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Abstract 

This thesis explores different indirect wavefront sensing methods for detection of 

primary Zernike aberrations in laser scanning microscopes. All the presented 

aberration retrieval methods rely on analysing intensity distributions in the focal 

region and within the first dark ring of the Airy spot.  

First a home-built reflection confocal microscope with a Zernike modal wavefront 

sensor is discussed (Chapter 3). Aberrations present in the sample or imaging 

system are measured indirectly by sequentially applying Zernike modes with a 

deformable membrane mirror (DMM) while maximising the detected intensity 

signal at the pinhole of the confocal microscope. When maximum intensity is 

reached at the pinhole, the Zernike mode(s) imposed by the DMM correct for the 

wavefront aberrations present in the sample and imaging system. The sensitivity of 

this modal method for measuring aberrations is discussed as a function of pinhole 

size for different Zernike modes and the difference between modal wavefront 

sensing in reflection and fluorescence is considered. 

Large aberrations present a challenge for modal wavefront sensors since they can 

give rise to incorrect measurements due to cross-talk effects between the different 

Zernike terms. A way to solve this problem is to run through several correction 

iterations. This thesis proposes a new extension for modal wavefront sensing to 

tackle large sample induced aberrations more efficiently (Chapter 4). The new 

method uses an initial wavefront pre-correction which is based on a ray-tracing 

simulation of the sample. As a result, the number of iteration steps required is 

significantly reduced because the pre-correction removes the most relevant large 

aberrations present, thereby increasing the speed of the overall correction process. 

Odd aberrations such as coma cannot be detected and corrected for in a reflection 

microscope because of a double-pass effect where the in-going light path and the 
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return light path pass of different sides of any element present in the system such as 

the DMM. As a result of this effect, odd aberrations are cancelled out after the 

second pass through the system and the measurement/correction system is not able 

to detect the presence of them. Nevertheless, the focal spot at the image plane will 

suffer from odd aberrations and these will affect the imaging performance of the 

microscope. A new method is presented in this thesis to break up the double-pass 

effect and allow odd aberrations to be detected and corrected for in a reflection 

confocal microscope (Chapter 5). To achieve this the beam is scanned across an 

edge and the edge response is used to determine the aberrations present as opposed 

to looking just at the intensity passing through the confocal pinhole. This method is 

illustrated by looking at coma, a common odd aberration found in optical 

microscopy. It is shown that the image of the edge (edge response) displays a 

characteristic distortion which is typical of coma and the amount of coma present 

in the imaging system can be estimated from the edge response curve.  

Finally a novel aberration retrieval method is presented. This method is aimed at 

retrieving the amplitude of primary Zernike aberrations (astigmatism, coma, 

spherical aberration) in the pupil (Chapter 6). The primary Zernike aberrations are 

retrieved by fitting a set of orthogonal circle functions within the central region of 

the intensity distribution recorded at up to 3 different image planes, typically taken 

at focus and then either side of focus. Characteristic combinations of aberration 

sensitive fitting coefficients (so-called aberration indicators) are derived for each 

primary aberration (astigmatism, coma, spherical aberration) and it is shown that 

these indicators can be used for aberration retrieval. Importantly for aberration 

retrieval the indicators are selected so that there is a linear relationship between the 

aberration amplitudes and their respective indicators up to amplitude values of 

about 0.13λ. The issue of aberration cross-talk (when several aberrations are 

present) is also addressed and it is concluded that the new aberration retrieval 

method is successful as long as the rms wavefront deviation of all primary 

aberrations remains below 0.1λ. Benefits of this new approach as opposed to 
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techniques such as the Gerchberg-Saxton algorithm are that it is fast, uses less 

intensity images and is non-iterative. 

In summary, this PhD project makes new contributions to the field of aberration 

retrieval and adaptive optics in scanning microscopy by i) improving the modal 

aberration correction technique using an initial pre-corrected wavefront to 

significantly speed up the aberration correction procedure, ii) overcoming a 

double-pass cancellation issue in a reflection confocal microscope when looking at 

odd aberrations by using an edge scan to determine the odd aberrations present and 

iii) proposing a new phase retrieval technique that uses aberration indicators to 

retrieve the primary aberrations present in the pupil by looking at no more than 

three intensity images. 
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1. Introduction 

1.1 Preface 

Microscopes have been used for centuries to study and magnify images of 

microscopic samples. Zacharias Janssen is recognised as the inventor of the 

microscope in around 1590 in the Netherlands [1]. Thereafter, in 1676, Anthonie van 

Leeuwenhoek used his microscope for the observation of bacteria [2]. It was in the 

late 19th century, that Ernst Abbe developed a diffraction theory for describing the 

imaging process in a microscope, while working at the nowadays well known optics 

company Carl Zeiss Ag [3]. The 20th century saw the emergence of new types of 

microscopes such as the phase contrast microscope (which by means of a phase ring 

in the microscope’s objective pupil, can image phase objects such as biological 

samples with increased contrast) and laser scanning microscopes (e.g. the confocal 

microscope). At the beginning of the 21st centuries, so-called super-resolution 

microscopes made their appearance. Examples of these types of microscopes are 

structured illumination, PALM (Photoactivated localization microscopy) and STED 

(Stimulated emission depletion microscopy) microscopes [4-6], whose resolution is 

below the classic theoretical diffraction limited resolution.  

Although optical microscopes are designed to come close to their theoretical limits, 

residual system and sample induced aberrations will always eventually degrade the 

imaging performance. The theory of aberrations is closely related to the development 

of microscopy. Significant contributions in the field of optical aberrations were by 

Seidel who derived analytical expressions for primary aberrations (astigmatism, coma 

and spherical aberration) using geometrical optics, which were later named after him 

(Seidel aberrations) [7]. The diffraction theory of aberrations was pushed forward by 

Zernike and Nijboer [8-10]. Zernike introduced the famous Zernike aberration 

polynomials for his phase contrast method [10]. The Zernike aberration functions 

gained great popularity due to their mathematical properties (orthogonality over the 
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unit circle, balanced aberration polynomials). A distorted wavefront in a circular 

aperture can be uniquely expressed in terms of a weighted series of orthogonal 

Zernike polynomials. Zernike polynomials are extensively used in different areas of 

optics, including optical design, adaptive optics, optical astronomy and wavefront 

sensing. In the beginning of the 21th century Braat and Janssen developed the 

extended Nijboer-Zernike theory, which provides semi-analytical expressions for 

describing the amplitude distribution around focus in the presence of aberrations 

[11-13]. The most commonly encountered aberration in microscopy is spherical 

aberration, which is often caused by a refractive index mismatch. 

The use of adaptive optics in microscopy has helped to combat aberrations when 

imaging deep into samples by dynamically correcting for system and/or sample 

induced aberrations [14]. Here, an adaptive optics element corrects for aberration by 

shaping the wavefront with an equal but opposite distortions to produce an aberration-

free image. 

1.2 Motivation and objectives 

The motivation behind this project was to explore novel aberration retrieval methods 

for microscopy with a particular emphasis on laser scanning microscopes. Although 

microscopes are designed to allow for imaging close to their theoretical limit, 

aberrations are often the limiting factor. Aberrations worsen the imaging performance 

and the results are blurry images with a loss of contrast and resolution. Measuring 

wavefront aberrations (i.e. the phase) is challenging because the phase information 

can not be directly derived from data obtained from intensity sensors. Interferometric 

devices or wavefront sensors are often used to quantify aberrations. To measure 

aberrations with a wavefront sensor or interferometer, often a modification or partial 

re-alignment of the optical components within the microscope is necessary. Wavefront 

sensing devices impose certain experimental requirements to ensure accurate 

wavefront measurements, such as, size of the light source, degree of coherence of the 

light source. In this thesis indirect wavefront sensing methods are studied which 
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solely use the intensity signals measured by a camera. Some of these indirect 

wavefront sensing methods are not limited to laser scanning microscopes only but 

could also be used in a wider range of optical imaging systems, such as telescopes or 

optical lithography projection lenses. 

1.3 Main contributions 

My main contributions to the field of optics are in the development of novel methods 

to detect aberrations in laser scanning microscopes. The main contribution concerns a 

method which retrieves the primary Zernike aberrations from 3 intensity distribution 

images taken in the vicinity of focus. It is a non-iterative and relatively simple 

method. The method is not limited to certain types of microscopes but could be used 

in other optical imaging systems, such as telescopes and lithography projection lenses 

(although further work would be needed to test the capability of the method for 

retrieving aberrations in high numerical aperture (NA) systems). Furthermore, an 

optimisation strategy to tackle large aberrations more efficiently has been proposed. 

This method uses pre-corrections obtained from ray-tracing simulations of a sample. 

This optimisation strategy mitigates the effect of cross-talk between large aberrations 

and speeds up the correction process. Last but not least, a so-called double-pass effect 

which causes cancellation of odd aberrations in epi-illumination microscopes after 

reflection makes the detection of odd aberrations in reflection challenging. 

Nevertheless the focal spot in a scanning microscope would suffer from odd 

aberrations. An edge scan method is presented to break up the double-pass effect and 

allows detection of odd aberrations such as coma in reflection confocal microscopes. 

The edge scan method does not require additional hardware and can be used to detect, 

for example, coma in commercial confocal microscopes. 

1.4 Synopsis 

The main topic of this PhD thesis concerns aberration retrieval for scanning optical 

microscopy. The aberration retrieval methods considered are based on analysis of the 
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intensity distribution in the vicinity of focus. Aberrations can be inferred from 

observation of the the intensity at the central part of a spot, or, alternatively, by 

determining the shape of the intensity distribution within a larger part of the Airy disk. 

The contents of the subsequent thesis chapters are briefly summarised below. 

A review on laser scanning microscopes, optical aberrations, wavefront sensing 

methods and adaptive optics is given in Chapter 2. 

In Chapter 3 a home-built laser scanning microscope with integrated adaptive optics 

for aberration retrieval is presented. The different components, microscope objective, 

lenses, detector, deformable and membrane mirror are discussed. A closed-loop 

calibration method of the deformable membrane mirror is explained and the quality of 

Zernike modes produced after calibration is shown. System aberrations were 

corrected with the calibrated deformable membrane mirror and the improvement on 

the axial and lateral point spread function of the microscope are shown. 

In Chapter 4 a so-called confocal modal wavefront sensor is assessed with the home-

built microscope described in Chapter 3. In modal wavefront sensing, aberrations are 

measured indirectly by optimisation of the confocal signal with an adaptive optics 

element (such as a deformable mirror) for each aberration separately. When the signal 

is at a maximum, all aberrations are corrected by the deformable mirror. The 

sensitivity of, and the differences between, modal sensing in reflection and in 

fluorescence are discussed. In the presence of large aberrations, modal sensing can 

become challenging due to cross-talk between aberrations, which often requires 

several optimisation iterations. A method is proposed to tackle large aberrations more 

efficiently by using ray-tracing pre-corrections. 

Chapter 5 describes a method to detect coma in confocal reflection microscopy. The 

double-pass effect in reflection causes the cancellation of odd aberrations such as 

coma. By scanning the focal spot over an edge, the presence of coma can be detected. 
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The resulting edge response depends on coma and allows estimation of the amount of 

coma present.  

Finally, in Chapter 6 a novel aberration retrieval method is presented. The method is 

aimed at retrieving primary Zernike aberrations by fitting a set of orthogonal 

functions to the intensity distribution within the first dark ring of the Airy spot in the 

vicinity of focus. Using characteristic combinations of fitting coefficients, the primary 

aberrations can be retrieved. The method works best in the presence of a single 

aberration, but can also retrieve multiple aberrations up to a certain extent. 

In appendices details are given on: A) ray-tracing; and B) diffraction calculations 

using the extended Nijboer-Zernike theory (for the theoretical treatment of the 

aberration retrieval method described in Chapter 6); and C) camera images of 

intensity distributions through focus in the presence of primary Zernike aberrations 

are shown. 
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2. Literature review 

This chapter aims to give an overview on wavefront aberrations and how they 

manifest themselves in optical imaging systems. The chapter starts with introducing 

scalar diffraction theory and how it can used to calculated the intensity distributions 

of aberrated beams in the vicinity of focus. Thereafter, the Zernike aberration 

polynomials, commonly used to describe wavefront aberrations in optics, are 

presented. Since this thesis is concerned with aberration retrieval for laser scanning 

microscopy, the imaging properties of such types of microscopes, with special 

emphasis on the popular confocal microscope, will be reviewed. At the end of the 

chapter it will be explained how wavefront aberrations can be dynamically corrected 

with the help of adaptive optics. Adaptive optics is a technology originating from 

optical astronomy where it is used in ground-based telescopes to correct atmosphere-

induced wavefront aberrations. After briefly reviewing the use of adaptive optics in 

astronomy, the focus will be set on adaptive optics correction strategies in 

microscopy. The literature review chapter summarises what is known and constitutes 

the current state-of-the-art in the field of aberration retrieval and adaptive optics in 

optical microscopy. 

2.1 Diffraction theory 

In this section diffraction theory, coordinate systems definitions and the normalised 

optical coordinates used are explained. The Huygens-Fresnel principle describes 

electromagnetic field propagation through space. An electromagnetic wavefront is 

considered to be composed of an infinite number of point source emitters. Any later 

wavefront can be regarded as the envelope of the spherical wavefronts [7], emitted by 

all these individual point sources. The electromagnetic field at any point in space can 

then be determined using the superposition principle of waves. In this thesis, only 

scalar diffraction theory was applied because neither high numerical aperture (NA) 

objectives (NA > 0.8) were put to use, nor polarisation effects (such as birefringence) 

had to be taken into account. At this point we introduce the coordinate systems used 
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throughout this thesis which are shown in Fig. 2.1. It is noted that “It is, however, 

essential in the theory of image formation to identify the pupil surfaces with the pupil 

spheres, rather than the pupil planes, if Fourier transform theory is to be applied” [15]. 

 Figure 2.1: Coordinate system definition for the pupil and the corresponding image plane. Pupil plane: 
cartesian coordinates (𝜀, 𝜂) are normalised with respect to the pupil radius R to give " . Image 

plane: cartesian coordinates (X, Y) are normalised with the diffraction unit " to give the 

normalised coordinates (x,y), where λ is the wavelength and NA is the numerical aperture. The red 
arrows indicate the outline of a spherical reference surface (converging wavefront) along two axes. The 

coordinate transformation for the normalised radial coordinates (r,𝜙) is: " in 

the image plane and " in the pupil plane. 

Where (𝜀, 𝜂) and (X, Y) are cartesian coordinates in the pupil and image plane, 

respectively before normalisation. The image plane coordinates (X, Y) are normalised 

with the aid of the diffraction unit [11] " and are of the form: 

"  

ν ,µ( )
λ NA

x = r cos φ( );  y = r sin φ( )  
ν = ε R;  µ =η R  

NA λ( )

x = X ⋅ NA λ( );   y = Y ⋅ NA λ( )
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where λ is the wavelength and NA is the numerical aperture. The pupil coordinates are 

normalised with respect to the pupil radius, R, such that: 

"  

For low to moderate NA values (NA < 0.6), the normalisation for the axial coordinate 

Z is given by [11]: 

"  

One can use polar coordinates " and " in the pupil and image plane, 

respectively. The coordinate transformation from cartesian to polar coordinates is 

given by: 

 

"  

The following derivations can be found in the “Introduction to Fourier Optics” book 

[16]. Here the most relevant diffraction theory equations will be presented. The 

Huygen-Fresnel principle for scalar diffraction is expressed in terms of the diffraction 

integral [16]: 

 

"  

where U is the electromagnetic field amplitude at the observation point "  

originating from a point " in the pupil plane, where j is the imaginary unit, and k 

the local wave vector. The distance " between " and " is given by [16]: 

ν = ε R;   µ =η R

z = Z ⋅ NA2 2λ( )

ρ,θ( ) r,φ( )

x = r cos φ( );  y = r sin φ( )  

ν = ρcos θ( );  µ = ρ sin θ( )

U X ,Y( ) = Z
jλ

U ε ,η( ) e
jkr01

r01
2 dε dη

−∞

∞

∫
−∞

∞

∫

P0 X ,Y( )
P1 ε ,η( )

r01 P0 P1
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"  

The rather complex integral (2.5) can be cast into a simpler form when looking at the 

diffracted amplitude at a distance far away. Equation (2.6) can be expanded using a 

Taylor series. Expanding equation (2.6) while assuming that Z is large in comparison 

to " and " , it suffices to consider the lower order terms: 

 

"  

Inserting (2.7) into (2.5), while dropping all higher order Z terms except the linear Z 

term in the denominator, one obtains the Fresnel diffraction integral [16]: 

"  

which can be seen as the Fourier transform of the product of the amplitude with a 

quadratic phase term in the pupil [16]. The limitations involved in using the Fresnel 

approximation is given by errors mainly introduced by the exponential in equation 

(2.5). The distance " , in the exponential, is multiplied by a large number k, which 

can introduce significant errors [16]. The error remains acceptable as long as the 

quadratic term of the Taylor expansion is smaller than a radian [16]. This corresponds 

to Z values of: 

"  

The Fresnel approximation, often referred to as the near-field approximation, is used 

when one is interested in the electromagnetic field distribution in the vicinity of a 

r01 = Z 2 + X − ε( )2 + Y −η( )2

X − ε Y −η

r01 = Z 1+ X − ε
Z

⎛
⎝⎜

⎞
⎠⎟

2

+ Y −η
Z

⎛
⎝⎜

⎞
⎠⎟

2

≈ Z 1+ 1
2
X − ε
Z

⎛
⎝⎜

⎞
⎠⎟

2

+ 1
2
Y −η
Z

⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

U X ,Y( ) = e
jkZ

jλZ
U ε ,η( )  e j

k
2z

X−ε( )2+ Y−η( )2⎡
⎣⎢

⎤
⎦⎥ dε dη

−∞

∞

∫
−∞

∞

∫ = e
jkZ

jλZ
e
j k
2Z

X 2+Y 2( ) U ε ,η( )e j
k

2Z
ε 2+η2( )⎧

⎨
⎩⎪

⎫
⎬
⎭⎪

 e
− j k
Z
Xε+Yη( )

dε dη
−∞

∞

∫
−∞

∞

∫

r01

Z 3 >> π
4λ

X − ε( )2 + Y −η( )2⎡
⎣⎢

⎤
⎦⎥
2
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diffracting element (such as an aperture) [16, 17]. A detailed mathematical 

explanation about the limits of the Fresnel approximation is given in ref [16]. 

When observing the electromagnetic field at very large distances, or when the pupil is 

illuminated by a focussing (converging) spherical wavefront [16], the diffraction 

integral (2.8) can be further simplified. This is referred to as the Fraunhofer or far-

field approximation. Under the Fraunhofer approximation " the 

quadratic phase term in equation (2.8) is close to zero and we end up solely with the 

Fourier transform of the aperture:  

 

"  

Expressing equation (2.10) in normalised coordinates: 

 

"  

In this thesis, aberrated focal spots were simulated using the Fraunhofer 

approximation (equation 2.11). A phase aberration can be included by writing the 

complex amplitude at the pupil plane as:  

 

"  

Where " is the transmission function and "  is the aberration function. 

The intensity in the image plane is obtained by multiplying U with its complex 

conjugate " : 

"  

Z >> k ε 2 +η2( ) 2( )

U X ,Y ,Z( ) = e
jkZ

jλZ
e
j k
2Z

X 2+Y 2( ) U ε ,η( )  e− j
k
Z
Xε+Yη( )

dε dη
−∞

∞

∫
−∞

∞

∫

U x, y, z( ) = − j R
2NA2

2λ 2z
⎛
⎝⎜

⎞
⎠⎟
e
j

4π
NA2 ze

j
π
2z
x2+ y2( ) U ν ,µ( )  e− j

π NA( )R
zλ

xν+ yµ( )
dν dµ

−∞

∞

∫
−∞

∞

∫

U ν ,µ( ) =U ρ,θ( ) = A ρ,θ( ) ⋅eikΦ ρ ,θ( )

A ρ,θ( ) Φ ρ,θ( )

U *

I =U ⋅U *
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In Chapter 6 (aberration retrieval based on focal spot shape) a different sign 

convention for the exponentials in equation (2.11) was chosen to use the same 

convention as used by the authors in the literature of the Extended-Nijboer Zernike 

theory [11-13]. The Fraunhofer diffraction integral (equation 2.11) was implemented 

in Matlab using the two dimensional FFT (fft2 function) and was computed on a NxN 

grid, where N was set to 2048 (2^11). The distance to the first dark ring of the 

calculated Airy spot was chosen to correspond to 18 elements in the Matlab matrix 

(with a total number of 2048x2048 elements). The pupil diameter corresponds to 

about 140 matrix elements. Two dimensional images of the pupil and a computed PSF 

(with homogeneous illumination and no phase aberration applied) are shown in Figure 

2.2: 

Figure 2.2: A) Circular pupil with homogeneous illumination, B) The computed intensity distribution 
using the two dimensional FFT (Matlab) on 2048x2048 grid and C) Cross-section of the intensity 

distribution through the centre of the PSF. 
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To assess the precision obtained with the computed intensity distribution, the intensity 

distribution function of the (ideal) Airy spot were subtracted from the intensity 

distribution computed with Matlab. The (ideal) Airy spot intensity distribution is 

given by: 

"  

where " is the first order Bessel function and " . The difference between 

the two distributions is shown in Fig. 2.3. 

Figure 2.3: Intensity difference for an unaberrated PSF, comparing the two dimensional FFT (Matlab) 
on 2048x2048 grid to the intensity distribution function of the (ideal) Airy spot. 

The error (i.e. the difference in intensity between the FFT result and the analytical 

solution shown in Fig. 2.3) is less than " in terms of intensity. 

The scalar diffraction theory is held to be valid for NA up to 0.6 [11]. For NA > 0.6 or 

when polarisation effects have to be considered, such as birefringence [11], a vectorial 

diffraction theory should be used instead. 

I Airy r( ) = 2J1 r( )
r

⎛

⎝
⎜

⎞

⎠
⎟

2

J1 r( ) IAiry 0( ) = 1

10−3
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2.2 Zernike aberration polynomials 

In the context of diffraction theory, as explained before, the phase aberration function 

" in the pupil plane was introduced to account for the presence of wavefront 

aberrations. In optics, a popular set of functions for describing wavefront aberrations 

in the pupil are the Zernike polynomials. Zernike Polynomials were introduced when 

Fritz Zernike in 1934 studied the effects of aberrations on his phase contrast method 

[10]. Zernike polynomials are an orthogonal set of circle functions and are nowadays 

commonly used to describe aberrations in optical imaging systems. The lower order 

Zernike polynomials (nowadays often referred to as modes) are associated with 

commonly understood aberrations such as astigmatism, coma or primary spherical. 

The Zernike Polynomials are defined over the unit circle and are given by: 

 

"   

where "  is a finite hypergeometric series, " is the circle radius, n the radial 

order, m azimuthal order and "  the azimuthal angle. 

The following rules apply for n and m: " . "  is given by: 

"  

An arbitrary wavefront " , when confined to a circular aperture can be 

decomposed into a weighted sum of orthogonal Zernike polynomials: 

"  

where " are the respective Zernike polynomial coefficients. Several Zernike 

polynomial notations have been introduced for the needs of different research fields, 

Φ ρ,θ( )

Zn
m ρ,θ( ) = Rnm ρ( )sinmθ    for m negative

               =  Rn
m ρ( )cosmθ    for m positive 

Rn
m ρ( ) ρ

θ

n −m even, m ≤ n Rn
m ρ( )

Rn
m ρ( ) = ρ−m

n −m
2

⎛
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⎞
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⎬
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such as the widely used Noll and Malacara notations. The Noll notation is commonly 

used in Astronomy. Robert Noll introduced a modified set of orthonormal Zernike 

polynomials and discussed their mathematical properties and their application for 

correcting atmospheric turbulences as encountered in astronomical adaptive optics 

[18]. The Zernike coefficients output by the Thorlab's Shack-Hartmann Wavefront 

Sensor system are represented in the Malacara notation [19]. The Malacara notation 

involves a single indexing scheme as well as a normalisation of the Zernike 

polynomials. In this thesis, the Malacara normalisation is adopted, while using a (n,m) 

indexing scheme for the Zernike polynomials. The normalised Zernike polynomial are 

(in this thesis) written as: 

 

"  

The Zernike Polynomials, with their Malacara normalisations, up to radial order 4 and 

all the corresponding azimuthal orders are listed in table 2.1. 

Zn
m
even ρ,θ( ) = 2 n+1( )  Rnm ρ( )cos mθ( ) m ≠ 0

Zn
m
odd ρ,θ( ) = 2 n+1( )  Rnm ρ( )sin mθ( ) m ≠ 0

Zn
m ρ,θ( ) = n+1 Rn

0 ρ( ) m = 0

Table 2.1: Zernike Polynomials up to radial order 4 and the corresponding azimuthal 
orders  using the Malacara normalisation

n m Normalisation 
Factor

Zernike 
Polynomial Name

0 0 1 1 Piston

1 -1 2 Tip

1 1 2 Tilt

2 -2 Oblique 
Astigmatism

2 0 Defocus

2 2 Vertical 
Astigmatism

3 -3 Vertical Trefoil

3 -1 Horizontal Coma

" ρ 3 sin 3θ

"ρ2 sin2θ

"2 2

" 3

"ρ2 cos2θ

"ρ cosθ

"2 2

" 6

" 3ρ 3 − 2ρ( )sinθ

"2ρ2 −1

"ρ sinθ

" 6
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As can be seen from Table 2.1, in some Zernike polynomials the higher order radial 

term is “balanced” with lower order terms (by means of addition or subtraction), for 

example in case of spherical aberration " the radial order term " is 

“balanced” by a " and a constant term. The addition of these lower order terms to the 

aberration polynomial is referred to as the “balancing” of Zernike polynomials. 

Zernike polynomial balancing ensures that for small aberrations (< 0.07λ), the 

normalised maximum intensity lies at the paraxial (or Gaussian) focus [7]. A 

geometrical interpretation was given by Nijboer [8]. He explained that for spherical 

aberration the " term compensates for axial displacement caused by the "  term, 

while for coma the " term compensates for lateral displacement caused by the "  

term. Thus the balancing ensures that the Zernike polynomials describe the wavefront 

with respect to the position of best focus in the presence of small aberrations. The 

term “best” focus will be used from here on to refer to the spot, in the vicinity of the 

geometrical focus, with the highest intensity in x,y,z. 

3 1 Vertical Coma

3 3 Oblique Trefoil

4 -4 Oblique 
Quadrafoil

4 -2
Oblique 

Secondary 
Astigmatism

4 0 Primary Spherical

4 2
Vertical 

Secondary 
Astigmatism

4 4 Vertical 
Quadrafoil

n m Normalisation 
Factor

Zernike 
Polynomial Name

" 10

" 10

" ρ 4 cos4θ

" 4ρ 4 − 3ρ2( )sin2θ

" 3ρ 3 − 2ρ( )cosθ

" 5

"2 2

" 4ρ 4 − 3ρ2( )cos2θ

"ρ 4 sin 4θ

" 10

" 10

"2 2

"6ρ 4 − 6ρ2 +1

" ρ 3 cos3θ

n = 4,  m = 0( ) ρ4

ρ2

ρ2 ρ4

ρ ρ3
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Mathematical Properties of Zernike Polynomials 

The Zernike polynomials are orthonormal on the unit circle which implies that: 

 

"  

The coefficients for the wavefront reconstruction can be computed as follows: 

"  

and the wavefront is then: 

"  

The mean value of the wavefront is: 

 

"  

So, all Zernike polynomials, except Piston (which has no physical relevance for 

describing aberrations), when integrated over the unit circle are equal to zero. 

The root-mean square wavefront error (for small aberrations) is given by: 

 

"  
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2.3 Image Formation - Microscopy 

The three dimensional point spread function (PSF) h of a lens with circular aperture, 

under paraxial approximation, can be determined using an integral (using normalised 

cylindrical coordinates) of the form: 

 

"  

where " is a constant, z is the distance from focus, F is the distance 

from pupil to the image plane, " is a defocusing term, representing a parabolic 

wavefront deviation in the pupil, " is a wavefront aberration expressed in 

wavelength, f is a defocus parameter [11] which is related to the axial coordinate z via 

" . The intensity PSF is simply given by: " . It is noted that the intensity 

distribution at different axial planes can also be calculated by varying the value "  of 

Zernike defocus, instead of using the defocus parameter f.  The wavefront " , as a 

function of an axial displacement Z, is given by [12]:  

"  

In the low NA regime the Zernike defocus term can be used alternatively resulting in: 

" . For higher NA systems a quadratic phase departure does not suffice 

to accurately describe an axial displacement [12]. Using the Taylor expansion for the 

square root in (2.25) and comparing it with the Zernike defocus polynomial as well as 

using the relationship [11] " : 
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4π
NA2

F
e
j π
2F
r2

A ρ,θ( ) ⋅eikΦ ρ ,θ( )e− jf ρ
2

e− j2πrρcos φ−θ( )ρ dρ dθ
0

1

∫
0

2π

∫

C = − j
R2s0

2

2λ 2z
⎛

⎝⎜
⎞

⎠⎟

e− jkf ρ
2

Φ

f = −2π z I = h
2

α 2
0

Φ

Φ = Z 1− 1− ρ2 NA( )2⎡
⎣⎢

⎤
⎦⎥

Φ =α 2
0 2ρ2 −1( )

f = −2π NA( )2 Z 2λ = −2π z

�28

(2.24)

(2.25)



    "  

Formula 2.25 relates the axial displacement Z to the Zernike defocus amplitude and to 

the defocus parameter f. The intensity distribution at " , i.e. at focus, is given by 

equation 2.14 and is shown in Fig. 2.4 

Figure 2.4: Airy disk intensity distribution. 

Based on the Airy disk intensity distribution, the resolving power of a lens can be 

estimated. A commonly used criterium for resolution is the so-called Rayleigh 

criterium which is given by the lateral distance to the first zero point of the Airy disk 

function. In other words when two point objects, imaged through a microscope, come 

close to each other, Rayleigh considered that one can just resolve them when the 

maximum of one overlaps with the first minimum of the other which corresponds to a 

separation distance of: 

"  

Abbe used a different resolution criterium and stated that the maximum spatial 

frequency of an object that can be transmitted by a microscope objective is "

Z = 4α 2
0

NA2
= − λ f

πNA2

f = 0

dRayleigh =
0.61λ
NA

2NA / λ
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(Abbe resolution limit). According to Abbe the size of the smallest detectable feature 

would be:  

"  

The PSF represents the impulse response of the lens. The impulse response is the 

response of a system, such as a lens, to a delta function. Consequently, the image of 

an object, produced by an optical imaging system, may be described as a convolution 

of the object with the system PSF. In mathematical terms this means that the image is 

the convolution of the object function t with the PSF, and for a coherent imaging 

system it would take the form: 

 

"  

Whereas, in the case of incoherent imaging system, one obtains: 

"  

2.4 Laser Scanning Microscopy 

In laser scanning microscopes (LSM), an image is formed by scanning an object with 

a focussed beam. Scanning is achieved either by object or laser scanning. In the type 1 

LSM microscope, when adopting the terminology of Wilson and Sheppard [20], the 

reflected (or transmitted) light from the sample is collected by a photodetector and 

used to create an image of the scanned sample. Probably the most popular type of 

LSM is the confocal microscope, which uses a pinhole in the detection plane, which is 

conjugate to the object plane, that functions as a spatial filter and blocks some of the 

out of focus light reaching the detector. Since its conception in the 1960s [21], the 

confocal microscope has gained great popularity in various scientific and industrial 

areas. Whether for imaging 3D biological samples or for inspection of industrial 

samples, the popularity mostly comes from its sectioning capabilities and contrast 

dAbbe =
0.5λ
NA

IObject /Coherent r,φ, z( ) = h r,φ, z( )⊗ t r,φ, z( ) 2

IObject /Incoherent r,φ, z( ) = h r,φ, z( ) 2 ⊗ t r,φ, z( ) 2
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improvements. The removal of out focus light by the pinhole enables the confocal 

microscope to obtain contrast rich images of thin sections within a sample. The 

sectioning capability of the confocal microscope depends on the size of the pinhole. 

For small pinholes (radii smaller than half the distance to the first dark ring of the 

Airy disk) the sectioning performance hardly changes [22] and is comparable to that 

of a true confocal microscope (with an infinitely small pinhole). The sectioning 

properties start to deteriorate as the pinhole diameter increases. For large pinholes (~ 

≥ 1.5AU) the microscope becomes effectively a conventional widefield microscope. 

As regards contrast, the true confocal microscope (with infinitely small pinhole) can 

image all spatial frequencies with higher contrast [23] than a widefield microscope. 

The sectioning capabilities of the confocal microscope are illustrated in Fig. 2.5.  

Figure 2.5: Confocal Microscope sectioning capability - light emitted from focus (green) reaches the 
detector whereas out of focus light (in orange and red) is blocked. 

Both the illumination and the collection lens should ideally be diffraction limited. The 

distortion by aberrations of the PSF decreases the signal level at the pinhole, reducing 

depth discrimination and lowering the resolution [22, 24]. When imaging samples 

spherical aberration in particular can compromise the imaging performance of 

confocal microscopes because of refractive index mismatch conditions [25]. The 

confocal PSF is given by the product of the illumination PSF with the detection PSF. 

The difference between widefield and confocal microscopy is best notable when 
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looking at the axial intensity distribution. The axial intensity distributions of a 

widefield and a confocal microscope, when looking at a point source emitter, are 

shown in fig 2.6 

Figure 2.6: Axial intensity of a widefield and confocal microscope. The axial displacement was 
achieved by changing the value of the Zernike defocus term. α 2

0
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2.5 Adaptive optics 

Adaptive Optics is an active wavefront shaping technology that locally imposes phase 

changes to a wavefront and can be used to correct for aberrations. Deformable mirrors 

are commonly used as the wavefront shaping device. The reflective surface of a 

deformable mirror is deformed by actuators. 

2.5.1 Adaptive optics in astronomy


Adaptive optics (AO) is a technology originally developed in the field of optical 

astronomy to correct for optical aberrations caused by the turbulent atmosphere [26]. 

In the 1950s, the US air force drove scientific research aimed at finding ways to 

compensate for the wavefront distortions caused by the atmosphere. While the 

military was interested in developing new high powered laser systems for anti-rocket 

systems or satellite laser relay systems, astronomers were interested in achieving 

diffraction limited resolution for their telescopes to improve astronomical observation 

[27]. Babcock was the first to propose the idea of adaptive optics in 1953 [28]. His 

idea was to dynamically correct aberrations with a deformable mirror capable of 

changing its shape at frequencies up to about 30 Hz in order to keep up with changes 

in the turbulent atmosphere. It took many years before adaptive optics could establish 

itself in astronomy because the hardware was not available. The atmosphere induced 

wavefront distortions, after being measured, are corrected with a wavefront shaping 

device, which imposes a wavefront distortion of opposite sign but with the same 

magnitude. The problem of wavefront sensing in the atmosphere was solved by using 

the so-called (artificial) “laser guide star”. The mesosphere (atmospheric layer at a 

height of about 90km above sea level) contains enough sodium atoms to create a 

strong light beacon by laser excitation [29]. A high power laser is fired into the 

atmosphere to excite sodium atoms in the mesosphere and the re-emitted light is then 

used for measuring atmosphere induced wavefront aberrations [27]. In closed-loop 

with the wavefront sensor, the deformable mirror can then correct for atmosphere 

induced wavefront distortions. The advantage of laser guide stars is their bright 

�33



intensity, and they can be created at a desired region in the sky. The region in the 

atmosphere where the wavefront distortion does not change significantly is referred to 

as the isoplanatic patch [30], thus laser guide stars are created close to the celestial 

bodies of interest to ensure that they are within the isoplanatic path. Alternatively, if 

an observed celestial body is bright enough, it can be used as natural guide star for 

wavefront sensing. The creation of an artificial laser guide by the MMT telescope in 

Southern Arizona is shown in Fig. 2.7A. Improvements realised by correcting the 

atmospheric wavefront aberrations with the adaptive optics system of the Canada-

France-Hawaii Telescope are shown in Fig. 2.7B. 

Fig 2.7: a) The laser-guide-star adaptive-optics (AO) system in operation at the 6.5m MMT (formerly 
the multiple-mirror telescope) in southern Arizona. (Images courtesy Thomas Stalcup, 

www.oldweb.lbto.org/index.htm). b) The nuclear region of the nearby galaxy NGC 7469 (Image 
Source: Canada-France-Hawaii Telescope www.cfht.hawaii.edu)) with and without adaptive optics 
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2.5.2 Adaptive Optics Systems


An AO correction system usually consists of a wavefront sensor and a wavefront 

corrector, typically a deformable mirror. After measuring a distorted wavefront, the 

deformable mirror imposes a wavefront distortion of opposite sign in order to correct 

the wavefront. AO correction systems are often operated in a closed-loop feedback 

control system wherein the wavefront corrections made by the deformable mirror are 

measured by a wavefront sensor and small corrections to the deformable mirror 

surface are iteratively applied until the desired wavefront shape is obtained, up to an 

acceptable level of quality. An illustration of a closed-loop system is shown in Fig. 

2.8. In the following a short review on deformable mirrors, with special emphasis on 

the continuous deformable membrane mirror used in this thesis, will be given. 

Thereafter wavefront sensors and indirect wavefront sensing methods for microscopy 

will be discussed. 

Figure 2.8: AO closed-loop correction system. 
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2.5.3 Deformable mirrors


Deformable mirrors are used for wavefront shaping applications in adaptive optics. 

With deformable mirrors local phase changes (or optical path differences) can be 

applied to the wavefront in order to compensate for wavefront distortions. Different 

types of deformable mirrors are known. Most common types of mirrors are 

deformable membrane mirrors (DMM) and segmented mirrors [31]. DMMs use a set 

of actuators to physically deform a reflective membrane. DMM actuators can be 

magnet-coil units, electrode pairs, electrostrictive elements or piezoelectric modules 

[32]. DMM actuators can be activated electromagnetically if the actuators are 

magnetic [33], make use of piezo-electric effects to deform piezo-electric crystals [31] 

or by applying a voltage to deform a conducting surface by means of an electric force. 

Segmented mirrors consist of an arrangement of small independent mirror segments 

which can be individually tilted to locally deform the wavefront. 

As an alternative to deformable mirrors, spatial light modulators (SLM) can be used 

to shape the wavefront. SLMs consist of an array of pixels and a liquid crystal where 

the local refractive index can be changed by rotating the liquid crystals using 

electrostatic forces applied via the pixels [32]. Due to the large number of pixels 

available, wavefront shaping with SLMs can be done at a higher spatial resolution. 

Disadvantages of SLMs with regards to aberration correction are: their limited 

temporal bandwidth (~100Hz); the light source should be monochromatic; and the 

restricted amount of phase changes which can be applied (up to a wavelength) [32]. 

In this project the DMM, used for aberration correction and for applying controlled 

amounts of aberrations, is a Mirao 52e (Imagine Optics, France). The Mirao52e has 

52 magnetic actuators which are fixed to the backside of a silver coated reflective 

surface [34]. The actuators are driven by a set of coils. The spacing between each 

actuator is about 2.5mm. Figure 2.9 shows a schematic drawing of an electromagnetic 

DMM. 
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Figure 2.9: Deformable membrane mirror with magnetic actuators driven by a set of coils. 

The mirror has an effective diameter of 15mm. It is recommended to use only a 12 

mm area of the mirror in order to better reproduce high order spatial frequency 

aberrations [33]. Voltages between -1 Volt and +1 Volt can be applied to individual 

actuators. According to the manufacturer, the maximum peak-to-valley values of 

wavefront distortions are: 30 µm for primary astigmatism, 10 µm for primary coma 

mirror and 8 µm for primary spherical. The DMM operates with a bandwidth > 200Hz 

and has a good linear response [33]. The actuator arrangement, with 15mm and 12mm 

circular illumination areas, is shown in Figure 2.10. The membrane of the Mirao52 is 

bound outside the active region. 
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Figure 2.10: Mirao52e actuator configuration. The actuators are located under the centres of the 
numbered segments. The red circle has a diameter of 12mm and the blue circle has a diameter of 

15mm. 

A performance comparison between different off-the-shelf laboratory deformable 

mirrors is given in reference [35]. For aberration correction, the Mirao52 was one of 

the best performing mirrors in the study. The Mirao52 can also be used to correct for 

large amounts of spherical aberration in high NA imaging situations [34]. 
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2.6 Wavefront Sensing 

The phase of electromagnetic waves cannot be measured due to the high frequency 

oscillations of electromagnetic fields (hundreds of THz for electromagnetic radiation 

in the visible spectrum). Optical detectors for example record low frequency intensity 

signals and lack phase information. Wavefront sensing methods can be subdivided 

into direct and indirect wavefront sensing methods. Direct wavefront sensing methods 

directly measure a wavefront. Examples thereof are Shack-Hartmann sensors and 

interferometers. Indirect wavefront sensing methods derive wavefront information 

from a wavefront related parameter. In microscopy for example such a parameter 

could be the intensity measured by a pinhole detector. In the following an overview of 

these two types of sensing methods is given: 

2.6.1 Direct Wavefront Sensing


Interferometry 

In interferometry, phase information is obtained by interfering a probe beam with a 

reference beam and analysing the interference pattern. For interferometry to work, 

light sources with a certain degree of coherence are needed. Applications involving 

fluorescent light, for example, do not make use of interferometry due to the 

incoherent nature of fluorescence. Phase stepping interferometers record multiple 

interferograms with different amounts of phase shifts applied to one of the two paths 

of the interferometer. They have been used to measure wavefront aberrations 

produced by different biological samples in both low and high NA optical systems 

[36, 37]. Phase stepping interferometers are often arranged in a Mach-Zehnder or a 

Twyman-Green configuration. In shear interferometers the incoming beam of light is 

divided into two beams and the wavefront is measured by imposing a shear (or lateral 

displacement) to one of the beams with respect to the other [38]. Shear 

interferometers are often used in optical astronomy for wavefront sensing [27]. In 

scattering samples, interferometry is difficult because of backscattered light 
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originating from outside the region of interest (e.g. focal plane). A way to mitigate this 

problem is to use low coherence light sources so that interference will only occur 

within a small region (within the coherence length). Feierabend et al. implemented a 

low coherence interferometry method called coherence gating wavefront sensing. 

Low coherence interferometry method is able to select in-focus light and to reject 

backscattered light [39] thereby allowing for wavefront sensing by means of 

interferometry within scattering samples.  

Shack-Hartmann Sensor 

A Shack-Hartmann Wavefront Sensor (SH) consists of an array of lenslets placed in 

front of a CCD array at a distance corresponding to the focal length of the lenslets 

[40, 41]. The incoming wavefront is split up by the lenslets into an array of focussed 

beams, which create focal spots on the CCD. In the case of an incoming plane wave, 

each lenslet would focus the light at a point on its optical axis. For an aberrated 

wavefront, the centre of some focal spots (often referred to as centroids) is shifted 

laterally, whereby the amount of shift of a centroid depends on the average tilt of the 

wavefront part that is incident on a lenslet. The displacement of a spot is proportional 

to the average wavefront gradient across the lenslet aperture [41]: 

 

"  

where f is the focal length of a lenslet, A is the surface area of the lens let and W is the 

wavefront. The principle of a SH is depicted in Fig. 2.11. The wavefront is 

reconstructed using information of the local wavefront tilts, obtained from the 

centroid displacement data. Thereafter the distorted wavefront can be decomposed, 

for example, into Zernike aberrations [19] with appropriate software. 

δ x = f
A

∂W x, y( )
∂xA

∫ dxdy

δ y = f
A

∂W x, y( )
∂yA

∫ dxdy
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Figure 2.11 Principle of the Shack-Hartmann Wavefront sensor. A CCD array is placed at the focal 
position of the lenslet array. The focal points of the aberrated wavefront (red) are displaced relative to 

the centred focal spots of the flat wavefront (green) 

SHs are commonly used in optical astronomy to measure atmosphere induced 

aberrations using the re-emitted light from laser guide stars. For reliable and accurate 

wavefront sensing, the SH requires light from a reference point source (or guide star). 

In microscopy, natural guide stars are rarely present in biological samples. Small 

fluorescent nanobeads have therefore been used as guide stars in conjunction with a 

SH sensor to correct for sample induced aberration in biological microscopy [42]. As 

an alternative to fluorescent beads, the fluorescent light emitted from large 

fluorescently labelled biological structures (such as neuron cells) has been used as 

guide stars, which provide slightly less accurate measurement results in comparison to 
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diffraction limited fluorescent beads [43]. Direct wavefront sensing in biological 

samples can become challenging because of out-of-focus light. To reduce the amount 

of out-of-focus light reaching a SH sensor it has been proposed to use a large pinhole 

(placed in a plane conjugated to the image plane of the microscope) [44]. In analogy 

to the confocal microscope, this type of SH configuration is referred to as a confocal 

wavefront sensor. Although the pinhole removes out-of-focus light it also acts as a 

filter on the transmitted wavefront. As the pinhole gets smaller, the wavefront gets 

flattened due to high frequency components being filtered out, similar to a low-pass 

filter. A Pinhole with a 3 Airy Unit diameter has been shown to be a good compromise 

between out-of-focus light rejection and wavefront filtering [44]. Alternatively, SH 

sensors can measure the wavefront using the light from extended objects. The 

centroid shifts are determined from cross-correlation of each image produced by a 

lenslet with a reference image. The local wavefront gradients (see equation 2.3.1) are 

derived from the cross-correlation maxima positions [45]. This method has recently 

been used in light sheet microscopy for measuring aberrations using the fluorescent 

light emitted from the sample volume illuminated by the light sheet [46]. 

2.6.2 Indirect Wavefront Sensing


Modal Wavefront Sensing 

In modal wavefront sensing, a wavefront related parameter, often referred to as the 

optimisation metric, is optimised by running through a set of aberration modes. An 

issue with modal wavefront sensing is that the underlying physics behind the imaging 

process has to be known in order to derive a set of aberration modes linked to the 

metric that requires optimisation. In order to be efficient, the aberration modes should 

have independent influence on the metric thereby mitigating cross-talk [32]. To apply 

aberration modes, wavefront shaping devices such as DMM or spatial light modulator 

have to be used. For a confocal microscope with a pinhole, Zernike modes are a 

convenient set of aberrations modes, because they are related to the measured 
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intensity at the pinhole. Such an optimisation approach, often referred to as a modal 

Zernike wavefront sensor, has been used to determine wavefront aberrations in terms 

of its Zernike modes [47]. The principal of a modal Zernike wavefront sensor is 

illustrated in Fig.2.12. For the applied aberration mode in Fig. 2.12, the metric is 

evaluated for 3 different values of the amplitude of an aberration. The maximum  of 

the metric can be found by curve fitting. At the position of the maximum, the 

aberration is compensated.  

 

Figure 2.12 Working principle of a modal Zernike wavefront sensor shown for a single aberration mode 

The method has also been used in a fluorescent confocal microscope [48]. A Zernike 

modal aberration correction method is limited to small aberration amplitudes 

(<0.071λ) due to the mutual influence of aberration modes on the metric (also known 

as cross-talk) for large aberration. The modal Zernike wavefront sensor can cope with 

larger aberrations but would need several optimisation iterations in order to achieve 

an acceptable correction [49]. A strongly aberrated focal spot can be efficiently 

corrected using the so called Lukosz modes by minimising the mean rms focal spot 
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radius [50]. However, since the latter method requires measurements of the mean rms 

spot radius, it would be less suitable for confocal pinhole detection. For other types of 

microscopes (for example widefield microscopes, structured illumination microscope) 

different sets of aberration modes and metrics are used [51, 52]. 

Zonal Sensing 

In zonal wavefront sensing, a single actuator or a group of actuators from the 

deformable mirror are selected, according to a chosen optimisation algorithm. The 

wavefront is locally deformed by actuators and a sensor is used to detect how these 

deformations affect the optimisation metric. Wright et al. [53] compared different 

iterative optimisation algorithms (hill climbing, random search and a genetic 

algorithm) to correct for sample induced aberrations (by focusing with an air 

microscope objective through various depths of water) in a confocal microscope 

setup. The random search algorithm selects an actuator randomly and applies a 

random perturbation to it (in terms of a voltage change) whereas the hill-climbing 

algorithm goes through the actuators sequentially while incrementally increasing the 

actuator voltage until a voltage cap is reached. In comparison, the genetic algorithm 

tests a population of random mirror shapes and generates an improved population for 

the next iteration based on the mirror shapes which improved the metric during the 

last iteration. The optimisation algorithms stop when the metric has not significantly 

improved after the last say 50 iterations. The hill climbing algorithm was the quickest 

(less than a minute) and achieved a good level of correction and with improvements 

(in terms of FWHM) slightly worse than the random search or genetic algorithms. The 

genetic algorithm gave the best results but at the cost of long optimisations. A random 

search optimisation showed to be the best compromise in terms of improvement and 

time to complete a optimisation [53]. The random search and genetic algorithms are 

more likely to find the global maximum as compared to a hill-climbing algorithm 

which can easily be stuck at a local maximum. Zonal methods have been used in non-

linear microscopy [54] as well as in optical tweezers [55]. 
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Phase Retrieval 

It is reiterated here that phase retrieval methods aim to recover the phase information 

from image intensity data. Phase retrieval is used in X-ray crystallography [56], 

optical astronomy [57] and microscopy [58-60]. In X-ray crystallography, phase 

information, retrieved from the X-ray diffraction pattern of a crystal, gives 

information about the crystalline structure, while in astronomy and microscopy, one is 

usually interested in wavefront distortions in an aperture plane. This information can 

then be used for aberration correction [61] or deconvolution [59]. The following 

subsections give a brief description of the two prominent and commonly used phase 

retrieval methods, based on the Fourier transform and on the extended Nijboer-

Zernike theorem. 

Phase retrieval based on the Fourier transform 

The famous Gerchberg-Saxton (GS) algorithm [62] was developed to retrieve the 

phase from intensity measurements in an aperture (or pupil plane) and in an image 

plane by iteration. The relationship between the electromagnetic field in the aperture 

and image plane is described by a Fourier transform, under the Fraunhofer 

approximation [16]. The iterative GS algorithm computes forward and inverse Fourier 

transforms of the aperture and the image plane until the calculated intensity patterns 

resemble the measured intensity data sufficiently. Constraints are applied in both 

Fourier planes by replacing the computed Fourier amplitudes with the square-root of 

the measured intensity. The GS algorithm minimises an error metric, calculated by 

taking the sum of the squared differences between the calculated Fourier modulus and 

the measured amplitude (i.e. the square root of the measured intensity) [62], until a 

pre-defined threshold is reached. A diagram of a GS algorithm for phase retrieval is 

shown in Fig. 2.13 
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Figure 2.13: Iterative Gerchberg-Saxton algorithm diagram. 𝓕 and 𝓕-1 represent  the Fourier and 
inverse Fourier transform, respectively. Iimage and Ipupil are the measured intensities in the image and 

aperture plane, respectively. 𝞍 is a phase distribution function and A is an amplitude distribution 

function. The whole cycle is repeated until a predefined criterion is met. 

Referring to Fig. 2.13, the GS algorithm starts with an initial guess for the phase 

distribution while the pupil amplitude distribution is calculated based on the measured 

intensity at the pupil plane. The Fourier transform of the complex amplitude function 

is then calculated. The obtained amplitude distribution " is replaced by the 

square root of the measured intensity distribution " in the image plane. Next, 

the inverse Fourier transform of the modified complex amplitude function 

"  is calculated. The obtained amplitude distribution " is replaced by the 

square root of the measured intensity distribution at the pupil " . The whole 

cycle is repeated until a predefined criterion is met. When this criterium is met, the 

last found phase distribution is the final result. The original paper mentions that 

several iterations (> 60) were necessary for the GS algorithm to converge sufficiently 

!Aimage

Iimage( )

Aimage e
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[62]. The downside of using a GS algorithm is that it can be slow and there can be 

ambiguities in the results produced [63, 64]. With phase diversity [65], phase retrieval 

algorithms are now more robust to noise, solve ambiguities [63] and, moreover, can 

also be applied to extended sources [65]. Phase diversity is implemented by taking a 

second image with an added phase function, usually a defocus. Phase diversity has 

been applied in astronomical telescopes [66], wavefront sensing [67] and also in 

microscopy [58-60]. In microscopy, one often uses high NA optics for which a phase 

retrieval algorithm extension is needed to take into account the vectorial character of 

light and polarisation effects. A scalar diffraction model as an approximation can still 

be used, when the curvature of the pupil function is taken into account by adding a 

quadratic phase term to the Fourier transform [58]. 

Extended Nijboer-Zernike Theory 

Analytical expressions for the PSF exist for a limited number of cases. For an un-

aberrated pupil, an analytical expression for the 3 dimensional PSF was found by 

Lommel [7]. Nijboer and Zernike derived expressions for weakly aberrated (< 0.07λ) 

focal spots in focus [9] and around focus (astigmatism and spherical). In most cases 

aberrated PSFs can nowadays be computed numerically with a FFT (a discrete Fast 

fourier transform). Braat and Janssen expanded upon the work of Nijboer and 

presented analytical solutions for calculating aberrated PSFs through focus [12] and 

allowing for high NA by taking polarisation into account. The method of Braat and 

Janssen is based on expanding the exponential function including the phase aberration 

terms using a Taylor series.  

"  

where " are cylindrical coordinates in the pupil plane and " is the phase 

distribution in the pupil. In the scalar extended Nijboer-Zernike theory (ENZ) [11-13] 

it was shown that the complex amplitude, at the image plane, can be described by: 

eiΦ ρ ,θ( ) = 1+ iΦ ρ,θ( )− 1
2

Φ ρ,θ( )⎡⎣ ⎤⎦
2
+…

ρ,θ( ) Φ
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"  

where " are cylindrical coordinates at the image plane and f is called the defocus 

parameter "  with z being the axial coordinate, " are complex coefficients, 

which can be expressed in terms of the Zernike aberration coefficients, and the "

functions are given by: 

"  

where J are the first order Bessel functions and the coefficients "  are given by: 

"  

The expressions in brackets represent binomial coefficients with " and 

" .  

In the presence of small aberrations (≤ 0.07λ), a simple linear approximation is 

possible which involves only the linear term in the Taylor expansion (Eq. 2.30). For 

large aberrations, the Taylor expansion of the phase function should also include 

higher order terms. Aberrated (intensity) PSFs through focus, calculated using the 

ENZ theory, are shown in Fig. 2.14 for a 0.5NA lens at a wavelength of 532nm in 

three focal planes (1um below focus, in focus, 1 um above focus). 
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For astigmatism (Fig. 2.14A), the focal spot undergoes a 90º rotation when going 

through focus. The coma focal spot (Fig. 2.14B) is symmetric around focus but the 

coma flare becomes more pronounced out of focus. Whereas for spherical aberration 

(Fig. 2.14C) the intensity distribution is asymmetric through focus. A scalar treatment 

of three dimensional focal spot intensity, in the presence of aberration, with the ENZ 

theory gives good results for NA up to 0.6. The scalar ENZ theory, described before, 

can be expanded to NA up to 0.8 by using a more complex expression for the defocus 

term [12]. For NA above 0.8, a vectorial ENZ theory may be used. The vectorial ENZ 

can take the vectorial character of the electromagnetic field, radiometric and 

polarisation effects into account [68]. The ENZ theory provides semi-analytical 

functions which describe the complex amplitude in the image plane based on the 
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A) Astigmatism through focus - ENZ theory

B) Coma through focus - ENZ theory

C) Spherical aberration through focus - ENZ theory

Figure 2.14: Aberrated PSFs through focus calculated using the extended Nijboer-Zernike theory. The 
calculations were done for a 0.5NA lens and a wavelength of 532nm and three focal planes (1um below 

focus, at focus, 1 um above focus). 



Zernike polynomials which describe the wavefront in the pupil plane. Three 

dimensional aberrated intensity PSFs can be calculated using Equation (2.31) by 

multiplying the amplitudes with their complex conjugate. The inverse problem of 

retrieving the aberrations from intensity PSF data can be dealt with, in the case of 

small aberration amplitudes (less than about < 0.07λ), using either least square solvers 

or a method based on forming a set of equations using inner products [69]. For larger 

aberrations, an iterative retrieval method has been used [70]. 

2.7 Conclusion 

This chapter covered the topics of scalar diffraction, optical aberrations, microscopy 

and wavefront sensing to give the reader an overview on the current state-of-the-art of 

aberration retrieval and adaptive optics in the field of optical microscopy. The 

information given should help to understand the upcoming Chapters which present 

novel aberration retrieval methods for laser scanning microscopy and proposes also a 

new strategy for indirect wavefront sensing.  

�50



3. Microscope with adaptive 
optics for confocal detection 

The design and construction of a confocal microscope, incorporating Adaptive Optics 

(AO), is presented in this chapter. The purpose of the microscope was to study optical 

aberrations and their corrections [48], and to investigate new methods for aberration 

retrieval. Modal aberration correction and phase retrieval will be discussed in 

subsequent chapters. In 3.1 the general layout of the confocal microscope is 

presented. Distinct units of the confocal microscope: illumination, deformable 

membrane mirror, optical components, microscope objective and detection are 

discussed in this chapter. The topics covered in the following subsections are: 

 • 3.1.1:  Microscope illumination 

 • 3.1.2: Deformable membrane mirror calibration and software control 

 • 3.1.3: Generation of unwanted aberrations in a double pass setup  

 • 3.1.4: Confocal Detection with a pixelated detector and a discussion of noise  

   aspects 

Finally in section 3.2 the microscope set-up which was built for aberration retrieval is 

described and characterised. In subsection 3.2.1, lateral and axial point spread 

functions obtained after correction of system aberrations are presented. In subsection 

3.2.2, sectioning and imaging performance of the confocal microscope obtained by 

scanning a microscope resolution target in different focal planes are shown. 

3.1 Experimental Setup 

A first aspect to consider when building a scanning microscope is how to perform 

scanning. One uses either beam scanning or alternatively object scanning. Beam 

scanning requires moveable mirror systems in combination with a microscope 
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objective that is corrected for aberrations over the whole scanning field. An advantage 

of object scanning is that there are, in principal, no requirements for field correction 

but it comes usually at the cost of lower scanning speed. The object is usually moved 

by a translation stage. This requires however that the object doesn’t move with respect 

to the stage. For the setup used, object scanning was selected. The setup further 

includes Adaptive Optics (AO) for aberration correction, a schematic layout of the 

main units is given in Figure 3.1. We will first discuss the main building blocks of the 

microscope setup in detail in the following subsections. More technical details about 

the microscope setup as a whole will be given in sub-section 3.2. 

Figure 3.1: Scanning microscope setup with integrated Adaptive Optics.  

3.1.1 Laser Fibre Illumination Unit	 


An illumination unit with a laser light source has the advantage of being 

monochromatic and is capable of delivering a high and constant intensity beam of 

coherent light. Laser light can either be used straight out of the laser unit or injected 

into a single mode fibre. The beam intensity profile coming out of the laser unit can 

be inhomogeneous. However, injecting laser light into a single mode fibre would 

produce, at the fibre output, an almost Gaussian beam intensity profile. For the setup, 

a green 532nm laser (B&W Tek) was injected into a single mode fibre with a lens 

(Qioptiq kineFlex single mode fibre system, cutoff wavelength 473nm), the fibre exit 
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served as point source in the illumination unit of the scanning microscope. The laser 

beam exiting the fibre was collimated with a collimation lens L1 (focal length: 60mm) 

to a beam whose diameter was reduced to about 11mm with an iris (implies an NA of 

about 0.09). The illumination unit is shown in Figure 3.2 

Figure 3.2: Laser-Fibre Illumination Unit.  

3.1.2 Deformable mirror


The DMM used in the microscope was a Mirao52e, which was described in Chapter 2 

subsection 5.2.3. The DMM was calibrated using a Shack-Hartmann Wavefront 

sensor (WFS150 Thorlabs, sensitivity λ/50 root mean square wavefront deviation). 

The dimensions of the CCD are 5.95 x 4.65 mm and the lenslet array comprises 1210 

lenslets, about 550 of the lenslets were used for the calibration of the DMM, thereby 

assuring for reliable wavefront sensing, ease of alignment and avoiding overfilling. 

Behind each lenslet there are about 31x31 pixels to detect focal spot displacements. 

The focal spot size, produced by each lenslet, is about 45𝜇m (or about 10 pixels) on 

the CCD. The WFS performed 10 frames averaging and the average signal was used 

for the Zernike analysis. A simple setup for calibrating a DMM with a WFS is shown 

in fig 3.3. The DMM surface is conjugated with the WFS lenslet array by means of 
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the lens pair L2 and L3. The lens pair L2 and L3 also reduced the size of the beam to 

fit the WFS. 
 

Figure 3.3: AO Calibration Setup. L: Lens; BS: Beamsplitter; DMM: Deformable Membrane Mirror; 
WFS: Wavefront Sensor; 

The calibration procedure is explained below. 

The wavefront detected by the WFS is decomposed by Thorlabs software into Zernike 

aberrations. We assume that the effects of the actuator control signals on the 

wavefront can be described by: 

" "  

where "  is the Zernike coefficients vector that describes the wavefront, V is the 

actuators voltage vector, and M is the influence matrix which describes how voltage 

signals translate into Zernike coefficients. " is the Zernike coefficients vector that 

describes the initial shape of the mirror surface.  

The previous equation can be re-arranged as: 

"  

In order to determine a control Matrix C which translates a specific wavefront into 

voltage signals, the influence functions of every single actuator is measured first. The 

wavefront that is obtained when a specific actuator is activated is denoted the 
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influence function of that actuator. The actuator influence functions are stored in the 

respective column of the influence matrix M. 

An example of influence functions from actuators 3, 8, 15, 23, 31, 39, 46, 51 (which 

are arranged along a line as shown in Fig. 3.4) taken with respect to the flat mirror 

surface are shown in Fig. 3.4. The influence function of actuator 23 shows the most 

symmetrical and centred wavefront distortion pattern. This suggests that the 

wavefront centre is somewhat displaced in the direction of actuator 23.  

Figure 3.4: Influence functions of actuators 3, 8, 15, 23, 31, 39, 46, 51. Red colour represents highest 
amount of displacement while blue represents lowest amount of displacement. The scales are different 
for each influence function. Actuators 3 … 51 are arranged along a line below the DMM centre in Fig. 

3.4. The Figure suggests further that the wavefront centre is somewhat displaced in the direction of 

actuator 23. 

The control matrix is obtained by taking the inverse of M. Since M is not a square 

matrix a singular value decomposition is used to calculate the pseudo-inverse: 

"  

where " are three matrices. U is an orthogonal matrix containing the 

eigenmodes of the mirror whereas V is an orthogonal matrix containing the 

eigenmodes of the control signals. " is a diagonal matrix containing the eigenvalues 

[34, 71]. The inverse is then given by: 

"  

M =UΛV T

U,Λ,V

Λ

C =VΛ−1UT
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To minimise noise contributions and to avoid mirror saturation, small singular values 

are set to zero [35, 71]. The required voltages to produce a specific wavefront can 

now be computed via the following equation: 

"  

The control algorithm, described before, is based on a linear model (see equation 3.1). 

To verify the linearity of the DMM, the deformation response of the mirror was 

studied by measuring the Peak-to-Valley (PV) values of actuators 5, 13 and 22. The 

following voltages were applied [0.05, 0.1, 0.2, 0.4, 0.8] Volts and the PV recorded by 

the SH sensor are plotted in fig 3.5. The data was fitted with straight lines having an 

offset and the respective R2 values were calculated. For all three actuators the R2 value 

was close to one, meaning that the data is well described by a linear relationship and 

that the wavefront deformation, in terms of PV, scales linearly with the voltage 

applied to an actuator. The mirror shows a good linear response and the data is in 

agreement with the results found in the literature [33].  

 

Figure 3.5: Peak-to-Valley Values of actuators 5, 13 and 22 plotted as a function of applied Voltages. A 
Linear fit was done and the R squared values are shown on the graph 
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Not all deformable mirror types show a linear deformation response which increases 

linearly with applied voltage. Electrostatic DMMs, for example, exhibit a non-linear 

response which becomes approximately linear when applying quadratic voltage 

increments [72]. 

Closed-loop AO performance 

A closed-loop AO system is a feedback system, wherein the response to signals, 

which are applied to a DMM are measured by a WFS, and small corrections are 

iteratively applied to the signals until a predefined quality criterion is reached. The 

detected wavefront can be expressed in terms of Zernike polynomials as follows: 

 

 "   

where " is the wavefront, " are the Zernike aberration coefficients and " the 

Zernike polynomials. To assess the wavefront quality of imposed aberrations we used 

the root-mean square (RMS) wavefront error " : 

  

"  

where " is the average wavefront (over the unit circle). The last equation is obtained 

when expressing the wavefront in terms of Zernike polynomials (using the Malacara 

notation [19]) by making use of their orthonormal properties. It is noted that the RMS 

wavefront error is also used to specify the quality of diffraction-limited optical 

imaging systems. An optical imaging system is said to be diffraction limited when it 
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has a Strehl ratio of 0.8, which corresponds to a RMS wavefront error of < 0.071𝛌 

rms (often referred to as the Maréchal criterion [73]). 

After each closed-loop iteration, the wavefront difference  "  between the desired 

"  and a detected wavefront " is: 

"  

The RMS of the wavefront difference "  (equation (3.8)) was used to assess the 

quality of the imposed aberration after each closed-loop iteration and is further 

denoted residual RMS wavefront error. 

The correction applied at each close loop iteration is given by the following equation 

[74]: 

"  

where: "  is a vector containing the control voltages for each actuator; " is a control 

parameter varying from 0 to 1 which determines by how much the signal changes per 

iteration: C is the control matrix which transfers differences in Zernike terms into 

corresponding actuator voltage responses: and the "  terms represent vectors 

containing the Zernike coefficients of the desired and detected wavefront. The user 

interface of Labview software, which was programmed from scratch, for operating the 

DMM and WFS in open- or closed-loop is shown in Fig. 3.6. 
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Figure 3.6: Labview Open/Closed-Loop Software user interface. Top interface is the wavefront sensor 
panel. Bottom interface is the deformable membrane mirror panel. 

For closed-loop a value of 0.4 was used for the control parameter, as recommended 

previously [74]. A control parameter of 0.2 was also tested. It was found that the 

recommended value of 0.4 for the control parameter gives indeed give the best results 

in terms of residual RMS wavefront error " . The residual RMS wavefront errors 

" (see equation (3.10)), for primary vertical astigmatism, primary vertical coma, 

vertical trefoil, quadrafoil, secondary vertical astigmatism and spherical aberration, 

obtained for control parameter values of 0.2 and 0.4 in the microscope setup, which is 

described in section 3.2, are shown in Fig. 3.7. Similar results were obtained for other 

Ψdiff

Ψdiff
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aberration orientations. For each aberration an amplitude of " was applied at 

the beginning. As expected, a low value of 0.2 for the control parameter needs more 

iterations to converge. The diffraction limit (0.071𝛌 rms), for the different primary 

aberrations, quadrafoil and secondary astigmatism, was on average reached after 

about 8 iterations for a value of 0.4 of the control parameter. For a control parameter 

value of 0.2, the higher order aberrations (spherical, secondary astigmatism) didn’t 

reach the value of 0.071𝛌 rms within 20 iteration steps. The lower order (primary) 

aberrations (astigmatism, coma, trefoil) converged faster. The use of larger values for 

the control parameter leads to oscillations in the residual RMS wavefront error. 

Oscillations were observed for a control parameter of 0.7 (no data shown). 

0.2 λ  rms
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Figure 3.7: Closed-Loop Convergence curves. RMS values for astigmatism, coma, trefoil, quadrafoil, 

secondary astigmatism and spherical aberration are plotted versus number of iterations for control 
parameter 0.2 (blue) and 0.4 (yellow) 
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From the above it is clear that a value of the control parameter of 0.4 is well suited to 

our purpose and it was therefore used for further closed-loop control experiments. An 

iteration step was done every 2 seconds for better visualisation. With 10 frames 

averaging by the Shack Hartmann WFS (frame rate 15Hz max), the maximum 

correction speed obtained was 0.7 seconds. We tested the effect of omitting the tip/tilt 

value contributions in the closed-loop correction with a control parameter of 0.4. 

Figure 3.8 shows the RMS wavefront error curves of primary vertical astigmatism, 

primary vertical coma, trefoil and spherical aberration with/without taking tip and tilt 

into account. 

Figure 3.8: Closed-Loop Convergence curves. RMS values for astigmatism, coma, trefoil and spherical 
aberration are plotted versus number of iterations for control parameter 0.4 and in the presence (blue) 

of tip (Z2) and tilt (Z3) and without (yellow) 
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The figures show that tip/tilt affect the overall RMS wavefront error and more 

iterations are necessary to reach diffraction limited performance. It is noted that the 

Zernike modes tip, tilt, and defocus term "  do not distort the focal spot per se, but 

shift it laterally or axially.  Figure 3.10 and 3.11 show that the most common 

aberrations in microscopy (primary astigmatism, primary coma, primary spherical 

aberration) [36] can be sufficiently well corrected by the AO closed-loop system. 

Figures 3.10 and 3.11 show that coma and trefoil, which are both aberrations of radial 

order 3, converge faster than primary spherical which is an aberration of radial order 

4. Compared to the results by Polo et al. the correction speed and the degree of 

improvement were higher. This can be explained by the properties of DMM 

(Mirao52e) used. The Mirao52e displays a good linear deformation response to 

applied voltages, whereas the mirror used by Polo et al. (Adaptica Srl.) has a non-

linear (quadratic) response which requires additional corrections. It was shown that 

the control algorithm which does not take tip/tilt into account achieves diffraction 

limited performance for each aberration to be reached with less iterations and attains 

smaller values for the RMS wavefront error than a control algorithm algorithm which 

takes tip/tilt into account. Omitting tip/tilt during the closed-loop calibration would be 

detrimental for confocal microscopy because one doesn’t want the focal spot to be 

shifted outside the pinhole. Zernike modes were calibrated in closed-loop (WFS 

sensitivity of λ/50 rms) and these calibrated mirror shapes were used in later 

experiments. 

3.1.3 Microscope objective lens and relay optics


The microscope objective used was 0.75 numerical aperture (NA) multi-immersion 

Nikon objective lens (CFI Plan Fluor 20XMI (multi-immersion)). For all experiments, 

water was used as the immersion medium. In order to perform aberration correction, 

the DMM surface should be conjugated to the objective’s back pupil. Furthermore, the 

beam size at the DMM should be adapted to the diameter of the objective pupil. 

Therefore, the Gaussian beam overfilled the microscope objective’s pupil and was 

Z2
0
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truncated to about 40% of its maximum intensity at the edge. These two conditions 

were met by placing a 4f lens system (the 4f optics unit in Fig. 1 which is, effectively, 

a Keplerian telescope) between the DMM and the microscope objective. The design 

of a 4f system is shown in Fig. 3.9. The magnification of the 4f system from DMM to 

objective was about -1.5 with a beam size of about 11mm at the DMM and roughly 

17mm at the microscope objective. 

Figure 3.9: 4f system. L: Lens; f: focal length 

When applying Zernike modes with a DMM, the presence of additional unwanted 

Zernike modes can compromise the performance of adaptive optics corrections. These 

contaminations can either be caused by residual Zernike modes generated by the 

DMM or misalignment of the optical system. In the following, we describe the 

aberration contamination caused by de-centring a lens pupil with respect to the optical 

axis. 

The effect of de-centring the pupil of a lens in the system can be explained as follows. 

A wavefront can be described in terms of Zernike’s polynomials. The Zernike 

polynomial "  are functions of the variables (x,y), which, when expressed in polar 

coordinates " , can be of the form: 

"  

Zn
m

x = ρcos θ( ), y = ρ sin θ( )( )
Zn
m ρ cosθ ,ρ sinθ( ) = Rnm ρ( )eilθ
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where m (azimuthal order) and n (radial order) are non-negative integers, " and 

" is even (see  [7]).  

The radial polynomial "  that describes the lowest order coma is: 

"  

and can also be written, in terms of (x,y), as 

"  

Now we consider the effect of de-centring the pupil. We assume that polynomial 

extends beyond the unit circle and introduce a small shift " in the x direction, i.e. for 

a displacement " . Developing "  in a Taylor series (for the 

displacement in the x direction) then gives: 

"  

or in polar coordinates: 

"  

Considering just the first two terms and inserting this expression in the real Zernike 

polynomial [7] describing coma, "  or alternatively "  (depending on the 

orientation), we obtain: 

"  

The first term represents coma. The second term, which is linear in " , describes an 

oblique astigmatism combined with an offset term. For " , the second term varies 

with " , representing a vertical astigmatism. Thus, astigmatism increases when 

increasing the displacement of the pupil. Analogously, we obtain for  spherical 

aberration 

n ≥ l

n − l

Rn
m ρ( )

R3
1 ρ( ) = 3ρ 3 − 2ρ

R3
1 x, y( ) = 3 x2 + y2( )3 − 2 x2 + y2( )

Δx
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x2 + y2
⎧
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⎫
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"  

The second term, which is linear in " , describes coma and tilt contributions. Thus by 

applying Zernike modes on the DMM, additional modes would be produced by an 

odd aberration in a system with a de-centred pupil, although the illumination and 

reflection path are overlapping. Figure 3.10 illustrates the effects of decentration on a 

coma aberration. 

Figure 3.10: Effects of decentration on coma aberration 

Z4
0 = R4

0 ρ( )sinθ = 6ρ4 − 6ρ2 +1{ }+ 24ρ3 −12ρ{ }cosθ  Δx

Δx
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3.1.4 Pinhole Detection


The detection unit (see Fig. 3.1) of the confocal microscope consists of a light 

detector with a  spatial filter. In most confocal systems, a photomultiplier tube (PMT) 

and a mechanical pinhole are used for confocal detection. This detection unit is shown 

in fig, 3.11. The circular pinhole is placed at the focal plane of the focussing lens (and 

is conjugated with the object plane). The pinhole diameter is about the size of the Airy 

disk, often referred to as an Airy unit (AU).  

Figure 3.11: Confocal Detection unit consisting of a focussing lens L with a focal length f, a pinhole 

and a PMT: photomultiplier tube. 

As an alternative to the pinhole and PMT, confocal detection can be achieved by 

placing a camera at the focal plane of the lens and summing the intensity signal of 

specific camera pixels. In a similar approach to that presented by See et al., confocal 

detection is achieved by summing the intensity of a number of pixels on the camera 

[75] . By adding only signals of pixels inside the pinhole area, the function of circular 

pinholes of different diameters can be approximated. An example of such a pinhole 

mask is shown in fig 3.12. 

�67



Figure 3.12: Confocal Detection unit using a camera and a pinhole mask; focussing lens L with a focal 

length f. 

The central pixel of the pinhole mask is placed on the camera pixel with highest 

intensity. Pixels whose centre lie outside the pinhole mask do not contribute to the 

overall signal. The size of the Airy disk diameter on the camera depends on the 

magnification of the imaging system. In the experimental setup used here an electron 

multiplying charged couple device (EMCCD) camera was used with a lens having a 

focal length of 500mm. The Airy disk size was measured to be about 9 pixels in 

diameter. An Airy disk pinhole could be approximated by using a pinhole mask with a 

9 pixel diameter, i.e. by adding the signals from 49 pixels of a 9x9 pixel sub-array 

(see Figure 3.12). 

In a CCD detector, photons are converted into electrons by means of the photoelectric 

effect in the photo-sensitive semi-conductor structure of each pixel. Then the 

electrons are stored in the depletion zone of the semi-conductor until the full capacity 

is reached (full well reservoir capacity) [76]. The electrons are then shifted through a 

serial register by applying clock pulses to electrodes on the CCD chip [77]. The 
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charges ultimately reach the output amplifier and an AD converter. Different noise 

sources in CCDs will be discussed in the following subsection. It is noted that an 

EMCCD, in comparison to a traditional CCD, has all the benefits of a CCD but it also 

reduces the readout noise, in low light conditions, because it uses on-chip gain 

circuitry provided at the output of the shift register, which by mean of impact 

ionisation generates additional electrons [77] , thereby amplifying the signal input for 

the AD converter. Furthermore, EMCCD sensors are usually cooled down to 

temperatures below -40ºC to reduce the amount of dark current. 

Noise 

The performance of a CCD detector is noise limited. The most commonly 

encountered noise sources in CCDs are shot noise, dark noise and readout noise. We 

will briefly review these different sources of noise and explain how they affect the 

EMCCD detector (Andor iXon 885) used for the experiments carried out in this 

thesis. 

Shot noise: 
Due to the quantum nature of light, the number of photons detected by a CCD varies 

from exposure to the next. The detected signal produced by the statistical arrival of 

photons can be described in terms of a Poisson distribution which for a large number 

of photons can be approximated by a Gaussian distribution. The noise associated to 

this phenomenon is often referred to as shot noise [78] and the standard deviation is 

given by: 

"  

where G is the CCD gain, F the noise factor, 𝜂 the quantum efficiency, " the mean 

incident photon flux in photons per pixels and t the exposure time. Typical values for 

F are 1 for a CCD, 1.3 for an EMCCD and 1.6-2 for ICCD (intensified CCD) [79]. 

The expression inside the square root represents the number of photons detected by 

Nshot = G ⋅F ⋅ ηφpt

φp
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the pixel during an exposure. For all non fluorescent experiments carried out in this 

thesis, no gain was applied to the EMCCD and thus G = 1. The full well capacity of 

the EMCCD is 30000 electrons. The shot noise contribution is therefore: 

"  

Dark noise: 
Dark noise is generated by thermal fluctuations creating electron holes (absence of 

electrons) in the photosensitive semi-conductor of the pixel. An electric current will 

flow to compensate for the electron charge deficit at the electron holes. This unwanted 

dark current increases with temperature as more electron holes are created by thermal 

excitation. The dark current is given by [78]: 

"  

where " is the dark current at 300K, d is the pixel size and T is the temperature and 

" is the energy band gap of the semi-conductor material. As can be seen from 

equation (3.19), the dark current decreases with decreasing temperature. The EMCCD 

camera was cooled down to -50°C and according to the manufacturers specification, 

the dark noise is about 0.06 e- (mean value which has been extrapolated to -50°C). 

Readout noise: 
Readout noise is generated by the electronic circuitry of the camera [78] when 

electrons are transferred, shifted through the shift register, amplified and converted to 

a digital signal with an AD converter. These processes add noise to the signal by 

means of additional and unwanted electrons. The readout noise depends on the frame 

rate and will increase at higher frame rates [78]. The readout noise for a single pixel, 

according to the manufacturer, is about 28 e-. 

Nshot = 1.3⋅ 30000 ≈ 225 e−

N = 2.55⋅1015Ndc0t ⋅dpixel
2 T

3
2e

−
Eg
2kT

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1
2

Ndc0

Eg
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Total noise: 

In the case of uncorrelated noise sources and Gaussian noise distributions, the 

different noises add up as the square root of the sum squared of each noise source:


� 


Because the dark current and readout are considerably less than the shot noise, the 

EMCCD is effectively limited by shot noise and, as a consequence, equation 4 

simplifies to: 

"  

The EMCCD is well known to be less affected by noise than traditional CCD 

detectors due to the cooling of the sensor but also because of the on-chip 

amplification of low intensity signals  before the electric signals reaches the AD 

converter (when working in low light conditions). The signal to noise ratio (SNR) is 

given by: 

"  

Ntotal = Ns
2 + Ndc

2 + NR
2

Ntotal ≈ Ns ≈ 225e
−

SNR = Number of detected photons 
Ntotal

≈
N s  

Ns
= Ns ≈ 225
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3.2 Confocal Setup 

The configuration of the confocal microscope, with integrated AO, used in our 

experiment is shown in Figure 3.13. Laser light (wavelength of 532 nm, continuous 

wave), injected in a single mode fibre, provides the illumination for the object 

scanning confocal microscope. Aberration correction is performed with a Mirao 52e 

(Imagine Optics, France) DMM. The DMM is conjugated to the pupil of the 

microscope objective (Ob) via a lens pair, L2 and L3 constituting a 4-f system (with a 

magnification -1.5). The microscope objective is a 0.75 numerical aperture, multi-

immersion Nikon objective lens (20x magnification). The reflected light from the 

sample is focussed via lens L4 on an electron multiplying charge coupled device 

(EMCCD; iXon 885 Andor). Additionally, a LED light source was placed behind the 

sample stage for sample inspection in wide-field. The sample stage (PI Instruments 

P-733.3DD; a 3D stage with open-loop resolution of 0.1nm) is piezo driven in order 

to scan the sample and build up an image in x, y and z. The angle of incidence of the 

laser beam on the DMM is about 140 with respect to the normal. For fluorescent 

imaging, a fluorescent filter was placed between the the beamsplitter (BS) and the 

lens L4. Configuration b) and c) will be explained later in section 3.1.2.1 System 

aberration correction. The confocal microscope with the EMCCD in the optical path 

is represented in configuration a). 
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Figure 3.13: Optical confocal AO setup. L: Lens; BS: Beamsplitter; BS: Beamsplitter plate; DMM: 
Deformable Membrane Mirror; WFS: Wavefront Sensor; Ob: Objective; S: Sample; PS: Piezo-stage; 

The DMM acts on both the incident as well as on the reflected wavefront and 

therefore forms part of a double-pass set-up. When imaging in reflection, odd 

aberrations are cancelled after the second reflection off the DMM, and even 

aberrations are doubled in terms of amplitude [14]. A screenshot of the user interface 

created with Labview software, which was written from scratch, to operate the 

confocal microscope is shown in Fig. 3.14.  
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Figure 3.14:  Confocal Labview Software 

3.2.1 System Aberration Correction


The DMM was calibrated with a WFS (WFS150, Thorlabs, sensitivity λ/50 rms 

wavefront deviation), using configuration c) in Fig. 3.16, in order to determine the 

required actuator settings for the first 15 Zernike modes, while taking into account the 

effects of unwanted aberrations due to oblique reflection off the DMM [80, 81]. The 

calibration routine used was closed-loop with the Malacara normalisation [19] for the 

Zernike modes. To determine the system aberrations, a mirror, placed on top of a 

coverslip, was brought in focus of the microscope objective. The reflected wavefront 

was measured by a wavefront sensor (configuration b) fig 3.13). The system 

aberrations could then be measured with the WFS and corrected for using the DMM. 

Subsequently, the WFS was replaced with the EMCCD camera (configuration a) fig 

3.16) and the intensity of the pre-corrected focal spot at the EMCCD was further 

maximised by applying each Zernike mode in turn in order to optimise the central 

intensity of the focal spot. This additional optimisation further reduced the wavefront 

aberrations by about 0.08λ rms. 

Images of spots with the related PSFs obtained before and after the system aberration 

correction can be seen in Fig. 3.18. This correction was used to remove the 

aberrations associated with the optical system in all further experiments. To measure 
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the full width half maximum (FWHM) of the axial and lateral PSF a mirror was 

placed at the sample on top of a coverslip. For the axial PSF, the mirror was scanned 

through focus in 100nm steps and the intensity variation using a 3 pixel diameter 

pinhole mask was determined. The lateral PSF was taken from full images recorded 

with the EMCCD camera when the laser beam was focused on the mirror. The 

uncorrected/corrected measured lateral PSFs of the optical set-up (at best focus) are 

shown in Fig 3.15 and in Fig. 3.16 the lateral PSFs of Fig. 3.15c) were normalised to 

better show the effect of aberration correction on the FWHM. 

Figure 3.15:  System aberration correction. A) an image of the laser beam focused on the mirror before 
aberration correction and B) an image of the laser beam focused on the mirror after system aberration 
correction . C) the measured lateral PSF with and without aberration correction, along the red dotted 

lines in A) and B) respectively, and D), the measured axial PSF with and without correction. For D), 
the axial PSF, a 3 pixel diameter pinhole mask was used, and the blue curve indicates the corrected PSF 
while the red curve indicates the uncorrected PSF. The black dashed curve in C), represents calculated 
Airy Disc cross section obtained with a 0.7NA objective at 0.532um wavelength. The length of the red 

dotted line is approximately 2.0µm.  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Figure 3.16:  System aberration correction; the measured normalised lateral PSF with and without 
aberration correction, along the red dotted lines in fig 3.18 a) and b) respectively. The black dashed 

curve in c), represents calculated Airy Disc cross section obtained with a 0.7NA objective. 

As can be seen in fig 3.15 and 3.16, applying the system aberration correction to the 

DMM has significantly improved the resolution of the optical system, increasing the 

maximum intensity  by nearly a factor of 2 and reducing the width of the PSFs. The 

FWHM of the axial PSF has reduced from 1.81±0.03 µm without correction, to 

1.21±0.03µm with correction, and the FWHM of the lateral PSF has reduced from 

0.54±0.01 µm without correction, to 0.45±0.01 µm with correction, representing 

improvements of approximately 33% and 17% for the axial and lateral FWHMs 

respectively. The predicted axial and lateral FWHMs for a 0.75 NA objective lens 

would be 1.04 µm [22, Chapter 11, 82, page 2525-2544] and 0.37µm, respectively, in 

case of homogeneous pupil illumination. Therefore, the axial and lateral FWHMs 

obtained after aberration correction, are within 20% of the predicted theoretical 

values. The higher measured values can be explained, at least in part, by the fact that 

the pupil was illuminated with a Gaussian beam. The Gaussian beam was truncated to 

approximately 40% of its maximum intensity by the aperture of the objective lens. 

This would lower the effective NA of the objective lens from 0.75 to 0.7, in 
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accordance with Marshall et al [83]. This fits better with what was measured. Satellite 

spots are visible around the focal spot in figs 3.18a and 3.18b, these diffraction spots 

can be explained by the periodicity in arrangement of the actuators behind the 

deformable membrane of the DMM  [61].  The side lobes of the axial PSFs (fig 3.15d) 

are likely caused by second order spherical aberration. It has been shown that higher 

order spherical aberrations can give rise to asymmetrical sides lobes [84]. It is further 

noted that second order spherical aberration is less suitable for correction by the 

DMM because of the limited number of actuators. The intensity peaks of both axial 

PSFs in Fig. 3.15 do not coincide because the axial position of the mirror was re-

adjusted after each scan. The FWHM of both axial and lateral PSFs of the microscope 

before and after aberration correction are listed in table 3.1. The relative intensity 

(with respect to the corrected PSF) is also given in table 3.1. 

3.2.2 Confocal images of microscope calibration target


To demonstrate the sectioning capability of the confocal microscope a small area of a 

reflective microscope calibration target (BCR photomask resolution standard from 

National Physical Laboratory, Row D calibration pattern: 50 𝜇m long scale with 

opaque lines 2 𝜇m apart) was scanned and imaged with the coverslip corrected water-

immersion 0.75 NA objective of the confocal microscope. But, no coverslip was used. 

Aberrations were corrected using a modal correction (method described in detail in 

Table 3.1 - FWHM and relative intensity improvement of  the microscope’s 

Sample Lateral FWHM (µm) Axial FWHM (µm)

Uncorrected Corrected Uncorrecte
d

Corrected

PSF of the microscope 
system

0.54 ± 0.01 0.45 ± 0.01 1.81 ± 0.03 1.21 ± 0.03

Theoretical PSF for a 
0.7 NA objective

- 0.39 - 1.15

Relative intensity 
(with respect to the 

corrected PSF)
~50% 100% ~50% 100%
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chapter 4) prior to scanning. The modal aberration correction was performed on a 

reflective area of the target. The target brought in focus and an area of 6 𝜇m x 1𝜇m 

was scanned. Thereafter the target was defocused by 0.5um and 1um (which 

correspond to about 40% and 80% of the FWHM of the axial PSF, respectively) and 

the same area was scanned again. Lateral scan steps are 50nm, which is below the 

Shannon criterion < 170 nm. 

The maximum frequency transmitted by a lens is " (Abbe resolution limit). The 

Shannon sampling criterion, here defined for spatial frequencies, demands for the 

spacing ∆x between adjacent scanning points that: 

"  

Thus: 

 "  

For a NA of 0.75 and a wavelength of 532 nm we would have " . On the 

Zeiss microscopy website [85]: “an interval 2.5 to 3 times the smallest resolvable 

feature is suggested”. To remove the baseline signal, the minimum measured intensity 

value was subtracted from each intensity value of the image. Typical exposure times 

per frames were 10ms. The confocal signal was obtained with a 5 pixel diameter 

pinhole mask (which roughly corresponds to a 0.6 AU pinhole). The in- and out of 

focus image are shown in Figure 3.17. Cross-sections perpendicular to the line pattern 

are shown at the bottom of the three images. 

2NA / λ

1
Δx

≥ 4NA
λ

Δx ≤ λ
4 ⋅NA

Δx ≤170nm
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Figure 3.17: Confocal Image of a reflective line pattern taken in and out of focus (defocused by 0.5𝜇m 

and 1𝜇m, respectively). Images are scaled with respect to the in focus image. Below: Cross-section 

through the line pattern in focus (blue) and out of focus [0.5𝜇m] (red) and [1𝜇m] (black) 
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The confocal microscope shows a strong sectioning capability, as can be seen in 

Figure 3.20. The calibration target is poorly imaged, when defocused. A 1𝜇m defocus 

reduces the maximum intensity, approximately, by a factor of 5. 

3.3 Conclusion 

In this chapter the design and construction of a confocal microscope with integrated 

AO were presented. The different microscope components were described and 

explained. Open- and closed-loop DMM calibration routines were compared and a 

closed-loop routine was chosen for accurately producing Zernike mode with the 

DMM. An unwanted source of aberration contamination caused by misalignment of 

the microscope objective, with respect to the DMM, was discussed and supported by a 

theoretical model. Confocal detection was implemented by using an EMCCD camera 

and selective pixel detection for enabling various pinhole size imaging. The spatial 

filtering, by the pinhole, was obtained by applying a pixel mask on camera images. 

Finally the system aberration correction procedure for the confocal microscope was 

explained and the lateral and axial PSF of the system, before and after aberration 

correction, were measured.  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4. Modal Aberration Correction 

In the previous chapter we discussed the design, construction and calibration of AO in 

an optical microscope with an EMCCD, that allows for software controlled (confocal) 

detection. Here we give a more detailed discussion on how to use a DMM for 

measuring and correcting wavefront distortions in a confocal microscope. In the so-

called sensor-less modal wavefront sensing method [47] aberrations are measured 

indirectly by imposing sequentially different Zernike modes on the DMM, while 

monitoring the intensity variations in light passing through a pinhole. When the 

intensity signal at the pinhole is maximised, the wavefront distortion is corrected by 

the DMM. After introducing modal wavefront sensing, we’ll take a closer look at the 

sensitivity of the method and explain the differences of confocal detection in 

reflection and in fluorescence. How cross-talk and local sub-maxima can affect modal 

wavefront sensing will be discussed thereafter. At the end, we present a new and 

effective modal optimisation strategy to correct large aberrations and demonstrate its 

use in confocal microscopy for diffraction-limited imaging deep into highly aberrating 

samples. This new approach uses ray tracing simulations to determine an initial pre-

correction wavefront setting before using traditional modal correction routines. The 

result is a significant simplification of the iterative curve fitting procedure used 

previosuly to determine the magnitude of each Zernike mode present. As a result, the 

number of iteration steps required can be reduced by concentrating only on the 

relevant aberrations present, thereby reducing the speed of the overall correction 

process. 

4.1 Modal aberration correction  

For sufficiently small aberration amplitudes "  the optical system is 

considered diffraction limited (such a system is also referred to as satisfying the 

Maréchal criterium [73]). The normalised intensity I/I0  at the diffraction limited focus 

is given by, 

< 0.071λ( )
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"  

where" is the peak intensity that would be obtained by an aberration free PSF, "  

represents the variance of the wavefront at the aperture pupil with respect to a 

reference spherical wavefront, λ the wavelength, n the radial degree, m the azimuthal 

degree, and " the amplitudes of the Zernike coefficients [7] which describe the 

aberrated wavefront.  I/I0 is also referred to as the Strehl ratio. The above relations 

holds for Strehl ratios > 0.8. The corresponding Maréchal criterium, which sets a 

maximum to the wavefront aberration, is "  (≤0.071λ rms). Optical systems 

that meet the Strehl criterium, and/or the Maréchal criterium are called diffraction 

limited. The Strehl ratio is proportional to the sum of the squared Zernike coefficients 

of each aberration. This highlights that the Zernike modes are an orthogonal set of 

functions that can be used to quantify the Strehl ratio for sufficiently small 

aberrations, and therefore, in theory, it is possible to correct for each aberration mode 

in turn on the basis of the Strehl ratio without being influenced by other aberrations. 

Such an optimisation approach with a pinhole, often referred to as a modal aberration 

correction, has been used to determine the wavefront aberrations present in terms of 

its Zernike modes [47]. Alternatively to modal aberration correction, a zonal 

optimisation approach can be chosen. Instead of applying Zernike modes, the DMM 

actuators are activated according to a specific optimisation algorithm [53] in order to 

maximise the intensity signal at the pinhole. Equation (4.1) holds for small 

aberrations. Imaging deep into samples often generates considerable amounts of 

aberrations which can be far beyond 0.071λ. For such large aberrations no simple 

equation describes the decrease of intensity and aberration cross-talk can become 

significant. In order to achieve diffraction limited imaging performance in highly 

aberrating samples, applying pre-corrections becomes essential to minimise aberration 

cross-talk and speed-up the optimisation process 

When applying modal aberration correction, a small pinhole (< 1AU) in a confocal 

microscope can be used to measure the (maximum) spot intensity. Optimisation of the 

spot intensity (and the Strehl ratio) can be performed by applying defined amounts of 
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each Zernike mode in turn using the DMM, so as to maximise the detected intensity. 

This technique has also been used in fluorescent confocal microscopy [48].  

Facomprez et al. [49], showed that modal aberration correction can be performed on 

more strongly aberrated spots  in a fluorescent two-photon microscope. The accuracy 

of the modal correction, as described by Facomprez, depends on the amount of 

wavefront aberration present, the signal to noise ratio and the number of intensity 

measurements per Zernike mode. For wavefront aberrations that satisfy the Maréchal 

criterion, at least 2N+1 intensity measurements (to do a simple parabolic fit through 

the data of each aberration) are needed per Zernike mode with N being the number of 

Zernike modes that are to be optimised. It follows from equation (4.1) that the 

influence of each Zernike mode on the Strehl ratio can be assessed separately. For 

strongly aberrated systems, the number of intensity measurements per Zernike mode 

needs to be increased. Facomprez et al. corrected 11 Zernike modes using up to 3 

iterations, when the initial aberration was  in the range of  0.09-0.3λ rms . 

First the sensitivity of the confocal modal wavefront sensor to each Zernike mode was 

assessed with the confocal microscope described in chapter 3. The microscope’s 

system aberrations were corrected before running the experiment (for more details see 

chapter 3, section 3.2.1). To measure the sensitivity of the confocal modal wavefront 

sensor, a mirror (with a drop of water between the cover slip and the mirror) was 

brought into focus and, then, the Zernike modes were sequentially applied, while 

measuring the changes in intensity at the pinhole. The results are shown in Fig. 4.1. 

Doing the measurement out of focus would reduce the sensitivity of the confocal 

modal wavefront sensor [48]. For each Zernike mode, the aberration amplitude was 

changed in steps of 0.019λ (which doubles for even aberrations after the second 

reflection on the DMM) and the intensity was measured with the EMCCD. 

Measurements were repeated five times for averaging. The CCD camera images were 

cropped so as to correspond to a 0.8 AU radius pinhole. In the set-up 1 AU 

corresponds to about 9 EMCCD camera pixels (see chapter 3, Figure 3.17). The 

intensity variation for a 0.8 AU pinhole are shown in Fig. 4.1 and will from now be 

referred to as Zernike sensitivity curves. Typical exposure times were 10-15 ms. 
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During a modal optimisation, the exposure time is kept constant. The EMCCD was 

cooled down to -50°C and no gain was applied. For each Zernike aberration sequence, 

a reference aberration-free image was taken. These aberration-free images can be used 

to estimate laser power fluctuations during a modal optimisation. For the aberration-

free images, the intensity variations through a 1AU pinhole were less than 2%.  

Figure 4.1: Measured Zernike sensitivity curves for a ~0.8 AU radius pinhole. The blue and red lines 
represent two orthogonal aberration orientations. The vertical dotted lines represent the Marechal 

criterion boundaries. Intensities are normalised with respect to the aberration amplitude at 0 λ. 
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As can be seen in Fig. 4.1, the intensity decrease is more dramatic for changes in 

spherical aberration and secondary astigmatism than for lower order astigmatism and 

quadrafoil. For spherical aberration and secondary astigmatism a 50% change in 

intensity is seen over the aberration amplitude range ±0.11 𝜆 rms, compared to 40% 

intensity change for quadrafoil, 30% for astigmatism, and less than 10% for trefoil 

and coma. Odd aberrations, like coma and trefoil, show very little change in intensity 

over the full range of applied aberration amplitudes. When imaging in reflection, odd 

aberrations are cancelled after the second pass off the DMM, and even aberrations are 

doubled in terms of amplitude [14]. For even aberrations, and amplitudes up to ~0.071 

𝜆 rms, the curves presented in Figure 4.1 can be fitted around the maximum, for each 

aberration, assuming a parabola function of the form: 

"  

 where " is a Zernike coefficient, "  are fitting coefficients. In fitting equation 4.2 to 

data similar to that shown in fig 4.1, it is possible to determine the amplitude of each 

Zernike mode required to correct for the aberrations present in the sample.  

In Fig. 4.2, different measured aberrated focal spots are shown, where for each 

Zernike aberration an amplitude of ~0.075λ (~0.15λ in double-pass) was applied by 

the DMM. The satellite spots around the aberration free focal spot can be explained as 

being caused by diffraction off the periodic actuator pattern of the DMM [61]. 

 

I = c2 α n
m( )2 + c1α n

m + c0

α n
m ci
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Figure 4.2: Different aberrated focal spots. For each aberration, an amplitude of 0.15λ was applied by 
the DMM 

4.3 Modal Wavefront sensing sensitivity 

Aberrations broaden the PSF and reduce the Strehl ratio. The Strehl equation (4.1) 

holds for infinitely small pinholes and for small aberration amplitudes. Larger 

pinholes improve the signal to noise ratio, are simpler to align and are also less 

affected by mechanical instabilities in the optical system. But for larger pinhole an 

increase of aberration amplitude leads to a smaller change in the detected intensity 
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signal because some of the spread intensity is still passing through the larger pinhole. 

Thus, the pinhole size affects the sensitivity of modal wavefront sensing. Pinhole 

sizes up to 0.3 AU give responses comparable to those of an infinitely small pinhole 

[82] but for many applications pinhole sizes of 1 AU or larger are used. In our set-up 

by changing the diameter of the pinhole mask we can change the sensitivity of modal 

wavefront sensing. Various responses for different pinhole diameters are shown in 

Fig. 4.3 Only even aberration were considered. For primary astigmatism, quadrafoil 

and secondary astigmatism, solely the responses of the vertical component of each 

aberration were plotted.  

Figure 4.3: Measured Zernike sensitivity curves for astigmatism, spherical aberration, secondary 
astigmatism, quadrafoil with different pinhole mask sizes (0.5, 1, 1.3, 1.9) AU.  

With increasing pinhole size, the sensitivity of modal wavefront sensing decreases. As 

can be seen from Fig. 4.3, for sensitive modal sensing pinhole sizes ≤ 1 AU (9 pixel 
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pinhole) would be recommended for astigmatism and quadrafoil and ≤ 1.5 AU (13 

pixel pinhole) for secondary astigmatism and spherical aberration. It is noted that 

higher order aberrations spread the intensity over larger areas than lower order 

aberrations. Consequently, modal wavefront sensing is more sensitive to higher order 

aberrations. For pinhole sizes of about 2 AU (17 pixel pinhole), astigmatism and 

quadrafoil become difficult to detect. The values for which a 50% intensity drop in 

intensity occurs for the different pinhole diameters and Zernike modes are listed in 

table 4.1. 

4.4 Comparison with theory  

The performance of the modal wavefront sensor can be simulated using Fourier 

Optics as described in Chapter 2, section 2.1 (see also [16]). Zernike aberrations are 

applied to the pupil function. The pupil function is described in terms of Zernike 

aberrations and phase distribution over the pupil are calculated. Then a 2D Fourier 

transform is used to calculate the amplitude distribution over the image plane. The 

Fourier transform concerned 2048x2048 points and the pupil had a diameter of about 

140 points while setting the remaining points to zero in order to effectively reduce the 

sampling interval at the image plane. Aberrated PSFs are computed by taking the 

squared modulus of the Fourier transform of the pupil function. A pinhole mask (see 

Fig. 3.15 in chapter 3) is placed on the PSF to evaluate the response of the modal 

wavefront sensor to various Zernike aberrations and aberration amplitudes. In Fig. 

Table 4.1 - 50% intensity drop at the pinhole for different pinhole 
diameters and Zernike modes

Astigmatism Quadrafoil 2nd 
Astigmatism

Spherical

0.5 AU pinhole 0.14λ 0.13λ 0.12λ 0.09λ
1 AU pinhole 0.2λ 0.2λ 0.13λ 0.09λ

1.4 AU pinhole >0.22λ >0.22λ 0.16λ 0.13λ
1.9 AU pinhole >0.22λ >0.22λ >0.22λ 0.2λ
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4.4, experimental and theoretical Zernike sensitivity curves for 0.8AU pinholes are 

compared. 

Figure 4.4: Measured (blue curve) and theoretical (red curve) Zernike sensitivity curves for 
astigmatism, spherical aberration, secondary astigmatism, quadrafoil for a 0.8AU pinole.  

Fig. 4.4 shows that there is good agreement between experimental and theoretical data 

for lower order aberrations, especially for astigmatism. The experimental Zernike 

sensitivity curves for higher order aberrations lie below the theoretical curves. This 

discrepancy could be caused by the presence of unwanted aberrations. It is noted that 

a SH wavefront sensor, in double-pass, detected the presence of secondary spherical 

aberration when primary spherical aberration was applied with the DMM. 

Furthermore, generating higher order aberrations with a DMM having a limited 

number of actuators becomes more challenging. 

4.5 Modal wavefront sensing in fluorescence 
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Fluorescent microscopy plays an important role in various biological and bio-medical 

research fields. Fluorophores can e.g. be used for visualising and studying processes 

happening at the sub-cellular level. Fluorescent imaging is used, amongst others, for 

protein detection, cell metabolism observation and for visualisation of ion or 

substance transport in microorganisms [86]. Fluorophores also allow for super-

resolution microscopy. In STED microscopy [4] fluorophes are excited by using an 

excitation beam first and, then, a depletion beam is used to induce stimulated 

emission to force fluorescent molecules back in their ground state and solely detect 

fluorescent signal from within a volume smaller than the resolution limit given by 

diffraction. Other microscopy techniques such as PALM and STORM [6, 87] use both 

statistical photo-activation and localisation of fluorescent molecules to achieve super-

resolution. Localisation can be done at higher precision than the diffraction limited 

resolution. Fluorescent emission occurs when ground state electrons of fluorescent 

substances are elevated to a higher energy level or excitation state. Relaxation of the 

excited molecule occurs partially through photon re-emission. This type of radiation, 

is referred to as fluorescent emission [88]. The fluorescence wavelength is larger than 

the excitation wavelength. The setup described in chapter 3 can easily be converted 

into a fluorescent confocal microscope by placing a fluorescent filter between the 

beamsplitter but before the lens focusing on the pinhole (Lens L4, Figure 3.16). In 

fluorescence, the microscope is not a double-pass system anymore because the 

fluorescent emitter acts as a new light source and the phase information of the laser 

beam is thus lost. With respect to modal sensing, the aberration, imposed by the 

DMM, will affect the intensity of both the excitation and fluorescent PSF. However, 

the fluorescent PSF on the EMCCD suffers only from the single-pass aberration. 

Fluorescent Beads (FluoSpheres™ Carboxylate-Modified Microspheres, 0.2 µm, 

orange fluorescent (540/560)) were diluted in water (~1/1e6). A drop was spread on a 

coverslip and left to dry. Some beads clustered. The laser was focussed on individual 

or smaller cluster of beads. The EMCCD gain (< 25) was turned on to ensure short 

exposure times (< 30ms). Modal optimisation was performed by sequentially applying 

the 11 Zernike modes with varying amplitudes. The intensity decrease at the pinhole 

(0.8 AU pinhole) for coma and trefoil, for five different beads are shown in Fig. 4.5. 
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Figure 4.5: Measured Zernike sensitivity curves for a ~0.8 AU radius pinhole in fluorescence. The blue 
and red lines represent two different aberration orientations. The vertical dotted lines represent the 
Marechal criterion. Intensities are normalised with respect to the aberration amplitude at 0 λ rms. 

The measured Zernike sensitivity curves are comparable to the curves obtained in 

reflection (see Fig. 4.1). Modal sensing is sensitive to odd aberrations in fluorescence. 

Other experiments on larger fluorescent beads and clusters (data not presented) have 

shown that modal sensitivity decreases with increasing size of the fluorescent emitter. 

The sensitivity depends on the size and geometry of the fluorescent emitter [89]. 

Peripheral regions of large fluorescent objects may emit light, when out of focus, 

thereby acting as stray light that may be detected by the pinhole, thereby decreasing 

the sensitivity of the confocal modal wavefront sensor. 

4.6 Cross-talk in modal wavefront sensing 

In modal wavefront sensing, crosstalk will be used here to refer to an undesired 

Zernike mode affecting the confocal signal from another Zernike mode. Aberration 

cross-talk affects modal wavefront sensing and can lead to inaccurate or erroneous 

measurements. While working on modal wavefront sensing, two different types of 

aberration cross-talk were identified. The first type type of cross-talk is caused by 

misalignment of the objective’s pupil with respect to the DMM. This issue with 

misalignment was already described in chapter 3 section 3.1.3. Most important in the 

end is that the the confocal signal of an aberrated focal spot might not only be 
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increased by correcting the relevant aberrations but also other Zernike modes can 

increase the intensity signal passing through the pinhole. In the presence of large 

aberrations (>> 0.071λ rms), cross-talk related to the diffracted intensity will occur 

and affects modal wavefront sensing. This has been investigated by Neil et al. [90]. 

4.7 Modal correction of large aberrations using a ray-tracing 
pre-correction 

In the presence of large aberrations (> 0.07λ rms) modal wavefront sensing becomes 

challenging because of increased aberration cross talk and the possible presence of 

local sub-maxima. Previously, several modal iterations, involving at least five 

aberrations amplitudes per Zernike mode, were necessary to correct large aberrations 

[49]. Here, it is proposed to use a pre-correction as a starting point to efficiently 

correct large aberrations. The method proposed here uses a pre-correction determined 

from ray tracing simulations of a sample to simplify the modal correction process, 

with the aim of speeding up the correction process, reducing the number of 

interactions required, and mitigating problems associated with cross-talk. For more 

details about the way ray tracing was implement, reference is made to appendix A. 

The samples are simulated as geometrical objects (plates and cylinders, in this study) 

between a point source and the entrance pupil of an objective. For the cylinder case, it 

was assumed that the cylinder axis is perpendicular the optical axis of the objective. 

The point source was at a small distance (≈ 1µm) behind the cylinder, and along to the 

optical axis (< 20µm). Refractive indices of the materials simulated can be found in 

literature. The radius of curvature can be computed by estimating the object’s typical 

dimensions and shape. Spatial variations of Zernike aberrations can be calculated by 

either changing the position of the sample or point source depending on sample or 

laser scanning mode. For predicting the sample induced aberrations, the numerical 

aperture was set to 0.7 (see chapter 3 section 3.2.1). For each simulation, it was 

ensured that the ray fan filled the objective pupil, by altering the angles of the ray 

cone accordingly, if necessary. The program gave a warning when total internal 

reflection would occur. In optical design, ray-tracing is used to determine aberrations 
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such as those associated with an optical system. For sample induced aberrations, as 

long as the object is not too complex in terms of geometry and refractive index 

distribution, the same approach can be used, provided an approximated model of the 

object can be generated, the benefits of the approach, as stated above, can still be 

realised. 

4.8 Results 

In the following section, it will be shown that the results from ray tracing simulations 

can be effectively used as pre-corrections in the modal correction process. The 

method was tested for samples introducing spherical aberration and astigmatism. The 

three different test samples were: a glass coverslip (thickness: 0.13-0.16mm), a 

125um diameter coreless termination fibre (FG125LA Thorlabs) and an air gap of 

~34um between the coverslip and a mirror. These samples were chosen because they 

are either commonly used in microscopy (coverslip), or because they resemble 

objects which produce large amounts of spherical aberration (air gap) and astigmatism 

(fibre). The fibre could, for example, mimic the aberrations encountered when 

imaging deeper into samples such as a root or a worm. For ray tracing, samples were 

modelled as either layers (coverslip, air gap) or a cylinder (fibre). The three tested 

samples are shown in Fig. 4.5 top row. The first sample we consider is a coverslip 

(refractive index 1.52, thickness 0.145mm). By removing the coverslip and focussing 

directly on a mirror spherical aberration is generated because the microscope 

objective is corrected for imaging through a coverslip. Thus, the measured aberration 

will correspond to aberrations that would have been generated by a coverslip, but are 

of opposite sign. As a second sample, a fibre (refractive index 1.46) was immersed in 

a ≥99.5% percent glycerol solution (refractive index 1.47 at room temperature [91]). 

By immersing the fibre in glycerol, the astigmatism was below 0.15λ rms. The 

laser beam was focussed on the glycerol-mirror interface at the top of the fibre. Modal 

correction, involving ray-tracing pre-corrections, was performed for five positions 

behind the fibre and along the direction of the fibre axis (over a range of ±10µm), 

thereby avoiding total internal reflection. The third sample concerned an air gap. The 
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fibre and glycerol were removed and two 34µm plastic shims were used as spacers 

between a coverslip and a mirror. The laser beam was focussed through the immersion 

water, the coverslip and the air gap, on to the mirror. For each sample, prior to 

running the modal optimisation, a pre-correction which was found by ray tracing 

simulations was applied to the DMM. The ray-tracing simulations were carried out 

with the refractive indices and dimension mentioned in the previous paragraph. Once 

the pre-correction had been applied, the focal spot was optimised using modal 

correction with a single optimisation. This process was repeated for five different 

positions for each sample (same z-plane but different (x,y) locations). Parabola 

functions were fitted through the Zernike sensitivity data (equation 4.1) because the 

residual aberrations, after pre-correction, were in all three cases < 0.07λ rms. The 

parabolas were fitted through 5 intensity readings per Zernike mode. Comparable 

fitting results were obtained by using only 3 intensity data points. Figure 4.5 presents 

the corrected/uncorrected lateral and axial PSFs as well as images recorded on the 

EMCCD camera of the focal spots before and after correction. 
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Figure 
4.5: 

Modal 

aberration correction using a pre-determined starting point: First column: Direct reflection on the 
mirror; second column: coreless termination fibre; third column: air gap. First row: schematic of the 

sample. Second row: Uncorrected, aberrated, focal spots; Third row: corrected focal spot (after using a 
ray tracing pre-correction and 1 iteration of a modal aberration correction routine); Fourth row: Lateral 

PSFs (Corrected, Uncorrected, Airy Disc); Fifth row: Axial PSFs (Corrected/Uncorrected). For the 
axial PSF, a 3x3 pixel pinhole mask was used. The blue curves indicate the corrected spot and the red 
curves indicate the aberrated spot. Green curve represents calculated Airy Disc cross section for a 0.75 

NA objective at 0.532µm. The red dotted line is ~ 2.0µm long. 
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To obtain the axial PSF, the reflective surface was moved through focus with the 

piezo-stage in steps of 100nm. The lateral PSFs were obtained from the camera image 

with highest intensity (see Fig.4.5). 

For all three samples, the maximum intensity of the focal spot was increased by up to 

a factor of three after correction and the axial and lateral FWHM after aberration 

correction were comparable to the FWHM of the system corrected PSF (Figure 4.5 

and table 4.2). For all samples, the Zernike coefficient values of the ray-tracing pre-

correction were within 0.03λ rms (i.e. 0.06λ rms in double pass, which lies in the 

Marechal criterion range, see Fig. 3) of the values found after modal correction was 

implemented. Odd aberrations (coma and trefoil) did not significantly affect 

the measured intensity due to detecting reflected light in a double pass DMM 

configuration. After the pre-correction had been applied, the Zernike sensitivity 

curves were similar to those shown in Fig. 4.1. To avoid aberrations which do not 

have a meaningful maximum within the scan range, such as coma and trefoil (see Fig. 

4.1), a minimum requirement was imposed on the coefficient (see equation 4.1), such 

that an intensity difference of at least 10%, over a range of 0.075λ rms was required. 

Table 4.2. Lateral and Axial FWHM of the PSF for the 3 samples tested.  

The main side lobes for the fibre and air gap sample of the corrected axial PSFs (see 

Fig. 4.5) is likely to be due to second order spherical aberration as predicted by ray 

Sample Lateral FWHM (µm) Axial FWHM (µm)

Uncorrected Corrected Uncorrected Corrected
PSF of the 
microscope 

system
0.54 ± 0.01 0.45 ± 0.01 1.81 ± 0.03 1.21 ± 0.03

Coverslip 0.42 ± 0.01 0.43 ± 0.01 2.58 ± 0.03 1.20 ± 0.03

Fibre 1.22 ± 0.01 0.48 ± 0.01 1.91 ± 0.03 1.27 ± 0.03

Air Gap 0.60 ± 0.01 0.44 ± 0.01 3.04 ± 0.03 1.22 ± 0.03
Theoretical PSF 
for a 0.75 NA 

objective
- 0.37 - 1.04
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tracing for the air gap sample. Second order spherical aberration is less suitable for 

correction by the DMM because of the limited number of actuators, making it hard to 

reproduce independently of other higher order Zernike modes.  

Table 2 compares the ray tracing results used as a pre-correction with the final 

wavefront after modal correction. The difference in wavefronts was determined as 

follow: 

"  

Subsequently the RMS wavefront error of "  was calculated using: 

"  

where "  are the Zernike aberration coefficients, expressed using the Malacara 

notation. For the Zernike polynomials, reference is made to Appendix A. Only values 

above 0.01 "  rms are listed in table 4.3. 

Table 4.3. Comparison of ray tracing pre-correction with the final correction after applying the 
pre-correction and a single iteration modal correction for the different samples 

Ψdiff = Ψraytracing −Ψmodal

Ψdiff

ΔΨdiff = Ψdiff
2 −Ψdiff

2
= α n

m( )2
m=0

n

∑
n=1

∞

∑

α n
m

λ

Sample Aberration
Sample 

Aberrations present 
(λ rms)

Raytracing prediction 
(λ rms) ∆Ψ (λ rms)

Coverslip
Residual 

Aberrations - -
0.018

Spherical 0.053 0.071

Fibre

Residual 
Aberrations - -

0.018Astigmatism 0.120 0.132

Spherical 0.043 0.056

Air Gap
Residual 

Aberrations 0.015 -
0.034

Spherical 0.083 0.113
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The astigmatism coefficient was calculated using " . As 

can been seen from table 2, the ray tracing pre-correction alone corrects for >70% of 

the sample aberrations present and the residual aberrations lie well within the 

Maréchal range. The result of this is a greatly simplified Zernike sensitivity graph that 

means any remaining aberrations can be corrected for with a single iteration. 

Figure 4.6 shows the effect of applying ray-tracing pre-corrections on the Zernike 

sensitivity curves. The Zernike sensitivity curves presented are those of the most 

relevant aberrations present, with pre-correction (blue curves) and without applying a 

pre-correction (red curves). The full modal aberration correction was repeated several 

times for each sample, the error bars represent the standard deviation of these 

measurements. Figure 4.6 presents data for the coverslip and the fibre sample. All 

curves are normalised with respect to the confocal signal measured when no 

aberrations are imposed. No data is presented for the air gap sample because this 

sample contains a large amount of spherical aberration. When large amounts of 

spherical aberrations are present (larger than 0.07 " rms), changing the amount of 

spherical aberration alters the position of best focus (best focus is defined here as 

the axial plane where the focal spot has the highest maximum intensity). To account 

for this, the axial position of the reflective surface would have to be altered so that 

it is always located at best focus.  

Figure 4.6 a) and d) show that after applying the pre-correction, the maxima of 

spherical and vertical astigmatism are shifted to within the Marechal criterion. Values 

within the Maréchal range allow for correction of that particular aberration using a 

simple parabolic fit through the data with a single iteration step. It is interesting to 

consider the impact of adding second order astigmatism on a wavefront already 

having large amounts of primary astigmatism. Looking at Fig. 4.6e (red curve), it is 

clear that, without pre-correction, adding negative second order astigmatism increases 

the confocal signal of the strongly (first order) astigmatic focal spot. Referring to the 

blue curve in Fig. 4.6e, recorded after pre-correction has been applied, one can see 

that the maximum is now close to zero aberration amplitude indicating that there is 

no-longer any second order astigmatism present.  In this case it is clear that the second 

Astigmatism = α 2
2( )2 + α 2

−2( )2

λ
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order astigmatism is an artefact of a strongly aberrated initial spot, and that the cross-

talk between the first and second order astigmatism cannot be neglected when one of 

the aberrations is outside the Marechal criterion aberration range. It is further noted 

that the signal increases for odd aberrations when applying larger aberration 

amplitudes with the DMM (Fig.4.6 b) and f)). The Zernike sensitivity curve for 

coma is close to constant when a pre-correction is applied, as expected for a reflection 

double-pass AO system. 

Figure 4.6: Zernike sensitivity curves with and without pre-corrections. The vertical dotted lines 
indicate the Marechal criterion limits. First row: coverslip aberrations; Second and third row: Fibre 

aberrations; blue curves: with pre-correction; red dashed curves: without pre-correction. Intensities are 
normalised with respect to the aberration amplitude at 0 λ rms. 
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4.9 Image degradation by aberrations 

To show the effects of aberrations on an image taken with a reflection confocal 

microscope, the image formation process was simulated using coherent imaging 

theory [21]. A camera picture of the Robin Hood statue in Nottingham (1032 x 774 

pixels taken with an iPhone 6 camera) was chosen as the object to be imaged by the 

reflection confocal microscope. To simulate how the Robin Hood picture would be 

imaged by a reflection confocal microscope, the amplitude of the Robin Hood picture 

(square root of iPhone camera intensity picture) was convolved with the microscope’s 

PSF in accordance with [21]. Robin Hood’s image was convolved once with an 

aberrated PSF and then with an aberration free PSF to show the improvement 

obtained by correcting the aberrations with an AO system. An aberrated PSF was 

generated using the measured fibre aberrations (see table 4.3, the measured aberration 

amplitudes were squared to take into account the double-pass effect; oblique 

astigmatism was chosen for better visualisation of distortions on the mostly horizontal 

and vertical features visible on the Robin Hood picture). The PSFs were calculated 

using Fourier optics [16], as described in section 2.1 and the Airy disk diameter was 

set to 6 pixels instead of 36 pixels (the 36 pixel setting was used for other simulations 

in this thesis). The PSF was changed from 36 pixels to 6 pixels so as to better fit with 

the picture size (1032 x 772 pixels). The scanned image at the detector was calculated 

using the following formula [21]: 

where the t represents the object to be imaged and which in this case given by the 

square root of the Robin Hood camera intensity picture. h is here the confocal 

microscope PSF (it is noted the confocal PSF is given by the product of illumination 

and detection PSF, which for a reflection confocal microscope equals the squared 

widefield PSF). The simulated images are shown in Fig. 4.7. 
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Figure 4.7: Image formation simulation of a confocal reflection microscope. A) iPhone 6 camera 

picture of the Robin statue in Nottingham used for the simulation. B) Aberrated image of Robin Hood 
as imaged by a reflection confocal microscope in the presence of the measured fibre aberrations. C) 

Image of Robin Hood that would be obtained with an aberration free confocal reflection microscope. 
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The Robin Hood camera picture taken with the iPhone 6 is shown in Fig. 4.7A. The 

aberrated image obtained from the Robin Hood picture (Fig. 4.7B) displays strong 

distortions and fine details are washed out as can be seen in the zoomed image of 

Robin Hood’s shirt and belt. The metal chain, the dagger handle and the laces on 

Robin Hood’s shirt are blurry and fine details can not be resolved. After correction of 

the fibre aberrations, the image obtained with an aberration free confocal PSF (Fig. 

4.7C) is clearer and sharper. The aberration free image (Fig. 4.7C) is not as sharp as 

the original picture iPhone 6 picture (Fig. 4.7A), because the aberration free PSF used 

for the convolution slightly blurs the image, i.e. the diameter of the diffraction-limited 

Airy disk extends over 6 pixels. 

4.10 Ray-tracing pre-correction accuracy 

The success of the “Ray-tracing pre-correction” approach will depend how accurately 

one can estimate the typical aberrations of a sample using ray-tracing. For non-

biological samples, the geometry and optical properties of samples are often roughly 

known. If the result of the pre-correction lies within ≈ 0.07λ rms of the best 

achievable correction, aberration cross-talk and local sub-maxima are negligible and 

sample aberrations can be determined by simple parabola fits through the data 

obtained after pre-correction. A pre-correction which is less accurate might require 

additional iterations and more than five sample points per aberration for finding the 

best correction. In any case, a pre-correction would still be beneficial, if it corrected 

for a significant amount of the initial aberrations present. The sensitivity of 

aberrations to ray-tracing parameters was estimated by simulating samples with 

slightly varying refractive indices and geometries (curvature, thickness, …). For the 

coverslip, I varied, independently from each other, the refractive index by 1.52 ±0.03 

(~2%) and the thickness by up to ± 30% (~ 40𝜇m). The variations in spherical 

aberrations for those varying parameters are shown in Fig. 4.8. 
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Figure 4.8: Variations of spherical aberration for A) varying refractive index and B) varying 
coverslip thicknesses 

Spherical aberration varies approximately linearly with varying refractive index and 

as well as with coverslip thickness. An error of 0.02 in refractive index leads to a 

difference of about 0.007𝜆 in spherical aberration. This lies well within the Maréchal 

range. For the coverslip, a 10% error in thickness leads to a change of about 10% in 
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spherical aberration (~ 0.007𝜆 rms), again in the Maréchal range. For residual 

aberrations within the Maréchal range, a single modal optimisation suffices for 

correcting residual aberrations after the pre-correction has been applied. 

For the fibre, variations in astigmatism and spherical aberration were analysed for 

changes in refractive index and thickness. When changing the thickness of the fibre, 

the curvature of the fibre changed accordingly. The results for astigmatism and 

spherical aberration are shown in Fig. 4.9. 
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Figure 4.9: Variations of astigmatism and spherical aberration for varying fibre refractive index and 
varying fibre thicknesses 

A change in thickness by about 20% leads to a change in spherical aberration of about 

0.01𝜆 rms. Astigmatism is more sensitive to changes in refractive index. A 0.006 
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change in refractive index (of either the fibre or the surrounding medium - glycerol) 

would result in an astigmatism amplitude change of about 0.07𝜆 rms. According to 

Hoyt [91], that would correspond to a glycerol/water concentration error of about 7%. 

The glycerol solution used had a concentration of ≥ 99.5%. Variations in the fibre 

thickness of 10 % give rise to about 10% change in the aberration coefficients. As 

long as residual aberrations are within the Maréchal range (diffraction limited) a 

parabolic fit can be used for each Zernike mode to determine the final correction. 

Relating these results to samples often used in microscopy. When it comes to 

biological samples, cell organelles are known to have different refractive indices, 

usually varying between 1.36-1.41 [92, 93] with a typical average refractive index of 

1.38 for the whole cell [94] (the common refractive index variance within cells and 

tissues is usually < 0.03 [95]). These ranges are close to the ranges discussed before. 

4.11 Efficiency of the ray-tracing pre-correction method 

A comparison between the ray-tracing pre-correction method and a standard modal 

optimisation was made to demonstrate the efficiency of the proposed optimisation 

method by correcting the fibre aberrations (see Fig.4.5). The result is shown in Fig.

4.9. The top line of Figure 4.9 shows a standard modal correction where each Zernike 

mode was taken in turn and optimised by applying aberration amplitudes of ± 0.07𝛌 

to the DMM and measuring signal changes at the pinhole. At each iteration step, a 

wavefront correction was obtained by fitting parabolas through the obtained intensity 

data (see equation 4.2). The determined wavefront correction was used as the first 

step for the next iteration until no further improvement can be obtained. The bottom 

line in Figure 4.9 represents the newly proposed method, where a pre-correction 

wavefront is used as the starting point for the first modal optimisation. As can be seen 

in Figure 4.9, when a pre-correction is applied to the DMM, the modal correction 

speed has significantly increased and the number of iteration steps are reduced. For 

the example presented the number of iteration steps, to achieve a similar level of 
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aberration correction, was decreased from three to one by using a pre-corrected 

wavefront as the starting point. 

 

Figure 4.10: A comparison between a conventional iterative modal correction and the proposed new 
method using a ray tracing model to calculate a pre- correction. The sample used for this example was 
a 125um diameter coreless termination fibre (refractive index 1.4613), immersed in glycerol (refractive 

index 1. 4724). The length of the red line is approximately 2.0 um.  

In the presence of large aberrations, the ray-tracing pre-correction method speeds up 

the aberration correction process. Best corrections for the tested samples were 

achieved after a single optimisation, while the traditional modal approach would have 

required up to 3 iterations to obtain comparable results. To put some numbers to these 

claims, let’s consider the correction of the coverslip and fibre aberrations. Assuming a 

20ms exposure time for each camera image and 5ms for applying an aberration with 

the DMM (the DMM has an operation bandwidth of 200Hz), the correction of the 

coverslip and fibre aberrations would require 23 camera images to be taken over a 

time period of 0.575s, when the pre-correction is utilised (based on 11 measured 

Zernike modes: 2 images per measured Zernike mode and a single reference image 

with the pre-correction applied which sums up to 23 images). Without the ray-tracing 
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pre-correction, while using the Facompress et al. approach [50], the coverslip 

aberration correction would require a second optimisation which would result in a 

total of 50 camera images taken over a time interval of 1.15s. Correction of the 

coverslip aberration would thus require about twice the amount of data and would 

double the optimisation time when ray-tracing pre-correction is not used. As for 

tackling the large fibre aberrations, 5 images per measured Zernike mode with 3 

iterations would be recommended [50] which translates to 165 taken camera images 

over a time period of 3.38s. Using a pre-correction for the fibre sample would make 

the optimisation about 6 times faster. 

4.12 Conclusion 

A modal wavefront correction method is used to determine aberrations by sequentially 

applying Zernike modes and monitoring the variation of a suited metric (e.g. intensity 

transmitted through a pinhole). For small pinhole sizes (< 0.3 AU), the transmitted 

intensity through the pinhole is a reasonable proxy of the Strehl ratio, equation (4.1), 

which predicts a parabolic dependence of the Strehl ratio on the Zernike coefficients, 

for aberration magnitudes below 0.07 𝜆 rms. It is noted that our experiments were 

performed in a double pass setup which doubles the magnitude of even aberrations 

(odd aberrations are cancelled). We have shown that ray tracing simulation results 

provide reliable prior-information about the sample aberrations present. Applying a 

pre-correction, based on ray tracing, removes the majority of the aberrations allowing 

the final modal correction routine to be performed on a weakly aberrated focal spots. 

When using pre-correction the remaining aberrations can be determined by a simple 

parabola curve fitting of the data. Although, for the data presented, parabolic curve 

fitting was performed with five data points per Zernike mode, comparable results 

were obtained with only three data points.  

This is compared with the method proposed by Facomprez et al. [49]. In the study of 

Facomprez et al, modal aberration correction was performed on the illumination path 

of a two-photon microscope. Facomprez et al. uses different strategies for modal 

aberration correction depending on the aberration amplitude, the number of 
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measurements per Zernike mode (either 3, 5 or 9) and the amplitude of the aberration 

bias, the number of iterations performed changed from 1 to 3 [49]. If the Facomprez 

approach were used for our fibre and air gap samples, at least 3 iterations, using a 

minimum of 5 sample points per Zernike mode at each iteration, would be required to 

obtain diffraction limited imaging. For the coverslip experiment, at least one iteration, 

involving 5 measurements per Zernike mode, would suffice. Here we have 

demonstrated that by using a pre-correction as a starting point we can achieve 

diffraction limited resolution after one optimisation with only 3 measurements per 

aberration. The experimental results presented suggest that optimising only the 

Zernike modes predicted by ray tracing is sufficient to achieve a final PSF 

comparable to the one obtained when no sample is present and the system aberration 

corrected for, again speeding up the correction process. Alternatively, instead of using 

pre-corrections, Lukosz modes can be used, instead of Zernike modes, to correct 

aberrations larger than 0.07 𝜆 rms [50]. However, such a method would require 

measurements of the mean rms spot radius and therefore is less suitable for confocal 

detection. Fast aberration corrections with a minimum number of iterations and 

measurements per Zernike modes are desired because of the need to reduce the 

amount of photo-damage caused by sample exposure to laser radiation. 

Often the refractive index or the thickness of a sample are not precisely known and 

this can lead to an inaccurate ray tracing prediction. Aberration amplitudes tend to 

vary linearly with the dimensions of an object. As regards refractive index differences, 

a small change in refractive index gives also rise to an approximately linear variation 

in aberration. Even when there are some ambiguities in the true refractive index 

values and dimensions of the sample, the ray-tracing pre-correction is beneficial in 

speeding up the modal aberration correction process.  

In conclusion, using a ray-tracing pre-correction approach simplifies the final 

correction procedure, reducing the time taken to complete a modal aberration 

correction, and therefore minimising radiation damage. With pre-corrections, large 

aberrations were corrected first, and, thereafter, the remaining aberrations were 

corrected in a single step with a modal optimisation routine. For scenarios, where 

sample parameters (refractive index, thickness, curvature, etc) are not well known, an 
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estimated ray-tracing pre-correction would still reduce the sample aberration to a 

more manageable level first. Moreover, this technique would provide more flexibility 

when correcting for aberrations, e.g. one might go deeper into transparent samples, or 

one could make local corrections when scanning an image plane. 

In order to achieve efficient and speedy correction when sequentially applying the 

modal correction routine, it is important to limit aberration cross-talk so that different 

Zernike modes have independent influence on the pinhole intensity and a correction 

made to one mode does not influence the magnitude of another mode. With the new 

method presented here, the effects of cross-talk are reduced because the modal 

correction is performed on a weakly aberrated spot. The main purpose of the proposed 

technique is to speed up the correction process, and under certain conditions, help the 

system to reach its optimum performance. 

Regarding applications, non-contact surface profiling or imaging through layered 

structures or on immersed samples lies well within the capability of this technique. 

This technique could potentially speed up the correction of aberrations caused by 

biological samples which do not feature complex refractive index distributions, and 

can therefore be modelled using ray-tracing [96]. For more complex samples, this 

approach would be less suitable. However, a ray-tracing pre-correction could still 

provide a better starting point for modal correction. Ultimately aberration correction 

in biological samples is limited by scatter. Scatter increases with depth more strongly 

than aberrations. For highly scattering samples, aberration correction brings little 

improvement because significant amounts of signal are already lost by scatter [97]. 

Strongly scattering media require wavefront shaping techniques which impose local 

high frequency phase changes [98] involving a large number of actuators. Spatial light 

modulators have been used to focus light through a scattering media [99] 
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5. Coma detection in confocal 
reflection microscopy by means 

of an edge scan 

In the previous chapter a confocal modal wavefront sensor, originally proposed by 

Neil et al. [47] was implemented and studied in a home-built reflection confocal 

microscope. Aberrations can be indirectly measured and corrected, by sequentially 

applying Zernike modes with a DMM and maximising the intensity passing through 

the pinhole of the confocal microscope. The confocal reflection microscope described 

in Chapter 3 is a double-pass system, where the incoming light path and reflected 

light path pass of different sides of any element present in the system such as the 

DMM and odd aberrations are cancelled after passing twice through the system. This 

is illustrated in Figure 5.1A). For illustration of the double-pass effect for a mirror 

sample, contour plots of aberrated spots at the object and detector plane are shown in 

Figure 5.1B). 
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Figure 5.1: A) Illustration of the double-pass effect on a reflection microscope with an integrated 
DMM. The DMM imposes an odd (coma-like) aberration on the incoming wavefront (solid lines). The 
reflected wavefront and rays are represented by dashed arrows and lines. A ray passing through P will 
after reflection pass through the point P’. B) Illustration of the double-pass effect on focal spots in a 

reflection microscope. Aberrated spots at the object and detector plane are compared for an even 
aberration, astigmatism (top row), and odd aberration, coma (bottom row).  

The DMM applies an odd (coma-like) aberration on the incoming wavefront (solid 

lines). The objective lens focusses the beam and will form an asymmetric coma-like 

spot on the mirror. Then, the light is reflected back from the mirror in reverse 

direction from right to left, and after a second pass through the objective it will be 

reflected off the DMM a second time, whereby an incident marginal ray which is 

reflected off the DMM at P in the first pass will be reflected at P’ in the second pass. 

As a consequence, DMM imposed odd aberrations, such as coma, are cancelled, after 

the second reflection of the DMM. In a confocal microscope the light that is reflected 

off the DMM after the second pass will be used to form a spot on a pinhole, which 

will thus be devoid of information about asymmetric odd aberrations. 
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Thus, odd aberrations, such as coma and trefoil, can’t be detected with a confocal 

reflective modal wavefront sensor. The same applies also to a Shack-Hartmann 

wavefront sensor or interferometric sensing device measuring the reflected wavefront. 

To detect odd aberrations, the wavefront should be measured in single pass, i.e. by 

measuring the wavefront in transmission, or by using fluorescent samples. Fluorescent 

emission would constitute a new source of light which lacks the phase information of 

the excitation beam. Odd aberrations in the detection path would thus affect the 

wavefront quality of the fluorescent signal. 

It is important to mention that the scanning spot would be affected by odd aberrations 

and would result in a lower quality image of a sample. Normally the DMM would be 

used to correct for wavefront aberrations (system or sample induced aberrations), but 

for demonstration purposes the DMM was used in experiments to apply controlled 

amounts of coma to show the resulting degradation in image quality. 

Edge scans can be used in confocal microscopy to assess lateral resolution. Gu et al. 

[100] studied the effects of defocus and spherical in terms of Seidel aberrations on the 

confocal image of a straight edge. They found that small amounts of defocus and 

spherical aberration can lead to a steeper edge response. However for large amount of 

spherical aberration, the steepness of the edge response decreases and inflection 

points appear at the top and bottom parts of the edge response. Interestingly for an 

ideal PSF, the intensity at the edge is around 0.25-0.33 of the maximum intensity, 

depending on the pinhole size (0.25 for an infinitely small pinhole and 0.33 for an 

infinitely large pinhole) [101]. In this chapter, a method is presented to detect coma in 

a double-pass reflection confocal microscope by means of an edge scan. The 

asymmetric edge breaks the double-pass effect. In the presence of coma, as will be 

shown, the resulting image of the edge will have a characteristic form and be less 

steep than if it would be when the edge is scanned with an unaberrated diffraction-

limited focal spot. The orientation of the coma wavefront aberration (or the coma 

flare) can be determined by scanning the focal spot along two perpendicular edges. A 
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comparison of experimental and theoretical curves makes estimation of the amount of 

coma possible. 

5.1 Confocal image of an edge in the presence of aberrations 

5.1.1 Coherent imaging


The image of an edge obtained with a confocal microscope, such as the one described 
in  Chapter 3, can be simulated with the help of coherent imaging theory [20], using 
the Fourier transform and Fraunhofer approximation of the diffraction integral (see 
Chapter 2 section 2.1). However, for convenience we will use the normalised 

amplitude point spread function "  at the focal plane which is given by [13]: 

 

"  

Where" is the pupil function, λ is the wavelength, j the imaginary unit, k the 

wave vector, F the focal length. The definition for the normalised optical coordinates 
is given in Chapter 2 section 2.1. The integral is evaluated over the unit circle " . 

For the pupil function we use the following expression: 

"  

Where " is the transmission function and "  is the aberration function 

which can be expressed in terms of Zernike polynomials: 

  

"  

h x, y( )

h x, y, z( ) = 1
π

P ν ,µ( )  e− j2π xν+ yµ( ) dν dµ
Ω
∫∫

P ν ,µ( )

Ω

P ν ,µ( ) = A ν ,µ( ) ⋅eikΦ ν ,µ( )

A ν ,µ( ) Φ ν ,µ( )

Φ ν ,µ( ) = α n
mZn

m ν ,µ( )
n,m
∑
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Here " represents a Zernike amplitude coefficient and Z a Zernike mode (see 

Chapter 2 section 2.2). " describes the imposed aberrations (system aberrations, 

sample aberrations and aberrations imposed by a DMM). 

The edge, in the image plane, can be described by a two dimensional binary function 

which has a value of 1 on one side of the edge and is nearly zero on the other side (we 

chose a value of 0.1 instead 0 for numerical stability reasons). The edge function, 

denoted by t, is: 

"  

Where " is the y position of the edge. The edge, programmed in Matlab, is shown 

in Fig. 5.2. 

Figure 5.2: Edge in the image plane 

The reflected amplitude at the pupil, "  is obtained by taking the inverse 

Fourier transform of the product of the amplitude PSF with the edge reflection 

function: 

"  

α n
m

Φ ν ,µ( )

t y( ) =
1  if y ≤ yedge

0.1  if y > yedge

⎧
⎨
⎪

⎩⎪

yedge

′P ν ,µ( )

′P ν ,µ, z( ) = π h x, y( ) ⋅ t x, y( )  e j2π xν+ yµ( ) dx dy
−∞

∞

∫
−∞

∞

∫
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The pupil boundary conditions (Equation 5.5) then have to be applied on " . The 

edge scan can be simulated by varying the value of " . The final step is to compute 

the Fourier transform of " with the wavefront aberration imposed after double-pass 

through the system. The imposed wavefront aberration on the return light path is 

given by " . " is obtained by mirroring " with respect to the 

pupil centre. The amplitude point spread function at the detector is then: 

 

"  

Where " are normalised cartesian coordinates in the detector plane. The 

intensity at the detector plane is obtained by multiplying the amplitude with its 

complex conjugate: 

"  

Finally in order to obtain the confocal signal (intensity passing through the pinhole), 

one uses a circular mask, such as the one described in chapter 3, and integrates the 

intensity values within the mask. In fig 5.3 the edge response for an aberration free 

focal spot is shown for different pinhole sizes. 

Figure 5.3: Confocal edge response for various pinhole sizes. Each curve is normalised with respect to 
its intensity value at " . AU stands for Airy Unit. 
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The edge response for the various pinhole are quite similar. It is noted that the 20-80% 

width of the edge responses is sometimes used as a criterion for the lateral resolution 

[102]. 

5.1.2 Simulations of confocal edge responses in the presence 
of aberrations


In the previous section the coherent imaging model used for calculating the edge 

response of a reflection confocal microscope with a DMM operating in a double-pass 

configuration was introduced. At focus the intensity distributions produced by even 

aberrations, such as astigmatism or spherical aberration, are not unique since one can 

not determine the sign of the wavefront aberration. The aberrated spots, in focus, of 

fig 5.4 A),B),E),F) show that the sign of even aberrations does not affect the 

diffraction pattern at focus. The intensity distribution is rotated by 180 degrees when 

the sign is changed, this result for astigmatism and spherical aberration in intensity 

distributions which remain unaffected by a sign change. The sign ambiguity of even 

aberrations can be overcome by observing the focal spot through focus, because the 

intensity distribution will be different on opposite sides of best focus (the term best 

focus will be used from here on to refer to the spot, in the vicinity of the geometrical 

focus, with the highest intensity in x,y,z). 
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Figure 5.4: Intensity distributions at focus in the presence A-B) vertical astigmatism, C-D) vertical 
coma and E-F) spherical aberration. In the left column 0.1λ of wavefront aberration was applied 

whereas in the right column -0.1λ of wavefront was applied. 

As regards odd aberrations, it is noted that depending on the sign of an odd aberration 

and the orientation of the edge (see Fig.5.5), the edge response can be different. 

Two edge orientations were considered for the simulations, namely a horizontal or 

vertical edge, see Fig. 5.5 A) and B), respectively. In both figures, an aberrated spot 
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with vertical coma or horizontal coma were added to show the orientation of the coma 

tail.  

Figure 5.5: Horizontal and vertical edge. The orientation of the coma tail for a spot with vertical coma 
or horizontal coma is shown in both vertical and horizontal edge. The scan direction is depicted by the 

arrow. The white area represents the reflective surface whereas the grey area represents the non-
reflective surface. 

In Fig. 5.6 edge responses in the presence of primary spherical aberration, vertical 

astigmatism, oblique astigmatism, horizontal coma and vertical coma are plotted for 

different amounts of aberration amplitudes with an edge with extents in the horizontal 

direction (see Fig. 5.5A) in the best focus plane. The intensity at the detector was 

calculated using equations (5.7) and (5.8) and the phase aberration (equation 5.4) was 

expressed in terms of Zernike modes. The intensity, at the detector, was spatially 

filtered with a 0.6AU diameter pinhole. Each curve was normalised with its intensity 

value at the lateral distance " . The aberration amplitude range for odd aberrations 

was chosen to be [-0.105λ, 0.105λ] which is larger than the range for even 

aberrations: [-0.07λ, 0.07λ] in order to avoid large aberrations at the detector because 

even aberrations are doubled in terms of amplitude (due to the double-pass effect). 

At best focus a focal spot which is produced by even aberrations, such as astigmatism 

and spherical aberration, does not depend on the sign of the wavefront aberration as 

will the edge responses. Therefore, Fig. 5.6 A-C will look the same, if the sign of the 

x = 0

�119



wavefront aberrations becomes negative. Horizontal coma produces a “comet” shaped 

focal spot, with the coma tail orientation being parallel to the edge (see Fig. 5.5A). By 

changing the sign of the horizontal coma coefficient, one effectively flips the coma 

tail orientation by 180°. Therefore it becomes clear that the edge response, when 

scanning the spot perpendicular to the edge, will not depend on the sign of the 

horizontal coma wavefront aberration. Vertical coma, however, will produce two 

distinct types of edge responses depending on the sign of the wavefront aberration, as 

can be seen in Fig. 5.6 E) and F). For the Zernike aberration notation reference is 

made to Chapter 2 section 2.2. 
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Figure 5.6: Confocal edge response of an edge extending in the horizontal direction. Each curve is 
normalised with respect to its intensity value at the lateral distance " .Primary aberrations: A) 

spherical aberration " , B) vertical astigmatism " , C) oblique astigmatism " , D) horizontal coma 

" , E) vertical coma "  (negative amplitudes) and F) vertical coma "  (positive amplitudes). 
Pinhole diameter: 0.6AU. The aberration amplitude was varied in the range of [-0.105λ, 0.105λ] for 

odd aberrations and [-0.07λ, 0.07λ] for even aberrations, in steps of " . 
 

The edge response one obtains will depend on whether the coma tail is scanned first 

or last over the edge. For negative amounts of vertical coma (i.e. when the coma tails 

points away from the edge, as shown in Fig. 5.5A vertical coma spot), the edge 

response at the bottom part decreases more slowly. Whereas for positive amounts of 
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vertical coma (i.e. when the coma tails points towards the edge), the intensity 

decreases more slowly at the the top part of the edge. This slow decrease in intensity 

becomes more pronounced when the aberration amplitude increases. Especially the 

edge response in Fig. 5.6 F) is quite distinct and could thus be used to detect the 

presence of coma in a reflection confocal microscope. The slope of the edge response 

at 0.5 (normalised intensity) is visibly affected for aberration amplitudes > |0.07| 𝜆. If 

the edge orientation is vertical as in Fig. 5.4B and the spot is scanned along the x-

direction, the spot with horizontal coma would produce characteristic edge responses. 

The edge response would depend on the sign of " whereas for vertical coma it 

wouldn’t. The edge responses for a vertical edge for vertical and horizontal coma are 

shown in Fig. 5.7. The edge responses for vertical coma do not depend on the sign of 

"  and therefore only edge responses with positive of " were plotted. Edge 

responses produced by a spot with astigmatism or spherical aberration are the same as 

in Fig. 5.6 A-C. 
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−1

α 3
1 α 3
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Figure 5.7: Confocal edge response of an edge extending in the vertical direction. Each curve is 
normalised with respect to its intensity value at the lateral distance " .Primary aberrations: A) 

horizontal coma " (negative amplitudes), B) horizontal coma " (positive amplitudes) and C) A) 

vertical coma " . Pinhole diameter: 0.6AU. The aberration amplitude was varied in the range of 

[-0.105λ, 0.105λ] in steps of " . 

So, by scanning a focal spot across two edges which are perpendicular to each other, 

one can detect not only the sign and the orientation of the coma wavefront aberration, 

but can also give an estimation of the amplitude of the coma wavefront aberration. 

The influence of the pinhole size on the edge response of an edge extending in the 

horizontal direction (see Fig. 5.5 A) in the presence of vertical coma is shown in Fig. 

5.8. The edge response for smaller pinholes is slightly more degraded. 
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Figure 5.8: Confocal edge response of an edge extending in the horizontal direction in the presence of 
vertical coma for various pinhole sizes. The applied aberration amplitude is 0.07𝝀 . Each curve is 

normalised with respect to its intensity value at the lateral distance " . Chosen pinhole diameters: 
[0.3, 0.6, 1] AU. 

x = 0
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5.1.3 Experimental confocal edge responses in the presence of 
aberrations


A USAF microscope resolution target - positive pattern (Edmund Optics, chrome 

pattern on glass) was scanned with the reflection confocal microscope described in 

Chapter 3. Primary astigmatism, coma and spherical aberration were applied 

independently from each other with the deformable membrane mirror (DMM). The 

resolution target was brought into focus by finding the axial position where the focal 

spot, reflected off the chrome pattern (far away from an edge), had its highest 

intensity (best focus). Each aberrated focal spot was then scanned over an edge with 

extents in the horizontal direction (see Fig. 5.5 A). The first and last scans were with a 

corrected focal spot in order to check that the edge responses were similar and to 

assure that the resolution target had not significantly drifted laterally during the scan 

series. A characteristic set of experimental edge responses for even aberrations is 

shown in Figure 5.9. 

Figure 5.9: Experimental Confocal edge response of an edge extending in the horizontal direction. 
Each curve is normalised with respect to its intensity value at the lateral distance " .The edge 

responses for the different even primary aberrations are shown in A-B) vertical astigmatism, C-D) 
oblique astigmatism and E-F) spherical aberration. Pinhole diameter: 0.6AU. The aberration amplitude 

was varied in the range of ~[-0.07λ, 0λ, 0.07λ] in steps of ~ " . 

x = 0

0.035λ
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The intensity dip at the left side of Fig. 5.9F is somewhat similar to what has been 

calculated by Gu et al [100] in the presence of spherical aberration with some 

defocus. A characteristic set of experimental edge responses for coma (odd aberration) 

is shown in Figure 5.10. 

 

Figure 5.10: Experimental Confocal edge response for an edge extending in the horizontal direction. 
Each curve is normalised with respect to its intensity value at the lateral distance " .The edge 
responses in the presence of A-B) horizontal coma and C-D) vertical coma are shown. Pinhole 

diameter: 0.6AU. The aberration amplitude was varied in the range of ~[-0.106λ, 0λ, 0.106λ] in steps of 
~ " . 

For all even aberrations (see Fig.5.9 A-D) as well as for horizontal coma (Fig.5.10 A-

B), changing the sign of the wavefront aberration does not significantly change the 

shape of the edge response when scanning over an edge with extents in the horizontal 

direction (see Fig.5.5A). However, for vertical coma "  one sees two distinct sets 

of edge responses depending on the sign of the aberration. The aberrated focal spots, 

at best focus, which were scanned over the edge resembled the focal spots shown in 

x = 0

0.035λ

α 3
1( )
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Chapter 4 (Figure 4.2). For vertical coma edge response there is a slow decrease in 

intensity at the top / bottom of the edge depends on the sign of the coma wavefront 

aberration (see Fig.5.10 C-D). 

To show the smearing, i.e. the slow decrease in intensity, caused by a coma aberrated 

spot on an image, a two dimensional area of 8x0.4µm of a USAF microscope 

resolution target was scanned in a x-y raster scan with different amounts of coma "  

applied. The applied amplitudes for vertical coma were ~[-0.106λ, 0λ, 0.106λ]. Each 

image was normalised with respect to its highest intensity value. Pinhole diameter 

was chosen to be ~0.6AU. The USAF target was scanned with the piezo-stage. Scan 

steps were chosen to be 0.04µm. The scanned USAF microscope resolution target, for 

the different amounts of vertical coma, are shown in Fig. 5.11 . 

Figure 5.11: USAF microscope resolution target. A two dimensional area 8x0.4µm was scanned using 
0.04µm scan steps. The applied wavefront aberration for vertical coma were ~[-0.106λ, 0λ, 0.106λ] for 

A),B) and C) respectively. The pinhole diameter was chosen to be ~0.6AU. 

One can see that depending on the sign of the coma wavefront aberration (i.e. the 

orientation of the coma tail) one side of the stripes is more smeared than the other. 

Whereas for a corrected focal spot (Fig. 5.11B) both sides of the stripes look similar. 
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1
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5.2 Comparison of simulation and experimental results for 
coma 

In Figure 5.12, the simulated and experimental edge responses for coma are shown 

next to each other. The characteristic features of the vertical coma edge response 

(slow decrease in intensity at the top/bottom of the edge depends on the sign of the 

coma wavefront aberration) have been experimentally confirmed. The simulated and 

experimental edge responses show similar trends. 

Figure 5.12: Comparison of Confocal edge response for an edge with extents in the horizontal direction 
in the presence of coma. Each curve is normalised with respect to its intensity value at the lateral 

distance" . A/C/E are simulated edge responses and B/D/E are their experimental correspondent. 
The aberration amplitude was varied in the range of ~[-0.106λ, 0λ, 0.106λ] in steps of ~ " . 

x = 0
0.035λ
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5.3 Conclusions 

The problem of the double-pass effect in reflection, which causes cancellation of odd 

aberrations after the second pass through the system, is that it makes detection of odd 

aberrations challenging. Wavefront sensors or indirect wavefront sensing, such as 

modal wavefront sensing, do not allow coma to be detected in a reflection setup. 

However, as presented here an edge scan allows coma to be detected in a confocal 

reflection microscope setup. The edge breaks up the double-pass effect and the edge 

response can be used to detect the presence of coma and allows for an estimation of 

the amount of coma. In this chapter, the effect of the primary aberrations on the image 

of an edge (or edge response) in a reflection confocal microscope were studied. Edge 

responses, in the presence of primary Zernike aberrations, were simulated and later 

measured with a home-built reflection confocal microscope (with a deformable 

membrane mirror to impose the aberrations, see Chapter 3). The edge responses were 

studied in the presence of a single aberration only, and not for aberration 

combinations. The results confirm that the presence of coma can be detected by 

observation of edge responses in a reflection confocal microscope, which coma 

aberrations would otherwise remain undetectable when using other sensing methods 

(e.g. wavefront sensor, modal sensing) because of the double-pass effect. The sign of 

the coma wavefront aberration as well as its orientation can be determined by 

scanning a focal spot across two edges (which should be perpendicular to each other 

in order to detect two orthogonal coma orientations, e.g. horizontal and vertical coma 

contributions). The smearing, i.e. the slow decrease in intensity, at the top of the edge 

response is a characteristic signature of a coma aberrated focal spot. The coma 

aberration amplitude can be estimated from the form of the edge response (see Figure 

5.3 E) and F)). Small amounts of coma are, however, hard to detect because of noise, 

or could be confused with by local irregularities close to the edge. Nevertheless, coma 

amplitudes > 0.035λ and up to about ~0.14λ, with an accuracy of ±0.02λ, are 

detectable with the proposed edge scan method. Furthermore the sensitivity to coma 

can be increased by reducing the pinhole size (see Fig. 5.5). Coma detection and 

correction in a confocal microscope could be achieved in a similar way to modal 
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wavefront sensing by sequentially applying varying amounts of coma but by using 

another metric to optimise, i.e. “sharpest” edge response (see Fig. 5.6). 
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6. Aberration retrieval based on 
focal spot shape 

This chapter presents a novel aberration retrieval method. This method is aimed at 

retrieving the amplitude of primary Zernike aberrations (astigmatism, coma, spherical 

aberration) in the pupil. These primary aberrations are retrieved by fitting a set of 

orthogonal functions to the intensity distribution of a beam as it propagates through 

focus. The resulting fitting coefficients are then combined to create characteristic 

aberration indicators that are sensitive to distortions in the intensity distributions 

caused by the primary aberrations. These indicators are ultimately used to retrieve the 

primary aberration amplitudes in the pupil.  

Aberration retrieval is central to AO. Once the aberrations are measured, a DMM can 

be used for wavefront correction. In comparison to other direct wavefront sensing 

methods and modal/zonal optimisations, the aberration retrieval method proposed 

does not require any wavefront sensor or wavefront shaping device to measure 

aberrations but solely needs three intensity distribution images in the vicinity of focus 

to retrieve the primary aberrations. The method is quick in comparison to other 

commonly used phase retrieval methods. Intensity distributions are fitted within a 

circular region with a radius smaller than the distance to the first dark ring of the Airy 

spot and centred around the point of highest intensity. Due to the circular shape of the 

fitting region and the fact that orthogonal functions are well suited for mathematical 

fitting problems, Zernike polynomials were chosen as the fitting functions. Going 

forward the Zernike polynomials used for fitting will be referred to as orthogonal 

circle intensity polynomial to avoid confusion with the Zernike polynomials used to 

represent the aberrations present in the pupil. Thus the intensity distribution, within 

the circular region, is described as weighted sum of orthogonal circle intensity 

polynomials. Primary aberrations can be retrieved with a minimum of three intensity 

distributions, taken at focus and at two out of focus planes. The aberration indicators 

are computed from the fitting coefficients obtained at these three planes. There is an 
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almost linear relationship between the aberration amplitudes and their respective 

indicators within an amplitude range of about [0.025λ, 0.13λ]. The issue of aberration 

cross-talk (when several aberrations are present) is addressed at the end of the chapter, 

and it is concluded that this aberration retrieval method is viable as long as aberrations 

do not become too strong (the rms wavefront deviation of all primary aberrations 

should remain below 0.1λ). 

The outline of the aberration retrieval method, showing the essential steps, is shown 

in the block diagram (Fig. 6.1). The individual blocks are detailed in the different 

sections of this  chapter. 

Figure 6.1: Outline of the aberration retrieval method based on fitting orthogonal circle polynomials to 
the intensity distributions of an aberrated beam in the vicinity of focus.  
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6.1 Intensity distribution distortions caused by aberrations  

The aim of aberration retrieval in microscopy is to determine the wavefront in the 

pupil of the microscope objective (often expressed in terms of Zernike modes) by 

analysing the three dimensional intensity distribution of the focal spot. In chapter 2, 

two prominent aberration retrieval methods were presented, namely methods based on 

Gerchberg-Saxton algorithm or the ENZ theory. Here, a novel aberration retrieval 

method is proposed which detects distortions of the intensity distribution of an 

aberrated focal spot when going through focus. It is well known that wavefront 

aberrations manifest themselves in different characteristic intensity distributions at 

and at each side of focus. The intensity distributions of different primary aberrations 

at three axial planes are shown in Fig. 5.2. For the simulations, the intensity 

distributions were calculated using Fourier transforms and the Fraunhofer 

approximation [16]. Here, the pupil function, " , is described as follows, 

"  

where P0 is the amplitude of the electromagnetic field in the pupil plane, 𝛷 is the 

phase distribution in the pupil and " are cylindrical coordinates in the pupil plane. 

In the following simulations, it is assumed that the amplitude is constant over the 

entire pupil, thus P0  = 1. The phase function 𝛷 is expressed in terms of Zernike 

polynomials, 

"  

where " represents a Zernike amplitude coefficient and "  a Zernike mode, n and 

m are the radial and azimuthal orders, respectively. The simulations were restricted to 

the three most commonly occurring Zernike aberrations in optical imaging systems, 

i.e. primary astigmatism, primary coma and primary spherical aberration. The 

intensity distributions at either side of focus were determined by adding the Zernike 

P ρ,θ( )

P ρ,θ( ) = P0 ρ,θ( )ei2πΦ ρ ,θ( )

ρ,θ( )

Φ ρ,θ( ) = α n
mZn

m ρ,θ( )
n,m
∑

α n
m Zn

m
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defocus term "  to the pupil function. The amplitude in the image plane of the pupil, 

U, can be obtained via a 2D Fourier transform of the pupil function, 

U  = 𝓕-1{P} 

where 𝓕-1 represents the inverse 2D Fourier transform. The intensity distribution is 

obtained by multiplying U with its complex conjugate. 

"  

Intensity distributions of aberrated spots are shown below: 

Figure 6.2: Aberrated spots at different axial planes. First row: Astigmatic spot through focus. Second 
row: Coma aberrated spot through focus. Third row: Spot with spherical aberration through focus 

Nijboer derived mathematical expressions which describe the amplitude distribution 

at the image plane in the presence of aberrations and calculated the resulting intensity 

patterns in the vicinity of focus [9]. Based on Fig. 6.2 and Nijboer’s work, 

Z2
0

I =U ⋅U *
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characteristic features of the intensity distributions in the presence of spherical 

aberration, coma and astigmatism are listed below: 

• Astigmatism: Out of focus, the intensity distributions is elongated along one 

direction. The direction of elongation rotates by 90 degrees when going through 

focus (first row, compare left and right images). At focus the intensity distribution 

has a 4 fold symmetry (see Fig. 6.2 top row central image). 

• Coma: The intensity patterns are symmetric about focus as can be seen in Fig 6.2 

(middle row, compare left and right image). However, the coma intensity 

distribution does not have rotational symmetry and has a tail which is oriented in 

the same direction in all axial planes (see fig 6.2 middle row). 

• Spherical aberration: the intensity patterns before and after focus differ. On one 

side of focus, the central part of the intensity distribution is narrow and has a 

brighter outer intensity ring, whereas the spot broadens on the other side of focus 

(see Fig. 6.2 bottom row; compare left and right image). 

6.2 Fitting of focal spot intensity distributions 
  

A series of polynomials can be used to describe the central intensity distributions 

shown in Fig. 6.2. A set of orthogonal circle polynomials were fitted over a predefined 

circular area (in our case an area within the first dark ring of the ideal Airy spot): 

 

where " are the coefficients of the orthogonal circle intensity polynomials "

(which happen to be the Zernike polynomials) and "  are cylindrical coordinates in 

the image plane and the origin of the coordinate system lies at the point of maximum 

intensity. The intensity distributions were fitted in a least-square approach using 

singular value decomposition (SVD). Zernike polynomials are orthogonal over the 

unit circle and for our purpose they are better conditioned as a linear least square 

γ n
m Z ′n

′m

r,φ

�135

(6.5)Icentral (r,φ) ≈ γ n '
m 'Zn '

m ' (r,φ)
n ',m '
∑



solver than standard polynomials. The method of fitting orthogonal circle polynomials 

to the central highest intensity part of the PSF in an axial plane is depicted in Fig. 6.3.  

 

Figure 6.3: Flow chart - Fitting Zernike polynomials to the central part of the intensity PSF. 

The relation between the " coefficients in Eq. 6.5 and the " coefficients in Eq. 6.2 

will be discussed later in Subsection 6.2.3 and Appendix B where analytical 

expressions for aberrated intensity distributions were derived using the ENZ theory. 

γ n
m α n

m
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6.2.1 Aberrations - intensity distributions through focus


The intensity distribution at different axial planes was studied by varying the value of 

Zernike defocus "  and setting a single primary aberration at a constant value. 

Defocus was varied in the range of [-0.1λ, 0.1λ]. Going back to chapter 2, the 

conversion for defocus parameter f, Zernike defocus amplitude "  and axial 

displacement Z is given by: 

 

"      

Formula 6.6 relates the axial displacement Z to the Zernike defocus amplitude "  and 

to the focal parameter f. Primary astigmatism, coma and spherical aberration were set 

to a constant value of 0.07λ. For each aberration, considered separately, the 

coefficients of the fitted circle intensity polynomials (in the image plane) are plotted 

as a function of defocus in Figure 6.4. In each axial plane, the intensity distributions 

were normalised with respect to the highest intensity value in that particular axial 

plane (if intensity measurements are performed with a CCD camera, then the camera 

can change the exposure time or amplification for each frame so as to avoid 

saturation). The intensity distributions were fitted using orthogonal circle polynomials 

up to radial order 4 (and also including the second order spherical orthogonal circle 

polynomial - radial order 6) using SVD. In each axial plane, the origin of the 

coordinate system (used for fitting) was placed at position of maximum intensity.  

α 2
0( )

α 2
0

Z = 4α 2
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NA2
= − λ f

πNA2
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0
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Figure 6.4: Fitting coefficients of Zernike polynomials. For a fixed amount (0.07λ) of vertical 

astigmatism, vertical coma and spherical aberration. The orthogonal circle  polynomials are fitted 
around the central part of the intensity distribution using a circular mask with a diameter of 1 Airy 

units. The coefficients of the orthogonal circle polynomials are plotted for different amounts of defocus 

" , the defocus range is "  

The coefficients were plotted according to their radial order n. Only results for the 

vertical orientations of astigmatism and coma are plotted (oblique astigmatism and 

horizontal coma gave corresponding results). 

When imposing vertical astigmatism the coefficients "  are zero (see Fig. 6.4a). 

The coefficient "  is asymmetric with respect to best focus and varies linearly, while 

"  is zero and "  is symmetrical around best focus and changes slightly (see Fig.

6.4b). The third order coefficients, like the first order coefficients, are all zero (see 

Fig. 6.4c). The " , " , and " are symmetrical and more or less constant over the 

α 2
0( ) −0.1λ,0.1λ⎡⎣ ⎤⎦

γ 1
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entire defocus range. " asymmetric with respect to best focus and varies linearly, 

while "  is zero (see Fig. 6.4d). The change of sign of the coefficients "  

through focus indicates a rotation of 90° of the intensity pattern.  

For a coma wavefront aberration (see Fig. 6.4e, f), the " and the "

coefficients, vary non-linearly through focus, as opposed to wavefront aberrations 

such as astigmatism or spherical aberration for which these terms are zero. The " , 

" , and " coefficients are symmetrical and more or less constant over the entire 

defocus range.  

For a wavefront with spherical aberration, the "  coefficient (see Fig. 6.4l) varies 

linearly with defocus and is not zero. In other words the intensity distribution is 

rotationally symmetric, but the diameter decreases at one side of best focus while it 

increases at the other side. The term " is not linear about focus (see Fig. 6.4j). 

In the presence of coma, the fitting coefficients, through focus, are symmetrical but 

vary non-linearly (see Fig. 6.4 e-h). The resulting sign ambiguity (due to the 

symmetry about focus) and the non-linearity makes the coma aberration retrieval 

process more complicated than for astigmatism and spherical aberration. However, at 

best focus an approximately linear relationship exists between the coma amplitude 

and the fitting coefficients "  as shown in Fig, 6.5. 
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Figure 6.5: Fitting Coefficients of Zernike polynomials " . The orthogonal circle  

polynomials are fitted around the central part of the intensity distribution using a circular mask with a 
diameter of 1 Airy units. At the best focus plane the amplitude of vertical coma was varied in the range 

"  

It should be noted that, because the fitting polynomials were fitted within the first 

dark ring of the Airy disk, features beyond the first dark ring are not detected. As can 

be seen from all figures (Fig. 6.4 and 6.5), the magnitudes of the lower order fitting 

coefficients are larger than the higher order coefficients by about an order of 

magnitude. Thus, the lower order fitting coefficients are more reliable and sensitive 

for aberration retrieval.  

6.3 Aberration Indicators 

In the previous section, it was shown by means of simulations that certain fitting 

coefficients are sensitive to primary aberrations and that they vary almost linearly 

with the aberration amplitude. A set of indicators, based on combinations of aberration 

sensitive fitting coefficients, suitable for aberration retrieval are presented in the 

following section. A reference axial plane "  is introduced in this subsection and 

represents an axial plane in the vicinity of best focus.  

γ 1
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1,γ 3
−3,γ 3

−1,γ 3
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Astigmatism Indicator: 

The intensity fitting coefficients "  are sensitive to astigmatism (see Fig. 6.3 

vertical astigmatism). However, coma also affects to some extent " (see Fig. 

6.3 Vertical Coma) but the variations are symmetric about focus. So, if ones subtracts 

the " coefficients at two axial planes separated by the distance 2f, for example the 

two planes " , any potential cross-talk caused by coma would be removed. 

Therefore an indicator for vertical astigmatism would be:  

"  

This indicator effectively detects the 90 degrees rotation of the intensity distribution 

when going through focus, which is characteristic for astigmatism. Analogously, an 

oblique astigmatism indicator would be: 

 "  

Coma Indicator: 

For a coma aberrated spot in the best focus plane both " and " vary 

linearly with " . The coefficients "  are better suited for coma retrieval 

because these coefficients are larger than the "  coefficients. It should be noted 

that for wavefront aberrations such as spherical aberration and astigmatism the 

" coefficients are zero making these suitable indicator for coma. Thus to 

retrieve coma one can use the following indicator: 

γ 2
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 "  

This indicator detects asymmetries in the intensity patterns  

Spherical Aberration Indicator:  

  

For a focal spot with spherical aberration, the coefficient "  varies roughly linearly 

with " . The " coefficient is somewhat less linear (see Fig. 6.3 spherical aberration), 

but it can still be used to retrieve spherical aberration. Suitable spherical aberration 

retrieval indicators would be: 

 "  

The spherical aberration indicator is sensitive to radial changes in the intensity 

distributions on opposite sides of focus. 

The reference plane " should lie in the vicinity of best focus in order to avoid fitting 

intensity distributions lying far from focus where the fitting coefficients vary non-

linearly. Figure 6.6 illustrates how the vertical astigmatism, vertical coma and 

spherical aberration indicator would be evaluate based on intensity distributions at at 

" . 
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Figure 6.6: Illustration on how to evaluate the characteristic primary aberration indicators based on 
intensity distributions at different axial planes: "   

The coma indicator, " coefficients, varies almost linearly with the amplitude of 

coma " in the pupil, as was already shown in Fig. 6.5. The coefficients " and 

"  do also show an almost linear behaviour. In Fig. 6.7 the variations of the 
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coefficients " and "  at an axial plane " (or expressed in terms of 

Zernike " Malacara rms units) are shown when the respective primary 

aberration, namely astigmatism and spherical aberration, are varied in the range of 

" . 

Figure 6.7: Fitting coefficients of Zernike polynomials a) " n the presence of vertical astigmatism and 

b) " n the presence of spherical aberration. The orthogonal circle  polynomials are fitted around the 

central part of the intensity distribution using a circular mask with a diameter of 1AU. At the axial 
plane "  (or expressed in terms of Zernike " Malacara rms units) the amplitude of a) 

vertical astigmatism, b) spherical aberration was varied in the range "  

All the presented primary aberration indicators show an almost linear dependence 

with the their aberration amplitude in the pupil and are thus convenient for linear 

aberration retrieval.  

The primary aberration trefoil is not very common in optical imaging systems and 

was therefore not studied further. However, this aberration could also be detected by 

looking at the "  around best focus, similar to the coma indicator described (see 

Equation 6.9). Fig. 6.8 shows how the third order fitting coefficients vary at best focus 

in the presence of " . The coefficient "  increases almost linearly with increasing 

amount of " . Thus, by using an indicator based on the "  coefficients, one would 

be able to retrieve the amount of trefoil present in the pupil. 
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Figure 6.8: Fitting Coefficients "  in the presence " . The orthogonal circle polynomials 

are fitted around the central part of the intensity distribution using a circular mask with a diameter of 1 
Airy units. At the best focus plane and the amplitude of vertical trefoil was varied in the range  

6.3.1 Influence of defocus on the aberration indicators


Previously FFT simulations were used, for convenience, to simulate intensity 

distributions through focus in the presence of primary aberrations. The ENZ theory 

was used to obtain expressions which describe the intensity distribution for aberrated 

beams through focus. This was done to validate the approach proposed in this chapter, 

based on fitting orthogonal circle polynomials to the intensity distributions. 

Furthermore, from these expressions conclusions on the influence of defocus on the 

linearity of the aberrations indicators can be drawn as well as what happens to the 

coefficients when one changes the radius of the fit area.  

For derivation of the intensity distributions expressions using the ENZ theory, please 

refer to Appendix B. Here the intensity expression with the most dominant terms 

including orthogonal circle polynomials polynomials (up to radial order 5) is given.  
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Astigmatism:  

The intensity distribution of an astigmatic beam for small aberrations and close to best 

focus may be approximated by 

"  

Taking the coefficients " at two axial planes at a distance 2f apart, for example the 

two planes " : 

"  

The " term describes a deviation from a linear response. If one allows a 10% 

deviation from the linear response, one gets a close to linear range from about " to 

about " with " (or "  when expressed in Malacara rms units):  

 "  

However it should be noted that the 10% deviation tolerance for f will be larger since 

the next higher order f term (which has been omitted) will reduce the deviation caused 

by the " term because it has a different sign (positive). 
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2( )− f ≈ 0.081 1 − 0.074 f 2( )2 f α 2
2( )+…{ } = 0.162 1 − 0.074 f 2( ) f α 2

2( )+…{ }
                                                         

−0.074 f 2

+ f

− f f ≈1.16 f ≈ 0.054λ

f = ± 0.1
0.074

≈1.16⇒α 2
0 = 1.16

4π 3
≈ 0.054λ

−0.074 f 2
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Coma: 

Using the ENZ theory, the intensity distribution in the presence of coma and close to 

best focus may be approximated (for small aberrations) by: 

"  

It should be noted that by looking at the derivation in the appendix B that equation B.

18-21, the intensity expression contains a third order term, i.e. " but does not 

contain a linear radial term r. When using Zernike polynomials as the fitting functions 

a  polynomial has a 3rd order r term and also a 1st order r term. Therefore, the 

fitting will also generate a so called tilt term " to compensate for the r term 

contribution in the "  polynomial. Hence, the magnitude of this tilt term is a 

measure of the amount of coma. Taking the coefficient " at " : 

"  

Since the coma indicator is supposed to be applied in the best focal plane, one can 

estimate the deviation in f that is allowed by permitting a 10% deviation in the value 

of the coma indicator. In other words " , resulting in: " (or 

"  when expressed in Malacara rms units).  

Icoma r,φ;α3
1, f( ) =

0.228− 0.013 f 2 +…( )+ −0.025+ 0.003 f 2 −…( ) α3
1( )2{ }R00 +

0.040+ 0.010 f 2 +…( ) α3
1( )+…{ }R11 r( )cosφ +

−0.419+ 0.041 f 2 −…( )+ 0.057− 0.007 f 2 +…( ) α3
1( )2{ }R20 r( )+

0.019− 6.59 ⋅10−4( ) f 2 −…{ } α3
1( )2 R22 r( )cos2φ +

− 0.031+ 0.008 f 2 −…( ) α3
1( )+ 0.003+ 3.72 ⋅10−4( ) f 2 − 2.65⋅10−5( ) f 4( ) α3

1( )3{ }R31 r( )cosφ +
−0.001 f 2 + 6.1⋅10−5( ) f 4{ } α3

1( )3 R33 r( )cos3φ+
−0.014− 2.21⋅10−4( ) f 2 + 4.9 ⋅10−5( ) f 4{ } α3

1( )2 R42 r( )cos2φ +
0.257 − 0.024 f 2 − 8.07 ⋅10−4( ) f 4( )+ −0.031+…( ) α3

1( )2{ }R40 r( )+
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γ 1
1 f = 0
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1( ) f =0 ≈ 0.040 α 3

1( )+…{ }
                                                         

0.010 f 2 < 0.004 f = ±0.63

f ≈ 0.029λ
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 "  

Spherical aberration: 

The intensity distribution in the presence of spherical aberration for small aberrations 

and close to best focus may be approximated by: 

"  

Taking the coefficient " at two axial planes at a distance 2f apart, for example the 

two planes " : 

"  

f = ±0.63⇒α 2
0 = 0.63

4π 3
≈ 0.029λ

Ispherical r,φ; f ,α 4
0( ) ≈

0.228 − 0.012 f 2 +…( )+
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⎥
⎥
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0( )+…{ }
                                                         

�149

(6.16)

(6.17)

(6.18)



The " term describes the deviation from the linear response. If ones allows a 

10% deviation from the linear response, one gets a close to linear range from about 

" to about " for "  (or "  when expressed in Malacara rms units): 

 

 "  

Again it should be noted that the 10% deviation tolerance for f will be larger since the 

next higher order f term (which has been omitted) will reduce the deviation caused by 

the " term because it has a different sign (positive).  

All previously derived intensity equations (using the ENZ theory) were not 

normalised with respect to the maximum intensity at each focal plane (as was done for 

the FFT simulation results shown in Fig. 6.4 and Fig. 6.5). Normalising with respect 

to the maximum intensity is not trivial. The value of maximum intensity in a focal 

plane depends on the aberration coefficients and on the value of the focal parameter f. 

For small aberrations however one can determine the maximum intensity value by 

computing the on-axis intensity " in each plane. It was found that 

especially for the astigmatism (equation 6.7) and spherical aberration (equation 6.10) 

indicators, normalising the intensity distributions is advantageous when the wavefront 

aberration increases because quadratic " terms (and also higher powers) would 

cause the indicators to behave non-linearly (see Appendix B). The aberration and 

focal parameter terms (in equation 6.12, 6.14 and 6.18) affect to some extent the 

linear indicator and tend to decrease its value when the wavefront aberration 

increases. This decrease in the indicator’s value is partially compensated for by 

normalising the PSF because normalising increases the value of the fitted Zernike 

coefficient by " .  

A comparison of the fitting coefficients found using the FFT simulations with the 

analytical values obtained with the ENZ theory (the chosen " coefficients values 

−0.043 f 2

+ f − f f ≈1.53 f ≈ 0.07λ

f = ± 0.1
0.043

≈1.53⇒α 2
0 = 1.53

4π 3
≈ 0.07λ

−0.043 f 2

I 0,0, f ,α n
m( )

α n
m

1 I 0,0, f ,α n
m( )

α
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corresponds to " in terms of Malacara rms wavefront deviation for the 

respective aberration) are shown in table 6.1. The derived equations (ENZ theory) 

were normalised by multiplying the obtained values with the on-axis intensity 

"  to compare them with the FFT results (the FFT’s were normalised 

with respect to the maximum intensity at each focal plane, which is equivalent to an 

on-axis intensity normalisation when aberrations are small). 

0.071λ

1 I 0,0, f ,α n
m( )

Table 6.1 - Fitting coefficient comparison between FFT fit and ENZ Theory

0.235 0.237 0.282 0.286 0.269 0.261

0.000 0.000 0.000 0.000 0.000 0.000

0.059 0.061 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000

-0.412 -0.410 -0.390 -0.402 -0.428 -0.432

0.030 0.035 0.155 0.158 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000

-0.045 -0.041 0.000 0.000 0.000 0.000

0.007 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000

0.259 0.260 0.236 0.233 0.226 0.229

-0.025 -0.024 -0.086 -0.107 0.000 0.000

0.000 0.001 0.049 0.051 0.000 0.000

-0.079 -0.078 -0.076 -0.078 -0.064 -0.065
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The values found with the ENZ theory correspond well with the FFT results 

(differences in general less than 10%), except the values of "  in case of astigmatism 

and of "  in case of 6.4.  

Size of the fitting region 

In experiments one might be restricted to fit the intensity distribution using circular 

masks smaller than 1AU because of the size and limited numbers of available pixels 

for measuring. To assess the influence of the fit area on the aberration indicators, so 

far the intensity distribution fitting was restricted to a circular area of 1AU in 

diameter. Reducing the size of the fit area affects the coefficients of the fitted 

orthogonal circle polynomials. These changes in the fitting coefficients are in fact the 

same as scaling down Zernike coefficients to smaller pupil sizes, which is described 

by Dai formula [103]. For demonstration, a comparison will be made between the 

coefficient values computed with Dai’s formula and the ones obtained with the ENZ 

theory (equation 6.11, 6.14, 6.17) by substituting for a scaled radial coordinate 

" , where " is the pupil scaling factor. The value 3.832 represents 

the radial distance at which the first oder Bessel function has its first zero point 

(which corresponds to 1AU). The intensity equations, obtained with using the ENZ 

theory, were normalised by multiplying with the on-axis intensity " . 

Dai’s formula for non-normalised Zernike polynomials (it is reiterated here that 

orthogonal circle intensity polynomials are not normalised according to the Malacara 

normalisation)  is given by [103] and the re-scaled coefficients "  are: 

 

"  

where N is the total number of radial orders used for the expansion. As can be seen 

from Equation 6.20, only higher order coefficients (with the azimuthal order m) affect 

γ 4
2

γ 2
2

′r = ε 3.832r( ) 0 ≤ ε ≤1

1 I 0,0, f ,α n
m( )

!γ n
m

!γ n
m = ε n γ n

m + n +1( ) γ n+2i
m

i=1

N−n( ) 2

∑ −1( )i+ j n + i + j( )!
n + j +1( )! i − j( )! j!ε

2 j

j=0

i

∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
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" . In fig 6.9, results from the ENZ theory and Dai’s formula for the spherical 

aberration indicators (see Equation 6.17) are shown. For Dai’s formula the Zernike 

coefficients " obtained with the ENZ theory for " , " and 

" were used to calculate the effects of re-scaling the coefficients to accommodate 

smaller pupil sizes: 

Figure 6.9: Scaling the two spherical aberration indicators (see equation 6.10) to a smaller pupil size 
using A) Extended Nijboer-Zernike (ENZ) theory, B) Dai’s formula. The pupil were re-scaled by 

changing the scaling factor 𝜀 from 1 to 0.4. Pupil parameters are "  

Re-scaling can thus conveniently be computed using Dai’s formula. Figure 6.9 (A or 

B) show that the indicator based on "  for spherical aberration changes sign within 

the interval "  and that it is zero at a value of about " . The indicator 

based on "  can be used for retrieval of spherical for 𝜀 values in the range of either 

[0.4, 0.6] or for values somewhat less than 1. At 𝜀 values around 0.8, the indicator 

based on " is not suitable for indicating the presence of spherical aberration. In 

comparison the indicator based on "  is most sensitive at 𝜀 values between [0.8, 1] 

but its magnitude continuously decreases with smaller values 𝜀. The effects of 

decreasing the fit area on the indicators of coma " and astigmatism 

" are shown in Fig. 6.10. It is noted that the two coma indicators 

" or "  are measured at best focus (see Equation 5.13). 
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γ n
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Figure 6.10: Scaling A) astigmatism and B) coma aberration indicators (see equation 6.7 and 6.9, 
respectively) to a smaller pupil size using Dai’s formula. The pupil were re-scaled by varying the 
scaling factor 𝜀 from 1 to 0.4. Pupil parameters are " for astigmatism and

" for coma. 

The indicator for astigmatism (see equation 6.7) is best evaluated within the range for 

𝜀 = [0.7, 1]. For coma " terms are better suited for aberration retrieval than " terms, 

because " terms do not change sign over the entire range and the "  indicator is 

never zero. The "  tilt term is best measured in the range of 𝜀 = [0.7, 1]. From Figure 

6.9 and 6.10, one can conclude that a circular fit region between 0.7-1 AU is best 

suited and most sensitive to retrieve spherical aberration, coma and astigmatism. 

α 2
2 = 1.09, f = ±1.55( )

α 3
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6.5 Experimental Validation 

6.5.1 Aberration retrieval on experimental data


To validate the aberration retrieval method, an optical setup was built. The setup is 

illustrated in Fig. 6.11. 

Figure 6.11: Experimental Setup for aberration retrieval. L: Lens; BS: Beamsplitter; BS: Beamsplitter 
plate; DMM: Deformable Membrane Mirror; EMCCD: Electron-Multiplying CCD. 

Laser light (wavelength of 532 nm), injected in a single mode fibre, provides 

illumination for the experiments. Aberrations were applied with a Mirao 52e (Imagine 

Optics, France) DMM to light exitted by the fibre and collimated by lens L1. The 

DMM was calibrated in closed-loop mode as described in chapter 3 (section 3.1.2). 

Voltage combinations necessary to produce the first 15 Zernike modes were saved and 

used later on for open-loop operation of the DMM. The DMM is conjugated with the 

pupil of lens L4 (500mm) via a lens pair, L2 (100mm) and L3 (50mm) which reduced 

the beam diameter from about 10mm, at the DMM to about 5mm at L4. L4 focuses 

the laser beam onto the electron multiplying charged coupled camera (EMCCD; iXon 

885 Andor). 

The Zernike aberrations: primary astigmatism; primary coma; and spherical 

aberration were applied independently from each other with the DMM. Their 

amplitude was varied over a range of ~[-0.13λ 0.13λ] in steps of about ~0.027λ. 

Defocus was applied applied using the DMM by changing the value of the Zernike 
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" coefficient. Defocus was varied over a range of ~[-0.1λ 0.1λ] in steps of about 

~0.025λ. The CCD sensor auto-exposure setting was used at each frame so that the 

maximum intensity for each frame was about 90% of the saturation value and the 

camera was cooled down to -50° to minimise thermal noise. The diameter of the first 

dark ring of the focal spot was measured to be about 32 pixels on the camera.  

The intensity distribution in the different axial planes were fitted using orthogonal 

circle polynomials (Zernike polynomials) over a fixed circular area, centred around 

the pixel with maximum intensity. The fitting area of the focal spot was set by using a 

circular mask in the same way as described in chapter 3.  

Under small aberration assumptions the position of maximum intensity can be 

determined by interpolation with a second order 2D polynomial fit around the pixel 

with the highest intensity in any axial plane. This will be further referred to as the 

“maximum intensity fit”, which differs from the “intensity distribution fit” which 

involves fitting orthogonal circle polynomials. The position of maximum will be 

defined as the new centre of each image. When using FFT simulations, "  

represents the matrix element with the highest calculated intensity, while for a CCD, 

"  is the pixel with highest intensity. Only second order polynomials were used, 

because contributions of higher order terms would be small around a maximum (the 

fit was in 2D area having a width smaller than 0.25AU). Hence, the following fit 

function, was used to estimate " : 

 "  

 

That " is an extremum means that ∂I/∂x=0; and ∂I/∂y=0 when " . 

Thus  

    "  

Z2
0

m,n( )

m,n( )

x0, y0( )

 I(x,y) = fitresult(x,y) = p00  + p10x + p01y + p20x
2  + p11xy + p02y

2

x0, y0( ) x, y( ) = x0, y0( )

p10  + 2p20x0  + p11y0  = 0
p01  + 2p02y0  + p11x0  = 0

⎧
⎨
⎪

⎩⎪
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Which may also be written in matrix form as: 

If the determinant of the matrix, which is " , is ≠ 0, then the solution, 

which involves matrix inversion, is  

� 


The fitting range is then shifted accordingly, provided that the maximum position 

would be shifted by more than 10% of the distance between two pixels (only 

significant changes should be taken into account): 

 "  

The parabola approximation used only holds in the vicinity of a maximum. For an 

aberration such as coma, the intensity distribution around a maximum may be better 

described by including higher order polynomials. However, finding the position of 

maxima in such circumstances is more complicated and a more viable method would 

require more complex algorithms which are beyond the scope of this thesis. To fit a 

parabola through data points, one needs a minimum of three data points. The parabola 

should be fitted in a region < ~0.3AU (range where the intensity can be well described 

with a parabola). Therefore, the diameter of the first dark ring of the Airy Disk should 

be at least 9 pixels.  

For each individual aberration, the different indicators " were 

plotted in Fig. 6.12-6.15 to show to what extent the characteristic indicator is sensitive 

to its particular aberration, while the others are hardly changing. 
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For coma only one orientation (vertical coma) is plotted (similar results were obtained 

for the horizontal orientation). For "  the average value of the coma indicators, 

measured at the three defocus values " , was taken. Over 

such a small defocus range, the coma indicator will not change significantly (see Fig. 

6.5, vertical coma: " terms). Only values within the circular mask were 

used for the Zernike fit. It is reiterated here that the orthogonal circle polynomials are 

defined over a radius ranging from zero to one only. Thus, the radial orthogonal circle 

polynomials were normalised such that " . A circular mask with a diameter of 26 

pixels was used for fitting (which corresponds to about 0.81AU). The position of 

maximum intensity was determined with a maximum fit using a square 0.21AU mask. 

Table 2.1 summarises the most important experimental parameters used for the 

aberration retrieval experiments.  

Cind
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Table 6.2 - Experimental parameters

Aberratio
n Indicator Number of axial 

planes necessary
Diameter of 
circular fit 

area (in AU)

Width of 
square 

maximum fit 
area (in AU)

Camera auto-
exposure

2 0.81 0.21 Yes

2 0.81 0.21 Yes

at least 1 0.81 0.21 Yes

2 0.81 0.21 Yes
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6.5.2 Experimental data on the coma indicator


The following plots show experimental data obtained with the optical setup shown in 

Fig. 6.11. The single aberration experiment whereby coma was applied is shown in 

Fig. 6.12. For each indicator, the y-axis limit was chosen to correspond to the highest 

measured indicator value for that particular aberration (thus ±0.2 for " and " ; and 

±1 for " and " ; see Fig 6.12a-15a for the highest measured indicator values).   

Figure 6.12: Experimental data. Primary aberration indicators for varying amounts of vertical coma. 
The coma indicator is measured at best focus. The orthogonal circle polynomials are fitted in the 

central part of the intensity distribution in a circular area with a diameter of about 0.81AU. The three 
figures at the bottom show the primary vertical astigmatism, primary oblique astigmatism and primary 

spherical aberration indicators. The "  term was used for the " and the"  term was used for the " . 

The coma wavefront aberration amplitude was varied over the range of " whereas defocus 

varied over a range of " . 

In Fig. 6.12a the coma indicator " shows an almost linear behaviour around zero but 

starts to become non-linear for larger aberration ( " , see in particular the left 

hand side of the graph). The other aberration indicators (see Fig. 6.12 b-d) are barely 

affected by the presence of a coma wavefront aberration. 
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6.5.3 Experimental data on the vertical astigmatism indicator


The single aberration experiment where vertical astigmatism was applied is shown in 

Fig. 6.13. 

Figure 6.13: Experimental data. Primary aberration indicators for varying amounts of vertical 
astigmatism. The vertical astigmatism indicator is calculated at paired focal planes " . The 

orthogonal circle polynomials are fitted in the central part of the intensity distribution in a circular area 
with a diameter of about 0.81AU. The three figures at the bottom show " . The"  term 

was used for the " and the"  term was used for the " . The vertical astigmatism wavefront 

aberration amplitude was varied in the range of " whereas defocus varies in the range of 

"  

The vertical astigmatism indicator shows an approximately linear behaviour around 

zero and becomes less linear for larger defocus ( " ) and for larger values of 

vertical astigmatism " values (see Fig. 6.13a). To estimate the error of " at 

larger defocus, a linear curve was fitted through the data points in the aberration 

amplitude range of [0.075λ, 0.075λ] at 0.1λ defocus. The equation of the fitted curve 

"  was used to calculate by means of extrapolation the " values at 
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±0.125λ which were then compared with the measured values. The difference (or 

error) in the " values at ±0.125λ is ~9%. Doing the same estimation at a defocus 

value of 0.05λ (recommended value, see section 6.2.3) results in an error < 5%. The 

other aberration indicators are hardly affected by the presence of vertical astigmatism 

(see Fig. 6.13 b-d). 

6.5.4 Experimental data on the oblique astigmatism indicator


The single aberration experiment where oblique astigmatism was applied is shown in 

Fig. 6.14. 

Figure 6.14: Experimental data. Primary aberration indicators for varying amounts of oblique 
astigmatism. The oblique astigmatism indicator is calculated at paired focal planes " . The 

orthogonal circle polynomials are fitted in the central part of the intensity distribution in a circular area 
with a diameter of about 0.81AU. The three figures at the bottom show the primary vertical 

astigmatism, primary oblique astigmatism and primary spherical aberration indicators. The "  term was 

used for the " and the"  term was used for the " . The oblique astigmatism wavefront aberration 

amplitude was varied in the range of " whereas defocus varies in the range of "  
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Similar to vertical astigmatism, the oblique astigmatism indicator shows an 

approximately linear behaviour (see Fig. 6.14a) around zero but which becomes less 

linear for larger defocus values ( " ) and for larger values of oblique 

astigmatism " . To estimate the error of " at larger defocus, a linear curve 

was fitted through the data points in the aberration amplitude range of [0.075λ, 

0.075λ] at 0.1λ defocus. The equation of the fitted curve " was used to 

calculate by means of extrapolation the " values at ±0.125λ which were then 

compared with the measured values. The difference (or error) in the " values at 

±0.125λ is ~12%. Doing the same estimation at a defocus value of 0.05λ 

(recommended value, see section 6.2.3) results in an error < 9%. The other aberration 

indicators are barely affected by the presence of oblique astigmatism (see Fig. 6.14 b-

d). 
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6.5.5 Experimental data on the spherical aberration indicator


The single aberration experiment where spherical aberration was applied is shown in 

Fig. 6.15. 

Figure 6.15: Experimental data. Primary aberration indicators for varying amounts of spherical 
aberration. The spherical aberration indicator is calculated at paired focal planes " . The 

orthogonal circle polynomials are fitted in the central part of the intensity distribution in a circular area 
with a diameter of about 0.81AU. The three figures at the bottom show the primary vertical 

astigmatism, primary oblique astigmatism and primary spherical aberration indicators. The "  term was 

used for the " and the"  term was used for the " . The spherical wavefront aberration amplitude 

was varied in the range of " whereas defocus varies in the range of "  

As can be seen from Fig. 6.15a the spherical aberration indicator also shows an 

approximately linear behaviour when the amount of spherical wavefront aberration 

increases. For larger defocus ( " ) and for larger values of spherical 

aberration "  the indicator is no longer linear. To estimate the error of " at 

larger defocus values, a linear curve was fitted through the data points in the 

aberration amplitude range of [0.075λ, 0.075λ] at 0.1λ defocus. The equation of the 
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fitted curve " was used to calculate by means of extrapolation the "

values at ±0.125λ which were compared with the measured values. The difference (or 

error) in the " values is ~20%. For a defocus value of 0.05λ (recommended value, 

see section 6.2.3) the error is < 9%. The other aberration indicators are hardly affected 

by the presence of spherical aberration (see Fig. 6.15 b-d). 

6.5.6 Conclusions on experimental results


In the single aberration scenario, the amount of aberration which can be retrieved with 

the intensity distribution fit method, using orthogonal circle polynomials, lies in the 

range of about [0.03λ, 0.13λ] with a precision of roughly ±0.01λ. Smaller values than 

0.03λ are difficult to retrieve because the intensity distributions are hardly distorted by 

aberrations, whereas for aberration amplitudes above 0.13λ the curves become non-

linear and the primary aberration retrieval process is not trivial. It is noted that 

aberration smaller than 0.03λ barely affect the image quality of imaging system. 

From the previous it follows from Fig. 6.12a-6.15a that the amplitude of primary 

aberration can be determined, when both the indicator value and the amount of 

defocus are known. We will later show (see section 6.5) that this can also be used 

when small amounts of additional primary aberrations are present. 

6.5.7 Varying the fit region diameter


In Fig. 6.16, the effect of reducing the diameter of the fit region on experimental data 

is shown and compared with the values obtained with Dai’s formula [103] (see 

equation 6.20). Experimental aberrated intensity distributions with a wavefront 

aberration of " were fitted within a circular region with varying diameters 

(range 0.5-1 AU). The fitting procedure is explained in section 6.4. The obtained 

fitting coefficients were compared with the coefficients calculated with Dai’s formula. 
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The input for Dai’s formula (for a fit region of a 1AU) was calculated using the ENZ 

theory. 

 

Figure 6.16: Comparison between scaling down the fitting coefficients to smaller fit regions on 
experimental data or by computation with the Dai formula for a) vertical astigmatism, b) vertical coma 

and c) spherical aberration.  

Theoretical and experimental results seem to be in good agreement and thus it 

confirms that reducing the diameter of the fit region is in fact the same as scaling 

down the Zernike coefficients to smaller pupil sizes, as described by Dai’s formula 

(see equation 6.20).     
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6.6 Multiple aberration scenarios 

6.6.1 Simulation results


The performance of the aberration retrieval method in the presence of multiple 

aberrations will be discussed now. Often in optical imaging systems, such as 

microscopes, aberrations can appear in combinations rather than individually. The 

variations of " , " or "  (see section 6.2.2) in the presence of other primary 

aberrations is studied using Fourier optics simulations. Ideally the indicators would 

not be affected by cross-talk of other aberrations and their values would stay constant. 

In the following the simulation results show the aberration amplitude range where the 

indicators stays sufficiently constant before they become affected by aberration cross-

talk.  

 An analysis based on the ENZ theory became too complicated. It would require the 

extension of the Taylor series to include further terms, involving probably also higher 

order polynomials (>16). First try-outs resulted already in cumbersome expressions 

containing a large number of aberration product terms. Thus aberration cross-talk was 

studied using Fourier optics simulations only. 

6.6.1.1 Cross-talk simulation - Astigmatism 

 

In order to compare the FFT simulations with experimental results, the method for 

finding the position of the maximum intensity of the two dimensional PSF described 

previously (see equations 5.23-5.27) was used. First the two indicators of the two 

primary aberrations which have shown to be less influenced by crosstalk, i.e. 

astigmatism and spherical aberration, are discussed. Starting with the astigmatism 

indicator and coma cross-talk, the phase function in the pupil plane is: 

"  
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For astigmatism and spherical aberration, the phase function in the pupil plane is: 

"  

The value of " , the coefficient for astigmatism, is kept constant while either "  or 

"  is varied. For "  three different values were chosen: [0.035λ, 0.07λ, 0.105λ] . The 

"  and "  coefficient were each varied within a range of [-0.1λ, 0.1λ]. "  was 

evaluated at a defocus of " . The results of these simulations are shown in 

Fig. 6.17.  

Figure 6.17: Influence of coma "  and spherical aberration " on "  for three different values of 

the astigmatism coefficient "  with varying amounts of: a) vertical coma " ; 

b) spherical aberration " . 

Figure 6.17 shows that crosstalk becomes more significant with increasing amounts of 

astigmatism. Cross-talk effects for coma and spherical aberration are similar. For 

values of " up to about 0.05λ, the astigmatism indicator is hardly affected by cross-

talk. Thus, for " > 0.05λ, the astigmatism indicator may be considered sufficiently 

constant for aberration retrieval provided coma and spherical aberration are within a 

range of ~ ±0.07λ ( " varies by less than 6%). Beyond the range ±0.07λ, the 

variation of " become larger than 10%. It is further noted that the astigmatism 
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indicator is symmetrical around the origin both for coma as well as for spherical 

aberration. 

6.6.1.2 Cross-talk simulation - Spherical aberration 

 

Now the crosstalk effects on " are considered. For spherical aberration and vertical 

astigmatism, the phase function in the pupil plane is: 

"  

For spherical aberration and coma, the phase function in the pupil plane is: 

"  

The "  is kept constant while either "  or "  is varied. For "  three different 

values were chosen: [0.035λ, 0.07λ, 0.105λ]. The values of the "  and "  coefficient 

were each varied within a range of [-0.1λ, 0.1λ]. "  was evaluated at a defocus of 

" . The results of these simulations are shown in Fig. 6.18. 

Figure 6.18: Influence of astigmatism " and coma "  on "  for three different values of the 

spherical aberration coefficient "  with varying amounts of: a) astigmatism 

" ; b) coma " . 
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" , in each of the two different focal planes, is more affected by coma than by 

astigmatism. Figure 6.18 shows that crosstalk becomes more significant with 

increasing amounts of spherical aberration. Below 0.07λ, "  is hardly affected by 

cross-talk. For " > 0.07λ, the indicator " is considered sufficiently constant over 

the range ~ ±0.05λ (9% variation at 0.05λ of coma). The influence of astigmatism on 

the " can be neglected (less than 8% variation at 0.1λ of astigmatism). It is further 

noted that "  is symmetrical around the origin both for astigmatism as well as for 

coma variations. 

6.6.1.3 Cross-talk simulation - Coma 

Now the crosstalk effects on the coma indicator are considered. For " , the " was 

chosen (see equation 6.9) because it showed to be most sensitive to coma. The phase 

function in the pupil plane for coma and vertical astigmatism is: 

"  

For coma and spherical aberration, the phase function in the pupil plane is: 

"  

The value of "  is kept constant while either "  or " is varied. For "  three 

different values were chosen: [0.035λ, 0.07λ, 0.105λ]. The values of the "  and "  

coefficient were each varied within the range of [-0.1λ, 0.1λ]. The results of these 

simulations are shown in Fig. 6.19.   
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 Figure 6.19: Impact of astigmatism " and spherical aberration "  on the "  (using the "

coefficient) for three different values of " with varying amounts of: a) 

astigmatism " ; b) spherical aberration " . 

The coefficient " is more affected by a "  than by " . The amount of tolerable 

astigmatism is slightly higher than spherical aberration (for cross-talk resulting in a 

10% change in " , " can be ~15% larger than " ). Figure 6.19 shows that 

crosstalk becomes more significant with increasing amounts of coma. For small coma 

amplitudes " (up to ~0.05λ), the value of " changes by less than 10% when 

" . For " > 0.05λ, " is considered sufficiently constant (value varies by 

less than 10%) and reliable enough for aberration retrieval, provided the other primary 

aberrations are within a range of ~ ±0.05λ. Surprisingly, " is less affected by 

astigmatism cross-talk at " than at " but then increases again for 

larger amounts of astigmatism. An almost flat curve is obtained for "  . It is 

noted that the "  is symmetrical around the origin both for astigmatism as well as 

for spherical aberrations variations. 

Based on the previous results (Fig. 6.17-19) aberration retrieval, in the presence of 

multiple primary aberrations, is possible and reliable (error smaller than 10%) if, as 

rule of thumb, the rms wavefront aberrations is not considerably larger than 0.1λ. 
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6.6.2 Experimental results


In the following experiments, first a constant amount of ~0.06λ of a primary 

aberration (either vertical astigmatism, vertical coma or spherical aberration) was 

applied with the DMM. Then a second primary aberration was additionally applied 

and varied over the range of ~[-0.13λ, 0.13λ] in order to mimic the numerical 

simulation in section 6.6.1. Defocus "  (range ~[-0.1λ, 0.1λ]) was also applied with 

the DMM. The best focus plane was determined by selecting the axial plane wherein 

the camera image has the highest intensity pixel value of all (prior to using auto-

exposure). Then, auto-exposure was used to assure that for each measured intensity 

distribution the pixel of highest intensity was at about 90% of the intensity saturation 

value of a pixel, this gave a high signal-to-noise ratio. The aberration indicators 

characteristic for the aberration combinations applied (astigmatism-coma, 

astigmatism-spherical aberration, coma-spherical aberration) were plotted (figs. 

6.20-6.22). These figures show how the different aberration indicators are affected by 

cross-talk caused by the other primary aberrations. To evaluate " and " two 

intensity distributions on opposite focus are needed. Aberration retrieval involved 

using five camera images: three camera images close to best focus (defocus values: 

~[-0.025λ, 0, 0.025λ]) and two defocused images with the same amount of defocus 

but lying on opposite sides of best focus plane (defocus values: ~ ±[0.025λ, 0.05λ, 

0.075λ, 0.1λ]). It is possible to retrieve coma with only one of these camera images 

but in this experiment three images were taken to average the " value. To mitigate 

the effects of cross-talk by the DMM, the corresponding aberration indicator curves 

obtained for the single aberration scenario (Section 6.5) were subtracted from the 

plotted curves in Figure 6.20-22. For example, the measured values of when only 

varying spherical aberration and no astigmatism was present (see Fig. 6.15c) were 

subtracted from the measured curve that was obtained by applying a constant amount 

of astigmatism and varying only the amount of spherical aberration. To estimate the 

amount of the aberrations present, the measured indicators should be compared with 
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their respective reference curve at the same defocus value (figs. 6.12a-6.15a, show 

single aberration indicator curves without aberration cross-talk).  

6.6.2.1 Experimental cross-talk - Astigmatism 

First, the crosstalk effects with regards to " (Equation 6.7) are discussed. A 

constant amount of vertical astigmatism "  was applied. Vertical coma "

and spherical aberration " were then varied separately from each other (range 

~[-0.13λ, 0.13λ]). " was evaluated using axial plane pairs having different 

amounts of defocus " , respectively. The 

experimental results are shown in Fig. 6.20. 

Figure 6.20: Experimental data on the influence of coma " and spherical aberration "  on " : A 

constant amount of vertical astigmatism "  was applied with the DMM while varying either a) 

" or b) " . " was evaluated using axial plane pairs having different amounts of defocus 

" , respectively. 

The astigmatism indicator "  is more affected by coma (Fig.6.20b) than by 

spherical aberration (Fig. 6.20a). For increasing amounts of coma and spherical 

aberration, the value of "  decreases and tends towards zero. The coma cross-talk 

is somewhat asymmetrical (decrease is stronger on the left hand side in Fig. 6.20b). 
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When using axial plane pairs with defocus values up to 0.05λ, "  remains 

sufficiently constant within the aberration range of ±0.07λ resulting in an aberration 

estimation error smaller than 10%. When evaluating the indicator at larger defocus, 

the aberration range should not exceed ±0.05λ to satisfy an aberration estimation error 

smaller than 10%. To estimate the amount of astigmatism, the measured indicator 

value should be compared with its respective reference curve (see section 6.5.3 and 

Fig. 6.13, " in the sole presence of astigmatism without aberration cross-talk). For 

example, the value of " for " (centre of the graph Fig. 6.20a) is about -0.36 at 

a defocus value of 0.075λ which corresponds " . 

6.6.2.2 Experimental cross-talk - Spherical aberration 

Now, the attention is drawn to the crosstalk affecting the spherical aberration indicator 

" (Equation 6.10). A constant amount of spherical aberration " was 

applied. Then, either astigmatism "  or coma "  was varied (range ~[-0.13λ, 

0.13λ]). " was evaluated using axial plane pairs having different amounts of 

defocus " , respectively. The experimental 

results for "  are shown in Fig. 6.21. 
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Figure 6.21: Experimental data on the influence of astigmatism " and coma " on " : A constant 

amount of spherical aberration "  was applied with the DMM while varying either a) " , or 

b) " . " was evaluated using axial plane pairs having different amounts of defocus 

" , respectively. 

When using axial plane pairs with defocus values up to ±0.05λ, " remains almost 

constant and is hardly affected by the presence of either astigmatism within an 

amplitude range of ±0.07λ, or coma within an amplitude range of ±0.05λ. Outside 

these ranges the values of " become dependent on the amount of astigmatism "  

and coma "  present. The spherical aberration indicator " is more affected by the 

presence of coma than by astigmatism. With increasing amounts of astigmatism " , 

the negative value of " gets closer to zero, while, with increasing amounts of coma, 

the value of "  tends to increase to larger negative values. As a consequence, "

would be underestimated in the presence of large amounts of astigmatism and 

overestimated with increasing amounts of coma. Since the amount of "  and the 

amount of defocus are both known, the corresponding amount of spherical aberration 

can easily be determined (see section 6.5.5 and Fig. 6.15). For example, the value of 

" for " (centre of the graph Fig. 6.21a) is about -0.05 at a defocus value of 

0.075λ and which corresponds to " . 
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6.6.2.3 Experimental cross-talk - Coma 

Last, the crosstalk affecting " (Equation 6.9) is considered. A constant amount of 

coma " was applied. Astigmatism " and spherical aberration " were then 

varied independently from each other (over a range of ~[-0.13λ, 0.13λ]). The 

experimental results are shown in Fig. 6.22. 

Figure 6.22: Experimental data on the influence of astigmatism " and spherical aberration " on 

" : A constant amount of vertical coma "  was applied with the DMM while varying a) "

or b) " .  

The "  is less constant than " and " (see Fig. 6.20 and 6.21, respectively). The 

value of "  decreases with increasing amounts of spherical aberration " , whereas 

the curve undulates with increasing amount of astigmatism " . In the aberration 

amplitude range ±0.05λ, the " value is almost constant and the aberration 

estimation error is smaller than 10%. To estimate the amount of coma, the measured 

indicator value should be compared with its respective reference curve (see section 

6.5.2 and Fig.6.12, " in the sole presence of coma without aberration cross-talk). 

For example, the value of " for " (centre of the graph Fig. 6.22a) is about 0.05 

and which corresponds to " . This cross-talk could be caused either by the 

DMM operated in open-loop, or by small misalignments of the pupil relative to the 

centre of the DMM (see chapter 3, section 3.1.3) 
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The experimental results (fig 6.20-6.22) resemble the FFT simulation results (fig 

6.17-6.19). Especially when it comes to the onset of cross-talk (aberration amplitude 

at which cross-talk becomes significant), a comparable behaviour is observed. The 

indicator curves look similar, especially for " and " . The "  differs most as 

can be seen in fig 6.22 where the curves seem to be more subject to noise issues. This 

might be caused by inaccuracies in finding the position of maximum intensity on the 

EMCCD detector. A second order polynomial does not describe well the intensity 

distribution of a coma aberrated spot around its maximum (especially in the direction 

of the coma flare). Including third order polynomials might be more accurate. Another 

possible explanation for the discrepancy between simulations and experimental results 

could be the open-loop control of the DMM. Applying combinations of different 

aberrations, in open-loop, can also create cross-talk, especially when the amount of an 

aberration increases. Nevertheless, as a proof of concept the open-loop experiment 

demonstrates the viability of the method but better results may be achieved by 

operating the DMM in closed-loop. 

6.7 Conclusions  

From what has been presented so far, it can be concluded that the aberration indicators 

proposed are suitable for linear aberration retrieval of primary aberrations 

(astigmatism, coma and spherical aberration). The astigmatism and spherical 

aberration indicator are best measured at paired defocused planes (±0.05λ defocus), 

whereas the coma indicator is best measured close to best focus. The smallest 

aberration amplitude that can be reliably detected is ~0.025λ. The indicator curves 

remain linear for aberration amplitudes up to at least 0.13λ (in the presence of a single 

primary aberration). In the presence of two different primary aberrations, in particular 

for astigmatism and spherical aberration, the indicators can, as a rule of thumb, be 

used for aberration retrieval for rms wavefront aberrations smaller than 0.1λ. The 

method can also potentially detect the three different primary aberrations. However, 

considering that the aberration amplitude detection range is ~ 0.03-0.13λ, its 

VAind Sind Cind
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application range for measuring three different primary aberrations would be more 

limited. 

The described aberration retrieval method, based on fitting orthogonal circle 

polynomials through intensity distributions, has the advantage of being robust in 

terms of least-square fitting (using orthogonal functions to fit experimental data) and 

mitigates adverse effects of noise by limiting the fit to a central relatively high 

intensity region. The proposed method is relatively simply to implement. It is a non-

iterative method, and the aberration indicators vary linearly with their respective 

aberration and allow primary aberrations in optical imaging systems to be measured 

with a small number of measurements (< 5 camera images). There is no need to 

compute FFT’s as with the Gerchberg-Saxton algorithms, nor is it necessary to use the 

complex analytical expressions of the ENZ theory for computing aberrated intensity 

distributions through focus. For the aberration range tested, our aberration retrieval 

method is non-iterative in contrast to both the Gerchberg-Saxton algorithm and the 

phase retrieval method based on the ENZ theory (which has been used for high NA 

optical lithography systems), which are both iterative. In comparison with the modal 

method, described in chapter 4, which requires ideally 5 measurements per aberration 

and a DMM to iteratively apply Zernike modes, the here proposed aberration retrieval 

method needs only 3 images of the aberrated intensity distribution through focus (a 

minimum of three images, but ideally five to average the coma indicator around best 

focus). It is recommended that there are at least 9 pixels within the Airy disk diameter 

for retrieving primary aberrations with this method. Other linear phase retrieval 

methods [104] are often limited to small aberration ranges (< 0.07λ) but with the new 

retrieval method aberrations with amplitudes up to 0.13λ can be retrieved.  
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6.8 Applications 

A useful application for this aberration retrieval technique would be in testing the 

quality of manufactured lenses. The technique provides a simple, non-iterative, quick 

(3 or 5 images per lens) and also relatively cheap method (it only requires a scanning 

stage and a camera - no need for wavefront sensors, interferometers or DMMs). A 

simple setup for testing lenses is depicted in Fig. 6.23. Although this has only been 

demonstrated for a low NA lens, this aberration retrieval method could be further 

studied and possibly expanded to higher NA microscope objectives 

Figure 6.23: Optical setup With three lenses, i.e the test lens and an objective whose aberrations are 
known followed by a low NA lens, i.e. the NA should assure that there are enough pixels to span over 
the Airy Disk. The primary aberrations are retrieved using the aberration retrieval method involving 

Zernike polynomial fitting of an aberrated PSF through focus.  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7. Conclusions and Future Work 

7.1 Conclusions 

The work and results presented in this thesis relate to aberration retrieval techniques 

based on intensity data in and around focus, as well as methods for subsequently 

correcting for the aberrations present. The methods were developed for laser scanning 

microscopes but the aberration retrieval method described in Chapter 6 could also be 

applied in a wider range of microscopes (e.g. widefield microscope) or other types of 

optical imaging systems, such as telescopes and optical lithography projection lenses. 

In the following concluding remarks on the different Chapters of this thesis are given.  

In Chapter 3 a homebuilt confocal microscope, with integrated AO, was presented. 

The intensity detector consisted of an EMCCD camera, as opposed to the more 

conventional pinhole and photodetector typical used in confocal microscopy. Using 

the EMCCD, confocal detection was achieved by selecting pixels within a circular 

area (41 pixels were selected to mimic a 1AU pinhole in the microscope setup 

described in Chapter 3) and adding up their measured intensity values. It was shown 

that a closed-loop calibration of the DMM was necessary to obtain Zernike modes 

with a high degree of purity (to an accuracy of λ/50 rms). Furthermore, it was found 

that misalignment of the pupil of the objective lens with respect to the DMM pupil, 

could generate unwanted aberrations when applying Zernike modes with the DMM 

and thus compromise the quality of the aberration correction. 

A confocal modal sensor-less wavefront sensor was studied in the home-built 

confocal microscope. The DMM was used to sequentially impose varying amounts of 

Zernike aberrations, with the aim of maximising the intensity of light passing through 

pinhole of the confocal microscope to correct for aberrations. The sensitivity of the 

method with respect to pinhole size and aberration type was investigated. The 

experimental results suggest that the pinhole diameter should be smaller than 1AU to 

�179



have a good sensitivity for all tested Zernike aberrations (up to radial order 4). Modal 

sensitivity improves with decreasing pinhole diameter but no significant improvement 

is obtained below ~0.3AU. Large aberrations (> 0.071λ rms) make modal wavefront 

sensing challenging because of aberration cross-talk, and the potential presence of 

local sub-maxima which can lead to stagnation of the modal optimisation process. In 

this thesis, an optimisation strategy is proposed to tackle large aberrations more 

efficiently by using a wavefront pre-correction determined from ray-tracing 

simulations of the sample. Starting the optimisation with a ray-tracing pre-correction 

applied to the DMM simplifies the final correction procedure and reduces the time 

taken to complete a modal optimisation by minimising the number iteration steps 

necessary for correction. It was also shown that when sample parameters (refractive 

index, thickness, curvature, etc) are not well known, an estimated ray-tracing pre-

correction would still reduce the sample aberration to a more manageable level and 

therefore speed up the correction process. Increasing the correction speed will reduce 

the risk of photon damage by exposing the sample to light for as little time as 

possible. It would also be beneficial for biological samples which do not feature 

complex refractive index distributions. The pre-correction optimisation approach 

gives more flexibility when correcting for aberrations, e.g. one might focus deeper 

into transparent samples, or one could make local pre-corrections when scanning an 

image plane.  

The double-pass effect, which causes cancellation of odd aberration after second pass 

through the optical system, makes wavefront sensing in reflection setups challenging. 

A confocal edge scan, which involves scanning the focal spot over an edge, is shown 

to detect the presence of coma (an odd aberration) in a reflective confocal setup. The 

orientation of coma can be determined from scanning the spot over two edges which 

are perpendicular to each other. The amplitude of the coma aberration can be 

estimated by comparison of the measured edge responses with theoretical curves. The 

sensitivity of the method can be increased by reducing the size of the pinhole. Coma 

amplitudes > 0.035λ and up to about ~0.14λ, with an accuracy of ±0.02λ, were 

detectable with the proposed edge scan method. For larger amounts of coma, the edge 
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response is strongly distorted which would make any further analysis difficult. The 

method offers a simple way to break the symmetry and detect coma in reflection 

confocal microscopes. 

In the last chapter, a novel aberration retrieval method was presented to determine 

primary aberrations by making use of information about the intensity distribution at 

and around focus, within a volume that is bound by the first dark ring of the Airy spot 

(at a distance of 1 AU from the centre). The method requires 3 intensity distributions, 

preferably one intensity distribution at best focus and two intensity distributions at 

opposite side of best focus (defocus: " ), to retrieve the primary 

aberrations. The intensity distribution within the first dark ring of the Airy spot are 

fitted with a set of orthogonal polynomials in this case Zernike polynomials are used 

for convenience. Using specific combinations of the coefficients from the fitted 

polynomials a set of aberration indicators are determined for the primary Zernike 

aberrations. These indicators are selected to vary linearly with the aberration of 

interest and to be insensitive to the presence of other aberrations. The method works 

best in the presence of a single aberration where amplitudes up to at least 0.13λ can be 

retrieved linearly with a precision of roughly ±0.01λ. The method can also retrieve 

aberration combinations as long as the total wavefront rms of the aberrations is within 

0.1λ rms. The method is numerically robust because orthogonal circle polynomials are 

used for fitting the intensity distributions. In addition, the effects of shot-noise are 

mitigated, because the fit is performed only in a relatively high intensity area. For the 

aberration range tested, the aberration retrieval method is non-iterative in contrast to 

both the Gerchberg-Saxton algorithm and the phase retrieval method based on the 

ENZ theory (which has been used for high NA optical lithography systems), which 

are both iterative. In comparison with the modal method, described in Chapter 4, 

which requires ideally 5 measurements per aberration and a DMM to iteratively apply 

Zernike modes, the here proposed aberration retrieval method needs only 3 images of 

the aberrated intensity distribution through focus (a minimum of three images, but 

ideally five to average the coma indicator around best focus). To our knowledge the 

α 2
0 < 0.07λ
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method described in Chapter 6 is the fastest phase retrieval method for determining 

primary aberrations. 

7.2 Future Work 

The work in this thesis has resulted in the development of novel aberration retrieval 

techniques and correction. In particular the method, described in Chapter 6, is a novel 

aberration retrieval technique which could be further explored. The method has been 

developed to retrieve primary aberrations in low NA systems with homogeneous 

illumination. Some aspects which could be addressed in the future are: 

• How non-homogeneous pupil illuminations (e.g. Gaussian beam) affect the 

performance of the aberration retrieval method. Non-homogeneous illumination 

can easily be implemented in diffraction simulations by modifying the amplitude 

distribution in the pupil. 

• Addressing the applicability of the method to high NA systems. This could be 

done by taking into account the vectorial character of light and polarisation 

effects. Simulations using vectorial diffraction theory, would shed light on the 

capability of the method to retrieve primary aberrations in high NA systems. 

• Investigating cross-talk using the ENZ theory to obtain analytical expressions for 

intensity distributions in the presence of multiple aberrations. These expressions 

would help to get a better understanding of cross-talk effects and have the 

potential to allow an extension of the range over which aberration retrieval is 

possible (it would allow non-linear effects to be taken into consideration). 

• Exploring the capability of the method to retrieve higher order aberrations. So far, 

the method has been limited to primary aberrations, which are, in general, the 
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most important aberrations in optical systems. The effect of higher order 

aberrations on the intensity distribution is described by higher order Bessel 

functions (see Appendix C, Figure C.1). Higher order Bessel functions have their 

maxima outside the first dark ring of the Airy spot intensity pattern. It is thus 

conceivable that higher order aberrations can be retrieved by using intensity data 

outside the Airy disk. Enlarging the fit area or limiting the fitting to a ring region, 

outside the Airy disk, could allow retrieval of these higher order aberrations 

As regards the edge scan method for detecting the presence of coma in reflection 

setups, the edge response produced by other odd aberrations, such as trefoil, could 

also be considered for further work. It should be mentioned however that trefoil is an 

aberration which, in general, does not deteriorate the quality of industrial optical 

imaging systems. Optical metrology is an area wherein the edge scan method would 

be useful. In metrology, microscopes are used for measuring the topography of 

samples. An odd aberration such as coma would limit the capability of the microscope 

to resolve surface features. Coma could be easily detected with the edge scan method 

and then be corrected for before measuring surface features.  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Appendix A 
  

Here the way ray-tracing was implemented in Matlab is discussed. In this thesis ray-

tracing was used to determine sample induced wavefront aberrations in the pupil 

plane of the microscope’s objective. The samples were simulated as simple 

geometrical objects (cylinders, plates). Ray-tracing is used in optical design to 

quantify and analyse the imaging performance of optical systems. Ray-tracing is a 

process of tracking the path of a ray (or rays) from surface to surface as a sequence of 

successive transfers between adjacent surfaces and entails changes in direction of a 

ray after refraction on a surface (or reflection). It involves the simple geometry of 

straight lines for the transfer, and uses Snell's law for finding the direction of the ray 

after refraction. Optical path differences of rays in the entrance pupil plane of an 

objective are used to determine the wavefront aberrations. Deviations from a spherical 

reference wavefront are caused by aberrations. A calculated wavefront may be 

decomposed in terms of Zernike aberrations (see Chapter 2). For ray-tracing we have 

chosen to follow the method described by Welford in [105]. 

 

Starting with Snell’s law: 

"  

where n and n’ are the refractive indices of the first and second medium, respectively. 

I and I’ are the angle of incidence and refraction. For three dimensional ray tracing, 

one can use the vector form of Snell’s law which is given by: 

"  

If this equations are multiplied by " we obtain " which can 

also be written as "  and thus as 

"  ): 
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"  

where r and r’ represent the incident and refracted ray vectors. Expanding the 

previous expression in scalar form we obtain the following set of equations: 

 

"  

where 

 

"  

L, M, N are the direction cosines of the incident ray, L’, M’, N’ are the direction 

cosines of the refracted ray, and " are the direction cosines of the surface 

normal on the refractive surface. Following the ray tracing method described by 

Welford [105], rays propagate from one refracting surface to the next. Each refracting 

surface has a vertex plane, which is perpendicular to the z-axis and passes through the 

vertex of the refractive surface. Figure A.1 illustrates the Welford ray tracing method 

and the coordinates used. 
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Figure A.1: Ray-tracing geometry used in accordance with the method described by Welford [105] 

A ray leaves a “previous” surface at a point P-1 (X-1, Y-1, Z-1) with direction cosines 

(L,M,N) and propagates towards a refractive surface. This is known as the ray transfer 

process. P0 (X0,Y0,0) is where the ray meets the vertex plane of the refractive surface. 

The coordinates are given by: 

 

"  

The distance from P0 to a point P (x,y,z) which lies on a surface with curvature c is 

denoted " . The condition that P lies on the surface of curvature is given by (A.7) in 

case of a spherical surface, and by (A.8) in case of a cylindrical surface with the 

cylinder axis pointing in the x direction. 

  

X0 = X−1 +
L
N

d − Z−1( )

Y0 = Y−1 +
M
N

d − Z−1( )

Δ
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"  

"  

Now the coordinates of P are: 

 

"  

x, y, z can be eliminated from equation (A.7) or (A.8) by using equations (A.9) giving 

a quadratic equation with a solution of the form: 

 

"  

where in the case of a sphere: 

 

"  

and in the case of a cylinder: 

"  

The optical path difference OPD is then: " . 

The components of the normal n at the point of incidence at the cylinder are obtained 

by taking the partial derivatives of equation (A.8): 

"  

Zsphere =
1
2
c X 2 +Y 2 + Z 2( )

Zcylinder =
1
2
c X 2 + Z 2( )

X = X0 + LΔ
Y = Y0 +MΔ
Z = NΔ

Δ sphere =
F

G + G2 − cF
,   Δcylindre =

F
G + G2 − cyAF

F = c X0
2 +Y0

2( ),
G = N − c LX0 +MY0( )

A = 1− L2,
F = cYY0

2,
G = N − cYMY0

OPD = n d − Z−1( ) / N + Δ{ }

α ,β,γ( ) = 0,  − cY y,  1− cY z( )
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and results in the following refraction equations: 

 

"  

where " . 

cosI and cosI’ have to be determined first. We have 

 

"  

or 

"  

Thus cosI has already been found in the transfer process (A.10) and we find cosI’ by  

 

" . 

To determine aberrations in the back pupil plane of the objective, it is necessary to 

trace a fan of rays, originating from a point source, towards the objective. One has to 

find the coordinates where the rays, with equal optical path, will be. A sphere is fitted, 

in a least-square sense, through the data points. In reference [106], Braat describes 

different methods for determining the aberrated wavefront in the microscope 

objective’s pupil based on the optical paths of rays. There is no general preferred 

method for all situations. We have chosen a different method, in which we fit a 

reference sphere through the set of coordinates obtained from rays with equal optical 

paths. As the optical path reference, the optical path of the marginal ray, in the XZ 

plane, to the pupil edge was chosen. The wavefront deviation is then calculated with 

n 'L ' = nL
n 'M ' = nM − KYY

n 'N ' = nN − KYZ + n 'cos I '− ncos I

KY = cY n 'cos I '− ncos I( )
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�189

(A.14)

(A.15)

(A.16)

(A.17)



respect to the fitted reference wavefront. This method has some similarities with 

method 4 or 5 in reference [106] in the sense that it depends on the radius of the 

reference sphere. It distinguishes itself from the other methods in regards to the centre 

of the spherical reference wavefront. The centre is obtained by least square fitting of a 

reference sphere (fitted through the set of coordinates obtained from rays with equal 

optical paths) and not using the marginal/aperture ray (as in method 4) or the paraxial 

focus (as in method 5). Figure A.2 illustrates how the reference wavefront is fitted. 

 

Figure A.2: Least-Square fit of a spherical reference sphere through the set of coordinates obtained 
from rays with equal optical paths. As the optical path reference, the optical path of the marginal ray, in 

the XZ plane, to the pupil edge was chosen. 

The sphere shell depicts the un-aberrated spherical reference wavefront. The deviation 

from the reference sphere represents the aberrated wavefront in the objective’s pupil. 

The Zernike polynomials are a set of orthogonal functions over the unit circle and are 

commonly used to describe wavefront aberrations (see Chapter 2 section 2.2). The 

aberrations in the objective’s pupil are obtained by fitting Zernike polynomials to the 

aberrated wavefront. To check the results obtained by the ray tracing program, a 
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comparison was made with literature [106]. Braat calculated the aberrations caused by 

a layer of glass with a refractive index of 1.5806 and a thickness of 600µm in the back 

pupil of a 0.6 NA objective with 650 nm wavelength. The results are shown in Table 

1. Piston, Tip and Tilt were omitted since they won’t reduce the intensity of the PSF 

and therefore would not degrade the imaging quality of the system. The Zernike 

polynomial notation from Born&Wolf [7] was adapted, as in reference [106]. In the 

Matlab programme, a ray-cone composed of 36 ray sections with an angular 

separation of " , each including 1021 rays, was traced towards the entrance pupil. 

The sine of the cone angle given by sin(𝜃)=NA/n, where n is the refractive index of 

the medium at the point source. For each simulation, it was ensured that the ray fan 

filled the objective’s pupil, by altering the angles of the ray cone accordingly. The 

aberration were determined with respect to the fitted spherical reference wavefront. 

Apart from the difference in sign, which is due to a different sign convention, the 

results are in good agreement. Differences in values can be explained by the different 

methods used for determining the aberrated wavefront. Aberration values close to the 

ones found by Braat were obtained by shifting the centre of the fitted reference sphere 

along the optical axis by -0.022mm. It is noted that our Ray tracing results, without a 

shift of the reference sphere, have lower values for spherical aberrations. This 

indicates that Braat’s aberrations were not taken with respect to the best fit sphere.  

π 36

Zernike Aberration Braat Ray Tracing Result
Ray Tracing with 

Shifted Reference 
Sphere

First order 
Spherical 
aberration

2.0454 -1.8735 -2.0454

Second order 
Spherical 
aberration

0.1793 -0.1678 -0.1793

Third order 
Spherical 
aberration

0.0154 -0.0141 -0.0149
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Appendix B 
  

Analytical expressions for the point spread function (PSF) exist for a limited number 

of cases. For an un-aberrated wavefront, an analytical solution for the 3 dimensional 

PSF was found by Lommel [7]. Nijboer and Zernike derived expressions for weakly 

aberrated (< 0.07 "  rms) focal spots around focus [9]. In most cases, however, 

aberrated PSFs can nowadays be computed numerically with a DFFT (discrete fast 

fourier transform). Braat and Janssen expanded the previous work of Nijboer and 

presented analytical solutions for calculating aberrated PSFs through focus [12] for 

high NA by taking polarisation into account. In the following a brief review of the 

scalar extended Nijboer-Zernike theory (ENZ), based on [12], will be presented. The 

scalar theory is at least sufficient for an NA up to 0.6. We recall that the pupil 

function, in cylindrical coordinates " , can be written as:


"  

where A describes the amplitude distribution and 𝛷 the phase distribution in the pupil. 

Using the Huygens-Fresnel principle, the complex amplitude in the image plane is 

given by [11]: 

 

"  

where"  is the defocus parameter, and "  are cylindrical coordinates in the 

image plane. The normalised axial optical coordinate is as follows: 

"  which becomes "  for low numerical apertures 

(NA) [11]. A wavefront, i.e. the phase distribution over a pupil, can be described in 

terms of Zernike polynomials (we consider here only the cosine terms): 

λ

ρ,θ( )
P ρ,θ( ) = A ρ,θ( )eiΦ ρ ,θ( )

U r,φ, f( ) = 1π eif ρ
2

ρ P ρ,θ( )ei2πρr cos θ−φ( )
0

2π

∫0

1

∫  dθdρ

f = −2π z r,φ( )

z = 1− 1− NA2⎡
⎣⎢

⎤
⎦⎥Z λ z = NA2Z λ
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"  

where " are Zernike coefficients and " Zernike circle polynomials. The inner 

integral of equation (B.2) can be re-written, using a Taylor series expansion and 

assuming an uniform illumination " , as: 

"  

Using here the cosine-based expressions only was decided to improve the readability 

of the derivations (expressions related to the sine-based circle polynomials can be 

easily obtained). The last integral in (B.4) can be expanded using (B.3). By only 

considering cosine expressions of the form "  (i.e. replacing "  terms by 

"  expressions) and by expanding the series up to the first order term " , 

which is allowed for small aberrations, equation (B.4) takes the form: 

"  

By using the following Bessel function identities [9]: 

 

"  

equation (B.5) can now be written as 
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"  

and the complex amplitude in the image plane, equation (B.2), becomes [11]: 

"  

At focus " , " in (B.8) equals 1. This allowed Nijboer [9] to use the following 

formula: 

"  

resulting for (B.8) in: 

"  

Where the "  coefficients can be complex. Thus the amplitude in the focal plane can 

be represented as a weighted series of Bessel functions. This is referred to as the 

Nijboer-Zernike theory. In the extended Nijboer-Zernike theory compact series 

expressions were derived for describing the amplitude distribution in arbitrary focal 

planes. Janssen showed in reference [13] that the integral on the right hand side of 

equation (B.8) can be written in terms of a Bessel function series: 

 

"  

Where the " coefficients are given by: 
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"  

The expressions in brackets represent binomial coefficients with " and 

" . Consequently, the amplitude at an arbitrary focal plane f is given by: 

"  

Where "  are complex coefficients, which can be expressed in terms " . For large 

aberrations deriving the "  coefficients from the " is not straightforward. It should 

thus be emphasised that  equation B.5 is only valid for small aberrations. For large 

aberrations, the Taylor expansion of the phase function (equation B.3) should also 

include higher order terms.  

The effect of aberrations on the amplitude (equation B.13) can be described in terms 

of Bessel functions. Amplitude variations, caused by primary aberrations, within the 

Airy disk are predominantly caused by Bessel functions up to order 6 [10]. The first 7 

Bessel functions are illustrated in fig 1.B as well as the radial position at which the 

Airy Disk function has its first minimum (Airy radius). 

vlj = −1( )p m+ l + 2 j( ) m+ j + l −1
l −1

⎛

⎝
⎜

⎞

⎠
⎟

j + l −1
l −1

⎛

⎝
⎜

⎞

⎠
⎟

l −1
p − j

⎛

⎝
⎜

⎞

⎠
⎟

q + l + j
l

⎛

⎝
⎜

⎞

⎠
⎟

p = 1
2
n −m( )

q = 1
2
n +m( )

U r,φ, f( ) = 2 βn
mVn

m cosmφ
n,m
∑

β α n
m

β α n
m
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Figure 1.B: Bessel functions up to order 5 plotted as a function of the radial distance. The smallest 
radial distance (denoted as the Airy radius) at which the Airy Disk intensity becomes zero is marked by 

the dashed line. 

" and higher order Bessel functions barely affect the amplitude within the Airy 

disk range For the analysis of aberrated PSFs, the Taylor series (equation B.3) was 

restricted to the second order terms "  as follows: 

"  

As shown in Chapter 6, such a restriction is allowable for aberration retrieval of 

aberrations in the range wherein we are interested. Expressions for PSFs with 

astigmatism, coma, spherical aberration will be derived below. 

Focal spot with coma only 

For coma �  we have


� 


J7 r( )

k = 2( )

eiΦ ≈1+ iΦ− Φ2

2!

Φ =α3
1R3

1 r( )cos φ( ) =α3
1 3r3 − 2r( )cos φ( )

eiα3
1R3
1 r( )cosϕ ≈1+ iα3

1R3
1 r( )cos φ( )− α3

1( )2
2!

A R3
1 r( ){ }2 cos2 φ( )
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The quadratic term can be expanded in terms of the radial Zernike polynomials (see 
equations B.21) as follows: 

� 


 Plugging into equation (B.4): 

"  

Thus for the amplitude, in terms of Bessel functions: 

"  

The complex amplitude, expressed in terms of Bessel functions, is obtained by using 

the formulae (B.6) and (B.11). The series were expanded using Matlab Symbolic 

routines. To assess the number of term necessary for the series expansion (B.11), a 

value of " for defocus (which corresponds to a Strehl 

ratio of 0.8) was used and the Strehl ratio was computed. A Strehl ratio of 0.8 was 

obtained when expanding the Bessel series (B.11) up to " . Bessel functions can in 

turn be expanded into polynomial series [107]: 

α3
1( )2
2!

R3
1 r( ){ }2 cos2φ =

α3
1( )2
2!

9r6 −12r 4 + 4r 2( )2 1+ cos2φ2
=

α3
1( )2

2 ⋅2!
9
20
R6
0 r( )+ 1

4
R4
0 r( )+ 1

20
R2
0 r( )+ 1

4
+ 3
5
R6
2 r( )+ 2

5
R2
2 r( )⎛

⎝⎜
⎞
⎠⎟
cos 2φ( )⎧

⎨
⎩

⎫
⎬
⎭

                                        P ρ,θ( )ei2πρr cos φ( )
0

2π

∫ dθ = ik

k!
Φk ρ,θ +φ( )ei2πρr cos φ( )

0

2π

∫ dθ
k=0

2

∑

= 1+ iα3
1R3

1 r( )cos φ( )− α3
1( )2

2 ⋅2!
1
4
+ 1

20
R2

0 r( )+ 1
4
R4

0 r( )+ 9
20
R6

0 r( )+ 3
5
R6

2 r( )+ 2
5
R2

2 r( )⎛
⎝⎜

⎞
⎠⎟

cos 2φ( )⎧
⎨
⎩

⎫
⎬
⎭

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
ei2πρr cos φ( )

0

2π

∫ dθ

Ucoma ≈ e
if

2 1− 0.063 α3
1( )2( ) J1 r( )

r
+…

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+ 0.025 α3

1( )2 J3 r( )
r

+…
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+ 0.2 α3

1( )2 cos 2φ( ) J3 r( )
r

+…
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
−

2 α3
1( ) cos φ( ) J4 r( )

r
+…

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
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1( )2 J5 r( )
r

+…
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
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⎣

⎢
⎢
⎢
⎢
⎢
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⎥
⎥
⎥
⎥

f = 4π 3 ⋅ 0.071λ  rms( ) ≈1.55

l = 5
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"  

Where " is the gamma function. Since we are interested in the Intensity distribution 

within the Airy disk region, we will replace the Bessel functions by their serial 

expansion up to the order " . The difference between the Airy spot intensity and the 

truncated series representation up to radial order 8 terms is shown in Figure 2.B. 

Thus, the residual error is less than 0.005. 

Figure 2.B: Intensity difference between Airy spot and truncated approximation. The smallest radial 
distance (denoted as the Airy radius) at which the Airy Disk intensity becomes zero is marked by the 

dashed line. 

The series expansions of the first five Bessel functions of the first kind are: 

Jυ z( ) = z
2

⎛
⎝⎜

⎞
⎠⎟

υ
1

k!Γ k +υ +1( )k=0

∞

∑ −z2

2
⎛
⎝⎜

⎞
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k

Γ

r8
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"  

Expressing the Bessel series, in terms of the radial Zernike polynomials (see 

Appendix A) the following expressions were used: 

J1 r( )
r

≈ 1
2
− r

2

16
+ r 4

384
− r6

18432
+ r8

1474560
+…

J2 r( )
r

≈ r
8
− r

3

96
+ r5

3072
− r7

184320
+…

J3 r( )
r

≈ r
2

48
− r 4

768
+ r6

30720
− r8

2211840
+…

J4 r( )
r

≈ r3

384
− r5

7680
+ r7

368640
+…

J5 r( )
r

≈ r 4

3840
− r6

92160
+ r8

5160960
+…
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"  

1= R0
0

r = R1
0 cos φ( )

r2 = 1
2
R2
0 + R0

0( )
r2 cos 2φ( ) = R22 cos 2φ( )

r3 cos φ( ) = 1
3
R3
1 + 2R1

0( )cos φ( )

r3 cos 3φ( ) = R33 cos 3φ( )

r4 = 1
6
R4
0 + 3R2

0 + 2R0
0( )

r4 cos 2φ( ) = 1
4
R4
2 + 3R2

2( )cos 2φ( )

r4 cos 4φ( ) = R44 cos 4φ( )

r5 cos φ( ) = 1
10

R5
1 + 4R3

1 + 5R1
0( )cos φ( )

r6 = 1
20

R6
0 + 5R4

0 + 9R2
0 + 5R0

0( )

r6 cos 2φ( ) = 1
15

R6
2 + 5R4

2 + 9R2
2( )cos 2φ( )

r6 cos 4φ( ) = 1
6
R6
4 + 5R4

4( )cos 4φ( )

r7 cos φ( ) = 1
35

R7
1 + 6R5

1 +14R3
1 +14R1

0( )cos φ( )

r8 = 1
70

R8
0 + 7R6

0 + 20R4
0 + 28R2

0 +14R0
0( )

r8 cos 2φ( ) = 1
56

R8
2 +12R6

2 + 20R4
2 + 28R2

2( )cos 2φ( )

r8 cos 4φ( ) = 1
28

R8
4 + 7R6

4 + 20R4
4( )cos 4φ( )

r9 cos φ( ) = 1
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R9
1 + 8R7

1 + 27R5
1 + 48R3

1 +18R1
0( )cos φ( )

r10 = 1
252

R10
0 + 9R8

0 + 35R6
0 + 75R4

0 + 90R2
0 + 42R0

0( )
…
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By further substituting " the radius is expressed in Airy units (AU, i.e. for 

the first dark ring " equals 1) and by multiplying the amplitude with its complex 

conjugate, we obtain the intensity distribution (omitting f terms of power 5 and 

higher): 

"  

Focal spot with astigmatism only 

The amplitude distribution of an astigmatic focal spot is given by [13]: 

"  

where " is the amplitude of astigmatism in the pupil plane and "  are cylindrical 

coordinates in the image plane. The function D is given by: 

"  

′r = 3.832r

′r

Icoma r,φ;α3
1, f( ) =

0.228− 0.013 f 2 + 2.42 ⋅10−4( ) f 4( )+ −0.025+ 0.003 f 2 − 4.82 ⋅10−5( ) f 4( ) α3
1( )2{ }R00 +
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1( )3{ }R11 r( )cosφ +
−0.419+ 0.041 f 2 − 0.002 f 4( )+ 0.057− 0.007 f 2 + 3.23⋅10−4( ) f 4( ) α3

1( )2{ }R20 r( )+
0.019− 6.59 ⋅10−4( ) f 2 − 7.7 ⋅10−5( ) f 4{ } α3

1( )2 R22 r( )cos2φ +
− 0.031+ 0.008 f 2 − 4.12 ⋅10−4( ) f 4( ) α3

1( )+ 0.003+ 3.72 ⋅10−4( ) f 2 − 2.65⋅10−5( ) f 4( ) α3
1( )3{ }R31 r( )cosφ +
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1( )3 R33 r( )cos3φ+

−0.014− 2.21⋅10−4( ) f 2 + 4.9 ⋅10−5( ) f 4{ } α3
1( )2 R42 r( )cos2φ +

0.257 − 0.024 f 2 − 8.07 ⋅10−4( ) f 4( )+ −0.031+ 0.003 f 2 + 9.93⋅10−5( ) f 4( ) α3
1( )2{ }R40 r( )+
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Where " is the Neumann symbol " . The T function is given by 

the following Bessel series expansion: 

 

"  

where f represents the defocus parameter, "  the radial coordinate in the 

image plane "  are Bessel functions of the first kind and  

"  

with 

"  

and " , " . Analogously to the derivation of the coma aberrated 

spot, we perform the substitutions (B.17 to B.21) and obtain for the intensity 

distribution of the astigmatic spot (omitting f terms of power 5 and higher): 

"  

ε ε0 = 1,  εn = 1 for n ≠ 0( )

Tn,m = e
if −2if( )
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∞
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Focal spot with spherical aberration only 

For spherical aberration �  we have:


� 


The quadratic term can be expanded in terms of the radial Zernike polynomials (see 
equations B.21) as follows: 




� 


With " being the spherical aberration amplitude. Like in the derivation of the coma 

aberrated spot, we perform the substitutions (B.17 to B.21) and obtain for the intensity 

distribution of the spherical aberrated spot (omitting f terms of power 5 and higher): 

Φ =α 4
0R4

0 r( ) =α 4
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Ispherical r,φ; f ,α 4
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Appendix C 
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Intensity distributions in and out of focus in the presence of 
primary aberrations

α 2
0 ≈ −0.075λ α 2
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