonised patients, which is 1/(nseqs + nnoseq + nadd),

• multiplied by the probability of assigning the patient as an acquisition, (1−w),

• multiplied by the probability of choosing a colonisation time, tC∗
i , from the days

that the patient was on the ward, which is 1/(td
i − ta

i + 1),

• multiplied by the probability of choosing the source of colonisation from those

available on the new colonisation day, tc∗
i , which is 1/C(tc∗

i ).

The probability of proposing the reverse move is

• the probability of choosing the particular colonised patient from the set of all

colonised patients, which is 1/(nseqs + nnoseq + nadd),

• multiplied by the probability of assigning the patient as an acquisition, (1−w),

• multiplied by the probability of choosing a colonisation time, tc
i , from the days

that the patient was on the ward, which is 1/(td
i − ta

i + 1),

• multiplied by the probability of choosing the source of colonisation from those

available on the colonisation day, tc
i , which is 1/C(tc

i ).

The probability of choosing the patient, the acquisition probability and the probability

of choosing the day cancel to leave qT,T∗ =
C(tc∗

i )
C(tc

i )
.

A.3.2 Reassigning an acquisition as an importation

If we propose to reassign a patient who was previously colonised whilst on the ward

as an importation of the pathogen to the ward, then the proposal ratio is

qT,T∗ =
1− w

w( fi − ta
i + 1)C(tc

i )
.
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The probability of proposing this move is

• the probability of choosing the particular colonised patient from the set of all

colonised patients, which is 1/(nseqs + nnoseq + nadd),

• multiplied by the probability of assigning the patient as an importation, w.

The probability of proposing the reverse move of changing an importation patient to

an acquisition is

• the probability of choosing the particular colonised patient from the set of all

colonised patients, which is 1/(nseqs + nnoseq + nadd),

• multiplied by the probability of assigning the patient as an acquisition, 1− w,

• multiplied by the probability of choosing the day of the patient’s colonisation,

tc
i , from the set of days between their admission, ta

i , and their last possible sus-

ceptible day, fi, which is 1/( fi − ta
i + 1),

• multiplied by the probability of choosing the source of the patient’s colonisation

from the set of colonised patients present on day tc
i which is 1/C(tc

i ).

The probabilities of choosing the patient cancel in the proposal ratio.

A.3.3 Reassigning an importation as an acquisition

If we proposed to reassign a patient who was previously an importation as an acqui-

sition the proposal ratio is

qT,T∗ =
w · ( fi − ta

i + 1) · C(tc∗
i )

1− w
.

The probability of proposing this move is

• the probability of choosing the particular colonised patient from the set of all

colonised patients, which is 1/(nseqs + nnoseq + nadd),

• multiplied by the probability of assigning the patient as an acquisition, 1− w,

• multiplied by the probability of choosing the day of the patient’s colonisation,

tc∗
i , from the set of days between their admission, ta

i , and their last possible

susceptible day, fi, which is 1/( fi − ta
i + 1),

• multiplied by the probability of choosing the source of the patient’s colonisation

from the set of colonised patients present on day tc∗
i which is 1/C(tc∗

i ).
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The probability of proposing the reverse move is

• the probability of choosing the particular colonised patient from the set of all

colonised patients, which is 1/(nseqs + nnoseq + nadd),

• multiplied by the probability of assigning the patient as an importation, w.

The probabilities of choosing the patient cancel in the proposal ratio.

A.4 Changing a patient’s genetic distances

The proposal ratio for changing a patients genetic distances is

qT,T∗ =

∏
j : i 6=j

P
[

Ψi,j = Ψa
i,j|Θ

]
∏

j : i 6=j
P
[

Ψi,j = Ψa∗
i,j |Θ

]
which is simply the probability of choosing the current genetic distances divided by

the probability of choosing the proposed genetic distances. The probability of choos-

ing the particular patient is the same for both this move and the reverse move and so

cancels.

202



Appendix B

Traceplots from the MCMC algorithm

output for each of the three Poisson-

based models on Ward 1 of the Thai

data

B.1 Chain Error model
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Figure B.1: Traceplots of estimates of parameters p, z, θ and β under the Chain Error model.
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Figure B.2: Traceplots of estimates of parameters θgl , θi and the log likelihood under the Chain

Error model.

B.2 Chain Poisson model
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Figure B.3: Traceplots of estimates of parameters p, z, θ and β under the Chain Poisson model.
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Figure B.4: Traceplots of estimates of parameters θgl , θi and the log likelihood under the Chain

Poisson model.
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B.3 Time Dependent Distances model
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Figure B.5: Traceplots of estimates of parameters p, z, θ and β under the Time Dependent

Distances model.
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Figure B.6: Traceplots of estimates of parameters θgl , θi and the log likelihood under the Time

Dependent Distances model.
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Appendix C

Graphs for estimation of simulation

parameters for MRSA

C.1 Chain Error model
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Figure C.1: The posterior estimates of parameter p from fitting the Chain Error model to 100

simulated datasets from the same model with varied input value for p, with 10 simulations

for each value.
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Figure C.2: The posterior estimates of parameter p from fitting the Chain Error model to 100

simulated datasets from the same model with varied input value for p, with 10 simulations

for each value.
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Figure C.3: The posterior estimates of parameter z from fitting the Chain Error model to 100

simulated datasets from the same model with varied input value for z, with 10 simulations

for each value.
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Figure C.4: The posterior estimates of parameter z from fitting the Chain Error model to 100

simulated datasets from the same model with varied input value for z, with 10 simulations

for each value.
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Figure C.5: The posterior estimates of parameter β from fitting the Chain Error model to 100

simulated datasets from the same model with varied input value for β, with 10 simulations

for each value.
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Figure C.6: The posterior estimates of parameter β from fitting the Chain Error model to 100

simulated datasets from the same model with varied input value for β, with 10 simulations

for each value.
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Figure C.7: The posterior estimates of parameter θ from fitting the Chain Error model to 100

simulated datasets from the same model with varied input value for θ, with 10 simulations

for each value.
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Figure C.8: The posterior estimates of parameter θ from fitting the Chain Error model to 100

simulated datasets from the same model with varied input value for θ, with 10 simulations

for each value.
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Figure C.9: The posterior estimates of parameter θgl from fitting the Chain Error model to 100

simulated datasets from the same model with varied input value for θgl , with 10 simulations

for each value.
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Figure C.10: The posterior estimates of parameter θgl from fitting the Chain Error model to 100

simulated datasets from the same model with varied input value for θgl , with 10 simulations

for each value.
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C.2 Chain Poisson model
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Figure C.11: The posterior estimates of parameter p from fitting the Chain Poisson model to

100 simulated datasets from the same model with varied input value for p, with 10 simula-

tions for each value.
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Figure C.12: The posterior estimates of parameter p from fitting the Chain Poisson model to

100 simulated datasets from the same model with varied input value for p, with 10 simula-

tions for each value.
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Figure C.13: The posterior estimates of parameter z from fitting the Chain Poisson model to

100 simulated datasets from the same model with varied input value for z, with 10 simulations

for each value.
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Figure C.14: The posterior estimates of parameter z from fitting the Chain Poisson model to

100 simulated datasets from the same model with varied input value for z, with 10 simulations

for each value.
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Figure C.15: The posterior estimates of parameter β from fitting the Chain Poisson model to

100 simulated datasets from the same model with varied input value for β, with 10 simula-

tions for each value.
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Figure C.16: The posterior estimates of parameter β from fitting the Chain Poisson model to

100 simulated datasets from the same model with varied input value for β, with 10 simula-

tions for each value.
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Figure C.17: The posterior estimates of parameter θ from fitting the Chain Poisson model to

100 simulated datasets from the same model with varied input value for θ, with 10 simulations

for each value.
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Figure C.18: The posterior estimates of parameter θ from fitting the Chain Poisson model to

100 simulated datasets from the same model with varied input value for θ, with 10 simulations

for each value.
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Figure C.19: The posterior estimates of parameter θgl from fitting the Chain Poisson model to

100 simulated datasets from the same model with varied input value for θgl , with 10 simula-

tions for each value.
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Figure C.20: The posterior estimates of parameter θgl from fitting the Chain Poisson model to

100 simulated datasets from the same model with varied input value for θgl , with 10 simula-

tions for each value.
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C.3 Time Dependent Distances model
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Figure C.21: The posterior estimates of parameter p from fitting the Time Dependent Dis-

tances model to 100 simulated datasets from the same model with varied input value for p,

with 10 simulations for each value.
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Figure C.22: The posterior estimates of parameter p from fitting the Time Dependent Dis-

tances model to 100 simulated datasets from the same model with varied input value for p,

with 10 simulations for each value.
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Figure C.23: The posterior estimates of parameter z from fitting the Time Dependent Distances

model to 100 simulated datasets from the same model with varied input value for z, with 10

simulations for each value.
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Figure C.24: The posterior estimates of parameter z from fitting the Time Dependent Distances

model to 100 simulated datasets from the same model with varied input value for z, with 10

simulations for each value.
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Figure C.25: The posterior estimates of parameter β from fitting the Time Dependent Dis-

tances model to 100 simulated datasets from the same model with varied input value for β,

with 10 simulations for each value.
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Figure C.26: The posterior estimates of parameter β from fitting the Time Dependent Dis-

tances model to 100 simulated datasets from the same model with varied input value for β,

with 10 simulations for each value.
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Figure C.27: The posterior estimates of parameter θ from fitting the Time Dependent Distances

model to 100 simulated datasets from the same model with varied input value for θ, with 10

simulations for each value.
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Figure C.28: The posterior estimates of parameter θ from fitting the Time Dependent Distances

model to 100 simulated datasets from the same model with varied input value for θ, with 10

simulations for each value.
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Figure C.29: The posterior estimates of parameter θgl from fitting the Time Dependent Dis-

tances model to 100 simulated datasets from the same model with varied input value for θgl ,

with 10 simulations for each value.
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Figure C.30: The posterior estimates of parameter θgl from fitting the Time Dependent Dis-

tances model to 100 simulated datasets from the same model with varied input value for θgl ,

with 10 simulations for each value.
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Graphs for network reconstruction for

simulations for MRSA

D.0.1 Chain Error model

●

●

●

0

25

50

75

100

P
ro

po
rt

io
n 

of
 s

ou
rc

es
 c

or
re

ct
ly

 id
en

tif
ie

d 
fo

r 
va

rie
d 

p

p

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure D.1: Boxplots to show the proportion of infection sources for patients recovered cor-

rectly for simulations with varied values for parameter p for the Chain Error model.
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Figure D.2: Boxplots to show the proportion of infection sources for patients recovered cor-

rectly for simulations with varied values for parameter z for the Chain Error model.
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Figure D.3: Boxplots to show the proportion of infection sources for patients recovered cor-

rectly for simulations with varied values for parameter β for the Chain Error model.
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Figure D.4: Boxplots to show the proportion of infection sources for patients recovered cor-

rectly for simulations with varied values for parameter θ for the Chain Error model.
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Figure D.5: Boxplots to show the proportion of infection sources for patients recovered cor-

rectly for simulations with varied values for parameter θgl for the Chain Error model.
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D.0.2 Chain Poisson model
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Figure D.6: Boxplots to show the proportion of infection sources for patients recovered cor-

rectly for simulations with varied values for parameter p for the Chain Poisson model.
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Figure D.7: Boxplots to show the proportion of infection sources for patients recovered cor-

rectly for simulations with varied values for parameter z for the Chain Poisson model.
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Figure D.8: Boxplots to show the proportion of infection sources for patients recovered cor-

rectly for simulations with varied values for parameter β for the Chain Poisson model.
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Figure D.9: Boxplots to show the proportion of infection sources for patients recovered cor-

rectly for simulations with varied values for parameter θ for the Chain Poisson model.
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Figure D.10: Boxplots to show the proportion of infection sources for patients recovered cor-

rectly for simulations with varied values for parameter θgl for the Chain Poisson model.
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Figure D.11: Boxplots to show the proportion of infection sources for patients recovered cor-

rectly for simulations with varied values for parameter p for the Time Dependent Distances

model.
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Figure D.12: Boxplots to show the proportion of infection sources for patients recovered cor-

rectly for simulations with varied values for parameter z for the Time Dependent Distances

model.
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Figure D.13: Boxplots to show the proportion of infection sources for patients recovered cor-

rectly for simulations with varied values for parameter β for the Time Dependent Distances

model.
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Figure D.14: Boxplots to show the proportion of infection sources for patients recovered cor-

rectly for simulations with varied values for parameter θ for the Time Dependent Distances

model.
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Figure D.15: Boxplots to show the proportion of infection sources for patients recovered cor-

rectly for simulations with varied values for parameter θgl for the Time Dependent Distances

model.
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Appendix E

Proposal ratios for augmented data

step in the MCMC algorithm for avian

influenza models

E.1 Changing genetic distances

If we propose to change the genetic distances from one farm to each other farm the

proposal ratio is

qT,T∗ =

∏
j : i 6=j

P
[

Ψi,j = Ψa
i,j|Θ

]
∏

j : i 6=j
P
[

Ψi,j = Ψa∗
i,j |Θ

] .

addedThis is simply the probability of choosing the current genetic distances divided

by the probability of choosing the proposed genetic distances. The probability of

choosing the particular farm is the same for both this move and the reverse move and

so cancels out.

E.2 Updating an infection time and resampling the sources

If we propose to change the infection time of one farm and resample the sources of

infection of all farms the proposal ratio is

qT,T∗ =
e(γ(Ii−I∗i )) ∏nI

i=1
βi,s(i)

∑L βi,j

∏nI
i=1

βi,s∗(i)
∑L∗ βi,j

.

The probability of proposing this move is

• the probability of choosing this particular farm from the set of all farms which

ever get infected, which is 1/nI ,
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• multiplied by the probability of choosing the proposed infection time, I∗i , of

the farmby subtracting a draw from an exponential distribution with parameter

γ from the latest point at which the farm may have been susceptible, fi. This

probability is γ exp(−γ( fi − I∗i )),

• multiplied by the probability of choosing each source of infection for each farm.

Since each farm’s source is chosen with probability weight βi,j

∑j:Ij<E∗i <Rj
βi,j

this prob-

ability will be the product ∏nI
i=1

βi,s∗(i)
∑L∗ βi,j

.

The probability of proposing the reverse move, which is changing the proposed in-

fection time of this farm to the current infection time and resampling all the sources,

is

• the probability of choosing this particular farm from the set of all farms which

ever get infected, which is 1/nI ,

• multiplied by the probability of choosing the current infection time, Ii, of the

farm by subtracting a draw from an exponential distribution with parameter

γ from the latest time at which the farm may have been susceptible, fi. This

probability is γ exp(−γ( fi − Ii)),

• multiplied by the probability of choosing each source of infection for each farm.

Since each farm’s source is chosen with probability weight βi,j

∑j:Ij<Ei<Rj
βi,j

this prob-

ability will be the product ∏nI
i=1

βi,s(i)

∑L βi,j
.

The probability of choosing the farm cancels out, and γ exp(−γ( fi−Ii))
γ exp(−γ( fi−I∗i ))

= exp(γ(( fi −
I∗i )− ( fi − Ii))) = exp(γ(Ii − I∗i ).

E.3 Changing the infection time and the source of one farm

The proposal ratio for the move in which we pick one farm which is not the initial

infective and change their infection time and source of infection is

qT,T∗ =
e(γ(Ii−I∗i )) βi,s(i)

∑L βi,j

βi,s∗(i)
∑L∗ βi,j

.

The probability of proposing this move is

• the probability of choosing the farm from the set of all infected farm excluding

the initial infective, which is 1/(nI − 1),
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• multiplied by the probability of setting the new infection time, I∗i , by subtract-

ing a drawn from a truncated exponential distribution (truncated at ( fi − t1) so

that the time can not be prior or equal to the infection time of the initial infec-

tive) from the latest time at which the farm may have been susceptible, fi. This

probability is γ e(−γ( fi−I∗i ))

1−e(−γ( f1−t1))
,

• multiplied by the probability of choosing the farm’s new source of infection

from the farms which were infectious at I∗i . This probability is
βi,s∗(i)

∑L∗ βi,j
.

The probability of making the reverse move is

• the probability of choosing the farm from the set of all infected farm excluding

the initial infective, which is 1/(nI − 1),

• multiplied by the probability of setting the current infection time, Ii, by subtract-

ing a drawn from a truncated exponential distribution (truncated at ( fi − t1) so

that the time can not be prior or equal to the infection time of the initial infec-

tive) from the latest time at which the farm may have been susceptible, fi. This

probability is γ e(−γ( fi−Ii))

1−e(−γ( f1−t1))
,

• multiplied by the probability of choosing the farm’s current source of infection

from the farms which were infectious at Ii. This probability is
βi,s(i)

∑L βi,j
.

The probability of choosing the farm cancels out, and
(

γ e(−γ( fi−I∗i ))

1−e(−γ( f1−t1))

/
γ e(−γ( fi−Ii))

1−e(−γ( f1−t1))

)
=

e(γ(Ii−I∗i )).

E.4 Change the time of the initial infection

If we propose to set a new time for the initial infection by subtracting a draw from an

exponential distribution with parameter γ from the last time at which the farm could

have been susceptible, fi, the proposal ratio is simply

qT,T∗ = e(γ(Il−I∗l ))

where I∗l is the proposed initial infection time of initial infective l, and Il is the current

initial infection time of the initial infective, since γ exp(−γ( fi−Ii))
γ exp(−γ( fi−I∗i ))

= exp(γ(( fi − I∗i )−
( fi − Ii))) = exp(γ(Ii − I∗i ).
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E.5 Block update of an infection time, all sources, and the ge-

netic parameters

This move is the same as the move described in section E.2 and additionally includes

an update of the genetics parameters. Therefore the proposal ratio is equal to that

described in section E.2 multiplied by the proposal ratio of the parameter updates.

Since the parameters θ∗, θ∗gl are drawn from gamma distributions this gives

qT,T∗ =
e(γ(Ii−I∗i )) ∏nI

i=1
βi,s(i)

∑L βi,j

∏nI
i=1

βi,s∗(i)
∑L∗ βi,j

×
ζ

µθ
θ

Γ(µθ)
θµθ−1 e−ζθθ

ζ
∗(µ∗

θ
)

θ

Γ(µ∗θ )
θ∗(µ

∗
θ−1) e−ζ∗θ θ∗

×

ζ
µθgl
θgl

Γ(µθgl
)
θ

µθgl
−1

gl e−ζθgl
θgl

ζ
∗(µ∗

θgl
)

θgl
Γ(µ∗θgl

)
θ
∗(µ∗θgl

−1)

gl e
−ζ∗θgl

θ∗gl

.
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Appendix F

Graphs for estimation of simulation

parameters for avian influenza

F.1 Chain Error model
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Figure F.1: The posterior estimates of parameter β0 from fitting the Chain Error model to 100

simulated datasets from the same model with varied input value for β0, with 10 simulations

for each value.
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Figure F.2: The posterior estimates of parameter β0 from fitting the Chain Error model to 100

simulated datasets from the same model with varied input value for β0, with 10 simulations

for each value.
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Figure F.3: The posterior estimates of parameter δ from fitting the Chain Error model to 100

simulated datasets from the same model with varied input value for δ, with 10 simulations

for each value.
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Figure F.4: The posterior estimates of parameter δ from fitting the Chain Error model to 100

simulated datasets from the same model with varied input value for δ, with 10 simulations

for each value.
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Figure F.5: The posterior estimates of parameter γ from fitting the Chain Error model to 100

simulated datasets from the same model with varied input value for γ, with 10 simulations

for each value.
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Figure F.6: The posterior estimates of parameter γ from fitting the Chain Error model to 100

simulated datasets from the same model with varied input value for γ, with 10 simulations

for each value.
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Figure F.7: The posterior estimates of parameter θ from fitting the Chain Error model to 100

simulated datasets from the same model with varied input value for θ, with 10 simulations

for each value.
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Figure F.8: The posterior estimates of parameter θ from fitting the Chain Error model to 100

simulated datasets from the same model with varied input value for θ, with 10 simulations

for each value.
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Figure F.9: The posterior estimates of parameter θgl from fitting the Chain Error model to 100

simulated datasets from the same model with varied input value for θgl , with 10 simulations

for each value.
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Figure F.10: The posterior estimates of parameter θgl from fitting the Chain Error model to 100

simulated datasets from the same model with varied input value for θgl , with 10 simulations

for each value.
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F.2 Chain Poisson model
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Figure F.11: The posterior estimates of parameter β0 from fitting the Chain Poisson model to

100 simulated datasets from the same model with varied input value for β0, with 10 simula-

tions for each value.
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Figure F.12: The posterior estimates of parameter β0 from fitting the Chain Poisson model to

100 simulated datasets from the same model with varied input value for β0, with 10 simula-

tions for each value.
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Figure F.13: The posterior estimates of parameter δ from fitting the Chain Poisson model to

100 simulated datasets from the same model with varied input value for δ, with 10 simulations

for each value.
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Figure F.14: The posterior estimates of parameter δ from fitting the Chain Poisson model to

100 simulated datasets from the same model with varied input value for δ, with 10 simulations

for each value.

269



APPENDIX F: GRAPHS FOR ESTIMATION OF SIMULATION PARAMETERS FOR AVIAN

INFLUENZA

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3.0

3.1

3.2

3.3

3.4

3.5

3.6

3.7

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

True value of gamma

M
C

M
C

 e
st

im
at

io
n 

of
 g

am
m

a

Figure F.15: The posterior estimates of parameter γ from fitting the Chain Poisson model to

100 simulated datasets from the same model with varied input value for γ, with 10 simula-

tions for each value.
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Figure F.16: The posterior estimates of parameter γ from fitting the Chain Poisson model to

100 simulated datasets from the same model with varied input value for γ, with 10 simula-

tions for each value.
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Figure F.17: The posterior estimates of parameter θ from fitting the Chain Poisson model to

100 simulated datasets from the same model with varied input value for θ, with 10 simulations

for each value.
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Figure F.18: The posterior estimates of parameter θ from fitting the Chain Poisson model to

100 simulated datasets from the same model with varied input value for θ, with 10 simulations

for each value.
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Figure F.19: The posterior estimates of parameter θgl from fitting the Chain Poisson model to

100 simulated datasets from the same model with varied input value for θgl , with 10 simula-

tions for each value.
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Figure F.20: The posterior estimates of parameter θgl from fitting the Chain Poisson model to

100 simulated datasets from the same model with varied input value for θgl , with 10 simula-

tions for each value.
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F.3 Time Dependent Distances model
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Figure F.21: The posterior estimates of parameter β0 from fitting the Time Dependent Dis-

tances model to 100 simulated datasets from the same model with varied input value for β0,

with 10 simulations for each value.
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Figure F.22: The posterior estimates of parameter β0 from fitting the Time Dependent Dis-

tances model to 100 simulated datasets from the same model with varied input value for β0,

with 10 simulations for each value.
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Figure F.23: The posterior estimates of parameter δ from fitting the Time Dependent Distances

model to 100 simulated datasets from the same model with varied input value for δ, with 10

simulations for each value.
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Figure F.24: The posterior estimates of parameter δ from fitting the Time Dependent Distances

model to 100 simulated datasets from the same model with varied input value for δ, with 10

simulations for each value.
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Figure F.25: The posterior estimates of parameter γ from fitting the Time Dependent Distances

model to 100 simulated datasets from the same model with varied input value for γ, with 10

simulations for each value.
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Figure F.26: The posterior estimates of parameter γ from fitting the Time Dependent Distances

model to 100 simulated datasets from the same model with varied input value for γ, with 10

simulations for each value.
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Figure F.27: The posterior estimates of parameter θ from fitting the Time Dependent Distances

model to 100 simulated datasets from the same model with varied input value for θ, with 10

simulations for each value.
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Figure F.28: The posterior estimates of parameter θ from fitting the Time Dependent Distances

model to 100 simulated datasets from the same model with varied input value for θ, with 10

simulations for each value.
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Figure F.29: The posterior estimates of parameter θgl from fitting the Time Dependent Dis-

tances model to 100 simulated datasets from the same model with varied input value for θgl ,

with 10 simulations for each value.
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Figure F.30: The posterior estimates of parameter θgl from fitting the Time Dependent Dis-

tances model to 100 simulated datasets from the same model with varied input value for θgl ,

with 10 simulations for each value.
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Graphs for network reconstruction for

simulations for avian influenza

G.0.1 Chain Error model

●

●

●

●

●

●

●

●

●

0

25

50

75

100

P
ro

po
rt

io
n 

of
 s

ou
rc

es
 c

or
re

ct
ly

 id
en

tif
ie

d 
fo

r 
va

rie
d 

be
ta

0

beta0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure G.1: Boxplots to show the proportion of infection sources for farms recovered correctly

for simulations with varied values for parameter β0 for the Chain Error model.
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Figure G.2: Boxplots to show the proportion of infection sources for farms recovered correctly

for simulations with varied values for parameter δ for the Chain Error model.
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Figure G.3: Boxplots to show the proportion of infection sources for farms recovered correctly

for simulations with varied values for parameter γ for the Chain Error model.
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Figure G.4: Boxplots to show the proportion of infection sources for farms recovered correctly

for simulations with varied values for parameter θ for the Chain Error model.
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Figure G.5: Boxplots to show the proportion of infection sources for farms recovered correctly

for simulations with varied values for parameter θgl for the Chain Error model.
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G.0.2 Chain Poisson model
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Figure G.6: Boxplots to show the proportion of infection sources for farms recovered correctly

for simulations with varied values for parameter β0 for the Chain Poisson model.
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Figure G.7: Boxplots to show the proportion of infection sources for farms recovered correctly

for simulations with varied values for parameter δ for the Chain Poisson model.
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Figure G.8: Boxplots to show the proportion of infection sources for farms recovered correctly

for simulations with varied values for parameter γ for the Chain Poisson model.
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Figure G.9: Boxplots to show the proportion of infection sources for farms recovered correctly

for simulations with varied values for parameter θ for the Chain Poisson model.
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Figure G.10: Boxplots to show the proportion of infection sources for farms recovered cor-

rectly for simulations with varied values for parameter θgl for the Chain Poisson model.
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G.0.3 Time Dependent Distances model
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Figure G.11: Boxplots to show the proportion of infection sources for farms recovered cor-

rectly for simulations with varied values for parameter β0 for the Time Dependent Distances

model.
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Figure G.12: Boxplots to show the proportion of infection sources for farms recovered cor-

rectly for simulations with varied values for parameter δ for the Time Dependent Distances

model.
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Figure G.13: Boxplots to show the proportion of infection sources for farms recovered cor-

rectly for simulations with varied values for parameter γ for the Time Dependent Distances

model.
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Figure G.14: Boxplots to show the proportion of infection sources for farms recovered cor-

rectly for simulations with varied values for parameter θ for the Time Dependent Distances

model.
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Figure G.15: Boxplots to show the proportion of infection sources for farms recovered cor-

rectly for simulations with varied values for parameter θgl for the Time Dependent Distances

model.
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