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Abstract 
Autoimmune uveitis is a non-infective ocular inflammation of humans that 

potentially causes blindness. It is mediated primarily by autoreactive CD4+ T-

lymphocytes that target antigens within the retina. Autoantibody responses play 

a secondary role. This thesis describes various investigations into humoral and 

cellular immune responses in autoimmune uveitis and assesses several 

methodologies for their suitability to applied human research. 

 Recombinant human retinal S antigen (RSAg), an important candidate 

autoantigen in uveitis, was cloned and expressed in bacterial and human cells. 

Purified RSAg was tested by ELISA against sera from uveitis patients and 

controls. The recombinant antigens performed well in ELISA. No significant 

differences in antibody titres were detected between the groups. 

 B-cell epitope preferences of anti-RSAg polyclonal antibodies were 

investigated by screening several random phage display libraries. One library 

produced results, but no defining epitope was identified for either uveitis or 

control sera. In uveitis research this technique might be better suited to 

delineating minimal epitope requirements of monoclonal antibodies.  

 As yet undiscovered uveitis autoantigens may exist. A human retinal 

complementary DNA library was constructed and screened with uveitis and 

control sera. Seven potentially autoantigenic peptides were identified and 

expressed as fusion proteins. At least one peptide displayed significantly higher 

ELISA readings for uveitis over control sera. The full potential of this technique 

is still to be realised. 

 Responses of peripheral CD4+ T-lymphocytes to antigen-specific 

stimulation were studied at the single-cell level using cytokine flow cytometry. A 

definite response to RSAg was detected in human uveitis and control 

lymphocytes using this method. This technique has great potential for 

identifying autoantigenic proteins/epitopes, and analysing resultant cytokine 

profiles in uveitogenic T-cells.  

 Several of the new strategies and techniques described here have 

already produced exciting findings. It is envisaged that they will make further 

significant contributions to applied human uveitis research in the near future.  

 



 

 

1 Chapter 1: General introduction 
 



 

 1 

1.1  Introduction 
This thesis describes investigations carried out into autoimmune posterior 

uveitis, an ocular inflammatory condition that is a leading cause of visual 

disability.  The emphasis in this work is placed on investigative techniques that 

could be applied directly to human research without having to rely on animal 

models of disease. The subjects of autoimmune posterior uveitis and organ-

specific autoimmune disease - the disease category to which it belongs - are 

discussed in detail in this chapter. The immune system’s response to antigen 

under normal circumstances and the mechanisms by which self-tolerance to the 

body’s own tissues is established, are also discussed. 

  

1.2  The nature of autoimmune posterior uveitis 

1.2.1  Definitions 
Strictly speaking the term “uveitis” means an inflammation of the uveal tract of 

the eye i.e. the choroid, ciliary body or the iris. However, it is usually used to 

describe any form of intraocular inflammation. The uveal tract provides most of 

the blood supply to the intraocular structures and serves as a conduit for 

immune cells entering the eye – therefore it usually becomes inflamed 

irrespective of the primary target of the immune response. The target antigens 

themselves are rarely located within the uvea and therefore some prefer the 

term intraocular inflammation (IOI) (Forrester and McMenamin 1999).  

 The term uveitis alone does not imply aetiology, and it can variously be 

categorised as autoimmune, infectious, traumatic or even neoplastic in origin 

(Opremcak and Kachelein 1994). It can also be categorised anatomically as 

anterior, intermediate, posterior or pan-uveitis (involving all ocular layers)(Bloch-

Michel and Nussenblatt 1987).  

 Traumatic and neoplastic causes of intraocular inflammation are 

relatively easily recognised on clinical grounds. The differentiation of infectious 

from non-infectious uveitis is determined clinically and by laboratory testing. 

Typical organisms that cause infectious uveitis include Toxoplasma gondii, 
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Toxocaris canis, cytomegalovirus, Borrelia burgdorferi and Mycobacterium 

tuberculosis. Infectious uveitis is different from “endophthalmitis” – the former is 

inflammation mediated by the immune system in response to a specific 

microbial pathogen, while the latter is the inflammation and destruction 

mediated directly by such pathogens (e.g. the release of lytic enzymes) during 

frank intraocular infection. 

  When no other cause of uveitis is found, it is described as “endogenous”, 

which is usually taken to mean of autoimmune origin, or at the very least 

immune-mediated. This is particularly so for many types of posterior, 

intermediate and pan-uveitis as opposed to anterior uveitis, which seems to be 

a distinct entity (Forrester 1992) (see below). Under recent guidelines posterior, 

intermediate and pan-uveitis have been designated as posterior segment 

intraocular inflammation (PSII), whereas anterior uveitis is now called anterior 

segment intraocular inflammation (ASII) (Forrester et al. 1998a). In theory, 

either category can be sub-divided further into infective or non-infective types.  

 The focus of this thesis is the investigation of PSII of presumed 

autoimmune origin. The terms "autoimmune uveitis" or “autoimmune PSII” are 

usually used to denote this specific disease category, but other expressions 

including "endogenous PSII" and even "uveitis" are also used where 

appropriate. Anterior uveitis (including that associated with juvenile rheumatoid 

arthritis) and infectious uveitis are specifically excluded from investigation in this 

study, but are discussed at various points. Where uveitis types other than 

autoimmune PSII are being discussed, this is explicitly stated. 

1.2.2  Features of autoimmune PSII 
Autoimmune PSII consists of a heterogeneous group of clinical conditions, each 

of which has its own characteristic features, natural history and even prognosis 

(see Table 1.1). However, these conditions share certain core clinical and 

immunopathological features that allow them to be considered as one group – 

in fact, some authorities regard the various autoimmune posterior uveitides as 

essentially different manifestations of a common pathogenetic process 

(Forrester 1990). The key clinical features are macular/retinal oedema, vitritis, 

chorioretinal infiltrates and retinal vasculitis, any one of which may predominate 

in a given uveitis subtype but all of which are recognised features of the 
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condition. The archetypical autoimmune posterior uveitic condition is 

sympathetic ophthalmia.  

 Around 50% of cases of autoimmune uveitis are confined to the eye, 

while the remainder form part of more generalised diseases such as 

multisystem connective tissue and granulomatous disorders (Dick 2000). 

Autoimmune PSII subtypes that form part of a multisystem disorder include 

sarcoid uveitis, Behcet`s uveitis and Vogt-Koyanagi-Harada (VKH) syndrome.  

 Autoimmune PSII appears to be distinct from anterior uveitis in several 

ways. Anterior uveitis is usually an acute, self-limiting condition that rarely 

causes significant visual impairment. It is associated with Major 

Histocompatibility Complex (MHC) class I antigens and although never proven, 

an association with gram-negative bacteria has long been suspected (Wakefield 

et al. 1990; Careless et al. 1997). Autoimmune PSII on the other hand, is more 

associated with MHC class II antigens (the MHC and its disease associations 

are discussed later). It tends to be recurrent or chronic and because it causes 

destruction of delicate ocular tissues, in particular the macula, is a leading 

cause of blindness. There is no association with active infection. 

 Immunopathological studies in human autoimmune PSII are limited in 

number because of obvious difficulties in obtaining biopsy samples from 

affected posterior ocular structures. Also, most pathological material has been 

obtained from eyes with end-stage uveitis, which may not be particularly 

relevant to the initiation or perpetuation of early forms of the disease. Existing 

studies, however, show similar features for the various subtypes of autoimmune 

PSII. A predominance of CD4+ T-cells is found in the target tissues early in the 

disease, often with greater CD8+ and B-cell involvement later on (Boyd et al. 

2001).  

 It is noticeable that virtually every clinical feature of autoimmune PSII can 

be reproduced using the same animal model of the disease, Experimental 

Autoimmune Uveoretinitis (EAU). This further strengthens the argument that the 

various clinical subtypes are closely related, or at least share a final common 

pathway in the manifestation of inflammation.   
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Table 1.1 Clinical subtypes of autoimmune PSII. 

 

Sympathetic ophthalmia 
 

Intermediate uveitis Multifocal choroidopathy 

Birdshot chorioretinopathy 
 

Pars planitis Sarcoid uveitis 

Serpiginous choroidopathy 
 

Panuveitis (non-
infective) 

Behcet`s uveitis 

Retinal vasculitis 
 

Punctate inner 
choriopathy 

Vogt-Koyanagi-Harada 
uveitis (VKH) 

Multiple evanescent white 
dot syndrome (MEWDS) 

Acute multifocal 
placoid pigment 
epitheliopathy 
(AMPPE) 

 

1.2.3  Epidemiology 
Uveitis, mainly posterior, is an important cause of blindness, and is estimated to 

cause around 10% of visual handicap in the Western world (Darrell et al. 1962; 

Nussenblatt 1990). However, accurate figures for the overall prevalence and 

incidence of uveitis and its various sub-categories are lacking. Proper 

population based studies on the extent of uveitis as a cause of blindness and 

visual impairment do not exist (Suttorp-Schulten and Rothova 1996). In most 

epidemiological studies dealing with blindness, uveitis is not considered as a 

distinct entity, and many secondary ocular problems caused primarily by uveitis 

(e.g. cataract, maculopathy) are not recognised as such. Differing study designs 

make comparison of data difficult. No aetiology in terms of a causal systemic 

disease is found in over 25% of uveitis cases. This figure rises to around 50% if 

established uveitis entities without known cause (such as Fuch`s cyclitis or 

idiopathic vasculitis) are included (Rothova et al. 1992). In most uveitis studies, 

"autoimmune PSII" is not considered as a distinct entity. 

 In 1995, it was estimated that 38 million people were blind worldwide, the 

majority in Africa and Asia, with a further 110 million being visually impaired 

(Thylefors et al. 1995). Cataract is the leading cause, followed by trachoma and 

glaucoma, accounting together for 71% of the total. The exact percentage of 

worldwide blindness due to uveitis is unknown.  
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 In the developing world, the commonest cause of blindness is again 

cataract, followed in order by trachoma, glaucoma and onchocerciasis 

(Thylefors et al. 1995). Onchocerciasis causes blindness as a result of 

inflammation, and may therefore be categorised as a uveitis of infectious origin. 

If other causes of uveitis were included, such as leprosy, uveitis might rise to 

third or higher in the list of leading causes of blindness. Separate data for non-

infective or autoimmune posterior uveitis are not available. 

 In the Western world, the commonest causes of blindness overall are 

age-related macular degeneration and diabetic retinopathy. It is estimated that 

uveitis causes 10 to 15% of all cases of total blindness in the USA, but again 

there are relatively few specific data in this area. European studies mention 

figures of 3-6% (ten Doesschate 1982).  When over-65`s and children are 

excluded, the remaining section of the population (20-65 years) comprise 26 to 

32% of registered blindness. The major causes of blindness in this group are 

tapetoretinal degeneration (20%), congenital anomalies (20%), diabetic 

retinopathy (20%), accidents (5%) and uveitis (10%). In economic terms this is 

the most important part of the population, as it represents the working 

population. The two largest treatable disease categories are diabetes (20%) 

and uveitis (10%).  

 The prevalence of uveitis in Western countries has been reported as 38 

per 100,000 and the incidence as 14-17 per 100,000 (Suttorp-Schulten and 

Rothova 1996). Several reports on the frequency of different types of uveitis use 

the IUSG classification and find anterior uveitis to be the most common 

category (> 50%), followed by posterior, and then pan-uveitis or intermediate 

uveitis (Smit et al. 1993; Tran et al. 1995). There are no studies on the 

incidence of vision-threatening complications of uveitis, so the impact of 

prevention and therapy (including surgery) remains unclear. Approximately 70-

90% of uveitis patients present between 20 and 60 years of age (working age), 

particularly in the 3rd and 4th decades. Between 25 and 50% of uveitis patients 

have an underlying systemic disease. It is not known exactly what percentage 

of each anatomical category of uveitis patients suffers from blindness or visual 

impairment, but posterior or pan-uveitis are thought to be the worst types. In a 

retrospective study of 582 patients with both infective and non-infective uveitis, 

35% exhibited blindness or visual impairment in at least one eye (Rothova et al. 
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1996). Visual impairment was mainly due to posterior uveitis, with CMO as a 

leading cause.  

 Prognosis varies with the aetiological subtype of uveitis. Acute anterior 

uveitis, accounting for at least 30% of all uveitis, leads to visual impairment in 

only 1% of cases. Toxoplasmosis is the aetiological factor in about 10% of all 

uveitis patients, and leads to severe visual impairment or blindness in at least 

9% of affected eyes. Ocular sarcoidosis accounts for around 7% of all uveitis 

patients (Rothova et al. 1992) and causes blindness in at least one eye in 10% 

of cases. Several forms of posterior uveitis, such as ocular Behcet`s and 

serpiginous choroidopathy (Weiss et al. 1979), are rare in the West but have a 

poor visual prognosis.  

 The socio-economic impact of uveitis is considerable. It is estimated that 

in the USA alone 2.3 million suffer from uveitis (Suttorp-Schulten and Rothova 

1996). The economic costs are even comparable to those of diabetic eye 

disease. 

1.2.4  PSII as an autoimmune disease 
The clinical conditions listed in Table 1.1 are accepted by most authorities as 

having an autoimmune aetiology. This is based on several complementary 

arguments. Perhaps the most compelling is that despite extensive testing, no 

clinical or laboratory evidence of microbial infection can be found during active 

inflammatory episodes. This coincides with the probable decrease in the 

proportion of uveitis cases directly caused by infection. Overall, an infectious 

agent can be identified in less than 20-25% of uveitis cases in recent studies 

(Tran et al. 1995; PivettiPezzi et al. 1996; Rodriguez et al. 1996; Merrill et al. 

1997), except in areas where there is high exposure to pathogens (Biswas et al. 

1996; Kaimbo Wa Kimbo et al. 1998). This contrasts with the situation in the 

1940`s – Woods diagnosed tuberculosis in 80% of cases of granulomatous 

uveitis in 1941 (Guyton and Woods 1941) but in only 20% in 1960 (Woods 

1960). 

 Evidence that endogenous PSII is an autoimmune disease is found in its 

very close resemblance to EAU, an experimental disease model directly caused 

by immunisation with retinal autoantigens (detailed discussion in a later 

section). This model, which can induce intraocular inflammation using any of 
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several candidate autoantigens, can be made to mimic practically all the 

features of clinical PSII by adjusting the immunisation protocol in terms of 

antigen dose, route of administration, timing of immunisation, use of adjuvant, 

etc. EAU and endogenous PSII resemble each other not only clinically, but also 

in terms of histopathological features and immunobiological findings (though 

studies on human tissue are relatively few) (Forrester et al. 1990). 

 The MHC in humans is called the Human Leucocyte Antigen (HLA) 

complex. The HLA, through its influence on antigen presentation, is intimately 

involved in the immune response, and several established autoimmune 

diseases have HLA associations (see later). Several subtypes of autoimmune 

PSII are also associated with HLA haplotypes, as outlined below. This suggests 

a role for autoimmunity in the aetiology of these diseases. 

 Clinically, many types of endogenous PSII respond favourably to specific 

immunosuppressive treatments such as cyclosporin and tacrolimus. These anti 

T-cell therapies are also used successfully in established autoimmune diseases 

such as rheumatoid arthritis, thereby strengthening the case for an 

immunological/autoimmune aetiology in endogenous PSII. In addition, such 

immunosuppression does not unmask infection in such cases.  

Laboratory evidence of autoimmunity in human endogenous PSII does 

exist – both T-cell and B-cell responses have been demonstrated to human 

retinal antigens. However, immunoreactivity in healthy controls has also been 

demonstrated, and this confuses matters. Therefore, to date, there is no direct 

proof that autoimmunity to retinal or other ocular antigen(s) actually causes 

endogenous PSII in humans. Nevertheless, when the various strands of 

circumstantial evidence are presented together, the case seems compelling. 

1.2.5  Aetiology of autoimmune PSII 

1.2.5.1 Genetic studies  

There appears to be a genetic predisposition to autoimmune PSII and it is 

considered to be a multifactorial, polygenic disease. It is clinically 

heterogeneous and this is reflected in its genetic heterogeneity. The MHC is the 

main target for scrutiny regarding the genetic basis of PSII and other 

autoimmune diseases. However, there are also some non-MHC genes linked to 
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immune disease. Genetic studies in polygenic disorders such as autoimmune 

PSII are made more difficult by low penetrance of individual genes, interaction 

between individual alleles (epistasis) or additivity between alleles. This is further 

complicated in PSII by genetic heterogeneity sometimes resulting in the same 

phenotype, and by the relatively low incidence of some PSII subtypes. Genetic 

aspects of human uveitis have been studied using twin studies, familial 

aggregation and segregation studies, cytogenetic studies and association 

studies (Pennesi and Caspi 2002). Genetic analysis of animal strains in EAU 

has also contributed greatly. 

 

1.2.5.1.1 Twin studies 
In autoimmune PSII, only a few twin pairs have been studied so far, due to the 

relative rarity of some of the conditions and their clinical heterogeneity. 

Therefore, a clear estimate of concordance is not possible. Concordant twin 

pairs for Behcet`s disease (Hamuryudan et al. 1991), birdshot chorioretinopathy 

(Fich and Rosenberg 1992), VKH (Itho et al. 1992; Ishikawa et al. 1994; Rutzen 

et al. 1995) and intermediate uveitis (Biswas et al. 1998) have been reported. 

Of less relevance to autoimmune PSII, but interesting nonetheless, is a large 

Finnish twin cohort study of ocular diseases in which 58 twin pairs with anterior 

uveitis were included. No concordant pairs were detected among these (Teikari 

et al. 1987). 

 

1.2.5.1.2 Family studies 
Family studies are useful in detecting the clustering of diseases in families 

(“familial aggregation”) or the identification of a recurrent pattern (“segregation”) 

down through generations. Aggregation has been noted in uveitic disease but 

no pattern of inheritance has been recognised. Uveitis in Behcet`s disease may 

be associated with the presence of HLA-B51. A number of affected individuals 

within the same family ("co-segregation"), have been found to share the same 

non-HLA B51 phenotype in non-ocular Behcet`s (Sant et al. 1998). Also in 

families segregating for Behcet`s disease, the sibling recurrence rate, a 

measure of the increased risk of disease for the sibling of a patient, has been 

found to be 4.2% in Turkey (with a "lambda S value" of between 11.4 and 52.5) 

(Gul et al. 2000). Again in Behcet`s disease, a phenomenon known as genetic 
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anticipation has been observed in families (Fresko et al. 1998). This results in 

earlier onset or increased severity of disease between successive generations. 

There is also some evidence for relatives of a patient with Behcet`s disease 

being at increased risk of developing another autoimmune disease 

(Chamberlain 1978). 

 

1.2.5.1.3 Cytogenetic studies 
There is no strong evidence for karyotype modifications being a predisposing 

factor for uveitis (Pennesi and Caspi 2002). 

 

1.2.5.1.4 Association studies  
Association studies, in which allele frequencies between affected and 

unaffected individuals are compared, are the primary method of studying the 

role of a potential disease-susceptibility gene. Most autoimmune PSII 

susceptibility genes are unsurprisingly located within the MHC complex on 

chromosome 6p. Interestingly, there are associations with both class I and II 

MHC in autoimmune PSII.  

 The strongest HLA association for any known disease is between 

birdshot chorioretinopathy and HLA-A29, especially HLA-A29.2 (Tabary et al. 

1990). The relative risk in some populations can reach 157, and this HLA type 

therefore assumes diagnostic significance. One report associates HLA-A28 with 

intermediate uveitis accompanied by arthralgia (Martin et al. 1995). Behcet`s 

disease is mainly associated with HLA-B51 (Chajek-Shaul et al. 1987; Mizuki et 

al. 1992). It carries a relative risk of between 6.3 to 11.5, being higher in 

Mediterranean populations and lower in Northern Europeans.  

MHC class II alleles associated with autoimmune PSII include HLA-

DRB1*0405 (Shindo et al. 1994; Kim et al. 2000). This codes for a variant of the 

HLA-DR4 antigen and is significantly increased in VKH patients, with a relative 

risk of 46.7. Sympathetic ophthalmia is also associated with HLA-DRB1*04, as 

well as with DQA1*03 (Shindo et al. 1997). However, European patients tend to 

be associated more with the allelic variant DRB1*0404, and Japanese patients 

with DRB1*0405 (Kilmartin et al. 2001). DR2 is associated both with pars 

planitis and multiple sclerosis (MS), and may provide a link between these 

conditions (Malinowski et al. 1993). Intermediate uveitis without MS is 
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associated with HLA-DR3, while pan-uveitis has been associated with HLA-DR4 

in an Italian population (Cuccia Belvedere et al. 1986). Sarcoidosis is 

associated with HLA-DRB1. 

 Non-MHC genes seem to have a major role in the expression of 

autoimmune PSII (Caspi et al. 1992). A polymorphism within the ICAM-1 gene 

may contribute to a susceptibility to Behcet`s disease (Verity et al. 2000). An 

additional risk of Behcet`s can be conferred by mutations of the MEFV gene on 

chromosome 16p (Touitou et al. 2000).  

 

1.2.5.2 Environmental factors 

Although endogenous PSII is regarded primarily as an autoimmune disease 

under significant genetic influence, there are probably multiple initiating stimuli 

for disease onset. What exactly these triggers are, however, remains obscure in 

the majority of cases (Whitcup 1997). Those that are known are outlined below. 

 

1.2.5.2.1 Infection 
In common with many other autoimmune diseases, infection is suspected of 

being a trigger in certain cases of autoimmune PSII.  This is generally thought 

to be mediated by molecular mimicry (see later), though release of sequestered 

autoantigens through tissue destruction is also possible. Homology has been 

noted between a yeast histone and RSAg (Singh et al. 1989b). Reiter`s 

syndrome may occur after Gram-negative dysentery, or urethritis caused by 

Chlamydia trachomatis or Ureaplasma urealyticum (Keat 1983). Although 

Reiter`s syndrome relates to anterior rather than posterior uveitis, this also 

suggests that intraocular inflammation can be triggered following infection. 

 

1.2.5.2.2 Trauma 
Sympathetic ophthalmia is a case where autoimmune PSII appears to be 

triggered by trauma. The autoimmune response is thought to be caused by the 

release of previously sequestered autoantigens. Infectious agents or toxic 

substances introduced at the time of injury may also have some role (Whitcup 

1997). 
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1.2.5.2.3 Diet  
There is little evidence of diet having a role in human autoimmune PSII. 

However, in one report experimental uveitis seemed to be suppressed by 

dietary calorie restriction in rats (Abe et al. 2001).  
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1.3  Autoimmunity 
Autoimmunity occurs when a specific adaptive immune response is mounted 

against self-antigens. In this section general features of autoimmune disease 

are discussed, such as disease susceptibility, tolerance to self-antigens and its 

breakdown. The emphasis is on mechanisms that are of most relevance to 

autoimmune PSII and other cell-mediated, organ-specific autoimmune 

diseases.  

1.3.1  Innate and adaptive immune responses 
The immune system has evolved primarily with the function of protecting us 

from microorganisms, which are an ever-present feature of our environment. 

Traditionally, its components have been described separately in terms of innate 

and adaptive immune systems, although there are many areas of interaction 

between the two. Innate immunity refers to immune defence mechanisms that 

are pre-existing, and do not rely on the recognition of previously encountered 

agents to mount a response. Typical elements of the innate system are 

epithelial barriers, the complement system, many phagocytic white cell types, 

natural killer cells and many other cells involved in inflammatory and allergic 

type effector responses. The key features of innate immune responses are that 

they are non-specific but rapid – this defends the host during the first 7 days of 

infection, while the adaptive immune response is developing.  

 Adaptive responses on the other hand are mediated by lymphocytes, and 

are specific for particular immunogenic molecules (antigens) that are 

recognised as “foreign” (Abbas and Lichtman 2003), or alternatively antigens 

that represent "danger" to the host (Matzinger 1994). Specifically, lymphocytes 

recognise and bind to one or more well-defined sites called epitopes on the 

antigen. These responses take longer to develop to novel antigens, but display 

“immunological memory” where an enhanced response is rapidly produced to 

previously encountered antigens. The adaptive system is normally able to 

differentiate “self” from “non-self” antigens. Adaptive immunity is divided into 

cell-mediated immunity, whose principal functions are orchestrated by T-

lymphocytes (T-cells) and humoral immunity, whose main functions are carried 
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out by antibodies, the immunoglobulin (Ig) molecules secreted by B-

lymphocytes (B-cells).  

 

1.3.2  Humoral and cellular adaptive immunity 
The function of the humoral immune system is to eliminate pathogens from the 

extracellular compartment. B-cells recognise epitopes on intact antigen 

molecules through the immunoglobulin receptors on their surfaces. Subsequent 

B-cell activation results in the production of antigen-specific antibody. 

Pathogens that are bound by antibody are eliminated, usually with the help of 

mononuclear phagocytes, complement and other effector systems. Complexes 

of soluble antigen and antibody (immune complexes) may be deposited in 

organs and blood vessels and precipitate inflammation. Although B-cells can 

generate antibody independently, this function is greatly enhanced and 

prolonged with the help of certain types of T-cell (below). 

The cellular immune system has probably developed to eliminate 

intracellular microorganisms, but also carries out additional roles. T-cells detect 

peptide antigens that are processed and presented on the surfaces of the 

body’s own cells. T-cells carrying the surface marker CD8 recognise antigens 

that are synthesised in the target cell’s cytoplasm and presented in association 

with MHC class I molecules. CD8+ T-cells differentiate into cytotoxic T-cells 

(Tc), and target virus-infected and tumour cells, as well as being involved in 

transplant rejection. T-cells bearing the marker CD4 generally recognise antigen 

presented by specialised antigen presenting cells (APC) in the context of MHC 

class II molecules. The CD4+ T-cells, also known as T-helper (Th) cells, occupy 

a central role in co-ordinating the whole adaptive immune response. Through a 

variety of mechanisms, including the release of cytokines and cell-cell 

activation, CD4+ cells can stimulate activation of macrophages, CD8+ cells and 

B-cells. Subcategories of T-helper cells often seem to be polarised towards the 

secretion of different patterns of cytokines, and this can influence whether a 

predominantly cell-mediated or antibody response ensues. These so-called Th1 

and Th2 type responses have relevance in autoimmunity, and are discussed 

later. 
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1.3.3  Autoimmune responses vs. autoimmune 
disease 

The adaptive immune response is essential for the effective recognition of 

pathogens and their removal. However, antigens from the body's own tissues 

are sometimes mistakenly recognised as “foreign” or “danger”, and an 

inappropriate immune response occurs. This autoimmune response can be 

mediated by either the cellular or humoral systems.  

Most potentially autoreactive T- and B-cells are deleted during 

development (discussed below), but some low-affinity autoreactive cells persist, 

even in healthy subjects. These autoreactive lymphocytes are kept in check by 

mechanisms of peripheral tolerance. Also, transient immune responses may be 

noted secondary to tissue damage, but rarely go on to cause sustained 

autoimmune disease. It is therefore obvious that some degree of autoimmune 

response can exist without causing overt disease. The conversion of 

autoimmune response to overt disease may depend on the recruitment of a 

certain number of effector cells and the level of tissue destruction, which can 

lead to a self-sustaining reaction. For a disease to be categorised as definitively 

autoimmune, autoreactive T-cells or autoantibodies must be shown to cause the 

tissue damage, rather than be the result of it (Rose and Bona 1993). 

1.3.4  Antibody mediated vs. cellular autoimmunity 
Autoimmune diseases are often categorised as being either cell- or antibody-

mediated, depending on their primary mode of tissue damage. Both 

mechanisms, however, often work together in the same disease. Autoimmune 

diseases can also be classified as types, in a similar manner to hypersensitivity 

reactions, with the notable absence of Type I allergic responses which are not 

known to cause autoimmune disease. T-cells possibly fulfil a more central role 

than B-cells in autoimmune disease, even where the tissue damage is primarily 

antibody-mediated. CD8+ T-cells can cause extensive tissue damage via direct 

cytotoxic responses, whereas CD4+ T-cells can mediate Th1 driven 

macrophage activation, while also providing T-cell help to autoreactive B-cells. 

Cell mediated autoimmune diseases, corresponding to Type IV delayed type 

hypersensitivity (DTH) responses, are listed in Table 1.2. In some conditions 
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such as rheumatoid arthritis, more than one disease mechanism appears to 

operate. 

 

Table 1.2 Examples of T-cell mediated  (Type IV) autoimmune diseases. 

 

Disease Autoantigen Pathological Effect 
Type I diabetes  
(insulin dependent)  

Pancreatic β-cell 
antigens, insulin, 
GAD 

Destruction of 
pancreatic islet β-cells 

Rheumatoid arthritis Unknown synovial 
joint antigen  

Inflammatory joint 
destruction 

Multiple sclerosis/ 
Experimental 
autoimmune 
encephalomyelitis 
(EAE) 

Myelin basic 
protein, myelin 
oligodendrocyte 
glycoprotein, 
proteolipid protein 

Infiltration of CNS with 
CD4+ T-cells, paralysis 

Autoimmune uveitis Unknown Ocular inflammation, 
visual impairment 

 

 

Antibody mediated diseases can resemble Type II hypersensitivity 

responses, with the damage resulting from direct antibody binding to target 

antigens, or Type III responses, with immune complex deposition provoking the 

inflammation. Many of these conditions require CD4+ T-cell help to the 

autoreactive B-cells, to provide sustained autoantibody responses. Conversely, 

B-cells may be important for antigen presentation in sustaining specific T-cell 

responses. Antibody-mediated autoimmune diseases are listed in Table 1.3.  
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Table 1.3 Examples of direct antibody-mediated (Type II) and immune-

complex mediated (Type III) autoimmune diseases. 

 

Disease Response 
Type 

Autoantigen Pathological  
Effect 

Goodpasture`s 
Syndrome 

Type II Fragment of 
basement 
membrane collagen 
type IV 

Glomerulonephritis 
Pulmonary 
bleeding 

Acute rheumatic 
fever 

Type II Cardiac muscle 
crossreacting with 
streptococcal cell 
wall antigens 

Myocarditis and 
valvular damage 
Arthritis 

Pemphigus 
vulgaris 

Type II Cadherin Blistering of skin 

Autoimmune 
haemolytic 
anaemia 

Type II Rhesus blood 
group antigens 

Destruction of red 
blood cells and 
anaemia 

Idiopathic 
thrombocytopenic 
purpura 

Type II Platelet integrin Destruction of 
platelets 
and bleeding 

Systemic lupus 
erythematosus 
(SLE) 

Type III DNA, histones, 
ribosomes, snRNP, 
scRNP 

Glomerulonephritis 
Vasculitis 
Rash 

Rheumatoid 
arthritis 

Type III Rheumatoid factor 
IgG complexes 

Destructive 
arthritis 

Mixed essential 
cryoglobulinaemia 

Type III Rheumatoid factor 
IgG complexes +/- 
others 

Systemic vasculitis 
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Similarly, some antibody-mediated autoimmune diseases exert their effects by 

blocking or stimulating particular cell-surface receptors (Table 1.4).  

 

Table 1.4 Diseases caused by effects of autoantibodies on cell surface 

receptors. 

 

Disease Target Pathological Effect 
Grave`s disease Thyroid stimulating 

hormone receptor 
Hyperthyroidism 

Myasthenia gravis Acetylcholine receptor Progressive muscle 
weakness 

Insulin-resistant 
diabetes 

Insulin receptor (effect 
depends on specificity 
of antibody) 

Hyperglycaemia, 
ketoacidosis (agonist 
antibody) 
Hypoglycaemia 
(antagonist antibody) 

 

 

1.3.5  Organ-specific vs. systemic autoimmune 
diseases 

Autoimmune diseases can also be categorised by whether they are confined to 

particular organs (organ-specific autoimmunity), or involve many tissues of the 

body (systemic autoimmunity). The distribution of autoimmune disease reflects 

whether the autoantigens are expressed in specific organs or are ubiquitous in 

all the body’s cells. For example, in Hashimoto`s thyroiditis, autoantibodies are 

specifically directed against thyroid stimulating hormone receptors which are 

confined to the thyroid gland. By contrast, antibodies are found against 

ubiquitous cellular components such as chromatin and mRNA splicing proteins 

in SLE, a systemic autoimmune disease. Examples of organ specific and 

systemic autoimmune diseases are contained in Tables 1.5 and 1.6 

respectively. 
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Table 1.5 Organ-specific autoimmune diseases 

 

Autoimmune uveitis Graves' disease Myasthenia gravis 
Type I diabetes Hashimoto`s thyroiditis Autoimmune 

pernicious anaemia Multiple sclerosis Vitiligo 
Goodpasteur`s 
syndrome 

Autoimmune Addison`s 
disease 

 

 

 

Table 1.6 Systemic autoimmune diseases 

 

Rheumatoid arthritis Sarcoidosis Primary Sjogren`s 
syndrome SLE Scleroderma 

Behcet`s disease Polymyositis  
 

 It is thought that organ-specific and systemic autoimmune diseases may 

have different aetiologies. This is supported by the finding that more than one 

organ-specific autoimmune disease is sometimes found within the same 

individual, or within a family. This phenomenon also applies to clusters of 

systemic autoimmune diseases. 

 

1.3.6  Susceptibility to autoimmune disease 
Twin and family studies in humans have shown that both inherited and 

environmental factors are important in susceptibility to autoimmune disease. Of 

the inherited factors, association with certain MHC genes seems to be the most 

important. 

1.3.6.1 Genetic factors 

1.3.6.1.1 The MHC and its association with autoimmune diseases 
The MHC is a cluster of genes located on Chromosome 6. It codes for a 

number of important molecules in antigen processing, presentation and 

recognition. Foremost among these are the MHC class I and II molecules, 

glycoproteins that are expressed on cell surfaces and which present antigenic 

peptides to compatible T-cell receptors (TCR) of T-cells. The MHC locus is 

polygenic, and the genes within it the most polymorphic in the body. This 
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provides a very wide range of MHC molecules with which T-cells can interact. 

An individual T-cell will only recognise antigenic peptide if it is presented on a 

particular MHC allelic variant and not others – this is known as MHC restriction 

of T-cells.  

 MHC class I molecules are expressed on all nucleated cells in the body. 

The molecule comprises of an α-chain, together with a smaller subunit, B2 

microglobulin. MHC class I molecules bind proteins fragments that have been 

degraded in the cytosol, and the MHC:peptide is presented to the TCR at the 

cell surface. MHC class I molecules present antigen to CD8+ T-cells, which 

upon becoming activated can kill the presenting cell. In humans, the 3 main 

class I genes are called HLA-A, -B and -C. 

 MHC class II molecules are expressed on immune cells capable of 

presenting antigen to T-cells, mainly dendritic cells, macrophages and B-cells. 

The molecule is a dimer composed of an α and β chain. It binds to degraded 

antigenic peptides derived from endocytosed protein, which are contained in 

endosomes. The MHC:peptide complex is displayed on the cell surface and 

presented to CD4+ T-cells. The 3 main class II genes in humans are HLA- DR, -

DP and -DQ. 

 The high levels of polymorphism in MHC molecules can mean that 

binding and presentation of antigen, including self-antigen, to T-cells can vary 

markedly between individuals. Therefore it is apparent that particular MHC 

haplotypes can have a crucial bearing on an individual's susceptibility to 

immune-mediated disease (Wicker 1997; McDevitt 2000). Indeed, statistical 

associations have been found between MHC alleles and particular diseases, 

including established autoimmune diseases. Alternatively the association 

between autoimmunity and HLA may derive from the role of MHC alleles in the 

shaping of the T-cell repertoire during T-cell development. Examples of 

autoimmune diseases and their associated MHC alleles are contained in Table 

1.7. 
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Table 1.7 Autoimmune diseases and their HLA associations. 

 

Disease HLA allele Relative risk 
Ankylosing spondylitis B27 87.4 
Goodpasteur`s syndrome DR2 15.9 
Multiple sclerosis DR2 4.8 
Grave`s disease DR3 3.7 
Myasthenia gravis DR3 2.5 
SLE DR3 5.8 
Type-1 diabetes DR3/DR4 25 
Rheumatoid arthritis DR4 4.2 
Pemphigus vulgaris DR4 14.4 
Hashimoto`s thyroiditis DR5 3.2 

 

 

1.3.6.1.2 Non-MHC genetic factors 
Genetic factors other than those associated with MHC are known to determine 

susceptibility to autoimmune disease. This is demonstrated by identical twins 

(who share all genes) being much more likely to share the same autoimmune 

disease than siblings who merely share the same MHC haplotype. Several non-

MHC disease susceptibility loci have been shown for autoimmune diabetes. 

There is also evidence that the levels of expression of a potential autoantigen 

within the thymus can influence the development of autoimmunity. Higher levels 

of transcription of the human insulin gene in the thymus, which shows genetic 

variation between individuals, tends to protect against diabetes. 

 There has been some interest in the possible association of autoimmune 

disease with the preferential expression of genes coding for particular TCR 

chain subtypes, in particular the Vβ8.2 gene. There is evidence of suppression 

of EAE by immunisation with fragments from Vβ8.2. This effect could not be 

reproduced in EAU, although preferential - but not exclusive - Vβ8.2  expression 

has been found here also.  

 

1.3.6.2 Environmental factors 

Twin studies indicate that although genetic factors are the major factor in some 

autoimmune disorders, environmental influences also contribute, and indeed 

may dominate in some disorders.  
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 Infection is thought to trigger autoimmunity in certain cases, the most 

clear-cut association probably being that of infection by group A streptococci 

with rheumatic fever. Other possible associations exist such as HLA-B27 

associated reactive arthritis with infection by Chlamydia, Yersinia or Salmonella. 

Other associations are also being investigated. Non-specific infection is also 

believed to precipitate autoimmune disease in susceptible individuals. In 

Wegener`s granulomatosis, a relapse of vasculitis is frequently observed in 

asymptomatic patients with high levels of anti-neutrophil cytoplasmic antibodies 

(ANCA) who develop an infection (Pinching et al. 1980). 

 Other possible environmental co-factors have been noted. The 

pulmonary haemorrhage component of Goodpasture`s disease is almost 

exclusively found in patients who smoke (Donaghy and Rees 1983). 

Goodpasture`s can also be precipitated by exposure to organic solvents. 

Several autoimmune diseases including SLE, myasthenia gravis and haemolytic 

anaemia can be induced by drugs. Sunshine is a trigger of skin lesions in SLE. 

Diet, however, may have a protective role in autoimmunity. There is currently 

some interest in a possible role for omega-3 fatty acids (found in fish oil) in the 

prevention of human autoimmune diseases.  

1.3.7  Immunological tolerance 
The immune system must recognise and remove foreign or "danger" antigens, 

while remaining unresponsive to antigens from the body's own tissues. This 

state of immunological non-responsiveness to self-antigens is called tolerance. 

Tolerance is antigen-specific and is acquired during development. The 

maintenance of tolerance requires the persistence of the antigen throughout life. 

Tolerance can be acquired in the primary lymphoid tissues during development 

(central tolerance), or later in the periphery during adult life (peripheral 

tolerance). A number of mechanisms exist to maintain self-tolerance, both for T-

cells (Anderton and Wraith 2002; Shevach 2002) and B-cells (Goodnow et al. 

1995). 
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1.3.7.1 T-cell tolerance 

1.3.7.1.1 Central tolerance  
Both T- and B-cell precursors arise from the bone marrow and undergo 

maturation and differentiation during foetal life. Whereas this process takes 

place in the bone marrow for B-cells, T-cells migrate to the thymus for "T-cell 

education". Here they acquire their surface markers in a step-wise manner, and 

eventually differentiate into mature CD4+ or CD8+ T-cells. The highly variable, 

unedited T-cell repertoire is put through two stages of selection, via interactions 

with MHC molecules and self-antigens encountered in the thymus. In the first 

stage, "positive selection", only those T-cells capable of recognising self-MHC 

antigens receive the necessary signals to survive. In the second stage, 

"negative selection", T-cells that interact with high or very low affinity to self-

antigens presented on APC are destroyed. This mechanism is called clonal 

deletion, and is similar to activation induced cell death, a mechanism also found 

in peripheral tolerance. Central tolerance is probably more effective in deleting 

autoreactive T-cells to ubiquitous self-antigens, rather than those that are 

organ-specific. However, organ-specific antigens have been shown to take part 

in central tolerance mechanisms e.g. RSAg and interphotoreceptor retinoid 

binding protein (IRBP) from the eye and myelin basic protein (MBP) from brain. 

It has been noted that resistance of some animal strains to EAU after 

immunisation with particular retinal autoantigens, correlated with expression of 

the same autoantigens in the thymus (Egwuagu et al. 1997). After the 

completion of central tolerance, a vastly reduced repertoire of T-cell clones 

emerges, that is restricted to self-MHC and purged of self-reactive T-cells.  

 

1.3.7.1.2 Peripheral tolerance 
Central tolerance is incomplete, especially for organ-specific self-antigens, and 

peripheral mechanisms are required to maintain non-responsiveness during 

adulthood (Walker and Abbas 2002). Some of these mechanisms are listed 

below. 

1.3.7.1.2.1 Ignorance 

This term has been used to describe two slightly different ideas. One relates to 

self-antigen that is sequestered behind anatomical barriers (e.g. blood ocular 
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barrier), and which maintains non-responsiveness by excluding autoreactive 

cells. Tolerance via this mechanism would, however, be incomplete, as 

migrating APC are capable of presenting such sequestered antigens in lymph 

nodes or the spleen. The second meaning relates to the maintenance of self-

tolerance, despite interaction between potentially autoreactive lymphocytes and 

autoantigen. This may happen because antigen binds to the T-cell either with 

low affinity or in very low levels (Janeway et al. 2001).  

1.3.7.1.2.2 Anergy 

Anergy is induced when self-peptide:MHC is recognised by a T-cell in the 

absence of co-stimulatory signals, or with inhibitory signals as in B7/CTLA-4 

rather than B7/CD28 interactions. The T-cell is not deleted, but persists in a 

state of non-responsiveness. Anergic cells may eventually be removed by 

apoptosis (programmed cell death). Anergy is thought to be the main 

mechanism of peripheral tolerance. It is closely related to clonal deletion and 

the same mechanisms may be involved. It may be involved in central tolerance, 

where lymphocytes that fail to receive the appropriate rescue signals at each 

stage of development eventually undergo apoptosis.  

 

1.3.7.1.2.3 Apoptosis 

Peripheral T-cells may undergo apoptosis in the periphery, in a manner similar 

to deletion during central tolerance induction. This occurs particularly where the 

cells are exposed to persistent or high levels of self antigen. 

1.3.7.1.2.4 Suppression 

There is strong evidence for the existence of T-cell subsets that actively 

suppress autoreactivity in the periphery. These cells are now referred to as T 

regulatory (Tr) cells (Roncarolo et al. 2001) and exert their actions by cell-to-cell 

contact or the expression of the immunosuppressive cytokines interleukin 10 

(IL-10) or transforming growth factor β (TGF-β). Although CD8+ T-cells were 

previously thought to be the "suppressor" population, this is now considered 

less likely. One probable regulatory population is the CD4+ CD25+ subset, but 

the mechanism of action is still unclear. 



 

 24 

 Other CD4+ subsets are probably involved in cellular and humoral 

tolerance. These include the so-called Th3 population, which secrete TGF-β. 

Other inhibitory populations may include Th2 cells, particularly through their 

secretion of IL-10. 

1.3.7.1.2.5 Idiotypic  networks 

Idiotypic and anti-idiotypic networks, as originally proposed by Jerne (Jerne 

1984), may contribute to B-cell and T-cell peripheral tolerance. Antibodies or 

TCR (both being proteins) can themselves induce an "idiotypic" antibody or T-

cell response. These responses can further induce tertiary responses, the 

eventual result being a self-regulatory network that dissipates the original 

immune disturbance. However, despite the plausibility of this theory, there is 

little hard evidence for it in practice. 

 

1.3.7.2 B-cell tolerance 

Tolerogenic mechanisms that apply to CD4+ T-cells, through the abolition of T-

cell help, will also have a major inhibitory effect on the production of 

autoantibodies. However, specific B-cell tolerance mechanisms are also 

important, particularly for non-protein self-antigens such as polysaccharides and 

lipids (T-independent antigens).  

 B-cells develop central tolerance in the bone marrow. Cells that 

recognise self-antigen with high affinity and in high concentration will undergo 

apoptosis in a similar manner to T-cells. Multivalent antigens are most likely to 

cause deletion by cross-linking several immunoglobulin receptors. Alternatively, 

the B-cell may respond to self-antigen by changing the specificity of its 

immunoglobulins, a process known as "receptor editing". 

 In the periphery, B-cells that recognise self-antigen in the absence of 

specific CD4+ T-cells are rendered functionally unresponsive. These anergic 

cells are more likely to undergo apoptosis by the Fas/Fas ligand (FasL) pathway 

if encountered by a specific Th cell. Similarly, B-cells that encounter self-antigen 

in the periphery lose the ability to enter lymphoid follicles, and therefore cannot 

be activated to produce antibody against the antigen. The exact mechanisms of 

B-cell tolerance are not yet fully known, and the phenomenon is not a complete 
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one, as shown by the frequent occurrence of autoantibodies, even in healthy 

subjects. 

 

1.3.8  Initiation of autoimmune disease 
Although some degree of autoimmunity is often detected in healthy individuals, 

it is usually kept in check by the tolerogenic mechanisms described above, and 

does not cause autoimmune disease i.e. tissue damage or dysfunction. 

Therefore autoimmune disease can be regarded as a breakdown of self-

tolerance. The exact cause of this is still unclear, but some of the more likely 

mechanisms are outlined below. 

1.3.8.1 Molecular mimicry 

As mentioned above, infections are a major susceptibility factor for the onset of 

autoimmune disease (Wucherpfennig 2001). One possible mechanism is 

molecular mimicry, where there is immunological cross-reactivity between 

antigens present on foreign pathogens and self-tissues. This is plausible, given 

the wide range of antigenic peptides in infectious microbes and there are 

several examples of sequence homology between microbial and self-antigens in 

autoimmune disease. These include homology between myocardial antigens 

and short sequences in streptococci, Chlamydia and Trypanosoma cruzi (see 

Environmental factors). However, molecular mimicry has not yet been proven to 

actually cause a spontaneous autoimmune disease. 

1.3.8.2 Bystander activation 

Another side-effect of infection is the upregulation of co-stimulatory molecules 

on APC. This could potentially "rescue" anergic, autoreactive lymphocytes in 

the lymphoid tissues, and thereby cause autoimmune disease. 

1.3.8.3 Trauma/tissue destruction 

The traumatic release of previously sequestered autoantigen may be the trigger 

for autoimmune disease. This is probably the case in sympathetic ophthalmia 

following eye trauma, and autoimmune orchitis following vasectomy. Tissue 

destruction or inflammation may modify previously tolerated antigens, or reveal 
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previously cryptic epitopes, and provide new targets for potentially autoreactive 

lymphocytes.  

1.3.8.4 Superantigen stimulation 

Superantigens are proteins derived from staphylococcal enterotoxins that are 

capable of activating all T-cells expressing a particular set of Vβ TCR genes, in 

a non-antigen-specific manner. The antigen achieves this by directly binding to 

non-polymorphic regions on class II MHC and conserved regions on the TCR. 

This may cause simultaneous activation of several subsets of T-cells, potentially 

leading to autoimmune disease. 

1.3.8.5 Polyclonal B-cell activation 

Certain products such as bacterial endotoxin or glycolipids can activate B-cells 

directly. These can act as APC and activate autoreactive T-cells, or can cause 

disease by expressing autoantibody. 

1.3.8.6 Idiotypic network disturbance 

In response to a foreign antigen, an idiotypic antibody or T-cell response may 

develop. This may reveal an idiotype with homology to an autoreactive 

lymphocyte and lead to activation. 

1.3.8.7 Failure of deletion 

Deletion of autoreactive lymphocytes by Fas/FasL mediated apoptosis is 

important for the induction of central and peripheral tolerance. Failure of this 

mechanism can cause autoimmune disease. 

1.3.8.8 Failure of regulatory T-cell activity 

Regulatory T-cells are thought to play an essential role in the maintenance of 

peripheral tolerance. Failure of this mechanism could have obvious 

consequences for the induction of autoimmune disease. 

1.3.9  Cytokines and the Th1/Th2 paradigm 
Cytokines are small proteins, involved in short-range intercellular signalling. 

They are essential in co-ordinating the various elements of the adaptive 
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immune response, and are secreted by many tissue cells and leucocytes, 

especially CD4+ (Th) T-cells. The pro- or anti- inflammatory actions of individual 

cytokines can determine the outcome of an immune response, and they are 

particularly important in autoimmune disease. Th subsets can be functionally 

categorised in terms of their predominant cytokine profiles, the so-called 

Th1/Th2 paradigm. 

 Polarised cytokine secretion patterns in Th cells were first demonstrated 

in mice (Mosmann et al. 1986), and later confirmed in humans (Romagnani 

1991). In the traditional Th1/Th2 model, Th1 cells typically secrete the pro-

inflammatory cytokine interferon-γ (IFN-γ), and may also secrete IL-2 and 

tumour necrosis factor (TNF) (Liew 2002). These cells promote cell-mediated 

(DTH type) immunity and defence against intracellular organisms. They also 

promote the secretion of IgG2a. Th1 cells differentiate from Th precursor cells, 

under the influence of IL-12. Th2 cells on the other hand, typically secrete IL-4, 

and also IL-5, IL-6, IL-10 and IL-13. They promote allergic and anti-helminthic 

type responses through the production of IgE, IgG1 and recruitment of 

eosinophils. Th2 cells develop from the same precursors as Th1, but under the 

influence of IL-4. The powerful anti-inflammatory cytokine TGF-β is sometimes 

included in the Th2 category, but others designate TGF-β-secreting cells as 

Th3.  

 The factors that cause polarisation towards a Th1 or Th2 phenotype, IL-

12 and IL-4, are derived from cells in the microenvironment during 

development. Particularly influential are two subtypes of dendritic cells (DC), 

DC1 and DC2, which promote respective Th1 and Th2 lineages. Cells 

developing under neutral conditions are termed Th0, and may secrete cytokines 

from either subset. The archetypical cytokines from each subset, IFN-γ and IL-4, 

promote the expansion of their own subset, while inhibiting the other. The two 

subsets therefore regulate each other's activity.  

 Autoimmune diseases are traditionally thought of as being due to the 

unopposed/dysregulated actions of pro-inflammatory cytokines like IL-2, IFN-γ, 

TNF and IL-12, and are presumably driven by a Th1 type response. In recent 

years however, it has emerged that these same cytokines can also have 

immunoregulatory effects, under certain conditions (Falcone and Sarvetnick 
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1999; O'Shea et al. 2002). This is particularly so when large amounts of 

cytokine are secreted late in the inflammatory process. Conversely, Th2 type 

cytokines can sometimes be found to mediate pro-inflammatory effects. This 

emphasises the complicated nature of cytokine effects and their interactions, 

and may have relevance for the development of future cytokine/anti-cytokine 

therapies. While the paradigm of Th1 and Th2 subsets remains valid, their exact 

role in autoimmunity is still unclear, with many diseases attributable to neither 

subset. 

1.3.10 Treatment of autoimmune disease and induction 
of tolerance  

Treatments applicable to autoimmune diseases in general are described later, 

in the context of treatment of autoimmune PSII. The mainstay of current 

treatment is non-specific anti-inflammatory drugs, especially corticosteroids, 

and is aimed at reducing tissue injury and dampening down the effector 

mechanisms of the disease. More specific therapies are being introduced. 

These include antagonists to pro-inflammatory cytokines such as TNF-α, and 

may take the form of monoclonal antibodies or solubilised receptors. Other new 

treatments specifically target co-stimulatory molecules such as B7, and other T-

cell molecules such as CTLA-4 or CD40 ligand. Treatments such as anti-

adhesion molecule antibodies, which may prevent the migration of leucocytes 

into tissues, are also being tested (Kalden et al. 1998). 

 Few current treatments aim to prevent induction of disease or restore 

tolerance in an antigen-specific manner. Experimentally, it is known that the 

manner in which a protein autoantigen is administered can result in either 

autoimmunity or tolerance. Factors favouring an immune response are 

subcutaneous/intradermal administration and the presence of adjuvant, while 

persistent, high doses of protein given systemically in the absence of adjuvant 

favours tolerance. In this situation, tolerance may result from the absence of co-

stimulation by APC because of lack of adjuvant, or induction of regulatory or 

Th2 type T-cell subpopulations.  

 One potentially attractive therapy for autoimmunity is the induction of 

autoantigen-specific "mucosal tolerance" (Weiner 1997). In experimental 
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studies, protein antigens administered orally (or nasally) have been found to 

produce suppression of humoral and cellular immune responses on subsequent 

immunisation. This mechanism may have evolved to prevent immune reactions 

to antigens in food. Mucosal tolerance may involve the induction of anergy in 

autoreactive T-cell clones, or the secretion of TGF-β (Miller et al. 1993), which 

is involved in IgA production in mucosal tissues and the inhibition of lymphocyte 

proliferation. The treatment requires the accurate identification of the 

autoantigen/peptide, and optimisation of the dose. It has been successfully 

demonstrated in experimental models of autoimmune disease (Maassen et al. 

2003). Mucosal tolerance therapy has been tested in trials in human 

autoimmune diseases, including multiple sclerosis, rheumatoid arthritis and 

autoimmune PSII, but its clinical efficacy has not yet been clearly established. 

 Peptides are used as signalling molecules for an important subgroup of 

human cellular receptors. Modification of these signalling peptides is an 

approach for highly selective and specific modulation of receptor function. So-

called altered peptide ligands (APLs) can be synthesised by amino acid 

substitutions at crucial receptor contact sites. APLs have a potential therapeutic 

role in infectious diseases or cancer immunotherapy (Slansky et al. 2000), by 

enhancing specific T-cell stimulation. They may also selectively suppress 

immune responses in autoimmune diseases such as MS (Steinman and Conlon 

2001).  
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1.4  Autoimmune PSII in animal models 
Much of what we know today about autoimmune PSII derives from animal 

models of the disease. These are particularly useful in uveitis research, where it 

is very difficult to obtain biopsy material from intraocular structures, especially 

during disease initiation. Also, the availability of inbred strains allows more 

sophisticated analysis of individual features of the disease in isolation, while 

research using animal uveitis models is unhindered by the lack of numbers 

encountered in some of the human counterparts. Animal models have also 

been useful in evaluating the mechanisms of immunosuppressant drugs in 

uveitis such as cyclosporin A, and in studying mucosal tolerance. The central 

animal model for autoimmune PSII for many years has been experimental 

autoimmune uveoretinitis, EAU. However, other models of PSII exist, some of 

which are induced with ocular antigens and others with non-ocular antigens, 

and these are also described below.  

 

1.4.1  Experimental autoimmune uveoretinitis 
In 1906 specific antigenicity to retinal rods was reported by Hess and Romer. In 

1910 Elschnig suggested a link between sympathetic ophthalmia and specific 

ocular tissue antigens. For many years an autoantigen from the uveal tract was 

sought without success, till in 1965 a paradigm shift occurred when Wacker and 

Lipton demonstrated specific ocular autoimmunity in animals to homologous 

retinal tissue (Wacker and Lipton 1965). EAU (then called experimental allergic 

uveitis) was first induced by a purified antigen in 1977 (Wacker et al. 1977) 

when what is now known as RSAg, mixed in complete Freund`s adjuvant 

(CFA), was injected into the footpads of guinea pigs, causing bilateral 

intraocular inflammation.  

 EAU manifests itself as a destructive inflammatory response of the 

choroid, photoreceptors and retina, and anterior segment. The features closely 

resemble those of PSII in humans. T-cells are essential in the induction of EAU, 

and the disease cannot be transferred with hyperimmune sera alone (Salinas-

Carmona et al. 1982). Since then EAU has been induced with different antigens 
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in a variety of animals including rats, mice and primates. The autoantigens 

identified so far are highly conserved retinal proteins usually involved in 

phototransduction and as well as RSAg include IRBP, rhodopsin, phosducin 

and recoverin (Adamus and Chan 2002). The features of EAU vary somewhat 

depending on the species and strain of animal, type and dose of antigen, 

method of administration and use of adjuvant. However, in all cases CD4+ T-

cells play the central role in disease initiation. 

 In RSAg-induced EAU, CD4+ T-cells invade the eye initially, but later on 

CD8+ T-cells predominate (Chan et al. 1985b).  This pattern has also been 

noted in studies on human eyes with sympathetic ophthalmia (Chan et al. 

1985a). Mast cells may play a role in the development of EAU. Disease 

susceptibility in rats has been shown to be associated with the number of mast 

cells in the choroid (Mochizuki et al. 1984). It has also been demonstrated that 

choroidal mast cells degranulate just before the entry of T-cells into the eye in 

EAU (de Kozak et al. 1981a).  

 EAU differs from human autoimmune PSII in that the disease is mostly 

self-limiting and requires adjuvant for induction. Nevertheless, it is valuable in 

studying general mechanisms of uveitis, identifying disease-specific antigens 

and epitopes and evaluating disease-modifying strategies. The features of EAU 

induced by the main retinal autoantigens will be described in turn. 

 

1.4.1.1 Retinal S antigen 

RSAg (also known as retinal soluble antigen or visual arrestin) is a major 

component of rod outer segments (Beneski et al. 1984; Gery et al. 1986a), 

where it is involved in the quenching of the phototransduction cascade (Wilden 

et al. 1986). It is one of 6 related and highly homologous arrestin proteins, but 

unlike the others is mainly confined to the rods and cones of the retina (Craft et 

al. 1994). It is also found in the pineal gland (Abe and Shinohara 1990). The 

human RSAg gene is located at chromosome 2q24-37 and contains 16 exons. 

Human RSAg is 48 kilodaltons (kDa) in weight.  Amino acid (a.a.) sequences for 

various species have been deduced by complementary DNA (cDNA) 

sequencing. These include human (Yamaki et al. 1988) and bovine RSAg 

(Shinohara et al. 1987), which share 81% sequence homology. The a.a. 
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sequences for mouse (Tsuda et al. 1988) and rat RSAg (Abe and Shinohara 

1990) have also been deduced – these share 97% homology.  

 RSAg can induce EAU in many strains of rodents (Wacker et al. 1977; de 

Kozak et al. 1981b; Gery et al. 1986a) and also in primates (Nussenblatt et al. 

1981). The predominant features of RSAg-induced EAU in the guinea pig, 

which has an avascular retina, are choroiditis with some anterior uveitis. In the 

monkey, mouse and rat, retinal vasculitis is more prominent. EAU onset varies 

from 10 days to 2 months, and in duration from days to 12 months or more, 

depending on animal species, antigen dose and use of adjuvant (Gery et al. 

1986a). In the Lewis rat the disease is acute and self-limited, but leads to 

considerable damage of the retina and surrounding tissues in a few days. In 

less susceptible strains of rat, guinea pigs and primates the disease is more 

subacute and may continue for a number of months. In mice, induction of EAU 

is very difficult with RSAg and requires the use of CFA, pre-treatment with 

cyclophosphamide, and pertussis toxin to increase vascular permeability (Caspi 

et al. 1988).  

 

1.4.1.1.1 Cellular immunity to RSAg in EAU 
Based on experiments on the Lewis rat, several fragments of RSAg in adjuvant 

are capable of eliciting EAU (pathogenic sites), or in-vitro T-cell proliferation 

(proliferative sites). In human and bovine RSAg, three sites were originally 

identified as being immunopathogenic – peptide M (human a.a. sequence 303-

320) (Donoso et al. 1987) and peptide N (bovine 281-302) (Singh et al. 1988) 

which are non-dominant, and peptide G (human 343-362) (Gregerson et al. 

1990) which is immunodominant. The sites may be spatially dissociated 

(Gregerson et al. 1989; Gregerson et al. 1990), but are often close to each 

other (Merryman et al. 1991). Using overlapping synthetic peptides, the most 

pathogenic site seems to be within the a.a. sequence 340-360 of human RSAg 

(huRSAg) (de Smet et al. 1993). The minimal uveitogenic epitope possibly lies 

between 352-364 (Gregerson et al. 1990). Other pathogenic sequences are 

listed in Table 1.8.  
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Table 1.8 Uveopathogenic sequences of retinal S antigen (human RSAg 

except where stated). 

 

Sequence 
Number 

Amino Acid Sequence References 

181-200 VQHAPLEMGPQPRAEATWQF 1 
301-320 GKIKHEDTNLASSTIIKEGI 1 
341-360 GFLGELTSSEVATEVPFRLM 1 
351-370 VATEVPFRLMHPQPEDPAKE 1 
273-289 (bovine) SLTKTLTLVPLLANNRE 2 
286-305 PLLANNRERRGIALDGKIKH 3 
306-325 EDTNLASSTIIKEGIDRTVL 3 
339-352 (bovine) LGELTSSEVATEVP 4 
352-364 (bovine) PFRLMHPQPEDPD 5 

 

References: (1) de Smet 1993 (2) (Fling et al. 1991) (3) (Donoso et al. 1988) (4) 

Merryman 1991 (5) Gregerson 1990. 

 

huRSAg epitopes that are immunopathogenic for the Lewis rat can 

induce EAU in other rat strains including Wistar Furth rats. Fischer (F344) rats 

respond poorly to the same peptides, but immunopathogenicity can be restored 

with the addition of pertussis toxin. EAU susceptibility does not seem to be 

solely related to strain MHC class II type. Rat experiments have also 

demonstrated that activated B-cells are required for T-cell activation in response 

to autologous rat RSAg peptide 270-289. The B-cells appear to provide an 

essential stimulatory co-ligand (Prasad and Gregerson 1997). Similar effects 

are observed in mice, where blocking B7-1 can reduce IRBP-induced disease 

expression (Fukai et al. 1999). 

 A classic mechanism for the induction of autoimmune diseases is 

molecular mimicry. The pathogenic peptide 303-320 (peptide M) of bovine 

RSAg (bovRSAg) is known to share sequence homology with several bacterial, 

viral and fungal peptides. Synthetic peptides from several of these non-self 

proteins have been shown to elicit proliferative responses in cells from peptide 

M-immunised rats, and can even induce EAU (Shinohara et al. 1990). A 

synthetic peptide (DTNLA) derived from yeast histone H3, containing 5 residues 

identical to peptide M of RSAg, can induce EAU in Lewis rats (Singh et al. 

1989a). Native S. Cerevisiae histone is also capable of inducing the disease. 
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Viral peptides of 3 and 4 a.a. length, with homology to RSAg, have also been 

found to be pathogenic (Singh et al. 1990). Of particular interest is the partial 

sequence homology between RSAg 342-355 and HLA-B27 125-138 ("B27PD"). 

Immunisation of Lewis rats with B27PD causes EAU, while it can suppress 

RSAg-induced disease when administered orally (Wildner and Thurau 1994). 

Molecular mimicry may therefore provide an explanation for the apparently 

paradoxical statistical association between MHC class I antigens and organ-

specific autoimmune disease, including autoimmune PSII. 

 

1.4.1.1.2 Humoral immunity to RSAg in EAU 
T-cell mediated immunity is the main feature of EAU but humoral responses are 

also present. Serum antibodies to RSAg are detectable by enzyme-linked 

immunosorbent assay (ELISA) within two weeks of a single immunization, 

which induces high titres of circulating antibodies directed towards different 

epitopes on the RSAg molecule (de Kozak et al. 1992). Immunoglobulin 

deposited on retinal outer segments can also be demonstrated. However, 

antibody production is unnecessary for the induction of EAU as demonstrated 

by studies in which the disease can be induced solely by adoptive transfer of 

RSAg-specific, autoreactive T-cells (Mochizuki et al. 1985; Caspi et al. 1986). 

Anti-RSAg antibodies may, however, have a role in disease 

downregulation. Monoclonal antibodies (mAbs) against RSAg epitopes can 

abrogate the onset of EAU when injected simultaneously with the antigen (de 

Kozak et al. 1985; Dua et al. 1989a). Also, pre-immunisation with the anti-RSAg 

monoclonal antibody S2D2 leads to suppression of EAU (de Kozak et al. 1987). 

This antibody binds to an epitope (S2) away from known immunogenic sites in 

the rat or human antigen, and which also shares sequence homology with an 

epitope of TNF-α. After co-immunisation with RSAg and S2D2, rats that are 

disease free are found to have antibodies not only to S2, but also to sites of 

homology on RSAg and to TNF-α (de Kozak et al. 1992). This is taken as 

evidence of idiotype and anti-idiotype antibody immune regulation (de Kozak 

1997). 
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1.4.1.2 Interphotoreceptor retinoid binding protein (IRBP) 

IRBP is a 140 kDa highly conserved glycoprotein, which is produced by the 

photoreceptors (Fong et al. 1984; Borst et al. 1989). It is the major component 

of the interphotoreceptor matrix (Chader 1989) and serves to transport retinoids 

between the neural retina and the retinal pigment epithelium (RPE). It is also 

found in the pineal gland. Bovine (Borst et al. 1989) and human (Fong and 

Bridges 1988; Fong et al. 1990) IRBP genes have been sequenced - they 

encode proteins of 1,264 and 1,262 a.a. respectively, and share 84% sequence 

homology. The molecule consists of 4 repeating subunits of approximately 

equal size and with 30-40% sequence homology between any 2 subunits. 

 IRBP is highly uveitogenic in Lewis rats (Gery et al. 1986b), rabbits 

(Eisenfeld et al. 1987), monkeys (Hirose et al. 1986) and mice (Caspi et al. 

1988), but evokes a poor response in guinea pigs (Vistica et al. 1987). As in 

RSAg-induced EAU there are different patterns of response between species. 

In the Lewis rat, EAU is acute and severe, with the inflammation starting in the 

anterior segment and spreading to the retina and choroid. The EAU starts 

around 8 days post-immunisation and subsides within another 7 days (Gery et 

al. 1986b). In the monkey, however, the onset is delayed for 3-4 weeks and the 

process continues for over 5 months. Here the main focus of inflammation is the 

choroid, with lesser amounts in the retina and virtually none in the anterior 

chamber (Hirose et al. 1986). The cellular infiltration is characterised mainly by 

granulomas in the monkey but by polymorphs in the rat. Autoantibody 

responses to IRBP have also been noted in EAU induced by the protein or its 

fragments (Waldrep and Donoso 1990). 

 The features of EAU in the mouse can vary depending on the mouse 

strain, the dose of IRBP and the use of pertussis toxin. Induction of EAU in 

some strains of mice but not others requires the use of pertussis toxin (Silver et 

al. 1999). A high dose of both IRBP and pertussis toxin will induce an acute 

inflammation of early onset and short duration, whereas a lower dose of either 

may lead to a later onset and extended course. High doses typically induce 

diffuse retinal damage, while low doses cause more focal damage and 

choroidal thickening. The chronic, relapsing nature of IRBP-induced EAU in the 

mouse, may more closely resemble the course of autoimmune PSII in humans 
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than more acute models and provide better opportunities of testing therapies 

(Adamus and Chan 2002).  

 

1.4.1.2.1 T-cell epitope recognition in IRBP 
Experimental studies have demonstrated several uveopathogenic epitopes on 

IRBP. Using 120 synthetic overlapping peptides encompassing the entire 

sequence of human IRBP, 9 uveitogenic peptides were identified (Donoso et al. 

1989). The most pathogenic peptide was "HIRBP 715", between amino-acid 

positions 521-540 (Table 1.9).  

 In a different approach, synthetic peptides of bovine IRBP, predicted to 

bind simultaneously to both TCR and MHC, were tested for ability to induce 

EAU in Lewis rats. These experiments revealed 3 uveitogenic sequences: 

1091-1115 (Kotake et al. 1991b), 1158-1180 (Sanui et al. 1988) and 1169-1191 

(Sanui et al. 1989). The latter two were also pathogenic in monkeys (Sanui et 

al. 1990). Of particular interest is peptide 1169-1191, which has been shown to 

be immunodominant for IRBP in the Lewis rat (Sanui et al. 1989). This epitope 

was further localised to sequence 1179-1191 (Kotake et al. 1990), the minimum 

active peptide being found at 1182-1190 (WEGVGVVPD) (Kotake et al. 1991a). 

The importance of epitope binding to MHC was demonstrated when EAU was 

induced by a markedly lower dose of uveitogenic peptide 273-283, after amino 

acid substitutions to optimise the peptide-MHC binding (Kozhich et al. 1997). An 

additional human IRBP peptide (161-180) has been reported to be 

immunopathogenic in B10.RIII mice (Silver et al. 1995). 
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Table 1.9 Uveopathogenic sequences for IRBP. 

 

Sequence  
No. 

Name Species Amino acid sequence Ref. 

521-540 HIRBP 
715 

Human YLLTSHRTATAAEEFAFLMQ 1 

531-550 HIRBP 
778 

Human AAEEFAFLMQSLGWATLVGE 1 

821-840 HIRBP 
730 

Human KDLYILMSHTSGSAAEAFAH 1 

1121-
1140 

HIRBP 
745 

Human SKKSMVILTSTVTAGTAEEF 1 

1131-
1150 

HIRBP 
808 

Human TVTAGTAEEFTYIMKRLGRA 1 

621-640 HIRBP 
720 

Human ALVEGTGHLLRAHYARPEVV 1 

661-680 HIRBP 
722 

Human DLESLASQLTADLQEVSGDH 1 

701-720 HIRBP 
724 

Human PAVPSPEELTYLIEALFKTE 1 

1051-
1070 

HIRBP 
804 

Human EHIWKKIMHTDAMIIDMRFN 1 

271-283  Bovine SQTWEGSGVLPCV 2 
880-892  Bovine GEAWDLAGVEPDI 2 
1179-91  Bovine GSSWEGVGVVPDV 2 
518-529 TA12 Bovine ALDRAQEVLEFH 3 
1158-
1180 

R4 Bovine HVDDTDLYLTIPTARSVGAAD 
GS 

4 

1169-
1191 

R14 Bovine PTARSVGAADGSSWEGVGV 
VPDV 

5 

1177-
1191 

R16 Bovine ADGSSWEGVGVVPDV 5 

1091-
1115 

R23 Bovine PNDSVSELWTLSQLEGERYG 
SKKSM 

6 

 

References: (1) Donoso 1989 (2) Kotake 1990  (3) (Tanaka et al. 1993) (4) 

Sanui 1988  (5) Sanui 1989  (6) Kotake 1991b 
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1.4.1.2.2 Factors influencing susceptibility to IRBP-induced EAU 
As with RSAg-induced disease, susceptibility to IRBP EAU varies with the strain 

of animal. Lewis rats develop EAU at very low doses of IRBP, whereas Fischer 

(F344) rats are resistant, despite both species sharing the same class II MHC. 

Development of EAU appears to be related to the strong expression of a Th 

type1 (pro-inflammatory) cytokine profile in the Lewis rat (Caspi et al. 1997b). 

Interestingly, Fischer rats can develop severe EAU after adoptive transfer of T-

cells treated with pertussis toxin, which has been found to cause a switch to a 

strong Th1 cytokine profile in primed lymph node cells.  Reversal of the EAU 

phenotype in Lewis rats can be achieved by antigen immunization in incomplete 

Freund's adjuvant, which induces a Th2 type cytokine profile. Further evidence 

of a Th1 cytokine profile being associated with susceptibility to EAU has been 

found in mice (Caspi et al. 1997b; Sun et al. 1997), though resistant strains are 

not necessarily associated with a Th2 profile. Other factors such as MHC 

receptor affinity or the presence of appropriate co-factors are also known to 

influence the direction of T-cell differentiation. Other factors unrelated to Th1 vs. 

Th2 differentiation also have a role in the induction of EAU with IRBP (Silver et 

al. 1999). Possible influences include hormonal levels in the adrenal-pituitary 

axis, neural immunoregulation and the effect of regulatory cell populations. 

 

1.4.1.3 Rhodopsin 

Rhodopsin is the visual pigment in rod photoreceptors and in response to the 

detection of photons, triggers the phototransduction cascade. It is a membrane 

protein of two parts; a polypeptide chain called opsin and a covalently bound 

chromophore, 11-cis-retinal. It is part of the G protein-coupled receptor family. 

 Rhodopsin is capable of eliciting EAU in guinea pigs, rabbits, rats and 

monkeys. In mice, it appears to be immunogenic but not pathogenic in most 

strains (Adamus et al. 1991). In rats, high dose rhodopsin immunisation with 

CFA and pertussis toxin causes acute inflammation of the anterior segment at 

day 10-12, followed by chorioretinitis (predominantly retinitis) which results in 

complete elimination of the photoreceptor cells (Schalken et al. 1988).  

There is controversy concerning the uveitogenicity of rhodopsin versus 

opsin. Broekhuyse reported that the uveitogenicity of opsin was much lower 
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than that of RSAg or IRBP (Broekhuyse et al. 1986). Rhodopsin (with CFA and 

toxin) seemed to cause earlier onset, more severe and more frequent EAU than 

opsin under similar conditions (Schalken et al. 1988; Schalken et al. 1989). The 

difference was thought to be due to conformational changes in the protein as a 

result of dark/light adaptation. However, later studies did not confirm these 

differences (Adamus and Chan 2002). Using synthetic peptides, three distinct 

uveitogenic epitopes on the polypeptide chain have been identified. These 

include sequence 230-250 on extracellular loop V-VI, which induces EAU of 

comparable severity to that of RSAg or IRBP (Adamus et al. 1992). 

 Rhodopsin has not been studied as an autoantigen in human uveitis. 

However, it has been implicated in the pathogenicity of retinitis pigmentosa. 

 

1.4.1.4 Phosducin 

Phosducin is a 33 kDa photoreceptor phosphoprotein that is a cytosolic 

regulator of G-protein mediated signalling. It is found in the retina and pineal 

gland, as well as in liver, heart, lung and brain. It was first reported as inducing 

a mild to moderate EAU and pinealitis in Lewis rats (Dua et al. 1992). The 

disease was late in onset, low grade in severity and predominantly affected the 

posterior segment. Later studies, using synthetic peptides corresponding to rat 

phosducin to map pathogenic epitopes, reported severe EAU in Lewis rats 

within 12 days of inoculation (Abe et al. 1997). A potent uveitogenic site located 

between residues 65-96 was identified, whose potency was comparable to that 

of RSAg. A further study reported 5 uveitogenic epitopes on phosducin, one of 

which was dominant (Satoh et al. 1998). Phosducin`s role in human uveitis is, 

however, uncertain. 

 

1.4.1.5 Recoverin 

Recoverin is a 23 kDa protein found mainly in photoreceptor cells, but also 

retinal bipolar cells and the pineal gland. It regulates phosphorylation of 

rhodopsin in a calcium-dependent manner. Recoverin has also been detected in 

cancer cells. It causes a severe EAU in Lewis rats at low doses (Adamus et al. 

1994; Gery et al. 1994). Histopathologically, recoverin-induced EAU resembles 
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that of RSAg but may require a higher antigen dose. The sequence 61-82 is a 

key region for anti-recoverin antibody binding, contains a major T-cell epitope 

and is highly uveitogenic in Lewis rats (Adamus and Amundson 1996). More 

recently, an additional uveitogenic epitope (sequence 149-167) has been 

identified using recoverin-derived peptides (Ohkoshi et al. 2001). The presence 

of anti-recoverin antibodies is associated with cancer-associated retinopathy 

(CAR) (Thirkill et al. 1992). This phenomenon, in which non-inflammatory retinal 

degeneration occurs leading to decreased visual acuity and night-blindness, 

may develop because of cross-reactivity between B-cell epitopes on recoverin 

and antigens expressed on tumour cells.  

 

1.4.1.6 RPE 65 

RPE 65 is a 61 kDa protein found specifically in the RPE (Hamel et al. 1993). It 

appears to play a role in vitamin A metabolism. Immunization of several inbred 

rat species resulted in an acute widespread uveitis (Ham et al. 2002). 

Interestingly this included a strain (Brown Norway) normally resistant to RSAg-

induced EAU. Unlike EAU induced by several other retinal proteins, no pinealitis 

was noted. 

 

1.4.1.7 Cytokine profiles in EAU 

The predominant pattern of cytokine secretion in EAU is generally believed to 

be a Th1 type (Xu et al. 1997; Foxman et al. 2002). Susceptibility to the disease 

seems to occur with a conversion from a Th0 or Th2 to a Th1-type response, 

whereas a Th2-type response appears to confer resistance (Saoudi et al. 

1993b). Pathogenic T-cell populations in EAU produce large amounts of IFN-γ 

(Caspi et al. 1996). Endogenous IL-10 may limit the expression of EAU and 

help in its resolution. Whereas IL-10 is capable of suppressing a Th1 response, 

the addition of IL-4 can skew it towards a Th2 pattern (Rizzo et al. 1998). 

Similarly endogenous IL-12 is required for the development of EAU (Tarrant et 

al. 1998). IL-12 "knockout" mice fail to develop EAU and instead develop a Th2-

type response, but are capable of developing the disease when infused with 

cells pre-primed in IL-12. 
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 The above findings seem to imply a clear causative role for Th1-type 

cytokine patterns in EAU, but as is seen in other experimental diseases, 

contradictory roles for these apparently pro-inflammatory, Th1 cytokines have 

been noted. For example, IFN-γ deficient knockout mice have been found to be 

susceptible to EAU despite the development of a Th2-type profile (Jones et al. 

1997). Endogenous systemic IFN-γ seems to play a protective role in EAU in 

mice (Caspi et al. 1994). It has also been found that the systemic administration 

of IL-12 protects mice from the development of EAU, in response to 

immunisation with IRBP (Caspi et al. 1997a). It also appears that more than just 

a predisposition towards a Th2 response is required to confer genetic 

resistance to EAU (Sun et al. 1997). Perhaps other factors, such as the stage of 

disease at which particular cytokines are administered/secreted, could account 

for these apparently contradictory effects. 

 

1.4.2  Non-retinal ocular antigen models of uveitis 

1.4.2.1 Experimental melanin-protein induced uveitis (EMIU) 

A non-soluble, melanin-associated protein derived from the RPE, choroid, ciliary 

body and iris, has been found capable of inducing experimental uveitis. The 

protein can be solubilised by proteases but has not yet been fully characterised 

(Simpson et al. 1997). Pathological changes were initially thought to be 

confined to the anterior chamber, hence the term experimental autoimmune 

anterior uveitis (EAAU) (Broekhuyse et al. 1991). However, choroidal 

involvement was later found to be a more constant feature (Chan et al. 1994), 

and the consensus term experimental melanin-protein induced uveitis (EMIU) 

was coined. The prime mediators of the inflammation are CD4+ cells (Smith et 

al. 1999), but accumulations of polymorphs are also observed. Disease onset 

occurs approximately 14 days after inoculation and regresses around I month 

afterwards. Spontaneous recurrence is seen clinically in a quarter of rats around 

37 days after immunization, but after the addition of low dose endotoxin all eyes 

showed some histopathological evidence of choroiditis (Chan et al. 1994). Small 

subretinal inflammatory foci may be seen in recurrences, in addition to the other 

features described. In contrast to EAU, the Th1 response seen in EMIU is less 
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intense and expression of Fas and FasL is weaker, and this may account for the 

more limited inflammatory response and increased rate of recurrences (Li et al. 

1999). The onset of recurrences may also be facilitated by relatively higher 

expression of Bcl-2, which may be responsible for uveitogenic cells avoiding 

apoptosis and surviving in the choroid. EMIU recurrences can be prevented by 

intraperitoneal injection of TGF-β, probably by upregulating expression of ocular 

IL-10 (Li et al. 1996). Therefore the EMIU model of uveitis is particularly useful 

for studying recurrences. 

 

1.4.2.2 Lens induced uveitis 

Uveitis can be induced in animals by disrupting the lens capsule, leading to the 

exposure of lens proteins (crystallins) (Marak et al. 1976). The reaction induced 

is an acute granulomatous uveitis with features of an immune complex-

mediated inflammation. The experimental disease is histopathologically 

identical to a human condition known as phacoanaphylactic endophthalmitis or 

lens-induced uveitis, which can be cured by lens extraction. Posterior 

subcapsular cataract development has been found as a result of an immune 

response induced by bovine lens membrane protein (Tanemoto et al. 2000). A 

recent hypothesis proposes that posterior subcapsular cataracts may be 

induced by low-grade inflammation, initially raised against bacterial proteins and 

then directed against β-crystallins (Shinohara et al. 2000). 

 

1.4.3  Non-ocular antigen models of uveitis 
Direct injection of non-ocular antigen into the eye induces a progressive 

immunisation reaction. An inflammatory reaction of lymphocytes and 

macrophages is detectable in the first week following injection of endotoxin-free 

human serum albumin into the vitreous of rabbits (Sher et al. 1976), and a 

humoral immune response is active within 10 days. A severe “reinduction 

uveitis” can be initiated by the intravenous injection of human serum albumin 

after 30 days, presumably due to the persistence of memory cells. The initial 

immunological response seems to take place in the spleen and regional lymph 

nodes, with primed cells then migrating back to the eye. Immune-complex 
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mediated inflammation has also been implicated after injection of intraocular 

antigen in hyperimmunised animals. Furthermore, uveitis can be induced by 

systemic immunization of non-ocular antigens and these models are outlined 

below. 

1.4.3.1 Endotoxin-induced uveitis (EIU) 

Uveitis can be induced by intravenous injection of specific "Shwarzman" 

bacterial toxins in previously injected (Sanders 1939) or non-prepared (Ayo 

1943) eyes. Anterior uveitis can be induced by intravenous, intraperitoneal or 

footpad injection of low doses of bacterial endotoxin without causing 

inflammation in other organs (Rosenbaum et al. 1980; Kogiso et al. 1992). In 

rats, inflammation begins a few hours after lipopolysaccharide (LPS) injection 

and disappears within a few days. After repeat injections, a state of tolerance to 

the LPS develops (Howes et al. 1985). In the C3H/HeN mouse, a first wave of 

inflammation characterised by polymorphs is induced on Day 1 post-

immunisation, followed by a second wave on Day 5 with macrophages 

predominating (Shen et al. 2000).  

 Most of the effects of LPS in EIU are thought to be related to the lipid 

part of the molecule. In Lewis rats, the effect is probably initiated by 

macrophages within the stroma of the iris and ciliary body (McMenamin and 

Crewe 1995; Pouvreau et al. 1998). This leads to the recruitment of T-cells and 

polymorphs (Kogiso et al. 1992; Guex-Crosier et al. 1996; Brito et al. 1999). 

Apoptosis of mononuclear cells occurs early in EIU, but polymorphs survive, 

producing inducible nitric oxide synthase (iNOS) that may contribute to disease 

pathogenesis (Smith et al. 2000). 

 There is variation in disease susceptibility in different animal strains. This 

seems to be related to animals` abilities to induce expression of pro-

inflammatory cytokines (de Vos et al. 1994a; de Vos et al. 1994b) and adhesion 

molecules (Suzuma et al. 1997). Decreased levels of inflammation can be 

caused by modulation of cytokine expression, or systemic use of TGFβ (Peng et 

al. 1997) or IL-10 (Hayashi et al. 1996). Oestrogen can also reduce the severity 

of inflammation in EIU (Miyamoto et al. 1999), as may pregnancy in other 

uveitis animal models (Agarwal et al. 1999) and possibly also in humans 

(Steahly 1990). 
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1.4.3.2 Adjuvant induced uveitis 

Intravesical BCG (Bacille Camette Guerin) infusion therapy has been reported 

to cause a reactive arthritis in some patients, and in some of these a transient 

uveitis develops (Missioux et al. 1995; Chevrel et al. 1999; Clavel et al. 1999). 

In rats, immunisation with CFA induces uveitis in 22% of cases (Petty et al. 

1994). The inflammation is localised in the iris and ciliary body and may be 

recurrent. Addition of Mycobacterium butyricum to the adjuvant increases the 

rate of uveitis. In adjuvant-induced arthritis, mycobacterial heat shock protein 

(HSP) 65 is known to play an important role. Peptide sequences derived from 

HSP 65 of Mycobacterium bovis are able to provoke inflammation in the iris and 

ciliary body. Extensive photoreceptor loss can be seen at times on histology, 

but little posterior segment inflammation (Uchio et al. 1998). Antibodies against 

HSP 70 have been found to be elevated in certain human uveitides, including 

pars planitis, sarcoid uveitis and Behcet`s uveitis (de Smet and Ramadan 

2001). 

1.4.3.3 Uveitis associated with experimental autoimmune 
encephalomyelitis (EAE) 

Intraocular inflammation has also been noted in experimental autoimmune 

encephalomyelitis (EAE), a disease model for MS. EAE is a classic 

experimental model for an organ-specific, T-cell mediated, autoimmune disease 

and is induced in susceptible animals by immunisation with MBP or its 

pathogenic epitopes (Wraith et al. 1989). Intraocular inflammation, including 

pars planitis and retinal periphlebitis (Tola et al. 1993), is known to occur in 

human MS patients.  

 Intraocular inflammation in EAE may affect the anterior or posterior 

segment. Posterior segment inflammation involves the optic nerve and retina 

(Bullington and Waksman 1958). This is characterised by a mononuclear cell 

infiltration, periphlebitis and demyelination (Rao 1981). The severity of 

inflammation depends on the amount of myelin in the target tissue, animal 

species and strain, and the dose of MBP used. 

 In Lewis rats, anterior segment inflammation often develops at the same 

time as EAE (Verhagen et al. 1994), which develops around 11 days post-
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immunization with MBP. However, the peak of ocular inflammation occurs as 

the neurological disease is subsiding, demonstrating that at least the kinetics of 

the diseases are different. Myelinated nerve fibres in the iris may be the primary 

target of inflammation and there is some evidence that the same subset of 

autoreactive T-cells is responsible for both the anterior segment uveitis and 

EAE (Buenafe et al. 1998). 

 

1.4.3.4 Other experimentally induced models of uveitis 

Recently, an experimental model for autoimmune uveitis using the tyrosinase-

related proteins TRP-1 and TRP-2 has emerged. These proteins are tissue 

differentiation antigens found in melanocytes, and immunization of Lewis rats 

causes anterior and posterior segment uveitis, as well as some extraocular 

manifestations (Yamaki et al. 2000). TRP1 is also capable of causing CD4+, T-

cell mediated vitiligo (Overwijk et al. 1999). This model therefore seems 

particularly well suited to the study of VKH. 

 

1.4.3.5 Genetic control of uveitis in animals 

Animal models, where the inbreeding and manipulation of various strains is 

possible, allow more precise and sophisticated genetic studies in uveitis. They 

have shown that susceptibility to EAU is genetically controlled and appears to 

follow a polygenic, multifactorial pattern of inheritance. Inter-species and inter-

strain differences are apparent. In mice, the expression of EAU is found to be 

controlled by MHC and non-MHC genes. The MHC-controlled component 

appears to be located in the mice MHC class II locus (Caspi 1992), possibly 

implicating antigen presentation as a factor. In rats, two non-MHC chromosomal 

regions have been found to be associated with EAU (Sun et al. 1999). Many 

immunologically relevant genes are located in these regions. The EAU 

susceptibility regions overlap with genetic regions associated with other human 

and animal autoimmune diseases. This suggests that autoimmune disease 

markers may be shared between autoimmune diseases, and in different species 

(Becker et al. 1998). An exciting recent development is the generation of a 

transgenic (TG) mouse model of EAU that expresses human HLA-class II but is 



 

 46 

deficient in mouse class II (Pennesi et al. 2003). EAU was induced in DR3, 

DR4, DQ6 and DQ8 mice with IRBP. Importantly, HLA-DR3 TG mice also 

developed severe EAU with RSAg, to which wild-type mice are highly resistant. 

This humanized TG mouse model should therefore represent a better model of 

human uveitic disease in future studies.  
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1.5  Regulation of ocular immunity 
Animal models of autoimmune PSII have shown a central role for CD4+ T-cells 

in the generation of the immune response, with B-cells - and possibly others 

such as mast cells – playing an accessory role. The regulatory mechanisms 

active within the eye, including those involved in immune privilege, antigen 

presentation and ocular T-cell priming are described below. Again, most of what 

we know has been derived from animal models. 

1.5.1  Ocular immunity and immune privilege 
The eye responds to immune stimuli with a modified, generally less destructive, 

response than most other tissues. This is thought to be an evolutionary 

adaptation that has developed because the degree of inflammation required to 

eliminate pathogens in other tissues, would cause deleterious effects in the eye. 

For example, even moderate inflammation of the cornea can result in sight-

threatening scarring, while inflammation of the posterior pole can very easily 

destroy the delicate tissues of the macula and retina.  

 Specialized anatomical and physiological features mediate the modified 

inflammatory response seen in the eye. The cornea, anterior chamber, vitreous 

cavity and sub-retinal space are termed “immune privileged” sites, meaning that 

foreign tissue grafts can survive at these sites (but not conventional sites) for 

prolonged or indefinite periods (Streilein 2003). Other immune privileged sites 

include the brain, pregnant uterus, ovary, testis, adrenal cortex and hair follicles. 

Immune privileged tissues are those that experience extended survival when 

transplanted to conventional sites that normally reject foreign tissue transplants. 

Immune privileged ocular tissues include cornea, lens, retinal pigment 

epithelium and neuroretina. Other immune privileged tissues include brain, 

placenta, ovary, testis, liver and certain tumours. Ocular immune privilege is in 

part related to the eye`s lack of lymphatics and the presence of effective blood 

tissue barriers. It is also related to the reduced expression of MHC (particularly 

class II) in the anterior chamber, vitreous cavity and sub-retinal space. The 

expression of FasL on ocular cells can cause apoptosis of activated T-cells 

(Griffith et al. 1995; Dick et al. 1999). Ocular immune privilege is an active 
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process, with ocular antigens being recognised by the immune system, but 

producing a deviant effector response – anterior chamber associated immune 

deviation (ACAID) (Streilein 2003). Ocular antigens are thought to be carried to 

the spleen in the bloodstream, where the deviant immune response is 

generated (Wilbanks and Streilein 1991; Wilbanks et al. 1992). The eye-derived 

APC are themselves primed in a microenvironment that contains 

immunosuppressive mediators such as TGF-β (Cousins et al. 1991), vasoactive 

intestinal peptide (VIP) and somatostatin (Biros and Taylor 2001). The deviant 

response results in suppression of the expected cellular, DTH responses and 

the production of non-complement-fixating antibodies. There is also some 

evidence of suppression of EAU by idiotype/anti-idiotype antibody networks (de 

Kozak and Mirshahi 1990). 

 

1.5.2  T-cell priming in the retina and uvea  
Resident RPE, Muller and microglial cells within the retina were initially thought 

to fulfil the role of antigen presentation, through the expression of class II MHC. 

However, RPE and Muller cells have subsequently been found to be poor 

antigen presenters and probably down-regulate immune responses (Caspi and 

Roberge 1989; Liversidge et al. 1993). Retinal microglial cells probably function 

similarly. It is now thought that antigen presentation in the eye occurs through 

classic mechanisms involving macrophages and dendritic cells (DC). Dense 

networks of these cells have been found in the iris, ciliary body and choroid 

(Forrester et al. 1994; McMenamin 1997). DC reside in the eye for only a few 

days, before migrating to the secondary lymphoid organs, mainly the spleen. In 

the early stage of EAU, inflammation (and presumably antigen presentation) 

occurs around either the RPE or surrounding retinal vessels. Later it spreads to 

deeper retinal structures, where antigen presentation is probably carried out by 

MHC class II-positive macrophages. Marrow-derived activated macrophages 

are required for the full development of inflammation in EAU and EMIU. 

Depletion of these cells or absence of the appropriate class II MHC reduces the 

severity of EAU (Forrester et al. 1998b). These cells are recruited early in the 

effector phase of EAU. In the early stages, resident DC numbers remain 
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relatively low but then increase during the active inflammatory phase, remaining 

high for over 6 weeks (Butler and McMenamin 1996).  

 

1.5.3  Immunoregulatory role of dendritic cells 
As well as their role in antigen presentation, DC are also thought to influence 

the differentiation of CD4+ T-cells to a Th1 or Th2 cytokine profile. This may 

happen through co-stimulatory signals conveyed during antigenic stimulation of 

the TCR (Kalinski et al. 1999; Banchereau et al. 2000). The nature of these 

signals is determined during DC development. After leaving the bone marrow, 

immature DC temporarily migrate to the tissues where they take up local 

antigen, while being exposed to the local cytokine environment. The local 

environment determines whether immature DC will adopt a pro-inflammatory 

(DC1) or suppressive (DC2) profile. DC1 cells are polarised towards expression 

of IL-12 and TNF-α, whereas DC2 preferentially express IL-6 (Kalinski et al. 

1999). The cytokine environment of the ocular anterior chamber seems to 

promote the development of DC2-type cells. Once established, the DC profile is 

relatively fixed and upon maturation uptake of further antigen ceases. Mature, 

antigen-bearing DC migrate back to the lymph nodes, where they may activate 

and polarise T-cells with compatible TCRs. 
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1.6  Autoimmune PSII in humans 
"Endogenous" PSII in humans is generally accepted to be an autoimmune 

disease in the majority of cases, as discussed above. When searching for the 

cause of this condition, particularly when using in vitro assays, it is important to 

distinguish between an autoimmune response and autoimmune disease. Given 

that ocular immune privilege is due to an active downregulation of a pro-

inflammatory response rather than antigen sequestration, some autoimmune 

responses to antigen in vitro are to be expected in normal individuals. In 

addition, an autoimmune response can be the result rather than the cause of 

the disease process. Generally speaking, it is the degree of autoimmunity that 

differentiates patients from healthy individuals. It is thought that autoimmune 

disease will follow from an autoimmune response if a sufficient number of 

effector cells are recruited, after which an amplification of non-specific 

inflammatory events will occur. After the initial disease process, chronicity or 

recurrences may occur if sufficient numbers of autoreactive cells remain. 

 

1.6.1  Human autoreactivity to retinal antigens 
Because retinal antigens can induce EAU in many animal models including 

primates, it is tempting to conclude that retinal autoimmunity is the cause of 

autoimmune PSII. This is especially so when considering how EAU can be 

made to closely mimic many of the individual features of clinical autoimmune 

PSII. However, caution is advised as a direct causal link between retinal 

antigens and autoimmune PSII has not yet been established in humans. 

Overall, retinal autoimmunity probably has some role in the generation of 

clinical PSII, but exactly how and at which level has yet to be determined. 

 

1.6.1.1 Cellular immunity to retinal proteins in human PSII 

Positive lymphocyte proliferative responses have been noted in humans in 

response to retinal extract, RSAg and IRBP. T-cell responses to RSAg have 

been studied in greater detail than IRBP. Greater RSAg-specific (bovine and 
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human) in vitro lymphocyte proliferation has been noted in a variety of clinical, 

autoimmune uveitic conditions compared to controls, using peripheral blood 

samples (Nussenblatt et al. 1980). This is especially so for birdshot 

retinochoroidopathy, where over 90% of patients showed significant responses 

(Nussenblatt et al. 1982). Long-term T-cell lines have been established in 

response to RSAg stimulation using vitreous samples from uveitis patients 

(Nussenblatt et al. 1984). Doekes (Doekes et al. 1987) has noted much higher 

cellular immune responsiveness to human RSAg in posterior and pan-uveitis 

patients compared to controls, by measuring the production of migration 

inhibitory factor (MIF) during overnight culture of peripheral blood mononuclear 

cells (PBMC) with the antigen.  In all the above studies, minimal or no 

responses to RSAg were reported in controls. However, Hirose, et al, found that 

PBMC from a large proportion of healthy donors reacted positively to bovine 

RSAg using a highly sensitive proliferation assay (Hirose et al. 1988b), and later 

reported the establishment of a RSAg-specific T-cell line from the blood of a 

healthy donor (Hirose et al. 1988a).  

 Several studies have been carried out to determine the response to 

peptide fragments of RSAg in a number of autoimmune PSII conditions (de 

Smet et al. 1990; Hirose et al. 1990; Nityanand et al. 1993; Yamamoto et al. 

1993; de Smet et al. 2001). Some studies suggest that peptides M and N, 

previously found to be immunopathogenic in EAU, cause increased proliferation 

rates in patients with uveitis, including active Behcet`s disease (de Smet et al. 

1990; Yamamoto et al. 1993). De Smet (de Smet et al. 2001), using 40 

overlapping synthetic peptides from human RSAg, tested the cellular responses 

to PBMC from uveitis patients with Behcet`s, sarcoid, sympathetic ophthalmia 

and VKH. Immunodominant peptides were identified for Behcet`s and sarcoid 

disease categories. Above-baseline proliferative responses were found to 

multiple epitopes in several individuals, representing all disease categories 

except sympathetic ophthalmia, which did not show any response to RSAg. A 

changeable response pattern was noted in selected patients monitored for 

between 6 and 12 months, but this was not noted in the single control subject 

followed. "Epitope spreading", where immunoreactivity is directed against 

different epitopes on the same antigen over time, was also seen. Rai (Rai et al. 

2001) also used synthetic peptides spanning the entire sequence of human 
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RSAg, to screen a group of uveitis patients (anterior and posterior) for 

proliferative responses. Eleven out of 26 patients responded to at least one 

peptide. It would appear that multiple epitopes of human RSAg are 

immunoreactive in different subtypes of autoimmune PSII, and this can vary 

between individuals and over time. Cellular responses to RSAg peptides have 

also been seen in conditions such as retinitis pigmentosa (Yamamoto et al. 

1992) and Eale`s disease (Saxena et al. 1999). 

 The frequency of autoreactive T-cells has been estimated in autoimmune 

PSII. Opremcak used limiting dilution analysis to determine the minimal 

frequency of (bovine) RSAg-reactive T-cells in PBMC (Opremcak et al. 1991). 

Significant frequencies of RSAg-specific CD4+ T-cells were detected in anterior 

and posterior uveitis, but none in healthy controls. Similarly, cell culture-based 

limiting dilution assays have detected an increased frequency of RSAg-specific 

T-cell lines in PBMC from patients with active ocular Behcet`s disease (de Smet 

and Dayan 2000). The range of autoreactive RSAg-specific cells is estimated at 

0 - 400 per 107 PBMC for uveitis patients and 0 - 4 per 107 PBMC for healthy 

controls. These figures are comparable to those found for autoreactive cell 

frequencies in MS. This paper also suggests the expansion of certain T-cell 

subpopulations in response to episodes of uveitis, with a return to normal levels 

within 3 months. 

Cellular responses to IRBP have been found in PBMC from autoimmune 

PSII patients. Hirose (Hirose et al. 1988b) detected low but significant 

responses to whole bovine IRBP in autoimmune PSII patients. However, the 

responsiveness was lower than that detected for RSAg in the same experiment 

and similar levels of response were also detected in the control group. De Smet 

(de Smet et al. 1990) found greater proliferative responses to whole bovine 

IRBP in certain uveitis subtypes compared with controls. Again the responses 

were lower than those of RSAg in the same patients, but the response profiles 

of the 2 antigens paralleled each other. Responses were detected to the IRBP 

peptides R-4 and R-14 in a minority of cases. Yamamoto (Yamamoto et al. 

1993) found that 35% of Behcet`s patients without uveitis responded to whole 

bovine IRBP, compared to 14% of controls. This figure increased to 52% for 

Behcet`s patients with active uveitis. Responses to the peptides R-4 and R-14 

were not significantly different to controls. 
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Overall, although there is ample evidence of proliferative cellular 

responses to stimulation by RSAg, IRBP or some of their peptides, no 

unequivocally immunodominant epitope has emerged for either antigen in 

human disease. This may be because of immunoreactivity to multiple epitopes 

in the same antigen, heterogeneous responses of different disease subtypes or 

the effects of epitope spreading as the disease progresses. It may also reflect 

the limited ability of proliferation assays to detect subtle cellular responses to 

uveitogenic antigens or peptides. 

1.6.1.2 Humoral immunity to retinal proteins in human PSII 

The role of antibodies in autoimmune uveitis is controversial. Antibodies 

directed against specific antigens or organs could either participate in or 

suppress the disease process, or could be seen as epiphenomena resulting 

from other processes e.g. tissue destruction. Generally speaking, 

autoantibodies to retinal antigens are not considered to play an active part in 

the induction of autoimmune PSII. Much of what we know in this area is derived 

from animal models, especially EAU as discussed above. 

In humans, autoantibodies to retinal antigens have been detected both in 

uveitis and normal populations. Several studies have detected the presence of 

anti-RSAg antibodies in autoimmune uveitis patients, and these are described 

more fully in Chapter 3. Hoekzema found anti-IRBP antibodies using human 

and bovine antigen in uveitis patients (Hoekzema et al. 1990). However, similar 

responder frequencies and antibody titres have been detected in uveitis and 

control groups in all these studies.  

 Despite considerable evidence to the contrary, there is some evidence 

that autoantibodies to retinal antigens may be involved in pathological 

manifestations. Using immunostaining techniques, autoimmune antibodies from 

the sera of patients with VKH and to a lesser degree Behcet`s syndrome and 

sympathetic ophthalmia, were found against the outer segments of 

photoreceptors and Muller cells from normal human retina (Chan et al. 1985c). 

This was despite the absence of serum anti-retinal antibodies.  

 As briefly mentioned above, the serum of patients suffering from the 

paraneoplastic disease cancer-associated retinopathy (CAR) have been found 

to contain autoantibodies to recoverin. The immune response seems to be 
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directed against recoverin in both rods and cones (Polans et al. 1993). In a 

similar condition, cutaneous melanoma-associated retinopathy (MAR), onset of 

night-blindness is seen in patients with metastatic cutaneous melanoma. 

Specific autoantibodies have been detected against human retinal bipolar cells, 

which possibly represent cross-reactivity with a melanoma antigen (Milam et al. 

1993). This induces specific abnormalities of the rod and cone systems.  

 Immune complexes have been found in the circulation of patients with 

active Behcet`s disease (O'Connor 1983) and the aqueous humour of posterior 

uveitis patients (Dernouchamps 1977). Low levels of immune complexes in 

serum have been associated with cases of severe isolated retinal vasculitis 

(Dumonde et al. 1982), while some investigators suggest that high levels of 

immune complexes may have a protective effect in uveitis (Stanford et al. 

1988). It is suggested that the immune complexes, possibly of an idiotype/anti-

idiotype nature, may be a compensatory mechanism accompanying anti-retinal 

autoimmunity. Current evidence does not support a role for immune complexes 

as a cause of autoimmune uveitis. 

 Pooled human immunoglobulin from multiple donors (IVIG) has been 

found to modify inflammation in both EAU and EIU (Saoudi et al. 1993a; 

Obrador et al. 1999). This potential method of treatment has shown promising 

results (in an open trial) when applied to humans with birdshot chorioretinopathy 

(LeHoang et al. 2000). The mechanism of action is possibly by induction of the 

idiotype/anti-idiotype network. 

 It is well established that anti-retinal antibodies exist in human 

autoimmune PSII, but on balance the evidence seems to be against a role in 

the induction of disease. However, the potential role of autoantibodies as 

immunoregulatory molecules or disease markers has not been fully explored. It 

is possible that autoantibodies specifically directed against pathogenic or 

suppressive B-cell epitopes exist and this is an area worthy of further 

investigation. 
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1.6.1.3 Cytokines and adhesion molecules in autoimmune 
PSII 

1.6.1.3.1 Cytokines 
Ocular fluids have been analysed for cytokines and other immunologically 

relevant factors in human autoimmune PSII. The levels of IL-6, but not IL-2, 

were found to be significantly elevated in the aqueous humour of patients with 

VKH (Norose et al. 1994). Cytokine expression patterns of infiltrating CD4+ T-

cells from the aqueous of patients have also been studied. Cloned CD4+ cells 

from the aqueous of patients with sarcoid and VKH were found to express 

greater levels of pro-inflammatory cytokines, especially IL-6 and IL-8, than 

cloned cells from a healthy control (Sakaguchi et al. 1998).  

 Serum samples have also been studied in autoimmune PSII. One study 

found increased IL-8 levels in 27 out of 61 patients with intermediate uveitis, 12 

of 27 patients with sarcoid uveitis, and in five of 29 healthy controls (and also in 

19 of 30 patients with HLA-B27 associated acute anterior uveitis) (Klok et al. 

1998). Macrophage migration inhibitory factor (MIF) was found by ELISA to be 

significantly higher in the sera of patients with autoimmune PSII compared with 

controls (Kitaichi et al. 1999). This was particularly so for patients with active 

ocular Behcet`s or sarcoid. It has also been reported that in Behcet`s patients, 

uveitis was seen significantly less frequently in those with anti-CTLA-4 antibody 

in their sera (Matsui et al. 1999). 

 Unfortunately most other studies measuring intraocular cytokines in 

uveitis concern groups of mixed types of uveitis, including infectious and 

anterior uveitis, and the results are not necessarily applicable to autoimmune 

PSII. However, increased levels of the inflammatory cytokines IL-1, IL-8, IL-12, 

TNF-α and especially IL-6 have been reported in these studies (de Boer et al. 

1992; Franks et al. 1992; Wakefield and Lloyd 1992; El-Shabrawi et al. 1998; 

Ongkosuwito et al. 1998; Petrinovic-Doresic et al. 1999). One particular study, 

comparing 2 forms of non-infective anterior uveitis, noted higher IFN-γ and IL-10 

expression in aqueous from patients with Fuch`s cyclitis (a relatively non-

destructive form of anterior uveitis) and greater IL-12 expression in “idiopathic” 

anterior uveitis (Muhaya et al. 1998). Many intraocular inflammatory cytokines 

apparently raised in uveitis, are also elevated in other conditions such as 
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proliferative vitreoretinopathy (de Boer et al. 1992; Elner et al. 1995) and 

following cataract surgery (Nishi et al. 1992).  

 Overall, there are few comprehensive studies of cytokine expression in 

ocular fluids or sera, in well-defined groups of patients with autoimmune PSII. 

Once again, most of what we know in this area of uveitis research derives from 

animal models. 

 

1.6.1.3.2 Cellular adhesion molecules 
The expression of cellular adhesion molecules, and the successful use of 

blocking monoclonal antibodies to suppress inflammation, has been 

demonstrated in various animal models of uveitis (Whitcup 2000). In 

comparison there are relatively few studies on human PSII. Nevertheless, in 

human PSII, upregulation of ICAM-1 has been demonstrated in the retina, 

choroid and RPE and expression of LFA-1 demonstrated on infiltrating 

lymphocytes (Whitcup et al. 1992). Elevated levels of soluble ICAM-1 have 

been associated with active intermediate uveitis and a predisposition to 

systemic disease (Klok et al. 1999). The blockade of cellular adhesion 

molecules with monoclonal antibodies or immunoadhesins is one of the more 

promising approaches for the future treatment of human PSII.  

 

1.6.2  Treatment of autoimmune PSII 
The following section describes the medical treatment of autoimmune uveitis. 

The first part describes the more conventional treatments currently employed. 

The second discusses immunotherapies, many of which are still being 

developed, but some which are already being used. 

1.6.2.1 Established uveitis treatments 

1.6.2.1.1 Corticosteroids 
Corticosteroids are still the mainstay of anti-inflammatory therapy in 

autoimmune PSII, and can be administered systemically or locally by injection 

e.g. orbital floor, sub-Tenon`s or even intraocular. The drug alters the number 

and functions of lymphocytes, polymorphonuclear leucocytes (PMN), and 

macrophages and increases vascular permeability (Forrester et al. 1996). It also 
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interferes with the effects of phospholipase A2, prostaglandin, thromboxane, 

leukotrienes and histamine. While corticosteroid treatment is often effective in 

controlling inflammation, it does not effect a cure, and long-term use of steroids 

is associated with ocular and systemic side-effects (Dick et al. 1997). Side-

effects may eventually force cessation of therapy. Some patients are refractory 

to treatment with steroids.  

 

1.6.2.1.2 Immunosuppressive agents 
A wide range of immunosuppressive agents has been used systemically in the 

treatment of uveitis. The alkylating agent chlorambucil is effective in the short 

term, but is potentially more toxic than other agents for long-term use. 

Azathioprine, an antimetabolite, is also used and is usually reasonably well 

tolerated. However, it is less effective than some of the newer drugs, and may 

cause myelosuppression. Recently more specific drugs have been developed. 

Cyclosporin A (CsA) is a biologically active fungal metabolite and specifically 

targets T-cell function by inhibiting intracellular signalling (and therefore 

activation) after antigen recognition, suppressing IL-2 gene transcription and 

downregulating IL-2 receptor expression on the cell surface (Dick et al. 1997). 

CsA is more suitable than alkylating agents for long-term treatment of chronic 

PSII, as it is less likely to cause long-term adverse effects such as neoplasia. 

However, it can cause nephrotoxicity and hypertension, as well as minor 

adverse effects. Tacrolimus (FK506) acts in a similar manner to CsA, but is 

more potent and can be used to “rescue” failed CsA treatment (Kilmartin et al. 

1998). It has a similar side-effect profile to CsA, but these are less common and 

it is therefore often better tolerated. The newest and possibly most effective of 

these agents is mycophenolate mofetil, a purine analogue that inhibits the cell 

cycle by disrupting DNA synthesis (Larkin and Lightman 1999). It is particularly 

inhibitory for lymphocytes, because it inhibits de novo purine synthesis, on 

which these are particularly dependent. It is better tolerated than either CsA or 

tacrolimus, and does not cause nephrotoxicity or hypertension. It potentially 

causes lymphopaenia however, and is associated with a small increase in the 

number of viral infections.  

 In general, although current treatments represent an improvement on the 

past, there are still substantial limitations in terms of efficacy and side-effect 
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profiles. None of the above treatments is curative. It is hoped that specific 

immune-based therapies can overcome these limitations, and possibly even 

lead to abolition of the disease. 

 

1.6.2.2 Immunotherapies, present and future 

1.6.2.2.1 Oral and nasal tolerance induction 
Oral and nasal tolerance (mucosal tolerance) induction to retinal self-antigens is 

currently an area of great interest in the development of treatments to 

autoimmune PSII. This approach has the potential advantages of selectively 

abrogating the immune response and inducing long-term tolerance to self-

antigens, while causing minimal or no side-effects. Mucosal tolerance has been 

successful in the treatment of animal models of the disease using both retinal 

extract (Dick et al. 1994) and IRBP (Rizzo et al. 1994). There is a suggestion 

that induction of nasal rather than oral tolerance is more effective in reducing 

inflammation.  

 A number of small trials have been carried out to test the efficacy of oral 

tolerance induction to putative autoantigens in human autoimmune uveitis. A 

randomised controlled phase I/II trial tested a total of 45 patients with purified 

bovine RSAg alone, a mixture of soluble retinal antigens or a combination of the 

two (Nussenblatt et al. 1997). A trend towards reduction of immunosuppressive 

therapy in RSAg (alone) treated patients was reported, but was not statistically 

significant. No toxic effects were reported, but there may have been potential 

exacerbation of disease in the retinal mixture group. In another trial, low doses 

of chicken type-II collagen were fed to 13 patients with juvenile rheumatoid 

arthritis-associated uveitis (Thompson et al. 2002). While appearing safe, the 

treatment did not seem to have a significant effect on uveitis. In another 

uncontrolled trial of 9 patients with refractory uveitis, clinical improvement was 

demonstrated by the oral administration of peptide HLA-B27PD (Thurau et al. 

1999). This synthetic peptide, derived from uveitis-associated MHC class I 

antigens, shares sequence homology with RSAg. Although all patients 

eventually relapsed after cessation of treatment, no adverse effects from the 

therapy were reported. 
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1.6.2.2.2 Monoclonal antibody and immunoadhesin therapy 
Regardless of the initiating event, the chronicity of many autoimmune PSII 

conditions probably implies a chronic imbalance of cytokine production (Dick 

and Carter 2003). Under these conditions, continued secretion of pro-

inflammatory cytokines maintains an infiltrate of activated T-cells and myeloid 

cells. Inflammatory cytokines or activated T-cells can now be specifically 

targeted using monoclonal antibodies or immunoadhesins. The latter refer to 

recombinant hybrid molecules consisting of a biologically active component e.g. 

a specific receptor, combined to a carrier component (e.g. the Fc part of an 

antibody molecule). Soluble TNF receptor/IgG fusion proteins have been shown 

to be effective in minimising rod outer segment damage in EAU (Dick et al. 

1996). It has been suggested that anti-TNF-α treatments may have an 

immunomodulatory effect, as well an anti-inflammatory one, in the treatment of 

autoimmune diseases (Dick et al. 1998). 

 These new treatments are now being applied to human autoimmune 

diseases, including uveitis (Dick and Isaacs 1999). Success has been achieved 

in the treatment of rheumatoid arthritis using anti-TNF immunoadhesins and 

monoclonal antibodies (Elliott and Maini 1995). Anti-TNF mAb (Infliximab) 

therapy has been used successfully in a case of treatment-resistant, 

spondyloarthropathy-associated uveitis (Kruithof et al. 2002), and in refractory 

posterior uveitis (Joseph et al. 2003). A recent report on the use of an anti-TNF 

alpha receptor fusion protein in 15 patients with PSII is encouraging (Greiner et 

al. 2004). Other molecules have also been targeted. Early successes have 

been noted in the treatment of autoimmune PSII, in single cases using anti-CD4 

mAb (Thurau et al. 1994), and Campath-1 H (Isaacs et al. 1995). Encouraging 

results have also been reported for the use of anti-IL-2 receptor mAb 

(Daclizumab) in a small, non-randomised study (Nussenblatt et al. 1999). Other 

immune-related molecules have been targeted in experimental autoimmune 

disease, and co-stimulatory molecules such as CD28, B7.1 and CD40 are 

potential targets for future treatment of uveitis.  

  Despite early apparent successes, potential drawbacks of anti-cytokine 

treatment should be noted. It does not seem to restore immunological tolerance 

or immune regulation in autoimmunity. There is the potential risk of generating 
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other autoimmune diseases in the long term. There is also a potentially 

increased risk of infection, particularly with TNF blockade. 
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1.7  Aims of this study 
In the past, the emphasis in basic science research in autoimmune PSII has 

been, of necessity, on animal models of the disease, in particular EAU. Basic 

research directly into human PSII has been limited by several practical 

problems. There is an overall scarcity of human ocular material for uveitis 

research. This reflects the impracticality of obtaining biopsy material from the 

retina/choroid without causing significant harm, the general lack of post-mortem 

or enucleation specimens from patients except those with end-stage disease, 

and the relative rarity of certain important subcategories of the disease. In 

recent years, however, immunological and molecular techniques have emerged 

that might circumvent some of the problems regarding access to and supply of 

ocular tissues. The cloning and expression of recombinant human antigens, the 

utilisation of serum antibodies from patients and the analysis of their binding 

preferences, and the analysis of T-cell responses in the peripheral blood by flow 

cytometry are some of the techniques that seem capable of lending themselves 

directly to the investigation of autoimmune PSII in patients. 

 In this thesis, four main areas of research are described. The emphasis, 

wherever possible, was on the application and evaluation of techniques that 

could be directly applied to human uveitis research. The specific aims were: 

To clone and express the human form of retinal S antigen, one of the major 

candidate autoantigens in autoimmune uveitis. 

To screen by ELISA, sera from autoimmune uveitis patients and controls, for 

the presence of antibodies against human recombinant RSAg. Also to use 

bacteriophage display technology to delineate the preferential binding sites of 

human anti-RSAg antibodies from the same groups of subjects. 

To identify novel potential autoantigens for human uveitis, by constructing a 

human retinal cDNA expression library and screening it with sera from human 

uveitis patients or controls.  

 To demonstrate a specific response to RSAg stimulation of peripheral 

blood T-cells from uveitis patients, using the sensitive technique of cytokine flow 

cytometry. 
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2 Chapter 2: Materials and methods 
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2.1  General methods 
In all molecular biology, bacterial culture, cell culture and transformation, and 

protein purification procedures described here (and subsequently), sterile 

reagents and consumables were used and aseptic technique practiced, unless 

stated otherwise. Similarly, all procedures were carried out at room temperature 

(RT°), except where stated. 

2.1.1  Patient and control selection 
The great majority of subjects were recruited from the Ophthalmology 

Outpatients` Department (OPD), Queen's Medical Centre, Nottingham at 

various times between 1998 and 2001. Some healthy laboratory workers were 

also recruited as controls from the Department of Immunology, University of 

Nottingham. Subjects were assessed clinically and their patient records 

reviewed. They were assigned to uveitis patient or control groups accordingly. 

Subjects were given an information sheet about the study and informed written 

consent obtained. The study adhered to the principles of the Treaty of Helsinki 

and formal local ethics committee approval was obtained.  

 Patient recruitment was carried out with a view to specifically selecting 

subjects with autoimmune PSII (these are usually referred to simply as "uveitis" 

patients). Specifically, patients with primarily anterior uveitis or those with uveitis 

of suspected infectious aetiology were excluded. Subjects with ocular or 

systemic inflammatory disease were excluded from the control group. None of 

the healthy control laboratory workers had been involved in the preparation or 

extensive handling of any of the putative ocular autoantigens subsequently 

used experimentally. Recruitment was consecutive in both groups and children 

(under-16s) were excluded. Various data were collected at the time of blood 

sampling from patients and controls, including age, sex and diagnosis. Uveitis 

subtype (both clinical diagnosis and IUSG classification), current level of uveitic 

activity, duration of current inflammatory episode, total disease duration and 

details of any systemic immunosuppressive therapy (including steroids) were 

recorded for uveitis patients. 

 



 

 64 

2.1.2  Materials 

2.1.2.1 Bovine retinal S-antigen 

Bovine RSAg had previously been prepared in the Dept. of Ophthalmology, 

University of Nottingham from fresh retinas, as previously described (Dua et al. 

1994). Antigen had been quantified and stored at -70°C at a concentration of 

8.7 mg/ml. Prior to use the antigen was analysed by SDS-PAGE gel 

electrophoresis and Coomassie Brilliant Blue staining (see below). It was found 

to be pure and free of contaminants. 

2.1.2.2 Random peptide (phage display) libraries 

The f88-4 linear and f88-4/Cys4 filamentous bacteriophage peptide display 

libraries (described later) were the kind gift of Professor George Smith, 

University of Missouri, USA. 

2.1.2.3 Monoclonal antibodies 

Monoclonal anti-polyhistidine (Sigma, Poole, UK), an unconjugated antibody 

(mouse IgG2a isotype) with specific reactivity to sequences of 6 contiguous 

histidine residues - a polyhistidine or "His" tag - in recombinant proteins, was 

derived from clone His-1 and supplied as mouse ascites fluid. 

Anti-HisG (Invitrogen, Paisley, UK) was an affinity-purified mouse 

monoclonal antibody against the epitope HHHHHHG, found on recombinant 

proteins expressed from the pCR-T7-NT-Topo plasmid.  

Anti-XPress (Invitrogen) was an affinity-purified monoclonal antibody 

against the XPress™ epitope found on recombinant proteins expressed from 

the same plasmid. 

 

All other materials and reagents were purchased from commercial suppliers, as 

indicated.   
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2.1.3  Peripheral blood sampling and processing 

2.1.3.1 Blood sampling 

Uveitis patient and control peripheral venous blood samples were collected at 

the Ophthalmology OPD or in the Department of Immunology, University of 

Nottingham. Serum samples were collected in sterile plain vacuum tubes 

(Becton Dickson, U.K.), clotted and centrifuged within 3 hours of sampling. 

Serum fractions were aspirated and stored in 2ml, sterile, screw top tubes at -

70ºC. Samples for extraction of peripheral blood mononuclear cells (PBMCs) 

were collected in 10ml, sterile vacuum tubes containing heparin. All were 

processed within 3 hours of sampling. 

 Some of the serum samples used in this work had previously been 

collected under similar conditions by Dr. D. Lioumi for use in a preliminary study 

in 1997 which led to the current study. Samples had been stored at -70ºC and 

were seen to be in good condition. Patient and control clinical details were 

verified using medical records for each sample subsequently used. 

2.1.3.2 Separation of PBMCs from peripheral blood 

All tissue culture work was carried out using sterile consumables and reagents, 

under sterile conditions in a Class 2 flow hood. Heparinised peripheral blood 

samples were transferred to universal polystyrene tubes and diluted 1:1 with 

sterile phosphate buffered saline (PBS) (Oxoid, Basingstoke, UK). These were 

underlaid with 10mls of "Histopaque 1077" (polysucrose and sodium diatrizoate, 

density 1.070) (Sigma) and centrifuged at 870 g for 20 minutes – "density 

gradient sedimentation". The "buffy" intermediate layers of PBMCs were 

aspirated by pastette into fresh tubes and washed by resuspending the cells in 

10 volumes of RPMI 1640 tissue culture medium (Gibco BRL, Paisley, U.K.). 

After gentle mixing, PBMCs were pelleted by centrifugation at 440 g for 10 

minutes and supernatant was poured off. Cells pellets were resuspended in all 

tissue culture procedures by gently tapping the side of the tube and then 

diluting. A total of 3 washings were carried out. Before the 3rd round of 

centrifugation, 20 µl of suspension were taken to calculate cell concentration. 

This was carried out using a standard haemacytometer (Weber Scientific 
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International, Teddington, U.K.) and trypan blue (Sigma) for vital staining as 

previously described (Shapiro 1988). Cells were resuspended in either 

"complete" RPMI medium or "freezing medium", depending on whether they 

were to be used immediately or frozen and stored in liquid nitrogen (see below). 

Complete medium consisted of 10% heat-inactivated fetal bovine serum (FBS) 

(Sigma) in RPMI 1640 containing penicillin 100 U/ml, streptomycin 100 µg/ml, 2 

mM L-glutamine (all Gibco BRL) and 5mM Hepes buffer (Sigma). Cells were 

resuspended to a working concentration of 2x106 PBMCs/ml. 

2.1.3.3 Freezing, storage and thawing of PBMCs 

Freezing medium consisted of 10% dimethyl sulfoxide (DMSO)(Sigma), 25% 

heat-inactivated foetal bovine serum (hiFBS) and 65% complete RPMI as 

described above. In later procedures this was modified to 10% DMSO and 90% 

hiFCS, in an effort to better protect the cells during the freezing/thawing 

procedure. Freezing medium was kept <4°C to reduce cell toxicity to DMSO. 

Cell pellets were resuspended to a final concentration of 5-10x106 PBMCs/ml 

and gently mixed. Cells were transferred quickly to pre-labelled cryovials (Nunc, 

Roskilde, Denmark) in 1 ml aliquots. Vials were placed in a Mr Frosty (Nalgene, 

UK) cryofreezing container containing isopropanol and immediately placed in a -

70°C freezer for a minimum of 18 hours. Vials were then stored long-term in the 

vapour phase of a liquid nitrogen storage tank.  

 Cells were thawed rapidly by transfer of the vials from the liquid nitrogen 

storage chamber to a 37°C waterbath for a few seconds, and after gentle 

agitation, transferral to a universal tube on ice. 20ml of RPMI were added 

dropwise, to avoid osmotically shocking the cells. Cells were washed twice 

more, by pelleting and resuspension in complete RPMI medium, as described 

above. They were either used in assays straight after the thawing procedure, or 

alternatively were left to "recover" overnight at 4°C. Cell viability counts were 

performed before proceeding with the assays in either case. 
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2.1.4  Maintenance of bacteria and phage 

2.1.4.1 Bacterial strains 

Bacterial strains used and their specific requirements are described in the 

relevant sections.  

2.1.4.2 Antibiotics 

Tetracycline:  

Tetracycline hydrochloride powder (Sigma) was dissolved in 50% v/v ethanol 

solution at 10 mg/ml. This was filter sterilised and stored at –20°C till used.  

 

Ampicillin: 

Ampicillin (Sigma) sodium salt was dissolved in dH2O at 50 mg/ml, filter 

sterilised and stored at –20°C till used. 

 

Carbenicillin: 

Prepared from powder (Sigma) as per ampicillin. 

 

Kanamycin: 

Kanamycin was prepared from powder (Sigma) as a 100 mg/ml stock solution in 

dH2O. Solution was filter sterilised and stored at –20°C.  

 

Chloramphenicol: 

Prepared from powder (Sigma) in dH2O at 34 mg/ml and filter sterilised. Stored 

at –20°C.  
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2.1.4.3 Bacterial media 

2.1.4.3.1 Liquid media 

2.1.4.3.1.1 LB broth 

10 g bactotryptone, 5 g yeast extract (both Sigma), 5 g NaCl (Fischer 

Scientific), diluted to 1 litre in dH2O. pH adjusted to 7.4 with 1M NaOH and 

autoclaved (121°C, 15 psi) for 20 minutes in Duran autoclavable bottles (Schott, 

Germany). Stored in sealed bottles at RT° till used. 

 

2.1.4.3.1.2 M9LB 

10 mls 20x M9 minimal salts (Sigma) (autoclaved) 

4 mls 20% glucose (Fischer Scientific) (filter sterilised) 

0.2 mls MgSO4 (Fischer Scientific) (autoclaved) 

Made up to 200 mls with LB broth (autoclaved) 

 

2.1.4.3.1.3 Terrific broth 

47 g Terrific broth base (Sigma), 4ml glycerol per litre dH2O. Autoclaved and 

stored as above. 

 

2.1.4.3.2 Bacteriological agar  
Bacteriological agars were melted by microwave oven and mixed. Media were 

cooled to 50°C and antibiotic or other additives mixed in as appropriate. Molten 

agar was poured into sterile 90 mm single-vent Petri dishes (Sterilin, UK), 

approximately 20 mls per plate. Agar was left to solidify for 30 minutes. Plates 

were dried before use by inverting them and placing them in an incubator at 

37°C for 2 hours or on the bench at RT° overnight. Below are recipes of agars 

used in the following experiments.  
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2.1.4.3.2.1 LB agar 

14 g bacteriological agar (Sigma) 

LB broth base 1 litre 

Autoclaved, stored as above. 

 

2.1.4.3.2.2 Minimal agar 

(per 200 mls) 

100 mls of 2x M9 minimal salts 

95.2 mls of 3% agarose  

0.4 mls 1M MgSO4  

0.02 mls 1M CaCl2 (Fischer Scientific) 

Autoclaved as described above. Molten agar let cool to 50°C and 4 mls 20% 

glucose and 0.2 mls 10 mg/ml thiamine (Sigma)(both filter sterilised) added and 

mixed. Poured into plates while still molten and set.  

 

2.1.4.3.2.3 Top agarose  

(per 100 mls) 

1 g tryptone  

0.5 g yeast extract (both Sigma) 

0.5 g NaCl 

0.6 g agarose 

0.1 g MgCl2.6H2O (Fischer Scientific) 

Diluted to 100 mls in dH2O and autoclaved. 

 

2.1.4.4 Growth of bacteria in liquid media 

All incubations in liquid media of bacteria and phage were carried out in a 

shaking incubator at 225 revolutions per minute (RPM) at 37°C. Incubations on 

solid media were carried out at 37°C or at RT° where noted. Colonies were 

grown de novo from commercially supplied or previously frozen glycerol stocks. 

Stocks were melted and a flame-sterilised loop dipped into the stock tube. This 

was streaked several times on an agar plate, containing appropriate antibiotic 
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where necessary. The plate was incubated overnight at 37°C, and well-defined 

colonies identified next day. One colony was picked with a sterile loop, used to 

inoculate 5 mls of appropriate liquid medium and incubated overnight. Overnight 

culture was used to (1) generate reserve glycerol stocks by mixing 50% cells 

with sterile glycerol in a 1.5 ml Eppendorf tube and storing at –70°C (2) to 

streak out on an agar plate to grow a ready supply of colonies for medium term 

use and (3) to directly inoculate fresh medium/antibiotic to grow an immediate 

culture of mid-log cells. Subsequent cultures were inoculated from well-defined 

colonies on the stock agar plate. 

2.1.4.5 Monitoring growth of cultures 

Bacterial cells need to be in the logarithmic growth phase ("mid-log" cells) for 

several specific applications, particularly amplification of phage. This is because 

mid-log cultures contain substantial numbers of cells that are dividing rapidly, 

but which have not yet developed rigid cell walls, and are therefore easily 

infected by phage. Depending on how rapidly cells were needed, medium was 

inoculated with 1:20 to 1:200 of overnight cells. Cells were incubated as before 

and most cultures reached mid-log within 2-3 hours. 100 µl culture samples 

were taken at intervals and transferred to cuvettes containing 900 µl medium. 

Absorbances of 1:10 dilutions were measured at 600 nm using a CE272 

spectrophotometer (Cecil Instruments, Cambridge, UK). Cells were considered 

to have reached mid-log phase when optical density (OD) of (undiluted) cultures 

reached 0.5 to 0.8.  

2.1.4.6 Storage of bacterial strains 

Primary supplies of bacterial strains or secondary amplified (see above) glycerol 

stocks were maintained at -70°C for long term storage. Frequent freeze-thaw 

cycles of original stocks were avoided where possible. For short-term 

maintenance of bacterial colonies, agar plates were sealed with Parafilm 

(Pechiney Plastic Packaging, USA), inverted and stored at 4°C for up to 1 

month.  
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2.1.4.7 Amplification of phage 

Bacterial host cells were grown to mid-log phase at 37°C. For cells containing 

an F-pilus the shaker was slowed down briefly to allow regeneration of sheared 

pili. Cells were infected by direct introduction of phage into culture and 

incubation continued. Lytic phage strains (e.g. T7) usually took 1-2 hours to lyse 

their host, which was detected by a dramatic reduction of culture density and 

the appearance of strands of cellular debris. Non-lytic strains (e.g. M13) were 

incubated for a further 3 hours after infection. Where necessary lysates could 

be clarified by centrifugation, with phage particles remaining in the supernatant. 

Phage titres were usually expressed in terms of plaque forming units (PFUs) 

rather than total number of particles, as the titre of infective phage in a given 

library was functionally more relevant.  

 Phage were grown on agar plates as plaques (clones). Phage were first 

mixed with 200 µl mid-log bacterial cells for 5 minutes in a sterile Bijou tube 

(Sterilin). 5 mls of top agarose, which had been melted and allowed to cool to 

below 50°C, was added and mixed. This was immediately poured onto a pre-

warmed agar plate and distributed evenly by tilting the plate. Top agarose was 

let solidify for 10 minutes, the plate inverted and incubated at 37°C for several 

hours or else at RT° overnight. Phage growth was detected for both lytic and 

non-lytic strains by the appearance of clear plaques on the bacterial lawn. This 

method was also adapted to estimate phage titres in a solution (see later).  

2.1.4.8 Maintenance of phage 

Amplified phage were maintained long-term either by purification through PEG 

precipitation (see below) and storage in phage storage solution, or else 

maintenance in the original growth medium containing lysed bacterial cells with 

NaN3 added to 0.02%. The latter method was found to be at least as effective 

and perhaps even better for preserving phage titres and number of clones. 

Long-term storage was at 4°C in both cases.  
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2.1.4.8.1 Bacteriophage storage buffer  
(per 500 mls) 

2.9 g NaCl  

1.0 g MgSO4.7H2O  

25 mls 1M Tris-HCl, pH 7.5 

2.5 mls 2% gelatin  

Diluted to 500 mls with dH2O and sterilised. 

 

2.1.4.9 PEG precipitation of phage 

Phage were sometimes needed in purified form and were isolated from lysates 

by precipitation. 20 ml lysates were clarified by centrifugation and the 

supernatant mixed with 1/6 volume of 20% w/v polyethylene glycol (PEG) – 

8000 (Sigma), 2.5 M NaCl. The mixture was incubated overnight at 4°C. 

Precipitated phage were pelleted by centrifugation at 10,000 RPM at 4°C for 15 

minutes and the supernatant removed. The pellet was resuspended in 1 ml 

PBS, then centrifuged in a 1.5 ml tube for 5 minutes, to pellet residual bacterial 

cells. The supernatant was transferred to a new tube, and again mixed with 1/6 

volumes PEG/NaCl. This was incubated on ice for 2 hours and centrifuged as 

before. Supernatant was removed and the purified phage pellet resuspended in 

200 µl PBS/0.02% NaN3 for short-term use, or phage storage buffer for long-

term maintenance. The protocol was adjusted pro rata for larger volumes of 

phage lysates. 
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2.1.5  Miscellaneous general methods 

2.1.5.1 Polymerase chain reaction (PCR) 

PCR was used to amplify specific segments of DNA using small amounts of 

template from various sources (e.g. bacteriophage, plasmids, RNA, cells, etc). 

Reactions were carried out in sterile 0.2 ml wells, either in 96-well PCR plates 

(Elkay Lab Products, UK) or individual tubes (Alpha Lab Products, UK). A 

typical 25 µl PCR mixture was set up as follows: 16.75 µl PCR grade H2O 

(Invitrogen), 5 µl of 5x Buffer B (300 mM Tris-HCl pH 8.5, 75 mM (NH4)2SO4, 10 

mM MgCl2) (GibcoBRL), 1 µl  of 5 mM deoxynucleotide triphosphates (dNTPs) 

(Invitrogen), 0.25 µl Tween 1% (Sigma), 0.5 µl each of 20 µM forward and 

reverse primers (MWG-Biotech AG, UK, unless stated otherwise) and 1 µl (0.5 

U) "Platinum Taq" DNA polymerase (GibcoBRL). Template DNA was introduced 

directly into each well, in either cellular or liquid form. Larger or smaller reaction 

mixes were produced pro rata. Plates were covered with foil (Eurogentec, UK), 

heat-sealed and placed in a Hybaid Omnigene thermal cycler. PCR conditions 

varied for individual applications and between 30 and 40 cycles of amplification 

were carried out. Successful amplifications were confirmed by agarose gel 

electrophoresis (below). 

2.1.5.2 Ethanol precipitation of DNA 

A Micromax RF temperature-controlled, benchtop microcentrifuge (IEC, USA) 

was set to 4ºC. 0.1 volumes of 3M sodium acetate (Fischer Scientific, UK) pH 

5.2 and 2 volumes of ice-cold 100% ethanol (BDH Laboratory Supplies, UK) 

were added to a dilute solution of DNA in a 1.5 ml Eppendorf tube (Treff Lab, 

Switzerland). The sample was vortexed and DNA precipitated on ice for 1 hour. 

DNA was pelleted by centrifugation at 15,000 RPM for 15 minutes, after which 

supernatant was carefully aspirated by suction. The DNA pellet was rinsed with 

500 µl 70% ethanol (in sterile dH2O), re-centrifuged and the ethanol once again 

aspirated off. The pellet was left to air dry for a few minutes, before being 

resuspended in an appropriate volume of nuclease free water. Where it was 

necessary to work with smaller volumes during precipitation, 1 volume of 

isopropanol (BDH) was used instead of the 2 volumes of ethanol. In addition, 
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4M ammonium acetate (Fischer Scientific) (1:1 volume with DNA solution) could 

be added with 5 volumes ethanol, instead of sodium acetate. This was used 

where purer DNA samples were required, even though overall DNA yield would 

be reduced.    

2.1.5.3 Quantification of DNA by fluorimeter 

Fluorimetry was used for quantification of DNA. A Hoefer TKO 100 DNA 
Fluorimeter (Hoefer Scientific Instruments, San Francisco, USA) was pre-

heated 30 minutes prior to measurement and the "scale" reading set to 

maximum. 2 mls of x1TNE buffer with Hoechst 33258 dye (Hoechst) at 0.1 

µg/ml in a clean cuvette was used to "zero" the scale. 2 µl of calf thymus DNA 

(Sigma) 200 ng/µl was added to the cuvette and mixed well. The scale was set 

to 200 ng/µl. 2 µl of the test DNA solution was then added into the same 

cuvette, mixed and the difference between readings noted. Concentration of the 

test DNA sample was recorded in ng/µl. 

2.1.5.4 Extraction of plasmids from bacterial culture by 
"Mini-Prep" 

Extractions of plasmids from bacterial cell cultures of up to 5 mls were done 

using the Concert™ Miniprep kit (GibcoBRL). An overnight culture of plasmid-

containing cells was pelleted, and all growth medium aspirated off. 210 µl of cell 

suspension buffer (50 mM Tris-HCl pH 8.0, 10 mM EDTA, RNase A 20 mg/ml) 

was added to the pellet and resuspended. 210 µl of cell lysis solution (200 mM 

NaOH, 1% SDS w/v) was added to the cells, mixed gently by inversion (to 

release plasmid DNA while keeping most genomic DNA attached to the cell 

membrane) and incubated at RT° for 5 minutes. The mixture was neutralised by 

adding 280 µl neutralization buffer (proprietary formulation containing acetate 

and guanidine hydrochloride) and again mixing gently by inversion. The mixture 

was centrifuged at 12,000 g for 10 minutes, to precipitate out insoluble matter 

including chromosomal DNA. The supernatant (containing plasmids) was then 

loaded into a spin cartridge, which contains a silica-based membrane that 

selectively absorbs plasmid DNA. This was centrifuged at 12,000 g for 1 minute, 

the flow through being collected in a tube and discarded. The membrane was 
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washed with 500 µl wash buffer (proprietary formulation containing acetate, 

guanidine hydrochloride, ethylenediaminetetraacetate (EDTA) and ethanol) and 

centrifuged. It was then washed with 700 µl of another wash buffer (proprietary 

formulation containing NaCl, Tris-HCl pH 8.0, EDTA and ethanol) and 

centrifuged once more as above. The membrane was centrifuged again for 1 

minute to remove any residual wash buffer and 75 µl of TE buffer (10 mM Tris-

HCl, pH 8.0, 0.1 mM EDTA), pre-heated to 70°C, directly applied to the centre 

of the membrane. After 1 minute incubation at RT°, the cartridge was 

centrifuged at 12,000 g for 2 minutes and the eluted plasmid solution collected 

in a sterile 1.5 ml recovery tube. Samples were stored at –70°C till used. 

2.1.5.5 Agarose gel electrophoresis 

 Agarose gels were prepared by adding Tris-borate-EDTA (TBE) buffer 

(Sigma) to molecular biology grade agarose (Eurogentec, UK) in a 200 ml 

Erlenmeyer flask, to a final concentration of 1 or 2% agarose w/v. Agarose 

solution was boiled in a microwave oven and mixed till thoroughly dissolved and 

free of bubbles. The solution was let cool till “hand hot” (<60°C). Ethidium 

bromide (Sigma) was added to a final concentration of 0.5 µg/ml and mixed. 

Liquid gel was poured into a horizontal plastic electrophoresis mould with its 

ends sealed with masking tape and distributed evenly to ensure a uniform depth 

of 5 mm. A comb containing the eventual number of wells was immediately 

inserted into the liquid gel, ensuring that there was at least 1 mm clearance 

between the tip of the comb's teeth and the bottom of the mould. The gel was 

let set at RT° till solid (usually 30 minutes), and the autoclave tape removed 

from the ends of the mould. The gel/mould was transferred to an 

electrophoresis tank (Bioscience Services, UK) and TBE buffer was added till 

the gel was submerged by 1mm. The comb was then removed. 

  DNA samples were mixed with 0.1 volumes of loading buffer (20% Ficoll 

400 (Pharmacia), 0.25% bromophenol blue and 0.25% xylene cyanole FF (both 

Sigma) in H2O) and then loaded into individual wells. DNA standards used were 

either 100 base pair (bp) DNA Ladder (Biorad, UK) for up to 1500 bp, or 

Smartladder (Eurogentec) for up to 10,000 bp. The lid (containing electrodes) 

was then fitted onto the gel tank, with the anode orientated so that the DNA will 

migrate towards it. Electric leads were checked for correct positioning and a 
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constant voltage of approximately 5 V/cm (distance between electrodes) applied 

across the gel. Migration of the DNA in the right direction was confirmed by 

observation of the bromophenol blue dye migrating from the wells into the main 

body of gel. Gels were run till the dye front was 80-90% towards the end. 

Prolonged electrophoresis was avoided to prevent excessive migration of 

ethidium bromide out of the gel (moves towards the cathode). The gel was let 

cool for several minutes and examined under an ultraviolet illuminator. The gel 

and its fluorescent DNA bands were photographed where appropriate. 

2.1.5.6 Dot blot assays 

Dot blots make use of specific antigen/antibody interactions and can be used to 

demonstrate the presence of either in a test solution. Depending on whether the 

composition of the test antigen or the antibody (or antiserum) solution is known, 

dot blots can be used to detect the presence of a particular antigen in blotted 

protein sample or cell lysate, or the presence of antibody specific for a particular 

antigen in a test solution. They can also be used to detect specific peptides 

displayed on the surface of bacteriophage e.g. in a phage display library.  

 Protein solutions (either purified antigen or test samples) were spotted 

onto pieces of nitrocellulose membrane in volumes of approximately 1 to 10 µl 

and let air-dry for 20 minutes. Nitrocellulose, which binds non-specifically to 

proteins, was supplied as a roll of membrane with matrix support (Hybond C- 

Amersham Pharmacia Biotech, U.K.) or as discs, each the size of a standard 

agar plate (Millipore, U.K.). After blotting, non-bound sites on the membrane 

were blocked by incubating the membrane in a PBS /polyoxyethylenesorbitan 

monolaurate 0.1% [Tween 20 – Sigma] /5% Bovine Serum Albumin [BSA-

Sigma] (PBST/BSA 5%) solution on a rocking platform at RT° for 1 hour. Once 

wet, membranes were not let dry out till after development was completed. 

Membranes were incubated with antibody solution (known or unknown) diluted 

in PBS, either in the form of purified antibody or serum dilutions, again for 1 

hour at RT°. For direct probing of His-tagged recombinant proteins, horseradish 

peroxidase (HRP) conjugated anti-His monoclonal antibody (Sigma) was used, 

at a dilution of 1:1000 in PBS. Membranes were washed 4 times x 15 minutes in 

PBS/Tween 0.1% (PBST). 



 

 77 

  Primary antibody probed blots were incubated with secondary, enzyme-

conjugated antibody in PBS, at a dilution of 1:5000, for 1 hour. Secondary 

antibodies were either alkaline phosphatase (AP)-conjugated, goat anti-human 

IgG or IgGAM (both Sigma) as appropriate. Membranes were washed again for 

1 hour and finally incubated with substrate compatible for the antibody-

conjugated enzyme. Substrates were 0.15 mg/ml 5-bromo-4-chloro-3-indolyl 

phosphate / 0.3 mg/ml nitro blue tetrazolium, 100 mM Tris buffer pH 9.5, 5 mM 

MgCl2 (BCIP-NBT) (Sigma) for AP and liquid 3, 3`-diaminobenzidine 

tetrahydrochloride (DAB) (DAKO, U.K.) for HRP. After 5-10 minutes, 

membranes developed using the HRP-DAB system were washed in dH2O and 

any spots containing specific antigen for the antibody solution were identified by 

the presence of insoluble dark brown precipitate. Development using the AP-

BCIP/NBT system took up to 30 minutes and positive spots were revealed by 

the formation of a purple precipitate.  

2.1.5.7 Polyacrylamide gel electrophoresis (PAGE) 

Polyacrylamide gel electrophoresis (PAGE), for the separation of protein 

fragments of various sizes into bands, was carried out under denaturing and 

reducing conditions using pre-cast Novex mini-gels and electrophoresis 

equipment (Invitrogen). Some samples were analysed using standard tris-

glycine gels while others were studied using the newer NuPage™ bis-tris gel 

system.  

 Tris-glycine gels used were 8 cm x 8 cm, 1 mm thick, contained between 

10 and 15 individual wells and contained stacking gel. The gel matrix consisted 

of acrylamide and bis-acrylamide, higher concentrations of the latter being used 

for analysis of smaller proteins. Wider ranges of protein sizes were analysed 

with gels with differential bis-acrylamide concentrations e.g. 10-20%. Protein 

samples for electrophoresis were prepared as a 50:50 mixture with 2x sodium 

dodecyl sulphate (SDS) sample buffer (25% v/v 0.5M Tris-HCl pH6.8, 20% v/v 

glycerol, 4% SDS w/v and 0.005% v/v bromophenol blue) (Invitrogen) with 5% 

v/v β-mercaptoethanol (Sigma) as reducing agent. 12 µl of each sample was 

prepared, heated to 95°C for 3 minutes, cooled on ice and centrifuged at 

maximum speed to pellet insoluble debris. Mark 12™ (Invitrogen) unmarked 

protein standards were prepared as per test protein samples, whereas 
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MultiMark™ (Novex, UK) multi-coloured standards were loaded directly into 

their wells (10 µl/well). Gel cassettes were removed from their storage pouches 

and packaging buffer rinsed off with dH2O. The comb was removed from the top 

of the cassette (for contact with the upper, cathode buffer chamber) and tape 

peeled of the bottom slot (for lower chamber). Cassettes were inserted into the 

XCell SureLock™ (Invitrogen) electrophoresis tank with the exposed wells 

facing the inner (upper) chamber. Upper and lower chambers were filled with 1x 

SDS tris-glycine running buffer (SDS 1 g/L, Tris base 2.9 g/L pH 8.3 (both 

Sigma), glycine (BDH)14.4 g/L,) till wells were covered. Wells were rinsed out 

with buffer using a pastette, and 10 µl of each sample supernatant was carefully 

loaded using a 200 µl pipette. 1x sample buffer was loaded into unoccupied 

wells and the lid and electrodes fitted onto the electrophoresis tank. Gels were 

run at a constant voltage of 125 V for 90 minutes or until the bromophenol blue 

dye-front reached the bottom of the gel. Cassettes were split open and the gels 

carefully removed for subsequent analysis (see below) 

 NuPage bis-tris gels were also used because they may produce sharper 

bands under certain conditions. The 2 alternative denaturing running buffers, 

commercially supplied by Invitrogen, were MES-SDS (2-[N-morpholino] ethane 

sulfonic acid 50 mM, Tris base 50 mM pH 7.3, SDS 3.465 mM, EDTA 1.025 

mM), and MOPS-SDS (3-[N-morpholino] propane sulfonic acid 50 mM, Tris 

base 50 mM pH 7.7, SDS 3.465 mM, EDTA 1.025 mM). Different band 

migration patterns are seen when running identical gels with one or other buffer; 

MES buffer provides greater resolution for lower molecular weight proteins, 

while the converse is true for MOPS buffer. Protein test sample or size 

standards were prepared by mixing 7.5 µl protein solution with 2.5 µl 4x 

NuPage LDS sample buffer (lithium dodecyl sulfate (LDS) 0.8 g, glycerol 4.0 g, 

Tris base 0.682 g, Tris-HCl 0.666 g, EDTA 0.006 g, 0.75 mls of Serva Blue 

G250 1%, 0.25 mls of Phenol Red 1%, total volume 10 mls at pH8.5) 

(Invitrogen). 1.1 µl of 10x NuPage Reducing Agent (0.5M liquid DTT) 

(Invitrogen) was mixed with the sample, which was then heated to 70°C for 10 

minutes. Each 11.1 µl sample was centrifuged and cooled as described above. 

NuPage gel cassettes were prepared for the electrophoresis tank essentially as 

described above and 600 mls of running buffer poured into the lower 
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compartment. 500 µl of NuPage Antioxidant (Invitrogen, proprietary formula) 

was added to another 200 mls of running buffer, and this was loaded into the 

upper buffer chamber. Antioxidant was used to prevent re-oxidation of reduced 

proteins during electrophoresis. 10 µl of test sample or standard supernatants 

were loaded into each well and gels were run at a constant 200 v. Running time 

was approximately 35 minutes for MES buffer and 50 minutes for MOPS.  

2.1.5.8 Coomassie Brilliant Blue gel staining 

Coomassie Brilliant Blue dye binds with high affinity to protein bands separated 

by PAGE, and after de-staining of the gel reveals clear bands. After removal 

from cassettes, gels were transferred to fixative (45% v/v methanol, 10% v/v 

glacial acetic acid (both Fischer Scientific)) and incubated on a rocking platform 

for at least 1 hour. Coomassie solution was prepared by dissolving 0.25g of dye 

powder (Sigma) in 100 mls of fresh fixative. Gels were stained for at least 4 

hours and then de-stained by removing the dye solution and replacing it with 50 

mls of fixative (same volume used in subsequent steps). Fixative was replaced 

at least 4 times over 4 – 8 hours, till the gel backgrounds became clear again. 

More rapid de-staining could be achieved by using a solution of 30% methanol, 

10% glacial acetic acid but could potentially result in band contrast 

deterioration. Gels were either photographed immediately or stored in a 20% 

glycerol (Courtin & Warner, UK) with 0.002% sodium azide (Sigma) solution.  

2.1.5.9 Silver staining  

Silver staining of protein bands after PAGE was also carried out on occasion, 

because of the greater sensitivity (but also possibly higher background) of this 

technique over Coomassie staining. Gels were fixed for at least 1 hour in a 

solution of methanol 500 ml/L, glacial acetic acid 120 ml/L and 37% 

formaldehyde (Fisons Scientific, UK) 0.5 ml/L. 50 mls of solution were used in 

this and subsequent steps. Gels were then washed in 50% ethanol for 1 hour, 

changing the solution every 20 minutes. Gels were incubated in "pretreatment" 

solution (sodium thiosulfate (Sigma) 0.2 g/L) for 1 minute and rinsed in ultrapure 

dH2O 3 times for 20 seconds. They were then impregnated with silver by 

incubation for 20 minutes in a solution of silver nitrate (Sigma) 2g/L, 37% 

formaldehyde 0.75 ml/L. After rinsing twice more in dH2O for 20 seconds, gels 
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were placed in a developing solution (sodium carbonate (Sigma) 60g/L, 37% 

formaldehyde 0.5 ml/L, sodium thiosulfate 4 mg/L). The rate of development 

was watched closely and when protein bands became distinct the reaction 

stopped by incubation in "stop" solution (50% methanol, 12% glacial acetic 

acid). Gels were rinsed in 50% methanol, and either photographed immediately 

or stored in 20% methanol solution.   

2.1.5.10 Western blotting 

Western blotting is used to transfer protein bands that have already been 

separated on the basis of size by PAGE, onto membranes where they can be 

probed with specific antibodies. For each polyacrylamide gel, 6 layers of 

QuickDraw Extra Thick™ blotting paper (Sigma), 2 layers of Whatman 3MM 

CHR chromatography paper (Whatman, Maidstone, UK) and 1 layer of Hybond-

C nitrocellulose membrane were cut to the size of the body of the gel. Gels for 

Western blotting were run with Multimark coloured standards in their 2 outer 

lanes. 3 layers of Whatman blotting paper were soaked in 1/2 x Tris-Borate-

EDTA (TBE)(Sigma) transfer buffer and aligned vertically on the anode surface 

of a semi-dry blotter (Sigma), making sure that no air bubbles were trapped 

between layers. One layer of wetted light blotting paper followed by 

nitrocellulose membrane were placed on top of the Whatman blotting paper. 

Cassettes containing polyacrylamide protein gels were split open and orientated 

facing upwards. Top and bottom edges of gels were cut off with a sharp knife, 

gels lifted and placed face-up on the nitrocellulose membranes. Positions of the 

coloured protein bands were marked onto membranes with pencil and gaps 

between membranes and gels filled in with insulating strips of Parafilm. Wetted 

layers of light blotting paper (x1) and Whatman paper (x3) were then placed 

over each gel. The lid (cathode) of the semi-dry blotter was fitted so that it was 

firmly in contact with each stack, while maintaining the stack`s vertical 

alignment. Electrodes were fitted so that current flowed downwards, causing 

protein molecules to migrate onto the membranes. Constant current of 1 

mA/cm2 was applied across each gel and maintained for between 2 hours and 

overnight.  

 After transfer, stacks were disassembled and membranes briefly washed 

in PBS. Membranes were blocked for 1 hour at RT° in PBST/BSA 5%. 
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Membranes were washed briefly in PBST and then probed by incubation with 

specific antibody, as per dot blotting (above). Where His-tagged proteins were 

being analysed, anti-His monoclonal antibody conjugated to HRP, diluted to 

1:1000 in PBS, was used. Development of membranes was as described for dot 

blotting. 

2.1.5.11 Photography 

DNA agarose gels were photographed using a Polaroid MP4 Land Camera with 

Polaroid 667 film (both Polaroid, USA). Camera settings were f4.5 – f11, for 1 

second. DNA bands were visualised on an ultraviolet transilluminator (UVP, 

USA).  

 Coomassie and silver stained polyacrylamide gels were photographed on 

a white lightbox (Jensons Scientific, UK) using a Fujifilm FinePix SI Pro digital 

mounted camera (Fujifilm, UK) and processed using SI Pro Shooting Software 

(Fujifilm) software. Images were cropped and orientated using Adobe 

Photoshop 6.0 (Adobe). 

2.1.5.12 Bicinchoninic acid (BCA) protein assay 

This was used to quantify the total protein content of various crude and purified 

protein preparations. Proteins reduce acidic Cu2+ to Cu+ in a concentration 

dependent manner. Cu+ forms an intense purple complex with BCA and the OD 

of each sample can be measured using an ELISA plate reader. 

 BCA solution was prepared by mixing 160 µl 4% w/v CuSO4.5H2O with 8 

mls of bicinchoninic acid (both Sigma). Protein standards were prepared in 2-

fold dilutions in sterile PBS, from 1mg/ml BSA (Sigma) down to 1.95 µg/ml. 190 

µl of BCA solution were pipetted into duplicate wells of a 96-well, Maxisorp 

ELISA plate (Nunc), for each of the 10 standards and test protein solutions. 2 

negative control wells were filled with 200 µl BCA. 10 µl of each standard or test 

solution were mixed into their respective wells without delay, the plate sealed 

with cling-film and incubated at 60°C for 60 minutes. Plates were let cool to RT° 

and ODs read at 550 nm on a Dynatech plate reader. A standard curve of mean 

standard readings was formed and best fit applied. Concentrations of test 

protein solutions were calculated from this. 
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2.2  Production of recombinant human retinal S 
antigen 

Recombinant human RSAg was cloned and expressed in two forms: human 

antigen expressed in human cells and human antigen expressed in a bacterial 

host. Both methods are described below. 

2.2.1  Human RSAg expressed in eukaryotic cells 

2.2.1.1 Purification of human RNA 

Special precautions (e.g. use of gloves, sterile polypropylene tubes, diethyl 

pyrocarbonate (DEPC) treated glassware, etc) were taken to avoid ribonuclease 

contamination at all stages of this and all subsequent procedures involving 

RNA. All samples containing RNA were disrupted in lysis buffer such as RLT 

buffer (proprietary formula, contains guanidine isothiocyanate)(Qiagen, Hilden, 

Germany) containing 10 µl/ml β-mercaptoethanol, to minimise degradation by 

endogenous ribonucleases. 

 Human total RNA from a consented donor eye neuroretina preparation 

was used as template for the amplification of the human RSAg sequence. Total 

RNA was purified using the RNeasy extraction kit (Qiagen). RNeasy purification 

columns work through the selective binding and then elution of RNA to a 

(patented) silica gel based membrane. The sample was homogenised 

completely by 2 rounds of centrifugation through shredder spin columns. 

Homogenate was mixed with 5 mls of 70% ethanol in DEPC H2O. It was then 

loaded into several RNeasy purification columns, 700 µl at a time. Columns 

were centrifuged at >10,000 RPM for 15 seconds and flow-through discarded. 

Contaminants were washed away with 700 µl and 500 µl (twice) of 2 separate 

proprietary wash buffers. Total RNA was eluted by pipetting 50 µl of nuclease-

free H2O onto the centre of the membrane, and centrifugation of the eluate into 

a 1.5 ml collection tube. The RNA was stored at –70°C till used.  
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2.2.1.2 Production of RSAg DNA by PCR 

Total RNA was measured by fluorimetry and 5 µg used as template for a 

reverse transcription PCR reaction (RT-PCR) in an Amersham Ready-to-Go 

reverse transcription tube (Amersham BioSciences, UK) according to the 

manufacturers instructions. The 33 µl reaction was incubated for 1.5 hours at 

42°C, to convert the RNA into single-stranded DNA (ssDNA), and then the 

enzyme inactivated by incubation at 70°C for 10 minutes. PCR primers to 

amplify human RSAg were designed to have ends compatible for ligation into 

EcoR1 and Not1 restriction sites, and the stop codon of RSAg was removed in 

the reverse primer sequence, which allowed translation though the affinity tag 

sequences within the vector. The forward primer (including EcoR1 site) was 5`-

ATG GAA TTC TAG AGA CCC TCT CCT TGC CA-3`, the reverse primer (Not1) 

was 5`-TGC GAT CGC GGC CGC TCA TCA GCG TCA TTC TTG TC-3`. 

PCR reactions were set up using 0.5 µl (of 20 µM stock) of each primer and 1 µl 

of the reverse-transcription reaction mix. A standard 25 µl PCR reaction was 

used as described previously, using the same forward and reverse primers as 

above with the single alteration of using Elongase DNA polymerase mix (Life 

Technologies Ltd, Paisley, Scotland) for improved fidelity of copying.  

2.2.1.3 Ligation of DNA into a eukaryotic compatible vector. 

The pcDNA4-TO-myc-HisA vector (Invitrogen), a 5151 bp plasmid, was used as 

the vector for cloning the RSAg gene sequence into mammalian cells. This 

plasmid contains multiple cloning sites, including EcoR1 and Not1 restriction 

sites, a resistance gene to the antibiotic Zeocin™ (phleomycin)(Invitrogen) and 

a carboxyl-terminal polyhistidine tag sequence. It contains a hybrid promoter 

consisting of the strong cytomegalovirus (CMV) immediate-early promoter and  

2 x tetracycline operator (Tet O) sites that allows high levels of tetracycline-

regulated protein expression. Control of the reading frame orientation is a 

feature of this plasmid.  

 PCR products were purified enzymatically before restriction digestion 

and ligation into the plasmid. 10 µl PCR product was mixed with 2 µl 10x One 

Phor All (OPA) buffer (Pharmacia, USA), 1 µl (1U) shrimp alkaline phosphatase 

(SAP) and 1 µl (5U) exonuclease 1 (both USB, Cleveland, USA), and 4 µl pure 
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H2O. Excess oligonucleotides, primers and phosphates were enzymatically 

degraded by incubation at 37°C for 20 minutes, followed by inactivation at 85°C 

for 20 minutes. After brief centrifugation, 1 µl (20U) of EcoR1 and 1 µl (20U) of 

Not1 (both USB) were added to the mix and incubated at 37°C for 90 minutes 

and the reaction cleaned up in a Qiagen spin column as previously described. 

Cut PCR product was eluted in 30 µl of PCR-grade H2O 

 Plasmid was restriction digested as follows: 10 µl (100 ng) pcDNA4-TO-

myc-HisA plasmid was mixed with 2 µl 10x OPA buffer, 1 µl EcoR1, 1 µl Not1 

and 6 µl H2O. This was incubated at 37°C for 1 hour and the reaction cleaned 

up in a Qiagen spin column as previously described. Plasmid was eluted in 30 

µl of PCR-grade H2O. 

 A PCR/plasmid ligation reaction was then set up. 5 µl digested PCR 

product was mixed with 1 µl cut plasmid solution, 0.5 µl (5U) T4 DNA ligase, 1 

µl 10 mM adenosine triphosphate (ATP) (both Novagen, UK) and 1.5 µl H2O. 

This was incubated at 12°C for 12 hours. The ligase was inactivated by heating 

to 70°C for 10 minutes and the reaction allowed cool slowly to RT°. 1 µl of 

reaction was analysed by agarose gel electrophoresis, to ensure successful 

ligation. The correct sequence for RSAg was verified by carrying out a PCR 

using the specific primers (pCDNA4mha) 5'-CCTCCGGACTCTAGCGTTTA-3' 
and (pCDNA4mhb) 5'-TCTTCTGAGATGAGTTTTTGTTCG-3', followed by DNA 

sequencing (see later). The remainder was stored at –70°C till used. 

2.2.1.4 Growth of TREx 293 human cells 

TREx 293 is a human embryonic kidney cell line. It contains the pcDNA6/TR 

plasmid, which stably expresses a tetracycline repressor protein (TetR) and 

therefore allows controllable expression of recombinant protein when used 

together with the pcDNA4-TO-myc-HisA plasmid. pcDNA6/TR also confers 

resistance to the antibiotic blasticidin. They can be used for transient or stable 

transfections. 

 The TREx 293 cells for transfection were thawed and re-seeded 4 days 

before the procedure. Briefly, the supplied cryovial containing the 3x106 

supplied cells, was removed from liquid nitrogen storage and thawed quickly in 

a 37°C waterbath. Cells were transferred to a Falcon T-75 (75 cm2),                                       
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flat-bottomed cell culture flask (Becton Dickson) containing 12 mls of "complete 

medium" (without blasticidin). Complete medium consisted in this case of 

Dulbecco`s Modified Eagles Medium (DMEM) High Glucose (Life 

Technologies), 10% pre-filtered FBS, 1% penicillin/streptomycin solution and 

2mM L-glutamine (both Invitrogen). This was placed in a humidified incubator at 

37°C and 5% CO2 to allow the cells to adhere to the bottom of the flask. After 4 

hours medium was aspirated and replaced with fresh complete medium, again 

without antibiotic. After overnight incubation, again under the same conditions, 

medium was aspirated and replaced with complete medium with blasticidin 

5µg/ml (CMB). Incubation was continued and the cells checked daily till they 

reached 80-90% confluence – approximately 3 days.  

 Cells were then "passaged" once, one day before the transfection 

procedure. All medium was removed from the flask and cells were washed once 

with 10mls PBS (serum inhibits trypsin). 5 mls of trypsin-EDTA solution 

(Invitrogen) were added to the monolayer and incubated at room temperature 

(RT°) for 5 minutes. 5 mls CMB was added to inactivate the trypsin and cell 

clumps broken up by aspiration. Cell concentration was determined using a 

haemacytometer and trypan blue stain, as described above. 3x105 cells were 

added to each 35mm well of a 6-well culture plate and made up to 1 ml with 

CMB. To maintain the cell line, 1 out of the 10 mls of cell suspension were 

transferred to a fresh T-75 flask and 15 mls of CMB added. Both culture plates 

and cells were incubated at 37°C as before – the first passage. After 24 hours 

the cells in the 6-well plate had reached 70-80% confluence and were ready to 

be transfected. 

2.2.1.5 Transfection of plasmids into eukaryotic cells 

Before transfection, the pcDNA4-TO-myc-HisA plasmid containing the 

sequence insert for human RSAg was precipitated and resuspended in 

nuclease free water, to rid the DNA of any contaminants. DNA concentration 

was determined by fluorimetry. Final plasmid DNA concentration was 400ng/µl. 

Transient transfections using uncut plasmid were carried out first. After they had 

been shown to be successful, stable cell lines were established by transfecting 

with cut plasmid - which was capable of integrating permanently into the host 
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cells genome. The basic procedure used is described below, with differences 

between transient and stable transfection methods pointed out where 

necessary. 

 100µl of DMEM at RT°, serum and antibiotic free, was pipetted into each 

of 4 polystyrene tubes (12 x 75 mm, Elkay Lab Products, Basingstoke, UK). 6µl 

of Genejammer Transfection Reagent (Stratagene) was pipetted directly into 

the medium and incubated at RT° for 5 minutes. 3 different amounts of either 

cut or uncut plasmid DNA – 1 µg, 2 µg or 3µg– were added directly to each of 3 

tubes and mixed gently. The final tube received no DNA and acted as a 

negative control. The mixtures were incubated for a further 5 minutes at RT°.  

 Growth medium was gently aspirated from the wells of the 6-well plate 

and replaced with 900 µl CMB. Each of the 4 transfection mixtures was added 

dropwise into a pre-labelled well, while gently rocking the plate. The plate was 

incubated for 3 hours at 37°C, then topped up with another 1 ml of CMB and 

incubated for a further 21 hours. 

2.2.1.6 Maintenance and expansion of transfected cell 
cultures 

At this stage cells undergoing transient transfection were induced with 

tetracycline (see below). Wells containing stably transfected cells were 

trypsinised and split 1:5 in CMB, as previously described. Each new 6-well plate 

contained 5 wells containing cells transfected with a particular concentration (1, 

2 or 3 µg) of plasmid DNA, while the last well contained the cells "transfected" 

with no plasmid (negative control). Wells were topped up with CMB to a final 

cell volume of 2.5 mls and incubated again for a further 24 hours. 

  Selection for cells stably transfected with the pcDNA4-TO-myc-HisA 

plasmid was then carried out by adding Zeocin to the culture medium i.e. 48 

hours after transfection. The growth medium was partially replaced with Zeocin 

in CMB, giving a final concentration of 400 µg/ml. Cells were then continuously 

incubated at 37°C, replacing the medium/Zeocin every 3-4 days, while 

inspecting the wells for the appearance of colonies by direct visualisation and 

by microscope. Some colonies were noted 12 days post-transfection and by 18 
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days were large enough (though still separate) to be re-seeded in individual 

wells as individual clones. 

 12 candidate colonies with round edges and even growth patterns were 

identified for re-seeding by marking the underside of the culture plates. All were 

from the wells "positively" transfected with plasmid DNA, with all 3 plasmid 

concentrations yielding clones. Colonies together with medium were picked 

using a 200 µl pipette and transferred to 2 new, labelled 6-well plates, each 

containing 2.5 mls CMB/Zeocin. Cell clumps were broken up by pipetting/re-

pipetting and the plates re-incubated. Ten of the 12 colonies re-seeded 

successfully, the cell monolayers becoming confluent between 7 and 10 days. 

At this stage, individual cell clones were trypsinised and split 3 ways into wells – 

one to maintain the clone, one to be induced with tetracycline to express the 

recombinant protein and one to act as a negative control during expression (see 

below). 

 After induction of the different cell lines and analysis of their protein 

products by SDS-PAGE and Western blotting, those expressing significant 

amounts of RSAg were identified. One cell line was selected for immediate 

expansion and expression. These cells were trypsinised and re-seeded first into 

a T-75 flask and then into 2 Falcon T-175 (175 cm2) flasks.  The cells were 

induced as described below. Frozen stocks were made of all RSAg cell lines 

and stored in liquid nitrogen (below). 

2.2.1.7 Expression of recombinant RSAg from transfected 
cells 

Both stable and transient transfections were induced using similar methods. In 

both, tetracycline at a final concentration of 1µg/ml in medium was added to 

each well, when the cells had reached 60% confluence. For trial expressions of 

both stable and transient transfections, incubation was for 24 hours at 37°C. 

Medium was CMB/Zeocin for stably transfected cells and plain CMB for 

transient transfections. Later, during substantive expression of RSAg from the 

chosen cell line, total induction time was increased to 72 hours. 
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2.2.1.8 Harvesting and lysis of induced cells  

Harvesting and lysis of trial expression cells was done by aspirating the medium 

from the wells of the 6-well plates and replacing it with 1 ml of PBS. Cell 

monolayers were disrupted by scraping and pipetting, and each 1 ml of cell 

suspension transferred to a 1.5 ml Eppendorf tube. Cells were pelleted by 

centrifuging at 1500 g for 5 minutes and the pellet resuspended in 50 µl of cell 

lysis buffer (50 mM Tris pH7.8, 150 mM NaCl, 1% Nonidet P-40)(Invitrogen). 

The suspension was vortexed and incubated at 37°C for 10 minutes to allow 

complete cell lysis. Complete™ (Roche Diagnostics, Mannheim, Germany) 

protease inhibitor cocktail (25x) was added, and the mixture centrifuged at 

10,000 g for 10 minutes to pellet insoluble cell debris. The supernatant fraction 

was aspirated and stored at –70°C till analysed. 

 2 flasks (T-175) of cells were induced for substantive expression of 

recombinant RSAg as described. After 72 hours, all medium was poured off and 

the monolayer washed with PBS. 20 mls of fresh PBS was added and the cell 

layer disrupted/resuspended as above. Cell concentration was determined by 

haemacytometer/trypan blue, and found to be 10 x 106 cells/ml. 1ml aliquots of 

cell suspension were placed in Universal (Sterilin) polystyrene tubes and 

centrifuged at 1,500 RPM for 5 minutes. Supernatant was poured off and pellets 

stored in a – 80°C freezer till ready for protein purification. 

2.2.1.9 Lysis of mammalian cells in preparation for protein 
purification 

Recombinant RSAg was ultimately extracted from cell lysates using the 

Probond Purification System (Invitrogen), which makes use of the polyhistidine 

tag incorporated onto the expressed protein (described below). As purification 

was found to be most effective under denaturing conditions, cell lysates were 

prepared with reagents compatible with this method. 

 Frozen cell pellets were thawed and 8 mls of Guanidinium Lysis Buffer 

(6M guanidine HCl, 20 mM NaPO4 pH 7.8, 500 mM NaCl)(Invitrogen) used to 

resuspend the pellet. DNA was sheared by repeatedly passing the suspension 

through an 18-gauge needle till it became non-viscous. The lysate was 

centrifuged at 3,000 g for 15 minutes to pellet insoluble cellular debris. 
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Supernatant was separated from the pellet and either underwent immediate 

protein purification or else was stored at -20°C till needed. 10-20 µl was kept for 

analysis by SDS-PAGE and Western blotting analysis. Pellets of cellular debris 

were also kept for analysis in case the recombinant protein was unexpectedly 

insoluble and significant amounts were retained in inclusion bodies.  

2.2.2  Human RSAg expressed in bacterial cells 

2.2.2.1 Template DNA and design of RSAg primers 

RSAg DNA for expression in bacterial cells was produced by PCR, using the 

previously cloned pcDNA4-TO-myc-HisA/RSAg plasmid as template. New 

primers were used, producing PCR products with ends compatible for ligation 

into the BamH1 and Hind III sites of the pCR-T7-NT-Topo plasmid  (Invitrogen). 

Forward primer (BamH1) was 5`-ACT GGA TCC AAT GGC AGC CAG CGG 

GAA GAC C -3` and reverse primer (Hind III) 5`-TGG AAG CTT CAC TCA TCA 

GCG TCA TTC TTG TC-3`.  

2.2.2.2 Ligation of DNA into plasmid suitable for prokaryotic 
expression 

BamH1 and Hind III digested PCR products were ligated into the cut pCR-T7-

NT-Topo plasmid, as carried out for the pcDNA4-TO-myc-HisA plasmid.  

 The pCR-T7-NT-Topo plasmid is 2870 bp in size, contains an ampicillin 

resistance gene, a sequence for an N-terminal polyhistidine tag, several other 

distinctive internal epitopes and an enterokinase cleavage site. Expression of 

the recombinant protein is under the control of a T7 promoter, which in turn is 

activated by T7 RNA polymerase. The T7 RNA polymerase gene is located on 

the DE3 lambda lysogen, which is found in the bacterial strain used for 

expression of the RSAg in these experiments - BL21(DE3)pLysS (Invitrogen). 

The T7 gene is under the control of a lacUV5 promoter, but this is usually 

rendered inactive by the action of a lac repressor. Expression of the 

recombinant protein is therefore achieved by either directly infecting the cell 

with helper phage that express the T7 RNA polymerase, or more commonly by 

activation of the lacUV5 promoter with isopropyl-β-D-thiogalactoside (IPTG) 

(Roche).  
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2.2.2.3 Transformation of plasmids into Top 10 F` bacterial 
cells 

The manufacturer (Invitrogen) recommended transforming the recombinant 

pCR-T7-NT-Topo/RSAg plasmid into Top 10 F` chemically competent cells 

(Invitrogen) for characterisation, stable propagation and long-term maintenance 

of the construct. Top 10 F` is a type of Escherichia coli (E. coli), but does not 

contain T7 polymerase, unlike strains used for expression of the recombinant 

protein. Basal levels of T7 polymerase would result in small amounts of 

recombinant protein expression – if the product was toxic this might result in cell 

death and possible loss of plasmid from the cell line.  

 For transformation, one 50 µl aliquot of chemically competent Top 10 F` 

cells were thawed on ice. 2.5 µl of plasmid preparation (representing between 5 

and 10 ng of DNA) was added directly to the cells and mixed by gently tapping. 

The mixture was maintained on ice for 30 minutes. Cells were heat-shocked by 

immersing the vial into a pre-heated waterbath at 42°C for 30 seconds exactly 

and then replacing the vial on ice. After 1 minute, 250 µl of sterile SOC growth 

medium (Invitrogen) was added to the vial. The vial was taped horizontally into 

an incubator/shaker and incubated at 37°C for 1 hour at 225 RPM. 30 and 90 µl 

aliquots of transformation reaction were plated out onto two LB agar plates 

containing 50 µg/ml ampicillin, under sterile conditions. Plates were inverted 

and incubated overnight at 37°C. Next day a number of well-spaced colonies 

were selected from either plate and re-amplified overnight as clones in LB broth/ 

ampicillin. Aliquots (0.5 mls) were taken of each, placed in pre-labelled 

Eppendorf tubes and frozen in 50% glycerol. Plasmid mini-preparations were 

isolated for each clone (Concert Mini-prep Kit). A portion of this DNA underwent 

agarose gel electrophoresis and was sequenced (described later) to identify cell 

lines containing the correct RSAg construct in the right orientation. 

Recombinant plasmids were sequenced in both directions using sequencing 

primers pcDNA3.1 (5`-TAA TAC GAC TCA CTA T-3`) and T7reverse (5`-CTA 

GTT ATT GCT CAG CGG TGG-3`). The remainder of the mini-preps were 

stored for subsequent transformation into cell lines more suitable for protein 

expression (see below).   
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2.2.2.4 BL21(DE3)pLysS bacterial cells 

BL21(DE3)pLysS (Invitrogen) was chosen as the bacterial host cell for 

expression of RSAg from the pCR-T7-NT-Topo/RSAg recombinant plasmid. It is 

an E. coli B/r strain, does not contain the lon protease and is deficient in the 

outer membrane protease OmpT. The lack of these key proteases reduces the 

degradation of proteins expressed within the cells. Cells contain the λDE3 

lysogen that carries the gene for T7 RNA polymerase and is under control of the 

lacUV5 promoter. This promoter is inducible by IPTG. These cells also contain 

the pLysS plasmid, which produces T7 lysozyme, which in turn greatly reduces 

the basal levels of recombinant gene expression. This is particularly useful 

where the protein being expressed may be toxic and expression needs to be 

tightly regulated. pLysS also confers resistance to chloramphenicol and 

contains the p15A origin. This origin, in effect allows pLysS to be compatible 

with pUC- or pBR322-derived plasmids. 

 BL21(DE3)pLysS competent cells were supplied commercially in single-

use aliquots of 50 µl. While transformed cell clones could be frozen down in 

glycerol 50% and stored, possibly better levels of expression were found by 

transforming fresh competent cells for each individual expression experiment.  

 

2.2.2.5 Transformation of plasmids into BL21(DE3)pLysS 
bacterial cells 

BL21(DE3)pLysS chemically competent cells were transformed with the 

plasmid/RSAg constructs using essentially the same method as described for 

Top 10 F` cells. It was unnecessary, however, to plate the outgrown 

transformed cells onto LB agar/ampicillin plates and select specific colonies for 

amplification. Instead the whole outgrowth was used to inoculate a culture of LB 

broth/ ampicillin 50 µg/ml / chloramphenicol 34 µg/ml and amplified to mid-log 

phase. Pilot expressions were then carried out to identify the clones that best 

expressed the recombinant protein and also to determine the optimal incubation 

time post-induction.  
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2.2.2.6 Pilot and main expressions of recombinant RSAg 
from bacterial cells 

It was necessary to carry out pilot expressions even when the cell line for 

expression had been selected. This is because peak rate of protein production 

may not be reached if the induction time is too short, but unnecessary 

degradation of expressed product may occur for prolonged inductions. Samples 

were therefore taken from cultures at different time-points, to determine the 

optimal incubation time for maximal yield of recombinant protein. The 

transformed cell cultures were split in 2 as soon as they reached mid-log growth 

phase (OD600 0.5 - 0.8) as determined by spectrophotometer. One half of each 

was induced with IPTG, while the remaining non-induced culture acted as a 

measure of background expression. IPTG-induced and non-induced cultures 

were run in parallel, so as to aid identification of the correct size protein, when 

samples from both cultures were later run side-by-side on SDS-PAGE gels. For 

each time point, a 500 µl sample was taken from both cultures and centrifuged 

at maximal speed for 30 seconds. Supernatants were aspirated and the pellets 

kept at – 20°C till analysed on gels (by Coomassie Brilliant Blue staining and 

Western blotting). Time points were taken at 0, 1, 2, 3 and 4 hours and after 

overnight incubation. Cell lines (non-induced) were incubated overnight and 

used to re-seed fresh medium the next day. If time-point analyses of samples 

were available at this stage, the clone(s) for substantive expression could be 

identified and expression proceed without delay. Alternatively, glycerol stocks 

were made of each cell line and frozen, pending analysis of time-point samples.  

 A positive control plasmid pCR T7/NT-E3 (Invitrogen), encoding a 58 

kDa protein kinase protein, was supplied with the expression kit. This plasmid, 

which codes for the distinctive epitopes and His tag found in the recombinant 

RSAg, was used to verify the success of the basic transformation and 

expression procedure. The 58 kDa protein would prove useful as a positive 

control in subsequent protein purification procedures and was also used as a 

His-positive control protein in ELISA experiments. 

 Once the particular pCR-T7-NT-Topo/RSAg – transformed cell-line and 

optimum induction times were determined, the main RSAg expression was 

carried out. 180 mls of LB broth/ ampicillin 50 µg/ml / chloramphenicol 34 µg/ml 
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were inoculated with a 5 ml (1:36 dilution) of overnight growth of transformed 

cells in a 500 ml glass culture flask. After 3 ½ hours incubation in a 37°C/ 225 

RPM incubator the OD600 had reached 0.5. The culture was induced by adding 

IPTG to a final concentration of 1 mM. Incubation was continued for a further 4 

hours, at which stage cells were harvested by centrifuging the culture in 50 ml 

Apex tubes (Alpha) at 5000 RPM for 30 minutes. Supernatants were discarded 

and the pellets stored at – 70°C till protein purification was carried out. 

2.2.2.7 Lysis of bacterial cells in preparation for protein 
purification 

Recombinant protein was purified from bacterial cell lysates under denaturing 

conditions. Bacterial cells have a tough outer cell wall and, in comparison with 

mammalian cells, require more vigorous disruption to ensure lysis. 8 mls of 

Guanidinium Lysis Buffer, pH 8.0, 37°C, was added to each pellet from 50 mls 

of bacterial cell culture. Pellets were lysed by rocking the tubes at RT° for 10-15 

minutes. Lysates were sonicated (on ice) to complete lysis and to break up 

strands of DNA. 4 separate bursts of medium intensity were applied for 15 

seconds each. Sonicates were centrifuged at 3,000 g for 15 minutes to pellet 

any insoluble cell debris, and supernatants aspirated off. Again samples of 

unprocessed supernatants and cellular debris were stored and analysed by 

SDS-PAGE /Western blotting, to ensure the recombinant protein was found in 

the supernatant as expected. Supernatants were either subjected to protein 

purification immediately or stored at – 20°C.   

2.2.3  Purification of RSAg using Probond™  nickel-

chelate resin 
Once lysates of mammalian or bacterial cells had been prepared, protein 

purification under denaturing conditions was able to proceed. The Probond 

(Invitrogen) protein purification system makes use of the polyhistidine tag 

incorporated into the recombinant protein. The 6 tandem histidine residues bind 

with high affinity to the Probond nickel chelate resin, under appropriate 

conditions of pH and ionic charge. Purification can be carried out with the 

protein in native or denatured conformation. Both were tried, but denaturing 
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conditions were found to be most successful. The system works on the basis 

that His-tagged protein will bind preferentially to the resin at pH 6.0 – 8.0 

(optimum 7.2 - 7.8), and in the presence of 500mM NaCl to prevent the 

positively charged Probond resin binding to non-specific negatively charged 

proteins. Residual non-specific proteins are removed by washing at pH 6.0 and 

then 5.3. The relatively pure His-tagged protein is finally eluted by washing the 

resin with elution buffer at pH 4.0. 

 The binding capacity of Probond resin is 1-5mg recombinant protein per 

ml of resin. Therefore 2mls of resin was used to extract the recombinant RSAg 

contained in 50 mls of induced bacterial culture. For RSAg expressed in human 

cells, 1 ml of resin was initially used to purify protein from no more than 20 x 106 

cells (2 pellets). The ratio of cells to resin was increased later as it became 

apparent that the cell pellets contained low yields of recombinant protein. 

Volumes described below are for purification using 2 mls of settled resin, and 

were increased pro rata for larger purifications.  

 All solutions, buffers and the pre-prepared lysates in lysis buffer were 

equilibrated to RT° and their pHs measured before starting the purification 

process. pHs were adjusted with HCl or NaOH where necessary. This had to be 

rechecked every day, as pHs were found to fluctuate. 

 A small sample (10-20 µl) was taken from each cell lysate (prior to 

purification) and stored at - 20°C. All binding supernatants, binding buffers, 

wash buffers and elutions were also stored and later analysed by SDS-PAGE 

and Western blotting. Comparisons of the various fractions allowed verification 

of the presence of the recombinant protein in lysates, verification that bound 

protein was not being eluted prematurely in the washes, and identification of the 

elution fractions containing significant amounts of recombinant protein.  

2.2.3.1 Equilibration of resin 

Resin is supplied as a 50% slurry in 20% ethanol. 2 mls of settled resin (4 mls 

of slurry) was put in a 15 ml Apex polypropylene tube, mixed and then 

centrifuged at 800 g for 1 minute. The supernatant was aspirated by pastette. 6 

mls of sterile, distilled water (dH2O) was added and the resin resuspended by 

tapping and gently inverting the tube. The mixture was again centrifuged and 

the dH2O aspirated off. This was replaced with 6 mls of Denaturing Binding 
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Buffer (8M urea, 20 mM NaPO4 pH 7.8, 500 mM NaCl) and the resin 

resuspended. Resin was re-pelleted by centrifugation and the supernatant 

aspirated off. The washing in denaturing binding buffer was repeated once 

more, and the resin was then ready for incubation with bacterial or mammalian 

cell lysates.  

2.2.3.2 Binding of protein to resin 

8 mls of cell lysate was added to 2 mls of equilibrated resin in the 15 ml tube. 

This was mixed gently and then left agitating slowly on a mechanical rocker, for 

30 minutes at RT°. After centrifugation (as before), the unbound lysate 

supernatant was aspirated carefully and stored. Resin was washed with 4 mls 

of denaturing binding buffer by resuspending, agitating for 2 minutes, re-

pelleting and aspirating (and storing) the supernatant. This step was repeated 

once more. 

2.2.3.3 Washing at pH 6.0 and 5.3 

The resin was washed with 4 mls of Denaturing Wash Buffers pHs 6.0 and 5.3 

(8M urea, 20 mM NaPO4, 500 mM NaCl), as described for binding buffer. The 

manufacturer recommended 2 washes at each pH, but up to 4 washes per step 

were carried out on occasion and was found to reduce the amount of non-

specific protein found in subsequent elution fractions. 

2.2.3.4 Elution of His-tagged protein 

After the resin had been resuspended in wash buffer pH 5.3 for the last time, 

the whole 4 mls resin/wash buffer was gradually loaded into a 2.5 ml Mobicol 

(Mobitec, Germany) column, fitted with upper and lower 35 µm pore size filters, 

and held vertically in place by a benchtop clamp. A 2.5 ml syringe tube was 

fitted to the column's Luer lock to increase its capacity. Wash buffer was 

allowed to flow through and was saved. Elutions were then carried out by 

adding Denaturing Elution Buffer (8M urea, 20 mM NaPO4 pH 4.0, 500 mM 

NaCl), 1 ml at a time to the column and catching the flow-through in a 1.5 ml 

Eppendorf tube. 10 elution fractions were usually collected and frozen till 

analysis. The resin was then washed by passing 10-20 mls of dH2O through the 
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column, followed by 20% ethanol. Columns were sealed while the resin was still 

wet and stored at 4°C for future use. 

2.2.3.5 Analysis of lysates, washes and elutions by SDS-
PAGE and Western blotting 

It was essential to analyse each fraction saved during the purification process, 

to ensure the process was working as planned and to make changes (e.g. slight 

changes in pH of wash buffers or number of washes) where necessary. 

Identification of elution fractions containing recombinant protein was found to be 

unreliable using a spectrophotometer, as it was not sensitive enough to detect 

the sometimes very low concentrations of RSAg eluted. Instead worthwhile 

elutions were identified by Coomassie Brilliant Blue or silver staining of samples 

run on SDS-PAGE gels, combined with Western blotting. 

2.2.3.6 Concentration and measurement of recombinant 
proteins 

Once elution fractions containing RSAg were identified, they were pooled and 

concentrated by Centriprep and Centricon (both Millipore, UK) centrifugal filter 

devices. This was done for 2 reasons: firstly to bring the protein to a 

concentration where it would be within the detection threshold of a quantification 

assay such as the BCA test, and secondly to remove the high levels of urea (i.e. 

8M) contained in the denaturing elution buffer.  

 Both Centriprep and Centricon devices work on the same principle i.e. 

filtering the test solution through a cellulose filtration membrane, which has a 

designated molecular weight cut-off through which smaller molecules can pass, 

but the majority of larger molecules cannot. Centriprep devices were used for 

volumes up to 15 mls and filtration occurs in the opposite direction to 

sedimentation, which in theory reduces membrane clogging. Centricon devices 

were used to further concentrate volumes of 2 mls or less. Filtration occurs in 

the same direction as sedimentation and relies on the use of a fixed-angle rotor 

to minimise membrane clogging.  

 For both types of concentrators, membranes with molecular weight cut-

offs of 30 kDa were selected (RSAg is approximately 48 kDa in size). 
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Membranes of both devices were pre-rinsed prior to use to wash out trace 

amounts of glycerine and sodium azide. A typical starting volume of 

protein/denaturing elution buffer was 10 mls (1ml x 10 elutions) but this had to 

be diluted in filtered sterilised PBS to 40 or 50 mls to prevent degradation of the 

membrane by the high urea content and possible loss of sample. The sample 

was concentrated step-by-step, by centrifugation in a Universal 30 RF bench-

top centrifuge (Hettich, Germany) using a swinging-bucket rotor at 1500 g, till 

sample volume was less than 2 mls. This was rediluted to 20 mls and the 

procedure repeated till the volume was once again less than 2 mls, resulting in 

a 40-50 fold reduction in the urea concentration. At this stage, concentrates 

were transferred to pre-rinsed Centricon devices and spun at 5000 g till final 

volume was less than 1 ml. Concentrates were transferred to fresh 1.5 ml 

Eppendorf tubes, Complete protease inhibitor cocktail added and stored at -

70°C. 

 Although removal of the leader sequence including the His tag was an 

option, through digestion at the enterokinase cleavage site, this was felt to be 

unnecessary for subsequent applications. Leader sequences were therefore left 

in situ and were later found to be useful as binding sites for capture antibodies 

and for verification of the presence of the recombinant protein at various stages. 

 Finally, the amounts of total protein in the concentrated samples were 

determined by BCA assay as described above. 
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2.3  ELISAs for measuring anti-RSAg activity 
The extent and degree of humoral immunoreactivity in human subjects to RSAg 

was investigated by ELISA. This technique is well established, cheap, rapid and 

is capable of accurately detecting specific antibodies to a particular antigen, 

both qualitatively and quantitatively. ELISA screening of human autoimmune 

uveitis and control sera was carried out in 2 separate experiments: firstly bovine 

RSAg was used on its own and in a later experiment the technique was refined 

and immunoreactivity of individual patients/controls to bovine RSAg was 

compared to that of human recombinant RSAg expressed in a bacterial host. 

2.3.1  Basic procedure for 3-step ELISA (anti-RSAg 
titres) 

A 3-step, indirect ELISA, with antigen bound to solid phase (see Figure 2.1, 

p126), was used to determine the immunoreactivity of patient and control sera 

to RSAg. Optimal concentrations/dilutions of reagents are quoted here, and 

were determined prior to starting test ELISAs (see next section). In the initial 

experiments (sera versus bovine RSAg) individual sera were screened against 

duplicate antigen-coated wells, with duplicate wells coated overnight in coating 

buffer/ BSA 5% acting as negative controls for each 96-well plate. 50 µl of 

RSAg solution, at 10 µg/ml in carbonate coating buffer (Na2CO3 1.59 g/L, 

NaHCO3 2.93 g/L, pH 9.6), was coated directly into duplicate wells of 96-well 

Maxisorp (Nunc) ELISA plates and incubated overnight at 4°C. Wells were 

washed 3 times with PBST from a wash bottle and blocked by filling them with 

PBST/BSA 1% for 2 hours at RT°. After repeat washing (x3), 50 µl of each 

serum was loaded into its respective well at a dilution of 1:100 in PBST/BSA 1% 

and incubated for 2 hours at RT°. After washing (x3), 50 µl goat anti-human IgG 

– alkaline phosphatase secondary antibody (Sigma) was added at a dilution of 

1:5000 for 1 hour at RT°. After a final round of washing (x3), 75 µl of p-

nitrophenyl-phosphate (pNPP) (Sigma) dissolved in diethanolamine buffer (97 

mls/L diethanolamine (Sigma), 250 µl 1M MgCl2, 0.1% NaN3 at pH 9.8) at a final 

concentration of 1 mg/ml, was added to each well at RT°. After 1 hour, ODs 

were read on a Dynatech optical plate reader at a wavelength of 405 nm. It was 
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later realised that the layout of antigen/negative control wells was less than 

optimal, as each serum should have had its own negative control, and the 

experiments were repeated as below. 

 In repeat experiments (sera versus bovine and recombinant human 

RSAg), each serum sample was tested against a panel of duplicate wells; 

negative control, His-tagged protein control, bovine RSAg and recombinant 

human RSAg. The His-tagged protein was run as an additional control to detect 

inadvertent reactivity to His tags (still attached to recombinant human RSAg). 

All proteins were coated at a concentration of 5 µg/ml in carbonate coating 

buffer, overnight at 4°C. Negative control wells did not receive antigen (only 

coating buffer), but otherwise were treated at each stage as per test wells. All 

washes were carried out 5 times using PBST. PBST/5% fat-free dried milk 

(Sainsbury, UK) (PBSTM5%) was used to block wells at RT° for 2 hours. Sera 

and secondary antibody were diluted in PBSTM1%. Serum (50 µl of 1:25 

dilution per well) was incubated at RT° for 2 hours. 50 µl of secondary antibody 

(goat anti-human IgGAM – alkaline phosphatase) was used at a dilution of  

1:20,000 for 1 hour at RT°. Substrate was added as above at RT° and ODs 

read after 30 minutes.  

2.3.2  Optimisation of ELISAs 
Optimisation of the concentrations of antibodies, sera and antigens was 

performed before analysis of test samples began. In the initial experiments 

optimal reagent concentrations were determined on a trial-and-error basis. This 

approach was later changed to a more formal optimisation protocol, as outlined 

here. 

 For 3-step ELISAs, optimisation was in 2 stages. Firstly, a serum sample 

known to contain anti-RSAg antibodies was diluted to 1:25. Conjugated, 

secondary antibody was diluted to 1:20,000. Antigen was directly plated into 

duplicate wells in 2-fold dilutions, from 10 µg/ml to 0.635 µg/ml. ELISA was 

carried out as described above, a standard curve of ODs created and an 

optimal antigen concentration chosen, usually in the mid-range of the standard 

curve. In the second stage of optimisation, antigen concentration was kept 

constant at the previously determined optimal level. 2-fold dilutions of sera (1:10 
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to 1:200) and secondary antibodies (1:5000 to 1:40000) were used in a "criss-

cross" grid assay. Blocked wells were used to determine background "noise" 

levels. A combination of the serum and secondary antibody dilutions that gave 

the highest signal:noise ratio combined with an acceptably low background 

were chosen for the substantive ELISAs that followed. Direct comparison of 

blocking buffers (PBST/BSA5% or PBST/M5%) was carried out with other 

reagents at their optimal concentrations. 

2.3.3  Analysis of generated data  
Mean values for test and control samples were calculated using a spreadsheet 

(Microsoft Excel 97). Test sample readings (ODs) were divided by their 

corresponding control values. The values for His-tagged protein wells were 

used as negative controls where they were higher than those of plain blocked 

wells. Positive values from sera of patients and controls were categorised as 

being "mildly", "moderately" or "highly" reactive to RSAg. Differences in 

immunoreactivity between bovine and human recombinant RSAg were 

analysed on an individual subject basis and also in terms of differences 

between patient and control groups (see Chapter 3). 
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2.4  Epitope mapping studies for RSAg 

2.4.1  Overview of biopanning 
Biopanning (affinity selection) is a technique used to screen phage display 

libraries with target ligand molecules, often antibodies or serum. Phage display 

libraries can be either random combinatorial (e.g. random peptide libraries) or 

non-random (e.g. cDNA libraries). Manipulation of the phage genome results in 

clones of particles expressing a particular peptide on their surfaces, as fusions 

with host capsid proteins. Only a tiny percentage of the original library of clones 

will bind specifically with the target ligand molecule(s), even in non-random 

cDNA libraries. However, by "panning" the library with immobilised target ligand 

and amplifying captured phage particles for use as input phage for subsequent 

rounds of panning, a steady enrichment of ligand-specific phage clones can be 

achieved. In fact, after 3 or 4 rounds of biopanning with a random peptide 

library, up to 99% of total clones should be specific for the target molecule. 

Clones can then be plated out as plaques and analysed individually, both in 

terms of their DNA sequences and in terms of specific binding properties as 

measured, for example, by ELISA. Much information about the antigen binding 

site(s) and epitope preferences of the target ligand molecule, and by inference 

its target antigen in vivo, can be gained in this way.  

2.4.2  Random phage display libraries used in epitope 
mapping studies 

2.4.2.1 T7 library 

T7 is a robust, double-stranded DNA phage. It is a head-and tail unit with an 

icosahedral head (diameter 55 nm), from which random peptides are displayed 

as fusion proteins on pentamer/hexamer capsid subunits. Phage assembly 

takes place inside the E. coli cells and particles are released by lysis of the 

host. Time from infection of cells in culture to lysis (1-2 hours) is more rapid 

than for λ or filamentous phage. In this experiment a high-copy number, linear 

9-mer library, that had originally been purchased commercially (T7Select™, 
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Novagen) and re-amplified, was used. The fusion is at the carboxyl terminus (C-

terminal) of the recombinant protein. BL21 E. coli were used as host.  

  

2.4.2.2 Ph.D.-12 library 

This library was purchased commercially (New England Biolabs, Hitchin, U.K.). 

It is a combinatorial library of linear random peptide 12-mers, fused to the gene 

III minor coat protein (pIII) of the filamentous (single-stranded) M13 phage. The 

pIII protein is involved in phage infectivity and the 12-mer peptides are 

expressed on the N-terminus end of the protein. ER2537 E. coli was used as 

host.  

  

2.4.2.3 f88-4 linear and f88-4/Cys4 (constrained) 15-mer 
libraries 

These 2 libraries were the kind gift of Prof. G. Smith, University of Missouri, 

USA. The vector of both libraries is based on the filamentous fd-tet vector (9183 

bp), which confers resistance to tetracycline and is inducible by the antibiotic. 

f88 vectors contain 1 recombinant and 1 wild-type gene VIII molecule, both of 

whose products contribute to the f88 virion capsid. Recombinant f88 molecules 

are 9273 bp in size. Up to 300 recombinant capsid proteins are displayed per 

virion, which is capable of displaying quite large recombinant peptides. In GVIII 

recombinant proteins, the fusion is at the amino terminus (N-terminal). Because 

f88 plaques are so small, phage are titred more easily by measuring the number 

of tetracycline transducing units (TU) i.e. the number of (infected) bacterial host 

colonies that grow on a tetracycline containing plate. Both libraries require 

amplification prior to use (see below). Because gene VIII is transcribed from a 

tac promoter, IPTG is added to a final concentration of 1mM to induce full 

expression of the protein during amplification. 

 The f88-4 linear library contains 2x109 primary clones and has an 

infectivity rate of 42%. The f88-4/Cys4 library displays the recombinant 15-mer 

peptides in constrained conformation, which may enhance binding to target 

ligand in certain cases. It has 1.7x108 primary clones with an infectivity of 9.4%. 
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2.4.3  Affinity purification of anti-RSAg polyclonal 
antibody 

 50 µl aliquots of stored serum samples from autoimmune uveitis patients 

and healthy controls were taken and pooled in separate 15 ml Apex tubes 

designated "P" and "C" respectively. Serum samples were diluted to 4 mls in 

PBS. Protein G resin (Pharmacia Biotech, Sweden) in 20% ethanol was 

centrifuged at low speed (2000 RPM) in a Universal bench-top centrifuge. 

Supernatant was decanted and resin washed 3 times in 10 volumes of PBS. 

1ml of settled resin was added to each serum-containing tube and allowed to 

mix on a rocking platform at RT° for 30 minutes. Resin was diluted to 10 mls 

with PBS and gradually loaded into 5 ml Mobicol affinity chromatography 

columns (Mobitec) with pre-fitted lower 35 µm pore size filters. As resin was 

settling, upper filters were also fitted and all supernatant allowed flow through. 

Columns were washed through 5 times with 5 mls PBS. 1 ml of elution buffer 

(0.1M glycine-HCl, pH 2.2) was then added to each column, the outflow blocked 

and the mixture incubated for 2 minutes. Eluates were allowed flow through and 

were collected in 1.5 ml Eppendorf tubes. Each elution was neutralised to pH 

7.0 with 250 µl of 1M Tris base, pH 10. This process was repeated 4 times and 

columns finally washed through with 10 mls elution buffer. They were then 

washed 3 times with 5 mls PBS and stored in PBS/20% ethanol. Optical 

densities of eluted IgG fractions were determined by spectrophotometry at 280 

nm using quartz cuvettes. The readings were translated to mg/ml by dividing by 

1.43 

 Patient and control IgG fractions were pooled separately and underwent 

affinity purification for anti-RSAg antibody. 0.33 g of 6-aminohexanoic acid N-

hydroxysuccinimide ester – Sepharose B4 resin (Sigma) was reconstituted with 

1 ml of PBS. Resin was washed twice with PBS and 268 µg purified bovine 

RSAg in 1 ml of PBS added to the dry resin. This was mixed at RT° for 1 hour 

and the mixture loaded into a 2.5 ml Mobicol as described above. The column 

was washed through 5 times with PBS and then patient sera IgG passed 

through. Flowthrough was collected and passed once more through the column. 
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The column was washed through 5 times with PBS and affinity purified anti-

RSAg antibody finally eluted in 1 ml fractions of elution buffer (as above). 

Neutralised eluates were concentrated using Centricon centrifugal 

concentrators (30 kDa MW cut-off) and final IgG concentration determined by 

spectrophotometry. The affinity purification column was washed 5 times in PBS 

and stored in PBS/0.02% NaN3 till re-used. Immunoglobulin from control 

subjects was affinity purified in the same way. The specificity of the anti-RSAg 

antibody was confirmed by screening it against dot blots of RSAg, using non-

specific bacterial cell lysate as negative control.  

2.4.4  Affinity selection of antibody reactive phage 

2.4.4.1 T7 library biopanning 

Patient and control affinity purified anti-RSAg antibody was diluted to 1 ml in 

PBS and placed in 2ml sterile, screw-top tubes (Alpha). 50 µl washed, 

paramagnetic, Dynabeads (Dynal, Norway), pre-coated with mouse anti-human 

IgG, was added to each tube, which was incubated on a rotating mixer for 2 

hours. Antibody excess solution was separated from beads with a magnet, 

aspirated and saved. Beads were washed in PBS 4 times. 2 mls of T7 phage 

solution (clarified lysate) were negatively selected for non-specifically binding 

particles by incubation with 100 µl fresh Dynabeads. Supernatant was aspirated 

and 1 ml phage library (approximately 1010 PFUs representing 108 

combinations) added to each tube containing washed, anti-RSAg coated beads. 

This was incubated/rotated for 30 minutes. Supernatant phage solution was 

separated and decanted, and the beads washed 4 times with PBS. 1 ml of BL21 

E. coli that had been grown to mid-log (OD 0.5) from an overnight culture was 

added to each tube of washed beads and incubated for 10 minutes. 10 µl of 

cells were taken from each tube for titration of pre-amplification numbers of 

captured phage (see below). The remaining 990 µl were used to inoculate 

separate flasks containing 20 mls of BL21 mid-log cells. These flasks were 

incubated till total lysis of cells was observed, usually 1-2 hours, or overnight. 

Phage titres were estimated as before, and lysates stored. Lysate which was 

clarified by centrifugation was used as input phage for the next round of 

biopanning.  
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 Yields of pre- and post-amplification phage were determined by "plaque 

assay". 10 µl of each phage solution was used to produce a series of 10-fold 

dilutions in LB. 10 µl of each dilution was plated out on a bacterial lawn, as 

described in "amplification of phage". After overnight incubation at RT°, a plate 

with 50 - 300 well-spaced plaques was selected and the exact number counted. 

Correcting for the dilution factor, the total number of infective particles in each 

original 10 µl could be calculated and expressed as PFUs/ml. Knowledge of the 

percentage infectivity of each library could be used to calculate the total number 

of phage particles in each lysate if necessary.  

 Less stringent conditions (no detergent in PBS for washes, long 

incubation times) were used for the 1st round of biopanning to prevent 

premature loss of relevant phage clones from the experiment. In the 2nd and 

subsequent rounds, greater stringency was used to reduce the number of non-

specific phage being selected and therefore amplified. 

 4 rounds of biopanning were carried out on both samples. A progressive 

increase in the number of amplified phage was confirmed for each round. The 

number and location of plaques expressing peptides specific for anti-RSAg was 

monitored after each amplification by performing "plaque lifts". Circular 

nitrocellulose membranes were laid on top of plates containing plaques and as 

they were lifted off, some of each plaque remained bound. Membranes were 

screened with anti-RSAg and developed as described in "dot blots". Levamisole 

(final concentration 5mM) was added to alkaline phosphatase substrate solution 

to neutralize the activity of bacterial alkaline phosphatase and better delineate 

plaques displaying high-affinity peptides. The exact positions on the master 

plates of specific plaques were determined by studying the membranes and 

marked. After the 4th round, positive plaques were identified and labelled on 

each master plate.  

2.4.4.2 Ph.D.-12 library biopanning 

Essentially the same method as above was used for biopanning with the Ph.D.-

12 (M13) library, with the following adjustments. ER2537 grown on minimal 

medium was used as host bacterium. 4x1010 (10µl) of input phage were used 

for the first round of biopanning. Affinity-selected phage were eluted from 
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Dynabeads with 1 ml glycine-HCl 0.2 M, pH 2.2 and neutralised in 150µl 1M 

Tris-HCl, pH 9.1. 

 Problems were encountered amplifying the eluted captured phage after 

each round and other methods of amplification were tried. This included 

separation of phage DNA by phenol and electroporation into electrocompetent 

cells and the use of M13 K07 helper phage to assist with the Ph.D.-12 infection 

process. Neither of these approaches overcame the problem (discussed later) 

and the use of this library was abandoned. 

 

2.4.4.3 f88-4 15-mer linear and f88-4/Cys4 15-mer library  
biopanning 

2.4.4.3.1 Amplification of f88-4 linear and f88-4/Cys4 
pentadecapeptide libraries 

The procedure was identical for both libraries. K91Kan E. coli (which contain a 

kanamycin resistance gene) were grown overnight in a culture of LB containing 

100 µg/ml kanamycin. Two 1-litre culture flasks containing 100 mls of terrific 

broth were each inoculated with I ml of overnight culture, and grown to late log 

phase (OD = 2.0). The shaker was slowed down for 5 minutes to allow sheared 

F-pili to regenerate and 1012 of the supplied phage particles (corresponding to 

5x1010 TU) added to each flask. Slow shaking was continued for 15 minutes. 

Cultures were then poured into individual 3-litre flasks containing 1L of LB with 

0.22 µg/ml tetracycline and 0.5mM IPTG. Incubation was continued for a further 

35 minutes (shaker at full speed). Tetracycline was then added to an overall 

concentration of 18 µg/ml. 10 µl of each infected culture were taken for titration 

and the main culture incubations continued overnight. A broad range of serial 

dilutions were made from the 10 µl samples and 200 µl of each plated out on LB 

agar plates containing 100 µg/ml kanamycin and 40 µg/ml tetracycline. After 

overnight incubation the colonies were counted, and the number of phage-

infected cells per original primary phage clone in both flasks was calculated 

(ideally >100 cells per clone). The phage titre of the overnight incubations was 

calculated as before, the library transferred to a 500 ml sterile Duran bottle and 

stored with 0.02% NaN3 at 4°C till used. 
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2.4.4.3.2 Biopanning of f88-4 linear and f88-4/Cys4 
pentadecapeptide libraries 

The same general principles were applied as in the T7 biopanning experiments. 

Linear and constrained libraries were mixed in equal parts to produce a single 

solution containing 3 x 1011 TUs as input phage for the first round of biopanning. 

1 ml of Protein G, loaded into a chromatography column, was used as the solid 

phase for patient and control affinity-purified anti-RSAg polyclonal antibody. 

Input phage in PBS were negatively selected with unbound Protein G before 

biopanning began. Phage were eluted from the antibody-coated resin using 500 

µl of 0.2M glycine-HCl, pH 2.2, and neutralised in 300 µl of Tris-HCl, pH 9.1. 

After 3 rounds of biopanning, phage-transformed colonies were plated out on 

kanamycin/tetracycline agar plates and screened by PCR as described below.   

2.4.5  Sequencing antibody reactive phage peptides 

2.4.5.1 PCR amplification of phage DNA 

After the final round of biopanning, plaques/transformed bacterial colonies were 

screened by PCR amplification of the DNA from individual phage clones. Each 

plaque was touched with a pipette tip and directly introduced into 25 µl of PCR 

mix a 0.2 ml well.  

 

T7 PCR primers were: 

T7 forward primer: 5`-ACA ACG TTA TCG GCC TGT TC-3` 

T7 reverse primer: 5`-TAC CGG AGG TTC ACC GAT AG-3` 

PCR conditions for T7 amplification were: 

94°C for 10 minutes – 1 cycle 

94°C for 50 seconds, 50°C for 1 minute, 72°C for 2 minutes – 35 cycles 

72°C for 10 minutes, 30°C for 5 minutes – 1 cycle  
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f88-4 linear /f88-4 Cys4 PCR primers were: 

f88-4 (Gene VIII) forward primer: 5`-TCC CCC TGT TGA CAA TTA ATC-3` 

f88-4 (Gene VIII) reverse primer: 5`-ATT AGG CGG GCT GGG TAT-3` 

PCR conditions for f88-4 linear /f88-4 Cys4 amplification were: 

94°C for 10 minutes – 1 cycle 

94°C for 30 seconds, 58°C for 30 seconds, 72°C for 30 seconds – 35 cycles 

72°C for 20 minutes – 1 cycle.  

 

Successful amplification was confirmed by agarose gel electrophoresis. 

 

2.4.5.2 Enzymatic digestion of PCR products 

PCR products were purified prior to sequencing by enzymatic digestion. The 

enzymes digest single-stranded DNA and remove unincorporated primers and 

dNTPs. 5 µl of PCR product was mixed with 0.5 µl (5U) exonuclease I and 1 µl 

(1U) SAP in a 0.2 ml PCR tube. The reaction was heated to 37°C for 15 

minutes and then the enzymes inactivated by heating to 80°C for 15 minutes. 

The reaction was cooled to RT° and centrifuged briefly.  

2.4.5.3 Cycle sequencing reaction of PCR products 

Sanger`s enzymatic method, using fluorescent dideoxynucleotides (ddNTPs) as 

chain terminators during thermal cycling, was used for sequencing of the 

purified PCR products. 6µl of digested PCR products were mixed with 4 µl of 

Ready Reaction Mix™ from the ABI Prism BigDye Terminator Cycle 

Sequencing Ready Reaction Kit v2.0 (Applied Biosystems, Warrington, UK). 

The Ready Reaction Mix contains a proprietary mixture of AmpliTaq™ DNA 

polymerase FS enzyme, a mixture of dideoxy- and deoxy- dye terminators, 

deoxynucleoside triphosphates, magnesium chloride and Tris-HCl buffer, pH 

9.0. Appropriate sequencing primer (0.15 µl of 20 mM) was added to each 

reaction and sequencing carried out, as below: 
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T7 sequencing primer: 5`-TTA AGC TGC GTG ACT TGG C-3`  

T7 sequencing reaction conditions:  

96°C for 30 seconds, 50°C 15 seconds, 60°C for 4 minutes – 30 cycles 

28°C for 1 minute – 1 cycle  

This was later changed to a 2-step sequencing reaction, as follows: 

96°C for 30 seconds, 50°C for 4 minutes and 15 seconds – 30 cycles 

28°C for 1 minute – 1 cycle 

 

f88-4 linear/Cys 4 libraries (GVIII) sequencing primer: 5`-TTC TTA ATG GAA 

ACT TCC TC-3`.  

Sequencing reaction conditions were identical to those for T7. 

2.4.5.4 Clean-up of sequencing reaction 

The DNA solution from the previous stage was centrifuged briefly, diluted to 20 

µl with ultrapure H2O and transferred to a 0.5 ml Eppendorf tube. 2 µl 3M 

sodium acetate, pH 5.0 and 50 µl 95% ethanol were added, the mixture 

vortexed and placed on ice for 10 minutes. This was centrifuged at 15,000 RPM 

at 4°C for 15 minutes. DNA was pelleted and the supernatant aspirated off 

carefully. The pellet was rinsed with 250 µl of 70% ethanol, the tube inverted 

several times and centrifuged again for 5 minutes. Supernatant was again 

aspirated off and the pellet left to air dry for 10 minutes. Pellets were stored at   

-20°C till sequenced. 

2.4.5.5  Automatic sequencing 

Automatic sequencing was carried out on an ABI Prism™ 310 Genetic Analyser. 

Each DNA pellet was resuspended in 15µl of Template Suppression™ reagent 

(contains 99.5% deionised formamide, 0.11% EDTA). After mixing, samples 

were denatured by heating to 95°C for 2 minutes. Samples were cooled 

immediately and placed into the machine for automated loading onto the 

sequencing capillary. Up to 500 bp were sequenced at a time. 
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2.4.6  Analysis of immunoreactivity of phage peptides 

2.4.6.1 ELISA testing of phage selected by immunopanning 

After analysis of their DNA sequences, plaques/colonies representing phage 

clones of interest were punched out of the master plate and amplified overnight 

in 5 mls of mid-log cells. Clarified lysates were PEG precipitated and the phage 

pellets resuspended in PBS/0.02% NaN3. Panels of purified phage clones were 

used as solid phase antigen in indirect ELISA assays against individual uveitis 

patient and control sera. Purified phage preparations in carbonate buffer were 

coated in excess into duplicate wells of 96-well ELISA plates, and incubated 

overnight as previously described. Wells coated with wild-type phage were used 

as negative controls. 3-step ELISAs were carried out essentially as described 

for anti-RSAg screening. Wells were blocked in 5% PBSTB, sera diluted to 

1:100 in 1% PBSTB and a 1:20,000 dilution of secondary antibody used. Mean 

test clone values were divided by mean negative control readings and the 

immunoreactivity of each phage clone designated as "low", "intermediate" or 

"high" on this basis.  
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2.5  Screening for new retinal autoantigens with a 
retinal cDNA library 

2.5.1  Purification of mRNA from human retina 

2.5.1.1 Harvesting, fixation and homogenisation of fresh 
human retina  

Fresh human retinas were kindly provided by the Bristol Eye Bank. Whole 

human eyes were harvested from donors who were consented for research 

purposes, within 12 hours post-mortem. Each retina was immediately micro-

dissected from its globe by Dr. V. Smith, University of Bristol, and the 

neuroretina separated from the retinal pigment epithelium (RPE)/choroid. Each 

was placed in a separate 15 ml Apex tube containing 5 mls of RLT buffer and 

50 µl β-mercaptoethanol. Retinas were vortexed in the fixative till homogenized, 

to prevent degradation of the RNA by tissue nucleases. Samples were stored at 

–70°C till needed.  

2.5.1.2 Extraction and measurement of total RNA 

Special precautions to avoid ribonuclease contamination were employed as 

before. Total RNA was extracted from 2 homogenised human retinas from a 

normal individual, using the RNeasy extraction kit, essentially as described for 

recombinant RSAg production (above). Total RNA concentration was 

determined by UV spectrophotometry at 260 nm absorbance and was stored at 

–70°C till used. 

2.5.1.3 Purification and measurement of mRNA fraction  

mRNA was purified from the total RNA sample using the Straight A`s mRNA 

Isolation System (Novagen). This system depends on paramagnetic beads 

coated with deoxythymidine (dT) to selectively bind to the poly-adenine(A) tails 

found on all eukaryotic mRNA molecules. mRNA comprises approximately 5% 

of total RNA. 250 µl total RNA solution was added to 250 µl pre-washed 

Magnetight™ Oligo (dT) Particles and 750 µl Lysis Buffer (proprietary). The 
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mixture was incubated at RT° for 5 minutes and the beads separated from the 

supernatant using a magnet. Separated beads were washed twice in 1 volume 

of Wash Buffer (proprietary) and all residual buffer removed. mRNA was eluted 

by mixing the beads with 0.5 mls of nuclease-free water and incubation at 60°C 

for 10 minutes. Magnetically separated supernatant was transferred to a fresh 

tube where it was precipitated (as described for DNA) using 0.1 volumes 3M 

sodium acetate, 0.6 volumes isopropanol and 2 µl 10 mg/ml glycogen as a 

carrier molecule. The pellet was resuspended in 50 µl nuclease-free water. The 

whole mRNA purification process was repeated once more, to enhance the 

purity of the sample. mRNA concentration was determined by UV 

spectrophotometry and was then concentrated further to a working volume of    

5 µl.  

2.5.2  Construction of a retinal cDNA expression 
library 

Retinal mRNA was converted to a library of cDNA fragments of various sizes 

using the OrientExpress™ cDNA Synthesis kit (Novagen). All components 

belonged to this kit, except where noted. The Hind III Random Primer strategy 

was used, which produces more even sequence representation than other 

priming options.  

2.5.2.1 First strand cDNA synthesis with random primer 
strategy 

5 µl of purified retinal mRNA was mixed with 1 µl (0.5 µg) Hind III Random 

Primer (patented sequence) and 4 µl nuclease free water. This was heated to 

70°C for 10 minutes, immediately placed on ice and centrifuged briefly. To this 

was added 5 µl 5x First Strand Buffer (250 mM Tris-HCl pH 8.3, 375 mM KCl, 

15 mM MgCl2), 2.5 µl 100 mM dithiothreitol (DTT), 1.25 µl 10x Methylation 

dNTP mix and 4.25 µl nuclease free water. This was incubated at 37°C for 1 

minute and then 2 µl of MMLV reverse transcriptase (400 U) added. The 25 µl 

reaction was incubated for 1 hour at 37°C, to convert the RNA into single-
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stranded DNA, and then the enzyme inactivated by incubation at 70°C for 10 

minutes. This was immediately chilled on ice and centrifuged briefly.  

2.5.2.2 2nd strand synthesis 

25 µl of first strand reaction was mixed with 25 µl 5x Second Strand Buffer (200 

mM Tris-HCl pH 7.5, 22 mM MgCl2, 425 mM KCl), 3 µl 100 mM DTT, 1µl 10x 

Methylation dNTP mix, 2.5 µl (25 U) DNA polymerase I, 0.8 µl (0.8 U) RNase H 

and 67.7 µl nuclease free water. To estimate (by radionucleotide incorporation) 

the total amount of double-stranded DNA (dsDNA) produced, 10 µl of the 

reaction was taken and mixed with 0.25 µl of (α- P32)dATP. Both this and the 

remaining 115 µl reaction were incubated at 15°C for 90 minutes.  

 After incubation, the 115 µl reaction was diluted to 250 µl with nuclease 

free water and mixed with an equal volume of Tris-EDTA (TE) buffered 

phenol:chloroform:isoamyl alcohol (25:24:1) (Sigma). This was vortexed 

vigorously and centrifuged at 12,000 g for 1 minute. The aqueous phase was  

aspirated, transferred to a tube containing 1 µl glycogen, 250 µl 4M ammonium 

acetate and 300  µl isopropanol, and mixed well. After 5 minutes incubation 

(RT°) this was centrifuged at 12,000 g for 8 minutes. Supernatant was aspirated 

carefully and the pellet rinsed with first 70% and then 100% ethanol. It was air-

dried and resuspended in 20 µl TE buffer. 

 The amount of double-stranded DNA produced was estimated in 2 ways. 

5 µl of P32-labelled DNA reaction was spotted onto 2 pieces of membrane. One 

was washed (removing all excess P32-dNTPs, etc) and the radioactivity of the 2 

membranes compared by measuring counts per minute on a DNA 

scintillometer. Once the proportion of incorporated versus unincorporated P32 

was ascertained, the amount of total DNA from the second strand synthesis 

could be calculated. The presence of double-stranded DNA was also confirmed 

by PCR amplification of the HPRT housekeeping gene, and its detection by 

agarose gel electrophoresis. The PCR was carried out as before, using 1 µl 

DNA solution as template and HPRT forward (5`-GACCAGTCAA 

CAGGGGACAT-3`) and reverse (5`-CGACCTTGACCATCTTTGGA-3`) primers. 
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2.5.2.3 End modifications 

Ends of the double-stranded DNA molecules were blunted (by T4 DNA 

polymerase) in preparation for ligation with directional linkers. The reaction 

mixture was as follows: 19 µl cDNA, 3 µl 10x Flush Buffer (proprietary), 1.5 µl 

100 mM DTT, 3 µl 1 mM dNTPs, 0.6 µl (1.5 U) T4 DNA polymerase and 2.9 µl 

nuclease free water. This was incubated at 11°C for 20 minutes. 20 µl of TE 

and then 50 µl of TE-buffered phenol:chloroform:isoamyl (25:24:1) alcohol were 

added and vortexed. After centrifugation at 12,000 g for 1 minute the aqueous 

phase was transferred to a fresh tube. 50 µl chloroform:isoamyl (24:1) alcohol 

was added, vortexed and centrifuged as before. The aqueous phase was 

aspirated and mixed with 50 µl  4 M ammonium acetate, 1 µl glycogen and 250 

µl ethanol. This was incubated at -20°C for 1 hour, centrifuged as above for 10 

minutes and the supernatant discarded. The DNA pellet was rinsed 

successively in 70% and 100% ethanol, air dried, resuspended in 10 µl TE and 

stored at -20°C till needed. 

2.5.2.4 Ligation of EcoRI and Hind III directional linkers 

These linkers were ligated to the blunt ended cDNA fragments to allow eventual 

ligation of the molecules into the T7 10-3 phage vector in the correct orientation. 

The EcoRI and HindIII linkers were phosphorylated immediately before the main 

ligation. The reaction was as follows: 

10 µl blunt ended cDNA, 2 µl 10x Ligation Buffer (200 mM Tris-HCl pH 7.6, 50 

mM MgCl2), 2 µl 1 mM adenosine triphosphate (ATP), 2 µl 100 mM DTT, 2 µl 

(100 pmol) directional EcoRI/HindIII linkers, 0.5 µl (5U) T4 polynucleotide 

kinase (PNK). This was incubated at 37°C for 5 minutes. 1.5 µl (6 Weiss units) 

of T4 DNA ligase was then added, mixed and the reaction incubated for 20 

hours at 16°C. The ligase was inactivated by heating to 70°C for 10 minutes. 

The reaction was allowed cool slowly to RT°.  
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2.5.2.5 Digestion of linker EcoRI and Hind III restriction sites 

The ligated linkers were prepared for ligation to phage vector arms by 

enzymatic digestion with the restriction endonucleases EcoRI and Hind III. The 

digestion reaction was set up as follows: 

20 µl ligated cDNA, 10 µl 10x Hind III Buffer (proprietary), 65 µl nuclease free 

water and 5 µl (100 U) Hind III. This was incubated at 37°C for 2 hours. 10 µl 

10x EcoRI Adjustment Buffer (proprietary) and 5 µl (100 U) EcoRI were then 

added and incubated at 37°C for 4 hours. After brief centrifugation, 115 µl (1 

volume) chloroform:isoamyl alcohol (24:1) was added, mixed and centrifuged, 

and the aqueous phase extracted as before. To this was added 1 µl glycogen, 

120 µl 4M ammonium acetate and 500 µl ethanol. The digested cDNA 

fragments were stored in this mixture at -20°C till size fractionated (next step). 

2.5.2.6 Size fractionation 

This was necessary to remove excess linkers and small cDNA fragments (less 

than 300 bp) from the cDNA mixture. The stored cDNA fragments were 

precipitated, rinsed with ethanol and air-dried as previously described. The 

cDNA pellet was resuspended in 100 µl TE. 2 mls of Gel Filtration Resin 

(proprietary) slurry was loaded onto a filtration column and storage buffer let run 

through. The settled 1 ml of resin was washed through with 5 mls of Column 

Buffer (proprietary), till buffer had drained to the level of the resin bed. The 100 

µl of diluted cDNA was then loaded onto the gel bed. After this was settled, 200 

µl of Column Buffer was gently added to the column and let flow through (as 

void fraction). 250 µl Column Buffer was loaded onto the resin and the flow-

through (containing the largest cDNA fragments) collected. This was repeated 

once more. The cDNA in both eluates was pelleted as previously described and 

resuspended in 20 µl TE. 2 µl from each was analysed by agarose gel 

electrophoresis, to confirm the presence of fragments of the correct size. The 

cDNA was now ready for ligation into vector arms.  
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2.5.2.7 Ligation of retinal cDNA fragments to T7 10-3 vector 
arms 

All T7Select Phage Display System kit components (Novagen) are designed to 

be compatible with cDNA products from the OrientExpress kit, and were used to 

express the retinal cDNA library polypeptides as a phage library. The T7Select 

10-3b vector was used, which expresses 5 -15 copies per phage of 

polypeptides up to 1200 amino acids (aa) in size, on the 10 B capsid protein. 

This 36,249 bp size vector contains multiple cloning sites. It acts as a typical T7 

vector (previously described) and uses E. coli BLT5615 as host. This host 

contains an ampicillin/carbenicillin resistance plasmid, which also serves as a 

source of essential exogenous capsid protein. The expression of the essential 

capsid protein 10A in BLT5615 is under the control of a lacUV5 promoter and 

therefore requires the presence of IPTG for induction. BLT5615 was grown in 

M9LB liquid medium containing 50 µg/ml carbenicillin. 

 Retinal cDNA was ligated with T7Select vector arms, whose multiple 

cloning sites had been pre-digested with EcoRI and Hind III. Maximal cloning 

efficiency required a molar insert:vector ratio of between 1:1 and 3:1.  The 

remaining 18 µl of retinal cDNA was precipitated by the ammonium acetate 

method and resuspended in 5 µl of TE. The reaction was then set up as follows 

in a 0.5 ml tube: 

 1.5 µl insert cDNA, 1 µl (0.5 µg) T7Select vector arms, 0.5 µl 10x Ligation 

Buffer, 0.5 µl 10 mM ATP, 0.5 µl 100 mM DTT and 1 µl (containing 0.6 Weiss 

units) T4 DNA Ligase. The 5 µl reaction was mixed and then incubated at 16°C 

for 16 hours. 

2.5.2.8 In vitro phage assembly 

In vitro packaging of phage particles was carried out by incubation of the 

purified recombinant T7 10-3 vectors with a cell-free phage packaging extract. A 

vial containing 25 µl of T7 Packaging Extract (proprietary) was thawed on ice. 

The 5 µl of recombinant vector (ligation reaction) was mixed with this without 

vortexing, and incubated at RT° for 2 hours. The reaction was stopped by 

adding 270 µl LB medium. 10 µl of the mixture was taken for plaque assaying to 

determine the titre of primary recombinants. 10µl of each serial phage dilution 
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was mixed with 250 µl of mid-log BLT5615, 100 µl 1M IPTG and 2.5 mls molten 

top agarose and plated on LB plates containing 50µg/ml carbenicillin. 

2.5.2.9 Amplification and titration of library 

The remaining 290 µl of packaged phage was amplified to produce a library 

containing numerous copies of each recombinant. 500 mls of M9LB/carbenicillin 

was inoculated with 5 mls of BLT5615 overnight culture. This was grown to mid-

log and IPTG added to 1mM final concentration. After 30 minutes further 

incubation, the 290 µl packaged phage solution was added to the culture and 

incubated till lysis was observed (3-4 hours). 10 µl of lysate was taken for 

titration by plaque assay and the rest stored at 4°C in 0.02%NaN3.   

2.5.2.10 Estimation of percentage of retinal cDNA 
recombinant clones in library 

One plate containing around 200 well spaced plaques was chosen for analysis. 

A PCR containing 10 µl of PCR mix per well was set up as previously described 

for T7 phage. T7 Forward (5`-ACA ACG TTA TCG GCC TGT TC-3`) and T7 

Reverse (5`-TAC CGG AGG TTC ACC GAT AG-3`) primers were used. 78 

wells were directly inoculated with DNA template from individual clones by the 

plaque touch method. After thermal cycling, PCR products of individual phage 

clones were analysed by electrophoresis on a 2% agarose gel. Phage 

containing no retinal cDNA insert appeared as bands of approximately 400 bp in 

size. Recombinants containing retinal inserts produced larger PCR products 

and were easily identified. The percentage of recombinant versus non-

recombinant phage in the amplified library was estimated. 

 The whole ligation/phage packaging process was repeated using a 

higher cDNA insert:vector molar ratio. The remaining 3.5 µl of cDNA was 

precipitated and resuspended in 1.5 µl TE. This was ligated to the T7 10-3b 

vector arms, packaged in vitro, amplified and analysed as already described. 

The resulting library was pooled with the first. Phage were stored as lysate with 

0.02% NaN3, at 4°C till required for biopanning. 100 mls of lysate was then 

taken, clarified and PEG precipitated. The phage pellet was resuspended in 

PBS at a concentration of 2.2 x 1011 PFUs/ml. 
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2.5.3  Screening cDNA library against human sera 

2.5.3.1 Micro-biopanning using capture antibody 

 The retinal cDNA library was biopanned against sera from 37 uveitis 

patients and 42 controls. A capture antibody "micro-biopanning" strategy, 

coating the wells of 96-well microtitre ELISA plates with sera from individual 

patients or controls, allowed enrichment for phage displaying immunoreactive 

retinal peptides. Before the main experiment, a number of optimisation 

procedures were carried out to determine the dilutions of capture antibody and 

sera to be used.  

 Each (labelled) well was coated with 100 µl of goat anti-human IgGAM 

(Sigma) at 1:500 dilution (12.4 µg/ml) in carbonate buffer, and incubated 

overnight at 4°C. 2 negative control wells were set up: one without capture 

antibody and another without human serum, both undergoing all other 

incubation steps. Wells were washed out x3 with PBST, blocked with 

PBST/BSA 5% and incubated for 2 hours at 37°C. Sera were diluted 1:10 in 

PBST/BSA 5%, 100 µl loaded into each well and incubated for 2 hours at 37°C. 

Wells were washed 5 times and 100µl of cDNA library phage (containing 108 

PFUs in 100 µl blocker) added. This was incubated for 1 hour at 37°C. Excess 

phage were removed through 5 rounds of washing and 200 µl of BLT5615 cells 

(mid-log, IPTG induced) added to each well. Affinity selected phage were 

allowed infect the host cells in-situ for 10 minutes. Each 200µl was then 

transferred to its respective well in a deep, 96-well plate, each well containing 

500µl mid-log cells. Deep well plates were then incubated in a shaker at 37°C 

for 3 hours or until lysis was observed. Lysates were clarified by centrifuging the 

96-well plate at 5000 RPM for 10 minutes. Average post-amplification titres 

were calculated by performing plaque assays on serial dilutions from 6 

representative wells. Phage were stored in situ (with NaN3 0.02%).  

 3 rounds of biopanning were carried out in total. 108 PFUs (as clarified 

lysate) were used as input for the 2nd and 3rd rounds. After each round, 

individual sera capturing and enriching for specific phage were identified by 

PCR, essentially as described previously but using 0.5 µl of each lysate as 
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template DNA. Titres of amplified lysates were calculated after each round and 

showed a round-on-round increase.  

The biopanning experiments were later repeated with an additional 

blocking step during each of the 3 rounds, in order to reduce affinity-selection of 

non-specific T7 10-3 phage. A solution of PEG-precipitated wild-type T7 phage 

in PBS was rendered non-infective by irradiation with UV light. Wells were 

blocked for 1 hour with 100µl of this solution (originally containing 3x109 

PFUs/ml), between the serum-coating and live phage-coating steps, and 

washed out as before.  

2.5.3.2 Analysis and DNA sequencing of affinity-selected 
phage within pools. 

Phage pools from the 2nd and 3rd rounds of biopanning from both experiments 

were analysed for the presence of phage clones displaying retinal-derived 

protein fragments. Various methods were employed as the process evolved. 

Once individual clones were isolated, their DNA was sequenced and sequences 

were subjected to analysis on established electronic nucleic acid and protein 

databases. 

 

2.5.3.2.1 Gel extraction method 

PCR amplification was carried out using 0.5 µl of each phage pool as input DNA 

and using standard T7 forward and reverse primers and conditions. PCR 

products from each phage pool were analysed by agarose gel electrophoresis 

and pools containing products greater then 370 bps (containing a retinal insert) 

identified. Products from these selected pools were re-run on extended length 

1% agarose gels at 70V for several hours. Individual DNA bands (> 370 bps) 

were cut from the gel under UV light (allowing minimal exposure), placed in 1.5 

ml Eppendorf tubes and weighed. DNA was purified from each gel slice using 

the QIAquick gel Extraction Kit (Qiagen). This uses a silica-based membrane, 

which selectively binds DNA under conditions of high salt concentration and ph 

< 7.5. The procedure was as follows: 3 gel volumes of Buffer QG (proprietary, 

contains guanidine thiocyanate and a pH indicator) were added to each tube. 

This was incubated in a 50°C waterbath till agarose was completely dissolved, 
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ensuring pH remained below 7.5. One volume of isopropanol was added, 

mixed, and the sample loaded into a QIAquick spin column. DNA was bound to 

the membrane by centrifugation at 10,000 g for 1 minute, and flow-through 

discarded. The membrane was washed with 0.75 mls of Buffer PE (proprietary, 

contains ethanol) and centrifuged through, and then centrifuged once more to 

remove residual ethanol. DNA was eluted by pipetting 50 µl of Buffer EB (10 

mM Tris-Cl, pH 8.5) directly onto the membrane, incubating for 1 minute and 

centrifuging as before into a fresh collection tube. 1 µl of each sample was used 

as template for re-amplification, in a 15 µl PCR reaction. Correct DNA fragment 

size was verified by agarose gel and 5 µl of each reaction used for automated 

DNA sequencing as previously described. The T7 reverse primer (5`-TAC CGG 

AGG TTC ACC GAT AG-3`) was used for sequencing. 

 

2.5.3.2.2 Random PCR screening of plaques derived from phage 
pools 

Plaques from phage pools known to contain clones of interest were plated out 

and 10-20 plaques from each randomly chosen for initial screening. PCR 

amplification using T7 primers, followed by electrophoresis, identified any 

clones containing retinal inserts. Corresponding plaques were amplified and 

stored, while their PCR products were sequenced as above.  

 

2.5.3.2.3 Amplification of phage pools using modified T7 primers 
coupled with enzymatic pre-digestion 

This method was designed to eliminate/reduce the amplification of T7 10-3 

recombinants without an insert ("baseline" PCR products) and therefore only 

amplify those recombinants that coded for a retinal protein fragment. PCR 

products from the original amplifications were digested for 1 hour with the 

EcoRV restriction endonuclease, as described for Sequencing. A modified T7 

forward primer ("T7insertPCRa", 5`-ATG CTC GGG GAT CCG AAT TCA AGC-

3`) was designed that would anneal to EcoRV digested vector/insert 

recombinant molecules, but which would not prime T7 vectors without an insert. 

The reverse primer used was 5`-GGT TAA CGT AGA TGG ATT GAC CGG A-3` 

("T7b2"). Optimisation of the PCR reaction was carried out for the new primers, 
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and the standard T7 program combined with the reaction buffer “Buffer H” (5x = 

300 mM Tris-HCl pH 9.0, 75 mM (NH4)2SO4, 17.5 mM MgCl2) [Invitrogen] was 

found to be optimal. Modified PCR products were further processed and 

sequenced as described for "gel extraction method". The sequencing primer 

used was 5`-TAC CGG AGG TTC ACC GAT AG-3`. 

 

2.5.3.2.4 "Shotgun cloning" method of clone isolation and 
expression 

This method is described in detail below. It enabled separation of individual 

clones from within affinity-selected phage pools and identification of their inserts 

by DNA sequencing, while at the same time facilitating the expression of affinity 

selected protein fragments.  

2.5.4  Bioinformatic analysis of sequences 
Sequencing readouts were analysed manually between the EcoR I and Hind III 

restriction sites. Inserts in the correct orientation and containing an open 

reading frame (ORF) were identified using GeneJockey Software (BioSoft Ltd). 
Sequences were translated to reveal their related amino acid sequence (if any). 

Both DNA and protein sequences were analysed on NCBI Genbank databases 

searched with the BLAST algorithm (www.ncbi.nlm.nih.gov/blast), for matches 

to previously identified sequences. cDNA library sequences corresponding to 

protein fragments likely to originate from human retinal or neural tissue were 

earmarked for further analysis at this stage. The remaining sequences were 

discarded. 

2.5.5  Expression and purification of recombinant 
cDNA library polypeptides. 

It would have been possible to test the immunoreactivity of displayed retinal 

protein fragments in-situ as amplified phage clones by, for example, ELISA. 

However, previous experience with T7 phage systems had shown high levels of 

non-specific cross-reactivity with T7 elements. Therefore, the affinity selected 

retina-derived protein fragments were produced in purified form by ligating the 
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DNA inserts into a new vector, expressing the recombinant protein fragment in 

a bacterial host and purifying the product. 

2.5.5.1 Construction of recombinant expression vector 

The pCR-T7-NT-Topo plasmid (previously described) was chosen for 

expression of the protein fragments. Both plasmids and inserts (PCR products) 

were restriction digested with BamH1 and Hind III.  

 PCR products corresponding to protein fragments for analysis were 

enzymatically purified by digestion with SAP and exonuclease 1 as previously 

described. 1 µl (20U) of BamH I (USB) and 1 µl (20U) of Hind III were then 

added to the mix and incubated at 37°C for 90 minutes.  

 Plasmid was restriction digested as follows: 10 µl (100 ng) pCT-T7-NT-

Topo plasmid was mixed with 2 µl 10x OPA buffer, 1 µl BamH I, 1 µl Hind III 

and 6 µl H2O. This was incubated at 37°C for 1 hour and the reaction cleaned 

up in a Qiagen spin column. Plasmid was eluted in 30 µl of PCR-grade H2O. 

 A PCR/plasmid ligation reaction was then set up for each different PCR 

product. 5 µl digested PCR product was mixed with 1 µl cut plasmid solution, 

0.5 µl (5U) T4 DNA ligase, 1 µl 10 mM ATP and 1.5 µl H2O. This was incubated 

at 12°C for 12 hours. 

2.5.5.2 Propagation and maintenance of plasmids in Top 10 
F` host cells 

Top 10 F` cells were chosen for stable maintenance and propagation the 

recombinant plasmid. 2.5 µl of each recombinant plasmid was used to transform 

an aliquot of chemically competent cells, as previously described for RSAg 

expression in bacteria. Well-spaced colonies from each transformation were 

grown on LB agar/ampicillin plates, and 20-40 colonies from each chosen for 

analysis. The presence or absence of insert-containing recombinant plasmids 

was determined by PCR amplification across the restriction sites, using forward 

primer "pcDNA3.1a" (5`-TAA TAC GAC TCA CTA T-3`) and reverse primer 

"T7reverse" (5`-CTA GTT ATT GCT CAG CGG TGG-3`). PCR products from 

positive colonies were sequenced as previously described, using pcDNA3.1a as 

sequencing primer in a 2-step sequencing reaction. Positive colonies were 
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amplified by overnight incubation in liquid medium, and after mixing 50:50 with 

sterile glycerol, stored at –70°C till needed for expression.  

2.5.5.3 Transformation of BL21(DE3)pLysS or pLysE strains 
and expression of cDNA library protein fragments 

Expression of the retinal cDNA library-derived protein fragments was tried using 

both BL21(DE3)pLysS and BL21(DE3)pLysE cells as host. BL21(DE3)pLysE is 

practically identical to BL21(DE3)pLysS, but produces higher levels of T7 

lysozyme, which provides even tighter control of basal level expression of 

genes. This may be useful if the gene product is toxic.  

 Transformed Top 10F` cultures were grown overnight from frozen stocks 

in 5 mls of LB/chloramphenicol/ampicillin. Plasmid "mini-preps" were carried out 

the next morning, as previously described. Aliquots of BL21(DE3)pLysS or 

BL21(DE3)pLysE cells were immediately transformed and pilot expressions 

carried out, inducing protein expression with IPTG as described for RSAg. 

Yields of the desired protein were analysed by SDS-PAGE/Coomassie staining 

and Western blotting, for each time point. Substantive expressions were carried 

out the next day, using optimal time-points for each individual cell line. Better 

yields were possibly found when transformed cell lines were not frozen/re-

thawed between pilot and substantive expressions. Instead cultures were 

maintained overnight and used to re-seed fresh medium the next morning. Cells 

containing the positive control plasmid pCR-T7/NT-E3 were also induced in 

parallel with those expressing cDNA library fragments. 

  Plasmid "mini-preps" were repeated on all transformed Top 10 F` and 

BL21(DE3)pLysS cell lines. The plasmid DNA was then re-sequenced using the 

same primer, to verify that each cell line contained the correct plasmid/insert. 
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2.5.5.3.1 Induction by infection with T7 phage 
Because of difficulties in expressing the recombinant proteins in 

BL21(DE3)pLysS (see Results), attempts were made to stimulate protein 

expression by directly infecting transformed cells with T7 phage. T7 DNA 

polymerase should in theory have provided a more robust induction signal to 

the lacUV5 promoter. Transformed BL21(DE3)pLysS and Top 10 F` cells were 

grown to mid-late log phase and infected with wild-type T7 phage. Lysis was 

noted in 1-2 hours. Parallel non-infected cultures were also grown to check for 

basal recombinant protein expression. Lysates were pelleted and the 

supernatant separated. Pellets of non-infected cells and debris from lysates 

were resuspended in PAGE loading buffer. Supernatants were concentrated 

and de-salted using Centricon centrifugal concentrators (3,000 MW cut-off) and 

also resuspended in loading buffer. All samples were analysed by 

PAGE/Coomassie staining and Western blotting. No significant recombinant 

protein was produced in either phage-infected or non-infected samples and the 

method was abandoned. 

2.5.5.4 Alternative "shotgun cloning" method for isolation 
and expression of affinity-selected cDNA library clones 

 This method enabled separation of individual clones from within affinity-

selected phage pools and identification of their inserts by DNA sequencing. At 

the same time, it facilitated the expression of affinity-selected protein fragments.  

Lysates from the 3rd round of biopanning, each representing a pool of phage 

clones, were used as template for a PCR amplification. Each heterogeneous 

sample of PCR products was purified by enzymatic digestion and then 

restriction digested with BamH I and Hind III. The PCR products were ligated 

into similarly digested pCR-T7-NT-Topo plasmids, as previously described. 

Recombinant plasmids representing each pool were transformed into separate 

aliquots of Top 10 F` cells and plated out as colonies. 20-40 colonies (clones) 

from each plate were labelled, their plasmid DNA amplified by PCR, and the 

plates stored. Agarose gel electrophoresis revealed which colonies contained 

cDNA inserts, and PCR products from these were sequenced. Important 

sequences were identified and the corresponding colonies amplified in liquid 

medium and stored as glycerol stocks. The end result was the separation, DNA 
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amplification, sequencing and transformation of individual clones within phage 

pools, without having to identify and excise (the sometimes indistinct) DNA 

bands from agarose gels.  

2.5.5.5 Harvesting and protein purification 

All steps were carried out essentially as previously described for RSAg. 100 mls 

of cells were induced for each recombinant protein fragment. Verification of 

expression of the correct protein was carried out by PAGE/Coomassie staining 

and with Western blotting using anti-His-HRP primary antibody. After 

expression, cells were harvested and lysed. Recombinant proteins were purified 

using the Probond system and concentrated using Centricon and Centriprep 

centrifugal concentrators. Protein concentration was determined by BCA assay. 

Protease inhibitor cocktail was added to purified samples and they were stored 

at –20°C. 

2.5.6  ELISAs for measuring antibodies against cDNA 
library polypeptides. 

Purified protein fragments derived from affinity-purified retinal cDNA library 

clones, were tested by ELISA for immunoreactivity against all 79 patient and 

control sera. Two indirect ELISA systems were tried: a 4-step capture system, 

in which a solid phase, antigen-specific monoclonal antibody was used to bind 

and orientate the polypeptide and a 3-step assay with recombinant antigen 

directly bound to the ELISA plate. Preliminary "checkerboard" assays were 

carried out for both types of ELISA (as previously described for other ELISA 

assays), to determine the optimal concentrations/dilutions of capture antibody, 

antigen, serum, secondary (conjugated) antibody and type of blocking buffer.  

 

2.5.6.1 4-step indirect capture ELISA 

Mouse anti-His1 monoclonal antibody was chosen as capture antibody for the 

(His-tagged) recombinant protein fragments. Mouse ascites anti-His (Sigma) 

was chosen over affinity-purified anti-His (Invitrogen), as it produced less non-
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specific "background". PBST/ non-fat dried milk 5% w/v was found to block non-

bound sites on ELISA plates more effectively than PBST/BSA 5%.  

 ELISA wells were coated with 50 µl of capture antibody, at 10 µg/ml 

(approx.1:3000) in carbonate buffer, and incubated overnight at 4°C. Wells were 

washed 3 times with PBST and blocked with 350 µl of PBST/5% milk for 2 

hours at RT°. After washing, recombinant antigens were coated in duplicate at 

2.5 µg/ml in PBST/1% milk and bound overnight at 4°C. Two negative control 

wells, one without capture antibody and the other without serum, were run in 

parallel with each panel of antigens. Another control, using an irrelevant His-

tagged protein as antigen, was also run to detect inadvertent serum responses 

to the His tag epitope on recombinant antigens. ELISAs were then carried out 

essentially as previously described. Sera were coated at a concentration of 1:25 

and the secondary antibody (anti-human IgGAM - alkaline phosphatase) at 

1:20,000, both in PBST/1% milk.  

 

2.5.6.2 3-step indirect ELISA 

Recombinant antigens were bound directly in wells (in duplicate), at 2.5 µg/ml in 

carbonate buffer, and incubated overnight. Sera were used at a dilution of 1:25 

and secondary antibody as 1:20,000. Negative controls and His-tagged protein 

controls were carried out as above. PBST/5% milk was once again used as 

blocker. The procedure was carried out essentially as described before. 

 

Figure 2.1  Schematic representation of a 3-step indirect ELISA 
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2.6  Studying T-cell responses to retinal 
autoantigen using cytokine flow cytometry 

2.6.1  PBMC stimulation by RSAg 
13 uveitis patients were selected consecutively from our outpatient clinic. Each 

had a clinical diagnosis of autoimmune posterior uveitis. Of the individual sub-

diagnoses in this group 5 patients had intermediate uveitis, 4 had retinal 

vasculitis/periphlebitis, 2 had multifocal choroiditis and 2 had pan-uveitis. Ages 

ranged from 32 to 63 years (mean=42.6). 5 male patients and 8 females took 

part. 10 healthy laboratory workers were recruited as controls. These included 8 

males and 2 females, ranging in age from 26 to 45 years (mean=34).  

RSAg had previously been prepared from fresh bovine retinas, as 

described in Materials. After extraction, purified RSAg was made up to a final 

concentration of 4 µg/µl in PBS. A PAGE-SDS gel was run prior to the 

experiment to check viability of the antigen. No contaminants were detected on 

the gel.  

  PBMCs were isolated from peripheral venous blood of uveitis patients 

and controls by density gradient sedimentation, and were resuspended in 

"complete" medium at a concentration of 2x106 /ml, as described previously. 

Fresh cells were used for each stimulation assay (frozen stocks were not used 

in these assays, but kept in reserve). Stimulation of cells commenced within 3 - 

4 hours of harvesting. 

 Ex-vivo T-cell stimulation and cytokine staining were based on the 

method previously described by Waldrop (Waldrop et al. 1997), with the notable 

exception that an 18 hour incubation was used (see below). Briefly, 3 assays 

were set up for each test sample: a “positive control”, “negative control” and 

“antigen specific” tube. In each, 1x106 cells in medium were placed in sterile 

12x75 mm polystyrene tissue culture tubes (Elkay Lab Products). Positive 

control samples were stimulated with 20 ng/ml phorbol myristate acetate (PMA), 

and 1 µM ionomycin (both Sigma), providing robust non-specific T-cell 

activation. Negative control tubes contained cells, medium and 1µg anti-CD28 

monoclonal antibody (Beckman Coulter, High Wycombe, U.K.). Antigen specific 
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tubes contained 50 µg of RSAg and 1 µg of anti-CD28. All tubes were made up 

to 1 ml volume with medium prior to incubation.  

Cells were incubated at 37°C and 5% CO2 for 18 hours, with brefeldin A 

(Sigma), an exocytosis inhibiting agent, being added for the last 17 hours at a 

concentration of 10 µg/ml. Although previous studies have utilised a 6 hour 

incubation time, here a higher antigen-specific:negative control responder ratio 

was found when the incubation was extended to 18 hours. This was determined 

by repeating the stimulation assays over different incubation periods, on 

PBMCs saved from the first 2 patients found to elicit positive responses. The 

optimum dosage of antigen was also determined during these preliminary tests. 

It was felt that this incubation time was justified, as recent studies have 

indicated that peak expression of IFN-γ occurs at 8 hours with only slight 

reduction after 18 hours (Mascher et al. 1999) and levels of intracytoplasmic 

CD69 remain optimum up till at least 18 hours (Rostaing et al. 1999). Excessive 

T-cell loss due to activation-induced apoptosis was not thought likely after only 

18 hours incubation.  

2.6.2  Fixation and intracellular cytokine staining 
After incubation, EDTA was added (final concentration 2 mM) and cells 

resuspended. After 10 minutes, PBMCs were placed in 0.5% 

formaldehyde/borate buffered saline and fixed overnight. Intracellular cytokine 

and surface marker staining was then carried out. Fluorochrome-conjugated 

anti-IFN-γ monoclonal antibody was used to detect any intra-cellular expression 

of this (typical Th1-type) cytokine. Similarly, expression of CD69 (a general 

marker of early activation in lymphocytes), CD4 and CD8 was detected using 

labelled monoclonal antibodies. Fluorochrome/monoclonal antibody 

combinations were as follows: interferon gamma-fluorescein isothiocyanate 

(FITC), CD69-phycoerythrin (PE), CD4-PCy5 (all Immunotech, Marseilles, 

France) and CD8-ECD (Coulter, Miami, USA). Positive control samples were 

split in 2 equal parts: one half was stained as above, and the other with isotype-

matched FITC control antibody (Immunotech), to evaluate non-specific 

background staining. Cells to be stained were permeabilised with saponin 0.1% 

(Sigma) and directly labelled with 5µl of monoclonal antibody. After 2 ½ hours 
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staining, cells were washed 3 times in PBS/ 0.1% BSA / 0.1% saponin (Sigma) 

and finally resuspended in formalin 0.5%.  

2.6.3  Flow cytometry and electronic analysis of data 
Cells were analysed on a 4-colour flow cytometer (EpicsXL-MCL, Beckman 

Coulter) within 3 days of staining. For each subject, 50,000 PBMCs were 

analysed for each split positive control sample, while approximately 500,000 

were analysed for negative control and antigen specific tubes. Data were 

analysed using WinMDI 2.8 software (http://facs.scripps.edu/software.html). 

Lymphocyte events were identified from within the total PBMC population using 

the parameters of forward versus side-scatter and these were electronically 

gated. This sub-population was analysed for CD4 versus CD8 expression and 

the CD4+, CD8- population gated. These events were analysed for IFN-γ and 

CD69 co-expression and data presented as dot-plots. Negative control samples 

were analysed first and the quadrant markers set around the main body of 

baseline events for IFN-γ expression (horizontal axis) and at 102 Log 

fluorescence units for CD69. Using these quadrant settings, the positive control 

samples and then antigen-stimulated samples were analysed for levels of IFN-

γ/CD69 co-expression. "Positive" events were those in the upper-right, "double-

positive" quadrant. The numbers of "positive" events, CD4+ cells, lymphocytes 

and total PBMCs were automatically recorded, and expressed in absolute and 

percentage terms. 

2.6.4  Analysis of individual patient and aggregate 
results 

Results were produced both in terms of the responses of individual patients or 

control subjects and the aggregate responses of whole patient and control 

groups. For purposes of comparison, positive event numbers were converted to 

rates per 100,000 CD4+ cells for all analyses. The designation of a subject’s 

response to RSAg stimulation as “positive” required co-expression of IFN-γ and 

CD69 in cells forming a distinct cluster of events in the double-positive quadrant 

of the dot-plot. It also required the negative control tube showing no or a 

negligible proportion of positive events.  
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 Aggregate responses were determined by comparing the values for 

baseline-subtracted (i.e. antigen-specific minus negative-control) positive 

events, between patient and control groups. The 2 groups of values were 

compared using standard statistical tests. This approach was used because it 

was felt that analysis of absolute numbers of antigen-specific positive events 

was not valid without comparison to the number of positive events from the 

negative control tubes in the same group of subjects. 
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In the following four "results" chapters (Chapters 3, 4, 5 and 6), the format 

Introduction, Results and Discussion is used. Details of methods employed are 

found in the relevant sections of Chapter 2 (Materials and methods). 
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3 Chapter 3: Production of recombinant 
human RSAg and detection of serum 

antibodies to RSAg by ELISA 
 



 

 133 

3.1  Introduction 
RSAg is important because it is considered one of the foremost candidate 

autoantigens for the induction of human autoimmune uveitis. Its effects have 

been extensively studied in both animal models and humans, as discussed in 

Chapter 1. The majority of experiments to date have utilised the bovine form of 

the protein, presumably because supplies of bovine retina are more readily 

available. Although the human and bovine forms share similar physico- and 

immunochemical properties (Beneski et al. 1984), important differences have 

been noted (see also Figure 3.1). In particular, bovine RSAg carries epitopes 

not shared by other species (Wacker et al. 1977; Faure et al. 1984; Mirshahi et 

al. 1985). However, bovine RSAg is still used in experimental studies mainly 

because of the relative scarcity of human eyes. Even when available, yields 

from human eyes are low: in one report extraction of RSAg from 40 human eyes 

yielded only 2.5 mg of purified protein (Doekes et al. 1987).  

 Serum antibodies against bovine RSAg have previously been detected 

in autoimmune uveitis patients using passive haemagglutination (Dumonde et 

al. 1982). Gregerson found relatively elevated serum titres of anti-bovine RSAg 

in a mixed group containing anterior and posterior - including infectious - uveitis 

patients using ELISA (Gregerson et al. 1981). Abrahams (Abrahams and 

Gregerson 1982; Abrahams and Gregerson 1983) also found similar results by 

ELISA in patients with granulomatous uveitis, but antibody titres correlated only 

weakly with clinical activity in longitudinal studies. Forrester found no significant 

differences between patients and controls in terms of frequency of anti-bovine 

RSAg antibodies or range of titres (Forrester et al. 1989). One paper reported 

lower affinity anti-RSAg antibodies in patients with retinal vasculitis compared 

with controls (Kasp et al. 1992b). Another study reported no circulating anti-

bovine RSAg antibodies in sera from 25 uveitis patients and 10 controls (Chan 

et al. 1985c). 

   Doekes (Doekes et al. 1987) found no quantitative or qualitative 

differences in the ELISA response to human RSAg in uveitis patients and 

controls, or in different types of uveitis patient. Anti-RSAg antibodies were found 

in around 25-30% of both groups. Anti-RSAg IgG, IgA and IgM levels were 

found to be equal in both groups. No correlation was found between humoral 
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and cellular reactivity to RSAg in individual subjects. Doekes (Doekes et al. 

1992) also tested a large number of uveitis patients and controls for reactivity 

against both bovine and human forms of RSAg. Again no differences were 

demonstrated between patient and control groups. The numbers of positive 

sera and the levels of anti-RSAg antibodies correlated significantly between 

human and bovine RSAg groups, but there were many exceptions at an 

individual level. The same study compared the immunoreactivity of each form of 

purified RSAg to anti-human RSAg and anti-bovine RSAg antibodies raised in 

animals. This demonstrated a predominant role for species-specific epitopes on 

bovine RSAg but not human RSAg, and concluded that human RSAg should 

therefore be used for ELISA testing of individual human sera.  

It is obvious from the above that the human form of RSAg should be 

used wherever possible in experiments on human uveitis samples. Given the 

known inter- and intra-species differences between different forms of antigens, 

it is not surprising that considerable variation in immunoreactivity has been 

found. The limited availability of human eyes for research, coupled with the low 

yields of RSAg from such eyes, would appear to be a considerable problem for 

those planning large-scale experiments with human RSAg. However, the 

possible solution of producing recombinant RSAg does not appear to have been 

fully exploited. The DNA and amino acid sequences of human RSAg are known 

and the production of human RSAg in either prokaryotic or eukaryotic cell hosts 

appears to be technically feasible. Recombinant RSAg has been produced 

before, but has mostly been either of the non-human form or has been 

expressed in bacterial hosts (Kasp et al. 1992a). The possible advantages of 

using a bacterial host would be rapid production of large amounts of antigen, 

whereas protein expressed in eukaryotic cells would include post-translational 

modifications and would therefore be more similar to the native protein 

confirmation in-vivo. The aim of these experiments was therefore to attempt to 

clone human RSAg and express it in both prokaryotic and eukaryotic cells. I 

also aimed to test any recombinant antigen for the detection of autoantibodies 

in uveitis patients and controls by ELISA, and compare its performance to that 

of bovine RSAg.  
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Figure 3.1 Comparison of the amino acid sequences of human (top) and 

bovine RSAg.  

 
        10         20        30        40        50        60        70 
         |         |         |         |         |         |         | 
MAASGKTSKSEPNHVIFKKISRDKSVTIYLGNRDYIDHVSQVQPVDGVVLVDPDLVKGKKVYVTLTCAFRYGQEDVD 
     •||•||••••••••••••••••••••|••••••|||•|••••••••••|•••••|•••|•••••••••••|• 
    MKANKPAPNHVIFKKISRDKSVTIYLGKRDYIDHLERVEPVDGVVLVDPELVKGKRVYVSLTCAFRYGQEDID 
             |         |         |         |         |         |         | 
             10        20        30        40        50        60        70 
 
 
  80        90        100       110       120       130       140       150 
  |         |         |         |         |         |         |         | 
VIGLTFRRDLYFSRVQVYPPVGAASTPTKLQESLLKKLGSNTYPFLLTFPDYLPCSVMLQPAPQDSGKSCGVDFEVK 
•|••|••••••••|•••|•••••||||•|•••••|••••|•••••|•••••••••••••••••••|•••••••••|• 
VMGLSFRRDLYFSQVQVFPPVGASGATTRLQESLIKKLGANTYPFVLTFPDYLPCSVMLQPAPQDVGKSCGVDFEIK 
      |         |         |         |         |         |         |         | 
      80       90        100       110       120       130       140       150 
 
 
     160       170       180       190       200       210       220       230 
     |         |         |         |         |         |         |         | 
AFATDSTDAEEDKIPKKSSVRYLIRSVQHAPLEMGPQPRAEATWQFFMSDKPLHLAVSLNREIYFHGEPIPVTVTVT 
••••|•••|••••••••••••|•••||••••||•••••••••|••••••••••|•••••||•••|•••••••••|•• 
AFATHSTDVEEDKIPKKSSVRLLIRKIQHAPRDMGPQPRAEASWQFFMSDKPLRLAVSLSKEIYYHGEPIPVTVAVT 
         |         |         |         |         |         |         | 
         160       170       180       190       200       210       220 
 
 
        240       250       260       270       280       290       300 
        |         |         |         |         |         |         | 
NNTEKTVKKIKACVEQVANVVLYSSDYYVKPVAMEEAQEKVPPNSTLTKTLTLLPLLANNRERRGIALDGKIKHEDT 
•|•••••••••||••••|••••••••••|•|••|•••••••••••|•••••••|••••••••••••••••••••••• 
NSTEKTVKKIKVLVEQVTNVVLYSSDYYIKTVAAEEAQEKVPPNSSLTKTLTLVPLLANNRERRGIALDGKIKHEDT 
  |         |         |         |         |         |         |         | 
  230       240       250       260       270       280       290       300 
 
 
 310       320       330       340       350       360       370         380 
 |         |         |         |         |         |         |           | 
NLASSTIIKEGIDRTVLGILVSYQIKVKLTVSGFLGELTSSEVATEVPFRLMHPQPEDPAKESIQDANL--VFEEFA 
••••••••••••||••|••••••••••••••••|•••••••••••••••••••••••••||||||||||  •••••• 
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      390       400 
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        |         | 
        390       400 
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3.2  Results 

3.2.1  Expression of recombinant human RSAg in 
eukaryotic cells 

The human RSAg sequence was successfully cloned in the pcDNA4-TO-myc-

HisA vector (Figure 3.2) and expressed in TREx 293 human embryonic kidney 

cells. A transient transfection was first carried out and when this was shown to 

be successful (by SDS-PAGE and Coomassie staining), was followed by a 

stable transfection. DNA sequencing of the recombinant vector confirmed the 

sequence was correct for human RSAg. Stably transfected clones SA3 and SA5 

were found to contain RSAg, which was verified by SDS-PAGE/silver staining 

and Western blotting/probing with anti-His-HRP antibody. Cells from both cell 

lines were stored long-term in liquid nitrogen. Cells from clone SA5 were 

induced with tetracycline for 72 hours and harvested as pellets containing 1x107 

cells each. The 20 pellets (total cells = 2x108) were stored at –70°C till purified 

using the Probond nickel-chelate resin system. RSAg/His tag fusion protein was 

successfully purified in small but definite amounts, as shown by SDS-

PAGE/silver staining (Figure 3.6) and Western blotting (Figure 3.7). The His 

tags were not cleaved from the RSAg molecule. Total amount of recombinant 

RSAg, as determined by BCA assay, was approximately 29 µg.  

3.2.2  Expression of recombinant human RSAg in 
bacterial cells 

The human RSAg insert was successfully cloned into the pCR-T7-NT-Topo 

plasmid and recombinant antigen expressed as a fusion protein from 

BL21(DE3)pLysS bacterial cells. PCR products coding for RSAg (Figure 3.4) 

were first ligated into pCR-T7-NT-Topo plasmids (Figure 3.3) and used to 

transform Top 10 F` cells. Several clones likely to contain the correct insert 

were identified by PCR amplification across the restriction site of recombinant 

plasmids (Figure 3.5). Plasmids preps and glycerol stocks were kept from each 

candidate cell line. 3 cell lines of BL21 (DE3)pLysS were established with 

plasmids from these candidate cell lines. Plasmid preps were again produced 
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from each of the 3 cell lines and DNA sequencing reactions carried out from 

both ends of the restriction site. Only one clone (RSAg2) was found to contain 

the correct sequence for RSAg. A pilot expression, using different time-points 

post induction, was carried out on this cell line. Time of maximal expression of 

RSAg was found to be 4 hours, as determined by SDS-PAGE/Coomassie 

staining and Western blotting (Figures 3.8 (a) and 3.9 (a)). A substantive 

expression (200 ml cell culture) was carried out. Fractions produced during 

protein purification with the Probond system (washes, elutions, etc) were kept 

and analysed by SDS-PAGE and Western blotting (Figures 3.8 (b) and 3.9 (b)). 

This confirmed the presence of the RSAg fusion protein. The pCR-T7-NT-Topo 

leader sequence, containing a His tag, enterokinase cleavage site and the 

XPress synthetic epitope, was again left in situ. Recombinant protein was 

concentrated to 129 µg/ml in PBS. 290 µg of recombinant protein were 

produced in total. 

3.2.3  Expression of positive control, 58 kDa protein 
The pCR-T7-NT-E3 plasmid, which codes for a His-tagged, 58 kDa protein 

kinase protein, was successfully transformed into BL21 (DE3)pLysS cells and 

expressed (Figure 3.10). This protein too was purified using the Probond 

system. As well as confirming that the transformation/expression and 

purification procedures were carried out properly, the 58 kDa protein was used 

as a His tag positive control in ELISA experiments (see below). 
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Figure 3.2 Map of recombinant pCDNA4-TO-myc-HisA plasmid with human 

RSAg insert – for expression in human TREx 293 cells. 
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Figure 3.3 Map of recombinant pCR-T7-NT-Topo plasmid with human RSAg 

insert – for expression in BL21 bacterial hosts. 
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Figure 3.4 PCR products coding for human RSAg, produced by the enzyme 

ELONGASE™, on an agarose gel. 

 

 
 

 
 
 
Figure 3.5  PCR amplifications of input DNA from Top10F cell clones 

containing human RSAg/ pCRT7-NT-Topo recombinant plasmids. 
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Figure 3.6  SDS-PAGE gels with silver staining of recombinant human RSAg:  

(A) expressed in eukaryotic cells and (B) purified using Probond™ resin.  

 

(A) 

 
 

 

 

(B) 
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Figure 3.7 Western blots of recombinant human RSAg probed with anti-His 

monoclonal antibody: (A) expressed from eukaryotic cells clones and (B) 

elutions 1-7 after purification using Probond resin. 

 

(A) 
 

 
 

(B) 
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Figure 3.8 SDS-PAGE gels with Coomassie staining of recombinant human 

RSAg. (A) Expressed protein from bacterial cells at various time points in hours. 

n/i=non-induced, O/N=overnight. (B) Washes and elutions during Probond 

purification process using resin. R=raw lysate, B=binding buffer excess, 

w6.0=wash excess at pH 6.0, 1-7=elutions. 

 

(A) 

 
(B) 
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Figure 3.9 Western blots of gels from Figure 3.8, probed with anti-His 

monoclonal antibody. 

  

 

(A) 

 
 

 

(B) 
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Figure 3.10 Western blot of 58 kDa protein kinase containing polyhistidine tag, 

expressed over 1-4 hours and overnight. 
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3.2.4  ELISA testing for measuring RSAg antibodies in 
serum 

3.2.4.1 ELISA using bovine RSAg alone 

In preliminary experiments using bovine RSAg, indirect, 3-step ELISAs were 

carried out in duplicate for each tube of uveitis or control serum, as described in 

Chapter 2. Twenty-seven individual patient samples, P1-15, 17, 19-28 and 30 

(see Table 3.1) and 21 individual control sera C2, 4, 5, 7-10, 13, 15-17, 19, 22, 

24, 26-31 and HS were analysed. 3 bovine RSAg-coated ELISA plates were 

used in total, one screening patient sera and the other 2 screening control sera. 

A pair of wells blocked with 5% BSA (not containing RSAg) acted as negative 

controls for each plate, and were screened with the sera of one patient/control 

chosen at random. The random serum sample was P30 (ii) for the Patient plate, 

C19 (ii) for Control Plate 1 (samples C2 to C19) and C31 (iii) for Control Plate 2 

(samples C22 to HS). Average ODs for each serum test sample were divided by 

the average readings for their negative control wells. Where there were more 

than 1 tube of an individual serum, the negative control-divided readings were 

averaged. Patient versus control readings are presented as a scatter-graph 

(Fig. 3.11). Both groups of data followed a normal distribution. Comparison of 

the 2 groups showed no significant differences between the mean baseline-

divided readings (p=0.5632), using a 2-tailed t-test with Welch`s correction 

(GraphPad Prism, Version 2). However, given the lack of a negative control for 

individual serum samples, this result should be interpreted guardedly. 
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Figure 3.11 Scattergram of corrected ELISA OD readings from patient and 

control sera using bovine RSAg. Baseline-divided data are categorised as 

follows: <1.0 negative result, 1.0-2.0 “low” titre, 2.0-3.0 “medium” titre, >3.0 

“high” titre. 
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3.2.4.2 Analysis of uveitis patient and control sera by ELISA 
using both recombinant human and bovine RSAg  

The sera of 45 patients (P1-15, 17, 19-28, 30, 50-55, 58-69) and 45 controls 

(C2, 4, 5, 7-10, 13, 15-17, 19, 22, 24, 26-33, 35-43, HS, C50-62) were screened 

by ELISA against panels of duplicate wells as described in Chapter 2. Each 

panel contained duplicate wells of a negative control, a 58 kDa His-tagged 

protein, human recombinant RSAg (expressed in bacteria and containing a His 

tag), and bovine RSAg – this layout provided a robust internal control for each 

serum. Each pair of readings was averaged, and the test readings for bovine 

and human RSAg wells were divided by the negative control readings. 

Readings from wells containing the 58 kDa His-tagged protein were compared 

with those containing human recombinant RSAg on a case-by-case basis, to 

identify any cases displaying disproportionate immunoreactivity to the His tag. 

Results were expressed in terms of multiples of the negative control reading 

(i.e. "blocked" wells), values below 1.0 being regarded as negative. 

Immunoreactivity of each "positive" individual serum (to both types RSAg) was 

categorised as "low" (1.0 – 2.0), "medium" (2.0 – 3.0) or "high" (3.0 or above). 

Results were analysed on an individual subject basis, and patient and control 

sera were also compared with each other as groups. Human and bovine RSAg 

readings were correlated, as were human RSAg and 58-kDa protein readings 

(both contain a His tag). Cases where immunoreactivity to human RSAg but not 

bovine RSAg was demonstrated were highlighted, and a possible explanation 

sought. 

 Of a total of 45 uveitis patients, those with "positive" ELISA tests 

(displaying "medium" or "high" reactivity to either bovine or human antigen) 

were found to represent individual clinical conditions as follows: pars planitis, 8 

out of 19 samples; sarcoid uveitis, 4 of 8; pan-uveitis, 2 of 4; multifocal 

choroiditis, 1 of 3; serpiginous choroiditis and MEWDS, each 1 of 1). None of 

the 5 samples from patients with ocular Behcet`s were positive, nor were the 

individual samples from patients with Wegener`s granulomatosis/white dot 

syndrome, neuro/chorioretinitis and AMPPE. Patients displaying "medium" 

reactivity to either form of antigen were P1, P3, P10, P15, P21, P23, P25, P28, 

P51, P53, P55 and P65. Those displaying "high" reactivity were P2, P11, P24, 
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P52 and P60. Patient samples displaying "medium" or "high" reactivity to both 

forms of antigen were P51, P60 and P65. 

 The immunoreactivities of patient and control groups were compared 

using Log-transformed data from both types of RSAg (Figures 3.12 and 3.13). 

No significant differences were detected – p=0.169 for bovine RSAg and 

p=0.5298 for human RSAg. The immunoreactivity of human sera was found to 

be significantly higher to human RSAg than to bovine RSAg, again using Log-

transformed data (Figure 3.14). Data were analysed by t-test (with Welch`s 

correction for unequal variances) and found to be significantly different for both 

uveitis patients (p=0.0486) and healthy controls (p<0.0001). No difference in 

immunoreactivity was detected between active and inactive uveitis patients 

(Figure 3.15), when tested using log-transformed data from human RSAg 

(p=0.5119). The readings for bovine and human RSAg correlated as groups 

(Figure 3.16), with a p value of 0.0003 using a 2-tailed Spearman correlation 

test (r=0.3724). Readings from human RSAg and the 58 kDa protein (both 

containing His tags) were correlated (Figure 3.17), using the Pearson 

correlation test on log-transformed data from the 2 groups. Statistically 

significant correlation was shown with a p value of <0.0001. However, the "R 

squared" value was only 0.3145, indicating that 31% of the variance was shared 

between the 2 groups. Readings from bovine RSAg and His-tagged protein, 

showed no demonstrable correlation (Figure 3.18), using a 2-tailed Spearman 

test for non-normally distributed data (p=0.3937, r=0.09099).  
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Table 3.1 Individual patients: clinical diagnosis, activity and disease 

duration. IUSG, International Uveitis Study Group classification. Case numbers 

P2a, P2b, etc. denote repeat samples. Unavailable details are indicated by N/A. 

 
Case/ 
serum 
No. 

Age Clinical Diagnosis IUSG 
Diagnosis 

Activity Duration 
Current 
Episode 

Total 
Duration 

Syst.
Meds 

P1 20 Pars planitis Intermediate 
uveitis 

1+ 2 mths 8 years No 

P2a          
P2b 

51 
54 

Sarcoid uveitis 
Sarcoid uveitis 

Pan-uveitis 
Posterior 

Minimal 
Inactive 

5 mths 
N/A 

54 mths 
90 mths  

Yes 
Yes 

P3 46 Serpiginous 
choroiditis 

Posterior Inactive N/A 15 mths No 

P4 34 Pars planitis +  
vitritis /Hodgkin's  

Intermediate 
 

2+ N/A N/A Yes 

P5 77 Multifocal/birdshot 
choroiditis  

Posterior Inactive N/A 2 years Yes 

P6 
 

46 Behcet’s disease Pan-uveitis N/A N/A N/A N/A 

P7 77 Sarcoid uveitis Posterior Inactive N/A 17 mths Yes 
P8 34 Multifocal  

choroiditis  
Posterior Active N/A N/A N/A 

P9 50 Neuroretinitis 
+ chorioretinitis 

Posterior Inactive N/A 25 mths Yes 

P10 49 Multifocal  
choroiditis 

Posterior N/A N/A N/A N/A 

P11 29 Pars planitis  
+ vitritis 

Intermediate 
 

1+ 6 mths 39 mths No 

P12a 
P12b 

23 
26 

Pars planitis 
Pars planitis 

Intermediate 
Intermediate 

N/A 
Inactive 

N/A 
N/A 

N/A 
5 years 

N/A 
Yes 

P13 
 

39 Behcet’s disease Pan-uveitis N/A N/A N/A N/A 

P14 64 Wegener’s/white 
 dot choroiditis 

Posterior Inactive N/A 2 weeks Yes 

P15 
 

29 Pars planitis Intermediate Inactive N/A 7 years No 

P17a 
P17b 

40 
44 

Pars planitis (MS) 
Pars planitis (MS) 

Intermediate 
Intermediate 

N/A 
1+ 

N/A 
2 mths 

N/A 
10 years 

N/A 
Yes 

P19 22 Pars planitis 
/inter. uveitis 

Intermediate Inactive N/A 11 mths No 

P20 28 AMPPE Posterior Active 1 week 23 mths No 
P21 49 Pars planitis Intermediate Inactive N/A 16 mths No 
P22 29 Behcet’s disease Pan-uveitis N/A N/A N/A N/A 
P23 41 M.E.W.D.S. Posterior N/A N/A N/A N/A 
P24 25 Anterior + inter. 

uveitis 
Intermediate Active 1 week 1 week No 
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Case/ 
serum 
No. 

Age Clinical Diagnosis IUSG 
Diagnosis 

Activity Duration 
Current 
Episode 

Total 
Duration 

Syst.
Meds 

P25 47 Sarcoidosis Posterior N/A N/A N/A N/A 
P26 37 Uveitis+vasculitis Posterior N/A N/A N/A N/A 
P27 16 Pars planitis Intermediate 1+ N/A 3 years No 
P28 38 Pars planitis Intermediate N/A N/A N/A N/A 
P30 40 Pars planitis Intermediate Active N/A N/A N/A 
P50 46 Post uveitis  

(? sarcoid) 
Posterior Active N/A N/A Yes 

P51 54 Pan-uveitis Pan-uveitis Minimal 23 mths 13 years No 
P52 32 Pars planitis 

+periphlebitis 
Intermediate Minimal 2 mths 2 years No 

P53 34 Intermediate/ 
pars planitis 

Intermediate 1+ 2 mths 2 mths No 

P54 40 Behcet’s disease Pan-uveitis 2+ 3 weeks 13 years Yes 
P55 56 Pan-uveitis/vitritis Pan-uveitis 1+ N/A 17 years No 
P58 30 Intermediate 

uveitis 
Intermediate Active 3 weeks 6 years No 

P59 29 Intermediate 
uveitis 

Intermediate 2/3+ 3 weeks 16 mths No 

P60 48 Sarcoid posterior 
uveitis 

Posterior Minimal 1 month 14 years No 

P61 36 Pars planitis (B/L) Intermediate Inactive N/A 5 1/2   
years 

No 

P62 40 Sarcoid uveitis Posterior Active 6 weeks 15 years No 
P63 56 Pan-uveitis Pan-uveitis Active 8 mths 10 years Yes 
P64 30 Behcet’s disease Pan-uveitis Active 1 month 9 years Yes 
P65  Sarcoid  

kerato-uveitis 
Posterior 1+ N/A 7 years No 

P66 69 Pan-uveitis Pan-uveitis Active 6 mths 4 years Yes 
P67 61 Intermediate 

uveitis 
Intermediate Inactive N/A 32 mths N/A 

P68 42 Posterior/inter  
uveitis  

Posterior Active N/A N/A N/A 

P69 37 Ant. + posterior  
uveitis (MS) 

Posterior 2+ 3 mths 3 years No 
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Figure 3.12 Patient and control sera screened against bovine RSAg by ELISA 

(2nd experiment). 
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Figure 3.13 Patient and control sera screened against human recombinant 

RSAg by ELISA. 
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Figure 3.14 Comparison of bovine and recombinant human RSAg reactivity 

against patient and control sera, as tested by ELISA. 
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Figure 3.15 Comparison of reactivity of sera from active and inactive uveitis 

patients, against recombinant human RSAg by ELISA. 
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Figure 3.16 Correlation of corrected ELISA readings obtained from individuals 

using bovine and human recombinant RSAg. 
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Figure 3.17 Correlation of readings from human recombinant RSAg and 58 

kDa His-tagged control protein. 
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Figure 3.18 Correlation of readings from bovine RSAg and 58 kDa His-tagged 

control protein. 
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3.3  Discussion 
RSAg is probably the most widely studied of the candidate autoantigens for 

human autoimmune uveitis. Studies have demonstrated humoral and cellular 

immunoreactivity to RSAg, mainly in animal models but also in human subjects. 

However the bovine form of RSAg has been used in the great majority of these 

experiments, presumably because of lack of availability of the human form, and 

therefore experiments on humans using human antigen are relatively few. In 

this study I aimed to clone and express recombinant human RSAg, and then 

compare its performance to that of the bovine form in the measurement of 

autoantibody levels in uveitis patients and controls by ELISA. 

 Here we have demonstrated the successful cloning and expression of 

the human antigen as a fusion protein in both prokaryotic and eukaryotic cells. 

There are few reports of this being achieved previously, in particular of RSAg 

being expressed from human cells. Only moderate amounts of protein were 

produced from transfected eukaryotic cells, though yields could reasonably be 

expected to improve with fine-tuning of the optimal times for induction of these 

cells. Time constraints did not allow us to optimise the technique on this 

occasion. Antigen was expressed as a fusion protein incorporating a 

polyhistidine tag to aid in the purification process, which used a nickel chelate 

resin system. This tag was not cleaved in any of the following experiments 

because it was not felt necessary to do so. This however could have been done 

easily by cleaving the enterokinase site using a commercially available kit. 

Recombinant antigen was also expressed in bacterial cells. This resulted in 

higher yields and had the advantage of being easier and quicker to produce. As 

well as the advantage of being a theoretically unlimited supply of protein, 

recombinant antigen production also has advantages in terms of increased 

quality control, greater purity, and decreased likelihood of cross-contamination 

by other proteins of similar size. Given that the protein expressed in human 

cells would be more likely to contain eukaryotic post-translational modifications 

and therefore more closely mimic the native form, future efforts should probably 

concentrate on maximizing yields from this source. The successful production of 

large amounts of recombinant human RSAg, as demonstrated here, would 
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circumvent the need for the use of antigen from other species and would greatly 

increase the validity of future studies on humans using RSAg.  

 Previous ELISA studies, mostly but not exclusively using bovine RSAg, 

have failed to demonstrate a clear difference between uveitis patients and 

controls for either the presence of autoantibodies to RSAg (or indeed any other 

putative autoantigen) or their titres, as outlined above. In a preliminary 

experiment using bovine RSAg, again no differences were detected. In 

retrospect, the controls used in these ELISAs were not rigorous enough, and 

therefore the results will not be discussed further. The ELISAs were repeated 

on both bovine and human recombinant RSAg using individual sera from uveitis 

patients and healthy controls. Rigorous controls were used in these 

experiments, but yet again no differences in immunoreactivity between patients 

and controls as groups were demonstrated using either type of antigen. No 

significant differences were detected between active and inactive uveitis 

patients, but the small number of active patients in the group would have made 

this difficult to demonstrate. Analysis of uveitis patient results by clinical sub-

group did not highlight any category with particularly high rates of 

immunoreactivity to RSAg. Again, as the numbers for each individual condition 

were small, it is possible that differences would be revealed if greater numbers 

were studied. Clinical details of patients (and controls) that displayed "high" 

titres of anti-RSAg were studied for possible causes. No particular association 

between high titres and disease type, state of activity, current disease duration, 

total disease duration or concurrent systemic immunosuppression could be 

found. 

 Immunoreactivity of bovine and human RSAg, as measured by ELISA, 

correlated significantly when analysed by Spearman correlation (r = 0.3724, p = 

0.0003). Analysis of individual results however, revealed certain samples that 

were substantially more reactive to the human form of the antigen than the 

bovine, and a smaller number that were significantly more reactive to the bovine 

form. This demonstrates that there are species-specific epitopes on both forms 

of antigen, and that cross-reactivity is only partial. ELISA readings using human 

antigen were found to be significantly higher than those obtained with the 

bovine form. These results together suggest that only the human form of the 
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antigen should be used when investigating autoantibody responses, or other 

measures of immune response, in this (human) disease. 

 The recombinant human RSAg used in these ELISAs were fusion 

proteins attached to a His-tag sequence. Tags were not cleaved prior to use in 

ELISA, as this was thought to be unnecessary. The size of the tag was just over 

6 kDa, compared with a mass of 48 kDa for the RSAg part. Certain checks were 

performed to minimise the chance of inadvertent reactivity to the His-tag portion 

of the molecule. Another His-tag containing protein (58 kDa protein kinase, 

Invitrogen) was used as an extra control when performing ELISA on each 

serum sample. This enabled identification of any possible anti-His reactivity, 

which should in theory have an almost identical reading to the RSAg protein 

(similar sized molecules). The baseline-corrected readings for all experimental 

samples (both patient and control) for recombinant RSAg and the 58-kDa 

protein were compared by correlation. While the readings were shown to 

correlate, by Pearson testing of log - transformed data (P<0.0001), they had an 

R2 value of 0.3145 showing that only 31 % of the variance in the 2 groups was 

shared. These results combined with the fact that the His-tags comprised only a 

small part of the total protein, and that immunoreactivity against such artificially 

engineered tags would be unlikely to occur in nature, justify the use of the 

whole, uncleaved molecule. 

 The finding of no difference between patients and controls in 

immunoreactivity to RSAg fits with and confirms the findings of previous studies. 

Given the interspecies variation of the forms of RSAg, it was particularly 

important to confirm this using human antigen. It seems that positivity for anti-

RSAg antibodies is not a marker for disease in autoimmune uveitis. The finding 

of relatively few samples with truly high levels of anti-RSAg but many with low 

or moderate levels irrespective of disease state, might indicate that most of the 

activity detected on ELISA is due to non-specific immunoglobulin with quite low 

affinity for RSAg. There has been speculation that anti-RSAg antibodies may be 

protective for the disease (Dua et al. 1989b) but there is no firm evidence for 

this in humans at present. Analysis of the epitope specificities of anti-RSAg, 

perhaps in different stages of development of the disease, might be able to 

discriminate better between patients and controls, or active and inactive disease 

states. 
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 In summary, this chapter demonstrates the successful cloning of human 

RSAg and its expression in prokaryotic and eukaryotic cells. Human antigen 

was found to be more sensitive than bovine for the detection of anti-RSAg 

activity by ELISA. ELISAs using bovine and human RSAg again demonstrated 

no differences between patient and control groups, but indicated substantial 

differences in epitope preferences between the two forms. I would therefore 

recommend the exclusive use of human RSAg, whether native or recombinant, 

for all future work on autoimmune uveitis. 
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4 Chapter 4: B-cell epitope mapping of 
RSAg with uveitis patient and control 

sera. 
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4.1  Introduction 
Autoantibodies to RSAg have been detected equally in uveitis patients and 

healthy controls in previous studies (see Chapters 1 and 3). Although 

autoimmune uveitis is primarily a T-cell mediated disease, the role of 

autoantibodies is of interest for several reasons. Antibodies have been shown to 

have an influence on the course of a number of autoimmune diseases. These 

include anti-RSAg antibodies, which have been shown to have an inhibitory 

effect on EAU and may therefore have therapeutic potential. They could also 

potentially have a role as disease markers, either before disease onset or as a 

prognostic marker during treatment. Finally, analysis of the target epitopes of 

disease-associated antibody clones (were these to exist) could provide valuable 

data on the role of B-cell and T-cell mechanisms of disease in uveitis. However, 

these potential benefits are contingent on the delineation of disease-specific 

and/or protective B-cell epitopes. Currently, published data is lacking in this 

area. 

 Phage display was chosen as the technique to map the B-cell epitopes of 

RSAg. One of several types of combinatorial library, phage display has the 

advantage of being relatively inexpensive, versatile, straightforward to use, and 

capable of displaying a large number (≈ 109) of primary recombinants in a single 

library. This means there is a high chance of any particular target molecule (e.g. 

antibody, receptor, etc) affinity-selecting phage which display ligands that 

closely resemble the molecule’s natural target in vivo. Phage display is well 

established in B-cell epitope mapping (Smith and Petrenko 1997). It was initially 

used to map the epitope preferences of monoclonal antibodies, but later 

adapted to the screening of polyclonal antibodies, including those derived from 

sera (Dybwad et al. 1993; Folgori et al. 1994; Motti et al. 1994; Sioud et al. 

1994; Dybwad et al. 1995a; Meola et al. 1995; Felici et al. 1996; Mennuni et al. 

1996; Prezzi et al. 1996; Sioud et al. 1996). It has been successfully used to 

map epitopes in rheumatoid arthritis, another T-cell mediated autoimmune 

disease, using sera (Dybwad et al. 1993; Sioud et al. 1994; Sioud et al. 1996) 

and synovial fluid (Dybwad et al. 1995b). Similarly, phage display has been 

successfully used in “epitope discovery” for polyclonal antibodies in the CSF of 

patients with multiple sclerosis (Rand et al. 1998), another disease closely 
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related to autoimmune uveitis. Phage display has been successfully used in 

identifying and then further refining the minimum epitope requirements of a 

monoclonal antibody against another uveitis candidate autoantigen IRBP (Tighe 

et al. 1996; Tighe et al. 1999). 

 In uveitis, the target epitope of a particular anti-RSAg monoclonal 

antibody has been located using cyanogen bromide digested antigen fragments 

(Donoso et al. 1986). To date, however, the target epitopes on RSAg to sera 

(polyclonal) from uveitis patients and controls have not been defined, and that 

was the aim of this study. I planned to use phage display libraries to define 

“public” epitopes that were common to both uveitis and control sera, and also 

“private” epitopes that were specific for one or other. The discovery of disease-

specific epitopes could provide insights into disease mechanisms, as well as 

leading to the development of antagonist drugs or immunotherapies such as 

monoclonal antibodies or fusion proteins. Similarly, the identification of control-

specific epitopes would provide avenues for the development of “protective” 

anti-RSAg monoclonal antibodies. One such approach could involve the direct 

use of selected phage clones in the generation of vaccines or monoclonal 

antibodies, by injecting them into laboratory animals.  
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4.2  Results 

4.2.1  T7 library results 
Separate preparations of affinity-purified anti-RSAg antibody were extracted 

from the pooled sera from 26 uveitis patients (P1-15, 17, 18-28) and 34 healthy 

controls (C2-5, 7-10, 13, 15-19, 22, 24, 26-33, 35-43, HS) (Table 3.1). Input 

phage from the constrained 9-mer (C9C) T7 phage library were affinity-selected 

through 4 rounds of biopanning against both types of anti-RSAg.  Phage from 

the 4th round of amplification were plated out, and random plaques chosen for 

sequencing. Phage titres increased sequentially with each round of biopanning, 

for both types of anti-RSAg. Three clones (non wild-type) were isolated from the 

phage pool enriched using control sera (Table 4.1). However no recombinant 

clones were identified from among the plaques selected using uveitis patient 

sera.  

 

Table 4.1 Clones affinity-selected from T7 library using pooled control sera. 

 

Clone Amino-acid sequence of 
phage displayed peptide 
 

No. of clones  
identified 

1 K-P-I-L-G-G-K-K-* 18 
2 G-P-A-G-C-W-E-N-* 7 
3 E-K-E-V-L-G-I-L-I 1 

 

A possible motif, K- - LG, is shared between Clone 1 and 3. Apart from 

this however, the small number of clones derived from the control group and the 

absence of recombinant clones from the patient group makes further analysis 

impossible.  

 This experiment was repeated. Problems were encountered in amplifying 

affinity-selected phage between rounds of biopanning, and titres remained static 

or even fell despite varying a number of experimental parameters. Plaques 

derived from the 3rd and 4th rounds of biopanning were randomly sequenced. All 

were found to be wild-type phage and no recombinant clones were isolated for 

either patient or control sera. 
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4.2.2  Ph.D.-12 (M13) library 
This linear 12-mer library was biopanned using affinity-purified anti-RSAg 

antibody derived from 27 uveitis patients (P1-15, 17, 18-28 and 30) and 34 

controls (C2-5, 7-10, 13, 15-19, 22, 24, 26-33, 35-43, HS). Although numbers of 

affinity-selected phage were reasonable when titred immediately after 

biopanning (pre-amplification), diminished titres were observed after incubation 

of phage in bacterial cultures. This indicated a problem during amplification, 

possibly due to diminished infectivity of the affinity-selected phage. Various 

experimental parameters (incubation times, stringency of wash solutions, 

temperatures, etc) were varied without success. New anti-RSAg antibody was 

affinity purified, but this did not overcome the problem. Helper phage were 

introduced to enhance infectivity, but failed. Finally, the DNA was extracted from 

phage captured during the 1st round of biopanning, and directly introduced by 

electroporation into electrocompetent host cells. Even then, phage failed to 

replicate in adequate numbers, and use of this library was abandoned. 
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4.2.3  f88-4 linear and f88-4/Cys4 library results 
These two 15-mer libraries were combined and used as input for the first of 3 

rounds of biopanning against anti-RSAg antibody as described in Chapter 2. 

Affinity-purified antibody, extracted from the same uveitis patient and control 

sera as above, was used as target ligate. The total number of phage captured 

during each round of biopanning, prior to amplification, was estimated. Using 

patient-derived antibody, the total number of affinity-selected phage increased 

sequentially in each round (1st round 1.7x107 TUs, 2nd round 1.4x108 TUs, 3rd 

round 3.5x109 TUs), while using equal numbers of input phage. This probably 

indicates that phage displaying higher affinity peptides were being selected 

preferentially. Using control-derived antibody, there was an initial increase in 

phage yields (1st round 5.7x107 TUs, 2nd round 6.9x109 TUs), followed by a 

decrease (3rd round 1.4x108 TUs). This might indicate overgrowth of non-

specific phage or represent a titration error. Post-amplification titres of patient 

and control phage solutions after the 3rd round of biopanning were (as 

expected) approximately equal: Patient 2.4x1011TU/ml, Control 2.1x1011 TU/ml.   

It is noteworthy that all clones isolated from both groups were derived 

from the constrained library, with none of the linear library clones being 

selected. After random screening of colonies from the 3rd round of panning, 16 

recombinant clones were identified from the phage pool enriched using patient 

sera (Table 4.2). Most clones were represented by single copies but Patient 

Clone A (20 copies) and Patient Clone N (2 copies) were represented more 

than once. 24 clones were identified from the phage pool selected using control 

sera (Table 4.2). Several copies (6) of Control Clone A, a clone displaying the 

same 9-mer peptide as Patient Clone A, were identified. 2 copies of Control 

Clone G were identified, and all other clones were represented by single copies. 

Overall, no obvious consensus or motif was identified from within the groups of 

patient or control-derived clones.  

Patient and control phage clones were tested against sera from their 

respective groups by 3-step ELISA. No clone stood out when groups of 

readings were compared, for either patient or control groups.  

Patient and control-derived clones were analysed in terms of distribution 

of certain amino-acid residues, or residues with shared properties. It was 
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noticeable that most (14/15) of the patient-derived clones were full length (15 

residues), but due to a large number of stop codons most of the control clones 

were truncated (17/24). There seemed to be a predominance of proline 

residues after the 2nd engineered cysteine in clones from the patient group (13 

out of a possible 63 residues (20.6%) compared with 4 out of 34 (11.8%) for the 

controls – see Table 4.3). There also seemed to be a greater proportion of 

aromatic residues (FYWH) in the control group after the 2nd cysteine, where this 

part of the phage DNA was expressed (Table 4.4). In the patient group, 8 out of 

a possible 63 residues (12.7%) were aromatic, while the corresponding figure 

was 8 out of 34 (23.5%) for the controls. Amino acids were also grouped as 

polar, charged, positive, negative, small, tiny, hydrophobic and aliphatic, and 

differences in distribution between patient and control clones sought. No 

obvious differences between the groups were detected however.  

Patient Clone K was noted to contain 6 amino acids of homology and 

one of similarity with RSAg. The sequence of homology was TANTCKKIK (N is 

the partial similarity) starting at amino acid 234 of human RSAg. Several other 

shorter similarities were also noticed. 

 



 

 167 

Figure 4.2: Amino acid sequences of peptides affinity selected from GVIII 

phage library using uveitis patient- and control-derived antibody. Number of 

copies of each individual sequence shown in parentheses. Engineered cysteine 

residues are highlighted in red.  

Patient Sequences 
(A) A-D-K-R-R-C-R-T-S-K-C-P-P-P-T  (20) 
(B) A-H-K-P-N-C-T-V-V-C-C-P-L-V-M  (1) 
(C) A-H-A-N-K-C-G-N-V-Q-C-N-L-S-N  (1) 
(D) A-E-K-K-V-C-T-K-S-S-C-L-Q-P-T  (1) 
(E) A-E-K-K-K-C-R-I-K-S-C-L-P-Q-A  (1) 
(F) A-P-R-D-P-C-S-THR-L-C-T-K-Q-P  (1) 
(G) A-M-E-T-T-C-T-S-L-Y-C-N-Y-P-R  (1) 
(H) A-A-K-V-T-C-L-S-T-P-C-T-K-M-N  (1) 
(I) A-R-Y-D-S-C-K-T-Q-A-C-G-H-T-M  (1) 
(J) A-G-L-R-E-C-E-Q-S-I-C-H-R-R-P  (1) 
(K) A-T-A-N-T-C-K-K-I-K-C-H-S-S-A  (1) 
(L) A-P-K-Y-G-C-V-M-N-Q-C-P-Q-D-I  (1) 
(M) A-N-K-P-I-C-K-P-K-A-C-E-P-H-V  (1) 
(N) A-T-K-N-G-C-P-A-N-T-C-H-P-S-G  (2) 
(O) A-T-S-L-S-C-S-G-Y-L-C-L-A-H-Y  (1) 
(P) A-N-T-H-A-C-N-H-M-K-C-T-S-P  (1) 
 
Control Sequences 
(A) A-D-K-R-R-C-R-T-S-K-C-P-P-P-T  (6) 
(B) A-A-T-R-A-C-K-V-R-R-C-W-S-H  (1) 
(C) A-E-S-R-T-C-T-K-N-S-C-H-L-T-K  (1) 
(D) A-M-Q-K-S-C-V-E-S-P-C-Q-H-T  (1) 
(E) A-T-M-L-A-C-L-N             (1) 
(F) A-P-E-E-Y-C-R-K-H-W-C-R-K-Q-P  (1) 
(G) A-E-H-Q-T-C-G-V-F-G-C-W-I-Y-L  (2) 
(H) A-H-K-R-T-C-Q-T             (1) 
(I) A-T-K-N-L-C-E-H             (1) 
(J) A-E-A                       (1) 
(K) A-E-W-E-E-C                 (1) 
(L) A-K-S-E-T-C                 (1) 
(M) A-N                         (1) 
(O) A-S-D-L-T-C-D-P-W-T-C-W-D-S-N  (1) 
(P) A-A-N-D-K-C-P-R-I-K-C-Q-G-Q-S  (1) 
(Q) A-L-E-K-G-C                 (1) 
(R) A                           (1) 
(S) A-D-Q-G-Q-C                 (1) 
(T) A-K-M-M                         (1) 
(U) A-P-P-C-Q-C-L-S-K-S-C-D-T-H-K  (1) 
(V) A-D-T-D-K-C                 (1) 
(W) A-L-S-N-T-C                  (1) 
(X) A-A-P-A-K-C-R-S              (1) 
(Y) A-Q                         (1) 
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Table 4.3 Distribution of proline residues (highlighted in green). 

 

Patient Sequences – proline (P) residues 
(A) A-D-K-R-R-C-R-T-S-K-C-P-P-P-T  (20) 
(B) A-H-K-P-N-C-T-V-V-C-C-P-L-V-M  (1) 
(C) A-H-A-N-K-C-G-N-V-Q-C-N-L-S-N  (1) 
(D) A-E-K-K-V-C-T-K-S-S-C-L-Q-P-T  (1) 
(E) A-E-K-K-K-C-R-I-K-S-C-L-P-Q-A  (1) 
(F) A-P-R-D-P-C-S-THR-L-C-T-K-Q-P  (1) 
(G) A-M-E-T-T-C-T-S-L-Y-C-N-Y-P-R  (1) 
(H) A-A-K-V-T-C-L-S-T-P-C-T-K-M-N  (1) 
(I) A-R-Y-D-S-C-K-T-Q-A-C-G-H-T-M  (1) 
(J) A-G-L-R-E-C-E-Q-S-I-C-H-R-R-P  (1) 
(K) A-T-A-N-T-C-K-K-I-K-C-H-S-S-A  (1) 
(L) A-P-K-Y-G-C-V-M-N-Q-C-P-Q-D-I  (1) 
(M) A-N-K-P-I-C-K-P-K-A-C-E-P-H-V  (1) 
(N) A-T-K-N-G-C-P-A-N-T-C-H-P-S-G  (2) 
(O) A-T-S-L-S-C-S-G-Y-L-C-L-A-H-Y  (1) 
(P) A-N-T-H-A-C-N-H-M-K-C-T-S-P  (1) 
 
 

Control Sequences  
(A) A-D-K-R-R-C-R-T-S-K-C-P-P-P-T  (6) 
(B) A-A-T-R-A-C-K-V-R-R-C-W-S-H  (1) 
(C) A-E-S-R-T-C-T-K-N-S-C-H-L-T-K  (1) 
(D) A-M-Q-K-S-C-V-E-S-P-C-Q-H-T  (1) 
(E) A-T-M-L-A-C-L-N             (1) 
(F) A-P-E-E-Y-C-R-K-H-W-C-R-K-Q-P  (1) 
(G) A-E-H-Q-T-C-G-V-F-G-C-W-I-Y-L  (2) 
(H) A-H-K-R-T-C-Q-T             (1) 
(I) A-T-K-N-L-C-E-H                 (1) 
(J) A-E-A                       (1) 
(K) A-E-W-E-E-C                 (1) 
(L) A-K-S-E-T-C                 (1) 
(M) A-N                          (1) 
(O) A-S-D-L-T-C-D-P-W-T-C-W-D-S-N  (1) 
(P) A-A-N-D-K-C-P-R-I-K-C-Q-G-Q-S  (1) 
(Q) A-L-E-K-G-C                 (1) 
(R) A                           (1) 
(S) A-D-Q-G-Q-C                 (1) 
(T) A-K-M-M                       (1) 
(U) A-P-P-C-Q-C-L-S-K-S-C-D-T-H-K  (1) 
(V) A-D-T-D-K-C                    (1) 
(W) A-L-S-N-T-C                 (1) 
(X) A-A-P-A-K-C-R-S                 (1) 
(Y) A-Q                         (1) 
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Table 4.4 Distribution of aromatic (FYWH) residues (highlighted in blue). 

 

Patient Sequences – aromatic residues (FYWH) 

 
(A) A-D-K-R-R-C-R-T-S-K-C-P-P-P-T  (20) 
(B) A-H-K-P-N-C-T-V-V-C-C-P-L-V-M  (1) 
(C) A-H-A-N-K-C-G-N-V-Q-C-N-L-S-N  (1) 
(D) A-E-K-K-V-C-T-K-S-S-C-L-Q-P-T  (1) 
(E) A-E-K-K-K-C-R-I-K-S-C-L-P-Q-A  (1) 
(F) A-P-R-D-P-C-S-THR-L-C-T-K-Q-P  (1) 
(G) A-M-E-T-T-C-T-S-L-Y-C-N-Y-P-R  (1) 
(H) A-A-K-V-T-C-L-S-T-P-C-T-K-M-N  (1) 
(I) A-R-Y-D-S-C-K-T-Q-A-C-G-H-T-M  (1) 
(J) A-G-L-R-E-C-E-Q-S-I-C-H-R-R-P  (1) 
(K) A-T-A-N-T-C-K-K-I-K-C-H-S-S-A  (1) 
(L) A-P-K-Y-G-C-V-M-N-Q-C-P-Q-D-I  (1) 
(M) A-N-K-P-I-C-K-P-K-A-C-E-P-H-V  (1) 
(N) A-T-K-N-G-C-P-A-N-T-C-H-P-S-G  (2) 
(O) A-T-S-L-S-C-S-G-Y-L-C-L-A-H-Y  (1) 
(P) A-N-T-H-A-C-N-H-M-K-C-T-S-P  (1) 
 

Control Sequence  

 
(A) A-D-K-R-R-C-R-T-S-K-C-P-P-P-T  (6) 
(B) A-A-T-R-A-C-K-V-R-R-C-W-S-H  (1) 
(C) A-E-S-R-T-C-T-K-N-S-C-H-L-T-K  (1) 
(D) A-M-Q-K-S-C-V-E-S-P-C-Q-H-T  (1) 
(E) A-T-M-L-A-C-L-N             (1) 
(F) A-P-E-E-Y-C-R-K-H-W-C-R-K-Q-P  (1) 
(G) A-E-H-Q-T-C-G-V-F-G-C-W-I-Y-L  (2) 
(H) A-H-K-R-T-C-Q-T             (1) 
(I) A-T-K-N-L-C-E-H             (1) 
(J) A-E-A                       (1) 
(K) A-E-W-E-E-C                 (1) 
(L) A-K-S-E-T-C                 (1) 
(M) A-N                         (1) 
(O) A-S-D-L-T-C-D-P-W-T-C-W-D-S-N  (1) 
(P) A-A-N-D-K-C-P-R-I-K-C-Q-G-Q-S  (1) 
(Q) A-L-E-K-G-C                 (1) 
(R) A                           (1) 
(S) A-D-Q-G-Q-C                 (1) 
(T) A-K-M-M                         (1) 
(U) A-P-P-C-Q-C-L-S-K-S-C-D-T-H-K  (1) 
(V) A-D-T-D-K-C                 (1) 
(W) A-L-S-N-T-C                  (1) 
(X) A-A-P-A-K-C-R-S              (1) 
(Y) A-Q                         (1) 
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4.3  Discussion 
Polyclonal anti-RSAg antibody from uveitis patients and controls was used to 

screen three different types of phage display library. In general the results were 

disappointing.   

Using the T7 library a small number of clones were identified from the 

control group, 2 of which had a possible area of homology, but the number of 

clones was too small to draw firm conclusions. No clones were identified using 

patient antibody, which makes comparison impossible. Repeat experiments 

using the same library were not successful. Screening of the M13 library was 

similarly unsuccessful. Failure of phage to amplify after affinity-selection made 

completion of the experiment impossible. This may have been due to 

interference by the recombinant peptides (which are displayed on the surface of 

the Gene III protein in this phage system) in the process of infection of host 

bacteria. Attempts to overcome this problem with the use of helper phage or 

electroporation of phage DNA into host cells were unsuccessful. For both T7 

and M13 libraries the experiments were repeated several times, while 

experimental conditions such as incubation times and temperatures, wash 

solutions and frequency of washes, age of host bacteria at time of inoculation 

and type of solid phase for immobilisation of target antibodies, were varied. 

None of these modifications produced positive results. 

 More success was had with the f88-4 system in that several phage 

clones were captured using antibody from both uveitis patients and controls. 

The fact that all clones identified originated from the constrained library 

emphasises the importance of epitope conformation in antigen/antibody 

interaction. Multiple copies of the same clone (Clone A) being affinity-selected 

by both types of anti-RSAg antibody is significant, but its meaning unclear. This 

may represent greater replicative performance (assembly or infectivity) over 

other library clones, or selection by a particularly prominent antibody. 

Nevertheless, it is impossible to draw conclusions from this in terms of RSAg 

antibody/epitope preferences. The prevalence of stop codons was higher in 

clones affinity-selected by control sera, and are more likely to represent non-

specific binding. Because the engineered peptide is expressed at the N-terminal 

end of the fusion protein (unlike T7 fusions which are C-terminal), clones 
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containing stop codons will not express a fully functional GVIII protein. The bias 

towards selection of fully functional clones by uveitis patient sera could be 

explained in terms of specific antibody affinities, but the implications of this 

remain unclear. Patient-derived clones tended to express more proline residues 

at their C-terminus ends - proline can cause bends in a polypeptide and this 

could have conformational implications for anti-RSAg antibody/epitope 

interactions. The relevance of control-derived peptides being possibly more 

likely to contain aromatic residues is not clear. Significantly no consensus 

patterns or motifs emerged from clones in either patient or control group, and 

therefore the RSAg sequence could not be mapped in terms of disease-specific 

or protective epitopes. It is possible that screening and analysis of greater 

numbers of clones from the enriched phage pools would eventually identify 

relevant mimotopes, but time constraints did not permit this. Although one 

patient-derived clone (Clone K) showed partial homology to a short sequence of 

human RSAg, the lack of other clones bearing the same motif makes it 

impossible to determine if this really represents an epitope with preferential 

binding for anti-RSAg antibody derived from uveitis patients.  

It is necessary to look at the reasons why many of the biopanning 

experiments were ultimately unsuccessful and what future changes would most 

likely provide improved results. It is possible that some of the patient serum 

samples, particularly those taken from patients in remission or on 

immunosuppression, contained low titres and/or low affinity anti-RSAg antibody. 

More meaningful results might be obtained if sera were taken from patients with 

active uveitis, preferably non-immunosuppressed. This, of course, would not 

have relevance for sera taken from control subjects. However, pre-screening of 

either type of sera and selective use of samples with high anti-RSAg titres might 

improve the quality of the target ligate, which is of particular importance for this 

technique. Experimental conditions were optimised over several repeat 

biopannings, but this did not appear to have any significant effects on the final 

results. It should be remembered that in the past, phage display libraries have 

yielded the best results when screened by well-defined monoclonal antibodies, 

and that screening with sera/polyclonal antibodies presents particular problems. 

Polyclonal sera by definition contain a wide range of immunoglobulins of 

unknown affinities and concentrations. This will result in a higher yield of non-
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specific clones in comparison with monoclonal selection. In addition, whereas 

repeated rounds of selection with a monoclonal antibody will diminish the 

number of non-specific binders, this is not necessarily so when using polyclonal 

sera containing immunoglobulins of unknown concentrations and affinities. 

 Some researchers have modified the standard method of biopanning 

specifically to overcome these problems. Folgori et al (Folgori et al. 1994), 

affinity-selected binders from a phage library using only serum (non-affinity 

purified) from a seropositive patient. The large number of selected phage clones 

was then more narrowly defined by screening plaques on filters with the sera of 

other seropositive patients. A narrow range of “disease-specific” clones was 

eventually identified.  Rodi et al (Rodi et al. 1999), also minimised the number of 

rounds of amplification and performed a statistical analysis on a larger number 

of sequences. Both these approaches would help to minimise the problem of 

high affinity binders being out-grown between rounds by lower-affinity clones 

with better growth rates. Finally, it is recognised that random phage display 

libraries work best when mapping continuous linear determinants, and not as 

well with discontinuous or conformation-dependent epitopes. Perhaps the use 

of a wider range of constrained random libraries, libraries displaying peptides on 

a protein scaffold, or even a RSAg cDNA display library would have been more 

successful here.  

Overall, based on my experiences as described here, I would find it hard to 

recommend random phage display as an effective method for mapping B-cell 

epitopes of RSAg. Given that the experiments were repeated several times - 

under different conditions and using a range of reasonably diverse libraries - 

without significant success, it could be concluded that this technology does not 

lend itself well to this particular investigation. It is, however, a feature of using 

phage display technology that one library may fail to yield the expected results 

while another, for no apparent reason, is successful. It is therefore possible that 

future investigators, using a different approach will have more success. 

 



 

 173 

5 Chapter 5: Discovery and expression of 
new autoantigens using a retinal cDNA 

expression library  
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5.1  Introduction  
Identification of the target autoantigen(s) is important in autoimmune disease, 

both to understand the aetiology of the particular disease and for the 

development of specific immunotherapies. Autoimmune uveitis is one such 

disease, in which a number of organ-specific candidate autoantigens have been 

proposed. The main candidates, which are all retinal proteins, are RSAg, IRBP, 

phosducin, rhodopsin and recoverin. These were all initially identified by their 

ability to induce EAU in various types of laboratory animals. Subsequently 

cellular and humoral immunoreactivity to some of the antigens (RSAg, IRBP) 

(Gery et al. 1986a) has been demonstrated in vitro in animals and humans. 

However, the relationship between these autoantigens and human autoimmune 

uveitis remains uncertain. 

The repertoire of candidate antigens studied so far is limited. Previous 

studies have concentrated on isolating a particular protein and testing it for its 

ability to induce EAU. Few studies have attempted to systematically define the 

complete group of uveitogenic antigens in vivo in humans (or indeed animals), 

or rank them in terms of importance to the initiation or maintenance of the 

human disease. The potential gap that exists in our knowledge of the extent of 

candidate uveitogenic molecules needs to be addressed before more detailed 

studies are carried out on any particular antigen.  

Although the use of EAU experiments has yielded several candidate 

autoantigens, some of which later demonstrated human immunoreactivity, there 

are limitations to what can be established using this approach. Some of the 

established antigens demonstrate immunoreactivity to human tissues in vitro, 

but this may not be the case in vivo, and immunoreactivity might not be 

exclusive to that antigen. Reactivity to some or all of these proteins may 

therefore represent “bystander activity” secondary to tissue 

inflammation/destruction, or redundant inflammatory pathways. Different 

antigens, or even epitopes within a particular antigen, may be responsible for 

inflammation at different stages of the disease i.e. epitope spreading, and this 

needs to be addressed. In particular, there may be epitope spreading between 

the early disease stages and established disease. Obviously it would be 

unethical to try to induce uveitis de novo in humans with a candidate antigen, 
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but this is probably the only definitive way to confirm a protein’s 

immunoreactivity in vivo. Conversely, because of interspecies amino acid 

variability, an antigen that may be highly relevant to human uveitis might fail to 

induce EAU, and therefore not come to the attention of investigators in this field. 

The aim of this study was to search for novel human retinal antigens that 

display immunoreactivity in human uveitis patients. It is known that many T-cell 

mediated, organ-specific autoimmune diseases - of which autoimmune uveitis is 

one - induce autoantibodies (Roitt and Delves 2001). Here autoantibodies in the 

sera of uveitis patients were used as a “tool” to help select retinal proteins with 

potential as uveitis autoantigens. A recombinant cDNA expression library was 

constructed using purified mRNA from human retinas and screened through 3 

rounds of biopanning against immobilised human antibodies (see Chapter 2). 

Affinity-selected clones were sequenced and identified. Selected protein 

fragments were cloned, expressed, purified and used in ELISA assays to 

measure immunoreactivity of uveitis patient and healthy control sera.  

A similar method, serological analysis of recombinant cDNA expression 

libraries (SEREX) (Sahin et al. 1995), has been successfully used in the past to 

identify candidate autoantigens in T-cell mediated autoimmune diseases such 

as type 1 diabetes and SLE (Rabin et al. 1992; Whitehead et al. 1996). Two 

recent papers describe the successful use of this technique to screen a bovine 

uveal cDNA library with the sera of patients with Vogt-Koyanagi-Harada (VKH) 

disease, as well as sera from patients with other subcategories of autoimmune 

uveitis and healthy controls. One novel protein (UACA) appeared to be a target 

autoantigen shared by VKH, Behcet‘s and sarcoid uveitis (Yamada et al. 

2001a), while another (LEDGF) appeared to be specific for VKH (Yamada et al. 

2001b). The 2 main differences between these studies and the current work are 

(1) the use here of a human cDNA library and (2) the method of screening. The 

relative merits of biopanning versus SEREX screening will be compared in the 

Discussion. 
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5.2  Results 

5.2.1  Construction of human retinal cDNA library 
Separate neuroretina and choroid/RPE cDNA libraries were constructed as 

described in Chapter 2, using RNA extracted from both retinas of a 67 year-old 

male patient who died from “natural” causes.  Retinas were extracted within 9 

hours post-mortem and yielded approximately 62 µg of total RNA from the 

choroid/RPE tissue and 29 µg from the neuroretina. After 2 consecutive rounds 

of purification, each total RNA fraction yielded approximately 1 µg of highly 

purified mRNA. All neuroretina and RPE/choroid mRNA was converted to 

double-stranded cDNA. This was confirmed for the neuroretinal fraction by PCR 

amplification of the HPRT “housekeeping” gene (see Figure 5.1). cDNAs were 

ligated to directional linkers, digested with appropriate restriction endonucleases 

and size fractionated.  

30% of the total cDNA from both sources was used in the first instance, 

for ligation into T7 vector arms and subsequent packaging into bacteriophage 

particles. This first packaging yielded 2.9 x 104 primary recombinants from 

neuroretinal cDNA, of which approximately 8% represented retinal inserts 

(around 2300 primary retinal recombinants). The number of retina-derived 

clones as a percentage of the whole library was estimated by PCR amplification 

across the cloning site of a sample of randomly selected clones. Those larger 

than 300 bps contained a retinal insert (Figure 5.2). Packaging of RPE/choroidal 

cDNA yielded 2.6 x 104 primary phage, but PCR analysis did not detect any 

clones expressing recombinant proteins among these. 

The remaining 70% of the cDNA from both sources was concentrated 

and the ligation/packaging reactions repeated. This yielded another 1.4 x 104 

primary recombinants from the neuroretinal cDNA of which approximately 9% 

were of retinal origin (1300 primary retinal recombinants). Unfortunately no 

viable phage particles were produced from the RPE/choroid cDNA fraction. 

Both neuroretinal cDNA libraries were pooled, resulting in a composite 

library containing up to 3600 primary recombinants displaying retinal protein 
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fragments. Prior to use in biopanning experiments, this library was concentrated 

(by PEG precipitation and resuspension) to a titre of 2.2 x 1011 PFUs/ml.  

 
Figure 5.1 Agarose gel of PCR products from amplification of the HPRT gene 

contained within double-stranded retinal cDNA. 

 

 
 
 
Figure 5.2 Retinal protein-containing clones within the cDNA library, 

identified by PCR amplification of the insert site. 
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5.2.2  Affinity selection, isolation and analysis of high 
affinity cDNA library clones 

 

5.2.2.1 Affinity selection, isolation and sequencing  

Affinity selection of the neuroretinal cDNA library was carried out through 3 

rounds using individual sera from 37 patients (P1-28, 30, 50-55, 58 and 59) and 

42 controls (C1-33, 35-43 and HS), and analysed as described in Chapter 2. 

Two separate biopanning experiments were performed. Screening of phage 

pools produced in the first experiment (against sera from selected patients by 

dot-blot), failed to discriminate between specific and non-specific clones (Figure 

5.3 of dot blots). The high noise:signal ratio was attributed to large numbers of 

residual non-specific phage in individual pools despite affinity selection. The 

second experiment therefore included an additional blocking step (with 

irradiated, non-replicative T7 phage), to enhance the specificity of resulting 

phage pools.  

All phage pools from the 2nd and 3rd rounds of biopanning, from both 

experiments, were screened for positive (retinal-protein containing) clones 

(Figure 5.4). Various methods were of necessity used to separate and identify 

clones of interest from within the 79 affinity-selected phage pools in each round, 

as described previously. Isolated clones were then subjected to DNA 

sequencing and analysed further. 



 

 179 

Figure 5.3 Analysis of phage pools by immunoscreening (“dot-blotting”) after 

3 rounds of biopanning failed to differentiate the pools containing high-affinity 

phage clones. 

 

 
 

The “gel separation method” proved useful in identifying phage pools that 

contained interesting clones (Figure 5.5), but this method used on its own 

proved inefficient at providing sufficiently pure (separated) DNA bands for 

sequencing and further analysis. Despite repeated attempts at separation, most 

extracted bands were contaminated with DNA from the same lane, which 

became apparent at re-amplification. Single bands distinct enough for DNA 

sequencing were impossible to obtain in the majority of cases. One clear band 

was isolated using this method (selected using serum C4), but when sequenced 

was found to contain a truncated T7 insert. 

The method involving random screening of plaques by PCR was used in 

some cases to isolate clones from within phage pools already known to contain 

phage of interest. This technique produced several clones, 2 of which were 

eventually found to code for retinal protein fragments. One was selected using 

serum P22 (from 2nd round, 2nd experiment) and the other using serum P52 

(from 3rd round, 2nd experiment). The technique had the advantage of 

producing homogenous DNA (PCR) samples corresponding to positive phage 

plaques, which gave clearer signals when sequenced (Figure 5.6). The overall 

process however, was found to be very time consuming and not suitable for 
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isolating large numbers of clones from multiple rounds of biopanning. Other 

methods were therefore adapted. 

The method using EcoRV digestion of PCR products combined with 

amplification using modified T7 primers was designed to eliminate bands 

containing the default T7 vector DNA (no retinal insert). Used alone, this 

technique was successful in reducing the numbers of irrelevant bands, but it did 

not eliminate them and most of the corresponding DNA samples were not pure 

enough for successful sequencing. However, one band that proved of interest 

was isolated using this method. This clone was isolated from the phage pool 

produced by affinity-selection using serum P8 (3rd round, 2nd experiment) 

(Figure 5.7). 



 

 181 

Figure 5.4 PCR amplification products of selected phage pools after 3 rounds 

of biopanning. Multiple bands within lanes indicate the presence of different 

phage clones within that pool. 

 

 
 

 

Figure 5.5 Isolation of DNA bands representing individual phage clones, by 

cutting bands out of gel after extended separation by agarose gel 

electrophoresis.  
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Figure 5.6 Isolation of clones by PCR screening of random plaques. 

 

 

 
 

 

 
Figure 5.7 DNA bands separated by enzymatic (EcoRV) digestion of PCR 

products, followed by re-amplification. 
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The majority of bands that ultimately produced protein fragments of interest 

were isolated using a combination of the method described in the last 

paragraph followed by the “gel separation/extraction/re-amplification” method. 

This protracted process produced a significant number of bands that were 

subjectively judged to be clear/separate enough to undergo subsequent DNA 

sequencing (Figure 5.8). The drawback of this method was that some 

potentially interesting bands were not capable of being separated adequately 

and were therefore never analysed. In addition, some of the PCR products from 

“single bands” proved not pure enough for successful sequencing and gave 

corrupted readings. However, seven bands possibly worth further analysis and 

expression were identified using this hybrid method, and are listed in Tables 5.3 

and 5.4.  

Probably the most effective method for separation of the phage pools 

into their constituent clones and subsequent analysis, was the “shotgun cloning” 

technique, as described in Chapter 2. Unfortunately it was discovered after the 

majority of clones for analysis had already been sequenced and expressed, and 

therefore too late to have a major bearing on our findings. As well as producing 

pure PCR samples for sequencing from single colonies, clones that ultimately 

were shown to contain interesting sequences were already ligated into an 

expression vector and inserted into a host bacterium (Figure 5.9). This method 

identified and separated 2 clones, both selected using serum from patient P53 

(3rd round, 2nd experiment).  

PCR products isolated from clones using the various methods described 

above underwent automated DNA sequencing where possible. While most 

products produced readable sequences some did not, mainly because the DNA 

sample was not sufficiently homogenous. Successful sequence outputs were 

analysed further.  

 

5.2.2.2 Sequence analysis 

The DNA sequences of affinity-selected phage clone inserts were studied 

further and several unsuitable clones eliminated at this stage. For example, 

some clones were found to contain an incorrect leader sequence for the T7 

vector and were therefore discounted, while several others obviously contained 
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early stop codons and were deemed irrelevant. The remaining sequences were 

analysed on electronic databases (using BLAST) at the DNA level. Sequences 

that contained high levels of homology to DNA from human retinal or neural 

tissue were earmarked. 12 clones (Table 5.1) were chosen for further analysis 

and possible expression. Their DNA sequences are displayed in Table 5.2. 

 

Figure 5.8 Most bands were isolated by a combination of the enzyme 

digestion and gel separation/extraction/re-amplification methods. Bands clear 

enough to undergo sequencing were subjectively selected. 

 

 
 

 
Figure 5.9 “Shotgun cloning” method of clone isolation and identification. 
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Table 5.1 Affinity-selected retinal cDNA library clones 

 
Clone  
No. 

Selecting 
Serum 

Size of  
amplified  
PCR  
products. 

Method 
used for 
separation 

Round of 
biopanning 

1st or 2nd 
experiment 

1 C10 695 3 3rd 2nd 
2 C3 690 3 3rd 2nd 
3 C33 650 3 3rd 2nd 
4 P26 800 3 2nd  2nd 
5 P54 475 3 3rd 2nd 
6 C38 525 3 3rd 1st  
7 P8 650 2 3rd 2nd 
8 P13, 14, 

26 
C2, 3, 4, 
17,19, 42 

510 3 2nd & 3rd 1st & 2nd  

9 P22 650 1 2nd 2nd 
10 P52 500 1 3rd 2nd 
11 P53 630 4 3rd 2nd 
12 P53 540 4 3rd 2nd 

 

1= Plaque plating + PCR screening with standard T7 primers. 2= EcoRV 

digestion + modified T7 primers.  3= ”Gel separation method” + modified 

primers+ EcoRV digestion. 4= “Shotgun cloning” method.  
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Table 5.2 DNA sequences of affinity-selected clones from the retinal cDNA 

library. Endonuclease restriction sites: GAATTC=EcoR1, AAGCTT=Hind III. 

 

1 ATCAATGGCAAAGTCCGAGAGATGAGTCAGATTACAGCGAACAA
CGAAGAAGTTCTGGAGAGAATCTCAACCACACAGCGTTTAGTCT
CGTCAGAAGTAGCCAAAGCTCAGCAGAATTTGCTCGAAACATCA
GAAATATTGAAAAAAATATCGTCCAGATGAAAGAACAGCAAAAG
GAAATGGAAAAACCTCGACCTAAGCAAGATCGAGGTATGGATTT
TGGGATGTAATTTTACTCAATTGTATATTAAGC TT 
 

 
2 

 
GAAT TCA AGC ATT CCA AGG CTT GCG ATA ATC TTG TTG 
AGA ATA CGC CGA GCG TTC GCT GCA TCT GCG TTA GCG 
TCA CCT TCC AGC GTT GAT ACC GGA GGT TCA CCG ATA GAC 
GCC AGA ATG TCG TTC ACA GCT GAT AAC TCA GCG GCA GTC 
TCA ACG TTC ATA TCG TAT GAG CGC ATA TAG TTC CTC CTT 
TCA GCA AAA AAC CCC TCA AGA CCC GTT TAG AGG CCC CAA 
GGG GTT AAC TAG TTA CTC GAG TGC GGC CGC AAG CTT 
 

 
3 

 
GAAT TCA AGC CAA TAA CAG GTC TGT GAT GCC CTT AGA 
TGT CCG GGG CTG CAC GCG CGC TAC ACT GAC TGG CTC 
AGC GTG TGC CTA CCC TAC GCC GGC AGG CGC GGG TAA 
CCC GTT GAA CCC CAT TCG TGA TGG GGA TCG GGG ATT 
GCA ATT ATT CCC CAT GAA CGA GGA ATT CCC AGT AAG TGC 
GGG TCA TAA GCT T 
 

 
4 

 
GAAT TCA AGC AAA GGT AAT TTG GAT TAG ATT ATG TCT CCT 
TGA ACC TGT TGT GAT TCC TAG TGA CAA CTG CTT TTT GTC 
TAT GTT TTA AAC GCT GGT GCA GTC ATT TTC AGG TGA TGC 
ATA TTG AGC TCA TGG GTC AGA TGC GGC CTT CTG GAA AAT 
TCC AAT AAT GTA TCC GGA TAT GGT TTC CTG GCA TTT TTC 
CTA TTC TGT ATG ATT TAA AAA TGT CTT TGT GTT TCC GCG 
ATC CCT TTT GCA TGT TGC CTT AGT TCA CTA GGT TGT GGT 
TTG TCT GGG ACT CAT TAT CTG GAG AGA AGC TT 
 

 
5 

 
GAAT TCA AGC GCC AGG TTC CCC ACG AAC GTG CGG TGC 
GTG ACG GGC GAG GGG GCG GCC GCC TTT CCG GCC GCG 
CCC CGT TTC CCA GGA CGA AGC TT 
 

 
6 

 
GAAT TCA AGC GCC TCA GCT CCA GGC TAT CTG GCA ATG 
ACA AAG AAA GTG GCA GTT CCT TAC AGC CCT GCT GCC 
GGG GTT GAT TTT GAA CTG GAG TCA TTT TCT GAA AGG AAA 
GAA GAG GAG AAG GAA GAA TTG ATG GAA TGG TGG AAA 
GCT T 
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7 

 
GAAT TCA AGC GAC CTA CCC ATC CTA ATC CGC GAA TGT 
TCC GAT GTG CAG CCC AAG CTC TGG GCC CGC TAC GCA 
TTT GGC CAA GAG ACG AAT GTC CCT TTG AAC AAC TTC AGT 
GCT GAT CAG GTA ACC AGA GCC CTG GAG AAC GTT CTA AGT 
GGT AAA GCC TGA AGC CTC CAC TGA GGA TTA AGA GCA ACA 
GCC CCA GAG CCT GGG CTC TGC TGG ACT TAG TAT AAT 
GTG AAA AAA ATG TGT TCT CCT ACT CCT CAT AAA GCT T 

 
8 

 
GAAT TCA AGC GTG GTG GTG GTT GTG CCC AGC ACA GAC 
CTG GCA GGG TTC TTG CCG TGG CTC TTC CTC CTC CCT CAG 
CGA CCA GCT CTC CCT GGA ACG GGA GGG ACA GGG AAT 
TTT TTC CCC CTA AGC TT 
 

 
9 

 
GAAT TCA AGC GGG AAA GCT CTG GTG ACC CTG GGC TTC 
GCA GGG GTA GAT CCC AGG ACT CGG CAG TGG ATG GGA 
TGC AGC CAG TCA TGG GTT AGG GTC AGC AGA GAC TCA 
GAG TCC AGG GCA AGG TTC AAG GCA GAC TAA CCT CAT 
GCA TGG ATT GTA AAA AAC CAG CTC CCT TTG GAT CAA CCC 
AGC CTG GCA CCC TTG CCT GTC TGA GAG TGT CTC AAA 
GGG CTG ATG GCT TCC TGG TCC CCT TGA GTC ATC ACC 
AGC TTC CCC AAG AGA GTG TCA AGC TT 
 

 
1
0 

 
GAAT TCA AGC ACT GCT CCT GAT GCT CAT CCT CCT GGT 
GCG GCT GCC CTT CAT CAA GGA GAA GGA GAA GAA GAG 
CCC TGT GAT CAG GGC GCC CGC CCC GGC CAA CCC CGA 
AGC TT 
 

 
1
1 

 
GAAT TCA AGC AGC CAG CCA GTT TTG ACA AAG TAG CAA 
TTC CTG AAG TGA AGG AAA TTA TTG AAG GAT GCA TAC GAC 
AAA ACA AAG ATG AAA GAT ATT CCA TCA AAG ACC TTT TGA 
ACC ATG CCT TCT TCC AAG AGG AAA CAG GAG TAC GGG 
TAG AAT TAG CAG AAG AAG ACG ATG GAG AAA AAA TAG CCA 
TAA AAT TAT GGC TAC GTA TTG AAG ATA TTA AGA AAT TAA 
AGG GAT AAG CTT 
 

 
1
2 

 
GAAT TCA AGC CGA AGA CGA TCA GAT ACC GTC GTA GTT 
CCG ACC ATA AAC GAT GCC GAC CGG CGA TGC GGC GGC 
GTT ATT CCC ATG ACC CGC CGG GCA GCT TCC GGG AAA 
CCA AAG TCT TTG GGT TCC GGG GGG AGT ATG GTT GCA 
AAG CTT 
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Table 5.3 Clones selected for expression of protein – analysis of sequences 

at the DNA level. 

 

 

Clone 
No. 

Size of 
cDNA  
insert 
(bp) 

Source of clone 
/Molecules with 
homology to the cDNA 
library clone 

Accession  
numbers of 
homologous 
sequences 

Number of matching 
residues, % homology 
between clones and 
strand orientation 

2 291  Chromosomal 
BAC clone 
 
Chromosome 2 
Chromosome 6 
Nuclear factor  
mRNA 

AC21237 
AC012085 
AL117340 
AC079777 
AL451126 
XM043750 

 
20/20 (100%), + to – 
20/20 (100%), + to – 
19/19 (100%), + to – 
 
18/18 (100%), + to - 

5 84  Iodothyronine 
deiodinase mRNA 
“Proline rich protein” 
mRNA 

S48220 
 
AB048287 

          (100%), + to + 
 
          (>90%), + to - 

6 141  Carboxypeptidase E 
gene fragment 

XM003479           (>95%), + to - 

7 251  Ubiquinone gene 
fragment 

XM003821 50/50 (100%)  

8 119  SCAMP II mRNA AF005038 38/38 (100%) 
9 270 Neuronal Pentraxin 

Receptor mRNA 
AL161974 
NM058178 

264/264(100%),+to+ 
264/264(100%),+to+  

10 102 G-protein coupled 
receptor  
BAC Chromos. 16q 

NM016235 
 
AC004131 

71/71(100%), + to + 
 
71/71(100%), + to - 

12 139 Serine/threonine 
protein kinase  
mRNA 

AF159295 135/135(100%),+to- 
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Table 5.4 Amino acid sequences of protein fragments for expression. 

 
Sample 
No. 

Name of  
protein/ 
homologous 
molecule 

Size of 
expressed  
fragment 
(a.a.) 

Total size 
of fusion 
protein 
(Da) 

Amino Acid Sequence  
(including vector leader 
sequence). •  = stop. 

Default 
protein 

PCR-T7- 
NT-TOPO  
derived  
protein 

33 
 

N/A MRGSHHHHHHGMASM 
TGGQQMGRDLYDDDD 
KDPSSRSAAGTMEFEA• 

2 Unknown  
identity 
 

56 (92) 10,120  MRGSHHHHHHGMASM 
TGGQQMGRDLYDDDD 
KDPNSSIPRLAIILLRIRR 
AFAASALASPSSVDTGG 
SPIDARMSFTADNSAAV 
STFISYERI• 

5 Small 
”proline- 
rich 
protein” 
like protein 

48 (84) 9,240  MRGSHHHHHHGMASM 
TGGQQMGRDLYDDDD 
KDPNSSARFPTNVRCV 
TGEGAAAFPAAPRFPG 
RSLIRLLTKPERKLSWLL 
PPLS 

6 Human  
Carboxy- 
peptidase 
E 

47 (83) 9,130  MRGSHHHHHHGMASM 
TGGQQ MGRDLYDDDD 
KDPNSSASAPGYLAMT 
KKVAVPYSPAAGVDFE 
LESFSERKEEEKEELME 
WWKA• 

7 Ubiquinon
e  
(NADH  
dehydrog 
-enase) 

50 (86) 9,460  MRGSHHHHHHGMASM 
TGGQQMGRDLYDDDD 
KDPNSSDLPILIRECSDV 
QPKLWARYAFGQETNV 
PLNNFSADQVTRALENV 
LSGKA• 

8 Secretory 
Carrier 
Membrane 
Protein  
(SCAMP) 
II 

56 (92) 10,120  MRGSHHHHHHGMASMT 
GGQQMGRDLYDDDDKD 
PNSSVVVVVPSTDLAGF
LPWLFLLPQRPALPGTG
GTGNFFPLSLIRLLTKPE
RKLSWLLP 

9 Neuronal 
Pentraxin 
Receptor 
 

42 (78) 8,580  MRGSHHHHHHGMASMT 
GGQQMGRDLYDDDDKD 
PNSSGKALVTLGFAGVD 
PRTRQWMGCSQSWVR
VSRDSESRARFKAD• 
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10 Human  
G-coupled 
protein 
receptor 

54 (90) 9,900  MRGSHHHHHHGMASM 
TGGQQMGRDLYDDDD 
KDPNSSTAPDAHPPGA 
AALHQGEGEEEPCDQG 
ARPGQPRSLIRLLTKPE 
RKLSWLLPPLS 

12 Human 
Serine/ 
Threonine 
protein 
kinase 
mRNA 

65 (101) 11,110  MRGSHHHHHHMASMT 
GGQQMGRDLYDDDDK 
DPNSSRRRSDTVVVPT 
INDADRRCGGVIPMTRR 
AASGKPKSLGSGGSMV 
AKLDPAANKARKEAELA 
AATA 
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5.2.3  Expression and purification of recombinant 
protein fragments 

DNA was extracted from the phage clones identified above, and re-ligated into 

pCR-NT-T7-TOPO plasmids suitable for expression of the corresponding 

protein fragments in bacterial hosts. This was done to produce pure samples of 

recombinant protein fragments for further analysis, but without the polypeptides 

being attached to bacteriophage capsids, which might have interfered with 

downstream assays. Before expression, recombinant plasmids underwent PCR 

amplification across the restriction site (Figure 5.10) followed by confirmatory 

DNA sequencing, to ensure the inserts were properly inserted/orientated in the 

vector, were “in frame” and contained an open reading frame (ORF). 

Corresponding amino acid sequences were deduced using Genejockey 

software and analysed on the BLAST database. Two previously identified 

clones (numbers (1) and (3) above) were found not to contain an ORF and were 

discounted from further analysis at this final stage. Two additional clones 

(numbers (4) and (11)) were found to code for very short protein fragments (in 

comparison with the polyhistidine tag part of the fusion protein), and were also 

discarded. The amino acid sequences of the polypeptides selected for 

expression are shown in Table 5.4. 

Expression of the recombinant proteins proved very difficult. Plasmids 

were transfected into Top 10F` cells for maintenance and propagation, and 

“plasmid preps” from these then used to produce cell lines of BL21(DE3)pLysS. 

These cells were induced as described previously but did not produce 

detectable levels of protein over a range of induction times and different 

conditions. The reason for this is not immediately clear. The codon usage of the 

host bacteria was analysed (www.kazusa.or.jp/codon) but found to be 

compatible with expression of these particular polypeptides. However, it may 

have been related to cell toxicity to basal levels of recombinant protein 

expression (before induction with tetracycline). More success was had when the 

plasmids were transfected into BL21(DE3)pLysE hosts, which have tighter 

control over basal expression, although they produce diminished yields 

compared with BL21(DE3)pLysS. Pilot expression experiments (Figure 5.11) 
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were performed to determine the optimal induction times for expression of each 

of the 8 remaining recombinant proteins. Seven out of the eight clones 

eventually produced moderate amounts of fusion protein (containing a His tag), 

which was harvested, purified and stored (Figure 5.12) in preparation for 

subsequent analysis. Despite various modifications, it was impossible to 

express appreciable amounts of protein from Clone 2. Time ranges for viable 

expression, actual time used for substantive expression and total amounts of 

recombinant protein eventually produced are shown in Table 5.5. 

 

 

Table 5.5. 

 
Clone  
Number 

Range of induction 
times for viable 
expression.  

Induction time 
used for 
substantive 
expression 

Total  
amount  
of protein 
produced 

2 1 hour 1 hour Nil 
5 2-3 hours 2 hours  64 µg 
6 1-3 hours 2 hours 167 µg 
7 2-3 hours 3 hours 121 µg 
8 1-2 hour 1 hour 103µg 
9 2-3 hours 3 hours 79 µg 
10 1-3 hours 3 hours 147 µg 
12 1-3 hours 3 hours 208 µg 
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Figure 5.10  PCR amplification of selected retinal inserts within recombinant 

pCR-NT-T7-Topo plasmids, prior to confirmatory sequencing. Plasmids 

containing inserts of interest were maintained within Top 10 F` cells, but 

expressed in BL21(DE3)pLysE hosts.  

 

 
 

 
Figure 5.11 Western blot of protein expressions at different time points (in 

hours), probed with anti-His monoclonal antibody. Expression of Protein 6 

peaked at 2-3 hours post induction and decreased thereafter, while Protein 7 

expression peaked at 3 hours. Declining yields with increased induction times 

might be related to toxicity of the expressed recombinant proteins. 
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Figure 5.12 Western blot of successfully expressed recombinant protein 

samples from 7 out of the 8 clones of interest. 
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5.2.4  ELISA assays: cDNA polypeptides versus 
patient and control sera. 

Human uveitis and control sera were tested for humoral immunoreactivity 

against the expressed and purified proteins by ELISA. A 4-layer ELISA, using 

anti-histidine monoclonal capture antibody to immobilise the recombinant 

protein, was tried first but proved unsuccessful in discriminating signal from 

noise. Significant amounts of antigen were used up during this process. A 3-

step indirect ELISA, with antigen bound directly to solid-phase wells, was found 

to be more successful. Pilot experiments determined the optimum concentration 

for ELISA reagents to be 2.5 ug/ml test antigen, 1:25 serum diluted in PBS and 

1: 20,000 secondary antibody. Control wells took the form of (1) negative wells 

blocked with 5% fat-free dried milk/ 0.1% Tween 20 in PBS and (2) 58-kDa 

polyhistidine-tagged control protein 2.5 ug/ml. Wells were tested in duplicate 

and “baseline-divided” (test reading divided by “blocked” well) readings used for 

data analyses. Four proteins (Samples 6, 7, 10 and 12) were tested against all 

45 uveitis serum samples (P1-15, 17, 19-28, 30, 50-55, 58-69) and 47 control 

samples (C2-5, 7-10, 13, 15-19, 22, 24, 26-33, 35-43, HS, 50-62) (both from 

Table 3.1). Due to limited supplies of Proteins 5, 8 and 9, it was possible to test 

these only against a limited panel of 14 sera (P8, 13, 14, 22, 26, 52, 53, 54 and 

C2, 3, 4, 16, 18 and 36). Included in this group were the sera originally used to 

affinity-select the phage clone corresponding to each purified protein.  

 Averaged, baseline-divided OD readings were studied on an individual 

level and also analysed as groups. Isolated high readings were recorded for 

each of the 7 protein fragments against individual sera, mostly from the uveitis 

group. No unifying factor(s) could be identified among these individuals, 

however, to account for the high readings. 

 The small number of serum samples tested against Proteins 5, 8 and 9 

rendered any comparison of uveitis patient and control groups meaningless for 

these proteins. There is a hint of slightly higher levels of reactivity in patient 

samples in Proteins 5 and 8 but without greater sample numbers this cannot be 

substantiated. 
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There were no distinguishing features for any of the serum samples that 

produced a high reading for a particular protein. Interestingly there was not a 

particularly high affinity between any of the purified proteins and the serum 

sample responsible for selecting its corresponding phage clone from the retinal 

cDNA library. Scattergrams of the above readings are shown in Figure 5.13 

 

 
Figure 5.13 

Proteins 5, 8 & 9: Patient vs. Control sera ELISA readings
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Baseline-divided ELISA OD readings were compared between patient and 

control groups for Proteins 6, 7, 10 and 12.  

 

Protein 6 
Data from Protein 6 readings followed a non-parametric distribution (even when 

log-transformed) and were therefore analysed using a 2-tailed, Mann-Whitney U 

test. The median value for the patient group was 1.227, with a minimum of 

0.8450 and a maximum of 3.414. The median for the control group was 1.169 

(minimum = 0.9210, maximum = 2.096). The 2 groups were found to be 

significantly different, p=0.0443. A scattergram comparing humoral 

immunoreactivity to Protein 6 in patient and control sera is shown in Figure 5.14 

 

Figure 5.14 
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Protein 7 
Protein 7 data groups followed a normal distribution. The patient group had a 

mean value of 1.642 (95% confidence intervals, 1.489 to 1.796) and the control 

group a mean of 1.610 (95% CI, 1.487 to 1.732). Analysis by unpaired, 2-tailed 

t-test showed there was no significant difference between the groups (p= 

0.7354). See Figure 5.15. 

 

Figure 5.15 
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Protein 10.  

The median value for the Protein 10 patient group was 1.427 (minimum = 

0.8650, maximum = 3.582), and 1.492 for the control group (minimum = 0.8860, 

maximum = 2.610). Data were log-transformed to enable statistical analysis 

using parametric tests. A 2-tailed, unpaired t-test showed no significant 

difference between the 2 groups (p= 0.7754). See Figure 5.16. 

 

Figure 5.16 
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Protein 12 

The median value for the patient group was 1.290 (minimum = 0.9250, 

maximum = 3.799), and for the control group was 1.356 (minimum = 0.9490, 

maximum = 2.121). Protein 12 data were also log-transformed to enable 

statistical analysis using parametric tests. A 2-tailed, unpaired t-test, with 

Welch`s correction for unequal variances, showed no significant difference 

between the 2 groups (p= 0.3922). See Figure 5.17. 

 

Figure 5.17 
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5.3  Discussion 
The range of potential autoantigens for uveitis has not yet been fully defined, 

particularly in relation to the initiation and maintenance of the human disease. 

The use of animal models alone for this purpose risks missing potentially 

important antigens, given the interspecies differences that probably exist. This 

study sought to better define the set of potential autoantigens by constructing a 

human retinal cDNA library and screening it against the sera of both uveitis 

patients and healthy human controls. The objective was in the first instance, to 

identify any retinal protein fragments that demonstrated immunoreactivity 

against human uveitis or control sera. 

 This experiment achieved the successful construction of a retinal cDNA 

library, made using mRNA from human, predominantly neurosensory retina and 

packaged as a phage display library. It also demonstrated the feasibility of 

screening such a cDNA library with human sera using the technique of 

biopanning. A number of phage clones, whose DNA coded for several 

potentially interesting protein fragments, were affinity-selected from the retinal 

cDNA library during this process. This showed that the displayed protein 

fragments had at least some degree of affinity to antibodies in human sera, 

whether from uveitis patients or healthy subjects. It was possible to sub-clone 

some of these sequences into plasmids and express them in bacterial hosts, 

resulting in small but pure samples of 7 potentially autoantigenic polypeptides. 

These were screened against panels of human uveitis and normal sera by 

ELISA, and at least one protein (with homology to part of human 

carboxypeptidase E) showed a significantly higher level of immunoreactivity to 

the uveitis serum group. In addition, elevated serum antibody levels were 

demonstrated to all 7 proteins in at least some individuals. The highest titres 

tended to be found in sera from the uveitis group. 

 The experiments did not produce any protein that unequivocally 

demonstrated high levels of affinity to human uveitis sera, as determined by 

ELISA. The one protein fragment that showed higher readings in ELISA testing 

was in fact affinity-selected using serum from a control subject. In addition, the 

sera used to originally affinity-select the phage clones of interest, did not as 
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expected demonstrate particularly high ELISA readings to their corresponding 

purified protein fragments. The possibility therefore exists that clones were 

either non-specifically selected from the cDNA library, or that clones affinity-

selected from the library, while originating from retinal tissue, were not specific 

for it. None of the previously well established putative autoantigens for uveitis 

were isolated, which was surprising. 

 It is possible to explain at least some of the above findings. While 

antibodies in human sera were used as target ligands to “capture” potentially 

uveitogenic protein fragments, it does not necessarily follow that high readings 

would be seen when these polypeptides were screened against human sera by 

ELISA. This is seen in the case of established autoantigens such as RSAg and 

IRBP, which although capable of provoking cell-mediated immune responses in 

human lymphocytes, do not generally demonstrate differences in autoantibody 

titres between groups of uveitis patients and controls (Doekes et al. 1987; 

Hoekzema et al. 1990; Doekes et al. 1992). It is therefore possible that some of 

the proteins isolated here would demonstrate uveitogenic potential if studied 

using cellular techniques.  

 Differences between patient and control groups might also have been 

demonstrated for some of the other 6 purified proteins if a larger, better-defined 

panel of uveitis sera had been available for ELISA screening. The panel of sera 

actually used, originated from a very heterogeneous group of uveitis patients, 

comprised of different clinical subtypes and of different disease durations, levels 

of activity and states of immunosuppression. Retesting the purified candidate 

proteins by ELISA against a larger group of sera, could possibly increase the 

power of any subsequent statistical analysis enough to demonstrate differences 

between patient groups or subgroups, and controls. Presumably there would be 

a greater chance of demonstrating high antibody titres to a given candidate 

antigen if sera were selected from patients with active disease of several weeks 

duration, who were not on immunosuppression.   

 Three of the seven purified fragments were tested only against 14 of a 

possible 92 sera. This was because most of the stocks had been depleted 

during either pilot experiments or during a series of ultimately unsuccessful 

ELISA assays. Repeat ELISA testing with these 3 antigens might demonstrate 

positive findings if the full panel of sera was tested. It would be particularly 
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interesting to see if Protein 8 produced a positive result, as the clone expressing 

this fragment was independently affinity-selected from wells using both patient 

and control sera. 

 The failure to isolate any of the established candidate autoantigens for 

uveitis might be explained by them being out-competed by higher affinity clones 

during the binding phases of the biopanning process (or out-grown during the 

amplification steps). If the former could be confirmed, it would further 

emphasise the need to use new approaches for the identification of new 

candidate antigens in uveitis.  An alternative explanation is that the expected 

antigen fragments were among the number of clones that were not analysed 

further, due to technical difficulties encountered during the separation and 

sequencing processes. The third possibility is that the techniques employed 

here were not sufficiently robust to isolate these seemingly important antigens. 

 The experimental design would appear to be reasonably robust, but 

there are certain areas that could, with the benefit of hindsight, be strengthened. 

The diversity and representativeness of the retinal cDNA library could be 

increased. The library contained a maximum of 3600 clones, all of which were 

derived from the neurosensory part of the retina, and some of which were 

probably duplicates. A greater quantity of input mRNA, derived from different 

individuals, would probably increase the number of primary recombinants in the 

library. Greater quantities of cDNA, to allow empirical determination of the 

optimal proportions of cDNA molecules to vector arms during the ligation of 

recombinant T7 vectors, would also undoubtedly increase the number of 

primary clones. There is no obvious explanation for the non-production of 

clones from the non-sensory retina, other than sub-optimal quality of input 

mRNA, and this area of library construction needs to be revisited.  The library 

should possibly have been negatively selected at some stage in its construction, 

to remove cDNA clones of elements not uniquely derived from ocular tissue. 

However, the possible existence of non-tissue-specific uveitogenic antigens 

was one factor that mitigated against doing this. Negative selection of the 

packaged library using monoclonal antibody against the vector system would 

have increased the percentage of recombinants containing retinal inserts in the 

library as a whole. 
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 The affinity-selection technique could also possibly be improved, so as to 

increase the selection of high-affinity ligands rather than merely abundant 

clones. The technique used here, capture-antibody-coated microtitre wells used 

to immobilize the (polyclonal) immunoglobulin fraction of diluted sera, could 

have resulted in quite a small number of each specific antibody molecule being 

available for subsequent interaction with the cDNA library. Possible ways of 

overcoming this would be to screen using wells/plates with a much larger 

surface area for each individual serum, or carrying out successive rounds of 

affinity selection in liquid phase. It remains to be seen if any of these 

modifications would result in the isolation of higher affinity phage clones than 

before, as each method has its own individual strengths and weaknesses. 

 The technique of biopanning, as carried out here over 3 rounds, was only 

one possible method for screening a cDNA library with test sera.  Alternative 

methods could have included single-round biopanning followed by 

immunoscreening of individual clones (Prezzi et al. 1996), or SEREX, which is 

discussed below.   

 The only work similar to this study in the literature is that by Yamada, as 

cited above. This group constructed a cDNA library using bovine retina and 

expressed it in bacteriophage. The library was screened by SEREX, in which 

phage plaques were grown on plates and nitrocellulose membrane replicas 

made of each plate. Replica membranes were immunoscreened against sera 

from 4 individual patients with VKH. 1-2 x 105 plaques were screened in this 

way and positive clones were isolated and then identified by sequencing. 

Clones representing fragments from a novel protein “UACA” and from lens 

epithelium derived growth factor (LEDGF) were identified. The human 

homologues of these proteins were cloned and then screened by ELISA against 

a larger panel of sera from VKH, other uveitides and controls. Anti-UACA 

antibodies were found to be relatively raised in a group of patients with pan-

uveitis (including VKH, sarcoid and Behcet`s), while elevated anti-LEDGF titres 

were found to be specific for VKH.  

 There are advantages and disadvantages to both biopanning and 

SEREX in the screening of a cDNA library. SEREX benefits from relative 

simplicity, in that a single round of screening is used to identify positive clones. 

In the above examples it was successful in isolating library clones whose 
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human equivalents demonstrated increased immunoreactivity by ELISA. 

Isolation of positive clones was relatively straightforward, though this was 

achieved using the sera of only four patients. The use of a single round of 

screening is likely to produce many clones with low levels of affinity to the target 

sera, rather than a small number with high affinity. The latter is more likely to be 

achieved by the sequential re-amplification of selected clones over several 

rounds, as seen in biopanning. It is also easier to screen large numbers of sera 

(either pooled or individual) against a cDNA library using the biopanning 

approach and more feasible to screen larger numbers of library clones. In 

biopanning, however, it may be difficult to isolate individual clones from the 

resulting phage pools, as found here. In the future, it would therefore seem 

reasonable to re-screen this cDNA library using the SEREX approach. 

 As mentioned previously, many T-cell mediated diseases do not display 

significant differences between patient and control groups when tested for 

serum autoantibody levels against a known autoantigen. There is also evidence 

of abundant, low-affinity antibodies in many autoimmune diseases (Charlton 

and Lafferty 1995). It is therefore reasonable to question whether screening a 

cDNA library derived from a target tissue with sera, is a worthwhile method for 

identifying novel autoantigens? The answer is probably “yes”, as shown by the 

present study and those quoted. Both biopanning and SEREX would seem to 

have the potential to identify significant numbers of potential antigens for a 

specific disease. Further refinements to both techniques as outlined above, 

would probably further improve the yield of high-affinity, specific clones. Any 

such novel clones would need to be evaluated rigorously at the DNA/amino acid 

database level, before being expressed. It would be preferable to express the 

human form of any given protein in a eukaryotic expression system where 

possible. It would be essential to carry out further testing of any 

protein/fragment for evidence of humoral, or especially cell-mediated, 

immunoreactivity before designating it a candidate autoantigen for the disease. 

Since it is possible that a large number of clones would have to be analysed 

rapidly, ELISA screening against sera from well-defined patient and control 

groups would probably be the assay of choice for detection of humoral 

autoreactivity. Cytokine flow cytometry or ELISPOT would both be suitable 
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techniques for the rapid detection of antigen-specific, cell-mediated 

autoreactivity in patient and control samples.  

 In summary, in this experiment a cDNA expression library was 

successfully constructed from human retinal tissue and screened against sera 

from uveitis patients and controls using the technique of biopanning. A number 

of interesting clones were isolated and after analysis of their sequences, 7 

protein fragments were expressed and purified. At least one of these potentially 

antigenic proteins, a fragment with homology to human carboxypeptidase E, 

demonstrated higher autoantibody levels by ELISA to a group of uveitis patients 

compared with controls. It would be interesting to see if cellular 

immunoreactivity could be demonstrated using this antigen. Some of the 6 

remaining proteins might also have uveitogenic potential, but meaningful 

analysis of some of these was not possible, due to limited stocks of purified 

antigen and/or time constraints. This technique would seem to have great 

potential for the future identification of novel autoantigens in uveitis. 
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6 Chapter 6: Retinal S antigen-specific 
effector T-cell activation detected by 

cytokine flow cytometry



 

 208 

Much of the work described in this chapter has been included in a publication, a 

copy of which is contained in the Appendix. 

6.1 Introduction 
Autoimmune uveitis is a CD4+ T-cell mediated disease that is a good example 

of autoimmunity to organ-specific antigens in an immunologically privileged site. 

As discussed in Chapter 1, a number of retinal proteins have been proposed as 

the potential autoantigen(s) in autoimmune uveitis, mainly on the basis of their 

ability to induce EAU in certain strains of laboratory animal. Probably the most 

widely studied is RSAg.  

 In addition to inducing EAU in susceptible animal strains, studies have 

shown that RSAg is capable of stimulating T-cell proliferation in animal and 

human cells. Proliferative T-cell responses to RSAg have been seen using 

vitreous (Nussenblatt et al. 1984) and peripheral blood samples (Nussenblatt et 

al. 1980; Doekes et al. 1987) from autoimmune uveitis patients and also in 

healthy control humans (Hirose et al. 1988a; Hirose et al. 1988b). However, 

proliferation assays are mainly relevant to clonal expansion of memory T-cells, 

and tell us little about non-proliferative outcomes such as anergy, suppression 

and apoptosis, or activation in pre-primed, effector T-cells. T-cell “activation”, by 

which is meant the expression of cytokines and/or cell surface markers on 

effector cells, is particularly important because its effects can have a 

fundamental bearing on the whole future direction of the immune response. This 

is particularly so where the effector cell cytokine profile is predominantly of a 

Th1 or Th2 subtype.  

 To study RSAg-specific, effector T-cell activation in a rare cellular 

subgroup such as the autoreactive CD4+ population in autoimmune uveitis, a 

non-proliferation based technique for studying cytokine and surface marker 

expression at the single cell level is needed. Of existing single cell techniques 

T-cell cloning, single-cell PCR and in-situ hybridisation are either proliferation 

based or require laborious pre-selection of cell populations. Limiting dilution 

based assays have been successfully performed to study T-cell responses to 

RSAg (de Smet and Dayan 2000), but also are proliferation based and therefore 

not ideal for this task. ELISPOT has been used successfully in the study of 
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specific cytokine expression in other diseases, but is laborious and is limited in 

the number of cells capable of being analysed simultaneously. The technique of 

cytokine flow cytometry (CFC) could potentially circumvent many of these 

limitations.  

 This relatively new technique (Prussin and Metcalfe 1995) is a 

combination of 2 pre-existing methods: intracellular cytokine staining and 

multiparameter flow cytometry. It has emerged as an ideal technique for 

analysing cytokine production at the single cell level (Maino and Picker 1998) 

and therefore holds great potential for the study of lymphocytes activated by 

specific antigen. Because it is a single-cell technique, it enables the detection 

and enumeration of cytokine responses from rare T-cell subgroups in 

unselected cell populations that would be undetectable by more traditional 

methods. It is technically a relatively straightforward technique and the high 

throughput that is inherent in flow cytometry allows rapid analysis of very large 

numbers of cells whether they are activated or not. Multiparameter analysis, 

allowing simultaneous detection of several cytokines and/or surface markers, 

combined with electronic “gating” procedures, permits true Th1 vs. Th2 type 

cytokine differentiation for a specific T-cell subpopulation. Furthermore, CFC 

allows the study of individual T-cells directly ex vivo, minimising artefacts due to 

prolonged culture. 

 However, CFC has to date mainly been used to study T-cell responses to 

non-specific stimuli such as mitogens and ionophores (Prussin 1997). Antigen-

specific responses have been elicited, mainly using highly immunogenic 

bacterial or viral coat proteins (Waldrop et al. 1997). It has also been used to 

study T-cell responses to epitopes in SLE, an antibody mediated autoimmune 

disease (Lu et al. 1999). However, CFC has not been widely utilised to study 

autoantigen-specific responses in T-cell mediated autoimmune uveitis. The 

potential of the technique in this disease however is great, particularly in the 

direct testing of T-cell cytokine/surface marker responses to stimulation by 

candidate autoantigens, and in analysing Th1 vs. Th2 cytokine differentiation. In 

this study, therefore, the aim was to apply CFC to the study of autoimmune 

uveitis and demonstrate antigen-specific effector T-cell activation in response to 

stimulation by RSAg. 
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6.2  Results 
 The main finding from this study is that antigen-specific effector T-cell 

activation in both uveitis patient and control groups was detectable using this 

highly sensitive and specific technique (see Chapter 2 for methods). Four out of 

13 uveitis patient samples were seen to respond positively and specifically to 

the RSAg stimulus (50 µg bovine RSAg/ml), 7 were negative and 1 patient’s 

response was equivocal (see Table 6.1). Four out of 8 control subjects also 

responded positively to the antigen. In all positive samples, the preponderance 

of antigen-specific over negative-control events ranged from approximately 6:1 

to 33:1. Responder frequencies for individual patients and controls are shown in 

Tables 6.2 and 6.3 respectively. Typical positive responses from uveitis patients 

are illustrated in Figures 6.1 and 6.2. A patient sample showing no significant 

response to RSAg, despite a good response to PMA (20 ng/ml)/ionomycin (1 

µM) stimulation, is shown in Figure 6.3. 

 Analysis of the values for baseline-subtracted positive events in the 

uveitis and healthy control groups showed there was no significant difference in 

responder frequency between the 2 groups (p=0.779). In the group of 

responding uveitis patients the percentage of positive events ranged from 

0.015% to 0.047% of the overall CD4+ T-cell population. Analysis of the 

positive-control tube responses confirmed that the cell samples used had been 

immunologically competent. As noted previously (Anderson and Coleclough 

1993), PMA and ionomycin stimulation results in substantial down-regulation of 

surface CD4 expression. Nevertheless, analysis of CD4+, positive-control 

lymphocytes stained with control-FITC antibody showed negligible levels of 

non-specific background staining. 

 Of the 4 positive “responders” in the uveitis group, 1 had intermediate 

uveitis, 2 (out of 2) had pan-uveitis and 1 had retinal vasculitis. All had at least 

some active inflammation at the time of sampling. One of the 4 was taking 

systemic immunosuppression. Total disease duration among responders 

ranged from 1 month to 15 years. 

 SDS-PAGE gel electrophoresis carried out on our RSAg preparation 

prior to starting the study, did not detect any contaminants. Dot-plots of negative 
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control tube samples showed remarkably clear backgrounds, which would 

mitigate against, for example, microbial contamination.  

 Limited supplies of antigen prevented us from carrying out repeat 

confirmatory testing on all positive results. However, we were able to reproduce 

positive results on individual samples while determining the optimum dose of 

antigen early in the study. 

 

Table 6.1 Autoimmune uveitis patient details and responses to RSAg. 

 
Case 
No. 

IUSG 
Diagnosis 

Activity Duration  
of Current 
Episode 

Total  
Disease 
Duration 

Systemic  
Therapy 

Response 
to RSAg 

1 Intermediate 
Uveitis 

Inactive N/A 1 year None Negative 

2 Panuveitis Moderate >3/12 6 years Tacrolimus  
7 mg/day 

Positive 

     Prednisolone  
10 mg/day 

 

3 Posterior 
Uveitis 

Mild >3/12 11 
months 

None Negative 

4 Posterior 
Uveitis 

Severe <3/12 1 month None Positive 

5 Intermediate 
Uveitis 

Mild >3/12 11 years None Negative 

6 Intermediate 
Uveitis 

Mild <3/12 13 
months 

None Positive 

7 Posterior 
Uveitis 

Moderate >3/12 17 years None Negative 

8 Intermediate 
Uveitis 

Mild >3/12 8 months None Negative 

9 Intermediate 
Uveitis 

Mild >3/12 2 years,  
10 
months 

None Negative 

10 Panuveitis Moderate <3/12 18 years None Positive 

11 Posterior 
Uveitis 

Mild >3/12 5 years Cyclosporin 
150mg/day 

Equivocal 

     Prednisolone 
5mg/day 

 

12 Intermediate 
Uveitis 

Mild >3/12 2 years None Negative 

13 Intermediate 
Uveitis 

Inactive N/A 3 years, 
3 months 

None Negative 
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Table 6.2. Responder frequencies from antigen-specific (50 µg RSAg + 1 µg 

anti-CD28 per ml) and negative control assays (1 µg anti-CD28 per ml) in 

uveitis patient group. Responses are adjusted per 100,000 CD4+ T-cells. 

 

Patient No. Responses to 
RSAg 

Control Tube 
Responses 

1 0.629 3.65 
2 35.37 5.75 
3 0.51 0 
4 10.9 1.09 
5 0.44 0 
6 18.9 0.57 
7 0 0 
8 0.43 0.43 
9 5.84 1.91 
10 12.49 1.97 
11 3.82 3.84 
12 2.77 0 
13 1.62 0 

 

 

 

Table 6.3 Responder frequencies from antigen-specific (50 µg RSAg + 1 µg 

anti-CD28 per ml) and negative control assays (1 µg anti-CD28 per ml) in 

control group (responses per 100,000 CD4+ T-cells). 

 

Control No. Responses to  
RSAg 

Control Tube  
Responses 

1 15.06 0.75 
2 5.17 1.7 
3 8.45 1.65 
4 5.27 4.7 
5 7.27 15.3 
6 6.13 9.24 
7 30.12 7.24 
8 0.46 0.46 
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Figure 6.1 Increased CD4+ responder levels are seen with extended 

incubation, without significant loss in overall CD4+ T-cell frequencies. 

(A) and (B): Negative control samples of 6 and 18 hours incubation respectively. 

(C) and (D): Antigen stimulated samples, 6 and 18 hours respectively. 

CD4+ cells as a percentage of total events are as follows: (A) 35.5% (B) 31.8% 

(C) 36.1% (D) 33.6%. Increased background-subtracted response rates 

(CD69+, IFN-γ+) are seen with extended (18 hour) antigen stimulation, without a 

significant decrease in the proportion of overall CD4+ T-cells. 
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Figure 6.2 Typical antigen-specific response to RSAg in a uveitis patient 

sample (gated on CD4+ lymphocytes). 

(A) PMA (20 ng/ml)/ionomycin (1 µM) stimulated sample. 

(B) Same as (A), but with isotype matched negative control staining. Negligible 

levels of background staining noted. 

(C) Negative control: Cells incubated in medium and anti-CD28 (1µg/ml) for 18 

hours. 

(D) Antigen stimulation: Cells incubated with RSAg (50µg/ml) and anti-CD28 

(1µg/ml) for 18 hours. Positive response evident. 

Total number of PBMCs analysed :A and B – 50,000; C and D – 500,000. 
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Figure 6.3 No response to RSAg stimulation in a uveitis patient sample 

(gated on CD4+ lymphocytes). A,B,C & D: as per Figure 6.2. 
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6.3  Discussion 
These experiments constituted a pilot study, designed to establish the feasibility 

of detecting autoantigen-specific effector T-cell activation in autoimmune uveitis 

or control samples using the powerful new technique of cytokine flow cytometry. 

A RSAg-specific T-cell activation in samples from both groups of subjects has 

been demonstrated here. The high level of stringency employed in designating 

an individual patient/control sample as responding positively, the purity of the 

RSAg preparation and the low levels of responses in negative control samples 

support this. The response is possibly of a Th1 type, though further work 

targeting other cytokines needs to be undertaken to confirm this. I believe this 

study demonstrates the feasibility of applying cytokine flow cytometry to 

autoimmune uveitis and other T-cell mediated autoimmune diseases using 

appropriate modifications, and establishes it as the technique of choice for 

investigating cytokine responses in non-naïve effector T-cells. 

 This study was designed with the limited goal of demonstrating the 

feasibility of detecting effector cell activation. Calculations indicate that much 

higher patient and control numbers would be required to demonstrate a 

significant difference in the mean number of responding cells between the 2 

groups. For example, to detect a difference of 0.25 standard deviations, using a 

significance level of 0.05 and a power of 0.8, would require the use of 

approximately 250 individuals in each group. The next logical progression is 

however to carry out such a study. In addition to detecting differences in the 

frequencies of responding cells between disease and control populations, 

higher numbers would also lend greater accuracy to calculations of the 

background responder frequency of non-stimulated, autoreactive T-cells in the 

peripheral blood compartment.  

The use of modern multi-parameter flow cytometry would make it 

possible to expand the number of detectable intracellular cytokines, while 

retaining the same number of surface and activation markers. This would allow 

representation of at least one cytokine from each of the Th1 and Th2 

subclasses and would allow accurate Th1, Th2 or Th0 classification of activated 

T-cells from various sources. It is highly likely that any differences in the 

cytokine profiles between patient and control groups would become apparent if 
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this approach were employed. Any qualitative differences detected between the 

2 groups would possibly be more important than differences in the frequency of 

responding T-cells. Cytokine profiling of uveitis patient T-cells at different stages 

of disease activity, or comparison of cytokine responses from individuals on 

systemic immunosuppression to those without, might provide valuable insights. 

This technique could easily be harnessed to test the relevance to human 

disease of other uveitis candidate autoantigens. IRBP, phosducin, rhodopsin, 

recoverin, and any other yet to be discovered potential autoantigens could be 

tested, using animal, human or recombinant antigen sources. T-cell epitope 

mapping could be carried out using antigen fragments or synthetic peptides. 

Using the appropriate combination of surface marker and cytokine-specific 

labelled monoclonal antibodies, it would be possible to accurately determine the 

Th1 vs. Th2 cytokine response of autoreactive T-cells to various antigenic 

stimuli.  

The 4 of 13 patients responding positively to RSAg is broadly 

comparable with the proportions reported previously in studies using 

proliferation assays (Nussenblatt et al. 1980; de Smet et al. 1990) or limiting 

dilution (Opremcak et al. 1991). Although these techniques are fundamentally 

different and measure different end-points (see above), it is further evidence 

that not all uveitis patients respond to the same antigenic stimulus. Four out of 8 

healthy controls also responded positively. As mentioned already, responses to 

RSAg have been noted previously in normals using other techniques (Hirose et 

al. 1988a; Hirose et al. 1988b). While it would seem that CD4+ T-cell 

autoreactivity to RSAg plays an important role in the initiation of the uveitis 

disease state, these findings collectively suggest that other factors such as T-

cell epitope specificity or Th1 vs. Th2 type cytokine expression, might also be 

relevant.  

The potential of this technique for finally identifying the 

autoantigen(s)/autoepitope(s) and/or particular cytokine profiles that are 

responsible for the initiation and maintenance of human autoimmune uveitis is 

immense. This study demonstrates that a response to a particular retinal 

autoantigen is detectable using CFC, and that such responses can be both 

specific and sensitive.  
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Since the completion of the work described above, the use of multi-

parameter flow cytometry has become ever more widespread in human PSII 

research. Flow cytometry has been used for many years as a tool for cell 

surface phenotyping, but sophisticated multi-parametric techniques such as 

CFC are increasingly being used to simultaneously detect multiple activation 

markers, chemokine receptors and intracellular cytokines in PSII. CFC has 

recently been successfully employed to demonstrate elevated expression of 

TNF-α and CD69 in peripheral CD4+ T-cells from patients with intermediate 

uveitis (Murphy et al. 2004). It has also been used to detect an increased level 

of IL-10 secreting CD4+ T-cells in response to anti-TNF-α therapy in patients 

with refractory PSII (Greiner et al. 2004), emphasising its potential role for 

studying responses to immunomodulatory treatments. 
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7 Chapter 7: General discussion 
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7.1  Introduction 
Autoimmune uveitis is a complex disease, apparently caused by a combination 

of factors, both genetic and environmental. Despite substantial progress in the 

past, our knowledge of the precise mechanisms involved in its initiation, 

maintenance and resolution in humans remains limited. This in part reflects the 

ethical limitations and practical problems previously encountered when 

attempting to investigate the human disease directly, one example being the 

difficulty in obtaining biopsy material at crucial stages in the natural history of 

the disease. Consequently, most of our knowledge of the immune mechanisms 

in the initiation of autoimmune uveitis, and our knowledge of the candidate 

autoantigens implicated, is based on immunological, pathological and 

experimental studies involving animal models such as EAU. These studies have 

greatly advanced our general understanding of the mechanisms underlying the 

development of uveitis, and in many cases have delineated key immune 

processes in particular animal models. However, such findings cannot be 

directly extrapolated to human uveitis. Studies using biological material from 

human eyes or other human surrogate target tissues, both from uveitis patients 

and healthy controls, are therefore badly needed. 

 In this thesis, investigations into various cellular and humoral aspects of 

human autoimmune uveitis are described. The overriding theme is the direct 

application to human uveitis research of relatively new molecular and 

immunological techniques, some of which have already been successfully used 

to investigate other immunological diseases or animal uveitis models. A key 

goal was the evaluation of the suitability of these techniques for future research 

or clinical use. The serum and PBMC samples analysed were derived 

exclusively from human patients and controls. Assays were carried out using 

human test materials (or recombinant human materials) wherever possible. 

 In the following section, each of the four main results chapters (Chapters 

3 to 6) are summarised and the suitability of each technique for human uveitis 

research commented upon. The possible impact of the overall findings on future 

uveitis research is assessed. Specific results from each chapter are not 

discussed as this has already been done in each Discussion section.  
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7.2  Analysis and verdict on individual 
experiments and techniques  

7.2.1  Cloning and expression of human recombinant 
RSAg  

In Chapter 3 the successful cloning and expression of human RSAg is 

described. A 1221 b.p. sequence for RSAg was amplified from mRNA by PCR, 

and ligated into pCR-T7-NT-Topo and pcDNA4-TO-myc-HisA vectors for 

expression in prokaryotic and eukaryotic systems respectively. Significant 

amounts of recombinant RSAg, produced as fusion proteins with polyhistidine 

tags, were relatively easily obtained from bacterial hosts after induction with 

IPTG. Small but quantifiable yields were obtained using the eukaryotic vector in 

human host cells. Recombinant protein from both systems was purified using a 

nickel chelate resin that binds to the His tag. The His tag could easily be 

cleaved enzymatically, leaving pure protein, but was unnecessary here for 

downstream applications. There are few previous reports of RSAg being cloned, 

and I was unable to find any reference to its successful expression from human 

cells in the literature.  

 I consider this experiment to be a success, and would recommend this 

approach where significant amounts of the antigen are needed for future 

research in human uveitis. Limited supplies of human antigen have undoubtedly 

hindered research in the past. The amounts produced using the eukaryotic 

system were small, but it is reasonable to expect yields to improve by adjusting 

the start time and total time of induction. The cultivation of larger cultures or use 

of "cell factories" would also increase output. Time constraints did not allow this 

during the current study. Given the advantages (post-translational modifications, 

etc) of expression from human cells, I would recommend the use of the 

eukaryotic over the prokaryotic system. The recombinant protein was purified 

under denaturing conditions, as this was found to be more efficient at the time. 

However, purification under native conditions is also possible. I believe the latter 

method is more appropriate where the antigen is being used for research 

purposes. This would be more likely to retain the conformation of the native 
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human protein, which may have a major bearing on key immunological 

processes e.g. antigen processing, B-epitope recognition.   

7.2.2  Measurement of anti-RSAg antibodies in 
autoimmune uveitis patient and control sera 

Using both bovine RSAg and recombinant human RSAg (expressed from 

bacterial hosts), sera from uveitis patients and controls were tested for levels of 

anti-RSAg antibody. No overall differences were detected between the 2 groups 

in terms of antibody titres, using either bovine or human RSAg. The small 

number of individuals representing distinct uveitis subcategories made 

statistical comparison of antibody titres from each group meaningless. However, 

there may have been a higher proportion of patients with intermediate uveitis 

and (possibly) sarcoid uveitis groups with "positive" titres. Interestingly, none of 

the 5 patients with Behcet`s uveitis had a "positive" titre. Factors such as state 

of disease activity, duration of current disease episode or total disease duration, 

or use of systemic immunosuppression were not found to be significant, but 

again the numbers in each subgroup were very small. Individual subjects from 

both groups demonstrated "high" antibody titres, but no common factor could be 

identified. On occasion, markedly different antibody titres were found in the 

same individual to bovine and human RSAg, emphasising the importance of 

interspecies differences in epitope preference. ELISA readings using 

recombinant human RSAg were found to be significantly higher than bovine 

antigen, although a positive correlation existed between the 2 sets of readings.  

 The inability to demonstrate a difference in anti-RSAg antibody levels 

between uveitis patients and controls mirrors the findings of previous studies, 

and there seems little point in repeating such studies as described. The 

technique of indirect, 3-step ELISA is an effective method for detecting such 

antibodies, and the use of native or recombinant human RSAg is the most 

appropriate for reasons outlined above. There is no evidence at present for 

serum anti-RSAg antibodies being a marker for autoimmune uveitis. Perhaps 

this would become apparent for individual uveitis subcategories if larger groups 

were analysed. Alternatively, analysis of the epitope preferences of patients and 

controls might reveal differences. This was the subject of investigation in the 
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following section. It must also be remembered that the antibodies measured 

here were sampled from peripheral venous blood and that measurements 

obtained from intraocular fluids, particularly during disease episodes, would 

possibly give different and more relevant results. It is difficult to foresee 

adequate numbers of vitreous samples being routinely obtained, but sampling 

of aqueous humour from uveitis patients by paracentesis or from controls 

(during routine intraocular surgery) remains a possibility. 

7.2.3  Analysis of polyclonal RSAg B-cell epitope 
preferences in autoimmune uveitis patients and 
controls 

Polyclonal anti-RSAg antibodies, derived from the sera of uveitis patients and 

controls, were used to screen 3 different types of phage display library. In 

general the results were disappointing, and it was not possible to identify 

epitopes specific for either uveitis or control groups - the main goal of the study. 

Possible explanations for this failure are outlined in Chapter 4. One type of 

library (f88-4 Cys-4) yielded several clones for each group, including one clone 

common to both, and a number of other possible patterns were noted. However, 

the failure of a consensus pattern to emerge means that the relevance of this 

remains unclear. Again it is possible that analysis of greater numbers of clones 

from the final round of biopanning would eventually reveal a motif or consensus, 

but this is debatable. Comparison with previous studies is not possible, as B-cell 

epitope mapping of RSAg (or any other uveitis candidate autoantigen) had not 

previously been undertaken with random phage display libraries using 

polyclonal antibodies. 

 Overall I would not recommend random phage display technology for B-

cell mapping using polyclonal anti-RSAg derived from sera. Several different 

libraries were screened here using various methods, and most experimental 

variables adjusted, but without success. Further modifications could be made, 

as discussed in Chapter 4, but it has previously been recognised that the 

biopanning of random phage libraries using polyclonal sera can be problematic. 

The technique has, however, been successfully employed using polyclonal 
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sera, where both the quality and titre of the antibody is high, in for example 

post-viral states (Prezzi et al. 1996).  

 In uveitis research, random peptide library screening has proven itself in 

determining the minimum epitope requirements of an anti-IRBP monoclonal 

antibody (Tighe et al. 1996) – perhaps the technique would be best suited to 

this kind of task in future. 

7.2.4  Searching for novel uveitis autoantigens using 
a human retinal cDNA library 

In Chapter 5 the successful construction of a cDNA library from human 

neuroretina is described. Screening the library with the sera of uveitis patients 

and controls by the biopanning method yielded several dozen affinity-selected 

phage clones. After DNA sequencing and subsequent analysis, 8 clones were 

highlighted for investigation, 7 of which were eventually expressed as 

recombinant protein fragments. Purified samples of these potential autoantigens 

were screened by ELISA against panels of uveitis and control sera for the 

presence of significant titres of specific antibodies. Depleted supplies of antigen 

meant 3 of these proteins being tested against a limited panel of sera, but the 4 

remaining polypeptides were screened against 45 uveitis and 47 control serum 

samples. Raised antibody levels were demonstrated to all 7 proteins in at least 

some individuals, especially those from the uveitis group. No common factor 

could be identified among these individuals however. When patient and control 

readings were compared as groups, one peptide (a fragment with homology to 

human carboxypeptidase E) demonstrated significantly elevated readings to the 

patient group. Ironically, this peptide was originally affinity-selected using serum 

from a control subject. Interestingly, none of the main candidate autoantigens 

for uveitis were isolated during this process. 

 In my opinion, this experiment was a qualified success. In the short-term, 

the identification of carboxypeptidase E as a potential autoantigen warrants 

further investigation. Although not specific to the retina, this protein could 

nevertheless be relevant to uveitis pathogenesis, and is a known candidate 

autoantigen in a related condition, autoimmune diabetes. It was not possible to 

conclusively demonstrate a difference between uveitis and control ELISA 
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readings as groups, for any of the clones originally affinity-selected using uveitis 

sera – however, individual subjects demonstrated elevated readings to such 

clones, some markedly so. It would be worthwhile in the future screening the 3 

remaining protein fragments against a full panel of uveitis and control sera. 

Similarly, screening each of the 7 proteins against sera from more tightly 

defined uveitis sub-categories might reveal interesting results. Stronger 

evidence of these candidate proteins` autoantigenicity could be demonstrated 

by their induction of experimental uveitis in animals, or perhaps even the 

demonstration of specific T-cell activation/proliferation directly in human 

samples. The technique of cytokine flow cytometry seems particularly attractive 

for this purpose. 

 The main advance from these experiments is the successful 

demonstration of the feasibility of the technique for directly identifying new 

human uveitis autoantigens. Various strategies for improving the outcome of 

future experiments are discussed in Chapter 5, and the refined method could be 

applied in repeat experiments to identify other uveitogenic proteins (which 

undoubtedly exist). A measure of the need to expand the pool of candidate 

antigens in humans, and rank them in terms of relevance, can be seen by 

studies with similar goals being carried out by other groups (Yamada et al. 

2001b). The approach described here, however, which has certain advantages, 

has not been previously described. Confirmatory evidence of the relevance of 

the proteins identified here to human uveitis is needed, but the technique itself 

seems promising.  

7.2.5  RSAg-specific T-cell activation demonstrated 
by cytokine flow cytometry 

One of the most exciting techniques to emerge in recent years is cytokine flow 

cytometry (CFC), which allows the direct detection and identification of several 

cytokines and surface markers simultaneously in individual activated T-cells. 

Although used to detect antigen-specific responses in other diseases, mainly 

infectious, there were few reports of it being used in organ-specific autoimmune 

diseases, in particular autoimmune uveitis. In Chapter 6, the detection of an 

antigen-specific response (to stimulation with bovine RSAg) by CFC, in 
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peripheral T-cells is described. Antigen-specific responses were found in both 

uveitis patient and control T-cell populations, and there were no significant 

differences in baseline-corrected overall response rates between the 2 groups. 

Approximately equal proportions of individuals were judged as being 

"responders" in each group. Although the proportions of total T-cells responding 

specifically to the autoantigen were relatively low (as expected), the ability to 

produce clear backgrounds in negative control samples using this technique 

enabled recognition of a positive response if it existed. "Activation" of a CD4+ T-

cell was pre-defined as the co-expression of the surface marker CD69 and the 

intracellular cytokine IFN-γ. Although the detection of IFN-γ expression might 

indicate a Th1 type response, this cannot be confirmed in the absence of 

markers for other cytokines. The detection of responses to RSAg in a significant 

proportion of healthy controls would appear not to support this antigen's role as 

a dominant autoantigen in autoimmune uveitis, but this small study needs to be 

repeated in greater detail and with greater numbers of samples. 

 The value of this study is the demonstration that CFC is applicable to the 

detection of antigen-specific T-cell responses in autoimmune uveitis. The 

technique was already known to be specific and sensitive in the study of 

cytokine responses at the single cell level in other disease states, but the very 

low frequency of autoreactive circulating Th-cells was potentially a limiting factor 

here. That doubt has now been removed. Not only can this technique identify 

new, potentially uveitogenic autoantigens by detecting generalised T-cell 

"activation", it can identify the cytokine profiles within individual cells and 

determine their overall numbers and frequencies. It is even possible to capture 

particular cellular subsets during analysis by using the FACS cell-sorting mode. 

The number of parameters capable of being simultaneously analysed is 

constantly increasing as flow cytometer technology advances, and it is now 

possible to simultaneously detect several intracellular cytokines as well as 

important surface markers such as CD4, CD8, CD69, CD25, etc. This enables 

accurate determination of the Th profile of responding cell types, or detect other 

antigen-specific responses such as those produced by regulatory T-cells. In my 

opinion, CFC is the technique of choice for detecting and analysing T-cell 

responses to potential autoantigens in future autoimmune uveitis research. 
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7.3  General recommendations for uveitis 
research  

Specific recommendations for the improvement of individual experiments are 

contained in the Discussion sections of each "results" chapter. There are also 

lessons to be learnt in terms of the general strategy employed in autoimmune 

uveitis research, which have emerged during these experiments.  

 Uveitis is a very heterogeneous group of diseases, and debates 

concerning the most relevant definitions and classifications still continue. This is 

important as clinical uveitis entities are often included or excluded from a 

particular classification based on presumed aetiology of disease. Even within 

the group of conditions belonging to the category "autoimmune uveitis" there 

are questions to be resolved. For example, is anterior uveitis with no evidence 

of infection really a separate disease entity from (posterior) autoimmune 

uveitis? Should uveitis associated with systemic disease such as sarcoid or 

Behcet`s be included in the same category as eye-specific autoimmune uveitis? 

Obviously these questions have great relevance to the inclusion/exclusion 

criteria used when recruiting a sample of patients for basic science research 

into the causes of the disease.   

 My experience has been that, because autoimmune uveitis is such a 

heterogeneous entity, even in a reasonably large group of patients the number 

of subjects representing individual disease categories tends to be small. While 

patients can be compared with controls as whole groups, statistical analysis of 

individual uveitis subtypes is often impossible, and important characteristic 

responses of disease subtypes may be overlooked. In addition, it is sometimes 

difficult to consign an individual to a uveitis sub-type with certainty, particularly 

early in the disease, and this leaves the analysis of results from these subtypes 

open to question. Another issue is that of disease activity at time of sampling. 

There is evidence here and elsewhere (de Smet and Dayan 2000) of greater 

immune responses, particularly cellular, being found during active disease 

episodes. The samples taken during this study were from a whole spectrum of 

disease durations, from first presentation to end-stage disease. It is now 

thought that immune responses vary with the stage of disease progression, and 
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this needs to be addressed in future research. Analysis of immunological 

parameters at disease initiation is probably of most interest. Some of the 

patients sampled were on systemic steroid or immunosuppressive therapy, and 

this could also have a bearing on results. 

 In future research into autoimmune posterior uveitis, I would therefore 

recommend more detailed, prolonged analysis of a single well-defined disease 

sub-category rather that cross-sectional studies on large heterogeneous 

groups. As the aetiology and classification of the various disease sub-

categories is sometimes uncertain, I would focus on a clearly non-infectious, 

eye-specific, uveitis subtype with fairly typical features of the disease. Findings 

from in-depth studies (qualitative then quantitative) of the disease's 

immunopathogenic mechanisms could later be extrapolated to other uveitis sub-

categories and verified experimentally. Sympathetic ophthalmia is the 

archetypical example of autoimmune uveitis, and would have many advantages 

as a disease model, but is probably too rare to recruit meaningful numbers. 

Instead I would perhaps study cases of idiopathic retinal vasculitis or pars 

planitis, both of which are reasonable common and representative of the 

disease category. Recruitment of patients at first presentation, coupled with 

repeat sampling at regularly spaced follow-up appointments as well as during 

active disease episodes, would be my preferred option. Patients and controls 

would be sampled for concurrent measures of cellular and humoral immune 

responsiveness, as these are often known to show an inverse relationship (Liew 

2002). Episodes where patients were started on systemic immunosuppression 

would be clearly highlighted – perhaps it would be necessary to exclude such 

individuals from the study, or analyse their results separately if sufficient 

numbers were recruited. Such longitudinal studies would provide much 

information about the natural history of the disease in terms of 

immunopathogenic mechanisms, which is currently lacking. In future work, a 

multicentre study would have the advantage of increasing overall numbers, 

particularly those of rare uveitis entities, and thereby improve statistical validity. 

Such a study, coupled with a strictly controlled protocol for sampling and 

experimental procedure, would also provide cross-validation of results. 
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7.4  Future directions for uveitis research 
The eventual goal of all research into autoimmune uveitis is the development of 

clinical therapies that treat the condition more effectively and with fewer side-

effects than current treatments, or ideally abolish the disease completely. 

Immunological treatments potentially capable of treating or curing the condition 

include monoclonal antibodies/immunoadhesins, vaccines and the induction of 

mucosal tolerance to autoantigens. Most of these potential treatments would 

require the identification of the autoantigen(s) responsible for the disease. The 

delineation of pathogenic and possibly protective autoantigenic epitopes would 

also be essential. Because of the likelihood of epitope spreading as the disease 

process continued, any antigen-based treatment strategy would require a 

certain amount of flexibility. In autoimmune uveitis, there is still no definitive 

proof that any of the candidate autoantigens proposed so far are the actual 

cause of the disease in humans. This possibly remains the single biggest 

obstacle to future progress.  

 A number of the techniques described in this thesis could greatly 

facilitate the search for such key antigen(s) in future uveitis research. cDNA 

libraries of human retina, choroid or other ocular structures could be 

constructed and screened against antibodies from uveitis sera or ocular fluids, 

to identify the most relevant autoantigens. The uveitogenicity of putative 

autoantigens could be tested by stimulation of PBMC and the detection of T-cell 

activation by cytokine flow cytometry. The most reliable source of whole antigen 

is probably human recombinant expressed from human cells. CFC could also 

be used to detect responses in T-cell epitope mapping experiments using 

overlapping synthetic peptides. Combinatorial libraries other than random 

phage display, could potentially be used for B-cell epitope mapping studies. 

 Other technologies could also be of use in future uveitis research. The 

use of DNA microarrays could be used to identify autoantigens or other key 

target molecules (e.g. cytokines), by highlighting differential production of 

various mRNAs during the uveitis process. Tissue for this could be obtained in 

samples from vitrectomies (which are sometimes performed in severe cases of 

uveitis), or enucleated eyes in cases of sympathetic ophthalmia. 
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 Although the goal of the research described here was to identify 

strategies that were independent of animal models, recently advances in the 

development of humanised transgenic animals are noteworthy. An example 

relevant to uveitis research is the development of a mouse model expressing 

humanised class II MHC (Pennesi et al. 2003). Experimental results from these 

animal models should be more directly applicable to human research than those 

obtained previously. 

 Autoimmune uveitis is a relatively little-known category of disease within 

the wider field of organ-specific autoimmunity, particularly in comparison with 

better known (and more widely researched) conditions such as autoimmune 

diabetes, rheumatoid arthritis and multiple sclerosis. It makes sense that 

techniques and strategies first found to work in these fields should then be 

extrapolated to uveitis research, and this will probably be the pattern for the 

foreseeable future. However, one area where uveitis research can lead the way 

in its wider field is in the direct visualisation of the target tissue i.e. retinal 

vessels and capillary beds (Becker et al. 2002). The eye is the only organ 

where this is directly possible, and using modern imaging systems, significant 

insights can be obtained into the disease process, particularly in terms of 

homing/targeting of activated immune cells. The use of fluorescent dyes as 

markers of immune cells, and the use of green and yellow fluorescent proteins 

in in vivo studies of animal models (including cytokine expression) is already 

established. Advances are currently being made in the field of in vivo human 

imaging, and we can look forward to further advances in this field. 

 A major problem remaining in human uveitis research is that there is still 

no satisfactory way of gaining access to biological samples from the structures 

most affected by the disease (i.e. the uvea and retina), except at surgery or as 

end-stage enucleated specimens. This limits our ability to perform 

immunohistological studies, or to serially sample intraocular structures for 

immune components such as antibodies, lymphocytes, cytokines, etc. 

Obviously any research would have greater validity if samples were actually 

taken from the eye, rather than using, for example, peripheral blood. In vivo 

imaging will hopefully circumvent some of the problems associated with tissue 

access, but clearly will not solve all of them. New ideas are needed in this area.  
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 One area that is currently gaining much attention is the potential 

exploitation of regulatory T-cells to restore tolerance in autoimmune disease. 

Although the phenotypes of all regulatory cell subsets are not yet fully 

characterised, certain categories such as CD4+CD25+ cells, TH3 cells 

(expressing TGF-β) and Th2 cells expressing IL-10 have gained attention. The 

potential advantage of employing regulatory T-cells is that certain types of 

regulatory effects are non-antigen-specific once induced, and this could 

circumvent many of the potential problems encountered with epitope spreading 

in specifically targeted immunotherapies. If peptides from uveitic autoantigens 

were identified that could stimulate these regulatory cells, they could potentially 

be employed as immunotherapies, and this is another area for excitement in 

future uveitis research. 
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7.5  Conclusions 
The overall aim of this series of experiments was to evaluate the potential for 

carrying out autoimmune uveitis research directly on human patients/samples 

using currently available immunological and molecular techniques. In my 

opinion the effectiveness of these methods has been demonstrated, and 

consequently more emphasis should now be placed directly on human 

research.  

 In the work described, several techniques have shown themselves to be 

capable of providing useful results. In particular, the production and use of 

recombinant antigens, the identification of new potential autoantigens using 

retinal cDNA libraries, and the use of CFC to detect antigen-specific cytokine 

responses at the single cell level, were identified as worthwhile techniques for 

human research. With further refinements and adaptations, much more can be 

achieved using these methods.  

  Animal models have served uveitis research well in the past, and will 

continue to do so as a basic source of new ideas and observations, and as tools 

for delineating general mechanisms involved in ocular immune responses. 

Animals will also continue to be essential in the initial testing of any new 

treatments, including immunotherapies. However, findings from animal models 

can never be fully extrapolated to humans, and applied human research will 

always therefore be necessary at a certain stage in the evolution of a study. It is 

hoped that the application of the techniques described in this thesis will allow 

direct human research to be carried out at an earlier stage in this process. 
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