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Abstract 

The number of stroke has increased every years according to American Heart 

Association (AHA), World Health Organization (WHO) and National Stroke 

Association of Malaysia (NASAM). These numbers have raised concerns among 

medical and rehabilitation professionals who manage this neurological disorder. 

For this project, we aim to develop a sophisticated gait analysis system to help the 

recovery of stroke patients. This proposed gait analysis system can help clinicians 

to assess the gait pattern and plan a suitable rehabilitation treatment for stroke 

patients systematically. It started with the development of gait sensor system. In 

this study, we are interested to study about the kinematics and kinesiology 

parameters of stroke patients. Therefore, we developed a low-cost inertial based 

sensor system and employed commercial ShimmerSensing sEMG sensors. A 3D 

high-speed camera was used to validate the inertial based sensor system. The 

parameters obtained from the sensor system were further analysed to extract 

valuable features for gait characterisation and gait classification.  

Two new gait analysis methods, kinesiology and kinematic based gait analysis were 

proposed to study the characteristic of the stroke patient’s gait. For kinesiology 

based gait analysis, the surface EMG (sEMG) signal was being collected and 

analysed. We applied sliding window Higuchi Fractal Dimension (HFD) on sEMG 

signal and computed a new fractal based index, named Kinetic Index (K.I.). This 

K.I. was further correlated to the Timed Up and Go Test (TUG test). The results 

showed that K.I. is highly correlated to the TUG test. Besides that, K.I. can also 

classify stroke patients into three homogeneous subgroups by using Hierarchical 

Cluster Analysis. 

For kinematic based gait analysis, we proposed a new variant of the Symmetry 

Region of Deviation (SROD) method to quantify gait asymmetry. This new 

method, named as Cyclogram SROD (CSROD), applies a bilateral cyclogram of 

both left and right lower limbs gait data to compute the gait deviation from perfect 

symmetry. Compared to SROD, CSROD does not require a baseline gait database 
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of normal healthy subjects for comparison purposes. Instead, it uses a 45° symmetry 

line in the cyclogram to indicate perfect gait symmetry. The validation results 

showed that the proposed method were similar to those obtained from the SROD 

method according to Welch t-test analysis. With proper gait alignment technique 

such as Dynamic Time Warping (DTW), the CSROD results showed the accurate 

timing and magnitude of the peaks where asymmetry occurred. 

Both the K.I. and CSROD provide valuable information regarding the kinesiology 

and kinematic status of the stroke patients. However, it cannot describe the 

difference of gait pattern between stroke patients and healthy subjects. Therefore, 

two new gait functionality indices, G_FunctGT and G_FunctTD were presented. 

These two indices detect the gait trajectory deviation and time delay between stroke 

and healthy.  

The features extracted for gait characterisation (K.I., CSROD, G_FunctGT and 

G_FunctTD) were used to develop two recovery prediction models. The first model 

used stroke patients baseline (stage 1) gait data to predict their third month (stage 

2) and sixth month (stage 3) of gait indices. The second model was based on the 

recovery trajectory from baseline (stage 1) to third month (stage 2) to predict the 

final state of gait indices (stage 3). The results showed high accuracy among stroke 

patients. The sEMG signal on each stage of the stroke recovery period were further 

decomposed using Ensemble Empirical Mode Decomposition (EEMD) method. 

This was to study the muscle status changes across the recovery period on stroke 

patients. It is to ensure the recovery in joint motions associates with the recovery 

of muscles, and not due to muscle compensation.  
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Chapter 1 Introduction 

1.1 Research background 

Stroke is the third largest leading causes to death and approximately 40,000 patients 

suffer such disease in Malaysia every year according to National Stroke Association 

of Malaysia, NASAM [1]. Poor coordination, abnormal posture and hemiplegia are 

the main side effects of this cerebrovascular disease, which lead to restriction in 

their activities of daily living (ADLs) and mobility problems. Proper rehabilitation 

services such as speech, physical, occupational and recreational therapies and group 

activities [1] are necessary to help stroke patients to promote their independence in 

ADLs. The goals of rehabilitation are to help the patients to improve their body 

functions and to gain their independency by retraining their neural system and 

strengthening muscles. Therefore, recognition of stroke symptoms are very 

important in order to plan a suitable rehabilitation strategy. In this thesis, we focus 

on identifying the symptom of abnormal walking pattern of stroke. Early 

rehabilitation is crucial once patients are diagnosed with stroke as study shown that 

95% of the patients will recover their walking ability within the first 11 weeks after 

stroke [2]. The traditional process of gait rehabilitation starts from quantitative gait 

analysis, gaits classification and gait rehabilitation treatment. Physiotherapist is 

unable to assess the condition of stroke patients without quantifying the gait pattern 

and obtaining the gait parameters. These parameters help the physiotherapist to 

classify the type of abnormal walking. For stroke patients, their abnormal walking 

includes asymmetry-walking, lack of balancing control, foot drag, slow gait 

velocity etc. After identifying these abnormal walking conditions, physiotherapist 

will arrange a proper rehabilitation treatment for them. 
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1.1.1 Definition of gait 

Gait is a complex cyclic movement that can be described as segments of time that 

mainly consist of stance and swing periods [3]. The function of gait is to translate 

human body from one point to another by using repetitive reciprocal limb motions 

[4,5]. The performance of gait is directed to the accomplishment of four related 

tasks [6]: maintaining balance of lower limb with the rest of the body, maintaining 

support of limb segments during stance phase, lifting the foot from the ground 

during swing phase and supplying enough energy to move the entire body forward. 

Quantitative gait analysis is the first step of rehabilitation and it must be conducted 

on the stroke patients to provide information of the patient’s condition. Gait 

analysis are commonly performed in three ways: (i) by visually inspecting a 

patient’s gait performance and qualitatively describing the gait pattern; (ii) by using 

validated clinical tests, such as 10 meter walk test [7] or Timed Up and Go (TUG) 

test [8] to quantify gait performance; (iii) by the use of sophisticated systems to 

quantify the motion of the body segments (e.g. video motion capture system and 

force plate system). The first method is commonly used because it is easily 

administered and does not require expensive measuring instruments. However, the 

observation is prone to human biases and the interpretations are rather subjective. 

The second method provides an objective quantification of gait performance and 

often administered with a standard procedure such that biases can be reduced. The 

drawback of these clinical tests is the lack of detailed analysis of movement.  In 

contrast, the third method is more accurate in the quantification of detailed gait 

performance. It provides objective measurement of movements that are difficult to 

detect visually. Despite the mentioned advantages, the operating costs are 

expensive and they require specialised training and high level of technical skills [9–

11]. Given the needs for accurate objective quantification of gait performance and 

affordable cost, a low cost portable gait sensor system could be an attractive 

alternative solution. With the emergence of miniaturisation techniques, small-size 

sensors such as micro-electro-mechanical systems (MEMS) has been integrated to 

form wearable gait sensors. Many researchers had developed low cost sensor 

systems for their own research purposes [12–14]. In this project, a portable low cost 
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sensor system will be developed to acquire the gait trajectory and to distinguish the 

difference of gait patterns between healthy human and stroke patients.  

1.1.2 Gait sensor system and gait spatial-temporal parameters 

Inertial Measurement Unit (IMU) is an inertial sensor, which consists of 

accelerometer and gyroscope to track rotational and translational movements [15]. 

For gait analysis, the position and orientation of lower limbs can be determined by 

integrating the acceleration and angular velocity from IMU. However, the 

performance of inertial sensor is still relatively poor [16]. The low signal to noise 

ratio (SNR) and sensor drifting lead to estimation error grows unbounded. Cross-

axis sensitivity, cross-coupling, misalignment, bias, sensor drifting and noise often 

occurred in these sensors [17,18]. This issue can be solved by applying frequent 

measurement updates methods. These methods will correct the position and 

orientation based on certain definitions. Spatial parameters such as stride length can 

be obtained from the integrated gait trajectory while the temporal parameters can 

be acquired by using heel strike and toe off information, which can be detected 

from ankle gyroscope signal [19]. Temporal parameters such as gait cycle time, 

swing time and stance time are important to study the performance of stroke 

patients. These parameters are frequently used as an indication of recovery when 

certain treatment is introduced [2,20,21] or to show the effects when different 

treatments are compared [22,23]. These spatial temporal parameters are easy to use 

and provide valuable information to describe the quality of the gait and they are 

essential in this study. 

1.1.3 Gait classification 

Gait classification among stroke is to identify homogeneous subgroups of stroke 

patients, which could enable physiotherapists to deliver treatments that are more 

effective during rehabilitation. This is particularly important to those researchers 

who do not have full access to collect necessary gait data; such a method would 

also facilitate communication between clinicians [24]. Besides that, proper 

classification can help to organise and manage large amounts of complex gait data. 
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These gait data are generated by instrumented gait analysis such as kinematic and 

EMG data [25]. Many authors have attempted to identify homogeneous subgroup 

of gait pattern among stroke patients using methods such as cluster analysis [26,27] 

and artificial neural network [24,28]. However, most of these methods require 

multiple inputs (gait spatial-temporal parameters), which is very subjective and 

generally based on the observation by visual inspection from researchers or 

clinicians [27]. Meanwhile, single category of parameter often yielded functionally 

heterogeneous results [27]. Therefore, it is worth studying different gait 

classification approaches and compared them to each other. 

1.1.4 Gait asymmetry 

The spatial-temporal gait parameters described in Section 1.1.2 will be used to 

determine the type of abnormal gaits. As mentioned previously, one of the 

significant abnormal gait observed from hemiparesis stroke patients is gait 

asymmetry [29]. Symmetry of gait is defined as no difference in gait parameters 

between left and right leg [30] and the lower limbs are acting in the same motion 

with the same gait pattern [31]. Symmetrical of gait is an indicator of normal 

walking and physiotherapists quantify the gait symmetry that serves as a diagnostic 

tool for rehabilitation plan and strategy. The conventional ways to quantify the gait 

symmetry are symmetry ratio, symmetry indexes, symmetry angle and statistical 

approaches (correlation coefficients, principal component analysis, analysis of 

variance) [32]. Univariate parameters such as stance time, step length, gait speed 

and joint angle are used to assess any gait deficiency. These conventional methods 

are easy to apply but they have limitations. According to Sadhegi et al [31] the 

symmetry indexes have low sensitivity, unable to identify the location of 

asymmetry, and poor selection of parameters. There is no universal rule to select 

the parameters used for calculation and many researchers had reported different 

parameters would yield different symmetrical values within the same subject [33–

36], which leads to confusion during qualitative assessment. The current symmetry 

indexes are not capable to understand the complexity of gait cycle and the 

parameters used to calculate the gait symmetry are often treated as a quantified 
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value to represent the whole gait cycle instead of certain gait event. Since the 

severity of stroke is related to the symmetrical of gait, there is a need to clarify the 

confusion caused by the limitations from conventional methods so that the 

workload of physiotherapists can be reduced and human error can be minimised. 

1.1.5 Surface Electromyography 

The surface electromyography (sEMG) signal is elucidated as the electrical activity 

of skeletal muscles and it contains the information about the function of the 

muscles, which creates the body movement [37]. SEMG has been widely used by 

researchers and clinicians to perform gait analysis [38–40]. In Olnet et al [6] 

review, there are four types of muscle behavior among stroke patients; Type I has 

demonstrated hyperactive stretch reflexes, Type II is characterised by lack of 

activation during both shortening and lengthening contractions, Type III shows 

excessive and stereotyped coactivations of several muscle groups and Type IV 

shows combined components of the above three. These characteristics of the sEMG 

signal can be quantified by several techniques included time and frequency domains 

analysis. For example, root mean square value (RMS), zero-crossing rate, median 

frequency (MDF), mean frequency (MNF), can determine muscle fatigue and 

muscle energy expenditure. These linear analyses assume sEMG to be random and 

uncorrelated. However, the sEMG signal is highly nonlinear deterministic. 

Therefore, it leads to the development of non-linear techniques to analyse sEMG 

signal. Techniques such as largest lyapunov exponent, Recurrence Quantification 

Analysis and fractal dimension are being utilised to determine the geometry and 

fractal properties of the sEMG signal. These techniques are particularly useful to 

determine the muscle force expenditure and fatigue. Nevertheless, to date, there are 

only limited studies to show the correlation between sEMG during gait and 

conventional clinical assessment tools such as TUG test. In this study, one of the 

non-linear analysis technique is applied to study the correlation between sEMG and 

TUG score.   
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1.1.6 Gait recovery 

Gait rehabilitation generally shows promising positive recovery among stroke 

patients [41–43]. Therefore, in order to better assess the recovery rate or the 

efficiency of certain rehabilitation treatment, many researchers started to emphasise 

the development of recovery prediction models. Generally, these models use 

patient’s baseline gait parameters as the independent variables to predict the motor 

function, mobility or activities of daily living function among stroke survivors [44–

46]. The independent variables can be time-independent or time dependent 

variables. Time-independent variables such as age, type of stroke, gender, side of 

hemiparesis etc. are the variables that will not change with time. Time-dependent 

variables such as clinical assessment test, activities daily living functions, 

kinematic and kinesiology parameters are the variables that will change with time. 

Multivariable linear regression model is the most common algorithm to predict the 

recovery among stroke [44–48].  

1.2 Problem statement and motivation 

The motivation of this research is to improve the current rehabilitation procedures. 

With increasing stroke patients in Malaysia, the healthcare service cost and the 

physiotherapist workload increase rapidly. Teasell et al [49] stated most stroke 

patients could regain the walking ability with proper rehabilitation in the early 

stage. However, increasing the workloads of physiotherapists will lead to delay in 

the stroke patient’s recovery progress. Therefore, some stroke patients are unable 

to regain the walking ability due to the delay.  

The first step of gait rehabilitation is gait analysis and it starts with acquiring the 

gait parameters. Human observation is the easiest method to acquire gait parameters 

but it is prone to human error. Clinical assessment tools are powerful tool to analyse 

motion and they are frequently used as an indicator of recovery. However, these 

assessment tools often provide limited information. Sophisticated sensor system is 
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available in gait motion lab but the operating cost is too high. This will delay the 

gait assessment when one is diagnosed with stroke.  

Gait parameters acquired from the sensor are further processed to analyse the gait 

characteristics and gait classification. The selection of the proper gait parameters 

as the input parameters of gait classification is often confusing. Furthermore, stroke 

patients often exhibit abnormal gait such as gait asymmetry. There are many 

limitations in current methods to quantify gait asymmetry; for example, (i) low 

sensitivity, (ii) lack of time history and (iii) mostly univariate.  

The neurological information such as sEMG during gait is not always associate 

with the spatial-temporal parameters and the results from clinical assessment tools. 

Moreover, most of the recovery models described now relied heavily on clinical 

assessment tools such as Rivermead Mobility Index, Functional Ambulation 

Classification, Timed Up and Go test etc. To our knowledge, there are very limited 

recovery models, which use kinematics and kinesiology parameters derived from 

motion sensor and EMG sensor to predict the recovery. 

These problems have become the primary motivation of this research and the author 

contributions to this research are stated in the next section. 

1.3 Research contributions 

This research attempts to fill the knowledge gap and addresses the issues mentioned 

in Section 1.2. The principal contributions of this thesis are: 

1. We developed a low cost gait sensor system that can accurately measure gait 

trajectory and temporal parameters. This gait sensor system consists of IMU 

and they are located at different part of lower limbs such as foot and shank. The 

reason to implement multiple IMU is to provide more information than single 

IMU. A new gait trajectory computation algorithm was established to obtain 

the walking pattern. This algorithm is simple to implement with high accuracy. 
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2. We performed the conventional methods to analyse and classify gait. The gait 

characteristics of cross-sectional data from 60 stroke patients are being studied 

and compared to the healthy subjects. We provided an in-depth study of the 

correlation of different gait parameters with clinical assessment tool and gait 

asymmetry index. Gait classification using Hierarchical Cluster Analysis was 

performed with multiple gait parameters as inputs to classify these large groups 

of stroke patients into three different homogeneous subgroups.  

3. We developed two accurate gait analysis techniques. These analysis models are 

based on the kinesiology and kinematic parameters of stroke patients. The 

kinesiology based gait analysis is Kinetic Index (K.I.) and the kinematic based 

gait analysis is Cyclogram Symmetry Region of Deviation (CSROD). 

4. The correlation between K.I. and TUG test was studied. These K.I. values were 

strongly correlate to TUG score and were able to provide detail information 

such as the weaker muscle on the paretic lower limb. 

5. Gait classification using Hierarchical Cluster Analysis was performed with K.I. 

as the single input. The classification results showed that this approach could 

classify the stroke patients into three different homogeneous subgroups. The 

gait characteristics in these subgroups were similar to the conventional multiple 

inputs approach.  

6. Based on the proposed improved gait analysis methods (K.I. and CSROD), we 

established two recovery models that could predict the recovery status of stroke 

patients within their first six months after diagnosed with stroke. The first model 

was solely based on the baseline parameters while the second model was based 

on the recovery trajectory between certain periods. 

7. The recovery models described earlier merely provided physical information 

based on the gait trajectory and temporal information. The study of muscle 

status changes across recovery was also important to avoid unnecessary muscle 

impairment. Therefore, the sEMG during gait was being decomposed by 
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Ensemble Empirical Mode Decomposition (EEMD). This information can 

describe the gait recovery status for all stroke patients. 

1.4 Research objective 

The main objective of this thesis is to develop a sophisticated gait analysis system 

to assist the recovery of stroke patients. In order to achieve this objective, there are 

six main areas needed to focus in this research as shown in the followings: 

a. To develop an accurate low cost portable sensor system. 

b. To study the limitations of conventional gait analysis. 

c. To propose new gait analysis tools (Kinesiology and Kinematic based gait 

analysis). 

d. To study different approaches of gait classification. 

e. To establish models to predict the recovery progress of stroke patients. 

f. To describe the gait recovery status based on their muscle conditions. 

 

1.5 Project Description 

The research sought to create a gait analysis system that provided instrumented and 

systematic analytic system outside of traditional and inefficient analysis methods 

(such as human observation). Such a system will help to reduce the workload of 

clinicians. Clinician can apply this gait analysis system to investigate the gait 

abnormality symptom and recovery status. This system explores every aspect of 

stroke patient’s walking conditions, from individual recovery performances to 

comparison to healthy gait.  

This research evaluated the system with different type of stroke patients. Gait 

spatial temporal parameters and sEMG signal were obtained from the developed 

inertia gait sensor system and commercial EMG sensors. Gait characterisation was 

performed by extracting valuable information from both IGS and sEMG results.  

These results provided kinematic and kinesiology aspect on stroke patients gait 

pattern. Furthermore, these gait parameters also can be used as the input to perform 
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gait classification. New gait functionality indices was introduced to determine the 

gait trajectory deviation and time delay between stroke patients and healthy human. 

All the features and indices derived were further being used to develop recovery 

prediction models. To ensure the recovery during stroke was not based on 

compensation of other muscle, sEMG signal was decomposed into different 

component to study the muscle status changes throughout the recovery period. 

As stated, this system provides advance and systematic analysis on stroke patient’s 

gait. It includes development of gait sensor system, gait characterisation, gait 

classification, gait recovery prediction and gait muscle compensation. Such system 

will be very effective in clinical setting to help clinician in planning rehabilitation 

strategy. However, this system has high complexity in term of interpreting the 

outcome, which clinician may hesitate to adopt it.  

1.6 Thesis outline  

This thesis is organised in ten chapters. 

Chapter 1: Introduction 

In Chapter 1, the research background, motivation, contribution and the objectives 

of this research were explained. 

Chapter 2: Literature review 

An examination of the literature detailing the history of development of low cost 

sensor system, computation of gait trajectory, non-linear analysis of sEMG, history 

of asymmetry study with different approaches and rehabilitation recovery models. 

Chapter 3: Methodology 

The sensor selection for the development of the gait sensor system was explained. 

Three sets of experiment were conducted to achieve the research objective. The 

data processing was explained in this chapter. 
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Chapter 4: An inertia integration method 

A new resetting mechanism algorithm was introduced to obtain the gait trajectory. 

The resetting algorithm was validated using high speed video camera.  

Chapter 5: Conventional gait analysis 

The gait characteristics of stroke patients were being studied and compared to 

healthy human gait. The correlation between spatial-temporal parameters and gait 

velocity and TUG score were being analysed. Gait classification using Hierarchical 

Cluster Analysis was performed based on multiple inputs.  

Chapter 6: Kinesiology based gait analysis- A new fractal-based kinetic index 

to characterise gait after stroke 

The correlation between kinesiology information (sEMG) with TUG score is not 

well known. In this chapter, Higuchi Fractal Dimension (HDF) was applied to 

extract features from sEMG during gait. These features was used to explain the 

phenomenon in TUG test. A novel algorithm, Kinetic Index (K.I.) was proposed by 

incorporating the features extracted from HFD. This K.I. was highly correlate to 

TUG test, which provided information such as risk of fall. Besides that, this K.I. 

was used as a single input to classify stroke patients into three different 

homogeneous subgroups. 

Chapter 7: Kinematic based gait analysis- Cyclogram Symmetry Region of 

Deviation 

A new Cyclogram Symmetry Region of Deviation (CSROD) was proposed in this 

chapter to eliminate the issues addressed by conventional asymmetry quantification 

methods. This CSROD method is similar to original Symmetry Region of Deviation 

(SROD) method. The main advantage of using CSROD is it replaces the walking 

data from a large group of healthy subject from SROD with a standard 45° 

symmetry line.  
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Chapter 8: Development of mathematical gait prediction models in stroke 

rehabilitation 

Two new gait functionality indices were proposed here to assess the gait 

performance of stroke patients. These two indices were being used as the dependent 

variables to the recovery models to predict the walking ability at different time. 

Two different recovery models were computed. The first model was solely based 

on patient’s baseline gait data and the second model was based on the recovery 

trajectory from a period. 

Chapter 9: Determine the fundamental principles of gait recovery through 

sEMG decomposition 

The two gait functionalities indices introduced in Chapter 8 can only detect the 

changes of gait performance physically. It is necessary to study the development of 

lower limb muscles associated with the changes of these two indices. sEMG from 

stroke patients is decomposed using Ensemble Empirical Mode Decomposition 

(EEMD). This method can decompose the sEMG to provide a rough estimation of 

motor unit recruitment and frequency. 

Chapter 10: Conclusion and Future Work 

This chapter concluded all the experiments and analysis of results in this research. 

The future work based on the limitation from this research was explained. 
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Chapter 2 Literature review 

2.1 Introduction  

This chapter explores some background information necessary to fully understand 

the present work and its associated goals. Here, the literature review covers the 

various topics: 

1. To introduce the terminology of gait and relevant parameters for gait analysis. 

2. To review the history of gait sensor development and computation of gait 

trajectory. 

3. To review the methods of asymmetry index used in previous study and the 

development of new asymmetry algorithm. 

4. To review the current analytical tool to assess the recovery status of stroke 

patients. 

5. To discuss the features extracted using non-linear techniques on surface EMG. 

6. To review the history of prediction of recovery model. 

Lastly, the key points from the literature review are summarised in Section 2.7. 

2.2 Gait terminology 

Quantitative gait evaluation is important for early stroke’s gait rehabilitation as 

Teasell et al [49] stated approximately 60% of stroke survivors has the ability of 

limited walking in some manner. To understand more about gait analysis, the gait 

terminology must be well apprehended.  

Gait is a cyclic phenomenon that can be divided by phases and there are two sets 

of terminology currently in use; traditional terminology and Rancho Los Amigos 

(RLA). According to Rancho Los Amigos (RLA) system [50], it describes the gait 

trajectory in segments of time which mainly consist of two phases, stance and swing 



University of Nottingham Malaysia Campus  

 

 

14 

 

periods. Ideally, a gait cycle is started from Initial Contact, or heel strike in 

conventional terminology. It is defined as the instant of first contact between heel 

and ground so the limb is positioned to begin stance with heel rocker. Both lower 

extremities are still in contact with the surface during Initial Contact until the 

Loading Response where the other foot is lifted for swing and this outstretched limb 

absorb the shock caused by the weight transferred from the other leg. This is the 

beginning of single limb support and this period accounts for 0-10% of the gait 

cycle. The single limb support period continues as the extended foot is lifted totally 

from the ground and this is the commencement of Mid Stance. The human body 

weight now is only supported by the foot on ground throughout this interval and it 

consumes 10-30% of the gait cycle. The stance phase is completed with Terminal 

Stance, where the ipsilateral heel off the ground and the opposite foot starts the 

Initial Contact when it strikes the ground and this takes 30-50% of the gait event. 

Swing phase occurs right after the end of stance phase and it begins with Pre-Swing. 

This interval is the preparation of toe-off and the limb is positioned such that it is 

ready for swing. The weight now is transferred to the contralateral limb and this is 

part of the 50-60% of gait cycle. Initial Swing or toe-off takes place where the limb 

begins to lift from the ground and the interval of gait cycle is 60-73%. Initial Swing 

ends when the swinging foot is opposite the stance foot and this is called the Mid 

Swing. During this phase, the limb advances from its trailing position. This phase 

is taking place in 73-87% of gait cycle. A complete 100% gait cycle ended with 

Terminal Swing. The limb advancement is accomplished as the tibia is moved ahead 

the thigh and the knee is extended maximally. This phase is important as this is the 

deceleration of the swing limb and the preparation for stance. Fig 2.1 shows a 

schematic diagram between Rancho Los Amigos (RLA) system and conventional 

terminology for a complete gait cycle. 
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Fig 2.1. Gait Terminology of Conventional and RLA Terminology for Stance 

and Swing Phase. [51] 

Study of locomotion involves the analysis of the magnitudes, directions and rates 

of three coordinates axes in space [4], therefore there are variety of techniques to 

present this analysis of the fundamental determinants of gait. Centre of mass 

(COM) is introduced to simplify the concept of the phenomena of locomotion 

during a cycle of motion and the entire body weight is concentrated at one point 

and the limbs are regarded as weightless levers of the body. In the early years 1953, 

Saunders [4] reported that the displacement pattern of the COM is the summation 

of all the forces and motions acting upon with the translation of the body from one 

point to another during a gait cycle. For a normal gait cycle, it can be predicted that 

the COM fluctuates upward and downward and forms a smooth regular sinusoidal 

curve in the plane of progression. 

Spatial and temporal measures represent distance and time measurement 

respectively. In gait analysis, spatial-temporal gait parameters are important to 

define a gait cycle quantitatively. The definitions of these parameters are shown in 

Table 2.1, according to Bugane et al [52]. These parameters are normally used to 

quantify the performance of different stroke patients and a sign of recovery 

throughout certain treatment. 
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Table 2.1. Definitions of Spatial Temporal Gait [52] 

Gait Parameters Unit Definition 

Gait Cycle Time second Time between two consecutive heel strike of 

the same foot 

Stride length meter Distance between two consecutive heel 

strike of the same foot 

Step duration second Time between ipsilateral and contralateral 

heel strikes 

Foot symmetry % Step duration as percentage of gait cycle 

Stance time second Duration gait cycle of foot support phase, 

heel strike to toe off  

Swing time second Duration of gait cycle of foot swing phase, 

toe off to heel strike 

Double support time second Duration of gait cycle of the phase of both 

limb supported on ground 

Single support time second Duration of gait cycle of the phase of single 

limb supported on ground 

Gait speed m/s Average speed integrated from acceleration 

within the gait cycle 

Cadence Strides/min Number of strides in a minute 

2.3 Review of gait sensors 

Quantitative gait analysis provides physiotherapists an understanding about the 

condition of patients to select a suitable treatment during rehabilitation process. 

Intense research works had been done to analyse the gait pattern and try to extract 

valuable information by using different kind of sensors. Kinetic (ground force and 

pressure), kinematic (angles, velocities and acceleration) and kinesiology (EMG) 

analysis have been carried out to evaluate the effects of rehabilitation training. In 

recent years, there have been increasing amounts of literatures on development of 

low cost gait sensor systems to reduce the cost and provide quantitative analysis on 

gait detection during rehabilitation. Multiple body-worn sensors such as 

accelerometer [52–54], gyroscope [11,55,56], bending sensor [57,58], force sensor 

[59–61] and electromyography (EMG) sensor [40,62,63] are placed at different 

body positions to obtain spatial temporal gait parameter.  

Back in 1960’s, researchers had focused on obtaining foot measurement directly 

from various pressure sensors [64]. Lereim and Hanssen et al [65] used transducer 
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to record the pressure distribution under the sole of the foot during 1970s. In 1990, 

Wertsch et al [66] developed a system consists of seven pressure sensors which 

were located at seven high pressure point determined by subjects walking on inked 

paper. Later in 1994, Hausdorff et al [67] introduced a simple “footswitch” system 

consisted of two Force Sensitive Resistors (FSRs) on an insole that was capable of 

detecting temporal gait parameters. The results were analysed and compared with 

commercial force plates and it provided a promising outcome of 3-5% of error. In 

a recent study, Howell et al [68] described the design of a low-cost FSRs sensors 

insole to evaluate six healthy subjects and four hemiplegic stroke subjects. Besides 

obtaining temporal parameters, Howell et al [68] also determined the ground 

reaction force and moments corresponding to ankle and knee joints movements. 

The results showed the system was reliable since the root mean square errors 

between the designed system and validated results using Motion Analysis Lab were 

under 10%. 

In 2004, Salarian et al [55] developed an ambulatory gait analysis method using 

body attached gyroscope. Six gyroscopes were positioned at left and right forearms, 

thighs and shanks. In this experiment, a group of Parkinson patients (5 males, 5 

females) and a group of normal healthy subjects were recruited. The gait parameters 

were compared with motion capture system and the outcomes showed insignificant 

errors. Zdragkas et al [54] proposed an algorithm to identify the gait event by using 

a three-axis accelerometer mounted on foot. After obtaining the Y and Z-axis 

accelerometer signals, two new signals, namely energy and product signals, were 

created to amplify the gait events by narrowing the gait event peaks, which created 

maximum and minimum extrema in gait events and remove the irrelevant events. 

Energy signal is the sum of squared Y and Z-axis acceleration, while product signal 

is the product of Y and Z acceleration. Gait events such as initial swing, terminal 

swing, foot strike, begin stance, toe off and opposite foot stride can be deduced 

from the two new signals. 

Single sensor in a system only provides limited gait information. Hence, recent 

researches have expanded their interests in sophisticated measurement capabilities 
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by dealing with more sensors in one platform. In early 2000s, Aminian et al [11] 

had designed an ambulatory system, which included two FSRs in each foot and 

gyroscopes on each shank for estimation of spatial-temporal parameters during long 

periods walking for nine young and 11 elderly subjects. Wavelet analysis was 

implemented to acquire the gait temporal parameters and the accuracy was assessed 

by using standard foot pressure sensors. The final outcome showed almost identical 

results for both systems. Similar work had been carried out by Pappas et al [69] 

who integrated three FSRs and a gyroscope. The performance of this device was 

validated by optical motion analysis system Vicon 370. A gait phase detection 

algorithm was recommended to distinguish the transition of each gait phase using 

the device. Experiments were carried out by two different groups; group A 

contained ten healthy adults and group B contained six adults diagnosed with gait 

pathologies. The outcomes of the experiments showed high accuracy of the system 

and the ability to differentiate from non-walking abilities. Lopez et al [70] on the 

other hand adduced an inexpensive and user-friendly methodology to enable 

clinical application for rehabilitation.  One accelerometer was mounted on the heel 

of the shoes and five FSRs were attached on the insoles. Data collection was 

performed on a group of sixteen healthy subjects and seven post stroke patients. 

The estimation error for both societies was in the range of 2.6-18.6%. 

Mariani et al [71] installed an inertial measurement unit (IMU) consisting of three 

axis gyroscopes and accelerometers on forefoot and an ambulatory pressure insoles 

were used as reference to authenticate the IMU. Ten healthy subjects, 12 patients 

with ankle osteoarthritis, 11 patients treated by total ankle replacement and nine 

patients treated by ankle arthrodesis were recruited. They were asked to perform 

50m walking trials and the comparison of gait events between reference system and 

IMU system showed valid accuracy and precision. Meanwhile Liu et al [72] built 

a wearable sensor system based on three gyroscopes and a two-axis accelerometer 

to detect the gait phases and joint angle of ten subjects and the performance of the 

system was validated through commercial optical motion analysis system Hi-

DCam. The correlation coefficient and root mean squared error between two 

systems proved the good reliability of the system. Frenez et al [58] fused three 
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pressure sensors on an insole and two bending sensors with one on the ankle and 

one on the insole to form a wireless system and it was tested with seven healthy 

subjects.  

In year 2008, Bamberg et al [73] had successful developed a wireless wearable 

system named “GaitShoe” which integrated three orthogonal accelerometers, three 

orthogonal gyroscopes, four force sensors, two bidirectional bend sensors, two 

dynamic pressure sensors and electric field height sensors. To capture the kinematic 

motion of the foot, accelerometers and gyroscopes were placed at the back of the 

shoe. Temporal and kinetic parameters were accessed by force sensors and dynamic 

pressure sensors and the bidirectional bend sensor was used to analyse flexion 

during gait. To validate this sensor system, 16 volunteers from both healthy and 

Parkinson’s disease subjects were recruited to place the GaitShoe on their own 

walking shoes. They were underwent simultaneous gait evaluation using the MGH 

BMLs Selspot II data acquisition system. The outputs had involved the application 

of standard pattern recognition techniques to discriminate between healthy gait and 

Parkinsonian gait.  

Despite large number of previous research works on developing low cost gait 

systems, there are still restriction of each individual system. As mentioned 

previously, single sensor in a system only provides limited information [54,55]. To 

solve that problem, researchers integrated multi-sensors in a system. Different 

researchers used different sensors in the system to achieve their project objective 

and this increases the difficulties in the set-up for stroke patient. Therefore, redesign 

a sensor system which is easy to wear and comfortable for stroke patients is 

necessary 

Most of these inertial-based sensor system consist of accelerometer and gyroscope 

to track rotational and translational movements [15]. For gait analysis, the position 

and orientation of lower limbs can be determined by integrating the acceleration 

and angular velocity from IMU. However, the performance of inertial sensor is still 

relatively low [16]. The low SNR and sensor drifting lead to estimation error grow 

unbounded. Cross-axis sensitivity, cross-coupling, misalignment, bias, sensor 
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drifting and noise often occurred in these sensors [17,18] This issue can be solved 

by applying frequent measurement update methods. These methods will correct the 

position and orientation based on certain definition.  

Kalman Filter [74] is one of the most popular method used in this field. Kalman 

filter is a powerful tool to predict and estimate the state variables based on state 

model and measurement model. For example, the angle measurement state model 

from gyroscope can be constructed as a combination of angle and angular velocity 

bias [75]. The angle measurement model in this study was the angle determined 

from acceleration and gravity. Cooper et al [18] extended the method in [75] to 

determine the roll and pitch angle during walking. The state model included 

velocity, acceleration, angular velocity, gyro bias, roll and pitch. To obtain the 

position and orientation of the sensors, Sabatini [17] corrected the rotation 

quaternion in the state model by removing the bias from acceleration and 

magnetism. Similar technique can be seen in [76]. Mazza et al [77] state model of 

the filter was obtained by combining attitude quaternion and gyroscope bias. In this 

study, the measurement model is the relationship between acceleration and 

gyroscope. Other approaches use Kalman Filter to remove noises or correct biases 

including fusion of inertia sensor with GPS [78–80] and fusion of inertia sensor 

with motion camera [81]. 

Besides Kalman filter approach, some other researchers used different techniques 

to obtain position and orientation of the sensors. Stacy et al [73] minimised the 

error by dividing the signals into different gait cycles. The last sample in the signal 

was adjusted to remove the bias. Another resetting mechanism method proposed by 

Sabatini et al [19] can also be used to remove the drifting and noise in the signals. 

Other methods such as stick figure model [82] or pendulum model [83] have also 

been used to acquire the gait trajectory. 
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2.4 Gait asymmetry 

2.4.1 Conventional asymmetry quantification 

Symmetry of gait is defined as no difference in gait parameters between left and 

right legs [30]. Stroke patients often associate with gait asymmetry and this leads 

to the idea of quantify gait asymmetry. It is believed that gait asymmetry 

quantification had been introduced since 1970s [84,85] and popularised in the 

1980s [86–88]. Gait asymmetry can be assessed in the form of symmetry indices 

derived from parameters obtained in each side of body, or in the paretic leg and 

non-paretic leg (as shown in Table 2.2). These formulas use discrete values of 

different gait parameters to quantify the gait symmetry between sides. Xunaffected is 

the gait parameter from the unaffected leg and Xaffected is the gait parameter from 

the affected leg. The input parameters X can be any of the spatial-temporal 

parameters such as gait speed, step length, joint angle, stance time or swing time, 

depending on the need of study. Theses indices often appear in the form of 

univariate parameter where the inputs only consist of a single gait parameter.  

Symmetry ratio is the simplest form to calculate gait symmetry. It is the ratio of the 

gait parameter from one side over the other side. Symmetry ratio of 1 indicates a 

perfect symmetry. A ratio larger than 1 indicates the value on numerator is larger 

than that of on denominator and ratio smaller than 1 means otherwise.  Symmetry 

index is the difference between legs normalised to the summation of both legs and 

is expressed in percentage [87]. A value of 0% indicates a perfect symmetry and 

asymmetry increases as the difference of left and right legs increases. A more recent 

method, named as log transformation, calculates the logarithm of symmetry ratio 

multiplied by 100 and expresses it in percentage [89]. The interpretation of the 

result is similar to the symmetry index where 0% implies a perfect symmetry. 

Asymmetry increases when the residual of the numerator increases. Finally, 

symmetry angle is calculated as 450 minus arc tangent of symmetry ratio and 

divided by 900 [90]. The value is expressed in percentage. Symmetry angle of 0% 

indicates perfect symmetry and a greater symmetry angle suggests a greater 
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asymmetry. Unlike symmetry index and log transformation of symmetry ratio, the 

symmetry angle does not have a negative value.  

On the other hand, statistical approaches such as correlation coefficient, Pearsons 

coefficient, root-mean-square difference and analysis of variance are attracting 

attention in gait symmetry quantification as they possess better sensitivity [91–93]. 

For example, multi-resolution entropy analysis had been applied to study the gait 

asymmetry in Parkinson disease, Huntington disease and amyotrophic lateral 

selerosis [94]. Principal component analysis (PCA) is another promising approach 

as it reduces the dimensions of the data with minimum loss of information [95]. 

PCA had been applied to correlate the data obtained between joints and muscles in 

the same and opposite lower limb [32,96–98]. Hong and Polk [99] applied Parelled 

Factor Analysis (a variation of PCA) to examine the symmetry and 

interrelationships between joints. Nüesch et al [100] applied PCA and linear 

support vector machine to classify asymmetric osteoarthritis gait patterns. Results 

showed that there are significant differences in hind foot dorsiflexion angle and 

vertical ground reaction force between affected leg and non-affected leg.  

Table 2.2. Symmetry Indices 

Name Equation 

Symmetry 

Ratio 𝑆𝐼 = |
𝑋𝑎𝑓𝑓𝑒𝑐𝑡𝑒𝑑

𝑋𝑢𝑛𝑎𝑓𝑓𝑒𝑐𝑡𝑒𝑑
| 

𝑆𝐼 = |1 −
𝑋𝑎𝑓𝑓𝑒𝑐𝑡𝑒𝑑

𝑋𝑢𝑛𝑎𝑓𝑓𝑒𝑐𝑡𝑒𝑑
| 

Robinson Index 
𝑆𝐼 =

𝑋𝑢𝑛𝑎𝑓𝑓𝑒𝑐𝑡𝑒𝑑 − 𝑋𝑎𝑓𝑓𝑒𝑐𝑡𝑒𝑑

𝑋𝑢𝑛𝑎𝑓𝑓𝑒𝑐𝑡𝑒𝑑 + 𝑋𝑎𝑓𝑓𝑒𝑐𝑡𝑒𝑑
∗ 100 

Log 

transformed 𝑆𝐼 = |100 ∗ (ln (
𝑋𝑎𝑓𝑓𝑒𝑐𝑡𝑒𝑑

𝑋𝑈𝑛𝑎𝑓𝑓𝑒𝑐𝑡𝑒𝑑
))| 

Symmetry 

angle 
𝑆𝐴 =

[45𝑜 − arctan (
𝑋𝑎𝑓𝑓𝑒𝑐𝑡𝑒𝑑
𝑋𝑢𝑛𝑎𝑓𝑓𝑒𝑐𝑡𝑒𝑑

)]

90
∗ 100 

Xaffected is the parameter from paretic leg. Xunaffected is the parameter from non-paretic 

leg. SI is symmetry index. SA is symmetry angle 
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2.4.2 Recent development on gait asymmetry analytical techniques 

As mentioned, gait asymmetry could be determined through various indices in 

Table 2.2. However these indices have several limitations. For example, (i) they 

have low sensitivity and provide discrete value only, (ii) they are unable to describe 

the complexity of gait asymmetry, (iii) they are unable to provide sufficient joint 

information (such as timing and magnitude of abnormal joint flexion-extension) 

[31,101,102], and (iv) non-standardisation on selecting the gait symmetry indices 

and gait parameters. Moreover, the interrelationships between joints on the same 

lower extremity could not be revealed through these indices. It has stimulated 

research interest to explore new methodologies to quantify the gait asymmetry. 

In 1998, Goswami et al [103] introduced a new parameterisation application to 

characterise human walking patterns. Cyclograms are used to derive quantities 

from geometrical features of joints. The gait asymmetry was then measured based 

upon the geometrical properties of bilateral cyclograms [104]. Cyclograms are also 

known as angle-angle diagrams. They are generated by simultaneously plotting two 

or more joint variables. This technique was compared and validated with symmetry 

index to examine the effect of peroneal nerve palsy patients receiving orthosis 

treatment [105]. Other examples of using bilateral cyclograms to quantify gait 

symmetry have been reported in relevant literatures [106–109]. 

On the other hand, phase portrait is a geometrical tool to deduce important 

characteristics of a dynamical system and it has been used for decades [110–113]. 

DiBerardino et al [114] quantified the phase portrait in terms of inter-cycle 

variability and complexity. In this case, the variability measurement is based on the 

consistency of phase portrait location throughout each gait cycle and it can be 

measured by the fluctuation of the centroid location in the phase diagram. The 

centroid of each gait cycle is found by the mean of all (x,y) data points. Centroid 

area and centroid drift are used to assess the inter-cycle variability. Centroid area is 

the bivariate 95% confidence ellipse area swept out by centroid over gait cycle. 

Centroid drift is the path length travelled by the centroid over the gait cycle. 

Meanwhile complexity is defined as the minimum number if harmonics in a 
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reduced-order fit. This number is used to reduce 99.9% of error between full order 

fit and zero-order fit of the phase portrait. It can also be described as a quantified 

of harmonics needed to describe the shape of phase portrait by performing Elliptical 

Fourier Analysis on every gait cycles for each limb. The maximum error between 

full and zero-order fit is calculated using sum of squared errors (SSE): 

 
𝑆𝑆𝐸𝑚𝑎𝑥 =∑((𝑥𝑓𝑢𝑙𝑙,𝑖 − 𝑥𝑐)

2
+ (𝑦𝑓𝑢𝑙𝑙,𝑖 − 𝑦𝑐)

2
)

𝑛

𝑖=1

 (2.1) 

where (xfull,i, yfull,i) is the ith point in the full fit, (xc, yc) is the average centroid and 

n is the number of data points. Error between reduced-order (j-harmonic) fit and 

full fit is computed by Eq (2.2) 

 
𝑆𝑆𝐸𝑗 =∑((𝑥𝑓𝑢𝑙𝑙,𝑖 − 𝑥𝑗,𝑖)

2
+ (𝑦𝑓𝑢𝑙𝑙,𝑖 − 𝑦𝑗,𝑖)

2
)

𝑛

𝑖=1

 (2.2) 

where (xj,i, yj,i) is the reduced fit of j-harmonics. SSEj is iteratively recomputed until 

error between full and j-harmonic fit is less than 0.1% of maximum error: 

SSEj≤0.001*SSEmax. Fig 2.2 shows the phase portraits of the braced and unbraced 

knee joint trajectory [114]. It showed that the braced trajectory is more complex 

since the centroid area is smaller. Gait symmetry can be determined by looking at 

the complexity on both legs. Huge difference in complexity among two legs 

indicates severe gait asymmetry. Furthermore, the centroid is drifting over gait 

cycle indicates that subjects had different gait patterns. This technique can provide 

visual display and discrete value of gait symmetry and gait variability throughout 

the gait cycle. Other studies related to this method can found in [115,116]. 
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Fig 2.2. Example of result from Phase portrait (a). Unbraced knee joint 

trajectory (b). Braced knee joint trajectory[114]. 

In 2003, Manal and Stanhope et al [117] revealed the deviation of the gait pattern 

relative to normative data by colour coding the magnitude and direction of the 

deviations. The main advantage of this technique is that the time history of several 

variables can be displayed simultaneously. The deviation of patient data from 

normative data from healthy human, d, at interval i is given in  

 
𝑑𝑖 =

𝑥𝑖 − 𝑋𝑛𝑖
𝑆. 𝐷.

 (2.3) 

where  x is the patients data, Xn is the normal value from healthy subject and S.D. 

is standard deviation at Xn. Colour codes red and blue indicate negative and positive 

respectively which is assigned to every value of d at point i and d will be categorised 

to 4 sub-ranges (i.e., −3 ≤ d< −1; −1 ≤ d< 0; 0 <d ≤ 1; 1 <d ≤ 3). This deviation d 

will further process in 𝑓𝑑 
′ = 3𝑑2 which will be substitute in Eq (2.4) and (2.5) 

 𝐶 = 85𝑓𝑑         
′ {−1 ≤ 𝑑 ≤ +1} (2.4) 

𝐶 = 305.7 − 17.596𝑓𝑑
′ + 0.2324𝑓𝑑

′2      {𝑑 < −1; 𝑑 > +1} (2.5) 

C will be converted to an integer based on Table 1 in [117] and then it can be used 

in Eq (2.6) 

 𝑅𝐺𝐵 = (𝑅 + 𝐺 × 256 + 𝐵 × 2562) (2.6) 

Fig 2.3 shows the colour coding results of a subject with abnormal walking pattern 

[117]. The colour bars from top to bottom are: ankle angle, ankle moment, knee 

angle, knee moment, hip angle and hip moment respectively over one complete gait 

cycle. This technique allows users to interpret the result by inspecting the colour. 

Red represents severe asymmetry while green corresponds to better symmetry. This 
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technique also provides the temporal information. The instant where most severe 

asymmetry occurred could be detected. This technique was implemented in [118] 

where one subject with hip flexor muscle weakness was tested and the hip and knee 

angles were obtained along with 15 healthy subjects. It successfully depicted the 

joints movement deviation from normal data in a graphical way. Turner et al [119] 

applied this technique on 74 rheumatoid arthritis patients and 54 healthy human to 

differentiate the foot contact angle, ankle moment, ankle power, navicular height 

and rear foot motion from these two different populations. Another similar study 

was conducted by Turner [120].  

 

Fig 2.3. Example of Colour Coding Results. The first letter of the two character 

corresponds to ankle (A), knee (k) and hip (h) joint, and second letter 

represents A (angle) and M (Moment) [117]. 

Crenshaw and Richards et al [121] proposed a new method to analyse the symmetry 

and normalcy of gait patterns. There are four measurements proposed: trend 

symmetry/normalcy, phase shift, range amplitude ratio and range offset. Trend 

symmetry is measured by utilising eigenvectors. The mean from both right and left 

legs is calculated and then subtracted by each data point from right and left leg as 

shown in Eq (2.7)  

 
{
𝑋𝑇𝑖
𝑌𝑇𝑖
} = {

𝑋𝑖
𝑌𝑖
} − {

𝑋𝑚
𝑌𝑚
} (2.7) 

Xi and Yi are the data point from right and left leg respectively from one data point, 

Xm and Ym are the mean value of one gait waveform and XTi and YTi are the translated 

elements for right and left leg respectively. This translated data points are then form 
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a matrix M where each pair of points is a row, and M is multiplied by its transpose 

MTM to form a square matrix S to extract eigenvector from matrix S. This 

eigenvector is used in the process of rotating each row of M between eigenvector 

and X-axis (θ) in Eq (2.8) 

 
{
𝑋𝑅𝑖
𝑌𝑅𝑖
} = [

𝑐𝑜𝑠𝜃

−𝑠𝑖𝑛𝜃

𝑠𝑖𝑛𝜃

𝑐𝑜𝑠𝜃
] {
𝑋𝑇𝑖
𝑌𝑇𝑖
} (2.8) 

where  XRi and YRi are the rotated point from right and left leg respectively and θ is 

the angle formed between eigenvector and the X-axis. Variance of the points is then 

calculated along X and Y-axes and the trend symmetry value is the ratio of this 

variability in percentage where 0% indicates perfect symmetry. Meanwhile the 

second measurement phase shift can be examined by the phase relationship between 

waveforms. For example, one waveform is phase-shifted 1% increments where 

sample 1 becomes sample 2, the last sample becomes sample 1, etc and trend 

symmetry is recalculated for each shift. The purpose of phase shift is to determine 

the smallest value needed to correct the phase to obtain symmetry. This value can 

be used as an indicator of symmetry. There are two additional measurements, range 

offset and range amplitude ratio. The definition of range offset is the measure 

subtracting average right leg waveform from average left leg waveform. Range 

amplitude ratio is the ratio of range of motion of left leg to range of motion of right 

leg. This method was utilised in [122] where the application of trend symmetry, 

range offset, range amplitude and phase differences were used to compare the 

treadmill training and overground training for healthy human. The trend symmetry 

of each hip, knee and ankle moment force between involved and uninvolved limbs 

for 13 lateral ankle sprain patients and 19 healthy subjects were calculated [123]. 

This trend symmetry approach is further used in [124] to compare the gait 

symmetry of active transfemoral amputees while using passive mechanical knee 

joint or microprocessor controlled knee joint. The concept of phase shift between 

left and right leg were implemented in [125] to reduce the root mean square 

difference.  
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Region of deviation is a relatively new approach to determine the gait asymmetry 

and it was introduced in year 2007 by Shorter [101]. Region of deviation contains 

of two derivations; the first is referred as Symmetry region of deviation (SROD) 

which is a measurement of the bilateral joint asymmetry and the second is called 

Individual region of deviation (IROD) which is to determine the deviation of 

individual joint angle for a given limb.  

𝑆𝑅𝑂𝐷(𝑡) = {

〈∆𝜃𝑗
𝑖〉 − (〈∆𝜃𝑗

𝑁𝑜𝑟𝑚〉 + 〈𝑆𝐷𝑗
𝑁𝑜𝑟𝑚〉), 〈∆𝜃𝑗

𝑖〉 > 𝑆𝑁𝑜𝑟𝑚+

〈∆𝜃𝑗
𝑖〉 − (〈∆𝜃𝑗

𝑁𝑜𝑟𝑚〉 − 〈𝑆𝐷𝑗
𝑁𝑜𝑟𝑚〉), 〈∆𝜃𝑗

𝑖〉 <  𝑆𝑁𝑜𝑟𝑚−

0, 𝑆𝑁𝑜𝑟𝑚− ≤ 〈∆𝜃𝑗
𝑖〉  ≤ 𝑆𝑁𝑜𝑟𝑚+

 (2.9) 

Eq (2.9) presents the formula to calculate SROD where ∆θi
j is the difference 

between left and right leg, ∆θi
j = ∆θi

j,Affected - ∆θ
i
j,Unaffected; ∆θj

Norm and SDj
Norm are 

the average and standard deviation of healthy person; SNorm+ = ∆θj
Norm + SDj

Norm 

and SNorm- = ∆θj
Norm - SDj

Norm; indices i stands for affected or unaffected leg, j 

stands for the joint measurement. 

𝐼𝑅𝑂𝐷(𝑡) = {

〈𝜃𝑗
𝑖〉 − (〈𝜃𝑗

𝑁𝑜𝑟𝑚〉 + 〈𝑆𝐷𝑗
𝑁𝑜𝑟𝑚〉), 〈𝜃𝑗

𝑖〉 > 𝐼𝑁𝑜𝑟𝑚+

〈𝜃𝑗
𝑖〉 − (〈𝜃𝑗

𝑁𝑜𝑟𝑚〉 − 〈𝑆𝐷𝑗
𝑁𝑜𝑟𝑚〉), 〈𝜃𝑗

𝑖〉 <  𝐼𝑁𝑜𝑟𝑚−

0, 𝐼𝑁𝑜𝑟𝑚− ≤ 〈𝜃𝑗
𝑖〉  ≤ 𝐼𝑁𝑜𝑟𝑚+

 (2.10) 

Similarly, IROD is computed by Eq (2.10). θi
j is the joint angle of specific joint; 

θj
Norm and SDj

Norm are the average and standard deviation of healthy person; INorm+ 

= θj
Norm + SDj

Norm and INorm- = θj
Norm - SDj

Norm; indices i represents affected and 

unaffected leg and j represents particular joint from right or left leg. Fig 2.4 

represents the result of one subject walking with knee braced [101]. Fig 2.4 (a) is 

SROD of hip and Fig 2.4 (b) is the IROD of hip. Both graphs have four lines; the 

standard deviation of unbraced/healthy group, the average value of 

unbraced/healthy group, the standard deviation of unbraced/healthy group and the 

knee brace subject value from top to bottom. SROD showed the joint deviation 

from both leg and IROD showed the difference of single joint from normal healthy 

joint. This technique allows interpreter to distinguish the magnitude and timing of 

asymmetry by analysing the shaded area. Relevant clinical finding implementing 

this technique can be found in  [126] where the deviation in the shape of mean 
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vertical position of the centre of mass of the total system COMTSYS on healthy 17 

healthy subjects was determined by region of deviation. 

 

(a)                       (b) 

Fig 2.4. Example of Region of deviation of hip joint for one individual during 

knee braced condition, (a) SROD, (b) IROD [101]. 

2.5 Stroke 

According to American Heart Association (AHA) 2011 report [127], there were 

795,000 people suffered from new or recurrent stroke. World Health Organization 

(WHO) [128] stated that there were around 1,073,569 patients died from 

cerebrovascular disease in south east asia regions in year 2004. In Malaysia, nearly 

40,000 patients suffered from such disease every year according to NASAM [1].  

Stroke is a type of cerebrovascular accident which caused by focal injury to the 

central nervous system (CNS) that causes cerebral infarction [129]. AHA [130] 

classified stroke based on the causes of the accident: 

1. Ischemic stroke - The most common type of stroke caused by focal cerebral, 

spinal or retinal infaction. 

2. Hemorrhage - Two types of hemorrhage, one is caused by intracerebral 

hemorrhage and the other is caused by subarachnoid hemorrhage. The first  

hemorrhage is a signs of neurological dysfunction attributed to focal collection 

of blood within the brain, the second hemorrhage is caused by bleeding into the 

subarachnoid space which is not caused by trauma. 

3. Transient ischemic attact (TIA) - It is also known as mini stroke caused by focal 

brain, spinal cord or retinal ischemia without acute infaction. 
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Stroke can causes weakness, or paresis on different part of the body. Extreme cases 

of paresis can leads to plegia, which refers to complete paralysis. Generally there 

are four type of weakness observed among stroke; mono (one limb affected), hemi 

(one side of the body affected), para (both lower limbs affected) and quadri (all 

limbs and torso affected) [129]. The most common observed condition is 

hemiparesis, which means one side of the body is paralysed. 

2.5.1 Gait impairments in individuals post-stroke 

Stroke patients often show several sensorimotor deficits such as poor coordination, 

abnormal posture and hemiplegia which leads to mobility problems and restrictions 

in their activities of daily living (ADLs). Early rehabilitation is crucial once patients 

are diagnosed with stroke as studies have shown that stroke patients could recover 

their limited walking ability [2,49]. The gait characterisation of stroke is therefore 

an important role to set appropriate rehabilitation goal.  

Chen et al [131] reported that stroke patients had inadequate propulsion of the leg 

during pre-swing, increased swing time and reduced knee flexion at the toe-off and 

mid-swing in the paratic limb. These phenomenons will lead to slow speed, poor 

coordination and gait asymmetry [63,132,133] among stroke. Mulroy et al [27] 

classified 52 individuals of stroke into four groups based on their speed. This study 

concluded that ankle dorsiflexion was inadequate in slowest group, lowest peak 

thigh extension in terminal stance in second slowest group and least knee and hip 

hyperextension in fastest group. Lamontagne et al [134] reported that maximum 

plantarflexor moment during stance phase and maximum dorsiflexion during swing 

phase on paretic sides were lower.  

Pizzi et al [135] recruited 56 stroke patients and compared their spatial-temporal 

parameters with 10 healthy subjects. These 56 patients were tested with shoes and 

without shoes. The results before rehabilitation training showed that these 56 

subjects had slower gait velocity, lesser cadence, shorter stride length, longer gait 

cycle time, longer stance time and swing time on both paretic and non-paretic legs, 
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longer double support time and greater gait asymmetry than healthy subjects. This 

result is supported by [136,137]. 

2.5.2 Recovery after gait rehabilitation in individuals post-stroke 

For the past few decades, the most common clinical practices used by the therapist 

in gait rehabilitation involve treadmill training [2],[31], strength training [138,139], 

functional electrical stimulation (FES) [140,141], partial and/or full body weight 

support [2] and electromyography (EMG) biofeedback [49], [142]. Since 

restoration of gait symmetry is always assumed to be one of the features of gait re-

education in stroke patients [143], we are going to study the effect of each 

rehabilitation methods on stroke patients by using gait asymmetry indices as the 

indicators.  

Several studies showed treadmill training (TM) has significant effect in improving 

gait symmetry compared to overground training (OG). In Love et al study [41], gait 

asymmetry was determined by the difference between the paretic and non-paretic 

leg. Temporal parameters such as stance time, single limb support time, and 

stance/swing ratio of treadmill training showed better gait symmetry than 

overground training. This result is supported by Khanna et al [42] who used 

Robinson symmetry index to compute the stance symmetry in TM and OG 

trainings. The results showed subjects who participated in OG had more severe gait 

asymmetry and subjects who participated in TM were able to walk in a more 

symmetry manner.  

Chen et al [43] tested the effect of increasing body weight support (BWS) on six 

stroke patients. These six stroke patients had improved the swing time symmetry. 

Similar result was shown in Hesse et al study [144].  

Robotic assisted devices such as Lokomat is a popular rehabilitation method 

because physiotherapists can pre-program a normal walking pattern into the device. 

Westlake and Pattens compared the effect of manual assisted body weight support 

treadmill training to Lokomat treadmill training [20]. In this study, eight stroke 

patients were trained by using Lokomat while another eight stroke patients were 
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allocated to manual-assisted body weight support treadmill training. Absolute step 

length ratios (SLRabs) of both groups before and after training were collected. 

Lokomat group exhibited an obvious improvement in SLRabs compared to other 

group. Geroin et al [145] found that the temporal symmetry ratio improved 

significantly in group of 10 stroke patients who participated in robot assisted 

training. 

Incorporating acoustic pacing during treadmill training has been shown to enhance 

gait symmetry [146]. During acoustic pacing, the patients need to synchronise the 

left and right steps to the tones played to the left and right ears respectively. In 

Roerdink et al study [146], the acoustic pacing was found to improve symmetry 

index of step length and step time in 10 stroke patients. Thaut et al [147] also 

demonstrated that rhythmic auditory stimulation led to a significant enhancement 

in swing time symmetry ratio compared to the neurodevelopmental therapy. In 

summary, these findings suggested that gait symmetry could be re-established by 

providing rhythmic cues.  

Muscle strengthening training is a specific physical intervention to regain lower 

limb functionality. Unilateral step training (UST) is specific training on the paretic 

lower limb of hemiparesis patient. In Kahn et al study [148], the effect of UST on 

10 stroke patients was evaluated. In a two-week duration, the step length 

asymmetry decreased significantly for both normal and fast walking speed. On the 

other hand, 15 stroke patients practiced trunk exercises and significant 

improvement of temporal gait symmetry was observed [149]. 

Pohl et al [150] suggested ankle foot orthosis reduced the postural sway and 

increased the weight-bearing on the paretic leg during stance time. Experiments on 

28 stroke patients were conducted. Results showed that subjects with AFO had a 

better gait symmetry in term of stance duration and deceleration horizontal ground 

force. This study was supported by Esquenazi et al  [151]. 

Meanwhile Swigchen et al [152] had tested the effect of FES on a 60 years old 

stroke patient to compare with the effect of AFO and without FES and AFO. The 
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results suggested that FES had a superior effect in improving swing time symmetry 

over AFO and without FES and AFO. Kim et al [153] triggered FES on tibialis 

anterior (TA) and gluteus medius (GM) during swing time to improve the 

swing/stance ratio symmetry ratio. 

Other interventions showed improvement on gait symmetry compared to 

conventional rehabilitation. For instance, force platform biofeedback [154] 

illustrated a better gait symmetry than conventional training. Besides that, aerobic 

cycle ergometry training also presented a significant improvement in gait symmetry 

during normal speed walking than conventional training. Walking backward 

training was utilised by Yang et al [155] and experimental group who received this 

additional training had better improvement in gait symmetry than conventional 

training. 

Previous section discussed about the improvement of gait after rehabilitation. 

However, there are studies reported conflicting results by showing no beneficial 

effects in rehabilitation treatments. Silver et al [156] studied five stroke patients 

who practiced treadmill training for three months. The gait symmetry ratio changed 

insignificantly before and after training. Brouwer et al [22] computed the gait 

symmetry by subtracting data from paretic leg and non-paretic leg. This study 

demonstrated that there was no difference in gait symmetry between overground 

training and treadmill training. These findings were consistent with other studies 

where treadmill training showed no or insignificant improvement in gait symmetry 

[143,157,158].  

Furthermore, Stock and Mock [159] investigated the effect of intensive exercise on 

weight bearing on paretic leg in 12 stroke patients. The patients practiced 6 hours 

daily intensive exercise for 2 weeks. The spatial-temporal gait symmetry showed 

no difference pre and post training. Similarly, Pomeroy et al [160] examined the 

effects of weight garments on balance and gait performance of stroke patients. 

Inconsistency of changes in symmetry index of step length, single support time, 
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double support time and support base width can be observed before and after the 

training. 

Cyclic training is performed using a cycle-ergometers to improve the muscle power 

of the lower limbs by altering the torque. In Ferrante et al study [161], 153 chronic 

stroke patients were chosen to perform gait pattern categorisation and three subjects 

were selected to represent each cluster at baseline. They were asked to complete 

cyclic training and subject 1 and 3 showed no improvement in gait symmetry before 

and after this training. Effect of aerobic training on gait symmetry was examined 

in 13 stroke patients [162]. This study reported that the swing time symmetry 

showed no significant improvement after training. Meanwhile training gait under a 

multi-tasking condition is hypothesised to facilitate development of automaticity in 

walking. Yang [163] tested this hypothesis among 15 community ambulators post-

stroke, 15 limited community ambulators post-stroke and 15 age-matched healthy 

subjects. However, the dual-task gait training led not significant differences in step 

length and single limb support symmetry indices. 

A summary of these studies is tabulated in Table 2.3. As discussed earlier, there 

were contradicting results across studies even with the similar type of intervention 

(e.g. treadmill training). These findings can possibly be explained by few reasons. 

First, the inherent variability in stroke gait may play an important role. Different 

stroke patients exhibit different gait patterns even with the similar diagnoses or 

severity. For example, some stroke patients present with a longer paretic step length 

and others have a longer non-paretic step lengths [34,164–166]. Step length is 

dependent on the plantar flexion propulsion momentum of the ipsilateral leg and 

the weight bearing capability of contralateral leg. The contralateral leg needs to 

support body weight (single support) while the ipsilateral leg swings forwards. The 

ipsilateral plantar flexor needs to generate sufficient propulsion force to move the 

body forward. Thus, when the affected leg cannot support the body weight during 

single support time, the non-affected leg will take a shorter step to avoid falls. The 

patients will present with a relatively longer paretic step length. On the other hand, 

when the affected leg is weak and cannot generate sufficient propulsion force at the 
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ankle, the paretic leg will show a shorter step length compared to the non-paretic 

leg.  

Second, the improvement in symmetry may reflect either a true recovery of the 

affected limb or simply indicates increased dependency on the non-paretic limb 

[167]. For instance, improvement in stance time symmetry ratio can be the result 

from an increased stance time of the paretic leg (true recovery) or a decreases stance 

time of the non-paretic leg (compensation). Therefore, the selection of the 

computational formula is critical. However, there was a huge variation in the 

selection of the computational formulas across studies. Further, the inconsistency 

in the selection of the input parameter for the formula may also contribute to the 

conflicting results. Some gait parameters might be less sensitive to detect the 

improvement. For instance, stance time contributes to large percentage during a full 

gait cycle, the relatively small difference between stance time of paretic and non-

paretic leg for stroke patients will cause low sensitivity [31,121,168]. For example, 

Fig 2.5 shows a comparison between overground training and treadmill training 

where the experimental data were extracted from Brouwer et al study [22]. Fig 2.5 

(a) is the comparison of two trainings by analysing the stance time and swing time 

from both non-paretic and paretic leg whereas Fig 2.5 (b) shows the comparison of 

both trainings in term of symmetry ratio of stance and swing time. The stance time 

from both paretic and non-paretic lower limbs had clear difference in both 

overground and treadmill training where treadmill training possessed shorter stance 

time. However, this difference cannot be observed from stance asymmetry. This 

shows that symmetry ratio is very insensitive to detect changes. 

Lastly, gait is a very complex movement that involves many variables to achieve a 

symmetrical rhythmic pattern. Using single parameter to quantify gait symmetry 

might oversimplify the complexity of gait. Univariate gait symmetry computation 

may lead to losing other meaningful information on other gait events. For example, 

gait symmetry could be resulted from the deviations occurred during both stance 

and swing phases. When using only stance time to measure gait asymmetry one 

may overlook the important information of the swing phase.  
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Fig 2.5. Comparison of overground training and treadmill training. (a) Bottom 

bars are stance (ST) time, top bars are swing (SW) time, (b) bottom bars are 

stance symmetry, and top bars are swing symmetry. OG=overground, 

TT=treadmill training, NnP=non-paretic leg, P=paretic leg [22]. 
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Table 2.3. Summary of Previous Studies. 
Aurthor  Intervention Subjects Inclusive and Exclusive Criteria Parameters Result after intervention 

1Love et 

al [41] 

Treadmill and 

overground. 

12 males and 6 

females stroke 

patient (11 with left 

hemiparesis, 7 with 

right hemiparesis). 

Exclusive criteria: 

Unstable angina pectoris, 

peripheral arterial occlusive 

disease, dementia, severe aphasia 

defined as the inability to follow 

two-step commands, and chronic 

pain or orthopaedic conditions 

that might change gait pattern.  

Symmetry ratio of stance 

(SIstance_time), single limb 

support 

(SIsingle_limb_support), 

stance/swing ratio 

(SIstance/swing). 

Treadmill training - 

SIstance_time=7.27 

SIsingle_limb_support=7.25 

 SIstance/swing=0.82 

 

 

Overground walking-, 

SIstance_time=14.38 

SIsingle_limb_support=14.54 

SIstance/swing=1.76 
1Khana et 

al [42] 

Treadmill and 

overground. 

4 males and 6 

females chronic 

stage stroke patient. 

Inclusive criteria: 

At least 6 months post stroke with 

residual hemiparetic gait, able to 

walk on treadmill, mini mental 

state exam score>23, able to 

follow two step commands. 

Exclusive criteria: 

Unstable angina, congestive heart 

failure within 3 months, major 

orthopaedic or chronic pain, 

poorly controlled hypertension, 

recent hospitalization for severe 

disease, severe ankle injure 

history, severe receptive aphasia. 

Symmetry index of 

stance phase (SIstance). 

Treadmill training – 

SIstance=9.8±9.3% 

 

Overground walking – 

SIstance=22.1±10.7% 

 

1Chen et 

al  [43] 

BWS 6 individuals with a 

single 

cerebrovascular 

accident 

Inclusive criteria 

A single stroke at least 6 months 

prior study, able to walk 

independently overground with 

use of AFO or assistive device 

Symmetry index of 

swing time. 

BWS=20%- 

SIswing≈30% 

 

BWS=50%- 

 SIswing≈20% 
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and able to advance the paretic 

limb independently while walking 

on treadmill 
1Thaut et 

al [147] 

RAS and 

NDT. 

41 males and 37 

females stroke 

patients 

Inclusive criteria 

Stage 4 or early stage 4 on 

Brunnstrom hemiplegia recovery 

scale 

Symmetry ratio of swing 

time (SIswing). 

RAS – 

Baseline SIswing=0.42 

Post-test SIswing=0.58 

 

NDT- 

Baseline SIswing=0.40 

Post-test SIswing=0.46 
1Yavuzer 

et al [154] 

Balance 

training and 

conventional 

training. 

25 men, 16 women 

stroke patients. 
Inclusive criteria: 

First time unilateral stroke, ability 

to understand instructions, able to 

stand and walk with or without 

assistance, no medical 

contraindication to walking. 

Exclusive criteria: 

History of any other neurological 

pathology, impaired vision or 

conscious levels, musculoskeletal 

conditions. 

Symmetry ratio of step 

length and single support 

time. 

Balance training- 

Baseline SIstep_length=0.64 

Baseline SIsingle_support_time=0.28  

Post-treatment SIstep_length=0.44  

Post-treatment SIsingle_support_time=0.24 

 

Conventional training 

Baseline SIstep_length=0.08 

Baseline SIsingle_support_time=0.11  

Post-treatment SIstep_length=0.30  

Post-treatment SIsingle_support_time=0.14 

 
1Yang et 

al [155] 

Backward 

walking 

training and 

conventional 

training. 

25 stroke patients. Inclusive criteria 

First cerebrovascular accident, 

unilateral motor, Brunnstrom 

motor recovert stage at 3 or 4, 

ability to walk 11m with or 

without a walking aid, stable 

medical condition, ability to 

understand instructions. 

Exclusive criteria 

Symmetry index of 

single limb support 

(SIsingle_limb_support). 

Backward walking training- 

Baseline SIsingle_limb_support=-59.06% 

Post-test SIsingle_limb_support=-14.99% 

  

Conventional training- 

Baseline SIsingle_limb_support=-37.84% 

Post-test SIsingle_limb_support=-32.55% 
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Have comorbidity or disability 

other than stroke, uncontrolled 

health condition, orthopaedic and 

other gait influencing diseases. 
1Kahn et 

al [148] 

Unilateral 

Step Training. 

18 stroke patients. Inclusive criteria 

At least 6 months stroke, walk 

without assistance at speed of less 

than 1.0m/s, permitted to use 

assistive device, unimpaired step 

length at least 20% less than 

impaired limb during overground 

walking. 

Exclusive criteria 

Presence of severe lower-

extremity contractures or 

orthopedic injuries, uncontrolled 

hypertension, cardiac arrhythmias, 

uncontrolled diabetes, bilateral, 

brain-stem or cerebellar stroke, 

significant cognitive impairment. 

Symmetry ratio of step 

length (SLA). 

Baseline SLA≈45%  

Post-test SLA≈35%  

1Pohl et al 

[150] 

With and 

without AFO. 

 

  

28 hemiparesis 

patients. 
Inclusive criteria 

Hemiparesis due to traumatic 

brain injury or stroke, used AFO 

for less than 1 week, able to stand 

for 20s without assistant, able to 

walk 15 m both with and without 

walking aids. 

Exclusive criteria 

Obvious ankle contracture, MAS> 

2, possess different neurological 

symtoms. 

Symmetry ratio of force  

(SIground_force) and stance 

duration (SIstance_duration). 

With AFO- 

SIstance_duration=2.0 

SIground_force=1.6 

 

Without AFO- 

SIstance_duration=3.3 

SIground_force=1.9 
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1Westlake 

et al [20] 

Lokomat and 

treadmill 

training. 

16 chronic 

hemiparetic stroke. 
Inclusive criteria 

At least 6 months post stroke 

resulting from a single cortical or 

subcortical stroke. 

Exclusive criteria 

Unstable cardiovascular, 

orthopaedic, neurological 

conditions, uncontrolled diabetes, 

significant cognitive impairments. 

Symmetry ratio of step 

length (SLRabs). 
Lokomat training- 

Baseline SLRabs=0.53 

Post-test SLRabs=0.37 

 

Treadmill training- 

Baseline SLRabs=0.39 

Post-test SLRabs=0.34 

1Bayat et 

al [169] 

Treadmill 

training and 

overground 

training. 

10 hemiparesis 

stroke patients. 
Inclusive criteria 

At least 2 weeks post stroke and 

not longer than 18 weeks, cut off 

gait speed between 0.15m/s and 

1.30m/s, TUG score greather than 

20c. 

Exclusive criteria 

Unstable heart disease, ankle 

instability, orthopaedic or 

rheumatologic conditions, severe 

cognitive deficits, other 

cerebrovascular accident. 

Symmetry ratio of stride 

length (SLR). 

 

Treadmill training- 

SLR=0.89 

 

Overground training- 

SLR=1.0 

2Brouwer 

et al [22] 

Treadmill 

training and 

overground 

training. 

6 males and 4 

females stroke 

patients. 

Inclusive criteria 

Able to walk independently on 

level surface without aids 

Symmetry ratio of stance 

time (SIstance) and swing 

time (SIswing). 

Treadmill training- 

SIstance=3.9 

SIswing=-3.9 

 

Overground training- 

SIstance=3.0 

 SIswing=-3.0 

 
2Fuscaldi 

et al [162] 

Aerobic 

training. 

13 stroke patients. Inclusive criteria 

At least 9 months post stroke, 

independently ambulatory with or 

Symmetry ratio of swing 

phase (SIswing). 

Aerobic training- 

Baseline SIswing=1.18 

Post-training SIswing=1.20 
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without assistive devices for 15 

minutes. 
2Pomeroy 

et al [160] 

Weight 

garments 

training. 

  

24 stroke patients. Inclusive criteria 

At least 6 months post stroke, not 

participating in other physical 

rehabilitation, able to walk 10 m 

with or without walking aid, no 

aphasia, no visual unilateral 

neglect, able to don and doff 

garments themselves, no other 

neurological disorder. 

Symmetry index of step 

length (SIstep_length), single 

support time 

(SIsingle_support_time) and 

double support time 

(SIdouble_support_time) . 

Weight garments training- 

Baseline SIstep_length=-15.03%  

Baseline SIsingle_support_time=-16.88% 

Baseline SIdouble_support_time=-3.98% 

 

Post-test SIstep_length=-14.94% 

Post-test SIsingle_support_time=-17.78% 

Post-test SIdouble_support_time=-2.59% 

 
1 indicates improvement after intervention; 2 indicates insignificant or no improvement after intervention; CMSA= Chedoke Mcmaster Stroke 

Assessment; RAS= Rhythmic Auditory Stimulation; NDT= Neurodevelopmental therapy; AFO= Ankle Foot Orthosis; MAS= Modified Ashworth 

Scale 
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2.5.3 Gait prediction model after stroke 

In Kollen et al [45] paper, the Functional Ambulation Categories (FAC) of stroke 

patients were predicted using  multivariate multilevel regression model. The inputs 

of this regression model were Fugl-Meyer leg score, motricity index leg score, letter 

cancellation task, Fugl-Meyer balance and timed balanced test. The regression 

model showed that time balanced test change scores were the most important factor 

in predicting improvement of FAC, followed by Fugl-Meyer leg change score and 

reduction in letter cancellation task omissions and motricity index leg score. 

Goodwin and Sunderland [170] applied a logarithmic function to produce recovery 

curves. In this paper, the dependent variables were speed and range of wrist 

extension. They concluded that this logarithmic function was a good fit to the 

patients with no additional physiotherapy, indicating fast early recovery then 

gradually slowed. Meanwhile patients with additional intervention caused a further 

acceleration in recovery and did not fit well in this logarithmic function. 

Ingrid et al [47] developed a prognostic model to predict the mobility outcome one 

year post-stroke. Univariate and multivariate linear regression models were 

performed. The independent variables were stroke characteristics, functional status, 

urinary incontinence, sitting balance, motor and cognitive function. Mobility was 

measure using the Rivermead Mobility Index. 

Meanwhile Masiero et al [48] performed a multivariate analysis to predict 

Functional Ambulation Classification score. The predictive variables were 

Functional Independence Measure and its motor component, the upper and lower 

Motricity Index, and the Trunk Control Test. The results showed that age of stroke 

patients and level of motor and functional impairment measured at baseline were 

significant variables to predict the Functional Ambulation Classification outcome. 

Tilling et al [46] used multilevel models to predict the functional recovery, Barthel 

Index. The independent variables were urinary incontinence, sex, prestrike 

disability, dysarthria, age, dysphasia and limb deficit. This model was able to 

predict both recovery and death after stroke accurately. 
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In Hsieh et al [44] report, a multivariable stepwise linear regression analysis was 

adapted to predict the activities of daily living functions. The result showed that 

Postural Assessment Scale for Stroke Patients score, age, Fugl-Meyer motor test 

score and Barthel Index score were the strongest predictors 

Most of the recovery models described in this section relied heavily on prediction 

of clinical assessment scores. To our knowledge, there are only limited models that 

used kinematics and kinesiology parameters derived from motion sensor and sEMG 

sensor as the predicted variables. Therefore, it is worth investigating the feasibility 

of these parameters as the predicted outcomes. 

2.6 Electromyography (EMG) 

2.6.1 Definition of EMG 

The pioneer of EMG is known to be Galvani who published ‘De Viribus 

Electricitatis in Motu Musculari Commentarius’ during 1792 stated that electricity 

could initiate muscle contraction [171]. Later in 1894, Dubois-Reymond 

discovered that during voluntary muscle contraction, it was possible to record 

electrical activity. Marey had successful to record this activity and introduced the 

term ‘electromyography’ [172].  

The muscle contributes to generate EMG signal is the skeletal muscle which is 

attached to the skeleton and facilities movement and position of the body [37]. The 

contraction of this skeleton muscle is controlled by electrical impulse, which is 

known as action potentials. They propagate between the central and peripheral 

nervous systems and the muscles. These action potentials are transmitted from 

axons of the motor neurons to muscle fibres through neuromuscular junction. The 

contraction of the muscle fibre can only be initiated when the neuronal action 

potentials reach the neuromuscular junction and fire action potentials[37]. Motor 

unit action potential (MUAP) is then formed from the summation of the spatial 

temporal of the individual muscle fibre action potential and the result EMG signal 
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is a compose of different MUAP near the area of recording electrode[37], [173], 

[174].  

EMG signal can be captured by using invasive or non-invasive method. Invasive 

method is inserting a needle electrode through the skin directly into the muscle. The 

main advantage of using this method is it provides a high resolution and it only 

takes the signal from the desired muscle. However, this is relatively painful for the 

patient and therefore, non-invasive method is introduced [37]. Non-invasive 

method is placing the surface electrode on the skin overlying the muscle and it 

reflects the gross activity produced by a large number of motor units. The quality 

of EMG signal can be hampered by different type of noises and artefacts and the 

goal is to maximise the SNR to avoid the erroneous interpretation of the signal 

[175]. There are a number of intrinsic and extrinsic sources of noises and artefacts 

that can contaminate the EMG signal [175]. Electrode preparation and placement 

is important when recording EMG signal to ensure high quality of the signal and 

maximise the SNR. The location and orientation of electrode is crucial since it 

determines the electrical view of a muscle. De Luca et al [176] further explained 

that the electrode should not place on the tendon of the muscle, on the motor point 

and at outside edges of the muscle. A detail analysis of literature was presented in 

a project “Surface EMG for Non Invasive Assessment of Muscle”, or in short 

“SENIAM” [177].  

Different muscles contribute to different movements of joint on lower limbs. The 

lower limbs are connected mainly by four joints, namely hip joint, knee joint, ankle 

joint and intertarsal joint [178] and they are controlled by specific muscles on leg. 

Each joint can contribute to the respectively lower limbs movements and they are 

important in gait analysis. Fig 2.6 shows the location of each muscle on leg. 
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Fig 2.6. Muscle Anatomy; (a) Muscles contribute for Hip movement (back 

view); (b) Muscles contribute for Hip movement (front view); (c) Muscles 

contribute for Knee movement ; (c) Muscles contribute for Ankle movement 

[179]. 

2.6.2 Processing of EMG 

Raw EMG signal is meaningless without proper interpretation and extraction of 

valuable information. Therefore, after acquire the raw data, this EMG signal is 

required to perform high and low pass filter to filter the noises and artefacts. Table 

2.4 shows the recapitulate of the different noises and artefacts. A proper signal 

processing will be executed to suit the user application and the common procedure 

of signal processing includes pre-processing of the raw data, feature extraction, 

dimensionality reduction, pattern recognition and online and offline learning [180]. 

All these processes are best describe as pattern recognition as it is a process to map 

observed patterns to a set of categories [181]. According to Miller et al [180], it is 

important to determine the onset of the movement to extract the correct part of the 
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EMG signal to be analysed so that the noise and low-level EMG signals from rest 

position can be excluded. Staude et al [182] explained that there are three basic 

processing stages needed to perform in order to detect the onset movement and 

there are signal conditioning, detection unit and post processor. Feature extraction 

is important in signal processing as it is a way to reduce the dimensionality of a set 

of signal by elimination redundant features and finds a set of vector best describe 

the information content of the observation signal in pattern recognition [183]. In 

pattern recognition, this feature extraction process has the advantage of focusing on 

salient features that distinguish one class from another [180]. Dimensionality 

reduction is important to retain information that is important for class 

discrimination and discard that which is irrelevant [184]. There are generally two 

approaches to extract features from EMG signal: temporal approach and spectral 

approach [185], and both of these approaches are classified as non-parametric 

approaches. After feature extraction, classification of the EMG signal is the next 

step of signal processing to category this signal into the respective class.  

Table 2.4. Description of Noises and Artefacts in EMG Signal. 

Name Description Reference 

Inherent noise in 

electronics 

components  

All electronic equipment generates noise 

during detection and recording signal. This 

noise cannot be eliminated and can only be 

reduced by using modern electronics 

technology and appropriate circuit design. 

Range from 0 to few thousand Hz 

[175], [176], 

[186] 

Ambient noise Source from electromagnetic radiation 

which generated by any electromagnetic 

device. 

Range approximately 50 to60Hz 

[176],[186], 

[187] 

Motion 

artifacts/Transducer 

Noise 

Interface between detection surface of the 

electrode and skin and relative movement of 

the cable which is connected to the 

amplifier. 

Range from 0 to 20Hz 

[37],[175], 

[176], 

[186],[187] 

Inherent instability of 

the signal 

Frequency between 0 and 20Hz are not 

stable because they are affected by the 

quasi-random nature of EMG.  

This noise can be treated as unwanted noise. 

[176],[186] 
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2.6.3 EMG characteristics in individual post-stroke 

It is believed that Hirschberg and Nathanson were one of the earliest to report 

analysis of EMG in stroke [188] back in 1952. They used sEMG on gluteus medius, 

adductor longus, semintendinosus, vastus lateralis, medial gastrocnemius and 

tibialis anterior. They concluded that EMG activation levels decreased on the 

paretic side of lower limbs. In Shao et al [188] study, four stroke patients were 

recruited and the sEMG of tibialis anterior, medial gastrocnemius, lateral 

gastrocnemius and soleus muscles were recorded. The results showed that 

gastrocnemii and soleus were active during initial contact and tibialis anterior had 

increased in amplitude during mid-stance. This is abnormal phenomenon because 

gastrocnemii and soleus should be silent during plantarflexors and tibialis anterior 

should not have high amplitude during stance phase. Mulroy et al [27] classified 52 

individuals of stroke into four groups based on their speed. This study showed that 

soleus, tibialis anterior, vastus intermedius, semimembranosus and biceps femoris 

had greater mean EMG intensity in fastest group; the onset of soleus, vastus 

intermedius activity was delayed in the slowest group; and the onset of 

semimenbranous and biceps femoris were earlier in the fastest group. 

Otter et al [143] recruited 14 individuals of stroke and analysed the muscle 

activation timing during gait. The muscles biceps femoris, rectus femoris, 

gastrocnemius medialis and tibialis anterior were tested. Authors observed 

abnormal long duration of biceps femoris and rectus femoris during single support 

phase and gastrocnemius medialis during double support phase. Duration of biceps 

femoris and rectus femoris coactivation was longer on the paretic side lower limb.  

Lamontagne et al [134] reported low gastrocnemius medial activity led to low peak 

plantarflexor moment on paretic side. The reduced in this peak plantarflexor 

moment on non-paretic side was due to excessive coactivation between 

gastrocnemius medial and tibialis anterior. Buurke et al [189] used an objective 

burst detection algorithm to analyse the timing of erector spinate, gluteus maximus, 

gluteus medius, rectus femoris, vastus lateralis, semitendinosis, gastrocnemius and 
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tibialis anterior muscles. Results showed delayed in gluteus medius, gluteus 

maximus, vastuc lateralis and semitendinosus muscles. 

2.6.4 Non-linear analysis of EMG 

As mentioned earlier, many researchers treated EMG signal as a linear system. 

However, EMG is highly non-linear deterministic signal. Information embedded in 

the EMG signal are rich. Hence, many other researchers performed non-linear 

techniques on EMG such as fractal dimension [190], lyapunov exponent [191], 

recurrence plot [192] etc. Rodrick and Karwowski observed positive Lyapunov 

exponents existed in sEMG of the biceps muscle in some work postures. These 

suggested chaotic-liked behaviors [193]. Ouyang et al [194] revealed the 

characteristics of sEMG during different hand movements using recurrence plots. 

Besides that, fractal analysis is another common approach to identify nonlinear 

characteristics of sEMG signals. 

Recurrence Plot (RP) has received attention due to its ability to locate hidden 

rhythms (the recurring patterns) and non-stationarities (drifts) of a set of 

experimental data. Recurrence plot was first introduced by Eckmann et al [192] to 

visualise the recurrences of dynamical system in phase space. It transforms multi-

dimensional phase space trajectory into a two-dimensional map. Therefore, the 

inherent recurrence characteristics of the dynamical systems could be revealed and 

visualised in a two-dimensional plane. A comprehensive review of the theory of 

recurrence plot and its associated quantification methods was published by Marwan 

et al [195]. The applications of RP method are wide and the focus of this paper is 

on EMG analysis. In related studies, Morana et al [196] applied Recurrence 

Quantification Analysis (RQA) [197] to analyse and quantify EMG data to detect 

the state changes. RQA is a quantification method to measure the complexity of 

recurrence plots. Two common measures of RQA, namely percentage of recurrence 

or recurrence rate (RR) and percentage of determinism (DET) are often associated 

with fatigue related changes in EMG signals [198–201].  DET has been shown to 

be more dominant in detecting the muscle fatigue then spectral analysis [202]. This 
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is due to RP provides a useful framework for discerning abrupt changes or drifting 

in dynamics [203]. 

Meanwhile, fractal dimension (FD) measures self-affine and dominant complexity 

of a signal [204]. Detrended fluctuation analysis (DFA) [205], correlation 

dimension, Katz method [206], box counting method, Higuchi fractal dimension 

(HFD) [207] and bi-phase power spectrum [190] are common methods to estimate 

FD of a time series. These techniques have been widely applied to correlate the 

sEMG FD and its interference patterns [190,208]. Besides that, fractal analysis is 

also commonly applied in sEMG signal classification [209,210] In a recent study, 

FD of rectus femoris muscle sEMG was strongly correlated to the height of vertical 

jump [211]. Besides that, FD was used to estimate the contraction force from 

different muscles [212]. In gait analysis, Beretta-Piccoli et al [213] extracted FD 

from the quadriceps femoris muscle sEMG to scrutinise fatigue. Boccia et al [214] 

correlated the rate of change of FD from vastus lateralis and medialis muscles 

sEMG to fatigue contraction. 

2.6.5 EMG decomposition 

As mentioned earlier, EMG signal is composed of the action potentials from groups 

of muscle fibers organised into functional units called motor units (MUs) [215]. It 

is desirable to study the information contained in the timing, shapes, interpulse 

interval, firing rate, synchronisation characteristics and morphology of shapes of 

amplitudes of the discharges of individual MU [215]. This can be achieved by 

decomposing the EMG signal. Noted most of the EMG decomposition methods 

focus on decomposed needle EMG and high-density arrays EMG into MUAP. For 

surface EMG, it is very challenging to accurately decompose it due to its low spatial 

selectivity [216]. All the MUAPs from surface EMG tend to look alike and they 

overlap with each other. Therefore, it is very hard to extract useful information of 

MUAP from sEMG by using existing EMG decomposition methods. 

In 1998, Huang et al [217] proposed a new technique for analysing non-linear and 

non-stationary data and the key part of the method is the Empirical Mode 
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Decomposition (EMD). EMD can decompose a complicated signal into finite and 

small number of Intrinsic Mode Functions (IMF). These IMFs yield instantaneous 

frequencies as functions of time. To date, applications of EMD on biomedical 

signal such as Electroencephalography (EEG) and EMG are mostly on filtering 

noises [218], treated as a source separation method when combining with 

independent component analysis [219] and extracting features from IMFs on 

surface EMG [220,221]. One of the problem arises in cases of EMD is mode 

mixing. Mode mixing is defined as single IMF consists of signals of widely 

disparate scales, or a signal of similar scare residing in different IMF components 

[222]. This issue can cause failure to decompose the signal accurately. To overcome 

this issue, Wu and Huang [222] proposed a noise-assisted EMD algorithm called 

Ensemble Empirical Mode Decomposition (EEMD) in 2005.  

As described earlier, the study of IMFs from decomposed sEMG signal mostly on 

filtering and feature extraction. However, extracting features among stroke 

patient’s gait sEMG is very limited. Therefore, it is worth applying EEMD to obtain 

IMFs of sEMG from stroke patients to correlate the kinesiology status to kinematic 

parameters. 

2.7 Chapter Summary 

The development of sensor system has a long history from single sensor to multiple 

sensors this day. Different designs of the sensor system has been observed from 

different researchers to suit their own studies. Computation of gait trajectory from 

these inertial based sensors is complicated and hard due to the low SNR of the low 

cost sensor. Therefore, a new inertial based integration algorithm is necessary to 

provide a better accuracy of the gait trajectory. 

Gait rehabilitation is crucial in stroke recovery. The recovery status of stroke 

patients can be obtained by proper gait analysis. Conventional spatial-temporal gait 

parameters have been crucial in the quantification of gait analysis.  However, these 

parameters used to assess the recovery status of stroke patient is often confusing. 

The result from Fig 2.5 shows inconsistency from interpretation of different results. 
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This contradict outcomes is due to the different sensitivity among conventional 

analytical measurements. Therefore, it is necessary to develop new gait assessment 

quantification methods by studying patient’s kinesiology and kinematic 

parameters. 

Analysis of sEMG could be characterised by techniques involving time and 

frequency domain analysis. These methods reveal specific properties in the linear 

system context. However, sEMG signal is non-linear in nature. While there are 

extensive reports on sEMG non-linear analysis, its applications in patients with 

neurological disorders are relatively limited. This could be attributed to the 

requirement of analysing long time-series. Furthermore, the correlation between 

sEMG and clinical assessment scale such as Timed Up and Go test is not well 

known. Therefore, it is worth investigating the feasibility of applying non-linear 

analysis such as fractal analysis on sEMG to characterise their gait deficits. 

Intense studies show that stroke patients with proper gait rehabilitation tends to 

have better gait recovery. It leads to the need of modelling a recovery prediction 

model. We have discussed plenty of recovery models in this chapter, and most of 

the time-dependent independent variables in these models relied solely on clinical 

assessment test such as Rivermead Mobility Index, Functional Ambulation 

Classification, Timed Up and Go test etc. Therefore, a new recovery model based 

on kinematic and kinesiology parameters is needed. 

To our knowledge, there are limited studies that analysed the association of 

recovery of joints and recovery of muscles. Most of the researchers only focused 

on either one of the aspect, which may lead to overlook of some of the recovery 

behaviour of stroke patients. For example, most of the researchers investigated the 

spatial-temporal parameters as the recovery indicator without looking at the 

muscles conditions. Recovery in spatial-temporal parameters may be a type of 

compensation from other muscles. This can causes muscle injury in long term. 

Therefore, the characteristic of sEMG during recovery period and its association of 

kinematic behaviour is worth examined.  
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Chapter 3 Methodology 

3.1 Introduction  

In this chapter, the methods and procedures to conduct the experiments were 

described. The project started with the design of a gait sensor system. Based on the 

discussion in Chapter 2, there is a need to redesign a gait sensor system for this 

study. This is to ensure the gait sensor system is suitable and comfortable for the 

recruited subjects. The experiments designed for this project involved recruitment 

of healthy subjects and different type of stroke patients. Data processing for the 

sensor system was discussed. The aims of this chapter are:   

1. To redesign an IMU based gait sensor system which only have minimal to 

none effect on participants walking style. 

2. To describe the experiment designed for this research included the total 

number of participants and their demographic. 

3.2 Hardware development 

The first step in designing this gait sensor system is to select appropriate sensor and 

build a suitable data logger to store the data, with the goal of creating a highly 

instrumented system capable of sensing many parameters that characterise gait. In 

this project, there are few important parameters of gait needed to be extracted to 

describe the gait characteristics of a human, and there are temporal parameters (gait 

cycle time, stance time, swing time), spatial parameters (stride length and velocity), 

joint angle and muscle activity. These motivated us in the selection of the sensors 

described later in this chapter.  

The sensor selected in this project was MPU 6050 (Invensense). To build a data 

logger, Arduino pro mini was used as the microcontroller board and a micro-SD 

card slot was connected to the microcontroller board. A lithium battery was used to 

power up the whole system. The sensor system and data logger were integrated in 
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a plastic casing to form one gait sensor module. There were four modules 

positioned on shank and ankle of lower limb of each participant. Fig 3.1 shows a 

picture of the integrated IMU based gait sensor (IGS) system. 

 

Fig 3.1. An IGS module consisting IMU, Arduino Pro mini, a microSD card 

slot and a lithium battery in a plastic casing. Coin for scale. 

3.2.1 Inertial Measurement Unit 

MPU 6050 was the selected IMU sensor. It contains a 3-axis MEMS accelerometer 

and a 3-axis MEMS gyroscope in a single chip as shown in Fig 3.2. It can capture 

the x, y, and z-axis at the same time using the 16-bits analogue to digital conversion. 

This sensor uses I2C-bus to communicate with the microcontroller board; in this 

case, it is an Arduino pro mini. There are just two wires on I2C bus called Serial 

Clock (SCL) and Serial Data (SDA) lines. SCL is the clock line used to synchronise 

all data transfers over the I2C bus. On the other hand, SDA is the data line to 

transfer the data from IMU to microcontroller board.  

The VCC pin on this sensor is the voltage pin, which can be used to connect to 

either 3.3V or 5V of power supply. GND is the ground for this sensor. Meanwhile, 

the ADO pin is to help the sensor to select the I2C address. If it is connected to 

ground, the address is 0x68; meanwhile if it is connected to a voltage supply, it is 

0x69.  
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Fig 3.2. (a) Sketch of MPU-6050 on a breakout board, (b) default coordinate 

system of MPU-6050. 

3.2.2 Microcontroller board 

Arduino Pro Mini was used in this project because of its small size (33.3mm x 

18.0mm). It is available in both 3.3V and 5V version, and both of them are powered 

by ATmega328. 3.3V Arduino pro mini is selected which is running at the 8MHz 

bootloader. This Arduino Pro Mini does not have any USB connector on the board. 

Therefore, a six-pin header can be connected to an FTDI breakout board to provide 

USB power and communication to the board. The CP2102 USB-serial converter 

FTDI board is used to connect Arduino Pro Mini to computer. Fig 3.3 presents the 

Arduino Pro Mini and CP2102 USB-series converter diagrams. 

  

Fig 3.3. (a) Arduino Pro Mini microcontroller board. (b) CP2102 USB-serial 

converter FTDI breakout board. 
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3.2.3 Micro SD card module 

Micro SD Card slot module uses standard Serial Peripheral Interface (SPI) interface 

for communication. The four important pins on this SPI module are slave select 

(SS) pin, Master Output Slave Input (MOSI) pin, Master Input Slave Output 

(MISO) pin, and Serial Clock (SCK) pin. As suggested by the name, SS pin is to 

select the slave devices by the master (microcontroller board), MOSI pin is to 

receive data from slave to master, MISO is to command slave from master and SCK 

pin is the clock signal from the master to slave. The power supply for this board is 

3.3V. The detail of each pins is described in Fig 3.4. 

 

 

Fig 3.4. Typical SPI communication from master to slave. The arrows indicate 

the direction of signal flow. 

3.2.4 Assembly 

Fig 3.5 presents the schematic diagram of the pin connection of one IGS module. 

Table 3.1 shows the pin location for both MPU6050 and Micro SD slot module. 

Two switches were used to control the power input to the board and data logging. 

The first switch was connected to RAW pin on Arduino to power up the board. The 

second switch as connected to D6 pin on the microcontroller board. The system 

will start logging data when the second switch pin was set to high. The sampling 

rate of this system was set to 100Hz. 
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Fig 3.5. Schematic diagram of this gait sensor module. 
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Table 3.1. Pin connection from MPU6050 and micro SD slot to Arduino Pro 

Mini. 

Arduino Pro Mini  MPU-6050 Micro SD Slot 

A4 SDA  - 

A5 SCL  - 

VCC VCC VCC 

GND GND GND 

D2 INT - 

D8 - SD_CS  

D11 - MOSI 

D12 - MISO 

D13 - SCK 

3.2.5 Surface Electromyography (sEMG) system 

A Shimmer3 EMG (ShimmerSensing) unit was used for this research. This 

Shimmer equipped with a MSP430 microcontroller board with two channels of 

EMG and a reference channel with gain amplifier of one. 24-bit ADC converts the 

input analogue signals to a digital representation of this signal and store in the SD 

card. The recommended sampling rate for this equipment is 512Hz to ensure high 

quality signal. A pair of self-adhesive disc shape surface electrodes (Ag/AgCL; 

CONTEC) were placed in a bipolar configuration with 2cm inter-electrode-distance 

over the muscle. Fig 3.6 shows the diagram of Shimmer3 and the disc shape surface 

electrodes. 

  
Fig 3.6. (a) Shimmer3 sensor, the brown and red colour on the left side are 

channel 1 positive and negative respectively, green colour in the middle is the 

reference channel, black and white colour on the right side are channel 2 

positive and negative respectively. (b) A pair of disc shape surface electrode 

with 2cm inter-electrode-distance. 
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3.2.6 Integration of IGS and sEMG system on human subject 

There were total four embedded IGS modules and two Shimmer Sensing sEMG 

system located on different parts of lower limbs. Fig 3.7 shows the exact location 

of each IGS and sEMG system. These systems were strapped on the participants 

using Velcro strap. The sEMG electrodes were located at Tibialis Anterior (TA) 

and Gastrocnemius Lateral (GL) muscles.   

The exact location of these electrodes were recommended by SENIAM [177].  

 

Fig 3.7. (a) Location of IGS and sEMG system on lower limbs, (b) location of 

sEMG electrodes on Tibialis Anterior (TA) and Gastrocnemius Lateral (GL) 

muscles.  

3.3 Experiment Design 

There were three different experiments designed in this research. In this project, the 

objective is not to prove superiority of the certain rehabilitation treatment, but rather 

to estimate and model parameters for the recovery of stroke patients [262]. 

Furthermore, when designing the experiments, there are no prior information upon 

which to base the sample size. Therefore, we followed the simplest method applied 

on pilot trial from Whitehead study [262] where sample size of 12 to 30 were 

enough this study.  
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The first experiment (Experiment 1) recruited 10 healthy subjects. This experiment 

was designed for validation purpose. It also served as a standard comparison for the 

stroke patients walking experiment. These healthy subjects had no history of gait 

illness. They were instructed to walk on 5-meter walkway with three different 

conditions; (i) normal walking with self-selected speed, (ii) knee-braced walking 

and (iii) ankle-braced walking. For validation, red colour LED were put on heel and 

knee indicating markers on each location. Each walking trail was video recorded 

by a motion camera simultaneously and the red LED represented the exact position 

of each lower limb segment. The video images were sampled at a frame rate of 60 

frames per second. Fig 3.8 shows subjects wearing knee and ankle braces. 

The second experiment (Experiment 2) was cross-sectional study of stroke patients. 

60 stroke patients in their different stages of post-stroke were recruited. This 

experiment was designed to study the gait characteristics of different kinds of stroke 

patients. The IGS module and sEMG system were positioned on patient’s shank 

and ankle. They were instructed to walk on a 5-meter walkway. Stroke patients 

were more responsive to 5-meter walk test than other standard clinical assessment 

such as 6-meter walking test and 10 meter walking test, as the patient is less apt to 

fatigue. Among them, 30 stroke patients agreed to participate in TUG test. The 

remaining 30 stroke patients did not participate in TUG test. This was due to patient 

fatigue, time consuming and emotional unwilling to take part.  

The third experiment (Experiment 3) was a longitudinal study on stroke patients. 

15 stroke patients who just diagnosed with stroke and admitted to hospital were 

recruited. For this experiment, the walking results during the first month (stage 1), 

third month (stage 2) and sixth month (stage 3) after diagnosed with stroke were 

taken. This experiment is to study the recovery condition on stroke patients. These 

15 stroke patients were instructed to wear IGS and sEMG system and walk on 5-

meter walkway. 

All participants were taking part in the respectively experiments voluntary and they 

were allowed to quit the experiment any time without any prior notice. They read 

the information sheet and signed the consent form prior to participation. 
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Experiment 1 was conducted in University of Nottingham Malaysia Campus 

(UNMC), while Experiments 2 and 3 were conducted in University Malaya 

Medical Center (UMMC). The research protocol and consent form were approved 

by both UNMC and UMMC research ethic committee. The basic demographics of 

the participants are shown in Table 3.2. 

 

Fig 3.8. A subject wearing knee brace and ankle brace on lower limbs. 

Table 3.2. Demographic of all participants from Experiment 1, 2 and 3. 

Group Total 

Experiment 1 

n1 10 

Gender (male/female) 6/4 

Age, years (±SD) 22.5 ± 1 

Experiment 2 

n2 60 

Gender (male/female) 39/21 

Age, years (±SD) 51 ± 10 

Hemiplegia side (left/right) 48/12 

Years between stroke onset and assessment (±SD) 5 ± 2 

Type of stroke (I/H) 45/45 

Experiment 3 

n3 15 

Gender (male/female) 11/4 

Age, years (±SD) 55.4 ± 20.3 

Hemiplegia side (left/right) 13/2 

Days between stroke onset and first assessment (±SD) 8.5 ± 5.4 

Type of stroke (I/H) 10/5 

n1-number of participant for Experiment 1; n2-number of participant for Experiment 

2; n3-number of participant for Experiment 3; I- ischemic stroke; H- hemorrhagic 

stroke. 



University of Nottingham Malaysia Campus  

 

 

61 

 

The data acquired from these experiments have a normal distribution by using the 

Chi-squared test. This test compare the data collected from the experiments to a 

normal distribution with the same mean and standard deviation. The p-value of 

different set of data from each experiments were found to be greater than 0.05, 

which indicating these data are normally distributed.  

3.4Data Processing 

All data from the IGS and EMG systems were processed in Matlab (MathWork) 

offline. According to the Nyquist sampling theorem, the sampling rate must be at 

least twice that of the highest intrinsic frequency. The cadence (step per sec) of 

human walking is around 1.5Hz. Therefore, for IGS module, it was sampled at 

100Hz. A 5th order Butterworth low- pass filter with cut-off frequency of 10Hz was 

used. It is to remove the high frequency noise in the IGS system and retain the low 

frequency walking data from the participants. Eq (3.1) and (3.2) were used to 

convert raw accelerometer and gyroscope signal to readable data: 

 
𝐴𝑐𝑐𝑒𝑙𝑐𝑜𝑛𝑣𝑒𝑟𝑡 = 𝐴𝑐𝑐𝑒𝑙𝑅𝑎𝑤 (

g

𝑆𝑒𝑛𝑠𝐴𝑐𝑐𝑒𝑙
) (3.1) 

 
𝐺𝑦𝑟𝑜𝑐𝑜𝑛𝑣𝑒𝑟𝑡 = (

𝐺𝑦𝑟𝑜𝑅𝑎𝑤
𝑆𝑒𝑛𝑠𝐺𝑦𝑟𝑜

) (3.2) 

where Accelconvert and Gyroconvert are the converted readable accelerometer and 

gyroscope data,  AccelRaw and GyroRaw are the raw accelerometer and gyroscope 

data, g is the gravitational force, SensAccel and SensGyro are the sensitivity scale factor 

for accelerometer and gyroscope respectively. From the datasheet, the SensAccel and 

SensGyro are 16384 LSB/g and 131 LSB (o/s).  

Meanwhile Shimmer3 EMG system was sampled at 512Hz. A 5th order Butterworth 

band-pass filter with lower cut-off frequency of 5Hz and a higher cut-off frequency 

of 250Hz was used to filter sEMG signal. In order to convert the ADC output sEMG 

signal to mVolts, Eq (3.3) is used: 
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𝑠𝐸𝑀𝐺(𝑖𝑛 𝑚𝑣) = (

(𝑠𝐸𝑀𝐺𝑅𝑎𝑤 − 𝑍𝑒𝑟𝑜) ∙ 𝑆𝑒𝑛𝑠𝑠𝐸𝑀𝐺
𝐺𝑎𝑖𝑛

) (3.3) 

where sEMG(in mV) is the sEMG signal in mVolts, sEMGraw is the raw ADC output 

sEMG signal, Zero is the ADC offset value of the electrodes, SenssEMG is the 

sensitivity scale factor for sEMG and Gain is the gain amplifier value. From the 

datasheet, the SenssEMG is 
12

2420
23 

mVolts
, and we configured the gain amplifier value 

as 1. The ADC offset value, Zero is the mean value when the positive and negative 

electrodes from same channel were connected together. Since most of the stroke 

patients recruited in this study did not perform maximum voluntary contraction 

(MVC), dynamic peak normalisation was used to normalise sEMG signal. 

Linear envelope of the sEMG signal can be simply achieved by full wave 

rectification followed by a low-pass filter. In this study, a low pass 4th order 

Butterworth filter with a cut-off frequency of 6 Hz was applied. The sEMG 

processing procedure is summarised in Fig 3.9. The onset of muscle activity timing 

was detected by using a threshold value. According to Ozgunen et al [264], 35% of 

the mean root mean square of sEMG value is the best threshold value for both GL 

and TA. 

All IGS and sEMG system were synchronised using the Unix time available in 

every system. After synchronised, heel-strike and toe-off events from Fig 4.1 were 

used to segment the signals into different gait cycles.  
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Fig 3.9. Processing of sEMG from raw signal to linear envelope. 
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3.5 Chapter Summary 

In this chapter, the design and requirement to develop an IGS module were well 

described. MPU-6050, Arduino Pro Mini and a micro SD shield module were 

embedded to form one IGS system. The properties of Shimmer Sensing sEMG were 

also discussed in this chapter. 

The experiment designs for this research were well explained. There were three 

different experiments designed to cover the whole scope of the research 

(Experiment 1, Experiment 2 and Experiment 3). Experiment 1 recruited 10 healthy 

subjects and their gait data were being used as validation purpose. This gait data 

can also be served as a standard comparison to the gait performance from stroke in 

the later chapters. Meanwhile, Experiment 2 was  cross-sectional study on 60 stroke 

patients. This experiment was designed to study the gait characteristic and classify 

the large group of stroke patients in detail. Lastly, Experiment 3 was a longitudinal 

study on 15 stroke patients during their first month, third month and sixth month 

after diagnosed with stroke. The aim of this experiment is to study the recovery 

trajectory of stroke patients during the early recovery. 
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Chapter 4 An inertia integration method 

4.1 Introduction  

In this chapter, a new inertia based integration algorithm was proposed in this 

chapter to obtain gait trajectory. This algorithm yields gait velocity, gait 

displacement and joint angle. The aims of this chapter are:  

1. To propose a new IMU based integration algorithm, which can accurately 

yield gait trajectory.  

2. To validate the propose new IMU based integration algorithm. 

4.2 Inertial based integration algorithm 

4.2.1Temporal parameters 

Heel-strike and toe-off events are necessary to obtain temporal parameters.  This 

heel-strike and toe-off events can be detected from the gyroscope signal as 

described earlier which located on ankle [223] as seen from Fig 4.1. The temporal 

parameters interested in this project are stance time, swing time and gait cycle time. 

These parameters can be determined by using Eq (4.1), (4.2) and (4.3): 

 𝐺𝐶𝑇 = 𝐻𝑆𝑖+1 −𝐻𝑆𝑖 (4.1) 

 𝑆𝑇𝑇 = 𝑇𝑂𝑖 − 𝐻𝑆𝑖 (4.2) 

 𝑆𝑊𝑇 = 𝐻𝑆𝑖+1 − 𝑇𝑂𝑖 (4.3) 

where GCT, STT and SWT are the gait cycle time, stance time and swing time 

respectively, HS and TO are the heel-strike and toe-off events respectively and i 

represents the time of ith heel-strike (or toe-off).  
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Fig 4.1. An example of gyroscope output from pitch rotation and the 

subsequent heel-strike (square box) and toe-off (circle) events. 

4.2.2 Kinematic parameters 

The IGS module that contains IMU will provide the angular velocity and linear 

acceleration from ankle and shank. To obtain kinematic parameters such as joint 

angle, gait velocity and gait displacement, integration of these angular velocity and 

linear acceleration must be performed. However, direct linear integration tends to 

yield high error due to low SNR. Therefore, some sophisticated integration 

algorithm must be applied. 

4.2.2.1 Inertial frame and sensor frame 

The first step to obtain these kinematic parameters are to correct the initial 

orientation of the tilted sensor. The orientation of the IMU on foot is showed in Fig 

4.2. There are two orientation frames in this figure; the first is defined as the inertia 

frame (X-axis point in horizontal direction (roll,), Y-axis pointing in vertical 
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direction (yaw, ) and Z-axis pointing out from the paper (pitch, )). The second 

frame is called sensor frame (X’-axis and Y’-axis). Inertia frame is a fixed frame 

with X-axis always parallel to the horizontal direction, Y-axis always parallel to the 

vertical direction and Z-axis always parallel to the direction pointing out from the 

paper. Meanwhile, the sensor frame is always parallel to the direction of the sensor 

axes. This sensor frame will rotate during gait with respect to the rotation of foot. 

The accelerometer and gyroscope data in the inertia frame can be integrated to yield 

gait velocity, gait displacement and joint angle. Meanwhile, this sensor frame is 

changing for different subjects and throughout different gait cycle events. This is 

because (i) initial orientation of sensor on ankle, which can be different for different 

subjects, (ii) rotation of lower limb during gait cycle that tilts the IMU. The value 

dS_A is the distance between the IGS module to exact ankle joint, which is different 

for each participant. Since the shape of foot is unique for every participant, the 

initial tilted angles for the sensor frame and dS_A will be different. These issues need 

to be addressed to get consistent results for every participant. To obtain these 

kinematic parameters, the IMU data from sensor frame must be converted to the 

inertia frame.  
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Fig 4.2. IGS system is located on human foot by using Velcro strap. The 

inclination angle of the sensor to horizontal axis is different for each subject.  

The inertia frame consist of X-, Y- and Z-axis (roll, yaw and pitch respectively). 

It is necessary to convert sensor frame (X’- and Y’-axis) to inertia frame to 

obtain kinematic parameters. The value dS_A is the distance from sensor to the 

exact location of ankle joint, which can be different for each participant. 

It is necessary to determine the initial inclination angle with respect to the inertia 

frame. Before the start of experiment, all participants were instructed to stand still 

for few seconds. The initial pitch and roll inclination angles during standing, ds tan  

and ds tan  respectively can therefore be obtained from Eq (4.4) and (4.5). 

 
𝜃𝑠𝑡𝑎𝑛𝑑 = 𝑎𝑡𝑎𝑛 (

−𝐴̅𝑋,𝑠𝑡𝑎𝑛𝑑

𝐴̅𝑌,𝑠𝑡𝑎𝑛𝑑
) 

(4.4) 

 


𝑠𝑡𝑎𝑛𝑑

= 𝑎𝑡𝑎𝑛(
−𝐴̅𝑍,𝑠𝑡𝑎𝑛𝑑

𝑠𝑞𝑟𝑡 (𝐴̅𝑋,𝑠𝑡𝑎𝑛𝑑
2
+ 𝐴̅𝑌,𝑠𝑡𝑎𝑛𝑑

2
)
) 

(4.5) 

where 𝐴̅𝑖,𝑠𝑡𝑎𝑛𝑑are the mean accelerations data measured during standing (i=X, Y 

and Z axis respectively).  

These initial pitch and rolls angles are used to correct the initial tilted angle to obtain 

the initial inertia frame. Rotation of IMU from sensor frame to inertia frame can be 

achieved by using simple rotation matrix.  

 V=RB
I ∙V' (4.6) 

d
S_A

 

IGS 

System 

X’ 

Y’ 

Y 

X 

Z 
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where V is the 3-axis acceleration vector after rotation ( V =

















Z

Y

X

A

A

A

), 
I

BR  is the 

Rotation Matrix from sensor frame to inertia frame and V' is the 3-axis acceleration 

vector before rotation. In this study, the initial yaw angle is impossible to obtain 

based on accelerometer.  This is because there is no gravity change with different 

yaw angle. Therefore, yaw angle is not taking into consideration to form the rotation 

matrix 
I

BR . 

 RB
I = RX() ∙ RZ(𝜃) (4.7) 

 

RX(∅) = [

1 0 0
0 cos() sin()

0 −sin() cos()
] (4.8) 

 
RZ(𝜃) = [

cos(𝜃) −sin(𝜃) 0
sin(𝜃) cos(𝜃) 0
0 0 1

] (4.9) 

 

where RX()and RZ(𝜃) are the rotation matrices for roll and pitch respectively. The 

Rotation Matrix RB
I  is then being constructed. 

 

RB
I = [

cos(𝜃) sin(𝜃) ∙ −cos () sin(𝜃) ∙ −sin ()

sin(𝜃) cos(𝜃) ∙ cos () cos(𝜃) ∙ sin ()
0 −sin () cos ()

] (4.10) 

By substituting ds tan  and ds tan into this rotation matrix RB
I , the corrected initial 3-

axis acceleration vector during standing is therefore shown in: 

[

𝐴𝑋
𝐴𝑌
𝐴𝑍

] =

[
 
 
 cos

(𝜃𝑠𝑡𝑎𝑛𝑑) sin(𝜃𝑠𝑡𝑎𝑛𝑑) ∙ −cos(𝑠𝑡𝑎𝑛𝑑) sin(𝜃𝑠𝑡𝑎𝑛𝑑) ∙ −sin(𝑠𝑡𝑎𝑛𝑑)

sin(𝜃𝑠𝑡𝑎𝑛𝑑) cos(𝜃𝑠𝑡𝑎𝑛𝑑) ∙ cos(𝑠𝑡𝑎𝑛𝑑) cos(𝜃𝑠𝑡𝑎𝑛𝑑) ∙ sin(𝑠𝑡𝑎𝑛𝑑)

0 −sin(
𝑠𝑡𝑎𝑛𝑑

) cos(
𝑠𝑡𝑎𝑛𝑑

) ]
 
 
 

∙ [

𝐴𝑋′

𝐴𝑌′

𝐴𝑍′

] (4.11) 

 

Fig 4.3 shows the example of a corrected acceleration from one subject. As 

observed in this figure, the acceleration before correction did not align well with 

the inertia frame. The X- and Z- axis acceleration did not stay at zero and Y- axis 
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acceleration did not show gravitational acceleration g when the IMU is at rest 

(standing). This is because all the 3-axis acceleration experience gravitational force 

when the IMU was tilted. After the correction is performed using rotation matrix 

RB
I , X- and Z- axis acceleration remain at zero and Y- axis acceleration roughly 

equal to 9.81ms-2 during standing period.  

 
Fig 4.3. Example of 3-axis acceleration being corrected by using the tilted 

angles determined during standing. 

Converting gyroscope data from sensor frame to inertia frame is necessary since 

the raw gyroscope data is recorded with respect to the sensor frame. According to 

[224], the transformation matrix for converting the sensor frame angular rates to 

inertia frame is given Eq (4.12): 

 

𝐷(, 𝜃) = [

1 cos() ∙ tan(𝜃) sin() ∙ tan(𝜃)

0 cos()/cos(𝜃) sin()/cos(𝜃)

0 −sin() cos()

] (4.12) 
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where matrix D is the transformation matrix to convert sensor frame angular 

velocities to inertia frame angular velocities. The inertia frame angular velocities 

are therefore: 

 

[
̇

𝜑̇

𝜃̇

] = [

𝑝 + 𝑞 ∙ cos() ∙ tan(𝜃) + 𝑟 ∙ sin() ∙ tan(𝜃)

𝑞 ∙ cos() / cos(𝜃) +  𝑟 ∙ sin()/cos(𝜃)

𝑞 ∙ sin() + 𝑟 ∙ cos()

] 

(4.13) 

where   , and   are the inertial frame roll, yaw and pitch respectively, p, q and r 

are the sensor frame angular velocities from X-, Y- and Z- axes gyro output 

respectively. 

4.2.2.2 Boundary conditions and resetting mechanism 

The pitch and roll angles, θ and   during walking are needed to rotate the IMU 

orientation to the inertia frame. They can be obtained by integration of angular 

velocity from gyroscope. The numerical integration algorithm employed here is 

similar to Stacy’s thesis [64]. The derivation and Matlab code for this integration 

algorithm is given in Appendix A. 

Furthermore, these angles will be used to rotate the acceleration signal to inertia 

frame to yield gait velocities and displacements. However, direct integration of 

angular velocity always result in drifting issue. The error would be propagated to 

the acceleration signal and the error will grow unbounded after double integrating 

the acceleration signal.  

To reduce the error, the heel-strike and toe-off information are needed to segment 

the gyroscope and accelerometer results into individual gait cycle. One gait cycle 

is defined as the heel-strike to the next heel-strike.  

After the gait phase segmentation, the gyroscope and accelerometer signals can be 

integrated separately. There is one boundary condition to be imposed to reduce the 

error: 
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1. The initial (first heel-strike) and final (next heel-strike) conditions for 

integration of angular velocities, gait velocities (X- and Y-axis) and gait vertical 

displacement (Y-axis) are zero at ankle joint (distance dS_A from IGS) 

Due to unbounded error and drifting, the final point of integrated results will never 

be zero after integration. Therefore, a resetting mechanism is introduced to reset 

the last sample to zero. 

𝑈 = {
𝑈̃𝑇1
𝑈̃𝑇2

       
𝑇1(𝑛1:𝑡𝑜𝑒𝑜𝑓𝑓) = 𝑇(1), 𝑇(2), … , 𝑇(𝑡𝑜𝑒𝑜𝑓𝑓)

𝑇2(𝑛𝑡𝑜𝑒𝑜𝑓𝑓:𝑒𝑛𝑑) = 𝑇(𝑡𝑜𝑒𝑜𝑓𝑓 + 1), 𝑇(𝑡𝑜𝑒𝑜𝑓𝑓 + 2),… , 𝑇(𝑁)
 (4.14) 

where U is the integrated result before reset (U = pitch and roll angles, gait 

horizontal and vertical velocities, gait vertical displacement), T(N)=[T(1), T(2), …, 

T(toeoff),…, T(N)], T(N)=[ T1(n1:toeoff), T1(ntoeoff:end)], N is the number of sample in 

the time series. These results are further segmented into two phases according to 

Eq (4.14), 1

~
TU  and 2

~
TU  ( 1

~
TU  and 2

~
TU have sample size of n1:toeoff and ntoeoff:end 

respectively). To compensate the drifting issue and correct the final sample back to 

zero, the resetting mechanism shown in Eq (4.15) and (4.16) are used for 2

~
TU . This 

resetting mechanism does not interfere with the segmented result during 1T (n1:toeoff) 

(i.e. 1

~
TU ). It only reset the last sample in 2T (ntoeoff:end)  into zero; therefore this 

resetting mechanism will only apply on 2

~
TU .  

 
𝑈̂𝑇2
1 = 𝑈̃𝑇2 − (

𝑈̃𝑇2(𝑁) − 𝑈̃𝑇2(1)

𝑇2(𝑁) − 𝑇2(1)
) ∙ 𝑇2(𝑛𝑡𝑜𝑒𝑜𝑓𝑓:𝑒𝑛𝑑) 

(4.15) 

 
𝑈̂𝑇2
2 = 𝑈̂𝑇2

1 − (
0 − 𝑈̂𝑇2

1 (1)

𝑇2(𝑁) − 𝑇2(1)
) ∙ 𝑇2(𝑛𝑡𝑜𝑒𝑜𝑓𝑓:𝑒𝑛𝑑) 

(4.16) 

where 1

2TU


is the intermediate corrected result, 2

2TU


is the final corrected result. 

Since 1

~
TU  is remained the same, the new corrected 2

2TU


 will be substituted into Eq 

(4.14) when it is 2T (ntoeoff:end). 

𝑈 = {
𝑈𝑇1
𝑈̂𝑇2
2

     
𝑇1(𝑛1:𝑡𝑜𝑒𝑜𝑓𝑓) = 𝑇(1), 𝑇(2), … , 𝑇(𝑡𝑜𝑒𝑜𝑓𝑓)

𝑇2(𝑛𝑡𝑜𝑒𝑜𝑓𝑓:𝑒𝑛𝑑) = 𝑇(𝑡𝑜𝑒𝑜𝑓𝑓 + 1), 𝑇(𝑡𝑜𝑒𝑜𝑓𝑓 + 2),… , 𝑇(𝑁)
 

(4.17) 
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4.2.2.3 Integration of inertia data 

After the gyroscope result is rotated from the sensor frame to the inertia frame to 

remove the initial tilted angle, angular velocities    and  are ready to integrate to 

yield both pitch (θ) and roll () angles.  

 

𝜃̃ = ∫ 𝜃̇(𝑡)𝑑𝑡 + 𝜃𝑖𝑛𝑖

𝑇𝑒𝑛𝑑

𝑇𝑠𝑡𝑎𝑟𝑡

 (4.18) 

where 
~

 is the inclination pitch angle before reset,   is the pitch angular velocity, 

Tstart and Tend are the current and subsequence heel-strike events respectively, ini  

is the initial condition for integration of angular velocity, which is zero. The drifting 

problem from this 
~

 is corrected using the resetting mechanism from Eq (4.14) - 

(4.17) to form corrected pitch angle̂ . Similar procedure is used to yield roll angle

̂ . 

Once both pitch and roll angles are determined, the acceleration can be rotated back 

to inertia frame using the rotation matrix 

 A=RB
I ∙ A'-g (4.19) 

[

𝐴𝑋,𝑖𝑛𝑒𝑟𝑡𝑖𝑎
𝐴𝑌,𝑖𝑛𝑒𝑟𝑡𝑖𝑎
𝐴𝑍,𝑖𝑛𝑒𝑟𝑡𝑖𝑎

] = [

cos(𝜃) sin(𝜃) ∙ −cos(∅̂) sin(𝜃̂) ∙ −sin(∅̂)

sin(𝜃̂) cos(𝜃) ∙ cos(∅̂) cos(𝜃) ∙ sin(∅̂)

0 −sin(∅̂) cos(∅̂)

] ∙ [

𝐴𝑋
𝐴𝑌
𝐴𝑍

] − [
0
𝑔
0
] (4.20) 

where inertia,XA , inertia,YA  and inertia,ZA  are the acceleration at inertia frame, g is the 

gravitational acceleration (~=9.81ms-2). In this equation, the gravity component 

from the accelerometer must be removed and this is called gravity compensation. 

inertia,XA  and inertia,YA are integrated to obtain the horizontal and vertical velocities 

and displacements. 

 

𝑉𝑒𝑙𝑗 = ∫ 𝐴𝑗,𝑖𝑛𝑒𝑟𝑡𝑖𝑎(𝑡)𝑑𝑡 + 𝑉𝑒𝑙𝑖𝑛𝑖

𝑇𝑒𝑛𝑑

𝑇𝑠𝑡𝑎𝑟𝑡

 (4.21) 
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where jVel is the velocity after integration, inertia,jA ( inertia,XA  and inertia,YA ) is the 

acceleration,  j=(X and Y-axis) and iniVel  is the initial condition for integration of 

acceleration, which is zero. Before further integrate the velocity jVel to yield 

displacements, the same resetting mechanism from Eq (4.14) - (4.17) is used to 

yield jelV̂ . The displacements, jD  are now ready to compute using Eq (4.22). 

 

𝐷𝑗 = ∫ 𝑉𝑒𝑙̂𝑗(𝑡)𝑑𝑡 + 𝐷𝑖𝑛𝑖

𝑇𝑒𝑛𝑑

𝑇𝑠𝑡𝑎𝑟𝑡

 (4.22) 

where iniD  is the initial condition for integration of velocity, which is zero. 

Following the boundary conditions, only vertical displacement is being corrected 

using Eq (4.14) - (4.17) to remove the bias to form
YD̂ . According to Fig 4.2, the 

location of the sensor on the foot is different from subject to subject, which yields 

different gait trajectories depending on the distance of the sensor to the ankle, dS_A. 

Therefore, we will only consider the vertical and horizontal displacements at the 

ankle and not the sensor. 

 𝐷̌𝑋 = 𝐷𝑋 − 𝑑𝑆_𝐴 ∙ cos(𝜃) (4.23) 

 𝐷̌𝑌 = 𝐷̂𝑌 − 𝑑𝑆_𝐴 ∙ sin(𝜃) (4.24) 

where XD


and YD


are the horizontal and vertical displacement at ankle. After 

obtaining the displacement, gait velocity GV  can be calculated as follow: 

 
𝐺𝑉 =

𝐷̌𝑋,𝑙𝑒𝑓𝑡(𝑒𝑛𝑑) + 𝐷̌𝑋,𝑟𝑖𝑔ℎ𝑡(𝑒𝑛𝑑)

𝐺𝐶𝑇𝑙𝑒𝑓𝑡 + 𝐺𝐶𝑇𝑟𝑖𝑔ℎ𝑡
 

(4.25) 

The angle, linear velocity and linear acceleration on shank IMU is determined using 

the same method. The ankle angle is the difference in pitch angles between two 

segments (ankle and shank), which the method has been validated in Williamson 

paper [263]. Fig 4.4 show the schematic diagram the integration method. 
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Fig 4.4. Schematic diagram of the proposed inertia integration method. DI indicate direct integration while RM indicate resetting 

mechanism. 
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4.3 Validation of inertial based integration algorithm – Experiment 1 

For Experiment 1, the mean and standard deviation of all gait trajectories and 

gait velocities were calculated for both video image results and inertial sensor 

results. The Root Mean Squared Error (RMSE) was calculated to yield the 

difference between results obtained from the video footage and the sensor 

system.  

The results from video images were used as a standard comparison to validate 

the accuracy of the proposed method. As mentioned earlier, red colour LED was 

put on subject’s heel. The process of red colour marker tracking was performed 

by using an open source Matlab code [263]. This Matlab code is presented in 

Appendix B. Synchronisation between video and IGS system was based on gait 

event. The first heel strike event from the video was being synchronised with 

the first heel strike observed from Fig 4.1.  

Fig 4.5 to Fig 4.10 present the average ankle horizontal and vertical 

displacement for normal walking, ankle braced walking and knee braced 

walking respectively from 10 subjects. The dotted line was the results from 

video images; solid line was the results from inertial sensor and the shaded area 

were the standard deviation from both video images and sensor result. 

Qualitative analysis on the figures tells that the proposed method was able to 

capture the amplitude and peak timing. Table 4.1 shows the root mean square 

error between the gait trajectory obtained from the proposed method and the 

video. The relatively low error indicates the reliability of the proposed method. 

Meanwhile Table 4.2 illustrates the average horizontal walking speed for 10 

subjects and the standard deviation. The average gait velocity from 10 subjects 

for normal walking was 0.909ms-1, knee braced walking was 0.769 ms-1, and 

ankle braced walking was 0.539 ms-1. Root mean square error as computed to 

validate against the video result. 
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Fig 4.5. Ankle horizontal displacements for during normal walking from 

10 subjects. Shaded area indicates standard deviation for each results. 

 

 

Fig 4.6. Ankle vertical displacements for during normal walking from 10 

subjects. Shaded area indicates standard deviation for each results. 
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Fig 4.7. Ankle horizontal displacements for during knee braced walking 

from 10 subjects. Shaded area indicates standard deviation for each results. 

 

 

Fig 4.8. Ankle vertical displacements for during knee braced walking from 

10 subjects. Shaded area indicates standard deviation for each results. 
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Fig 4.9. Ankle horizontal displacements for during ankle braced walking 

from 10 subjects. Shaded area indicates standard deviation for each results. 

 

 

Fig 4.10. Ankle vertical displacements for during ankle braced walking 

from 10 subjects. Shaded area indicates standard deviation for each results.
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Table 4.1. Root mean square error analysis for both horizontal and vertical 

displacement. 

Walking 

Condition 

Orientation RMSE 

Displacement 

Right Left 

Normal walking Horizontal 0.0159 0.0124 

Vertical 0.0020 0.0030 

Knee Braced 

Walking 

Horizontal 0.0124 0.0137 

Vertical 0.0015 0.0021 

Ankle Braced 

walking 

Horizontal 0.0100 0.1090 

Vertical 0.0013 0.0020 

Table 4.2. The average and standard deviation of horizontal gait speed from 

sensor for 3 walking conditions. The root mean square error is computed to 

validate against result from video. 

Walking Condition Mean Gait 

Speed (ms-1) 

Standard 

Deviation 

RMSE 

Normal walking 0.909 0.12 0.1745 

Knee Braced Walking 0.769 0.15 0.1335 

Ankle Braced walking 0.539 0.20 0.0782 

Based on the result above, the proposed inertia-based integrating algorithm had 

accurately computed the gait trajectory for different walking conditions. This 

algorithm adopts the assumption from Zero Velocity Update, ZUPT and reset the 

velocity and position to zero during heel-strike. This algorithm only considers the 

gait movement in the sagittal plane.  

The initial orientation of IMU on different subjects were always different due to 

different physical shape of foot. Therefore, the first step of the proposed as iws to 

re-orientate the tilted IMU. Noted that when the IMU was tilted, pitch and roll 

angles could be determined from the tilted acceleration. The initial tilted pitch and 

roll angles were found and corrected to the inertia frame. However, yaw angle 

cannot be determined due to the rotation around Y-axis will not affect the changes 

in gravitational acceleration. The angular velocity reading from Y-axis only 

provided the rate of change of angle, but it did not suggest the exact nor initial 

orientation around this axis. Therefore, the rotation matrix for yaw angle as not 

considered to compute the rotation matrix in Eq (4.7). Since the initial tilted yaw 
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angle cannot be found, proper alignment of the sensor system around Y-axis was 

needed to minimise the error. 

The resetting mechanism used in this study is similar to the one proposed in [19]. 

In our study, the resetting mechanism considered the drifting as linear and the 

algorithm removed the bias caused by the straight line from the drifting 

phenomenon. Fig 4.11 presents an example of a drifting velocity and corrected 

velocity after applying the resetting mechanism. In this figure, the segment during 

swing phase was considered drifted downwards. The gradient of the straight line 

was found and was subtracted from the signal. 

 
Fig 4.11. Resetting Mechanism Algorithm remove the straight line in the 

drifted curve. RM- resetting mechanism 

Overall, the low RMSE Table 4.1 indicates the algorithm is robust enough to obtain 

gait trajectory from different walking style. The magnitude and the gait profile from 

the inertia sensor were very accurate compared to the video results. Furthermore, 

the comparison in Table 4.2 only shows a little discrepancy in gait velocity between 

results yielded from inertia sensors and video. The average gait velocity was highest 

in normal walking condition, lowest in ankle walking condition and moderate in 
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knee walking conditions. During walking, ankle propulsion is very important to 

carry the lower limb forward. With restricted ankle (ankle braced walking), there is 

no ankle dorsi and plantar flexion and it will reduce the propulsion force. This will 

either increase the gait cycle time or reduce the step length, depends on different 

individual. Therefore, gait velocity is lowest in ankle braced walking condition. For 

both knee and ankle braced walking, most of the participants had lower the foot 

clearance from the ground. The vertical displacement determines the foot clearance 

from the ground and it is crucial in maintaining a good walking pattern. Insufficient 

foot clearance may leads to foot drag and it can prone to fall easily.  

4.4 Chapter Summary 

In this chapter, a new inertial based integration algorithm is proposed. This 

algorithm as being validated by high-speed camera. The validation results showed 

high accuracy regardless walking conditions. The reason to test different walking 

conditions is to ensure the robustness of the algorithm. The spatial-temporal gait 

parameters described in this chapter will be used to analyse the gait of stroke in the 

later chapters. These gait parameters can be used as the input to perform gait 

classification.  
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Chapter 5 Conventional gait analysis 

5.1 Introduction  

It is very important to understand the nature of gait characteristics before 

physiotherapist can arrange suitable intervention for stroke patients during 

rehabilitation. As mentioned in Chapter 2, there were many researchers conducted 

gait analysis on stroke patients to understand the mechanism behind their gait 

pattern. Due to lack of an accepted general theory of walking [225] and the high 

variability during interpretation of gait data [226], it is necessary to study the gait 

characteristics of stroke patients in details. Therefore, gait classification is essential 

to identify homogeneous subgroups of stroke patients and extract the crucial gait 

information.  In this chapter, the results from 60 stroke patients from Experiment 2 

described in Chapter 3 were analysed. The aims of this chapter are: 

1. To understand gait terminology using gait data from healthy subjects. 

2. To classify and study the gait characteristic among a large group of stroke 

patients. 

3. To find the correlation between spatial-temporal parameters and gait velocity 

and TUG test. 

4. To study the muscle condition among different kind of stroke. 

5.2 Data analysis 

In this chapter, the gait data from both Experiment 1 (10 healthy) and Experiment 

2 (60 cross-section stroke patients) were analysed. Table 5.1 presents the outcome 

yielded from these experiments.  

All statistical analyses were performed using Matlab. The mean, standard deviation 

(SD) and 95% confident interval (CI) of all measurements were calculated for 

stroke and healthy subjects. Unpaired t-test were used to compare the stroke 

populations to healthy populations. One-way ANOVA analysis was used to 
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compare the differences between each stroke patient’s subgroup after classification. 

A level of p<0.05 was considered statically significant. 

For stroke patients, Pearson correlation was used to determine the relationship 

between: 

1. Gait parameters and TUG score. Five correlations were performed between the 

five parameters described in Table 5.1 (Stance, swing, gait cycle times, Stride 

length, maximum heel clearance) and TUG score. 

2. Gait parameters and gait velocity. Five correlations were performed between 

the five parameters described in Table 5.1 (Stance, swing, gait cycle times, 

Stride length, maximum heel clearance) and gait velocity. 

3. Symmetry Index and TUG score. Five correlations were performed between 

five symmetry indices (stance, swing, gait cycle times, Stride length, maximum 

heel clearance symmetry) and TUG score. 

4. Symmetry Index and gait velocity. Five correlations were performed between 

five symmetry indices (stance, swing, gait cycle times, Stride length, maximum 

heel clearance symmetry) and gait velocity. 

Noted that the five parameters from items (1) and (2), i.e. stance, swing, gait cycle 

times, Stride length, maximum heel clearance and the five parameters from items 

(3) and (4), i.e. stance, swing, gait cycle times, Stride length, maximum heel 

clearance symmetry are different parameters. The parameters from first two items 

illustrate the spatial temporal parameters from individual lower limbs. Meanwhile, 

the parameters from items (3) and (4) describe the symmetry degree, or the level of 

similarity between left and right lower limbs using the parameters as input. 

Robinson Index was selected over the other symmetry indices presented in Table 

2.2 is because this index is very commonly used in many other researches [87,101]. 

Other symmetry indices in Table 2.2 are looking for the ratio between left and right. 

In contrast, Robinson Index is determining the difference between both left and 

right legs, and normalised again the summation from both legs. Therefore, 

Robinson Index was selected in this study.  
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Table 5.1. The outcomes obtained from the IMU and EMG system described 

in Chapter 3. 

Parameters Definition 

Stance time (%) Duration of gait cycle of foot support phase, from 

heel strike to toe off 

Swing time (%) Duration of gait cycle of foot swing phase, from toe 

off to next heel strike 

Gait Cycle time (s) Time between two consecutive heel strike of the 

same foot 

Stride length (m) Distance between two consecutive heel strike of the 

same foot 

Maximum Heel clearance 

(m) 

Maximum distance between the heel and the 

ground during swing time 

Ankle angle (º) 

-Dorsiflexion at mid-stance 

 

-Plantarflexion at toe-off 

The range of motion of ankle joint during gait 

- Ankle dorsiflexion angle during mid-stance event 

- Ankle plantarflexion angle during toe-off event 

Gait Velocity (m/s) Average velocity integrated from acceleration 

within the gait cycle 

*Symmetry Indices 

- Stance symmetry 

- Swing symmetry 

- Stride length symmetry  

- Heel clearance symmetry 

Using Robinson Index as shown in Table 2.2. 

- Robinson Index with stance time as input 

- Robinson Index with swing time as input 

- Robinson Index with Stride length as input 

- Robinson Index with Maximum Heel clearance as 

input 

*,1 TUG Clinical assessment where the time taken of a 

subject to stand up from chair, walk a distance of 3 

meters, turn around, walk back to the chair and sit 

down. 

sEMG Electric signal of muscle contraction and extension 

during gait 

*Only applicable on Stroke patients; 1Timed Up and Go Test 

To obtain the temporal features (onset and duration) of sEMG signal, computation 

of sEMG signal linear envelopes is necessary.  Dynamic peak normalisation (DPN) 

was used to normalise sEMG signal. The reason DPN was chosen is because it is 

more favour for stroke patients since they did not require to perform the standard 

maximum voluntary contraction (MVC) exercise.  

Hierarchical Cluster Analysis [26] was used to subgroup homogenous gait patterns 

of these 60 chronic stroke patients based on spatial temporal parameters and joint 

kinematic measurement in the sagittal plane. The three variables that were best 
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determined group placement for cluster analysis were: ankle angle dorsiflexion at 

mid-stance, stride length and gait velocity at their paretic limb. 

The Ward’s linkage method and the Squared Euclidean distance measures were the 

standard clustering routines applied. Agglomeration coefficient was used to 

determine the number of clusters to be included with the stopping rule. The number 

of cluster groups was considered appropriate if continued increase in the number of 

clusters resulted in large percentage change in the agglomeration coefficient.  

Once the number of clusters were identified, these 60 stroke subjects were 

categorised into their subgroups accordingly. Their other parameters such as ankle 

angle at toe-off, gait cycle time, stance time, swing time and maximum heel 

clearance were measured respectively. 

The classification results from the method described above is regarded as Approach 

1. These results will be used as a standard comparison to other approaches, which 

will be introduced in Chapter 6. 

5.3 Healthy gait data 

In this section, the gait pattern from healthy subjects were analysed.  It is necessary 

to understand the healthy gait profile before extending the study on abnormal gait 

from stroke patients.  

5.3.1 Gait spatial-temporal data 

The gait results of 10 healthy subjects from Experiment 1 were analysed. Table 5.2 

shows the mean, standard deviation and 95% CI of gait spatial-temporal results 

from left and right lower limb across all healthy subjects. Both left and right lower 

limbs had very similar results. The average gait velocity from this group of healthy 

subjects was 1.5441 (0.14) m/s. The gait analysis results from these 10 healthy 

subjects (Table 5.2) were very similar when compared to the results from other 

researchers [70,227–230].  
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Table 5.2. Mean, standard deviation and 95% confident interval of spatial-

temporal results from all healthy subjects. 

 Mean SD 95% CI 

Gait Velocity (m/s) 1.5441 0.14 1.520 1.570 

Left lower limb 

Gait Cycle Time (s) 1.235 0.041 1.2222 1.2478 

Step Time (s) 0.598 0.028 0.5911 0.6040 

Stance Time (%) 56.60 2.21 55.91 57.29 

Swing Time (%) 43.40 2.21 42.71 44.09 

Stride Length (m) 0.9234 0.0799 0.8985 0.9483 

Max. Heel Clearance (m) 0.1028 0.0096 0.0998 0.1058 

Right lower limb 

Gait Cycle Time (s) 1.2333 0.0433 1.2199 1.2468 

Step Time 0.596 0.025 0.5899 0.6034 

Stance Time (%) 57.44 2.91 56.53 58.34 

Swing Time (%) 42.56 2.91 41.66 43.47 

Stride Length (m) 1.0145 0.0534 0.9978 1.0311 

Max. Heel Clearance (m) 0.1141 0.0153 0.1093 0.1188 

 

Fig 5.1. Ensemble vertical and horizontal heel displacements over one gait 

cycle. 
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Fig 5.2. Example of heel gait trajectory from one healthy subject over three 

gait cycles. 

Fig 5.1 shows the mean and standard deviation of vertical and horizontal heel 

displacements from all healthy subjects. Both vertical and horizontal displacements 

show minimal to no movement during 0-50% of gait cycle time. This is during 

stance phase where the foot is supporting the upper body. At 50-60% of gait cycle 

time, the heel starts to leave the ground (heel-off). Vertical heel displacement 

reached the peak around 70-75% of gait cycle time, where mid-swing happen. This 

maximum vertical heel displacement is a very important indication to determine 

foot drop symptom (one of the abnormal gait feature observed in hemiplegia 

patients). Meanwhile, the maximum horizontal heel displacement yields the stride 

length during gait cycle. A complete heel gait trajectory can be observed in Fig 5.2. 

This heel gait trajectory is constructed by plotting the vertical heel displacement 

against the horizontal heel displacement.   
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Fig 5.3. Ensemble ankle angle over one gait cycle. Positive value indicates dorsi 

flexion and negative value indicates plantar flexion. 

Fig 5.3 presents the mean and standard deviation of ankle angle over one gait cycle 

from all healthy subjects. The positive and negative values on this diagram indicate 

both dorsi- and plantar-flexion respectively. After heel-strike, at 0-10% of gait 

cycle time, the ankle plantar-flex to prepare the foot to stance phase. During 10-

50% of gait cycle time (during stance phase), the foot is trying to propel the body 

COM forward, which is achieved by the ankle joint dorsi-flexion. Besides that, it 

can increase contralateral step length [231]. To lift the foot to mid-air for swing 

phase, the ankle joint plantarflexion occurs around 50-60% of gait cycle time. This 

plantarflexion at this moment is very crucial as it contributes to the vertical 

displacement as seen in Fig 5.1. The dorsiflexion of ankle continues from 60% to 

80% of gait cycle time to lift the toe part of the foot away from the ground and 

maintain at the neutral ankle position at mid-swing. It is very important to achieve 

neutral position because at this time, the foot passes the closest to the ground, and 

ankle stays at neutral position in the gait cycle facilitates limb clearance to prevent 

the toes from touching the ground, hence decreasing the risk of falling. Lastly, the 

ankle joint plantarflexion happens to prepare for the next heel-strike. 
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5.3.2 Gait sEMG data 

 

Fig 5.4. Ensemble normalised linear enveloped sEMG of gastrocnemius lateral 

and tibialis anterior muscles over one gait cycle. 

SEMG signal during gait often shows the onset, duration and amplitude of the 

muscle burst in relation to the gait cycle. In this study, only temporal features such 

as onset and duration of muscle were analysed. This is because it is very hard to 

study the amplitude of sEMG inter-subjects using Dynamic Peak Normalisation. 

This normalisation method only normalised against the peak of the sEMG trial for 

each different subjects.  

Gastrocnemius lateral (GL) and tibialis anterior (TA) muscles are agonist-

antagonist muscles. This means that when GL muscle is contracting, TA muscle is 

relaxing, or vice versa. According to Seniam [177], GL muscle is mainly for 

plantar-flexion while TA muscle is for dorsi-flexion of ankle joint. Fig 5.4 shows 

the ensemble normalised linear enveloped sEMG from these two muscles. For GL 
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muscle, it only activates approximate 25-55% of gait cycle time, which is during 

stance time. As mentioned earlier, the dorsiflexion of ankle joint is to propel the 

upper body forward. This can be achieved by contraction of GL muscle. Similar 

phenomena can be observed for TA muscle where it only activates during 

plantarflexion of ankle joint.  

5.4 Stroke Gait Data 

The gait pattern of 60 stroke patients from Experiment 2 were analysed. The mean 

and the standard deviation of results from these patients were being compared to 

the results from healthy subjects. These 60 stroke patients were then further divided 

into three different subgroups using Hierarchical Cluster Analysis. 

5.4.1 Stroke gait spatial-temporal data 

One of the temporal features of hemiplegic gait is reduced gait velocity compared 

to the healthy gait [232]. From Table 5.3, the mean gait velocity from 60 stroke 

subjects was slower than healthy gait velocity (stroke=0.4379m/s; 

healthy=1.5441m/s). Other studies had reported that the preferred self-selected 

walking speed of chronic phase stroke patients range from 0.10m/s to 0.76m/s 

[232,233]. This finding matched the results reported in Table 5.3. The decrease of 

gait velocity have multiple factors, including poor motor recovery, impaired 

balance, and decrease mucle strength. Decrease in gait velocity has a significant 

negative effect on a person level of independence.  

Besides that, the gait cycle time and stance time were longer than the healthy gait. 

The swing time was shorter for stroke since they had longer stance. With the paretic 

limb, less time is spent in stance and more time is spent in swing. This leads to non-

paretic limb exhibited a prolonged period of stance and a reduced period of swing. 

This finding coincided with studies [234,235]. 

For spatial features, the stride length of stroke patients from both paretic and non-

paretic limbs were shorter than healthy (paretic=0.48m, non-paretic=0.48m, 
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healthy=1.04m). There were many studies with contradic outcomes reported paretic 

stride length is longer than non-paretic stride length, or vice versa [70]. Studies that 

stated paretic limb with longer stride length observed that the stroke patients 

increased propulsion by the non-paretic leg to contribute to an increase in paretic 

stride length [232] as a type of compensatory strategy. The mean maximum heel 

clearance had insignificant difference from healthy’s result. Maximum heel 

clearance occurred during mid-swing, which is to prevent foot drag. Foot drag is 

one of the abnormal gait which will increase the risk of falling among stroke 

patients. 

Table 5.3 Mean, standard deviation and 95% CI of spatial-temporal results 

from 60 stroke patients. The p-value show difference of the results between 

stroke and healthy subjects. 

 Mean SD 95% CI Comparison 

with healthy 

Gait Velocity (m/s) 0.4379 0.356 0.393 0.583 p <0.05 

Paretic limb 

Gait Cycle Time (s) 2.13 0.86 1.88 2.37 p <0.05 

Stance Time (%) 71.52 10.91 68.39 74.66 p <0.05 

Swing Time (%) 28.48 10.91 25.34 31.61 p <0.05 

Stride Length (m) 0.48 0.34 0.38 0.57 p <0.05 

Max. Heel Clearance (m) 0.11 0.07 0.09 0.13 p =0.9 

Non-Paretic limb 

Gait Cycle Time (s) 2.13 0.87 1.88 2.38 p <0.05 

Stance Time (%) 74.52 10.30 71.56 77.48 p <0.05 

Swing Time (%) 25.48 10.30 22.52 28.44 p <0.05 

Stride Length (m) 0.48 0.40 0.36 0.59 p <0.05 

Max. Heel Clearance (m) 0.12 0.08 0.10 0.14 p =0.7 

GC= Gait Cycle; ST=Stance; SW=Swing; SL=Step Length; HC= Heel Clearance 
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Fig 5.5. Ensemble ankle angle of paretic and non-paretic lower limbs over one 

gait cycle. 

Fig 5.5 shows the mean ankle angle over one gait cycle from 60 stroke patients. 

The common kinematic disturbances occured during stance phase (heel-strike and 

toe-off) and swing phase (mid-swing). During stance phase, decreased in plantar 

flexion can be observed during initial-contact, or heel-strike (0-10% of gait cycle 

time) and toe-off (70-80% of gait cycle time). Noted the toe-off for these patients 

was much later compared to the healthy’s toe-off. This is due to the prolong stance 

phase observed among stroke patients. Decreased in plantar flexion at toe-off might 

be the result of the inability to contract the plantar flexors concentrically with 

enough tension to overcome the inertia of the remainder of the body [232]. 

Furthermore, a decrease in the length of plantar flexor muscles after hemiplegic 

stroke is likely to reduce the ability of the plantar flexor muscles to contract and 

generate enough force [231].  Moreover, there was decrease in dorsi-flexion from 

toe-off to mid-swing (80-90% of gait cycle time). This lack of dorsi-flexion at this 

period leads to ankle joint unable to return to its neutral position, hence foot drop 

happened.  
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5.4.2 Gait characteristic of stroke patients in different subgroups 

Since the results from Table 5.3 came from a wide variation of stroke patients with 

their own preferred self-selected speed, it is necessary to divide these patients into 

different homogeneous subgroups. This is to ensure a fair comparison with healthy 

data. To achieve that, these 60 stroke patients were divided into three different 

subgroups using Hierachical Cluster Analysis. Three cluster of gait patterns were 

identified and there were shown in Table 5.5. In this table, the mean and standard 

deviation of spatial-temporal results from three differenct subgroups of stroke are 

presented.  

The three identified subgroups can be named based on their most significant 

features; Group 1 (Fast) had the fastest gait velocity (0.45m/s). Group 2 (Moderate) 

had moderate gait velocity (0.30m/s) with a motion pattern similar to Group 1 

except for greater ankle dorsiflexion during mid-swing. Group 3 (Slow) had the 

slowest velocity (0.21m/s) and inadequate ankle dorsiflexion during mid-stance 

(3.50°). 

Group 1 subjects had shortest stance phase (65.97%) and longest swing phase 

(34.03%), which is very similar to healthy gait. The gait pattern of this group is 

similar to the fast group in previous studies [26, 27]. The greater gait velocity of 

this group was due to them having the greatest stride length (0.61m) among the 

three groups. Group 2 subjects had very similar stance and swing phase to Group 1 

(66.63 and 33.37% respectively). The gait characteristics of this group were similar 

to the moderate gait velocity group in [26] and Mulroy et al [27]. The slower gait 

velocity appears to be a result of having shorter stride length (0.47m) despite similar 

gait cycle time (1.78s) compared to Group 1 subjects (1.71s). This walking group 

also demonstrated the greatest dorsiflexion angle at swing phase (5.35°), which 

probably is the compensatory strategy to prevent foot drag and increase heel 

clearance during swing phase (0.10m). Group 3 subjects appeared to be the most 

severe stroke subjects as they had the longest stance time and shortest swing time 

(77.44 and 22.56% respectively). This group had gait pattern characteristics similar 

to the slowest gait velocity group in Kinsella and Moran [26] and Mulroy et al [27]. 
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The main reason they had the slowest gait velocity is due to shortest stride length 

(0.44m) and longest gait cycle time (2.56s). Furthermore, the lowest ankle 

dorsiflexion angle during mid stance (3.50°) had limited the forward motion of 

upper body. This may lead to shorter step length in contralateral limb (non-paretic 

limb). 

Fig 5.6 presents box-and-whisker plot of eight spatial-temporal parameters and 

joint kinematics at sagittal plane with different stroke patient and healthy 

subgroups. The median, inter-quartile range and 95% confidence interval are shown 

in these plots. Unpaired t-test showed significant difference between parameters 

from each subgroup of stroke patients and healthy beside ankle dorsi and 

plantarflexion during mid-stance and toe-off (see Table 5.5). One-way ANOVA 

analysis  shows significant difference between each cluster subgroup for ankle 

angle dorsiflexion at mid-stance, stride length and gait velocity. 

Table 5.4 illustrates that profound overall temporal asymmetry can be found in 

many stroke patients classified as independent ambulators. Overall, the spatial-

temporal asymmetry increased from Group 1 to Group 3. High spatial asymmetry 

indicates stride length from one lower limb is much longer than the other. This will 

create an inbalance posture. Patterson et al [236] stated that 55.5% of a group of 

poststroke subjects exchibited high temporal gait asymmetry while only 33.3% of 

the same group of poststroke subjects had spatial gait asymmetry. Spatial gait 

asymmetry only appears more likely in stroke patients who exhibit severe temporal 

asymmetry compared with survivors who fall in the mild asymmetry or normative 

symmetry groups. 

Table 5.4. Mean and standard deviation of Robinson Symmetry Index from 

three different group of stroke patients. 

 Group 1 Group 2 Group 3 

SL Symmetry 0.81 6.82 7.32 

HC Symmetry 4.35 9.09 5.26 

GC Symmetry 1.18 1.14 1.99 

ST Symmetry 1.04 2.74 3.18 

SW Symmetry 1.81 5.95 9.58 
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Table 5.5. Mean, standard deviation and 95% CI of spatial-temporal results from three differenct groups of stroke patients. The p-value 

show difference of the results between stroke and healthy subjects. 

 Stroke Healthy P value Stroke Healthy P value 

 Group 1 (Fast) (n=31) 

Gait Velocity(m/s) 1 0.45 

 Paretic limb Non-Paretic limb 

Stride length (m) 1 0.61 0.9234 <0.05 0.62 0.9234 <0.05 

Max. Heel Clearance (m) 0.12 0.1028 <0.05 0.11 0.1028 <0.05 

Gait Cycle Time (s) 1.71 1.235 <0.05 1.67 1.2333 <0.05 

Stance Time (%) 65.97 56.60 <0.05 64.61 57.44 <0.05 

Swing Time (%) 34.03 43.40 <0.05 35.39 42.56 <0.05 

Ankle Dorsiflexion 

Angle at Mid-stance (°)1 13.08 12.33 =0.38 27.78 12.33 <0.05 

Ankle Plantarflexion 

Angle at Toe-off (°) -0.36 -3.76 =0.12 -1.07 -3.76 =0.22 

 Group 2 (Moderate) (n=13) 

Gait Velocity (m/s) 1 0.30 

 Paretic limb Non-Paretic limb 

Stride length (m) 1 0.47 0.9234 <0.05 0.41 0.9234 <0.05 

Max. Heel Clearance (m) 0.10 0.1028 <0.05 0.12 0.1028 <0.05 

Gait Cycle Time (s) 1.78 1.235 <0.05 1.74 1.2333 <0.05 

Stance Time (%) 66.63 56.60 <0.05 70.38 57.44 <0.05 

Swing Time (%) 33.37 43.40 <0.05 29.62 42.56 <0.05 

Ankle Dorsiflexion 

Angle at Mid-stance (°)1 8.51 12.33 <0.05 10.32 12.33 =0.23 
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Ankle Plantarflexion 

Angle at Toe-off (°) -0.37 -3.76 <0.05 -1.32 -3.76 =0.14 

 Group 3 (Slow) (n=16) 

Gait Velocity (m/s) 1 0.21 

 Paretic limb Non-Paretic limb 

Stride length (m) 1 0.44 0.9234 <0.05 0.38 0.9234 <0.05 

Max. Heel Clearance (m) 0.10 0.1028 <0.05 0.09 0.1028 <0.05 

Gait Cycle Time (s) 2.56 1.235 <0.05 2.46 1.2333 <0.05 

Stance Time (%) 77.44 56.60 <0.05 72.66 57.44 <0.05 

Swing Time (%) 22.56 43.40 <0.05 27.34 42.56 <0.05 

Ankle Dorsiflexion 

Angle at Mid-stance (°)1 3.50 12.33 <0.05 9.07 12.33 =0.06 

Ankle Plantarflexion 

Angle at Toe-off (°) -1.34 -3.76 <0.05 -0.50 -3.76 <0.05 
1Indicates significant difference inter-subgroup (p-value<0.05) 
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Fig 5.6. Box-and-whisker plots of spatial-temporal parameters and joint 

kinematics with 95% CI for the median of different cluster subgroups patients 

and healthy subjects. SL-Stride length, HC-Heel clearance, ST-Stance time, 

SW-Swing time, AD-Ankle dorsiflexion at mid-stance, AP-Ankle 

plantarflexion at toe-off, GC-Gait cycle time, GV-Gait velocity.  
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5.4.3 Stroke gait sEMG data 

The phasic patterns of the muscles in GL and TA muscles of stroke patients are 

significantly different compared to those healthy subjects. The amplitudes in these 

results are meaningless since they cannot compare inter-subject.  

In Olney et al [6] review, there were generally 4 types of stroke’s gait sEMG pattern 

(Type I, Type II, Type III and Type IV). Fig 5.7, Fig 5.8 and Fig 5.9 show GL and 

TA muscles ensemble sEMG from three different subjects over one gait cycle. 

These three subjects were randomly selected from the subgroups from cluster 

analysis. The details of these patients were described as follow. 

 

Fig 5.7. Ensemble normalise linear enveloped sEMG of GL and TA muscles of 

both paretic and non-paretic lower limbs from one subject demonstrates Type 

I disorder, over one gait cycle. Grey shaded area indicates the muscle 

activation timing from healthy subject with respective muscles. 
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The patient in Fig 5.7 was from Group 1, demonstrated typical Type I disorder 

where the GL muscle on the paretic limb showed hyperactive stretch reflexes, and 

the premature activation before the healthy onset (25-55% of gait cycle time) and 

duration. 

 

Fig 5.8. Ensemble normalise linear enveloped sEMG of GL and TA muscles of 

both paretic and non-paretic lower limbs from one subject demonstrates Type 

II disorder, over one gait cycle. Grey shaded area indicates the muscle 

activation timing from healthy subject with respective muscles. 

Meanwhile, the patient in Fig 5.8 was from Group 2, showed lack of activation in 

GL muscles in both paretic and non-paretic limb. Lack of GL muscle contraction 

leads to lack of plantar-flexion during stance phase, and ankle joint cannot propel 

the upper body forward. Besides that, it also causes decrease in step length in 

contralateral limb. This can be compensated by knee hyperextension, providing a 

stable limb for weight bearing [237]. 
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Fig 5.9. Ensemble normalise linear enveloped sEMG of GL and TA muscles of 

both paretic and non-paretic lower limbs from one subject demonstrates Type 

IV disorder, over one gait cycle. Grey shaded area indicates the muscle 

activation timing from healthy subject with respective muscles. 

The patient in Fig 5.9 was from Group 3, presented typical Type IV, where 

coactivation on non-paretic limb was observed, and lack of activation occurred on 

GL muscle on paretic limb. A peak was observed around 65% of gait cycle time on 

both GL and TA muscles, indicating coactivation from both muscles. Coactivation 

from TA and GL mucsles will leads to counteracting each other, and it will limit 

the ankle joint range of motion. 
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5.4.4 Correlation between spatial-temporal data with TUG and Gait Velocity  

The correlation between spatial-temporal parameters and gait asymmetry index 

with TUG score and gait velocity were investigated in this section. Both TUG score 

and gait velocity are always used as indicators to classify hemiplegia patients into 

different gait deficiencies [259]. It is important for physiotherapists to understand 

the gait dysfunction level so that they can arrange suitable rehabilitation.  

Fig 5.10 shows scatter plots of different spatial-temporal parameters to TUG score 

and gait velocity respectively. In this figure, the Pearson Correlation Coefficient 

shows poor correlation between all parameters and TUG score (r=-0.431, -0.466, 

0.541, 0.127 and -0.127 for stride length, heel clearance, gait cycle time, stance 

time and swing time respectively. However, in contrast, it shows most spatial-

temporal parameters were highly correlate to gait velocity (r=0.700, -0.713 and 

0.713 for stride length, stance time and swing time respectively) but not for heel 

clearance and gait cycle time (r=0.374 and -0.321 respectively). The reason most 

parameters were not highly correlate to TUG score is because these parameters 

were obtained in just one gait cycle over the sagittal plane only. Meanwhile, TUG 

score consists of multiple task, which includes standing, walking, turning and 

sitting. Therefore, it leads to poor correlation. On the other hand, stride length, 

stance time and swing time were highly correlate to gait velocity but not heel 

clearance and gait cycle time. Greater stride length indicates greater step length, 

which is crucial in determining gait velocity. The heel clearance is the vertical 

distance between heel and ground; therefore, it has less impact on the gait velocity.  

Meanwhile, the poor correlation between gait cycle time and gait velocity 

suggested that some stroke patients who had short gait cycle time come with even 

shorter step length. This is probably a compensatory mechanism to reduce the step 

length and improve balance during walking to prevent fall. 

Fig 5.11 shows scatter plots of different Robinson Index to TUG score and gait 

velocity respectively. In this figure, the Robinson Index with different inputs show 

poor correlation to both TUG score and gait velocity. This can be due to several 

factors, (i) low sensitivity using conventional asymmetry indices (in this case 

Robinson Index) [31], (ii) univariate asymmetry measurement lack the ability to 
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capture the complexity of gait cycle [101]. Our results were similar to Patterson et 

al [238] report. Both studies shows poor correlation between asymmetry index and 

gait velocity. Patterson et al [239] explained that gait velocity is more strongly 

associated with gait phases of the non-paretic limb than paretic limb. This may 

reflect adaptive behaviours of the non-paretic limb that compensate for the paretic 

limb [240]. Once the behavioural compensation have been developed, it is possible 

that stroke patients have varied in gait asymmetry but not gait velocity.  

  



University of Nottingham Malaysia Campus  

 

104 

 

 

Fig 5.10. Scatter plot of spatial-temporal parameters to TUG score and gait 

velocity respectively. Pearson correlation were found on each results and a 

best-fit line was plotted. (SL=stride length; HC=Heel clearance; GC=Gait 

cycle time; ST=stance time, SW=swing time). 
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Fig 5.11. Scatter plot of Robinson Index to TUG score and gait velocity 

respectively. Pearson correlation were found on each results and a best-fit line 

was plotted. (SL=stride length; HC=Heel clearance; GCT=Gait cycle time; 

STT=stance time, SWT=swing time). 
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5.5 Chapter Summary 

In this chapter, the conventional gait analysis was performed on both healthy and 

stroke patients. The healthy normal gait characteristics were discussed in detail. 

After that, the gait pattern of a large group of stroke patients were classified into 

three different homogeneous subgroups using Hierarchical Cluster Analysis. One-

way ANOVA analysis showed significant difference between each subgroups. 

Furthermore, the gait patterns of each of these subgroups were compared to healthy 

one using unpaired t-test. Most parameters showed significant difference between 

stroke patient subgroups and healthy group.  Moreover, the muscle impairments on 

these three subgroups were presented and they were described in term of their 

temporal information. Meanwhile, only certain spatial-temporal parameters (stride 

length, stance time and swing time) were highly correlate to gait velocity but not 

TUG score. Gait asymmetry index using Robinson Index showed poor correlation 

to TUG score and gait velocity. 

This chapter showed some limitations from current conventional gait analysis: 

i. Poor correlation between gait parameters and TUG score. 

ii. Poor sensitivity of gait asymmetry indices. 

iii. The selection of multiple inputs of gait parameters for classification is often 

subjective. 

iv. Linear envelope of sEMG signal provides limited information (temporal 

information only) without further processing. 

Therefore, the following chapters in this thesis will be focusing on improving these 

limitations. Based on these limitations, new kinesiology and kinematic gait analysis 

techniques are proposed. Resolving these issues will provide a better insight in gait 

analysis, which will benefit the study in observing gait recovery in the later chapter. 
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Chapter 6 Kinesiology based gait 

analysis- A new fractal-based kinetic 

index to characterise gait after stroke   

6.1 Introduction  

SEMG has been widely used by researchers to perform gait analysis. Raw sEMG 

signal provides minimal to none information without any analytic signal processing 

techniques. Amplitude and temporal analysis of sEMG often require the 

computation of the signal’s linear envelope. As mentioned in Chapter 4, linear 

envelope of sEMG provides very limited information (such as onset timing, 

duration and amplitude) without any further processing. Conventional linear 

envelope of sEMG signal could be characterised by techniques involving time and 

frequency domain analysis. These methods reveal specific properties in the linear 

system context. However, sEMG signal is nonlinear in nature [241]. As mentioned 

previously, early researchers reported chaotic-liked behavior in sEMG [193, 194]. 

Among them, fractal analysis is one the common approach to determine non-linear 

characteristics of sEMG signals. 

The application of fractal analysis in stroke patients are relatively limited. This 

could be attributed to the requirement of analysing long time-series [242,243]. 

Nevertheless, this technique shows great potential as a quantitative gait assessment 

tool for neurological pathologies [243]. The correlation between sEMG and clinical 

assessment tools such as Timed Up and Go score is not well known. We aim to 

investigate the feasibility of applying fractal analysis on sEMG signals from stroke 

patients to characterise their gait deficits and to classify the gait deficits based on 

their TUG score. 

In Chapter 5, gait classification is performed by using Hierarchical Cluster 

Analysis. We adopted multiple gait parameters as the inputs to classify the stroke 

patients into homogeneous subgroups. However, the selection of inputs can be very 
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subjective and generally based on observation by visual inspection from researchers 

or clinicians [27]. Meanwhile, single category of parameter often yielded 

functionally heterogeneous results [27]. Therefore, it is worth applying this 

classification method (Hierarchical Cluster Analysis) to classify stroke patients 

based on the fractal features mentioned earlier and compared it to conventional 

classification results. The aims of this chapter are: 

1. To formulate a new sEMG based index (Kinetic Index) that is highly correlate 

to TUG score. 

2. To classify the gait pattern of stroke subjects into homogeneous subgroups 

using different approaches. 

6.2Theory 

6.2.1 Higuchi Fractal Dimension (HFD) 

In this study, Higuchi algorithm [207] is used and it is briefly described as follows:  

Consider a sEMG time series𝑥(𝑡) = 𝑥(1), 𝑥(2), … , 𝑥(𝑁) , where N is the total 

number of samples in the time series. A total of k new time series 𝑥𝑚
𝑘 , are 

constructed and defined as Eq (6.1): 

𝑥𝑚
𝑘 : 𝑥(𝑚), 𝑥(𝑚 + 𝑘), 𝑥(𝑚 + 2𝑘),… , 𝑥 (𝑚 + [

𝑁 −𝑚

𝑘
] ∙ 𝑘)   (𝑚 = 1,2,… , 𝑘) (6.1) 

where m and k are integer numbers which represent the initial time and the interval 

time respectively, [∎] indicates the integer part of the expression. The length of the 

curve 𝑥𝑚
𝑘  is computed as Eq (6.2): 

𝐿𝑚(𝑘) =

{
 
 

 
 

(

 
 
∑ |𝑥(𝑚 + 𝑖𝑘) − 𝑥(𝑚 + (𝑖 − 1) ∙ 𝑘)|

[
𝑁−𝑚
𝑘

]

𝑖=1

)

 
 𝑁 − 1

[
𝑁 −𝑚
𝑘 ] ∙ 𝑘

}
 
 

 
 

𝑘⁄  (6.2) 

Where 
𝑁−1

[
𝑁−𝑚

𝑘
]∙𝑘

  is the normalisation factor for the curve length of the new time series 

𝑥𝑚
𝑘 .  
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The length of curve for 𝑥(𝑡), 𝐿(𝑘) is obtained by averaging all 𝐿𝑚(𝑘), where m 

=1,2,…,k. If 𝐿(𝑘) is proportional to  then the EMG time series has a fractal 

dimension of D. This could be done by plotting ln(L(k)) against ln(1/k), where k 

=1,2,…kmax and the slope would be D.  

6.2.2 Sliding window approach on HFD 

In Section 6.2.1, HFD is described to compute the whole sEMG time series and 

only return one value. To obtain the temporal evolution, a sliding window approach 

on HFD could be computed. This sliding window approach separates the initial 

signal with N points into w point’s windows as described by Eq (6.3): 

 𝑥(1), 𝑥(2), … , 𝑥(𝑤) 
𝑥(2), 𝑥(3), … , 𝑥(𝑤 + 1) 
𝑥(3), 𝑥(4), … , 𝑥(𝑤 + 2) 
⋮ 
𝑥(𝑁 − 𝑤 + 1), 𝑥(𝑁 − 𝑤 + 2),… , 𝑥(𝑁) 

(6.3) 

In each sliding window, the HFD could be computed using the procedures 

described in Section 6.2.1, where the sample size is now the window length w in 

Eq (6.4) and (6.5): 

𝑥𝑚
𝑘 : 𝑥(𝑚), 𝑥(𝑚 + 𝑘), 𝑥(𝑚 + 2𝑘),… , 𝑥 (𝑚 + [

𝑤 −𝑚

𝑘
] ∙ 𝑘)   (𝑚 = 1,2,… , 𝑘) (6.4) 

𝐿𝑚(𝑘) =

{
 

 

(

 ∑ |𝑥(𝑚 + 𝑖𝑘) − 𝑥(𝑚 + (𝑖 − 1) ∙ 𝑘)|

[
𝑤−𝑚
𝑘

]

𝑖=1
)

 
𝑤 − 1

[
𝑤 −𝑚
𝑘

] ∙ 𝑘
}
 

 
𝑘⁄  (6.5) 

Fig 6.1 describes the sliding window concept in a graphical way. In this study, the 

HFD of stroke subject's sEMG in a gait cycle is computed using this approach. The 

kmax and w values are 5 and 10 respectively. To determine kmax, HFD of the data is 

computed with a range of kmax values. The values of HFD are then plotted against 

kmax, and the point of saturation in the graph is selected as the final kmax value 

[244,245]. For the sliding window w, we selected the lowest possible value to 

reduce the sample lost in F. The w value lower than 10 will generate false fractal 

dimension peaks as seen in Fig 6.2. On the other hand, high w will lead to smoother 

Dk

1
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HFD time series, which the correct peaks will not reveal. The rationale of choosing 

w value is similar to other researches [246,247]. 

6.2.3 Fractal properties in sEMG 

To test the practicality of sliding window HFD, a preliminary investigation on the 

fractal properties of sEMG signal from stroke patients was conducted. A sliding 

windowed HFD from the Gastrocnemius Lateral (GL) sEMG signal for one gait 

cycle is computed following the methods described in Section 6.2.2. This is shown 

in Fig 6.2. Results showed that there are higher fluctuations in HFD time histories 

of stroke subjects as their TUG scores increase (from 15.6 s – 98 s). Nevertheless, 

the complexity of HFD time histories for subjects with high TUG scores was 

different from those with low TUG scores. The number of peaks, NP is increasing 

with increase of TUG score. This suggests sliding windowed HFD could be a good 

indicator. However, the result of HFD on single muscle is not sufficient to 

differentiate the stroke patients effectively as observed in Fig 6.3. The average 

number of peak computing from single muscle for 30 stroke patients is presented 

in Fig 6.3 upper row and the average for different TUG score group is shown Fig 

6.3 bottom row. High correlation coefficient (0.8046) can be observed in the result 

from Fig 6.3 upper row. However the correlation coefficient from individual group 

is relatively low for TUG score group of below 20s, between 20 to 30s and above 

30s (0.4403, 0.6919 and 0.7217 respectively). The model should be refined to 

reveal a better picture.  
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Fig 6.1. Graphical representation of sliding window approach to determine HFD on a signal.  
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Fig 6.2. Time histories of HFD from GL muscle, acquired from three stroke 

patients with different TUG scores.  

   
Fig 6.3. Scatter plot of NP against TUG score with its best-fit line with 

correlation coefficient, r of 0.8046 on upper row. Scatter plot of NP from 

category of TUG score below then 20s, between 20-30s and above 30s against 

TUG score with its best-fit line with correlation coefficient of 0.4403, 0.6919 

and 0.7217 respectively on bottom row. 
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6.2.4 Kinetic Index 

The issue addressed in Section 6.2.3 suggested that single fractal property (number 

of peak) on single muscle is not sufficient to draw correlation to TUG score. 

Therefore, a new kinetic index (K.I.) comprises of multiple fractal properties of 

sEMG signals is proposed in this study. Both Tibialis Anterior (TA) and 

Gastrocnemius Lateral (GL) muscle signals are used since these two agonist and 

antagonist muscles mainly contribute to walking. K.I. consists of the average fractal 

properties from both TA and GL muscles from both legs. 

 
K.I. =

∑ 𝜎𝑖,𝑗𝑖,𝑗

2𝑛
, (𝑖 = TA,GL), (𝑗 = left,right) (6.6) 

where n is the number of muscles investigates. In our study, n is two as TA and GL 

muscles are studied here. 

i in Eq (6.6) is derived from the fractal properties of sEMG during gait. A HFD 

time series F can be computed from the sliding windows of both TA and GL sEMG 

during gait. The temporal evolution of fractal dimension can then be obtained. Next, 

two features are extracted from F to form i. One feature is number of peaks NP 

and the second feature is the area of peaks AP in the time series F. 

Fig 6.4 illustrates an example of sliding window HFD time series F of a sEMG. In 

this figure, the circle indicating the local maxima and the square indicates the local 

minima. The first fractal properties feature, number of peaks, NP can therefore be 

obtained by counting the number of local maxima. To acquire the second feature 

the area of peaks AP, the first step is to determine the average of local minima. The 

area under the graph between the curve and the straight line formed by the average 

local minima is then computed. 

 

𝐴𝑃𝑖,𝑗 = ∫ 𝐹𝑑𝑡 − (𝑆 ∙ (𝑁 − 1))

𝑁−𝑤

1

 (6.7) 

where S is the average of local minima. The fractal property i,j of each muscle is 

therefore defined as: 
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 𝜎𝑖,𝑗 = 𝐴𝑃𝑖,𝑗 + 𝑁𝑃𝑖,𝑗 (6.8) 

The prominence and width of the peak are defined as: 

 𝑃𝑁 = 𝑃𝐻 − 𝑆 (6.9) 

where PN is the prominence, PH is the peak height. As observed in Fig 6.5, each 

prominence is different from peak to peak. In this diagram, one peak height is 1.399 

and the other peak height is 1.385, which leads to different AP in Eq (6.8).  Each of 

this peak contains two local minima and one local maxima as shown in the enlarged 

diagram in Fig 6.4 (with square indicating local minima and circle indicating local 

maxima). The distance from the first local minima (first square) to the next local 

minima (second square) in this enlarged diagram is equal to the sliding window 

length w. As seen in Fig 6.5, both peaks are caused by the sudden change of slope 

in sEMG signal. When there is no change in the slope of sEMG signal, it results in 

relatively flat straight line in F. The peak HFD value in F depends on the variation 

in slope of sEMG signal.  

Fig 6.6 illustrates the flow chart to compute Kinetic Index.  
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Fig 6.4. Graphical illustration of the computation of fractal properties σi,j. 

 

Fig 6.5. An example of a small segment of HFD time series F with its 

corresponding sEMG from GL muscle. 85 samples in F corresponds to 4.25% 

of gait cycle in sEMG signal. 
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Fig 6.6. Flow chart to determine Kinetic Index K.I. from the raw gait’s sEMG. 
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6.3 Experiment Procedure 

The sEMG data from 30 stroke patients from Experiment 2 as mentioned in Chapter 

2 were analysed. These 30 stroke patients took part in TUG test. They were further 

categorised into three different groups according to their TUG scores, with 10 

subjects in each group. The first group contained stroke subjects of TUG scores 

from 10-19s, the second group TUG scores from 20-29s and the third group TUG 

scores 30s and above (TUG < 20 s, 20 s < TUG < 30 s and TUG > 30 s). The 

demographic of these 30 stroke patients is shown in Chapter 2. 

Linear envelope of sEMG was acquired according to the procedure in Chapter 3. 

This sEMG envelope was further processed to determine the K.I. as described in 

Section 5.2. Correlation coefficient r was computed to determine the correlation 

between K.I. and TUG scores. One-way ANOVA analysis was used to compare the 

differences in the K.I. values across these three groups. A Tukey Post- Hoc analysis 

was performed to determine which of these three groups were significantly different 

from each other. SNR of each individual stroke patients is determined by: 

 
𝑆𝑁𝑅𝑑𝐵 = 20(𝑙𝑜𝑔10 (

𝑅𝑀𝑆𝑆𝑖𝑔𝑛𝑎𝑙

𝑅𝑀𝑆𝑁𝑜𝑖𝑠𝑒
)) (6.10) 

where SNRdB is the SNR with unit dB, RMSSignal and RMSNoise are the root mean 

square of the sEMG signal and noise. The noise is the baseline noise during zero% 

maximum voluntary contraction, which can be obtained before the walking 

experiment, while the sEMG signal is the data during gait from one heelstrike to 

next heelstrike. Higher SNR value indicates better quality of sEMG. 

Hierarchical Cluster Analysis described in Chapter 5 was used to perform gait 

classification with K.I. value as the only gait parameters single input. This 

classification results were being compared to the Approach 1 results in Chapter 5, 

which used multiple gait parameters. Gait classification solely based on TUG score 

was also performed as comparison. The Hierarchical Cluster Analysis classification 

results using single K.I. value were Approach 2. 
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6.4 Results 

6.4.1 Correlation between K.I. and TUG score 

Fig 6.7 shows the correlation between K.I. and TUG scores. The correlation 

coefficient r was 0.9222. The result suggests that K.I. is strongly correlated to TUG 

scores. Table 6.1 shows the means, standard deviations (SD) and 95% confidence 

interval of the K.I. for the three different stroke groups. In particular, stroke patients 

with TUG scores ranged from 10-19 s had the lowest K.I. value ( =33.1, 

SD=2.45). Subjects with TUG score of 20-29 s had increased K.I. value (

=45.7, SD=10.5). Meanwhile, subjects with TUG score greater than 30 s had more 

variable results but generally higher K.I. values ( =74.1, SD=28.1). Fig 6.8 

shows the individual performance from different TUG score group. Compared to 

the results in Fig 6.3, the correlation coefficient for K.I. against TUG is 

significantly improved from NP against TUG (0.4403, 0.6919 and 0.7217 to 

0.9143, 0.8665 and 0.9026 for TUG score below 20, between 20 and 30 and above 

30 respectively). 

To test whether the differences across the three groups were statistically significant, 

one-way ANOVA analysis was used. ANOVA analysis returned a p-value of 

0.0000051378 (<0.05), indicating the mean values of the three groups were 

different from each other. The Post-Hoc results showed that the means of TUG 

score group <20s and 20~20s are significantly difference from the mean of TUG 

score group 30>. Meanwhile, there is no significant difference between the mean 

between TUG score group <20s and group 20~30s. 

 K.I.

 K.I.

 K.I.
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Fig 6.7. Scatter plot of K.I. against TUG score with its best-fit line. Correlation 

coefficient between them is 0.9222. 

 

Fig 6.8. Scatter plot of K.I. against TUG score with its best-fit line from 

category of TUG score below then 20s, between 20 and 30s and above 30s 

against TUG score with its best-fit line with correlation coefficient of 0.9143, 

0.8665 and 0.9026 respectively. 
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Table 6.1. Mean standard deviation (SD) and 95% CI of K.I.  

Population group  Mean K.I. SD K.I. 95% CI 

Stroke subjects with TUG <20s 33.1 2.45 31.4-34.9 

Stroke subjects with TUG 20 - 

30s 

45.7 10.5 38.1-53.2 

Stroke subjects with TUG >30s 74.1 28.1 54.0-94.2 

 

6.4.2 Gait classification and assessment  

In this section, the results from gait classification described in Section 6.3 are 

presented.  

Table 6.2 shows the gait parameters from Approach 2. Similarly, this approach is 

able to differentiate three different groups in term of their gait velocity with Group 

1 (KI 1) was the fastest group (0.42m/s), Group 2 (KI 2) was the moderate group 

(0.32m/s) and Group 3 (KI 3) was the slowest group (0.20m/s). Meanwhile, one-

way ANOVA analysis showed that K.I., gait velocity, stride length, stance time and 

swing time had significant difference between three different groups. 

Meanwhile, the gait parameters results from Table 6.3 were classified based on 

their TUG score. As expected, Group 1 (<20s) had fastest gait velocity (0.42m/s), 

Group 2 (20-30s) had moderate gait velocity (0.25m/s) and Group 3 (>30s) had the 

slowest gait velocity (0.22m/s). One-way ANOVA analysis showed that K.I., gait 

velocity, stride length and ankle dorsiflexion angle at mid-stance had significant 

difference between three different groups. 
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Table 6.2. Mean (standard deviation) for K.I., gait velocity, spatial-temporal 

parameters and ankle joint angle at sagittal plane divided into cluster 

subgroups based on Approach 2. 

 Group 1 

(KI 1) 

n = 9 

Group 2 

(KI 2) 

n = 9 

Group 3 

(KI 3) 

n = 12 

p-

value 

 

K.I. 38.39 (16.85) 42.65 (11.44) 66.04 (14.06) <0.05 

Gait Velocity (m/s) 0.42 (0.10) 0.32 (0.20) 0.20 (0.06) <0.05 

               Spatial-Temporal Parameters 

Stride length (m) 0.58 (0.22) 0.44 (0.31) 0.22 (0.14) <0.05 

Max. Heel Clearance 

(m) 

0.12 (0.04) 0.10 (0.10) 0.08 (0.05) 0.513 

Gait Cycle Time (s) 1.91 (1.19) 2.12 (0.91) 2.94 (0.53) 0.135 

Stance Time 

Percentage (%) 

68.13 (11.13) 71.12 (9.80) 83.53 (7.69) <0.05 

Swing Time 

Percentage (%) 

31.87 (11.13) 28.88 (9.80) 16.47 (7.69) <0.05 

Ankle Angle 

Ankle Dorsiflexion 

Mid Stance (°) 

13.00 (11.24) 13.59 (6.26) 3.30 (8.71) 0.080 

 

Table 6.3. Mean (standard deviation) for K.I., gait velocity, spatial-temporal 

parameters and ankle joint angle at sagittal plane divided based on their TUG 

score. 

 Group 1 

(<20s) 

n = 10 

Group 2  

(20-30s) 

n = 10 

Group 3 

(>30s) 

n = 10 

p-

value 

 

K.I. 33.1 (2.45) 45.7 (10.5) 74.1 (28.1) <0.05 

Gait Velocity (m/s) 0.42 (0.20) 0.25 (0.09) 0.22 (0.16) <0.05 

               Spatial-Temporal Parameters 

Stride length (m) 0.57 (0.36) 0.41 (0.27) 0.38 (0.26) <0.05 

Max. Heel Clearance 

(m) 

0.10 (0.08) 0.13 (0.08) 0.10 (0.04) 0.476 

Gait Cycle Time (s) 1.55 (1.23) 1.76 (0.63) 2.01 (0.54) 0.152 

Stance Time 

Percentage (%) 

66.58 (7.55) 72.84 (12.14) 76.40 (10.04) 0.123 

Swing Time 

Percentage (%) 

33.42 (7.55) 27.16 (12.14) 23.60 (10.04) 0.123 

Ankle Angle 

Ankle Dorsiflexion 

Mid Stance (°) 
11.63 (7.91) 5.38 (3.85) 9.78 (5.41) <0.05 
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6.5 Discussions 

6.5.1 Discussion on methods 

To test the quality of sEMG signal, the SNR was determined using Eq (6.10) for 

stroke survivors from all three categories. The SNR of raw sEMG from the first 

group (TUG 10-19s) ranges between 24-30dB, the second group (20-29s) ranges 

between 22-28dB and the third group (30s and above) ranges between 21-26dB. 

SNR results showed that the third group has lower quality compared to two other 

categories due to lower level of muscle contraction. However, the difference is not 

significant.    

Fractal analysis on sEMG is a study of signal self-similarity and fractional 

dimensionality. Many studies indicated that fractal dimension of sEMG are directly 

proportional to the muscle force [190,208]. This is because fractal dimension 

algorithm is sensitive to high frequency muscle signals generated from the temporal 

and spatial motor unit recruitment [190]. For example, high frequency components 

may exist in the sEMG signal when the muscle force is large. The difference 

between adjacent sample points in each time series  may be larger. This results 

in higher value of Lm in Eq (6.2) and higher fractal dimension. In the sliding window 

HFD analysis, the temporal evolution of fractal dimension could be observed. As 

shown in Fig 6.2, it reveals that stroke patients with high TUG score had more 

fluctuated fractal dimensions throughout the whole gait cycle. As seen in Fig 6.5, 

the number of peak in F is highly corresponding to the convex and concave part of 

the sEMG signal. The convex and concave part of the sEMG is caused by the 

activation of the muscle contraction and therefore it will affect the number of peak 

in F. From Section 6.2.3, the HFD results shows that the number of peak from 

single muscle has promising correlation to all TUG score patients. However, sliding 

window HFD analysis of a single muscle did not perform well to distinguish the 

differences of lower TUG score stroke subjects (see Fig 6.3). This means that study 

the convex and concave part alone in sEMG signal is not sufficient. This 

k

mx
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observation suggested that a more sophisticated model is needed to characterise 

gait deficits in stroke subjects.  

The proposed K.I. incorporates the fractal properties of sEMG time series. These 

fractal properties are average number of peak NP and area between F and mean of 

local minima AP. Gait profile of different stroke patients will result in different 

complexity of F, and hence different NP and AP. The local maxima are caused by 

the fluctuation of sEMG time series. Meanwhile the AP is the area of the curve 

during the occurrence of these local maxima. The prominence of these curves (see 

Fig 6.5) are different from time to time.  

According to Seniam [177], GL muscle is mainly attributed to plantar flexion while 

TA muscle contributes to dorsiflexion. Fig 6.9 shows an example of GL and TA 

muscles from Hof et al [248]. It is noted that GL muscle activates during mid-stance 

to toe-off event to move human body forward. Meanwhile TA muscle activates 

during swing phase to heel-strike (initial loading) to provide the foot clearance. 

Stroke patients often have different sEMG profile compared to healthy human due 

to several factors. These include hyperactive stretch reflexes, lack of activation 

during both shortening and lengthening contractions, excessive and stereotyped 

coactivations of several muscle groups [6]. As an example, by observing the sEMG 

from 3 different stroke patients in Fig 6.10, it is easy to distinguish the difference 

between low TUG score (Subject 1) and high TUG score (Subjects 2 and 3). 

However, it is very difficult to qualitatively differentiate between the two high TUG 

score stroke patients. Therefore, the advantage of having K.I. is to provide 

quantitative assessment between different TUG groups with higher sensitivity. 

While conducting TUG test will still prone to human error due to several factors 

(time synchronise, different examiners on different days), collecting sEMG during 

walking is much more reliable. 
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Fig 6.9. Ensemble sEMG from GL and TA muscles from normal healthy 

subjects. Database taken from Hof et al [248].  

6.5.2 Discussion on result 

6.5.2.1 Correlation between TUG score and K.I. value 

Results in Section 6.4.1 shows that the proposed K.I. has a strong correlation with 

TUG scores.  Fig 6.8 demonstrates strong correlation between K.I. and TUG score 

in three different TUG score groups (r= 0.9143, 0.8665 and 0.9026 for TUG score 

group of <20s, 21-30s, >31s respectively). High value of K.I. corresponds to high 

TUG score. It indicates a severe stroke gait deficits and high risk of fall. One-way 

ANOVA suggested that gait classification based on their TUG score shows 

significant difference (p-value <0.05) among three different TUG score groups. It 

enables researchers and clinicians to study gait deficits at neuromuscular levels 

such that targeted treatments could be developed based on sEMG information.  

6.5.2.2 Gait assessment and classification 

1. Gait classification based on single input, Approach 2 
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Table 6.2 shows the Hierarchical Cluster Analysis Approach 2. This approach can 

classify stroke patients into three different homogeneous subgroups based on their 

gait velocity as well. (Group 1 (KI 1) 0.42m/s; Group 2 (KI 2) 0.32m/s; Group 3 

(KI 3) 0.20m/s). Group 1 (KI 1) had very similar gait characteristic to healthy gait. 

They had the shortest stance phase (68.13%) and longest swing phase (31.87%). 

Group 2 (KI 2) and Group 3 had longer stance phase (71.12 and 83.53% 

respectively) and shorter swing phase (28.88 and 16.47% respectively), which 

increased their gait cycle time (2.12 and 2.94s respectively). While Group 3 (KI 3) 

had the lowest ankle dorsiflexion angle at mid-stance, Group 2 (KI 2) had higher 

angle than Group 1 (KI 1). This may lead to longer step length in the contralateral 

limb (unaffected limb). 

2. Gait classification based on TUG score 

Table 6.3 shows the gait parameters from classification solely based on TUG score. 

Group 1 (<20s) had fastest gait velocity (0.42m/s) with longest stance phase 

(66.58%) and shortest swing phase (33.42). Besides that, the ankle dorsiflexion 

angle at mid-stance was the highest among three groups (11.63°). The gait velocity 

decreased from Group 2 (20-30s) to Group 3 (>30s) (0.25 and 0.22m/s 

respectively), with increasing stance phase (72.84 and 76.40% respectively) and 

decreasing swing phase (27.16 and 23.60% respectively). However, the ankle 

dorsiflexion angle at mid-stance was higher in Group 3 than Group 2. This may due 

to the complexity of TUG test. It involves multiple tasks besides walking in sagittal 

plane such as standing, turning and sitting. Some stroke subjects may performed 

better in walking in straight line (sagittal plane) but not other tasks.  

3. Comparison of different classification approaches (Approach 1 & 2, TUG 

classification) 

Generally, all Groups 1 were fast gait velocity, Groups 2 were moderate gait 

velocity and Groups 3 were slow gait velocity. The one-way ANOVA analysis 

suggested both Approach 1 and Approach 2 had similar gait parameters, which 

were significant difference between each subgroup (stride length, stance and swing 

time percentage), except for K.I. and ankle dorsiflexion angle at mid-stance showed 
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insignificant difference from Approach 1 and Approach 2 respectively, but not 

vice-versa. Meanwhile, classification based solely on TUG score illustrats 

significant difference in K.I., gait velocity, stride length and ankle dorsiflexion 

angle at mid-stance. However, this classification method is not able to classify 

stroke patients into different subgroups based on their temporal parameters, which 

indicates each subgroups were heterogeneous in term of their gait timing 

information. Since patients in homogenous subgroups should have independent 

correlation between each subgroups in term of both spatial and temporal 

parameters, it can be concluded that classification method based solely on TUG 

score produced three heterogeneous subgroups compared to Hierarchical Cluster 

Analysis.  

For Hierarchical Cluster Analysis, Approach 1 requires one to obtain multiple 

spatial-temporal parameters as inputs, which is very subjective and generally based 

on personal observation [27]. Meanwhile, cluster analysis with single category of 

parameter often yielded functionally heterogeneous subgroups [27]. Furthermore, 

classification based on EMG patterns (amplitude, onset and duration) resulted in 

large variability in kinematic patterns and stride characteristics within subgroups 

[27]. Therefore, the introduction of K.I. method addressed these limitations. 

Hierarchical cluster analysis with K.I. value as a single parameter input had very 

similar subgroups compared to the Approach 1 according to the One-way ANOVA 

analysis. This shows that K.I. method is a good indicator to assess the severity of 

gait among stroke patients as it is highly correlate to TUG score and could classify 

stroke into homogeneous subgroups using Hierarchical Cluster Analysis. 

6.5.3 Implications on clinical assessment 

TUG score is a typical clinical assessment tool to assess balance, mobility and 

locomotor skill of disabled persons. It involves individual performing various tasks 

such as standing, walking and turning. Successful completion of these tasks 

requires appropriate lower extremity muscle activations. Stroke patients with 

higher TUG score are at high risk of falls. A potential cause of falling could be 

weak power generated by the paretic muscle during gait. K.I. provides information 
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at the neuromuscular level to identify the weak or abnormal muscle activities during 

gait. For example, improper contraction of TA would lead to failure in lifting the 

foot (dorsiflexion) during the swing phase. It would cause foot drop, resulting in 

insufficient toe clearance and falls. The higher value of K.I. indicates weaker 

muscle of a stroke subjects.  

To illustrate the application of K.I., three stroke subjects in different TUG score 

populations are included in a case study. Table 6.4 presents the breakdown of K.I. 

of three stroke subjects with TUG scores of 14 s, 28 s and 50 s respectively while 

Fig 6.10 shows the ensemble sEMG from both GL and TA muscles from the 

hemiplegia side of the stroke patients. The σ value from hemiparetic leg’s muscles 

could inform the weaker muscle. This can be validated by qualitative comparison 

with the normal GL and TA muscles sEMG from Fig 6.9. For validation purpose, 

two important elements are being observed; activation magnitude and timing. For 

Subject 1, on the hemiparetic side, σ value for TA muscle is higher (30.9) compared 

to GL muscle (21.9). Both GL and TA muscles had same activation timing 

compared to the normal sEMG with TA lacked activation magnitude during heel-

strike event. For Subject 2, σ value for GL muscle is higher (49.1) compared to TA 

muscle (46.2). GL muscle is weaker due to the earlier activation timing while TA 

sEMG has same activation timing in this case. The activation timing for GL muscle 

shifted earlier right after heel-strike event.  Both muscles started to show jittering. 

For subject 3, σ value for TA muscle is higher (86.2) compared to GL muscle (84.0). 

In this case, both TA and GL are co-activated despite they are agonist antagonist 

muscles. For TA muscle, the activation timing shifted to stance phase. The prolong 

activation timing is another sign of abnormal contraction. These entire scenarios 

tally with the description from Olney et al [6] review. For some stroke patients, the 

non-paretic side has higher σ value for particular muscle than the hemiplegia side. 

This is due to the increased amount of positive work accomplished by the non-

paretic side which cause biomechanical compensation from the non-paretic side to 

the paretic side [249]. 
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Table 6.4. Kinetic Index and the corresponding breakdown of σTA and σGL 

values from three different stroke patients. 

Subject 

ID 

Hemiplegia 

Side 

TUG 

Score 
 Right Leg Left Leg 

σTA σGL σTA σGL 

1 Left 14s 25.9 26.3 24.8 30.9 21.9 

2 Right 28s 47.2 46.2 49.1 50.2 43.9 

3 Right 50s 84.3 86.2 84.0 85.5 81.6 

 

Fig 6.10. Ensemble sEMG of three subjects from their hemiparetic lower limb. 

Left column are ensemble sEMG for GL muscle and right column are 

ensemble sEMG for TA muscle. Grey shaded area indicates the muscle 

activation timing from healthy subject with respective muscles from Fig 6.9.  
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6.6 Chapter Summary 

In this study, a new Kinetic Index K.I. is proposed to characterise stroke patient’s 

gait deficits. 30 stroke patients with different gait deficits were recruited (from 

Experiment 1 and 2 as described in Chapter 3). Their sEMG from TA and GL 

muscles were acquired in a 5-meter walk experiment. Results showed that K.I. has 

strong correlation to the TUG scores (r = 0. 9222, p<0.05). The proposed method 

allows patients gait deficits to be examined at neuromuscular level.  

Hierarchical Cluster Analysis was used to classify these 30 stroke patients into 

different homogeneous subgroups with single input by using K.I. value (Approach 

2). Besides that, classification based on stroke subjects TUG score was also applied. 

Results show that all Approach 2 was able to classify stroke subjects into proper 

homogeneous subgroups, similar to Approach 1 in Chapter 5. This results 

suggested that single input using K.I. was capable to classify stroke survivor as 

well. This is an advantage using K.I. as multiple parameters were too troublesome 

to use. Therefore, it can be concluded that K.I. can be served as a powerful gait 

assessment indicator.   
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Chapter 7 Kinematic based gait analysis- 

Cyclogram Symmetry Region of 

Deviation 

7.1 Introduction  

In Chapter 2, the limitation of current gait symmetry indices had been described. 

There are many other researchers proposed new algorithms to solve these 

limitations and among them, Region of Deviation from Shorter et al [101] provided 

a good gait asymmetry quantification algorithm that provide time history. However, 

this method requires users to collect healthy walking data as baseline and it may 

not be user friendly. Moreover, many researchers used linear length normalisation 

to align gait data from left and right lower limbs. This method removes temporal 

differences between gait cycles in term of duration, but it does not remove the 

temporal differences between gait cycles in term of gait events. Therefore, it is 

necessary to deploy a better alignment method to compare left and right lower 

limbs. Among them, Dynamic Time Warping is a common and powerful non-linear 

technique to compress or expand the time axis of tested time series. To date, there 

are no researchers apply Dynamic Time Warping technique to demonstrate gait 

asymmetry in left and right legs among strokes.  

Therefore, the aims for this chapter are: 

1. To develop and validate a new gait asymmetry quantification method based 

on Cyclogram. 

2. To align gait data using Dynamic Time Warping and analyse the results. 

3. To observe the asymmetry among stroke using these methods. 
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7.2 Theory 

7.2.1 Cyclogram Symmetry Region of Deviation (CSROD) 

Bilateral cyclogram method proposed by Goswami et al [103] was adopted and 

further developed in relation with the time history of a gait cycle. Bilateral 

cyclogram is a plot of closed trajectories generated by a plotting of a similar joint 

variable from both sides of lower limbs on the same X-Y Cartesian coordinate 

system. A 45⁰ straight line, referred as the symmetry line, represents the perfect 

symmetry gait. This symmetry line is analogues to the joint variables from healthy 

subject in the original SROD method. Magnitude of deviation was determined by 

the perpendicular distance between the cyclogram trajectory and symmetry line. 

These magnitudes of deviation, together with its time stamp information (i.e. 

percentage of gait cycle, aligned using Linear Length Normalisation (LLN) or 

Dynamic Time Warping (DTW)), were then plotted in a gait cycle to form the 

CSROD graph. 

The procedure to determine CSROD is as follow: 

i. Let 𝑋 = [𝑥1, 𝑥2, 𝑥3, … , 𝑥N] and 𝑌 = [𝑦1, 𝑦2, 𝑦3, … , 𝑦M] be the affected and 

unaffected lower limb gait data (ankle angle or heel vertical displacement). 

N and M are the number of samples in affected and unaffected gait data. 

After alignment (can be LLN or DTW), both X and Y signals will have same 

sample size.    

ii. Plot Y against X with a 450 straight line. CSROD is therefore determined 

by: 

 
𝐶𝑆𝑅𝑂𝐷 = {

〈X − Y〉 ∗ sin(45) ,   𝑌 < 𝑋
−〈Y − X〉 ∗ sin(45) ,   𝑋 < 𝑌

 
(7.1) 

The detailed derivation of CSROD can be seen in Appendix C. Negative value of 

CSROD indicates smaller magnitude of ankle angle from the affected leg. Fig 7.1 

summarises the procedure of this new method. 



University of Nottingham Malaysia Campus  

 

 

132 

 

 
Fig 7.1. Procedure to produce the CSROD from (a) to (c). (a) Ankle angle from left and right lower limbs during walking with 

right leg knee restricted with braced, (b) Cyclogram diagram plotted by left and right ankle angles, (c) CSROD formed using the 

distance of the dotted lines in cyclogram. 
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7.2.2 Experimental protocol 

The results from CSROD was validated against SROD using gait data from healthy 

subjects in Experiment 1 (described in Chapter 3). The SROD method had been 

explained in Chapter 2. The knee and ankle were restricted by using knee or ankle 

braced. They were being compared to SROD results using the data from 

Experiment 1 and the SROD results from original paper [101]. Heel vertical 

displacement was further applied to test the versatility of the methods. Results using 

ankle joint angle and heel vertical displacement were referred as Input 1 and Input 

2 respectively.  Both the joint angle and heel vertical displacement were obtained 

following the methods from Chapter 3. This CSROD was later being used to study 

the gait asymmetry characteristic among stroke patient using the data from 

Experiment 2. The patients from Experiment 2 were further categorised into three 

different group, according to the Approach 2 from Chapter 6. The mean and 

standard deviation of peak magnitude and gait cycle timing from all subjects were 

determined. Three stroke individuals from these three groups were further analysed 

and their stance time, swing time, gait cycle time and Robinson Index (stance and 

swing time as variables) were compared to their CSROD results. 

7.3 Validation of CSROD (Experiment 1, LLN alignment) 

7.3.1 Comparison between CSROD and SROD 

Fig 7.2 shows the traditional plots of ankle joint dorsi-plantar flexion, SROD and 

CSROD respectively from between affected and unaffected sides. SROD is 

computed by using Eq (2.9). In this figure, the peak magnitude and gait cycle 

percentage (±SD) are presented using square box (original SROD) and circle 

(CSROD). Table 7.1 demonstrates the comparison of results from Shorter paper et 

al [101] (SROD1), SROD applied on the recruited healthy subjects in this paper 

(SROD2) and the CSROD method using Input 1. 
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Fig 7.2. (Top) Ankle angle from affected and unaffected lower limb, (Left) 

Results from ankle brace walking experiment, (Right) Results from knee brace 

walking experiment.  (Middle) Comparison of SROD and CSROD, square box 

and circle are the peak magnitude and gait cycle timing for both SROD and 

CSROD respectively (average from 10 subjects ± SD). A negative value 

indicates smaller joint angle from the braces restricted lower limb. (Bottom) 

Region of curve which are statistical significant between SROD2 and CSROD. 
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Fig 7.3. (Top) Left and right ankle angles from healthy subject normal 

walking, (Bottom) Corresponding CSROD result. 

In contrast, Fig 7.3 shows the application of CSROD on healthy subject normal 

walking. It clearly shows that there are no significant peaks, which indicate 

asymmetry in certain gait event compared to the results from Fig 7.2. This outcome 

illustrates that CSROD is able to distinguish the different between gait pattern from 

an able body and abnormal walking. The result from Fig 7.3 can be used as a 

baseline to compare to stroke patients.  
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Table 7.1. Comparison of validation results using Input 1 from different methods. 
 SROD1 SROD2 CSROD p-value SROD1 vs 

SROD2 

SROD1 vs 

CSROD 

ε Z ε Z 

Ankle 

Brace 

First 

peak 

Magnitude -8.2o ± 2.9o -10.5o ± 4.2o -8.4o ± 4.1o 0.802 2.3 70.8% 0.2 51.9% 

Timing 52% ± 3% 60% ± 2% 58% ± 3% 0.990 8 99.9% 6 97.7% 

Second 

Peak 

Magnitude 3.5o ± 4.4o 3.2o ± 3.9o 0.99o ± 1.9o 0.903 0.3 50.8% 2.51 77.6% 

Timing 70% ± 2% 74% ± 1% 74% ± 2% 0.990 8 97.7% 6 74.8% 

Knee 

Brace 

First 

peak 

Magnitude -5.8o ± 4.2o -10.7o ± 5.0o -6.6o ± 4.5o 0.079 4.9 83.7% 0.8 57.1% 

Timing 59% ± 2% 54% ± 2% 57% ± 3% 0.984 5 99.4% 2 74.8% 

Second 

Peak 

Magnitude 12.3o ± 4.5o 6.3o ± 4.9o 6.3o ± 4.8o 0.958 6 88.9% 6 89.4% 

Timing 71% ± 1% 65% ± 1% 65% ± 2% 0.997 6 99.9% 6 99.8% 

1SROD results from Shorter et al [8]. 2SROD results from this paper. ε absolute mean error. Z probability of the normal distribution. 
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7.3.1.1 SROD results 

For ankle bracing, two peaks were observed during gait cycle percentage 58% ± 

3% and 74% ± 1%. The peak magnitudes during these events were -8.4o ± 4.1o and 

3.2o ± 3.9o respectively. The first peak was a negative peak, indicated a smaller 

joint angle on the braced side by 8.4o and the second peak indicated a smaller joint 

angle on the unbraced side by 3.2o. For knee bracing, two peaks were observed and 

they were -10.7o ± 5.0o at 54% ± 2%, and 6.3o ± 4.9o at 65% ± 1%. All p-values 

from Table 7.1 were more than 0.0167, which suggested insignificant difference 

between two SROD results (in terms of timing and magnitude). However, the 

probability of the mean peak magnitudes from SROD2 equals to the mean of peak 

magnitudes from SROD1 was lower than the probability of the mean timing 

information, especially for first and second peaks from ankle braced experiment 

(70.8% and 50.8% respectively). 

7.3.1.2 CSROD results 

Similar to the original SROD, the CSROD showed two peaks for both ankle and 

knee bracing walking experiments. For ankle bracing, the first peak was -8.4o ± 4.1o 

at 58% ± 3%, second peak was 0.99o ± 1.9o at 74% ± 2%. For knee bracing, the 

first peak was -6.6o ± 4.5o at 57% ± 3% and second peak was 6.3o ± 4.8o at 65% ± 

2%. All p-values from Table 7.1  were more than 0.0167, which suggested 

insignificant difference between SROD1 and CSROD results (in terms of timing 

and magnitude). However, the probability of the mean peak magnitudes from 

CSROD equals to the mean of peak magnitudes from SROD1 was lower than the 

probability of the mean timing information, especially for first peaks from both 

ankle and knee braced experiments (51.9% and 57.1% respectively). 

7.3.1.3 Discussion on validation results (Experiment 1, LLN alignment) 

In this study, ten healthy subjects were recruited to perform three different walking 

experiments. The ankle angle from both lower limbs were processed to obtain the 

SROD and CSROD. The magnitude and timing of each peak in both SROD and 
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CSROD from these experiments were presented and they were compared to the 

SROD results from Shorter’s paper.  

The timing of the peak deviation of SROD from this study and Shorter’s paper were 

very similar in term of Welch t-test analysis (Welch t-test showed that all timing 

had p-value > 0.0167 indicating statistically insignificant difference). However, the 

probability of the mean peak magnitudes from both SROD2 and CSROD equal to 

the mean of peak magnitude from SROD1 were lower for certain peaks. 

Nonetheless, the Welch t-test analysis suggested statistically insignificant between 

results (p-value > 0.0167). This difference can be caused by several factors such as 

(i) data acquisition system, (ii) data analysis algorithm, (iii) nature of experiment. 

Shorter used six camera infrared motion analysis system at 120 Hz (Vicon, Oxford, 

UK; Model 460). The joint angle can be determined directly from the camera 

results. By comparison, in this study, the experiment used two IMUs strapped on 

ankle and shank and a further integration algorithm was needed to compute the joint 

angle. There could be some differences in deriving the joint angle between both 

studies and hence affected the peak magnitude of SROD graph despite using the 

same algorithm. This means that the peak difference can be caused by the 

accumulated errors between the optical system and IMU. For example, Seel et al 

[250] illustrated that there were deviations between the joint angle measurements 

of the optical and the IMUs from transfemoral amputee. Despise small deviations 

(σ ≈ 1◦), the error would still slowly accumulate and lead to variations in SROD 

and CSROD results from both studies.  Moreover, in the original paper, the tested 

participants walked on a treadmill. In contrast to this original paper, we had the 

participants walked on the ground. According to Puh and Baer [251], treadmill 

demonstrated lower cadence and longer step time, stance time and double support 

time compared to overground walking on stroke patients. This would cause the 

timing difference between gait events of overground and treadmill walking.  

Therefore, it is difficult to reproduce the SROD result. 

Meanwhile, the CSROD algorithm could improve the reproducibility of the 

experiment results. This method is easy to use since healthy data is not needed to 
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perform the algorithm. The healthy data is replaced by introducing a 45º symmetry 

line in the bilateral cyclogram. The cyclogram is obtained by plotting the affected 

and unaffected joint angle together. The symmetry line represents the perfect gait 

symmetry and this is analogous to the normal healthy walking data used in the 

SROD algorithm. The results from CSROD were compared to SROD in this paper. 

The timing of peak occurrence from CSROD had good correlation to SROD. This 

finding shows that using CSROD is capable to detect the asymmetry in any legs 

from any given time accurately. However, the peak magnitude from the CSROD 

results were slightly different compared to the SROD method. The peak magnitude 

indicated the level of deviation between both legs. The main reason peak magnitude 

is different in both methods is due to the baseline comparison data. The SROD 

method uses healthy gait data as baseline comparison data. The demographic of 

healthy subjects from the original Shorter et al [101] paper and this study were 

completely different. This would lead to slightly different SROD magnitude. 

Therefore, the proposed CSROD method that treats the 45º symmetry line as the 

perfect gait condition will eliminate this issue. Researchers do not need to collect 

different demographic groups of healthy subjects to compute CSROD. This will 

save the research time and cost. This 45º symmetry line is regarded as a “standard” 

which can be used throughout different studies. However, one of the limitations 

with this symmetry line is that it assumes normal gait is perfectly symmetric, but 

this is not the case according to Sadeghi et al [31] review. Nonetheless, the 

difference in the peak magnitude is small for both approaches.  

7.4 Limitation of LLN and peak magnitude 

The results from Section 7.3 and the original Shorter et al paper [101] used LLN to 

align the gait data from left lower limb to right lower limb. They were temporally 

aligned by expressing the data in percentages (0-100%) of gait cycle. Despite of 

LLN is very common technique used by many researchers [101,117]; it cannot 

align the events between the gait data from left and right lower limbs. Such 

temporal misalignments will confound any point-by-points comparisons [252]. For 
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example, Fig 7.4 shows heel vertical displacements (Top) with different walking 

condition and their respectively CSROD and SROD results (Bottom). Table 7.2 

displays their peaks magnitude and timing. Fig 7.4 clearly shows different gait 

phase from both walking conditions (signal out of phase). Both experiments 

showed the affected lower limb had shorter stance time and completed the swing 

time faster than the unaffected lower limb. This leads to two peaks observed in 

CSROD and SROD results. For both experiments, the first peak was caused by the 

affected leg vertical heel movement while the second peak was caused by the 

unaffected leg vertical heel movement. Similar result was observed with Input 1 

where the ankle angles for knee restricted walking condition were not in phase, 

which leads to two peaks on CSROD and SROD results. These peaks are referred 

as false peaks. 

 
Fig 7.4. (Top) Heel Vertical Displacement from affected and unaffected lower 

limb, (Left) Results from ankle brace walking experiment, (Right) Results 

from knee brace walking experiment.  (Bottom) Comparison of SROD and 

CSROD, square box and circle are the peak magnitude and gait cycle timing 

for both SROD and CSROD respectively (average from 10 subjects ± SD). A 

negative value indicates smaller joint angle from the braced restricted lower 

limb. 
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Table 7.2. Comparison of results using Input 2 from different methods. 
 SROD CSROD 

Ankle 

Brace 

First peak Magnitude (m) 0.008 ± 0.002 0.018 ± 0.005 

Timing (%) 55 ± 2 54 ± 1 

Second 

Peak 

Magnitude (m) -0.05 ± 0.008 -0.057 ± 0.009 

Timing (%) 75 ± 3 75 ± 1 

Knee 

Brace 

First peak Magnitude (m) 0.014 ± 0.007 0.023 ± 0.005 

Timing (%) 61 ± 1 60 ± 2 

Second 

Peak 

Magnitude (m) -0.058 ± 0.03 -0.066 ± 0.01 

Timing (%) 79 ± 2 78 ± 3 

The CSROD and SROD results of three individual stroke patients from each group 

were analysed. Fig 7.5 shows the traditional ankle dorsi-plantar flexion (top) and 

their respectively CSROD and SROD results (bottom) from each group. Fig 7.6 

shows the heel vertical displacement (top) and their respectively CSROD and 

SROD results (bottom) from each group. Both CSROD and SROD results from 

Input 1 and Input 2 suggested individual patients from Group I and II had greater 

gait asymmetry compared to individual patient from Group III. This is because the 

affected side of patient from Group III had minimal to none ankle movement, which 

causes almost flat signal in term of ankle angle and vertical displacement. This lack 

of movement will reduce the peaks magnitude in CSROD and SROD results. 

Therefore, peak normalisation is needed to compare the asymmetry among stroke 

patients. 

 
𝑃𝑀𝑛𝑜𝑟𝑚,𝑡 =

𝑃𝑀𝑡

|𝜎𝑡
𝑖|

 
(7.2) 

where  𝑃𝑀𝑛𝑜𝑟𝑚,𝑡 is the unitless normalised peak magnitude at time t, 𝑃𝑀𝑡 is the 

peak magnitude on CSROD at time t, 𝜎𝑡
𝑖 is the gait data from unaffected lower limb 

at time t, i is the input (i = ankle angle or heel vertical displacement), and |.| bracket 

indicates absolute value. Greater value of 𝑃𝑀𝑛𝑜𝑟𝑚,𝑡 indicates greater asymmetry at 

time t. 
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Fig 7.5. (Top) Ankle angle from Group I, II and II respectively; (Bottom) Input 1 CSROD and SROD results from Group I, II 

and II respectively. 
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Fig 7.6. (Top) Heel vertical displacement from Group I, II and II respectively; (Bottom) Input 2 CSROD and SROD results from 

Group I, II and II respectively. 
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7.5 Gait alignment techniques 

7.5.1 Piecewise Linear Length Normalisation (PLLN) 

Piecewise Linear Length Normalisation (PLLN) is one of the alignment approach 

that segments the gait cycle trajectories into subphases at points of interest (POI; 

user-determined points to align) [252]. This approach utilises LLN in pieacewise 

manner to align the subphases of gait cycle trajectories according the POI assigned 

by the user. POI can be any characterising-points of gait cycle features (trajectory 

shape [253] or gait events such as heel-strike and toe-off [252]). In this study, toe-

off event was chosen as POI and the gait cycle trajectories were divided into two 

segments. The first segment was from heel-strike to toe-off and the second segment 

started right after toe-off to the next heel-strike. We interpolated the first segment 

to 60 data points and the second segment to 40 data points. This is because the first 

segment is stance phase, which normally is 60% of one gait cycle time and the 

second segment is swing phase, which is 40% of gait cycle time.  Fig 7.7 shows the 

procedure of PLLN. 

7.5.2 Dynamic Time Warping (DTW) 

In 1978, Sakoe and Chiba developed Dynamic time warping (DTW) for spoken 

word recognition [254]. DTW is a nonlinear time normalisation technique to find 

the temporal alignment that minimises the distance between two time series. To 

find the similarity between two gait data, DTW looks for the best alignment, which 

referred to as Warp-Path.  

Given 𝑋 = [𝑥1, 𝑥2, 𝑥3, … , 𝑥N]  and 𝑌 = [𝑦1, 𝑦2, 𝑦3, … , 𝑦M]  as the affected and 

unaffected lower limb gait data, with N and M samples respectively. In order to 

calculate the DTW, a matrix D with NxM size is constructed. Each cell (n,m) in this 

matrix contains a Euclidian distance d(xn, ym) between xn and ym. The warping path 

W, is a contiguous set of matrix elements that defines a mapping between X and Y. 

 𝑊 = 𝑤1,, 𝑤2, … , 𝑤𝑘                max(N,M) < k < N +M− 1 (7.3) 
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 𝑤𝑘 = (𝑛𝑘, 𝑚𝑘)  (7.4) 

 

Fig 7.7. Schematic diagram of PLLN procedure.  

Each of W’s elements is a cell on the matrix D. Generally, this warp path W is 

restricted to the following conditions. 

i. Monotonic conditions:  𝑛𝑘−1 < 𝑛𝑘 and 𝑚𝑘−1 < 𝑚𝑘 

ii. Continuity conditions: 𝑤𝑘 is allowed to connect only with adjacent cells.  

iii. Boundary conditions: The warping path W must start and finish in diagonally 

opposite corner cells on the matrix D. 𝑤1 = (1,1) and  𝑤𝑘 = (N,M). 
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Fig 7.8  presents an example of warping path W started with bottom left corner (1,1) 

to top right corner (N,M). Fig 7.9 shows the alignment of two gait data time series 

using DTW. 

 

Fig 7.8. An example of warping path W with affected and unaffected heel 

vertical displacement. The grey square box is the matrix D, and the thick line 

is W. This example started from bottom left (1,1) to top right (N,M). 
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Fig 7.9. Alignment of two gait time series from affected and unaffected lower 

limbs.  

7.5.3 Piecewise Dynamic Time Warping (PDTW) 

Once the gait cycle is segmented into different subphase according to POI (see Fig 

7.7), it is also possible to apply DTW in a piecewise manner to align each subphases 

of the trajectories. The alignment of each subphase is treated as its own DTW, 

hence named PDTW.  

7.5.4 Comparison between different alignment techniques 
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interpretations of the data. Therefore, it is necessary to compare each technique and 
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unaffected ankle angle without any alignment Fig 7.10 (a) and ankle angle after 

alignment DTW, PLLN and PDTW Fig 7.10 (b), (c) and (d) respectively. In this 
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high shape similarity between affected and unaffected ankle angle. In contrast, 
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the shape around toe-off event. However, the huge gap between the affected and 

unaffected ankle angle during stance phase suggested that PLLN is not able to 

remove the temporal differences between both legs. These results demonstrate that 

DTW and PDTW produced more desirable alignment results when comparing the 

left and right lower limbs intra-subjects. Since DTW required less computation time 

and yet it can produces similar results with PDTW, DTW is selected as the 

alignment technique to analyse the CSROD of stroke patients. 

 

Fig 7.10. Comparison of different alignment normalisation techniques. (a) 

Affected and Unaffected ankle angle before alignment. (b) Affected and 

Unaffected ankle angle after alignment using DTW; (c) Affected and 

Unaffected ankle angle after alignment using PLLN; (d) Affected and 

Unaffected ankle angle after alignment using PDTW.    
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7.6 CSROD results (Experiment 1, DTW alignment) 

Fig 7.11 and Fig 7.12 show (Top) the ankle joint angles (Input 1) and heel vertical 

displacement (Input 2) from affected and unaffected lower limbs after aligned using 

DTW, and (Bottom) their respectively CSROD results. Table 7.3 and Table 7.4 

show the comparison of peaks magnitude and timing before and after alignment for 

Inputs 1 and 2.  

 

Fig 7.11. (Top) Ankle angle from affected and unaffected lower limb after 

alignment using DTW, (Left) Results from ankle brace walking experiment, 

(Right) Results from knee brace walking experiment.  (Bottom) CSROD 

result. 
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Fig 7.12. (Top) Heel vertical displacement from affected and unaffected lower 

limb after alignment using DTW, (Left) Results from ankle brace walking 

experiment, (Right) Results from knee brace walking experiment.  (Bottom) 

CSROD result. 

Table 7.3. Comparison of results using Input 1 before and after alignment 

using DTW. 
 Before After 

Ankle 

Brace 

First peak Magnitude (o) -8.4 ± 4.1 -5.3 ± 4.1 

Timing (%) 58 ± 3 54 ± 1 

Second 

Peak 

Magnitude (o) 0.99 ± 1.9 2.4 ± 1.9 

Timing (%) 74 ± 2 77 ± 2 

Knee 

Brace 

First peak Magnitude (o) -6.6 ± 4.5 1.8 ± 1.1 

Timing (%) 57 ± 3 47 ± 1 

Second 

Peak 

Magnitude (o) 6.3 ± 4.8 -3.4 ± 2.5 

Timing (%) 65 ± 2 91 ± 2 
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Table 7.4. Comparison of results using Input 2 before and after alignment 

using DTW. 
 Before After 

Ankle 

Brace 

First peak Magnitude (m) 0.018 ± 0.005 -0.04 ± 0.008 

Timing (%) 54 ± 1 70 ± 1 

Second 

Peak 

Magnitude (m) -0.057 ± 0.009 NA 

Timing (%) 75 ± 1 NA 

Knee 

Brace 

First peak Magnitude (m) 0.023 ± 0.005 -0.04 ± 0.01 

Timing (%) 60 ± 2 70 ± 1 

Second 

Peak 

Magnitude (m) -0.066 ± 0.01 NA 

Timing (%) 78 ± 3 NA 

7.6.1 Input 1 

In Table 7.3, the CSROD results before and after DTW alignment has insignificant 

difference for ankle braced walking experiment but significant difference for knee 

braced walking experiment in term of peaks magnitude and timing. For ankle 

bracing, affected lower limb does not have dorsi-plantar flexion and there are no 

amplitude observed in the ankle angle graph in before and after DTW alignment. 

Therefore, alignment between affected and unaffected lower limbs was not 

significant and it does not affected the results significantly after DTW alignment.  

Meanwhile, for knee bracing, the ankle angle before DTW alignment shows both 

gait data from affected and unaffected limb were out of phase. They were in phase 

after DTW alignment. Therefore, there was a significant difference in term of 

CSROD results after the alignment.  

7.6.2 Input 2 

There was only one peak observed in CSROD after alignment. This is because the 

swing phase is now aligned for both affected and unaffected lower limb. After 

alignment, the maximum vertical movement during swing phase for both lower 

limbs can be compared directly. 
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7.6.3 Discussion 

7.6.3.1 Ankle bracing 

For Input 1, there was a negative peak observed at 54% gait cycle timing. This peak 

happened between the terminal stance and the transition to swing. The negative 

peak indicated a smaller joint angle on the affected side. During the toe-off event, 

the ankle plantarflexion occurs to propel the foot to mid-air. Since ankle brace 

restricted the ankle movement, the affected lower limb does not have any ankle 

joint movement and hence asymmetry happens. The second peak was a positive 

peak and it was smaller compared to the first peak. This peak happened at 77%, 

which was during mid-swing to terminal-swing. During this duration, ankle 

dorsiflexion happened to prepare for the next heel strike. The movement of ankle 

from plantar-flex to dorsi-flex at this moment appeared on the negative part of ankle 

angle graph for unaffected side. 

For Input 2, the only peak was observed at 70% and it was a negative peak. This 

was during mid-swing. Negative peak indicated smaller vertical movement on 

affected limb. Since there are insufficient plantar-flexion on ankle joint, there is not 

enough propulsion to lift the foot to mid-air. This vertical movement on affected 

limb was compensated by other joint to avoid foot drag. 

7.6.3.2 Knee bracing 

For Input 1, the first peak was observed at 47% gait cycle time. This peak happened 

at terminal stance when the heel prepared to leave the ground (heel-off). With knee 

locked by the brace, ankle joint will reduce its range of motion. The foot lifting 

movement was compensated by the hip joint in this event. The second peak 

happened approximately at 91% gait cycle time, which was during terminal-swing.  

For Input 2, one peak was observed at 70% gait cycle time. This was during mid-

swing. With knee restricted, it reduced the ankle joint propulsion. The flexion of 

ankle joint movement only associated with hip joint movement only. Without knee 

flexion, it will reduce the vertical displacement on affected leg as well. 
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7.7 Gait asymmetry among stroke (Experiment 2, DTW alignment) 

Fig 7.13  and Fig 7.14 present the mean and standard deviation of ankle angle and 

heel vertical displacement from three different groups (based on classification 

Approach 2) and their corresponding CSROD results. Table 7.5 shows the CSROD 

normalise peaks magnitude and timing from these three groups and their mean gait 

cycle time.  

7.7.1 Input 1 

For Group I patients, the first peak happened at 44% ± 2%, which is the transition 

from mid-stance to the heel-off timing. This event is to move the upper body 

forward. Lack of ankle movement on the affected leg reduced the step length on 

the unaffected leg. The asymmetry on this period occurred due to better ankle angle 

movement on the unaffected leg to compensate the affected leg to move the upper 

body forward. Meanwhile, unlike Group I patients, there were no obvious peaks 

during the transition from mid-stance to heel-off timing for Group II patients. This 

is because Group II patients lacked of dorsi-flexion during stance time for both 

lower limbs. This will greatly reduce the patients step length. The first peak for 

Group II occurred at 71% ± 4%, which was during mid-swing. The lack of ankle 

movement during mid-swing for affected leg indicated insufficient propulsion to 

create foot clearance. In contrast, patients from Group III had prolong stance phase. 

Group III patients had the slowest gait speed and they were considered to have the 

most severe gait abnormality. Therefore, they often tried to reduce the swing time 

and increased the stance time to balance themselves. The first peak at 77% ± 5% is 

at terminal stance. Similar to Group I patients, this event is to move upper body 

forward. Lack of ankle movement in affected leg decreased the patients step length. 

The second peak for Group I patients is located at 84% ± 1% gait cycle time. This 

duration is the transition from mid-swing to terminal swing. The positive peak on 

this event suggests a smaller ankle angle on unaffected lower limb. This smaller 

angle was due to the plantar-flexion of ankle joint on unaffected side. Similar 

phenomenon is observed in Group II patients where the second peak is at 89% ± 
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1%. Meanwhile, the second peak on Group III patients happened at 94% ± 1% gait 

cycle timing. This duration was where mid-swing happen for this group since they 

had shorter swing time. This positive peak implied no ankle movement on affected 

lower limb. 

7.7.2Input 2 

Generally, there is only one peak observed for all three groups of stroke patients 

when applying Input 2 on CSROD. This is because only the maximum vertical 

displacement for both affected and unaffected lower limbs were compared. This 

peak appear during mid-swing for all groups (76% ± 2%, 79% ± 1% and 94% ± 

1%) for Group I, II and III respectively). The normalised peak magnitude in Table 

6.3 shows greatest asymmetry in Group III, moderate in Group II and lowest in 

Group I. Heel vertical displacement only captures the foot clearance during swing 

phase. Therefore, once the gait data from both lower limbs were aligned using 

DTW, CSROD only compared the peaks during swing phase.   
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Fig 7.13. (Top) Mean and standard deviation of ankle angle from 60 stroke patients categorised into three groups with 

29 on Group I (Left), 17 on Group II (Middle), 14 on Group III (Right); (Bottom) Their corresponding CSROD results.
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Fig 7.14. (Top) Mean and standard deviation of heel vertical displacement from 60 stroke patients categorised into three 

groups with 29 on Group I (Left), 17 on Group II (Middle), 14 on Group III (Right); (Bottom) Their corresponding 

CSROD results. 
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Table 7.5. CSROD results using Input 1 and Input 2 from three different group of stroke patients. 

 Group I Group II Group III 

Number of Patients 29 17 14 

Average Gait Cycle Time (s) 1.68 2.64 3.32 

 

 CSROD CSROD CSROD 

Input 1 First 

Peak 

PMnorm -0.37 ± 0.57 -1.00 ± 1.48 -0.35 ± 0.48 

Timing 

(%) 

44 ± 2 71 ± 4 77 ± 5 

Second 

Peak 

PMnorm 2.23 ± 3.60 1.27 ± 1.99 0.48 ± 1.03 

Timing 

(%) 

84 ± 1 89 ± 1 94 ± 1 

Input 2 First 

Peak 

PMnorm 0.20 ± 0.20 0.39 ± 0.25 0.36 ± 0.72 

Timing 

(%) 

76 ± 2 79 ± 1 94 ± 1 

Second 

Peak 

PMnorm NA NA NA 

Timing 

(%) 

NA NA NA 
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7.7.3 Case study 

In this section, three individuals stroke patients from each subgroup were selected 

and studied. The selection of these three individuals was randomized.  Fig 7.15 and 

Fig 7.16 display the mean and standard deviation of ankle angle and heel vertical 

displacement of three different stroke individuals and their corresponding CSROD 

results. The gait cycle time, stance time, swing time, Robinson Index (with stance 

and swing time as variables) and CSROD normalised peaks magnitude and timing 

of these three stroke individuals are shown in Table 7.6. 

For stroke individual from Group I, the CSROD results from Input 1had first peak 

at 50% gait cycle timing and second peak at 75% (normalised peak magnitude 

0.183 and 0.143 respectively), Input 2 had one peak at 72% gait cycle timing 

(normalised peak magnitude 0.069). Stroke individual from Group II had first peak 

at 74% and second peak at 89% using Input 1 (normalised peak magnitude 0.259 

and 0.549 respectively) and one peak at 78% using Input 2 (normalised peak 

magnitude 0.289). Lastly, stroke individual from Group III had first and second 

peak at 64% and 76% respectively using Input 1 (normalised peak magnitude 0.426 

and 0.521 respectively) and one peak at 94% using Input 2 (normalised peak 

magnitude 0.519).  

Generally, the normalised peak magnitude shows greater asymmetry on the second 

peak using Input 1. As mentioned earlier, the moment during second peak often 

took place within swing phase. Lack of ankle movement always causes poor foot 

clearance and it reflected on the Input 2 normalised peak magnitude. Moreover, 

Robinson Index with swing time as variable also showed greater asymmetry 

compare to stance time as variable. The Robinson Index with both swing and stance 

time as variables show increasing asymmetry from stroke individual from Group I 

to Group III, which correlate to normalised peak magnitude. 
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Fig 7.15. (Top) Mean and standard deviation of ankle angle from stroke patients on Group I (Left), Group II (Middle), 

Group III (Right); (Bottom) Their corresponding CSROD results. 
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Fig 7.16. (Top) Mean and standard deviation of heel vertical displacement from stroke patients on Group I (Left), 

Group II (Middle), Group III (Right); (Bottom) Their corresponding CSROD results. 
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Table 7.6. CSROD results using Input 1 and Input 2 from three stroke patients from different groups. 

 Individual I Individual 

II 

Individual 

III 

Hemiplegia Side Left Left Right 

Gait Cycle Time (s) 1.61 2.10 3.37 

Stance Time (%) Unaffected leg 62.3 73.3 63.9 

Affected leg 67.5 81.9 82.7 

Swing Time (%) Unaffected leg 37.7 26.7 36.1 

Affected leg 32.5 18.0 17.3 

Robinson Index Stance Time 4.02 5.58 12.77 

Swing Time 7.43 19.39 35.08 

 

 CSROD CSROD CSROD 

Input 1 First Peak PMnorm 0.143 0.259 0.426 

Timing (%) 50 74 64 

Second Peak PMnorm 0.183 0.549 0.521 

Timing (%) 75 89 76 

Input 2 First Peak PMnorm 0.069 0.289 0.519 

Timing (%) 72 78 94 

Second Peak PMnorm NA NA NA 

Timing (%) NA NA NA 
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7.8 Chapter Summary 

In this chapter, a new gait asymmetry quantification method was proposed similar 

to the SROD algorithm. This new CSROD method is easier to use since it does not 

require to collect extra healthy walking data by introducing a symmetry line in 

cyclogram. The results from CSROD were being compared to the SROD results 

from this study and Shorter’s experiment. The outcome shows that both CSROD 

and SROD were capable in tracking the asymmetry in joint angle during joint 

restricted walking. Linear length normalisation technique to align affected and 

unaffected lower limb gait data had demonstrated certain limitation and it cannot 

align gait events. This misalignment leads to false CSROD results. Therefore, DTW 

as used to replace it. Furthermore, it is necessary to normalise the peaks observed 

in CSROD results to provide consistent asymmetry information. CSROD was used 

to analyse the gait characteristic of stroke patients. Most of these stroke patients 

had problem to perform ankle dorsiflexion to move upper body forward, minimal 

to none plantar-flexed movement to provide foot clearance on the affected lower 

limb. The advantages of using CSROD and their normalised peak magnitude are 

they can provide timing information which traditional symmetry indices such as 

Robinson Index failed to deliver (as observed in Chapter 5), and the direction of 

these asymmetry can be easily studied among the normalised peak magnitude. 
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Chapter 8 Development of mathematical 

gait prediction models in stroke 

rehabilitation 

8.1 Introduction  

In the previous chapters, we have focused on extracting and analysing the gait 

characteristics from a large group of stroke patients (kinesiology and kinematic 

based gait analysis). In Chapter 6 we proposed a new K.I., which has good 

correlation to TUG score, and it can classify stroke subjects into different 

homogeneous subgroups. In Chapter 7, a new CSROD is introduced to characterise 

the complex gait asymmetry among stroke. These two features are very important 

in gait analysis and they can help physiotherapist or clinicians to comprehend the 

gait pattern of stroke subjects better and able to arrange suitable rehabilitation 

strategies. During stroke rehabilitation, it is very crucial to monitor the gait 

characteristics of stroke subjects at all time. This is to make sure they are receiving 

the proper rehabilitation treatments. Therefore, there is a growing interest in 

conducting longitudinal study after stroke to formulate a gait recovery prediction 

model. This model is able to help physiotherapists or clinicians to predict the gait 

recovery status after certain periods. If the actual gait pattern is not the same as the 

predicted gait, it is necessary for the physiotherapists or clinicians to reorganise the 

rehabilitation strategies.  

In this chapter, we are going to develop two models to predict the gait functionality 

of stroke patients. We defined two new gait functionality indices in terms of gait 

trajectory performance and time delay between gait events. The aims of this chapter 

are: 

1. To introduce two new gait functionality indices. 
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2. To examine the correlation between independent variables (spatial-temporal 

gait parameters, K.I., CSROD), dummy variables (type of strokes, age) and gait 

functionality indices.  

3. To propose multivariate regression models to predict the gait functionality 

indices. 

4. To validate these prediction models. 

8.2 Overview of gait parameters in different recovery stages  

In this chapter, the stroke patients from Experiment 3 (procedures were described 

in Chapter 3) are analysed. The demographic of these 15 stroke patients from this 

experiment are shown in Table 8.1.  

In Fig 8.1, the stage 1, stage 2 and stage 3 of spatial-temporal parameters (stance 

and swing time percentage, gait cycle time, gait velocity, stride length, heel 

clearance), K.I. and CSROD of these 15 stroke patients are shown (bar from left to 

right). The stance time percentage, gait cycle time, K.I. and CSROD values were 

decreasing when stroke subjects were recovering. Meanwhile, swing time 

percentage, gait velocity, stride length, and heel clearance were increasing when 

stroke patients were recovering.  

During stroke patients recovery period, they will walk in a faster manner to achieve 

healthier gait parameters. They will decrease their stance time, which will also 

decrease the double limb support time and increase swing time. The gait cycle time 

decreases due to the shorter stance time. The K.I. values decrease because the 

sEMG signal from these stroke subjects were more towards healthy manners, and 

a lower K.I. values indicates lesser TUG scores. Furthermore, the decrease in 

CSROD discrete values indicates less gait asymmetry. Meanwhile, the gait velocity 

increases due to the longer stride length and shorter gait cycle time. The heel 

clearance during swing time increases to help the stroke patients to lift the foot from 

the ground and prevent fall (hence lower K.I. values indicates lower TUG score).  
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Fig 8.1. Spatial-temporal parameters, K.I. CSROD and gait velocity from 15 different stroke subjects throughout three different stages 

during their recovery period. ST-stance time percentage, SW-swing time percentage, GC-gait cycle time, GV-gait velocity, SL-stride 

length, HC-heel clearance, KI-Kinetic Index, CSROD-Cyclogram Symmetry Region of Deviation. Stage 1 to stage 3 were the bar chart 

from left to right for each subject. 
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Table 8.1. Demographic of stroke patients from Experiment 3. 

 

 

Age Gender Hemiplegia Side Type of Stroke 

S1 51 M L Ischemia 

S2 68 M L Ischemia 

S3 69 M L Ischemia 

S4 47 M L Hemorrhage 

S5 70 M L Ischemia 

S6 57 M L Ischemia 

S7 65 M L Ischemia 

S8 69 M L Ischemia 

S9 55 M L Hemorrhage 

S10 46 M L Hemorrhage 

S11 48 F L Ischemia 

S12 57 F R Ischemia 

S13 60 F R Hemorrhage 

S14 70 M L Hemorrhage 

S15 56 F L Ischemia 

8.3 Gait functionality 

In this section, we are going to introduce two new gait functionality indices to 

assess the walking ability of stroke subjects. The details descriptions of these 

indices are stated in the following sections. 

8.3.1 Gait functionality based on gait trajectory, G_FunctGT 

The first gait functionality is based on deviation of gait trajectory, G_FunctGT. This 

gait functionality is to find the difference of gait trajectory between the normal 

healthy subjects and stroke patients. The procedures G_FunctGT are as shown as the 

following: 

1. Gait alignment between the gait trajectory from stroke patient’s paretic lower 

limb and normal healthy subjects. 

2. Find the Euclidean distance between gait trajectory from stroke and healthy 

subjects. 

3. Formulate G_FunctGT.  
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8.3.1.1 Gait alignment using Piecewise Linear Length Normalisation (PLLN) 

In Chapter 7, different gait alignment methods (DTW, PLLN, PDTW) were 

introduced in details. The gait alignment results show that DTW and PDTW are the 

better alignment methods to compare the two different lower limbs within the same 

subject. This is because the temporal information from both lower limbs are very 

similar. However, the temporal information of stroke gait trajectory and healthy 

normal gait trajectory are significant difference most of the time. This caused poor 

temporal alignment between the trajectories. Fig 8.2 (a) presents the healthy and 

stroke vertical displacements. Fig 8.2 (b), (c) and (d) displays the alignment results 

from DTW, PLLN and PDTW respectively. As shown in Fig 8.2 (b) and (d), the 

distortion area was caused by poor temporal alignment. Therefore, the PLLN 

method [252] is used to align stroke gait data from paretic lower limb to normal 

gait data. 

 
Fig 8.2. Vertical displacements from healthy and stroke subjects (a) before any 

alignment, (b) after DTW alignment, (c) after PLLN alignment. (d) after 

PDTW alignment. The highlighted area indicates poor temporal alignment by 

DTW and PDTW, which caused distortion at that area.  
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To form a complete gait trajectory, both the vertical and horizontal displacements 

were aligned between stroke and healthy subjects. A complete gait trajectory is 

computed by plotting vertical displacement against horizontal displacement as 

shown in Fig 8.3. 

8.3.1.2 Determine Euclidean Distance between gait trajectory of stroke and 

healthy subjects 

Let 𝑋ℎ = [𝑥ℎ,1, 𝑥ℎ,2, 𝑥ℎ,3, … , 𝑥ℎ,𝑁],  𝑌ℎ = [𝑦ℎ,1, 𝑦ℎ,2, 𝑦ℎ,3, … , 𝑦ℎ,𝑁],  𝑋𝑠 =

[𝑥𝑠,1, 𝑥𝑠,2, 𝑥𝑠,3, … , 𝑥𝑠,𝑁], and 𝑌𝑠 = [𝑦𝑠,1, 𝑦𝑠,2, 𝑦𝑠,3, … , 𝑦𝑠,𝑁] to be the horizontal (X) 

and vertical (Y) displacements for both healthy (h) and stroke (s) respectively, N is 

the total number of data points after alignment. The Euclidean distance between 

two points from both healthy and stroke patient’s gait trajectories is: 

 
𝐸𝐷1 = √(𝑥ℎ,1 − 𝑥𝑠,1)

2
+ (𝑦ℎ,1 − 𝑦𝑠,1)

2
 (8.1) 

where ED1 is the first Euclidean distance between the first point of gait trajectory 

from healthy and stroke patients. Repeat Eq (8.1) from point one to point N to form 

a vector𝐸𝐷(𝑁) = [𝐸𝐷1, 𝐸𝐷2, 𝐸𝐷3, … , 𝐸𝐷𝑁]. Fig 8.3 shows the gait trajectories 

between healthy and stroke subjects. The straight lines in this figure illustrated the 

Euclidean Distance between two points. 
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Fig 8.3. Gait trajectories from healthy and stroke subjects formed by plotting 

vertical displacement against horizontal displacement. The straight lines 

illustrated the Euclidean distance between each points. 

8.3.1.3 Formulate gait functionality based on gait trajectory, G_FunctGT 

After the Euclidean distance for N data points are determined, each ED(N) gait 

cycle is plotted. Fig 8.4 displays the ED(N) plotted against one gait cycle time from 

one stroke patient. These graphs represent the gait functionality based on gait 

trajectory over time in three different stage of recovery period. The results from 

this figure stated few key features from this stroke patient; (i)  the gait trajectories 

between this stroke and healthy subjects started to deviate severely from each other 

after 50% gait cycle time; (ii)  the final deviation between two trajectories were 

0.758, 0.393 and 0.362m for stages 1, 2 and 3 respectively.  
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Fig 8.4. ED(N) plotted over one gait cycle time from one stroke subject in three 

different recovery stages.  

Based on the results from Fig 8.4, we can further develop a gait functionality index 

based on gait trajectory. 

 
𝐺_𝐹𝑢𝑛𝑐𝑡𝐺𝑇 =

𝐴𝐸𝐷 ∗ 𝐸𝐷(𝑒𝑛𝑑)

𝐴𝐺𝑇,ℎ ∗ 100
 (8.2) 

where AED is area under the curve for ED(N) against gait cycle time, ED(end) is the 

last point on this curve and AGT,h is area under the curve for healthy gait trajectory. 

As observed in stage 3 from Fig 8.4, the Euclidean distance between healthy and 

stroke gait trajectory is reducing. This form the reason to choose ED(end) (last point 

of ED(N)) in this function, i.e. to detect the final deviation of ED(N) curve. Both 

AGT,h and 100 are served as the normalisation factor. The value 100 is selected based 

on the maximum gait cycle time, which is 100%. 
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8.3.2 Gait functionality based on time delay, G_FunctTD 

The second gait functionality is based on gait events time delay. After the heel-

strike and toe-off events are determined using gyroscope [19], mid-stance and mid-

swing events can be estimated as follow: 

 
𝑚𝑖𝑑𝑠𝑡𝑎𝑛𝑐𝑒 =

𝑡𝑜𝑒𝑜𝑓𝑓𝑡 − ℎ𝑒𝑒𝑙𝑠𝑡𝑟𝑖𝑘𝑒𝑡
2

 (8.3) 

 
𝑚𝑖𝑑𝑠𝑤𝑖𝑛𝑔 =

ℎ𝑒𝑒𝑙𝑠𝑡𝑟𝑖𝑘𝑒𝑡+1 − 𝑡𝑜𝑒𝑜𝑓𝑓𝑡
2

 
(8.4) 

where toeofft is the current toe-off, heelstriket is the current heel-strike and 

heelstriket+1 is the next heel-strike. Once these two gait events are determined, a 

gait event vector, G is formed where G=[ heelstriket, midstance, toeofft, midswing, 

heelstriket+1].  

The average vector G for healthy is determined using the 10 healthy subjects from 

Experiment 1, and it is Gh=[1, 30, 60, 80, 100] after converted in term of gait cycle 

percentage. This vector Gh demonstrates that the gait for healthy subjects started at 

1% gait cycle time, mid-stance happened around 30% gait cycle time, toe-off at 

60% gait cycle time, mid-swing at 80% gait cycle time and the gait cycle ended at 

100% gait cycle time (next heel-strike). By using this standard healthy gait event 

as comparison, the time delay between stroke and healthy subjects can be 

determined using this equation: 

 𝑇𝐷(𝑖) = |𝐺𝑠(𝑖) − 𝐺ℎ(𝑖)| (8.5) 

where TD(i) is the time delay function, i is the number of gait event (i=5) and Gs is 

the gait event vector from stroke, |∙| bracket indicates absolute number. Once TD(i) 

is constructed, it is being interpolated using spline-fit to 100 data points to form a 

time delay function with time history. 

Fig 8.5 displays the TD(i) plotted in one gait cycle from one stroke patient in three 

different recovery stages. The black dots in this figure represent gait events in 

different phases. This figure provides information such as the time delay at each 

gait event between stroke and healthy subjects. For instance, in stage 1, the mid-
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stance, toe-off and mid-swing of this stroke patient were slower than healthy by 

13.83, 18.95 and 9.00% respectively. Based on this result, the gait event that caused 

the maximum time delay in stage 1 for this particular stroke patient was toe-off. 

This subject was later trying to speed up the swing time and it reduced the mid-

swing time delay to complete the gait cycle.  

  

Fig 8.5. TD(i) plotted over one gait cycle time from one stroke subject in three 

different recovery stages.  

Since Stage 1 had the highest and stage 3 had the lowest area under the curve, we 

can compute the gait functionality index based on time delay: 

 
𝐺_𝐹𝑢𝑛𝑐𝑡𝑇𝐷 =

𝐴𝑇𝐷
100

 (8.6) 

where ATD is the area under the curve for TD(i) plotted, and the value 100 is chosen 

as normalisation factor based on maximum gait cycle percentage (100%).  

8.3.3 Results from gait functionality indices 

Fig 8.6 displays the results of gait functionality indices based on gait trajectory and 

time delay, G_FunctGT and G_FunctTD respectively. As expected, both indices have 
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highest value in stage 1 and the value decreases throughout the recovery period for 

all stroke patients. These two indices describe the walking ability of stroke patients 

throughout their recovery period in term of their trajectories pattern and time delay 

on gait events. Since the healthy subject’s gait trajectory and gait events are used 

as a standard comparison to compute these two indices, the values on these indices 

indicates the deviation of gait trajectories and delay in gait events between healthy 

and stroke patients. 

 

Fig 8.6. Gait functionality indices based on both gait trajectory and time delay 

from 15 different stroke subjects throughout three different stages during 

their recovery period. 

8.4 Multivariate Linear Regression Model 

In this section, multivariate linear regression models are developed to predict the 

gait functionality indices described in earlier section based on several dependent 

variables (gait parameters and stroke demographic). Two models are formulated 
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i. Regression Model Approach 1- Prediction of Outcome Based on Baseline 

Strokes Characteristics. This model is used to predict: 

- Gait functionality based on gait trajectory index, G_FunctGT in stage 2. 

- Gait functionality based on gait trajectory index, G_FunctGT in stage 3. 

- Gait functionality based on time delay index, G_FunctTD  in stage 2. 

- Gait functionality based on time delay index, G_FunctTD  in stage 3. 

ii. Regression Model Approach 2- Prediction of Outcome based on Recovery 

History. This model is used to predict: 

- Gait functionality based on gait trajectory index, G_FunctGT in stage 3. 

- Gait functionality based on time delay index, G_FunctTD  in stage 3. 

Based on the total number of stroke patients participated in this longitudinal study 

(n=15), the data from 12 subjects were used as the training data for regression 

model and the data from three subjects were being used to validate the model. 

8.4.1 Model Description 

Multivariate linear regression model is described in the following equation: 

 𝑦 = 𝛽𝑐 + 𝛽1𝑥1 + 𝛽2𝑥2 +⋯+ 𝛽𝑝𝑥𝑝 + 𝜖 (8.7) 

where y is the true dependent variable, βc is the constant intercept, xp is the 

independent variables with total p variables, βp is the regression coefficient for 

independent variables xp, and ϵ is the error term. Assuming the error term ϵ to be 

zero, the estimate multivariate linear regression equations are stated in the 

following sections.  

8.4.1.1 Regression Model Approach 1 

Regression Model Approach 1 is a prediction model to predict the gait functionality 

indices (G_FunctGT and G_FunctTD) at stage 2 and stage 3 based on stroke patients 

baseline characteristics. It can be modelled as: 

 

𝑦̂(𝑖) = 𝛽𝑐,𝐴𝑝𝑝𝑟𝑜𝑎𝑐ℎ1 +∑𝛽𝑜𝑥𝑜

𝑝

𝑜=1

 (8.8) 
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where 𝑦̂(𝑖) is the predicted value of the dependent variable based on baseline stroke 

characteristics (i= stage 2, stage 3), βc,Approach1 reflects the random intercept and βo 

the selected regression coefficient for the stroke patients baseline gait data xo. Eq 

(8.8) can be rewritten in the form of matrix: 

 𝒚̂ = 𝑿𝜷 (8.9) 

 

𝒚̂ =

[
 
 
 
 
 𝑦̂1
(𝑖)

𝑦̂2
(𝑖)

𝑦̂3
(𝑖)

⋮

𝑦̂𝑛
(𝑖)
]
 
 
 
 
 

 (8.10) 

 

𝜷 =

[
 
 
 
 
𝛽𝑐,𝐴𝑝𝑝𝑟𝑜𝑎𝑐ℎ1

𝛽𝟏
𝛽𝟐
⋮
𝛽𝒑 ]

 
 
 
 

 (8.11) 

 

𝑿 =

[
 
 
 
 
 
 
1 𝑥1,1 𝑥1,2
1 𝑥2,1 𝑥2,2
1 𝑥3,1 𝑥3,2

  

𝑥1,3 . . . 𝑥1,𝑝
𝑥2,3 . . . 𝑥2,𝑝
𝑥3,3 . . . 𝑥3,𝑝

1 𝑥4,1 𝑥4,2
⋮ ⋮ ⋮
1 𝑥𝑛,1 𝑥𝑛,2

  

𝑥4,3 . . . 𝑥4,𝑝
⋮ . . . ⋮
𝑥𝑛,3 . . . 𝑥𝑛,𝑝]

 
 
 
 
 
 

 (8.12) 

where n is the number of training samples (in our study n=12), p is the total number 

of variables. 𝒚̂ is a nx1 matrix, β is a (p+1) x 1 matrix, and X is a n x (p+1) matrix. 

Using this matrix form, the βc,Approach1 intercept is assigned with an independent 

variable x0 with x0=1. To determine the coefficient β, the sum of squared residuals 

(RSS) between the predicted and the exact dependent variable need to be 

minimised. The scalar form of RSS is as shown below. 

 
𝑅𝑆𝑆 =∑(𝑦𝑗 − 𝑦̂

(𝑖)
𝑗
)2

𝑛

𝑗=1

 (8.13) 

Eq (8.13) can be rewritten in the form of matrix: 

 𝑅𝑆𝑆 = (𝒚 − 𝒚̂)𝑻(𝒚 − 𝒚̂) (8.14) 
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 𝑅𝑆𝑆 = (𝒚 − 𝜷𝑻𝑿𝑻)𝑻(𝒚 − 𝑿𝜷) (8.15) 

where y is the experimental training data. The matrix β can be determined by taking 

the partial derivative of RSS with respect to β. 

 
𝛿(𝑅𝑆𝑆)

𝛿(𝜷)
=
𝛿((𝒚 − 𝜷𝑻𝑿𝑻)𝑻(𝒚 − 𝑿𝜷))

𝛿(𝜷)
= 0 (8.16) 

By expanding the term(𝒚 − 𝜷𝑻𝑿𝑻)𝑻(𝒚 − 𝑿𝜷), we can obtain: 

𝛿(𝒚𝑻𝒚)

𝛿(𝜷)
−
𝛿(𝒚𝑻𝑿𝜷)

𝛿(𝜷)
−
𝛿(𝜷𝑿𝑻𝒚)

𝛿(𝜷)
+
𝛿(𝜷𝑻𝑿𝑻𝑿𝜷)

𝛿(𝜷)
= 0 (8.17) 

 0 − 𝒚𝑻𝑿 − (𝑿𝑻𝒚)𝑻 + 𝟐𝜷𝑻𝑿𝑻𝑿 = 𝟎 (8.18) 

 𝜷𝑻 = 𝒚𝑻𝑿(𝑿𝑻𝑿)−𝟏 (8.19) 

 𝜷 = (𝑿𝑻𝑿)−𝟏𝑿𝑻𝒚 (8.20) 

By using simple matrix multiplication, the regression coefficient in β can be 

determined easily using Eq (8.20). 

8.4.1.2 Regression Model Approach 2 

Regression Model Approach 2 is a prediction model to predict the gait functionality 

indices (G_FunctGT and G_FunctTD) in stage 3 based on the recovery trajectory 

from stage 1 to stage 2. It can be modelled as: 

 

𝑧̂ = 𝛽𝑐,𝐴𝑝𝑝𝑟𝑜𝑎𝑐ℎ2 +∑𝛽𝑜(𝑥𝑜
(1) − 𝑥𝑜

(2))

𝑝

𝑜=1

 (8.21) 

where  𝑧̂ is the recovery trajectory from stage 1 to stage 3. 

 𝑧̂ = 𝑦̂(1) − 𝑦̂(3) (8.22) 

In this model, the recovery trajectory from stage 1 to stage 2 is the different between 

gait data from stage 1 and stage 2. This recovery trajectory is a useful indicator to 

predict stage 3 gait performance as most of the stroke patients will followed this 

trajectory trend. Eq (8.21) can also be rewritten as matrix form: 
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 𝒛̂ = ∆𝑿𝜷 (8.23) 

 

𝒛̂ =

[
 
 
 
 
 𝑦̂1
(1)
− 𝑦̂1

(3)

𝑦̂2
(1)
− 𝑦̂2

(3)

𝑦̂3
(1)
− 𝑦̂3

(3)

⋮

𝑦̂𝑛
(1)
− 𝑦̂𝑛

(3)
]
 
 
 
 
 

 (8.24) 

 

𝜷 =

[
 
 
 
 
𝛽𝑐,𝐴𝑝𝑝𝑟𝑜𝑎𝑐ℎ2

𝛽𝟏
𝛽𝟐
⋮
𝛽𝒑 ]

 
 
 
 

 (8.25) 

 

∆𝑿 =

[
 
 
 
 
 
 1 𝑥1,1

(1) − 𝑥1,1
(2) .

1 𝑥2,1
(1) − 𝑥2,1

(2) .

1 𝑥3,1
(1) − 𝑥3,1

(2) .

  

. . 𝑥1,𝑝
(1) − 𝑥1,𝑝

(2)

. . 𝑥2,𝑝
(1) − 𝑥2,𝑝

(2)

. . 𝑥3,𝑝
(1) − 𝑥3,𝑝

(2)

1 𝑥4,1
(1) − 𝑥4,1

(2) .

⋮ ⋮ ⋮
1 𝑥𝑛,1

(1) − 𝑥𝑛,1
(2) .

  

. . 𝑥4,𝑝
(1) − 𝑥4,𝑝

(2)

⋮ ⋮ ⋮
. . 𝑥𝑛,𝑝

(1) − 𝑥𝑛,𝑝
(2)]
 
 
 
 
 
 

 (8.26) 

Similar to previous section, the sum of squared residuals (RSS) between the 

predicted and the exact dependent variable need to be minimised in order to 

determine regression coefficient for model 2. Following the same procedures from 

Eq (8.13) to (8.20), the regression coefficient for this model is: 

𝜷 = ((𝑿(𝟏) − 𝑿(𝟐))𝑻(𝑿(𝟏) − 𝑿(𝟐)))
−𝟏
(𝑿(𝟏) − 𝑿(𝟐))𝑻(𝒚(𝟏) − 𝒚(𝟑)) (8.27) 

where X(1) and X(2) are the independent variable matrices at stage 1 and stage 2 

respectively, y(1) and y(2) are the experimental dependent variable matrices at stage 

1 and stage 3 respectively. 

8.4.1.3 Procedure to select independent variables 

There are two predicted dependent variables, G_FunctGT and G_FunctTD. 

Meanwhile, there are plenty of independent variables to be selected from gait 

parameters or the demographic of the subject. If there are not enough independent 

variables, it will affect the accuracy of the predicted model; however if there are 
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too many independent variables, it will lead to multicollinearity [255].  

Multicollinearity happens when the independent variables were highly related to 

each other. 

The procedures to select independent variables as the model training inputs are 

described as follow: 

i. Find the correlations between independent variables and dependent 

variable. Only include independent variables which are highly correlated to 

the dependent variable. 

ii. Find the correlation among independent variables. Remove variables that 

are highly correlate to each other to avoid multicollinearity. 

8.4.2 Statistical analysis 

Pearson correlation coefficient, r was used to determine the correlation between 

variables. The values r between -1 to -0.5 and 0.5 to 1 are considered as strong 

correlation. Student paired t-test were used to determine the statistical significant 

between variables with p-value < 0.05 as threshold.  

The mean absolute percentage error was applied to determine the prediction 

accuracy between the predicted gait functionality indices and the actual indices. 

The formula to compute this mean absolute percentage is: 

 
𝐸𝑟𝑟𝑜𝑟 =

𝑌𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑌𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

𝑌𝑎𝑐𝑡𝑢𝑎𝑙
∗ 100% 

(8.28) 

8.4.3 Results from regression model approach 1 

8.4.3.1 Selection of independent variables 

Initially, the independent variables that were considered as the training input for 

regression model were stroke subjects’ demography (type of stroke, hemiplegia 

side, gender), baseline conventional gait parameters (stride length, heel clearance, 

stance and swing time percentage, gait velocity), baseline K.I., baseline CSROD 

and baseline gait functionality indices. To select the proper independent variables, 

the procedures explained in section 8.4.1.3 were executed. The results were shown 
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in Table 8.2 and Table 8.3. In Table 8.2, it clearly shows that none of the dummy 

variables were highly correlate to the predicted variables. This means that the 

predicted stage 2 and 3 gait functionality indices were not affected by the 

demographic of stroke patients. 

8.4.3.2 Prediction of G_FunctGT in stage 2 

In Table 8.2, only baseline heel clearance, baseline gait velocity, baseline K.I., 

baseline CSROD and baseline G_FunctGT are highly correlated to G_FunctGT at 

stage 2. To avoid multicollinearity, the correlation coefficient of these five 

variables are determined in Table 8.3. Baseline heel clearance is highly correlate 

to baseline K.I. and CSROD values. Since baseline heel clearance has lower 

correlation to predicted variable compared to other independent variables, therefore 

baseline gait velocity, baseline K.I., baseline CSROD and baseline 𝐺_𝐹𝑢𝑛𝑐𝑡𝐺𝑇 are 

selected as the independent variables to predict G_FunctGT at stage 2. 

8.4.3.3 Prediction of G_FunctGT in stage 3 

The baseline stride length, baseline gait velocity, baseline K.I, baseline CSROD 

values and baseline G_FunctGT are highly correlated to G_FunctGT at stage 3 

according to Table 8.2. From Table 8.3, baseline stride length is highly correlate 

to baseline G_FunctGT. Since baseline stride length has weaker correlation 

compared to baseline G_FunctGT, therefore the independent variables selected to 

predict G_FunctGT at stage 3 are baseline gait velocity, baseline K.I., baseline 

CSROD and baseline G_FunctGT.  

8.4.3.4 Prediction of G_FunctTD in stage 2 

The baseline heel clearance, baseline gait velocity, baseline K.I, baseline CSORD 

values and baseline G_FunctTD from Table 8.2 are highly correlated G_FunctTD  at 

stage 3. After the filtering process based on result from Table 8.3, the independent 

variables to predict G_FunctTD  at stage 3 are baseline K.I, baseline CSORD values 

and baseline G_FunctTD. 
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8.4.3.5 Prediction of G_FunctTD in stage 3 

In Table 8.2, type of stroke, baseline heel clearance, baseline stance and swing 

time, baseline gait velocity, baseline K.I., baseline CSORD values and baseline 

G_FunctTD are highly correlate to dependent variable G_FunctTD at stage 3. Similar 

to the previous process, the final independent variables are baseline K.I, baseline 

CSORD values and baseline G_FunctTD. 

8.4.3.6 Validation of regression model approach 1 

In Table 8.4 and Table 8.5, the regression coefficient for each independent variable 

and constant intercept were presented for predicted stage 2 and stage 3 G_FunctGT 

and G_FunctTD respectively. The baseline independent variables that were selected 

for prediction are shown in Table 8.6. The predicted gait functionality indices are 

determined by substituting the regression coefficient and baseline independent 

variables into Eq (8.8). 

To validate these prediction models, the mean absolute percentage error between 

the predicted values and actual values were determine. Table 8.7 and Table 8.8 

present the predicted results, actual values and their error for G_FunctGT and 

G_FunctTD  at stage 2 and stage 3 of three stroke patients respectively. The results 

illustrate that S13 had high accuracy with less than 10% error in all predicted 

indices; S14 had high error in all indices beside G_FunctGT at stage 2; S15 had very 

high accuracy in all indices with less than 10% error beside G_FunctGT at stage 2.  
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Table 8.2. Correlation coefficient and p-values between independent variables and predicted gait functionality indices at state 

2 and stage 3. 

Independent Variables Predicted Stage 2 

G_FunctGT  

Predicted Stage 3 

G_FunctGT  

Predicted Stage 2 

G_FunctTD  

Predicted Stage 3 

G_FunctTD  

 r p-value r p-value r p-value r p-value 

 Stroke Demographic 

Gender (m/f) -0.0555 0.160 -0.0695 0.818  -0.213 <0.01 -0.078 <0.01 

Type of stroke (I/H) -0.424 0.152 -0.431 0.949 -0.439 <0.01 -0.496 <0.01 

Hemiplegia Side (L/R) -0.143 0.377 -0.369 0.420 0.397 <0.01 -0.351 <0.05 

 Conventional Spatial-Temporal Parameters 

Baseline Stride Length  -0.269 <0.01 -0.512 0.0530 0.469 <0.01 -0.356 <0.01 

Baseline Heel 

Clearance 

0.504 <0.01 0.355 <0.01 0.557 <0.01 0.667 <0.01 

Baseline Stance Time 0.302 <0.01 0.291 <0.01 0.367 <0.01 0.532 <0.01 

Baseline Swing Length -0.302 <0.01 -0.291 <0.01 -0.367 <0.01 -0.532 <0.01 

Baseline Gait Velocity -0.593 <0.01 -0.507 <0.05 -0.575 <0.01 -0.571 <0.01 

 Proposed Gait Assessment Indices 

Baseline K.I. 0.504 <0.01 0.557 <0.01 0.653 <0.01 0.753 <0.01 

Baseline CSROD 0.560 <0.01 0.731 <0.01 0.678 <0.01 0.778 <0.01 

 Proposed Gait Functionality Indices 

Baseline G_FunctGT  0.508 <0.01 0.600  <0.01 - - - - 

Baseline G_FunctTD  - - - - 0.723 <0.01 0.638 0.053 

m=male; f=female; I=Ischemia; H=Haemorrhage; L=left; R=right; r=Pearson Correlation Coefficient 
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Table 8.3. Correlation coefficient between baseline independent variables. 

 ST SW SL HC GV KI CSROD G_FunctGT   G_FunctTD  

ST NA -1 0.295 0.392 -0.424 0.742  0.489 -0.156 0.988 

SW  NA -0.295 -0.392 0.424 -0.742 -0.489 0.156 -0.988 

SL   NA -0.157 0.310 0.182 -0.307 -0.683 0.253 

HC    NA -0.185 0.598 0.611 0.284 0.443 

GV     NA -0.493 -0.475 -0.470 -0.567 

KI      NA 0.429 0.296 0.477 

CSROD       NA 0.432 0.457 

G_FunctGT         NA NA 

G_FunctTD         NA NA 

ST= Stance time percentage; SW=Swing time percentage; SL=Stride length; HC=Heel Clearance; GV=Gait Velocity. 
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Table 8.4. Multivariate Linear Regression Model to predict gait functionality index G_FunctGT at stage 2 and stage 3. 

 Predicted Stage 2 G_FunctGT  Predicted Stage 3 G_FunctGT  

 b coefficient Standard error b coefficient Standard error 

Baseline Gait Velocity  1.3355 0.958 -0.01731 0.220 

Baseline K.I.  0.0033 0.0004 -0.00171 0.003 

Baseline CSROD  0.0021 0.0002 0.00492 0.002 

Baseline G_FunctGT  0.4564 0.245 0.3784 0.250 

Intercept  -0.86399 0.125 -0.87348 0.094 

 

Table 8.5. Multivariate Linear Regression Model to predict gait functionality index G_FunctTD at stage 2 and stage 3. 

 Predicted Stage 2 G_FunctTD  Predicted Stage 3 G_FunctTD  

 b coefficient Standard error b coefficient Standard error 

Baseline K.I.  0.0463 0.03 0.0276 0.02 

Baseline CSROD  0.0236 0.01 0.0251 0.01 

Baseline G_FunctTD  -0.316 0.05 0.125 0.04 

Intercept  2.471 1.49 -4.045 2.66 
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Table 8.6. Baseline independent variables values for three patients for validation. 

 

 

Baseline Gait 

Velocity (m/s) 

Baseline K.I. 

(unitless) 

Baseline CSROD 

(unitless) 

Baseline G_FunctGT  

(unitless) 

Baseline G_FunctTD 

(unitless) 

S13 0.095 215.684 465.572 2.704 19.29 

S14 0.165 62.734 204.767 1.525 15.90 

S15 0.200 63.165 190.518 0.440 18.16 

 

Table 8.7. Comparison between predicted and actual G_FunctGT values and the error percentage.  

 Stage 2 G_FunctGT (unitless) Stage 3 G_FunctGT (unitless) 

 Predicted Actual Error (%) Predicted Actual Error (%) 

S13 2.203 2.337 5.73 2.069 2.189 5.48 

S14 0.694 0.683 1.61 0.501 0.366 36.8 

S15 0.217 0.122 77.8 0.118 0.121 2.48 

 

Table 8.8. Comparison between predicted and actual G_FunctTD values and the error percentage.  

 Stage 2 G_FunctTD  (unitless) Stage 3 G_FunctTD  (unitless) 

 Predicted Actual Error (%) Predicted Actual Error (%) 

S13 17.375 17.977 3.35 16.031 16.317 1.75 

S14 1.433 0.934 53.4 1.484 1.896 21.72 

S15 1.912 1.820 5.05 2.443 2.261 8.05 
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8.4.4 Results from regression model approach 2 

8.4.4.1 Selection of independent variables 

In this section, the gait functionality indices at stage 3 are predicted based on the 

recovery history from stage 1 to stage 2. Following the same procedure as in Section 

8.4.3, the selected independent variables for each gait functionality indices at stage 

3 are: 

i. Gait functionality based on gait trajectory index, G_FunctGT in stage 3. 

- Difference of K.I. value between stage 1 to stage 2. 

- Difference of CSROD value between stage 1 to stage 2. 

- Difference of 𝐺_𝐹𝑢𝑛𝑐𝑡𝐺𝑇 between stage 1 to stage 2. 

ii. Gait functionality based on time delay index, G_FunctTD  in stage 3. 

- Difference of gait velocity between stage 1 to stage 2. 

- Difference of K.I. value between stage 1 to stage 2. 

- Difference of CSROD value between stage 1 to stage 2. 

- Difference of 𝐺_𝐹𝑢𝑛𝑐𝑡𝑇𝐷  from between 1 to stage 2. 

8.4.4.2 Validation of regression model approach 1 

Based on the selected independent variables, a multivariate linear regression model 

to predict the gait functionality indices based on recovery history at stage 3 is 

developed. Table 8.9 displays the regression coefficient for both predicted indices, 

which to be substituted to Eq. (8.21). Table 8.10 shows the difference of 

independent variables between stage 1 and 2. Table 8.11 presents the predicted 

results, actual values and their error for G_FunctGT and G_FunctTD  at stage 2 and 

stage 3 of three stroke patients respectively. The results in this table demonstrats 

that this model can accurately predict stage 3 indices using this model besides 

G_FunctGT from S14 and S15. 
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Table 8.9. Multivariate Linear Regression Model to predict gait functionality index 𝑮_𝑭𝒖𝒏𝒄𝒕𝑮𝑻 and 𝑮_𝑭𝒖𝒏𝒄𝒕𝑻𝑫at stage 3. 

 Predicted Stage 3 G_FunctGT  Predicted Stage 3 G_FunctTD  

 b coefficient Standard error b coefficient Standard error 

Δ Gait Velocity - - -0.6447 0.298 

Δ K.I. 0.0043 0.003 0.0144 0.020 

Δ CSROD -0.0021 0.001 -0.0098 0.008 

Δ G_FunctGT  0.6756 0.154 - - 

Δ G_FunctTD - - 0.5778 0.1799 

Intercept  0.7633 0.175 4.895 1.886 

Table 8.10. Baseline independent variables values for three subjects for validation. 

 Δ Gait Velocity 

(m/s) 

 Δ K.I. (unitless) Δ CSROD 

(unitless) 

 Δ G_FunctGT  

(unitless) 

 Δ G_FunctTD 

(unitless) 

S13 0.07 58.16 302.80 0.37 1.31 

S14 -0.91 43.96 166.75 1.24 12.9 

S15 -0.94 37.04 109.45 1.52 12.3 

Table 8.11. Comparison between predicted and actual 𝒚̂𝒔𝟑 values and the error percentage.  

 Stage 3 G_FunctGT (unitless) Stage 3 G_FunctTD (unitless) 

 Predicted Actual Error (%) Predicted Actual Error (%) 

S13 2.066 2.189 9.75 15.82 16.317 3.04 

S14 0.475 0.366 79.1 1.93 1.896 1.88 

S15 0.084 0.121 30.5 2.07 2.261 8.27 
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8.5 Discussion 

8.5.1 Changes of spatial-temporal parameters during recovery  

Fig 8.1 shows the spatial-temporal parameters, K.I. and CSROD values throughout 

the sixth month recovery period. Generally, stroke patients are expected to improve 

their gait pattern and walk better by: i) increase stride length and heel clearance; ii) 

decrease gait cycle time to increase gait velocity; iii) decrease stance time and 

increase swing time; and iv) increase joint angle range of motion on both paretic 

and non-paretic lower limbs. Moreover, it is to believe that stroke patients have 

improved in term of gait symmetry when recovered. The decreased in gait 

asymmetry will improve the balancing, and hence reduce the risk of falling down. 

This can be reflected in the K.I. value since it is highly associate with TUG score. 

The K.I. values decrease from the stage 1 to stage 3 of recovery and it indicates a 

lower TUG score.  

8.5.2 Gait Functionality Indices 

The gait functionality indices proposed in this chapter, G_FunctGT and G_FunctTD 

are very important to assess the walking ability of stroke subjects. Since the 

ultimate rehabilitation goal is to help the stroke patients to achieve the normal 

healthy gait as close as possible, these two indices are formulated by finding the 

deviation between stroke and healthy subjects’ gait trajectory and time delay among 

gait events. The time history of these two indices are ED(N) and TD(i) respectively. 

For ED(N), it provides information such as gait trajectory deviation between 

healthy and stroke subjects at any gait events. For TD(i), it is able to notify which 

gait events among stroke patients have the highest delay compared to healthy. 

8.5.3 Comparison between two prediction models 

In this chapter, two new prognostic models for gait functionality recovery after 

stroke was developed. It is generally accepted that the stroke patients improved the 

most during the first sixth month after diagnosed with stroke. Therefore, 
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longitudinal study during first month (stage 1), third month (stage 2) and sixth 

month (stage 3) of stroke patients were analysed. Noted that all these stroke patients 

that were recruited for this study only received the normal rehabilitation treatment 

from physiotherapist without any additional intervention. 

The first model is computed based on stroke patients’ baseline gait data only. It can 

be used to predict the gait functionality indices at stage 2 and stage 3. Meanwhile, 

the second model uses the changes of gait data from stage 1 to stage 2 as 

independent variables and to predict the gait functionality indices at stage 3.  

The application of these two models are very crucial for clinicians and 

physiotherapist. For the first model, initial predictions of recovery can be used to 

set rehabilitation targets. The predicted gait performance at stage 2 and stage 3 can 

be used as a comparison to the actual gait performance at stage 2 and stage 3. The 

second model is based on the recovery pattern from stage 1 to stage 2. Since every 

stroke patients have different recovery trajectory compare to each other, it is very 

important to use recovery history as independent variables. 

Actual recovery for each stroke patients could be compared with the predicted 

values using these models. This information can help to adjust the type and amount 

of rehabilitation treatment received by each stroke patients. For those stroke 

patients who are not recovering as expected using the prediction model, additional 

intervention may be warranted. This can help to reduce the amount of time 

physiotherapist spent on stroke subjects and improve the workload efficiency. 

The errors by the difference between actual and predicted indices in Table 8.7, 

Table 8.8 and Table 8.11 are mainly caused by the assumption that all stroke 

patients follow linear recovery curve. While it is true for most subjects, some 

patients had rapid recovery at the beginning and slow recovery at the later stage. 

For example, Table 8.12 shows the classification result by using the Hierarchical 

Cluster Analysis with K.I. as single input as shown in Chapter 6. These results 

suggested that most of the stroke subjects started as the most severe gait 

performance group (Group 3 KI3), and had very different recovery trajectories 
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between different patients. Different subgroups of stroke patients should received 

different type of rehabilitation. However, since all recruited stroke patients received 

same amount and same type of rehabilitation from physiotherapist, some patients 

were not recovering better at the sixth month period. This can be caused by the lack 

of motivation from patients or improper rehabilitation strategy planned by 

physiotherapist.  

Table 8.12. Classification outcome for three different recovery stages from 15 

stroke patients. 

Subject Stage 1 Stage 2 Stage 3 

S1 Group 3 (KI 3) Group 1 (KI 1) Group 1 (KI 1) 

S2 Group 3 (KI 3) Group 1 (KI 1) Group 1 (KI 1) 

S3 Group 3 (KI 3) Group 1 (KI 1) Group 1 (KI 1) 

S4 Group 3 (KI 3) Group 3 (KI 3) Group 3 (KI 3) 

S5 Group 3 (KI 3) Group 1 (KI 1) Group 1 (KI 1) 

S6 Group 2 (KI 2) Group 1 (KI 1) Group 1 (KI 1) 

S7 Group 3 (KI 3) Group 1 (KI 1) Group 1 (KI 1) 

S8 Group 3 (KI 3) Group 1 (KI 1) Group 1 (KI 1) 

S9 Group 3 (KI 3) Group 3 (KI 3) Group 3 (KI 3) 

S10 Group 2 (KI 2) Group 2 (KI 2) Group 1 (KI 1) 

S11 Group 2 (KI 2) Group 1 (KI 1) Group 1 (KI 1) 

S12 Group 3 (KI 3) Group 2 (KI 2) Group 1 (KI 1) 

S13 Group 3 (KI 3) Group 3 (KI 3) Group 3 (KI 3) 

S14 Group 3 (KI 3) Group 1 (KI 1) Group 1 (KI 1) 

S15 Group 3 (KI 3) Group 1 (KI 1) Group 1 (KI 1) 
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8.6 Chapter summary 

In this chapter, the recovery of stroke patients in different period were studied and 

analysed. There are clear pattern and behaviour of spatial-temporal parameters over 

the recovery period. Stroke patients were expected to: i) increase stride length and 

heel clearance; ii) decrease gait cycle time to increase gait velocity; iii) decrease 

stance time and increase swing time; iv) increase joint angle range of motion on 

both paretic and non-paretic lower limbs; v) decrease in gait asymmetry (CSROD); 

and vi) decrease in K.I. value (decrease in TUG score).  

The gait functionality indices introduced in this chapter are based on the deviation 

of gait trajectory and time delay in gait event between stroke and healthy subjects 

(G_FunctGT and G_FunctTD respectively). These two indices are able to assess the 

walking ability of stroke patients and provide the time history with details 

deviation.  

Multivariate linear regression models were developed to predict the two gait 

functionality indices at different recovery stages. Two regression models were 

computed: the first was the prediction model based on stroke subjects’ baseline gait 

data and the second was the prediction model based on the recovery history from 

stage 1 to stage 2. The validation results show that these two models can predict 

gait functionality indices accurately with few exceptions. The error between the 

predicted value and actual value is caused by two factors: 

i. Assumption of linear recovery trajectory among stroke. 

ii. Stroke patients were not recovering better in stage 3. 

The reasons patients had no recovery in stage 3 can be due to lack of motivation 

during rehabilitation process and improper rehabilitation strategy from 

physiotherapist. Therefore, it is very important to predict subjects walking ability 

from the beginning to prevent them from derailing from the correct recovery 

trajectory.    
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Chapter 9 Determine the fundamental 

principles of gait recovery through 

sEMG decomposition 

9.1 Introduction  

In Chapter 8, the behaviour of gait parameters such as stride length, heel clearance, 

stance time, swing time, gait velocity, K.I. value, CSROD value and gait 

functionality indices during recovery were well explained. However, most of these 

parameters and indices only described the recovery of a patient physically (besides 

K.I.). While K.I. can determined the weaker muscles in hemiparetic leg (as shown 

in Section 6.5.3) by studying the fractal features among each muscle, it still cannot 

provide information such as time history and duration of activated muscle. It 

remains uncertain regarding the kinesiology status throughout the whole recovery 

period. Therefore, it is important to study the skeleton muscle condition of stroke 

subjects during their recovery. This leads to the study of motor unit recruitment and 

its firing pattern during recovery period. Hence, EMG decomposition has attracted 

our attention to reveal the motor unit information [215,256,257]. Noted most of the 

EMG decomposition methods focus on decomposed needle EMG and high-density 

arrays EMG into MUAP. It is very challenging to accurately decompose sEMG due 

to its low spatial selectivity [216]. All the MUAPs from sEMG tend to look alike 

and they overlap with each other. It is very hard to extract useful information of 

MUAP on stroke subjects using existing EMG decomposition methods. Therefore, 

partial sEMG decomposition method such as Emperical Mode Decomposition 

(EMD) and Ensemble Emperical Mode Decomposition (EEMD) served as a 

substitute to decompose sEMG signal partially.  

The aims of this chapter are: 
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1. To study and analyse the decomposed sEMG signal using EEMD on healthy 

subjects. 

2. To study and analyse the decomposed sEMG signal using EEMD on stroke 

patients. 

3. To study the motor impairment among stroke patients. 

4. To study the motor recovery after stroke. 

9.2 Theory 

9.2.1 Model description 

In 1998, Huang et al [217] proposed a new technique for analysing non-linear and 

non-stationary data and the key part of the method is the Empirical Mode 

Decomposition (EMD). EMD can decompose a complicated signal into finite and 

small number of intrinsic mode functions (IMF). These IMFs yield instantaneous 

frequencies as functions of time. One of the problem arises in cases of EMD is 

mode mixing. Mode mixing is defined as single IMF consists of signals of widely 

disparate scales, or a signal of similar scare residing in different IMF components 

[222]. This issue can cause failure to decompose the signal accurately. To overcome 

this issue, Wu and Huang [222] proposed a noise-assisted EMD algorithm called 

Ensemble Empirical Mode Decomposition (EEMD) in 2005.  

9.2.1.1 Empirical Mode Decomposition (EMD) 

By applying EMD, the sEMG signal 𝑥(𝑡) is decomposed into different finite of 

intrinsic mode function IMFs, 𝑐𝑗  where an IMF represents a simple oscillatory 

function satisfying two conditions: 

1. The number of zero crossings and the number of local extrema are either equal 

or differ by one. Local extrema are either local minima or local maxima.  

2. The mean value of the envelopes from local maxima and local minima should 

be zero. 

The sEMG signal x(t) can be represented in the form of IMFs and residual as: 
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𝑥(𝑡) =∑𝑐𝑗 + 𝑟𝑛

𝑛

𝑗=1

 (9.1) 

where 𝑟𝑛is the residue of sEMG signal 𝑥(𝑡), and n is the number of IMFs extracted 

from the original data. The EMD method is a sifting process that estimates IMFs 

by using only local extrema. The procedure is as follows: 

1. Identify all local extrema (both local maxima and local minima). Connect all 

these local maxima (minima) with a cubic spline as upper (lower) envelope 

(UE- upper envelope; LE- lower envelope). 

2. Determine the average envelope m by calculating the mean between UE and 

LE. 

3. Obtain the first IMF, h by taking the difference between the data and m.  

4. Treat h as the data and repeat steps 1 to 3 as many times as required until h meet 

the two conditions stated above. 

5. Save the final h (the real IMF) as 𝑐𝑗. This sifting process stops when the residue, 

𝑟𝑛 becomes a monotonic function where no more IMF can be extracted. 

9.2.1.2 Ensemble Empirical Mode Decomposition (EEMD) 

Mode mixing is a problem arises from EMD decomposition. Mode mixing is caused 

by overlapping of different IMFs [220] and this affects the accuracy of the 

decomposed signal. To solve this problem, Ensemble EMD (EEMD) is proposed 

by Wu et al [222]. This EEMD method is a noise-assisted EMD algorithm. It works 

by following the below procedure: 

1. Add white noise into the signal in ith trials.  

 𝑥𝑖(𝑡) = 𝑥(𝑡) + 𝑤𝑖(𝑡), 𝑖 = 1, 2, … . , 𝑁 (9.2) 

where 𝑥𝑖(𝑡) is the ith trials of signal by adding 𝑤𝑖(𝑡) of white noise to the 

original data 𝑥(𝑡) and N is the ensemble number. 

2. The new noise-contaminated signal, 𝑥𝑖(𝑡) is decomposed into finite set of IMFs 

using the EMD procedure described earlier. 
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𝑥𝑖(𝑡) =∑𝑐𝑗

(𝑖)
+ 𝑟𝑗

(𝑖)

𝑛

𝑗=1

 (9.3) 

where 𝑐𝑗
(𝑖)

 is the IMF and 𝑟𝑗
(𝑖)

 is the residual obtained in the ith trials. 

3. Repeat step 1 and step 2 with different white noise series  𝑤𝑖(𝑡). 

4. Obtain the final IMF, 𝑐𝑗(𝑡) of EEMD by averaging the total j IMFs related to 

ith trials. 

 

𝐶𝑗(𝑡) =
1

𝑖
∑𝑐𝑗

(𝑖)

𝑁

𝑖=1

 (9.4) 

The final decomposed signal is highly affected by the choice of ensemble number 

N and the amplitude of noise,  

 𝑛 =


√𝑁
 (9.5) 

where 𝑛 is the final standard deviation of error, which calculated as the difference 

between original signal and the sum of the IMDs resulting from the EEMD. In our 

study, the standard deviation of the added noise is 0.2 and the ensemble number is 

set to N = 500. 

9.2.2 Experiment protocol 

The sEMG signal from healthy subjects (in Experiment 1) are analysed during 

walking. Besides that, the sEMG signal from stroke sEMG signal in prospective 

cohort study (Experiment 3) are also analysed. All sEMG signals were processed 

with EEMD to obtain IMFs as described in Section 9.2.1. Fast Fourier Transform 

(FFT) was applied to each IMF component to show the corresponding frequency 

spectrum. 

9.3 Decomposed sEMG from healthy subjects 

There are two agonist and antagonist muscles (GL and TA) tested in this study. For 

a normal gait, GL muscle activates during the mid-stance to toe-off and TA muscle 

activates during the swing phase to heel-strike [248]. This means that the GL 
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muscle mainly contributes to move the upper body forward during the stance phase 

(plantarflexion) while the TA muscle is to provide foot clearance during the swing 

phase (dorsiflexion).  

In this section, the sEMG of GL and TA muscles from healthy subjects were 

decomposed by the EEMD method. Fig 9.1 and Fig 9.2 show the sEMG signal and 

its decomposition from the tested muscles. On the left side of the figures, it is the 

sEMG signal and its decomposed IMF signal; on the right side, it is the 

corresponding frequency computed by FFT. From the EEMD results, it can clearly 

see that the frequency is the highest in the first IMF (c1), and it slowly decreases to 

the following IMF components. Noted that after the fifth IMF component, the 

amplitude of the IMF is not clear in the same scale as the previous IMF component. 

Besides that, the Fourier analysis shows that the frequency after the fifth IMF 

component are very low. Therefore, it is suggested that only the first to fifth IMFs 

components would be analysed. Similar to Chang et al [258], EEMD has more 

concentrated and band limited components and therefore, high frequency noises are 

more localised in the low IMF level (for example c1). Each of these IMFs indicates 

the superimposed of MUAPs at that particular frequency range as shown in their 

FFT. For example, the median frequency of each FFT of healthy’s decomposed GL 

muscle sEMG are 94, 57, 30, 15 and 6 Hz (c1, c2, c3, c4 and c5 respectively). This 

means that the first IMF component, c1, contains superimposed of motor unit firing 

frequency at around 94Hz. It is similar for the rest of IMF components. Meanwhile, 

the median frequency of each FFT of healthy’s decomposed TA muscle’s sEMG 

are 109, 54, 29, 15 and 8 Hz (c1, c2, c3, c4 and c5 respectively). Therefore, the 

information that can be extracted from the decomposed sEMG are: i) the range of 

frequency of different MUs group in each IMF component; ii) the temporal 

information of these different MUs group in each IMF component; iii) the 

amplitude of these different MUs group compared to other IMF components. 
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(a) 

 

(b) 

Fig 9.1. Typical healthy gait sEMG (left) and the corresponding FFT (right) 

from (a) GL muscle, (b) TA muscle. 
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           (b) 

Fig 9.2. Typical decomposed healthy gait sEMG from (a) GL muscle. (b) TA 

muscle. On the left side are the IMFs (c1, c2,…, c11). Their respective frequency 

range derived from FFT is shown on the right side. All y-axis has the same 

scale as the first IMF component and its corresponding FFT. 
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9.4 Decomposed sEMG from stroke subjects 

Before we study the behaviour of decomposed sEMG signals throughout the stroke 

patients recovery period, it is necessary to understand the features that can be 

extracted using EEMD to decompose stroke patients sEMG signal. 

9.4.1 Foot drop 

Foot drop is one of the gait abnormality observed among stroke patients. Foot drop 

is mainly caused by inactive dorsiflexion from ankle during the swing phase [259], 

which leads to subject unable to lift the foot and clear the floor. In this study, the 

maximum vertical foot displacement during the swing phase is taken as a standard 

measurement. For healthy subjects, the vertical foot displacement is in the range of 

0.10-0.15m. To analyse stroke subjects foot drop phenomenon, their decomposed 

sEMG signal during gait were analysed. Two different subjects were selected due 

to their severe foot drop conditions. The first and second subjects had a vertical 

heel clearance during the swing phase of 0.005m and 0.0015m respectively. 

Compared to healthy data, these two subjects had very minimum to none vertical 

clearance during the swing phase.   

Fig 9.3 shows an example of foot drop phenomenon caused by spasticity of GL 

muscle from one patients. Fig 9.3 (a) is the GL sEMG signal and its corresponding 

FFT results and Fig 9.3 (b) is the decomposed IMFs from GL sEMG. In this figure, 

there is a consistent activation from the beginning to the end of gait cycle from GL 

muscles. This is caused by the spasticity of that particular muscle. Spasticity is a 

symptom where the muscle is continuously contracting and the subject has no 

control over it. In this example, spasticity in GL muscles causes the muscle to be 

very stiff, which counteracting the TA muscle [260]. The median frequency of each 

IMF components were 105, 71, 42, 22 and 12Hz (c1, c2, c3, c4 and c5 respectively). 

These frequencies were higher compared to the healthy one. There was no 

activation during swing phase for this low frequency motor unit. Spasticity 

happened when the subject tried to recruit more motor units and it caused GL 

muscle contracting at swing phase as well, leading to foot drop. 
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Fig 9.4 shows another example of foot drop phenomenon caused by lack of TA 

muscle activation from another patient. Fig 9.4 (a) is the TA sEMG signal and its 

corresponding FFT results and Fig 9.4 (b) is the decomposed IMFs from TA sEMG. 

TA muscle is primary contributing for foot clearance during the swing phase; 

therefore, there should be activities during the swing phase. However, it is observed 

that there were not many high frequency activities in the EEMD results. There are 

only some muscle activities on lower frequency range. This showed that the motor 

units did not activate at a higher frequency for “heavier” load. The “heavier” load 

indicates ankle dorsiflexion, which is to push the foot from the ground. There is 

one activation happened at the end of the gait cycle, which is the beginning of 

another heel strike. This is a very common phenomenon, as the stroke patients will 

need more support during heel strike for balancing and prepare for the next step. 

The median frequencies of each IMF component were 100, 34, 20, 11 and 6 Hz (c1, 

c2, c3, c4 and c5 respectively). They were slightly lower than the healthy one for 

comparison. 

9.4.2 Prolong stance time 

For healthy subjects, the typical stance time is around 60% of the gait cycle time 

[70]. However, most of the stroke patients have longer stance time [70]. Although 

longer stance time will lead to slower gait velocity, it is necessary for some stroke 

patients with walking difficulty. It allows stroke patients to have more time to 

balance their upper body and reposition themselves for the next gait cycle to prevent 

falling. Nonetheless, improvement of stance time is necessary to increase the gait 

velocity as a sign of recovery. Plantarflexion happened during the stance phase to 

propel the upper body forward. To analyse stroke patients prolong stance time 

phenomenon, their decomposed sEMG signal during gait were analysed. Two 

different patients were selected due to their long stance time condition. The first 

and second patients had a stance time of 85% and 82% respectively. Compared to 

healthy data, these two patients had very long stance phase during gait. 
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Fig 9.5 shows an example of prolong stance time due to lack of GL muscle 

activation. Fig 9.5 (a) is the GL sEMG signal and its corresponding FFT results and 

Fig 9.5 (b) is the decomposed IMFs from GL sEMG. There were not many 

activities from low IMF to high IMF. The lack of motor unit recruitment, especially 

high frequency contraction, suggested that the GL muscle did not recruit more 

motor unit to perform the complete plantarflexion. The median frequencies of each 

IMF component were 96, 58, 13, 7 and 5 Hz (c1, c2, c3, c4 and c5 respectively). These 

frequency ranges were much lower than the healthy one. There were more motor 

unit activities in the low frequency range compared to other IMF components. The 

activation timing of these low frequency motor units were at the end of gait cycle, 

which was to support for the next heel-strike.  

Meanwhile, Fig 9.6 shows another example of prolong stance time due to 

coactivation from TA muscle, which will counteracting with GL. Fig 9.6 (a) is the 

GL sEMG signal and its corresponding FFT results and Fig 9.6 (b) is the 

decomposed IMFs from GL sEMG. The TA muscle from this patient had activation 

during stance phase. This activation of TA on stance phase can be explained by 

compensation of TA on other muscles. According to Krogt et al [261], the weakness 

in gluteus medius and iliopsoas muscles will lead to increased activations in TA 

muscles during the stance phase. Both gluteus medius and iliopsoas muscles are for 

hip flexion and extension. As stated earlier, the main function of the stance phase 

is to propel the upper body forward, and it requires extensive hip movements. 

Weakness in the gluteus medius and iliopsoas muscles will only lead to increase in 

stance time. The median frequencies of each IMF component were 97, 58, 32, 15 

and 8 Hz (c1, c2, c3, c4 and c5 respectively). These frequencies were very similar to 

the healthy one. At low frequency motor units, there were no motor unit recruitment 

during the stance phase. The CNS started to recruit more motor units at higher 

frequency range during the stance phase to compensate other joints. 
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           (a) 

 

(b) 

Fig 9.3. An example of foot drop caused by spasticity of GL muscle from one 

subject, which counteracting the TA muscle [260]. (a) GL sEMG signal with 

its corresponding FFT result, (b) IMFs from decomposed GL muscle. 

Maximum foot clearance from this subject is 0.005m. All y-axis has the same 

scale as the first IMF component and its corresponding FFT. 

 

0 100
-1

0

1

x(
t)

Gait Cycle (%)

0 256
0

0.015

Frequency (Hz)
A

m
p
li

tu
d
e
 (

u
n

it
le

ss
)

-0.5

0.4

c 1

0

0.01

c 2
c 3

c 4

0 100

c 5

Gait Cycle (%)

0 256

Frequency (Hz)



University of Nottingham Malaysia Campus  

 

 

203 

 

 

(a) 

 

(b) 

Fig 9.4. An example of foot drop caused by lack of TA muscle activation from 

one subject. (a) TA sEMG signal with its corresponding FFT result, (b) IMFs 

from decomposed TA muscle. Maximum foot clearance from this subject is 

0.0015m. All y-axis has the same scale as the first IMF component and its 

corresponding FFT. 
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          (a) 

 

(b) 

Fig 9.5. An example of prolong stance time caused by lack of GL muscle 

activation from one subject. (a) GL sEMG signal with its corresponding FFT 

result, (b) IMFs from decomposed GL muscle. Stance time percentage from 

this subject is 85%. All y-axis has the same scale as the first IMF component 

and its corresponding FFT. 
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(a) 

 

(b) 

Fig 9.6. An example of prolong stance time caused by abnormal activation of 

TA muscle from one subject. (a) TA sEMG signal with its corresponding FFT 

result, (b) IMFs from decomposed TA muscle. Stance time percentage from 

this subject is 82%. All y-axis has the same scale as the first IMF component 

and its corresponding FFT. 
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9.5 Recovery after stroke 

9.5.1 Decomposed sEMG from three different stages 

Proper rehabilitation after stroke is crucial to improve the gait quality. For perfect 

recovery, improvement in joint kinematics should be associated with the 

improvement of muscle kinesiology. However, some of the stroke patients recruited 

in this study only recovered physically, i.e. improvement in the stance time and foot 

clearance. This is due to the muscle compensation. A detailed study of how lower 

limb muscles compensating each other is given in Krogt et al [261]. Long-term 

muscle compensation can lead to muscle injury. Therefore, during the 

rehabilitation, observation from both spatial-temporal parameters and muscle 

conditions must be evaluated properly. 

Appendix D shows all the decomposed sEMG (GL and TA muscles from both 

lower limbs) from 15 stroke patients for three different stages. The details of 

recovery in term of kinematics (G_FunctGT and G_FunctTD) and kinesiology are 

described in Table 9.1. Most of the stroke patients had very regular recovery in 

term of their gait functionality indices. This means that their gait trajectory and time 

delay between each gait events were very similar to the healthy one. However, the 

recovery in term of their muscle status stated otherwise. The physical recovery 

achievements detected by the gait functionality indices were mostly a form of 

compensation. For example, according to the previous section, lack of activation 

(especially high frequency MUs) of the tested muscle (GL and TA) normally leads 

to longer stance phase and insufficient foot clearance during swing phase 

respectively. For certain stroke patients, the GL and TA muscles were still 

considering as weaker muscles from Table 9.1 and other muscles increased 

activation to assist GA and TA muscles to accomplish the tasks (shorter stance 

phase and greater foot clearance).  
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Table 9.1. Detail comparison between kinematics (G_FunctGT and G_FunctTD) and kinesiology. 
Subject G_FunctGT G_FunctTD Kinesiology Changes 

Stage 1 to 

Stage 2 

Stage 2 to 

Stage 3 

Stage 1 to 

Stage 2 

Stage 2 to 

Stage 3 

Stage 1 to Stage 2 Stage 2 to Stage 3 

1 Normal 

Recovery 

Normal 

Recovery 

Normal 

Recovery 

Normal 

Recovery 
GL 

- Abnormal activation of high frequencies MUs 

(C1 and C2) at swing phase. 

- Lack of activation at stance phase for all 

frequency ranges. 

 

TA 

- Abnormal activation of high frequencies MUs 

(C1 and C2) at stance phase. 

- Lack of activation at swing phase. 

GL 

- Abnormal activation of high frequencies MUs 

(C1 and C2) at swing phase. 

- Lack of activation at stance phase for low 

frequency ranges (C4 and C5). 

 

TA 

- Abnormal activation of high frequencies MUs 

(C1 and C2) at stance phase. 

- Normal activation at stance phase. 

2 Normal 

Recovery 

Normal 

Recovery 

Normal 

Recovery 

Normal 

Recovery 
GL 

- Abnormal activation of high frequencies MUs 

(C1 and C2) at swing phase. 

- Lack of activation at stance phase for low 

frequency ranges (C4 and C5). 

 

TA 

- Abnormal activation of high frequencies MUs 

(C1 and C2) at stance phase. 

- Lack of activation at swing phase. 

GL 

- Abnormal activation at swing phase for all 

frequency ranges. 

 

TA 

- Abnormal activation of high frequencies MUs 

(C1 and C2) at stance phase. 

- Lack of activation at swing phase. 

3 Normal 

Recovery 

No 

Recovery 

Normal 

Recovery 

No Recovery GL 

- Hyperactive stretch reflexes at frequencies 

MUs (C1 and C2). 

 

 

TA 

GL 

- Hyperactive stretch reflexes at frequencies 

MUs (C1 and C2). 

 

TA 

- Lack of activation of high frequencies MUs 

(C1 and C2) at swing phase. 
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- Abnormal activation of high frequencies MUs 

(C1 and C2) at stance phase. 

- Lack of activation at swing phase. 

- Normal activation at swing phase. 

4 Normal 

Recovery 

Normal 

Recovery 

Normal 

Recovery 

Normal 

Recovery 
GL 

- Abnormal activation of low frequency MUs 

(C4) at swing phase. 

- Lack of activation at stance phase for all 

frequency ranges 

 

 

TA 

- Abnormal activation of high frequencies MUs 

(C1 and C2) at stance phase. 

- Lack of activation at swing phase. 

GL 

- Abnormal activation of high frequencies MUs 

(C1 and C2) at swing phase. 

- Lack of activation at stance phase for low 

frequency ranges (C4 and C5). 

 

TA 

- Abnormal activation of high frequencies MUs 

(C1 and C2) at stance phase. 

- Lack of activation at swing phase. 

5 Normal 

Recovery 

Normal 

Recovery 

Normal 

Recovery 

Normal 

Recovery 
GL 

- Abnormal activation of low frequency MUs 

(C4) at swing phase. 

- Normal activation at stance phase. 

 

 

TA 

- Abnormal activation of high frequencies MUs 

(C1 and C2) at stance phase. 

- Normal activation at swing phase. 

 

GL 

- Abnormal activation of high frequencies MUs 

(C1 and C2) at early heel strike. 

- Lack of activation at stance phase for low 

frequency ranges (C4 and C5). 

 

TA 

- Abnormal activation of high frequencies MUs 

(C1 and C2) at stance phase. 

- Normal activation at swing phase. 

6 Normal 

Recovery 

Normal 

Recovery 

Normal 

Recovery 

Normal 

Recovery 
GL 

- Hyperactive stretch reflexes at frequencies 

MUs (C1 and C2). 

 

TA 

- Abnormal activation of high frequencies MUs 

(C1 and C2) at stance phase. 

GL 

- Hyperactive stretch reflexes at frequencies 

MUs (C1 and C2). 

 

TA 

- Abnormal activation of high frequencies MUs 

(C1 and C2) at stance phase. 
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- Normal activation at swing phase. - Normal activation at swing phase. 

7 Normal 

Recovery 

Normal 

Recovery 

Normal 

Recovery 

Normal 

Recovery 
GL 

- Abnormal activation of high frequencies MUs 

(C1 and C2) at swing phase. 

- Lack of activation at stance phase for low 

frequency ranges (C4 and C5). 

 

TA 

- Abnormal activation of high frequencies MUs 

(C1 and C2) at stance phase. 

- Lack of activation at swing phase. 

GL 

- Lack of activation at stance phase for low 

frequency ranges (C4 and C5). 

 

TA 

- Abnormal activation of high frequencies MUs 

(C1 and C2) at stance phase. 

- Normal activation at swing phase. 

8 Normal 

Recovery 

Normal 

Recovery 

Normal 

Recovery 

Normal 

Recovery 
GL 

- Hyperactive stretch reflexes at frequencies 

MUs (C1 and C2). 

 

TA 

- Abnormal activation of high frequencies MUs 

(C1 and C2) at stance phase. 

- Normal activation at swing phase. 

GL 

- Abnormal activation of high frequencies MUs 

(C1 and C2) at swing phase. 

- Lack of activation at stance phase for all 

frequency ranges 

 

TA 

- Abnormal activation of high frequencies MUs 

(C1 and C2) at stance phase. 

- Normal activation at swing phase. 

9 Normal 

Recovery 

Normal 

Recovery 

Normal 

Recovery 

Normal 

Recovery 
GL 

- Hyperactive stretch reflexes at frequencies 

MUs (C1 and C2). 

 

TA 

- Abnormal activation of high frequencies MUs 

(C1 and C2) at stance phase. 

- Lack of activation at swing phase. 

GL 

- Hyperactive stretch reflexes at frequencies 

MUs (C1 and C2). 

 

TA 

- Abnormal activation of high frequencies MUs 

(C1 and C2) at stance phase. 

 

10 Normal 

Recovery 

Normal 

Recovery 

Normal 

Recovery 

Normal 

Recovery 
GL 

- Hyperactive stretch reflexes at frequencies 

MUs (C1 and C2). 

GL 

- Hyperactive stretch reflexes at frequencies 

MUs (C1 and C2). 
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TA 

- Abnormal activation of high frequencies MUs 

(C1 and C2) at stance phase. 

- Lack of activation at swing phase. 

 

TA 

- Abnormal activation of high frequencies MUs 

(C1 and C2) at stance phase. 

- Lack of activation at swing phase. 

11 Normal 

Recovery 

Normal 

Recovery 

Normal 

Recovery 

Normal 

Recovery 
GL 

- Abnormal activation of high frequencies MUs 

(C1 and C2) at swing phase. 

- Lack of activation at stance phase for low 

frequency ranges (C4 and C5). 

 

TA 

- Abnormal activation of high frequencies MUs 

(C1 and C2) at stance phase. 

- Normal activation at swing phase. 

GL 

- Abnormal activation of high frequencies MUs 

(C1 and C2) at swing phase. 

- Lack of activation at stance phase for low 

frequency ranges (C4 and C5). 

 

TA 

- Normal activation. 

12 Normal 

Recovery 

No 

Recovery 

Normal 

Recovery 

Normal 

Recovery 
GL 

- Abnormal activation of high frequencies MUs 

(C1 and C2) at swing phase. 

- Lack of activation at stance phase for low 

frequency ranges (C4 and C5). 

 

TA 

- Lack of activation of high frequencies MUs 

(C1 and C2) at swing phase. 

GL 

- Abnormal activation of low frequencies MUs 

(C4 and C5) at swing phase. 

 

TA 

- Abnormal activation of high frequencies MUs 

(C1 and C2) at stance phase. 

 

13 Normal 

Recovery 

Normal 

Recovery 

Normal 

Recovery 

Normal 

Recovery 
GL 

- Hyperactive stretch reflexes at frequencies 

MUs (C1 and C2). 

 

TA 

- Hyperactive stretch reflexes at frequencies 

MUs (C1 and C2). 

 

GL 

- Lack of activation of high frequencies MUs 

(C1 and C2) at stance phase. 

 

TA 

- Normal activation. 
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14 Normal 

Recovery 

Normal 

Recovery 

Normal 

Recovery 

No Recovery GL 

- Lack of activation of high frequencies MUs 

(C1 and C2) at stance phase. 

 

TA 

- Lack of activation for all frequency ranges. 

 

GL 

- Abnormal activation of low frequencies MUs 

(C4 and C5) at swing phase. 

 

TA 

- Lack of activation of high frequencies MUs 

(C1 and C2) at swing phase. 

 

15 Normal 

Recovery 

Normal 

Recovery 

Normal 

Recovery 

No Recovery GL 

- Normal activation. 

 

TA 

- Normal activation. 

 

GL 

- Normal activation. 

 

TA 

- Normal activation. 
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9.5.2 Case study 

In this section, two stroke patients were selected as the individual case studies. 

Table 9.2 shows spatial-temporal parameters and gait functionality indices from 

two different stroke patients during their six-month recovery period. These two 

stroke patients had recovered in a similar fashion. Both of them had increased the 

vertical foot clearance during the swing phase and decrease the stance time and gait 

cycle time from stage 1 to stage 3. Fig 9.7 and Fig 9.8 demonstrate the IMF results 

from stage 1 to stage 3 for both subject 1 and 2 respectively.  

For subject 1, the GL muscle at stage 1 showed activation on the swing phase on 

low frequency range, meaning GL muscle is compensating hamstring muscle [261]. 

At stage 2 to stage 3, there is not much compensation happening and the GL muscle 

activated in the correct timing. There were high frequency IMFs shown in both 

stages, indicating proper plantarflexion. However, there were still lack of low 

frequency activation in higher IMGs. It means that this subject still not fully 

recovered. Nonetheless, this subject still considered as good recovery compared to 

other subjects.  

As for the subject 2, there was no activation in all frequency ranges during stage 1. 

At stage 2, there are some activities during the swing phase in low frequency range 

but not during the stance phase. Finally, at stage 3, high frequency range muscle 

activities observed during the stance phase and low frequency range of muscle 

activities were still observed during the swing phase. This means that GL muscle 

from this subject was still compensating the weaker muscle at stage 3. 

The TA muscle for subject 1 was compensating the weaker muscle during stage 1 

and stage 2. In stage 1, high frequency range of activity can be observed during the 

stance phase and only low frequency range of activities observed during the swing 

phase. High frequency range of activity can be observed during both stance and 

swing phases for stage 2. The subject further improved to stage 3 where no 

compensation for weaker muscle observed during the stance phase. Meanwhile for 

subject 2, the subject experienced lack of activation during stage 1. The subject 
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slowly recovered to have high frequency of activation during the swing phase in 

stage 2. However, the TA muscle from this subject stated that there were 

compensate other weaker muscle during stage 3.   

Table 9.2. Spatial-temporal parameters of two stroke subjects from their 

hemiplegia lower limb during three different stages. 

 Stage 1 Stage 2 Stage 3 

Subject 1 (good recovery EMG) 

Heel Clearance (m) 0.002 0.07 0.08 

Stance Time Percentage (%) 88 62 60 

Gait Cycle Time (s) 3.1 1.4 1.3 

G_FunctGT 1.64 0.122 0.121 

G_FunctTD 14.2 2.26 1.82 

Subject 2 (bad recovery EMG) 

Heel Clearance (m) 0.015 0.050 0.057 

Stance Time Percentage (%) 85 64 61 

Gait Cycle Time (s) 3.2 1.25 1.20 

G_FunctGT 1.925 0.683 0.265 

G_FunctTD 13.90 0.934 1.898 
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         (b) 

Fig 9.7.  Stage 1, stage 2 and stage 3 IMFs from decomposition of gait sEMG from subject 1, (a) GL muscle, (b) TA muscle. The IMFs 

show a good recovery in term of muscle condition from beginning to stage 3. 
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         (b) 

Fig 9.8.  Stage 1, stage 2 and stage 3 IMFs from decomposition of gait sEMG from subject 2, (a) GL muscle, (b) TA muscle. The IMFs 

show a bad recovery in term of muscle condition from beginning to stage 3. 

 

-1

1

c 1

Stage 1

-1

1
Stage 2

-1

1
Stage 3

c 2
c 3

c 4

0 100

c 5

Gait Cycle (%)

0 100

Gait Cycle (%)

0 100

Gait Cycle (%)



University of Nottingham Malaysia Campus  

 

 

218 

 

9.6 Chapter Summary 

In this chapter, the gait sEMG from stroke patients were decomposed into different 

frequency components called IMFs. The decomposition method used is EEMD. 

Each IMFs decomposed from gait sEMG contained few information such as: 

i. The frequency range of motor unit recruited at particular IMF 

component (median frequency obtained from FFT). 

ii. The range of motor unit temporal information at particular IMF 

component. 

iii. The amplitude of the range of motor unit at particular IMF component. 

The abnormal gait pattern such as foot drop and prolong stance time can be 

explained using the temporal information provided by IMFs. The features that can 

be extracted from IMFs for each abnormal gait are described below: 

i. Foot drop 

- Spasticity of GL muscle especially in higher IMF frequency. 

- Lack of TA muscle activation especially in higher IMF frequency. 

ii. Prolong Stance Time 

- Lack of GL muscle activation especially in higher IMF frequency. 

- Coactivation of TA muscle especially in higher IMF frequency. 

While these IMF features can used to explain the abnormal gait (foot drop and 

prolong stance time), the same features can be observed among stroke patients 

without these abnormal gait symptom as well. During recovery, some stroke 

patients had recovered well as observed by their spatial-temporal parameters 

(sufficient heel clearance and shorter stance time). However, they still possessed 

similar IMF features as those with the abnormal gait. This recovery can be due to 

compensation from other muscles. Long-term compensation can cause injury in the 

compensating muscle. Therefore, it is very important for physiotherapist to make 

sure subjects had recovered without any kind of muscle compensation.  
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Chapter 10 Conclusion and Future Work 

10.1 Conclusion  

This chapter concludes the key findings obtained in this research study.  A 

sophisticated inertia based gait sensor system (IGS) with a commercial sEMG 

system and an inertia based gait integration algorithm were developed in Chapter 

3. Three different type of experiments were conducted. The first experiment 

(Experiment 1, n=10) was designed to obtain gait data from the healthy subjects, 

with three different walking conditions (normal walking, knee braced walking and 

ankle braced walking). The second experiment (Experiment 2, n=60) was a cross 

sectional study of stroke patients. Meanwhile, the third experiment (Experiment 3, 

n=15) was a prospective cohort longitudinal study of stroke patients. The gait data 

during first month after admitted to hospital (stage 1), third month after stroke 

(stage 2) and sixth month after stroke (stage 3) were monitored.  

Each of these experiments were designed to develop a sophisticated gait analysis 

system. This system will help clinician to assess the gait characteristics of stroke 

patients throughout their recovery period more accurately. After the development 

of gait sensor system (IGS), two important gait features were extracted (K.I. 

(Chapter 7) and CSROD (Chapter 8)). In Chapter 7, the results showed that K.I. is 

highly correlated to TUG score. Furthermore, it can be used to classify a large group 

of stroke patients into homogeneous subgroup accurately. This feature can help 

clinician to identify the type of stroke patients in particular subgroup and provide 

necessary rehabilitation methods. In Chapter 8, CSROD was derived from a 

Cyclogram. This gait feature can distinguish the gait asymmetry on certain gait 

events. While these gait features can provide meaningful information regarding 

stroke patients gait characteristics, they are still restricted to unveil the information 

on certain area (kinesiology and kinematics). This means that K.I. and CSROD 

provide detail information on kinesiology and kinematics area only, and they still 

cannot describe deviation between stroke patients and normal human. Therefore, 
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the gait functionality G_FunctGT and G_FunctTD were introduced. These indices 

were derived from gait trajectory deviation and time delay between stroke and 

healthy subjects. Noted these two indices tell how much the stroke patient’s gait 

deviated from the healthy subjects (which served as a standard comparison), while 

K.I. and CSROD reveal why these deviations occurred. These gait features were 

later adopted in the development of stroke recovery prediction models (Chapter 8). 

These models can help clinicians to predict the gait status in stage 2 (third month) 

and stage 3 (sixth month) time. If the stroke patients do not follow the recovery 

pattern, it means the rehabilitation treatments may not suitable for those particular 

stroke patients. Therefore, clinicians can reorganise a proper strategy in the future. 

Certain stroke patients rely on muscle compensation to complete the gait. This will 

reduce the gait deviation between them and healthy subjects, hence improving the 

gait functionality G_FunctGT and G_FunctTD. However, long-term muscle 

compensation will caused muscle fatigue, which leads to muscle impairment. 

Therefore, the muscle status changes across stroke recovery period were studied 

carefully by using the EEMG method (Chapter 9). This is to make sure that stroke 

patients recovery does not heavily rely on compensation. 

10.1.1 Development of an accurate low cost gait sensor system 

- MPU-6050, Arduino Pro Mini and a micro SD shield module were 

embedded to form one IGS system. Each of this system was mounted on 

shank and ankle on both lower limbs. 

- A new inertial based integration algorithm was proposed to obtain gait 

trajectory. This algorithm is based on Zero Velocity Update (ZUPT) to reset 

and update the gait trajectory at heel-strike event to zero. 

- The results from this algorithm was validated using the gait data from 

recruited healthy subjects in Experiment 1. The gait trajectory results 

obtained from this gait sensor system have high accuracy compared to video 

regardless of different walking conditions. 

10.1.2 Limitation of conventional gait analysis 

- The conventional gait analysis on stroke patients (spatial-temporal 

parameters, traditional gait asymmetry index, clinical assessment score such 
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as TUG score) are not sufficient to provide a detail assessment on stroke 

patients. For example, the gait parameters and TUG score (in Section 5.4.4) 

shows poor correlation between each other. Furthermore, the traditional gait 

asymmetry index (Robinson Index) also poorly correlated to TUG score and 

gait velocity. This means lack of sensitivity in conventional gait parameters 

and gait asymmetry index to detect the gait deficits among stroke subjects. 

Therefore, new gait analysis methods were proposed to obtain kinesiology 

and kinematic features in Chapter 6 and Chapter 7 respectively.   

- The gait features obtained from conventional gait analysis (spatial-temporal 

parameters) can used to classify stroke subjects into three different 

homogeneous subgroups (in Section 5.4.2) using Hierarchical Cluster 

Analysis. However, this classification method requires multiple gait 

parameters as inputs, which are very subjective and generally based on 

observation by visual inspection from researchers.  Therefore, the 

kinesiology feature proposed in Chapter 6 was adopted as a single input to 

this Hierarchical Cluster Analysis classification methods. 

10.1.3 Kinesiology based gait analysis 

- In Chapter 6, a new Kinetic Index (K.I.) was proposed to characterise stroke 

patients gait performance in term of their muscle status. This K.I. was 

derived from the fractal analysis on sEMG from TA and GL muscles. 

- The results from K.I. showed strong correlation to the TUG scores (r = 0. 

9222, p<0.05). This suggested that K.I. value could assess the risk of fall 

among stroke subjects. 

- Furthermore, this K.I. value can be used as a single input to Hierarchical 

Cluster Analysis gait classification. The results of classification (in Section 

6.4.2) using K.I. as single input were similar to the results of classification 

using traditional gait parameters as multiple input (in Section 5.4.2). 

10.1.4 Kinematic based gait analysis 

- In Chapter 7, a new gait asymmetry quantification method was proposed 

similar to SROD algorithm. This new algorithm adopted the idea of 

cyclogram, therefore, we named it Cyclogram SROD (CSROD). This new 
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CSROD is able to provide temporal and direction information regarding gait 

asymmetry among stroke. 

- The results from CSROD were being compared to the SROD results from 

original paper (in Section 6.3). The statistic results showed that both 

CSROD and SROD were capable in tracking the asymmetry in joint angle 

during gait. 

- Previous CSROD and SROD computation used LLN to align left and right 

lower limbs gait data. However, this alignment led to false peaks in CSROD 

and SROD results. Therefore, DTW was used to align gait data.  

- The CSROD with the ankle joint angle (Input 1) and the vertical heel 

clearance (Input 2) as inputs revealed detail gait asymmetry among stroke. 

Most of the stroke subjects had problem in dorsiflexion of ankle joint to 

move upper body forward, and minimal to no plantarflexion to provide foot 

clearance on the hemiplegia lower limb. This caused huge gait asymmetry 

among two lower limbs. The temporal and direction information from 

CSROD method can help physiotherapist to focus gait training on specific 

gait events in specific lower limb. 

10.1.5 Multivariate linear regression recovery model 

- In Chapter 8, two new gait functionality indices (G_FunctGT and 

G_FunctTD) were proposed to monitor the walking ability of stroke patients 

throughout their recovery period. 

- Two recovery models were developed based on multivariate linear 

regression model. The first recovery model used stroke patients baseline 

(stage 1) gait data to predict the gait functionality indices at stage 2 and 

stage 3. Meanwhile, the second recovery model used the recovery history 

from stage 1 to stage 2 to predict the gait functionality indices at stage 3. 

- The application of these two models are very crucial for researchers. For the 

first model, initial predictions of recovery could be used to set rehabilitation 

targets based on stroke subject baseline gait performance. The predicted 

indices at stage 2 and stage 3 can be compared with actual gait indices later. 

This information can help to adjust the type and amount of rehabilitation 
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treatment received by each stroke subjects. For the second model, final state 

gait indices (at stage 3) can be predicted by using the recovery pattern from 

stage 1 to stage 2. Since every stroke subjects had different recovery 

trajectory, it is therefore very important to use recovery history as 

prediction. 

10.1.6 Fundamental principles of gait recovery through sEMG decomposition 

- The sEMG signals from stroke patients were decomposed into different 

frequency components called Intrinsic Mode Functions (IMFs) by 

Ensemble Empirical Mode Decomposition (EEMD) method. Each 

decomposed IMFs contained information such as : (i) frequency range of 

the motor units (MUs) group recruited at particular IMF component; (ii) the 

temporal information of the MUs group at particular IMF component (i.e. 

activation timing of the MUs group); and (iii) the amplitude of the MUs 

group at particular IMF component. 

- The abnormal gait pattern such as foot drop and prolong stance time can be 

observed in the decomposed sEMG signal. Foot drop can be caused by (i) 

lack of high frequency range of MUs group in GL muscle; (ii) abnormal 

activation of TA muscle. Meanwhile, prolong stance time can be caused by 

(i) lack of high frequency range of MUs group in TA muscle; (ii) abnormal 

activation of GL muscle. 

- The recovery of muscle from stroke patients were studied using these 

decomposed information. Stroke patients may have similar baseline gait 

data with similar recovery trajectory physically (analysed using kinematic 

data). However, they may have different kinesiology recovery status, i.e. 

recovery of muscle may not reflect recovery of gait trajectory. This can be 

due to compensation from other muscles to achieve the physical tasks. The 

study of decomposed sEMG can show which MUs group responsible for 

the compensation of GL and TA muscles. 
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10.2 Limitation and Future work 

The main limitation of this current study is lack of number of sample in Experiment 

3 for multivariate linear regression model. As mentioned in Chapter 8, the recovery 

trajectory is different from each stroke subject. By using Hierarchical Cluster 

Analysis with K.I. as single input, the classified subgroups of each stroke subjects 

in three different recovery stages were different (see Table 8.12). Therefore, future 

work can focus on developing multivariate non-linear regression model with 

different classified subgroups as input (since recovery trajectory is non-linear). 

Furthermore, different stroke patients employed different kind of assistive devices 

(such as cane, ankle foot orthosis etc.) during the experiment. This was to ensure 

the safety of the stroke patients. However, it also introduced inconsistency to the 

modelling, which affected the results from the recovery models. The age 

differences between young adult in Experiment 1 and elder stroke patients in 

Experiment 2 and 3 also caused improper comparison for the modelling of gait 

functionality indices, G_FunctGT and G_FunctTD. The future work can focus on 

recruiting similar age between control group and stroke patients.   

The analysed muscles in this study are GL and TA muscles only. This is not 

sufficient to study the compensation between each lower limbs muscles. As 

mentioned in Chapter 9, some stroke patients without foot drop or prolong stance 

time possessed similar IMF features with those patients with these abnormal gait 

symptoms. This is due to compensation from other muscles.  In this study, we 

adopted the findings from Krogt et al [261] as comparison. However, the 

decomposed sEMG from other muscles cannot be performed. The future work can 

be extended to collect sEMG signal from all lower limbs muscles and decompose 

them to obtain the information of MUs group. 
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Appendix A Derivation of Numerical 

Integration Algorithm 

 

Fig A.1. Illustratuib for linear integration [64]. 

The linear integrator used the assumption that the interval between each data is a 

small interval that the change of signal can be considered as linear between two 

points as shown in Fig A.1. This numerical algorithm is inspired by Stacy [64]. 

The equation of the line between two points can be defined by its gradient, m. 

𝑚 =
(𝜔𝑖 − 𝜔𝑖−1)

(𝑡𝑖 − 𝑡𝑖−1)
 

(A.1) 

And its y-intercept, b 

𝑏 = 𝜔𝑖−1 −𝑚 ∙ 𝑡𝑖−1 (A.2) 

The integral of the signal between time point is 

𝜃𝑖 − 𝜃𝑖−1 = ∫ (𝑚 ∙ 𝜏 + 𝑏)𝑑𝜏
𝑡𝑖

𝑡𝑖−1

 
(A.3) 

which reduces to 
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𝜃𝑖 =
1

2
∙ 𝑚 ∙ (𝑡𝑖

2 − 𝑡𝑖−1
2 ) + 𝑏 ∙ (𝑡𝑖 − 𝑡𝑖−1) + 𝜃𝑖−1 

(A.4) 

The Matlab code for this equation is as followed: 

function int_data=linear_integrator(data,time,initialvalue) 

% LINEAR_INTEGRATOR(data,time,initialvalue) integrates the data function v. 

time, % with the assumption that DelT is small enough theat the data function is 

linear % between each DelT. It returns the integrated function. % % 

 (c)2003 Stacy J. Morris ~ sjm@alum.mit.edu 

time_end=length(time);  

int_data(1,1)=initialvalue;  

 for i=2:time_end 

m=(data(i)-data(i-1))/(time(i)-time(i-1));  

b=data(i-1)-m*time(i-1); 

int_data(i,1)=(1/2)*m*(time(i)^2 - time(i-1)^2) + b*(time(i)-time(i-1)) +   

int_data(i-1,1);  

end 
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Appendix B Tracking Red Colour 

Objects Matlab Code 

a = imaqhwinfo; 
[camera_name, camera_id, format] = getCameraInfo(a); 
% Capture the video frames using the videoinput function 
% You have to replace the resolution & your installed adaptor name. 
vid = videoinput(camera_name, camera_id, format); 
% Set the properties of the video object 
set(vid, 'FramesPerTrigger', Inf); 
set(vid, 'ReturnedColorspace', 'rgb') 
vid.FrameGrabInterval = 5; 
%start the video aquisition here 
start(vid) 
% Set a loop that stop after 100 frames of aquisition 
while(vid.FramesAcquired<=200) 
     
    % Get the snapshot of the current frame 
    data = getsnapshot(vid); 
     
    % Now to track red objects in real time 
    % we have to subtract the red component  
    % from the grayscale image to extract the red components in the image. 
    diff_im = imsubtract(data(:,:,1), rgb2gray(data)); 
    %Use a median filter to filter out noise 
    diff_im = medfilt2(diff_im, [3 3]); 
    % Convert the resulting grayscale image into a binary image. 
    diff_im = im2bw(diff_im,0.18); 
     
    % Remove all those pixels less than 300px 
    diff_im = bwareaopen(diff_im,300); 
     
    % Label all the connected components in the image. 
    bw = bwlabel(diff_im, 8); 
     
    % Here we do the image blob analysis. 
    % We get a set of properties for each labeled region. 
    stats = regionprops(bw, 'BoundingBox', 'Centroid'); 
     
    % Display the image 
    imshow(data) 
     
    hold on 
     
    %This is a loop to bound the red objects in a rectangular box. 
    for object = 1:length(stats) 
        bb = stats(object).BoundingBox; 
        bc = stats(object).Centroid; 
        rectangle('Position',bb,'EdgeColor','r','LineWidth',2) 
        plot(bc(1),bc(2), '-m+') 
        a=text(bc(1)+15,bc(2), strcat('X: ', num2str(round(bc(1))), '    Y: 
', num2str(round(bc(2))))); 
        set(a, 'FontName', 'Arial', 'FontWeight', 'bold', 'FontSize', 12, 
'Color', 'yellow'); 
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    end 
     
    hold off 
end 
% Both the loops end here. 
% Stop the video aquisition. 
stop(vid); 
% Flush all the image data stored in the memory buffer. 
flushdata(vid); 
% Clear all variables 
clear all 
sprintf('%s','That was all about Image tracking, Guess that was pretty 
easy :) ') 
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Appendix C Derivation of CSROD 

 

Fig C.1 The distance between the left and right gait data and the 45° symmetry 

straight line on a Cyclogram. 

The line formed using points from (x0, y0) to (x1, y1) has a straight-line equation: 

 𝑌 = 𝑀𝑋 + 𝐶 (C.2) 

To determine the slope of M, we must first find the slope of the 45° symmetry 

straight line, M45. 

 𝑀45 = tan(45) = 1 (C.3) 

The straight line from Eqn (C.2) is perpendicular to 45° symmetry straight line. 

Therefore, we can determine M by taking the negative reciprocal of M45. 

 
𝑀 = −

1

𝑀45
= −1 

(C.4) 
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To determine the intercept C, simply substitute (x1, y1): 

 𝑦1 = −𝑥1 + 𝐶 

𝐶 = 𝑦1 + 𝑥1 
(C.5) 

Therefore, the equation of straight-line (x0, y0) to (x1, y1) is 

 𝑌 = −𝑋 + 𝑦1 + 𝑥1 (C.6) 

On the 45° symmetry straight line, x0 = y0. Substitute them into Eqn (C.6) and we 

will obtain x0 and y0 points in term of x1 and y1: 

 𝑦0 = −𝑥0 + 𝑦1 + 𝑥1 

2𝑥0 = 𝑦1 + 𝑥1 

𝑥0 =
𝑦1 + 𝑥1
2

= 𝑦0 

(C.7) 

To determine the perpendicular distance between the cyclogram trajectory and the 

45° symmetry straight line, the distance of r is computed: 

 𝑟 = √(𝑥1 − 𝑥0)2 + (𝑦1 − 𝑦0)2 (C.8) 

Substituting the x0 and y0 values into Eqn (C.8): 

 

𝑟 = √(𝑥1 −
𝑦1 + 𝑥1
2

)
2

+ (𝑦1 −
𝑦1 + 𝑥1
2

)
2

 

𝑟 = √(𝑥1 − (
𝑦1 + 𝑥1
2

))

2

+ (𝑦1 − (
𝑦1 + 𝑥1
2

))

2

 

𝑟 =
1

√2
√𝑥12 − 2𝑥1𝑦1 + 𝑦12 

𝑟 =
1

√2
√(𝑥1 − 𝑦1)2 

(C.9) 
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And therefore 

 𝑟 = |𝑥1 − 𝑦1|sin (45°) (C.10) 

For those points lying at upper boundary (𝑋 < 𝑌) of the cyclogram, we define them 

as negative CSROD magnitude. For those points lying at lower boundary  (𝑌 < 𝑋) 

of the cyclogram, we define them as positive CSROD magnitude. Therefore, it 

leads to final CSROD equation: 

 
𝐶𝑆𝑅𝑂𝐷 = {

|X − Y| ∗ sin(45°) ,       𝑌 < 𝑋
−|X − Y| ∗ sin(45°) ,   𝑋 < 𝑌

 
(C.11) 

Since the cyclogram is plotted using the joint angle from unaffected lower limb 

against affected lower limbs, the points on upper boundary indicates a bigger angle 

magnitude on unaffected lower limb (since 𝑋 < 𝑌), and vice versa for those points 

lying at lower boundary. Therefore, a negative CSROD value indicates asymmetry 

on joint angle due to smaller magnitude of angle on affected lower limb and vice 

versa. 
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Appendix D Decomposed sEMG from 

15 stroke patients 
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Fig D.1. Stage 1, stage 2 and stage 3 IMFs from decomposition of gait sEMG 

from subject 1, (a) GL left muscle, (b) GL right muscle, (c) TA left muscle, (d) 

TA right muscle. 
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Fig D.2. Stage 1, stage 2 and stage 3 IMFs from decomposition of gait sEMG 

from subject 2, (a) GL left muscle, (b) GL right muscle, (c) TA left muscle, (d) 

TA right muscle. 
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Fig D.3. Stage 1, stage 2 and stage 3 IMFs from decomposition of gait sEMG 

from subject 3, (a) GL left muscle, (b) GL right muscle, (c) TA left muscle, (d) 

TA right muscle. 
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Fig D.4. Stage 1, stage 2 and stage 3 IMFs from decomposition of gait sEMG 

from subject 4, (a) GL left muscle, (b) GL right muscle, (c) TA left muscle, (d) 

TA right muscle. 
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Fig D.5. Stage 1, stage 2 and stage 3 IMFs from decomposition of gait sEMG 

from subject 5, (a) GL left muscle, (b) GL right muscle, (c) TA left muscle, (d) 

TA right muscle. 
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Fig D.6. Stage 1, stage 2 and stage 3 IMFs from decomposition of gait sEMG 

from subject 6, (a) GL left muscle, (b) GL right muscle, (c) TA left muscle, (d) 

TA right muscle. 
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Fig D.7. Stage 1, stage 2 and stage 3 IMFs from decomposition of gait sEMG 

from subject 7, (a) GL left muscle, (b) GL right muscle, (c) TA left muscle, (d) 

TA right muscle. 
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Fig D.8. Stage 1, stage 2 and stage 3 IMFs from decomposition of gait sEMG 

from subject 8, (a) GL left muscle, (b) GL right muscle, (c) TA left muscle, (d) 

TA right muscle. 
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Fig D.9. Stage 1, stage 2 and stage 3 IMFs from decomposition of gait sEMG 

from subject 9, (a) GL left muscle, (b) GL right muscle, (c) TA left muscle, (d) 

TA right muscle. 
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Fig D.10. Stage 1, stage 2 and stage 3 IMFs from decomposition of gait sEMG 

from subject 10, (a) GL left muscle, (b) GL right muscle, (c) TA left muscle, 

(d) TA right muscle. 
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Fig D.11. Stage 1, stage 2 and stage 3 IMFs from decomposition of gait sEMG 

from subject 11, (a) GL left muscle, (b) GL right muscle, (c) TA left muscle, 

(d) TA right muscle. 
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Fig D.12. Stage 1, stage 2 and stage 3 IMFs from decomposition of gait sEMG 

from subject 12, (a) GL left muscle, (b) GL right muscle, (c) TA left muscle, 

(d) TA right muscle. 
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Fig D.13. Stage 1, stage 2 and stage 3 IMFs from decomposition of gait sEMG 

from subject 13, (a) GL left muscle, (b) GL right muscle, (c) TA left muscle, 

(d) TA right muscle. 
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(b) 
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(d) 

Fig D.14. Stage 1, stage 2 and stage 3 IMFs from decomposition of gait sEMG 

from subject 14, (a) GL left muscle, (b) GL right muscle, (c) TA left muscle, 

(d) TA right muscle. 
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(d) 

Fig D.15. Stage 1, stage 2 and stage 3 IMFs from decomposition of gait sEMG 

from subject 15, (a) GL left muscle, (b) GL right muscle, (c) TA left muscle, 

(d) TA right muscle. 
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