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Abstract: 
 

This study investigated the effect of intumescent mats (M1 and M2) with different 

compositions on the post-fire performance of carbon fibre reinforced composites 

(CFRP). The sandwich structure was designed for composites where M1 (CFRP-M1) 

or M2 (CFRP-M2) mats were covered on the composite surface. A significant 

reduction in the peak heat release rate (PHRR) and total heat release (THR) was 

observed from the cone calorimetric data and CFRP-M1 composite showed the lowest 

value of 148 KW/m
2
 and 29 MJ/m

2
 for PHRR and THR, respectively. Additionally, a 

minor influence on mechanical properties was observed due to the variation of 

composite thickness and resin volume in the composite. The post-fire properties of 

composite were characterised and the M1 mat presented better retention of flexural 

strength and modulus. The feasibility of two-layer model was confirmed to predict the 

post-fire performance of composites and reduce the reliance on the large amounts of 

empirical data. 
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Introduction 
 

Polymer composites due to their low weight to strength ratio, good mechanical behaviour, 

chemical resistance and corrosion resistance, find mammoth applications in automotive, 

aircraft, airspace, marine and civil construction 
1, 2

. Epoxy resin is widely used as matrix 

in advanced composite due to its good impregnation and adhesion to fibre reinforcement, 

resulting in excellent chemical and mechanical performance and low shrinkage on cure 
3, 

4
. However, its flame retardant behaviour raises a serious safety issue on the use of 

polymer composites due to the extreme flammability of polymer matrix of the composite 

when compared with traditional structure material such as steel and alloy 
5, 6

. As such, 

the flammability of epoxy resins still represents a limitation in the structural application 

as an incidental fire event will lead to health risks 
7
. 

 

To meet application requirement, the flame retardant performance of composites 

should be improved but the conventional approach is to add the addition of a flame 

retardant agent into the resin matrix to disrupt the combustion cycle which requires 

sufficient heat, oxygen and combusting materials 
8, 9

. The successful commercial 

flame retardants for polymer matrix with effective performance are halogenated flame 

retardants such as tetrabromobisphenol (TBBPA) 
10

, the release of smoke, carbon 

monoxide and corrosive gases (namely HBr) during the burning results in 

environmental effect with health hazards 
9-11

. Furthermore, the alternative flame 

retardants such as phosphorus and inorganic based, present a significant negative 

impact on mechanical behaviour which is mainly expressed regarding tensile 

behaviour, flexural properties and impact properties 
12-14

. 

 

Therefore, the current demand for flame retardant composite not only is the effective 

flame retardancy without toxic gas release, but also requires the high mechanical 

properties with good properties retention for most type of fire 
15-17

. The most effective 

approach to protect the composite against fire without altering intrinsic properties 

(mechanical properties) is the use of fire-retardant barrier on the material surface such as 

the intumescent coating 
18, 19

 and insulative fabrics 
20, 21

, as passive fireproofing, to 

delay the onset of combustion, reduce heat transfer from the fire to the composite 

structure, and minimise the effect on the mechanical performance of composite 
22, 23

. 

 

Currently, the expandable graphite has become an attractive material for surface flame 
retardant application, as it is able to decompose and release large volumes of gases to 
cause expansion in the direction perpendicular to the surface exposed to the fire, as such 

creating a protective dense char layer which inhibits the diffusion of heat and oxygen into 
the polymer matrix and prevents the flame from spreading 
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According to the literature, the recent research on flame retardant composite is focused on 

the fire reaction properties of composite 
5, 12

. However, much less information is 

available on the post-fire performance of composites during fire, and rare international 

standard is available on composite mechanical properties characterisation within/after 

burning 
27

. However, it is important to consider the mechanical performance and failure 

resistance in the event of fire when using the composite in load-bearing structures. 

Decomposition, softening, cracking of the polymer matrix such as the epoxy due to fire 

can reduce the composite mechanical performance rapidly, and lead to distorting, 

buckling and collapse of composite structure 
28

. 

 

The purpose of this study is to assess the effect of intumescent mat on the flexural 

properties of composites during fire exposure, study the validation of composite 

model, which was proposed by Mouritz et al. 
29

, to predict the flexural properties and 

failure of composite laminates with intumescent mats on the surface. The artificial fire 

tests were performed using the radiant heater in cone calorimeter and the flexural 

strength and modulus of composites were determined at room temperature after the 

fire test, then the flame retardant performance of intumescent mat was figured out. 
 
 

 

Materials and Methods 

 

Composite preparation 
 

The material used for composite manufacture includes carbon fibre (CF) reinforced 

epoxy prepreg (ACC (Beijing) Science & Technology, China) and intumescent mat 

(Technical Fibre Products (TFP), UK), with the details listed in the Table 1. 

 

Table 1: The specification details of prepreg and intumescent mats (M1 and M2) in 

this study. 

 
Thickness 

Areal 
CF 

Glass Expandable Mineral 
Expansion 

 

Materials weight fibres graphite fibres 
 

(mm) (wt%) ratio 
 

 

(g/m2) (wt%) (wt%) (wt%) 
 

    
 

Preperg 0.2 345 58 / / / / 
 

M1 0.5 164 / 45-40 10-40 20-50 20:1 
 

         

M2 0.5 100 / 53-55 39-43 / 10:1 
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Three composite compositions were designed in this study (shown in Table 2). As can  

 
 
 
 
 
 

 

be seen from the 
 

Figure 1 the flame retardant composites were designed as sandwich-like structure; the 

intumescent mat was covered on the composite surface and manufactured via the 

compression moulding with 2 hours curing period at 5 MPa pressure and 130 
o
C curing 

temperature. The resin in prepreg impregnated mats under pressure and combined the mat 

with core CF prepreg to be integrated composite. The final composites produced were cut 

into required dimension for flame retardant and mechanical characterisation. 
 
 
 
 
 
 
 
 
 
 

 

Figure 1: The scheme of structure design and manufacture process of flame retardant 

composite. 

 

Table 2: The composition of composites in this study. 

 
Thickness 

Composition   Composition 
 

Sample code 
 

(Plies) 
 

(Mass Percent %) 
 

(mm) 
  

 

 

Prepreg 
 

M1 
 

M2 CF 
 

Resin M1/M2 
 

     
 

CFRP 3.01 14  /  / 58  42 / 
 

CFRP-M1 3.25 14  2  / 55  39 6 
 

CFRP-M2 3.14 14  /  2 56  40 4 
 

 
 

 

Flammability test 
 

In order to assess the fire behaviours of the composite with intumescent mats, the 

100mm×100mm specimens were exposed to an incident heat flux of 50kW/m
2
 using 

cone calorimeter (Fire Testing Technology Ltd, UK) according to the ISO5660-1 

standard. 
 

For the post-fire performance of composites study, the triplicate composite specimens 

of each group were exposed to 50kW/m
2
 for 300s, after which they were cooled to 

the ambient temperatures before their flexural properties were determined. 
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Flexural properties analysis 
 

The flexural strength and modulus of composites before flammability test were 

determined at room temperature using three-point bending tests according to the ISO 

14125 standard. The specimens were loaded using the MTS universal testing machine 

(E45) with 50 KN load cell and crosshead of 2 mm/min. 
 

For the composite of post-fire performance test, the surface of specimens which were 

exposed to the heat was placed against the load point in the three-point bend test. As 

such the heat-damaged surface of the composite was subject to a bending – induced 

compressive stress. 
 

The flexural strength ( ) and modulus ( ) of the specimens were calculated using: 
3     

=
 2    2  

Where was the flexural stress at midpoint (MPa), (N), 

was the support span length (mm), and the beam. 

 
 
 

(1) 
 

was the load at a given point 

were the width and thickness of 

 

3 

3 (∆  ∆  ) 

 
 

= 
4     (2) 

   
Where was the flexural modulus of elasticity (MPa), ∆   was the difference in deflection between s ́́   and s ,  which were the beam mid-point 
deflections during plastic deformation (mm), ∆   is the difference in load F ́́   and load F ́́  at s ́́   and s ́́  respectively. 

 
 

Microstructure analysis 
 

Fire damage to the composite was observed after testing in the cone calorimeter using the 

optical microscope (NE930, NexCope®, China) firstly. The image of cross-section for each 

composite samples with different time-point was captured using the software (Version 9.0, 

shareware). The delamination and depth of burnt layer could be measured directly. 

 

After that, the cross-section of the composite was sputtered with 10 nm gold using the high 

vacuum film deposition systems (EM SCD500, Leica®, Germany). The sputtered samples 

were imaged using the scanning electron microscopes (Sigma VP, Zeiss®, Germany) in 

secondary electron mode, with 10KV voltage. 

 

Statistical analysis 
 

Statistical analysis was performed with GraphPad Prism (version 7.00, GraphPad Software, 

San Diego, CA, U.S.A) with unpaired t-tests. Confidence level was 95%. 
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Modelling for post-fire performance of composite 
 

Normally, when the polymer composite is exposed to the heat for a sufficient period, 

the resin is able to degrade and pyrolysis, and thermal damage in the form of charring 

and delamination. The char in the burnt layer is defined as the carbonaceous residual 

material from the resin matrix which is combusted and degraded after the thermal 

degradation process. 
 

Mouritz et al. 
27, 28

  have developed a model to simulate the post-fire performance of 

composite. As can been seen in  
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2, when the polymer composite was under the uniform heat over one surface, 

the fire damage would extend through along the material with an even, well-defined 

combustion. Then the fire damaged composite could be defined as a two-layer 

material with burnt layer and unburnt layer. It is assumed that the mechanical 

properties of burnt layer are negligible whilst unburnt zone has the same mechanical 

properties as the original (pre-fire) composite materials, because it is considered that 

thermal softening (prior to decomposition) of the matrix is fully recovered when 

cooled to room temperature 
29

. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2: the schematic of composite under the fire burning, one layer being the burnt 

region with char and the second layer is the unburnt region. Where, the is the 

thickness of the sample, is the thickness of the unburnt layer and is the neutral axis. 
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As such, to simulate the mechanical properties of composites after burning, the 

composite structure is assumed as a long, slender beam of uniform properties loaded 

symmetrically in the three-point bending configuration 
27, 30

. The bending moment 

M of the fire-damaged composites can be determined by solving: 

=  
∫  −     2 ∙   +  

∫ −(  −   )  2 ∙   + +   ∫  
2 ∙ (3)  

      
 

   
0     

0        
−(  −   )    

 

Where and  are the  bending modulus  of  the unburnt  and char  layers, 
 

respectively.                        
 

Then, solving Equation 3 will introduce the moment:       
 

=   ∙   
∙(  − 

 
)2 +   ∙   

∙ (   
 

−  + )2 +   ∙   
∙  ∙ 3−(   −  +   )3  (4)  

     
 

3 
  

3 
    

3 
   

 
  

  −   
 

 

              
 

Additionally, the neutral axis can be calculated based on the research by Mouritz et al. 

27: 

 2 −(  −   )2 (   −   )  
 

= 
     

(5) 
 

2     +2(  −   )(  −   )  

  
 

The failure load is then determined by equation below 
27

: 

= 4 
{   ∙   

∙ (  −   )3+(   −  +   )3 
+   ∙   

∙  
∙ [   3−(   −  +   )3] 

}; (6)  
   

(  −   
 

) 
   

 

  3  

 

 3   (  −   )  
 

              
 

For the case where the flexural properties of the burnt layer are negligible, then 
 

Equation 6 is reduced to: 

= 4 
{   ∙   ∙ (  −   )3+(   −  +   )3 

};=0 (7)  
   

 

 
3 (  −   ) 

  
 

   
 

Then, the apparent flexural strength of a fire-damaged material is given by: 

= 
3     

(8)  

2    2 
 

  
  

After simplifying equation 3 with the second moment of area theory, the apparent 

flexural modulus of a fire-damaged composite is determined using: 

= 4 { (  −   )3+(   −  +   )3 
+   

∙ [   3−(   −  +   )3] 
} ∙  ; > 0 (9)  

3 
 

3  

      
 

         
 

For the case where the flexural properties of the char layer are negligible, then  = 0, 
 

this equation reduces to:         
 

= 4 {(  −   )3+(   −  +   )3 } ∙  ;     
 

 3        
 

(10)          
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Results and discussion 

 

Flammability test 
 

Flammability test of the composite samples was performed using cone calorimetry 

with the heat flux of 50 kW/m
2
, the fire performance parameters including time-to 

ignition (TTI), the heat release rate (HRR), the peak value of heat release rate (PHRR), 

the time to the peak value (TPHRR), the total heat release (THR) and the mass loss rate 

(MLR) were presented in Table 3. 
 

The composite with one layer intumescent mat (M1 & M2) covering had presented 

relatively high time-to-ignition values, low PHRR, THR and MLR value, and higher 

value of time period to reach PHRR. This suggested that the M1 and M2 mats used in the 

manner employed in this study not only reduced the flammability of composite under the 

heat, but also delayed the fire ignition. Kandare et al. analysed the properties of 

intumescent mats in their research and found interesting results. They demonstrate that 

the TTI value was reduced when intumescent mat was combined with core composite via 

resin infusion process 
31

, but that was increased when mat was bonded onto the core 

composite using a few drops of resin 
21

. As such, this difference on the flame retardancy 

could be attributed to the resin volume in the mat. The resin infusion process was able to 

introduce lots of resin into the mats with full impregnation, which should be much more 

than the volume of resin used to bond the mat onto the composite with smooth surface. 

However, the mat bonded on the surface with a little resin could result in the rough 

surface and imperfect impregnation with flaws inside. 
 

In this study, the process for composite manufacturing was to use compression moulding 

with CF prepreg and dry mat. Compared with CFRP control group, no extra resin was 

introduced into the CFRP-M1 and CFRP-M2 composite, the M1 or M2 mats on the 

composite surface were impregnated with resin squeezed from the composite prepreg 

under the pressure of ∿5 MPa. According to the results, the TTI value of CFRP composite 

was increased from 45 s to 109 s and 91 s for CFRP-M1 and CFRP-M2, respectively, and 

the composite surface was smooth with full impregnation. 
 

Based on the composition of M1 and M2 mats in Table 1, no obvious and significant 

relationship between the thickness of mats and the flame retardancy was observed. 
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However, based on the char layer thickness observed from  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4, and the areal weight of mats, it was predicted that more expandable graphite in 

the M1 mat resulted in a higher char depth when composite was exposed to the heat flux. 

On the other hand, the residual char was not able to dictate fire performance alone, the 

inorganic fibres such as mineral fibre (∿0.03 W/m K) and glass fibre (0.04∿0.05 W/m K) 

with low thermal conductivity also played a role as thermal insulate barrier supporting the 

heat resistance 
32-34

. As can be seen from Table 1, it was observed that more than 20% 

mineral fibre with lower thermal conductivity was mixed in the M1 mat which could 

show better thermal insulation performance than M2 mat. 
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Figure 3 showed the HRR variation as a function of time for the composite samples 

with the intumescent mats (CFRP-M1 and CFRP-M2) and control group (CFRP). The 

CFRP showed three peaks spun over 300 s, the sudden rise in HRR curve after 

ignition might be attributed to the initiation of the burning process, the sudden 

increase in the amount of combustible volatiles from heat-induced depolymerisation 

led to a rapid release of heat, after which a slight reduction in the HRR was probably 

due to the formation of a char layer on the top surface. The continuous combustion 

process with exposure to high radiant heat flux caused an increase of the temperature 

along the depth of laminate leading to the oxidation of char and further heat transfer 

through the laminate that gave rise to a second peak (the max value). After exposure 

times of 110 s, with the depletion in the volume of combustible material, the HRR 

started to decrease inescapably. 

 
 

 

Table 3: Cone calorimetric data for the composite at 50KW/m
2
 heat fluxes with an 

ignition source. 
 

Sample TTI PHRR TPHRR THR 

codes (s) (KW/m
2
) (s) (MJ/m

2
) 

     

CFRP 45 381 115 43 
     

CFRP-M1 109 148 188 29 
     

CFRP-M2 91 231 165 33 
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Figure 3: Curves of heat release rate versus time of the composite samples at 50 

KW/m
2
 heat fluxes with an ignition source. 

 

The general shape of CFRP-M2 in HRR curve was similar to the CFRP, whilst the 

highest peak of HRR curve was the value of 231 kW/m
2
. The intumescent mat with 

expandable graphite acted as a thermal barrier and a physical protective layer; the 

carbonised char layer was able to prevent the diffusion of heat and oxygen to the 

pyrolysis zone. As such, the rate of heat transfer perpendicular to the exposed surface 

was significantly reduced. Kandare et a.l 
31

 had confirmed this phenomenological 

event and suggested that may result in the delayed commencement of combustion 

process which meant the time to ignite. 
 

Compared with HRR curve of CFRP-M2, the CFRP-M1 composite presented better 

flame retardancy. A sudden rise of HRR was given at 109 s, and then the peak with max 

value of 148 kW/m
2
 was reached. Due to the formation of the thicker expanded char 

layer on the top surface, the rate of heat transfer along the composite laminate was abated 

significantly so that the PHRR value of CFRP-M1 was much lower than CFRP and 

CFRP-M2. Furthermore, a steady-state flaming process ensued, and a rise to the other 

peak of 146 kW/m
2
 was observed at exposure times of 220 s. Beyond the exposure time 

of 220 s, the HRR decreased with the depletion of combustible material. 
 

The THR values were obtained from the integration of the HRR-time curves from the  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3 and recorded in the Table 3. The values of 29 MJ/m
2
 and 33 MJ/m 

2
 were 

observed for CFRP-M1 and CFRP-M2, respectively, but much lower than that of CFRP 

with value of 43 MJ/m
2
. Kandare et al. 

21
 reported similar results and found that the 
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intumescent mat only acted as passive protection, delaying and slowing down the 

burning process under the heat or fire. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4: The digital images of samples before (A, C, E) and after exposure of 

composites (B, D, F) to a 50kW/m2 heat flux for 600 s. 
 
 
 

 

Flexural properties of composites before exposure to fire  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 5 illustrated the load-displacement plot for laminate flame retardant composite 

in this study. It was clear that all composites were failed in a sudden brittle fracture 
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finally, and the peak value of load for CFRP composite was close to the composite 

with mats M1 and M2. 
 

However, as seen in Figure 6, the M1 mat covering the core composite reduced the 

flexural strength and modulus from 541±45 MPa and 33±1 GPa to 455±44 MPa and 

28±2 GPa, respectively, whilst the composite with M2 mat showed 519±31 MPa and 

29±2 GPa for flexural strength and modulus. 
 

According to the composite specification recorded in Table 2, the composite thickness 

was increased from 3 mm to 3.25 mm and 3.14 mm for CFRP-M1 and CFRP-M2, 

respectively. Based on the equation 1 and 2, with the consistent flexural load, the 

flexural strength and modulus would be affected by the variation of composite 

thickness. On the other hand, as the intumescent mats (M1 and M2) were dry mat 

without resin, the mats in compression moulding process would suck resin from 

prepreg to impregnate themselves, so that the volume of resin in the core parts which 

demonstrate the mechanical performance was decreased, and the mechanical 

properties of composite were reduced consequently. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 5: The flexural properties test plot of load vs displacement of composites. 
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Figure 6: The flexural strength and flexural modulus of composites before 

burning at 50 KW/m
2
 heat fluxes with an ignition source. 

 

Post-fire performance of composite 
 

The flexural strength and modulus measured from the composite under the heat flux of 
 

50 KW/m
2

 were recorded in 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. Compared with CFRP control group, CFRP-M1 and CFRP-M2 presented 

better retention of flexural performance under the heat flux. M1 mat could improve 

the retention of flexural strength and modulus, where the 63% and 64% reduction 

were observed at 100 s, respectively. However, the flexural strength and modulus of 

CFRP-M2 were reduced by 81% and 86% at 100 s, respectively. 
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Figure 7: Effect of heating time on the post-fire flexural strength (A) and flexural 

modulus (B) of composites with 50 KW/m
2
 heat fluxes. The error bars represent two 

standard deviations in the measured post-fire properties. 
 

 

The microscopy and SEM images were recorded in  
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Figure 8 and 
 
 

 

 

 

 

 

 

 

 

 

 

Figure 9. The variation of thickness for intumescent mat exposed to heat and the 

unburnt layer of composite during the heating process were recorded in the 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 10. Many studies have reported that the reduction of post-fire 

 

mechanical properties of composites was caused by the fire, particularly the polymer 

matrix damage. When the composites were exposed to a heat source or fire, the polymer 

matrix underwent the thermal decomposition leading to the depletion of its mechanical 

properties such as strength and modulus, and the reduction in mechanical properties was 

usually observed above the glass transition temperature of the polymer. 
 

With the burning of composite when exposed to fire, the resin matrix was decomposed 

and burnt off, resulting in the exposure of fibres and reduction of mechanical 

performance. Following the cross-section view of composite at different time points of 

heating period in 
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27,  28,  30,  35 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 8 and the detail dimension of thickness in  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 10, the CFRP composite without mats protection was burnt significantly in 100 s 

and the residual unburnt layer was burnt off at 200 s. However, the unburnt layer of 

CFRP-M1 and CFRP-M2 composite were reduced from 3.25 mm and  3.14 mm to 
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1.75 mm and 1.43 mm at 200 s, respectively. Compared

 with  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 7, it could be summarised that the more extended period of burning, the thicker 

burnt layer and lower mechanical performance of composite. Furthermore, according 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

to 
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Figure 4 and  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 10, the CFRP-M1 and CFRP-M2 with the mat protection showed the thick 

expanded graphite layer which was 10 mm and 5 mm by 300 s, respectively. As such, the 

better post-fire performance for CFRP-M1 could be confirmed due to the thicker 

expanded graphite formed on the mat surface which protected composites with better 

thermal insulation and flame retardant performance. However, as the structure of 

intumescent mats with expanded graphite after burning were shrunk when cool to room 

temperature, the expanded mats of CFRP-M1 and CFRP-M2 were observed to be thin 

with the thickness of 1 2 mm in  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 8. By the time point of 300 s, all composites were seen to be fully burnt off, so 

that the flexural strength and modulus of all composite were observed to be zero by 

the 300 s of the burning period. 
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Figure 8: The cross-section view of fire damaged composites after 50 KW/m
2
 heat 

fluxes.  
 
 
 
 
 
 
 
 
 
 
 

 

Figure 9: The SEM image of composite exposed to the fire at 50 KW/m
2
 heat fluxes, 

(A) unburnt layer, (B) Char, (C) burnt layer. 
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Figure 10: The thickness of (A) intumescent mat expose to fire at 50 KW/m
2
 heat 

fluxes and (B) unburnt layer of composites. 

 

Modelling of post-fire performance 
 

For the modelling of the composite properties under fire burning, the two-layer model 

is the most established analytical method for calculating the post-fire properties of 

laminates 
30

. The model basically analyses the fire-damaged laminate as a two-layer 

structure with fully decomposed material and unburnt layer. To simplify the analysis, 

the mechanical properties of burnt layer are taken to be zero whilst the unburnt layer 

presented original performance in the determination of the theoretical post-fire 

properties. Based on the Equation (5-10), the original flexural strength, modulus and 

thickness of the unburnt layer for a given burning time would demonstrate the final 

post-fire flexural properties of composites. 
 

As such, the flexural strength and modulus dropped rapidly when the burnt layer 

extended along the thickness of composite as the effective thickness for load bearing 

was reduced. 
 

In this study, the thickness of the unburnt layer was determined visually using the 

optical microscopy during the observation of composite cross-section which was 

shown in 
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Figure 8, and a rapid decrease in the thickness of unburnt layer was shown with burning 
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period. 

 

Figure 11 compared the theoretical values against the measured post-fire flexural 

modulus and strength values for all composite in this study. The straight line had a 

slope of unity, thus the closer the data points were to the line, the better the agreement 
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between the theoretical properties and measured ones. The insets to the figures A & B  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

of 

 

Figure 11 showed the cluster of the relatively low flexural properties in greater detail, 

and the most of the data points were observed close to the straight line, indicating a 

good agreement between theory and experiment. This revealed that the post-fire 

performance of composite with the intumescent mats can be accurately determined 

using the models which only required a few easily measured original mechanical 

parameters. 
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However, some points were located in the section below the straight line, indicating the 

measured values of flexural properties lower than the theoretical ones. This difference 

could be attributed to the delamination in the unburnt layer resulting in the reduction of 

flexural properties. As the two-layer model 
30

 in this study was the ideal structure of 

composite combined with bunt layer and the unburnt layer where the unburnt layer was 

the same as the original composite. As such, the delamination in the unburnt layer was 

not taken into account, but could occur between different plies and severely weakened 

composite structure. On the other hand, the mechanical properties of intumescent mat 

(M1 and M2) with random glass fibre and mineral fibre were much lower than that of 

carbon fibre fabric in the laminate. However, the layers of M1 or M2 mats on the 

composite surface were combined with the CF prepreg laminate and considered as the 

same structure in the model, rather than as the individual layer with specific properties. 

Thus, the simulated flexural properties of composite should be higher than experimental 

value ́́due ́́to ́́the ́́extra ́́“layers ́́of ́́carbon ́́fibre ́́fabric” ́́on ́́the ́́composite ́́surface. 
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Figure 11: Comparison of the theoretical and measured post-fire flexural (a) 

modulus and (b) strength values of the composites with 50 KW/m
2
 heat fluxes. 
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Conclusion 
 

The flame retardant composite with the intumescent mats (M1 and M2) on the 

composite surface were analysed in this study, and the addition of M1 mats on the 

surface lead to better improvement in the fire performance of composite. The PHRR 

value was reduced by 61% and 39% for composite covered with M1 and M2 mats 

respectively, whereas the THR value were also reduced as much as 33% and 23%. 

Additionally, the mechanical properties of composites were affected by intumescent 

mats which cover on the composite surface, the reduction in flexural strength and 

modulus was attributed to the increase of composite thickness with addition of 

intumescent mats. 
 

The post-fire flexural properties of composite was characterised and the M1 mat also 

presented better retention of flexural strength and modulus when composite exposed 

to the heat flux. Compared with the simulated data using the mechanistic two-layer 

model, the measured values were close, but normally lower than the theoretical ones. 

This may be attributed to the limitation of the model where the delamination in the 

unburnt layer was not taken into account. Therefore, even though the current 

mechanistic models was a good approach to predict the performance of composite 

after the burning, the growing use of composites in fire risk situation still demanded 

the on-going development of fire structure models for laminate composite. 

 
 
 

 

Acknowledgements 
 

This work was carried out in ACC-UNNC Joint Laboratory in Sustainable Composite 

Materials. The authors would like to appreciate the support from AVIC Composites 

Corporation (Beijing) Science and Technology Co,. Ltd and Technical Fibre Products 

Ltd (UK). Additionally, authors also would like to appreciate the financial supported 

by ́́ Ningbo ́́ 3315 ́́ Innovation ́́ team ́́ Scheme ́́ “Marine ́́ Composites ́́ Development ́́ and ́́

Manufacturing ́́for ́́Sustainable ́́Environment”. 
 
 
 

 

Conflict of interest 
 

The authors wish to confirm that there are no known conflicts of interest associated 

with this publication. 
 
 
 

 

27 



 

References 
 

1. Bar M, Alagirusamy R and Das A. Flame retardant polymer composites. Fibers 

and Polymers. 2015; 16: 705-17.  
2. Morgan A. Flame retardant fiber-reinforced composites. Handbook of Fire 

Resistant Textiles. Elsevier, 2013, p. 623-52.  
3. Mangalgiri P. Composite materials for aerospace applications. Bull Mater Sci. 

1999; 22: 657-64.  
4. Rana S and Fangueiro R. Advanced composite materials for aerospace 

engineering: Processing, properties and applications. Woodhead Publishing, 2016.  
5. Kiliaris P and Papaspyrides CD. Chapter 1 - Polymers on Fire. Polymer Green 

Flame Retardants. Amsterdam: Elsevier, 2014, p. 1-43.  
6. Walters RN and Lyon RE. Flammability of polymer composites. Office of 

Aviation Research and Development, Federal Aviation Administration, 2008.  
7. Lu S-Y and Hamerton I. Recent developments in the chemistry of halogen-free 

flame retardant polymers. Progress in polymer science. 2002; 27: 1661-712.  
8. Laoutid F, Bonnaud L, Alexandre M, Lopez-Cuesta J-M and Dubois P. New 

prospects in flame retardant polymer materials: from fundamentals to nanocomposites. 

Materials Science and Engineering: R: Reports. 2009; 63: 100-25.  
9. Rakotomalala M, Wagner S and Döring M. Recent developments in halogen free 

flame retardants for epoxy resins for electrical and electronic applications. Materials. 

2010; 3: 4300-27.  
10. Shaw S. Halogenated flame retardants: do the fire safety benefits justify the risks? 

Reviews on environmental health. 2010; 25: 261-306.  
11. Papachlimitzou A, Barber JL, Losada S, Bersuder P and Law RJ. A review of the 

analysis of novel brominated flame retardants. Journal of Chromatography A. 2012; 

1219: 15-28.  
12. Babrauskas V, Fuoco R and Blum A. Chapter 3 - Flame Retardant Additives in 

Polymers: When do the Fire Safety Benefits Outweigh the Toxicity Risks? Polymer 

Green Flame Retardants. Amsterdam: Elsevier, 2014, p. 87-118.  
13. Rothon R and Hornsby P. Chapter 9 - Fire Retardant Fillers for Polymers. 

Polymer Green Flame Retardants. Amsterdam: Elsevier, 2014, p. 289-321.  
14. Suchitra M and Renukappa N. The Thermal Properties of Glass Fiber Reinforced 

Epoxy Composites with and without Fillers. Macromolecular Symposia. Wiley 

Online Library, 2016, p. 117-22.  
15. Weil ED. Fire-protective and flame-retardant coatings-A state-of-the-art review. 

Journal of fire sciences. 2011; 29: 259-96.  
16. Alongi J, Han Z and Bourbigot S. Intumescence: tradition versus novelty. A 

comprehensive review. Progress in Polymer Science. 2015; 51: 28-73.  
17. Feih S, Mouritz A, Mathys Z and Gibson A. Fire structural modeling of polymer 

composites with passive thermal barrier. Journal of fire sciences. 2010; 28: 141-60. 
 
 
 
 

28 



 
18. Kandola BK, Bhatti W and Kandare E. A comparative study on the efficacy of 

varied surface coatings in fireproofing glass/epoxy composites. Polymer degradation 

and stability. 2012; 97: 2418-27.  
19. Shi Y and Wang G. The novel silicon-containing epoxy/PEPA phosphate flame 

retardant for transparent intumescent fire resistant coating. Applied Surface Science. 

2016; 385: 453-63.  
20. Rowen JB. Composite Flame Retardant and Smoke Suppresssing Surfacing Mat. 

2003.  
21. Kandare E, Chukwunonso AK and Kandola BK. The effect of fire‐ retardant additives and a surface insulative fabric on 
fire performance and mechanical property retention of polyester composites. Fire and Materials. 2011; 35: 143-55.  

22. Malucelli G, Carosio F, Alongi J, Fina A, Frache A and Camino G. Materials 

engineering for surface-confined flame retardancy. Materials Science and 

Engineering: R: Reports. 2014; 84: 1-20.  
23. Zhang X, Wang R, Wang R, Yan X and Shi M. Universal evaluation of fire 

retardant properties of fiber mats by the optimal cone calorimeter. Textile Research 

Journal. 2018; 88: 892-903.  
24. Kandola BK, Luangtriratana P, Duquesne S and Bourbigot S. The effects of 

thermophysical properties and environmental conditions on fire performance of 

intumescent coatings on glass fibre-reinforced epoxy composites. Materials. 2015; 8: 

5216-37.  
25. Liu J, Zhang Y, Peng S, et al. Fire property and charring behavior of high impact 

polystyrene containing expandable graphite and microencapsulated red phosphorus. 

Polymer Degradation and Stability. 2015; 121: 261-70.  
26. Mariappan T. Recent developments of intumescent fire protection coatings for 

structural steel: A review. Journal of fire sciences. 2016; 34: 120-63.  
27. Mouritz A. Post-fire flexural properties of fibre-reinforced polyester, epoxy and 

phenolic composites. Journal of materials science. 2002; 37: 1377-86.  
28. Mouritz A, Gardiner C, Mathys Z and Townsend C. POST-FIRE PROPERTIES 

OF COMPOSITES BURNT BY CONE CALORIMETRY AND LARGE-SCALE 

FIRE TESTING. ICCM13. Beijing, China2001.  
29. Mouritz AP, Feih S, Kandare E, et al. Review of fire structural modelling of 

polymer composites. Composites Part A: Applied Science and Manufacturing. 2009; 

40: 1800-14.  
30. Mouritz AP and Mathys Z. Post-fire mechanical properties of marine polymer 

composites. Composite Structures. 1999; 47: 643-53.  
31. Kandare E, Chukwudolue C and Kandola BK. The use of fire‐ retardant intumescent mats for fire and heat protection of glass fibre‐ 
reinforced polyester composites: Thermal barrier properties. Fire and Materials: an international journal. 2010; 34: 21-38. 

 

32. Abdou AA and Budaiwi IM. Comparison of thermal conductivity measurements 

of building insulation materials under various operating temperatures. Journal of 

building physics. 2005; 29: 171-84. 
 

29 



 
33. Othman AM. Experimental Investigations of the Effect of Some Insulating 

Materials on the Compressive Strength, Water Absorption and Thermal Conductivity 

of Building Bricks. Jordan Journal of Mechanical and Industrial Engineering. 2010; 

4: 443-50.  
34. Papadopoulos AM. State of the art in thermal insulation materials and aims for 

future developments. Energy and Buildings. 2005; 37: 77-86.  
35. Gibson A, Wright P, Wu Y-S, Mouritz A, Mathys Z and Gardiner C. Modelling 

residual mechanical properties of polymer composites after fire. Plastics, Rubber and 

Composites. 2003; 32: 81-90. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

30 


